This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

ENGLISH MECHANIC

AND

colorld of stimte.

WITH WHICH ARE Incorporated
"The Mechanic," "Scientifio Opinion," and "The British anc Foreign Mechanic."

ILLUSTRATED WITH NUMEROUS PRACTICAL ENGRAVINGS.

VOLUME XV.

LONDON:

Office, 31, TAVISTOCK STREET, COVENT GARDEN, W.C. sold br all booksellers and newsagents in the kingdor
1872.

London: Printed by W. Sully, Plough-colrt, Fetter-Lane.

INDEX TO VOL. XV., ENGLISH MECHANIC.

A 1 CLOCK, the 40
Aberration (of intellect), 9 ,
Aborision of stamem funnelig, 368 Abyssinian gold, 133
Acarus Crosiii, 671
Accessories of the latha 72
Acetic acid, testing, 183, 208, 234, 284
Acid : acetic, testivg. 183, 208, 234,281 :
bulb thermonveter, 35; stoaric and
palmitic, 608 ; sulphuric, $18,43,545$;
tartaric, teating, 547
Acoustic illustrations of the method by
which stellar motions are determinal by spectroecope, 458
Acuustice, 623
Action : of gravity, 616; of ofl on waves, 623
Actions: planoforta, 149; practical in-
structions for making piano, 173
Activity, molar : 7 ; infuence of the planet
Apen, 33
Associstion, 584 president of the British Association, 684
Aujustable spanners and wrenches, 243
209,641 halancas and mainsprings,
Adjustment of an equatorial, 116, 129, 164, 180
dulteration: detection of in Pood, 625 ; of aniline colourn, 126; of food, 347 ; of
dranced
Advanced chemista, to, 240, 888
A.rated harp : improved, 540 ; tuning, 598

Arrated: bread-making machiue, $6 y 5$;
drinks, 21, machlue for making,
380 $546,622,670 ;$ ginger boer, 571 ; watera, 261, 309
Aironautics, 191
Aibrontatics, 569
Age of treos,
g98, 646
Agricultural : chemistry, value of, 57 ; Manures, 2199
Aisns and instruments of scientific thought, 634
Air: and rain. 239, 818; and warmth, 105. 130: cuat-cutting by compressed, 531 ; compressed, $\mathbf{5}+9$; as a motive
 6iz2, 646,670 ; preasure, resistance of ntecl plater to, $6+5$
Air-chambers. burstiug of, 126. 154
Air-guns, modera catapult and, 434
Air-pumph is
Air-vessel: for pump, 518 ; on suction pipe, 6i3
Alhamen paper, preventing blisters in, 144 Alrohol: $6: 30,624 ;$ question, 109, 171, 198, Ale, 2
Ale: effect of temperature upjn, 23j, 234; mur. 547
Alexanira palace organ, 43
A!getra, 180, 180, $232,365,391$
A)

Alibn's patrnt governor, 372
Allinnce piano 40 .
1liance, piano. 40. 33:
Allinghan's propeller, 89. 62, 92, 148, 178
Almanac, the Nautical, 9,116
Alues, Sucutrine, 339
Nphabets, origin of 688
li-azituuth : an improved, 249; stand fir refractors, 014
Alum. tent for in bread, 45
Alumiuium cuinage, 482
dinsteur: organ building, 302. 354, 409; seience. government and, 253, 3i4, 437; turn res nociety, 97, 130
matrurs: mutive power for, 105, 129, 104. 2046. 258. 25:3. 336

Amber: 113 ; bendiug. 15
Atwerican: and Scutch inventions, 11:1; chuck4, 495; drill chuck. 516; lathe chack. 284 ; paper car-wheels, 222
Atbuconia:
Ne-4ler:s, 46, 78, 101
Anmunatac chloride, 46, 76
Ammoniacal liquor, 673
Analywes from Goo. E. Devis, 305
nhalysis : 239 ; food, 467; of oren, 18 ; qualitative, 207 ; spectrum, 171 ; sugar, 18: water, 181
 moncal
mstruments,
ment wrought tron, 518

Aneroid: barometor, pocket, 44, 101 ; bell, 425
Angle of reflection and incidence, 17, 100, $152,204,231,283,307,360,440$
Aniline: blacik, 417, S 45 ; colvurs, adulAniline: hack, 417,545 ; colvurs, adulAnimal life, influenoe of light on, cos,
Animala and plantas. 350
Annealing steel, 148, 181, 308,547
Animald, 48, 101
Antares, or a Soorplonia, 485
Ant-hill earth, 64
Anti-mildew grain protector 978
Antipodes, time at 208, 233, 239, 284, 808, 33ई, 361
Antiquity of man, 51
Ants : 201, 810, 496. 621 ; are they pirates?
 359
Aphides, destroying. 133
Apparatus: blowing, 519,$570 ;$ for determining sperlifc gravity, 220; nuvol 325; self licting bluwing, 124
Aquarium: 491, 516, 546, 572 ; freshwater. 156, 206: gravel for, 025; marine, 589. 644; water for, 673; zinc for, 362, \triangle quile : 263 ; P XVIIL, 536 ; stars in, 614
Arches, brick-vauled, 46
Archltecture, naval, 23
Arce, semi-diurnal,
Areat: of buat, 156; of chimney, 260; of segment of circular ring, 22, 76, 128, Regu
183
Argen
Argento pictures, 58
Argistoll, phenomena of, 410, 436
Arithmetical. 6L, 130
arrangement and preservation of insects, 265
Arsenic: in wall-papera, 236, 261, 209 ; Art : disauppearance of, 469, 818, 545 ;

Article in Nature, on an, 144,
Artincinin: butter, 180: gum, 209; legs, 71. 75 : manure $4.209,351,438,465$, 12: oits, $443,468:$ so-called orgauic

Artinery. Wirk whe 62
Ash timber, Wis
Assuy, wet and dry copper, 99
Assiver's dutics $234,259,309$
Asthums : hay, bit, $622,666,670$; on the treatenent of, 55
Astriucmical: 61, 102, 154; catastrophe, 196 ; notes, $27,136,265,370,475,605$; strumom
in New Zand the Evolish Mbchanic Essays on for the stuly of the plysaics of 317 Atmusphero: carbonic acid and 31728 338 ; conpressibility of the, 151, 214 , 35s; lunar. 662; our coal-stores and the, $334,355,411,437$
Atmospheric: burner. 867 ; dust, 5,66 , 92. 124. 147; elastic force, 279, 326 ; geology. 639; pressures, 64s, 571 ; waves, Atomic: proportioned alloya, 590,660 ; theory, 360
Atomictities: 11, 68, 230, 280; valencies nud, 10, 41, $99,122,123,200$
Auburn hirr, 625
Augers, improved, 481 ${ }^{\circ}$
Aurıra: 14i, 331 , 233,337 ; borealls, 11 , S6f
Aurore boreales and gales, 64
Australia, trip to 364
Australian meat: $38,62,126$; preserving 178
Austrin. motric system in. 179
Automatic gaslighting. 3.5. 536
Axen of the planets. $379,406.460,482,594$ Axis: monns 9, 40; of Venas, 430, 460

B. A. O. stars, ${ }^{\text {B }}$ B08

Back of teeth, cleaning. 442, 492
Background, phowographlc, 189
Bad : sleeper, 338, 887; water ${ }^{\text {b }} 99$

Raker's ovens. 180
Baliste, Twashing, 364
Balance-wheol, lixing on verge, 285
Balloon: dimensions of, 313; fire, 1 1t
Bands: driving, 365 ; worn waterproof, 365
Banjoists, to, 257
Barges, tron, 111
Barlow lens, 228
Barra, yeast or, c23
Barometer: pocket aneroid, 44, 101; tube,
Baromene in, 107
Baromelers at sea, 285
Barrister, 156
Rarron ateel prooess, 45
Barrow-in-Furness, 310
Basket-making, 129
Bass, thorough, 182
Bass's beer, 131
But-making, 621
Bath : remoring organte matter from, 144 ;
silver, 21, 105, 130; swimming, making
Batteri
Bat-making, 695
Battery: 46, 340; coil, 391; contlnuous, 360 ; defective, 182. 206; diminished action of, 417, 467 ; Himmer's galvaulc 113, 275; manganese, 498; powerfu galvenic 490
Battir of the gauges continuod, 654
Bearings, glabs ante, 6.38
Beating gold, 26.2
Bedding-out, 29.2
Heds, spring, 106, 130
Bee cabinet, Myborg, 364, 433
Beech, varnishing. 107
Beoftrteak, vegitable, 425
Benf-tra, worthlesgnest of, 191
eehiva: 19y 1105. 154, 519. 643; improved, Bee-kecping. 14, 17, 158. 547 ; $: 977$,
Beor: auld kpirits, teating $570 ;$

153 1538 : $339,363,492,546,571,596,643$, C46
 forming. wo rem. get a swam of 495: Ligurian 23. 311 getamement of 32,158 1852, 224, 324, 470, 494, 590, G42; ktings of, \&C., 79, 103, 1129, 154, 180, 206, 231,360
Fretles, killing, 79, 102, 129, 180
Bell: ancroid, 425 ; electric, 48, 182. 207 361, 466. $559:$ electric, anticipated, 253 280: pianette, 182, $226,275,333,483$ Pellows: organ, 333,$413 ;$ water, 410
Bell's patent feed-water heater, 55
Belts ix iug on tires, 102
Bench, carpenter's tool-chest and. 311 Bending: amber, 106; laths, 519 ; tires, 44.101

Berlin black. 79, 102
Blble, bug. $1: 53$
Bicgele brake for, 590
Bicycles: simple way of fitting handles
to, 177; spred of. $\mathbf{7 3}$ or
Billiurd clothy, greuse in, 368
Billards. 331
Bhary stara, 143
Birch
46
Brils: economy of small, 203, 2.52; eggs, Cabinet fur, b17, cegos, preserving, tus; Hlifht of, 121 ; stuffing, 152
Birmingham seience in, 613
Bisulyhide of currion: engine, 140; fraBisulphiddo
grant 656
Bitumen as a photographlc material, 299 Black: aniline. 41i, 5tu: Barlin. 79,102 Brungwick. 130, 165 ; cloth cuats. reviv ing, 156, 233; dye for leather, b99, ces, 670; lacquer. 387; varnish, flexible :572,
$596 ;$ varnish for miseruscope objects,
Blackbeetles, London. 209, 235, 260
Blackberry and strawberry, 307, 360, 38G,
${ }_{4}^{413}$ Blackeulng transparencies, 28
Blacking gun-harrels, 179
Blacklead, manufacture of, s69
Bleaching: Rgent, sulphur as a, 281; oll
168 thaned goode, 621
Bleaching-powder: 18; testing, 285, 261, 285, 309, 361
Blind, doaf and: 23, 47; writing-machine Blindine9e, colour, 179

Blind-roller, self-acting. 295
Blinds, Venetian, 340, 388
Blistering. preventing albumen paper
from, 144
Blood : action of quinine on white corpuscles of, 8 : circulation of, 18, 74, 127,
179,205 ; white corpuscles of, 8
Blowm of scarlet runuers, fixing the, 699, 646
Blowing: apparatus, 519, 670; novel, 325 ; small birds eggs, 490
Blue : billy, 131; cochineal, 674
Bluecoat school, 625
Boat, area of, 156
Boat-building, 415, 494, 518, 548, 62 s
Buats: anti-nanseating. 433; caulking,
209; new sliding seat for racing, 372
Bodies, embaluning by injection, 497
Borlies, embalming
Builed oil, 468, 492
Boiler: 180; charcosl furnace for model, 442; ${ }^{\text {construction and management }}$ from steam. 23; explosiona, spheroidal state of water and, 632 ; for 8 mall engine, 19 ; for small stesmbort, 258 , 808, $361,386,645$; high-pressure firebox, $417,467,517$; hot-house, $364,388,467$; incrustation, 645 ; tannate of sode in, 439; power of, 310; preventing incrus-
414; sode-ash in, 20,232 ; strength of, 128;
Boilers: 44, 148; incrustation of steara, 481, 546 ; pressure in steam. 01; proleo tion for steam, $0: 96$; recent improve ments in English and American 113, 138; removing scale in, 346
Boiling: by steam, 157, 181; nader presнure. 545
Bones: as manure, 316 ; dissolving, 491
Book, using a. without hands, 19, 44, 62, 74, 127, 224. :253, 250
Bookbinder's press, 623,646
Bunk-keeping. 625, 647
Buoks: curving edpes of. 571 ; lettering backs of, 102 ; marbling edges of, by Bootm"king. $105,129,234,305,335,385$, $571,623, \mathrm{Ci} 2$
Bonts, machine for cleaning, 520, 647
Boring: and cutting indiarubber, 676;
and mortising machine, 216 ; fur waterjet. $6 ; 12$
Botanical names, 405.443
Botany: of Cornwali, 285, 309; treasury of, 156
Bottle, pressure on cork of, 183
Bottle-caps, siphon, 2;1
Boundarr line drom wr., 145. 305
Bow: 105. 130, 155; golall or Indian pellet, 255, 386, 434
Box : levels, circular brass, 78 ; musical, 44
Boxes, plant, 625, 647
Braces, gaumo for bit, 325
Bracing and bellying pianofortes, 325, 253 Brake for bicycle, 596, 623
Brass: blackening, 288,312 : blocks, stereotyping. 625, 647; casting solid.
102, 129. 180, 221; mouldin;, 64j: punch-
ing holes in sheet, 650; screws, 416,
467 ; separnting Iron from, 117 ; springs,
285, 312; wire, restoring, 389
Brasswork: burnishers for, 313, 339 ; lacquering, 43, 647
Brazili, industrinl elasses in, 88
fishing-rods, 101
Brazing: ferrules of flshing-rods, 101
Bread: fermenting with starch, 621 ;
Nevills. G66: test for nlum $\mathrm{In}, 40$
Breadth of etair-steps 417
Breaking atrain of hollow iron columus,
78, 102
Breath, shortnens of, 88
Brecch-loadera, 649
Breeding, rabbit, 17
Browing: query, 382°; water, rust in, 363
Brick: and tile glazing, ©il ; raulted arches 468
Brick-kilu, hest of, 75
Bricks: microscopic deposits on, 128; Bridge: connecting England and France, proposed, 62, 201, 250, yit ; skew, 493
Briliunt experiments. 84
Britannla metah, solder for, 188, 207

British Association: and the mechanical equivalent of heat, 664 ; gleaninga, 618, 637: Preaident's audress, 584

Britigh mano Bearch, 845

Bronze: Florentine or brown, 155 : imita tion, 362, 493, 518 ; paint for iron, $2+8$ Bronzing, 168
Brown: hat, 180 ; ink, 188; randyke, 466;
varnish for baiket,
s17 rarnish for basketa, 517
Brush, to blnd a, 168
Brushen, revolving, 465
Bryant and May's matches 387, 468 Buckmastor, Snaith, ,cce
Budding or grafting, 491 Budding or grafting, 491
Buffalo pleckera, 571
Bug bible, the 153
Bugs. lice, and perasites, 235
Building: Brannan's ayatom of mono lithic, 360,488 ; on sand, 819 ; trado nuidery in, 445
Buildings: concrete, 92, 477; monollthle,
Bullot: fall of, 492 541, 567, 619 ; upward
deflection of, 779, 306, 358, 412, 510
Bumpa, hoat, 899
Bunlons, 209, 285, 280
Burner, handy atmonpherle, 667
Burners, gas 183,208 Burners, gas, 183,208
Burnishars for braswork, 313,399
Burnt in photographs 148 Bursting of air-ohambers, 126, 129, 154 'Bua, new steam, 161
Busta, marble, 102 Bust, marble, 102
Butter: artuicicial, 180; favour of, 850 preserving tub, 181
Butternliei
Butterfieie: and caterpillara, 659 ; and Buttons, cleanlog metal

OABBAGE plants and planting, 155
Cabtnet for birds' eggs, 517
Cabineta, microscopical, 218,307
Cables, zubmarine colegraph, 169
Calculus: 548 696; intogral and diferen
Calendar, compendlous perpetual, 303
Caliper compaseen, 16, 38, 97
Camers: lacida, 891 ; obscurs, 646
Canade: plano in, 488 ; prining in, 868
Canadian ${ }^{\text {Canariog }} 491$
Canarieg song, 20
Cancri, zetr 183
Cane-ugarar, analyaling ash of, 182
Canine: 6 623, 671,164
Capillarity, 188
Capturing mothe, 182
Carat 45°
Carbollo acid: at a hair-dye, 899; for ${ }_{507}^{\text {preserving hiden, 248; medidinal use of }}$ Carbo
blisulphide oforing, 495, 518; fragrant pipes, 493 pipes, 193
acid in : cham in atmosphere, 838,418
Cards, Ashworth's Ano-pointed fattonea Wire, 250
Carmine stainlog, 258,350
 porspoctive, 89, 119, 15y, 175, 200, 251,
306, $828,382,489$; on chali, 607 ; on occeanle circuiation, 6533 chail, 607 Carpenter's bench sich
Carriago: lamp, oconomice ses; whoels, improvementa in, 225, 246; wheels, Cartoong spokea of, G73
Cart-whoels, tiroing, 338,363
Carving, 182
Came, tiolin,
Cask-stand, new, 349
Casting: brase solid, 102, 129. 180, 231; largest, 17; metal tn airtight mould, 124; sand for 102,180
Cantiogs: 148,179 ; Iron, $509,599:$ micro. scope, 254,411 ; smail malleable, 470 ,
870 , 270
287 ; propertiea of sustaining power of, Ca:tor, orbit of the double ertar 877 165 Cast-steel chisels, tompering, 262, 287,
310, 887
Cataclymmo-mythology, "E. L. G." and, ${ }_{\text {Catalogres, }}^{171}$
Catalytic action of apongy platinum, 439 Catarth, relief for, 280
Caterpillare, presorvinge 40,364
Cattle, weight of 106
Caulking boata, 809
Cavastic soda, 480
Caution about potatoos, 211
Care explorationa, 609
Cayenne: 889 ; pepper, adulteration of,
s28 Cell, Leclanche, 988
Colls: patiorne loed, 849 ; varnish, 608 for Stourbridg giag letters, 181, 188; water 28, 48 . frust gewebricke 71; Yor achaum, 156. 206, 281 ; on pootage Cemenpa, 649,671
Comentod object-glassea, 300, 978
Cementling iron in wood, 235, 259
Cementa, useful, 828
Centro: drill-chuck, 74; makjing, 23
Contro-polnte 91
Centritugal: 10rea, 514 530, 663, 621 ;
purpa, $40,818,669,621$
ertifcato chomisue
erificato, chomista', 48, 77

Chalk: Dr.
scope 5.1
Chsmpagno atains, 19,44
Changes of level in land and sea, 620, 663 Chapman, death of Mr. E. T., 439
Character of curve, 156
Charcual: 286; carlonic acld $\ln , 288$ furnace for model boller, 44, 467; pipes, 493
Charred manuscript, restoring, 89
Charts, weathor, ${ }^{27}$
Cheap farming, 415
Cheose, cream, 415
Chemical: 18, 19, 45, 78, 101, 131, 258, 288, 810, 389, 364, 387, 417, 469, 470, 493, 544, 569, 645; action. drying by, 269; compounds, dellnition of, 334 : inh inence of bolar light, 144; moisture-alswrorbing, 41% nomenclature, $632:$ yew systom or,

inorganic, 520. 547; lessons 84, 111, 214, 24i, 896; 448, 578, 658; value of agricultural, 57
Chemists certificate 48, 77
Chomista : aidancod, to, 240 , 888; task for, 17, 157, 232 ; to,
Chess: 315, 546, 569 ; problems, 815, 342 ,
601, 687, 652, 876, 472, 497, 522, 550, 575,
Chess. player: 443, 469, 492, 545 ; automaton, 646
Chest-oxpander, 369, 414
Chiding-stone, 312
Chigion, pathology of, 648
Chlld provision for, 495
Chlldron, photographing, 144
Children s concert, 19
Chimney : area of, 260 ; smoky, 261
Chinese white copper, $574,598,646$
Chloride of lime, 386
Chlorine: 287; production of, 296, 404
Chloruforming bees to remove honey, 281, 284
Cholera, the, 482
Chromo-lithography, 570
Chronometer balance spring, 199, 206
lathe, 284; grip, 287, 338 ; oval, 206
Chucks
Church, Americicn,
model of, 49 , 179
Cider in wine, detecting, 1
Circular sem: driving, 259, 442, 467; spindile, 93
Circulation : of the blood, 18, 74, 127, 179, 205: Influence of reapiration on, 425;
oceanic 473, 499, $553,567,58.603$ Oistern, contents of, 287, 810, 362
Claret 20
Clavicle, humerus, and new cranium, 285
Clean : pipe, 333; plates chemleally, 236,
262 , 209 262,
Cleaning:
Cleaning: feathera, 493; greasy wool, 482; jewellery, 240, 364, 516 ; oll-paintings, organ. 233; plain blue engr, 440; silk; orgsan. $493 ;$ plain bs
Climaxodus and new reptile tooth, 208
Clock: A 1 , 40 ; cheap obsorvatory, 40,
124; 641 ; 1 ret who made the 363,337,
124, 641; irst, who mede the, 363, 387,
Clock-lina, turret 410 ; 41 ereal, 171
Clock-line, turreh 410
Clocks: electria, 5 ; keeping dust from,
Cloth: cleaning acarlet 131; pasting to loth: cleaning acarlet, 131 ; pasting to
maps. 572 ; restoring worn black, 28 , 155, 180
Clothes, paper, 597
Clothos horse, suapended, 13
Clouds, coloars of, 383
Coaches, painting. 88
Coal: and domeatic economy. 630; dear,
how it may how it may prove a bonetti, 564, 620; ecunomy in using, $463,587,565,589$
experimental borings plants, 565 ; getting, 648 ; in Ireland. plants, ${ }^{565}$; getting, 645 ; stone, 408,438 ; in Ireland. the atmosphere, 234, 885, 411, 437; supplices, 454, 619; waste of, 609 ; zinc vn 256
Cosl cntting: by compressed air, 531 ; machinery, 140, 197
Cual-measures and cual supply, 167, 192
Coals, scionce in search of 557 , Cochineal : blue, 674; inneots, 61, 413
Cocos, 630 : blue, 674; inneote, 61, 412
Coffe: : 416, 487, 517, 530; syrap of, 61 ; Coil: battery, 891; construction, 861 defective, I57; induction, $339,364,888 ;$ medical, 597, $671 ;$ Rhumkorfs, 79
Colnago: aluminium, 48%; decimal
Colnago : aluminium, 48%; decimal, 68
Colus, 46
of : deafness from, 387, 41s; infuence of on vegctable graina, 94, 126, 147,
Colds in heed, 235, 261, 285
Colllery: oxplosions, 14, 38, 65, 124, 177, 224; and weather, 278 ; punpp for, 517 Collodio-bromide, 621
Collodion filter, Maynary's, 144
Coloniog,
468
the English Mschanio to the,
Colorado, 650, 672
Colour: 97, 149; blindnesk, 179; optical power ai arfecting perception of. 7 ; rontoring to marblo mantol-pleco, $2 ; 5$ Coloured: ink, 341, 544; prlating inks, 260; suns, 296, 858, 383,436
Colourlag: for outside work, 43; mstter, extracting vegrtablo, 671; photos, 49
74, $772 ;$ Falls 79, 272; Falls, 157

Column : our mathematical 645 : sostain
ing powor of cast-iron, 440 : sustala
Combe steel, 411, 491

Combined tool, another, 99
Combustion, spontancous, $\mathbf{7 0}, 74,98,111$
Cometary: deluge, 326 ; orbits, 116
Cometic, 61
Comet: 536: "E. I. G.'s." 2:2, 803, 827 ;
Norh s., who in intou, $33^{\circ} 0$; Boscoe ${ }^{\circ}$ tful" of, 331
Comots, contuct of, with the earth, 68, 91 Comin
Coraing struggle, the, 519
Compasses, caliper, 16, 38, 97
Competitive examination, 38, 78, 121, 956 Complaint: spinal, 128: students' 200, 228 Composition for moul.ting, 208, 234
Compound: engine, $960,361,466$; horse puwer of marine, 258; eyopieces, 456 Comprensed air: Gy; as a mutive power
28,384
Compressibility of the atmosphere, 151
: sir, 548 696, 646, 670

Concert, children's, 19
Concertina: English, 082; Gorman, 493 ; repairiug, 128
Concrete: 407 ; 471 ,
Concrete: 467 ; building, 477 ; description
of a 617 ; engine beds, 467 ; moulds, of a, 617 ; engine beds, 467 ; moulds 144, 199, 223, 282; proper manipulation of, 666; walle and buildings, $23,47,92$,
Concretions, artificial mo-called organic, 503
Conden
Condensation of stosm in plpes, 410, 401, ${ }_{\text {Condensed milk, }} 633$
Conductivity of copper wire, 138
Conductivity of copper wire, 133
Conductors: lightning, 14, 39, 69, 93, 120, 56x, 620 ; gas and water-pipes us, ${ }^{\circ}$
Cone pulleys, unequal sizes of, 468,492
Confectionery: improved means of mano
facturing, 199; sugar-boiling, \&c., 18
Confusion in the head, 840, 385
Congratulatory, 61
Conic soctions, 236,
Conic soctions, 236, 262
Conjuring, magic and, 108
Connecting-rod, stub ond for, 464
Conservatories, slazing 147,
Constellations, the sncient, $380,411,431$
Constlpation, 865, 390 441, 467, 491, 617 ,
544
Constitution of nature, 429, 457, 478
Consumption, cense of, 871
Contact-breaker, defective, 208 Contact of liquids, 164
Contaminatlon of water-supply, 141
Contents of clatern, $287, ~ 810,362$
Contents of cylindorm, calculating, 19, 75.
153
Continent, tour on the, 565
Continuous battery, 360
Cooking: by gas, 492; apparatus, econo-
mical mical, 613
Cool air in hot climates, 235, 261, 837
Cu-operation, "E. L. G." and, 668
Co-operative: and other crudities, 667 ;
357, 412, 465, 511, 540
Copper: assay, wes and dry 99 . pipes, 81 ; mending, 182; precipitation of silver by, 613 ; Wallaroo, 258; wire; conductivity of, 183
Coppering carbon, 494, 518
Coppers, tin boxes to hold, 83
Corals: growth of, 676; "P. Santalinus"
Core box, 624
Cork lock, 352
Cork-cutting machina, 809, 863
Corks, locking. 312
Cornet, four-valved, 670
Corn-screen, 310
Cornopean, cleaning, 157
Cornwall, botany of, 285, 309
Corpulence, 598, 623
Corpuscles of blood, white, 8
Corona, Bolar,
Cosmopolitan move, 51
Costless ventilation, 68
Co-storos, 617
Cotage hives, chesp super for, 462
Cotton-spinning, 234
Cough, whooping, 230, 262, 285
Counting envelopes, 697
Covered: strings in pis
Cover-plates, 365,414
Crackors, detonating, 339
Crank, death of, 561, 642
Crater, wonderful, 859
(ream: cheose, 414 ; of tartar, 48
Creams, ice, 624.
reation, connecting links in natural
Cricket : bata, 516, 571; dap, dye for, 865 Cricket-bat making, 62:2
Critical, 61
Critics, concerning cortain (or uncertain),
350

Crossbow, 336 Cryolite, 23
 Cryolite, 23

rystallised iron. 879
Crystals in gro tar, 129, 180, 231, 289, 807 uhe duplica
ubee, duplication of the, 333
Cultivation of grapes under glass 899 Culture: cucumber, 484; Hibh 696 ; of the grape, 647 ; potato, 66
Curing: bacon, 21, 75 ; sking, 20 ; aprats, 310
Curious: case of double refraction, 961 ; url in peach,
arrency 41 , 44

Curry : 286; and rice, 183
urve : character of, 158; of mirror, CO 2
sunrise and other, 98
Cut-nsil works at Mlddlesbrough, 581
utler's wheela, 47
utter-bar, 668
Cutting: cylindrical glass, 625, 647 mounts, $45 ;$ press for paper, 442 : merew
$100,104,127,244,689, G H$; wois, sew pering, 155
Cyanide of potassium, 209, 234
Cylindrical vessols, calculating contents
of, 19, 75, 153
, Thouphilus and, 14

DAIBY extractor, 106, 180
Dandelion roots, 288 3i, 34824028
Dankn's puddling machine, 110
Dark tent. portable, 855,389
Darkening: graduatlons on acalea, 625
647; Wulnut, 206, 231, 288, 886
Darkness, 140 in, 15,68
Darwin "J. C."' and, 385, 461
Darwinlam, the "fallacies" of, 587, 891
Dater, tahle of, 44
Days, analyses from Mr., 205
Day: and night teleacope, 519, 846, 670,
Deadening sound, 157. 182, 206
Deaf: und blind, 23; dog, 886,418
Deafness arising from cold, 887, 413
Dear coal, how is may prove a beneft,
66t, 620
Death: of
Death : of an inventor, 166 ; of the crank, 561, 642; putrefaction after, 181
Debility, 18\%, 207, 238, 258, 284, 208, 336, Debinty, 182,
$361,460,516$
Decaying ivory carving, 208
Deciunal: coinage, 68; system, 148
Decimalism, save us from, s8, 67
Decimalist, Herschel no, 96
Decimals and the docimal system, 118
Declination: of the ang, 70, 125; reduc tiun of, 490
Decompowition of water: 638; by einc, 52
Deep-sca: sounding lines, CNG; wator of
Defaulting sovereigns, 5
Defective: bettery, 182, 206; coll, 157 contect breaker. 908 ; feed pump, 183 ;
organ, 40 ; plating solution, 44, 188 ; sewing-machine, 155, 616
Defects in harmonjums, some thoughts on, 359
Detinition of chemical compoundes, 83
Degroes in chemiatry, 79
Deluge: $198,829,966,804$; sfto

Ing evidence of, $85 y$; miore proofe of
304 ; one proof $\mathrm{cf}, 175,256$; "Un Is
landais" and the, 276

Double: flowers, how to obtain from seed, 281: rocketa, 415, 517; stara, new, 148, 201. 230. 274, 323, 365, 462, 485, 64y, 567, 594. 614
Doubling frames, 44
Draconis (a): $\mathbf{4}$ the Pole-star, 171 ; re- $-~$
Draft holes in tirep
Dratt holes in tiropiaces, 363,515
Drains, house, 48)
Drawing: boondary line, 47, 77, 101; from the microscupe, sof; eeometrical,
Drawings: copylag by electricity, 61; transferring pencih 495, 590, 621
Dresser-top 469
Dreasing: Jack line, 625, G47; kid, 155 ;
Drilh, new reok 588
Drill-chuck: American, 516 ; contre, 74
Drilling machine: 7G, 151, 198; universal angular, 67
Drinking fountaing,
Drinkg, aierated : $21 ;$ machine for making, 546, 692, 670
Driving and transforring bees, 600
Drving-bande, 365
Drunkerds, tes, 209
Dry: soap, $544 ;$ steam, 157, 181, 289, 958,
284, $308,300,336,413,440,466,491,544$, ${ }_{595}^{284}$
Dryer, a nem, 482
Drying: hy ohemical action, 269; by talam, 588, 623; planta for herbsrium, ${ }^{281}$
Duhroni's photographic apparatus, 468
Dugong oil, 465
Dumpg level, 103
Duodecimal: arithmetio, 118; aystem, 152
Duplication of the cuba,
Darebility: of framed timbers, 281; of
Darsbility: of frame
textllo fshrica 220
Duration of boiler, 236
Durerin, Albort, engrarings 889
ant: atmospheric, 5, 66. $92,124,147 ;$ in keeping from clocka, 491; Vosurian, 637; workshop. 49
Duties: of agsayer, 284, 259, 309; of farm Duty
Duty, succession, 183, 208, 283
Dwelling-housea, healthiest Riten for, 51
crieket cap, 365 ; hair, $887,310,338,595$; crieket cap, 863 ; hair, 287, 310,
scarlet, for silk and wool, 430
Dyeing: $\delta 44$; parchment 155 ; pulp for sugar papor, 443, 469 : raw cotton, 390
Dynamic rofrigerator, 428
Dynamite, experimente with in Italy, 529
E. and O. R, 103
E. L1: G.": 663; and cataclynmo-mithology, logy, 119, 20-2984; and h6; ; and geo20g7, 119, 229. 284; and his pet deluge,
277, 203: after thi deluge, 228; comet of, 252, 303, 397
Earr, bounds of the muscles and the, 485 Earth: anthill, 545 ; contact of comets with, $68,91,117$; interior of, 638, 647,
$662 ; 1 \mathrm{ghtning}$ from the, 568,620 ; 662; lightning from the, 568, 620;
weight of at croation and now, 200 Woight of at craation and now, 200
Earthquakes and volcanoes, 198, 820,271 ,
348, 374, 464
Carwig in ear, 178, 981
Ebdy's patont gat gtova, 402, 483
Echo: 339, 863,468 ; of sound on water,
Eclipee, the late solar, 7, 148, 249
Belipses of ann as seen from
ellipses of ann as seen from Juplter, 176
hconomic carriage lamp, 565
Enomical: cookiug apparatus, 613; Eronomy: in using coals, 463, 630, 637 . joke, 59,284 ; of tuel in prevention of grion, S56; of small brda 203, 252 Edite mushrooms of Italy, 510 Eduation: 357, 470, 493; and sclence,
3.56 in Saxony, 99; masical 899 : 356 In Sarony, 99 ; musical, 839 : Beiouce Dopartmont and acientitic, 26i;
s7, 266; scientific report of the ommisgion on, 848

Eels inseate, 23,46

Effocts:magic lantern, 418; of faulta in visionon painting. 162; of Increasing the aperficies of soundboardn in planos 882 ; of lightning, recent dises-
trone 88 Eges: blo
Eggs : bloring staall birdn', 490; hens',
417 ; nuaber of, from a hen 67 c ; pre, 417; number of, from a hen, 6iG; preRoft, 492
Elastic fora atmospheric, 279, 220
Elder fowes: water, 648 ; wine, 493 Electric: bo $48,182,207$; 860 ; bell, suticipated 258, 280; clocks, 5 ; bite,
 256, 566
Electrical: 70. 74. 79, 126, 157, 183, 208, chine, Hebein, anticipated, 253; man
 ${ }^{406}$
Electricity: $25,889,412,414$; spplied to engraving. 65, 300, 441 ; atmoapheria, 313; copying drawinga by, 61: from Auence of on squids, 502 ; lampllghting by. 7 ; meanulng temperaturen by 533, 658; iurlace. 22; vitality and, 891 ;
 ectro-dopositia : of
plekol, 216 pleksol, 216
detrolysis, 230, 80

Electro-magnatic gasilghting apparatus, Electro-metallurgy, 321, 395, 423, 501
Electro-motive force : 23 : comparing. 64, 640; measurement of, 490 ; voltalc standard of, 404
Electrotypo: casting. 547 ; Iron as an, Electrotyping, 492, 519, 545, 569, 571, 621 Ellipнograph, 598
Embaiming bodiea by injection, 497
Emigratior to San Francisco 312
Emigration to San Francisco, 312
Employment for retired tradesman, 819, 546
Enamelling, 891
Encycloperdia, London, 441
Endergy: forco and, 300; origin of volEanic, 404 : bede concrete, 467 : bisnlphide of carbon, 140; compoand, 208, 260, 361, 466 ; fuel for, 819 : gun-cotton, 199, 228; horizontal, 45 ; horse-power of compound, 258; jacketed eyllndor, 47; magnetic, 418, 466; non-packing and tion of, 258; power of high pressure, 4 : power of 548, 596; pumps of portble, 23, 45, 76; query, 74, 127 ; rotary 62, 314, rola 207; varnish peint for, 364 ; waste of coal in the stoam, Gio; water presnure, 6
Engineer, marine, 152
Engineering Inquiry, 519
Eugineers, London Associstion of Foremen, 482
Engines, good and bad, 611
England: and New Zealand, time in, 74;
history of, 102 ; in relation to music,
English : and American boilers, improvements in, |113, 138, 168; black v. Ligurian bees, 666 ; concertina, 62
ENGLISH MECHANIC : in the colonies, 469 ; in New Zealand, astronomy and, 11 ; grsping: i82 ; by eciety, 689, 641 442; eloctricity applied to, $365,389,441$ Engravings: Albert Durer's, 339; cleaning old, 23: mildew in old, 127
Enlarging photographs, 496, 624
Entomological, 276, 305, 333, 354, 411, Entomologi
496, 519
Entomologist's hollday, 187
Envelopes, counting, 597
"Eos," "news from, 354
Equation: 49, 79, 102, 340, 364; of time, 490
Equatio
Equations for formation of bydric sulphate, 22
Equatorial: adjastment of an, 116, 129,
154, 180; use and adjustments of, 5jl
Equisetuma, 156, 206, 232
Ermine fur, 46
Erratic metoor, 121
Errors in popular works professing to describe musical instruments, 178 Eruption of Vesuvius, recent, 272 Escapo wheel, fastening in lever watch, $100,152,205,283$
Essays
3.66 on Astrunomy : 201; Proctor's
Essonce: of phosphorus, 449; of wood smoke, 649
Etching: on glass, 287; on stono, 671; steel. 102

Euplectclla, 541

Evaporation of water, 625, 647
Evidence: of atar Rystems and drift new, 369; of the deluge, existing, 252
Evulution and the human arm, 63s Examination: military, 26\%; question 21, 76
Examinations: competitive, 38, 78, 181, 256; technological. 526
Excessive perspiration, 699, 646
Excitoment, nerrous, 650
Exhibited inventions, 670
Exhibition: this year's International,
Expender, chest, 389,414
Expander, chert, in ateam pipes, 310 Expeditions to the North Pole 194 Expeditions to the North Pole, 194 Experimenta: brilliant, 34; with dyna mite in Itsly, 522
Explorations, cave, 609
Explosions : colliery, 14, 38, 124, 177, 224, Explosive: hydraulic, 296
Explosive: agents applind to industrial purposes, 249 ; strongest liquid, 19 Extinct volcances, 53.174
Extinction of flres, 595,623
Extract of meat, 233
Extracting: glass stopper, 48, 77, 129 ; iodine from seaweed, 209, 234, 569; opium from popples, 673; wax from
Extractor, daisy, 105, 180
Extractor, daisy,
Extracts of meat, 683
Eye query, 469
Eyobrows falling off, 208
Eyepiece, microsoope as an, 430

"F. R A. B." : Reo-mythology and, 146; Jupiter'a satellitas and, cy
Fabric, making gold and bilver leaf adFabric, makis
here 0,258
Faren, вpirit, 33
Faculm, solar, 302
Fairbairn's ventllating bucket, 234, 259
Fairlie locomotive, 41, 96, 151, 199
Faith, wight, and mythology, 800

Fall of a bullet, 493, 541, 567, 619 Fallacies of Darwinism, 587, 541 False hair, 194
Fanlight, staining, 678
Faradlay: lectura, 378 ; Michsel, 452 Farmermer, want of observation in the, 59 Farmer, went of obs

Fastenings for watchchains, 580

Festhered tribes, our summer visitors of,

1

Fathers, cleaning, 495
Feod-wuter hester, Bellis, 55
Foeders, orgen, 16, 40
Foeders, orgen, 16; 40
Feeding: bees, $642 ;$ plg, 442, 492
Folspar, 23,46
Fenugreele 541
Fermenting breed with starch, 621 Fern printing on white wood, 127 Ferns, 79, 104
Ferrules, brazing fashing-rod, 101
Fettling matorials, 517
Fever trese
Fever tree, 1.57
Fiddle, the
Fiddle, the "Harmonlous Blacksmith's"
Fiddler's violin reflector, 465
Fiddles : and Fiddlers, 672; on, 854, 409, 463, 487, 650
Field glasses, 636
Fields, diamond, 101
Fifteen achoolgirls, problem of, 13
Filter: cheap water, 87, 235, 209 ; May-
Filtering water 311
Finding the meridian 40
Fire-balloons, 154
Firebars, 389
Firedamp, prevention of, 268
Fire-ongine: a new. 31; steam. 156
Fire-engines, 313, 387
Fire-marks on ailver goods, 625
Fireplaces, draft holos in, 364
Fireproof deed buxas, sheet-iron, 509
Fires, extinction of, 898, 62
First : railway, 416; watch and clock
Fish: 387; culture, 696
Fishes: air-bladiler in, 18, 73: colour of, Fishin
Fishing: socks, waterproof, 441 ; worms
Fishing-rod ferrules, brazing, 101
Fishponda, puddling. 672
Fixative for down of Lepidoptere, 469
Fixing: bloom of scarlet runnera, 599
dyeing and, 312; photo. printar, 673
Flame, hydrogen, 365, 891, 441
Flame, sensitive, 217
Flatting, 571
Flavour of butter, 350
Fleas in dogs, 600,646
Eleming's locking corks, 312
Flemings locking corka, 312
Flexible: marble, 211; oil-painting 231 ;
readering new rope, 415 ; varniah 231 ; leather, 672,696
Flight of hirde, 121
Floats: water-level, 156 ; water-wheel,
Floor of Plato, 661
Florentine bronze, 155
Florida, productions of, 51
Flour, tests for, 597
Flow of water, 16
Flowers: double, how to obtaln from sced, 281 ; odour of, 676; akeleton, 699 Flues, greenhouse, 562
Fluld: cosmic, Dr. Le Plongeon on, 281 ; lens for photography, 581, 571 ; meat $\begin{array}{r}299 \\ \hline\end{array}$
Fluorerence, 165
Fly: green, 183, 208, 288, 859 ; house, 572,
Flywheel: 254; radius and weight of,
Focal length, and magnifying power of object-glaskes, 463; of lensen, 338, 362 Focus of a lens, 300
Fugging, 91
Foud: adulteration of, 347; analysia, 467 for rabbits, 43; supply, our, 90 ; sup Footivaltes, improved method of laying 379 , 300 centriag
Force: and energy, 300; centrifuggal, 514, 636, 663,621 ; electromotive, 22 , 490; new mode of converting mechanical into its heat equiralent, 280; o gravity at surface of earth. 514 ; stor ing and transmitting by compressed air, 384
Force-pump, portable, 516
Forces, paralielugram of, 515, 536, 561
Forcing-pan, lamp for, 128
Foreign woods, 262
Forests: and rainfall, 839, 863 ; sub
merged, 698
Fork and wedge motion, 100
Formation of
"Fessil": man, 478, 638; plante, coal,

565

Fountains, drinking, 446
Four-wheeled vohicles, 163
Fowning punt, 46
Foxes, Bcaring, 21
Fragrant bisulphide of carbon, 656
Frame, tambeur, 816
Frameß, doubling,
Framing, picture, 872, 596
France, insanity in 01
Freemasonry, 442
Freazing, how a man feels when, 80
French: magazine, 391 ; pollshing
Fresh-water aquariam, 106,206

Fret-8aw, G45; fantening, 838
Fruit: and grape wine, 211; paddings,
465 ; syrupa, 195, 516
Fuchsias: 648,671 ; geraniums and, 415 ,,$~$ 467.

Fuel: economy of, $69,284,656$; for
in Italy, 588 .
Full moons in
Fumes from graworks, 242
Funnels, aboktlon of, 368
Fur: ermine, 45; moth v., 19, 44
Furnace: for heating wheel-tiren, 31
8pring. ${ }^{571}$
Furnace-shaft, remoring bodily, 143
Furasces, revolving,
Furniture polish. 157
Fused chloride of silver, 448,671
Fusion of arsenle, 613

GATEAS, surorm boreales and, 644
Galvanic: battery, powerful, 490; cell new form of, 170
Galvanometer
Gamboge, 886
Garden: gate, 46 ; models, 623; produce
Gas: 79, 103, 157, $520,548,671,672$; and writer pipes as lightaing-conductors, 6 burners, 189, 208; chesp, 847 ; cooking
by, 492; detecting salphwr in, 107 hosting by, 449 ; purincation, 404; sewer 41; store, Ebdy's patont. 402, 483; tank 47; tar, cryintals in, 129, $180,931,983$
807 ; warming greenhousos with, 38 , 441
Gaslighting: automatic, 325, 556 ; electru magnetic spparatus for, 386
Gas-pipe, threads in, 519
Gaspendi, 177, 277, 406, 487, 540; centra
hills in, 485
Gasworks: fumes from, 262; ecrubber for, 225
Gate, garden, 46
Gauge for bit braces, 395
Gauge for bit bracoe, 825
Gangen, battle of the, 654
Gearing waggon-wheeln, 43, 469, 618
Gelatine: 195; moalds for plaster orna
menta, 286
Geocentric longitude, 48, 101
Geography, commerclal, 28
Geological distribution of goltre, 688
Geology : atmospheria, $080 ;{ }^{\text {" }} \mathrm{E}$ I G. and, 119, 229, 254 ; in relation to plan Geometrical: 448, 648, 649, 671; approx mation, 859 ; drawing, 21 ; quostion, 79, 103
Geometry: 846, 670, 629, 645, 670; Dr . Carpenter and, 664; geometry of j11s: 355 , pure, 806
Geo-mythology, "F.R.A.S." and, 146
Georgetown, Demersra, 19
Geraniums and fachsins, 415, 467
Geraniums and fache
German: concerting, 498; North Pole expedition, 111
Giant planet, $245,288,384,405,451,482$ 508, 542, 595, 614, 640

Gravitation: 48, 78, 116; and repalalion,
 928,
Gravity, action of 616
Gravity, action of, 616
Gravity, force of at and near murface of
earth, 514
Grease:
bande
Bn
Billiard cloths, 368 ; on leathor bande, 645
Greasy strapping, 517
Greek upsilon, 21, 75, 188, 188
Green: Ay 188, 208, 233, 259 ; penc, pro-
Greenheart timber, 312, 339
Greanhous: "Engilish Meehanic", 690; Lues, 562; hinta on the construction of, 638, 592, 620
Greenhousen : warming, 208, 938, 592, 044 ;
${ }^{\text {with }}$ gas, 387,441
Grinding turniog tools, 332
Grip chack, 287, 33
Growth of corele
Guano, what is it? 5
 588
Gram, artifcial, 200
Guman, 18
dortul, 88 , E58 ; Barrale ; berrel, wondostal, 88 , 日s5; barrelk, blacking, $179 ;$ commanicoung rotary motion
arod from anoth bore, 123, 14, 171, 198, 297, 231, 263, 283
Gran-004ton engine, 199, 298
Gunpowdor. mak'ng, gi
Guns: greatly elongated projectiles for risod, 814 E 56 ; on the rating of groet,
331, 386
Gut: lines, 183; speeding pralloys for, 416,
Gutmperchan, anew, 14
Gyro plgeon, 322
Cyromeope : 563, 618; properties of the,
S82, 642:
881, 412, 460, 484, 486, 609, 44, 64Z
Gyroscopic myateriea, 66
HADDOOKS rizart, 107
alr: 392, 417, 499, 467, 517 ; aubura, 693; ling whica 491
Haraprings, $569,621,067$
Hair-wash, 209,984 , $962,284,337$
Hammor,
Hammer, tlet 188, 172,281
Hama, spoilicd, esi
Hand pad ${ }^{\text {ang }}$ Hand-railing. 67
Handiee for mash toola 105
Hande auling book wishous, 18, 44, 94,187 ,
$224,253,280$
224, 253, 280
Harbour scbomo for Calais, 881
Hard: water, $365,289,414$; woode
mortices in, 74, 205
Hardening: Iron plates, 281 ; beed or sino

Haricots verts en matada, 107
Harts backe, sus
Harmunlcon: motalisa, 79, 102, 164, 806
" Harmonlous Blackumith's": funny first
Addla, 274, 802: ta 162
ermonium: $105,164,484$; holes in valvo-
board of. 645 ; keys, 872; pedal, 262,
810; roed. 224 ; stope, 811
Harmosiumas, thoughte on dofecta in, 269
Harp : ask sue, 46x, 489, 610, 566, ब86, 888 ;
improved Stolian, 540
Zarveat moon, 636
Hat, brown, 180
Hata, felh, 240,864
Hay asthma, $577,622,646,670$
Heath igland or, 671 b\%2
Head: colde in, 236, 261. 285; confusion
in the, 340,388
Healing wounda, simple method of, 202
Health, labour and, 893
Healthlent nites for dwelling.honses 51
Healthy and comformbit houmen, 677
Heart disease, increase of, 28
Heat: action of on pritiditive formas of iffe,
33 ; bumps 599 ; equivale 33 bumps, 599; equivalent, new mode oi converting mechanical force into ita, 280; Generated by moteora 242 ; oxiation and the ess, of brictule 75 ; Of Mars, 430
Heating: apparatus, hot-water, 682; bar
irou, 258 ; by gai, 349 ; by hot
819; greenhoume, 644 ; bouse 261 , 818 ,
reilwzy carriages, 87 ; Atoeh 876
Hebrows, the gemul-barbaroek, 26
Hedgahosic 287
C71; of sea-waves, Anding 688, 48 , mountaing, 21
Hen, number of eggs from a 176
Hons' egean 417
Herbarium, drylag plantu for, 881
Herbs, 389
Herodotum Ariatarchus and, 408
merachel: no decimalist, 96 ; Sir J, ou the
metric avstem, 36

Hilus, turret-thaped, 19
Himmerin galvanic battery, 112, 175 Hints: on colouring photugraphs. 278; on
metricalism, 37 ; on paluting metricalism, 37; on paliung, e8, 188, 248; on the constraction of greanhousea,
b,38, 592,620 ; on uulug biming pow ${ }_{393}, 38,392,620$; on uslug bieming powder, $\stackrel{393}{39}$
Historical notes on polsonlage 458, 504 forte, briof contribution to the pline

Hives, cheap super for cottage, 488, 840 Hoist. light \&lifting. 578, 6yI
Holiday entomologist,
Hollis observing veat 146995
Holll : walking-sticka, 47; wood, 19, 281,
Boltris Induction machine, 48, 00, 298,
Gibey, chloroforming bees to remave, 281, 284
Honeydew, prodnction of, 114, 178
Hoofs, horses, 625
Hops and Alops, 484
Horizontal engine, 45
Horn, 621
Horns, polishlag ballocks', 207, 250 Horsehair, 285
Horse-power 882; nominal, 188, 195 Horses hoof: 623
Horticultural jottings, 148
Hot: gir. handing by, s13, 619 ; climates, cool air in, 238, 261, 285, 337 ; peas, 313, apparatus, 632 ; wator tanks, zinc for,
Hothouse boller, 364, 888, 467
House: disinfecting. 21, 76; draing, 490;
y. 572, 646; heating. 261; painding, 494, 621 ; plants, a plea for, 48 ; wooden,
Housebold electrich 14
Household electricity, 148
Honses: Canadian, 357 ; healthy and comfortable, 577 ; timber, 389, 441, 668 How we seo distant objectes, 16, 94, 120, 427, 278
Howe sewing-machine, 329
Haman relics, 286, 285
Humea elegant, 337, 887
 Hyacinth bulbs, 443, 46
ydranile: 443, 492, 518, 569,645 ; exploslons, 598; governor, Trotmana, 581; ${ }^{286,310 .}$ rama, 207,
Hydric aalphata, equations
22
Herorotaoric actd, manufacture of, 480
Hydroflaoric actd, manufacture of, 430
Hydrogen: fame, $365,391,441$, certain
Hydrogen: flame, $365,391,41$; certain
phenomena assoclated With, 247 ; lamp,
265 ,
Hydrophobia, 540
Hygrometer: 678 598; motive power, 862
Bypochlorites, production of, 298

IOES: 600 ; and Weter, temperature of,
$209 ;$ creams, $624,647,670$
209; creams, 694, 647, 670
Iceland sper, 560
Ice-making, 441
Igniting poin: of explosivea, 481, 666
Illuminated sign, 47
Imitation : bronze, 362, 493, 518 ; marbles, 100
Immersed substances, friction of, 618 Improvements: in omnibases, 616; in
Incidence, angie of refection and, 17,100 , 152, 204, 231, 283, 307, 440
Incombustible, rendering wood, 207, 288, ncom
Increase of heart diseage, 38
Incrustation : boiler, 481, 493, 645 ; tannate of sode in boiler, 489
Incubator, 101, 153, 829, 281, 855, 404,
Indian method of boiling rice, 107
Indlarnbber: boring and cutting, 676;
bottle, leaking. 671; gig apron, 862, Indicator, level and angle, 61
Indioator, level
Indigertion, 619
Indigo, recovering, 470
Indigouina, pare, 480
Induetion: coil, 839, 364, 488; machine, Holtz's, 48
Industrial: classes in Brazil, 88; uses of magnesia, 3 :
Inflammable oila, 445
nfluence: of cold on regetable grains, 94, 126, 147, 178; of light on plant and
animal life, $577,605,869$; of plavets on solar activity, 83
Injury to vacuum tabes, 167
Ink: Y08; brown, 188; endorsing, 813;
marking, 625; powders, 183 ; printers
1sy 164, 880
Inks, coloured. 644
Iniand davigatiga, 268
inorganic chemistry, 620, 647
Inacriptions, rock, 44, 157, 182, 238
Insect: beds, lian, 45 ; metamorphonis,
Insects: arrangement and preservation
of, 265 ; cochinesl, 61 ; in tables and chaira, 212, 362,
nstinct, 897,608
Instinct, 397 , 600
Instrument
tography 819 measarting light for phoInstruments: a
568 ; strange end
274; tuning keyed 818, 648; tuning musical, 567 difforential ealculus, 520 , Integral and difforential ealculus, 520, 547, 670
Interior of the earth e vacuun ? 698, 647, 62, 1
Internal rosistanco, 801, 859, 419, 566
International Exhibition, this year's, 268 Intonation, on, 667
ventions: Amorican and Scotch, 119; exbibited,
alleged, 225
Inventur, death of an, 166
Iodine, extracting from seawreed, 209, 284, 569
Ireland: conl ta, 866, 646 ; ralsed beach
in, 688; trip to. 889, 868 ; In, 688; trip to, 889, 868

Iron: ancient wronght, 518 : and nteel metallurgy of, $23,54,85,110,133,163$; as an electrotype, 54 ; bargen, 111; cast ings, 669,$899 ;$ cementing in wood, 235 crystallined, 372 ; electro-depostiton of 180; nueteoric, $612 ;$ ores, remoring phosphorus from. 220; painting bedstead, 386, 440; phorphorus in, 8 ; plates hardening. 281 ; purification of, 441 : separating from brass, 127 ; sheet, pro
tecting from rust, 849 . tecting from rust. s49; soldering, 75 ;
 with one Hquid and not with another, with
Stas
Irradi
Irradation: 528; photographic, 377 Is: light invisible? $\geq 80,203$; tho moon Islond of Hayti 571, 622
Island of Hayti, 571, 622
Isochroniam, watchmaking and, 17, 179
Italy: edible musthrooms of, s10; fuel in
Ivory
118 carving decaying, 208; tarning
${ }^{6}$ J. R. P.," to, 209

"Jeok of all Trades," to, 263, 881,310, | 513,650 |
| :---: |

Jacket, steam, the, 69 aneted cylinder engine, 47
Jacketed cy
Jamaica, 99
Jamaica ${ }^{\text {Japan, } 613}$
Jewellery: cleaning, 340, 864, 516; solder
ing. 337
Joints, expansion, in ateam-pipes, 910
Jottings, horticultural, 148
Judging distances, 515
Jupiter: 411,664 ; eclipses of mun ns sepn
from, 176; something wrong with, 22:3 temperature of, 274
and "F.R.A.S," 62, 40, 76, 116, 249. 877 with, 223

KIEROSENTE 418
Key, planoforte tuning, 540
Keyed instruments, tunving, C18, 643
Keys, harmonium, 672
Kid, dressing, 155
Kid, dressing, 155
Killing: beetles. 79, 102, 129, 180; root of trees. 157, 182, s63 Kind-chandron aystem King-numbers, $65,123,173$
King's Clifo, turners and turnery of, 402 Kitchen chairs, red stain and polish for 128
Kite
Kite, electric, 364, 466
Kites, 624,647
Knight's tour, 546
Knitting and sewlog machine, combined, 269
Knives, tempering, 258
Knott, to Mr., 208
Koumise, 250

TLABORATORIES, photographic, 477 Laboratory purifleation,
Lacquer: 646 ; black, 387 ; optician's, 208 Lacquering brasswork, 43, 547
Lakes, builing. 42
Lamp: for forcing-pan, 128 ; hydrogen,
Lamphlack, 624
Lamphlack, 624
Lamplighting by electricits,
Lempe, paraftin-oil, $8: 0$
Lava, gurvering 547 ges of level in, 620 Language : Portuguese, 441, 492 ; Spanish
Lantern pinions, 21, 44, 101, 125, 205
Lapidary's wheel, s97
Largest casting, 17
Larvor, 305
Lathe : and its accessories, 72 ; chack, 130;
chuck, American, 284 ; construction 288; queries, 130, $235,260,285$; setting 48, 129, 154, 180, 670; tools, steel for 102; Whitworth, 208
Laths, bending, 519
Launch, steam, 17
Launch, steam, 17
Law of vibration and attraction through-
out the universe, 382
Lesd; in sulphuric acid, 392, 416; pipes,
Leaking indiarubber bottle, 671
Leaky: Lap, 311, 368; tubes, 359. 414
Leather: bands, grease on, o45; black
dye for, 699, 024, 670; fiexible varnish for, 572 ; machine, 649 ; marking for ornamental stitching, 931 ; staining, 545; waterprool, 133
Leeves: machine to cut, 362; nature
printed, 569 . 595
Left-hand screw, cutting as 224
Lega, ertifcial, 71, 75
Lemon marmalade, 129, 180
Lemonado syrup, 183,207
Longth of sidereal dsy, 28, 45, 76
Lens: Barlow, 223; AuId for photograpay
521; Pocus of, 300; photo $206,3 \% 4$ Lenses: 120; focsl length of, 838,362
Lenses: 120; focal length of, 838, 362 fleld, 204
Leroy's non-conducting composition, 668 Lessons on chemistry, 2, 29, 84, 111, 214
241, 398, 448, 578, 658
Lettering backs of books 102
Level: and angle indicator, 61 ; dompy
105; of railway curve, 312
Levelling, 415
Levolling, 418

Llas insect beda, 45
Libraries, 6.01, 673
Liebreich, Dr., nnd Turner, 208
Life : action of heat and various chemieal agents on the primitive forms of, 33: development of protuplasmie and fongus, 89; in darkness, 15, 68: influeuce of light on animal and plant, 377, 605 ; protoplanmic. 72
Lifeboat EnGLISH Mechantc, 894,46
Life-cycla of a false wasp, 660
Light: 391, 416, 470, 493; and animal Hfe 605, 669; for middle of mon, 77 ; influence of on plant life 577 ; it it in visible ? 880, 303; meessuring amoant of. 362; oxyhydric. 126, 585, 657: science, 379 ; smoke and, 573, 638; andulatory
theory of, 300 ; velocity of reys of 23 ; theory of, son; veled, moro, 496
wanter
Lighthouses, 817
Lifhtning, 147, 466, 668; and thender from the earth, 568 , 620 ; speed of, 884 ; thunderbolts and, 271
Lightning-conductors: 14, 29, 99, 93, 120, Lights, magnesium, 79
Lights, magnesium, 79 ; English bleck ∇., Ligurian
Lime, chloride of, 386
Lime-juice and Glycerine, 157, 181, 861 , 309
Lime
365,390 etric-light for magic lantern, 365,390
Limite of
48,93
Line : dressing jack, 647; shaft, 108
Lines, git, 183
Lins-mot, 48,77
Lint. 146, 181
Liquid: explosiro, strongest, 19: glue, 51, 4s9: Irnses, 377 ; solld and, 389
Liquids: contact of, 164 ; iufluence of electricity on, 502
Liquor, ammoniacal, 678
Liver, formation of glycogen in, 278
Liver, formation of glycogen in, 278
Lock: cork, 352; needle, 441, 481, in 568; nuts and wanluers, 454; Samels' patent
416
Locking-corks. Fleming's, 318
Locomotive : performance of, 195 : the
Fsirlic, 41, $66,151,199$:
Fsirlic, 41, 96, 151, 193 ; tubes, ofd, 340,
888,617
Locomotives: 443; roed, 183; weshing
out boilers of, 377 Locnst, remartable, 209
Logarithms: 78, 468; reductions by Nautical Almanae method and by proportional, 508; Vlacq's tables of, 249
London: Essociation of Foremen Enc-
necrs. 482 ; B. 8c. of, 441 ; blackbeetles 209, 260: Encycloperdia 441; musenus of, 475, 053, 630; urdnance mep of, $81: 4$ 339
Long and short rifies, 157
Longitude: 874; chronographic determination of, 7; determining, 224; discovering at sea by the moon and ased stara, 119; geocentric, 48
sun, mean. 258; solar, 171
Lorses, national, 494
Loudness of pianoforte trebles, practical methods of increasing the, 30
Lubricating oils, testing. 18, 100
Lubricating oils, cesting. 18 , mapg, 91 :
metcorology, $53,120,632$, G40; motians
$6: 38$; objects for observation, 40, 119

Mabogany, polishing, 73 Hainmoat, dimensions of, 598, 628 Maineprineq,
Inize. potash trom 278 , 209,641
Ihllenbotash from, 978
meking cold -i31, amsil, 470, 870 ; making gold, :331
Man: antiquity of 514 volcanoes, 978 tion of, 686; the "fosit primitive condiCnon of, 68A; the "fossif," 478, 638 $13 ;$ of bees, $82,158,234,895,494,890$,
642 642
Mance's method of measuring internal resistance of coll, 276, 801
Mancheater Steam Ueors' Amociation,
Mandr
Manganese bettery, 496
Mangle, 390
Manifertations, more "paychic," 58, 175 Manlpulation of concreta, the proper, 666 Manufceture: of blacklead, 869 ; of textile fabrica at Pompeil, 506
Manufactures, and scientiflc research, Manure, bone
Manureis: egricultural, 918; and their values, 130,165 ; srtidcial, $209,881,438$, 465, 518
Manuscript, rastoring charred, 88
Map: Mr. Pructor's Gulf-atroam, 866, 588, 662: projections, 669
Maple veneers, G48
Mrpas: luner, 91; star, 9 ; weather, 450 ;
pasting cloth to 5979 pasting cloth to, 578
Marble: busts, 108 ; flexible, 211 : inlaid table, design for, 673 ; mantelplece, restoring colour to, 285 ; mantelpiece, roring to book edges, 416
Marbled edges, varninh for, 878
Marbled edges, varnish
Marbles, imitation, 100
Murine : equarlum, 889,644 ; engincer, 168 Marking-ink, 695
Marmatade: lemon, 129, 180 ; orange, 107 Marsalles soap 78
Marsh mallow for hardening plaster of Paris, 281
Martini rine, 650
Mantery system, the 11
Matchem, Bryant a May's, 387, 466
Material : for bricka, 372 ; for roads, 45
Mathematical: 152, 307, 548, 671; column,
our, 645, 669 ; machtnes and tables 520 ,
571, 622; problems, 866
Mattor and force, 586
May, ants in Isle of, 859
Measarement of waves, 608
Measuring temperstures by eleotricity, 5.33, 558

Meat: Anstrahinn, 38, 62, 126, 178; extract, of. 282 683; liaid, 299; preeerved, 79, Mechen
British : equivalent of heat the British Association and, 684 ; force, new
mode of converting tnio its heat equivalent 280
Mochanics, practical, 469, 518
Mechanism. $875,401,428,455,479,507$, Medioal: 181, 157, coll, 697, 648, 671 ; Medicinal use of carbolic acid, s07 Medicine poritive philoeophy, Meerschaum: 801 ; plper, 156, 806, 881 284 : pipen, silver tubes for, 102
Memoirn of R. A. 8, 480
Memory, improving, 908
Memory, improving, 208
Mercurial vapour, 40,119
Meroury : 545 ; diriy, 479, 493 ; purifying,
Meridian, finding the, 480, 442
detal: casting in air-tight mould, 124 ; eaf printing on silk and cotton, 672 Metallic: harmonicon, 79, 103, 164, 206, 258 ; ciain for wood, 498
Metallargy of iron end nteol, 28, 54, 85, 13,163
Metals : costing oxldimabia, 81 ; α New South Wales, 689 ; photo engraving on, $21 ;$; rallway, 697 ; teets for, 18 ; waight
of per fuot, 44; working in, 290 Metamorphosia, insect, BSO
Meteor: 40s; as erratia, 191
Meteoric Iron, 613
Metoorites: 137
Meteorological: conferenea, 20 ; office, and atmonpheric wa rea, 87
Meteorology: lunar, $83,120,632,640 ;$ Meteorology: lunar, 62, 120, 632, 640;
progrees of, 820
Neteore:
 Method: of maktag a left screw with a right morem plate, 172; of obtaining stearic and palmitio acoids, now, 608
Yetric syatem: 63,117 118, glorious
Metric system: $69,117,118 ;$ glorious, 12 ;
in Austria, 179; Sir J. Herschel on, 88 ; In Austria, 179; Sir J. Herschel on, 88 ; the pound and the, 144
Metropolitan ome hints on, 81
Yiee caling craser of tho moon,
Micrometer : double $\operatorname{image}, 7$; eyepiece, pr, pused universsh, 848
Hicruacopa 268, 28y, 310, as an eyepiece 430; castings, 884, 411, 487; chalk for, Microecopes 31 dra from the, 506
Microscopes, proposed univarsal stanMiard miorometer eyeplece, for, 848 Jecta, blect vernith for, 440 ; objects coctablate for, 2097
alcroecoplioal: 208 984; cablneta, 118 Micruscopigta, prizes for amateur, 8 Kildow: in boat galle, 807 ; in old en.
graviogs, 187

Millitary examination. 268
311 k : condensed, 633 ; correct weight of, 393, 406
Mill, tidel, 183
Millers, to, 310, 882
Miners, new safoty-lemp for, 217, 275, 888,
Mines: draining water from, 410, 818. waste of cosiln 610
Mira Ceti, 688
Mirage, a lecture experiment on, 618
Mirror: curve of, 672 ; for telescone Milvering, 388
Mistletoe berries, 49
Mode of Washing, nev 148
Model: of church, 44, 179; steamboat,
Models, garien, 625
Moisture: chemicals that sbsorb, 414 ; on tin surface, 624
Moment, magnetic, 339, 387, 414, 491
Momentum, 416
Monkey nut, 414
Monollthic building, and Brannon'a sye
tem of, $360,408,409,461,483,542,663$
Monochard with soundbosid, and othe
Months republicen 571 , 648
Moon : 156 , 61 cen, 571, 648
673; 156. 614, G61; 2xis of, 9, 40; full $\mathrm{s60}$; is it spherical? 513,540 , 866 libration of, 661 ; metropolitan crater of, 91 ; rising and setting of, 44, 74
Moons, a few full, 638, 673
Moonlight nighte, telencopic work for, 73, 291
Moon
Moonrise, 638
More light wanted, 496
Morning sunset, a, 436, 465, 486
Morse, Prof, 143 moods, 74, 128205
Moth: in piano, 598 ; V . fur, 19, 44; wax 647, 670
Moths: $469,498,819$; capturing. 182 ; preserving, 235, 260; setting-oat butter-
flies and, 434, 589
Motion, fork and wedgo, 100; now method of changing rociprocating into rotary, $484,887,893$; of sailing boat, 649, 671
Motion, lunar, 688
Motive power: compressed air 2s, 28;
for amateurs, 105, 189, 154, 206, 258, 283, for amateurs, 105, 189, 154,
336 ; for hygrometers, 362
Movement, vital, 638
Moulding: brass, 645: componition for Mountains: Hachine, Scott's patent, 156 Mountains: ilnding height of, 688, 648,
Mounting small objects in balsam, 411 Moumts, cutting. 45
Mounts, cuting.
Mowing machine, $848,571,622$
Much experlence in fow words, 250
Multiplication: concrete, 145, 199, 223,
M
Musciea and ears, sounds of, 485
Musette and voix celeste stopa, 17
Museums of London, 475, 55\%, 680
Mushrooma edible, of Italy, $\$ 10$
Music: copying, 864; England in relation
to, 427 ; examinations, Suolety of Arts', 404
Musical
Musical : box, 44 ; boxes on soundboards 857 ; education, 639 ; instruments, 257 errorst, 824 , 384, 668 ; instruments, errors in popular works profossing to
describe, $176 ;$ strange and rare, 828
274; rotation, 39 ; taning. 667
Mustard edulterstions of, 525
Mystarg bee-cabinot, 854, 433
Myteries, gyroscopic, 664
Mythology, faith, sight end, 200
NAOASCOLO or divi-divi, 124
Names: botanical, 418, 443 ; stellar and
Naphtha, turpentine and wood, 56
National: losses, 494 ; observatories for
the stady of the physics of estronomy,
317 ; obeorvetories, insumeiency of 143
Natural: history subjecta weterglass as a preservative of 466 : phenomens and productions of the polar regions, 164 ature : constitution of, 429, 457, 478 man as the interpreter of, 585 ; sketching from, 620, 547, 670 , 696, 6\%2, 646, 670
Nature-printed leares, 660,505
Nature-prints by phutography, 288
Nausical Alvianae, the, 9, 116
Naval architectura, ${ }^{98}$
Navigation: 813, 363; aërial, 613 ; Inland,
Nebulm, constitation and distribution of,
Needle: lock, 441, 491, 516, 868 ; tomper-
ing, 673
Negro, 353, 407, 438, 439, 460, 484
Nephilim in Yorkshire, 488
Nerve of a tooth, 165
Nervous excitement, 650
Nessler's ammonia test, 48, 78, 101
Nevills bread 648
New: South Wales, and its metala, 589 ;
Zealand time again, 171; Zealand wojl, 74
News from " Ros," 364
Newspaper sclence, 484
Newtonian reflectors, centreing the ast cl:
Nickel: olectro-deposition of, 216; platIng With platinum and, 285 ; sillver, 67 \%
Night and day: Roloscope, 619, 846, 670; temperature. 79,104
NightIngale, 392, 442
Nitrogen in plante, 814, 850, 250

Nosh's comet, who Invented, 250
omenclature: 66, 117, 225 ; chemical, 632: new, si9: scientife, 93
Iominal horse-power, 188. 196
North Pole, expeditions to, 194
Noses of stairs, 180
Noses of stairs, 180
Notes: astronomical, 27, 18, 265, 270,
475, 605 ; chemical, 278. 430; microsco-
picsl, 8, 86, 162, 249 ; of commanications
to the Academy of Sciences, Paris, 424,
$506,604,655$; of French sclence, 871 ,
$506,604,655$; of French
422 ; photographic. 144
Novel: blowing apparatus, 885 ; method of sa wing timber, 407 ; rallwaj signal,
Novelty in the building trado, 445
Number of egge from a hen, 676
Numismatical, 157
Nut, monkey, 415
OAK : Iron stains in, 28, 47; polishing Oatcake-mnking. 887
Object-glass: 839: baloamed 853283
411. 437 ; purchase of, 638 ; radius of riace of? $22,43,100,178$, yok, 225, 258 , 412, 437, 548, 545, G43
Object-glasses: 816, 667; cemented, 800,
879 ; focal length and maguifying power 379 : focal length and magaifying power
Objecta: lunar, 40, 119, 881, 486, 568, 682 ; mounting small in balsam, 411
Observation. self-dereption in, 447
Observatories: insumficiency of national. 143; national for study of physica of astronomy, 31
Observatory clock, cheap. 40, 124, 641 Observing: nstronomical society, 280; seat, Hollik, 225
Occultations of Uranus, 40
Oceanic circulation: 478, 489, 567, 588, penter v. Mühry, 567,588
Octave coupler, 887
Odoar of
dowers
Ohl: action of on waver 898, 633; animsl retining, 155; bleaehing, 168: boiled, 492; Dugong. 465; paint, liexible, 281 ; peppermint, 673
Oil-can, improved pattern, 299
Oil-painting, cleaning, 183, 233, 259, 648, 673 mable 445 ; testing vegotable inframing, $18,100^{\circ}$
Old stains, removing, 165, 129, 154, 180, 232 Old Wives' science,
Omnibusen, improvements in, 615
Omphsios" Grosso' 's, 255, 274
Onlons, 493, 681, 648
Ontario, 621
pra-gleas: 108; ditregard of theory the, 595, 648
Opium, extracting from poppien, 678 Optical : 61; power as affecting the perception of colours, 7
Optician's lacquer, 908, 259
Optica, 600
Orange marmalade, 107
Orange-coloured spectaclea, 612
Orbits cometartar castor, 377
Orbits, cometary, 116
Ordnance map of London, 818, 859
Ores : analysila of, 18
Ores, tests for, 17
Organ : 74, 75, 155, 312, 865, 382, 387, 888,
414, 417, 442, 546, 698, 671; Alexandra Palace, 43; bellown, 338 , 418 ; buith the
70, $541,563,615,669$; cleaning, 288 ; defectiva, 40; expression a la main on the, 614,589 ; fooders, 16,40 ; hydreulic
machine for blowing, 648 ; new metorie machine for blowing, 648 ; new material
for piped of, 484, 618, 689 ; palleta, 78 ; pipes, 181, 417; pipes, rolelng, 282; pipes, 181, 417; pipes, voling, 862 :
pnenmatio levers for, 828 ; pocket
berrel, 105; stope, 78; weighte of wind in, 44
Organ-building: amateur, 802, 854, 489, 546; new material in, 513, 539, 891 Organio: ooneretions, articial so-called, Origin : of alphabets, 638; of primaty beliefs 586; of volcanic energe 404 Ornament, pretty parlour, 360 Ornament, prolly parlour, 360 , 248 ; stitehing, marking leather for, 981 ; slide-
rest, 665 ; turning, $69,98,194,146,198$, rest, 665 ; turning, $69,98,194,146,196$, $255,832,567,641,647$

Ornamentation of silver-plate, 60

Ornaments, transferring, 248
Oscillating cylinder: doabla, 105 ; revers
Osseine, gelatine, aud osmazona, 195
Our coal suppliea, 619
Outside work, colouring for, 43
Oval: chuck, 206 ; turning, 498
Oven, cracked, 206
Ovens, bakers', 180
Overcoast, indiarubber, 180, 185 Overgraining, 54
Oxyhydric light the 196898
Ozone: 336 ; formation of, 183

PAORFONG or Chineee white copper

 Packing: grapes, 598,628 ; riags of piston $390,414,498$Pgekmen's (Dr.) steam-engine, 854,489 Paine's maguettc engine, 800
Paint: for portable engine boller, 864 ;
refuse, 156 portable engine bolber, 864 ;
rubber graphita, 4985 ; mell of, 866,890 ,
491

Painters' Company, prizes of, 185
Painting: curuces ss: effects of faults in
 house, 49.4, 621 ; iron bedsteads, 886 Paisley theswactiven, 2 scon
Paleolithic ago and primitive man, 333 Palwontology, vegetable, 267
Pallets of orgen, 75
Paname cansh, the, 530
Pansies, 415, 467
Pantogrsph, 811
Pantogrsph, 111
Paper carbonic ink, 105 ; car-wheela, 222 :
Plothes 597 ;
clothes, 597 ; from wood, 879 ; utilising
old. 624
Papermaking: reminieconcess of, 879:
Prood pulp for, 409
Papier-màché, 625
Parallax, sun's mean, 436
Parallelogram of forces, 518, 586, 561, 641 Parnaites, bugn, lice, and, 285
Parchment dyeing, 120. 15s
Parluar ornament, protity, 800
Parrot, 79, 102, 129, 494
Paste: 448, 469, 493; eeln In, 28, 46 ; steel
Pasting cloth to
Patent: how to procure a, 890; laws report of the committee on the, 244 righta, 338
Pattulogy of the chignon, 645
Pstriurehal writing. :38s
Pattern-making,
Patterns : tool for describing, 98 ; varnish
Patterns: tool
(red) for, 416
Pattern-load cells, 349
Pavement tar 468 517,
Peach, curl in, 441
Pear-wood, seasoning, 415, 517
Pearls, 51
Pear: hot, 318, 839 ; mice esting, 390, 441,
491 : preserving green, 4y6,6\%1
Peat fuel in Canada 187
Peat fuel in Cansda, 187
Pedal: harmonlum, 262, 810; plesing
Pedals: for ptano, 79 ; radiating. 48
Pedestrian toar, 181, 282, 336, 360,413
Pendulum: 489: "Veritan" and the, 543
Pens, quill, 495, 570, 598, 621
Pepper, adulterations of, 526
Pepper, adulterations of, 526
Pepperinint, ofl of, 678
Performance: of a locomotive, 195 ; of telescope, 857
Perpendicular shaft, turning, 21, 75, 159 258, 207
Perpetual calendar, compendlous 303
Perspective: 251 . 853, 439. 465, 489, 509
636, 560, $594,617,664$; Dr. Oarpenter
and, $89,119,152,175,200,251$, :thi, 353
Perspiration, excessive, 699, 646
Phenumens: assoclated wilth bydrogen
Phenumenon: curious 69 ; 16
410.436 ; remarkable eloctrical
" Philo:" and ventilation, 9 ; hundred-
Weight theory of, 94
Phonometer, 619
Phosphorescence of the sea, 116
Phosphorus : essence of, 442 ; In iron, 8 ;
removing from iron ores, 220
Photographic : 130, 229, 839, 442, 578, 624;

Pies: and pig-feeding, 20; rabbith, and Pinholes: in lead pipea, stopping, 160 ;
Piulons, lantern, 20, 44, 101, 125, 205
Pipe: a clean, 338 ; meerso haum, 284, 390 Pipes: carbon or charcoal, 403; condenantion of steam in, 410, 461, 513: lead, 183; organ, 181 ; volciug, 262 ; propurtlons of, 25
Pliztex, are ants? 72, 121, 147, 357
Piton, packing rings of, $390,414,493$
Pitch of root, 130, 156, 131, 200
Pith, reducing to pulp, 56
Pivots, 493
Plaister, aticking. 19
jane Rur
519,546
Planes, saesh, 673
Playet: discovery of minor, 99, 148; kint, , $2,241,283,384,405,431,482$, su8, Planetary: and comelary orbita, 116; marking 377
Planets: axes of, 379, 406, 460, 482, 594 ;
elongation of infarior and oppositions
of superior, 638 ; temperature uf, 390
Plant : boxes, 625, 647
Plant life, goology in relation to, 142
Plants, nitrogen in, $31+350,356$
Plants, nitrogen in. 314. 350. 356
loster: casts, preserving, 39 ; of paris,
for hardening 281 paris, marsh mallow monlds for, 286
Plates: chemically clean, 236, 268, 309 ; preserving, 206
Plating: solution, defective, 44, 128; with
plackel and platinum, 325
Platinic chloride. 76
Platinum, catalytic action of spongy, 439
Plato: 198, 384, 411, 433, 485; the floor of,
Ples
plants, 42
Pneumatic levers for organs, 323
Poisoning: historical notes on, 458, 504 Polar regiona, natural phenomena of, 164 Polariscope, 365
Pule-star. a Draconis as, 171
Polish: furniture, 157; permanent, 74:
Polishing: 88; bullocks' horns, 207, 2.59 diamond, 887 ; edges of glass, 516
French, 75 ; granite, 19, $74 ;$ mahogany, 75 ; oak floors, 78,129 ; slate, 816 Polyzoan 87
Pompeli, manufacture of textlle fabrics at, 506
Pony, worms in, 600, 624, 646
Puir man's provender, 453
Pork diet, 231, 283, 307, 360, 413, 466
detormining specille
gravity of, 806
Purtable dark tent, 365, 389
Purturuese language 41, 49
Porsitive philosophy and medioine, 189 Postage stamps: 235, 260; cement on, 649 671
Postal
Postal anthorities, suggestions for, 94
Posta: Inproved directing
Posts: Improved directing, 123 ; telagraph
Potassium: cyanide of, 209, 234; new mathod of obtainiug. 273
Potash, red prussiate of, 4\&3,46s
Potato: culture, 66 ; disesse, 65s, 666;
another remedy for, 593; staina, 671
Potawes: 310: cantion about 211 ; dis
Potawes: 310; cantion about, 211 ; dis
eared, 621: proserving,
Potterics, schools of art
Poultry, $672,624,647,671$
Pouncing pattern on printing blocke, 621
Pound ir. hints on metric system, 144
blasting, 395; water, 493
Powders, ink, 188
Power: 101, 127; Maine. 548; of boiler
287,310 ; of engine, 648, 596; of high
presalure engine, 14; of water-wheel
259, 361, 645 ; to drive crown printim
259, 361, 645; to drive crown printing
312, :363, 41:3, 442, 467
Powerful galvanic battory, 490
Power-loom weaving, 235
Practical: man, tho su-called, 612; mechanics, 469, 618
Practice makes perfect, 143
Precipitation of silver by copper, 613
Prehisturic: races, 179; trees, 393
Preparation: of carbon, 672; of chlorine
Preservation: zud desiccatio
1; of insecta, 265 ; of wood, 189
Preserve, vegetable marrow, 231
Proservod: meat, 79, 633; peas (green)
and gooseborries, 496
Prens: bookbinder's, 698, 623, 646 : for
cutting paper, 442 ; hydmulic. 286, 310
Presxure: boing
hoilers, 91; of water, 79,102 ; of wind
338; on cork of bottle, 183; under
wator, 17
Preventing peper sticking to sik after being printed with metal leaf, 312 Primitive: coudition of man, 666 ; man palmolithic age and, 333
Printers': ink, 130, 154 ; ink, coloured 200ing, In Canede, 390 ; rollors, 520,54 to drive crown, 183: metal leaf on silk and cotion, 6i3; puper, abmorbent quality of, 10 ,
Prints: photographic, preserviag, 399 ; transferring w woch, 125
Prizen: for amateur microscopista, 8; for art workmen, 195 ; of the Paintorn' Company, 185; of the Turnera' Com pany, 681

Problem: 10.5; of fifteon school-girls, 13 Problems, mathematical, je
Proctor, Mr. : and Noalis comet, 351 ; on rpinning Wpas and gyroscopes, 3.3." 291 326 : Gulf Stream Map, 56G, 588 : smalle Star Atlas, 663 ; Star Atlas, 560
Production of honcydew, 114
Professors, 483
Progress: of geolngy, 114, 141, 167, 192 ;
of meteorology 3.20 of meteorology, 320 grojectiles for rifled greatly elonPrijections, mqp,
Pronunciation: 17 t, Spanish 44, 470 514, 545, 621. 645
Proofs of the deluge, 175, 255, 304
Propeller, Allinghem's, 39, 62, 92, 148, 17 $\%$
Properties: of cast iron, 584 ; of tho gyro
scope, 582, G42
Propurtions of pipes, 35
Protection for steam-boiler, 672, 596
Provender, puor man's, 45
Provender, poor man's, 45
Provision for child, 49:
Psychic: force, 33; force people, whe has become of the, 69 ; manifostations 175; more, 58
Puddings, fruit, 46.5
Puddling: Dormoy's rovolving rabble for, 213; Alshponds, 672: farnaces, revolring, 174, 229, 280, 305 ; machlnes, 88.110 Pulp, dyeing for sugs paper, 443
Pulp, dyeing for sugar paper,
Pulse-beata, variation of, 613
Pump: a!r-vessel for, 519 ; centrlfugal
470, $518,569,021$; colllery, 517 ; port able force, 516 ; wooden, $103,130,165$ Punpes of portable engine, 23, 45, i6
Punches, machine, 390
Punching: and shearing machine, 22 ; holes in sheet brass, 650; machine, im proved, 321; machines, 261
Punt fowling, 46 ject-gless, 638; of a re flector, 379: of a spectroscope, 973 Pure geometry of 113:355, 306 Purification: laboratory, 648, 671; of gas, 404; of iron, 441
Purlfying mercury, 469
Purlfying mercury, 469
Putrefaction: after death, 121 ; preven $-10 n$ of 89
tion Putty powder,
Putty powder, preparation of, 98
Pyro-plating, 557
Pyrethrum parthenium, 264, 288 203. 282

QUATITATIVE analysis, 207 Qunrry, bringing slato to surface of, 671 Qucries, unanswered, 176
Question : alcohol, 171, 198, 225, 256, 278 geometrical, 79, 103; in trigon, 91, 76 genmetrical, 79, $103 ;$ in trigonometry,
413 ; mathematical, 152 ; of sight, 20, 44, 75, 103, 128, 153, 205, 231, 283, 336 slide valve (Cameron's pump), 287, 310 trigonometrical, $260,309,316$
Quill pens, 495, 570, 598, 621
Quinine: 288, 310; action of, on white Quoits, sama of, 41

RABBIT: breeding, 17 ; disease, 236 Rabbits : food fur, 43 ; plgs, and shellitsh Rabble for puddling. Dormoy's revolving, Races : probistoric, 179; training for bicycle, bis
Radius: snd weight of flywheol, 45 ; of glawe, 22, 43, 100, 176, 204, 225, 3jij, 412, 437, $543,545,6+3$
Bailway: carriagea, door-handles of, 150 , 220 ; carriagon, heating, 87, s12, 620, 666 ; carre level of, 812; first, 416; metals, 597 ; rignal, novel, 430 ; submarine, 377 ; tarpaulins for, in tropics,
Railways: or no millways, the battle of the gauges contin
Rain, alr and, 239, 318
Ratinbow, iris or, 573,590
Rsin-full, forests and, 388, 363, 637
Rain-wator tanks, 283
Raised beach in Ireland, 638
Raising water by tidal power, 198
Raphael's cartoons, 289
Rate, clock, 638
Rats, $183,208,233$ wanted, 152, 204, 283
Recession, a Druconis and, 370
Rocovering indig', 470
Recurrent vislun, 190, 282, 332, 412
noductiun. in the vize of, 393
enduction: in the nize of musical ingtru-
Beductions by Nautical Almanac method, and by proportional logarishms, 546 Reeds, harmonlum, 824
Refining animal oil, 160
Beflection, 488, 514
Retlections, secondary, 973
Reflector: purchase of, 879; tests for $4 \frac{1}{2}$ in. Reflectors: Newtonian, centreing fat of, 1.50 ; astronomical, 637 Berraction : curious case of double, 251 ; btar altitudes and, 508
Refractivo Index of glass, 105
Hefractor: s.li-bzimuth stand for, 614 Rests for a 3 !inge 430
Befrigorator, uynamic, 423
Refuse pain, 15

Regulator water, 466
Rein, the bearing. 38t, 430, 469, 434, :31t
Belief for catarrb, 280
Remedy for potato disease, another, 593 Reminiscences of paper-making, 378
Removal of the standards, 107, 123
Repairing: concertina, 128; the watch, 421, 448, 489, 503, 529, 537, 564,530, 657 Replies, Ac., from Sigma, 618
Report of the commisaion
Report of the commisaion on scientific
educstion, 343
Republican months, 571,646
Repulaion : gravitation and, 197 ; "T. A"
Re-'scaping old verge wheel, 180
Resistance uf voltaic cell: Mance's methoi of measuring internsl, 276, 201; tiniling interns1, 412, 490
Respirators, 156
Rest, the Washington spherical, 64
Reversing gear for oscillating cylinders,

Review of Bootes:-

Air and Rain, by H. Angus Smith, 289,
British Rainfall, by J. G. Bymons, 426
Catalogue of Model Steam-engines and
Castings, 270
Canse of Consumption, by Dr. MacCorChace 371
411 cal Physiology, by Dr.Thudichum 421
Conversations on Nstural Phillosophy, by Mrs Marcet, 426
by W. H. Rosser 4 pass in Iron Shipa,
Healthy and Comfortable Hauses, by Dr. Drysdale and Dr. Hayward. 577
Dictionary of Chemistry, by H. Watta, 68
Electrical Tables and Formulea, by L. Elamentary R. Sabinc. 270
by Perciral Frease on Curve Tracing, Easays on Astronomy, by R. A. Proctor, 291
Elements of Chemistry, by W. A. Miller, 270°
Fallacles of Darwinism, by Dr. Bree,
Geological Survey of Ohio, by J. s. Newberry, ${ }^{270}$ Oic Seotions by J.
Stuart Jackron, 970
Handbook of Ohemical Technology, by R. Wagner, 679

Healthy Houses, by W. Eansie, 426
Iron as a Material of Construction, 426
ilchael Faradey, by J. H. Giladstone, 452
Miscellaneous, 57, 270, 427, 580 General
Natural Philosophy for Gener Beaders and Young Persons by C Atkinson, 270 . 270 Nautical Surveying, Introduction to, by Noxious, Beneficial, and other Inaects of the State of Missouri, by C. V Rileg, 579
Observations of Cometa from b.o. 611
to A.b. 1640 ,
to A.b. 1640, by John Williams, 4
Perspective, by Lleut. W. H. Colling, 527 Pertive, by Lleut. W. H. Comian
Pocket-book of Mechanica sud En gineering, by J. W. Nyatrom, 270 Pocket Dictionary of Technical Terms used in Arta and Manufactures, 427
Practical Plane Geomotry, by J. F. Heather, 426
Bailways or no Railways, by R. F Scales for the Ready Comparison of British and Metric Weights anc Moasures, by A. Le Newdigute, ${ }^{56}$ Simen and Commeroe, by P. In Sim monds, 580
Science Primern, Chemintry by Prof Roscoe. Phywics by Prof. Balfour Rewart, bs
Solid Geometry and Conic Sections, by Spon's Dictionary of Engineering, 56 Spon' Dictionary of Engineering, 56
Sun, the, Ruler, Fire Light and Life of
 Proctor, 270
Treatise on the Theory of Friction, by J. H. Jellett, 58

Treatise on the Metallurgy of Iron, by
H. Baverman, 970
Revision of New Testament, textual, 100 Reviving black cloth coat, 155, 232 lhevolving: brushes, 46:5: furnaces, 151 229, 280, 305
Rewards of sclence, 60
Rewiring old pisno, 547, 648
Rheumatiam, keroseno as a cure for, 241
Rlee : bolled, 336; curry and, 183
Biflo : targes, 619 : Me
Bifles, long and short, 187
Ritling of great guns, 331,380
Rigging moiel yacht, 156
Right asceusion, 490
Ring-nebula in Lyra, 614
Rislng and setting of moon, 44, 74
Rising and setting of moon, 44, 74
Riveta, tool for puaching out from watah
chains, 412
Rosd: crusher, inexpenslve ateam, 543
locomotives, 133 ; material, 45
Rosating jacks, 650
Robin Hood sewing-machine, 355, 461
Bock: drill, new, 586 ; insciptiona, 44, 157, 182, 233
Rockets, double, 415, 517
Bods, woor

Roller, anif-acting blind, 295 Bollora: of wringing machines, 23, 47 printora, 520, 846
Roof, pitch of, 180, 156, 181
Room. Ilght for middic of, 77
Rooms, vontilatling, 19
Root, vine, 443
Bouts: dundelion, $288,312,333,315,393$
hyacinth 469 ; of trees hyacinth, 469 ; of trees, killing, 5 © 3 Rope, rendering new fiexible, 41
Roses, 391, 415, 441, 497
Rose-treas 18 , 21,100
Rotary : engine, 462, 514 ; motion, chang
ing reciprocating intw, 484, 537, 893
Botating : shot, 148, 171, 198, 427, 233, 289 ;
valve for steam-engine, 320
Rotation rate of globe, 649
Rotation rate of globe, 649
Rotten silk, 519
Eouge
Rough skin, 573
Round shoulders and curved apince, 514 Roundabout theory, 638
momoira Roysi: Astronomical Society;
Rubber: graphite paint 425; strotching
Vulcanised, 470; tiren, 130, 135
Rust: in brewing wator, 363 ; in iron vat
18, 100; preventing, $105,130,165$; pro Busty Iron castinge 500

BAFETY-LAYTP for minera, naw.
116, 217, 275, 838, 658 $105,129,15$
Snfoty-valve, weight
Sahara, desert of, 182
Sailing boat, motion of, G49, 671
Sails, mildew in boat, 207
Salads, frash vegetables and aweot, 263
Salmon epawn tor bait, 79, 104, 12
Salt damp in walla, 78, 180, 258
Salts produced from kolp, separating, 9 Samels patent standerd lock, 195 San Francisco, emigration to, 818
Sand: building on, 519 ; for casting. 102
180
Sand-papering machine, 246
Sash planes, 673
Sash fastener, new, 587
Sashes, fantening loone window, 162
Sash-tool handler 105
Satelltes: Jupiter's, 9, 40, 76, 116; of
Jupiter and Saturn, 249
8aturn, semi-diamntar of, 116
Save us from decimalism! $\$ 6,67$
Saw, circular, driving, 259, 442, 467
Saw-bench, wator power to work, 102
Sawdust, brandy from, 439
Saw-aharpening nachive, 129
Sawing timber, novol mothod of, 407
Sawn: brazing tine, 469 ; improved aplndle for circular, 13; spindie for circular 93, 259
Sarony, education in, 99
Scale : 468 ; in boilern, removing, 34 Scales, darkening graduations of, 625, 647 Scarecrows, 44,4
Scaring foze
Scaring fores, 21

Seas, inland, temperatare and phyalical conditions of, 656
aconing pear-mood, 415, 517
cat. Hollis obmerving, 146; allding, for racing boata, 872
Seawoed, extracting lodine from anhes of, 209, 234, 569
Secondary : betteries, 189 ; reflections, 878 Hecret apring or lock, 418
Sector, radius of, 818, 889,
Seedbox. 19
Seeds: 469; diapersion of by winds, 340 ; how to obtain double flowery from, 281; infuence of
ipe. 104,178
Seleuographical, 172, 277, 640
elenography, 256, 394
Self-deception in wbsorvation, 447
Semi-dlurnal area, 9
Sensitive tamen, 217
Separating lensos, 07
Serpenta, venomoua, 198, 240
Setting: lathe, 48, 129, 184, 180, 670; moths, 889
Seren-keyed tuning-fork, 869
cware: coment from, 211; question,
Sewer gas, 41
Sowing-machice, 103, 410, 417, 465 ; combined knitting and, 269 ; defective, 155 ,
616 ; diffealty, 811, 338; extran, 258 ;
Howa, 829: Bobin Hood, 865, 461;
Shaft: Elad-chandron ayatam of elaking.
7: line, 108; turning perpendicular, 21, 75. 103, 258, 307

Shafte: hardoning ateel, 517; strength of,
heepskins, cleaning white, 208
Shellamh, pigs, rabbita and, 818
Shifting hoist, light, 572, 692
Shilling gusponded, $865,390,414,489,517$
Shipbuilding, woods used in, 400
Ships: rolling of, 618; sugsestions for Shoe thict-soled 287 399
Shoemaking, boot and, 309, 335, 385, 572 638, 67y
Shorthand, 234
Shot, rotating, 148, 171, 198, 927, 253, 282 Show stand, 547
Shower of ntones, 61
Sidoreal: clock, 171 ; day. length of, 28, 78 Sight: 238,$261 ; 2$ questlon of, $20,44,75$,
$101,128,153,205,231,283,886 ; \operatorname{dog}$ with weak, 812 205, 231, 283, 836; dog
"Sigma" as a "searchor after truth," 359 Signala, diatant on Midiand, 841, 621, 667 Silician steel, 140
Silk: cleaning plain bluo, 887, 440, 491;
printlag motal leaf on, 672 ; rotten, 819 ;
colvente, 597 ; spontaneous combustion of, 482; working, 547
Silk worm: disease, 157, 182; egga, regro
lating tho hatching of, 886 Buver: and gilt articles, 595 ; bath, 91 ,

105, 130; chloride, fused, 649, 672:
flm for aunecreens, 332: goode firs
marks on, 625 ; nickel, $872,625,670$;
plata, ornamentation of, $60 ;$ precipitu-
plata, orasmentation of,
Silvered glass ann-r, 613 , 224
Silvering: fteld lenses, sOt; mirror for
telescope, 388 ; solution (photo.), 191
Silver-plating, $340,864,398$
Singer now family sowing-machins, 172
single 7 . double cylinder ongines, bily
Siphon bottle-caps, 231
Skeleton fowers, 599
Skeletonn, 182
Skerching from nature, 520, 547, 570, 596, 8ketching-bog
8krtching-board, steadying, 470, 494
Skew bridge, 495
Skins, curing, 20
Slato: bringing to surfaco of quarry,
671 ; clocks, polishing, 616
Sleeper, a bad, 311, :338, 687
Slide, new microscope, 656
Silde-reat, ornamental, 66
Slide-rents, re, 469, 492
Slide-valve question (Cameron's pump), Slops, hop
simali-pox, prevention and cure of, 102 Sulee's battary, 38, 46
Smell : 294, 344 : of peint, 365, 390, 491
Smoke: and light, 573, 623: enouomy of fuel and prevention of, 69 ; essence of wood, 650
Smoky chimney, 261
Susthblock, improved, 346
Soap: boiling, 77; dry, 644 ; Marnellles, 79 Society, amaleur turuers', $97,150,6$
60cket handies, 67
Bocotrine aloes, 38
Sode: nitrate of, 312, 238, 863, 570 ; olento of, 43; silicate of, 46, 47, 77, 258; tannate of, fur preventing lacrustation, 439 Soda-anh in bollora, 20, 232
Sula, atuming for, 7
Soft oggung 492
Suftening mpring water, 470
Suirte of Royal Society 185
Solar: actuvity, 7; induence of planet upon, 38; corone tha, 614, 689; eclipse,
lete, 7; eyoplecon, 828 ; facule, 808 ; heat, mource of, 7 ; 11 ght , chemical in fivence ư, 1 tf ; longitude, 171 ; pheno-

Solariological. 61
Sulder: for Britannin metal, 183, 207 Soldering : flux, 827 ; Iron, 75 : Iron bo 812; jewellery, 337; tinning and, 236
261, 295, 309, 361
Solld, liquid and, 389, 414
Soluble glank, 46,
Solvents, silk, 697
Something wrong: with Jupiter, 228 ;
Song of canary, 20
Soper rifie, 93
Sound : deainning, 157, 182, 20A: ocho of on water, 648; (or unsound) theory, 430 489, 508, 665; wavek 20
Soundbards: dirnctions of motions of 533 ; effects of increasing anpertlicies of 382 ; munical borea on, 35π, 391 ; now
687 ; of pisnofortes, 487
Sounding-lines, deep)-sea, Sir W. Thom-
Sounds of m
Sounds of muscles and the cars 485
Soverelgns, defaulting, 67
Spanish: language, fi73: pronunclation
443, 470, $518,545,621$. $64 \bar{i}$
Spenners and wrenches, adjuatable, 243
Spar. Iceland 869
Sparkn, electrical, 42, 62, 157, , 238 256,366
8 pecific
Specific gravity: apparatns for determin
ing, zio; of porous ming, 2ring, of porous substances, detor SFectaclen: orange coloured, c12; sult sble, 310
Spectroscope: 110; adjustable for disper aive powor, 7 ; dust in the, $9,66,69,97$
Spectrum: coloure, $262,286,338,361,357$;
Spectrum: coloure, $262,286,338,361,357$
painting painting th
8pecula, 638
Speculum : 673; working, 257, 979
Speed of bicycles 73 ing, 257, 979
pulloyn for cue
Spherical rest, the Washington, 644
8pheroidal state of water and boiler ex-
plosions, 632
Spiculos of sponge, 8
Spinal complaint 228
Apinal complaint, 128
Spladle for circular nawa, 18, as
Spindle for circular rawr, 18, 93
Spines, round shouldera and curred, 814
Spinning, 495 ,
Spinning tops: $252,307,858,412$; and
gyroscopes, $329,353,881,412,435,160$
Spiral: grailing, 34,94 ; turning, 157
Spirit faces. 38
Splrita, tanting beor and, 510, 670
Spiritualistic 128
Spiritualistic, 126
8pirometer, 492
Epollad hama, 631
Sponge spiculea
8pongea, 359
Spontannous combustion: 18,70,98,111,
127 ; of silk, 482
Spots on Whitechapel, 571
Spratin, curing, 810
Spring: beds, 105, 130 : furnace, 571
Sprinirs: 961 ; brass, 288, 812 ; hardening
Spruce beer, 78
Spur-wheels, teeth of, 209
Syuinting. 49. 79. 112
Stain : and polish. red, for kitchen ehaira 128; metallic for wood, 493 ; violin, 232
Stains: champegua, 19,44 ; in oak plank, 545 : in wood 673; potaio, 671
Staining: carmine, 888 ; fanlight, 673; Staining : carmine, 258 ; fanlight, $673 ;$
glas.. $491,517,544$; leather, 546 ; tivsues, 349,
Stair-noses, 130
Stair-steps, breadth of, 417
Stampk postage : 285, 200; cement on 649,671
Staidards
Standards, removal of the, 107, 128 Star: altitudes and refraction. 508 140 i $66,190,248$, drift, depths, 109 about 369 ; naynitudes, 116 ' meps 9. 430 sad star drift, no evidence abouth 369 Starch, fermenting bread with, 621
Starlings, 181
Stars: 11 ; B. A. C. 508 ; distances of the, 300 ; double. 148. $174,3: 8,462,48.5,542$, 614; in Aquiles, 614 ; now double, 148, 485 $230,200,355,462,207,694$; triple
Steam : 77 ; boiling by, 157, 181 ; 'bus, new, 161; carriages on common roads, 434; condenaation of in piper, 410, 461, 513 ;
ry, $157,181,232,258,284,308,360,386$, 19, 44, 466, 490, \&t, 605 ; drying by, engine, 156 ; jacket, the, 59 ; lanneh, 17 ; plpes, expansion joints in, 310 ; roedrushor, inexpensive and aimple, 548 ; cintion. Manchester. 530 , Users Asso-
Strambont: model, 10.5, 258; boiler for, 258, 30, 361. 386, G4ū
Steam-guns, 433, 207, 259, 361, 645; want of, 18,101
Steamship. proposed large, 482
Stearic and palmitic acids, new method of obraining, 603
Stearine, 101
Steel: 163;
teel: 163; annealing, $146,181,308$;
combn, 441, 491: etebing 102, twols, 102, 129 ; pilding thin. 10 ; herdening pasta, 180; heating. 376; modes of making. 163 ; platen, revistance of to air-prensure, cts; preserving the polish f. 377 ; procens, Barron, 464 ; nhalt, hardening, 517 ; Sillcian, 140; spring,

Stellar: and astronomical names. 12: motions, 377; method of determining Stencliling, 248
Stephenson and his slleged inventions,
 blocks, 625, 647
Sticking-plaister, 19
Sticks, bending, 878
Stinging of beek, dc., 79, 102, 129, 154, 180 206, 231, 880
Sting-proof gloves, 2 Rs
Stone: artiticial, 384 ; coal, 408, 438 :
chiding, 31\%: otching on, 671: gold polishing on, 156
atones shower of, 51
Stopper, extracting gisse, 48
Stopper, extracting gisse, 48
Shopping: pinholes in lead pipes, 160 ;
Stopping:
Stupe, telescope, 638
Stures, co-operative, 412, 409, 511, 540
Stuve, Ebdy's gus, 483
Stoves, G43

223

Strappling, recipe for greasy, 51%
Strawbermos, 388, 411
Strawberry, blackberry and, 307, 360, 336
Strsngth : of boller, 128; of shafte, 442,
Stretched indisrubber, 308
Stretcher, carpet, 324
Stretching rulcanised rubber, 470
Stretching rulcanised rubber, 470
Striping, 88
Stroke, 470, 618, 569
Struggie, the coming, 612
Stub-end for connecting-rod, 454
Student's complaint, as, 200, 228
Study of natural science, 99
Stufing: birds, 162; for sofa, 74; rep-
tlles, 599
Submarine: photography, 843; rallway, 877 ; stractures, 847 ; telograph cables, 169
Submerged forests, 598
Succession duty, 188, 208, 233
Suction pipe, arr-ves 20 04, 67
paper, dyoing pulp for, $44: 489$, 78;
paper, dyoing pulp for, 443, 469;
Suggeation for postal suthoritiea, 94
Sugirestions for making hall-worn-out Sron ships seaworthy at small cost, 58
 bleaching agent, 281 ; in gas,
Sulphuric acid: $18,42,845$; loed in, 892,
Sulpharous smell after thunderstorma, 645
ummer tribes our, 196, 332
Sun : 250,308 ; and terrestrial magnetism,
188; dechlastion of, 10, 120 : disc of, valuo of one man on mean parallax of, 486; photographing the,
171, 258, 961 ; something wrong with
the, 588 ; temperature of the, 465 ;
the, 858 ; tempe
Sundials, 79, 103, 154,
Sundries, 144, 352
Sunlight, action of on glass, 013
Suuriee : curve, 98 ; suuset and, 656, 578,
Suns, coloured, 296, 358, 383, 436
sunscreen : 803; for all telescopes, 1.50 ; silvered glass, 224, 873 ; silver films
Sunset :
rinet ${ }^{2}$ morning, 436, 465, 486; sun rine and, 586, 673
Sunspota, $858,406,450,436,468,485,562$ 614,640,
S68
Sunstroke, 529
Super : for cottage hiven, cheap, 433, 462, Super: for cottage hi
s 40 ; removing, 648
Superheater, 563
Supply, our food. 90
Surfaces: testing plane and convox, 567 ; working plane, 019,646 conv, 007 ; Surgery : 104, 154, 180, 206, 307; abroad, Surgical dentistry, 364
Surveying land, 547
Suspended: clothes-horse, 18; shilling, Sustainiug $14,439,517$
Sustainiug power of cast-iron columns,
Swimming-bath, making, 21, 4
Swiss mountains, height of, 21
Sycorls, 381
Syrup. lemonade, 183, 207; of coffee, 61
Syrupe, Iruit, 195,
Systems ; decimal, 148; duodecimal, 159 ;
mastery, 11 ; metric, 12, 69, 117
T. A": snd gravitation, 197, 250 ; and Table: design for marble Inlaid, 673; of dates, 41 , 819 Tables: and ohaira, insects in, 812, 838, of U'ranus, 377
Talmi-gold, 133
Tambour frame, 616
Tanks: hot

Tanks: hot water, sinc for, 547; rain-
Tanned goods, bleaching, 621
Tap, leaky, 311, 868
Tar: paremen¢ 468, 817, 604 ; separating from wool, 856, 357 Tararacum, ${ }^{579}$
Targeta, ride, 618
Targeta, rife, 018
Tarpauling for railway carriagos in the
tropice, 154
Tartaric acid,

Task for chemists, 17, 157, 282
Tasmania, 337
Tea: coffes, cocos, aicohol, and 833
drunkards, 269 ; testing, 41, 491
Teoth: $1 \mathrm{k2}$. 833,284 ; cleaning back of
442, 492; hardening, $54 \overline{\text {; }}$; of npur wheels
208, of whecls 564
Telegraph: posts, 206 ; preparation of 93 ; wires in citios, undergroand, 470

Telegraphy: hydro eloctria 836 . im provemont in, 107; in United States prov
$\mathbf{4} 66$
Telesc
elescope: 18; day and night, 519, 546 570, 645 ; diffraction phenomens in, 7 for star-gazing, 430; novel, 257 ; per for, 348 ; stops, 633 ; testlng, 979 ; valu-
able, 4.59 shops, 203 ; testing, 15 ; valu
Telescoper
for, 591
Teloxcopic: walking-sticks, 618 ; work for moonilght nights, 73, 291
Temperatire; and physical conditions o Inland seas, 655 ; enest of upon ale, $\mathbf{2 3 5}$, 254 ; measuring by electricity, 538,559 not of Jupiter ais. of the plende wator of the sun, 465
Tempering: cast-stoel chisols, 262, 287 310, 887 ; cutting.tools, 165 ; knives an trowels, 258; noedle, 673
Tononing machine, 476
Tent, portable dark, 365, 389
Terra-cotta, 48, 100
Terra-metallic tilen, 469
Terreatrial gravitation, 17, 36, 74, 97, 119,
144, 172, 201, 205, 228
Test: for alum in broad, 454 ; for arsenic
442; for sugnr, 183 183,208, 234, 284 beer and spirits, 519,570 ; bleachingpowder, 261, 285, 309, 361; collee, 48: infammable oils, 445 ; plane and conves surfaces, 567: tartaric acha, 547 ; sea 41, 491; telescopes, 379; vegetable
Tabta : for flour 597 , ore
Thin. 116 ; refractor, 3417 ; refiector scopes, 591
Tetrachordon, 177, 225, 275
Textile fabries : durability of, 290; manuTheophilus and Pompeil, 506
Theorem, Pythegoras's: 957 ; new proo
Theory: of vision, 171, 278; roundiabout
6:35; found (or nopound), 430, 489,8104
Thermometer: 286, 261 ; acid bulb, 85
Thermopile, $4 \neq 0$
Thick-soled shoe, 287, 338
Thisles, how to destroy, 379
Thorough bass, 183
hought, aims and instruments of scien
Threads in

Trestment of asthmes, 55
Trestment of asthmas, 55 forte, 301; of ordinary cottage pianos,
Trees: age of, 598,646 ; killing roots of rees: age of, 598,646 ; Eiling roots of
157, $182, ~ Ј 68 ;$ pre-historic, 393 ; rainfali and, 637
Tremolo: 417 ; on violin, 487, 819
Tricycle: "'Turreh" 150; Yorkshire
Trigonomet
Trigonometrical, 263, 309, 494. 547 ${ }_{413}$
Trip: to Australla, 364; to Ireland, 339, 363 Triplo atars, 485
Trunk engine, 207
Truth, searcher after, 380; "Sigme" as,
Tub butter, preserving, 181
Tubes: for meerschaum pipes, silver, 102 ; Tubes: for meerschaum pipes, silver, 102;
leaky, 889, 414; luminous, 596 ; old locomotive, 340, 388, 817
Tunic, atained acarlet, 547, 596
Tuning: 667; Æolian harp, 598; keyed instrumenta, 618, 648 ; pisnofortes, and other striagod instruments, 463, 486
violin, 391, 416, 467, 487, 492, 517
Tuning-fork, seven-keyed, 569
Tuaing-key, pianoforta, $540,568,591$
Tarbine, 157
Turkey aniversity of, 313, 339
Turner, Dr. Liebrelich and, 203
Turners' : Company, prizes of the, 581 soclety, amstour, 97, $150.689,641$
Turners and turnery of Kings Cllfe, 402 Turning: 338 ; ivory, 416; ornamen 647; oval, 493; spiral, 157 ; spokes of arriage, 4 is pis 101 : 516; tools, grinding, 332; toola, improved, 528
Turpentine and wood naphtha, 569 Turret: clock-line, 410; tricycle, 150
Turret-shaped hilla, 19
Type, herdening lead or zinc, 517
UNANEWTHERD QUEARTRES, 176 Uncoiling new wire rope, Undergron
470,518
Undulatory theory of light, 500
Unequal sizes of cone pulleys, 468, 493
University of Turin, 313, 339
Uninitiated, photogruphy for the, 90,191 ,
United States, telegraphy in, 466
Unripe sceds, 104
Unsound pianoforte, 645
Uranus: occultations of, 40 ; tables of, 378
Use and adjustments of the equatoreal
651, 629
Useful cements, 325
Utilisation : of the power of the thee, 609; of waste material, 482
Utilising: chemical products, 365 ; old
"V.C. A." 133
Vacuum: in berometer tube, 157; is the interior of the globe a, 647 ; tabea injury to, 157
Valencien and atomicitioa, 10, 41, 99, 12\%, 200
Valuable telescope, 459
Value of: agricultural chemistry. 57 : mannurep, $130,10^{\circ}$; yue secund on sunis

Valvo, rotating 320
Valveless and non-packing engine, 693 Vandyke brown. 466
Vepour, mercurial, 40, 118
Variation of pulse-beats, 61
Vranish: black for microscope ohjocts,
440; cells, 598: flexiblo black for leather, 572, 596; for marble edges, 573; or Oxford framen, it ior paiterns,
rod, 416; for printing inks, 39

Varnishing:

Varnishing: 85; wall-paper, 75
Vegetable : beefsteak, 425 ; colouring
matter, extracting, 671; marrow, pro-
served, 281 ; palmontology, 287
Vegetables, fresh, and sweet salads, 268
Vehicle, four-wheeled, 153
Velocipedes, 43, 98, 340, 364
Velocty: of rays of light, 23; of wheels end shafts, 179
Veneering, 155,181
Veneers: 669 ; for covering walls, 298 ; maple, 648
Venetian blinds, 340, 388
Venomous serpents, 198, 340
Ventilating: bucket, Fairbairn's, 234,
259; "M.
259; "M.R.C.S." on, 196; rooms, 19; warming and, 40, 72, 93, 151
Pentilation: costless, 68; "Philo" nnd, 9
Genus: axis of. 430, 460; pest transits of 43: transit of, 9
Verge, ining balanco wheel on, 28
Verge whoel, re scaping old, 18
Veritas and the pendulum, 543
Vermin: 648; and pigeons, 105; novel method of destroying, 477
Vesuvian dust, 637
Vesuvius, recent eruption of, 272
Vibration and attraction. law of 332
Vienna universal exbibition, 653
Vine root, 443, 469
Vinegar: adulterations of, 525 ; detection of ritriol in, 273
Violet, a new anilina 299
Violets and roses, scent from. 129
Violin: 21, 45, 104, 131, 180, 233, 467, 488, 816; case, 569: constructing, 516; how new form of $254,274,382$; old 517 ; new form "f, ${ }^{\text {neflector, "Fildler's," } 465 \text { : stain for, }}$ 232; tremolo on, 48\% : tuning. 391, 416, 467, 487. 492, 517: worm-eaten, 495, 621
Violoncello, cleaning. 18\%, 2.58
Virginia, its climhte and soil, 181, 200
Vision: $5: 20,516$: effiects of faulty in on painting, 162; recurrent, 190, 282, 332, 172; theory of and spectrum analysis,

Visitors, summer, 332
Vital movement, 638
Vitality and electricity, 391
Vitriol, detection of in vinegar, 273
Vlacq's tables of logarithous, 249
Volce, weak, 105, $155,340,265,389$
Voicing organ pipes, 262
Volcanic mountains, 42
olcanoes: earthquakes and, 193, 220, 971 , and French, 279 oltalc standard 404
Voyage, canoe, 209
Vulcan, the planet, 273
Vulcanite cells, fasteningto glass, 21
WAGES, calculativg. 595. 644
Wall tranit instrument 640

Wallaroo copper, 2:8
Wall-papers: 621; arsenio in, 226. 961 809 ; sulphur In, 470, 493; varnishing,
Walls: colouring, 157 ; concrete, 28 ; damp, 18, 74, 312; salt damp in, 78, 180, 258 ; wiring garden, 833; wood venecrs for covering, 298
Walnut, darkening, 206, 283, 283, 886
Want of sterm-power, 18, 10
Warming: and ventilating, 40, 98, 161 . greenhouses, 206, 232, $287,441,592$. rallway carriages, 542, 620, 666
Warmth, air and, 105, 130
Washers, locknuts and, 454
Warhing: bullinte, 364; new mode of, 143 Washing-machine, new, 190
Washington spherical rest, 64
Wasp, tame, 6
cosl the 609 , utilisation of a, 489; of Coal, the, 609
100, 152, 205, 283; 414, 441; repairing. 489, 564: the, and how to repair it, $421,448,508,529,680$, 657
Watch-chains, fastenings for, 530
Wstch-drills, G48
Watchmaking: 44, 205, 388, 696 ; and isochronism, 17, 179
Watch-plite, restoring colour of, 491 181; bad, 599; bellows 41; analysts of jet of. 672 : cement for. 28 , 48 . presuing, 157, 232, 258, 284, 308,836 ; composition of, 638 , by zinc, 32 : dis tilled, 79, 102 ; elder-fower, 548 ; evapo ration of, 625, 647; filter, cheap, 87, 309 fltering water, 311 ; flow of, 16; flow 673: hard, 365, 414 ; lifting, 47, 77 ; 0 deep-sea, 289 ; powder, 493; power, 17 99, 102, 413 ; pressure of, 79, 102, 625 pressure under, 17; raising by tidal power, 198; regulator, 468; softening spring, 470; spheroidal state of and boller explosions, 682: Rupply, 622 Watere is it gone to? 226, 32
Watercourses,
Watorcress, 201
Water-glass: 259, 547; as a preservative
of natural history subjects, 466
Water-pressure engine, 6
Water-power, 312, 363, 413, 442, 467
Waterproof: fighing socks, 441; leather, 133: worn, 365
Water-wheel: 20, 75, 166, 206, 258, 356, 259, 284; 287,209 311 power of, 209, 236
Wave-motion of the se
Wave pattern, 649
Waves: action of oil on, 598, 623; measurement of, 606 ; souud, 80
Wax: adulteration of, 144 ; extracting
from old comb, 494 ; moth. 547,570
Weak voice, $105,155,340,365,380$
Weather: charts, 27 ; colliery explosions sind the, $276:$ glass, 69, 126 ; maps, 450
Weaving by power-loom, ${ }^{235}$
Webb's "Celeatial Objects," 560
Weight: for safety-valve, 105, 129, 154 of cattle, 105,130 ; metals, 44 ; milk. correct. 393; the earth at creation and now, 200
Weir's aewing machine. 649
Weirs, discharge of water over, 183, 208, weld
Well the cast iron, 18
Well-sinking, 157

W
29:
What is guano? 5
Wheelbarrow, 392
Wheels: 670; carriage, 346; cutlers', 47
gearing waggon, 43, 469, 518; teeth of 564 ; turning spokes of carriage. 678
Wheel-tires: 46 ; furnace for heating,
WH1
White: hair turning, 491; hard, 22:
polish, 104
Whitechapel, apots on, 57
Whitewath, removing, 620
Whitlaw's new medical discovery, 45
Whitworth: lathe, 204 ; Acholarshipa, 543
Whooping congh, 236, 262. 285
Window-sashes, fastening loose, 152, 199 Wine, elder-fower, 493
Wine, frult and grapa, 211
Winter, fuel for, 594
Winter's electrical machine, 54
Wire: covered. 23, 45; purifying zinc,
79 ; restoring brase, 389 ; rope, uncolling new, 260
Wire-covering machine, 268, 381, 407, WH
Whing garden walla, 388
Wonderful crater, 353
Wouderful gun-barrel, 38, 8.56
tillation of 361 ; ebonisi, 285, 259; diegraring tools for, 416 , fern pristing enwhite, 127 ; flreproof, 613 ; foreign, $2 \%, 8$; gilding strips of, 233: laurel, madnip and, 415; metallic stain for, 493: paper from, 872; preservation and desircation
of, 1: preserving, 189; palp for paperof, $1:$ preserving, 189; palp for paper-
making, 409 ; rendering incombuntiblo, $207,233,259$; rols. 22, 76, 101, 205 : screws for improved, 3i7. smole, essence of. 649 ; staius in, 673
Wooden: cocerete moulis, conting. 155 ;
house at North Tawton, the, 605; pump, $105,130,185$
Woods used in shipbuilding, 400
Wool : cheaning greasy, 482; eeparating
tar from. 286 tar from, 286
Words, much experience in few. 250
Working: in metais, 230 : plane surfaces
519, i4i: silk, 547 ; speculum, 257, 279
Worm-eaten violin. 495, 621
Works on artillery. 6.5:
Worms: for flshing, 311 ; in pony, 600 , 624, 646
Worthlessness of beef tea, 191
Wortley. Colonel Stuart, emulsion pro wounds,
302 c, simple method of healing Wrenches, improvod spanners and, 243
Wring
Wringing-machine, rollers for, 23, 47
Writing. patriarchal, ss.
Writing-machine for the blind, 164

YACET: building, 416 ; rigging model Yeast : dried, 599 : or barm. 625
Yorkshlre: bone-cave in, 323; Nephilim in, 483 ; steam tricycle, 2\%)

ZINC: amalgamated. 21, 38; aud cual 286; for aquarium, 36 Giz ; wire, purifyiny 79
Zodiacal constellations, trannit of, 22
Zymutic discases, 130, 150

エエエUsTRATIONs．

ACCEBSORIES，lathe． 72
F，olian harp，improved， 540
Ariated drinks，improved machine for making，380
Air．compressing，596， 649
Allen＇s patent，governor．${ }^{373}$
Allinghanis propeller．39， 173
Amateurs，mutive pow
Ameroid，bell， $4 * 5$
Anglo of reflection and incidence，204， 2
Antipodes，time at the， 234,337
Apparatus for hrating by hot water， 632
Aquarium marive， 569
A rebos．akewbacka of camber， 675 Arpaz of gegment of circular ring， 128 Arintarchus and nermiotma，
Artiticiall calcareous formations，86．504 legs， 71 ；so－called organic concretions， 54
Atmosphere．compreasibility of． 204 Atmospheric huruer，handy， $56 \bar{i}$ Automatic gaslighting， 325

BANJO and bell attachment， 257
BANJO and bell
Fiticery．Himmer＇s galvanic， 11 ：
Bees．manngement ot 590
Berhive：improved，s11；Myborg， 201
fell aneroid， 125
Fell－ringing mechanism for mollel church， 179
bill＇s privent feed－water heator， 26
Sells minent feed－r
Belts，fixing on tires． 102
Rending tres，44． 1111
Fiicycle handle，simple way of fitting， 177 Bienching－powder，testing， 236
Hlind－roller，self－acting， 293
slind－roller，self－acting， 293
Blowing apparatus ；hyilraulic，648；self－ arting 1：4
Builer for model stonmhont ： 372,0 ， Boilers，recent improviments in English nud imerican，113， 186
Beilin：by stean， 181
Proik，using，without hands，10，1：27，2：4 Sowhinder＇s prese， $62: 3$
Finct and rhoomaking． $57:$
Roring and mortiving machiue， 216
 Frithe propwed Channel， 64 Rukhet．Fairlmiris＇s ventilating， 259 Puilhitign，mondithie，4＂s Parner，handy atmosplieric， 567 Bus，new stenm， 161

Buttous，cleaning metal． 106
CABINET for mirrosenpe nhiects，：307 （alcarnoun formations，artifleial， 86,504 Calcutus，ras
caliper compasses， 16
Carpmotor＇s bench and tonl－chest， 311 Capmet stretcher， 324
Carriage wherls，improvements in， 220 Cank hand，new， 34
Custing metal in air－tight moulde， 124
Centrifugal mump， 419,470 Chaunel hridump，proposed 6
（＇heuistry，lessons un， 3, ；0，112， 242
C＂bess，sti
（heat expander．389， 414
Cheut espander． 389.4
（bimney，rmoky． 261
Chuck ：grip，：3：2s；oval，130，206；travers－ Chumaresw，Amorican
C＇irular saws ：improved spindlo for， 13 ；
npindle for， 2.99 Chuicte，humer for
2ins，humerus，and new cranium，
＇Iraning metal butions，l：s
huthex－hurae suriended，13
（ail．merlio：al） 597
Collioryuxplisions and the weather，con－ nectun lotwarn． $2: 2$
（iv．the a wher sewing machine
empsiset，caliper， 16
Complaint，spinal， $1: 8$
Compond maxines，：ris
Cotapresuibility of the atmospluere，yot

sis

Confectionery．improved moans o manu－ facturing， 199
Conie sections， 262
Conneeting－rod，stub－end for， 454
Connecting－rod
Cork lock． 852
Corks，Fleming＇s locking， 312
Corks，Fleming
Cranium，clavicle，humerus，and new， 255
Cube，duplication of the， 333
Curve，sunrise． 98
Cutter－bar， 668
utting screws， 64
Cyrillus，Theophilus and， 147

DAIBY extractor， 180
Dark tent，portable， 389
Dise，avolding motal，77， 180
Diseare，the potato． 653°
Distent signain on Midland， 341
Dormoy＇s revolving rabble， 215
Double stars，new， 280
Drains，house， 481
Drawing bowdary line． 77
Drilling machine：76；universal angular，
57
Dupl
Dynamic refrigerator， 4%

IEBDY＇S patent gas－8tove， 402
Eccentric，adjustable， 13
Eclipses of sun as seen from Jupiter， 176 Eclipses of sun as seen from Jup
Edible mushrooms of Italy， 510
Electric bells， $18:$
Electrical machine，the Holtz，90， 898
Electricity，measuring temperatures by， 531， 858
Electro－metallurgy， 502
Ellipsograph， 593
Engine：non－packing valveless， 595 ；
rotary，462；water－pressure， 12
Enkines，compoind，
Equatoreal，the，its uso and adjustments 551.629

Euplectella， 541
Expander，chest，389， 414
Explosives，ignitiontpoint of， 566
Extractor，daisy， 180

FACULIE solar，30
Fuirbnirn：s vontilatid：hucket， 259
Fastenings for wateh chatins， 530
Fidulle，the＂Harmonious Blacksmith＇s＂
first， 2.54
Filter，cheap water． 87
Fire－engine，new， 31
Floats of whter－wheel， 598
Flow of water， 16
Focal length of lenses， 338
Force－pump：model， 207 ；portable， 516
Furnace for heatiug whecl－tires， 541

GARDEN：gatn， 46 ；walls，wiring， 333 Gar，heating by，${ }^{349}$
Gaslighting ：automatic， 325 ；electro－ Gaslighting：automatic，325；electro Gassendi：177，277，437；central hills in 4×5
Gras－stove，Ebdy＇s patent， 402
Gate，garden， 46
Gauge for bit－braces， 325
Geoceutric longitude， 10
Geometrical，443， $546,648,643$
Glass－blowing， 364
Chasses，musical， 108
Glazing，improved method of，38， 124
Glazing，improved method of，
Golail or Indian pellet bow， 255
Govermor：Allen＇s patent，373；Sim monds． 34 ；Trotman＇s hylraulic， 581 Crailing．apiral， 94
（ \ddagger ravitution，wrrestrial，17， 229
Gravity ：action of，616；specifle，ap－
paratus for determining． 230
Grernhouses：hints on the construction Grinding turning tools， 3 ：5
Grinding turnin
Guns，greatly olongetnd projectiles for rinod， 515
Gyroscope：509；properties of the， 582
BAMMERR，tilt，128， 31
Handle，bicycle，simple way of fitting， 177

Hardening ateel whatts， 517
Hard woods，mortices in．74， 20
Harmonium ：construction，424；pedal
262 ；reeds， 824
Harp：668：improved Жollan， 540
Heating：by gas，349；by hot water， 632 ；
Heating：by gas， 34
greenhouses， 644
Herodotus and Aristarchus， 406
Himmer＇s galvanic battery， 113
Hints on the construction of greonhouses，
592
Hoist，light shifting， 572
Holtz＇s electrical machine，90， 398
Hot－water heating apparatus， 632
House drains， 481
Houses，timber
Houses，timber，
Howe sewing－machine， 329
Hydruulic ：governor，Trotman＇s， 581 machine for blowing organ，648；press，
Hygrometer，573， 596

IGNITION polnt of explobives， 566 Improvements in English and American boilers．recent，113， 138 Indian pellet bow or golail， 235 Instrument ：for constructing transit lines， 121；Wall transit， 640 Iris or rainbow， 596 Iron and steel，magnetisation of， 229

JUPITYER，411， 664
Jupiter，eclipses of sun as seen from， 176

KNIGEM＇S tour， 546
Knitting and sewing machine，combined， 269

TABORATORIES，photographic， 477
Lampblack， 624
Lathe ：and its accexsories，7！；construc
tion， 619 ：setting． 170
Lathe－head mandril， 237
Legs，artitleial， 71
Lenses，focal length of， 338
Lessons on chemistry， $3,30,112,242$
Light， 416
Lock．Sammls＇patent standarl， 19
Lreing－cotks，Flemings． 312
L＇exing－cotks，Finming s， 31
Longitude，geocentric， 101
Lubricating oils，testing， 100
Lunar meteorology， 83
MACEINE ：airated drink making， B80；boring and mortising，216：com－ 76．Holtzis cloctrical 40 ， 998 ．magneto－ loctric，303：puddling，83；punching lectric，303；puddag，b3；punching： improved，
tenoning．
476 ；$:$ universal angular drilling． 57 ；washing，new，103；wire－ covering， $968,381,407,4: 33$
Hachines for testing musical strings， 618 Maguetisation of iron and steel， 22
Mance＇s methol of messuring intor
resistance， 276
Mandril，lathe－head， 237
Maps，weather， $4: 1$
Mariue aquarium，58：
Mathematical question， 152
Mechanism ：455，479．532，554，584，609， 633，660；for ringing bella in model church， $179{ }_{59}$
Metal，casting in air－tight moulds， 124
Metals，turning tools for， 518
Metcorology，lunar， 63
Mice cuting peas， 441
Micrnscope ：drawing from the，506；ob－
ject cabinet． 307
Miners，safety－lamp for， 217
Mon weh．rd with soundboard，\＆c．， 618
Monolithic buildings． 408
Moon，is it apherical？ 566
Motion ：method of changing reciprocat－
ing into rotary，484， 687,598 ；of sailing boat，649
Motive power for amateura， 80
Mountain，tlading height of， 63
Mushronuns，edible，of Ltaly， 510

Musical ：glamsea，103；string tosting machines， 618 Myborg beehive， 2

2NATURE，aketching from，520，547， New proof of Pythagoras＇s theorem，203，

OORANIC circulation，Gulf Stream
map，473， 499
Oil－can，Improved pattorn， 299
Oils，testing lubricating， 100
Opera and fleld glasses，on the disregard
of theory in the construction of 6 as
Orgen：388，417 ；building amatour， 354
Organ ：388， 417 ；building，amatour， 354 ；
built．the， $70,541,563,615,669$ ；hy－
draulic machine for blowing， 648 ：
pneumatic levers for， $3 \div 8$
Ornamental：Blide－rest 665 ；turning，69，
98，124，146，255，332，567，641，647
Oval chuck，130， 206

PACKING rings of piston，415， 493
Paint removing old， 168
Papsies， 467
Pantagraph， 811
Paper，silvering． 191
Paper，ailvering， 191
Parallelogram of forces， 815
Pattern，wave， 649
Patterns，tool for desoribing， 98
Peas，mice eating， 441
Pedal harmonium， 262
Pedals，radiating or concave， 48
Peronospora infestans， t 53
Perpendicular shaft，turning，75， 153
Perspective．509．560， 594
Photographic：laboratories，477；lenses， 312
Photographs，enlarging， 624
Pianoforte ：construction，95， 591 ；strings improved scale for lengths of， 202
Pinious，lantern， 125
Pipes，proportions of，3：5
Piston．packing rings of，415，493
Plato，198，384． 411
Pneumatic，levers for， 328
Polariacope，：605
Portable dark tent， 989
Press：buakbinder＇s，62：3；bydraulic，256
310 ． 30 ， Projectiles
guted 515
Proof of the deluge，oue， 175
Propeller，Allingham＇s．：30， 173
Proportions of pipes， 35
Puddling machines，s3
Pump：centrifugal，419， 470 ；portable
Punching machine，improved， 321
Pythagoras＇s theorem，now proof of， 203 257， 282

QUERT，grometrical， 648
Question，mathematical，15：
RABBLE，Dormoy＇s revolving， 213
Radiating pedals， 43
Reducing valve，self－acting， 299
Reeds，harmonium， 524
Reflection and incidence，angle of，205，
293
Refrigerstor．dynamic， 428
Removing old paint． 168
Repairing the watch． $502,529,580,657$
Reptile tooth，new． 203 ， 20,10 ，
Repille tooth，new． 20
of measuring， 276
Rest ：ornamental slide，665；Washington
spherical， 644
R．bin Hood snwing－machine， 355
Rods，wood．2？，205
Botary：engine， 46% ；motion，new method of changing reciprucating into， 484 ，
Rotating v
Round shoulders ateam－engine， 820

SAFBTY－EATP for miners， 21 ；
Sailing boat，motion of， 649
Samels＇patent standsrd lock，19：；
Sand－papering machine，24C

Sush－fasteners，new． 537
Saw ：driving clrcular，229；water－power
Saw：driving circu
for working， 103
Scarecrow． 469
Scarecrow．
Screver，
\mathbf{V}
260
Screw－cutting． 644
Screws for woodwork，improved， 877
Scroll－kaw，improved， 347
Sections，conic， 262
Seed，raising， 46
Seedbox， 19
Segment of circular ring，area of， 128
Self－acting blind roller， 295
Solf－acting blowing apparatus， 124
Setting：butterfios and moths， 266 ；lathe，
Sewing machines：417：combined knitting and，269：Howe，329；Robin Hood， 355；；Singer family， 172
Shaft，turning perpendicular，75， 153
Shifting hoist，light．57：
Shoe，thick－soled， 238
Shoomaking，boot and， 578
Show－atand 547
Sight，a question of， 20
Silvering paper， 191
：inımonds＇governor， 34
Singer family sewing－machine， 172
Sirsalis cloft，the great， 292
Sketching from Nature，520，847， 570 Skotching－board，steadying， $\mathbf{4 7 1}^{\circ}$

Sknwhacks of camber arches， 675
slide－rest，ornamental， 665
Slide－ralve of Cameron＇s pump． 287 Sliding seat for racing boats， 8 i2 Smoky chlmney， 261 boats， Snatchblook，improved， 846 Solar faculea， 802
Spindle，improved，for circular saws． 13 Spines，round shoulders and curved， 514

Spiral gralling． 94

Star－systems and star drift， 360
Star－systems and star
Stars，new doublo， 280
Stars，new double， 280
Steam ：boilling by， 181 ；＇bus，new， 161
Stecl Ahafts，hardening， 817
Stretcher，carpet， 824
Strings，pinno，improved ncale for， 202
Stub－and for connecting．rod， 454
Studs for pianoforte， 432
Submarine structures， 34
Sunrise curve， 98
463，562．614， 668

THINESCOPIC work for moonlight evenings， 292
Temperatures，measuring by electricity， 558
Tenoning machine， 476
Terrestrial gravitation，17， 228

Towting bleaching－powder， 930
Theonlillus and Cyrillus， 147
Tilt－hammer 128.281
Timber houses 841
Time at the Antipodes，234． 337
Tires ：bending，44， 101 ；fixing belts on， 102
Tonl：another combined， 99 ；for describ－ ing patterns，98：for purching rirets out of watch－chains， 412
Tonl－chest and bench，carpenter＇s 811
Tools：grinding turning， 032 ；improvod
turning． 528
Tooth，new reptile， $203 \quad$ 640；lines Transit：instrament
constraction of， 121
Traversing serew chuck， 150
Tricycle，Yorkshire steam．2．3．5
Trig＇nometry，question in，260，494， 647
Turners and turnery of King＇s Cliffe， Northamptonshire， 403
Turning： 338 ，ornemental， $69,98,124$ $146,255 \quad 232,567,641,647$ ；thols， improved，528；tools used for motals，

Turbine， $\mathbf{5 6 3}$
U8ES and adjustments of the equatoreal，
651， 629
Using book without hands， $19,127,224$

VALVE：rotnting for stram－ongina，
Vin：meli－acting rmucing， 300
Valicalann engine， 533
Violin：making，816；new form of， 254 Vision， 674

WATIL transit instrument， 640
Warming greenhouses， 592
Washing inachine．now， 100
Washington apherical resk，644
Watch，and how to ropair it，503， $5: 3$ ，
Watch．and
Watch－chains，fastenings for， 530
Watch－chains，fastenings for，530
Water：illter，ch～np． 87 ：fow of， 16
Water－power to work anti， 103
Watar－preasure engine， 12
Watcrivheel，noats of， 698
Wave pattern， 649
Weather：connection between collicry
Oxplosions and，2222：maps， 451
Wrather－ginss，simple， 69
Whoels，improrements in earringa． 225
Wire－covering machine， $268,381,467,43$
Wiring garden walls，
Wond rons，22． 205
Wrenches，adjustable， 213
YACETM building． 416
Yorkshire stean tricyclo， 255

THE ENGLISH MECHANIC

AND WORLD OF SCIENCE.

ARTIOLE 8 .

THE PRESERVATION AND DESICCATION

 OF WOOD.工HE preservation of timber is a subject tinat quirers for years, and notwithstanding that iron has supplented it for many parposes, wood is still used to an extent which makes its duration a consideration not to be lightly passed over. On p. 324 of our last volume we gave an account of the results of some experiments tried with various antiseptic preparations on green oak, by Herr Maller, from which it appeared that the best method of preserving wood from the effects of moisture is to force into it two mineral antiseptic salts, which matually decompose each other in the pores of the wood, and by coagalating the albumen, and excluding the water, prevent decay. The two salts found to give the best results were phosphate of soda and chloride of barinm, in solutions of which the timber was steeped; bat a combination of soda, soap, and sulphate of copper is probably equally efficient, and this latter process is to be preferred for timber likely to be subjected to the attacks of worms, which under certain circumstances necessitate the exercise of as much precantion as the decay known by the generic name of rot. The best known processes, however, are those which employ creosote, corrosive sublimate (Kyanising), chloride of zinc, and sulphate of copper, all of which have been used with fair success. Kyan's process, patented in 1832 and 1836, was highly thought of at the time of its introduction, bat it is now seldom used. Payne's method consisted in first forcing a solution of sulphate of iron into the wood, and subsequently introducing carbonate of soda, an insoluble substance being thus formed in the cellular structure of the wood, the process when properly and effectually carried out having yielded aatisfactory results. Chloride of rinc has been used in several of the Government dookyards in preserving wood for the interior fittings of vessels, which are frequently lisble to the attacks of insects. Bat probably the most successfal process hitherto adopted is that known as areopoting, in which the wood is completely impregnated with oil of tar, the bituminous portion of which enters the capillary tubes of the material, closing the pores and preventing the access of air and moisture, while the albamen is coagalated and the attacks of worms and insects generally warded off by the noxious properties of the creosote. But even this method fails to preserve timber from the ravages of the Limnoria terebrans for any length of time, as piles ander water, such as those of jetties, have been found to be aaton through after about four years, although thoroughly oreosoted, the preserving procoss appearing to be effective only so long as the external coating of the oil endured. The process, as patented by Mr. Bethell, consists in drying the wood in a chamber through which the smoke and the products of combustion of the fuel, which also heats the oil, are passed ; the wood while still warm is then immersed in a bath of heated creosote, or placed in strong wrought-iron cylinders, and the preserving fluid forced into it at a high pressure. With soft woods, such as pine, hat little difficnlty is experienced in thoroaghy impregnating the timber, but with oak and other woods a pressure of 1701 b . or 180 lb . on the equars inch is not sufficient to creosote more than the outer inch or so.
One of the cimplest methods of preserving mood is that introduced by M. Boucherie, which
has been found effectual with elm, poplar, slder, beech, birch, and other porous-grained timber when newly felled. He employs a solution of sulphate of copper (1 to 100 of water), and a water-tight cap being fitted on one end of the log to be preserved and connected by a tube with the tank containing the solation, which is elerated about 40 ft . from the ground, the sap rans out at onc end as the preserving fluid enters at the other, the weight of the liquid in the tank furnishing the very moderate pressure required by this system
Some interesting particulars of the various plans hitherto adopted for the desiccation of wood, have been recently pablished by M. Payen in the Annales de Conservatoire. From these we find that the methods heretofore employed in the desiccation of wood may be referred to one of the following classes :-1. Coatings applied to the surface of wood in order to prevent the access of air and moisture. 2. Simple immersion in an antiseptic flaid. 3. Vital suction or filtration, of which the Boucherie process mentioned above is the type. 4. Injection of antiseptic flaids, in a closed vessel, by alternation of vacuum and pressure. 5. Artificial desiccation, followed by injection in olosed vessels.

The presence of water and air in wood is one of the principal canses of the fermentation of its organio matter, and of its consequent alteration and destruction. These changes often remove an appreciable part of organic matter containing combustible carbon and hydrogen, while the hpgroscopic water contained in the wood, in its volatilisation absorbs a part of the heat developed in combustion, thus diminishing its calorific powers.

To give a precise notion of the atility of the desiccation of wood fuel, it is necessary to compare the quantity of useful heat obtained from dried and fromgreen wood. This comparison is easily made by taking for standard the mean elementary composition of some wood, say oak, and the equivalent of carbon given under the two conditions. 100 parts of dry oak contain 50 of carbon, $6 \cdot 20$ of hydrogen, and 43.80 of oxygen. To the calorific power of the carbon (50) shonld be added, the equivalent representing the excess of hydrogen (somewhat variable in different kinds of wood) above the quantity necessary to unite with the oxygen so as to form water. In oak, this excess is 0.630 ; equivalent to at least 1.89 of carbon. 100 paris of dry oak are, therefore, equivalent to $50+1.89=51.89$ of pure carbon.
But in order to determine the quantity of useful heat, it is proper to deduct that which, in the process of combustion, transforms into vapour the bydrogen and oxygen. This water of composition is fifty-handredths of the total weight absorbing in transformation into vapour at the temperature of combustion a quantity of heat equivalent to 5 of carbon, which is to be deducted from 51.89 ; giving a remainder of 46.89 of nseful carbon, which represents the calorific power of 100 parts of dry oak.
Now suppose that moist oak contains 45 per cent. of water: As 100 parts of desiccated wood represent 46.89 of carbon, 55 would give 25.79 of carbon; from which is to be deducted 4.50 used in vaporising the 45 parts of water; giving $21 \cdot 29$. It follows that 225 parts of green wood must be barned to give as much nseful heat as 100 of dry. Bat besides this loss, it happens that in certain cases, as in the melting of glass and of zinc, it is impossible to attain the desired oud by the use of green wood. Hence; desiccation, almost always useful, becomas an absolute
necessity in the manufacture of glass and in metallurgy where wood is the fuel employed.

In the injection of wood ander pressure the elimination of the water of moisture permits the antiseptic liquid to take its place. Hence the more or less complete expalsion of the water would be useful in various ways, and would fulfil one of the conditions most favourable to its conservation.
-There are two methods of desiccation: the natural, by long exposure to air, under coverand the artificial, by means of stoves or ovens. The natural process is insufficient for preserration; for however great the pains and long the exposure, there always remains a residuura of water, amoanting to from 10 to 20 per cent., suffcient to cause fermentation, to invite insecta, and to favour oryptogamic growths. This sort of drying is suited only to wood for carpentry or furniture; being sufficient to prevent change of dimensions or warping when removed from the action of bumidity. The artificial process secure a more complete preservation, since it drives from the wood all the contained moisture ; this condition cannot be maintained against the influesce of the atmosphere, except by some coating impervious to moistare. On the other hand, the preparation of the wood, or its injection with antiseptic fluids in closed vessels cannot be suecessfal unless the wood has been sufficiently dried, so as to allow the withdrawal of the air from the tissues. When moist wood is sabjected to this process, the liquids cannot esoape; and of courso their place cannot be taken by antiseptic fluids.
Experience has shown that injection in closel vessels is practicable only with woods sufficiently dried, and this explains the invention of so many apparatus for desiccation. It is only within a few years that this preliminary desiccation hes become saccessful ; a success mainly due to the apparatus described further on.
Attempts to desiccate wood have been frequently made. Wollaston and Foureroy recommended the process ; and Newmann employed steam for the parpose. Placing the wood in a large wooden box, he admitted steam from a boiler and drew off the condensed vapour charged with albumen and gap. The progress was tested by the colour of the liquid drawn off; when this became colourless the wood was taken out. This method wonld have given favourable results if superkeatad steam had been employed so as thoroughly to permeate the wood; but the expense would have been too great. In 1837 M. de Mecquerem invented a process which consisted in subjeoting the wood to a current of heated air in a closed vessel; the current being impelled by a blowar. The air entered at the bottom and escaped at the top. In 1839 M . Carpentier patented an invention in which he made use of a hermetically olosed chamber, in which the wood was exposed to the action of air heated by passing over metallia plates, and introduced throngh four longitadinal tabes disposed upon the fioor of the furnsice. from which it was discharged into the heating chamber. The vapours and the moist air escaped by four longitudinal pipes placed in the upper part of the furnace and communicating with the chimney.
In 1848-1853 Bethell, who gave mach attantion to the preservation of wood and vegetablo substances, took out a number of patents is England and France. One of these consisted of a reotangular brick ohamber, with hollow walle filled with cinders to prevent radiation; the arched roof being construoted in the same wayOne end was left free to admit a carriage on raila, and a doable iron door elosed this entrance when t'x
chamber was filled. At the other end was a furnace provided with a grate for the burning of coke, oil, wood, or tar, according to the end in view, whether simple desiccation, or smoking; that is, impregnating with antiseptic gases proceeding from the incomplete combustion of tarry substances. The products of combustion passed through a central flue at the bottom, which divided near the entrance; the branches carried the smoke to the bottom of the chamber, from which it passed over the wood. The smoke, gases, and moisture escaped at one end by a pipe at the top, and at the other by a sort of ventilating chimney. The temperature was abont 210° Fabr. and the time varied from eight to twelve hours. This rapidity was obtained at considerable expense of fuel; for the rapid movement of the heated gases did not permit the complete ntilisation of their calorig, and it is doubtful whether large pieces of wood, as railway ties, can be thoroughly desiccated in so short a time. This, indeed, was shown by numerous experiments made at London in 1853 by the "Desiccating Company." The wood was placed in a close chamber of a capacity of about 1,300 cubic yards. The air was heated in Taylor's apparatus, as in the metallurgy of iron, and was driven over the wood by a ventilator; but slowly, and in such quantity that the atmosphere of the chamber was entirely changed in three or four minutes. Nearly twentyfour bushels of coal were consumed in twentyfour hours. It was found that an average of fifteen days was required for complete desiccation at a temperature of from 113° to 140°. This low temperature and protracted time seem to be better for woods that are to be used in carpentry, cabinet work, and the like.
The furnace of M. Guibert, of Toarlaville, invented in 1861, was in essential points similar to that of Bethell, patented in England in 1848. Reather's invention (1860) was intended for the desiccation of ties . and their injection with creosote. The products of combustion are introduced by means of canals at the bottom of either side of the chamber. These are covered with iron plates which heat the air within the chamber. At the extremities near the door are t wo vertical pipes which enter the hollow space in the walls and the vault. A chimney surmonnts the vault at either end. Before the wood is put in, the two orifices at the end of the canals are opened so that the smoke and heated gas may enter the chamber and raise its temperatare. At the beginning of the opera tion, one chimney is closed so that the products of combustion may pass directly to the other chimney by the vertical pipes. When the vault is warm enough, the second chimney, that near the entrance, is closed. The time of desiccation is twenty-four hours, the temperature being gradu ally raised to 210°
In all the apparatus described, the gas, smoke and heat are introduced at the bottom, while the discharge is from the top. This disposition is deective, because the heated air rises directly to the top of the chamber, and escapes without having had time to become satarated with the moisture of the wood.
Peclet in his treatise on "Heat" noticed this defect, and recommended a reversal of the direction of the heated currents. He states that in 1822 M. Ternaux effected this in a vermicelli desiccator at Saint Onen, and that the operation was much more rapid. He says: "We thus find a condition of great importance; that the issue of rapours should always be effected at the bottom of the drying-chamber. This prevents stagnation and is at the same time very favourable to the saturation of the heated air; for hot air moves rapidly while rising in a denser medinm, bat moves slowly and distribates itself uniformly when it circulates downward.
Peclet proposed the following process for drsing wood and peat: Two parallel galleries with a furnace at the bottom of each, and horizontal pipes under the bottom, through which the smoke is to pass uniformly and in suocession, so as to
distribate the heat as uniformly as possible. distribate the hest as uniformly as possible.
Each gallery is to be closed at both ends by double doors, and is to be provided with rails for iron waggons, upon which the wood is to be piled so as nearly to fill the ohamber. The smoke of the two furnaces passes into a common ohimney of large section, having a dranght-regulator at its top. The adjacent walls of the galleries form a closed space ; in the middle of this is a chimney which communicates below with each of the galleries by means of orifices provided with registers. On ench side of the chimney, at the bottom, are the farnaces. This process was applied some
rears ago at Graffensladen. The apparatus was
of trapezoidal form; there were six chamber heated by seven furnaces, disposed in two sections separated by a passage. The vapours escaped by lateral orifices at the bottom, opening into the chimney. Each furnace was connected with a horizontal brick chamber, hermetically closed at the end, which divided and returned upon itself to open into a vertical coimney near the furnace. The desiccation lasted night and day for from ten to twenty days. Experience fixed the temperature for oak at 100° and for pine at 120°. The action of this apparatus is very slow, and, therefore, not fitted for the desiccation of railroad ties.
In 1851 M . Imbert took out a patent for an oven for drying wood intended as fuel in metal or glass works. The chamber was long, and its bottom was covered with metallic plates forming three longitudinal tubes, which terminated at one end in the chimney of a small furnace set several yards below, in a vault. The carriages entered at one end and were removed at the other, near which the products from the fire entered by orifices in the plates. The gases escaped by an orifice in the lower part of the oven. When the wood on the carriage nearest the discharging door was dry enough, it was shoved ont by another introduced at the entrance. The temperature was lower nearer the entrance, so that the wood advanced in a contrary direction to that of the motion of the gases, and passed into successively higher temperatures.
This device of making the wood advance in a direction contrary to the motion of the heated gas was afterwards recommended by Lechatelier in 1853. He proposed for the desiccation of ties which were to be injected, an apparatus like the kiln employed in annealing glass. The wood was to be put in a long gallery, on waggons, and to be slowly moved in a direction contrary to that of the heated gas, towards the maximum point of temperature, the introduction and removal being effected as in the ast case.
In 1863 Mr . Blythe, an English manufactarer who was engaged at Bordeanx and Landes in the injection of wood with sulphate of copper, invented the apparatus which has now come into most gencral ase. This is a double oven, com-
 wide, 8 ft . high, and 10ift. long. The outer and partition walls are of brick, resting on a founda. tion of masonry. Two brick vaults roof the chamber. The side and partition walls are hollow, the space being 3in. wide, and extending the entire length and height of the wall. These hollow spaces communicate with the lower part of the chambers by small openings, and with small chimneys at the top. At either end of each chamber is a doable gate of iron. In each chamber, at a little distance from the side walls, are set two walls of masonry for the rails. Between and below these walls is a long arched passage, communicating with a furnace. The
furnaces are covered by a fire-brick vault, which projects over the fire-grate far enough into the chamber to cover the flame. Along the whole length of the walls of the passage just described, and inside the rails, run two small flues or passages; and between these is another flue, so connected with the furnaces as to form a separate passage for each, so as to prevent the mixture of the products of combastion.
The action of the apparatus is as follows:Four waggons of wood are introduced, and the doors shat. The products of combustion enter the passages from the farnaces; thenoe they enter through orifices into the two flues just inside the rails. The heated gases now rise and and pass through the wood, taking up the water that has been converted into vapour. In doing this they cool, and then pass along the walls, which are colder than the middle of the chambers. Arriving at the bottom, they escape by orifices regularly distribated in the hollow wall, and pass out by the chimneys. By this anethod a constant and uniform circulation is secured, and the temperature is sensibly uniform.

The great adrantage of this system is that the process can be completed within twenty-four hours after the tree is felled, and even waterlogged timber can be sabjected to it and effec tually dried.

THE ECONOMICAL USE OF STEAM.

A^{T} the recent meeting of the Manchester Fairbuirn made some observations concerning the most economical pressare at which it is desirable to employ steam. The subject is one of increasing importance, if not exactly in view of the
exhaustion of our coal smpplies, at least as an attempt to meet the largely enhanced cost of fuel which is likely to arise. It is a matter of fact that by raising the working pressure from 101b. or 15 lb . to 50 lb . a saving of one half the fuel required is effected, while an equal amount of work is accomplished ; and assaming that the same law holds good for pressures up to even $1,0001 \mathrm{~b}$. it is a subject worthy the earnest consideration of stesm-users at what pressure it is safe to work boilers in order to obtain the greatest economy in fuel. From the experiments which Sir W. Fairbairn has made for some years past on the density, force, and temperature of steam, he is convinced that if a large economy in fuel is ever to be attained it must be by employing greatly increased pressure, and a more largely angmented rate of expansion than what is usual at present. The results of his experiments heve convinced him that dry steam isolated from water at a high pressure gives double the work at the same expenditure of fuel-an opinion which is indorsed by the most eminent writers on the sabject. Regarding the construction of boilers capable of withstanding high pressures as a matter completely under control, and having arrived. by actual practice, at a knowledge that steam at 50 lb . or 70 lb . per square inch can be governed as easily as that at 15 , he asks why pressures of 150 lb . and 200 lb . should not be tried on the presumption that the saving of fuel would be in proportion and follow the same law in the ratio of the incresse of pressure-i.e., a more complete atilisation of the heat, and consequently a greater amount of work at the same expenditure of fuel. All attempts to effect changes of this description are, of course, limited by the amount of strength it is found possible to impart to the boiler, and by the conditions essential to the safety of its working. On this, the most important part of the question, however, he has no misgivings, for from experiments he has been making recently, he is convinced that the steam-nser wonld be as safe, if not safer, in working at 1501 lb . as he is at present with 501 lb . per square inch. Bir William did not explain the principle on which these boilers are to be constructed, bat mentioned that he had one of 80 horse-power at work, which had been tested by hydranlic pressure to 400 lb . on the square inch, this being the limit to which the pumps and gauges employed were capable of working. He is convinced that it would have withstood double that pressure (i.e., 800lb.) if the testing apparatas had been equal to the task. A suitable engine is also undergoing a ser:es of trials, and while all parties are satisfied with the boiler, he hopes that the same may before long be said of the engine. Sir William was very naturally reticent as to the construction of his experimental apparatus, but the introduction of the matter before the Association is an earnest that fall particulars will shortly be given. The engineer of the Association points out that no higher charge is made for boilers working at 100lb. than for those at as low as 10 lb . per square inch, provided they are constructed in a manner suitable to the higher pressure. Locomotives are worked at from 120 lb . to 200 lb . on the square inch, and we see no reason why similar pressures should not become the fashion in stationary boilers; for, as Sir William said, "there are no secrets in boiler explosions; they are entirely owing either to neglect on the part of the engineer or on the part of his employer.'

LESSONS ON CHEMISTRY.*

By Selimo R. Bottone.
(Late of the Istituto Bellino, Novara, Italy.) (Continued from p. 507, Vol. XIV.)
Section 6b. - Compounds of Oxyeen with Chloring.
98. - oXYGEN combines with chlorine in five ${ }^{1}$ different proportions, but of the resulting compounds only three are known in the free state.

- The right of translation and reproduction is resorved.

 1 Many chemists admit only three of these as being detuite compounds; but they are not agreed as to While Miller, Roscoe, and most English chemista hold the bodies marked A, B, and C to bo the true oxides of chlorine, Millon, and others who have devoted much study to the subject, incline to the belial that A, B, and E aro the only ones worthy of that name, and that the others of these oxidos, or else compounds of these oxitles constituted bodies will be found at the end of this section (68).A. Chlorine Monoxide. ${ }^{2}$-Synonym: Hypochlorous anhydride. Symbol: $\mathrm{Cl}_{9}^{\prime} \mathrm{O}^{\prime \prime}$. Molecular weight: 87
99. Properties.-At ordinary temperatures thia body oxists as a pale reddish yellow gas ${ }^{s}$ of the specific gravity of 3.01 . Its odour is very powerful, resembling that of chlorine. It dis. solvea freely in water, furnishing a solution of yellow colour, which possesses powerful bleaching properties. At a temperature of abont 0° Fahr., ohlorine monoxide becomes liquid. In the finid state it is of a red colour, and is heavier than water. Thrown into water, liquid chlorine monoride sinks to the bottom, and then, provided there be sufficient water, dissolves. When once reduced to the liquid form ohlorine monoxide does not boil, or even appear to volatilise, until the temperature reaches 70° Fahr. It is, however, a vary dangerous body to handle, as it sometimes explodes spontaneously even when surrounded with a freezing mixtare. The solution of chlorine monoxide in watar bleaches with muah greater power than the solution of oblorine. We can easily understand the reason of this greater energy when we oall to mind that chlorine bleaches by virtue of its power of seizing the hydrogen contained in the water, and liberating its orygen; for the quantity of oxygen liberated by the chlorine monoxide solution is exactly double that liberated by an equal amount of chlorine solation. This is illustrated by the following equations :-
For Chlorine $\quad \mathrm{Cl}_{2}{ }^{\prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}=\mathrm{Cl}_{2}{ }^{\prime} \mathrm{H}_{\mathbf{2}}{ }^{\prime}+\mathrm{O}^{\prime \prime}$
For Chlorine $\} \quad \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}=\mathrm{Cl}_{2}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime}+\mathrm{O}_{2}{ }^{\prime \prime}$
The oxygen thus liberated, being in the nascent state, rapidly enters into combination with the elements of the colouring matter, producing thereby colourless compounds.
100.-As we shall return to the subject of ahlorine monoxide when dealing of the correot applioation of the word "acid," we would impress on the reader's mind that the solution of chlorine monoxide in water is yellow.
101.-Priparation.-By presing dry ehlorine over mercury oxide, when part of the ohlorine combines with the merouty to form meroury chloride, and part with the oxygen to form ohlorine monoride. The following equation exemplifies the changer which take place:-
$\mathrm{Hg}^{\prime \prime} \mathrm{O}^{\prime \prime}+\mathrm{Cl}_{4}{ }^{\prime}=\mathrm{H}_{8}{ }^{\prime \prime} \mathrm{Cl}_{2}{ }^{\prime}+\mathrm{Cl}_{a^{\prime}} \mathrm{O}^{\prime \prime}$.
Fig. 9 represents the apparatus required. A is the flesk for generating chlorine, B tube containing calcium chloride, which absorbs ${ }^{5}$ any
${ }^{2}$ Owing to the different views held by varions chemists as to the molecular constitution of bodios, and
the relitions which these hold to one another, our the relrtions which these hold to one anothor, our
chemical nomenclature is in a state of transition and chemical nomenciature is in a state of transilion and not appropriate name for any compound. Hence, at the name given to the compounde and oxpeoted to be used by the oandidates varies With each expeminer, and at nearly every examination. It would only confuse the reader were we to pat in the text aul the names by Which any substance may be designated; but in footnoto will be found most of the recoived names All propriety, and sclentific accuracy of the names will be propriety, and scientific accuracy of the names will be pleced ander the reader's notioe to enable him to judge for himself. The aynonyms of ohlarine monozide
are protoxide of chlorine and hypochlorous acid. This are protoxide of chlorine and hypochlorous acid. Thi
last is the name now used (1872) by the examiners. 8 Of all modern autherities Roscoe is the onty ond who atates thils gas to be colourloss.
${ }^{4}$ Nasoent (from narcerre, to bo born), being born. An compound oontaining it. Elements are found to be gifted with much greater ahemical energy when in the natconts state than in thetr ordinary oondition. The reacon is obvious. We havo seen (17) that olemants in thoir groe state consist of an aggregation of moleouloe,
ecach of which is bullt up of two or more atoms of the eanh of which is ballt up of two or more a toms of the cies of the clement are, to a certain extent, eationed reciproollly. Let us take, for the mike of example, the molecale of ordinary oxygen, consisting, as we have
reasoc to belleve, of one atom of oxygen, anited to another atom of oxygen, by virtue of the two valoncles inheremt to ench atom, thus:-

$06=5=10$

Bat on liberating an elomont (say oxygen) from its componnds, the individual atoms are, pro tompore, iree,

$\xrightarrow{\boldsymbol{\sigma}}$

But, of courue, 18 no other element be present with Whatanthy anite to lorm the preforence, these atome axygen.
5 Kany gubbeances are need for drying gaces. Pumice time, to., are somotsmes emplot vis very asesul. Potach,
moisture the gas may carry with it; \mathbf{C} tube containing mercury oxide, D tube in which the

chlorine monoxide may be condensed by a freezing mirture.
(2). Hrpochloroos Acti--Synonym: Hydrogen Hypochlorite. ${ }^{6}$ Symbol: H'A'O'. Molecular and combining vocight: 52.5.
102.-Propertirs. - Hypoohlorous aoid is a colourless fluid, of a very peonliar smell and powerful bleaching properties. It combines with metals to form a olass of bodies oalled hypochlorites. It appears to be formed from ahlorine monoxide by the nuion of one molecule of water with one of ahlorine monoxide (hence oalled hypochlorowis anhydride, or hypoohlorous acid withoat water.) By this union a substitution takes place, and two molecales of hypochlorous acid result. The following graphic equation will facilitate comprahansion:-

		2 Molecules of Hypoohlorous acid.
$\mathrm{CH}_{\mathrm{CO}^{\prime}} \mathrm{cos}^{\circ}+$		

When hypoohlorous aoid acts on metallic bodies, the hydrogen contained in the molecule is ex. pelled, and the metal takes its place thas :-

$$
\mathbf{M}^{\prime}+\mathbf{H}^{\prime} \mathrm{Cl}^{\prime} \mathbf{O}^{\prime \prime}=\mathrm{M}^{\prime} \mathrm{Ol}^{\prime} \mathbf{O}^{\prime \prime}+\mathbf{H}
$$

(See paragreph 53.) Acted on by metallic oxides, wator is formed, while the metal unites with the oxide of chlorine, thas :-

$\mathrm{M}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}^{\prime \prime}=2 \mathrm{M}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$.

The resulting compound in either case is a hypoohlorite of the metal employed. This property of acting on metallic oxides, with the production of water, is common to all acids.
103.-Preparation. - When chlorine gas is passed through a cold solution of soda ($\mathrm{Na}^{\prime} \mathrm{H}^{\prime} \mathrm{O}^{\prime}$) a mixture of sodium hypochlorite, along with sodium chloride, is formed, as may be seen below :
$2 \mathrm{Na}^{\prime} \mathrm{H}^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{Cl}_{2}{ }^{\prime}=\mathrm{Na}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{Na}^{\prime} \mathrm{Cl}^{\prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$.
If, instead of soda, we use alaked lime ($\mathrm{Ca}^{\prime \prime} \mathrm{H}_{2}{ }^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$), a similar interchange takes place, and we obtain a calcium hypochlorite in mixture with a calaiom chloride, thas :-
$2 \mathrm{Ca}^{\prime \prime} \mathrm{H}_{2} \mathrm{O}_{2}{ }^{\prime \prime}+2 \mathrm{Cl}_{2}{ }^{\prime}=\mathrm{Or}_{2}{ }_{2}{ }^{\prime} \mathrm{O}^{\prime \prime} \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}+\mathrm{Ca}^{\prime \prime} \mathrm{Cl}_{2}{ }^{\text {a }}+$
By acting on either of these substanoes with dilute nitric, or acetic adid, the hypoohlorons acid is liberated, and may be obtained by distillation; while the calcium chloride (or sodinm obloride, as the case may be) is left unchanged. The following equation elacidates this :-
$\mathrm{Ca}^{\prime \prime} \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}, \mathrm{Ca}^{2 \prime \prime} \mathrm{Cl}^{\prime}{ }^{\prime}+2 \mathrm{H}^{\prime} \mathrm{N}^{\prime \prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}=\mathrm{Ca}_{2}{ }^{\prime 2} \mathrm{~N}^{\prime \prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}+$
104. -The hypoohlorites are mach used in the arts as bleaching and disinfectant agents; the ones most in use are the impure caloium, sodium, and potassium hypochlorites. The first is known commercially under the names of bleaching powder, or chloride of lime; the second is known as bleaching liquor, or chloride of soda; and the last goes by the name of Eau de Javelle. The use of the hypochlorites of magnesium, aluminiam, and zinc, as bleaching agents, has also been proposed. Chloride of lime, for the nse of the arts, is prepared on a large scale by the following process:-A chamber, built of lead or Yorkshire flagstone, and containing a number of perforated shelves, is provided. Into this, on the sbelves, are placed thin layers of well-slaked

${ }^{6}$ Hydric hypoohlorite. Barfi., 1871.

7. We use the torm " zeld" in preference to " hydrogen
alt," tor reasons which Fill te hereafter adduced.
lime. Chlorine ${ }^{8}$ is then introduced, which, acting on the lime, produces the compound in question. The richness of the resulting snbstance in hypoohlorite depends-(1) on the goodness of the lime; (2) on the amount of water it has absorbed during the slaking; and (3) on not allowing the chlorine to enter the chamber too rapidly, as in this latter case heat is generated, and a new compound, possessing no bleaching properties, is formed. The quantity of ohlorine absorbed, even under the most favourable circumstances, always falls short of that indicated by theory. When acted on by hydrochloric acidu, hypoohlorous acid is resolved into water and chlorine, as the following equation illustrates:-

All acids which are sufficiently powerful to set free hydroohloric acid from calcium chloride, produce this effect when added to bleaching powder.
105.-We have seen (paragraph 87) that manganese binoxide facilitates the production of oxygen from potessium ohlorate without undergoing any apparent change; a somewhat similar effect is produced when the oxide of copper, or of cobalt, is heated with the solution of a hypoohlorite. No ohange is visible in the oxide used, but the oxygen of the hypochlorite is gradually eliminated, and a metallic chloride is formed, thus :-
$\mathrm{M}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}^{\prime \prime}=\mathrm{M}^{\prime} \mathrm{Cl}^{\prime}+\mathrm{O}^{\prime \prime}$.
"This decomposition depends on the fact, that higher oxides of the metal are at first formed; but these decompose under the influence of heat, and give off oxygen, regenerating the lower oxide, whioh again attacks another portion of hypochlorite, and thas the process becomes continuous. It is not improbable that the action of manganese binoxide, in facilitating the evolution of oxygen from potassium chlorate, may depend upon a similar action." ' It is also probable that the effoct noticed above (of oopper sulphate on air and hydrochlorio acid) is due to the same cauce Owing to the above resotion, oxygen may be easily prepared from a hypoohlorito.
106.-By attentive examination of the mode in which hypoahlorous acid comports itself with regard to metals and motallic oxides, we are led to the conolusion that the rational graphio formala of this body is

Here we see that the bivalency of the oxygen enables it to hold the two atoms (each monovalent) of hydrogen and chlorine, and this gives also the key to the interchanges which may be effeoted by substituting a metal for the hydrogen. Not only can the hydrogen be replaced by another monovalent body, but the chlorine also is capable of being replaced in like manner. Hence, as we have seen (104), by acting on this body with hydrochloric acid, we actually bring about this substitution. It is worthy of remark, that both monoxide of ohlorine and hypoohlorous anhydride may be conveniently referred to the type, water.

Water. Chlorine Monoxide. Hypochlorous Acid.

But water itself may be referred to the type oxygen, for the oxygen molecale is bailt up of two bivalent atoms of oxygen, ${ }^{10}$

$$
\begin{array}{ll}
\text { Oxygen. } & \text { Water. } \\
0 \leftrightarrows+0^{\circ} & \text { Híngo" }
\end{array}
$$

while in water two monovalent atoms of hydrogen replace one bivalent atom of oxygen.

> 8 The ohlorine for this parpose is prepared by a new
and most interesting process. and most interesting process. It has been found that
by causing a mixture of hydrochloric aold gas and comby cansing a mixture ol hydrochloric acid gas and com. mon air to pass over heated copper sulphate, the oxygen
contained in the air combines with the hydrogen of the contained in the air combines with the hydrogen of the
hadrochloric acid, forming water, and uberating the chlorine, thus:-

$$
\mathrm{O}_{2}^{\prime \prime}+\mathrm{H}_{4}^{\prime} \mathrm{OL}_{4}=\mathrm{H}_{4}^{\prime} \mathrm{O}_{\mathbf{2}^{\prime \prime}}+\mathrm{CL}_{4} .
$$

The copper sulphate apparently undergoes no change hence it may be ased an indefinite number of times bat it is probable that a series of rapid oxidations and deoxidations take place in it. We ghall return to this point shortly when treatiag of the action of some
metallic oxides on hypoohlorites. 9 Rosoco.
20 See paragraph 28 in farther eluoidation of this view.
3. Chiorrne Trioxide.-Synonym: Chlorous anhydride. ${ }^{11}$ Symbol: $\mathbf{C l}_{\mathbf{z}}{ }^{\prime} \mathbf{O}_{8}{ }^{\prime \prime}$. Combining vocight: 119.
107.-Propritirs.-A gas of a deep greenishyellow colour, with a specific gravity of abont $2-745 .{ }^{13}$ It has a very strong, pungent smell. In the presence of water it bleaches powerfally. Heated to 135° Fahr. it explodes with moderate force, resolving itself into his constituents.
108. - Preparation. - When a mixture of potassium ohlorate, nitric acid, and a deoxidising body is is heated to a temperature somewhat ander 135° Fahr., ohlorine trioxide is evolved, and may be collected by downward displacement, as ahown at Fig. 3 (see paragraph 51). Care must be taken not to reach 135°, as explosion would ensue.
s (2). Criorous Acid.-Synonym : Hydrogen Chlorite. ${ }^{13}$ Symbol: H'Cl' $_{2}{ }^{\prime \prime \prime}$. Combining weight : 68.5 .
109.-This body has been but little stadied. It is known to be a most active bleaching agent. In is formed by the union of chlorous anhydride with the elements of water, thas:-
$\mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}+\mathrm{H}_{8}{ }^{\prime} \mathrm{O}^{\prime \prime}=\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}+\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}$.
In presence of metallic oxides, it gives rise to a chlorite of the metal employed with the reproduction of water, thus :-
$\mathrm{M}^{\prime \prime} \mathrm{O}^{\prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}=\mathrm{M}^{\prime \prime} 2 \mathrm{Cl}^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$.
The graphic formula of this body may be exTressed as

REVIEWS.
The Deviation of the Compass in Iron Ships con sidered practically. By W. H. Rosser. London d. Imray and Son.

AVERY practical manual on an important subjeot, and when we consider the immense senount of property afloat and the vast number of lives exposed to danger, if not to death, on our ocean highways, the appearance of a concise series of directions for ascertaining the deviation of the compass in iron ships by the ordinary method of winging, for the construction of steering cards, for tho determination of deviation at sea by time azimuths of the sun or atar, for finding the orrors of adjusted compasses, and also of the heeling error, with the method of adjusting the standard compass, and other matters appertaining to the general subject, written in an easy style, which we are certain will commend itself to the dass for which the work is principally intended, in a sign that no ordinary interest is manifested is the welfare of our sea-going population.
It is to be regretted that nudue dependence is efter placed on the adjustment of the compasses by professiounal adjusters, the officers of a ship in many cases being quite satisfied that the compasses are adjusted, and they are fornished with 2 steering oard. On this head the anthor's prefatory remarks are exceedingly pertinent. Apeaking of the treatment of the subject as distinct from its connetion with the science of magnetism, and its mathematioal investigation, besays:-
${ }^{\sim}$ The majority of seamen (fully to the extent of nincty-nine oat of every havdred) are unscientific and non-mathematical, yet not so ignorant, Dut that if told w hy they are to do a thing they will do it better than by blindly following a rule without a reason assigned, as is the case when they add together certain logarithms to obtain particular results in the various problems of marigation.

11 Chlorous acid, 1820.56 ; chlorous acid, 1871. Barfi, dc. th say, does not agree with the received view of the constigution of a molecule. We have seen (17) that the weight of 2 molecule is usually the weight of 2 vols. Now 2 vols. of indrogen weigh 2; but 2 vols. of chlorine trioxide, fnstead of weighing 119 (as the formula, given above pould lead me to infer) weigh only 79.4 . This pecullarity poinis to one of two things:--(1) Eit her the generally-
received formala is incorrect ; (2) or contraction has thxen place to a lesser extent than indicated by theory. This istter is probably the true canse of the discrepancy in yuestion, for we find that 9 vols. of oxygen and 2 of ehrorine have coalesced to form 3 vols. of the componnd, instead of 2 only. hence 3 rols. weigh 119, which is the theoretical weight of one molecule of this body. D: A denxodising body is one which absorbs oxygen pradily, hence takes oxygen from or deoxodiges any substaze with which it may be placed in contact. Deozo u Hydric ohlorite. BarI, 1871.
"An intercourse for npwards of twenty years with the officers of the Merchant Service-as teacher, adjuster of compasses, and anthor-has given me ample means of making myself acquainted with their weak points ; and to appreciate how weak they are in the matter of the deviation of the compass one has only to attend an inquiry into the loss of an iron ship, when the crude questions asked, and equally crude answers given fully testify that nantical assessors, masters, mates, and pilots are all in the same category."
On the extent of deviation and the importance of having the steering compass adjasted, especially for short voyages, the anthor says :-
"It can well be supposed that when the maximum deviation of the steering compass in vessels employed on short voyages exceeds a point, it would be preferable to adjust it by the use of magnets, fur if left uncorrected the man at the wheel coald not bat be perfectly bewildered.

We were somewhat surprised to find from the author's twenty years' experience, that "it must be said with regret that in the Merchant Service comparatively fer iron ships and steamers carry a standard compass; at least, an instrument antitled to that name. In the large majority of instances all the compasses are, as regards the cardinal points, adjusted by the nse of bar magnets, while the quadrantal deviation, which ought to be oompensated by chain boxes or by cylindrical iron is too generally neglected, so that after all such compasses are but partially adjusted." If this really be the case we, as members of the press, and feeling the importance of the public safety, must say emphatically "such things ought not to be.'

The sections on "heeling error" are written with mach judgment. Bearing in mind that an iron ship is itself a magnet affected differently in every position she may be in by tho earth's magnetism, and that her compasses are adjusted on an even beam, a competent knowledge on the part of the master of the error of deviation produced by heeling is indispensable, especially as this error is perpetually changing with the latitude, and is more or less dependent upon the lay of the ship when building. It is during this process she takes up her magnetism, bat not permanently so. The author's observations on this head are important
"It is useless to offer any remarks on the direction in which an iron ship should be built ; it must be built in the bnilder's yard, be the lay of it what it may ; but it would be well if there were a better understanding between builder, owner, optician, and adjuster than there seems to be at present. Vessels would then be better equipped as regards compasses than they are now. Farther, no vessel should be turned off the stocks and immediately afterwards adjusted or swang for the errors of the compasses, subsequently loaded, and then sent to sea ; such a mode of proceeding is nothing more or less than wicked in the extreme, for by the time the ship is ready for sea the errors have changed and the given deviation cards are of no use. After lannching, the vessel while fitting and loading should lie in the oppo site direction to that in which it was built, and be swang for the errors of the compasses just before going to sea
"Vessels lose a large part of their magnetism within a short time of iheir launching.
As a rule they cannot be said to have settled to their normal condition under two to two and a half years ; after that no change of any significance occurs except under a considerable change of geographical position, which is equivalent to saying that the devistion changes with a change of the magnetic elements within the range of which they are brought by voyaging from one region to another."
As regards the compasses generally supplied, our author says, "A walk through the portion of any town where these instraments are exposed in the windows is not very encouraging, and the general impression derived from an examination of them, taking one with the other, is that they are far from being instruments of precision." On the idea of catting off the ship's magnetism from the compass, he says :-
" Never set your wits to work to devise a method of cutting off from the compass the magnetism of the ship, such a thing being an impossibility ; it would only show you are witless. None but quacks in science talk of demagnetising and depolarising a ship, of cutting off a ship's magnetism, or of inventing a compass to be unaffected with deviation ; but you may, if you have a spare compass, try it in different parts of the ehip to find
out the spot of least devistion ; you thereby show your judgment.'

This book, which is illustrated with Napier's diagram of the curre of deviation, is one of which every page contains valuable information. Its rules are concise and its directions so plain that a master could readily ascertain the deviation of the compasses of his own ship and readily adjust them. In a word, it contains all that is necessary to become aoquainted with for the safety of bis vessel, so far as magnetism is concerned.

Observations of Comets from B.C. 611 to A.D. 1640. Extracted from the Chinese Annals. By John Williams, F.S.A., Assistant Seoretary of the Royal Astronomical Society. London: 1871.

The award of the Gold Medal of the Royal Astronomioal Society to Sig. Schiaparelli has tended to invest Cometary Agtronomy with a new interest. Although we have the orbits of bat two comets identified with those of meteors it is not improbable that an science adrances other indentifications will be made, and cats. logues of comets will be in greater request than heretofore. The catalogue now before us of 373 comets recorded by the Chinese, contains 149 instances not included in Biot's' "Catalogue of Comets observed in China," published in the sapplement to the "Connsissance des Temps" for 1846, and may be regarded as the most complete collection of notices of these phenomens from those ancient annals. The well-known Sinological attainments of the translator, and his perfect acquaintance with the Chinese language, particularly fit him for rendering into English the notices of Cometary phenomens contained in the work. In each case the year and day in our reckoning of the appearance of the comet is given, also the year of the Chinese epoch ; the moon and day of the same phenomenon are given with all the astronomical particulars, such as its place amongst the atars, the character and length of its tail, and the direction which this appendage assumed. Accompanying the catalogae is an atlas of 32 maps, inclading the 28 stellar divisions most in use by the Chinese astronomers, and continaally referred to by them in their observations. This atlas is not only curions and interesting as giving an idea of Chinese astronomy so far as regards the stars, but Mr. Williams has, by giving reduced tracings of Flamsteed's figures, furnished the means-by laying down upon them the corresponding Chinese asterisms-of identifying the stars in both systems, the Chinese and European. It is this feature which renders the work so valuable in an astronomioal point of view, nor is it less valuable as a guide to Chinese chronology. The mode of reckoning by oycles of 60 years, whioh has been in use in Chisa since the jear 2637 B.C.; the lonar cycle of 19 years; the arrangements of the months, dic., are all fully explained and illustrated by appropriste tables, so that the work, having a moch higher value than being a mere catalogue of oomets, will greatly assist stadents of Chinese history. The introductory remarks also contain a very interesting account of the early astronomy of the Chinese. The following extract shows the great care and amonnt of labour that has been beatowed on the translation of the catalogue.
"From the preceding remarks it must be evident that the production of this work has been attended with no ordinary amount of labour. Many thonsands of Chinese characters required to be carefully copied and accarately translated, the whole of the dates ascertained by compatation, and numerous works, both Chinese and European, had to be examined or collated. In addition to these, the construction of the tables for compnting the dates of their chronology, and of the atlas, both of which have been found not merely useful but indispensable to the carrying on of the work, required a great amount of research and attention. How far the results may be worthy of the time and labour bestowed on them must be left for those who are better qualified than myself to form an opinion on sack subjects to determine. Errars may doubtless do found to exist, althongh every care has been taken to avoid them; and it is hoped that none seriously affecting the oharacter of any part of the work may be found. It must, however, bo remembered, that this is strictly a work of reference, and as such may at some future period be of service in invertigations respecting the former appearance of any particular comet that may then pay us a visit."

ELECTRIC CLOCKS.

T a recent meeting of the Society of Arts connected with the Technological Institute of Massachusetts, Mr. J. Hamblett read a paper on
electric clocks, of which the following is an abelectric a

One of the first attempts to propel clocks by electricity was made by Alexander Bain about 1812. His battery consisted of a plato of copper and a plate of zinc baried in the earth. The pendulum for a bob; the ends of the wire were carried np the for a bob; the ends of the wire were carried up the
pendulum rod to its point of suspension, and were pendulam rod to its point of suspension, and were two brackets, about half way up the rod, supported a sliding breakpiece, which was so situated that it would be puahed a little at every vibration of the pendulam, and by this means an electric circuit was made and broken. The operation of these clocks was not satisfactory, as they were liable to error from fluctuations of the battery power.
Batteries have always been a soarce of tronble to electric clock makers, for apon their constancy the accuracy of the clocks in a great measure depends. Mr. Hamblett uses the Smee battery; the elements are pure zinc and platinum; the solution consists He uses no screw cupe as they sure liable to become loose, and are frequently the source of much annoyance. The wires connecting the elements of his bettory are soldered together. An electric clook in-
vented hy Mr. Charles Shepard has been much nised in England. In these clocks the impulse is given to the pendulum by the falling of a lever, which is raised at each vibration of the pendulum by an
eloctro-magnet. As the weight of the lover and the distranee which it falls are constant quantities, the impulse imparted to the pendnlum will beconstant, by fuctuations of the battery power.
The mechanism of these clocks is such that an eleotric circuit is established and broken once overy Eecond, which operates dials at distant places. Electric contacts are usually made of platinum or of an a lloy of platinum and iridium. When the circuit is broken, an electric spark passes between the contact points, which canses a slight oxidation of the platinum, and, where an electris current is established every second, this oxide may accumulate
and become a cause of error. In Mr. Hamblett's clocks, this difficulty is obviated to a great extent by establishing the circuit, which moves the dials only once in a minute. The dials are made very dials controlled by one clock will move together indicating exactly the beqinning of each minute.
Clocks cannot cnly be propelled, but may be con trolled and corrected by electricity. Clocks controlled by electricity have two small magnets, placed at the lower end of the pendulum, which are wire that at each vibration of the pendulum one of the magnets will pass into the opening in one of the coils. Once each second an electric current is sent through the coils from the controlling clock, and if the controlled clock be inclined to go slow, the carrent from the controlling clock, acting upon the magnets, will tend to accelerate it, and vice versa. Mr. Hamblett believes this to be the best
method yet devised for distribating time. One method yet devised for distribating time. One
standard clock may control many other clocks at different points, and if an accident happens to the wires the controlled alocks will not stop, but will go on at their own rates. Methods similar to this have Petersbarg. 4 clock, erected by Mr. Hamblett in the observatory at Alleghany City, Pa., controls all the clocks of the Penneylvania Central Railroad. and those of connecting lines westward to st. Louis. This is the longest line of time distribation in the world. He made brief mention of the various time signals and time balls nsed in different of time and the operation of time signals in Eng laud by the mean time clock in the observatory a Green wich.

WHAT IS GUANO?

T of question has recently attracted a good deal of attention from several naturalists, especially Natural History of New York. Professor Edwards says that in California there is a deposit of biffumen, which bituperiy so-called, accompanied by Survey believe has been derived from those "Infusoria," and that contiguous thereto we have grano deposits. At Payta, in Pera, Dr. C.F. Winslow in charecter i ith the bitamen aprings, and lying off the cosst are the gamo islands of Lobos, CLincha. Guanape, and "thers. At Natanai, Japan, we have extensive corded whether guano occure in that quarter. In bitumen, and near by the guano islands of the bitumen, and year by the guano islands of the
Caribbean Sea; and he is informed gano is abun-
dant on the small islandi and rocks nearly through out the West Indian Archipelago. In the island of Trinidad we have "Infusorial" strata and bitumen, and, of coarse, adjacent guano. At all of these localities volcanic action is evident, bat we have some localities of ganano withoat "Infusorial" strata or bitumen as yet recorded, while we have the celebrated "Infusorial "strata of Virginia, which, by to be related in some way to the petroleum of West Virginia and Pesnsylvania In Algeria we have "Infusorial" strata and bitumen, but he never heard of guano having been found near by. nowheard of guano having been found near by. How-
ever, now that attention is called to this fact it is to be hoped that more carefal observations will b made connected with the subject, and he hereb calls on all sciencists and travellers to do all they can to assist in the elucidation of this interestivg and important matter. From all of these facts, and others that he has collected of no less importance, he bed from chemical and microscopical characters exares come to the conclasion that guano is not the mainland birds deposited upon the islands en of the sccampls apheaval, but that it is the resul plants, for the most part minute, and balonging to the group which Haeckel has incluiled in a new lingdom, separate from the animal as well as the vegetable, under the name of Protista, and sub Sobsequent chemical clasiges have transformed it into guano, or heat and pressure have so acted upon it that the organic matter has been traneformed into bitumen, while the mineral constituents are pre sorved in the beantifal atomics that make up the
mass of the extensive "Infusorial strata found in mass of the extensive "Infusorial "strata found in
various parts of the world. Monthly Microscopical Journal.

ATMOSPHERIC DUST.•

(Concluded from page 658, Vol. XIV.)

HAVING demonstrated that the ordinary atmosphere is filled with organic dust, it will be necessary to show yon that the quantity and quality may vary coosiderably according to the locality.
It is self-evidevt as regards the quantity, that. in spite of the extreme lightness of these particles they will gradually sabside and settle down, and a pure atmosphere, as regards motes, is attainable. There Ane for the highest be organic particicr of our microsco or the analysis of a beam of sunlight. It, however, requires the constant regurgitation of the waves of air, from the movements of a busy city or shifting winds, to keep this dust susponded. I have here a flask which has been placed all night in the vanlts of St. Michan's Church. The vaults are so dry, and absorb moisture so rapidly, that all the bodies that are placed in them are converted into natural are placed in them are converted into natural
mammies. There are specimens, centuries old, that are as perfect as the day they were placed there, except that the flesh is converted into parchmeut. In these subterrancan vaalts there is a long massage, closed by an iron door; and when this passage is olosed, there is nothing but the stillness of death. What could be more appropriate for an experiment ? This fask which we have here was first exhausted, and then opened in an inverted position in the vauits. After some time it was removed, taking the precaution, however, to close it before it was removed. On placing this across the course of the light, it is found to be optically empty; it contains no dust, althongh it had been in a place where everything was dry and dusty; but the air was perfectly still, and all the motes had subsided; thus we see that, by merely placing 2 flask that has been opened in a certnin locality across the beam of light, we can optically analyse it. Again, as we ascend, there is less and less of this dust. On the high mountains, such as the Alps^{2}, the air is found to be nearly pare.
We now como to a very important part-namely the composition of this dust. The composition will differ much according to the locality; bat large cities interest us most, both from the fact that the dust abounds in such localities, and because it comes
in contact with more lungs. In such cities the dust in contact with more lungs. In such cities the dust contains larger quantitios of matter out of place
(dirt) than other localities. It mainly or almost (dirt) than other localities. It mainly or almos
entirely consists of stable manure, in a fiuely conminuted condition, with germs and other products arising from the fermentation connected therewith In 1866, the cholera year, I pablished analyses of the street dusts of Dablin, taken from Grafton and other streets, and drew particular attention to the importance of this subject, as bearing upon sauitary matters. Next year Dr. Letheby wrote upon the of London, and also gave analyses of them. I now place before you the resalts of some analyses recently made for this lecture :-
Grafton-street, dust Iried at 212° Fahr. contained organic matter, 3 ; carbon, 437 ; nitrogen, 107 ;
per cent. Cab stand, Nassau-street, contained

By C. R C. Ticuronnf, F.C.S., de. An abstract of a
lecture delivered before the doyul Dabilin bociety.
organio matter, 45 ; carbon, 57.5 ; nitrogen, 2.1 per cent., nitrates and ammonia a trace.
These dusts, if left in a damp condition, after some days become alkaline, and evolve ammonia; when first produced, they are faintly maid, end contain little or no ammonia; this, however, does not always apply to cab stands, the mud and dirt of which is generally in a progressing state of composition, quire a great deal of supervis all well ground down by the wheef of the cabs on the paving stones. If we take inte consideration the fact that; over Carlisle Bridge alone we have a milling power that would grind many barrels of corn per dicm, we see how well this organic matter is prepared to work mischief, if it
is capable of doing so. The street dust becomes is capable of doing so. The street dust becomes the pabulum, or stock in trade, of the atmospherio dust; and when we consider the large amonnt of apread out for the play of the breezes, the quality of the organic matter of our atmosphere can be well appreciated. That the great supply of this organic matter is gotten from the street dust, is borne out by the microscopic and other researches of Dr. Angus Smith. These floating particles may
be viewed as the carriers of zymotic diseases, or bo viewed as the ferments.
Disease is simply a matter of chemical change produced, in many cases, by the direct action of a erment. M. Pastear, proved, many years sinca after being tilled with air that had passed through red-hot tubes, wo get no fermentation. Whis the Professor Tyndalls experiments explain tais phe the air have been destroyed. M. Pastear had done to the air entering the flask what was done some short time since to the air entering the tube. The germs were barnt up. Here are specimens of soup and milk some two months old, and yet, when opened to-dey, quite iresh and good; bat the mose losed with prepared cotton wool. Each specimen was boiled in its respective flask, to destroy any germs that might be in them, and closed whilst boiling, but now they have been once opened fermentation would set in, for the atmospheric dust would enter with the air.
One of the practical epplications of these and similar experiments has been wonderfully doveloped by Professor Lister, of Edinburgh. To uso his own words, it is a system of treatment which consists of such management of surgical cases as hall effectually prevent the occurrence of patreiae tion in the parts concerned. Space will not permit me to go into Professor Lister's line of investigation at present: but, in conclusion, I may remark that by a careful and well-considered systom of antisep tic treatment, which is based apon the scientifie consideration of the germ theory, hospital gangrene, and such like diseases are said to be almost unknome in the institution with which he is connected.
As regards the dust eliminated during the dirferent processes of trades, I have only one er two remarks to make. In most cases they act chemically, but many cases are known where they shorten life merely by the mechanical entrance of particles into the lungs. Where we find coarse and heavy particles, such as iron, and sach glutinons particles as flour, passing through the protective passages into the langs there is nothing wonderfui in spores passing, 250,000 of which have been seen in one drop of water, particularly when such motes are found to pass and bubble through vessels con taining sulphuric acid withont being stopped
There is a great deal of grinding in the mannfac ture of edge tools, and polished iron work of every description; and there aro two kinds of grindersthe wet and the dry grinders; the first suffer, but not nearly so much as the latter, who "bufi" or
polish their goods with emery, which you know is a polish their goods with emery, which yon know is a
very hard mineral. It is also carious to find that the polishing of cast iron is said to be much nore injurious than wrought, or even steel. 'The sleeve of these men's shirts are a mass of iron mould from wiping the perspiration off their faces.
One intellectual man said that workmen could not afford respirstors, which soon became filthy made them feel faint. When told that he did not look so bad, he said that at one time he was very ill, bot was much better now (aged 39) His inctur had told him he might live to abont 46 ; his fellow workers died about 40 . He took an emetio every week. Dr. Sigerson also states that scutch mille, from the character of their spiky dust, are human slaughter honses. Dr. Mapother has described an excellent respirator for working men. Although the workman is sometimes an inconsiderate being; What does he not suffer in the canse of commerce?
and how careful we should be in legislating justly and considerately for this bcing who offers up as a sacrifice so many precious days of his life on the altar of maun: on.
As regards the difficalty in intercepting this floating matter, Tyndall, is mentioning the subject, gives cotton wool as being the best intercepter: You must remember that when there are no par-
ticles of dust, there is no continuity of the light. tion of means by which disasters of this kind may The following experiment of Tyndall will illastrate this in another manner. I have here an ordinary
glass shade, snd I will place it in the track of the glass shade, and I will place it in the track of the
beam mouth downwards. The track can be observed passing through the shade; but if I let pure hydro gen gas enter the shade from the top downwards, this gas being much lighter than ordinary air, it gradually displaces it. Hydrogen is a metal in a gaseous state, and is the lightest substance known the luminous space is obliterated. Here we have the same results, or darkness, produced as when we barnt ap the motes.
Haring thas reminded you of the optical appearance that is produced by placing pare gas or air in the track of the beam, you will anderstand the experiments which illustrate the effects of cotton-
wool as a fitting medium, as detailed by Professor Tool as a fiting mediam, as detailed by Professor breathe through a glass tube across the eleotric boam. The condensation of the aqueous vapour of the breath is shown by the formation of a
laminous white cloud of delicate texture. It is necessary to abolish this cloud by heating the tabe When this is done, the laminous track of the beam is aninterrupted, the dust from the lungs makes good the particles displaced. But after a time an of which increagears antil fnally towards the end o the expiration, the beam is, as it were, pierced by an intense black hole, in which no particles whatovar can be ascoverea. The air, in fach has so lodged its motes within the passages of the lings as lately free from suspended matter. I now empty lately free from suspended matter. I now empty
my langs as perfectly as possible, and, placing a my langs as perfectly as possible, and, placing a nostrils, inhale through it. On expiring the air through the glass tube, its freedom from flontiug matter is at once manifested. From the beginning of the expiration the beam is pierced by a black aperture.
Before concluding this rather meagre account of so important a subject, I would wish to add a few
words as regards the merit and bearing of the question generally. Becanse we have had it strikingly placed before us that we are constantly inbaling dust,we are not necessarily to work ourselves into a dust mania; but. ou the other hand, we should not be callous
You know, perhaps, Voltaire's remarks when he was told that coffee was a slow poison-" You are right, my friend ; it is slow. and horribly slow. I hare been driuking it more than seventy years, and it has not killed me yet." Well, Voltaire was a sceptical kind of man, but we must not bo too sceptical, for dust may be harmless, very slow poison, and sometimes snch a poison that no human efforts
conld stay its power. I remember a very olever conld stay its pjwer. I remernber a very clever
article appearing in one of the papers some years article appearing in onge of matter, in which the since apon the that the number of persons who had existed apon our globe would, on calculation, be five persons to every square foot of earth; ; 80
that the earth was one vast' celuetery, the whole that the earth was one vast celuetery, the whole
surface of thy globe having been dug over 123 times to bary its dead-that

There's not a dust that flosts on air
 But once was living man.'

Nor, such a notion would not be pleasant; and, however clever anch writing may be, it is but the hyperbole of science-simply a poetical license. it is chauged, and is constantly changing. We are consuming oxygen, hydrogen, carbon, and other consuming oxygen, hydrogen, cariton, and other system, and combines with the products it already system, and combines with the products it already
finds there, is no longer oxygen; its entity is destroyed, and it exists as another compound. In destroyed, and it exists as another compound. In
fact, our bodily existence on earth may be vicwell as typical of the interchange of chemical molecules generally; and, whilst we are tied to these cbemical atoms, let ns hope that we may use them to our
own honour, and to the advantage of our fellowcreatures.

gas and water pipes as Lightning CONDUCTORS.

THEE inlinence of gas and water pipes in detarormed the subject of a paper recently read by Mr. formed the subject of a paper recently read by Mr.
Henry Wilde, before the Manchester Literary and Henry Wilde, before the Manchester
Philosophical Society. The anthor said:
Although the atility of the lightning-conductor has been established in all parts of the world by the experience of more than a century, yet a sufficient namber of instances are recorded of damage done
by lightning to buildings armed with conductors to produce, in the minds of some, an impression that the protective intuence of lightning conductors is of bat questionable valne. The destruction by tire has indnced at Crumpsall during a thandety some has induced me to bring before the society some have guided me for some years in the recommenda-

For the proper consideration of this subject, it is necessary to make a distinction between the mechsnical damage, which is the direct effect of the light. ning stroke, and the damage caused indirectly by the firing of inflammable materials which happen to be in the line of discharge.
Instances of mechanical injury to baildings not provided with condactors are still sufficiently numerous to illastrate fhe terrific force of the lightning stroke. Wherever lofty buildings are furnished with conductors from the summit to the base, and thence into the earth, damage of the mechanical kind is now unknown; and even in those cases Where lightning conductors have not extended continuonsly through the whole height of a building, or where the lower extremity of the conductor has terminated abruptly at the base of the boilding,
the severity of the stroke has been greatly mitigated, the damage being limited, in many cases, to the loosening of a few stones or bricks.
The ever extending introduction of gas and water pipes into the interior of buildings armed with lightning- conductors has, however, greatly altered the character of the protection which they formerly afforded, and the convietion has been long forced upon me that while buildings so armed are effectually protected from injary of the meohanical kind, they are more sdbject to damage by fire. The proximity of lightning conductors to gas and water mains as an element of danger has not yet, so far as I was first brought onder my notice at Oldhem, in 1861, by witnessing the effects of a lightning discharge from the end of a length of iron wire rope, which bad been flxed near to the top of a tall factory chimney, for the purpose of supporting a long length of telegraph wire. The chimney was provided with copper lightuing-condnctor terminating in the
ground in the nsual manner. In close proximity to the conductor, and parallel with it, the wire rope descended from near the top of the chimney for a
distance of 1 goft., and was finally secured to an iron distance of 190ft. and was finally secured to an iron
bolt inserted in the chimney about 10 ft. from the bolt inserted in the chimney about loft. from the
ground. Daring a thunderstorm which occarred soon after the telegraph wirs was fixed the lightuing lescended the wire rope, and instead of discharging itself upon the neighboaring lightning-condnctor, darted through the air for a distance of 16 ft . to a gas-metcr in the cellar of an adjoining cotton waregnited were it fused the lead pipe coanections and passed between the end of the wire rope and the lead pipe conncctions, was abundantly evident from the marks made on the climney by the fasion and volatilisation of the end of the wire rope, and by the the day-time, thie fire was soon detected and the day-inme, the fir
promptly extinguished.
Another and equally instructive instance of the intuence of gas-pipes in deternining the direction of the lightning discharge occurred in the summer of 1863 at St. Paul's Church, Kersal Moor, during
divine service. To the outside of the spire and tower of this church a copper conductor was fixed, the lower extremity of which was exteniled under the soil for a distance of about 20 ft . The lightning descended this couductor, but instead of passing
into the carth by the path provided for it, struck into the carth by the path provided for it, strack
throngh the side of the tower to a small gas-pipe fixed to the iuner wall. The point at which the lightning left the conductor was about 5 ft . above the level of the ground, and the thickness of the of one of the outer stones of the wall, and the sha tering of the plaster near the gas.pipe, the building sustnined no injury. That the direction of the electric discharge had, in this case, been determined by the gas-pipes whici passed under the floor of the the gas-pipes whicu passed under the floor of the
charch was evident from the fact that the watches of several members of the congregation who were seated in the vicinity of the gas mains were so strongly magnetised as to be rendered unserviceable Tho church at Crampsall is alout a mile distant from that at Kersal Moor, and the ignition of the gas by lightning, which mindubtedy caused it is
struction, is not so distinctly traceable as it is in other cases which have come nuder iny observation
because the evidences of the passage of the electric because the evidences of the passage of the electric
discharge have been obliterated by the fire. From discharge have been obliterated by the fire. From
information, however, communicated to me by the clerk in charge of the building as to the arraugement of the bas.pipes, the nost probable course of
the electric discharge was ultinatels fonnd. The church is provided with a copper cowdnctor, which descends outside the spire and tower as far ns the level of the roof. The conductor then enters a large iron down-spoat, and from thence is carried into the same drain as that in which the spont dis-
charges itself. Immediately nuder the roof of the charges itself. Immediately nnder the roof of the anve, and against the wall, a line of iron gas-pipe
extended parallel with the horizontal lead gutter which conveyed the water from the roof to the iron spout in which the conductor was inclosed. This line of gas-niping. though not in ase for some time previous to the fire, was in contact with the pipes
connected with the meter in the vestry where the connected with the meter in the vestry where the
fre originated, and was not more than 3 ft distant from the lead gatter on the roof. As no indications
of the electrio discharge having taken place through the masonry were found, as in the case of the
church at Kersal Moor, it seems highly probable that the lightning left the conductor st the point where the latter entered the iron spout, and by traversing the space between the leaden gutter and the line of gas-piping in the roof found a more easy path to in the drain.
In my experiments on the electrical condition of the terrestrial globe, I have already directed attention to the powerfal influence which lines of metal, extended in contact with moist ground, exercise in promoting the discharge of electric carrents of comparatively low tension in to the earth's subatance, and also that the amount of the discharge from an electro-motor into the earth increases conjointly with the tension of the carrent and the iengh of the conductor extended in contact with the earth. It is not, therefore, surprising that atmospherio electricity, of a tension sufflient to strike through 2
stratum of air several handred yards thick, sbould find a easier path to the earth by leaping from a lightning conductor through a few feet of air or slone to a great system of gas and water mains, extending in large towns for miles, than by the short line of metal extending in the ground which for
It deserves to be noticed that in the cases of lightning discharge which I have cited the lightming conductors acted efficiently in protecting the buildings from damage of a mechanical nataro (hao trifing injury to the church tower at Kersal yoor being directly attributable to the presence of the
gas-pipe in proximity to the condactor. Nor would gas-pipe in preximan danger from fre by the ignition of the gas if all the pipes used in the interior of stead of lead; for all the cases of the ignition of gas by lightning which have conse under my obsarration have been brought about by the asben of
lead pipes in the line of discharge. The sabatution of brass and iron, wherever lead is used in the construction of gas apparatus, would, however, be attended with great inconvenience and expense, and moreover wonld not avert other dangers ineident to the disrnptive discharge from the conductor to the gas and water pipes within a building. I have, therefore, recommended that in all cases where lightning conductors are attached to buildings, fitted up with gas and water pipes, the lower extremity metallic coung conductor shonld be bo such pipes outside the builling By attending to this precantion the disruptive discharge between the lightning conductor and the gas and water pipes is prevented, and the fusible metal pipes in the interior of the and thicg are placed out of the influence of the buidding aro placed
lightning dischargo.
Objections have been raised by some corporations to the establishment of metallic connection between lightning conductors and gas mains, on the ground
that damazo might arise from ignition and explothat damage might arise from ignition and explo-
sion. These objections are most irrational, as gas sion. These objections are most irrational, as
will not iguite and explode unless mixed with atmospheric air, and the passage of lightning along continuous metallic conductors will not ignite gas, even when mixed with air. Noreover, in every case actane ignition of gas by lightning the discharsjectious prwithstending along the mave responsibility, therefore, rests upon those who, after introducing a the adoption of measures for averting this danger..

WATER-PRESSURE ENGLNE.

flingravingis of a very simple form of waterI pressure engine designed by Mr. A. Schmid, this country by Messrs. Fielding and Platt, of the Atlas Iron Works, Gloucester, will be found at page 12. The eugine shown in our illastration has a 7 in . cylinder with 9 in . stroke, and is calouft. of to develop 5 effective horse-power or Rafing head of water with which is wher in oscillating and that the face to whieh the passages oscillating and that the face to whieh the passo an from each end of the cylinder open, is curved the arc of a circle struck irem the centre alinder, and
trumions. This face is beneath the cy bears upon a correspondingly formed concare face, having in it three ports, of which that in the cantre communicates with the supply pipe, and the tro
outer ones with the escape or exhaust. It will be outer ones with the escape or exhaust. It will
readily understood, from an inspection of the eec tion, how, as the cyliuder oscillates, the water is alternately anmitted to, and exhansted from, each end of the cylinder.
Referring to Fig. 3 it will be seen that the truanions on the cylinder work in bearings formed in a pair of levers having their fulcra at one end on the engine frame, and connected at the other end by a cross piece, as shown. A bolt-connected at its lower end to the engine frame-passes ap through this cross piece, and exerts a downwand pull upon washer. By means of the nots on this bolt the pressure can be regulated to just the amount suff.
cient to keep what we may call the valve faces in water-tight coutact. The trunnion bearings are also adjustable for wear, as shown in Figs. 2 and 4. An air-vessel is provided on the supply pipe to take up any shocks which wonld otherwise be caused by variations in the speed of flow through that pipe, and it is found that in practice these engines run with great smoothners. An engine of this class, with bin. stroze, has been run most satisfactorily at
200 revolations per minute. As regards the duty 200 revolations per minute. As regards the duty obtained, we quote the following extract thr Polybechnic School at Zarich. He says:-"As a member of the jury charged with the trial of twelve water motors (five cylinder engines and seven turbines) of different coustruotions, I can state that the engine of Mr. Schmid has surpassed all the others in regard of the parcentage of duty and of simplicity of construction, the trials, which have been made with the greatest care and accuracy haring given a useful effect of 89 per cent." The engive is, as the Professor justly remarks, of ver simple construction, and the proportions and agines will prove rery nseful motors in a large nomber of cases.

LAMPLIGHTING BY ELECTRIOTTY.

A PLAN for lighting street and other lamps by olectricity has been "invented" by a residen of gan Francisco. Dr. Van Zandt not only lights he gas, bat also turns it on or off by electricity The lamps are connected by underground wires with a central station, where the apparatus is situated, consisting of a galvanic battery, an inducion coil, and a switel to throw the current on or of the wires in any portion of the city, so that sll or any part of the lampa may be lighted or extingnished is required. Two independent circuits are neces ary, one for operating an automatic apparatns in ach lamp by which the gas is turned on and off the other for convering the carrent which lights the as. The wire for the last circuit passes across the it in the burner, where it is broken, so that the passage of the electric carrent prodaces a spark which ignites the gas. The wire near the bnrner annot be insnlated by caontchouc or cloth. as these se destroyed by the heat ; it is insulated by winding it around non-condacting trunnions on tho urner. Above these insulators, the wires are of German silver tipped with platinum. Trials of this apparatus, using thirty-seven barners and over a aile of wire, have been made in one of the towns of the States, with results which show that the inven sion is applicable to the porpose for which it is intended.

SOIENTIFTO SOOIETIES.

ROYAL ASTRONOMICAL SOCIETY

THE monthly meeting of this Society was held on Friday, March 8, Professor Cayley, President, in the chair.

The Late Solar Eclipse

We were greatly disappointed on finding that only one communication had been received by the Society on this subject. We well remember the abprbing interest manifested on the occasion of the return of the members of the different expeditions which went out to observe the eclipse of December, 1870, and we felt it a decided blank when the only communication read was that from Mr. Rnssell, the tovernment Astronomer at Sydney, detailing the mangements that bad beer made for observing the ate eclipse, which were rendered nugatory by the presance of clouds. A question was asked by Captain Noble as to whether any other commanicahous had been received, which he supplemented by nother-viz., If not, why not? In reply it was stated that no original commanications had been
made to the Society. The notices contained in the made to the Society. The notices contained in the
report of the conncil presented at the annual meetog were obtained from various sources. This inroduced bome remaris on the proposed publication Mechaxic Nesults by the Society (see English Mechaxic. No. 357, January 26. 1872, p. 479), having been applied to to print the results, and having announced that no funds were available for the parpose, the council of the Royal Astronomical socety bad volanteered to defray the experses, an understanding having been entered into with the council of the British Associstion, throngh whose inetrumentality the funds for the expedition had been obtained, that all observed facts should be might appear to be irrelevant.

Solar Activity.

Messrs. De Le Rue, Stewart, and Lowey, communicated the usual annual summary of photograpeared that the intensity of the spot pro it apterg is diminishing ly of have of late been develoned in the higher latitudes.

In connection with this subject we find from the annual report that 381 photograms of the sun were taken daring the past year on 226 days, but we record of the sun's disk will short photographic close. Daring tho past ten years 2,778 solar photograms have been taken, and about twenty paper commanicated to the Royal and Royal Astronomica Societies embodying the resulte.

Source of Solar Feat.

A communication on this subject by Maxwell Hall was read. The author considered that the slow contraction of the san contributed to the de velopment of solar heat.

Approaching Transit of Venue.

An interesting commanication from Otto Struve on the preparations by the Kussian Government for observing the forthcoming transit was read The namber of stations to take part in the observe tions within the territories of the Rassian Empire is twenty-foar. They will be fally eqaipped for the parpose.

Aurora Borealis.
Δ commurication, by Mr. Finlayson, on the Aurora of February 4, 1872, was read. We did not remark any peculiarity in the observations.

Diffraction Phenomena in a Telescope.
Captain Noble having noticed some remarkable phenomena of diffraction while observing was in daced to search for the oatwe, and found it to arise from the labours of a busy spider, having effected an eutrance within the tube and constrncted a complete network or grating across. These little creatures are often annoying to the astronomer although he is so greatly indebted to them for the means of measurement. It wa : mentioued that on one occasion a spider had found its way into a mi crometer and had availed itself of the lines already crome.
Optical Power as Affecting the Perception of Colours.
Col. Strange communicated a note on certain ob servations on the effect of optical power in producing a difference in the perception of certain colours. It appeared that the Colonel and some ladies of his family were at the theatre, and that the ladies directed his attention to a dress which they described as pink. On nsing his opera glass he at once prouounced it to be ycllinc and re-
quested the ladics to view it through the same mediam, when they too agreed that it was yelluw Subsequently it was ascertained that the dress in question was really white trimmed with yellow. The colonel said that nothing was more untrustworthy than descriptions of colour, and as much attention liad of late been given to the colours of heavenly bories, he considerehat in obserrations of colour the effects of various powers should be ascertained and recorded.
Chronographic Determination of Longitude.
A determination of the longitude of Teheran, in Persia, as connected with the Great Indinn Survey, Was communicated by Col. Walker. We under stween Greenwich and Madras with that previously determined between Greenwich and San Francisco, by the intermediate station Cambridge, Massachusetts. The retardation on the Indian line of 3,870 miles was less than 0.5 second. In the American determination the time of transmission of the galranic cnirent was $0 \cdot 8$ eecond. In the determina tion of the difference of longitude of Neufchitel and
Zurich, the velocity of the galvanic current was Zurich, the velocity of the galvanic cur
found to be about 7,300 miles in a second.

Double Image Micrometer.

Mr. Browning called attention to a double image micrometer which he had constructed by employing a divided Barlow lens. The instrument which was exhibited gave occasion to numerous remarks on
the various contrivances that had been adopted for the various contrivances that had been adopted for
the purpose from Dollond's divided object-glass, the purpose from Dollond's divided object-glass, 17.5, which was mentioned by Captain Noble, to a Rue considered to be similar to the one before the meeting. Col. Strange considered that an advantage is gained by dividing an intermediate lens.

Power.
Mr. Browning exhibited and explained the construction of a spectroscope, with especial referance to effectiag a change in the dispersive power, as readily as altering the magnifying power of a telescope. The instrument. which possesses the ordinary antomatic movement, is furnished with an extra prism, to be inserted in the battery of prisms, 80 as to reduc
In addition to the above, papers were read by the President on the "Variation of the Position of the Orbit in the Planetary Theory," and on a "Pair of Differential Equations in the Lunar Theory;" by Mr. Knott on the " Measures of the Binary Star s Uras Majoris :" by Captain Noble on "Uniformity
the Telescope;" by Mr. Rassell, "An Explanatory Note on r Argis ;" and by M.
"Observations of the Minor Planet (117) Loomia, and Nebule discovered and observed at Marseilles.'

THE INSTITUTION OF CIVIL ENGINEERS

A The last meeting of the Institation of 'Civi Eugineers, held on March 5, 18i2, Thomas Hawksley, Eisq., President, in the chair, the paper
read was "On the Kiud-Chandron System of Sinkread was "On the hiud-Chaudron System of whilhout the use of Pumping Machinery," by Mr. Emerson Bainbridge, Assoc.-Inst. C.E.
Of the total expenditure necessary to open out a coal field, oue of the chief items of cost was cansed by the heavy expenses incurred in sinking the shafts, and when snch sinking happened to pass through water-bearing strata, the proportion due to this head, of the total cost, was much increased. When a shaft exceeded 200 or 300 yards in depth. and when the water occurred near the surface, it was usual to keep the water back by the insertion of cylindrical metal "tubbing," placed upon a hard bed of rock at a point immediately below the lowest eeder. Where pits were less than 100 or 200 yards in depth, the application of tubbing was not of mach service, as the movement and dislocation of
the strata, consequent upon the remoral of the the strata, consequent upon the removal of ine the underground workings. The sinkings in which there was the largest quantity of water had been oarried in Belgium through the chalk, and in Eng land through the Permian series; these rocks usually being sufticientiy porous to contain large volumes of water. Without exception, in England, all such sinkings had been made by the use of pumping machinery of sufficient power to keep the pit uring the process of sinking, comparatively dry. it was slated that the question of dealing with before long bece most economical manner woald, than heretofore. In the Report of the Royal Coal Commission an estimate was given of the coal remaining in the British Islands, as follows :-

Million Tons.

Coal yet remaining which is or will
have to be reached by sinkings
through the coal-measures
Coal yet remaining which is or will
have to be got by sinkings through
the Permian and other formations
overlying the coal-measures.. .. 104,41

Total 194,945

It thas appeared that 104,418 millions of tons, or 54 per ceat. of the remaining resources of the British coal-fields would have to be reached by pits sunk through the Permian and other formations more recent than the coal-measures; and, as a rule, more likely to be saturated with large volumes of water. With such important evidence bearing on the future of coal-mining, it had been considered that the present was an opportune moment to bring under the notice of the Institution a descripbring unter the notice of the institution a descripbearing rocks. which had proved successful in many cases on the Coutinent.
The plan of sinking pits hitherto practised in his country consisted in dealing with the water by means of large pumping engiues, in leaving the bottoms of the pits dry enough to allow the sinkers to block the well, and in keeping back the water in the upper strata by metal rings, cast in segreents about 4 ft . long, and connected by wooden joints, which were wedged tight. when all the tubbing was fixed. The evils of this system were: 1. The heavy frst cost of the plant, when special pumping machinery was used. 2. The expense of the wedging tubs, and the cost of fixing them. 3. The delay caused by the sinkers being compelled to work always in water. 4. The high first cost of the tubbing and of fixing it in the shaft, and the liability of the tabbing leaking in consequence of the numerous joints.
In the application of the Kind-Chaudron system these evils were to a great extent avoided. This system consisted of a combination of Mr. Kind's well known apparatas for boring wells, with an in-
genions device, invented by M. Chandron, for fixing genions device, invented by M. Chandron, for fixing
cylindrical tubbing under water in such a manner as cylindrical tubbing under water in such a manner as
to mako it quite secure and water-tight. In the to mako it quite secure and water-tight. In the latter part of 1871 the author, accompanied by Mr.
W. Cochrane, visited the Maurage pits, near Mons W. Cochrane, visited the Maurage pits, near Mons, Where two shafts were being sunk by this process. These shafts, though having a depth respectively of 373ft. and 593 ft . at the date of that visit, had been bored that depth under water with a diameter o ing at ., hewater having been the surface. Th Chaudron system consisted of the following distinct processes:-1. The erection of the machinery on the surface. 2. The boring of the pits to the lowest part of the water bearing strata. 3. The placing of the tabbing. 4. The introdaction of cement behind the tubbing to complete its solidity. 5. The extruo. tion of the water from the pits, and the erection of wedged cribs to secure the moss-box. The
ogine, which raised the debris from the pits, and a vertical ongine, by means of which the boring tools Were lifted at each stroke; the speed of the latter engine varying from fifteen to eighteen strokes per
minnte. The first tool applied was the small trepan. minnte. The first tool applied was the small trepan,
w sich weighed 8 tons, and bored a hole 4 ft . 8 in. in Wuich weighted 8 tons, and bored a hole 4 ft .8 pin. in
dinuleter, the depich of the boring being increased at tue rate of from $6 f t$. to $10 f t$. per day. The pit was enlarged by a trepan weighing $16 \frac{1}{2}$ tons, which increased the size to $13 f t .6$ in., and was kept from 10 to 30 yards behind the pit made by the smaller repan. The larger boring tool had 28 teeth, and The boring by the larger trepan did not progress The boring by the larger trepan did not progress
faster than aboat 3 ft . per day of 24 hours. The buring was generally carried on in the day. the remainiug twelve hours being employed in raising the dibris from the pits. When the bottom of the water-bearing strata was resched, the tubing, which consisted of metal cylinders cast in complete rings
of an internal diameter of 12 ft ., and a length of 4 ft . of an internal diameter of $12 f t$, and a length of
9 in ., was placed in the shaft, the rings of tabbing sio., Was placed in the shat, The tubbing was tested by hydraulic apparatus to one-half more pressure
than it was expected to be subjected to. The rings shan it was expected to be subjected to. The rings
of tabbing were let down into the shaft by means of the capstan; the moss-box at the bottom of the tubbing being placed in the pit first. The moss-box consisted of two oylinders, one sliding inside the form a chamber to hold a quantity of ordinary moss When the moss-box reached the bed which was preparred for it at the bottom of the pit, the weight of the super-incumbent tubbing pressed upon the moss, and formed a water-tight barrier. The tabbing being thus fixed, the annular space between it and the sides of the shaft was filled with cement, thus insaring the solidity of the tubbing; after this was finished, the standing water in the shaft was
drawn ont, and the joint below the moss-box was made permanently safe, by the fixing of several ings of tubbing reating on two strong wedging cribs.
The comparative cost of sinking by the processes referred to whe shown by two tables, one of which exhibited the complete cost of sinking, and the time
ocaupied by the ordinary system, at eighteen different collieries, whilat the other gave the same information for ten colleries pat down by M. Chaudron's process. The results showed that, whilst with the the average cost pes foot had amounted to $£ 114.7$, and the rate of sinking to 8.9 ft . per month, with the Chaudron process the average cost of all the pits was equal to $£ 22 \cdot 9$ per foot, and the speed of which was so much in favour of the Chaudron gystem, evinced the importance which this mode of dealing with water-bearing strata was likely to have. It was remarked that, where a large quantity of Water occarred in ahallow sinkings, tubbing would be
of no svail, and the economy of boring by the "f no svail, and the economy of boring by the aWe. On the other hand, where the strats were separated by beds of rock as to allow them to be de. ut with separately, the ordinary system of sinking might prove as economical as the Chaudron proces 3. The boring of the shaft by the Chandron at or bearing strata, as with an increased depth the im \rightarrow which could be atilised in boring would become less, and farther, the small particles into which the rock was broken by the tool hindered the sinking, ahafts were sank by the ordinary mode.

BRISTOL NATURALISTS' SOCIETY

THE nsual general meeting of this society was held at the New Institute, on Thursday evening last. The president, Mr. W. Sauders, F.R.S. Was in the chair, and a paper was read by Mr. W. W. part of tha range near the town of Wotton-under Ede mer or wors of under-Ridge, which was the members of the society in one of their general
excurrions during the past season. Daring the excur: ion an observation was made, which gave the excur: ion an observation was made,. Which gave the above the sea level. In time not geologically distant, and during an age when the land stood consi dersbly lower than now, the sea, there is
every reason to believe, flowed far ap the vale overy reason to monthward from the basin of the Ribble. This Which was first pointed out by Sir R. I. Murchison, was called by him the Ancient Straits of Malvern. The early geological history of Great Britain was then sketched, showing how, in very distant days, it consisted of patches of the igneous rocks exposed to the wearing action of the West ru the detritus on the eastern side, forming continuall newer and newer beds of sand and clay, \&c. The varions and distinct populations of those aucient toas were described, and specimens shown, such as the Trilobites of Siluria and the armour-plated fish © the old red sandisione and carboniferous series,

The abundant, but perhaps monotonons, vegetation of the coal-mensares succeeded, indicating estuarine conditions of growth and deposit. The thick depocit of new red sandstine succeeds, nearly numossinif-
rous in this locality, but showing a rich fauna in rous in this locality but showing a rich fauna in its rich fossil treasures, of which Anst Cliff and Westbury-on-Severn afford abardsant supplies. The varions beds of the lias and oolite were dwelt on, and more in detail, as the district in question is mainly composed of these. Particular attention was drawn to the constent occarrence of one particular fossil in many of these beds, not, of conrse. alone, but in company with others not peculiar to it. Thas, certain beds of the trias are characterised by ammonites peculiar to them, and found neither in the beds above nor in those below. In the same way, some of the beds of the oolite are distinguished by the presence in them of a shell called, from its shape, Terebratula fimbria, and so on. The adshape, Terebratula fimbria, and so on. This means of readily distinguishing strata was shown, and the alternatives between which geologists have to choose pointed oat. They mast admit either that these creatures were called into being, endured but a short time, and then became extinct, or that the beds in which their remains occur, though often only a few feet in thickness, required for their deposition a long series of ages. For many reasons which could not be set forth at length, geologists had unanimously chosen the latter alternative, and hense the great age they were compelled to assign to the orgast of the earth and the animal and vegetable tribes upon it. The resemblance and difference between the Cotswolds and Dandry-hill were dwelt on, and the variation in hickess of the same bod in diferent localking ex contour of the country if snnk to a depth of 500ft. The Ancient Straits of Malvern would be restored, and the counties of Gloncester. Worcester, Somerset, and the connties of Gloncester, Worcester, Bomersting of the Cotswold and of Malvern, \&c., separated by doep ocean creeks and channels. The speaker con claded by an allasion to the connection of agrieal ture with the geology of a district, mentioning the single fact that the common damson will not come to perfection off the fuller's earth, and therefore grows nowhere so well as in the districts where the subsoil consists of this formation. Natives of those districts regard damsons grown on other soil as worthless, however good they may appear to those who are not familiar with the frait in its favourite habitat. Several questions were asked, and
discussion followed the reading of the paper.

USEFUL AND SOIENTIFIO NOTES.
Phosphorus in Iron.-The presence of the least trace of phosphorus and sulphur in iron will destroy it for many purposes, and a correct and easy Way of detecting these substances is therefore important. K. Meineke dissolves the finely pulverised iron in chlo ride of copper, separates the reduced copper by treatment with an excess of chloride of copper and common ealt, filters through a layer of asbestos, brings the insoluble portions adhering to the abestos into s beakerglass, and oxidises by strong nitric acid and chlorate of potash ; then he evaporates with hydrochloric acid and
determines the sulphur by baryta as sulphate, and the determines the sulphur by baryta as sulphate,
phosphorus by molybdic acid in the usual way.
Government Sclentific Expedition.-It is sald that the Challenger will be commissioned early in the summer for a voyage of exploration and research. Some scientific gentlemen wilb accommodated on board the vessel, and it is probable that Captasel
George S. Nares, now serving in the surveying vessel George S. Nares, now in thed Sea, will be placed in comma=d. Shearwater, in the Red Sen, will be piaced in commas. The actual places which will be visited have not yet been determined, but it is anticipated that the groups
of islands in the Pacific will have special attention beof islands in the Pacific will have special attention be-
stowed upon them. This movement on the pa:t of the Admiralty is in encouraging contrast to the fact Admiraity is in vages have been abandoned to other that Arctic voyages have been abandoned to other
nations, and to the late refual of the Lords of the Treasury to grant any assistance whaterer to the Treasury to grach expedition.
BIr Roderick I. Murchison.-In the Geological Muscum, Jermyn street, have recently been piaced sir R. I. Murchison. In the hall is a marble bust of him, executed by H. Weckes, $1:$ A., and on the priucipal
Hoor are two objects connected with his labours in the geology of Russia. It will be remembered that by
those labours he established the rikht of the Permian to rank as a separate formation. The Emperor Nicholas 1. presented to him a beautiful large vase in avanturine quartz on a square pedestal of gray porphyry from the
Kourgon Mountains, in the province of Consk. Siberia and this he bequenthed to the museum. The other and this ho bequeatheid to the museam. The order of argicalats. There is an inseriptiou in Russian. the
translation of which is, "To the groiogist Murehison, in testimony of thrir hichust exteem, the Russian
Administration of Mines, Zlata, Vst, 1×1." Professor Mamsay has bern appointed Director-General of the room of Sir R. I. Murchison.

MIOROSOOPIOAL NOTES.

Sponge Spicules. - There are two common sponges which deserre attention as fornishing interesting spicnies. The one is the common freshWater sponge, Sponyilla flupiatilis, containing spicules of two forms,-one with two discs like serrated wheels nuited by an axle, the other slightly carved, pointed at each end, and rough on the surface. These are siliceons spicnles, and may be obtained by the use of nitric acid. The other is a marine sponge, bat the spicules which are also of two forms are calcareons. In this case liquor potasser mast be employed to obtain the spicules. One form is tri-radiate and the other club-slaped at one end and pointed at the other. The sponge is very small and white, and may be found attached These spicules should have a placein every cabinet.
The White Corpuscles of the Blood.-Dr. Rodenstein, in a paper on Tuberculosis in the Ne wo York Medical Journal, calls attention to the action of the white corpuscles of the bluod, as seen under the microscope. He says that in making experiments with blood corpuscles he has lately noticed that if a drop of blood, freshly drawn, be placed in an alkaline solution of carmine, the red corpascles lose their power of forming rouleais, an white corpuscles absorb the carmine, seek tach ocome agglugregate in little masses, and seem to become aggla-
tinated to each other. In a drop of blood prepared for microscopic inspection, by carefal foenssing there can be seen the whole field covered by fine little rings, which seem to form a delicate network, looking somewhat like the cornea of a ty seen with a low power ; this is nothing but the red corpascles of the blood which touch each other by their edges. Scattered over this delicate, pale network, there can be seen, here and there, little, bright red, cellalar masses; these are the white corpusclos of the blood tinged with carmine.
Action of Quinine on the White Corpuscles of the Blood.-This sabject, in which Bins and Stricker held somewhat diferent views, has recently says the Lancte, been taken up by Herr Kerner, who contributes a paper on this subject to the last part of Pfluger's "Archiv," being incited by the of Kerner remarks that it is quite possible to obtain a nentral satt of quinine, and in his experiments he used the chloride and the carbonate. He drew small quantities of blood from cats and dogs, and small quantities of blood from cats and dogs, and applied a one-tench solution of this salt $\begin{aligned} & \text { tion to the blood of } 1 \text { part to } 4000 \text {, upon a micro- }\end{aligned}$ scopic stage maintained at blood heat. The result scopic stage maintained a corpascles became reand
was striking. The white cont was striking. The white corpascles byents were
and darkly granular, and the movements very speedily complotely arrested. It of cours became interesting to compare these effects with those produced by other neatral salts, and in pursuing this investigation to some extent he foand that salicin, caffein, atropine, and arseniate of potash were all either wholly indifferent or possessed only the slightest influence. Quinine therefore, exerts a remarkable action on the white corpascles of the blood, independent of its antiseptic properties.
Prizes for Amateur Microscopiste.-We wish to remind our microscopical readers of the prizes offered by the Countess of Dacie through the Early best lists of the ponds and other aquatic resorts for collecting parposes, within 20 miles of Charingcross. 1st Prize, Three gaineas: 2nd, Two guineas given, in order exact locality of the pond must be given, in order that it may be identici, and Each competitor to send in his lists sealed in a cover bearing a motto, and accompanied by an envelope bearing a motto, and accompanied by an envelope sealed, in whic of the competiter. (2) A Prize for and ociapation of the compentior. for collecting purposes, within 20 miles of Charing. cross, with a list of the microscopical animals and plants found in them during each month of the year, commencing March 1,1872. Five guineas. Rales:1. The exact locality of the pond mast be given,
and the name of the nearest railway station. 2 . The date of the visit must be specified. 3. When any rare or supposed new objects are found, specimens slould be immediately forwarded to Walter W. Reeves, Esq., Royal Microscopical Society, King's College, strand (Somerset House), for examination. information sealed in a cover bearing a motto, and accompanied by an envelope sealed, in which is inclosed the real uame. address, and occapation of the competitor. The lists are to be delivered not later than March 31, 1873, addressed Secretary, Natural History Prizes, 100, Fleet.street. E.C. The adjudicators are Mr. H. J. Slack and Mr. W. W. Reeves. cators are Mr. H. Assistant-Secretary of the Roral Microscopical Society, and they will attach im. portance to notes and records of pond life made in each month with reference to the local distr
development, or hybernation of the species

LETTERS TO THE EDITOR.

(We do not hold ourseloes repponsibic for the opinions Of our correspondenti. The Editor respeetfully request
that all communications should be drawn ap as briefy as possible.]
$A l l$ communications should be eddressed to the Editor Gardon, W.C.
14 Cheques and Post Ofice Orders to be made payable Io J. PABEMORE EDWARDS.
"I would have every one write what he knows, and as much as he knowa but no more; and that not in thia
onls, but in all other subjects: For such a person may only, but in all other subjects: For such a person may
bave some particular knowletge and experience of the nnture of such a person or aucb a fountain, that as to
other thinga knows no more than what everybody doek, and yot to keep a clatter with this littie pittance of hia, Hee from whence grent laconveniences dorive their original."- Montaigne's Enaya.
** In order to facilitate reference, Correspondenta when apeaking of any Letter proviously insorted, will oblige by on whioh it appear.

THE NAOTIGAL ALMANAC-STAR MAPS-THE MOON'S AXIS-TEE TRANSIT OF VENUSJUPITER'S BATELLITES - SEMIDIURNAL ARCS-AND ABERRATION (OF INTELLECT).
[3795.]-Pbriaps the most immediate answer to Mr. John Andrews (query 11186, p. 649) is that the wants and requirements of amatour observers (as such), bat is Wholly given ap to data haring navigational
value. I moald, however, further remind my querist ralue. I would, however, farther remind my querist lites is requiaite bofore trantworthy tables can be compated from them; and that as the Uranian and Nepanoan moons are only discervible in our largeat instraments, wo can learcely expect such obaervations o accumalate very rapidly. The little diffcalty
attandant on the employment of an 11in. or 12in. chromatio on board of a ship lurehing through an angle of some 85° is scarcely worth alloding to.
"M. D. D." (query 11182 , p. 650), will fnd some dimculty in obtaining "a chart of the stars, with the
agure of the constellationg marked on." Perhapa the index plates of Prootor's " Gnomonic Atlas" would be the likeliest thing to suit him. In answer to his second question, I may say that Hannay's " A 'manack" is not to be had; and that probably the "Ilastrated
London Almanack" ocntaina mach popalar London Almanack" oon
astronomy as any of them.
Will Mr. Birt (lettar 8753, p. 660) forgive me for pointing ont that it is the inclination of the moon't axis to the plane of the orbit which she describes about the carth which determines the amoant of libration in latitade, as risible to us? The inclination of
that axis to the ecliptic is very anoillary to this ; for it that axis to the ecliptic is rery anoillary to this ; for it
mast be borne in mind that it is from the earth, and must be borne in mind that it is fr
not from the sun, that we view her.
Now that I know that it is the transit of Venns in 1761 with reference to which Mr. Lowdon pat query 10871, page 572, I may tell Lim that it was observed at Greenwioh by the Savilian Professor
of Geometry, Mr. Bliss (Dr. Bradley, the Astronomer Royal, whom he succeeded, being anfortanately ill a the time), and by a Mr. Green, the then Arat assistant Bliss emplojed an old 15 - 4 t . (non-2ehromatic) refrao tor ; Green, a 2ft. Gregorian refeotor by BL ort, with s divided convex lens before its apertare, ase a micrometer. The weather was very indifferent, though, and they only hed glimpses of the trausit by fite aud starts for a ghort time, antil towards the ond of it, when the
sky cleared, and they, in company with Bird the optician, observed the egreas. Internal conteot took place on June 5, 20h. 19m. (i.e, 8h. 19m. a.m. on June A Mr. Horasby and a Mr. Phelps also seom to have made some indifferent obsarvatione at Shirbarn Castle, Lord Macclosfild's eeat. There was a grand party,
too, assembled at Saville Houso (in thone days standing too, assembled at Sarille Houso (in thone dass standing
in the fields, but now a blackened roin in Leicester equare). The gazers here were the Dake of York, Yrinces William, Henry, and Frederick, and the Princess Auguata; the observers, Short, the famons opti-
tician, Dr. Blair, and Dr. Bevis. The last internal contach at detarmined at this station, occarred at 8 h .18 m .21 fs . a.m. as scen by Short; While the
 fact of the latter observing with a larger telescopo will probably socount for part of this discrepancy; and the masterly researches of the preaent AstronomerRoyel at the Cape of Good Hope, Mr. E. J. Stone, aford an easy solation of the rest of it. I may add that the tranait was also observed in London, or its neighboarhood, by. Mr. Canton and Mr. Dann ; st St. Helena, by Dr. Maskelyne (the successor to Blise as Astronomar Royal); in Sweden, in Paris, in Constan-
tinople, in Siberia, in Madras, and in other tinople, in Siberia, in Madras, and in other
localitees, by rarious observers. It only remains to add that at the time of transit the geocentric longitade of the san and Veans was $75^{\circ} 36^{\prime} 81^{\prime \prime}$; that the daration of the transit was about 6 h . 10 m ., and that was the rocoond transit ever witnussed by the hnman eye. I have no idea that any such photometrical experi menta sat thoee inquired for by "E. T. S." in query
11310, p. 676, have over been mado. The late Sir

John Herschel atd investigate the relative brightness of some of the hearcnly bodies, white he was at the Gape; but I never heard of any comparison having
been made, mediately, or immedintely, of the diflerbeen made, mediately, or immedintely, of the difler-
once in the amonnt of light emitted by the voun here and in the tropics.
In reply to " Vega " (query 11295, p. 076), I can only bay that the time given on p. 576, as that of the reap.
pearance of Jupiter's first aatellite on Jannary 12, 1871 pearance of Japiter's first astellite on Jannary 12, 1871, is quite correctly printed; and that it reste on the
anthority of Mr. W. M. Christie, the Arst-assintant at the Royal Observatory. My querist says nothing, by the way, about his own longitude. His recorded obeorvation wou

I have, on a former occasion, given somewhere in these columns the methed of calculating semi-diarnal arcn; bat, in the interest of Mr. Cramer (query 112se, p. 670), will once more repeast it. "The aimplest known formula," then, may be thus oxpressed:-To the log.
tan. of the latitnde add the log. tan. of the declination of the star. The resalt, suppressing 10 , will be the log. sin. of an aro, which, tarned into time, must be added to, or subtracted from, aix hours (according at the declination has the same name as, or a different name from, the latitude). The result will be the somidiarnal arc required. A single example must suffice,
by way of illustratign. What is the semi-diarnal are of by way of illustration. What
Fomalhant, at Melbourne ?
Lat. of Melboarne, S. $-87^{\circ} 50^{\circ}$; log. tan. -9.8902040 . Fomalhant, Dec. S. $-30^{\circ} 18^{\prime}$; log. tan. $-9 \cdot 7666751$.

Log. ain. of $26^{\circ} 59^{\prime} 19{ }^{\prime \prime}$. $\quad 9.6568791$.
Then $26^{\circ} 59^{\prime} 19^{\prime \prime}=1 \mathrm{~h} .47 \mathrm{~m} .57 \mathrm{~s}$, and adding this to six hours (beenuse the declination and latitude are both south, we finally get 7 h .47 m . 57 a , as the semi-diarnal
arc of Fomalhaut, at Melbourne. Of course, had it are of Fomalhaut, at Melbourne. Of course, had it og. sin. We obtained mnet have been sabtracted. Kr. Cramer must, though, see that we proceed on the assumption that the body whose apparition above the horizon we are investigating retains its declination invarisble from its rising to its setting. It is just becanse the moon changed hers 10 rapidy that a table of semi-diarnal arces is to a great extent aseless with her. My querist will of course observe that then
given above takes no account of refraction.
I think that some one mast have been poking fan at Mr. Clements (query 11248, p. 677), as it is almost impossible to oonceive that any suoh paper as he inquires for can ever have been published. I have not the ploasare of knowing "Captain William Noble, of Uckfeld," and mant most emphatically disclaim the smallost intention of saying anything personally dis. ourteons or ofensive to that gentlemarr; bat I cannot refrain from observing that if he really doen fancy that
he obserred " 187 occultations of Uranns. . . in the
 Forbes Winalow would be a proper and likely man to doal with his Constant of Aberration; and that a tomporary ohangs of air from Uckfield to, say, Hanwollor perhaps Colney Hatch-might ultimataly result in the suppression or destraction of auch astonnding observation
altogether.
A Frllow of ter Royal Abtronomical Society.

DUST IN THE SPECTROSCOPE.

[3796.]-MAY I bo allowed to snagest to thateminent optician, Mr. John Browning, F.R.A.B., who appoars as an occacionsl contribator to our MxCBANIC, that he would be adding one more to the very ramerous favours he has already conferred on the scieutific world if he would pablish in these colamns his method of freeing the jaws of the silt of a speotrosoope frpm those minute and impalpable particles of dast Thich, When the alit is very much narrowed, annoy the observer by striping the apeotrum with longitndinal lines 9 I have tried a clean camel's-bair pencil and a freshly out
splinter of dogwood as means of removing them, bat splinter of dogwood as means of
with by no means absolate success.
a fellow of the Boyal Abitonomical Society.

" PHLLO" AND VENTHLATION

[3797.]-" Prilo" (letter 3725, p. 637) disclaims the notion I impated to him (because it was a common one at prosent), that constructing self-ventilative buildings
was a matter of refined science; and ho shows, in Was a matter of refined sience; and
colamn of the most misleading and mischierons falla cies that he has not the faintest idea of what self ventiation (the only thing I deemed it worth while to
 air to a mardiaroasive to its non-ventilation-a very slight one, it palliative to its non-ventilation-a very slight one,
there be no exit of fonl air, and he describes noneand then asks me whether I consider such paliative "verv elaborately scientific." He would appear to suppose that by this miserable shift he has "cured
his room, or made a marderous structare an innocent
 mast be amare its trial in his room wonld kill any num ber of birds before hall the minimum of fuel could be barnt, however "quickly," or however showly.
But there is not a single sentence in his letter that is not a mischievous fallacy, anless the single clanse in which he adopts my dictum that bnilding ventilation
is as simple as and "closely sivailar to the ventilating is as simple as and "closely sivailar to the rentilating
of lanterns." He has plainly never constracted either a room or a lantern rightly, that is to say, either a wherein a bird would live through moy experiment.

Birds woald so lipo in any liphthouse lantorn, or any enlarged model of a saleable lantorn of any kind, throught the barning of as many tons of ino we. "Philo" denies this or as blowly as you ne, and lot u have a wager like the Hampden-Wallace-Bedford-leve wager. It is an incomparably more important ques tion than the flatneas or roundness of an earth on which we pass (as the Pall Mall Gazette said) so fow yeara. We, or Mr. Hampden, had infinitoly better die in the error that the earth is round (or fiat) when it in the contrary, than hold "Philo"s" rewn of remtilation. Let me consiract a model ohambor of one cablo yard the openings both for inlot and outhet not to exceod two square inchen, and hang one or two caged canaries, with food and water to laet them, may, aweak will is to barn therein, at as many points as he will, not directly under their cages, all the gas or otho therectrbon fuel that he othooses, and the the birda in ho can. H he cana kin any belore consum hil any prithinions, I lose the rager; if he canno carboni) I win it.
It is utterly antrue that "the sole difisalty is to change the air of a room ofton enomgh to koop it freab and aweot, without having it uncomfortably cold, de." A room han no bamineas to require its tir changed, by extarnal act, either ofton or at all. In a laziern and in any rightly-designed room, it will ohange it belf by the breathed air instantly learing and fresh replacing h-the broathea air and no other, whotben it be muoh or little, from one child or a wodged roon ful of men-exaoty that sir, and neither more no lees, learing and being repiaced. "Philo" has not the remoteat conception why this is the cato in a lantern, and less perfoctly in the present Honse of Commone but not at all, probably in any other modern room in England. He probably knows (or hee the menne o knowing if he will use them instead of scribbling abou it), that in all these the breathed air, inatead of leav ing at once, mixes insoparably wits anl the resi, an though none bat fresh air may enter, what mannez of alr it shall drive oat, whether the worat or the best in the room, is all atter chance-mediey ; or rather the atructure is about the best that could be dovised for mixing up all lood air with the frosh as rapidy and inardicably as posibiol the main problem (it cam hardy be called ainearty') is to provoal this mis roed as overy lantarn woos provent 1 t, and lot out the asod and poisoned particles of air instandiy-for ex power in moring othar air than wate none of hor thor in moring othar air than thall not be flooded, "Philo", has no more coneeption of it than of the ohemistry of Sirius.
A room that has, as he describen, is. "longest period intended " for people to breathe in it, is simply a mardorous room; and if it be any architoct's theory kbat rooms are to have this longeot period intondea, where is noch period marked ? Why ho it not conpica oualy engraved on them? What he says is "esimply impossible," is simply the condition of Moorish rooms bault tan centuries ago, and still in uso, and of the rantern of every lighthonse in England I The reason lies in a difference between evory right and overy wrong room, that I have often describod in three lines. Now let "Philo" describe it.
Mr. Saunders (letter 8728) is more likoly to do this, becanse he does not scribble aboat " laws of pnearmatics, and $\begin{aligned} & \text { may have time to think a timple thing out, perbaple. }\end{aligned}$ E. I. G.

TOBACCO AND DISEABE.

[8798.]- Your correapondent, a "Follow of the Statistical Society," having finished his argament against the use of tobacco, permit me to reply.
ghall not occapy six columns (see lets. 8847, 8448, 8777, pp. 481, 484, 666) in so doing, as there are but fev points calling for any extended notico. First, I disclaim all intentional "dogmatic assertion," and able to speak ex cathedra; bat I think 1 am as woll able to express an opinion on this question as a man wrobably never smoled pipe in his life. When Mr probably aever sols in pip the itatement that G wilt (let. 8188, p. 381) made the statement that epithelioms had boen produced by smoking I krew that he had no suthority for it, and coming across "Chambers's Encyclopmedia" at the time, I extracted information from it which I thought might be ubofal, if not interesting (p. 855), and I gave the anthoritios one-sided. Since the adrent of the "F.S.S." howoner acion to an ablo and sell-known physiver, 1 hating if there ass any ground for the assercian inquiring and he the connection, direct and he replied that the one ha
Now, with regard to M. Bonisson's statistics, what are they worth ? Is there no other canse but tobacoo to cconnt for epithelioms in-above all persons- old soldiers, rich idlers, and tavern lonngers"' It seoms that even M. Bunisson acknotiedges the remain latent were it not for the local provocation of the tobacco-a were it not for the local provocamotifed form I pointed out in my previous letter, when I said that all tobacco out in my previous letter, When
conld possibly do was to determine the locale of the cancer. What, may I ask, in the local provocation inducing the exhilition of epithelioma in parta where uo ducing the exhibition of epithelioma in parta where the morbid predisposition rest latent in these cases, and in morbid predispositmokers?
As to the second lefter of the "F.S.S." What is there worth attention in it that I did not notioe in my com-
manieation: I expressly mentioned Dr. Richardson's opinion on the effects of early amoking; bat your correspondent makes a lndiarons mixtare of tobacoo and
jam, quite besjue the point (as he will see if he jam, quite beside the point (as he will see if he
"digests" the Dr.'s remarks), and actually asks me whioh I would give my children, tobacoo or jam-as if they were peculiar infante rejoicing in long pipes
and strong ale. One does not sot strong meat before and strong ale. One does not sot strong meat before
babes, nor jame and lollipops before men I I cannot attempt to reconcile the statement that, mirabile dictu, "anurit is a mere outward application" with the assertion that an analytical preparation of the langs and
liver of a man (poisoned, poor follow, by anuff at the early age of threescore and ten) "exhibited all the reactions of nicotine." Neither oan I wade through the
long list of statements in the third letter on p. 666 which appear to be written chiefly in the subjanotive mood, and to be ntterly unsupported by proof. There, is one statement, however, which your correspondent appears to think very highly of. as he asks the "defendors of tobecco "to explain it. It is, that in 1838 the tobacco monnpoly produced $88,000,000$ francs, and thare were 8,000 insane persons, but in 1862 the pro-
droe was $180,000,000$ and the number of lunatics was duce was $180,000,000$ and the namber of lanatics was
14,000 . Of conrse in the interval there were no extraordinary ciroumotancee occurring in France, bat the "constant proportion in this increase "is nndonbtodly one insaze person for overy 3,500 frances prodnced by the tobacco monopoly, but in 1868 there was only one for overy 4,272 so obtained. Bat let us reduce this argument (!) to an absurdity. In 1838 there were
$28,000,000$ pints of cod liver oil oongamed, and 8,000 pernons died of consamption; in 1862 188,000,000 pints were consumed, and 4,000 persons died of consumption ; therefore, the cod-liver oil was the canse of this "constant proportion in the increase." If this
hed gone on withoat any increase of population for had gone on rithont any increase of population for
meny more twenty four years, Frenchmen would have beeome curiosities by their scarcity.
Your correspondent quotes from the Doctor the opinion of Professor Lefebre as to the influence of tobsoco in cansing insanity, but he does not quote
from the Doctor the reviem of that very article in the Dublin University Magazine Which appears to have be: maddled him. The Ductor said that if the statements contained in the article were trae it was singular that
the terrible affecte of tobacco did not make themselves more apparont. I quote from memory.
But I am occapring space naelessly. The one great argument, sod a clincher, against the tobmocophobists is, that men do smoke and yet continue to live, toler-
ably free from disease, and able to support those "chagrins, reverses, misfortanes," and soon, which Dr. Drahen. with a strange perversion of obstinate facts, thinks they woald enconnter mach better without "the
depressing action of this plant." depressing action of this plant."
Even granting that tobacco may caure some latent disease to thow itself in certain cases, are we all to deny
ourselves the ebjoyment of the weed for this? Why we shonld all be chronic alarmists, afraid to do any thing-afraid of the rain, of the cold, of the heat, straid of our very selves, if this argument were car-
ried to its logical concluaion. I know that nuder ried to its logical conclusion. I know that nnder
certain circumstances I found tobacco a friend: I will plaoe that kindness to its aredit when I prove it an enemy.
But That is this I see? " There is no possible standard of 'moderatinn' in the ase of tobacco."' The old, man who pretends to a right to speak on an "intricate pathological question," Who has no personal experi-
ence of tobacco, and who "cannot assent" (brutum inlmen) ence of tobacco, and who "cannot assent" (brutum fulmen)
to the opinions of Dr. Richardson, save those which harmonise with his own riew of the question. The fact is, I harrespondent of the moderate use of tobacco, your corresponent of the immoderate-the abuse of the weed. It is more than possible that to bacco-smoking really does harm to those with whose idiocrasies it does not agree, bat plain and palpable facts refote overy argument jour correspondent has brought againgt its use in moderation-for thongh he may not be able to see it, there is a distinction as well as a difference between its use and its abuse.
I I may appropriately conclude with the statement that tobaccu-smoke does not contain the bogey Nico-
tine. "Oar" obemiste may perbaps aualyse it and cay if I am right or wrong. The nicotine (if any remains) is in the "oil," and I pity the taste of the man who swallows that. It is pyridine, picoline, or some other ine that ruins the "slaves" of tobacco both
morally and physically. Bat satia rerboruln SWuL Rruxa
[We beg to suggest that this controveray ahould end with this lettor.]-ED.

VALENCIES AND ATOMICITIES.

[3799.]-"Beacon Lovar " (let. 3742, p. 642) someWhat orerstraius my remark as to the relative comprehensibility of the constitational formalwand the binary
formalm of acids and salts ; no one who has read much of my commanieations in these pages will sappose that I woold imply that the mere difinculty of an ideon is any objoction to its stady. What I Imave said, and what I now ropeat with any amonnt of emphacis required, is chemists, in the fashion illustrated by the discussion (Which as uscal, degeueraten into by the discussion (Which as nsua, degeneraten into a mere squabble)
betwoen "Beacon Loogh" and Mr. Bottone, is a dispate about what is wholly hypothotical.
Any examiner who should rentare to reject any formala attempting to deine the constitation of snion the acabjoot bridencing the posbesion ol and
land's gaesser, woald commit an act of grose tyranny, anless, of course, it was stipalated that the exam
tion was to be governed by the gaesses aforesaid.
The dispute governed to the gaesses aforesaid. hexad, is one about words and about properties wholly bypothetical. We take and and properties wholly them to a dyad or herad atom ; that isoeptions the atom is herad, because such and such a molecule exists, and then we say, suos and such a form mast be that in Which the molecule exists, because the atom on which it is based is hexad. Some people may call this gcience, for my part I think it is very like the old scholastio logie, and bears a strong revemblance to the discussion as to how many thonsand angels could danee together on the point of a needle, as to which no man really know anything. Of coarse, in science, the great majority of men will be able to gresp only one idea and will pin their laith to one toacher and system, just as in religion, the majority can soe trath only within
their own wretched little "ism." Be it no : they may their own wretched Little "ism." Be it so: they may
be right to anchor themselves to something which be right to anchor themselves to somothing which
appears to them fixed, and satistes their needs. Bat appears to them fixed, and satisies their needs. Bat othars there are who can and musi take wider views,
and on their behalf I protest against any attempt to and on their behalf 1 protest against any attempt to set up any standard of orthodoxy where thero is not maraly an opinion. That is really the only point on "hich "Beacon Loough" and I difier.
As to the opinions themselves, sulphar and its products (both because of their practical importance and the care with which they have been examined), furnish the best illustration. "Beacon Lough" has given us the hexad formula of Fraukiand, and azks me oo contrast it with Mr. Bottone's dyad formula of sul. phario aoid, as to their adaptability to the not of lectrolvis. On that head they are exacty ailke, for each presents the hydrogen as forming part of two
atoms of hydroxyl. Let me say here that I always nise atoms of hydroxyl. Let me say here that I always nse the word atom ior a compound racioal Which oannot exist by itself, and plays the part of an elomentary
stom ih combination. Bat the point I arged before was, that neither formala was so satisfactory as the simple $\mathrm{H}_{2} \mathrm{SO} \mathrm{O}_{4}$, meaning by this not the mere rational ormala giving the nambor of elementary atoms in a lamp, bat the binary formula, trenting the acia as composed of the ohlorous radical 8O, and the hydrogen satisfying that radi
Here or 1
Here then, I contend for the broad view that each and every one of these formulm and conceptions is one aspect of a many-sided trnth, and that it is a true
chemist's daty to stady each of them, and recegnise chemist's daty to stady each of them, and recognise its value ; not to sit himeelf down in
and dens the existence of the others.
and dens the existence of the others.
Now, I hold that if there is ayy such thing in reality Now, i hold that if there is any such thing in reality as atomicity o? valency of atoms, and if what we speak
of under those names is anything moro than a convenient mode of expressing ideas as to the grouping of the atoms within a molecule, then salphur is a
dyad onls, and that Mr. Bottone's formala is the most dyad onls, and that Mir. Bottone's formala is the most probable; for in what does the difference consist? We anhydride, a closed molecule $\mathrm{S}<1$ 1; again, this is converted into sulphnric acid by opening the bond between the oxygen atoms, and satisfing each of their
free ralencies by a monad atom of hydroxyl - $0-\mathrm{H}$. free ralencies by a monad atom of hydroxyl $-\mathrm{O}-\mathrm{H}$.
This gives as $\mathrm{S}<\mathrm{O}-\mathrm{O}-\mathrm{H}$. Treating salphar as a hexad we must suppose (it being an snpposition) that two oxygen atoms invod theruselvas each to two ol $\mathbf{0}=\mathbf{8}=0$; then the addition to theme of the hydroxyl
atoms gives us:-

$0=S=0$ 1 00 1

Now, either of these adapts itself to the electrolytic reaction by assaming tuat the H is tora away and re-
placed by a metal, and this is equally explained by the binary formula; for in this the radical is $\mathrm{S}<\mathrm{O}_{\mathrm{O}}^{\mathrm{O}-0} \mathbf{0}-\mathrm{O}$ possessing two free valencies.
But the doctrine of atomicity fails to tell us why that radioal either does not exist or cannot be isolated for in these bonds or valencies do exist and act as bup.
posed, I , at all events, fail to see why the two free oxygen valencies do not satisfy themselves, as they are assumed to do in other cases. If "Beacen Lough" wishen me to accept his diagram (after Frankland) at an explanalion, aioto asamo hablit aroality, and sides of the salphar atom, and that if the hydrogen sides of the sulphar atom, and that if the hydrogen
atoms are removed the valoncies set free are out of each others' range; then all I can say is, that I fail to see how a dyad stom, such as zinc, can over manage to hook itself on to those valencies and displace the bydrogen.
This serions failure of the existing atomicity notions for they have scarcely arrived at the dignity of a mently) is of the same nature as "Beacon Lough's" explanations of the silioo-flaorides and compoond chlorides. It is nothing bat a pure assertion, and not an explanation, to say that some bodies (say, binary salts) are formed in consequence of laws of valency by Which satistied molecales are formed, and that other bodies (asy, componnd salts) are formed by junetions of such moleoules on other principles as yet unknown lehemical affnities, and are as absolutoly definite
atructares, as the others. The only true and honert conrse is to regard the doctrines of ralency as apect-
lations and gnesses at trath; not to attempt to place lations and gnesser at trath; not to attempt to place footing of a decree of the anciont kings of the Med es and Persians, which altereth not ; because in these rerolationary days that sort of despotism only I
I have hitherto used the two words valency and atomicity as synonymous, becanse this is commonly done; there is, however, an importart distinction capable of being made if consented to. Valeney may represent the power of substitation or combination as to monad atoms, hydrogen or chlorine. Here we have tangible facts alone to deal with, and in this sense the doctrines of ralency are simple and important; thes. however, derive their value from, and are connected to the new notation: thas orygen is bivalent, so is reaso or ratio to hydrogen. The torm valoqny therefore, con neets the notation sod ropresents facts
Atomicity, on the other hand, represents hypothesis it assumes a defnite property of the atoms themselves eomething in the actasal constitation of the axygen or sulphur atom which gives it a power of attaching to itself 2, 4, or 6 similar powers oxerted either by reparate monad atoms or radicals; or by 1 or more atoms posesseing several similar powers themselves. Here we leave real facts, and enter apon a widernes It is in this connection true, bat may also be false. sulphar is djad or hexad, for wo know that sulphar unites to 2 atoms of hydrogen or ehlorine, and calling its valency 2 expresses, therefore, this fact. Wo rang the atoms according to onr fancy, and we can develop 8, 4, or 6 imaginary links to the sulphar atom, bat in
calling its atomicity dyad or herad, we only expreas oar calling its atomicity dyad or hexad, we only express our
guess at the explanation of the facts.
Sroxa.

VALENCY.-To "Beacon Lovgr

[9800.$]-\mathrm{A}$ VREY instructive dialogne, and one which, by the way, bears greatly on this subject, toot plece
between two Frenchmen who were desiroas of airing botween two Frenchmen who were desirous of airing lacid question "Did it rain to-morrom?" "Yes, it was!" was B's prompt and logioal rejoindar. Tho portinence and ooherence of the queries and roplies with which my good friend "Beacon Lough" farour me from timos to time bear so atrong a resemblance of
qualities displayed in the above dialogne, that a qualities displayed in the above dialogne. that
suapicion has arisen in my mind that "Beacon Lough" suspicion has arisen in my mind that "Beacon Lough
is the identical B who framed the response to tha is the identical B who framed the response to that
difficalt and portentong question. To render my difficalt and portentons question. To render my
meaning clearer I shall quote several passages in my amiable correspondent's letters, which will also serve is show the proloand veneration which he has for truth, and the great care he displays in not contradicting
himself. In letter 8420 , page 460 " Beacen Loukh himself. In letter 8420, page 460 , "Beacen Lough"
eary: ": Right or wrong, Dr. Frankland system of exys: "Right or wrong, Dr. Frankland system of
chemistry, with his atomicities, is tanght in theso chemistry, with his atomicitios, is tanght in thesi
(Government) alasses. . . The text-book is necessarily somowhat meagre and skeleton-like, tho learing ample room for the Mechanic to come in and fill it ap, so to speak." Now I pat it to the intelligen reader: What inference can be drawn from this josts
position of Dr. Franklaud's name with "the text position of Dr. Frankland's name with "the text
hook ? If "Beacon Lough" constructs his seDtencer so as to leave the sense ambiguons (or rather that they mean the contrary to what he intends) anrely I am uo to be taxed with a want of verity. Acting on the seif
evident signification (and not the hidden meanimg) of these words, I sought everywhere for a text-bool emanating from Dr. Frankland, bat 1 was assured by all to whom I applied that no such text-book existed Consequently 1 denied, and still deny, that any of Dr Fraukland's works are at present tesx-books for to Government clabses. Finding that I had taken the trouble forward (letter 3742) to tell me that I am quite correa this time, and that Dr. Frankland's works are not the accepted text-books; bat in order to qualify this bo
says my inference is quite the reverse, sc. What in Rays my inference is quite the reverse, tc. What in-
ference ? Did it rain to-morrow, sc.? I mast also ference? Did it rain to-morrow, sc.? I mast also
call attention to th the evident regard for real adrance "Rikcolained ") "Right or wrong," sc. (letter 3420). In the same letter another very strong assertion is made-viz. : "these
(atomicities) form the very life blood of modern (atomicities) form the very life blood of modern
chemistry," sc. But this assertion is only made to be chemistry," "tc. But this assertion is only made to bo
contradicted, for at letter 8742 , page 641 , "Beacnp contradicted, for at letter 8742, page 641, "Beacn
Lough," with remarkable anang froid, tellis me that "I nnst surely know" that the compounds I quoted-riz.
$\mathrm{K}_{2} \mathrm{SiF}_{6}, \mathrm{KBF}_{4}, \mathrm{~K}_{2} \mathrm{PtCl}_{6}$, \&c., are "all instances of
 molecular combination." Pray, how comes it it chemistry," how comes it, I repeat, that above oso thousand definite crystalline componnds exist, whos constitution is incompatible with, and inexplicable by the theory of "atomicities" (to nse "Beacon Lough's" antiquated, loose, and ambiguoas expression), and Which require a now and distinct, though co-eristeal
theory of "molecular combination"? I have alreedy tated on various ocoasions that I pleced very little relianoe on the theory of valencies as it at present tands; but I must say that oonsequent apon thinking over the examples addaced by "Beacon Lough" I Yeel
that the thoory has even less basis than I was previoady that the theory ha
disposed to ad mit.
At letter 8742 we bave a beautifal chain of reaconing made, howerer, only to be immediately destroyed by the substance of the following sentence. I quote the pat
sages,as it is important to keep them well in mind sages, as it is important to keep them well in mind:-"II
geems to me that if an element A combined with :
monad atoms $\varepsilon x_{x} x$ and y, its atomicity mast be equal to n, and that therefore when we find nitrogen combined with foar monad atoms of H, and one monsd atom of Cl, the only reasonable concluaion to which we can come is that N is a pented." Immediately following apon this we are told that the componnde, $\mathrm{K}_{2} \mathrm{SiF}_{6}{ }^{\circ}$ $\mathrm{KBF} 4_{1} \mathrm{~K}_{2} \mathrm{PtCl}_{10}$, dC., are "all instanoes of molecular combination," or, in ether words, not amenable to ite sumfient to show us what a tencency thero is in the haman mind to reject or lose night of all that doots not agree with its poonliar boent. Now, applyting
oxactis the same roasontins ovinn that yuty oxacical friend has appllede to arrive at the concluclom that ", is ottaralent, A combine with n moned atome seas x and y yy ite
 Cl, and foo moned atoms of \mathcal{Z}_{2} in enfy reasonfole octad."

 beginning of a seat co worting ing gre met names of a fow books (1 aia what 10 do tough by some book or othery (1) Iy, quotes freely) in which oxcoptionst art ing Whemistry." pablinhed 18i8, where, in the table, the equivilents of phosphoras, arsenio, to., are stated to be equespectively 15.7, and 87.5 , while in the body of the work reapectively $15 \cdots$, and 75 , do. ; coming on to Fownes, do., until we arrive at "such modern works as Oding's Markana, Chemintry," re find num wo nam of a blind following of a theory. I will jast point ont of a blind following of a theory. I wil jast point ows may interest the general reader. Professor Odling, in his "Manual," speaking of the elomente of the chlortwe group, points out their varging ralenoy, whi
table of valency he classes these me moneds.
Roscoo, in the table, pats tantram asd aiobium som trivalent and pentavala, winc is tio wouy of tho Tork they aro apocined as pomtavalent onty. See pp.
979 and 258 , edition 1871 . Agaih, at p. 168 , the oloments of the nitrogen groap are opecially stated

 are divalent ; nitrogen, to.. trtwilent, tc. At p. 230 , ho shows that nitroun wed phomeroras may pi considered as pentaraient, find oxh repp totrwariont (soo
 that in all these cacom dontrwa. in in raved o H 每 simply a case of honestiy atating tife troth, wenever, or wherever found. Were 1 to gand Evat a compound existed of the formula $\mathrm{HCH}_{\mathrm{I}}$, 1 ahould immediately call my readers' attention to the fact (even though might have reached the middle of my lessons), and warn him not to consider hydrogen as constantly monovalent. Althoagh, at p. 538, "Beacon Lough " says. "there are fow errors which might not be accounted for by reference to some anthor or another," yet, at P. 641, he quotes "somebody" (not quite sure who) to prove something I have never denied; and taxes me Fith asaiguing btralency to chloride, dce, when I have simply pointed out that the chlorine group is cortainly monoralent as compared to hydrogen, although in the compounds I mentioned that snch ralency will not secount for their existence, and would lead as to infer that they can act as triads, dyads, or pentads. This is a fact ; and I traly sympathise with " Beacon Lough" Fhen I find his pet theories mast yield to facts. And now I think I am entitled to know what "Beacon Lough "requires me to do. At letter 3420 he states his objeot in writing to be, "not to get up an argument," ac., but to prevent that " lessons in the science which mast tend to confuse the sabject should be set forth in our pages." To meet this amiable proposal, as our kind Editor has not thought at to take the hint, I would anggest that "Beacon Lough" should get npa series of lessons to replace mine. I am quite willing to withdraw, and shall mach enjoy the examples of "molecular combination" to which we shall be treated. With regard to bringing my papers into conformity with the "logal syatem," I have already rofased to do so, as I see no point of agreement betwixt legality and chemistry, except that they both terminate in y. Relative to the valencies aspigned to the olemente, I have distinctly stated (paragraph 211 that they do raty, and that my table of Talencies, sc., was made out with reference to hydrogon orly (see 34 at foot-noto). I repeat, I have never even inferred that nitrogen, \&e., dces not sometimes aot as a pentad. Bat I shall defor giving this groap, pentaraloney compared to hydrogen, until "Beacon Lough" or $\mathrm{PH}_{5} 0$ one else has demonstrated the existence of NH_{5}, $\mathrm{PE}_{5}, \mathrm{AsH}_{5}$ de. I note with pleasure that my lensons hare been of some beneft to "Beacon Longh," and that the has adopted one of ay ideas-riz. : that the valency
of the molecalo is independent of the valency of the of the molecalo is independent of the velengy of the
component atoms (see 21) for his " molecalar combinacomponent atoms (see 21) for his "m
natlons $"$ mean nothing, if not this.
In obedience to his wish, in conformity with the able given at of and the viows held out at 21, I can represent the formala of ammoniam ohloride as being $\frac{1}{\mathrm{~N}^{\prime \prime} \mathrm{H}^{\prime} \mathrm{s}} \frac{1}{\mathrm{~B}^{\prime} \mathrm{C}^{1}}$, an instance, "as my learned friend mat aurch know of molecular combination."

I avail myself of this occusion of correcting an orronoous statement which I made, regarding the valonoy assigned, to sulphar by Dr. Frankland. As "Beacon Loagh" mit wot whioh work, he
 than, $=$ gov. I am now inclined to bolieve lhat this mast be E Efpographic error, for on turatas to erey copy of the "ceoture Notes" I sad thet Dr. Fratiland
 mover, constitu za of en mown eniphur cou
 at a dyad. Dp to siar yrocant time ne oompoands of fo"'H's are known to oxdan, I have then chaintent I must oondider it weivilut enly
 our thentod friend "gigms" thated that EdSO4 ghw
 cold ias zeactices in general, and eloctrolytis in Herti oular for as "chor; but "Beacon Lrough" yoceed

 of comprehension thas $\left.\mathrm{SO}_{\mathrm{H}}\right\}$ expresaly enjoins us "to recognise the use of each, snd bove sil things, most oarefally to avoid pinning our faith excinairely to any one idea or "octrise. For-
tunataly, for the promesy of ecience, "Beacon Lough"

Lourgh's") "stomicities," and their vapeur densitios, I must say that, as he privily put it, ho ia " studying the shadow," instesd of "getting the rebstance." The componnds I refer to aro zase :-Ammontam chloride phomphorus pentachloride, chloric oxide, bromine pen tachloride, lodine pentaromidoy aro. As "Beacon Lough " inds himself atwble or unwing to give abe the grephic formula of oomporinas reforred to in bo last litier, I shan, ior the present my lessomes. I take this opportunity of thanking " Bemoon Loughe for the " anmende honorable" comtained in his last letter.
S. Bottome.

ATOMCOTHES.

[8801.]-ALlow me, shrough the meditm of your paper, to call Mr. S. Bottone's attention to the atomicity of nitrogen in his letter (3470, p. 488). I cannot see, in the face of reason itself, mow he can possibly make nitrogen anything else but a pentatomic element, eve is NH_{4}, hich is poser, Ammoniam, Thion he state mule of which is $\left\{\begin{array}{l}\mathrm{NH}_{4}, \text { and the bonds of the nitregen } \\ \mathrm{NH}_{4},\end{array}\right.$ atoms consequently engaged, thus:-

four of the bonde of each being held by hydrogen, and the afth bond of one of the nitrogen atoms is nentralised with the fifth bond of the other nitrogen atom, consequontly it is a pontad. I quite agree with him, ammoninm chloride is the monatomic radioal ammoniam anited with one atom of chlorine ; bat he mart take nitrogen atom are engaged by the four atoms of hydrogon; consequantly, as "Beacon Lough" says, if a pentad, by combining with five monatomic alemento, thus :-

$$
\text { Hir }^{\text {H }}
$$

The name may be maid of ammonium carbonate, which is a sinilar example, thus: $-\mathrm{O}=\mathrm{C}<\mathrm{O}_{\mathrm{O}}^{\mathrm{O}}-\mathrm{N} \equiv \mathrm{N}_{4}$ Then, with regard to phowphorus pentachloride, I have always been led to believe that the five atoms of chil rine were united directly with the phosphoras, and think Mr. Bottone's phospho-chloramine is maraly call Mr. Bottone's attention to his leat paper on chemistry (February 8nd, page 498), in which he staten phosphorua to be a triad in phosphorus acid, when

according to Dr. Frankland, whose views Mr. Bottone "holds in the highest respeot," yet wanders so much antray from them.

AURORA BOREALIS
[3802.]-Apropos of Aurora borealis, I obeerved the last vary carefully with upoctrocoope, and, owing to provious suspicion of the fact, obserred it simulfound thet woll-known green line almont, it not
exaotly, corresponds with a likewise green line shown (when you look down or at the end of the wick) by the spectram of a common wax candle.
I have this moment verified the above statement. Looking at spectrum of lighted wick of common candle, you get five lines :-
$180=D_{\text {, the }}$ yellow or sodinm.
$289 \cdot 5=\mathrm{D}-\mathrm{E}$, one reddish-green line (seen with difficalty).
${ }_{557}^{868 \cdot 5}=\mathrm{E}-\mathrm{E}^{\mathrm{b}}$, the green line in quention
$557=F, G$, violet-blue line.
$800=G$, , Notet line
In the acronel apectrum I thougth I distinguished tro hiver, dibl the grent, and the ofter too faint to fix it wherombets, zot with a krowning's instra-
 tram, whilh howevor, ko mightest ot looking at the whitiah-green litaten, and not so brigh at the reddinh, and is totelis aboont what there in not aurora.

Crgeb.

 bown, ref of emit merinear large ones, I doabt whether reach maight is to be menched to magnitude estimstos.
8 Monocrsotts.- $\mathrm{P}=856.18^{\circ}, \mathrm{D}=1.797^{\prime \prime}$. Small star, abont 10 mag., and bluish.
4 Мокосввоттв. $-P=178 \cdot 60^{\circ}, D=8 \cdot 885^{\prime \prime}$. Small tar, about 101 mag., bluc. There is alao a second minute companion, $11 \frac{1}{2}$ mag., $P=244 \cdot 1^{\circ}, \mathrm{D}=10^{\prime \prime}$.
.

40 Errosmb-The small atar in the f quadrant mentioned by yls, Burnhem, I eatimato of about 12ł mag. Tro Hotron Dembowski mentions a star st limpsed this star on March 4, but coould not verify my glimpsod trise star on March 4, but coarla not verify mall star at a distanoe of aboat $100^{\prime \prime}$ mo the same quadrant, of 18 or 191 mes
 Palkowa Catalogue, and thought it tertainly oblong in a direotion of 195\%. I have not as yet come across any menarice of it

 IM NEW ZEALALID.[3804.]-Tous aseful and instrativo periodical has always afforded us mach pleasure and profit. Wo look for its arrival every month, for to it we are ohiefly indebted for all the scientifc news from the great centre of science. Astronomy being the principal subject of interest to us, perhaps it may interest some of your readers to hear what we have done out here. As this is but a young colony thore are few persons who taic much interest in scientific subjects, their time being mostly occapied with basiness; in fact, we do not know air persons in the province who take say harest is astronomy whatever ; the consequencents, books, \&c. little demand for scientinc instrameals,
and we have great dimenity in getrigg inem. it is of 8in
 perform well on the planets, \&c. We have lately been perning Orion, and can very clearly see the forr stare in the trapezinm, and sometimes when the atmosphere is clear hape made ont the fifth.
Oar observatory is of our own constraction, and answers very well; it is square and made of wood; the roof is divided into two parts, one of Which is fred and the othor alides ap and down on rollers. We find it easy to work, and was more readily constractect than any other shape might have been with our liming is means and conveniences. The size of 6 ft . 6 in . high 10ft. square, the highest part of the roof 6 ft. 6in. high and the loweat 6 fl. ; the movale is covered with iron the aboat 8ft. $\times 10 \mathrm{ft}$. As the rool Blope is sumcient to throw ofl we ase for transit par7 in . transit theodolite which we use for transit pur poses. The cost of the briilding for materials onit was about $£ 10$. We have also a pretty completrabsor ment of meteorological with Robinson's caps is fixed on the top or a shou post at one oorner of the observanonts are in the garden.
In the above building we have spent many pleasant be in a position to afford one of Browning ${ }^{\text {s }}$ 8, in. reflectors ; but, in the mean time, ma
tho moderate aperture we possess. \quad Lambert \& TAylor.

THE MASTERY SYSTEM
[8805.]-Ir any one wishes to learn German, French, Spanish, or even Hebret conversationally, let them by all means go to Longmans and procure The Hand book to the Mastery Syatom," price 2s. When con rinoed, ta he will be, of the effectual way in which, by this method, langrages are to be learnt, he will procure the particular volame he needin at the same prioe as the "Handbook." The epithet " mastory" is given to it becasee the language will thas be mantered in an incredibly abort time.

Water-fressure engine-For Discription ser plas 6.

THE GLOBIOUS METRIC SYBTEM.
[8906.]-IT may not look well, Mr. Editor, that one Who occupies so mach of your space as your kindness allows me to do, should complain of another takivg ceasonable for "E. L. G." to fill three colnmps in reoring what nobody can thint of denying that more proving what nobody can think of denying, that more its maltiples than by $i 0$ and its multiplies by that many frections cannot 0 and its multiplies, and that many iractions coll tnown exactly expressed decimally. That is all woil known, and is acinowledged to be a noterithetending those blemishes and the evident and notwithatanding those biemishes and the evident and of the system when introduced will mach preponderato, ond it rill need far more forcible reasoner then and it will need a far more forcible reasoner than G. L. G." to shake that convictions
iet strongly sint atrongly upon a bad argament do so from conscions Want of a good one, and it is another, nearly as invarisble, that those who hope to conquer by argament will prejudice the case by talking of French Atheists and prejudice the case by talking of French Atheists and melists if it is yet quite certain that nothing but folly maverned the metrical systems of all lnown races till soverned the metrical systoms of all known races till they were all fools to invent nnits divisible by 8,4 , they were all fools to invent zuits civisible by 8 , 4 , to, he must be very simple, or must rely very much pon the ignorance of his expected readara, there sre gutrong objections-first the sasertion is ort are that no known races siopted the decimal ejstem of coins and measures till the time of Marat; and secondly, if tree it is nothing to the parpose. The Chinese, is trae, it is nothing to the parpose. The Chinese, as everybody knows, do now use, and probably, from a time far beiore history, hare adhered to yastem; and, if it wore a new syrtom, that ronld be no more an argument against its ofe then it wonld here been againat naing logerithms when they mere fret been agai
"E. L. G." aeserts (which is easier than proving) that if we decide to divide our measures of length, sur. face, capacity, weight, and money-value decimally, we must in consinteney divide time and angles in like
manner. He might as well say that those who decide to go to Uxbridge-road mast, in consistenay, go on to Uxbridge. I believe that the great ease with which decimaly divided measures of length, suriace, oapacity, Weight, and value may be learnt, the certainty with Which tbey may be remembered, and the oonvonience With which they can be nsed, eetimated, and compared wost and inconvenience of the change, and therefore cost, and inconvenience of the change, and therefore support the change ; but, as I am not ocnvinced that a decimal division of hours, and days, and years will be better than that now in use, I do not sapport that Change, and deny that there is any inconsistency in deolining to do so. We cannot dinde the year of $865 t$ romainder of 14 day be divided into 52 meaks of 7 days reach; there ould, therefore, be no win, but loss of each ; there wonld, therefore, be no gain, but loss of convenience, in having 10 instead of 7 days, even if it were not the general feeling that it is right as well as expedient to leave every seventh day for rest. Thers day, as might be done, into 10 instead of 24 equal periods ; it is not therefere worth while making the periods;
change.
The case is, however, very different with arbitrary measures for which any unit may be chosen or selected according to convenience; and it would palpably be very couvenient if all nations with mach intercommonication would nse the same units and divisions, or, if not oractly the same, auch as can be easily interchangea. For example, if our hon were made to corMillier or million grammes, exsctly ingtead of nearly equal to the weight of a cabe metre of water sad if qur sovereign were exsctly eqnal in valoe to 25 francs, instead of being orth abont 6 farthings more It is trae there ronld we making the alteration, bot the convenience of having making the alteration, but the convenience of having our weights and moneys exacty interchangeable is far instasd of two or thres anthorised tables of weight, svoirdnpois, troy and apothecaries, with two pounds of different weights and thres syatems of divipounds of diters unanthorised, there pould be one nniform wight, and oue system of division; and that the simpleat, moat easy to add, subtract, maltiply, or
divide, to compare with any other, or, to percaire ats glance ratios and percentages. glance ratios and parcentagea.
Of course, the full adrantage will net be obtained Of cogrse, the full adrantage will net be obtained nuless all weights and measures of things to be bonghs or sold, as well as money, are divided decimally; bat there is no reason why they shonld not be; and the only serions difficulty is in finding appropriate names for the new weights and measures which will not be confounded with those now in u8e, and easily spores by Englishmen. With respect to money, there is no difficulty, as only one new coin, for which an old name may be revived, will be needed. If, by charging the cost of coining the sovereign, we reduce its value by 6 farthings to that of 25 francs, or divide it, 25 now, into 10 florins, 100 chequers, and enact that the pound shall bu worth 1000 instead of 960 farthings, no other change will be needed then issaing coins (chequers) each worth 10 of those farthings, or twopence halipenny, or onetenth of a-tiorin, or ose-handredth or a movereign The threepenny and fonrpenny pieces should be called in, and no more half-crowns or sixpences coined Shillings or half florias would be worth swelvepence halfpenny-that is, the value of the pennies would be reduced 4 per cent., and penny bans and penny nowspapers Fould perhaps need to be made a little smaller. The cost of low-priced articles would soon be adjusted to the alightest change in the value of copper coing, and that is about all the inconvenienoe that would be
left.
Prillo.

STELLAR AND ASTRONOMICAL NAMES.
[3807.] - WITH much humility I would ask why we should not name the gtars as we do the craters in the moon? Why not deify our most distinguished lights of acience after their departare to join the now suffciently large namber on the roll of fame and give each a bright particular star ? Constellations might as in as possible keep together the names of those dis-
tinguished in one branch of science. Let ns take Orion tinguished in one branch of science. Let us take Orion
for example; the seven principal stars would be not for example; the seven principal stars would be not a, $\beta, \%$, \&e., but Ampère, Weber, Volts, Galrani, Oersted, Sturgeon, and Paraday-magnitude haring no
reference to eminenoe. By this meang we ghould por reference to eminenoe. By this means we ahould por petuate the fame of the traly great men of the earth.
M. Pasis

REMARKABLE ELECTRICAL PHENOMENON.
[3808.]-Is carrying out a series of experiments for the parpose of making uninsulated, or imperfectly insulnted, wires available for telegraphy, I have met with a remarkable phenomenon which I do not know has been before observed.
By the kind permission of the owners, I submerged a mile or two of naked wire in Wimbledon Lake, for experimental purposes ; and I found that charging it with electricity of either name it retained the charge bstinately fcr many minates. For instance, after ftempting to discharge it at intervals of five second for three minates, 1 found it still retained a very conit wonld still have retuined some portion after five or six minutes.
This may be due partly to polarisation (so called) of the wires, but I can scarcely think that this would conthe wires, bat 1 can scarcely Inam inclined myself to tinae for so long a time. I am inclined myself to attribute it to the electrisation of the strata of water snrrounding the wires which, like the glass in a Leyden phial, require a considerable time to lose their polarity almost disappears.
2, The Cedars, Patney.
H. Highton.

IMPROVED SPINDLE FOR CIRCULAR SAWS.
[3809.]-I Forward an illustration of Otley's patent saw spindle, which may interest those of your readers who employ circular saws. It is a simple device intended to avoid the difficulty experienced in adjusting ircular sawson the ordinary spindle. A conical washer a greater or lesser depth, according to the size of the

PROBLEM OF FIFTEEN SCHOOL GIRLS.
[3811.]-THe method of fulfilling the original conditions by transposing Mr. Proctor's letters occurred to me almost immediately after I had written my last letter, and I carried it still further, so as to get a more regular arrangement of the tables. I am even hoping to be able to deduce a rule from the tables thus trans posed, which I will send if I succeed in my attempt.
L. C. E.

CONFECTIONERY, SUGAR BOILING, \&C.-VI. [3812.]-Comfits and Pan Goods.-Have a comfit pan of any convenient size, suspend it from the ceiling a a convenient height to work it easy, have a charcoal fire or a stove to work it over to keep it warm, but not too hot. Have some dissolved gum not too thick. Boil some loaf sugar to 230° by the thermometer, keep it near the pan, and keep it warm ; then take some coriander seed, carraway seed, or almonds, or anything you want to coat with the sugar. Pat them in your pan, wet them slightly with the dissolved gum, then dust a little flour to just coat them, then add your sngar by degrees, keeping the pan well shaken all the time. To finish them boil the sugar rather less, leave what you want to colour in the pan, give them the colour in liquid, and shake them until dry, then colour the remainder separately.
I shall only give a few remarks on crystallizing, as it takes a great deal of time and trouble to crystallise goods, besides a warm room to keep the syrups in goods, besides a warm room to keep the syru
To Crystallish Coconnut Chips.-Take any quantity of cocoanuts, slice them up in thin slices, dry

BOILERI CONSTRUCTION AND MANAGEMENT.
[3818.]-I have a great desire to arrive at a convenient two-horse motive power for my workshop. I am an amateur, and have no water-power or suitable place for windmill ; have no gas for a gas-engine, and would not use one if I had; so I fancy I must look to steam. I cannot afford to keep a man to look after my steam and so I write this hoping that some kind reader will give me his advice as to how to set to work, and his opinion on some crade idens I shall set forth of my own. I have an engine just now, but from the bother

I have-first in firing, second in watching water, third in constantly regulating steam by opening or closing partially the steam-cock, and now and then blowing off some-the whole thing is almost useless. The greatest trouble is the water, and I have an idea of an adjust pump in such a manner that after a fess trials I may get the pamp to throw enough to keep the water safe for at least an hour or an hour and a half. I should like an opinion on it. A is the eccentric wheel, with a slot in it, C C C. B is the end of shaft, squared to fit slot, and D D is a screw passing through B, having a collar at F , and a squared head at E. Fig. 2 shows a collar at F, and a squared head at E. Fig. 2 shows a
hole through ring G, showing square head of sole through ring G, showing square head of coincide with E , and a key being applied, any amount of eccentricity can be given to A, and I imagine it might be adjusted to give the exact throw to keep the water pretty constant.
As to the boiler itself, I fancy a copper one, if the expense would not be too great. Perhsps some reader could give me an idea what a multitubular copper boiler for a two-horse engine would cost, or say how long an iron one would last with the fitful work it would have to do in the hands of an amateur (with pretty good water, however), say, four days in one week, ose in the next, and perhaps nothing for the next six weeks. I fancy a damper in the flue, workable by an attachment near the lathe, wonld regulate the steam generation near enough, but I would like some hints; and, finally, could any of your readers do me the greatest kindness of all, by giving me good practical
dimensions for a moderate running engine to suit? fancy there is eneugh data given above for any one to see what I want.
T. I. F.

A SUSPENDED CLOTHES HORSE.

[3814.]-I SEND you a rough sketch of what may be called " a suspended clothes horse." Its construction is both simple and cheap,-certainly no slight recommendations, thongh not the greatest. Everybody knows (of course I am speaking now of the working classes) how annoying and dangerous to health it is to have to dry clothes on a washing day in a house where children and grown-up people are alike exposed to the steamy atmosphere, and colds, coughs, \&c., can scarcely be avoided where the old plan of drying clothes is adopted-viz, placing them on horses near the fire. The next better plan is to throw a line across the room, but even this is very inconvenient. The one I suggest

is made in the following manner:-Two scantlings of timber $1 \frac{1}{2}$ in. $+\frac{3 i n}{4}$ i, of such lengths as may be con-
venient and suitable to requirements, are fastened by venient and suitable to requirements, are fastened by
two shorter pieces, say 18 in . long, placed near each end two shorter pieces, say 18in. long, placed near each end
as shown on sketch. A single and a donblo pulley are as shown on sketch. A single and a double pulley are
then fixed in the ceiling, the same distance from each then fixed in the ceiling, the same distance from eadh
other as the cross pieces are, and as near to the fireother as the cross pieces are, and as near to the fire -
place as may be convenient. A length of sash cord is place as may be convenient. A length of sash cord is
then taken, the two ends of which are passed through
L. W. D.
the doable pulley, one going to the tingie palley through which it is paseed; both ends are then secured to ohort loops of cord fasteped to the cross pieces. The conand by means of a hoek on the wall and knots tied in and by means of a hoek on the wall and knots tied in thing, bnt I think it is not so generally adopted es it thing, but I think if is not go generaly adopled as it hence my apology for troubling you.
J. W. (Bradlord.)

BraEs, AND BEE-KTRPDNG.

[8815.]-Bres are now eollectiog pollem in large quantitios, and, as they show great eomparativesctivity, many bee keepers will be aheated into the beliof that
the dangers of wintering are orer, and that this early the dangers of wintering are orer, and that this eariy crop. The Edes of Maroh Eve come! Ay Cesar; but not fino 1 roplied the soothasyer, who knew What wae Filoty to happen, and ere thes were gone Cresar was no meoes: and allhough no soothasyer, I ahonld like to wez amatour beo-keepern that akhough early spring hac emme, there is jet considecuble cause
for apprehenaio.. Doubtless will be glad to know what is Hkely to happen, but there are also many who will zot heed warning or advice, and will not believe either until alter the catastrophe. What is true of bees at one
time is true of them at all times under gimilar conditime is true of them at all times under aimilar conditions, and What has happened once will happen again canaes vary, so vill their results, and accordingly, as thove predisposing canses are known and anderstood, so may they be governed and tarned to good or ovil. "Coming events cast their shadows before," and he is of other people's experience. Prophesying after the ovent is eary enough, and hence it is not difficalt for epeculative bee prophets to give apparently good raa.
Bonng for all sorts of failures after thay have happened. When beos are kept in stram skips, and have boen deprived of their aupers of honey in autamn, their
ability to stand the ensuing winter could only have ability to stand the ensuing winter conld only have and zaking into accoant the age of the comb; and although it may be ascertained whether the lower parts
of the combs contain brood or not, it is almost imfosof the combs contain brood or not, it is almost impos-
sible to determine what the comb actally contains, sind \& strovg stock of bees which have stored their honey in the super, will, as they discontinue treeding, store pollen largely in the breeding celis, and consequently there may be more weight of pollen than
honey in the hive, but of which fact the bee-keeper is, of course, blissfally ignorant. When early spring arrives, the hive is again judged by weight, and the bee keeper congratulates himself on the fact of his
bees having consumed so little honey. There may be plenty of bees in the hive at this time, bat no brood, for the bees woald be anable to commence breeding antil they could gather honey ; for the owner, jadging by their weight, wonld think feeding quite uncalled for,
and when the first season arrives, as it has dove during and when the first season arrives, as it has done daring the present month, the bees all go to work gathering all the cells with the latter, so that the poor queen has all the cells with the halter, so that the poor queen has during the sammer from repletion of pollen, and to the sarprise of its owner, perishes during the e:ipuing Winter. This is the fasto of handreds of stocks of bees,
good, sound, healthy stocks, which, if they could have beran breeding early, say, in Janaary, before pollen conld be gathered, wonld by March be so charged
with brood, which would have consumed so march with brond, which would have consumed so mach of This argument is, in my opinion, one of the strongest against the nse of hives with fixed combs, for if the
bees were in movable comb hives, their sutumn state bees were in movable comb hives, their autumn state
could be correctly ascertained, and their condition in conld be correcty ascertained, and their condition in
spring, as described, rendered impossible. I therefore spring, as described, rendered impossible. I therefore
strongly advise all persons who teep bees in hives atrongly advise all persons who keep bees in hives in which the combs are fixed not to trast to weight
alone as a guide to their condition, but to feed gently and continuously during all spring months.
Weak stork, snch ast those described by "Sixty Two," query 11046, p. 623, No. 362, should be treated in a
similar way, and atimulated to their ntmost. This cannot be done by giving them large quantities of food at once, bat may be accomplished by patience
and persererance. To induce bees to commence breeding, it is necessary that a constant and regnlar supply of food shonld be given them, so as to indace them to think summer has come, when they will act accordingly, and when summer has come they will be
fit for anything. Bome writers on bees recommend honey as the best food for bees, and perhaps it is When absolntely pure, but I cannot to otrongly advise bee-keepers against the practice of giving honey to
bees, for it is in honey that the 'germs of foul brood bees, for it is in honey that the germs of foul brood
are most likely to be contained, and to the wee of it as bee-food the deatruction of large apiaries is due. The mess which is sold by grocers and othere as honey often containg both animal and vegetable matter-to
wit, gmashed brood and pollen, the resalt of the system which enleminates in the brimstone pit, which finds a defender in Mr. Pettigrew,-and this said mess containing, as it does, all the elements of fermenta-
tion, is considered by eminent German apiarians to be tion, is considered by eminent German apiarians to be
the canose of that fearful disease which, in my opinion, is the only one thing which is a real obstaclo sace cessial spicaltare, and I fear nothing else, for all stimalativa
stimulative feeding should be performed as follown :-First, gire the been half a pint of ayrap in
ench a way to they can get it eanily ; bottle on top
is beet, wo that they can rack it through perforated zinc, this will give them a sort of flllip and pot them in good heart, then without removing the perforated three procure a pieoe of plain xiac or tin, and punch feeding bottle, and set the thole on the perforated zinc. By this means the bees will only be able to take the syrap vary slowly, bat the mapply should continue or along time, care being taken that the bees do no two or three weekg, which may, of course, be regulated by the size and number of the holes in the plain zinc There is very little tronble in this mode, and the bees do not get so excited by day after a short time, as they do when food is given them by fits and staris.
Stocks that are known to be strong and healthy require little attention at present, as they will be ready with their thousands at the right timo, but the and it is ourioas to witnoss the apathy of bee-keeper in the matter. The chief value of a stock of bees is in having it strong in nambers when honey abounds, and to insure that, is one of the greatest arta in bee-calture, yot many never think of their bees until the frait trees are in blossom, and it is often only then that many stocks are onabled to commence breeding at all. The past few days have set all atocks breeding in a greater or less degree, as is evidenced by their carrying so mach pollen, but it mast be orident to the most saperflcial observer that recy littlo honey is obtain ablo, and as there is a vary probable ohance that a apall of March weather will ahortly come roaring among us, whon the boes will not be able to go ort at all impression which prevails, that bees have been storing honey which will holp them through a spell of rough weather. Really, the very opposite is the case for the bees have boen deluded into the beliof that sammer is at hand, and that mild bright weather will continue, and have acted acoordingly, impoveriabing themselves by their thstinetive desire to propagate their own species, so that if a spoll of weather ahould imprison them, many stocks will be in considerable danger fer want of continued anpplies.
The same course apoald be edopted with them as
with stocks which hive bee erotion commence breeding; they shoold to fed thenaced
 get abroad agata.
The best food for bees ha made ef Slb. of beat lowsugar boiled in two pints of water. The addition of a vineglassfal of vinegar will prevent the nager re crystallising.
Moist sugar or beer should not be used, as they with pollen might act ast the honey aforesaid.
C. N. Abbott.

COLLIERY EXPLOSIONS AND THEIR

 PREVENTION.[3816.]-In my last letter I said that most of the letters written on the a hove subject had shown the ignorance of the kubject the writers had taken in hand
I did not say so as regarded "Philo's" as hitherto that I did not say bo as regarded "Pbilo's," as hitherto that
was the only letter that had treated the sabject in $\approx \mathrm{a}$ was the only letter that had treated the sabject in ${ }^{2}$
practical manner, and I think "Philo" will agree with practical manner, and $\begin{aligned} & \text { me that most of the suggestions pat forward for the }\end{aligned}$ better ventilation of mineas, to., were rather absurd, and quite justified what I said, as to the ignorance of the quite justified what I said as to the ignorance of the
Writers on the sabject, and $I \mathrm{~mm}$ sorry that he calls Friters on the snbject, and 1 nm sorry that he calls
my politeness in question, as nothing was farther from my poind than any thought of being personal in the mymind than any thought of being personal in the
letter. In the three cases of loss of life mentioned in my last letter, I omitted to mention their canse; mot one of them was caused by gas; two of the deaths were when holeing, the remaining one by a corl ranning over a man.
Now I agree with "Philo" that where wilfal neglect on the part of a mine owner for the safety of his workmen canses the death of a man, he is morally gailty of sense of the werd he is not gailty, and yet I nnderstand "Philo" wonld make him responsible for these also. As to "Philo's" project for insarance of
collieries, I rery mnch doabt if the known recklessness of colliera in fiery districts (where carelessnoss colliers could be canse of explosions), would not have more than he says. On my remarks as to the reck lessness of colliers, he does not reply, so presame he agrees with me on that point. In my last I admitted that the small collieries did require moch improvement.
If "Philo" will examine the different inspectora If "Philo" will examine the different inspectors
reports, he will find that it is the small collieries that reports, he will find that it is the scall collieries tha
swell the large total of deaths each year, and wher the men in anthority are often badly paid, and of little experience, and where the owners cannot go to a grea expense in laying oat their colliery, and providing the
best machinery, \&c.
Krwa Coal.

A NEW GUTTAPERCHA.

[9817.]-I bEG to call the attention of the readers of the Engirish MEChanicinterested in the question, to a
tree of Qneensland which deserves an investigation, viz., the Mimusops parvitlora, of the Sapodilla order o Sapotacere. This tree has a thick milky sap, in taste resembling fresh cream ; the same peculiarity nith the massaranduba (Mimasops elata) and the
balata (Mimnops balata), on which I gave notes in an earlier number of this paper. The balata seems to caontchouc and grttaparcha. Of the ase of the mas-
garandabe in Europe I cannot find any mention; per haps it is confounded with balata by the trade.
the con try to give, in a fature namber, atial of all for the moment arrening silasitication of aboat 800 tanning materials, with notes on the principal of tham Melle, near Ghent. Bernardin, Maseum Curator.

POWER OF HIGH PRESSURE ENGINE.

[3818.] - A portable engine near me, with two sin. oylinders, is driviag to pails of 4ih. millstones and a per hear. There has been an iron chimney with two bends erected about 40 ft . high; the result whe a good draught to raise the steam in less time than bofore, but with a larger consamption of coals they conld with diffenlty drive one pair of stones. It was tried in various ways, with and without the exhanast turned into the ohimnoy, but it veald not do, and the tall ohimbey is blanding disused,

With the tall ehi

with "Inquirere" aney this ongine is almostidention 50ft. iron chirers," and loads me to sappose that tho tort. position than anything else, snd I boliate the tory posilion han and factory result than the same sum spant in law.
Many years since a friond arectod an iron obimnoy atituted with rery groat adrantage ; this was a high premeare engino, driving two or throe pairs of atonee. am working a 7 tim. oglinder at 501b. prosarare on a on mallitabalar boilor, with rather under tewt. of conls por hour, driving one pair of 4 ft . 4 in . millstones, grinding from three to four bushels of wheat per hour, with which I am very well satisfied. I believe the unplemant hamming of the portable engine is cansed by the vibration of the ash-pan. When my engine was used as a portable the noise was deafening; now it is Axed on
briak aeb-pit there is no sornd bat the beat of the oxharat.
R. R. Smite.

LIGHTNING CONDUCTORS.

 [8819.]-Havive had a mall bone to piak withPhilo " on my own aceount, I may as well point out to him his own orrors, seeving hin facility in providing errors for others. (N. B.-
thas in two distinct modes.)
Professor Henry is not mistaisen in recommending rods as lightning conductors, bat "Philo" (let. 3733, p. 638) most certainly is mistaken, for he asserts "that it is the surface that carries the electricity," wherens it is sme mass of metal, and the surface has not the very
smallest concern in the mattor. Cepper is best even if very mach smaller, not becarse it is less lisble to rast, but becanse it is a better condactor. All metallic portions of she exteriors of bailaings, gatcers,
pipes, and so on should be connected to the condactor, pud that to gas and vator pipes, but gotter pipes aro not reliable in themselves becanse of the breach of conductiug continuity at the joints.
Withont entering into the point debated between "Philo" and "F.R.A. S.," snd withoat adjusting the Herachel and "our "F F R the opinions of sir fohn against the definition of thelatter by "Philo" "(let. 3730, p. 637), as one "whom ve do not know." We do actually know "F. R. A.E" a great deal better than we know Sir John Hersche. The name in such cases opinion an indicator to the mind whose expression of Herschel merely tellening to. The name sir fom mind whose judgment has been ascertained and valued by others. The name "F.R.A.S." in thise pages does esactly the same; it telle us that an opinion he expresses comes from a midd whose powers have been fore, able to value for ounelves; his own actual name at the most conld only tellus whether it was recognised ontside of "our" pages, hat as we, at all evants, well perannal name could add in our judgment, no mave weight to his statements han would the informetion that he stands six feet hgh, or wears a monstaina of their own.

CONNECTING LINFS IN THE NATURAL HISTORY OF CREATION.

[8820.]-1 hops "A Liver of Trath" (letter 3471, p. 640), will not be very aigry with me for telling him that he has been sold. "he "monkey-ish of Japan," Barnum's mermaid uncor a new name), instead of
being "a connecting likk in the nataral history of creation." is simply a manfactared monstrosity In an artiole, "De Mrnstris,' in this month's Dark Blue magazine, the Rev. i. G. Wood (mhose anthority I hope will be enongh for ' Δ Liover of Trath ") saya the ollowing apropos of this iabject:-
I cannot leave the abject of monsters withoat a short reference to the J.panese mermaids, which are now and then broaght bfore the pablic. These are nearly all made to repreent the conventional idea of mermaids, except that ine upper half is formed in semblance of a monkey and not of a human being. dorens, quite commol, and aro manufactared by bnt one mot ol triking ars aribinal iden of their ape, They are woll made, bit not so well as is generally thought. The late Mr. Waterton, whose ikill in tari. dorngy whe mupreme, lad an entire conimeth for

Japanese mermaids, which he sigmatised as clumsy
fabrications, paring that he could make better work ith his left hand. Certainly the mmaking monstrositice which he made, and with which be delighted to delude visitors to his collection, were much superior to the best Japanese metmaid that I have seen. Some years ago a fishmonger in tbe old Hangerford Market showed me one of these mermaids, and was quite angry with me weally praised the excellence of inse inhabitant of the water, framing his belief on the fact that there was no janetion between the ish and the maid. Noither was wore. The Japenese taxidermist lnow his businese eing nothing but the papier-madche worked over model, and having fins, soales, teeth, and nails inserted in the proper pisces.
Will this satisfy " A Iover of Trath"? Wilson.

LTFE IN DARKNESS.
[3821.] - I thing Professor Thomson must have been misunderstood, for the dictum that " life cannot exist in darkness" is totally opposed to knowa facta. I send which, although, possibly zot conclusive on the point in queation, canmot fail, I isaagine, to interent many of your readers:-

While subterranean vegetation is excluaively con

 Aned to mushrooms, animal life of almost every olass has far more abundant representatives, for vivifying infrence of light. The varions animals which are found dwelling is caves may be subdivided into two groops; 0ne, which, though preferring darkness, and spending a great part of its existence under the earth,yet often voluntarily seeks the light of day, or at least yet often voluntarily seeks the light of day, or at least Wanders forth at night; while the other is exclusively the earth, unless by chance or when driven ap by

violence.

To the first groap belong most of the insectivorons and rodent quadrupeds that dwell in self-made barrops, or pursue a sabterranean prey, suoh as the armadillose
and the moles. The large family of the bats likewise love to sleep by day, or to hibernate in warm and soliasy conves, where they are sometimes found in numbers as countless as the sea-birds Which flock round some
rocky island of the north. When Professor Silliman rocky island of the north. When Professor Silliman
risited the Mammoth Gare (October 16, 1822), he everyrisited the Mammoth Cave (October 16, 1822), he everyroofs, though a large number had not yet retired into rinter-quarters. In a small space, scarcely four or five inches square, he conated no less than forty bats, and convinced himself that at loast one handred and twenty find room on a square foot, as they held not only by the surface of the walls of their retreat, but by each other, one closely crowding over another. Snch clusters
are fonnd in the interior of the cavern, which branches out in many directions as far as two miles from the entrance, so that a very superficial survey allows them to be counted by millions. Who, in these
dismal regions, where no change of temperature or of dismal regions, where no change of temperature or of light announces the varions seasons, tells them that proper time out of the deep sleep in which they remain planged for months? The same mysterious voice of instinct which regolates the migrations of the birds and the wanderings of the 6shes, and which in this case, as
in evcry other, is equally wonderfal and incomprein every
hensible.
In the class of birds we find many care-haunting species. The pigeons like to nestle in grottoes, which
also serve as welcome retreats to the moping owl ; and also serve as welcome retreats to the moping owl; and
varioua swallows and swifts breed chietly in the darkness of caverns. One of the most remarkable of these troglodytic birds is the gaacharo, which inhabits a large cave in the valley of Caripe, near the town of
Camana, and of which an interesting account has been Gamana, and of which an interesting account has been
given by Humboldt, who firstintroduced it to the notice of Earope.
The Cucva del Guacharo is pieroed in the vertical profle of a rock, and the entrance is towards the sonth,
forming a noble vanlt 80 ft . broad and 72 ft . high. The rock surmonnting the cavern is covered with trees of gigantic growth, and all the lnxariant profnsion of an inter-tropical regetstion. Plantain-leaved heliconias,
and wondroas orchids, the Praga palm, and tree arums, grow along the banks of a river that flows ont of the cave, while lianas, and a variety of creeping plante,
rocked to and fro by the wind, form elegant festoons rocked to and fro by the wind, form elegant festoons
before its entrance. What a contrast between this magnifcently decorated portal and the gloomy month of the Sartshellir, imbedded in the lava wildernesses of Ice land ! As the cave at first penetrates into the moun-
tain in a straight direction, the light of day does not disappear for a considerable diatance from the entrance, so that viaitors are able to go forward for about 430 ft . mithoat being obliged to light their torohes; and here turaal birds are heard from afar.
The gaacharo is of the size of the common fowl. Its
hooked bill is wide, like that of the goat-sucker, snd farnished at the buse with stiff hairs directed forwards. The plamage, like that of most nootarnal birds, is large white spots. The eyes are incapable of bearing he light of day, and the wings are disproportionatel quits the cavern only at nightfall, eapecially when there is moonlight; and Hamboldt remarks that it is almoet the only frugivorons nocturnal bird yet known, for it on very prey apon insects like the goat-sucker, bnt feeds wallitted to crack. The horrible noise made by thousande
of these birds in the dark recenses of the cavern can be compared only to the wild shrieks of the sea-mews roand a solitary bird mountain, or to the deafening apdark fr-forests of the North. The vast focks in the on advancing deeper into the cave, the birds being distnrbed by the torch-light; and as those nestling in the side avenues of the cave begin to atter their monrnfal cries when the frst sink into silence, it seems as if their rroops were alternately complaining to each other of the intruders. By fixing torehes to the end of long poles, the Indians, who serve as gaides in the cavern, show the nests of these birds, 50ft. or 60ft. above the which the cavern roof is pierced like a sieve.
Once a Year, about midsummer, the guscharo cavern is entered by the Indians. Armed with poles they ransack the greater part of the nests, while the old birds, uttering lamentable cries, hover over the heads of the robbers. The young which fall down are opened on the spot. The peritoneam is fonnd loaded with fat, and a layer of the same substance reaches from the abdomen o the vent, forming a kind of cushion batwean the as, instead of feasting on fruits and oily kernels, they ive upon the scanty produce of the chase; while in the guacharo, as in our fattezed geese, the accumulation of tat is promoted by darkness and abandant food. At the period above mentioned, which is known at Caripe as the " oil harvest." huts are erected by the ery parm the cear there the fat of the young birds just killed is melted in elay pots over a brusbwood fire, and is said to be very pare and of a good taste. Its mall quantity, however, is quite out of proportion to the numbers killed, as not more than 150 or 160 jars of perfectly c
The way into the interior of the cavern leads along the banks of the small river which flows through ita dark recesses; but sometimes large masses of stalsctites obstruct the passage, and force the visitor to wade throngh the water, which is, however, not more than 2ft. deep. As far as 1,458 ft. from the entrance the cave maintains the same direction, width, and difficult to find another mountain cavern of so regular formation. Humboldt had great difficulty in peranading the natives to pass beyond the part of the cave Which they nsually visit to collect the oil, ss they
believed its deeper penetralia to be the sbode of their believed its deeper penetralis to be the sbode of their ancestors' spirits; but since the great nataralist's stitions, or to hare acquired a grenter conrsace in facing the mysteries of the grotto, for, while they would ouly accompany Hamboldt as far as 236 fathoms into the interior of the cave, later travellers, such as Codazzi and Beanpertnis, have advanced with their gaides to double the distance, thongh withont reaching its end. They found that beyond the farthost point explored by Humboldt the cave loses its regularity, and
has its eails covered with stalactites. In the embranchbas its ealls covered with stalactites. In the embranchIt was formerly supposed that the guacharo was excla. It was formerly sopposed that the guacharo was exclnsively confined to this cave; latterly, how
also been foand in the province of Bogota.
The discovery of animals adspted for perpetual darkners is bat of modern date, and as the vast majority of cares have not yet been thoroughly explored by zoologists, the number of geners and species already
known gives us reason to believe that fature investi. known gives us reason to believe that fature investi-
gations will add considerably to their number. In the gations will add considerably to their number. In the
Adelsberg, Lueg, and Magdalena grottoes, which form bnt an inconsiderable part of the extensive cavernous regions of Carniola, seren exclasively subterranean
insecte, one spider, two acorpionides, one millepede insects, one spider, two acorpionides, one millepede, fifteen different species of animals, belonging to no less than six different olasses-have been fonnd

less than six different classes-have been fonnd

as in the regions of light. Thus, in the recesses of the grotto of Adelsberg, the cavern beetle (Leptodirus Hoc henuartii) is persecated and devoared by the scorpioni-
form Blothrus spelaus, and by the eyeless spider (Stalita form Biothrus spelaus, and by the eyeless spider (Strita
tanaria). The black and brown Leptodirns discovered n the grotto of Adelsberg in 1831, by Count Hochen wart, is distinguished by long and delicate antenna and legs, and The nnique specimen fonnd at the time was unfortunately loat, and althongh twenty-five florins were nfiered to the cavern guides for one of these beetles, fourteen years passed before it was re-discovered in the same cave. Since then other collectors bave been more ortunate, particularly Prince Robert Khevenhüller captared no less than twenty specimens of the Lepcaptared
Cantionsly feeling its way with its long antennas, the beetle slony asconds the damp ofalactital and The greater number were fonnd in the evening, thus giving reason for supposing that the leptodirns is a nocturnal beetle, althongh it is hardly possible to conceive how the alternating infuence of night and day can stil bo folt in these regions or darkness. The (disoorer in 1899 is parned F veral times observed by Prince Khevenhüller. He once anw one of these cavern scorpions slowly crawling along, strotching out its palpi in all directions, and ovidently wes engaged in a hnnting expedition, and soon found that he was not mistaken, for a flue Leptodirus was orswling ebout 4ft. higher on the opposite wall. Fors until he had shoroughly convinced himsell that the
movements of the Blothras were evidenty regaiated by yond all doubt, in parsinit of the beetle. A Leptodirus having been thrown along with a Blothrus into a phial was immediately cat to pieces and devoured.
The eyeloss cavern spider (Stalita tenaria), witio brownish palpos and a now-white abdomen, is not seldom fonnd in the hollows of the stalactites, lying in wait for the unfortanate Leptodirns. On the anface of the earth spiders are frequently obliged to fast for a ve'y long time; but in cavarns Where life is so sparexemplary, even among apiders. Her appearance on the snow-white stalactital columne, where she only becomes visible when illamined by the fall light of 2 taper, is very strikigg. Like a vision, she sweeps awny in her ivory robe, mocompanied by her increasing shadow, antil she inally disappears in the darkness. Torches are not allowed to be carried in the grotto of Adelsberg, that the whiteness of the stalsotites may not be tarnished by the smoke.
Bat the largest and most intereating of all the Euroanguinus ; Hypochthon). This enigmatio reptile was frst found in the famous lake of Cirknitz, which, commanicating with numeroas sabterranean caves, alternately recoives and loses its waters through openings in the rook. Atter long and heavy rains the fioods, which the hidden vanlts are no longer able to contain, gush forth in foaming oataracts, and the lake, which generally forms bat a long and narrow ohannel, then swells to at least three times its ordinary width. Sometimes, after a long drought, the contrary takes place, and the whole lake disappears under ground. Thus, from Decomber, 1833, to October, 1884, not a trace of it
was riaible, so thoroughly had it concealed itself in its subterranean reservoirs, where its faches, secure from the persecutions of man, multiplied in a romarkable manner. The olm, which only
casually comes to the light of day, along with the overflowing waters of the Cirknitz Like, was Arst discovered in 1814. in one of its permanent sabterranean abodes. The Magdalona or "Black Grotto " aituated aboat a league to the north of Adelsberg, slants abruptly into the bowels of the mountain. After a long
and diffealt passage over blocks of stone or through oft mad alt passage over blocks of stone or through ises or falls simultaneonsly with the waters of the Poik, and proves, by this reciprocal action, that in all probability, all the numerous grottoes and subterranean river channels of this so strangely undermined counter form but one vast and intricate network. It was in
this pool, which no light illumines and no wind ever stirs, that numerous Protei were firat discovered ; bat as handreds of specimens have since found their way Wo the cabinets of nataralists, to be observed, dissected, or bottled up in spirits, their number has vory mach
decreased, and the time is perhaps not far distant when they will be entirely extirpated in the grotto, where from time immemorial they had enjnyed an andisturbed security. The Protens is one of those remarkable reptiles which breathe at the eame time throngh langs and gills, having on each side of the neck three
rose-red branchie; which it retains through life, as its lungs are but imperfectly developed. It has a long eel-like body, with an elongated head, a compressed tail, and foar very short and thin legs. The skin is
flesh-coloured, and so tranalucent that the liver and he heart, which beate about fifty times in a minate, can be distinctly seen anderneath. In spite of its apparent weakness, it is able to glide rapidly through mime water. Its foar little lega remain immorable while
wimming; they are only nsed for oreeping, and thon swimming; they are only nsed for oreeping, and thon
in a very imperfect manner. Dering rapid movements in a very imperfect manner. During rapid movements
the gills swell and assume a lively scarlet oolour ; when quiet, they collapse and become white like the rest of he body. Sometimes the animal raises its head above the water to breathe, batd palmonary respiration evi-
dently plays bat a secondary part in its economy, as can ping a very short time ont of the water. The skeleton oonsists almost ontirely of cartilage. The eyes, two little black spots, lie baried ander tho kkin, and, as may well be imagined, are very imparlectly developed. Although more than a thousand specimens have been observed, yet bat hittie is known
aboot its mode of life, nor has it been ascertained abother it is oviparous or brings forth live young. In whentive state the Protens is able to live for several years without any apparent food; bat on fastening a mall worm to the extremity of a thin stiok, and holding it nuder the water close to the head of the reptile, it shoots rapidly towarde it, swallows it with
the same velocity, then ejects it again, and repeats this manonarre sereral times, antil it finally retains the moreel. The antiring zeul of the German nataralisto has discovered the Proters in thirty-one different caverns. and ascertained seven distinot species, varying
by their size, the form of the head, the position of the by their size, the form of the head, the posinion spal
eyes, and the colour of the skin. Six of these apecies belos, to the colour of the skin. and the sereath to those of Dalmatia. Two different apeoies never inhabit be same
Daring the visit which the Arohduke Fordinand markable parts of the cave were brilliantly illaminated, parts or to prodice a magioal effect. Charon's boat, issning from a dark reoses, came gliding along over the black surface of whe pol. The grim iery presenrew up his nit Protai that hed been in ite meahes, Dr. Sohmidl mentione part of tha torranean river in the Planins asve 1715 fothom from the entranoe, as the apot oave, 1,715 fathomas most abnndant. Near to small casoade rotal aro rivulet here forms over a reef, the waters absolately srarem here forms
darting about in all directions in the dark stream, afford a strange and picturesque spectacle. As the cavern is of most dificult access, they here enjoy a tranquility rafbly disturbed, and no donbt they have many other still more hidden retreats, to which man
is incapable of penetrating. The best method for is incapable of penetrating. The best method for transporting the Protens is now perfectly nnderstood, and liring specimens have been conveyed as lar and Scotland. All that they need is a frequent sapply of fresh water, and a careful
removal of all light. Their fond need cause no removal of all light. Their fond need cause no
trouble, as the water contains all they require. It is trouble, as the water contains all they require. It is
recommended to lay a piece of stalactite from their recommended to lay a piece of stalactite from their
native grotto in the vase in which they are transported. native grotto in the vass in which they are transported.
When resting or eleeping, they then coil themselves When resting or aleeping, they then coil themselvea manner they have already been kept above five year ont of their carerns. The guides to the Grotto of Adelsberg have always got a snp
them for sbout two florins each.
them for sbout two florins each.
On tarning our attention from the grottoes of Carniole On tarning orr attention from the grottoes of Carniole
to those of the New World, we find, in the vast Mam. to those of the New World, we find, in the rast Nam creation, which, though different from that of the Anstrian carerns, atill shows a certain family resemb-
lance, and aflords annther proof that a similarity of lance, and affords annther proo
external circumstances simaya
forms of organic life. Thas, the two blind beetle which are found in the Mammoth same geners (Anophthalmus and Adelo their representatives in the grotto of largest insect is here a species of monsly long antennas; there are also Care hesno proteiform reptile to boast of buo Mammot blind rat and a peculiar blind fish.
The carern rat, which is tolerably numerous, bu Thich, on acoonnt of its remarkable timidity, seldom
shows itself, differs from the common or Norway rat, shows itself, differs from the common or Norway rat,
by its bluish colour, its white abdomen, neck, and feet, and its soft hair. It has harge black eyes, like those of a rabbit, but entirely destitate of an iris, and uncom monly long whiskers, s if Nature had wished to indemnify it for the loss of sight by a more perfect derelopment of the sense of tonch. Although the eyes of this rat are large and brilliant, yet Professor Silliman con rinced himeelf of their perfect insensibility to light.
ull proof is wanting that it ever visits the upper world. All proof is wanting that it ever visits the upper world.
The blind fish (Λ mblyopsis opeleus) is now become tolerably rare from its having been so frequently fished out of the Lethe atream, as the subterranean river of the Mammoth Cave is called. Many physiologiats have already made it the anbject of their observations, and are generally of opinion that the Amblropsis was not originally blind, but that, having fonnd its way into the cave, it gradually lest its powers of vision. The celebrated nataralist Agassiz, however, being perfectly comvinced that all animals oxisting in a wild atate have been created within their actual bounds with all the peculiarities of stractare which distingnished them at the present dav, is of opinion that the blind fish and
all the other blind animals of the Mammoth Cave are the aboriginal children of darknesa, and hare at no the aboriginal children of darkneas, and h

> SaUL RTEEA.

ORGAN FEEDERS.

[2892.]-TkE arrangement given by "A Young Organint" (lotter 3746, p. 648) was doscribed to me by an organ bailder two years ago. He called it the French couble feeder, and I bavo a drawing of it, which cor responde almost exaclly with that given in the Enelish Mscranic. I have not nees it used, but wae given to understand that it was very useful where much Find was required from a suall bellows spece.

A Mere Notice.
HOW WE SEE DISTANT OBJECTS [3893.]-On the 2nd alt. you were so kind an to in-
(8h90, No. 358), ehting Mr. Proctor to sert my lotiter (8493, No. 358), aling Mr. Proctor to
explain how the mirror became visible to the spectator ander the conditions montioned. Not having np to the present neen his reply in your pages, I conciade press of basiness has provented him from sending you prese or baninest has prevented him from sending you of drawing the attention of yoar very clever corre-
spondent "F. R.A. 8." to the problem, and hope he will kindly supply the explanation thereof. There is a moot polished eurface in microtcopically rough, and that from the atomic prisms certain rajs are refected in overy direetion, thas enabling the spectator to see the illaminated ebject. Bat it ceems to me that the
lipht moald be dirporsed, that in the case of mirror we conld not expect to see an object distinctly refiected. Bat eappose the mirror be removed, and the dark screen trapoferred to the opposito side of the room 80 as to prevent the tiny ray of light from being reflected from the opposite wall, we shall nee the ray refect any part of it to the ore of the obecrrer or the camera. Will it be secerted that the atrmosphere of the room redectan a partion? if so, it mast be agnin and aghin reifectod, co that in as short distance it would apporing that the oye had the power of directing the aloetricity (which in every berc) on a distant obret (illaminated), and rocsining back the correct image
To the gentlemen I have soked to explain this. will
tio do en, es I think it is deserving of their atten-

FLOW OF WATER.

[3S24.]-I bexieve " our" correspondent J. T. Hole honse (letter 3745, page 641) has mistaken the formala The one that he gives is applicable to "pipes" and
condnits when flowing fall ; but for open channels he conduits when flowing foll; bat for open channels he
will, I doabt not, find that given by me more applicable. No:r, aning his formala, $\mathrm{V}=140 \sqrt{r_{8}}-11^{3} \sqrt{r 8}$ as given. Thas:-
 meter in :eet.
$A=5.38 \times 1.0=5.88$, the ares in feet.
$r=\frac{A}{\overline{W P}}=\frac{5.38}{7.38}=727$.
Then $V=140 \times \sqrt{.727 \times \frac{5}{5280}}-11 \times \sqrt[8]{727 \times \frac{5}{5280}}$ $=2.6875 f t$ per second relocity, $=161.25 \mathrm{ft}$. per minate, velocity $\times 5.38$, ares $=860$ cabio feet per
minute, will give 5,375 gallons per minnte, being conminate, will give 5,375 gallons per minate, being conthe channel, there wonld be a much larger exoaration the channel, there wonld be e much largor exoavation should be some inches below the surface or ground

revei, to prevent the water at any time fowing over the banks from accidental causes. By his about 8 super ficial feet. By mine, abont 5 saperficial feet; on a considerable length, this would materially differ in the cost. The question, as I nnderstund it, resolves itself into this. An engineer (by the bye, we are all enginears now) has to dovise the best, simplest, and chanpest soheme to carry a certain quantity of water a definite distance, whereon only a certain fall in feet per mile can be obtained. What form and size of chananal will bent serve the purpose? I believe, from my own knowledge and practices the sizes I have given will meet these views. If I take J. T. Holehoase's sizes, and une the formalm I gave for an open channel, I Ind the velocity will be 148.514 . per minate, and the quantity 798 cabic feet per minate $=4,950$ gallons. If coe tholehouse will kindly refer to "No rile, hens. I omitted in my last to mention that care must be exercisod where bends or curves occar in the channel : at these plases I would recommend an increased width, provent amewhat reduce the velocity of the fow, and there is a bend and tho more acute the angle, so will the outside at A deepen, and the inside or side B "ill prove this. \qquad -
TUBAL-KAN.

PIANO CONSTRUCTION.

[3896.]-THERE are one or two things in the engraving of the improved design for a cheap cottage piano car if not a professional pianoforto-maker ; the latter I am not presamptaons enough to attempt to instract. Imprimio, the strings of C above the lines ought not to aave boen represented as it they were not parallel, which show are, to those of C, its octave above. The affect is to horizontally from where they reat on the belly bridge, inatead of slight15 divergent.
1 ought to hare mentioned that in Fig. 1 the horizontal string-plate aldng its bottom is not ohown, becane doing this would hare hidden the screws only a quarter of an inch above the npper surface of the horizontal purtion of the string-plate. See section of these parts shown in Fig. 2, which shows the string. plate in sitm, also one of the cast-iron "lumpe," as the pianoforte-makers call them. These lamps are simply phanoforte-makers call them. These lamps are simply
castiron eranked bers, the T heads of which should be
as wide 28 each woodet brace, and about ive-aighthes of an inch thisek; they ought to bo let into the ben aeph equal to the thickness of thas the end grais of hould be bodded socuraloly agamethod of making thi joint perfect in to give the sarfaces a thick coating of a mixtare of whitelead, ground in oil, whiting, and gotd size, which apeedity becomes muct harder than even the end grain of spruce fir. These lampa mast, of course, be fixed and adjusted to the top edge of the string-plate before the coundboard is axed, because they pass through holes made in the lattor.
It has occarred to me that when a cranked brace on Kohlman's syatem is made in cast iron, it would be a oheap but valuable improvement to carry ap a tapar feathor, projecting in front of that opper portion of the brace which is behind the string3. This would greatly stififen the flat portion of the brace, which must, unless the belly-bridge be made considersbty three-eighths to hall of an inch thick, and, therefore, defcient in rigidity. As this projecting part, or foather, as a pattorn-maker would call it, moat needs be in the space between the strings of two suecossive notes, and project above the plape of those strings, and as prosech winishes until, at the hammee the, it will be needfal not ooly to grednally diminieh it projection towards ite apper end, bnt also to taper it sideways until reduced to aboat three-sixtoenths of an inch thick, to that there shall be no danger of tho strings tonching it when they are ribrating; also mot to carry it up so high as the hammer line. For oanaing this feather to loave the sand easily its top edge of ite sidos where it commences to project from the fiat surfice of the brace. If the edges of the latter, which are moalded downwards, also be roanded, the casting will be at onco cleaner, beconase easior for the founder to monld and ran, and require leas dresalig to propare
it painting or japanning. As some of my amatear readers who do not intend to make many pianos, or who might wiah to atrengthen those they prasess, by introducing two or three Kow oran bracings into them, would haraly doaire to mabera I onbjoin a fer practical instraotions for making Kohlman bracing-bars on the plan of that shown by Figa. 6 and 7 .
Instend of spreading out the head of the brace se shown in Fig. 6 for the parpose of causing it to abat pin-plate (s thing, by the way, most pianos are not prorided with), I think it proferablo to let into the wrestplank a piece of bar-iron, whoes thickness is the same as that of the apper portion of the brace. This irom may be from $\frac{3 i n}{}$. to 1 in. wide, and gecured in its place by about five No. 141 fin. screws. It should be pretty long, say, 8in. to 12 in ., so that it may abat againat a considerable length of wood, and distribate the prat. sure sufficiently to prevent it from being concentrated on a small sariace of wood. When a pin-plate is used, it need not be more than halt the langth required when it abute againat nood, but it is essential the pin-plate be well atted to the edge of this bar. It will be found very deairable to let the top of the brace extend about $1+\mathrm{in}$. above the bottom of the wreat-plank, and eecura it to the latter by a $1 \nmid \mathrm{in}$. No. 16 screw.
The easiest method I can think of for an amatear to form the mortices in the bars N and L , which receive the stoel plate \mathbf{O}, is to remove most of the metal with a rill about one-sixty-fourth of an inch smaller than the thickness of the steel plato. Having chipped out to the linee, you oan proceed to fit the steel plate into both. It shonld be what workmen oall "a driving fit," not a very easy thing to be effected by an unpractised amacor, oven when the said mortices are formed by the slotting machine, or accaratoly drifted, with thair onds and sides perfectly parallel. A steady ft sidersy is sufficient, but the steel plate ought to be fittod to bear accuratily throaghont the whole depths of the onds of the mortices. Fortanataly, the absolnto parallelism of the latter is quite nnimportant, 80 I prefer to flle them taper abont one sixty-foarth of an inch, and to taper the steel plate to lit their ends, driving it in with the hammer, and relieving those portions of its surfaces which abut against the ende of the mortices until it bears throughont their depth, and projects, say, one-sixteenth of an inch for forming the rivet. Prebsbly the quiakost and easieat way would be to heat the mortices red and drive in the steel plate. Then, having slightly connterannk the external ends and sides of each mortice, rivet the plate and file off any projections. The job is completed so strongly mechanic "yon ean't pull it apart with your teeth" The lower portion of this brace must be morticed into the atring plate below the hitch-pins, provided the trings of two successive notes be disposed nearer to ach other than the thickness of the bar L, wich to ceceively would be in pianos not origina results is that the hitch.pins of those notes mast be nearer the bridge than their near fellowa, the former necessarily being between the back of the brace L and the plate. There is, however, not the least need to insert all the other hitch-pins equally near the bridge, nnless, indeed, we prefer nniformity to atility. Pro bably it might look prettior, bat "handsome is Whot handsome does;" and, after all, it is the reverse of good taste to
The tie and strat, combined in ane (K) is, by the way, represented in Fig. 8, with the nut, which abnts againgt
front of that brace. Now, as I have designed only about three-eighths of an inch of space between the back of the goundboard and the front of the brace-in fact,
the the atrings may be within 18 in. of the braceing nnder the pressure of the strings until it became sunf. nnder the pressure of the strings antil it became sami-
ciently depressed to rest on this nut. The effects on ciently depressed to rest on this nut. The effects on
the tone would be, in newspaper reporters' phraseology, the tone mould be, in nowspaper reporters' phraseology,
" more easily conceived than described," so I designed this nat to be let into the brace to an amount equal to about two-thirds its thicknoss, leaving only about oneeighth of an ineh projeoting to turn it by when regalating the poaition of the kohlman brace. Probably,
although rather more complex, it might be preferable although rather more complex, it might be preferable
in practice to u ase a strut formed of a piece of fin. rod in practice to use a strut formed of a piece of sin. rod
iron, haring a coarse and shallow.threaded screw (gay iron, hang and throngh the wooden brace A to receive any back thrnst to h hich the to which the Kohlman brace could be subjected by the worth while to tie the Kohlman brace-which I think it is, becanse, with the strat, this would enable its position in relation to the strings and the soundboard to be adjusted, shonld doing so be fonnd needfal, after the instramont has been taued-I think a piece of 5-16in. or zii. rod iron tapped into the Kohlman brace, passing throngh a hole bored through the wooden brace A, and having a nat and washer at the back of the latter, wnald be
found to be at once the cheapost and best way of doing
it ; for, alter all it is diffealt to apply spanner to torn it ; Ior, atter all, it is diffealt to apply a spanner to torn the nut, which is partly sank in the front of the brace A, the space betreen the back of the soundboard and the front of the brace being so small that there is
hardly room to tarn the pat, were it made six or even bardly room to tarn the pat, were it made six or even
eight-sided. Facility of adjustment, or regulation, as pianoforte-makers call it, is a sine qua non in their pianoforte-
Thare is an adrantage to be obtained by the employment of Kohlman's or any other efflient system of front metal bracing in cottage pianos which is of considerable value when saving room is important, for it from 1 ifin. to 8 in. Thare can be no necessity to make from 1din. to 8in. Thare can be no necessity to make the wooden bracings A equally deep whon they are no longer sabjected to any considerable preasare tending to arch them. Now, efficient front metal bracing relieves them from this pressure almost perfectly, coneequently it cannot be necessary to make the wooden back braces more than 2 in . or 8in. deep; in fact, only sumciently rigid to become efflcient stavs for the motal bracing in front. The late Mr. Mott nsed, indeed, to say no back bracing at all was needinl if the front metal bracing was effciently tied and stratted in the manner shown in his patent (No. 11180, price 6d.) to the key bottom. He had muct experience, and Ithink
he was not far wrong ; bat this might be a reform far he was not far wrong; bat this might be a relorm far
too radical for our conservative feelings (query, prejadices). The Harmonious Blacesmiti.

TERRESTRIAL GRAVITATION.

[3837.]-Tre method of inding the amount of force exerted by a globe on an attracted particle, described by Mr. Proctor in leticar for 8711 , is to prehenaion, neithercan irehenaion, neither can of attraction is the same as though its mass were as though its mass mere
condented
into condented
centre. But Into think it can be shown that althoagh the amount of attraction is as the attraction is as the mass, the power is not
inversely as the radins. The circle in the diaThe is incie in the diathe outline of a traly spherical motal ball. Divide the circumiorence from the point rence from the point spaces, and drap the
lines 12845 ; draw 12845 ; now BCDE, and the resultent line E A will give in units of length the amonnt of force exerted at A. The dotted elis the wibame the circio
 Aattoned in the lathe, the inferior length of its resaltant ahowing the lessened force at the pole of an oblate spheroid. I pasider this method gives accarate resalts ; perhaps zir. Proctor will kindly pass

Earatux.-In letter 3721, page 635, Vol. XIV., line 82, for " defy" read " deify the powers, opera: tions, and objects of Natare."

Preserving Potatoes.-To preserve potatoss in forrl Aercury, it is only necessary to sc.th them, or subject them to a heated oven fory few minutes. By doing this they will never sprout. nud the farinaceous substancr will keep, good for many years, provided the
cortical part (the skin) be entire. They should we well dried after being scalded.

REPLIES TO QUERIES.

- . In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTE.

1. Write on one side of the paper only and pat drawings for illustration on separste pleces of paper. 2 Put titles to queries, and when answering queries pat the numbers as well as the tilies of the queries to which the
replies refer. 8. No charge is made for inserting letterg queries, or replies. 4. Conmercial letters, or queries, or replies, are not ingerted. 5. No question asking for educational or scientific information is answered through the post. 6. Letters sent to correspondents, nndor onver to the Editor, are not forwarded; and th names of correspondents are not given to inquirers.
[10470.]-Steam Launch (U.Q.)-Engine : 4in. cylinder, 7in. stroke, downward vertical, bolted to two stringers running length of boat; shatt to have no Wards than three bearings, and to have a alight dip torunning ; Ax aa large a drum on end of shaft as space will allow, from which your pump may be driven link motion reversing gear is the best to have Boiler : two horse-power vertical, five-sixteenths of an inch plates, except top, which is three-eighths of an nch; two cross water tubes are quite enough,
diameter, pressure 501 l . Sorew : four bladed 20 in diameter, 8ft. 6 in. pitch, running at 270 per minnte gives in mine a speed of 7 q miles per hour. Boiler to be set on a jin. plate to keep boat's bottom from fire. Boat 29 ft . over all, beam 5 ft . 3 in., depth (aft) 3 ft . 6 in ., draf (aft) 2ft. 9in., forward 1ft., engine 6ft. 6in. from stern boiler 101t., leaving 19tt. clear space for passengers mine is so arranged that I can work her single handed. Bare particalars are only given as bp
in the Englise Mechanic.-G. D.
[10488.]-Tests for Ores.-I fally indorse the opinion of oar worthy assayer, "Un Irlandais," on page 566 . It is impossible for any one to perform a
qualitative analycis correctly without they have been qualitative analyais correctst without thoy have been who have been ongaged for a year in their scientitic parmits detect sodinm and calciam in overy mixtore given them and if this happened after one year's reading, what and if be expected from one whose science is only to be "rough and ready"? However, Scheerer \& Blandford on "The Blowpipe" is the work I would advise him to procure; pablished by Williams \& Norgate, London.-Groras E. Davis.
[10501.] - Water Power (U.Q.).-Try the waterpower engine, bat before proceeding see if the pressure is steady at 501b. per square inch or $1101 t$. The power required may be obtained with less prossure, bat at too great expense, as in such cases the water mast go throagh a meter. A newspaper in this town is printed with a water-power engino fed by lin. pipe. The writer has three in daily ase; one for driving a lathe,
and the other for basiness parposes. He tried a emall and the other for basinees parposes. He tried a emall tarbine, and foand it a humbug-this remark refars only to small tarbines. The water.power engive is most usefal where there is a very high pressare, and only amall service pipes. If I had the reliable pres.
sure (by a gange), the time per day it will be rased, 1 sure (by a gange), the time per day it will be ased, 1
conld give a fair estimate of the cost, also the rate per could give a fair estimste of the cost, al
thousand gallons for the water.-K. K.
[10510.]-A Task for Ohemists (O.Q.)-Seeing that no reply has appeared to this query, I suggest that wood may be made pliable for soles of boots,by dissolving out the resinous and siliceons matter. Many simple onee.vould be to (1) boil for three or feur home in a solntion of caustic soda of specific gravity, say 1.09 ; (2) boil for one hour in water; (3) soak for eight or ten hours in a chlorine solution of specific gravity about 1.02. By making one or two experiments you will find if the doses of canatic sodu and chlorine should be increased or diminished. Perhaps the above may be improved by giving it a soaking in dilato hydrochloric or sulpharic acid, previous to the chlorine solation.-Busy Bee.
[10512.]-Musette and Voix Celeste Stops (U.Q.).-The voix celeste stop is simply two dnlcianas, one tuned a shade sharper than the other. In patting them in they are nade with separate slides, so that one can be nsed withont the other. I believe that it is possible to preduce a similar effect with a Viol da Gamba or kerolophann, with a dulciaba tuned to beat to the aforenaid. I cannot exactly describe the mnsette,
but I believe it to be an 8ft. wooden pipe containing a but I beliere it to
reod. -0 gGANIst.
[10565.]-Pressure under Water, \&co. (U.Q.) three stmospheres or 441 l . of wailer may inch. Hence at one mile deep it will about $23201 b$; at two miles,
ather 46401b.; and at three miles, 6960lb. per square inch. (2) Caustic alkalies, an potash, boda, barytes, or lime,
greedily attract and absorb carbonic acid the last the most slowly. The hardening of mortar depends on this absorption, and is not complete for rears. (8) The third question mast be explained. What is meant by raising " steam to work an engine with hydrogen gas'? Which is to work the engine? The battery to decompose water, in any way, to yield a horse-power,
mast oxidise 281 b . of iron or 321 lb . of zinc, for every 61b. of coke that would yield the same power by com-
bustion, supposing in both cases no wasto, bat perfoot
economy of the forces.-E. L. G.
[10608.]-Bee.Keeping.-If "H. H. H.'s" bees swarm trice, which they are not certain to io, it will be better for him to return the socond swarm to the parent hive on the evening of the day on which it issued forth. Why? Becanse the mother queen leaves the
hive with the first swarm, and the queen which will hive with the first swarm, and the queen which will
lead out the second will be a young onfertile one. If lead out the second will be a young unfertile one. If
they aro added to the Arst awarm, both the queens and numerons workers may be killed, and the tender new combs in the hive idjared in manipnlation; bat, any how, one of the queens will sarely be destroyed, and it may be the fortile one. Whereas, if the second swarm be returned to the hive on the evening of the firat day, only one queen will be injured, and all other queen colls destroyed (as a rale), and all the power and strength of that swarm will be expended in honey gathering for their owner instead of comb-building for their now home.-C. N. Absotr.
[10617.]-Watchmaking and Isochronism (U.Q.-The ability to apply an isochronous hair-spring to a watch must be considered as one of the highesi
attainments of the art. The literature on the attainments of the art. The literatare on the subjec
of watchmaking is oxtremely scanty, and with regard of watchmaking is oxtremely scanty, and with regard
to isochronism, I am not amare that there is any mork to isoorronism, I am not aware that there is any work in existence which treats fally on the subject, though I
would recommend our correspondent to read a vory in would recommend our correspondent to read a very inBalance Ppring." by Charles Frodsham, in the Horological Journal, Nos. 159 and 160 , also a variety of Horolopical Journal, Nos. 1 information on hair-springsin ol. Ni. of the Mechanio commencing in No. 139. He shonld also read Bootch ford's essay on the detached lever oscapement, in which balance spring is disputed. The prize of $£ 50$ oflered by the Baronoss Bardett Coatts, will donbtless prodnce an exhenstire essay on the subject, and which prose the an exhauative essay on the anbject, and which, like the prizerised to find carried off by a foreigreer.-W8st Cornwali
[10641.]-Rabbit Breeding.-The first thing to be looked to in breeding rabbits is to see that they have a proper hatch, and above all keep them dry, for
dampness canees many fatal diseases. The atrongest and mess caness many fatal diseases. The atrongest white. In pairing generally gray, blaci,or black and female to pairing them I would recommend black male. As tha males are as a rulo, rery mach given to devouring the young ones, arnore them abou a week before the female's time of bringing forth, and about the anme time thoroughly clean out the hutch and put in a bed of clean sweot hay or straw. I generally gave my female rabbite a little warm mill
shortly atter the young onee were brought forth, which shortly atter the young onee were brought forth, whioh
they seemed to relish, and which did them mach good. they seomed to rolis
-BED or Stone.
[10660.]-The Largest Casting (U.Q.). - Whichever of the iron castings referred to may be the oharch bells of Moscom. The largest, that which, in 1787, three years after being successfally recast and used, was broken by cold water thrown on it during the conflagration of its belfry, but may, for anght I know, have been lately recast, weighs, according to the himensions, 220 English tons.-EE. Lis G.
[10684.]-Angle of Reflection and Incidence -The fact noticed by "A. P. S." that the angles of in eidence and reflection made by a billiard ball on striking the cashion are not equal is one woll known to all billiard players. It is seen very plainly when the ball is struck hard enough to reboand several time Irom side to side of the table; each time the angle of
reflection becomes less, and the ball comes ofle the reflection becomes less, and the ball comes ofil the cashion more nearly perpendicalar to the side of the
table. M. Paris is quite right in saying that the table. M. Paris is quite right in saying that the elasticity of the cushion is the canase of this. Making use of the diagram on p. 591, the force of the stroke compresses the oushion not only in the diraction E C but also in the direction $A B$, and the elasticity of the
cushion drives the ball off it again in the directions cashion drives the ball off it again in the direction C E and BA. The latter being small compared to the other, the course of the ball after impact is but slightly changed ; and if the ball be moring slowly, so slightly as to be imperceptible ; though I believe the change of
direction does exist in every case. Let "A. P. S." direction does exist in every case. Let "A. P. S."
consider what would happen if the cashion were made consider what would happen if the cashion were made
of soft clay : the ball, on striking it, woald bury itself of soft clay: the ball, on atriking it, would bury itself in a cylindrical hole, the axis of which would not
at right angles to the cushion, but more in the direc at right angles to the cashion, but more in the direo
tion of the course of the ball before impact. If the clay were harder, the ball would make a dent in it and raise a ripple of clay in front of itself, something like the bit of steel raised on a rasp by the panch. Thi latter is What does happen in the case of an elastio
cushion, and it is the force of this lamp or ripple re cushion, and it is the force of this lamp or ripple re-
covering its form that slightly tends to drive the ball covering its form that slightly tends to drive the anale
directly back on its coarse, and thas lessens the angle directly back on its coirse,
of reflection.-Lichrield.
[10685.]-The Eleotric Spark.-What is the canae of its luminosity? The querist might as woll ask What is the canse of any other laminosity, or of any air, and if things vibrato movement proparated thing expect is soand. A case of silent vibration may cal for inquiry as remarkable. Light is also some vibratory movement, propagated through aniversal ether or charges (as well as chemical combastion) are atomic or molecular actions ; and it is nataral to expect the propagation of their distarbanoe in the form of radian ojes mal light; jast as air vibrations between 16 and
aboat 8,000 per second are sounds to us, bat below 16 or above 8.000 they are not counds to us, though they may be to any non-haman ear. And the limits of pitch in the rays that sre light to us are much narrowor, inthere may be animal eyes seeing by none of the light that is light to us, but wholly by rays that are dark and unknown to ns. And the skies may contain galaxies of snns conspicuons to our cat or dog, but eternally nnknowable to astronomers, merely becanse their light may all be of pitohes an
[10696.]-Testing Vegetable Iubricating Oils (U.Q.).-I presume "W. M." knows the old method of tenting by labricating the axes of a wheel with the oil to be tried, making it revolve with an equal force and counting the namber of its revolutions by
means of a counting wheel tarned by an endless screw on the aris. "W. M." of course knows aleo that some oils get thick and sticky by exposare to air. I do not know that the plan has been tried, but think it wortb trying, whether the labricating quality of oils might not be correctly tested by oiling a smooth sarface of iron and trying which is the angle of rest on it of a smooth piece of brass lying upon it. As the friction or adhesion between aimilar surfaces is proportionate to the presand the angle of inclination may be flxed very acwedge to raise the iron surface at one end to any desired degree.-PiILo.
[10702.]-Terreatrial Gravitation.-I am not are that I quite understand "T. A.'s" difficulty, but will try again to remove what I suppese it to be. It is easy to prove, thongh tedions to explain, that the joint phere is the same as it wonld be if the attraction of all of them were exerted at the centre, and therefore that in calculating that joint force it is quite correct and very convenient to assume that point to be the centre of attraction to all other bodies at or beyond the sur-
face of the sphere. The same is nearly true of any ellipsoid, which is nearly a sphere, such as the earth and a body at the equator being $18 \Varangle$ miles, or 1 part in 299 , further from the centre than one at the pole is attracted less than it is nearly, as the equare of 298^{*} is less than 299°-i.e., $89401-88804=\frac{1}{547}$ (more exactly $\frac{1}{590}$) for the centre of a spheroid is not precisely its centre of attraction. The effeot would be precisely pheroid consists be connected or not, so long as they pheroid consists be connected or not, so long as they considering the case of spheroids, we imagine what wrface of a spherical earth, and 13$\}$ miles above it, the explanation may seem more simple. Supposing the weight at the sarface to be 590 , it woald be $18 \$$ miles, or $\frac{1}{299}$ more distant from the centre, only 598 , for in that case the centre of the ephere would correspond proportional to the diameter, bat nearly inversely proportionel to the square of the distance from the centre of a spheroid, and exactly so of a ephere.- Philo.
[10716.]-Telescope.-I would from experience warn those who do not know the real qualities of an astronomical and terrestrial telescope from parchasing
those at $£ 5$. I bought one with (as I was told) grathose at $£ 5$. I bonght one with (as I was told) gra-
duated powers up to 250 . I took it to India, and in three months it was useless; altogether it cost me £8 Soft French object-glasses imperfectly carved, and badly cemented, for sale only, are utterly worthless My advice from experience is-go to a thoroughly re liable malser, tell him what yon want, and you won' be taken in. A novice who wants to learn something o
the hidden lore of the heavens only regaires a 2 in. the hidden lore of the hearens only requires a 2 in . o
2, in. object-glass, with eyepieces for 60,80 , and 2,in. object-glass, with eyepieces for 60,80 , and
120 , on a firm stand. Most respectable opticians will sapply this for $£ 5$, and it will be both satisfactory and instructive. Of course a terrestrial eyepiece will ac had far more pleasure in studying the heavens thrnage sach a glass on a calm clear night than in looking throngh an 8in. refractor.-MABTER of NONE.
[10718.]-Sugar Analysis.-Let "Cornnbia" proceed thus :-The copper solation: Dissolve $34 \cdot 64 \mathrm{grm}$ pare copper salphate in 200 cabic centimetres water, (Rochelle salt) are to be dissolved in 480 potassiam tartrate (Rochelle salt) are to be dissolved in 480 cnbic centimetres of 10 per cent. caustio sods, mix the two solutions Then 10 cabic centime clear blue fluid to a litre for its decomposition 0.05 grm . glacose. All sagars are converted into glucose before being estinasted, and as 0.0475 grm . of cane or milk sagar, and 0.045 grm sugar or glucose, 10 cubic centimetres must be equivalent to the weight of thedifferent sagars. As an illastration I give the process I employ in the analysis of flonrs; I rapid and acearate method is everything with me, the only drawback is the long heating it requires, but this I leave to my laboratory youth, who flls up the flasks as they boil away. I take 1 grm . of the flour, mix it With 20 cubic centimetres of water to a smooth paste, transfer it to fask and heat until thick. I then add
8 cubic centimetres of diluto sulphuric acid (1 to 4$)$ and heat for eight hours on a sand bath, replacing nontralised with canstic soda, and the whole dilated to cabic centimetres; 10 cabic oentimetres of the
copper solution is then placed in a flask with 40 barette is filled from the 250 cabio centimetres fisa and the solation dropped into the boiling flask until the bine colour of the copper has gone. An indicator of an acotic acid solation of potassiam ferrocyanide may be used, the liquor being allowed to settle, and a drop of the clear fuid being taken from the top of the liquid. Whilst copper remains in excess, a drop taken out produces the well-known brown oolour. The will ber of cabic centimetres need divided into 1,125 experime percentage of starch, thas, in one of m would give $66 \cdot 17$ per cent. of starch. I may as well add, that until the operator has had considerable ple to insure accarate regalts.-George E. DAFis.
[10728.]-Blaakening Transparencien.-Try twenty drops of a satarated solation. I expect that is [10708]
[10798.] - Tortoise. - The toy called a "lively turtle " is nothing more than an imitation, on a smail scale, of a tortoise, inclosed in a wooden box with a
glass cover. Its liveliness consists in a perpetas glass cover. Its liveliness consists in a perpetaal shaking of the legs-"lively," but not lifelike. "What the construction is I do not know, bat some of "our" readers will possibly be able to explain. I suppose the legs are connected by a spring. I am in the dark I have seen one of these in a box lifin. in diameter I have seen one of these in a box lifin. in diameter,
and presume it is the "toy" referred to.-SACL and pres
RyMga.
[10819.] - Bleaching Powder. -If "Omega" wil turn to p. 135, No. 344, of "our" journal, he will find the most accurate method for estimating the amonn of oblorine in bleaching powler there described. It is Bansen's method, and is given on that page as an ilius
tration of quantitative aralysis.-George E. Davis.
[10834.] -Analysis of Ores.-To "January."Read the answor to "Far West," by "Un Iriandais" 10438 . The only work I wonld recommend is Sutton's "Volumetric Analysis," 12s. 6d. I believe this last edition. It is a splendid work.-George E. Davis.
[10863.]-Sulphuric Acid.-To make 1 ton of snlpharic acid at 150° Tw. per day, or 7 tons a week, 20 tons of sulphar must be burnt, requiring two ohambers, each containing. 7,000 onbic feet, and these two chamhers would have to be supplemented by a column 3 ft . sqnare, and about 25 ft . high, otherwise there wonld cent. pyrites are of salphar into the taes. I bornt in order to make 7 tons of vitriol per week. Between 5 cwt . and 6 cwt . of nitre will be required weekly, bat
of course, all these calculations depend upon good management. I should advise him not to commence on too small a scale, and conld give him farther advice if herequires it.-Georoe E. Davis.
[108s2.]-Damp Walls.-I am obliged to, not offonded with, T. H. Sanaders, tical percolation is the canse, why is there no internal damp in the sonth-eastern gable? The tilleting behind stone coping of that gable is more exposed to soathwestern rainstorms than is that of south-western gable The coping projects some 2in., and the gablo is steep correspondent suggested gas tar, sarely not an orna. mental article to apply to a red brick house with stone dressings. Thanks ail the same.-R. J.
[10883.]-Rust in Iron Vat.-If "R. J." will say what salts he crystalizes in his vats, perhaps I can
help him. Also whether the liquors inserted are alcahelp him. Also whether the liquors inserted
line, neutral, or acid.-Guorge E. Davis.
[10889.]-Rose Trees.-No one having authority seems to have replied to Mr. Abbott's qnery. Allow me to say that so far as I have ever heard his definition is perfectly correct. A dwarf rose is one on its own bottom ; a standard one bridded on a stock, the height of the latter being perfectly immaterial. I will undertake to affirm that no nurseryman would send roses budded on
[10919.]-Ohemical.-Take a mixtare of nitric Twaddell's hydrometer six drachms of this of 74 is be placed in a flask and forty grains of silver added, heat being applied until all is dissolved. Two flaid onnces of alcohol are then added, and the flask heated in a sand-bath, or what is better, a water-bath, until a lively reaction is commenced; the flask is allowed to cool aiter the reaction has proceeded, when the silver dissolvate will mostly be fonnd at the bottom. Water always be found in the filtrate. I cannot spare the time to write out a table to show the quantity of water required to reduce the gravity of nitric scid, but "Singlestick" can get the result by adding water to the acid until when quite cold it will ahow $100^{\circ} \mathrm{Tw}=1 \cdot 5$,
$80^{\circ} \mathrm{T} \mathrm{m},=1.4,75^{\circ} \mathrm{Tw}=1.87$, and $60^{\circ} \mathrm{T} \mathrm{w} .=1.3$ speaific gravity.-George E. Davis.
[10930.] - Want of Steam Power. - Many hanst pipe is a two-inch bore. Would "F.T. S. S. D." recommend a smaller one? And could this be done by catting the pipe and screwing a smaller onein? This would reduce the size to a one and a half inch bore. it can be seems that the steam is is at $301 b$. or 401 b . pressare it is quite able to do the
work, and does it well ; bat the difficalty is to main. tain that pressure with a apeed of 180 or 140 revolta.
tions per minute. Would it be any advantage to direet steam-pipe into the chimney and carrse more draught ? At present the stesm is blown ofl into the open air Chandrashing machine I use is one of Richmond and wordor's two horse, with 8tin. drum; formerly ing it win a two-horse gear, my two horses work have in comparative ease. Next antamu I shal but I want to get my engine right before going to that expense. The engine can be worked continually at 501 b , 601 b ., or 70 lb . pressure, providing it does notexosed sixty or seventy revolations per minate. I thought a larger iy-wheel would incresse the speed of thranhing having drum, for it is ofl the ip-wheel I drive, no
 engine is strong enough to do the work if I can maintain the speed. When I start, say at 4016, pressure, for the first tive minaten it is all that I could wish, but after that time the speed decreases. The boiler has with refoty ?-AGRI
[10941.] - Spontaneous Combustion. - Ms. Tonkes will perhaps excuse me for saying that oily nnew will take fire from spontaneous combustion. I had been oiling the paint work of a gnn carriage, having put the oily waste he had been using on the wheel nave whilat he went to dinner, found it on tre on his return. The waste was fally exposed to the hot san. Besides this instanco, I have known the same action arise from linseed oil being spilled on sawdnat ; and to farther confirm this, I may say that I gave the man 8 for giving the alarm of Are.-MaNus.
[10950.]-1adeira.-Does "E. L. G." mean that the Portaguese of Madeira is so hard? Surely Portagueae to a person knowing Latin is as easy as any of the
other Romaneeque tongues. I have heard that there is no particular dialectic variation.-M. Paris.
[10954.]-Circulation ofthe Blood.-Mr.Guthrie, n his very excellent reply to this query, states that death "produced through obstruction of the respiratory system is twofold, by excess of carbon in the air, or by they both result from the same oanse-oxygen starration. Excess of carbon in the air indicates an insufftion. Excess of carbon in the airindicates an insaff-
ciency of oxygen, and consequently is identical with ciency of oxygen, and consequently is identical with
oxygen starvation. The food whick we take may be oxygen atarvation. The food Which we take may be
divided into two parts. Building material, to repair and build up the system, and fael to sustain a constant and build up the system, sad fael to sustain a constant of that class of food in which the elements are the same as those employed in the constitution of the samen bodr, the latter consists of those articles of haman which contain the elements which are acticnow diet only which contain the elements which are acknowledged as
those of combastion-viz., carbon and hydrogen, the those of combastion-riz., carbon snd hydrogen, the espiration prination is respiration. Respiration is on the same principle as combastion, and, therefore, the chemical process of respiration is similar to tie process of combastion, in
erchanging oarbonic acid for oxrgen. The oxygen inbeled nnites with the carbon of the blood, and forme haled unites with the carbon of the blood, and forms
carbonic acid, and with the hydrogen to form vaponr of water, both of which are expired. I wish to identify mrself with the opinions expired. I wish to identif objecting to the assertion that "respiration aids objecting to the assert
circulation."-C. W. H.
[10954.] - Circulation of the Blood.-This question has received several answers, bnt they are all
defective, for though it is true that respiration, so far as it means the taking in and expalsion of gaseon matters by or for the langs, may not actually aid the circulation, yot the act of respiration playe a very im portant part in it. The forces which circulate the blood
are many and varions, and we have a vis a tergo, or are many and varions, and we have a vis a lergo, or force acting from behiud to propel the blood forward, as does the heart, for instance, and a vis afronle or the from before, or in front of the stream, to encourage the fow back into the chest; such is the effect of inspira ion. When wo dry in our broath, he cavity scent of the diaphragm, and conseqnently a partiat scent of the diaphragm, and conseqnently a partiat
vacuam is produced, and this is immediately filled by a rash of air down the windpipe; but any other bods which conld obtain access to the chest would aot in the same manner. If there be an opening between the ribs, the air or any flaid with which the opening is in air by the windpipe. Now, the impetus given by the besrt barely extends heyond the impetas given by thed capillaries, so that other forces have now to oome into capillaries, 60 that other forces have now to oome in of operation; of these it is only needfal here to speak of
the last-viz., the expansion of the chest. The blood has arrived in the ascending and descending vere cave which have become united, when the expansion of the chest acts as a suction pump, finally dolivering the action of the chest (expiration), asnest. The conkrar tation in the veins; but, at the eame time, accelerates the current in the aorta. There is here no reflax, exoep ing in the case of disease, the opening being protected Rurgeons.
[10964.]-Tests for Metals.-To "J. B." and lapaus calami in his answer to "Chemical Stadent." The filtrate from the bariam carbonate precipitate should be acidifled with HCl , boiled, neutralised with ammonia, and the zinc and manganese precipitated with ammoniam sulphide. This is then to be fltered, and the filtrato freed from bariam and calcium with sulphate and in the filtrate with sodtum phosphate. The mixed ZnS and MnS is then to be treated with acetic acid,
which dissolves out the MnS and leares the ZnS . It followed oet, 28 " J. B." statess, the procipitato will contain $\mathrm{BaSos}_{4}, \mathrm{CaC3O}, \mathrm{ZnO}, \mathrm{MnO}$, and MnsO_{3}, and rpon adaing sootic acid those three latior would be dissolvod, sides, zinc oxido is dienolved by excess of ammonis, to sine would probably be found in the filtrate, where magnoeium in to be looked for.-Grorge E. Davib.
[10974.] - Pollahing Granite. - "Baz.Faz" thanks corrospondentis for their replies, bat cannol think that either have practised what they recommend. The recipes giren appear to apply to marble and not to granite. "Buz-Fus" will gend a present worth hall a
gainea to any one who vill forward a recipe that will guinea to any one
answar effectively.
[10091]-ETOLIy Wood.-I have cat large quantitios of it for cot-beeth and other milligight work; it is connidered far saperior to boech or horabeam for sech parpoues.-SAVYIR.
[10996.]-How to Use a Book Without Elands. -1 enbmit the following vary simple expedient. Let the armlene man get some one to strap a broad leather
band, to which is fastened a tin plate, with a socket on to his forehead round his head; into the tin socket, let him fix a piece of atiok, say, 8 in. loag, upright mat abotoh; at the
end that it troe lot kim tio a bell or knob os cotton, mool, a epposge, the whole ball about an thot diametier, coversed ovar With wach leather, and this alleghaty damped vith clonn Weter (not to stain the beok),
will prove, or I am very moch matazem, tia bent sud hancieat mabrtitute for a wet anger, and who ever sam the page that resisted turn ing by a wet finger.-Cirkb.
[10986.] - Eow to Use a Book without Bands.-I think the following will suit the unfortunate ougine driver. Let "T. M. W." get a disc of enown. Make a mall hole in the centre of the disc, trito which insert the ond of a bit of glass or gatta percha tube (sbont 6in long), so that it fits tightly mripping it, if nececenry, arith thread. To use this Hutie inetrument, lot the sufierer pat one ond of the tabe into his mouth and apply the dise of indiarabber at the other end to the leat of the book, seeing that it tis closely; then, by suaking through the tube, the air is exhangted and the leaf atioks to the diec, and an be tarned over with ease.-CABOLUS.
[10996.] - How to Use a Book withou Fands.-I feel very mueh for the eagine driver, and cill endeavoar to inveat a revolving deak, whereby he conld read the Encolish MEciasic every weok. I
vill sond him it froe of any expense il he will advectise his addreas-M. \mathbf{O}.
[10999.] -Gilding Thin Steel.-Steel may be gilt by using an ethereal solution of gold. The more usual mothod is to gild by the electrotype, the steel being by naing the battery, and copper; this is aone by asing the battery, and a nentral solation phate of copper. Copper will precipitate npon steel less on acconnt of the acid attacking the steel and diantegrating the surface under the copper.-A BarRIBTER.
[11028.]-The Strongest IAquid Theplosive. -Without doubt, the liquid eslled ohloride or quadroohloride of nitrogen is as yet the mont powarfully oxplosive liquid that ehemistry can produce. It is propared by bringing chlorine gas in conbect with a of ammonis, but the operation is so fearfully dangerous to life and limb that none but experionced cheroists it It apecific to make even ive grains is $1 \cdot 658$. The drops of nalton is a matiter of oalculation. Suppoing a galion of this is mbatter of oablculation. Supposing a gallon manutactared wishoat axplosion I cortainly woond not s fee of two or three gnineas, and pre-payment, to mite the smallest sample of it.-ExpLosive.
[11038.]-Chemical. -When catechn is bolled with caratic alkali, a deep brown fluid is obtained which contains tannate and jeponato of sodiam, or potassium, Which ever alkali is nsed. When it is boiled with codiam carbonate, sodium rubiate is formed, togethe ride sodinm tannate. The acids are contained in the catechu. The tannic acid may be extracted with cold water-hot water mast not be used, as it would extract the catechin. When soda is combined with charcoal (carbon) sodinm carbonate is formed, and the inquirer must indeed be a very "Young Chemist" if he is unaware of its properties being in any way affected. In making nxalic acid by Dale's process 80 parts of caustic soda and 56 parts of caustic potash are taken and a colation made which stands $70^{\circ} \mathrm{T}$. Sawdust is then added to make a thick paste, which is spread in thin lajers upon iron plates, and heated to a temperature of 400° Fahr., being kept constantly stirred.-Gzorge . Davis.
[11040.]-Boiler for Emall Engine.-The small ngine referred to has as yot no boiler of its own, but done the engine jurtice (owing to the photograph being mather indistinet), as he hes omitted the monldings that run all ronnd the frame, and has ahome one or two detilil incorrectly. The model is really very
andsome - the cylinder covers, steam, and adjusting also the feed pump.-It. C. E.
[1041.]-Ohildren's Conoert.-Mozart's melody, his airs with variations for piano.-C.J. R.

[11049.] - Beediboz. - I 0nce wanted a seedbox which seed, and I made one from a cigar box, as per sketch. I think it will sufficiently explain itadf. It answers very well.-Barby Webr
[11054.1 - Oalculating Contrents of. Orlindricol Veasela. - Multiply hoight by hall diamotor, and this by half circamseronce; or maltiply height by equare of diametar and by $t \pi$. To multiply any sum by $\& x$ correet to nine igares, you may deduct its quartor and 100th and 100,000th of the anme quarter. Then add two-tenths of the second deduction and threetenths of the third, and to the resulting sum add its twentioth. To take the example mis-wronght by A. J. Shaw (p.
square is

$\begin{aligned} & 12+\cdot 72+\cdot 00^{2} \\ & 2(1 \times \cdot 7) \\ & 2(1 \cdot 7 \times \cdot 05) \end{aligned}$	$\begin{aligned} & =1.4985 \\ & =1.4 \\ & =17 \end{aligned}$
Maltiply by	$\begin{aligned} & 80825 \\ & 46 \end{aligned}$
	$\begin{aligned} & 1.58185 \\ & 12.25 \end{aligned}$
Contents in cylindrical feet	$=18.78125$
Dedact a quarter	8-4453125
And a 100th of it	84458125
And a 100,000th	84453
Add - 2 of 100th And 8 of 100,000th	10.301449928
	6390635
	10836
	10.308350883
Add 5 per cent.	-515417544
Cubic feet	$=10.829768427$

This is exact to the ninth fgare. We owe this carionsly asy way of bringing round into square nnite
tric into cubic ones, to Mr. Drach.-E. L. G
[11054.]-Caloulating Contents of Cylindrical Veasels.- "Excelsior" has made a terrible blandor in his statement that "the solid contents of cylinder is equal to the square of the dimmetar x ane equel to the square of the diameter x the heigh \times 7854. Thus his example of a cylinder, 2ft. high
 BAREIGTKR
[11054.]-Calculating the Contents of Oylin. drical Vessels.-This cannot be done with absolute accuracy, because the proportion of the circumference to the dismeter of a circle cannot be expreseed pre cisely; it is very nearly 22 to 7, rather more than 8 to 1 , more exactly $8 \cdot 1416$ to 1 . As a circle may be conceived to consiat of an infnite namber of triangles, with the circumference for the bases, with their apices meeting at the centre, and as the area of any triangle is equal to its height, multiplied by half its base, and as the supposed triangles have the circumference for their joint bases, thoir joint area is equal to hald the circumference (i.e., half the dismeter multiplied by 8-1416) by half the diameter, or a quarter of the equaro by $\frac{8 \cdot 1416}{4}=\cdot 7854$. It is easier to nemember $\frac{22}{7}=3 \cdot 14$
which may often be nsed instend of $8 \cdot 1416$, as near enoggh. If an spproximste estimate be sufficient, it may be convenient to know that the square of the diameter in inches inster a yard long in pounds, or with of a pipe full of water a yard long in pounds, or with
the nnit cut of by a decimal point in gallons. the uni
Primo.
[11060.]-The Bee Hive.-F. J. Godden is informed that he will find the way of applying guides to frames described in let. 3268, p. 384, No. 353 , and he will only bave to vary from the sketch of knife-gange by making the notch in it so as to come in the centre of bis frames. The frames should hang from front to rear of him, and the back should be raised at least an inch, so as to throw both front and baok out of perpendicular. "Carr's Hive," desoribed in Neighbonr' no cover to them, so that the whole of the baok is open, and a statement is there made that covering for gless is not necassary, as bees will work as well in daylight as darkness. I have read that daylight acts on honey chemically and indaces arystallisation, bat hare not parsued that branch of the subject. I should re not parnd Mr. Godden to keep his glass hires under commend kir. Godad 0 oreep his glass hives under they are dangerons things in a house. I know bees will work in daylight, as I have seen combs formed by ontlying clusters under the bee stance, but they C. N. Absotr deserted and emptied in autumn.
[11063.] - Moth F. Fur.-In storing woollen goode I use camphor as preventative against mothe. The camphor is laid between the folds of the goods, and
some freah sadded every two or three weak. - BUSY BEs.
[11064.]-Etioking Plaister.-Ordinary sticking plaister is made by boiling oxide of lead (litharge), olive oil, and water together to a proper conaistence, and then spread on cslico. Court plaistor, is made by brashing
Harase.
[11065.]-Ventilating Rooms.-"Philo" has described a luoky expediont for inlet that our binglish windows happen to alford-namely, by either ralaing the lowar sash, or lowering the apper a fow inches, and flling ap the top or bottom opening thas iormea, leaving air to entar only by an upward all the two "meeting-bars" (an they are called), which, in ahort, ought mever to meet at all. Every ah ought to be two inches longer (i. e., higher) then they are now mado, and they would be all right (oniy needing, of courso, a diflerent fastening). But windows to open are a barbacism that ought nowhere to be required. No dwelling rightly construoted ever did, or ever will, have its ventilation aided by opening windows; but, on the contrary, intarrapted and apoilt, if it have any self-ventilative capability at all. Of correse, it is "a sels-evident truth" that you must have ontlet for foul air if any freah is to tahe its place; but not a bit more evicomit or necosary ham noth is no ontlet for fonl air if nores-as.enty, that an outlot no oarer if the room contains one cubic barloycor bis apnot higher that the top of the aila "ousion of those sold vive hiak bowina a plehre, or any tho ceiling with top bordert to come corvice, are "enough to matie
 a cat lavgh" at haman
[11086.]-Georgetown, Demerara.-I hardly know why my former commanication on this subject had "No Name" appended ; I suppose, however, I had forgotten to attaoh my newal signature, asi In reply to "Yonng Man" I beg to sas shat seiling veesels go from London, Liverpool, Bristol, and Glagow to Demerara regularly. Inquiry made at the doaks of any of these ports will elicit the necessary information, or a lettar addressed to Messrs. James Ewing \& Co., Glasgow, will do the same thing. The West Indies Packet Companios' steamers leave Sonthampton on the 2nd and 17th of each month. The passage for sailing ressel averages forty days, and costs about 222 , per steamer twenty-one days, and costs $£ 30$. There is no season better than another for starting, or at least the difference is so slight that it is not worth thinking sbout. As to whether a "Yong Man" should secure an engagement before going out, or go out on chance, there are cartain advantages and disadvantages in both ways. If he asn get an ongagement made here he would get his passage paid ont, and probably an advance for an outfit as well; but then he would not make nearly so good tarms as if be wont on his own charges and made his bargein on the apot. On the whole I think if a "Young Man" can secure an engagement for three years before starting it woald be better. That is, however, a mattor of some diffoulty, nuless he knows, or is known by, some one who is in the habit of sending assistants out, as for obvious reasons we should not think of sending a stranger, or, indeer, any young man that we did not thoronghly know. Demerara is not subjeot to earthquakes, and is quite ont of the hurrioane latitude. Trollop's "West Indies," if a superficial knowledge only is required, and may be got at almont say ordinary circulating library ; but if more exact and extensivs information is desiderated, "Dalton's History of Britioh Guiana" is the best.-Auld Regere.
[11091.]-Turret-shaped Eills. - There are two ways in which turrets or pillars, of that form may have originated. If entirely of hard igneons rock, as Manus" states the Indian ones to be ($p .674$), they are dykes that were thrast up through clay, marl, or soft material, which material the dinvial wash has since carried away, leaving the basaltic turret, like that remarkable square one in St. Helens, called the Chimney, figared in Lyell's "Elements,' p. 610 (kixth edition). But "Bansjoy's" drawing (p. 624).seems rather to resemble, in some parts, as the three peaks to the right of Fig. 1, hills of soft material that has been protected by stony capa, like glacier-tables, or the pillars of salt near the Dead Ses. In either case there hes been a vast removal of soft material ioy denadation, and this not gradual, or sach as "canses now in action" (as Lyell would say) conld effect. The downall of rain that swept away and moulded in smooth ronnded sweeps what it left of the softer strate, everyWhere on the present surface, was no downpour on aches per hour, as the greatest tropical monsoon did all its rather of feet or sathoms per minato, and that Noah entered the ark, the flood came and destroyed thom all."-E. L. G.
[11092.] - Champagne Stains. "Unleas the colour of the dress is de日troyed, "Fexed Man" ing silk. Take of gin, honey, and soft soap equal parts, and twice other ingredients. Dissolve thoroughly, and when cold brush the otains thoroughly with a hard, clean nail brush dipped in this mixture; hspe thre lespo basins or tabs frill of cold rain vater, and dip the eill three or foar times into esch (this thoronghls removes all stickiness), pass your hand once or twice langth. wise down the silk in order to water, but on no account wring it; then fiang it ovar
a clothos scroen near a fire, and Then damp-i.e., quickly fith a begirs. Ot coarse the stained width mast be remored from the rest of the dress and it is best to lay it on a deal table and sorab hard. This recipe has been found efficacious in cleaning the most delicate colonred ailks, making them look quite new.-Champage Charlig.
[11108.]-Soda Ash in Bollers.-I have been using it in to horse-power boiler for ten weeks, and have to-day been in and examined the boiler, and and Do injorions resali, bat the qnantity I have osed has not been sufficient to entirely remove the
scale which had proviously been allowed to form.scale
Busy Ber
[11111.]-Curing sking.-"Trapper" will find for following reaipe everything that conld be desired leopard shins with it in India. The degree of tiexibility attainable depends upon the amount of time beatowed in hand rabbiug: with plenty of elbnw grease a akin can be made as soft as kid. I regret I can farniah no information as to dyeing skins. To prepare
skins for far: Mix bran and soft water suffient to cover the skins; let this stand four hours covered before boing used ; then immoree the aking, Keeping them take out, wash clean, and carofolly scrape off all the foesh. To one gallon of wator (bot) add one pound of alum and a quarter pound of salt. When dissolved and cool enough to bear the hand, immerse the sking for tronty-four hours, tate ont and dry in the shade, and well rab with the hand. Stir the liquor, and again immerse for twenty-four houra, dry, and hand rab as before, and then pat the shins for twenty-four hours into warm oatmoal and water, stirring ocoasionally. Dry in the shade, and when the akin is nearly dry, hand rub till quite dry. Theakin is now white leaher, and int lise. (Trioa wita greab saccess.)-liex.
[11114.]-Olaret.-I believe claret to be a very healthy drink, in fact, all the doctors with whom I am
zoquainted rocommend it. It affects particularly the soquainted recommend it. It affocts particularly the
liver and stomach, on which it acts an a tonic. It also renders the blood healthy and pure. It is generally adulterated with \log wood.-Scr. Q.C.
[11115]-Pigs and Pig Feeding.-If the object be to increase income, I cannot help your correspondent. If he have land, and requires manure for it, fat pigs on barley meal; ;if with the addition of potatoes, offal, wheat flour, ground peas, or beans- mixas, mre, bot fifty years' experience, during which I have fattened handreds of piga, I find on an average the value of the bacon amonnts to the cost of the pig and the food on which it is fattencd, sometimes a ahilling a score proti is made, sometimes the same araonnt of loss is inoflal food, and to increase my manure heap.-A Rx. timed Fagkra
[11115.] - Pigs and Pig Feeding.-"Corkeran's" income can bo increnced by roeping pigs if he has facilities for so doing, bat it is a miataken notion to sappose
that any pronit can be derived if all the food has to be that any pront can be derived if all the food has to be
purchated. From experience, I can say that pigs parchased. From experience, I can say that pigs
seldom pay for the expense and trouble in ench a case ; soldom pay for the expense and troublo in such a case;
however, let me atrongly adrise him to take in as many howerer, le mo gitrongly gdrise him to take in as many
an he can afford to keep, if he hat or oan obtain the refuse of a large house, mill, or batcher's stall. They will eat almost anything, roots of all kinde, turnips, carrots, mangola-martzel, potatoes, good or bad, and green food, including cabbage, greena, and all kinds of
garden produco-the mont worthleas parts noed onds garden produco-the moot worthloss parts need only be
given them \rightarrow ome woeds, sach as the sow thistle, gocasionally given for its medicinal property, and
och Which they eat with an extraordinary relish, nettles, docks, rape, and chick-weed. But these must be alterlittle fattening properties when need anmixed. The same may also be said of roots and vegetables. Coarse meal, such as bran, craczed oats, Indian meal, grains. damaged rice-meal, and mill refinse are the best food for fattening, thongh seldom given alone, but mixed for fattening, thong seldom given alone, but mixed refuse. There are many articles of pig feeding omitted
here which will occar to "Corkeran" with his pige. He need not be afraid of trying them with ang piga. He need not be afraid of trying them
with any eatables. The appetite of large pigs is roracious, snd they are by no means epicurean or dainty as to what they eat. Let everything given them as rood be cooked; raw foed is of little or no use. This does not apply to sow-thistles, chick-weed, and other As to '"Corkeran's" second question, an to the time of the year he onght to begin, any time or season will do to take in a stock of pigs. Young pigs are best to buy at this season, if he has a small feld or bit of sward to sucklings or very young pigs. Confinement, how. over, even in a small space, if proper ventilation is afforded, does not retard the growth of small or large awine. Strict cleanliness mast be attended to in all cases, as dirt or moistare is sometimes the canse of parts of the body, which is their principal malady. sble to carefal treatment and variation of diet. There is very little experience required in rearing them. altimataly cared with little tronble on the part of or owner.-Rat-Tat.
[11116.]-Bpotted KId Gloves.-Do not wear the gloves in maist or rainy weather. Keep them nnder
cover me mach as possibio, and do not allow them to lie
for any longth of time in damp places. They mustaleo be hept free from greasy or unctuous mallor. When spota. This also bappens if they (the gloves) are a tight at and the hands perspire. Rab the spote, if white kid gloves, with pipe-alay or powdered French alk-Rat-Tat.
[11117.] - Water. Wheel. - The form of the backets, and the angle of the point of the buckets with the ring, will rary with the diameter of the wheel, the depth and number of the buckets, and the velocity of
the wheel in feet per second, also with the head of water over the orifice of the fender or slaice which admits the water into the buckets of the wheel. If "Yoangster" will farnish sizes I can no dou bt give him particulars.-Tubal-Kans.
[11120.]-A Question of Sight.-T think this is nearly the simplest question we hav had, and ther have been a fow queer ones too. The sapposed in-
halitants of "Fiddler's" orange would traly see the light of the candle refleoted from the walls; he wants to know why we on the dark side of the earth do not see the sun's light in the same way. Well, becanse the happene not to have any walls.- Sigua.
[11120.]-A Question of Sight.-Both "Fiddler" and " Δ. J. V. G." may be assured "there is more in this," and most other things, than appears to their
"frst sight." The latter is " agape "frrst sight." The latter is "' agape with speculative
wonder wonder" that "a luminous point" producos not
exactly the same kind of shadow as the sun. But it his laminous "point" conld illaminate " one-hall of a globe's earface," he had more reason to be agape. Perhaps he thinks that from a "point "-frome one
oyo-he can see "half of a clobo's surface " larger than that eye. Let him note, however, that the san oven without refraction, illaminates at any momen not meroly a hafi, but about 201 foar-handredths of the earth's surface. He mast expose his globe to laminary that will thus light more than half of it. The sun himself will do exactly the right thing, and
cast exactly the kind of shadow from his globe that it cast exactly the kind of shadow from his globe
doos from the globe he dwells on.-E. L. G.
[11120.]-A Question of Sight.-May a young stadent ventare to reply to this question, which indeed rays of light proceed from an eloctrio light throogh the ordinary atmosphere of an room rendered perfectly dark, millions of particles of dast are seen to be floating about in the rays. If, however, these rays of nary atmosphere, whence all these particles have beon absolately barnt, by passing an electric carrent through a platinum wire stretohed apon pointe within the case, then luminous rays will be observed on either side of the case, bat within it absolate darkness pre vaila. In diagram let X be the point whonce the rejs procoed. The rays r rare laminons; the rays within the caso indicated by dottod lines are absolatoly dark,

Whilat the emerging rays $r^{\prime} r^{\prime}$ are also \ln minous. We thus have direct experimental proof that in the absence of the particles of dast we should perceive no light, unless we look directly towards its sonrce ; or in other words light is but reflected by these particles. Therefore, in "Fiddler's" room, strong light from the candle falls apon the day-side of the orange, whilst on the night-side light is not altogether absent, owing to a emall amonnt being diffased by reflection from the
small particles of dast existing in the whole reom. For like reasons we are not able to see the rays of the For like reasons we are not able to see the rays of the
sun
which are not intercepted by the earth, on account san which are not intorcepted by the earth, on account
of there being no sufficient amount of matter (if any) in there being no sufficient amoant of matter (ir any)
io render them laminous. Ou the other hand we can see the stara becanse we look at them in the diwe can see the stars because we look at them in the di-
rection of their rays of light ; and, therefore, even at rection of their rays of light; and, therefore, even at
night time, when, without a moon, we are never absoIntely withont light, since a smali amount is almay diffased by our atmosphere, both of rays of the san and of the stars.-UNDERGRADOATE.
[11120.]-A Question of Sight.-" Fiddler, will see that light is conveyed in direct rays
and in reflected rays; but some bodies absorb some or all of the rayn, and so retlect none, and thas missing direct rass we may miss reflected nes. Tyndall states "the laminiferous ether filis stellar space." So mach closer together are the ether
atoma than are the atoma of the elemants known to atoms than are the atomy of the elemants known to
chemistry that light travels at the rate of 192,500 miles per second, according to Herschel, while sonnd ravels through air at the rate of bat aboat oneeighteenth of as many feet only-viz., 11,090ft. per second. When "Fiddler" looked at the shadow of
his anspended orange, did he cut off from himself all his anspended orange, did he cat of from himself all
direct or retlected rays from his source of light? No. Now, no excessively minute are the ethereal atoms that
(though minuter than the finest needle's poini) they havo not weight enough in their reflected motion to destroy the ese; and it is ouly in their reflected motion we receive their impalso in meeing and in ob-
eorving and looling. If we recoive direct rays $m 0$ destroy the texture of our eyes and lose our sightpower. Evidently the most powerfal refocted ray is walts contraled with a direct ray. Trophe of the light-giving ether: bat tranaparent atmosphare refects no portion of the rays of the spectroscope, bat the blue ones and the invisible ones-those refectod by clonds are less luminous. Light can hardly be deemed ribration, bat force in one direction, light ceasiog instantly that combasion stopa; so that person cat off rrom direct or refectod raye stoliar spaco stars we see of other systemas, and not by the sun of our own. As for an earth's shadow that sixe is it when cast by the moon on the san in an eolipera? Bat its shador can bat be cast on a planet (which reflects Sol's rapa) when that platat is not beyond the focas of the shadow. I cannot state jost now the limite of the earth's shadow, though it ware absurd to sappose it earth's shadow, though it were absurd to suppose it is, nevertheless, easily calcalated: it extends an ex is, nevertelees, easily calcalaled: it extends an es is it), than when cast by its own contiguous satellits, the moon. J. Barwick
[11120.]-A Question of Bight.-Why shoold Ho. J. V. G." consider the sun as a luminons point? than a point even at our distance of ninety odd millions of miles. The sun being many times largor than the earth, and "A. J. V. G." hanng reverned this in his experiment, it is not extraordinary that the reealt a his experiment is the reveruo of the known fect. Lef him take a moderator lamp for his ann and a marble for his earth, and he will moarcoly fail to convince him
self of the true nature of the earth'n shadaw.-V. B.
[11120.]-A Question of sight.-If there is more in connection with this question than appeens at frat sight," I shonid vory much like to havo if ax things are requirod -light and a reforting gartice or mediam. If "FYddler" thinke a moment he will seo that the only rofectors in the space which Mr. Berwick fills vith "attonasted hydrogon" are the wart the planets, and "our" satellite, the latter of which is obviously the only looking-glace near encugh for as which illominate the moon ontil they are refected trom the face of Selene ; and I imagine that a mase midway between Sirias and the sun would be in darknoen, or at least semi-darknees.- SaUL RYMIL.
[11120.]-A Queation of Sisht.-The dark nide of the orange in "Fiddler's " supposed cace is iltuminsted by light from the candle aftor being reaected from the walle of the room. If it were posaible to remow the candle and the orange to a place where thare is nothing external to the orange from which the light could be refected to it, a pigmy inhabitant of the dart side would not see the "majority of rays" from the
candle any more than we Boe the "majority of the candle any more than we see the " majority of the rags " of the sun at night. Without ontering apon
the theory of light, I think I am jastined in sajing that rays of light, in order to bo appreciable by the eye, mast be directed straight to the eye, whether they come from a self-laminons object or from an object ro-
flecting them. We see the objects of a landscape ca flecting them. We see the objecte of a landscape ac
account of the rays of the sun being reflected by each account of the rays of the sun being redectod by each tween bright sunshine and deep ahade being dependeat on the number of reflections undergone by the rays
between the san and our eyes. $1 f$, therofore, the sun is between the san and our eyes. If, therofore, the son is
concealed from us, and is so piacod that hin rays do not concealed from us, and is so placed that hia rays do not
fall on anything in our field of view to reflect or refract fall on anything in our field of riow tc refloot or refract
them to us, the result is darkness. In looking at a them to na, the result is darkness. In looking
distant otar on alear but dark night wo no doubt 100 k ath wart the sun's rays strosming in all thoir glory through space, bat as they fall on nothing to refect them to our eye we see them not. Bat let the moon or a planet rise across the path of thoee rays and wo immediately become cognisant of light at a apot at which a fow moments before we could only discern the vast
vanit of heaven. The moon ia not as deseribed by vanlt of heaven. The moon is not as described by
Demetrins in the "Midsummer Night's Dream," alasDemetrias in the "Midsummer Night's Dream," a las-
tern, with a man, a thornbush, and a dog in it, bat a corn, with a man, a thornbash, and a dog in it, bat becomes a means of reliecting, and, therefore, rercaling to us light which is ever radisting throagh space, bot which withoat her intervention is often to ns as if it
were not. Some time ago a slight circumstance were not. Some time ago a slight circumstance
showed to me how close the brightest sunshine can bo streaming past the ese without producing any impression as such on the retina. I was ritting in an arboar with a narrowish entrance opposite to a bank of laurel bushes. The sunshine was pouring through the boaghs
of a tree on my right down to the groand on my left, bot of a tree on my right down to the ground on my left, bat
from where I was sitting the walls of the arbour prc vented my seeing either the tree on my right or the illominated ground on my left. I was accordingly look. ing at right angles across the rajs of sonshine withoot there being any object in their path to reflect them to the ese. Conseqnently I perceived no effect of san-
shine. All the light apparent to me was what is ordishine. All the light apparent to me was what is ordi-
narily expected from daylight alone. Bat on blowing a puff of tobacco smoke from my pipe outside tho arbour, I became suddenly and unexpectedly alive to the sunshine lying across the line of sight. On per-
ceiving this I increased the volame of smoke, and I sam from where I sat, reflected by the particles of smoke, a sort of map of the rays of sunlight and of the shadows of the boughs throagh which the sunlight came. On the smoke cloaring away the sunlight and
the shadows again vanished, and nothing brighter the shadows again vanished, and nothing brightar
than common daylight was viaible between where I sat and the laurel bashes opposite.-V. B.
[11183.]-Lantern Pinions.-The pitch or distances of the contres of the pins or trussies shonld be the same as that of the wheol into whioh they have to sear.-Tubal Kam.
[11125.]-Bilver Bath.-It the bath bas eraporatod to about one third of its former balk, it must have been very mach too weak when last used, or it is
mach too strong now. Nitrate of silver does not evaporato. Teating the etrength is very simple if Chariee Loot has the proper instrument for the purpose; if he has not, he had better got one, as it only
costs sbout three ahillings, and is always acoful. If coste sbout three ahillings, and is alwaya neoful. It Fith the cyanide, it muat be the cyanide whioh is at fanitt ; it is either too weak; or perbaps it has been
often nsed and saturatod with the iodide of silver, so often used and satarated with the iodide of silver, so
that it will not diasolve more of it. It is possible, however, that the yollow coating of iodide of silver is readily enough cloared off the plato, bot that a dull, White coating remains, which the oynnide will not
remove If this is the case, either the bath is out of order, or light gets st the plato while developing, or
going and coming from the camera.-Occisionis going an
Pnoto.
[11125.]-silver Bath.-The. ailvar in Charles Lock's bath all remains behind, but the solation has increased in atrength by the eraparation of the water. Iralises with carbonato of sods, and puts in the num for s day, then filtars and adde a drop or two of dilute
nitrio acid, it will work well again. (2) Let him try a fresh solution of ayanide, perhaps that he has been uaing in either very old or has been used
until it is satarated with jodide of silver, and has no further colvent action; or it may be that the bath, no farther eolvent action; or it may be that the bath,
after atanding go long, that he aannot toll whether it clears or not. (3) There
is no cimple way of anding the atrength.一DzDales.
[11126.]-Tarning Perpendicular Shaft.A steam-engine will tarn a shaft in anyingle of the 360° either approximately horizontal or vertical;
requirementa boing attended to.-TUBAL KAIN,
[11188.]-Making Ewimming Bath.-Build your brickwork in compo, and line the inside with the
same (Roman coment), and you will have a waterprool same (Romsa coment), and you will have a waterprool
tank. Provide a wasto and plog to drain. This is the way. I hare bailt the oistorns in malt kilas, and they hero always answored well.-M. \mathbf{O}.
[11128.]-Making Swimming Bath.-If the bath is to be dag out of clay, I would adrise "Park Lane", to coat the bottom and sides with a mixtare of
gas-tar, fine gravel, and aitlod ashes, which will render it completely waterproof; or, if the sides are to be of
brickwork, he might ooat them with Roman cement, brickwork, he might oont them with Roman cement,
and lay the above componition over the bottome-Sca. Q.C.
[11128.]-Mraking Ewrimming Bath.-Form the sides and bottom of Portland cement concrete 6in. thick, and afterwards render in Portland cement and
sand. This will make a perfectly waterproof basth. Arrangements should be made for supplying and carry. iog oif the wationge.
[11129.]-Greek Upailon.-Serfarth has investigated the ancient pronnaciation of Greek by comparing the proper names in the Septangiat with the same in
numerons Oriental versions. He shows most connamerous Oriental versions. Ho shows most con-
alanively that the Greek was like the Fronch u or German ï (gomething like the Scotch wi in gaid). The fomans, finding that their u was not the equivalent,
transferred the Groek letter to thair alphabet and transferred the Groek letter to their alphabet and
called it y, which soon lost its true pronunciation, and called it y, which soon lost its true pronnnciation, and
conld not be distingaished from i. Vice verad, the Greeke represented the Latin u by their diphthong ou, which sounded like oo in fool.-Argent sable.
[11129.]-Greek Upsilon.-The English u gives the only sonnd of the Greek upsilon. "Pneuma" is not a good example, as in that word there are tro letters eu, in Greet, as well as in our manner of spell-
ing it in Roman letters. "Tapto" is a good example bat in English worda derived from Greek words beginning with upsilon, the Greek u is turned into y, as "hydropathy." "hyacinth." There are no such Greek vords as "tyklos" nad "dryas." If I wanted to write the Greet words in Englinh character that are intended to be represanted by the above, it would be thas-
"kuklos" and "dras," hence dryads ; but a "circle" is more directly from the Latin "circalus."-A Harrow
Felow.
Glass.- "Yoizs" mast have Fulcanite Cells to Glass.- " Yoiza" muat have a bad aample of marine
glue ; that I am uaing, which I purchased at a tool-shop glue ; that I am raing, which I purchased at a tool-shop
in London, adheres to glass most teuscionsly.Denalue.
[Ills1.]-Fastening Vuloanite Cells to Glass. Polptechnio lound the cement bold at the Royal in fxing valcanite colls npon glass allides. It is clenn to ase, drios in twenty-four hours, and holds armly. 8old as Polytechnio cement.-ILsx.
[11188.] - Ouring Bacon. - "An Agricultaral Labourar" will find the following an arcellent method of caring bacon or ham :-To overy fourtoen pounds in addition one onnce and a half eack of saltpetre and common soda. The soda prevents that hardness in-the loan of the bacon which prevonts tonat hardness indere found, and teeps it mollow all throagh.-G. Demoarlabe.
[111s8.]-Curing Bacon.-The following recipe
is copied from tho London Jowrnal (Februany 21,1857):
-To 1 gallon of wator add 1 llb . of call, tlb. of gagar
 together onal an the dirt rises to the top, skim oif, and cient for it to lay in the pickle. This pickle may be cient for it to lay in the pickio. Thit pickile may be
nsed again aevoral times. It is wall to boil and skim when you think it requires it. To amoko bacon, if you have a wide, old-fashioned chimney, and burn wood, you may hang it up in the chimney and dry as I do, or send it to the bakohouse. It vill dry is hang ap there -Norti Devon.
[11188.]- Violin.-I have no doabt that " J. W. L.," beill readily acknowledge ita superiority over the old notation for ainging. Having had some practical ex perience of its adaptability to stringed instruments, "can conflently recommend JJ. W. J." to obtain the "Btring-Band Book,' odited by Rer. Joo. Carwen, and publiohed at the agonoy, and if he will apply himsal he will be y in a short time. For ae he already knows the notetion, he can devote all his care and attontion to loarn ing the best atyles of bowing and Angering; whereas, ifg the best styles of bowing and angoring; whereats, sharps, and other croteheta of the old notation, the time left to mastor the bowing and ingering of the
instrament would be small indeed. As I am speakinstrament wonld be smal indeed. As 1 am spoak
ing on stringed instramente, I may perhaps be allowed ing on stringed instramenta, I may perhaps be allowed
to refer to query 10945 , and reoommend "R. W. T." to edopt the Tonic Sol-fa syatem for hia violoncollo and he will find the same book replete with excellen dvico and oxercises for learning that instrament \checkmark J. G
[11138.] - Violin.-It will be necessary for manic for tho learn the old notation, on acoonnt of all bay an inatrin materially, but it would require the aid of a master to give him the "finishing touch."-J. King Harris.
[11189.]-Geometrical Drawing.-The best books on descriptivo Reometry (orthographic and Isomotrical Projection" and Bradley's "Elements of Practioal Geometry' (Chapman \& Hall). For problems and exercises soe the "Science and Art Examination and exercises see the "8cience and Art.
[11139.] - Geometrical Drawing. - Binns Orthographic Projection."-Excelsion.
[11141.]-Phrenology.-I shonld think the best way of atudying phrenology would be by obvervation; at least, I have fornd it so. For instance, select a certain class of men who have all a certain olearly defned tante for some one subject in particalar-as for heads, kc., are formed, and lay down the rule that all other men who have their heads formed in the same manner have similar tastes. Then set to to find out the exceptions to this rule, and ascertain the reason for those cxceptions, and so proceed for overy other form of head that may come ander your notice. By proceeding thus, you lay down a certain set of roles
[11142.] -Centre Points.-Use a wrought.iron crank of 1 gin. or 1 din. diameter, with steeled ends
hardened, and the radias of the cranks 2 2tin. to 8 in., hardened, and the radius of the cranks 2 tin. to Bin.,
depending apon the size of the lathe and work to be depending apon the
[il148.] - Height of Swise Mountains.-Mont Blanc, 15,739ft.-Excelsior.
[11145.]-Rose Trees.-I have found plenty of pure water and a syringe as good for rose-trees as quire all the came treatment, and moss roses require fowers it is necessary to remove them every three or four years, as they, like potatoes, oast an abandance of slime. Pruning is the most important feature in their cultivation. Until I nsed my cilippers aboat them most liberally I had poor and degenerated flowers. The shoots mast not be uniformly shortened to within a certain distance of the stem; the strong and vigorous shoots should be annually shortened to within six inches of their base, while the weak and slender may be redaced to three or four. Standard roses reqnire still contre of the head. It is very necessary for standards to be sapported firmly to strong atakes.-SARAB.
[11145.]-Rose Trees.-"Katrine" will find bitter aloes very good to syringe the treos with. One pennyworth will make three or foar gallons. It is very good, also, for any flowers. The trees ought to be cat the
beginning of March, and I advise that they be cut at beginning of March, and I advise that thay be cut at they seem pretty thick. Water every other day this cool dry weather, and in summer every day, the water
being pat to the roota and not over the tres.-HARI being put to
W. W8B8.
[11145.]-Rose Trees.-" Katrine" need not use either tobacco or lime-wator for her rosen. If they are well painted with a solution of soft soanp before they atart, they will not require more than syringing
with alear water altorwards. Cat them now: dwarfs with alear water alterwards. Cat them now: dwarfs as short as you like; standards should have the hoads
trimmed into shape and woak branches removed ; then cat beok to the fourth bud it that is suitable-i.e., if it points downwards or outwards. Roses cannot well have too much manare; watering depends entirety on the season: they did not require much last gear. An old gardening friend of mine always digs all round his rose-trces on parpose to cat off the lap.roots, which only assist in forming wood -a mathod of pruning
[11148.]-How to Disinfeot a House.-Have all the paper stripped off the walis, and have all the Moors, ceilings, end waile wasked with lime and wator may oance a fresh outbreak-G. DzROARLGBE.
[11148.]-How to Dieinfoot a House.-There are two methods which are believed to be saperior to all others. 1. Chlorine gas. 2. Sulphuroas acid gas. Eoth of these plans are noticed in the Encluse Mas. " E . I Ge" meex, bat hardly in a practioal maneor of manganese, salt, and sulpharic moid, whioh will give the chlorine gas, bat he directa that one poand of the mixed allta and an equal woight of melpharic eotd be used to each cubic yard of the contente or a house. from any practical knowlodge of the subjeot. A room 12ft. aquare and 9tt. high, would require 481b. alats, and as much acid; a house 24 ft. $\times 15$ ft. and 801 . high would tare 4001 l . of each - nioe joke to caprize honse. The moric acid by paling a string outhiat usod by the New York offciala: it is to place a pan containing one pound of eulphur in each room to be disinfected; this should stand in a larger pan containing sand or earth to avoid risk from fire. Doors and windows are shat, chimneys stopped with a handfal of sharings, the salphar lighted aftor some strong mehyated spirits of win for 24 hours. The salphur does not light readily without the above preparation.Barribtik.
[11148.]-How to Disinfeet a House.-Mix well together llb. of Calvert's No. 5 carbolic acid with 5 gallons of water, and sprinkle well over the house. on hitino olater in the parione rocme traporing the on hot ins platos in the varioum rooma, rooping the dars : then ellow a good current of air through the diss; then allow good currenh of air Laroagh the phace, and and carbolic and the hores may be gaid to be perfectly in carbolic salid. Intion (1 to 80) Bedding so be placed in a disinlecting oren and exposed te a tam. paratore 200° Fabr an a peratare of 220° Fahr, and a large fiat jar, ot equal parta oven oarboic acha vapour and heat the carbolio ecid is roletilised, and the vaporr is sbsorbed by the goods. I hasp, sien zymotio diseaseo rotorin bhen a chloride of lime diain fection was relied on, bat never with carbolic acid, if fection was rolied on, bat never with as.
[11149.]-Framination Question.-I agree with the querist that such a question should not have been pat, unless opportanity of reference was afforded, or it was put to a very advanced chemical class, and one which had been specially stadying subjects of this order. I could not answer it offhand, or without reference to tables and authorities, as it relates to subjects I have never had occasion to deal with, and, therefore, cannot charge my memory with the requisito igares; and being away from home I leave the reply to others.Sigka.
[11150.]-Scaring Foxes.-I am sorry to inform "A. B. C." that the above subject is not my forte. It
it was my diffioulty 1 should try a few ahot.-G Bozas It Was my
[11155.]-Amalgamated Zino.-I always do this in Bansen's battery by patting some msreary at
the bottom of the zinc cell, flling the cell a littlo the bottom of the zinc cell, alling the cell a little fuller than I intend to keep it while working. The mercary then covers the zinc as high as it is wet with
the diluted salphario acid. After a short time I lower the acid to the proper height. This affectually amal gamates the zinc.-W. Browns.
[11155.]-Amalgamated Zino.-I am surprised at "Yaker's" failure, as I hare always tried the plan he speass of and have found it to succeed. Porhapa cylinders previous to ruhbing on dipped the plates or cylinders previons to rabbin
strong onoagh.-Scr. Q. C.
[11162.]-Aerated Drinks.-Seltzer wator shoeld be a correct imitation of the celebrated German spring. The following is a reoipe whioh I
bave not tried, bat give it as 1 have it witten. bave not tried, but give it as I have it written Mariate of lime and mariate of magnesia, of each 32gra.; dissolve these in a emall quantity of water and add it to a similar solation of 64grs. of bi-car. bonate of soda, and 160 grs . moriate of soda, and 16 grs . phosphate of soda, and add a solution of $\ddagger \mathrm{gr}$ salphate of iron; pat the above together, filter care fully, and add to a gallon of water, then oharge with carbonic acid gas to a pressure of 1201b. Potass
water :-Dissolve water :-Dissolve a quantity of bi-carbonate of potas in your water, then charge your water with gas, Abent 1dr. carbonata of potass to 1 gallon of water Lithis: Use the carbonate of lithia. Carrara :Put a quantity of Carrara marble in a oracible, and When calciped add to your water and ohsrge ap to 1601 b . or 1801 lb . of pressure-about $10 \mathrm{grs}$. . to each
bottle. For magesia nse carbonato of mangovia. bottle. For
Saps. FATER.
[11162.]-Aerated Drinks, " IL W. D." will And the following a good recipe for seltzer water:-Carbonate af soda, 10 dr . ; carbonate of magnesis, bdr.; sul. phate of potash, fdr. $;$ common salt, 13 dr ; chlorate of phate of potash, tdr. 3 common and
potash, fdr. Of currae the gas will have to be forced into it as in soden watar. This quantity is anfficient for two gross of the water.-J. KING HsRals.
[11163.]-Currezca.-Here in an account of the nen German coinage:-The Borven Zeitung of Berlin
pives details of a bill, to be introduced into the German Parliament during the present session, for the regula. tion of the coinage of the empire, a measure the neces. dity of Which is obrious to any one who has ever been
perplexed with the maltifarions cnrrencies of the many perplexed with the multifarions correncies of the many
German States. According to this sketch, the new bill Gorman States. According to this sketch, the new bill
establiahes the mark of 100 penuies as the onit of establiahes the mark of 100 penuies as the onit of
ecocant, and the following will be the mand coins:-1. acocant, and the following will be the smal coins :-1.
A tenpenpy piece, 1,035 of which will contain a poand Af fine siliver, and 227.7 of which will weigh a poand
2. A fivepenny piece, with half the value in silver and 2. A Avepenny piece, with half the value in silver and
half in copper. 3. A twopenny piece in copper. 4. A onehalr in copper. 8. A twopenny piece in copper. 4. A one-
penay piecein copper. Higher silver coins : 5. A quarterpenyy piecein copper. Higher silver coins: 5 . A quarter-
mark pieco value twenty-fire pennies. 6. A half-mark mark pieco, value twents- Rre pennies. 6. A haif-mark
piece, value fity pennies. 7. A mark piece. 8. A threemark piece, corresponding to the present thaler. As
the gold money established by the leat bill was to the gold money established by the last bill was to
conciat of twenty and ton mark pieces, the whole new consiast of twenty and ton mark pieces, the whole new
coinage system, if this bill is carried out, will consist of coinago aystem, if this bill is carried out, will consist of
tan coins-the gold pieces corresponding to the English tean coing-the gold pieces corresponding to the English
coveroign and halp-sovereign, but worth respectively Averoign and toal-sovcreign, bat worth respectively silvar coins (quarter-mark, hal-mark, mark, and threomark) correaponding to tho threepenny piece, sixpenoe,
shilling, and what would be a three shilling piece, if shiling, and what would be a ihree shilling piece, if
there were such a coin, but all of fractionally less there were such a coin, but all of fractionally less and the emmaller silver and orpper piecee (ten, five, two, and one pennies) corresponding the penny and half. penny, and what would of tractionally greater valuethe German tenpenny piece being the 200th part of 19 a 7d., Whereas the Eaid penny in only the 240 th part
of 20 g I presume if this is adopted in Germany, of 20 g . I presume if this is adopted
Auntria will follow suit.-SAOL Rrmes.
[11164.]-Making Ganpowder.-Gunpowder in 2 compound of saltpetre, sulphar, and eharoonl; its of the ingredients than their abeolate purity. The following are the proportiona amed by the Englinh, menta:-The Royal Mille, Watham Abboy: Nitre, 751 b ; ohareoal, 151 b ; ; ralphar, 101b. The Franoh National Establishment: Nitre, $751 \mathrm{lb} . ;$ aharcoal, 18.61b. ; alphar, 18.5lb. The United Btates: Nitre, Nitre, 78.781 b ; ; charcoal, 18.691 l . ; mulphar, 12.681 b . Ohinees powder: Nitre, $75-01 \mathrm{~b}$. ; charoonl, 14.41 b . ;
culphwr, 9.91 b . The alareod (which is genorally villow, Broh, alder, or dogwood) is erarained, and all then rifted and placed in the mill, and redveed to a Very fine powder, and pansed through a belting sieve of to e bras wire. It is necensary to reduce the charcoal to an ine apowder as the nitre and sulphur in order to mall piecen, and all extraneous mattors picked out, then ground in a mill and paesed through a bolting
dere the eame as the charcoal. The saltpetre (predonaly refined) is melted and cast into catrea, which bofore being broken are carefally brushed, in order
to remore any particles of dust or grit which msy here got on the surface daring the exposure to the air (this precantion is necessary to prevent any
socident by explosion during the manatioture of the powder). Haring been cleansed, they are broken ap and ground amall enongh to pars through a fine Whe sieve, which is worked in a covered the hopper, and 80 connected with it by a
cushion that by the weight of the former it preasea closely upon the tab and prevents the finer ing is necessary, becanse the velocity of the bolting form itsell into lumps, which would clog the wires of the sieve, and prevent the separation ground. The saltpetre, sulphur, and oharcoal having been prepared as above, are pat into eoparate bins, ness for the powder-mill, a quantity of asoh ingro. dient for the sarface of one bed-atone at a time is to be weighed out according to the proportions required. The three ingredients are pat into a charge tab, in the following manner, $s 0$ as to make the coal intimate mixture possible:-(1) Lay of charcoal and a layer of saltpetre. Great care mnst be taken that theee layers bear exactly the same proportion woighed off. The charge is then put in the Wooden instrament with oight prongs for stirring the aide. After the charge is theroughly incorporated it is taken out and passed through a fine brass wire sieve into another tab placed under the bottom of a covered hopper (cimilar to the one used for the nitre). The charges haring been prepared at the mixing house aro doposited in the charge magazines. When wanted the mione an tazes out a oharge and pleces it on the bed ofl from the charge in loading the mill is carefolly swept down from the stones, wheele, and carb, as soon as poscible; for if left ill the charge is nearly Frought, and then wept in, it wonld make the powder loal. After two or three revolations of the stones to from a copper watering pot, the eract quantity muat depend upon the experience of the mill-man and the wot or dry state of the stones. The charge is ground from three to five hours and then taken back to the
charge magazine. The next day the charge is carried to
the hydraulie press and carefully laid so as to form a mass as cqually dense as possible, and it remains ander pressare as long as the state of atmosphere requires. The quantity mostly pressed at one time is about 4001b. The mass having stood long enough, it is taken ont and broken with a large wooden manl, the pieces being carriad to the breaking trongh, and farther broken yy wooden mallets to pieces about the size of
peas ; 7 lb . weight of this is pat into the corning sieve; peas; ilb. Weight of this is pat into the corning sieve;
33 sieves being contained in the corning engine. When 33 sieves being contained in the corning enkine. When
the curning man observes that the duat from the pieces of comaposition hae passed through the corning sieve, ho puts in a piece of lignum vita, called a roller circular, with erds convex, which grannlates the press cake, and makes it pass through the holes of the sieve into another sieve called a hair dustor, which allows the dast to soparate from the grains by paesing into a trough for its reception. The grained powder is now pat into a reel lined with canvass, of such a tox ture as to allow the ane grain and duat to pase through glazed by friarge and mmall grains remain in it, and are glased by friotion. The time required for this process is from 80 to 96 minatea. Gunpowder thas glazed is Yound to keep longer and travel better than when no glazed. The different sorts of powder are then dried in a stove specially constructed. After drying it is remored from the stove and passed throngh a acreen composed of hro inclined planes, covered wita ane brase wire gieres. This oparation is neceasary to oool the promer and remore any duat formed in the drying. From the screensitis removedinto wooden barrels which 1001b., room being loft for the powder to move aboat When the barrels are rolled. The barrels are then re moved to the magazine-a kample being previoualy taken trom each berral for prool.-WinLIMX H. HEX.
[11164.]-Maldig Gunpowder.-In practice the manufacture of 1001 lb . of grapowder takes 77dlb. of nitre or saltpetro, 10 ilb. of salphar, and 16 lb . wheto. After the reveral ingredienta have boen ground to an impalpable powder, they aro well incorporated and worked into a intill pate. The partioles are then separatod by mechanical means into smanl piecoe,
these again are granulatod by being paesed through hair aiovea. Aftor beling prosied and glased in order to impart to it the property of resieting modetare, the powder in last ol all dried thoroughly in what is called Faloom-storo at a tomp
[11165.] - Padive of Surface of Objeot-Glases. -The curven of object-glesses for astro-tolescopes require to be calculated very correctly, ecoording to the caloulatod and refractive powers which tho formais in H. Cash are altogether wrong for a good object-glage, 1.508 , dispernive power of flint is $00 \cdot 462$, and plato $00 \cdot 290$ and if W. H. Cash would make his fint-glass in the gravity 24.7 tho 1 , and 018 to 5 , and oalcalate the radina of the filnta and plate so as their ratios will be as 1.660 , he will have an object-glass that will be correot. And when the plates and tinte are of the kind gtated above, the focas will be to the radias of fint lens to be, say 24.00 , then the focus will come out 48in., with the ratio of radii at 1.680 . These pro portions I know to be correot, by the formala I have used, and proved over and over agein ; though I havo not used them- myself for a long time, I know they are good, and may be usofol to many. W. H. Cash might he wald has on the bue rays : with a power or M advice to him will be to alter the form of his object glace to theee proportions, for his object-glass is now what is called over-corrected, and when he has correoted it for ohromatio aberration he will ind it is no
correctod for spherical aborration. - W . OLurusLD.
[11165.]-Radius of Surface of Object-Glass. - As Mr. Cash has given me the refraclive indices and Let na take his radii, and let us seo what focal length they will produce. Now, we have for the crown glass $\frac{23 \cdot 422 \times 93 \cdot 786}{46.893+29.422}=30 \mathrm{in}$., the geometrical focus of the
conver, and $\frac{80}{10.58}=28.85$, the refrected foous of the crown. In the same way, $\frac{17591 \times 23 \cdot 422}{87 \cdot 955-23.422}$
the geometrical focus of the fint, and $\frac{68 \cdot 86}{12 \cdot 76}=50$, the refracted focus of concave and $\frac{28.85 \times 50}{50-28.85}=65$ in., the rofracted focts of the compound objeot-glass ; and, as Mr. Cash says that his compound focal length is
$68.85 i n .$, my calculation and his resnlts are very nearly $68.85 i n .$, my calculation and his resnlts are very Dearly the same, allowing probably for slight orrort in workmanship, and I do not think that my severe oritic, done. And now work this out more Bmply tan's object glass has a shortor fooal length than he intended. The reason is that ho has worked his plasses to a
higher disperaive power than what he gives me, for higher dispersive power than what he gives mo, for
$\frac{28.85}{55}=56.7$. Consequently, if his dispersive power is ${ }_{50}^{50}=56.7$. Consequently, if his dispersive powsr is
correct, his fint lens hae too long a focal length, which accounts for his focal length coming out too short. Now let $n 8$ take the refracted focal length of the conver, $28 \cdot 35$, and we have $29.85: x:: 686: 1000$, and the
refracted focal length of the
then we have $\frac{44: 57 \times 28.35}{16.17}=70.81 \mathrm{n}$., exactly what his ohject-glass onght to be, instoad of 6835 in , or 65 in . Now let us apply the proper correction to the fint lons,
and we have-taking 23.422 as the interior carve$44.57 \times 12.76=56.871$, the geometrical focus of the concave lens. Then $\frac{46.844 r}{r-23.442}=56871$, and convequently the back curve of the tiint lens, instead of being focal lin., ought to be $105 i n .$, and then the comporind nearly, exactly as it ought to be, according Mr . Cash's refractive indices and dispersive ratio, an:l he will observe that this correction of the flint lens makes the carves far more nearly appronching to Sir 3 Herschel's formalas than his own do. As regards ey porohesing have procured mine from Browning of the Minorie: and very good they are.-Onios.
[11166.]-Area of Segmont of Ciroular Ring.-Observing the discrepanoy of " ∇. B. a "
solation with mine, I searched for the cause, and found, solation with mine, I searched for the canaso, and found, incompand perceived at frst. that the given ia $60^{-} 70$ is the side of the inscribed hexngon, and 50 mast be ite apothegm ; now, the apothegm aide $\times 0856$, whici is not equal to 50 , as is given for the aide of the innor hexagon or radias of the smaller diralo: hee
not possiblo with thoes data -BERNARDR.
[11168.] - Area of Eogment of Cireular Ring. -1 soe I made an error (p. 675) in saying the said one-sixth "E. L. G." hes dieminged the puestion as an incomplete one, and I was very near doing so at first. "Bernardin"' has mieanderstood it somehow, for the number that he has pat down an 880 mound to 9,600, which is the square of 9787 . " 7 . B.'s" solotion in correat -J. K. P.
[11168.]-Wood Rods. - Johner" win find e bead plane very uneful to make wooden rode, the "tron" it somewhat as per thetch, but of courno the number and size of the "trecth" mant bo in secordapee
with hin decire and his otrangth. His with hin dexire and his otrangth. His
timber should bo of the diamoter of hin timber should be ol the diamoter of hic
rods in thioknem, and the, plane shoald rods in thicknoen, and the, plase ahould have nops eccewed ea to the eides to through it; when, by working on both dies of his atufi, he will be able to turn hem out wholesale, and a bit of glaga paper will anish them off. I have used this hind of tool to mako bird-oage rods for bicokbird cagee with succeas, but
do not recommend that the plane ehould bo mede for mo
[11168.] - Wood Rode.-I should mako them with - SVe-sixteenth bead plane; atick one side; turn the woed. When I was in the brilding line the carpenters made them so.-M. 0.
[11168.]-Wood Rods.-Plase ap a piese of hard wood to the exact thickness, pat it in
the vice with another piece to beck it, and cat abead the rice with another pieoe to back it, and cat a bead
on the apper edge with the beading plane hold horion the apper edge with the beading plane hold horn
zontally; then reverse the board and cut a bead on zontally; then reverse the board and cut a bead on the other side, till the rod comes off. Δ ulight feather is sometimes left which can bo planed off,
and the rods may be "papered" in the lathe.-AEGErT nd the
SABLI.
[11171.]-Rquations for the Formation of Hyaric sulphate.-" W. N. Oswad " perhaps knovs that the heat of the sulphur kilns is employed to hes prica contain tho uitralo of sodia and sulphario acia, consequently we have varying temperatarea, and
 rariation in the process. If the heat is too low, nitric acid is simply distilled, and is washed down the thes into the acid. If the heat is too high, and in the presecce of sulphar dioxide, the nitrogen trioxide and tetronide are rednced to simple nitrogen. If the happy mediam is obtained it is a queetion whether the trioxide or totroxide of nitrogen is obtained. I believe the former, for when reducing substences are heated with nitric acid, nitrogen trioxide is the resalt, and a conclusire proof of this lies in the fact that, when the nitrous fumed are absorbed in the column at the end of the chambers, no other nitrogen componnd bat the trioxime and a little nitric acid is foand in the issaiag acid, therefore the renction would probably be : $-\mathrm{N}_{2} \mathrm{OS}_{3}+\mathrm{SO}_{4}$ $=\mathrm{SO}_{3}+\mathrm{N}_{2} \mathrm{O}_{11}$ then $2 \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{O}_{3}=2 \mathrm{~N}_{2} \mathrm{O}_{3}$, the SO_{8} be coming $\mathrm{H}_{2} \mathrm{SO}_{4}$ by the antion of the ateam. The cham. ber cyrstale, for which so many formuleo have bees devised, have been sapposed by some to play an im portant part in the manufactare of salphario acid but this is thought by some to be erroneons, and the practioal result is thought better if these cryst
never allowed to form.-George K. Davis.
[11172.]-Panching and Shearing Machine. "F. T. S. S. D. " will not be able to panch tin. hole ingin. plate ; praotically the size of the hole to be panchod maut not be less than the thickness of the plaita Bat you can easily panch a in. hole in tin. plate,
the machine being suffciently atrong for the purpoes. -TUBAL-KAIN.
[11176.]-White Hard.-This was an omission of mine or the compositor's: it thoald have beem bjection to pasto is the arealling the ronver, thin cline botter, if you pat a littlo treengo in it to keop it adhesire
longer. If "R. C. K." is in the country I will send him some veneer if he requires it, and advertises his addreas.- \mathbf{M}. 0 .
[11179.]-Covered Wire. - Copper carefully selected and tested for conductivity shonld be used; but many makers know nothing or care nothing about such a "theoretical" detail; as "practical" men they
want to make money. The number of the wire, of want to make money. The number of the wire, of conrse, varies from 10 to th, according to the parpose green, but for very delicate instruments whito is best as the dyes often contain iron which prodnces some very alight distarbance.-Siaxa.
[11181.]-Centre-Making.-"Don Pedro" had better square the hall width, and the rise or height. Add these squares together, and divide by doable the height, thus :-

> The height 20in. squared
> Divide by double weight $=40) \overline{1556}$

$88 \cdot 9$

The radias will be 38 in . 9 -tenths exactly.-E. L. G.
[11181.]-Centre-Making. - First divide the square of half the span by the rise of the arch. quotiont, when one-hals of the.sum so found will give the radian required.-SS. J.
[11184.]-Shortness of Breath.-John Smith had better be careful how he gets "ont of breath." So far from his heart not supplying sutficient blood it supplies him with too much-i.e., sends more to the
lungs than thoy can take, and the best thing he can do is take the adrice of a medical man. Dr. Haaghton attributes the death of Master M'Grath to the fact that the langs werediseased and were incapable of preserving that balance between the respiration and the circulation
which is the true measure of health. It is quite a Which is the true measure of health. It is quite a
mistat k , he points ont, to suppose that an hypertrophied heart is necessarily a sign of disease, for given a corresponding development of lung, a large heart is a positive beneft ; the heart of Eclipse is said to have weighed 141b. But with a large heart and even slight lang disease, congestion of the venous system is apt
to occur. Pedestrians and athletes are often afficted to oceur. Pedestrians and athletes are often afflicted
with tabercle. I don't mean that J. Smith is "in a with tabercle., I don't mean that J. Smith is "in at consumption," but he had bether take ad rice if
persists in "getting out of breath."-SACI. RyMea.
H1186.]-Length of Sidereal Day.-I am sorry that by a mistake, either of mine or the printer's, the length of the sidereal day was stated to be 3m. $5 \cdot 111 \mathrm{~s}$. instead of 3 mm . 0 . 1 s . less than that of the mean solar mean solar time and 24 h . I shall be glad to learn the oasiest mode of setting a clock after it is rated, when neither the true time or the meridian is accurately
determined without instruments of precision. Is there a better mode than by observing from what point sonth of the edge of a board fixed vertically the pole star is just visible when on the meridian? As this time may
be known very nearly, the meridian may be thas known withont sensible error. A point precisely opposite to the ncrth of the vertical board will, of course, be due north, and from that point the exact instant of southing of a star may be observed as it passes the vertical cage.-Philo.
[11186.]-Length of Sidereal Day.-According to the Nautical Almanac for 1873 neither "Philo" nor "T. H. M." is right as to the exact length of a
sidereal day. Twenty.fonr hours of mean time are sidereal day. Twenty-fonr hours of mean time are
equivalent to 24 h .3 m .56 .5554 s . of sidereal time, congequently a clock to go correctly should apparently lose 3 mm . $56 \cdot 6554 \mathrm{~s}$. between each return of a dxed star
to the meridian. T . M . to the meridian.-T. M.
[11187.1-Cryolite.-Can supply cryolite. Is quantity altimately required? Let "Associate" advertise this address.- I. S. WARLEY.
 . 19 198. 11 did. Let "J. Lewis" maltiply 220
[11188.]-Arithmetic.-I am sorry "E. I. G." can only give a Yankee's answer to my questionnamely, another question; but since this is the only reply, I suppose that there is no way to work'oat the sum in the way I require. As, however, in the second cannot be worked by any method, I have inclosed for his and the other readers' beneft O'Gorinan's method, be worked out than for any practical parposes, as the decimal method-riz, reducing the shillings and pence to decimal parts of a ponnd is by far the simplest and easiest.-Rale: Pounds \times pounds, prodace pounds; ponce, produce pence. Shillings x shillings: every 20 is a shilling, every 5 is threepence, each 1 is 2 farthings and four-tenths. Shillings x pence: every proce x pence: every 60 is a tarthing, every 6 is onetenth farthing.-J. Lewis.
[11188.] - Arithmetic. - Maltiply by $\mathbf{2 2 0}$ and sabtraot the $19,200 t h$ (one farthing the difference between 1919 s. 11 2d. aud $£ 20$ being the 19,200 th part answer requiren.-G. Den ; thrigbe.
[11199.]-Pumps of Portable Engine. The pressare, in the caso of the twor-ralve pump, being alternately abnve and below the centre of effort of the
valre, it will obviously bo anable to overcome the
barometrio resistance to initial suction. When taree valves are used one surface is always at a maximum, and the pamps will start, as your correspondent bug. gests, of their own accord. I had an unpleasant instance of this on one occasion : having left the pamp and hose near a pond on my grounds one, evening, mischievons boy inserted it, and in the morning the pond was dry.-MENDEX.
[11194.]-Restoring Worn Black Oloth.-I should advise the use of a strongish solution of sequioarbonate of ammonia to sponge the aloth.-W. F. Trinder.
[11224.]-Books on Ceylon.-The "Catalogue of the Indigenons and Exotic Plants of Ceylon," by Alex. Moon, Colombo, 1824, might, I think, among many otherg, be asefal to the querist; it gives the ralgar
[11285.]-Eels in Paste. -" Microscope" must not buy his paste at the shope but make it himself, from floar and water only. It should be made thick, and with a wooden spoon, this should be done daily to preWith a wooden spoon, this should be done daily to pre-
vent the growth of mould. In warm weather a few days will generally produce a plentiful supply; in cold weather a longer time is necessary. To exhibit the
animalcala in the microscope, a little of the paste should be put in some water on a glass olip. They will keep for years if a little freeh paste is occasionally added.-J. Kivg Harris.
[11239.]-Photography.-I cannot see the possibility of giving "Caswallon-ap-Davies" sufficient information fer him to set ap as a photographer (he being ignorant of the art) in the small space which it woald be necessary to devote to him in this journal. I am afraid he wiil find photography not such \mathbf{a} simple thing as he, perhaps, imagines. At all events, he had better acquire a knowledge of it before he thinks of setting ap in business in that line. He can obtain Works on the subject and all information where he
parchases his apparatns.-J. Krvo Harris.
[11240.]-Electromotive Force.-The force of the Leclanche is so very variable that it is quite possible 100 cells after nse may only equal 70 that a a biandara cell in good order. Bat if cach cell be tested separately and then in series the resuit of the last should be the sum of all the cells alone. If not it is most probable sider Poggendorl's method ar troublesome ons, for
ond whioh reason I did not give it among those I selected as the best. Has "O." got his other resistances, the galvanometer, \&c., correct.-SigMa.
[11243.]-Deaf and Blind.-At the Deaf and Damb Institnte of the late Canon Carton, at Brages, Belginm, a deaf and blind girl has been educated. I
think the querizt applying there, byletter or think the querist applying there, by letter or other
might receive every information desired.-Y. Y.
[11245.]-Felspar.-The analysen differed becsuse the felspar was of different kinds. Felspars are anhydrons donble silicates, consisting of a silicate of alamina, combined with a silicate of a protoxide of either potash, soda, lithis, or lime. These oxides being capable of matually repiacing each other, it commonly happens that two or more of them co-exist in the same species. Felspars are generally classified into five gronps. Potash felspar, soda felspar, soda-lime felspar, felspar belongs to the first group, and is the most felspar belongs to the firat group, and is the most Dictionary as silica, 65.72 ; alnmina, 18.57 ; potash, 14.02 ; sode, 1.25 ; lime, 0.34 ; magnesia, 0.10 -Kappı.
[11249.]-Concrete Walls and Buildings.Has "W. W." read "Kho Bux's" letters, p. 407, Vol. London, "W. W." should inspect a concrete warehouse erected seme three or four years since in Greant Gaild. ford-street, Sonthwark, for a Mr. H. Goodwin. See systems af series of articies desariblog 461 , 548 , 664 and 579, Vol. XV., of the Building Neese. I visited the bailding referred to in Great Gaildiord-btreet at had good reason to be satisfled with it as regards cost of construction and stability. It was bailf with Tall's apparatas.-Kappa.
[11251.]-Iron Stains in Oak-A solation of oxalic acid will completely remove the staina, but care should be taken to thoronghly remove all traces of the actid by copious washing with water immediately the
stains have disappeared, or it might damage the oak. KYNCEER
[11258.]-Rollers of Wringing Machine.I have seen a wringing machine with lignum vitw rollers that have been in wear for
equal to new. Wiulux H. Hxy.
[11262.]-Electricity from Steam Boller.Vide, in works of Natural Philosophy, the description of Armatrong's hydro-electrio machine.-Y. Y.
[11271.]-Na val Arohitecture.-Water-lines or
lines of flotation: These are horizontal lines snpposed to lines of flotation : These are horizontal lines sapposed to be described by the surface of the water on the bottom
of a ship, and which are exhibited at cortain depths of a ship, and which are exhibited at cortain depths upon the sheer dranght. Of these, the moast particular are the light wator-line and the load water-line, the former showing the depression of the ship's body in the water when light or nninden, and the latter the depres.
sion when loaded. Watur-ways: The edge of the deck sion when loaded. Water-ways: The edge of the deck next the timbers, which is wrought thicker than the
rost of the deck, and so hollowed to the thickness of the rest of the deck, and so hollowed to the thickness of the
deck as to form a gutier or channel for the water to deck as to form a gutier or channel for the water to
ran through the scuppers. Dead water: The eddy
which the ship draws after her at her seat or line of fotation in the water, particularly close aft. To this grast attention should be paid in the construotion of being carried too low in the square tucks, for such with carried too low in the water will be atteaded a round battock and mach dead wator. Vesseds with becanse by thak have bat litile or no dead waib, easily recovers its state of reat. Bolkheads: The varions partitions whioh seperate one part of a ship from another. Those in the hold are mostly built with rabbeted or ciphered plank. Ran : The narrowing of the ship abaft, as for the floor towards the aternpost, where it becomes no broader than the sternpost itself. The tarm is also naed to signity the ranning or draming of a line on the ship or mould loit noor, as to run the wale-line, the deck-line, \&c.-W. H. Hzy
[11278.]-Cement for Wator.-Line with (Yin. mixture neat Portiand cement-that is, without to the air in a dry place for a week before ased, to arold shrinkage while setting, and to increase the strongth of the cement; use m moderate amount of water with it when mixing, and lay it on quickly, having provionsly well satarated the stone with water. Do not it is set water in aboat forty-eight hours after.-T. F.
[11273.]-Cement for Water.-Let "Goethe" take his stone cistern to pieces, and use some fresh yard), sorewing the cistern together again before it is set.-J. King Haris.

UNANSWERED QUERIES.

The numbers and titles of queries which remain wnanswered for five weeks are inserted in thio liot. We trust our readers will look over the list, and send what infor-
mation they can for the benefit of their fellow contributors.

Since our last "G.D." has answered 10479 ; "K. K.,",

$\begin{array}{ll}10708 & \text { Vox Humana, p. } 545 \\ 10710 & \text { Drying Stoves } \\ \text { ror Cores, and Loam Moulds for }\end{array}$ Iron Catings, 546
10711 Magneaium Lamp, 5
10712 Dret Flageolet, 5
10737 Writing Ink, 545
Contre Drill Chuck, p. 546
10759 Paris Diamonds, 546 , 1051
10765 Trombone Reetls, 546
${ }_{10772}^{10773}$ Freeding Smunll Birds, 546
Fera Case, 546
10778 Oilding on Glass, 546
10780 Modelling in Plastor, 548
10780 Modelling in Plaster, 546
10805 Tin Plate Measurements, p. 54
1 usu8 Bevel tear Wheels, 547
10810 Shafting, 547
10811 Boiler Coustruotion, 547
10812 Small Boiler for Steam Engine, 54
1013 Spring Biscuit Oatters, 547
10814 Pigeons, 547
10315 To Olean Fars, 547
10818 Scouring Paisley Shawls, 517
$10819 \begin{aligned} & \text { Modechirew Steamer, } 64 \\ & \text { Bleaching Powder, } 547\end{aligned}$
${ }_{10} 1023$ Permanent Polish, 547
10524 Orone, 547

Cleaning Old Engravings.-Instead of carbonate of soda, use the bicarbonate, in slight excess, for decomposing chloride of lime. The reaction is very violent, and Javelle water is easily separated from the precipitate produced. Old engravings, woodents, and all kinds of printed matter that have turned yellow, ar completely restored by being immersed in it for only one minute, without the least injury to the paper, if the precaution is taken to thoroughly wash the amicle in
water contalning a little hyposalphite of soda. Undyed water containing a little hyposalphite of soda. Undyed
linen and cotton goods of all kinds, however soiled or linen and cotton goods of all kinds, however soiled or
dirty, are rendered snowy white in a very short time by dirty, are rendered snowy white in a very short time by
merely placing them in the liquid mentioned. For the preparation of Javelle water, take four pounds of bicarbonate of soda, one pound of chloride of lime, put the soda into a kettle over the fire, add one galion of boiling water, let it boil from ten to fifteen minutes, boiling water, let choride of lime, avoiding lumps. When cold, the liquid can be kept in a jug ready for use.
Velocity of Rays of Light.- Λ prize of 1,000 dollars has been offered by Mr. Uriah A. Boyden, of Boston, Massachussetts, to "any resident of North America who shall determine, by experiment, whether
all rays of light, and other physical rays, are or are not all rays of light, and other physical rays, are or are not
transmitted with the same velocity." Any resident of transmitted with the same velocity." Any resident of
Mexico, the West Indian Islands, or of what is more Mexico, the West Indian Islands or of what is more
gonerally known as North America, may compete. Competitors must forward their memoirs, which must describe every detail and particular of the apparatus employed, and of the method of experimenting, to the Sccretary of the Franklin Institute, Mhiladelphia, be
fore January 1, 1873. Three judges will be appointed sclected from citizens of the United Statee of known scientific ability, who will examine and report as to which (if any) of the memoirs is of sutfelent impor tauce to receive the premium. The memoirs sent in
arr to become the property of the Framklin Institute, with whom the money is deposited.

QUERIES.

[11274.]-Cement for Stourbridge Clay Fire Backs.- I have in my honae two of Pleroe's patent
Iregrates with air chambers behind, for warming fresh air and admission into the room (Great Exhibition,
1851 . The front of the chamber is the bet $1851)$. The front of the chamber is the back of the fre-
grate, formed in four pleces. Two of these (smaller) pieces describing a ourve are at the back of the grate, and the time has burnt away the smaller pieces at point of junction with each other, and so the smoke gets into the air chamber. Will iron oement or any other prove alay formed into a cement crumbles away under the aotion of the Are. -R. J.
[11275.]-Darkening Walnut.- Would any nab. soriber toll me how to dark on solid walant, not reneer 9 mast leav
B. PITNE.
[11278.]-Trixtracting Glass Stopper.-Can any brother roeder inform me if a stopper that has the head
broken oif can be got out of an empty soent bottle i-A. [11877.)-Soap Boiling.- Of what ingredients is soap made I In what proportion are they mixed, and
how long are they to boil? OO what are the moulds mado or mozlding the bars ?-BerL.
["1978.] - Steam. - Will gome of the correspondents of "ours" be good enough to inform me what quantity steam pipes, of the following dimensions:-1. lin. diameter and loft. long; 2. 2in. diameter and 2oft. long; 8.
8in. diameter and $60 t$. long; the pressure of tie steam 8in. diameter and 60tt. long; the preasure of the steam
at the boiler heing 001 b ., Solb., 501 b ., and loolb. per square inch ?-Volcan.
[11879.]- Fire-Damp.-A Ariend of mine, whilst rearching for dend bodios in the working placos of a
colliery after an exploslon, observed a great many dropa of a liqnid snbstance apon the floor of the mine, and along the roof indications similar to those left by the possible that the drops could be the product of an oxplosion of fire-damp, or of a mixture of fre-demp and solpharetted hydrogen? -Vócin.
will any of your correspondenta kindly inform me if there are any means of throwing light into the midale of a room, 20 yards wide and 100 yards long, which it
lighted on both sides by windows, so that the middle o the room may have nearly as much light as the sides?
ONR IM THE DAR.
[11882.]-Walue of One Second on the Sun's Disc. Will one of yourreaders inform nee of the value of one second of arc on the sun's disc? Chambers in
his "Astronowy," gays: "The lineal value of one second of are at the mean distance of the sun is 448 miles. Is this a correct estimation? I have seen it questioned in your columne.-A Young Astronoyir.
[11282.]-Preserving Plates.- Will some of our experioncod paition for preserving plates wet with golden pyrup or honey, and how much longer exposure is required ?-Arimac.
[1128s]. - Photo. Lens.- What is the most general Mantion Mre -
 practioal hints about constructing Holtz's induction
machine ? Would thin window glase do for the discs, or pould rulcanite be an improvement? What kind of pappar is bot for the armatares ? and whether, if using
glase, would it require to be coated with shellac rarnish or otherwiso 9 I have made such, a maching from the
dencription in Ganot's "Physics," but have failed. made my disces of thin window glass with an ebonite spinde running in motallio centroe. Perhaps some one
would bo kind enough to point out my mistake. NEw Bubsoriatr.
[11288.]-Chemist's Cortificato-Havigg served part timo as a druggist, and having nearly 20 years'
practice with drugs prior to the pasaing of the Act in 1808, and being reell sequainted with ihe nature and qualifed to read Latin prescriptions, and having a trado in not being a cortifed ohemist, thereby being prohibited from selling modicines containing opium, such ps handanam, syrup of poppies, eto., and wish to certicicate, and what examination is necesuary to be
[11280.]-Blacking the Berrels of Breechloading Bporting Fire-army-A recipe for the sporting guns, with particulnre hov the process fo dong would much obllige. Does any book treat on the rubjoct $\mathrm{P}-\mathrm{B}$. \& J.
[11287.]-Annuals.- I ahould be glad if any gardening corroapondank rowand in bloom at leant three or four months in the year.-AeTER.
[11288]-Hardening Tron Plates.-Would some harden snd torghen iron plate as much like steel as pondible ?-Joвn Hoge.
[112s8.]-Flexdble Oil Painting.-I wish to prepare uke a map, without oracking at the folds. I shall be obliged therefore, by come of your siotenticic and chemiand the colour ahould not show on the unpainted sideFzmpaxt.
001890]-Out-throats or Coralthroats.- Will me some informstion concornigg " cat-i bronts or "coral.throsta." (1) What is the clasgical nante? (2) What are their food and habits ?
(8) Where do the © ©ome from and (4) will they breed 48) Where do the some from and (4) will they breed
baild? Any information on the subjeot will oblige.-
Bansjox. Bassjor.
[11291.]-Common Sense.-Can Dr. W. B. Carpenter (p. © 632, Vol. XIV.) or any mathematical reader of
nours," kindly give mea key to the discoveries of Professor Sylvester, in rele
of Equations"?
[11292.]-Linseed.-Woald any one inform me what are the medicinal properties and nges to which linsoed is applied, aud whethor its freqnent use wonld prove
injurions to the system, eapecially to infants and young persong!-O. W. Greenhalgh.
[11298.]-Colour Blindness. - I wish to know it mode of learning colours. Any information on the
above subjects will be thankfully received by-Anxious. [11294.]-Dividing Metal Disc.-A disc of metal nid which welghe 12lb, is required to be divided into diameterg, so that when cut into three rings and one
disc, each should weigh 1 lb . A goometrical method for digc, each should weigh 31b. A goometrical nethod for
Anding the nbove as alio any ouher division) wlh finding the abore (as niso any other divisi
mathematical proots, will much oblige-Diso.
[11295.] - Electrical.-Thanks to Mr. Tonkes for replying to my quere thin tands the purpose for which I want the maciine. science, but want it for general experimenta, instruction, and amnsement. Probably pertect insulation is im. possible, but I think it possible to "insalate the prime conductor so as to prevent the spark from fiying off;" the lac varnigh would prevent the spark passing into the
pindle itself, bnt not the other parts of the machine; apindie itself, brt not the other parts of the machine; supposing a arge secondary conductor connected with
the prime conductor, capable, if it could be fally charged, of giving a izin. spark, but this is impossible. charged, flash goes the spark to the spindle or handle. Stop this by interposing a piece of glass, it actually runs down the disc itself to the rubbers, which are, of course, connected with the earth. How to prevent this is what (I want to know? I have heard of a smail Winter can be aocomplished in a small, why not is aciarge of this machine with an engraving, if possible, would be more like the thing. - Forked Liogt inso.
[11296.]-Chemical.-Can any one inform me of a with chlorate of potass? Phosphoras explodes too ossily, bulphur not easily enough.-Forked Ligetsing. [11897.]-Spruce Beer.-Will any one kindly inform
[11298.]-Four-inch Centre Lathe.-I lately parchased a tin. centre lathe (second-hand). I find that a hole about five-six leenths of a inch in diameter, is bored up the centre of the mandril some 4 in . Oan any of your correspondents inform mo for what parpose this is in
tended, as I have never seen it in any new lathes I have inspected with a view to purchase ?-G. Thompsor.
[11299.]-Tarpaulings for Railway Carriages in the Tropics.- Woud some or the very obiking any information that may be in their power, as to Whether these coverings can be made waterproor and and whether if paint, oil varnish max, or similar aub stances are indispensably requisite, and which are the best mothods of preparing and applying them? It is understood that plain tarpanlings, like tent-cloths. are preferable indition and that the lightest fintrio is the heat by radiation, and that the lightest faric ig the
best. Hence also the question, which is the lighteat cloth that can safely bo ased for all weathers ? and can
it bo made to answer ill parposes withont or at all events with one of not toocompact a nature? -J. G .
[11900.]-Air Pumps. - Will H. Tarton (lets 8591, packing, and the piston of his air-pamp; and if there fo any oil silk ralve at either end of the pipe that con-
nects the barrals? A drawing will be of great service. necingt.
Wirsol.]-Limits of Resistance in Telegraph

[11302]-Oircular Brass Box Levels.-Will some ciron to ix the flat glass top ? $-W$. F. G.
[11808.]-Transforring Fluid.-Can any one inform mo of the composition of transforring finid for
taking copies of ongravinge, and method of ne ? kimo Hardis.
[11304.]-Neasler's Ammonia Test. - In Mr Tichborno e lectare na "Atmospherio Dust" mentio

[11805.]-Bakers' Ovens.-Is there any better way of heating bakers' ovens than the furnace to burn coa placed be got to place in the oven when heatod to sscer taln the heat?-A Bubscarbir.
[11306.]-Glass House.-T am desirons of having a Kood glass house for mateur phatographic parposes cheapest way to go to work ?-W. F. Tamprer.
[11807.]-Design for Garden.- Will some brother arrangling a garden $120 f t$ long by 11 ft . Fide (out o which room must be left for a photokrahio glags house
 path and
TamDER.
[11308.]-Geocentric Longitude and Latitude
 Which I oan get the gencentric places of the planet I am astonished that our "Nautical Almanao" does no furnish as with such information, and that it should be so much behind the "Spanish Almanack" to this respect. Intitude could be compated gromentrie the geocentritic right
of the "Natical Almanac" keep such valuable laforman
tion from the pabiio $-H$. [11309]]-Breaking Strain of Hollow Iron Columns.- Will some one kive a rule for calcals init the breaking strain of long cast-iron hollow column sind
to, say, colt. in length, when standing plamb, and al.

[11310.]-LOgarithms.-I would feel exceedinas? obliged if Mr. Proctor or any other able correspinctent
would explain the use of logarithms, and the diferereca between the comunon logarithms and hyperbolic il:jga-
rithme, and the best method of fluding their nat ursal numbers. Also, which is considered tho beat boo
nognrithms up to, say, 20,000 ?
[11311.]-Electric Bell.-Will any kind friend tell me the following? 1. Will one cell of Lecinnclec' 3 battery, ns desoribed on pp. 568 and 596, Vol. XII.,
gnfflient to work a bell, distance about twolve rarui indoors? 2. Would not a cylinder of vinc be as eflicient as a wedge? 9 . What number corton-covered wire ehbuld
I want, or would galvanised iron wire do as eell Shall I waut an earth wire? if so, would a piece of galvainsed iron wire sunk in the ground, iastened piece of iron or lead, answer the parpose, or wonl
return wire from the bell be best?-Ax Electucal Begname.
[11812.]-Boiler. - Wiu " Jack of All Traders," me what kind of steam boiler is now considered the best, the boiler to be stationary, and about 8ilt. long for a diameter? What thickness ahould the plates be be rot ap to 501b. per square inoh? Would two amail one as above 30ft. $\times 7$ 7t. $\%$-ONE IN TROUBLE.
[11313.]-Setting Lathe.-Would " J. K. P." Inform解 head parallel ailer using ior conical tarning, as a am Inthe's dead centre without puting it to the tosit to seo if it is so?-F. Heme.
[11314.] - Polishing Oak Floors.-Can any ono is-
orm me how oak floors are polinhed ?-H. C . [11815.]-Cart Wheel. - Wonld some reader kindly bush in, with illustrations? C. CARPENTRR.
[11816.]-Ozalate of Chromium, \&c.-WHI sny the following salts on a small scale for experimental parposes-viz., oxalate of chromium, oxnalite of chromium and potassium, chrome alum, and nitro-prabdide of godiam?
[11817.]-Sugar Boiling.-Wonld "L.W. D." kindly ourual, of the reason whion, through our raluabio joural, of he resson why either lump or raw augar, before there is tinge to work it ? Also, what causes tho white stripes in mint lozenges ?-X. Y. Z.
[11818.]-Gravitation-If a small thormometer be liverted. the mercury will remain sasponded from the heard, also, that if a sooverifign and a feather be ofmulaneously dropped in an air-pump, they will reach the traction of gravitation, bodies ghould fall with velocities proportioned to their masses, and I cannot underatand what contrary effect a vacuum could prodnce. If any one will kindly explain the cause of this I shall deem is a great favoar.-O. W. H.
[11819.]-Small Copper Ooln--I have a umall oopper coin: on one side is an impression of one of the Rompo "" on the other side is a she-wolf suckling Romulus and Remus. It is in excellent preservation.
weighing 37 tgrs . Win any of your readers be good welghing 37 gigrs. Will any of your readers be good
onough to giveme some information respecting the coin onough to give me some intormat
and Its probsble value?-E. F. M.
[11320]-Marking Leathar for Ornamental Stitching by Machine-Can any of your talented
 black transferring papgr between the pattern and the off too easily, making the leather very ; dirty. It want off as eagily mase therr mark, whe and yet cot come when the leather is cleaned with ludiarabber. Can any one help me ?-8EMDsMax.
[11321.]-Galvanometer.-To "SiayA." An answer to the iollowing examination question will oblige:-Yoa tre required to describe some aystem of calibration by expressed in terms of the lower ones. (Sci. Exam.
Hone Honours 'Paper, 70).
[11322.]-Concrete Building.-I ask some of your resiers o pive rae a better idea than I posseas of oon-
crete buildinge the monlds i nnderstand sid can manage perfectly, but belng almost out of the civilised worla, I cannot get Portisnd cement. I have good graval of diferent gizes, good sand, good atone lime, white claj,
Ethe quetion is can baild a darable house with the said materials ? if so, the quanutities, how to mix a kind of hyd have heard that burnt clay and lime makes pose? If any one cement-woald they answer the parprocess, they wonld greatly oblige-A MAX ox rax
[11333.]-Retardation of Moon.-Would any at your correspondents inform me the menning of tho torm
"Retardation of the Moon" ${ }^{\text {P }}$ I have looked in everal antronomical morke, but I caicnot get any correct ided od antronomical works, but I cainot get any correct idea of the meridian later every day.-Johr Tayroz.
[11324.]-Salt Damp in Walle.-Would any one kindly advise the best way of curing dampness of this
deascription. The walls, 14in. thick, are built with tin. cavity, and are cemented ontside. A breadth of the
plaster inside and near the fireplace is covered of pind of crystalline fur, which is galt to the tagte it rotil the wall-paper and throws it off. I have had the wall replasered without any beiter effect, and herefore sup.
pose that sea sand must have beca used in the brift. ,W. \mathbf{x}
[11895.]-Moulded Carbon Filter.-I have one of the above filtera, bat have rendered it aseless through
washing the cylinder of carbon in hot water. Will a washing the cylinder of carbon in hot water. Whas correspondent ind inform me how to restore the pro-
perty of giltration to the carbon, or how to make a uew perty of iltration to the carbo
cylinder of carbon $9-$ Filme.
[11826.] - Japanning.- Will the * Welah Shepherd," "Jack of All Trades," or some other reader kindly tell me how to mix a good japan that wil
red, green, and yellow 9 -JAPANKER.
[11327.]-Monster Magnetic Machine-I \#ish to know Mr. Syrague's opinion abont the possibility of With which I could generate 50,000 cabic feet of oxygen from water, within 10 hours. I have seen one of capable of producing 10 cabic feet of oxygen per minute. Now the principle of doing the ename on a small scale makers ridicaled the idee of making anch a grand machine, altuongh Iodid them that the prioe, il thousande of pounda, orta ho objection as logg as th be gun ranteed by the maker. I ehonld, have its resal cepted 20 or 30 snch machinea, it all of them would be required to effect my parpose. But the people I applied to conld not say anything positive about it, although duced them to onnaider my offer.-Sisox. RAUDNITE, Asch, Bohemia.
$[11328]-.O r g a n ~ S t o p s .-C a n ~ a n y ~ r e a d o r ~ g i v e ~ m e ~ a ~$ stopa, likewise of the Cremona stop.-A Subscriber who Appaeciatbs the Mechanic.
[11929.]-Electro Deposition of Tron.-Can any olutions, atrength, the beat battery and material for moulds, Ind the beet method of making mould to make solid articles in copper, as I have failed in getting anything bat two doposits, one from ench face of the
mould, and the middle empty
[11330.] - Vaouum Gauge, - Will "Jack of All Traden" or some brother render, be kind onough to favour me with what be thinks is the beat vecuam gauge
rith a barometer attached to it ? -J . W.
[11331.]-Smallpox.-Can any of our renders inform 1 am slighty marked oa my face, bat on no other part ol bodp.-Inessfali.
[11832]-Hydraulio Jack-Could any reader pire description of an hydranlic jack? I bave seen a smal prit about A pint of water in at the top, and one man [11388.]-Motive Power for Amateurs.- Perbaps eriences ppon the could pablish some of their ox "W. H. N.," p. 632 Has any corrospondent over triod welghts as a motive power? if so, 2 deacription wonld be
[118ss.]-Squinting.-Can anything be dore with a litto ? ${ }^{\text {boy }}$ about
[113s5.]-Rocentrioity of the Fiarth's OrbitWould some of your correepondente inform me if, with the excoption of Grant's "Physical Astronomy,", there published in this country telore 1864 , when the saperior imit of the occentricty of the earih's orbit, as determined by Lagrange or by Leverrier is given, or even any reference made to the researches of thene geometriciant od the subject ?-Jumes Elurs.
[118s6.]-To MIr. Tonkes.-Will Mr. Wm. Tonkes inform mo whether, in his anawer to query 10758, that it is his real opinion that $\frac{1}{0}=\infty$? Is so, will not $\frac{1+1}{0}$ Writing $\frac{1}{0}=\frac{\infty}{1}, \infty 0: 1: 0:: \infty: 1$, and $1: \infty: 0: 1$? or shall 1 write $\frac{1}{0}=\frac{\infty}{0}$, so $\therefore 1: 0:: \infty: 0$, ind $1: \infty$
$:: 0: 0$? or otherwise, $\frac{1}{0}=\infty, \infty 0 .: 1: 0:: \infty: \infty$, absard. 1 : $\infty:: 0: \infty$. 0 ? all of whioh appear to me mo:t truly

TItas7.J-Equation-I should be obligod if any of your correspondente wonld nolve the following equa

$$
\begin{aligned}
& l=a+(n-1) d \\
& 8=\frac{(a+l) n}{y}
\end{aligned}
$$

Required to And the valce of l and 8 , a and d and 8 being known-Smootiuxa PuAve
[118s8]-YKarsolules Soap.-In Hersehel's "Fami-
 set bold of nyy of this coap, however, none of the ing what it is, or where it may be had. Oan any of our obilging contribatorn aceist 2-TODOMETONz.
 thero is no compensation from the and ho my rester se there is of lour solar years, the consequence is, that in $\frac{868}{8}$ solar years, Orion, which now sonths at midnight of Dec. 21, can reo no notice of it in my anthority? Again, why
 W. J. Pomrin
 subsecibers about the Mood to make it of, and any other weeful hint. Ithould
like to make the body my self. Could not make the nheole, spriggi, of body. mim self. Could not make the
[11841.]-Colouring Photos.-Will any brother
 that they will take the colour well ; likewise whether
ordinary water-colours will do. Any practical hint the above will be mach esteemed by-Axateur ARTist
[11343.]-Analysing Cast Iron.-Will some kind reader inform me of a book on analysing cast iron. of
kindly help me through the medium of the Enorisur kindly help me th
Meckanic?-J. W.
[11949]-Catechu.-How can the catochn extracted from areca catechu be distinguisher from the catechu coming from Mimusa catecha? From which riee is
obtained the cateohu or cutch of commerce ?-THAN coming
obtai
puL
[11s44.-Australian Trees. - What Australinn rrees are callod jainvood and manna bark? Solentific names will oblige.-Thancruc.
[11345.]-Camping Stoves and Necessaries.- 1 should benind ir any of your namerous correspondents woul give their oxperience of the best mort of camping sonne squatic necersaries. several or us generaly diff culty as to cookin. I saw last year gat Henley a capital sffair of the sort, in which spirit was ased, and when not in use conld be packed together in a very compact manner ; it comprised gridiron, kettle with spoat, and bandle to sorew on, a frying pan, canisters, da. same it woll oar friends would farnish aysialr, as the same it would interest others as well as myse
rage seems to be camplag now.-W. T. GouLd.
[11346.]-Induction Coll.-Will Mr. Wm. Tonkes bie mentions in his reply to gnery 10959, p. 640 ? Ithink many oorrespondents see in the same difficulty as "A. E. T." and myself, and have only a vague idea of
the use and position of the ebonite dison of which he speake.-T. H.
[11347.]- Velocities of Air and Steam-Bonrne,
 diameter of the cylinder in inches by the speed of the piston in feet per minate; and by the decimal 03, and ivide the product by 170. An area thus found gives a velocity to the steam, when it is catorrat two-thirds the troke, of about 801b. a second, or 55 miles an hoar, or Molesworth's "Pocket-Book of Enginearing Fow, in it is inid down that the velocity of air in the pipes of a blowing engine should not exceed 85ib. a second, or abont 25 milies an bour, or the velocity of a brisk gale. Is there any eumecient reason why the velocity of sir
should be so mach less than that of ateam? It is true he presanire of the air in a blowing machine rarely exceeds ib. on the square element in the calculation Con my of revr readery efer me to any roliable data as to what the apeed of in pipes may be without extravagant loss from iriction, or inform me what was the speed of the air in the pipos Which worked the drills in the Mont C
any other well-tried cases
[11348.]-Meteors, Comets, \&oc-M. Paris (3788), in your 1ssine March 8, p. 637 , ander this heading, etates: tart the comet orkin of the solar system." Many of your readers would, with myself, no doubt be much obliged if
your correspondent would cite his authority for suoh your correspondent would cite his anthority for suoh
belief. If eliel. is thare read your intereatling journal cor-
rectly, cometic systemn is a diacovery of a very recent date. Sohisparelli has just had awarded to him the gold medal of the Royal Astronomical Society for verifying the oorreotness of these theories, which, I learn fronithe ENGLIBF MECEAKIC, were propounded in 1854.-Josepe A. Sonarsr.
[11849.]-Heating Bar Tron-Will some of "our" cina pratical readers inform me the best, quickest, and parposes, in longths of 10 to 12 inches heat, and $1+$ inchea diameter and upwarda ?-Cbanc dix.
[11350.]-Dairy Farming and PigkeopingWill some one be good enough to inform me what is the pig-keeping, can be carried on in order to yield a profit of $£ 100$ por annum, withuut allowing for rent and hougeKeeping expenses-ris, number of acres and cows required, probable yield of milk of each cow par annam, the laboar required, cost of food for eanh cow
per annum, number of pigs to begin aith nnmber per annum, number of piga to begin with, number of
pigs to be annually killed, and probable weight of oach,

 notices of my last query. Will elther of these gentlemen the mother tinctures, and if they can be got from an ordinary ohemint who does not profess to deal in the ordmary onemire wro does not profess to doal in the will keep good for a length of time? How are the sugar pillules treated to give them their homaopathic velue? With rogard to the tinctures, do I anderstand aright when I read the snswers formerly given as meaning that : 1 drop of mother tincture to 99 of epirtt, equal No. 1 ; 1 drop of or No. 1 tincture to 99 of spirit, equal No. 2; so on. If I am right, then, as one small phial of No. rorth while to try and got the mother tinctares at all? - 4 Mise Notice.

THE ENGLIBK MEITANIC LIFIBOAT TOND.

to be formurded to the Ealtor, at, iso 0mes, in

[^0]ANSWERS TO CORRESPONDENTS.
** All communications should be addrecsed to the Editor of the Englise MEceanic, 81, Taviblook-atrcot路

The following are the inithals, de., of lettera to hand ap toTuesday
Major J. F. Bland-Alexander Dallas.-John BellowsJ. I. Vinceut.-John Dulley.John Bartoa.-G. R.
Hallam. -J. J. Colling. - C. N. Aboth.-R. O. Jay.
Brown and May.-J. K. Mellor.-J. Belchln.Brown and May.-J. K. Mellor.-J. Belchin.-F.R.A.S. R. Holmes.-8. Shiela.-A. E. Oakess.-Sigme-G. C.

 Dawson.-Dr. Caplin.-J. B.-Lilly.-Battlo Axe.-
Watarman -J. M. W.-Superintendent-Robt. HamW. H. E. F. Stanistreet-G. G. Whittlo.-Soap BabblaW. G. H.-A Hater of Humbug.-A. C. -H. B. E.-Aqua-R S. - Campanile.- S. C. E.-T. - R. B.-Osa.W. J. H.-J. H.-C. J. Rearden.-Z. J. J. Allinghain.
 J. T. Turner.-Old Walisend.-G. W.-Miller.E. W. P. Edwin.- Young Astronomer.-Camora.-J. Broadhurst.-A Country Subscriber.-Artillory Cap. Broadhurst.-A Country Subsoriber.-Artillory Cnp-
tain.-Vermilion Jnmes Canlife.-R. Macmicheel. -Hedera- -W. F. -N. L. B. - J. A.- - . W. Wenirey.
 bell. -Cygnas.-Un Un Ecosse-S. King. - R. S. Tabal-KampF.E. L. G.-Thetamu.-S. Tremayno.-X. Shearing.-Francis Redelifio- Starkey and Co.-Ed. Hudson.-A. ${ }^{2}$. M.-W. H. Edwras.--S. H.-Beta - Duffer.-Bob J.-F.R.A.S.-F. ©. . . - F. Ralph Lowden.-E. L. C.-C. Williams.- R.Green, Wm. Smith.-Apiarian.- R. Tappon.-Advertisoment fred.-H. J. W. Wquirer. - Thomas Stone.- C. C. Janni:
 M. H. T.-C. P. H. H. Wm. Hendy.-U. J. Grimiths:Years 'H. Hobscriber.-B. B. Uld Indisn Oficer.-Threo
 Hollis,-Col. D. G. Anderson. - Horton Corbett. C. R.T.-A Barrister.-J. F. F. T.-W. Airey.-Phillo.-
W. R. Birt.-Honsekeeper.-SBotch Tom.-8igma.-
 Bmith.-Cuprum. - If. O. John Pescod.-M. B.-AB - E. Barrett.-A Novico In the Art.-Blacking.-E. Nayler.-Labour.-E. Wheldon.-Practical Farrtior.
F. L. M. E., E. L. M., nee "Hints to Correspondente," No. 4 enlamns, as we do not answer by post. Thos Amos, J. J. Lewis.-Your queries are advertisomiriv.
pubicantion, and last half-soore impressions of this pubication, and you will ind what you are in search
of in more than one form. You will aloo be repaid for Jour labour in utheruseful hints you are sure to plick aplist yon mention are out of pript. The "Pratioal
Treatine on the Harmonium, discontinued-an page 198, VoL XIL.
W. Lewrs. -Deaigns to hand what queries you rofer to. J. W. Lewrs.-Doalgns to hand.

March - Thinks there is room for a praotioal
amatear turner's society in London, and we thlak so too; and if be or any other person think think so too; and if be or any other person think woll to en-
tablish such a soclety, we would encoarago it we never looked approvingly on the suggestion for an English Mechanics' Scientifio Socioty for London, because London abounds in sctentilio socleties of almost every description. We know of no eociety
similar to that indicated by "March,", and we therofore zay go on and prosper.
. K. Harris. - Thanks for the answers to querios., A out of place in our pacer motion, are perpetnal tools
E. W. Hisris.-Yon deal too megh tn esention in your letter on comiery acoidents. You writo as any oducated man might wrice who may have read a fow articles in the now paperit on the sabjeot. What our rosders want, snd what tho scientiag world wants,
apecific practical information, being the reault of your apecifc practical information, being
own cortuin knowledge or oxperionce
95, VoL IV.-You oan do nothing with zuoh floors but renew them. You can at all umes get beck number by sending stampa.
F. Brighto:--See indices to back rols.
menticnions which can only appear as adrertiseA. OAKEs.-8ee recont back numbera, pp. 192, 695, $\mathbf{6 0 0}$, and 343, Vol. XIIL, for information on inoubstors; also De T.-Apply to the Secretary of the Manoheater School AITCH Arrcr. - Staloed and varniohed.
F. Pratt.- We cannot allow the promulgation of sucb views on smallpox in these pages. You, like all self. oommissioned tenchers, accuse jour followmen of
"blind fatnlism," \&c., We think their indisposi"blind fatnlism," \&c., Ar. Wo think their indisposi-
tion to recoive your toaching a strong prool of thoir tion to recoive
common sense.
The following correspondents are referred to " Hints to Corresponilents," for reasons for the non-appearance Bell. Amatour Xbotogrepher,-W. H. Muroh.-Tyro.

Frrdirick Heye.- 2 s . 1d. post free. See book advertisements.
Grifris.-For recipes for relief of tender feet, \&c., see Grifris.-For recipes for relief of t.
G. Denoirle be.-For directions to remove stains from R. H. GARTH.-If the information cannot be given W. J. H. Mee back numbera be given at all.

Lisar. - Tribeeber and Co nambera.
J. E. Divis.-We cannot advise in
E. G.-Yes.

Zoo ANDRA. - Patty powder is oxide of tin. See p. 609, Vol. Xif., and subsequent numbers.
Mechancic.- Unobtainable new in any form. Evalise
Thomas W. -Take ber to an Ophthalmio Institution-
that in Moorfelde, if you live in London.
Woodsioce.- We rre iot barbers.
"E.L.G." AsA Correspompent.-Besides the communications in answer to "E. L. GG"" on the metric system, we from which wa may make one or two extracts "Kappa" sayshe "looks upon ' E. L. G.' something in the Hight of a roaring llon, who goes through the colamns of the ENGirisg MECEANIC seeking whom he may devoar." "1872" in a longer letter, bays:often thought who he can be; sometimes I have Imangined bim Prof. Beesley, at other times Mr. Glad. stone, and at other times Felix Pyat; but whever he
may be he is a remarkable man. But, unfortunately, he materially diminishes his infinence for good by carrying his heart in his head, he carries his head in his heart, and the consequence is he gets in a rage. Take for instance bis tempestuous letters on "Co.
Operative Societies," and the "Glorious Metric Byatem." He vindicates the one with more than than Latheran energy. This zcal and this energy may be all very well, but it so happens that the writer expends his power outside tho guestions respectively in erratio wanderings, and says but ittle on the questions themselses. It would, in my opininn. be much better if he would woderate bis enthnsiasm, give us reason instead of passinn, which hir is well capable of doing, and so turn his great acuuiroments and abilities to better acconnt."
ascertining apparrat Tibe.-N. S. Heineken bays: "Will you be so good as to state that the draxings of meen reduced by your enkraver to a scale of a little
 diameter."
F. Bunling.- Read motto preceding correspondence and write in futare aboat what you understand. No doubt you know, many things, but you are at sea o E. J. Thomas - Yo
. Taeries inserted. You say yours " to the number of queries inserted. hnve been privileged with insertion since the ENGLIsH Mechanic commenced its asoful career." About thirty thousand queries have been inserted. We commenced to number them for referonce purposes abont two years and a half aince, and bcyar with No. 1. All tho
queriea which appeared in the preceding volumes queries which appeared in the preceding Folumes
were nunumbered. We commenced numbering the lettera some tithe after.
Pheibus. - You ride too fast. Yon have monnted Pegnsus with a vengeance. You should at least have a base of operations for your theories to rest on. It may do very well in poetry to geparnte yeurself from every-
thing and everybody; but in science it is essentinlly thing and everybody; bat in science it is e日sentinly
different. In art the artist, whoever he may be, is the differont. In art the artigt, whoever he may be, is the
standard of excellence; but in science, Nature is the groandwork and standard of truth. If you wish to do it by a fight of imagination, bat must enter into the labours of others, and possibly begin where they have left off. By strict observance of the scientitic method, you may, by accurate observation, careful experiment, and inexbanastible patience, secure a portion of what you think you are justitied in expecting; beyond the reach of dispute, a substantial gain iul beyond ied for man.
be achieved for metres," should reapectively ue $42 \frac{1}{2}$ thousand matres, and 31f thousand.
8. Botrone.-Postscript too late.

THE INVENTOR.

Gne T. Brozahton, Albert villac. Distat in, for 1 mprovements in

σ^{62} W. Exall. Reading, for improvementa in tabe expaudera. bis R. Sntelife, ide, Leeds, tor an improvement in iteam
 675 W. E. Newton. Channcery. lane. for improvementa in breech
Ioading ordnance. A comuunication. anparatie. E. Newton. Chancery lane. in fmprovementa in hesting
 her metan therefrom, and alsof for griniting paint, cement, and fothe

 679 W. R. Lake, Sorthampton-buildings, zar tmprovemente in relway raili. Take, Bonthampton. ballatings, for improvements in the manamecture dr refiued sugar, part of which improvement
reate to the priduction of currents of heatiod nir for tho asme and
 strintion
ong
J. W. Me Millnk, Birkett Bank, Wigan, for improvementa in
 improvements in meat ery for alzing and drusing neashro, for

 street. Clerkenwell. for improvoments in the construction of pumpe
 tor, H. Perre, Fetter. Inne. Cltt. for improvements in the manu-

fin c. Sergent and C . Temple, New Cross, for improvements in

 and ther like operations.
G9: H. J. Griswold, Oxford. 8 troet, for improvementa in knittiog
 nuds or ac, uringe, and from othor wasto watara reanting tron

 Bronklan,
n Indication. Pest Smithtieg. for a now or improved inatm:
for adminitering ball and other medicines to
 Tto B. Smith. J. Scike. R. Tolann. M. Firth, and c. Bradinf,

 arcation. White, Queen-street. Cheapside, for improvements in the
is manufacture ot shattley for wespinf. A. communivetion openiug the Andraws, Nex Haven. U S., for improvementa in the

 thiman woo
 In pneumatic apparatas for the tranamision and indication of signals. . smith. Bishopgrate-street, for Improvements in ateam

 rotary dioam engines and puupe.

 pumpa. W. R. Lake, soathampton-baildingi, for improvementa in

 propening
plount
726
T. sanie J. F. C. Farquinar, Long-acre, for improvemente in ught.

 c.mmoden.

patents bealed.

 ${ }_{2}^{2}$

 prinic vebi. ina.

 cation theroof. 157 ive, for improvements in bronzing macivines.

 enginet. Parkina, tar improvaments in marine and stationary

Ohe Emplish Cttechanic
 AND

WORLD OF SCIENCE AND ART.
PRIDAY, MARCH 29, 1872.

ABTIOLE 8 .

ASTRONOMICAL NOTES FOR APRIL.

TIHE right ascension of the Sun at Greenwich mean noon on April the 1 st is 0 h . 44 m . $23 \cdot 5 \mathrm{~s}$., and his deolination $4^{\circ} 46^{\prime} 27 \cdot 5^{\prime \prime}$ north. He may therefore be said, roughly, to form an isoccales triangle with δ and ε Piscinm, E being at the apex of it. He rises in London on the 1st at 5h. 36 m . a.m., and sets at 6 h .81 m . p.m.-his rising and setting on the 30th taking place, in the same locality, at 4 h . 35m. a.m., and 7 h .19 m . p.m., respectively. The equation of time is additive, but diminishing, up to the 14th instant, after which date it becomes subtractive. On the $1 \mathrm{st} 3 \mathrm{~m} .47 \cdot 2 \mathrm{~s}$. must be added to the time indicated by a sondial to obtain true clock time, and this quantity decresses to $9 \cdot 26 s$. on the 14 th. Subsequently, on the 15 th, $5 \cdot 59 \mathrm{~s}$ must be subtracted from the time shown by a meridian instrument ; and, by the $30 \mathrm{th}, 2 \mathrm{~m} .58 .49 \mathrm{~s}$. must be taken away from apparent time to get mean time. The semi-dimmeter of the Sun at his Greenwioh transit is, on the 1 st, $16^{\prime} 1 \cdot 7^{\prime \prime}$, and
this ocoupies $1 \mathrm{~m} .4 \cdot 5$. of sideresl time (convertible into mean time by the subtrsotion of 0.188 .) in its passage over the meridian. The semi-diameter will have diminished to $15^{\prime} 54 \cdot 1^{\prime \prime}$ on the 30 th, and this will oocupy $1 \mathrm{~m} .6 \cdot 01 \mathrm{~s}$. of sideres time (convertible as before) in its transit. The sidereal time at mean noon on Δ pril 1st is 0 h .40 m .36 .24 s ., while on the 30 th it is $2 \mathrm{~h} .34 \mathrm{~m} .56 \cdot 31 \mathrm{~s}$. The mean time at sidereal noon, or mean time of transit of the first point of Aries, is 23 h .15 m .34 .5 s . on the 1st, and 21 h .21 m . $33 \cdot 16 \mathrm{~s}$. on the 30 th . Solar sotivity is now percoptibly diminishing, and spots are becoming both smaller and less frequent than they have been.

The Moon will be New at 81.7 m . after midnight on the 7th, will enter her first quarter at $10 \mathrm{~h} .11 \cdot 3 \mathrm{~m}$. On the night of the 15 th , be Fall at 1 h .37 .2 m . in the afternoon of the 23 rd , and enter her last, quarter at 8 h .20 .9 m . a.m. On the 30th. She is exactly 23 days old at noon on the 1 st , and, of course, 29 days old at the asme hour on the 7th. At noon on the 8th her age is 0.5 days, and so on to the 30th, when it is evidently 22.5 deys. At 7 h . in the evening on April 8th libration will render an additional part of her sonth-west limb visible, while at 8 h . a.m. on the 21st more of her south-east quadrant will come into view from the game canse. The Moon will be in conjunction with Baturn at 4 h .50 m . in the afternoon of the 1st, with Venus at 7 h .23 m . in the evening of the 5th, with Mars at 4h. 21 m . p.m. on the 8 th, with Mercury at 8 h . 1 m . the next morning, with Jupiter 36m. before noon on the 15th, with Uranus at 11 o'clock the asme night, and lastly with Saturn again at 11 h .18 m . on the night of the 28th.

There will be only three occultations of fixed stars by the Moon, and one close approach to a star by her during this month. First, on April 13, 5 Geminorum will disappear at the Moon's dark limb at 6 h .55 m ., to reappear at her bright limb at 8 h .6 m . Then, at 11 h . 48 m . on the night of the 14th, she will pass quite close to 48 Geminoram. On the 18th, st 7h. 59m. p.m., B.A.C. 3579 will dissppear at the dark limb, reappearing at the bright limb at 9h. 16 m .; while, later on the same night, i Leonis will be occulted by the dark limb at 10 h . $14 \mathrm{~m} .$, and emerge from behind the bright one at 11 h .10 m .

Mercury is now an evening star, and attaining, as he does, his greatest eastern elongation $\left(19^{\circ} 7^{\prime}\right)$ at 3h. 11m. a.m. on the 5th, and, moreover, having now considerable north declination, is very favourably sitnated for observation during the early part of April. His apparent diameter increases from some $7^{\prime \prime}$ at the beginning of the month to something like $1 \mathbf{Z}^{\prime \prime}$ st the end of it. As he does not set antil nearly two hoars after the Sun during the first part of April, he may be looked for in the evening sky after sunset, a little to the north of west. He travels from Pisces into Arias, bat does not pass near any
a mark. His conjanction with the Moon a 8 h .1 m . a.m. on the 9th has been noticed above and he will also be in conjonction with Mars at 1h. 20 m . after midnight on the 19th. Our remarks as to his visibility apply only to the earlier part of April, as during the latter half of it he is travelling rapidly towards the west, and is, as a matter of fact, in inferior oonjunction with the Sun at 8 h . 54 m . in tine evening of the 24th.

Venus is a morning star, but is indifforently situated for observation, as ahe only rises between half and three-quarters of an hour before the Sun, in strong twilight; souths between ten and eleven in the morning, and sets, of course, in bright sunshine. Her diameter, too, is now only aboat $11^{\prime \prime}$, and is diminishing; her dise is approaching a circular form ; and she is, altogether a poor talescopic object. Her conjunction with the Moon at 7 h .23 m . on the evening of the 5th has been previously adverted to.
Mars, with his minute diso of only some $5^{\prime \prime}$ in diameter, is too close to the Sun to be visible. His conjunctions with the Moon at 4 h .21 m . in the afternoon of the 8th, and with Mercury a 1 h .20 m. a.m. On the 20 th , have been before referred to.
Japiter, although rapidly approaching the west, still continues to be the chief and most con. spicuons object in the sky, up to, and for a little while after, midnight. He is travelling slowly eastward, through the barren region to the south of Castor and Pollax. He rises on the 1st at 10h. 39 m . 2.ra., sonths at 6 h .46 .5 m . p.m., and sets at 2 h .55 m . the next morning-his rising, southing, and setting, on the 30th, taking place at 8 h .58 m . a.m., 5 h .3 .9 m . p.m., and 1 h .10 m a.m. the next dey, respeotively. 43 m . before noon, on the 10th, Japiter will be in quadrature with the Sun. The effect of this on the interval elapaing between the entry on, or departure from, the disc of Jupiter, of his satellites, and of the shadows which they respectively cest, will be noticed in the list of the phenomena of the Jovian system for this month which we give below. His apparent diameter continues steadily o decrease, from about 40° at the beginning of April, to $36^{\prime \prime}$ at the end of it. We have previously spoken of his conjunction with the Moon at 11 h .24 m . 2.m. on the 15 th .
Owing to his position with reference to the Earth, the phenomens exhibited by Jupiter' satellites now are decreasing both in number and frequency. During the month of April the following will be exhibited:-Firstly, on the nigh of the 1st, at 7 h .40 m ., the transit of satellite 1 will begin. It will be followed by its shedow at 8 h .57 m . The egress of the satellite will oocux at 10 o'clook, that of the shadow at 11 h .17 m On the 2nd, satellite 1 will reappear from eclipse at 8 h .24 m . 6 s . A reappearance from eclipes of satellite 3 will also take place at 8 h .3 m . 55 s . on the evening of the 4th; and it is pousible the afterwards, at 1 h .42 m . after midnight, the oocul tation of the 2nd satellite may be perceptible. On the evening of the 6th, satellite 2 will begin its transit at 7 h .59 m ., its shadow not entering on to the planet's limb until 10 h .32 m . At 10h. 54 m .the satellite will leave Jupiter's opposite limb, as will the shadow at 1 h .28 m . the next morning. 16 m . after midnight, on the 7 th , satellite 1 will be occulted; while the transit of satellite 3 will commence nomewhat later, at 1 h .21 m . On the evening of the 8 th, at 7 h .43 m ., satellite 4 will enter on to the face of the planet satellite 2 will reappear from eclipse at 8 h .25 m .49 s ., the transit of satellite 1 begin at 9 h .35 m ., that of its shadow at 10 h .52 m ., the egress of the satellite at 11 h .54 m ., that of satellite 4 two minutes later, while the shadow of satellite 1 will not quit Jupiter's limb antil 1 h .12 m . the next morning. On the night of the 9th, satellite 1 will reappear from eclipse at 10 h .19 m .35 s . The egress of the shadow of this same satellite will take place at 7 h . 41 m . the next evening, the 10 th . Perhape satellite 3 may be perceived to reappear from occultation st 6h. 52m. p.m. on the 11th. It will afterwards disappear in eclipse at 8 h .38 m .19 s ., reappearing from it at 4 m .54 s . after midnight. The transit of satellite 2 will begin at 10 h .37 m . on the night of the 13 th . Perhapa, under very favourable circumstances, the ingress of its shadow at 1 h .10 m ., and the egress of the satellite itself at 1 h .32 m . the next morning, may be discerned. On the night of the 15th, satellite 2 will reappear from eclipse at 11 h .1 m .6 s. ; the transit of satellite 1 will commence at 11 h .30 m ., its shadow come on 47 m . after midnight, while it is conceivable that the egress of the satellite may be caught at 1 h . 49m.

At 8 h .40 m . on the night of the 16 th satellite 1 will be occulted, to reappear from eclipse at 12h. 15m. 5s. The shadow of this same satellite may perchance be detected in its entry on to the planet, at 7 h .16 m . in the evening of the 17 th the egress of the satellite casting it occurring a 8 h .18 m . ; and the shadow itself passing off at 9 h .35 m . Later, satellite 4 will reappear from eclipse at 10 h .22 m .33 s . On the 18 th it may happen that the occultation of satellite 3, a 7 h .25 m ., may be discernible. It will reappear from occaltation at 10 h .55 m ., only, however, to suffer eclipse at 12 h .38 m . 11 s . It may happen that the ingress of satellite 2 may be detected at 1h. 16 m . a.m. on the 21 st . Satellite 2 will be occulted at 8 h .13 m . on the 22 nd . The transit of satollite 1 will begin at 1 h .26 m ., and satellite 2 reappear from eclipse at 1 h .36 m .16 s . the next morning, but the obsorvation of these phenomens is problematical. On the night of the 23 rd, satellite 1 will be occulted at 10 h .37 m . The begin ning of the transit of satellite 1 , at 7 h .55 m ., and the egress of the ahadow of satellite 2 , at 8 h .2 m . on the evening of the 24th, may possibly be oanght. Afterwards, the ingress of the shadow of satellite 1 will commence at 9 h .10 m , the satellite leave the planet's face at 10 h .14 m ., and the shadow at 11 h .30 m . Satellite 1 will reappear from eclipse at 8 h .39 m .31 s , on the night of the 25th, and satellite 3 bs afterwards occulted at 11 h .30 m . The egress of the shadow of satellite 3 will happen at 10 h .7 m . On the night of the 29th ; satellite 2 will subsequently be occulted at 10h. 52 m . Lastly, it is just possible that the cocultation of satellite 1 may be perceptible 34 m . after midnight on the 30th.
Saturn, in his old quarters in Sagittarius, continues in a deplorable position for the telescopic observer. He rises on the lat at about a quarter to $3 \mathrm{a} . \mathrm{m}$., sonths at $6 \mathrm{~h} .49 \cdot 1 \mathrm{~m}$. a.m., and sets at 10h. 53m. s.m. On the 30th his rising, southing, and setting take pleoe at 54 m . after midnight, at 4 h .58 m . a.m., and at 9 h .2 m . a.m., respectively He will be in quadrature with the San 35 m . after noon on the 10th. Reference has previously been made to his conjunctions with the Moon, at 4 l .00 m p.m., and 11 h .18 m. p.m., on the 1st and esth, respectively.
Uranus, like Jupiter, is travelling towards the west, but is still observable during a good deal of the working part of the night. The direotion given for finding him last month (Vol. XIV., p. 576) are equally available for the present one, as his movement is so extremely slow. His diameter remains stationary at $4^{\prime \prime}$. He is in quadrature
with the Sun at 10 h .41 m . on the night of the 16th. We have apoken, under the proper heading of his conjunction with the Moon at 11h. p.m. on the 15th.

When we have said that Neptune is in conjnne tion with the Sun at 9 h .5 m . a.m. on the 13 th it will scarcely be necessary to add that he is wholly invisible during April.
Shooting stars would sppear to be tolerably common in the month of April. Suspicion exists of a periodical shower at some period between the 4th and the 11 th, while a pretty well ascertained one is referred to in the B.A. report for 1870 as ocourring between the 19th and 21st of the month.

WEATHER CHARTS.

TIHE first four weather charts of the Meteoro logical Offioe, Maroh 16 to 19, 1872, at 8 a.m., are now before us. The arrangement is good, the land being shaded and the water widite On the left hand we have the weather reporte, and on the right the chart for the dar, which consists of four maps; one for depictiug tho isobars, one the isotherms, a third for the gebera direction of the wind and state of the sean, and a fourth for giving a statement of cloud, rain, isc.
So far the general description. A word on the atility of the oharts may not be out of place Confining our attention to the barometer and temperature, a glance at the four charts will convince us that the area embraced by the maps is but small, the isobars and isotherms being nere fragments. The directions and values of these lines are the only elements of pressure aud teta perature attainable from the charts. The relation of the meteorology of the British Islands and France to the Continental area on the cust nad the oceanic ares on the west is unattainable, and these relations are of the first importauce in judging of the progression of weather. On th 16th we had the barometer ranging from 3 to $\mathbf{2 9 . 5 7}$, being a gradient N.N.W. of about

On the 17th the directions of the lines were altered, running S.W.-N.E. instead of W.S.W. -E.N.E. We are, however, entirely ignorant of the barometric state of the countries in advance of these lines, and quite as ignorant of the nature of the isobars likely to suoceed them. This is partioularly illastrated in the isobaric chart of March 18, a new aystem being manifested over the whole of the ares. This great and decided alteration in the direction and value of the isobars shows that a single telegram daily is insutiocient, according to our views, for the requirements of meteorology.

The most valuable feature of the charts is the connection hetween barometric pressure and wind. In this notice we cannot enter into a description of the relation existing between the two, farther than sa;ing that the wind maps show nnmistakably that the general course of the wind is parallel to the direction of the isobars.

COMPRESSED AIR AS A MOTIVE POWER.

WE have had occasion within the last twelve months or so to call the attention of our readers to the progress which is being made in the application of compressed air as a means of obtaining motive power. In this country machines have been constracted, and we believe with satisfactory results, which are pat into motion by the expansive force of air compressed by means of water or suitable steam-engines, the power being conveyed to the scene of its operations in pipes, the length of which is practically unlimited. So far as we know, however, compressed air has not been employed iu this country for obtaining motion, except in those cases where it is almost impossible to use steamfor instanco, in coal-mines; and an account of its successful application to colliory working will be found at p. 2, Yol. XIII. In the United States, on the contrary, compressed air as a
motive power has received more than usual attention, especially since its value was proved berond doubt by the operations at the Mont Cenis tunnel, and American engineers and inventors have been both experimenting and theorising on its capabilities and the best methods for its atilisation-its application to locomotion being the principal object sought by our cousins.
It is actually more than 60 years ago since Medharst proposed to drive carriages through a brick tunuel by means of an air-blast, and various projects for aceomplishing a similar objeot have been introdnced, but have invariably failed, either from mechanical difficalties or from the absence of any economy-parhaps we shoald say from the great expense incurred in keeping the apparatus in working order. Probably the most notable of all these attempts was the Atmospheric System tried on the South Devon Railway, in 1847, by Branel, which although successful as far as the mere propulsion of the trains was concerned, was yet so hampered by constantly recurriag difticulties that it was finally abandoned by the directors, for "prudentisl" reasons. The principle of this atmospheric system, which was patented by Clegg and Samuda, consisted in a tabe containing a close-fitting piston, which was driven along by the pressure of the air behind it, a vaccuam being created in front of it by means of powerful steam-engines. The tabe had a slit in its upper surface which was covered by a valve of leather, and through this slit the bar connecting the piston with the carriages passed. It is obvious that the construction of a valve which should tit with the requisite closeness, and yet open readily, to allow the passage of the comnecting bar, must necessarily
be a work of great difticalty, requiring much ingenuity and skill for its accomplishment ; and it is no wonder, therefore, that in the early life of the system, before experience had been gained by extended trials, many failures shonld have occurred, and that even Brunel should have recommended no further persil!nuce in the aitempt. It was, however, the opinion of many persons at the time that, given the requisite funds, the atmospicerio system might eventaally have triamphed, and the defects in the origias ap paratios havo been saccessfally remedied.
A resuscitation of the old system has been
frequentiy proposed of late in the United States for the motire-power of trains in tunnels to be constructed underneath the orowded and busy ctrents of the principal cities; for although are there as common as lampposts, nd incapable of accommodating the
unsequance chiefly of the slowness
with which the cars are drawn by horse-power It is in the direction of applying compressed air as a motive-power for tramway cars, however that experiments have been carried out which bid fair to lead ultimately to success. In several instances cars have been propelled by compressed air, but as the apparatus employed is only re garded as tentative, the details of the mechanism and the characteristic action of the air have not been published with sufficient minuteness to enable an accurate estimate to be made of the power obtained and of its oost. The necessity of some improved means of transit in cities is ac'inowledged on all hands, and as we know that " Necessity is the mother of Invention," it wil probably not be long before some economical easily-controlled force is applied to the propulsion of strect cars, at all events in America. We have already illustrated the American ammonia engine, and we recently described a steam car in course of construction in this country; bat we think that compressed air will ultimately be the chosen means of propulsion. Mr. J. A. Whitney, in a paper read before the New York Society of Practical Enginecring, after alluding to the objections agninst the employment of steam in carriages traversing public thoroughfares, and protesting against its use for underground railways in tunneis without openings, declared that horse power is acknowledged to be inadequate to the wants of New York street railways; the transmission of power by ropes, as illastrated in the elevated railway on Greenwich-street. has proved " mediocre and insafficient raethod of propnlsion," and it is only in pnoumatic power that he considers suflicient promise of success appears to justify the outlay required to thoroughly test the principle. The plan, whioh has hitherto given the best resnlts, consists in compressing the air to a very high degree, and storing it in tanks or cylindrical chambers arranged about the body of the car in the most convenient manner; from these the air is led to a receiver supplying the cylinders, which are constructed in mach the same manner as those of steam-engines. In all this there is, of course, but little dificalty; if air is compressed to, say, 200 ib . on the square inch, and is then allowed to exercise its elastic force on a piston fitting closely in a cylinder, we can calculate approximately the amount of power the piston should exert, bat if we omit to take into consideration the surrounding conditions and the pecaliar characteristics of
expanding air we shall, without doubt, make a grievous mistake in our calculation. Most of our readers are aware that when compressed air is allowed to expand it robs the surrounding matter of all the heat it can, and, indeed, by virtue of that property has been used for refrigerating purposes. It will be evident, therefore, that unless the air is considerably raised in temperatare, or the cylinder heated by means of water or hot air oirculating in a jacket, that whatever moisture may be contained in the compressed air will be converted into ice, which will speedily block ap the exhaust port and the pipes connected with it, as well as lower the temperature of the air in the reservoir. To obviate this difficalty one inventor proposes to construct the main reservoir of a material which will prevent the loss of heat and consequently of power, by radiation-the air in the process of compression becoming, of course cousiderably raised in temperature-heat which it is desiraile to retain; another proposes to pass the pipe conveying the air to the cylinders through the warming apparatus of the car; while a third suggests an arrangement whereby the air from the stove used for warming the car should be made to circulate in anyular jackets round the cylinders. Indepondently of the fact that the stove is not always in requisition to "warm the car," e.q., in the summer, these plans are open to objection on several grounds; and it appears to us that the proposal to heat the cylinders by means of jackets containing hot water is to be preferred, as the water conld be changed at the end of each journey, and fac:lities would be also afforded for warming the air of the main reservoir, in which the refrigerating effect would be experienced during the early part of the piston stroke. Another proposal has fur its principal feature the heating of the air by burning hydrogen or carburetted hydrogen in a vessol near the cylinders. The hydrogen is compressed to the same degree as the air, and burns in jets in the sir which passes through the above-mentioned vessel on its way to the cylinders. The cas is to be aet alight by means of electricity: so that the apparatus for working the car wonld become a tritle toocomplicated and expensive, we think.

It will be apparent, then, to our readers that there is nothing impossible in the proposal to rav street cars by means of compressed air-in fact, it has been done, and an account of a trial of one at Chicago will be found on p. 345, Vol. XII., in which it is stated that the only fanlt was the noise made by the exhaust of the engines. This latter can be easily remedied, and the escaping air used to cool the atmosphere of the car in summer and urge the fire in winter. The next question, then, is in reality the main point. What is the cost? There is, first of all, the construction of the reservoirs, which for the sake of lightness must be of steel or copper ; and then there is the requisite apparatus for compressing the air, which mast be sapplied in duplicate, one for each end of the road, for the weight of the car would soarcely be increased for the sake of storing sufficient air for a double journey. The other expenses would be much the same as now, so that it is a mattor of comparatively easy calculation to approximately ascer tain the first ontlay, and whether the increased comfort and apeed of travelling could not be ob tained for the same amount as is now paid for horseflesh. The system would doabtless be mors expensive ihan steam ; bat there are "obstractions" to the introduction of the latter which could not woll be thrown in the way of compressed air. Mir. Whitney, who is perhaps rather enthu siastic in the matter, believes that passengers may be cheaply carried at a speed of from 20 to ± 0 miles an hour " with all the comfort of ordinary railways, and nome of the dangers or inconveniences incident to the employment of locomotives.' His proposal for a pneumatic railway will show how far in this direction the ideas of the Americans are advanced. "An elevated pneumatic tube is to be carried over the bnildings and cross-streets, sustained on iron supports construoted on the principle of a suspension bridge over each block this tube is to be of wrought iron for strength and lightness; lined with wood for moderate warmin and for redaction of friction to the air blast; clazed throaghout its length with panes sufficient in size and number to light it well ; furnished with switches, to enable a car to be stopped at a station without interforence with the others; farnished with electric signals automatioally aotuated by the cars themselves, to indicate their approach to the stations; the working of the line to be placed, from the lowest duty to the highest, in the hands of educated, careful and properly remanerated engineers, and the question of quick transit, in one of its phases at leash, will be solved with greater satisfaction to the public and credit to the engineering profession than the most ardent advocates of speedy passenger travel now dare hope for."
Whether the system will be adopted in this country for propelling street-oars will probably depend in a great measure on the suceess of the attempt in America ; but as a means of obtsining coal that is otherwise out of reach there can be no doabt of the great atility of the com-pressed-air spparatus. Mschines for getting coal are eapable of working in a temperature where musoular exertion is almost impossible; and the air having done its work in sctuating the apparatus will cool the underground passages, and enable human beings to penetrate much deeper into the crust of the earth than they have hitherio succueded in doing.

THE METALLURGY OF IRON AND STEEL.

THE following is an abstract report of a cours9 of lectures on the above subject delivered by Dr. Percy, F.R.S., in the lecture theatre of the Geological Museum :-
We have heard of precious metals, noblo metals, and base metals : bat if a metal is to bo judged noble in respect of its atility to mankind, iron holds the highest rank. It is extremely widely diffused, is, in fact, everywhere ; however deep we go iron is to be found, and it is a larga constitnent of many rocks. It exists eren in our blood, and without it we could not live. I have seen sufficient iron taken from out of a man's blood to make a medal.

Iron ores contain always the metal in a state of combination, the only case in which we are acquainted with the native motallio iron is that of meteoric iron. This comes probably from some interplanetary spaces-we know not where -and occasionally masses of it have dropped down on our carth, varying in weight from onaces to tons.
Red oxide of iron, or red iron ore, is one of the most important ores in this country; it is now
largely in demand for making the metal snitable for the Bessemer steel process, and on this acconnt has lately risen to doable its former value. It occurs in largo nodular, sometimes "kidneyshaped" masses, and occasionally crystallised, and presentivg a bright metallic lustre, when it is known as "specular iron ore." In all theso cases it contaims the same proportion of chemical elements, and these are iron and oxygen. Oxygen forms abont one-fifth of the atmosphere; without it no combnation could occar, no haman being could live. The metals have a strong of finity (or liking) for oxygen. A stecl spring burns in it with vivid scintillations. Placed in a jet of flame, from a mixture of coal gas and oxsgen, the combustion is very striking. If we take a piece of metallic iron and leave it exposed to the air it soon becomes covered with rust. This rast is the oxide of iron, being nothing more than a combination of the metal with the oxygen of the air ; in most cases a certain proportion of prater is added.

If we take a piece of iron, heat it, and keep it for a long time, it undergoes a ohange. It inoreases considerably in weight; and if the heat be continued, especially if the metal be finely divided, as in the state of filings, it becomes converted into an oxide just like the above ore. There is still another way of producing this oxide, -namely, by dissolving the metal in an acid (as mariatio), and then precipitating it by the addition of another substance (as potash or ammonia). If this oxide of iron be rubbed on a piece of paper it will always give a distinct red mark, and never a brown or black one, and in this way we can distingrish between one kind of iron
ore and another. This ore, when perfeotly pare, contains 70 per cent. of metallic iron. Some of it is nsed for a very important purpose-viz.,
burnishing, and when you get hold of a good bit burnishing, and when you get hold of a good bit used as a pigment, the so-called Indian red and Venetian red are oxides of iron. Also for polishing plate glass, for which purpose the oxide is ground and washed in water, and after the coarser particles have settled the liquid is poured off, and the finer particles for use allowed to subside, and thas they are obtained in a state of
great tenuity. Ronge, nsed for polishing silver, great tenuity. Ronge, nsed for polishing silver,
is also an oxide of iron, and the oxide is also frequently used for adalterating "red lead." It is found in Cumberland and Lancashire, and is very much in request on account of its purity ; large quantities are now imported from Spain.

Another kind of iron ore is called brown iron ore; it is nothing more than the red ore combined with water, and may be called a nataral rust. There is a great deal of it in various parts of the world ; much in the Forest of Dean, where it has been worked since the time of the Romans. When perfectly pure it contains 59.89 per cent. metallic iron and 14.5 water. Ochres are an artificial sort of it. It forms the bases of the so-called "Northampton Ore."

The third kind of ore is magnetite or magnetic oxide of iron, and of this kind we have not much in this country. It is a combination of the protoxide and the red or peroxide-viz., $\mathrm{FeO}+$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$. It is the natural loadstone, and attracts the magnetic needle, hence its name. It contains 24 parts oxygen to 56 parts iron. It forms one of the most important ores of Sweden, Canada, and the United States, and is one of the parest ores of iron, being in great request for iron adapted for steel manufacture. It contains 72.4 per cent. iron. The next kind is sparry or spathic iron ore. We have not much of it in this country. It is found in Somersetshire, Germany, Anstria, and other parts of the world. It is the carbonate of iron, and contains. when pure, 48.25 per cent. of the metal. In addition to its elementary constituents it frequently contains another metal which plays an important part in the manufacture of iron-manganese. When heated it, loses all its carbonic acid, and
you get not the protoxide of iron remaining, but a mixture of the two oxides. All the important ores of iron from the coal-measures are of this kind; not pare carbonate however, but mixed with more or less clay; a little carbonate of lime, carbonate of magnesia, and always more or less phosphorus, the latter being an inveterate enemy in iron and steel manufacture. From the fact of these clay iron ores containing phosphorus they are unsuitable for many parposes-e.9., the Bessemer process; thence the great demand for the red oxide. Sometimes these ores contain other impurities, as zinc; occasionally lead in form of lead ore; copper in form of copper ore;
nickel; and sometimes, but rarely, silver. There
is also more or less coaly matier, and when that reaches eight or ten per cent. it gives a dark colour to the ore, which is thence called "black
band." They are called "clay" iron ores becanse the nodules resemble clay; they are fonud in many parts of the world. They are not confined to the conl-measures, but are also fonnd in the Weald of Sussex-the iron railings round St. Paul's aro made from Weald iron ores. The Cleveland iron stone is mainly a carbonato of iron.

Iron raries notably with the kind of ore from which it is made, but this depends not on eny dilferenoe in the metal itself, but in the presence of certain impurities varying in nature and proportion.
In the extraction of iron the ore is in every case treated as an oxide. If we take the red oxide there is nothing more to do in that respect; oride there is nothing more to do in that respect;
the brown variety must be heated to drive off the water; the magnetic ore requires no further treatment; the clay and sparry ores mast be previously raised to a red heat to drive off the carbonic acid. Thus in every case we find, withoat exception, that the material treated for the purpose of obtaining iron and steel is the oxide of iron.
If we take the oxide and reduce it to powder, and mix with it a small quantity of charcoal, and then heat it in a closed vessel for a short time, the charcoal will remove the whole of the oxygen. This process requires a very high temperature. If we take a lump of oxide and simply imbed it in red hot charcoal, and keep it so for a few hours, we shall find that every particle of the oxygen will be perfectly removed from it, and there will remain a mass of workable, metallic iron. It is not even essential that there should be extensive contact between the ore and the charcosl, it is sufficient to imbed the former in the latter.
We have heard of the stove age, the bronze age, and the iron age, and are told that they occur, in this sequence. Now bronzo is an alloy of copper and tin, usaally 10 per cent. of tin, and the production of bronze would imply a considerable degree of advance in the art of metallurgy, as both copper and tin had to be extracted from their ores. They require to be melted together in proper proportions, and then to be melted again and cast. Metallurgically speaking, one would expect to find, other circumstances being clear, that the iron age would be next after the stone age. Iron is so very readily destroyed by corroding, while bronze endures well, that it is no wonder if iron was nsed by these early people, that it has not come down to us. In the Assyrian collection in the British Museum are some very interesting objects of iron and steel, which show that these people were well acquainted with the use of iron, and that it was plentiful and cheap wo may infer from the fact that they used it for hammer heads.
In other instances, in ancient times and at the present day, in countries where it is commonly said that civilisation is not adranced, the process for extracting iron from its ores is essentially a reduction of the oxide by means of charcoal They take a small furnace, of ten not larger than an ordinary chimney-pot (cost about three halfpence); this is lined at the bottom with fire-clay, or the best substitute they can get, and has a hole by which to admit the air. These are sometimes circular in section, sometimes rectangular, and frequently the bottom is made to take out. They next reduce the ore to coarse gravel, and place it in the furnace in layers, alternating with layers of charcoal. To keep up a continuous blast, if they have not a double acting bellows, two or three pairs of bellows are worked in alternation. The oxygen is removed, and with the charcoal forms carbonic oxide, which burns at the top of the furnace. After working hard at the bellows for some hours, the ore is reduced, and the iron forms a metallic mass at the bottom of the furnace.
The lecturer then described a kind of bellows ased by the Hindoos, who have, no doubt, bellows properly so called, but use a kind of which one man can work two alternately, and so keep ap the blast. It consists of a rude piece of wood with a cavity hollowed ont, and covered over by a piece of supple buifulo hide. In the hide over the centre of the carity is a hole through which a strin: prases, and is fastened to a small pers to prevent it drawing through. The other end of the string is fastened to a long bamboo spring, which thas keeps the hide stretched. A bamboo tube leads the air from the side of the bellows to the farnace. They are worked by a man covering the hole with his heel, at the same time pressing down tho
hile, and he can worik one with each foot. Another example of Indian bellows was shown, consisting of the skin of an animar sewn up, ex-
ecpting a tubular portion (for the nozzle) sit one end and a longitudinal slit at the other. The edges of this slit were fastened to two sticks; and the bellows were worked by setting one end of the sticks firmly together on the gronnd as a fulcram for the leverage, and working the other backwards and forwards, closing the sticks as you adrance it to force out the air, and opening them on withlrawal. If the hide be supple a good blast can be thas obtained.

A third kind of bellows-double acting-was exhibited, as used in China and Japan, the one in question haring been used by an itinerant tinker in China. It consists of a rectangular box, closed at bottom, but with a movable lid, and a hanging valve at each end, opening inwards. Inside is a piston worked by a bandle outside, and having a packing of cocks' feathers. On the bottom is a canal ranning the whole length, with an opening on the top into the box at each end. The exterior opening (in reality two) is about halfway of tho length of this canal, inside of which valves are placed to regulate the passage of the sir during the working of the piston. This apparatus works remarkably well, giving a good, practically continuous blast.
(T'o be continued.)

LESSONS ON CHEMISTRY.* By Selimo R. Bottone.

(Late of the Istituto Bellino, Novara, Italy.) (Continued from p. 4.)
c. Cillorine Tetroxide.-Synonym: Chloric Oride. ${ }^{1}$ Symbol: $\mathrm{Cl}^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}$, or $\mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{4}{ }^{\prime \prime}$? Jolecular veight: $67 \cdot 5$.
110 -PROPERTIES.-A gas of a deen vellow colour, with a smell resembling that of specific gravity is $2 \cdot 3365$, or, what amounts to the same, it is about thirty-four times as heary as bydrogen, hence we are led to conclude that its molecale contains only one atom of chlorine, united to two of oxygen, and not two of chlorine to four of oxygen (see foot-note referring to chlorine trioxide). In common with the compounds just examined, it possesses great bleaching powers. It may be condensed to a red liquid at a temperature of about- 4° Fahr. It is a most dangerous body to operate upon, as it is liable to explode with a very slight rise of temperature, sometimes fracturing the containing vessel, and thereby endangering the experimenter. It dissolves freely in water, but does not appear to unite with it to form an acid, ${ }^{2}$ though the solntion formerly went by the name of hypochlorio acid. This solution, when placed in contact with metallic oxides, gives rise to a mixture of a chlorite and a chlorate ${ }^{8}$ of the metal employed. Up to the present time ohloric oxide has received no practical application.
111.- Preparation. - A small quantity of potassium chlorate is made into a paste with sulpharic acid. The mixture assumes a deep yellow tint, and is then to be introduced into a retort, which must be carefally heated with warm water (bain marie). Chlorine tetroxide is evolved, and may be collected by downward displacement. as water decomposes it, and mercury is attacked by it. The interchanges which take place during the action of sulpharic acid on potassium chlorate occar in two phases-viz., 1st. The production of chloric acid and sulphate of potassiam; 2nd. The splitting of olloric acid into water, perchloric acid, and chloric oxide. The following equations may serve to illustrate these changes :-

1st Phase.
$3 \mathrm{~K}^{\prime} \overline{\mathrm{C}} \overline{\mathrm{O}}_{3}+3 \mathrm{H}_{2}{ }^{\prime}{ }^{\prime \prime} \overline{\mathrm{O}}_{4}=\mathrm{K}^{\prime} \mathrm{H}^{\prime} \stackrel{\ddot{\mathrm{SO}}}{\overline{\mathrm{O}}}+3 \mathrm{H}^{\prime} \overline{\mathrm{Cl}}_{3}^{\prime} \overline{\mathrm{O}}_{3}$
2nd Phase.
$3 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}=\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}{ }^{\prime \prime}+2 \mathrm{Cl}^{\prime} \mathrm{O}_{2}{ }^{\prime \prime}$.
112.- The formula of chlorine tetroxide may be represented in two modes, according to the viow taken of its constitution. If we take the view, with some, that an open chain (see 26) caunot exist in the free state for an apprecinble

- The right of translation and reproduction is reserved.

1 Peroside of cllorine.
${ }^{2}$ Aco-ding to some, water decompoass the gas, splitling it up into chlorons and chloric acids.
s Sco paragraph 114 in explanation of the term
chlorate."
space of time, we must represent its molecular constitution as being-

But, as we have already seen, this does not agree with its rapour density, hence many chemists hold its constitution to be-

ctac

Attention has already been called to the fact (78) that chlorine appears in certain cases to act as if bivalent; this being the case, no difficulty would arise from stating its graphic formula to be-

a formuls which would bring its molecular constitntion into direot agreement with its vapour density, for $\mathrm{Cl}=35.5+\mathrm{O}_{2}=32=67 \cdot 5$, which is, as theory leads us to expect, twice its vapour density 33.75 (800 17).
d. Cmorine Pentoxide.-Synonym: Chloric anhydride. ${ }^{\text {d }}$ Symbol : $\mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{5}^{\prime \prime}$ (?). Molecular sceight : 151 (?).
113. -This body is as yet unknown in the separate state. In combination with the elements of water it exists in chloric acid, to which it bears the same relation as the hypochlorous and chlorous anhydrides bear to hypochlorous and chlorons acide.

D (2). Chloric Acid. - Synonym : IIydrogen Chlorate. ${ }^{\text {b }}$ Symbol: $\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$. Combinin? veeight : 84.5.
114.-Properties.-An oily, colourless finid, of a strongly sour taste. It reddens vegetable blnes, but does not possess bleaching powers. It has never been obtained entirely free from water, for on reaching a certain point of concentration it is decomposed with evolution of orygen. Heat also effects this decomposition, resolving chloric acid into a higher oxide of ohlorine, viz., perchloric acid and oxygen. In fact, its most marked property is the facility with which it parts with its oxygen. For this reason it is a most powerful oxygen. For this reason it is a most powerfal
oxidising agent. A fer drops allowed to fall on oxidising agent. A fer drops allowed to fall on
a piece of paper canase it to ignite, owing to the rapidity with which oxidation takes place (see paragraph 80). In contact with metallic oxides, chloric acid gives rise to a metallic chlorate and water; thas:-
$\mathrm{M}_{2} \mathrm{O}^{\prime \prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}=2 \mathrm{Mr}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{n}+\mathrm{H}_{2} \mathrm{O}$.
The chlorates are all soluble in water; and on heated split np, as we have already seen (87), into oxygen and a chloride, thus :-

$\mathrm{M}^{\prime \prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}=\mathrm{M}^{\prime} \mathrm{Cl}^{\prime}+3 \mathrm{O}^{\prime \prime}$.

Hence potassium chlorate is a most convenient source of oxygen.
115.- Preparation.-On passing a carrent of chlorine through a solution of potash or soda, or through a stratum of slaked lime, if the temperature be lept low, a mixtura of a chloride and a hypochlorite is produced (see 103), but if the temperature is high, or the resulting componnds be ofterwards heated, no hypochlorite is formed (as the hypochlorites are all decomposed by heat) but a chlorate of sodium, potassinm, or calcinm, as the case may be, mixed with a corresponding chloride. The resulting chlorides, being much more soluble in water than the chlorates, remain
in the mother liquor on allowing the solation to in the moth

From the potassium chlorate $\mathrm{K}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$, chloric acid may be easily obtained, by dissolving it in Fater and allowing a body called hydrofluosilicic acid $\mathrm{H}_{2} \mathrm{Si}^{\prime \prime \prime} \mathrm{F}_{4}$ to act ppon it ; when a substition of the potassiom in the chlorate for the hydrogen in the acid takes place, and chloric acid, together with potassiam silico-fluoride, are the resalts, thus:-
$2 \mathrm{~K}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{Si}^{\prime \prime \prime \prime} \mathrm{F}_{4}{ }^{\prime}=\mathrm{K}_{2}{ }^{\prime} \mathrm{Si}^{\prime \prime \prime} \mathrm{F}_{4}{ }^{\prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$.
The silico-fuoride is insolable in the resalting chloric acid, hence it may be separated from it by filtration through asbestos, or by decantation. By treating barium ohlorate with sulpharic zoid this latter seizes on the barinm and liberates the chloric acid. The chlorate must be dissolved in water, and the sulpharic acid (previously diluted and cooled) added gradually as long as a precipitate of bariom sulphate is formed : this

[^1]is separated as in the previous case. The interchanges which take place may be expressed as follows:-
$\mathrm{Ba}^{\prime \prime} 2 \mathrm{Cl}^{\prime} \mathrm{O}_{8}^{\prime \prime}+\mathrm{H}_{8}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}=\mathrm{Ba}^{\prime \prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$. In both these processes, the resulting ohloric acid contains a quantity of water, which may be partially removed by careful evaporation under the receiver of an air pump, under which stalphuric acid is also placed to absorb moistare. The molecular constitation of chloric acid may be represented graphically thas :-

However, as chloric acid has never been obtained in the state of vapour, this must not be taken as certain : all we know is, that for every atom of chlorine in this compound there are three atoms of oxygen and one of hydrogen. Hydrogen chlorate, or chloric acid, was first isolated by Gay-Lassac.
e. Chlorine Heptoxide-Symonym: Perchloric Anhylride. ${ }^{7}$ Symbol: $\mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{7}^{\prime \prime}$ (?). Molecular weight: 183 (?)
116.-This body has not been obtained in the free state. Combined with the elements of water, it forms the oomponnd known as perchloric acid, or hydrogen perchlorate, to which it is related in the same manner as the other anhydrides are to their respective acids.
e (2). Perchloric Acti. Synonym: Hydrogen Perchlorate. ${ }^{8}$ Symbol: $\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}^{\prime \prime}$. Combining recight: $100 \cdot 5$.
117.-Properties.-Perchloric acid, the most stable of the oxy-acids of chlorine, is, when pare a syrnpy, transparent, and colourless fuid, which has been cooled to - 31° Fahr., without solidifying. It is very volatile, and fames when exposed to the air. owing to its powerful affinity for water. Its specific grarity at the ordinary temperature is 1.782 . The readiness with which it parts with its oxygen when in presence of oxidisable bodies causes it to be one of the most powerfal oxidising agents known. A drop allowed to fall on any oombustible, such as wood, paper, charcoal, \&o. produces combustion with explosive violence. Like most acids, it reddens litmus ${ }^{\circ}$ paper ; bat it possesses no bleaching properties. It combines with water to form a white solid crystalline hydrate. which melts at 122° Fahr. The composition of this hydrate is $\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{1}^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$. This hydrate is almost as powerful an oxidising agent as perchloric acid itself. If these crystals be dissolved in water, they form a solation which resembles very much the pure acid, being like it of an oily aspect; it bcils at the constant temperature of 392° Fahr. This solution contains $72 \cdot 3$ per cent. of real acid, which corresponds to the formula, $9 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{6}{ }^{\prime}+19 \mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}{ }^{10}$ In combination with metals, perohlcric acid forms a sories of compounds called perchlorates, the general formula of which is $\mathrm{M}^{\prime} \mathrm{Cl}^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}$. As in all other cases where an acid acts on a metal, hydrogen is evolved, and replaced by the metal, thus-

$$
\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}^{\prime \prime}+\mathrm{M}^{\prime}=\mathrm{M}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{a^{\prime \prime}}+\mathrm{H}^{\prime}
$$

The valency of an acid can always be measured by the amount of replaceable hydrogen contained in its molecule. Hence perchloric acid is monovalent, as its molecule contains but one atom of replaceable hydrogen ; it can, however, combine with a bivalent metal, bat in this case two molecules are required to saturate the bivalency of the metal, thas-

$$
\mathbf{M}^{*}+2 \mathbf{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}=\mathbf{M}^{\prime \prime}<\mathrm{Cl}^{\mathrm{ClO}_{4}^{\prime} \mathrm{O}_{4}^{\prime \prime}}=2 \mathrm{H}^{\prime}
$$

When perchloric anhydride unites with water to form perchloric acid, the following interchanges are supposed to ensue-
$\mathrm{Cl}_{2} \mathrm{O}_{7}^{\prime \prime}+\mathrm{H}_{2} \mathrm{O}^{\prime \prime}=\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{i}^{\prime}+\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}^{\prime}$,
or, in words, one molecule of water, and one of perchlorio anhydride, give rise to two molecules of perchloric acid, or hydrogen perchlorate.
118.-Prrparation.-Three processes will be described :-1st. By boiling a solation of chloric acid it is converted into water, chloric oxide gas (which escapes), and perchlorio acid, thus :-
$3 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{8}{ }^{\prime \prime}=\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{4}{ }^{\prime \prime}+\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}{ }^{\prime \prime}$.
2nd. On heating potassinm chlorate it melts, and if kept in gentle eballition, withont raising the

[^2]temperature, it gives off oxygen. After some time the flaid mass begins to thicken, and at last assumes a dough-like consistence. If the heat be withdrawn at this point, the mass is found to be a mixture of ohloride, chlorate, and perchlorate of potassiam. On treating this mixture with hydrochloric acid, the chlorate is decomposed, while the perchlorate remains unchanged; washing with a small quantity of water removes the chloride, which is very soluble in water, while the almost insoluble perchlorate remains behind. From potassinm percholate perchloric soid may be obtained by distilling it with sulphoric acid, which seizes on the potassinm, setting free the perchloric anhydride, which instantly unites with the liberated hydrogen of the sulphuric acid to form perchloric acid, thas :-

3rd. Potassinm perchlorate may also be prepared
 by adding well-dried and finely-powdered potassinm chlorate, in gmall portions at a
time, to an equal time, to an equal acid, and gently warming in an evaporating dish (Fig. 10). The sulphuric acid first liberates the
ohlorio scid from the chlorate; but this is immediately decomposed by heat, and converted into hydrogen, chloride tetroxide, and perchlorio acid, which combines with part of the potsssium, thus :-
$6 \mathrm{~K}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}=3 \mathrm{~K}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}+\mathrm{CH} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$. and then
$3 \mathrm{~K}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}+\underset{3 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}}{ }=3 \mathrm{H}^{\prime} \mathrm{K}^{\prime} \mathrm{B}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}+3 \mathrm{H}^{\prime}+$
$$
3 \mathrm{Cl}^{\prime} \mathrm{O}_{2}^{\prime \prime}+3 \mathrm{~K}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}
$$

The compound of sulphuric said with potassiam is readily soluble in water, which is, therefore, nsed to remove it, leaving nudissolved the parchlorate. From this the acid may be obtained as above, or the potassinm may be removed by hydrofluosilicic acid, as recommended for ohloric acid (115). The molecalar constitation of perchloric acid is presumed to be

while that of chlorine heptoxide may be represented by

SOUND WAVES.

M. A. M. MAYER, in a note communiosted to the Académio des Sciences, gives an account of certain experiments made by him with reference to alteration in wave length produced from a motion of translation in the sonnding body:-Having procured, he says, four tuning forks, fixed to sounding cases, and giving the note U $t^{3}=256$ complete vibrations per recond, I numbered them 1, 2, 3, and 4. I bronght Nos. 1 and 2 to perfect nnison, by a method to be described. No. 1 was placed before a magic lantern; a little ball of good cork, 6 mm . in dismeter, was suspended by a silk thread against one of its prongs; the images of fork and ball were projected on a screen. No. 3 had a little wax attached to one of its prongs, so that it gave two beats in a second with No. 1 or No. 2. No. 4 had its extremitics filed, and slso gave two beats per second with No. 1 or No. 2. Thas No. 4 gave 2 vibrations per second more than No. 1, while No. 3 gave 2 vibrations less. The following were the experiments :-
Exprbiment 1.-Fork No. 2, sttached to its case, and held in the hand, is pat in vibration at s distance of 30 ft . to 60 ft . from No. 1 (projected on the screen as above mentioned.) The ball is driven from tho prong of No. 1, which vibrates in unison with No. 2.
Experiment 2.-I placed myself at a distance of 30 ft. from No. 1, holding fork No. 2 in one hand and its case in the other. I then set the fork vibrating and moved rapidly towards No. 1. When my movement had become uniform I placed the fork on its case, and did not remove it till just before stopping. Although I came to about a foot distance from No. 1, the ball continued in contact with the prong.

Experiment 3.-I again approach fork No. 1, as in Experiment 2, but without removing the fork from its case after háving attached it. The ball did not move till I stopped. At that moment my assistant, who held his ear near the case, while he watched the screen, noticed No. 1 fork vibrate and the cork leap from it.
Experiments 4 and 5.-I moved away from No. 1 instead of towards it. Results the same as in Experiments 2 and 3.

Experiment 6.-I set No. 3 vibrating as in Experiment 1, this fork making 254 vibrations per second. The ball did not move. Then I removed the fork from its case, and placing myself 30ft. from No. 1, I swung the case in my hand towards No. 1 at a quickness of 8 ft . to 9 ft . per second, and, while making this forward motion. I put No. 3 above the case. The ball was suddenly thrown from No. 1. When the motion of the case was increased or diminished the vibrations of No. 3 did not affect No. 1 .

Experiment 7.-Fork No. 4, which made two vibrations per second more than No. 1, was substituted for that employed in Experiment 6, but placed on the case in its backward movement from No. 1. The results were the same as in Experiment 6.
Experiment 8.-I placed No. 3 before the lantern, and swung No. 1 as in Experiment 7, with the same result.
Experiment 9.-I placed No. 4 before the lantern, and swang No. 1 as in Experiment 6, with the same resalt as in Experiment 6.

By these simple experiments I have been able to prove the change in wave-length produced by the translation of the vibrating body. By analogy they perfectly explain the modern method of determining the motions of a celestial body by variations in the refrangibilities of its ray's motions, which it is often impossible to ascertain by any other means. It may be useful to offer some remarks on the details of these experiments, which mast be attended to in order to succeed.
The forks 1 and 2 must be really in unison. It may happen that two forks vibrating together give no appreciable beate, and are constrained into giving the same number of vibrations per second; while, by making them vibrate separately, the equality is destroyed. I adopt the following method. Having taken three forks, warranted to make the same number of vibrations in ${ }^{\text {a }}$ given time, I load one of them so that it gives two or three beats per second with one of the other two which I wish to bring into complete unison. I determine the interval of time between twenty or thirty of these beats by a chronograph. I then determine the interval between the same number of beats with the second fork; and if it is different from that obtained with the first, I attach wax to the more rapidly vibrating fork till it makes the same number of beats as the slower. Having thus adjusted the forks, I have had no difficulty in Experiment 1 at 60ft., and believe the effects would be the same at 100 ft . The cork ball should be spherical, and should not do more than touch the fork. It is advisable to varnish the ball. A machine has been invented by which one can communicate a uniform motion of translation to the forks. A small mirror held between two vertical threads may be substituted for the cork ball, giving very delicate indications by the motion of a reflected ray.

The fork No. 1 makes 256 complete vibrations per second ; while No. 3 makes 254 , thus giving for wave lengths, $4 \cdot 367 \mathrm{ft}$. and $4 \cdot 401 \mathrm{ft}$. respectively, reckoning the velocity of sound at $1,118 \mathrm{ft}$. per second.
M. Mayer then proves that 256 vibrations of a fixed body will produce the same effect on a distant surface us 254 vibrations of a body which approaches the surface with a speed of 2λ, or twice the wave length of the No. 1 fork-i.e., 8.734 ft . per second, which was the speed given to the fork in Experiment 6.
Take next the case of light. Suppose that the fork No. 1, which makes 256 vibrations per second, made 595 millions of millions of vibrations, the number belonging to ray D in the spectrum. Then the fork No. 3 will represent 590 millions of millions of vibrations per second, which will give, us a wave length .0000042 mm ., greater than that of D, and which nearly corresponds to a line of iron situated 43 divisions above D, in Angström's map.
We have seen that the fork No. 3, giving 254 vibrations per second, must approach the ear with a speed of 8.734 feet to produce the note belonging
to 256 vibrations per second from a fixed poiut ; in the same way the light of a star whose ray vibrates 590 millions of millions of times should reach the eye with a velocity of 28470 per second to give the colour produced when the ray D comes from a stationary flame.
A. M. B.

A NEW FIRE-ENGINE.

T HE annexed diagram is an illustration of a fire-engine on an entirely new principle patented by Mr. Thomas Atkins, the main features of which will be gathered from the following description. In the trials made recently at Welwyn very satisfactory results were obtained, a fire made of faggots smothered with tar being brought completely under control for an hour, and finally extinguished when its parpose was served, at an expenditure of two and a half gallons of water. The principle of the invention consists in charging the water used with carbonic acid and nitrogen, but its chief novelty lies in the remarkably cheap method of obtaining the carbonic acid, which is made by drawing the atmospheric air through a charcoal fire and forcing it into a tank containing
being blown through the air vessel on the top are wasted for a minute or two, the apparatus connecting the water and gas cocks is then adjusted, and the machine is ready for use, two minutes being ample for bringing it into full operation. The three-way cock on the delivery nozzle is shut off, and the pressure in the air or gas chamber, shown by the gauge on the top or on the tank, is brought up to 150 lb . on the square inch. A pipe of any convenient length, and about 1 in . in diameter, is then connected with the machine, and on the end of the pipe a discharging nozzle is attached capable of furnishing a single jet, a spray, or a fine mist. On the inside of the discharging nozzle a pressure gange is fixed, so that the fireman may keep the point of discharge at 150 lb . pressure on the square inch.

According to the inventor, the gases generated and poured into a glass 6in. long, at the pressure before-mentioned, are retained in the water for several minutes, and when thrown apon the fire sink to a temperature of from 40° to 50° Fahr. One cubic foot of this fluid discharged upon any burning pile is capable of doing as much execution in extinguishing fire as 50 cubic feet of

water. This tank is 2 ft . 6 in . long by 2 ft . wide, and 2 ft . deep. The vacuum chamber, which connects the pump with the water to be used in the tank is 1 ft . in diameter and 2 ft . deep. The pump is 4 in . in diameter, double action, 10 -in. stroke. On the left hand side is a small stove, with a pierced ring in its interior; this stove is 9 in . in diameter and 14in. deep, with a ventilator in the bottom for admitting air to the stove, and a door and frame fitted air-tight to the top, 3in. in the clear, to admit fuel. A small pipe runs from the stove about 18 in . high. Half way up the pipe is a small pulse-valve for preventing back action from the pumps in case of leakage, and so adjusted as to work in harmony with a foot-valve in the vacuum chamber that supplies the water to the pump. Between the pulse-valve and the vacuum chamber are two adjusting cocks for regulating in exact proportions the supply of gas and water. A combination of mineral, animal, and vegetable charcoal is ustd, and when the pump is set in motion and a light applied, in one minute the stove is in full action. The gases
water from an ordinary fire-engine, and in onetwentieth part of the time now occupied, while the results are said to be unfailing.

Under the arrangements proposed by the inventor, fire-engines will, he thinks, be of little use, as new conditions will be submitted entirely altering our present notions of dealing with fire. A large skeleton map of London is being prepared, indicating 2,500 receivers or store vessels. These may be fixed in cellars, under pavements, or in warehouses. The contents of such vessels will vary from 150 to 1,000 gallons of water charged with carbonic acid. Pipes, valves, and all necessary apparatus will be attached to these stores, which may be instantly brought into operation, and a fire extinguished by merely turning on a tap and allowing the water to fill the building in the form of spray.
Another important point is the capability of the invention to instantly depolarise vast quantities of sulphurous vapours, carbonic acid gas, carburetted hydrogen, and sulphuretted carburetted hydrogen. A delivery jet of in. in dia-
meter is said to be capable of instantly extinguishing and depolarising carburetted hylrogen from a 2 ft . main, working at 3 in . pressure from the gasometer. Arrangements may be made in coal-pits, mines, caverns, cellars, tunucls, ships. and subterranean rilways, for instantly reudering the air pure and healtity. Numerons afes are claimed for this invention. For instance, it may bo utilised for softening water, for brewing and dyeing. and particularly for preventing incrustations in steam-boilers.
The incentor also points out that in builhings containing a store-vessel or receiver the whole of the gas-fittings may be ased to distribate the charged water, by simply fitting on a pulse-valre here and there which would yield to a pressure greater than that of the coal-gas, and a connection being made between the gas-pipes and the receiver abont one or two feet from the meter tap, the "spray", would be convered into every room in the hailding, and the fire extinguighed by the carbonic acid gas liberated. The trials hitherto hare given encoursging results, and as a company is formed to constract the engines, which will be worleed by the London Volunteer Fire Brizade, the invention will be judged by its performance in an actual fire. Those of our readers who have witnessed the powerlessness of plain water in the fierce heat of a raging fire will readily appreciate the atility of carbonic acid cheaply and conreniently thrown apon the flames. Further informaition on the subject may be obtained of Mr. E. W. Allen, of Ave Mari*lane, E.C., who, we believe, will be happy to explain the invention and give particulars as to the plain the invention and give particulars as
steps which are being taken to introduce it.

INDESTRIAL USES OF MAGNESIA.

THE oxide of magnesium is a native dark green, glassy, hard, anlyldrous oxide, found in rocks ander the name of periclase, but is rarcly of sufficiently pure water to be oi use as a precions stone; a hydrated oxide occursas the mineral brncite, from which is prepared a valuasble cement, and the pure oxide for other purposes. A common way to prepare the oxide is also to heat of ex carbe latterly been considerably extended, aud it is well to mako note of them. Professor Henry St. Clairo Deville, of Paris, exposed a piece of canstic magnesia to the iulluence of a strean of ranning water, and after
the lapse of a fow months fond that it had become the rapse like alabsister; he left it in the same position hard like alabster; he revamined it after soven years, and fonad and re-enamined it after soven years, and fonad
that it hal not in the lenst deterionated, but, if anythat it had not in the lenst deteriorated, but, if any-
thing, had becone still harder. An analysis showed thing, had becone still harider. An analysis showed it to be vearly pure hydrate of maguesia, similar to
the mincral lurucito. Devillo then stirred up pare the minczal brucito. Davillo then stirred up pare
caustic magnesia into a paste with water, aud sealed it in a glass tube. In a few weeks this also secame transpurent, and proved, after analysis, to be a pure bydrate, contianing bs:: per cent. maznersia and $: 0.7$ per cent. Water. These results
instigated Deville to pursue the subject farther, aud also to hand the matter over to manufacturers of cements. He found that a mixture of magnesia ond sulphate of lime did not harden under wat.r. but that magrucsia aud palverised chalk or marme dust, when exposed for some time to the action oi The magnesia which yielded the hardest mass was that prepared by heating the chloride of mamnethat propared obtained from the Littern of sall water. The heat must not be raised to redness. as the hydrainheat properties of the magnesia are diminished by too hish a temperature. An important resnit was obtained from dolomite or maznesian hmestone. This is a donble carbouate of hime and maynefia, and when heated to below redness, pulverised and mixed with water, yields unler water a mass of extraordinary hariness. If magnesian limestone
bo heated to whiteness, so ns to expel all of the bo heated to whiteness, so as to expel all of the
carionic acil, it will no longer set under water; in other words, it loses its hydranlic property when both constituents are deprived of their car-
bonic acid. The lime of the mineral mast retuin its bonic acid. The lime of the mineral mast retuin its carbonic acid, wiile the heat is raised sutlicientir to expel the carbovic acid from the magnesia. The result is an intimate mixture of caustic mamesia
and carbonate of lime (marble), which yiclds a cement that hardens equally well under fresh and salt water, and appears to bo admirably adapten to the manufncture of artificial buildiug.stone. The late M. Sorel modified Deville's process by mixing canstic magnesin with chlorite of magnesinm ; the latier ingredient can be substituted by other cllorides, bat as the magnosium chloride is a waste prois stirrel into a concentrated solution of chloride of magnesiam, and the more concentrated the soiution becomes peifecty wiito aud vers hard. It can be poured into moulds the same vers hard. It can be as any colour cau be mixed with it, it can be ased
for the repair of different kinds of building-stoues, as weil as in the imitation of a variety of fancy articles. It serves a good purpose as a coating for
soft limestone or plaster casts, and for this purpose soft limestone or plaster casts, and for this pnrpose
may he applied with a brush. The cement made by dissolving calcined macnesia in chloride of magnesium is employed as the basis of the manafacture of artilicial stone in Boston : by mixing the prepared cement with saud. a peculiar brick is formed l, y employing tint, whetstones and hones are made with kaolin. ornaments of all kinds. statuettes, imi tation porcelain, de., are produced; with sawdust. it gives a good material for covering floors: with carbouate of lime, imitations of marble. Whether it is preferable to ase Surel's method of caustic magnesia and chloride of maruesium, or to adopt the plan proposed by Deville, aud make on intimate mizture of carbonate of lime and caustic magnesia mugt largely depend upon the cost of the material.

THE MANAGEMENT OF BEES.

TIE method of treating bees adopted by the Americans often affords a hint to bee-masters in the old country; we thercfore reproduce the
following remarks from the Fiural New Yorker:-

There is no arrangement of a bive that can compensate for the lack of movable frames, and the more simple in construction the better. We prefer a two-story hive, where the honey extractor is employed to obtain surplus honey. But if the ouestory hive be preferred, make the hives large enongh to contain two or three extra frames apon each side Honey can be extracted from the brood combs; but Honey can be extracted from the brood combs; but ge tbrown out of the cells. We deem the honey be thrown out of the cells. We deem the honey extractor to be of great value, and every apiarian
should have one of his own. Oftentimes the hive should have one of his own. Oftentimes the hive
will contain too much honey, not giving the queen will contain too muld houey, not giving the quere
a chance to lay sufficiently to keep up the strenath of the colony. Hence the reason why we so often hear the complaint in the fall of the year, "too few bees and too much honey." The ranon why so many ber-keepers find, in the spring, that their bees
have died leaving plenty of honey in tho inive is have died leaving plenty of honey in the inve is attributable to the same cause. Boes, to winter in good condition, must have erapty cells to cluster in many commencement op coplish this in no other than to empty solae of the centre combs with the extractor. la fact, we consider the honey extractor to he of eqnal impintance to a snecessful and profitahe prosecution of bar Eecping with the movable conb frame: and we shoulh speedily abandon all hope of mankiag this parsinit a remunerative on were it not for these two all-important aids.
Many beekeepers have complained that dysentery is destrozing their bers, in many instauces Inreatening the total hestruction of whole apiarios. in thevention to be far hetter than a great deal of care. Cherence two prinem?l cansas of this disense (if it may be called a disease), the urst and most importaot of which is insnflicicnt ventilation. In some sensons tue honey gathered by the bees is of
a poor quality, being thin and watery; this is especinly trite of a very wet season. Now, when a considerable grantity of such honey is stored in the hive at onec, it is very liable to fermant and sour, before it thickens safficiently to be sealed over by the bees, especially during a warm nnd moist spell of weather, muless the hive has ample facilitics for thorough ventiation. Agnin, if the hive is not properly ventilated in the winter senson, frost will accumulate upou its walls and tho combs; and drenched with monistare.
Sbould there be any considerable quantisy of ansealed honey at snch a time it will absorb n part of the moisture, rendering the boney thin and watery. tion of suct houey by the bees; nad we believe that ninety nine cascs ont of a hundred origiuate from improper or insuticient ventilation. The
bees are compelled, or do at least, consume greater bees are compelled, or do at least, consume greater
qunntities of honey than they ought, and are compelici to discharge thoir foees in their hives. We have seen combs of such stocks that were literally besueared with this offensive smalling excrement of the bres. Oar advice to all wonld be, veatilate have litue properly and thoroughly, and you will

SURFACE ELECTRICITY.

I^{T}is well known that Faraday made numerons experiments npon this subject, and has varied, under different forms, that which Coulomb has It is still under this form. the lenst commodious, that this experiment is repeated in the lecture-room. If the loss is considerable on the day when this experiment is periormed, it ceases to bo sulliciently
conclasive; for it requires, first, to electrify the splere nlone ; second, to recover it rapidly with its two covers; third, to take them off ; fourth, to prove that these covers are electrified; and, fifth, that the sphere is not. The second operation cannot be
executed with great rapidity on account of the form of the covers. Amongst otiuer experiments Faraday has male the following:-He touk a cylinder mad of metallic ganze placed upon an insulated hori-
zontal metallic disc, the design being to afford proof zontal metallic disc, the design being to afford proof
that the exterior is alone electrified. An animal. that the exterior is alone electrified. An animal.
such as a mouse, placed in the interior, showed no commotion, even when the whole apparatus was electrified so strongly that bright sparks might be obtained from it.
Faraday did more, he constructed a cabical clamber 12 ft . on each side. with laths; the walls were of wire gauze and of paper, and the whole chamber was suspended by means of silken ropes The chamber, even the interior, could be electrified stroncly on connecting it with an electric machine. Faraday inclosed himself in this chamber with electroscopes and varions other apparatas, bat he failed to find the lenst trace of electricity, whilst the walls were so strongly electrified that vivid sparks were obtained from the outside, and "brushes" escaped spontaneousls.
M. Terquem has endeavoured to repeat this ex periment in his lectures, on a small scale, in the following manner. He took any form of bird. cage, whether of wood and iron wire, or entirely of meta, and suspended it to some insulated conduotor in communication with the electrio machine. Insite the cage was placed a gold-leaf electroscopa, and also picces of tinsel, the feather of a quill, and pith from the cage nothing moved in the interior. With in the cage was suspended a bundle of linen yarn nad underneath the cage similar bundle. the in terior bundle remained nndisturbed, whilst the exterior was greatly excited and electrified, all the
bits of yarn spreading ont, and on approaching the bits of yarn spreading out, and on approaching the
hand the pecaliar crackling due to eleatricity was heard.
Bands of paper being stack along the length of twe wires of the cage, tha exterior bands would twist strongly, and get displaced, whilst the interior remained vertical and anmoved when the cage was
el.ctrified. To complete the experiment, a bird electritied. To complete the experiment, a bird
migit be placed inside the care, nul by his singing and reneral demeanour prove that he was not only completely indifferent to the phenomenon of elec-
trical charge and discharge, but that behaving so provel that the interior of the cage was perfectly iree from all electrical phenowena, whilst the exterior aloue was susceptible to the electrical intluences.
We quite agrea, says Ennineering, with M. Terquem, that this experiment is very simple, fall of proof, very easy indeed to prove, and, above all, requires neither complicated nor costly apparatus,
and is one that might be frequently introduced into the lecture room as a proof of one of the most interectin: points in electricity.

THE DECOMPOSITION OF WATER BY ZINC.

1DE decomposition of water by zinc in conjanction with a more negative metal was the subject of a paper presented to the Royal Society, by
Dr. J. H. Gladstone and Mr. A. Tribe, F.C S. According to the authors, pure zinc is incapable of decomposing pure water, even at $100^{\circ} \mathrm{C}$., butat a considerably higher temperatare it is known to combine with its oxycen. Davy exposed pure water for two days to the action of a pile of siver and zinc piates. any hydronly by prsteboard, without obtaining very minute trace of gas can be formed at the ordiuary temperature by a pair of zinc and platinum plates. 13y bringing the metals closer together, and thus increasing the electrical tension of the liquid. the authors could effect the same combination of zinc with oxycen at the ordinary temperature which takes place without the second metal at a very high temperature. On thin sheets of zinc and coppor bing bammered together, and placed in a bottle filled with distilled water, smnll lnables of gas were formed; the same result obtained when the experiment was tried in a more perfect form. Under the microscope the bubbles of gas are seen to form, not on the zinc, bat among the copper crestals, and sometimes to make their appearasco on the glass at
some distance off. Lest it might be contended that some distance off. Lest it might be contended that
the free oxygen asually present in distilled water the free oxygen usually present in distilled water
had been the means of starting this action, the exmeriment was repeated with this action, the ox oxygen as could be obtained by boiling. Iron and lead, under similar circumstances, also decomposed pure water, and the action of magnesium was greatly incroased by conjunction with copper. The effect of the more negative metal was the same as wonld have been produced by au increase of heat. From a practical point of view this experiment may serve as a ready means of preparing pure hydrogen: from a tueoretical point of view its interest seems to lio pound br meang of dissociation or a thke place at intiaitesimally short distances, when it would not take place were the layer of liquid enough to offer esistauce to the current, and also in the correlation between this force and heat.

PSYCHIC FORCE-SPIRIT FACES.

THE following is clipped from the last number of the Scienlific American: --One of the inarvels of spirit jngglery, or "psychio force" as the learned
Dr. Crookes denominates it, is the production of Dr. Crookes denominates it, is the prof faces, \&c., imares of haman orms, hands, arms,
which are seen by the observers to float around in the air. In some cases, the faces have been recognised as those of departed friends by sitters in spiritual circles. Quite a thriving bnsiness is done in this city by professors of the art; bat some queer
revelations have lately been made. One Gordon revelations have lately been made. One Gordon profitable basivess, at 50 cents. a head, until his partner, the basiness manager, in a quarrel peached on him, and revealed to the pablic how the thing was done. Professor Gordon, it appears, dressed in the paraphernalia of a high priest, appears before his audience, tarns down the lights, and then by means of struigs and hands nanipula as a series of the pictures to rise from behind an altar. float and s ony in the air. These pictares represent females, swry in the air. These piotares represent females,
children, and men, and in the dim twilight are from time to time pronounced, by this or that person in the audiance, to be the spirit faces of their departed friends. Only a small stock of pictur
to produce these sapernatural effects.

A higher priced profesfor of this mystic art is one Slade, who until recently has confined his apirits to the more commonplace dodges of spirit-writing on slates, rapping, table lifting, accordeon playing, knife throwing, \&c. His circles are more select, generally only two admitted at a time to the perthe spirit face business and raised the price to 5 dols. An intelligent friend of ours, wio visited the show. pronounces the faces to be those of genuine spirits, and regards the whole performance ns most to the doctrine of came sway completely converted the spirits. Per contra, the New York $S_{u n}$ recently poblished an expose of Slade's manipulations, as de. pablished an expose of slade's manipulations, as re.
rived from a member of his own household. The face from a member of his own houseduold. The their appearance before a small opening in the same. Slade eunploys a stock of masks and pictures, which he works by means of threads, making them rise
and appear before the opening, the gas being turned and appear before the opening, the gas being turned
down so as give a dim sepulchral effect. How it is that any intelligent person can be brought to attribute these tricks to spiritual agency passes comprahension.

THE INFLUENCE OF THE PLANETS UPON SOLAR ACTIVITY.

A^{T}T a recent meeting of the Royal Society Messrs De La Rue, Balfonr Stewart, and Lnewy presented a memoir containing the resuits of further investigations into this matter. In previons memoirs they pointed ont that the bebaviour of sunspots with regard to increase and ciminntion, as altogether of an arbitrary nature. It has been supposed that during a period of several months sun-spots will, on the whole, attain their minimum of size at the centre of the disc. They will then alter their bebaviour so as, on the whole, to diminish alter their bebaviour so as, on the whole, to diminish
daring the whole time of their passage across the disc : thirdly, their behariour will be such that they reach a maximum at the centre; and lastly, they will be found to increase in size during their whole passage across the disc. These varions types of
behaviour appeared to the observers always to follow one another in the above order; and in a paper printed for private circulation in 1866 the authors discussed the matter at considerable length, after having carefolly measured the area of each of the groups observed by Carrington, in order to ininslance nineteen or twenty months were obtained as the approximate valne of the period of recurrence of the same bebeviour. The observations extend from the beginning of 1854 to the end of 1860 , form menced in 1866 . There is. then, nearly a continuous menced in 1866 . There is. then, nearly a continuous
series of observations. The behaviour, with regard series of observations. The behaviour, with regard
to size, of the various groups ss each passes from to size, of the varions gropps as each passes from
left to right across the sun's visible disc is discussed in this memoir.
The average behaviour of spots, as far as can be judged from the information at present attainable,
is not quite symmetrical as regards the centre of the is not quite symmetrical as regards the centre of the
disc. Withoat attempting at present to enter into an explauation of this remarkable phenomenon, the anthors point to it as a confirmation of their view
that most spots are accompanied by a wall-shaped surrounding of facala. Observations show that, on the whole, the life-history of the facula begins and and that thronghat of the spot which it surrounds. elorated mural sppendage seems to be taking place. But such a diminution of the wall discloses more of the spot itself, and hence the spot areas, measured pected, eusteris paribus, to be smaller twan those gate the causes or concomitants of a departure from
the average behaviour of spots, the whole mass of observations is divided into four portions, depending apon the position of a planet, and
the planets chosen are Venus, Mercury, and Jupiter. If the resalts are examined it will be fonnd that in the cases of Venns and Murcury there are indications of a behaviour of sum-spots appearing to have reference to the positions of these planets. This behaviour mny bo characterised as follows:-The average size of a spot would appear to attaia its maximum on that side of the san which is turned aray from Venus or fromaliercury. and to have its minimum in the neighbourhood of Venus or of Mercary.
The authors leave it for others to remark unon the nature and strength of the evidence now deduced as to a connection of some sort between the behavionr of sun-spots and the positions of the plavets Venus and Mercury. They think, bowever, it must bo allowed that the inrestigation is ono of interest and importance; and they trust that arrangements may be made for the systematic con tinuance of solnr observations in such localitios as
will iusure a daily picture of the sun's disc. The will insure a daily picture of the sun's disc. The influence of blank days in diminishing the valac of a series of sun observations is very manifest. The behaviour across the san's disc of 421 groups of Carrington's series out of a total number of 885 541 han been recorded, the same for of 1.429 groups, the record only contains the behaviour of 794. Blank days necessitate interpola tions. It is, therefore, of much importance for the futuro of such rescarches that there should be several observing stations so placed as to insure the daily record. These are not experiments that Nature gives ns in a year or ititis; for in this case Nature gives ns in a year or in ten years a certain aunount of imformation, and no more, while it de
pends upon ourselves to make a good use of the pends upon ourselves to make a good use of the
information which she affords. It is alregly uni versally acknowledged that we ought to make the best possible use of the few precions momente of
total eclipse; but such observations must neces sarily be incomplete unless they are followed up by the equally inportant if more inhorious task of re cording the sun's surface from day to day.

ACTION OF HEAT AND VARIOUS CHEMIICAL
AGENTS ON THE PRIALITIVE FORMS OF LIFE.*

D^{n}R. CALVERT said that his experiments led him to dishelieve in spontaneous generation that he had found great difficalty in securing pure water free from germs; but at last he succeeded in preparing it so that it wonld keen for months withwater into small tubes, and placed them near putrid meat ; and on opening the tubes from time to time life was observed after twenty days, whereas in the pure distilled water in the flask no life appeared. If he proc.nction was spontaneons, why, be the in closed tiask as well as in the tnbes which had bea exposed to the atmosphere? Speaking of the effects of heat, he proceeded to say that he had found that be greater portion of all microscopic life was destroyed by a temperatare of 2000^{-}Fair., but tuat there was one form which sarvived all texperatures
below 300°. He dipped calico in a patrescent solution of albnmen, and then submitted it to a te mpe rature of $3(1)^{\circ}$. The calico was softened, but a
black opaque vibrio was afterwards ionud to be as ively as ever. To test the actiou oi rain chemi cal agents, mostly disinfectants, he added the one-thousandit part to one part of a solation of white of egg and four of pura water. In the first series the white of egg solntion was quite fresi ; in the second it was alive with vibrios. Thirty-eight substances had been experimented on. and special note was made when vibrios, fungi, and odour were first observed :-1. Chloride of lime or bleaching-powder, instead of stopping, actually promoted, the decomposition of the albumen lipnidvibrios were found in great abundance, but no fungi 2. Sulpiate of quinine retarded the production of
vibrio life, which appeared on the twenty-sixth day; vibrio life, which appeared on the twenty-sixth day;
but even after eighty days there were no fungi. 3. Acids promoted the formation of fungi, particularly the sulpharic and actic, whist arsenivas acid had no marked effect. 4. Alkalies, on the other hund, promoted the formation of vibrios, and prevented the growtio of fungi. Cbloride of ziuc und bichlorile of mercary prevented the formation of vibrios, and fung were nochrvsolic acids were the only agents which prevented the formation both of vibrios and fungi. 6. Permanganste prevented smell, but had no effect in retarding the production of primitive life. In the secund series the albumon solation was putrid and full of life. Sulphuric acid and acetic acid seemed to paralyse the microscopic life, but at the end of twentr-foar hoars the vibrios recovered, and then fangi began to form rapidly. recovered, and then fongi began to torm rapingy
Soda prodnced little or mo effect. Ammonia and

- By Dr. F. Crace Celvert. Delivered before the As.
intion of $\dot{\text { y. }}$ chical Ulicers. of Health.
lime promoted the putrescence, and had very little effect on the microscopic life. Chloride of ziuc do stroyed the greater part of life, and there was no re appearance until after 80 days. Salpho-carbolato of zinc is nearly as powerfal as chloride of zinc. and Dr Calrert thought it wonld proves most convenicnt and useful disinfectant. Pormanganate destroyed the odour, even for eighty days, bat life continued most active. Sulphate of quinine did not nfiect the motion of vibrios. After six days the putrid olonu was increased, but no fungi were formed. Picric rcid acted in the same way. Charcoal added to the pure albumen prevented the devolopment of smell. Vibrios appeared at the end of six days, fungi at twenty-oue days, and putridity at fifts. Added to putrid albumen, the putrid odoar was removed but life was unaffected. Under no circumstances was life entirely destroyed. One part of putria albrmen solation was added to two parts of strong sulphuric acid. There was a great rise of tempera ture, nud yet the black vibrio before noticed was as lively as before.
In the discussion which followed, Dr. Letheby remarked that bleaching-powder acted by supplying oxygen, which was an important agent in the production of life, but it might nevertheless act as a powerful disinfectant. It was most important not to jump to the conclasion that infections matters were necessarily associated with microscopic lifo He conld not understand the action of snlphato o quinine, for he had a vivid recollection that decoc tion of bark was apt to become monldy.
Dr. Barclay believed that vibrio and fungns life had very little to do with disease. He believed discase arose from patrefactive change iu dead animal tissue, and from this, while unilergoing a apecial process of change, being introduced into the living tissue, and superinducing a similar change in the living tissue.

INCREASE OF REART-DISEASE.

THE tendency of modern investigation into the influence of civilisation on longerity seems to show a twofold series of agencies at work. On the one hand, sanitary improvements and thedly
lessened mortality from epidemics andoubtedly tend to diminish the average death-rates: but, on the other hand, there is practically much less improvement in total denth-rates than might be ex pected if these ameliorating canses were not counter
balnnced by the increasing fatality of other classes of discase, such as discases of the brain and heart It is important to recognise the precise facts. Tho excess may, probably, to some extent, be regarded as an unavoidnble result of the great mental strain and hurried excitement of these times, iu which stcam and electricity mark time for us, in an over crowied community, where competition is carried to the highest point, and where the struggle for ex istence, not to say for intellectnal and other distinction, is carried on with sleepless and exinausting energy. But an evil reconnal is sumetimes hal cured. and tho intellectual classes, loosing at figures snch as those Dr. Quain has displayed at his Pleysiciang ou Diseases of the Walls of the Plysicians on Diseases of the Walls of the
Heart, may well consider the propriety of Heart, may well consider the propriety of attending to the hygiene of their lives, as well as of their Lonses; and to remember that, to enjoy
aud bencfit ly even pure air, soil, and water. they and benctit ly even pure air, soil, and water. they
must avoid disabling heart and brain by the incesless, and embitter the harvesting of the crop which has been too diligently shown. These waruing figures tell that, durivg the last 20 years, the total of deaths of males at all ages from heart-disease has increased in number from 5,746 in 1851 to $12,42 \times$ in 1sin. The percentage of deaths from leart-disease for 1,000 of population living was 755 betwecu the scars 1851 and 1855 ; it has risen to 1.08 .5 from 1 noto to 1870. Twis increase. it mast be obserred too, has taken place wbolly in connection with the working yeurs of active social life. There is no change in the percentage of deaths from this cause in males under 25 years of age. Betreen 20 and 45 years of age it has risen from $\cdot 553$ to 709 , and that almost exclusively in males, for there is almost no increase in the percentage of females dying from heart disease during the 25 years of life from 21 to 5. These hgnres convey their own to kill our selves for the sake of living.-British Jucdical Jurrnal.

SIMMONDS'S GOVERNOR

WE sabjoin illnstrations of an arrangement of governor for steam engines or water wheels, designed by Mr. William Edgar Simmonds, of Hart-
ford, Connecticnt, Fig. 1 being a side elevation and Fig. 2 a vertical longitudinal section. In theso figures a shows the supporting bracket or frame, and b the main shaft. on which aro two pulleys, c and d. The latter of these is the frustrum of a conc, whose diameter at the centre of its culgha polleys are driven by belte from tho dru".
is of equal diameter throughout its whole length. These belts are indicated by the letters $c^{l} d^{1}$ Neither of these pulleys, $c d$ are fast on the shaft, b;
but the shaft is made to always revolve with the but the shaft is made to always revolve with the
pulley, c, by means of a pin, f, driven through from pulley, c, by means of a pin, f, driven through from clot made in one side of the shaft, and extending from the point, b^{1}, to the end b^{*}, which, while it serves to make the shaft, b, revolve synchronously with the pulley, c, yet allows it to move back and forth lengthwise.
From the side of the palley, c, a sleeve, g, fitting around the shaft, b, and serving as a bearing both for itself and the shaft, extends through the frame, a. Upon the side of this sleeve is the small bevel wheel, h, gearing into the horizontal bevel-wheel, i which is fast on the shaft, i, to the upper end of which is attached a common ball-governor, actuating the sleeve, k. This sleeve moves the arm, m, attached to the shaft, n, to the opposite end of
which is fixed the arm, o, attached at its lower end which is fixed the arm, o, attached at its lower end
to the fork, 8 , which controls the sidewise moveto the fork, s, which controls the sidewise move-
ments of the belt, d1, so that, when the balls of the ments of the belt, d1, so that, when the balls of the
governor rise, the belt, d1, will be shifted from the governor rise, the belt, d1, will be shifted from the
centre of the latter toward that side of the palley where the diameter is the smallest, and when the balls fall the opposite effect will be produced.

The palley, d, has a sleeve, d^{4}, qpon its side, which serves as a bearing for itself and for the shaft, b. Within this sleeve a screw-thread is cut apon the shaft, b, which fits in a female screw in the sleeve, dis The eflect of this arrangement is speed which it is desirablo to observe, the sleeve, k, speed which it is desirablo to observe, the sleeve, k;
will be in the centre of its vertical play, and at this will be in the centre of its rertical play, and at this point it shoald hold the belk, d^{1}, in the centre of c, will revolve synchrononsly.

Now suppose a greater load to be thrown on the engine, or other motor, the balls will fall, and the belt, d^{1}, will move toward the large end of the pulley, d. This will cause the pulley, d, to revolve more slowly than the palley, c, and will cause the shaft, b, to move lengthwise in the direction indi cated by the arrow, which movement, by means of proper connections, made from the collared groove, u, will allow more steam or other motive power to have access to the motor, and this movement will continue till enough of the motive power is admitted to attain the desired speed, when, of course, the belt. ar, will meve back to the centre of the palley, d; but-and this is the important feature of toward its first position unless the belt, mi mores - beyand the centre of the pulley toward the smallest diameter of the latter. When the speed of the governor balls exceeds the desired rate this action
will be reversed, and the shaft will move in the opposite direction, and the steam or other motive power will be shut off till the desired speed is again reached; but as before the shaft will not again move toward its first position till the belt, d^{1}, passes by the centre of the palley, and toward the large
end; so that, however mach the power or the load end; so that, however mach the power or the load
may vary, the governor will immediately adapt may vary, the governor will immediately adapt speed. The difference between it and the common ball governor is readily explained.
In using the common ball governor no more steam can find access to the cylinder when the load is increased unless the speed slackens, and the balls are thus allowed to drop down, while to give a continuance to extra steam the balls must remain down, and the speed remain decreased; and vice versa, when the load is lightened and the speed becomes too much accelerated. In Mr. Simmonds's governor, on the other hand, when the load or the power is varied, the supply of steam is modified until the requisite speed is attained, and the valre is then left at that point till the speed again varies from the desired rate. When the belt, d, is running on the centre of the palley, d, which it will do when the balls are ranning at the desired speed, both the palleys, c and d, are running at the same speed, and the shaft, b, is stationary so far as its length wise motion is concerned.
If, by any chance the end, b°, of the shaft, b should move so far out in that direction as to entirely clear the screw from the female thread, then the spiral spring, W, will press the shaft in the opposite direction, so that the screws will again engage when the opportunity is offered. The object of this arrangement is to prevent the valve or gate being operated apon after it is palled open to ite full width, as would be the case if the screw thread on the shaft, b, moved continuously. After the valve is open to its full width, to move it further will of course, be of no use.
Of course, the pulley, d instead of being the frustram of a cone, might be made of equal dia meter throughout, and the drum which drives it might be the frustrum of a cone, and the same par pose would be served.

If, for any reason, it is found desirable to have the difference between the diameters of the conepulley anything very considerable, then the same friction-at all times-on the belt can be attained by the use of a small idle palley. It is not deemed with the valve or gete which controls the inlet of motive power to the engine or wheel, that being 8 very simple matter to do, the connection being made from the collared groove, u. In using this governor on steam-engines it can be connected directly with a stationary cut-off, or be made to control a cut-off which is the steam valve itself, or be made to control the position of the "block" in a "link," or to control any of the valves in use.
According to Engineering, one of these governors is at work with most satisfactory results at the Phœnix Works, in Hartford, Conneoticut, U.S.A., where the inventor is employed as foreman, and where the inventor is employed as foreman, and
preparations are being made to commence the preparations are being made to commence the
manufacture on a large scale for the American manufac
market.

SPIRAF GRATIING.

 viously to being ornamented with the eccentric cutter, drill, or other instrument, is usually performed by cutting a series of fine concentric circles from the circumference to the centre of the work, produced by moving a pointed tool in the slide-rest, produced by moving a pof the 150 th or 200 th of inch for each cut, until it forms a mere dot in the centre. This is a slow and tedions operation, especially on a piece of work of any size-such, for instance, as the lid of a box four inches in diameter, and unless the greatest care be saken to move the tool the exact distance for each cut, certain circles will catch the eye more than
others, and the surface will not have that even, "dead " look, which contrasts so well with the "dead" look, which contrasts so well with the
ornamented portions. Moreover, the point of the tool is apt to lose something of its sharpness before the grailing is completed, and thas, again, the surface may lack that evenness of appearance which is its greatest beanty. Many turners are, of course, ingle fine gringl line may be efrected the circamference to the centre of the work, and some lathes are fitted with the necessary apparatus for doing this ; but I think the practice ought to be more generally known than it seems to be, for the trifling addition to the lathe which it requires is within the power of any amatear to make for himself, while there can be no question about the saving of time which it effects, in spite of the minute or two required for patting the bands in position; and the result is in every way satisfactory, the surface presenting a perfectly even, uniform appearance, fully equal, if not superior
to ordinary grailing when performed in the most
*From The Quarteriy Journal of the Amateur Mechanical Society.
carefal manner, and, like it, showing a beautifal play of light as it is moved about in different positions. It is, of course, requisite that the surface should be perfectly flat and even before commencing the cut, and that the tool should be as sharp as possible. This sharpness will be found to be mach better maintained during the cutting of one spiral line than when the tool has to cut a considerable number of separate circles. All that is neceseary is to connect the screw of the slide-rest with the mandril by a serios of bands, in such a manner that the point of the tool will move slowly acroes the face of the work, while the latter revolves rapidly on the lathe. This may be effected in the following manner.
The nanal lathe-band, from the largest groove of the driving wheel of the lathe to the smallest groove of the mandril pulley, gives a rapid motion to the work. A second band passes from the smallest groove of the doable-bevelled wheel to the largent on the left-hand palley of the overhead gear. A third band descends from a very small pulley on the overbead spindle to a large one fixed upon one end of the slide-rest screw. This wooden pulley or wheel, as well as the smaller one from which it is Wheel, as woll as the smaler one from when
driven, any turner may make for himself of bex or other wood. It should have a square hole through its centre if it is to be slipped on the equare end of the slide-rest screw, which may be done if the overhead gear admits of being pashed sufficiently far back over the bed of the lathe to bring it directly over the right-hand end of the rest as it stands across the lathe-bearern; or, if the sliderest is adapted for the spiral apparatus, and has a projecting piece at the left-hand end of its screv, the wooden pulley or wheel may be placed on that. In my own case, in consequence of the limited range backwards and forwards of my overhead spindle, which is supported by two uprights rising from either end of the lathe-bed, I was nnable to placs it directly over either end of my slide-rest, and therefore hed to make my large pulley on the larger end of a conical piece of boxwood, nollowed out 80 as to admit within the hollow about 3in. of the left-hand end of the rest. In this manner I was able to bring the groove of the wooden wheel beneath the overhead spindle. Of course, a simple stout disc of wood with a groove formed on its edge is sufficient, if the end of the rest can be placed immediately below the spindle. Any desired degree of fineness can be given to the grailing by altering the position of the lathe-band. The following are the diameters of the various wheels and pulleys that I use, and find to answer.
Large wheel, about 27in. diameter.
Mandril palley, about 3yin. dianater
"Slow motion" of driving wheal, sbont 14in. diameter.
Large palley overhead, sbout 4 in . diameter.
Small pulley, about 1 in. diameter
Wooden palley on slide-rest, about 5 jin diameter.
These proportions produce grailing as fine as can possibly be required-almost too fine, as it takes good eyes to distinguish the lines at all. By shifting the lathe band to about the centre of the large bevel of the driving wheel and of the mandril palley, grailing is produced of about the usual degree of fineness. As, from the smallness of the lesser pulley on the overhead spindle, the band might possibly slip apon it should the slide-res screw work at all stiffly, or the work offer too much resistance to the tool, it is as well, instead of form ing its groove of the usual \bar{V} shape, to leave it of sufficient width to allow of the band, which should be of small catgut, being passed twice round it. In grailing by the means here described, the tool should be so set as to penetrate no deeper than wil suffice just to remove the original surface of the worl from between two adjoining coils of the spiral line. I it be set to cut too deeply, the work is apt to be torm byit. The progress of the tool, which must always be from the onter edge or circumference of the wor towards the centre, must be carefully watched, and the moment the centre is reached, the tool must be withdrawn quickly.
G. C. C.

Brilliant Rxperiments. -The American Chemia reports some lectures on science that appear to have been Illustrated with experiments of unexample brilliancy. President Morton, of the Stevens Insti tute, in a demonstration of the decomposition of light, produced a rainbow 15ft. in diameter. Professo Barker, of Yale College, in a lecture on the "Chemistry of the Sun," managed by means of the electric light to project upon the soreen continnous spectra $20 f t$. in length, and successfully reversed the sodium line. By some ingenious devices of Professor Morton a representation of a total eclipse of the sun was given, showing the adrance of the moon, the crescent sun, Bailey's beads, and, at totality, the out burst of the corona, and the red prominence or solar flames. The formation of the sun flames was further illustrated before the vertical lantern by means of a layer of water, coloured red by carmine, at the bottom of a tank of clear water. The fiames were produced by passing electricity through a fine coil of wire in the
tank, for on heating the wire the red liquid was carried tank, for
upward.

THE PROPORTIONS OF PIPES.

A^{N}NNEXED is a sketch of a handy littlo contrivance, designed by Mr. G. Cqckburn, of Glas30w. for ascertaining the diameter of a pipe, \&c., having a sectional area equal to that of two other pipes. or rice versa. The instrument consists simply of a piece of wood or cardboard shaped like a set square, as shown in Fig. 1, or a diagram of the ganue form drawn on paper, and divided out along the two edges which are ot right angles to each other, the dirisions being talien to represent inches, feet, or yards, \&c., according to the kind of nors for which the instrument is used. When employed for determining the equivalent diameters of ployed for determining tive equivarent generally found pipes or bars, inc
The mode of using the instrament will be readily understood from an oxample. Suppose, for in tance, that two pipes, A and B (Fig. 2) respectively $5 i n$. and $4 t \mathrm{in}$. in diameter, deliver into a third pipe, D , and it be required to find the proper diameter or the latier pipe. Then from 5 on the scale of one of the divided edges to 41 on the other draw ${ }^{2}$ line, as shown in Fig. 1, and the length of this line measured with the same scale as that to which the edges are divided will be the diameter of pipe re-
On the other hand, if a quired-in this case 6 iin. On the other hand, if a pipe, $D, 64 \mathrm{in}$. in diameter, ${ }^{\text {a }}$ was required to know hat other size of pipe, B, should also be supplied what that would be necessary would be to take the division point 5 on one edge as a centre, and with figin. as a rading, deacribe an arc cutting the other divided odge. The point at which the Iatter edge was cut by this arc would show the diameter of pipe required.

Besides baing useful for determining the diameters of pipes or circles of equivalent areas, the instrument is also available for determining the sides of equivalent squares, while by a little contrivance it can be made available for determining the diameter of a pipe or bar having a sectionai area equal to the aggregate sectional areas of any number of other pipes or bars of which the diameters are known. To use it for this purpose it is only necessary, first, to determine by its aid thediameter of pipe or bar equivalent to any two of the whole number, and next to ascertain the equivalent of the diametor thus ascertained, and that of a third pipe or bar, and so on. The arrangement of the instrument is, of course, founded on the fact that the areas of equares and circles increase as the squares the square of the hypotheneuse of a right-angled triangle is equal to the sum of the squares of its two sides.

SOIENTIFIO SOOIETIES.

THE METEOROLOGICAL SOCIETY.

A N ordinary meeting of this Society was held on President, in the chair.

Thunder Storms.
A paper was read by R. H. Scott, Esq., Director of the Meteorological Offlce, entitled "Notes on Thunder Storms during the last six years." The anthor remarked that on the Continent the disastrous effects of thunder and hail storms had given rise to the existence of offices for effecting insurances upon property and stock in the event of the destruction of either by lightning or hail, and while Continental meteorologists were engaged in tracing
ont the tracks, and ascertaining the principal features of thander and hail storms, it behoved Eng. lish meteorologists to be ap and doing, so that they might not be left inglorionsly behind in the race in which our neighbours were engaged.
The Scottish Meteorological Society had already examined the thunder storms recorded at its stations during twelve years. The storms mentioned in the present paper extended only over half that period, the data having been contributed by fourteen stations connected with the office. The most remarkable results were that London had furnished the reatest number of thander storms, 84 having been recorded in the metropolis, and that the next large number, 64, had occurred at Varencia, on the west onast of Ireland. The distribation in time of these torms is interesting, the greatest number occurring in July at Loudon, and in January at Valencia. A secondary maximam at Valencia occurred in September. On the contrast between London and Valencia, Mr. Scott remarked that the great winter gales which impinge on Ireland and our western coasts are highly charged with cloads, and be consequently attribates the occurrence of the wiuter maximum at Valencia to the arrivals of the winter gales.

In the discussion which followed the reading of this paper, Mr. Glaisher said that even as compared with Greenwich, London had the greatest number of thander storms ; ${ }^{2}$ storm coming ap over Greenwich is generally deflected either over London or Epping Forest. A speaker alladed to the fact that the maxima of large rain.fall nsually occar in the winter, and those of small rain-fall in the summer and suggested that as Valencia has a large rain fall, the maximum both of its rain and thunder storms would be observed in the winter; while in London, which has a smaller rain-fall, these phenomena would occur in the summer. In reference to a eaggestion that London contains numerous spires, Mr. Scott mentioned that having resided some little time in Manich, where spires are both lofty and numerous, he could bear testimony to the frequency of thunder storms, and it is well known frequency of thunder storms, and it is well known
that in that city they are more numerous than in that in that city they are more name
many other places on the Continent.

Acid Bulb Thermometer.

Mr. Whitehouse read a paper on "A Modification of the Wet and Dry Balb Thermometer," in which he proposed to obviate the ancertainty at tendant upon the use of the wet bulb in frosty weather by employing a third thermometer, the bulb of which should be kept constantly covered with a film of concentrated sulphuric acid. A drawing of the instrument was exhibited, in which was shown that the mode of supplying the bulb with acid was by means of a siphon, by which a regular flow was secured. The anthor explaine d regulaction of the acid bulb to be that of absorbing moisture from the air, and the evolntion of heat in moisture consequench of bing the the acid balb reads the ama, tho resur bhe constantily higher than the dry, and gives atmo the amount of rapour in a given space of almo sphere. The sensibility of the acid bulb was described as being ten to one that of the wet bulb.
The paper was accompanied by numerous results of The paper was accompanied by nu
observations projected in curves.
An interesting discussion followed the reading of this paper, the President pointing out several difficulties which presented themselves to him as affect. ing the nse of the instrament. Mr. Glaisher con. sidered that the anthor had broken some important ground, as especially connected with the unreliability of the wet bulb when frozen. There is mach, donbtless, to work out as regerds the general principle, bat it is an endeavour to meet a difficulty which is continually presenting itself at low temperatures. A question was asked relative to the effect of electricity on the regular flow of acid from the siphon on the bulb, and in reply it appeared that the delivery of the acid conld be regulated with considerable nicety. Some experiments were made on the evolation of heat by immersing the bulb of s delicate thermometer in sulpharic acid.
At the conclasion of the meeting, Mr. Scott announced the issue, by the Meteorological Office, of daily weather charts.

Moteorologioal Conference.

Dr. Bays Ballot has issued a pamphlet (in English) entitled "Suggestions on a uniform system of Meteorological Observation," in the preface to which he speaks of a meeting of the General Congress of Meteorologists to be held, probably at Vienna, in the course of the present year. That mach remains to be effected in the various branches of meteorological inquiry there can be no doubt, and if a perfect understanding between the leading meteorologists of the world were established, mach varuable ime would be saved, and mach misdirected enficiprevented; and it is to be hoped thal ing the attention of theorists and observers will receive the consideration of the distingaished physicists who will doubtless form the members of Congress. With the view of aavir circiation of the Congress, and of giving a greater circulation
to his own viewn, Bays Ballot has written the pamphlet, and adopted the English language as being widely known. His principal aim is to draw attention to the general method of observing, and of printing records of the facts observed at the least expense, in order that particular investigations may be facilitated. In the establishment of a uniform system of observations throughout the world, we recognise a power far superior to the imperfect and disconnected systems of the past, and while Bays Ballot is devoting sll his energies to securing so desirable a resalt, there is another portion of the work of the Congress which we trust will not be lost sight of. In meteorology, observation is an ad vance of theory. Millions of observations are ac cumulating, and we may ask the question, when and how will they be nged? Invegtigations, some of hich are mentioned by Boys Ballot for oxample he progess of storms the origin of depression otpor the laws of mind propiling in all thery pronet parts of the globe need a theory to connect them, and to anol conditips. The Congrese wit do bat na half its work if amongst its members it lacks those, who, with enlarged views of the physics of the globe are capable of setting forth a theory which-by its unbending methematical relations, its cognisance of forces which produce those disturbances so usefal, and at times so disastrous, to man and its power of grasping facts of various com-plexions-can be employed in solving the great problems of the meteorology of extra tropical re gions. It is the theory of meteorology that needs advanoing and we hope that this great object will receive its due attention from the Congress.

THE IRON AND STEEL INSTITUTE.

A PAPER entitled "On Dormoy's Process of A. Mechanical Prddling," by Frederick A. Paget C.B., was read at this Institute recently :-

The plan about to be described has been applied to forty pudding farnaces in different parts of Anstria and France. The nearest of these works are at Rimancoart in the Department of the HauteMarne, France. Three of h. Dormoys apparaing are now there at pork, and the plan is being adspted to all the remaining pudaing rurnabbe Its leading feature consists in placing a rable, rapidly rotated oy steam power, in the hands of un paddier. except that the sides of the beds are set at an angle instead of being vertical.
To adapt the plan to any common existing puddling furnace, a shaft conveying power from any pudding furnace, a shaft conveying power from any primace. A belt from a polley transmits the rotation of the shaft to another palley or sheave below which rests on the belt a little in front of the far nace door. One end of the boss of the pulley is so jointed to a handle held by the paddler that the pulley can rotate without carrying round the handle The other end embraces the outer end of the rabble to which it is held by a cross-pin. The belt is thas made to rotate the rabble in any required position, in a somewhat similar way to the well-known rota ting hairbrush. The number of revolations em ployed is from three to five handred per minate for white pig iron, and from eight handred to one thou. sand for gray pig iron. The belt, while carrying and rotating the rabble, endows it with mechanical energy, and allows the etirring and paddling action to be directed to any portion of the molten metal. The rapidity with which the tool can be worked The rapidity with whives the metal such an impulse that it turns round gives the metal such an impulse that it turns
horizontally on the bed, contincally renewing the horizontally on the bed, continually ren
sarfaces in contact with the atmosphere.

The point of the rotating rabble, instead of being hooked, carries a disc. When the iron has come to nature, this is replaced by a rabble having a short twisted point.

The foliowing are figures giving the work done at Rimancourt by one of these farnaces during the first two weeks of last December:-
Working day of 24 hours- $1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15$; number of charges-23, 23, 23, $24,24,24,25,28,26,25,26,26,25,24,23$.
Total-369 charges, during which the furnace was fettled only nine times, or an sverage of one fettling per 40 charges.
The charges of pig and of hammerslag for the furnace bed amounted to 97,060 kilogrammes. The amount produced 81,921 kilogrammes, with an expenditure of cosls of $4 \overline{0}, 240$ kilogrammes, which gives 1,185 kilogrammes of pig per 1,000 kilogrammes of wrought-iron, with an expenditure of only 552 kilogrammes of coal per metric tonne.

Briefly, the result of different trials shows an increase of at least 30 per cent. in the yield, with a proportionate dimination in the consamption of
fuel. In spite of the greater number of charges, the puddler is very little fatigued.
This process, both in Austria and France, is found to eliminate phosphorus and sulphar to such an extent that inferior brands of pig produce iron equal to charcoal iron.

IGTTERS TO THE EDITOR.

[WC do not hold owrelves repponsible for the opiniona of our oovrespondenta. The Editor respectjully requcets
that all communications should be drave up as brießy as that all eo
poesible.]
141 oommunications should be addrested to the Editor of the Englise Micennio, 81, Tavitock-6trect, Covent Garden, W.C.
411 Cheques and Post Office Orders to be made payable
to J. PARGMORE EDWARDE.
"I would have every one write what he knows, and as mach as he knows but no more; and that not in this ouly, but in all other suhjects: For such a person may hature of such a person or such a fountain, that as to pature of such a person or such ange knows no more than what everybody does, and yet to keap a clutter with this little pittance of his, Fill undertake to write the whole body of physicks: a
vice from whence great inconveniences dorive thelr vice from whence great inco
original"-Montaigne's E'says.

* In order to facilitate reference, Correspondento when opeaking of any Lettor previously inserted, will oblige by mentioning the numb
on which it appears.

TERRESTRIAL GRAVITATION

[38.28.]-Without at all wishing to say anything That may amoy "T. A." I am compelled in anower to his querios (lettor 8827) to assure him that he eight chords in a circle, converging to a point on the circumference, represent the attraction
exerted by ${ }^{2}$ globe npon a point at its surexerted by
face? This is simplifying matters with a vengeance. Of coarse, if the chords did represent all the forces, his method of resolving these ferces into a single force
would be perfectly correct ; but they don't. They do would be perfectly correct; bat they don't. They th forces.

If "T. A." will insist on attacking questions lying beyond his (present) range, he must not be surprised if he gets explanations "too intricate for his comprehenwish to say point blank "it is useless to answer" and wish to say point blank it is useless to answer," and secondy, becanse others might ind a nse in an answer
too intricate for "T. A" But, if "T. A." will only take this assurance from me, that the attraction of
 make the matter altogether clear to tim. I hare a make the mavler an of what can be done without the integral calculus (for I took my degree at Cambridge when I was almost wholly ignorant of the calculas), and I have over and over again attempted to mastor hnis rery problomby linily the interal calculag, I have been able to gatiety myself that the thing cannot Thave been able to satinfy myself that the thing cannot be thane. hairline put and a minnow hook as attempt to master the problem on his present line.
Every particle in the sphere must have its attraction separately taken into account, and then all such attractions must be summed up. Nothing short of this will do, and this sort of sammation, viz., of an infinite number of inflnitely minnte quantities, is the special work of the integral calcalus.

HOW WE SEE A DISTANT OBJECT.

- [3829.]-" E. J. D.'s" letter (3493, p. 510) invited explanation either from me or from "s some of year clover correspondents;" and as I could not explain his difficulty, but greatly wanted to have his query ex-
plained, I waited the action of the clever correspondents. As "E. J., D." has now addressed his query to dover correspondont, he is almost certain of an ex. planatory response,whilellook forward, not anhopefally, to some remarks from "F. R. A S." suggesting what
may be the real nature of may be the real natare of "E. J. D.'s" dificicalty. For between the mirror at one ond of the room (" carefully Walls, so.'), the shatter comewhere, asd the opaque sereen projeoting from some wall, and the camera at the former," I am atterly bewildered.
Whatever may be the natare of "E. J. D.'R" difficulty and its explanation, I feel tolerably safe in denying
the jastice of the "old theory" "that the eje has the power of direoting the eleotricity (which is overywhere) on a distant object (illuminatod) and reociving baelt the
correot inage thereof" (that is, I sappose, of the correot inange thereof" (that in, I sappose, of the cannot quite imasime this to bo a correct view of anything in particular. What doese "Sigms" say aboat this power of the oye in directing electricity $?$ I aan
imagine a pair of eyes directing something very like electricity (in its way) apon a not too distant object, and a correct image of the object coming in the course of evonts into the possession of the owner of those
oyen. But this seems a long way from "E. J. D. B " diffloulty.
I find that by not trying to understand "E. J. D's" explanation, and as it were "sveragiog everything" in hie letter, the idea is anggested that what he really rajs its polished surface reflect do not reach the
observer's ere, bat are queuched or got rid of. In this cese the answer is ondonbtedly that seattered redec-
tion renders the frame of mirror discernible. The glass tion renders the frame of mirror discernible. The glass of the mirror is not seen. Indeed, the glans of a mirror can only be seen onder exceptional conditions if the
mirror be a good one. Bat we recocnise the shape of mirror be a good one. Bnt we recognise the shape of
the mirror whenever any light at all reaches its whole the mirror whenever any light at all reachos its whole
face, becanae the frame does not spocularly reflect the incident light (or mach of it) while the quicksilvered bla 98 does.
When the mirror is remored the course of the ray is seen, becanse the ray illumines the dnst always floating in the air. The paper on "Atmospheric Dast", at pp. 5
and 6 shoald be read. Iichard A. Proctor.

SAVE US FROM DECRMALISM

[38:30.]-ONly one bit of sense, that of "Scrutator" (p. 661) to at least six recituls (p. 630, let. 5723, p. 661, 8760 2.8-4, and p. 12, 3806) of the stnle brags of this paragon of blundering prigeery. "Bat one poor halfpenny orth of bread to all this intolerable lot of sack !" The first, indeed, Mr. Petrie sees, like "Scratator," the delasion of the French atandard (for on every detail of the wretched scheme a Nemesis seems to have poared all possible irony); bat, nevertheless, he is for
pare decimalism, the chief and radical blunder of the whold And he even fancies our old memares were once centesimal, and in making them so, the perch for example $=200$ inches, we should be restoring something lost : I dely him to ind proof that our race were ever so absurd as to repeat tens in the successive steps of any table, or to make anits in the ratio of 100 or any square number above 36, thongh Mr. Bottone fancies (p .662) that ancients "in nearly all cases" mude systems what he calls " uniform aud consistent throughout." They everywhere knew better than to do any such thing, with any leaser steps than the Chaldean sixties. All over Christendom they had what he calls "o our mixed quarternary, duodecimal, and ven. tesimal" money table, and denoted its units by the letters £., o., d., q., which he mast be aware never itood for English words. The names and ratios vere common to Europe, and so had the actual values-the weights of silver-been at one time; bat successive royal swindlers in different kingdoms, of courso, doFrance, mere the livec, diferent extents; furthest in aboat an eightieth of true libree, solidi, and denarii; bat the least in England, where, even eince our Tudors, wo still have them little nader a third of the originals. I must come, however, to the next critic, "Iretric System" (let. 3760), who answers his own question, "is it inferior or saperior to others in use ?" amasingly fear the denary division of days." The Chald ean divisions of time he thinks firm enongh to last. We need not fear denary time will snpplant thicm! So then he tells us which wonld be to be icared if it had a chance; that
the "inferior."
Bat he meanwhile commits a great error of fact in saring "the weelk has from time immemorial been universal." It has never yet extended to even hall of learned and civilised mankind. A majority of our race, by their own sccounts, and as the best informed of our westerns believe, dwell east of the Ganges, and all those nations have not, nor " from time immemorial" ever had a weck; but instead thereof a crcle of sixty years instead of our century) our astronomy may be extremely gratefal, for its immense atility in preserving the exact dates of observations of theirs long before Europe was scientibc enough to preserve any. Next, let me assure "Campanile" (let. 3761) I did not leare his "dodocadic" system anmentioned from preposterons maro's nest (with its two nee figares for ten and eloven! is the triumphant invention of abont three new geniuses per generation, and will continue to be invented as regalarly as circle-squaring or perpetual motion ; and that wise "Sigmas" will lay down dike "onrs," p. 662) it "would be far preferable": to onls immemorially used Ninevite sexagintals. The taught at St. Cyr, a bit of prigecadic system wasthy Frenchmen who had produced the hardly more crado and shallow scheme of universal decimalism. Of course they were led to it for the sake of the one advantage of terminating fractions whose denominators are 8 and its powers. Bat this will never be worth the two added numerala and proportionally bigger multiplica tion table, and perplexing change of meaning in all figures sbove 9. It wonld not even do if we all became, in one generation, sex.digital like thos " Sigma" the giant in Gath." Let "Campanile" and being one of the six very best metric nambers does not make any of its powers even eametric; nor yet its maltiples in general, beyond the frat 4-not even written " 100 " of the next unit that a nameral, except " 500 " (oar 720), nor any writtenwith 00 till the septaple of that, and not only no power of the Bat in the Ninerite system (which, observe, nses no figares bat our ten) the first compound unit (written 1,00) is one of the six that excel metrically all ander 2,00 doable, and not only itself but its maitiples $2,10,00,4,00,6,00,12,00,14,00,21,00,28,00,42,00$ usefal series being thas expressed, five with bat one nameral, and five with tro; ; and the two apper of the
saperexcellent ones (our 860 and 2,520) by one and two-namcly, as 6,00 and 42,00 . These facts makeit no
wonder that while the dodecadio system, perpetnally retried, has never got the least footing; the soxagintal (that "Sigma" dashes off as "far mare impossible")
has left marks everywhere, from the Chinese day and year cycles to overywhere, from the Chinese day and purity (at least for desconding notatiou) held its ground as the standard scientific method, really throagh "immemorisl time," from undated Nineveh and Dabylon, throngh Greeks, Romans, Arabs, and revivars of learning, down to Falirenheit, and even this miserable century; which made, in its opening years, the
experiment by which, "Sigma" tells us, "it is pretty experiment by which, "Sirma" tells us, "it is pretty
clear that calculations woald be greatl facilitated," by clear that calculations would be greatl! facilitated," by
"diriding the right angle into 100°," more laborioudy and thoronghly made, and with atter failare! I have before me and in use Callet's logarithmic tables, whereof about 100 leares in the middle are taken ap by the trigonometric lonctions of this very division, stereotyped and embodjing, probaly, some scares of people's some years labour; and, like most asers of the book, I long ago found it worth while just to pass a needle and thread through the outer margin of these 100 leaves, no that they mas all tarn en bloc
But I am glad of "Sigma's" notable regret that we were not all Goliathites, because the idea has impressed on me how proridential for oar arithmetic is is that wo were not so. In that case all homan nota tions would have been either senary or duodenary, and nothing better; these would almost have become what "Sigma" ralsely lays down the denarv notation to be, "an inevitablo and natural fact." Even Chaldeans would not have developed the splendid sexagintal improvement for the sake of introducing the third prime number 5 . if that number had only presented itself in the potals of tiowors and otariash. I nevar belore cant that of the day rase proviontial, as woll as the raila placed on ; and thank "Sigma" for the hint. Of coarse I totally deny the ground into which he finds it convenient to gay the motric aystem resolves itsell. Thero is no notation "givenasa natural and inevitable fect." If there were, all civilised nations wonld have used the same ; whereas it is a historical fact that the Assyrinos never had centesimal notation, and the present French have, perhaps, no other. Bat "Sigma" neither usea historical fact himself, nor allows my way of asing it good old Tory, or "whatever is, is right" in my the ment from general practice. I never implied that "there componnd apractice. I never implied uhat most be good becanse ages had nsed them, bat that componnd arithmetic, as a principle, distinct from "simple," or the general principle of what Mr. Bottone stigmatises as "mixed" numerations, wonld not have appeared or held sway (as it has everywhere) if not having real advantages over what he calls "uniform and consistent systems. I believe we might repeat continually (like the Assyrians) the step io, bat that no lower namber has ever been lound good enough to be so used. If only the sixteenth centary trigo nometers had adhered to Ptolemy's notation of the straight measares, radins, sine, \&c., which he expressed sexagintally as well as the arcs (instead of absardly disconnecting the lengths of arc and straight fanction and making two incommensarable units), then Brigge would assaredily have made 60 instead of 10 the baso of his logarithms (whether expressing them exagintally or not, and I believe they wonld be best not beit, to an intelligent adberence, like that of Fahren scie to the radition of this unrivalled system, by lates writing men, together with 3 compact way of natels. it, as I suggested, by two sizes of figures alterneedless 0 , without the clamsy and, indeed, outrageonsh or quite rednced de., would by this time have almost, right sabordined the inferior denary uotation to its setting by professors of science (when there was any had more effect on the world, and wonld have mare even now than they dream. They might casily both have prevented the disgraceinlly retrograde French system" arising, and have gradually so leavened an onrivalled with the old sexagintals as to make their argament. Any compalsion in such matters is ridion ously absurd, or any Government action, beyond setting the best exampie in its own acoounts, and striking the best coins, whose ratios (anless deeidedy bad into in French) will in time make their way into all other tanas bat those of time. And those of time are forystem thich actnally, though not in names and notation.
Herschel's "Yard, Pendalum, and Mitre" is not, as Mr. Bottone thinks, an argament for decimalism Philo's" theory (p. 663) of the handredweight (which I once bronched myseli) will not hold water. He will ind any of these neighbouring nambers to 112 would have had the same advantage :-

$\begin{array}{rll}96 & 104 & 120 \\ 124 & 126 & 127 .\end{array}$

Also, with the right seven weights he could weigh not merely all ap to the 112th maitiple of the loweat, but
E. L . G .

SIR J. HERSCHEL ON THE METRIC SYSTEM. [3831.]-I AM mach interested in the discusaion now of woing on in "ours" on the subject of a decimal aystam respondents seem to be aware of the fork of your by 8 gir John Herschel on the aubject, I think an opitome of of intereat.
Sir John Horsohel objecte to the French standena
being anscientific and inaccorato, and because the
meridians have not the same length in different parta of the world. The one chosen by the French philosophers was a live from the pole to the equater passing through Paris. No one can serionsly doubt the advantage of haring a regnlar system of weights and mea. sures, inste:d of suffering from the almost entire absence of system, as we do at present. The chief objection to the French system is not that it is founded on iable standard metres in existence that the chances of losing them all is extremely remote The real objection to its adoption is that the people are so obstinate, and object to make any alteration even for their own convenience. In England the enforcement of a new system would meet with peculiar difficulties, ofing to the form of government, and to the notion that the right to inconvenience ourselves and otber people is part of the liberty of the subject, and a thing to be part of the contended for. Although an octesimal or a duodecimal system would in many respects be preferable to a decimal notation, it mast be ad mithod prory and it is in the adoption of ten as its basis that the and it is in the adoption of ton as its basis that the founded on any really scientific standard of length. founded on any really scientitic standard of length.
If sach fragments of oystem as we possess conld be arranged decimally and "patohed" withont mach ranged decimaly and "patohed" withont mach majority of Englishmen, as involving a less radical and coninsing change than would necessarily oocar on the enforvement of the French system. That our present weights and measures ean be so patched, and present weights and measures ean be so patched, and rate and scientific standard to work from, I now pro-
pose to show. Althongh the number of quadrants of a pose to show. Although the number of quadrants of a exist but one polar dismetor. The longth of a straight line dramn throngh the earth from pole to pole is line dramn through the earth from pole to pole is
$000,500,000 \mathrm{in}$. If our present inch wore increased in length by only 1,000th part, an almost inappreciable quantity, the length or the oar. polar diameter would be $500,000,003 i n$. exactly. The increase of the
inch by the above-mentioned amount would make a inch by the above-mentioned amount would make a
cubic foot of water weigh exactlv $1,000 \mathrm{oz}$., ingtead of being only sapposed to do so, as at present. Oar messures of length are sadly in want of re-arrangement, sures of length are sadly in want of re-arrangement,
which could be effected by the introdaction of new Which could be effected by the introd
messures of $10 \mathrm{in} ., 50 \mathrm{in}$. , and 100 in ., \&c.

If a cobic foot of water weighed exactly $1,000 \mathrm{oz}$., We shoald at once have the connection betreen measures of length and weights, while the measure of capacity is obtained from the measure of 1 cubic
foot $=64$ gals., or 4 cubic feet $=25 \mathrm{gala}$., or 16 cnbic foot $=64 \mathrm{gals}$., or 4 cubic feet $=25 \mathrm{gala}$., or 16 cnbic
feet $=100 \mathrm{gals}$. Now, we have ounces and drachms both as measures and weights, the measure of a Hlaid ounce of pare water being the space occapied by an ounce in weight. As no inconvenience arises from such an arrangement, which, on the contrary, is fonnd
to be advantazoous, why shonld we not do the same with the ponnd and gallon, making each of them both with the ponnd and gallon, making each of them both water $=1 \mathrm{gal}$. We have the germ of a very easy ard
convenient decimal agstem of weights and measares of convenient decimal agstem of weights and measnres of
capacity. At prrsent we have a very deceptive weight
we call "hnarredweight," which is equal to 1121 b . we call a "hondredweight," which is equal to 1121 b .
If we had a new weight and measure $=1001 \mathrm{~b},=10 \mathrm{gal}$., It we had a new weight and measare $=1001 \mathrm{~b},=10 \mathrm{gala}$., it would have the advantage of both convenience and rould be readily adopted. To avoid confnaion, the
new weight might be abbreviated by the letters "hwt.," new weight might be abbreviated by the letters "hwt.,"
while the letters "cwt." wonld mean 112lb. as at present. Oar present ton is equal to $20 \mathrm{cwt}=2,240 \mathrm{lb}$. I
would propose a new weight and measare of $2(\mathrm{hwt}$. would propose a new weight and measare of "Murt. =
$2,000 \mathrm{lb}$., to be called a " new-ton" or "Nerton." Such a name would entirely prerent confusion,
and would serve to remind the uerer both of the origin and would serve to remind the neer both of the origin
of the weight and of the immortal discoverer of graof the weight and of the immortal discoverer of gra-
vitation. For quantitios less than a ponnd, I wonld vitation. For qnantities less than a ponnd, I wonld 700 grains $=10 t h$ of a pound. This is abont an
ordinary wine-glass in capacity, and thas might be ordinary wine-glass in capacity, and thas might be
readily extemporised. It might be called a "verre" symbolised by "V." Δ weight and measare of 70 grains $=10$ th $V .=100 t h$ part of a pound
would be so near the present apothecaries' drachm of 60 grains that it conld replace it in nearly every instance. weight and mesure of 7 grains has already (Nd.). A weight and measure oi grains has already been proThe amaller weighte and measures are rarelr emplosed, except in dispensing, snd are therefore used by an intomed to chas of men, who would soon beonio aconsmeasares of capacity would thergfore be as follows:-

7 Grains $=1$ Septem.
10 Septcros $=1$ Sewdrachm.
10 Nowdrachms $=1$ Var.
10 Vers = 1 Pound.
10 Pounds $=1$ Gailon 10 Gallons $=1$ Hundredweight. 20 Hundredweight $=1$ Newton. popalarly supposed, but jost do not hold half a pint as coald readily be made a defnito weight and measare to equal exactly \ddagger lb. $=5$ Vers $=1$ "Tumbler" or I cammot.'
I cannot but think that such a aystem as the above would be far more readily accopted than the French or any other perfectly new syatem. at present wo have
three "quarts" oi different ralue ; the repated wine
quart, the imperial measare, and the "Winchester." quart, the imperial measure, and the "Wiochester."
The latter is juat half a gallon, and a very convenient measare $=5 \mathrm{lb}$. Weight. Δt present the " stone" raries
Lsom 5 lb . to 32 ib ., and thare is little doubt the intro.
daction of a definite woight and measare of 10 lb . onld meet with a warm welcome.
In my own practice, as a scientific mau, I habitually omploy the metric system, but I think it possesses bat slight advantages over docinalised inches and graing. not the best possible, but I should hail its compulsory use as a vast improvement npon the ntter confasion Shefficld.
alfred H. Allen.
SOME HINTS ON METRICALISM.
[38.3.3.]-The neglect of this really noble and diffionlt subject for centaries, and the ntter chaos into Which laisee-jaire and "sarvival of the fittest" (for
trado msstitications and rascality) hare everywhere broaght it, produced at lenath the crade and wretched French decimals; and now the spread of that pitifal disgrace to Enropean intellect, throngh the same casaes, by mere force of its nnity against their an-
archic and haphazard maltiplicity, dnily makes attention to the rights and reason of the matter more urgent: if, alas ! we were in an age capable of looking to the real groand of any matler, however trifling or simple ! Now, it wonld be one step tomard clearness if every arguer would deign to treat quite separatoly
the question of atandards and that of divisions. There the question of atandards and that of diviations. There
is no shade of excnse for mixing up these. They are is no shade of excnse for mixing op these. They are
so indepondent that a system might hare the very best kind of standards and very worat divisions, or vice cersi. The standard question is parely one of physics, tion, on thy mathematical at all. The division quesmatical in the parest sense, pericctly independent of what planet or kind of morld , periccily bo in, or how many fingers we might have. There is a third part of the subject, nearly, but perhaps not quite as nn. mixed with physics as the division question-namely, the interconnection of the different tables (as that of
weight, value, surface, volume, dc.), i.e., the mode of weight, value, surface, volame, \&c.), i.e., the mode of
derivation of one nnit in each from the unit of length, Which as simplest onght to be their basis.
Now, I maintain, and this is also, I believe, the main position of Sir John Herschel in his "Yard, Penda. the interconnection of dissimilar anits, that the French system is at all commendable, or made any advance, or rather, revival of an anciont principlo. In both
the main essentials, the standard and the division question, its vanuts are ladicroasly false, its failare more than remarkable, nuiqne, ironical, almost supernatural. Its kind of standard (which was to be the earth's circumference) is, in fact, thongh no
worse than many others (as the Winchester bushel), yet of the wort kind that any the most savage human race ever has had or can have; but worse remains ! farther maintain that the other feature of the nnsame time the uniformly decimal division, have ret perpetrated, and almost as bad as pissible.
(I grant that the continued powers of 5 or 7 worl be alightly woree.)
On the former failure, of course, I have plenty to keep me in conntenance. As "Scratator" says, the length of a platinnm bar kept at Paris that was in-
tevded to be (but is not) such a fruction of the meridian, is exactly as scientific as the length of Panch's nose; and thangh rather more definite and oseable, yet incomparably less so, and inferior in every
way, than the kind the ancients fixed on aq early as Pericles, with perfect snccess, a recorded ronnd fracbailding the dimension of some noble, world-durable bailding, some "Hecatompodon, hondred-foot fane,
as they called their "intuctre Palladis arcem," whose chief steps, front and flank, of 100 and of 225 standard feet, are jnst as fond for the purpose to-day as when sqnared and porif ned thisaery year 23 centories, 23 more. And still older andoless destructible, and equally uninjared, are the bailt standards (whether meant for such or not) of the pyramid of Cheops either its rock sockets or his finished, but never occu-
pied, tomb-chamber; or of the two notonched $400-$ pied, tomb-chamber; or of the two natoncbed ${ }^{\text {coter }}$ temple-terrace at Jerasnlem, by him, of conrse religionsly copied from Solomon's standard. © (They
have none of Solomon's work, becanse many of their stones are too large, often donble the lengths "of 10 cabits" and "of 8 cabits," that the Bible records as wonders of his time.) Have not such standards, then - widely different from a "bar" kept at Paris, or a
". Winchester ba hel," bat yet artiticial-been experimentally fonnd at least as good as any natural invari diameter of our planet and the wave lengths of standard rays, as of sodiam light or thalliam light! Either these latter have to be maltiplied some millionfold or the earth's dimension divided some millionfold,
to vield a unit we can handle or measnre our own works by! Of the two, I believe maltiples of the spectral ray-waves wonld be the more practical and veribitible; but, remember, we have no direct natural
length standard between them. We can get one of length through gravity-force and the sabdivizions of fallen at the equator, or at a given latitude and altitade in a given day-fraction, as a second; this being, chough not measurable directly with any exactuess, pendulam vibrating that bamo fraction of tho day to be the Englikh, Rnssian, and Swedish foot happens at the equatoriul sea-level. It might either be modiat the equatorial sea-level. It might gither be modi-
fied to exaclly that fall, or remaining analtered, be
defined, I believe, as the quarter-second fall at some moderate fixed height (or equal depth) above or below the eqnatorial sea-level, a height quite accessible on Herscliel nor Smyth seems to hare noted this near coincidence in our foot.
Bnt I submit that bailt standards, the ides of Pericles' time, are not yet superseded-thes are the
most saccessina to this day most anccessinal to this day. And remember the we,
too, and probably many a modern race, have their Hecatompolon in their Parthenon, in some chief while, or as creditable to humanity, as that of Pallas in its prime; some Mary Charch, an strong one of Chartres, storied with its 8,000 population in stone and gem-like glass; or its contemporary, bury our Anplosit, bury, our Anglo-Saxon race s Parthenon, and the chiel, or rather عole noble work we ever hinished on
the plan began. There, according to the beat surQifift. standard of our present long measure as conld now bo made; and what is still stranger, conaidering the effect of setilement on most baildinga' heights,
the extreme from foor to cap-stone of spire falls not the exireme from door to cap-stone of spire falls not two inches short of the doabio thereof. 8o there wo
have, well preserved above six centaries, the original of this foot, now base of Anglo-Saxon, Gothic, and Sclaronic measures, all ronnd our homisphere, sad
over the the greatost empires. Nor are the round onmetric maltiples of the same in such modera monuments as Waterloo Bridge, London, or Grosvenor Bridge, Chestor, to be despised even in the face of
Cheops' or Pericles' standards. And let me add a Cheops' or Pericleg standards. And let me add a
disproof of Mr. Petrie's fancy, p. 630, that because our perch is 198in., it was ever centesimal. The perch governed the dimensions of our ancioni buildings perhaps earlier than the foot. At least at salisbary, the
choir hall of the bailding (the first bailt), is planned on choir hall of the bailding (the frrst bailt), is planned on a basis of perches, as true to the present standard of
them as the nave dimensions are to round numbers of feet. And all the leading lines of Westminstor Hall (nearly two centaries later, it is true), he will find by Pagin's measurements to have been of perches, and aot of 200 in ., bat of 198 in ., as at present.
Neither "Sigma" nor Mr. Bottone have any right to pillory me as derending malitiplicity or absence of ystem, or, indeed, in the matior of divisions (which 1 our numerous Engli mon to Earope), and those of our moner, troy, and apothecaries weight. What I bay of the rest is oimply that, however bad, none of them is worse than. alter all, and assimilate all. I sapposed it to go (as the French asy) sans dire, that whatever numerical series is best for one table is best for all; and I woald present French table of everything else is with time.

THE METEOROIOGICAL OFFICE AND

 ATMOSPHERIC WAVES.[3935.]-Having had occasion lately to look into some of the pablications of the Meteorological Committee, more particnlarly Ifr. Scott's report on "Strong report on the use of izobare, I found, as it appears to me, $\&$ want of information on a sabject to which more than fire-and-twenty years a aro I, in conjunction with the hate It mould be out of the oleation withinable limits of this letter to point ont those particular features of "atmospheric wares," which ought, I apprehend, to have been mentioned, or at least isobars and Mr. Scott's gradients, and I can only account for the omission by supposing that the direc tor of the oilice, the marine superintenden, and th menbers of the (heteorological Comat by arir John Herschel and myself. The lite director of the office, Admiral Fitzroy, was certainly acqnainted with them, or he was the only meteorologist, so far as 1 an aware, who controverlet hare employed them in his cnmstances be wonld not hare employed them in hio
researclies; but in an attempt to trace the progression of barometric differences, and to show the connection of strong winds with these differences, the most important agnat, the "atmospheric wave." has been lost sight of. Cap. Tosnbee appears not to hava ans pected that information of the Eind mas available, for isobars of Janaury, 1867, opened up nelo riciee to him of precisely the same character as I fonnd in my researches on atmospheric waves bo many years before; and in is somewn ruarkable rar an onice content to limit its iaquiries to the comparatively content to limit its inquiries small area of 700 miles in diameter, when it has been
shown that at least tivo times this area is necessary for xamining the phenomeua of barometric differences as "connected with "atmospheric waves." The con nection hetween the prevailink wind and the hine of than a portion of a line drawn from the crest of an than a portion of a to either of its troughs at right angles to its direction, the wind mast consequently bluw at right angles to this line. re wald be baved and more valuable results
ofle secared by determining the coneral laws of "atmopheric maves" than by confling the operations of the ollice to the present limited area.

COLLIERY EXPLOSIONS AND THEIR PREVENTION.
[3834.]-OUR friend "King Coal" (3641, p. 587) reens to lay vory great stress upon the colliers for in inct, he seems to say that the greatest portion of a cidents, if not all, are cansed by the carelessness of a c.dents, if not all, are caused by the carelessness of prevention is better than cure-hence, if the cause be premention the accidents would not occur. Now, if a sufficient amount of ventilation be made to travel throngh all the working places and back "slums," places that contain gas, both likely and unlikely to places that contain ges, both likely and unifkely to fear of an y workman igniting the gas in any shape or form. This could be done with care and a proper system of ventilation.
Now, I am aware that the goaf is the likeliest place ocontain gas, and there is a way to ventilate the goaf and keep it clear of gas, as well as the working face, if the mine be properly set out at the commencement, and afterwards condacted in a proper systematical form.
Now, I can't see why masters or, their managers cannot be made panishable for their negligence as well as the workmen. If a werkman is found to have in his possession a tobacco-pipe or matches, or an unsafe Davy lamp, where such are prohibited, they are soned. Then, why not apply the same law to the soned. Then, why not apply the same law to the late knowingly in any part of the mine, or neglect to repair anything which is dangerous in its due course?
I am aware that the colliers generally are a class of men that are rather careless over their work, but at the same time I do not like to see too much saddle put on the one horse ; let them carry their own burdens according to their merits, then shall we have a chance of havnig these things put right.
abley Mine.

aUSTRALIAN MEAT.

[3835.]-Having been troubled with indigestion for three or four years, and having been unable to eat animal food, I tried Anstralian matton and foand it agreed with my stomach very well. I had previonely tried Liebig's beef tea, but did not appreciate the flavour of it. Before eating Australian matton, I was quite emaciated, and found great difficnlty in walking a very short distance. I can now walk long
12 miles) amongst lofty hills with ease.
After eating the above mutton, I do not feel any crudities of the stomach or heaviness. I am much heavier, and have a good appetite for other food,-which I conld not relish before.
It is quite true that a man may eat a large quantity of it, as a child can eat an enormons quantity of tarts and custards. But there is this difference, that after eating an unreasonable quantity of pastry the stomach feels distended and overworked; but after eating an unnecessary quantity of Australian mutton the stomach feels easy and comfortable.
I do not donbt that Australian meat sooner digests, and that the stomach is sooner empty than after eating a meal of ordinary flesh meat, but I believe that the nourishing portion of it is more theroughly taken up in the system than that of ordinary meat (especially the flesh of an ancestral bull or patriarchal ram), and if a man has a very great appetite he must eat more vegetables to the Anstralian meat than the other, and I feel convinced he will feel lighter and stronger for eating it. I need say nothing about the difference in price, as every one can calculate for himself, whether he buy good English beef at 1s. or splendid old bull beet at 6 d . per lb. Lastly, I cannot perceive any stains on the knives, \&c., after using them in
this meat.
J. Broadiunst.

CALIPER COMPASSES.

[3836.]-IN answer to "K. T. L.'s" question as to What "J. K. P." thinks of the caliper compasses (see letter 3825, p. 16), I can only say that in principle they seem perfect, but as I was once told by a mathematical instrument maker that the most difficult job they have to accomplish is dividing a pair of proportional compasses, so I shonld imagine proportioning the legs of these calipers would be a most difficalt job. Besides that, supposing them made, I can conceive only one possible nse to put them to, and that is pricking off the width of a sheet o: metal which is to be made into a tabe of a certain internal diameter, and that width might be got more accurately by twisting a piece of wire ronnd the rod, and nicking it (as people call notching, with a chisel or file. So, on th
whole, I should say, don't make them.

A WONDERFUL GUN BARREL
[3837.]-ON p. 539, Vol. XIV., let. 3539, I see the Government officials have been trying the Soper rifes. The last trial was with 200 grs . and six bullets ; that was quite satisfactory. The writer of the letter, C. H. W. Biggs, says he believes he is correct in stating that no other gun has withstood more than 170 grs . of powder and two bnllets. I have had a barrel in my hands that has bad 18drs. of powder for one charge, and a tap screwed in at the mazzle. When discharged it blew the tap out, bat did not injure the barrel, only Where it stripped the threads. I think that surpasses the Soper rifle; it is cast on the Bessemer principle, but surpaeses the Beasemer; it also can be made cheaply. If it shonld be a bad ingot, it will stand a heat eqnal to any iron that is made, and
to No. 82 wire gauge for locomotive tabing.
J. L. Mryshes.

COMPETITIVE EXAMINATIONS.

[3838.]-As nobody who knows Prof. Barff's book seems to have noticed Mr. Bottone's recent letter (No. 3686, page 612), permit me to ask him for the "comment" which, he said, was "snperfinous." But before he writes let him read the Professor's preface and the paragraph at the end of the article on "Sulpharic acid" (page 174, 2nd edition), when he will, I think, fortunate. fortunate.

Hedera.

APPARENT LOCAL TIME.

[3839.]-I BEG permission to thank N. S. Heineken for the description of his instrument for determining the meridian, at p. 664, Vol. XIV. Perhaps, if made on a rather larger scale, a still greater accuracy may be got, but his gives it near enongh for most purposes. I think also the instrument may be simplified by those who wish to ascertain the meridian of one place only, but probably Mr. Heineken wishes to use his at many places.

IMPROVED METHOD OF GLAZING.
[3840.]-I BEG leave to bring before the notice of your readers an improved construction of sash-bar, especially suitable for greenhouse roofs and lights for frames. The use of putty in fixing the glass is at all times a nuisance, and the necessity of chipping it out in the event of a pane being broken a work of time, besides the liabinty to damage more panes than you repair when the situation of the fracture is not easily accessible. This sash-bar, and the system of which it forms a part, is patented by Messrs. Rendle \& Burrows, and it will be readily understood by the drawings. In Fig. 1, which is
taking the widest distinctions of character available first, and as you improve by practice coming gradually down to the finer distinctions of development. Thi will serve you for six months, and then apply again.
(11155.)-Amalgamated Zinc.-By far the simplest method is to make a gattapercha, bati in which the plates or cylinders of zinc can be immersed in mercury after being removed from the sulpharic acid bath. When you have once determined upon the size of plate or cylinder yor intend to use, cover it with three or four thicknesses of brown paper, and upon this mould your guttapercha bath, leaving a lip on one side to ponr the mercury out when necessary. In the case of cylinders the same arrangement can be made, and the centre space filled up with a wood cylinder, coated Whan sealing-wax varnish, say 1-16in. less in diameter very small quantity of cylinder. By this means a complete immersion of the zinc in the flaid metal, and amalgamation will take place rapidly and equally thronghout. Wash the zines thoroughly in a jar, and carefnlly collect any superfluous mercury that may fall from them, and retarn it to the bath. Judging from "Yakew's" statement, his cells are too porous for Bunsen's, allowing too rapid exosmose of nitric acid.
(11181.)-Centre Maining.-For about the twentieth time let me repeat this rule:-To the square of the versed sine add the square of half the chord, this sum Templeton was the first I know of who gave this simple rule, and its demonstration has been given in simple rule, and its dem
ours" a long time ago.
(10482.)-Poles of Electro-Magnets.-When prevousiy replying to this query it was farthest from my thoughts to have any intention of wounding the feel-

FIC.3:
to represent a portion of a light for a frame, A is the sash-bar, C the glass, and D a metal cramp to keep the pand its position from different points of view, and Fig. 6 and its position from diferent points of viow, and Fig. is a cramp intended to run the wecurity is desired. The sash-bars are made in metal or wood, the latter being sash-bars are made in metal or wood, the later being in Fi . in Fig. 2, althongh the principle is the same. Thas the rooden bars are aith. dep when he bar being cat with a contri each side. The and stre whol tength of the bar, creat position to secured int ar the makers say perfectly water-tight. Saul Rymea.

PHRENOLOGY.-AMALGAMATED ZINC.-

 CENTRE MAKING, \&c.[3841.]-(11141.)-Phrenology.-Get McPhann's "Catechism" and use it as a pocket companion until you have acquired a thorongh knowledge of the names and assumed functions of the different organs, referring, when convenient, to one of the phrenological
heads made in plaster; they are very cheap now. Then heads made in plaster; they are very cheap now. Then by, I think, O.S. Fowler, an American treatise npon by, I think, O. S. Fowler, an American treatise npon "Colloquies" stady that well. This achieved, try your "Colloquies" stady that well. This achicved, try your hand npon your own immediate friends, with whose aequainted. Compare the results of your judgment acquainted. Compare the results of your judgment from simple manipulation and from the books named, with your personal acquired from the books named, with your personal
knowledge of the individuals you experiment upon,
ings of "J. A.," but I certainly did look upon him as one who had sadly neglected the sage counsel of the Chameleon-
"When next you speak of what you view Think others see as well as you."
I willingly withdraw any expression of mine that may appear discourteous to him, but he must excase me for still retaining $m y$ firm belief that his experiment was ill-devised in some one or other particular, or he would not have obtained the results recorded. Had his statement merely differed from my own experience I should have doubted the latter, and set to work to verify my conclasions by fresh experiments before I had ventured to write apon the matter, but his single experiment was placed by him in juxtaposition with, and said to disprove, the experience of all other physicists and electricians who have stadied and written apon the sabject, and in the fervour of my admiration or some of these-notably Prot. Joule-it is quite possible that my pen may have forgotten that "Mcn. taigne" ever had corporeal existence.
(11218.)-Smee's Battery.-If you can get as perfect a deposition of platinum on copper as you can on silver then you have no longer a Smee's cell, but one of your own design, and the relative values of the two will be nearly as the conductivities of the two metals, for when ang a any degree pare, be attacked by the dilute acid, bnt the ny degreepure, be at an reduced the rery thing which ornd if possible be reduced, the very thing which should, a possible, bo tives then chemical action takes place on the iron only fiving you a aurface of oxide of iron as a negntive (a very bad andre wher you remove this you take away your platinum also, and
must replatinise, so that, on the whole, you had better take "Smee" as you fnd him and stick to him.
(11269.)-Sxere's Cells.-In reply to "Intensity's" Mr. Luatimer Clarke, viz., "that G Grove being 1008 Smee is 25 , or quarter the electromotive force when in action, is 25 , or quarter the electronative force when to three Groves, and I apprelend the electric light they wonld Grodnce woold be a minimum. 2. With the ntmost safety, but a serions waste of zinc if your coil is of the ordinary ecnstruction; rather join them up in a series of three, that is, four zincs and four silvers in oach of of the three dirisions ; then coople these up for resistance or in alternations-i.e., zinc to silver, dic., in the same manner as you now propose to use the twelve. This should give sumicient electromotive force, combined
with intensity of carrent, for any ordinary induction coil. 3. You can ase gold in liea of platinuma, bat it has two disedvantages-viz., it is dearor and mach softer, the latter quality rendering it loss nsefal in withstanding the rapidly repeated blows, slight in themselves individually, bot very marked in an instrament nnder continnous aotion. Any metal Which, in emporature produced at the point of contact (when the carrent is broken at that point) withoat nndergoing oxpdieation, will do equally as well as gold or platinum, tate that sapplies the conditions, ergo we mast use gold or platinam, and that is the actual reason.
(11262.)-ELECThiorty feom freak-Bowne -II " Boiler Minder " means an ordinary electric bell, in which the result is produced by tho use of an electro magnot, the answar to his query is decidedly No ! All lectrically from a steam-boiler belong to, and are conistent Fith, statio oloctricity, and hence out of the pale of producing dynamic effecte. It is posaiblo with proper arrangements to gonerato electricity of sach a Minder, "as to give a, shock to the human system that " no follah could anderstand," or that would leave no underatanding in the fellow who allowod it traverse

ALLINGHAM'S PROPELLER.

[8543.]-Bbrorz entering upon a description of this provisionally-protected propeller, I may premise that baring stadied the fact which impressed itself upon my 1,000 tons be lifted any given height by the action of the waves, there is a force exerted of more than 1,000 tons, and in falling she will exert that force minus the friction of planging in the water. We will, therefore, assume that there is a force of 1,000 tons exerted every ime the vessel's hoad or stern rifes or falls. I don ay this oxact weight is mathematically correct, be sible to commanicato this immense power to machinery or propelling, and after repeasted tials and failares of the most disheartening nature with a model in a wash. ing.tab in the beckyard, I am n, w in a position to propel any flogting body against, sideways, to, or before propel any hoatiog boy agase, inewayg, to, or before with boilers, coals, steam.engines, engineerr, stokers to., sabstituting in their place an apparatus which will act effectually as long as the vessel rises, falls, or rolls to one side or the other, which will not probably weigh over 10 tons for a 1,000 -ton ship, leaving the whole hall svailable for passengers and cargo, and, barring accidenta, oouting a moroly nominal sum for repairs.
And now to the proof. Fig. 1 represents a model 3ft. Bin. long. 1ft. 2in. beam, and 1ft. deep. To each end of her is atteched a iramework, which carries 82
blades or lourres- 16 on the port and 16 on the starblades or lourres- 16 on the port and 16 on the starand is proposed to bo made altogether of mild steel to andain the requirito strength combined with lightnens. Theso bledes measure δ ఫ̧in. x in. each, and work freely in the frame on two apindles each (see Fig. 8), rightly overlapping each other. This frame is supported by two fitit rods of ateol edgewise to the direction of motion, and when lowered into the water slips into the catches attached to the keel (Fig. 4), and is held in position by the stajs marked B, thus relieving the rods of the thrast when the ship planges. Fig. 2 showa an ond viertical rods, and capable of being shifted from horivertical rods, and capable of being shifted rom hori-
zontal, which woald cane the vessel to stop to the

the convolutions of the most delicately made electric bell withont giving any visible evidence of its exis tonce-" per contra" a plate of zinc 1 iz. square, op posed to a similarly sized plate of carbon with suitable intervention, will ring the same boll for twenty conse cotive minates, while the individual above alladed to may
complete the circuit withont the alightest inconvenience for hours if he cliooses so to do.
(11261.)-I marked this query oll for reply, although addressed to another gentleman, but when 1 reflected that our fourteenth rolume was just completed, and the inquirer was "A Subscriber from the First Namber." it struck me that, after soven yeart gleanings from all that has been plonteously shown forth in "orrs," the quarist mast be one of those unfortunate offsprings deaf, and, therefore, should remain in accordance with all nataral lava-dumb.

Wx. Tonerg.

MUSICAL NOTATION.

[3842.]-ONE word in reply to "Tafa-tofe" (let. 8771, p. 664, Vol. XIV). II he will look at my former letter figures, as he acsumes. What I gaid was, "I see no adrantage in asing figures, bat calling them do, re, ce., over Mr. Carwen's plan of uning tho initial letters of these noter," and I stiok to it.
The question of writing figures or letters is trivial : no more precantions are required for the lattor than many MS8. it is written f, which excelly corresponds with lopping off the tail of the 7 .
It is ovident that the cipher and Sol-fa notalions are identical in principle ; in both the stave and ordinary oharactera are set aside, a fer signs are used to represent tones in key, and a fer others to represent apon the perfection of their detailcan only be decided by those who possess an intimate knowledge of both, and not by the generul reading
proper angles with the keel in order to produce forward or backward motion as required. As the ware lirts tho face endenvouring to go forward in the direction of the angle to the ship's bottom. The moment ahe begins to fall, these blades open to the corresponding angle in the opposito direction, which opening is regalated by gasids, as marked C C, Fig. 2. Thus the vessel it converted into a double-acting lever at each end, and if she rolls to one side the blades on that side open, while those resisting the roil are shat; thas is she aliso koebing these blades as narrow as poesible is that they keeping these blades as narrow as possible is that they
may reverse their suglo as soon as possible, 20 that the may reverse heir shio as soon as possible, so that the In the case of very long vessels, I propose to use a in the case of very long ressels, I propose to use as
species of float to agitate the framework of bledes. In species of float to agitate the framowork of bledes. In
this arrangement it would be requisite to tow the vessel to the open sea as asual with eailing vessels; bat it to the open sea as asual wed sailing verseis; bat it
desirable, it can bo arranged so as to be worked by a desirsble, it can bo arranged so as to be worked by a
steam-eugine antil the swell is reached. This system is also-applicable to driving machinery by the side of any largo reach of water. The only drawback is that if the sea be perfectly withont motion (which I think, rom experience, rarely happens, except in some parte the world), my apparatus will not act-the rougher

DR. CARPENTER AND PERSPECTIVE

[3844.]-Dr. Carpenter, in his article on common sense published in your journal of the 8th inst., states correctly a rule of perspective, but gives a reason for that rale which I think ought not to pass unchallenged. for instang that the perpendicular lines of two towers towards a vanishing point in the sky, whilst common sense tells of the improbability of their being actually inclined towards each other, he says, "And the beat proof of the complete possession of our minde with this improbability in to be found in the rule of perspective that all the vertical linus in a building mast be pietori-
ally drawn as vertional, so as to represent what in soen by the mental rather than by the bodily eye.'
ing mat ing mast be pictorially drawn as vertical I had sapposed oo be becanse all sach lines are parallel to the plane of delineation; thus, is the towers be viewed throngh a it is evident that the sides of the windo visually conit is evident that the sides of the window risaaly converge to the same vanisbing point in the oky as the
lines of the towers; and, therefore, if the towers are lines of the towers; and, therefore. if the towers are
drawn upon the window exactly as they are seen by the drawn apon the mindowexactly as iney are seen by the
bodily eye, it will be found that all the rortical lines bodily eye, it will be found that all the vertical lines
are pictorially drawn vertical. For the same reacon are pictorially drawn vertical. For the same reacon
all horizontal lines which are parallel to the plane of all horizontal linea which are parallel to the plane of
delineation are drawn parallel to the top and delineation are drawn parallel to the top and
bettom of the picture, their vanishing points being the bottom of the pictare, their vanishing points being the
same. This is readily
eoen whilat travelling in a railway carriage, when the window representa the canvas on whioh the piotare is painted. The raile and telegraph wires all have the game ranishing point as the graph wires all have the aame ranishing point as the
top and bottom of the window, and if drawn upon the window exactly as seen will be parallel.
B. D. T.

LIGHTNING CONDUCTORS.

[3845.]-" Pailo " (letter 3783, p. 638, Vol. XIV.) advises asing motal roof ridges, gatters, and rain downpipen. I am anxions to do so; and will be obliged to
"Philo," or any other correspondent, for farther "Philo," or any other correspondent, for farther
detaile-auch as how to establish metallic conneotion details-suc

1. Six-feet joints of cast-iron down-pipes, generalls left loose in the sookete.
2. Eare gutter and down-pipe, whether conneoted by - drop or a head.
3. The lengthe of cact-iron rhones of eavo's gatter, spigot and faucit, bolted together.
4. Botweon lead-ralloy gatters and oect-iron cave sattera.
b. Between the lengthe of the load ir ralley gattars
and ridgea which overiap onoh other, and which if and ridges whiok overlap ouch other, and which, if soldered or otherwise axed, might be torn by oxpanaion.
5. Between the wire-rope conductor and the lead ridge.
These connections made, how high must the point of the conductor be above the ohimney capp? And what mipe is necenary to oarry the lightning maldy ofir from pipe hounco into the ground?
J. G.
[3846.]-Triz deatraction of King's Norton Charah atooplo, doecoribed by " J. K. P.," at P. 688, Val. XIV., shows how uneleas motal condacors are unioss they are Well conneotod with the groand, a point vary often neggeotod. The common oxpresion hat the oloctric finid made a holo is inacerarate. Electrioity cances a hole to be made, somotimes by the saddon production of stoam, romotimes by making the partiolos eleotrifiod repel oach other: why they repal each othor is un. is in Worcentershire, not Lejoestorvhire. Primo.

CO-OPERATIVE SOCIETIES.

[3547.]-I AM mach obliged to the writers of letterr 3775 and $3776, p$. 666 , for their answers, bat I will take the last frat, es E. L. G.. seems quito to have mistaken the drift of my inquiry. The eaggestion of "Fro
Bono " is a good ono, if practicable ; but a little oonBono is a good one, if practicable; but a litte eon-
sideration will show him that to far from there being sideration will show hima that so far from there being
no diffleulty in "so limited a concern" in entering the no diffoulty in "so limited a concern" in entering the
quantity of every article mold in a book, the feot really is that the diffecalty is the greater on nocount of the is that the diftealty is the greater on account of the
emalliness of the tranacotiong-o.g., Saturday afternoon -the neighbouring factory has jasit paid oll ite handethere will be ave or six customers in the shop at a time there win be ave or six castomers in the shop at a the
for of the day. A. Wants 20 z . of tea, 11b. of for the rost of the doz. of tobacco, i pennyworth of biscuita, and a sugar, 1oz. of tobacco, i pennyworth of biscaita, and a deal besides, amounting perhaps to three or foar ahil-
lings. B., C., and D. are waiting patiently. NowI ask lings. B., C., and D. are waiting patientiy. Now 1 ask of the woight or quaptity of each article sold $\frac{1}{\text { and }}$ if it of the woight or quaptity of each article sold ? and if it with the boaght weight at the end of the quarter? In large concerns, where a clerk is kept to take the monay and book the sales, the sfstem may anawer; but anxious man am to find a " check-system," I fear I mast rolin. as 1 am to ind a check-system," 1 fear 1 mast rolin.
quish this one as inapplicable to our case. To "E.L.G." quish this one as inapplicable to our case. To "E.L.G."
 though, he is omploying the Socratic method, and by answering his questions, I expect to throw a light which answering his questotha, mexpectill and him.
1 and 2. The store I represent is worked by one man. (atyled manager) and a boy, who are employed to distribute the groceries of the . . .Co-operative Society so called becanse its members farnished the capital and "co-operate" through their cong
8. The objecta of the society are such as "E. L. G.'r supposes, and I see no objection to changing its namo to the "Distribation Leagae," if any benolt will thereby accrue to the shareholders. I do not see how poor men cana bended in provisions in any given year, as they soldom keep anch procounts ; bat as that datum is
then required only in order to fix the secretary's pay (which required ony in order so ax the secretary' Pay (which
in this cano is n(l), that suggestion of "E. L. G." may be passed over. In conclasion, I do not profess to be passed over. In conclasion, I do not profoes to
anderstand clearly "E. L. G.'s method of oo-operation, bat I believe the form adopted by our soojety to be a legitimate and usefal one, though without any be a
claim to novalty. Aboat $(100$ mechanice, do., alab
together, indace their employer to baild them a store which they rent at $£ 10$ per annum, stook with groceries, ac., and go to work. The distance from a town being nearly five miles, they soon get the trade of the whole neighboarhood, and return
said society does not "pay," bat the members atick by said society does not "pay," but the members stick by
it. The canses of failore sre more patent than the it. The canses of failare are more patent than the
remedy, bat they are in hopes of finding remedy when remedy, but they are in hopes of finding a re"
they meet with an eligible "oheck syatem."
F. O. S.

WARMING AND VENTILATING.

[3848.]-I wRITE to describe a warm air ventilating freplece which I have used extensively in buildings on Which I have been engaged professionally as archi tect: it is called "Lewis's patent warm air-chambes
fireplace." The cold air enters the air-chamber at the fireplace." The cold sir enters the air-chamber at the
back or underneath the fire, and can be brought from the external air or from any passage near at hand, and after being mado to traverse the air-chamber backwards and forwards by means of gills, comes ont
warm into the room, or can be conveyed into any other warm into the room, or can be conveyed into any other room or passage required by means of pipos. The I have seen, and in Which, I believe, the patent partly I have seen, and in which, I believe, the patent partly air-chamber building, and no more setting than any ordinary register grate.
have these grates fixed in throe sitting-rooms of ny own residenoe, the cold air entering from, and returning warmed into, the hall. During the coldest Feather of the severe, weather of 70.71 the hall and staircase, three stories high, were nicely aired when
only one fire was lit. When two fires were lit they only one fire was lit. When two fres were lit they
were comfortably warm, and when there were fires in were comfortably warm, and when there were fires in
all three sittiug-rooms the hall and staircase were as warm as the rooms themselves, and the bedrooms aired Warm 28 the romss themselves, and the bedrooms aired
also ; this resalt being obtained withoot nsing an ounce also ; this resalt being obtained without using an ounce
more fuel than if ordinary grates had been ueed, and more fiel than il ordinary grates had been used,
the waste heat allowed to escape ap the chimuey. the waste hest allowed to escape up the chimuey.
One day when the external air was 25° Farenheit, tested the wolocity and temperatare of the air issaing from one of the air-chambers (by means of Negretti and Zambra's standard thermometer and Byron's delicate anemometer) abont an hour after the Ere was lit. I Ioand the air going in near the hall door at 95° 130°, and at the rate of 140 lineal feet per minnte, or nine cabic feet raised 91°, or equal to about eighty-two cabic feet raised 10° in temperatare a minato; and as the hall and staircase to be warmed contain about seven thousand cubic feet, it follows that when all three sitting-room fres are lit they can raise the temperatare of the hall and staircase, di.. 20°, or say from There is an entire absence oi smoke, offensive smell. or oppressive dryness in the air, the fireplaces being lined with fire-clay tiles.

plano alliance.

[3849.]-I should also be glad to join with other subscribers in some scheme whereby a Renuine instrament might be secnred at a fair price. I saggest, however, that it might be prndent if we wait a few monthe, that we may first have the opportnnity of as I beliere "musical instraments" are to form one of the chief features. I hope, too, that the relative merits of the diflerent pianns, and harmoninms then exhibited will be fally discussed in "our" valuable jornal, and after such enlightenment, we sball be pianoforto to adopt.

Busy Bee.

DEFECTIVE ORGAN.

[3850.]-In a recent number was a letter complaining of an organ made by Kemble \& Johnston, of Manchester, and asking for advice what to do to it. may mention a fact which he once relaied to me, and which may throw light on jour correspondent's difficnlty.
He raid that an organ mado by him having got out of order, he went to exanine it, and fonnd that ing the building the unfortunate instrument got theroughly steamed whenever the fire was lighted, which certainly acconnted for the state it was in when at length he was asked to see it. As I hare mentioned lis name I cannot help alluding to his loss as one of "onr " correspondents and contribators. He was very fond of experimenting on new devices in his busincess,
and any information which he thereby gained he and any information which he thereby gained he them was the writer of this.
L. C. E.

ORGAN FEEDERS.

[38551.]-The bellows sketched by "A Young new invention, and Continental builders for sone years past, bat having these alterations:-1. The valves are made to close withont springs (in fact, I do not see why those in the sketch which are not inverted should need them); the organ builders do not have any inverted pallets in these Seeders-making the top one to draw its wind from the bottom board of the same by learing a apace of abont the top board of the bottom feeder; therefore the pallets close by their own weight and the pressure of the wind. 2. The trunk from the bottom leeder is open as far as
the reservoir, and a valve is placed on the bottom
board of the reservoir just over the trank, instead of inside the trank; this also closes by its own weigh de. 3. The blowing action designed by him wonld hav
to be made very strong and heary if the bellows were to be made very strong and heavy if the bellows were ini., having a lever, as in ordinary instraments, working viz., having a lever, as in ordinary instruments, rorkios
on a fulcram, placed at any distance from the feeders fulcram, placed at any distance from the feeders, traversing distance ; this lever is connected to an iron fork (see sketch) the two long arms of which are attached to two gadgeons fixed between the two feeders.
Ol course, by this plan the reservoir has to be kept at a greater elevation to allow the requisito movement of the lerer ; and in consequence of this they are sometimes placed in a vertical position at the side of the reservoir or in a separate chamber (as in the organ at Winchester Cathedral, rebailt by Hill \& Son, blown by water
power). I, for my own part, like theso feeders, as they power). I, for my own part, like theso feeders, as the
give a large amount of wind, and are easily constructed
E. F. Conbath.

MACKENZIE:S TOCCH LIGMTEAER.

[38.52.]-In the number of the Mrchanic dinted Dec. 22, and at p. 346, I notice an article, with illus. tration, on "Muckeazio's Tooch Lightener." This clever contrivance is no doubt of great service in small organs, but I consider it practically aseless for large organs. Take, for example, an organ with 18 stops on the great, 14 on the swell, and 8 on the choir. The great organ wonld reqnire a pallet 15 in . by 1 in. ; the
swell, 15 in. by 1 in. the thoir, 12 in . by lin. Taking the proportions given in the above-mentioned article, the great organ CC key, with tonch lightener and tin. pres. sare of wind, wonld require, say, 1002 . weight to take it down-the swell, with tin. pressare of wind, woald reqnire 100 z . also; the choir, with 3 in . pressure of wind, woald reqnire 4oz. Now, if the swell be great, and choir to great conplers were dramn, 24 oz, would be required to take down the CC key. Octave couplers woald, therefore, be quite oat of the question. But provided pueamatic lever has no limit in this respect, made it is nas suficient pressare of wia. the intricate mechunism of an organ. I think the pnenmatic lever can never be superseded by the tonch ightener, as the former is nulimited in its application, whilst the latter can only be successfally introduced into small organs. The promptness of action of the pnenmatic lever is another great pint in its favour. I have not yet seen the toach lightener working; bat I should imagine that when the key is balt down there is an unpleasant sensation to the finger cansed by the two surfaces of the tonch lightener coming wholly into contact. Can any reader speak on this point?

Paeviatic Lever.

THE MOON'S AXIS.

[3853.]-In reference to the remark of "F.R.A.S.," that the inclination of the moon's axis to the plane of her orbit aljout the it ma be well to ne amonnt o monu reaty describes tro orbits-one abont the sun which determines the length of her senr, her seasons being dependent upon the inclination of her axis to the plane of this orvit, and oue about the earth, which slightly modities as to shape her orbit a aboat the spa It is, as mentioned by "F.R.A. S.," the inclination of her axis to this orbit npon which libration in latitude depends. The tro orbits are perfectly distinct from each other, the phenomena resulting from one having frum the other being principally witnessed fem th earth.
W. R. Bibt.

occultations of uranus.

[3854.]-Had Mr. Clements spent the small sum of five minutes in consulting the "Naatical Almanacs" for
1867 and 1868 , he would, at all events, have hesitated before he submitted to the readers of the Enalish Mechanic the remarkable query which leas drawn forth from "F.R.A.S." the very severe remarks on the probable insane condition of "Captain William Noble, of Uckfield." That the Captain is fully able to demonstrate his own sanity, I have no doabt, for anlike "F. R. A. S."" I have the honour and pleasure of knowing Captain William Noble, of Marestield, Uckfiele, and gladly leave to him, shonld his eese rest for a moment on the remarkable suggestions to his friends contained in let. 3795, p. 9, the right of a reply. It could rather seem that the concoctor of the query would
be the fittest inmate of Hanwell or Colney Hatch, for be the fittest inmate of Hanwell or Colney Hatch, for how he could hare ascertained that Uranas was occalted by the moon 187 times in 1867-68, is beyond concep-
tion; for in those years Uranns was not once occalted, tion; for in those years Uranus was not once occalted, the only planets hidden by the moon being Mars,
Venns, and Mercury. Surely the notion mast have Venas, and Mercary. Sarely the notion mast have eriginated in his own brain, ay there is certainly no fonndation for a paper of the title given. Mr. Clements Wil had astronomical Societr in the General Index to the 29 volumes of the monthly notices. W. R. BIRT.

JUPITER'S SATELLITES AND "F.R.A.S."

[3535.]-Mr. Proctor is very muoh mistaken if he supposes, as he seems to do, that I meant anything mical knowledge. All I gaid gentleman's astronomajority of sorr readerg-did wat that we-h.e., the implied was a doubt whether the mere fact of his being a "F.R.A.S." gare such presumption of know.
ledge as alhoald induce me to place greater reliance
upon his anthority than on that of Sir John Herschel. If there be anything even apparently disrefpectfal in that, I beg to disclaim any intention of pa aing a jodg. ment apon one of whom 1 know nothing; bat 1 cannot suppose
his opinion an an the supposed errors of others with his opmino apon the supposed errors of others with great freedona, wonld have been offended, even if
had (which I did not) accused him of veing serionslr in orror himsell. Neither will Mr. Proctor, I feel sure, be orror himsell. Neither will Mr. Proctor, I feel sure, bo
offended by my stating that I think he is not quite offended by my stating that I think be is not quite
correct in sariug that Sir John Herschel "only sayg that the eclipses of Jupiter's satellites are anylicalle to the parposes in question, becauso they can be prodicted." He does not say that they "hawe bern predicted with the requisite accuracy." The italics
are Mr. Proctor's. In my copy of this trestisa are Mr. Proctor's. In my copy of this treatise on "Astronomy," 1833, the words Sir John used are, "This prediction is snfliciently precise and certain to stand in the place of corresponding observation. So that an observer at any station
whatever, who shall have observed one or more of whatever, who shall hare observed one or more of
these eclipses, and ascertained his local time, instead of waiting for a commanication from Greenwioh to in form him al what moment the celipse tool place there ma once, and on the spot determine hiam, and thence a once, and on the spot, determine his longitude." I pre sume, as Mr. Proctor seems to say so, that the times cannot be thas determined with such great exactness as Sir John's words imply; but I do not see why "F.R.A.S." should have expressed his surprise tha any one relying apon Sir John's anthority should sag. gest resorting to a plan he proposed, when in doabt of ". better, which doubt I am sure either Mr. Proctor or "F.R.A.S." conld have removed, it they had either of them taken half the tronble to set me right as they have, with very poor suocess, in trying to prove me wrong. I do not soe what other meaning oan be pat
upon Sir John Herschel's words than I pat on them upon Sir John Herschel's words than I pat on them,
and I still think that if in error, es I suppose I was and I still think that if in error, as I suppose I was,
erred in very good company.
Pmo.

LUNAR OBJECTS FOR OBSERVATION, APRII,

 1872.[38:56]-APric 10, Mare Hnmboldtiacum, Gargs Condorcet ; April 11, Langrenus, Vendelinns, Petarias Furberias; April 12, Maro Noctaris, Isidoras, Capella Gnttemberg; April 13, Piccolomini, Fracastorias Maraldi, Rumer; April 14, Abulfeda, Almanore, Taci tns, Bessel ; April 15, Ptolemmas, Alphonsas, Arzachel Timana; April 16, Tycho, Straight Wall, Thebi Alpetragins; April 17, Plato, Pico. Archimedes, Pallas April 18, Bullialdas, Agathurchides, Gassendi, Sirias Iridum; April 19, Bianchini, Sharp, Mairan; Apri
20, Campanue, Mercator, Capuanus. W. B. Birt.

mercurial vapour.

[3857.]-AT p. 668 Dr. Stenhouse's charcoal respirator is called Dr. Henharse's. I fear I wrote the name badly, and hope yoa will allow me to correct it. well known as it deserves to be. The inventor, like a true philanthropist, seeks no profit from those who usa true philanthropist, seeks no profit from those who usa
his respirator, and, therefore, deserves the more honour.

Philo.
[3858.]-Tmanes to "Philo" for his attempt to enlighten my darkness. My ot ject. however, is not to ascertain the effects of mercurial vapour on animal perim obtain the means of referring to recorabitude of ments if such be in existence, by which the Pariaps my ararial vapour have been determmed. Peruaps my questions (fetter
sufliciently explicit. I am desirous of knowing the weight in grains of mercarial rapour which fills a cabic foot at the following temperatures- 32^{2}, 60°, and 219^{2} temperatures.
W. R. BIRT.

THE $\triangle 1$ CLOCK.

[3859.]-IT is rears since I contrived a clock somewhat on this principle. The string of the descending weight passed once round a fired pulley, the arbor or axle of which carried an hour-hand, and showed the time on a dial. I would recommend such an arrangement to the consideration of Mr. Stanistreet, as an improvement scarcely interfering with the simplicity of his astronomic clock, and adding to its appearance, if not to its efticacy. I fear, however, the effect of changes of weather on the gat may somewhat mar its
qualities as a time-keeper.
C. B. Fensessr.

CHEAP OBSERTATORY CLOCK.

[3860.]-I have mach pleasure in replying to the inquiries of your corresponcient "Rega!ator" (query 11250, p. 677), and giving the particnlars desired by him and others on the subject of the timekeoper doscribed at p. 630 of "our" last volume.

1. The drawing of the clock is not strictly according to scale, bat the dimensions given below will afford the means of correcting it in this respect.
2. The lantern pinions were made as follows :- A
short rod of brass (I nod was firmy held in an American die-chuck, and a hole drilled centrally of sufficiont size to recoive the arbor of the intended pinion. The brass is then tarned away so as to lorm the frame of the pinion, or reel is exactly like a miniature coth on eanes are then drilled by a drill made of part of a needle of the
needleg）．The drill is placed in a small drilling spindle held in the slide－rest，and worked by a fine cord from the overhesd pulley，the pinion being meanwhile held by the inder of the dividing plate，and after each hole in drilled it is tarned one－twelth or one－sixteenth of the circle br means of tho divisions on the dividing plate of the lathe so as to insure equi－distance of the
holes，each of which should be drilled quite through boles，each of which shonld be drilled quite through Whth the dises of the pinion st the same operation． When all the boles are thus drilled the pinion is emored from the lathe，and pieces of needles of the same size are inserted in all the holes，and fixed there by ranning in a morsel of faible metal as solder by means of the blow－pipe．This is effected in a moment of time，and if the pinion staves are protected by hold－ ng round them a piece of moistened sponge，the heat reqnired for soldering them does not eren blae the ，which retains nimpaired，and they are so frmply fixed in the pinion hat the rough enda may be ground ofll by a grindstone corundum disc．
8．The clook might be made to go for eight daya by the addition of another wheel and pinion；bat it would hen require a heavier driving weight，and the weight roald descend too slowly to be arvailable for oarrying the hour hand as in the $A 1$ clock，the plan of which I refer in this respoct．
4．The＂little wheel＂roferred to by your correspon dent＂Regnistor＂is the ratohet wheel，and ite pall or click will be seen jast on the right－band side of the atchet－wheel in the drawing．The cliok is formed by a piece of watch－spring bent into shape and riveted to the brass plate which holds the ratchet－wheel and pulley．Nothing conld work better than this simple nd easily－constructed ratchet and click．
5．The gat in joined by hook and oye of the very smallest size．I adoptod this plan for the sake of the facility it afforded of taking out any twist whioh might cocur in the cofd when new ；but there has been none， as the gut was well atretched by heary weights before it was ased，and if the clock should happen to be atopped lor any purpose，I shall probably spice the ends of the gut together as preferable，although it works very well as it is．
6．The drill for serrating the sides of the V groove of the centro palley，and of the ratchet pnlley，mant be shaped exactly like the groove，though a little larger．The pulley，of brass，when turned and grooved with a deep and narrow V groove，is held ixed in the latbe by means of the index of the dividing plate，and the drill held in the slide－rest and worked from the orerhead palley is advanced so as to notch the groove pretty deeply，and then withdra wn，the pnlley being curned by the dividing plate the desired distance（say one－forty－eighth of a rotation），another cat is taken to tho pame depth，and so on roand the circamference． Although this mode of roaghening the palley is very efficacions for preventing the cord from slipping，I attach still greater importance to the position of the gride palleys shown in the drawing，which make the cord grip the palley throughoat the greater portion of
its periphery，instead of merely resting apon one－half its periphery，instead of merely res
the cirenmererece in the nsral way． be cirenmference in the nstal way．
7．The dimensions asked for are as follows ：－The perpendicalar height of the clock frame from the upper surface of the seat－board to the apex of the A－shaped frame is 9 in．，the depth of the frame aboat $2 f$ in．，the dismeter of the 120 wheel is $3 \cdot 48^{\prime \prime}$ ，of the 96 wheel $9 \cdot 8^{\prime \prime}$ ，and of the scape－wheel $2 \cdot 0^{\prime \prime}$ ．Diameter of the is leaved pinion 0.45 ，and of the 12 leaved pinion 0.87 ． The palley upon the centre－wheel arbor is three inches in circumference，making the descent of the driving right and＂hour hand＂eractly 1.5 ＂per honr，which afords ample space for divisions，showing five minutes or less of time．
8．The plan of the clock is so very simple that it did not oceur to me as necessary to send any section of it mith the drawing，nor did I even prepare sach daring heconstraction．I hope your correspondent＂Regula－ tor＂will commanicate his＂new form of maintaining power，＂which may interest many besides myself．

John F．Stanistreet．
Abeareromby－nquare，Liverpool．

BCCKMASTER，SNAITH，＊C．－To＂Beacon

［3361．］－Since writing my last letter，I have been informed by letter，from a high anthority，＂that there is no accepted Government class book for chemistry； cettaing not the two mentioned．The ones most geverally nsed are Roscoo＇s＇Elementary Chemistry，保

S．Bottone．

＂PALENCY v．ATOMICITESS．＂－To＂MRBCURIC．＂

 ［3862．］－This correeppondent has evidently not read my notcallmy attention to pointe which I have already dis－ cassed，or noticed．As，however，his positive assertions on dation hypothetical enhjects might lead to grave misconception and mach fraitless disoossion，I feel it incombent on me to point ont a few phrases in his betar，boping by so doling to lead him to ponder more befare venturing on such sweeping nemertions．1．The terrn＂atomicity＂to indicate saturating power is in－ nivere in ar＂alecmicity＂points to the namber ofconten atom of nitrogen can only nitrogen is ：a atom：hance to affirm that the atom of
 a a pocer，not I．To this gentloman，also，are we
by the bye，is correct as far as it goes，for it represents a known faot－viz．，that in this body there are four parts＂ unleas＂Mercnric＂has weighed ammonium raponr
and ascertained its density，I fear that he has vary donbtfal grounds for asserting that／ NH_{4}
correot 1 基．Pren vever，tha my correspondent has not made a atatement that has pares or hact， 1 in in our pages the vapour denaity of this boay at Centigrade 4．While thanking＂Mercorio＂for the fiattering allo aion to＂rases＂and blanders with regard to phos ＂Manual＂for information on this point．Perhaps he is not aysere that the formula nasally given－viz PCl_{5} ，does not agree with its vapour density．I take no note of the ammoninm chloride formala，as the one given by＂Mercaric＂does not conoord with it rapoar deasity．5．Whin rogard to phosphorus bain pentaralent in phosphorus acia，I can only say，ws have said before：Oar only oertain measure for the
valenoy（always sapposing there is anch a thing as ralency，which I amp beginning to doabt）of say ele－ valency，whioh 1 am beginning to donbt）of any ele
ment，is hydrogen．Now，no compound of the formula roent，is hydrogen．Now，no compoand of the formula
of $\mathbf{P}^{\prime \prime} \mathbf{H}_{5}{ }^{\text {in }}$ is known to exist；only $\mathbf{P}^{\prime \prime} \mathbf{H}_{3}$ is knows of $\mathrm{P}_{5} \mathrm{H}_{5}$ is known to exist；ons ${ }^{2} \mathrm{H}_{3}$ is known snd we can（I do not mean to asy this ia so）acconnt
for the existence of phosphorus acid，without losing sight of the trivalence of phosphoras，thas：
$\mathrm{H}^{\prime}-\mathrm{O}^{\prime \prime}-\mathrm{P}^{\prime \prime \prime}--\mathrm{O}^{\prime \prime}-\mathrm{H}^{\prime}$

H＇
I further call attention to the fact that when we base our calcalations of valency on suy other element ex ept hydrogen，we iatroduce an element of error int

SEWER GAB．

［3863．］－＂Manvs＂（let．3780，p．667，Vol．XIV．） does not explain in what respect he thinks I have misinterpreted his remarks on вower gas，bat 1 now guess he did not mean to say what he appeared to say， of danger．I，like＂Manas，＂have not bs me the number in which his remarks appeared，hat I re－ member a statement implying that the escnpe of sewer gas into a dwelling wonld be certainly detected by those whose smelling organs are in good order，which seemed to me to give support to the very common and very dan－ to me to give snpport to the very common and very dan－
gerous notion that what does not atink won＇t hurt．It is cortain that often，and probably always，that which is the real exciting canse of typhoid or pythogenic（filth－ begotten）fever is not offensive，though often accom－ panied by that which is．I am glad to think that ＂Manas＂does not support the erroneous notion， Which be appeared to do．Sulphuretted hydrogen，if nncoutaminated with organic matter，never canse $\begin{array}{ll}\text { company，as is a common case．} & \text { P．H．He Hownavin．}\end{array}$

THE FAIRLIE LOCOMOTIPE．

［3864．］－In letter 3787，p．663，＂Δ ．G．Boyd＂ raises objections to the Fairlie locomotive which I think are more than outweighed by other advantages which he does not mention．Before I bay more I may as well remark that I do not approso of the Fairlie bystem，except ander pocaliar conditions of gange， which the promoters of the system claim for it． Firstly：－Fairlie claims to get tractive power with his Firstly：－Fairlie claims to get ractive power with his
4－cylinder engine equal to that of two 2－cylinder 4－cylinder engine equal to that of two 2－cylinder and fewer parta required where four cylinders are enx fewor one carriage instead of on two．The space occapied is less，and the whole constraction more compact，while the weight，being better distributed， tends to increase the adhesion．There are many other minor advantages growing out of the general other minor advantages growing into now as I have forgotten them．The one great advantage，however，is that fewer men are required－two，or at the most two and a boy，instead of four．This is，of course，a great saving，especially where the system is largely adopted It is on the point of eoonomy，Ithink，that hir．Fairlie on saperior tractive power，as what little gain（and it is little）may be got by his syatem in this respect is more than connterbelanced by the practical convenience of two separate engines．
For narrow gange railways the Fairlie system is more partionlarly applicable，becanse it is by its form well suited to a compact disposition of part
so necessary in a narrow gange locomotive．
I have said that the strongest point of the Fairlie systom is the question of economy．Now，although at first this may appear to be a great advantage of the system，I think 1 shall bo able to show that it is not $s 0$ gears，and if it can be patched ap so as to work for con years，there will be a considerable saviog effected It is，therefore，the most economical policy to repair defects as aconn as they appear，rather than let the engine work itself out，and so be effective for a shorter period．The consequence of this is that on a large line e considerable percentage of the locomotives is slwass in the repairing shop．Now，sapposing a line is worked with 100 locomotives，and that 50 Fairlie locomotives will do the asme amount of work，it is obrionsly preferable to have 100 locomotives with ten
of them in the repairing shop than to have 50 with IVO lidid up．

may not heve expressed myself clearly onough in the foregoing．What I mean is，that to work a hear goods tramo with efmiency，a grealor akgregato stoo of locomotive pith system than with the old systom，although the eotua number of A grent deal was made of the power of the Fairke ongino in taliog a groal load ap a long facllao in th roco－pering，bade way 90 mi aso thragging a lot non－paylig loads suy 90 mina，wo that lo may come tier indine？ | engine apecially for those ton miles． |
| :--- |

［3865．］－A lettrr（No．8787），signed by A．G．Boyd， appeared in your namber for March 15，which should be this 0 ，ana win your kind pormission 1 do not think lis can be done bor letter herewith，which received from the mriter， ments desoribed in his letter，when Mr John Fowler and others of the Indian Railmay Oommingion vent to Wales to test the Fairlie againgt the ordinary engine been pablished，and as it bears partionlarly on the questions raised in Mr．Boyd＇s letter，I boliove your readers would be glad to see it appear in your very
excellent journal．
［Copy．］
17 \＆18，Leadenhall－atreet，London，E．C．， Augat 18， 1870.

Dear Sir，－Soveral weeks＇absence in the North hae prevented me from replying oarlier to your requent for particulars of the experiments Mr．Spooner has adrised you he carried out，at the request of Mr．Glover，rail． | last． |
| :---: |
| Mr |

Mr．Glover having been called on to tender for a line of railway in India，desired some farther con Grmatory
oridence of the adrantages of your system beyond that eridence of the adrantages of your aystem beyond that Which he had witnessed a fow weeks belore in oompany and others ；and as there mere that was considered by many at the time most important experiments omitted －Buch，for instance，as the testing two ordinary engines coupled together，whose combined power and weight should be equal to or abont that of the＂Little Wonder＂ －wo deemed it expedient to retarn to Port Madoc，and ferred to had also been omitted by the Russian Com－ mission，as shown in the printed account of their experiments．
With the exception of Colonel Anderson，of Kattiwar， and Monsiear Barossa，of Brazil，मo one vas advised of our intentions，as we desired，if convenient and agreeable to Mr．Spooner，to leisurely carry out the experiments ourselves with as little inconvenience as
possible to him．You will andertand，therefore，Why possible to him．You will anderstand，therefore，why ou were not informed of our intentions，
At first Mr．Spooner was of opinion that such a trial was unnecessary，as previons experiments with the single engines had established the fact that two of them were not equal to one of yours．Bat this，after all，I
told him was only an opinion，and we considered it told him was only an opinion，and we considered it fould be more satisfactory，having doalt with simple closed－if it proved Mr matter，sind soe what it dis－ mach the better for the Fairlie engine．Bat we wanted the facts，and Mr．Sponner very kindly consentod that the trial should be made the following day if sufflcient loaded waggons conld be got together．It tarned ont next day that a suflicient namber coald not be had，con－
sequently eight empty waggons were added to the sequently eight empty waggons were added to the train Wank ap a load approximating to that of the＂Little Wonder＂on the 16th Jane．
Unfortanately，M．Barossa，who was very anxions to see and report the trials to his Government，was at of the trials C 號 with Mr．John Fowler and Mr．Rendell Madoc，and on Mr Sprands．Rendel，arrived at Por from examining the line，these gentlemen attended the oxperiments，which took place as follows ：－
Experiment No．1．－This was made with the＂Little Giant＂and＂Welsh Pony＂coapled togethar and at tached to a train made up as follown－

75 loaded slate tracks weighing ．．．．．．．．．．．．．．． 18818 8 empty slate tracks weighing ．．． 10
1 0_{0} 189142
＂Little Giant Tons 0
Tender …．． 10
Tender
2280
Gross load
21222
Both ongines startod from noar the bridge at Port Madoc at 4.62 p．m．，with the deam pressure in each at
1501 lb ．The weather whe vory favourable，being wem and dry．
Both engines slipped much at atarting，but on sand－ ing ine or six yards of rails they both went ofl well．At the middle of the embankment the＂Little Giant＇s＂ pressare was 1601b，then it dropped to 1651 b ．，and roso radually increased until the two engines were puL
up by the load, when it atood at 1651b. Tho "Welsh Pony'a" pressure fell to 142 lb . at the far ond of the embankwont, and to 1401b. at the Weighhouse, then a little beyond it rose to 144lb., and increased to 1501b., at Which it atood when the two engines were palled np by the load. The speed of the train ineressed to the
far end of the embankment, then gradually diminished ar end of the embankment, then gradually diminished Thas on the incline of 1 in 85.65 both engines began to ilip, and alippod requanty over this and the next two pralled up by the load about 50 yards on the Port Madoc pulled up by the load about so yard.
Gide of the Memfodd Gaie crossing.
The distance ran trom the Port station was 1 mile 5 farlongs and 8 chains (nearly one mile of this distance being over the Traetamar embanameat, which is perfectly straight and nearly level), and the time occupiod was 12 minates,
of over $8 \&$ miles an hour.
Everything was done that could possibly be done to get the ntmost power out of these two engines; both were in good order, and their fres were strong and clear at giarling, and it will be seen the boiler preserures were ren the engines made stea opon, the engines made steam fast, whist their speed
alackened on the inclines, and some time before they were palled up thoy were enveloped in clouds of steam. The rain wab the then atteched to the train in place of the "Giant" and " Pony."
Expgranert No. 2.-The train not hering been shanted far enough down the line below the station and the rails theres atood opposite the wator tank, and the rails there being always wot and greasy, she link broke about twenty waggons from the front ; and at the second, another of the adjoining waggon; after which, on annding nix or seren yarda of rail, she made an eacy and good atart, and rapidly incraased in spoed until boyond the curro at thp far end of the embank. ment, when she gradually alackened over the inclines of 1 in 8566 and 1 in 100 to a rato of about 10 miles an hour, at which speed she passed the point where the others were palled up on the gradiont of 1 in 90.51 , and went half a milo beyond, continning to do her work well. At this stage it was quito apparent that the engine Spooner akking Mr. Fo ler if he wished to proceed on orther, the latter expressed himself satisited, and at his instance the engine was stoppod.
Her stesm prescure on starting was 1601b. ; it rose to 162ib. and toll to 1581 l . at the aignal post on the emat far end of ombankment, to 167 lb . at weighhouse, fel to 1601 lb . at the gate crosing, to 157lb. at Recond gate crossing, to 1551 l . at signal poot, then 1531 b . a little beyond, and roee to 1551 b ., at which it stood when the engine was stopped. The start was made at 5.45 p.m., and the atoppage at $5^{\circ} 55$ p.m. The distanoe ran was 2 milea 1 farlong and 8 chhing, at an avarage rato of 18 miles an hour. The Ares were not so frequently toked as those of the other engines.
When the asgine was stopped, a conversation took place as to Thother it conld atart the train from ite marting to me that he did not think the engine conld Bo it, Mr. Spooner was alked to try it. Meantime, the river, concluding that the oxperiment Meantime, the baring only to retarn to the Port, lowered the fres, and ullowed the pressare to fall to 140 lb ., when the ordor to ko a-head was given; and this being observed, it was decided to raise the pressure to that at which it stood When the engine was stopped. The rails were sanded or five or aix yarda, and with the gange atanding at 1601b. a good and oacy start wat made, and at an intopped, at Mr. Fowler's request, the oxperiment being antigfactory.
When atopped on the Arat ran, the engine was at the chains, and as the henvier gradient of 1 in 82.71 was within 7 or 8 yards, her seoond start was practically made on that inaline, and on it she attained a apeed topped, the gange then indicating a pressure of when For the frat second or so after atarting she slipped three times, with one-fourth of the train still undor the brako, after which she again alipped twice, bat mozi anay earily, as atated, at an increasing opeed.
Such wero the resulte of the trinls between the ordinary engines and your double-bogie ongine, and they prove andoabtedly that the doable-b ogie ongine, al. of the "Giant" and "Pony," and with a steam force at the rails of about 6 per cent. less in the "Wonder" than in the "Giant " and "Pony," that there is evidontly a very great difference in favour of the doablebogie engine over ordinary engines; and from what Mr. Spooner, Mr. Roberts (of the Brecon line), and Captain Laokralt (of the Bary Port line), affirm, from their experience, there is a vory considorable saving in fuel.
Now, how such great differences arise I cannot caving, both in ma prepared to admit there maat be absence of fange friction from the bogies, and of oscil lation, which increanes so mach (es proved by the ex periments of M. de Weber) the normal lond on ordinary locomotive wheels; but whence comes the con-
are as yet ablo to fathom.-I am, dear air, rour faithfally,
R. F. Fairlio, Eaq., Wentminster
G. Allan.

ELECTRICAL BPARKS.

[3866.] -" SigMA" is, or affects to be, angry with me or not having correotly noderstood his remarks: per hape becanse I did not remad them with the close attention he thinks they deserve, bat possibly because he did not express himself so clearly as he would have done had he thought more of explaining what he meant and less of showing that somebody else was mistaken. From the same canse, apparently, he has again at p. 667, loft his menning obscare, at least to me. I do not clearly understand Whather he means to deny Angor thinty of gas being ighed entionally excited, or a dior, the eleotricity being unin suggested explanation of the phenomenon. If the former, he places me in the dilomma of either dispating his infallibility or of doabting the truthfulness of my informant ; and as she is a pretty young lady, and he may be, for anything I know, a crusty old bachelor, I cannot hesitate which to do. It he means only to dispute my attemptod explanation of the mode in which I imagined that the clectricity had been excited-namely, by friction of a very dry shoe agninst a very dry carpet, he may be right, though ne other probable explanation occura to me, and it does not seem to me impossible that in a more dry air, which would carry away electricity of tonsion enough to light gas might be thus excited.
He is so kind as to warn me of the danger of trying to rab eparks either out of a cat or out of "Sigman." do not think he will try, and am sure he will not suocoed in riling

Primo.

MISTLETOE BERRIES.

[3867.]-Sncor I replied to qy. 103s6, about mistlotoo berries, I have received a great number of letters, asking for berries, and how, when, and whore to plant hem, bat 1 oould not spare the time to answer them by poat, so I hope the writers will not think me ankind in will reply to Msorinic. Firat the name, Viscum abbum, from the Latin viscus, olammy, on account of the sticky natare of the berrios. This may be considered the only trae parabitical plant indigenous to Britain, as at no period of its exintence does it derive any nourishment from the soil, like Orobanch, or from decayed bark or wood, like certain fungi and other Epiphytes. Treos on which it growe here : apple, hawthorn, lime, maple, poplar, mountain ash, and noacia. Sitastion: the hail or near anning soen on trees growing in is found on the rides of the itreams, but some ievation of 600ft. or more above the lawo almost every conceivable position on trees, ander the branches, or on the top, and on branches the size of one's inger, to some as large as a man's body. One may frequantly see a namber of little plants growing in a crevioe, but more often some stack on the smoothest parts of the bark, where, for the firot part of their oxistonoo, they look like little warts ; but aftor a time, zay twelve months, the Arst learen are formod, they are comewhat like the seed-leaves of the cucumber in shape. The soede may be stack on the trees in oither of the frat five months in the year, and should be placed on live, olean, healthy bark, as they will not grow on decayed bark, as has been atated by some writera. Plant high enough to be out of the reaoh of cattle, as it is aila by some farmora to cause sbortion in cown. Thero are the en and fomaie plants; sometimes both are loand only males, and another only femalos; sometimes as many as twenty bushes are seen growing on one apple froe, of varions sizen, from 1ft. to 5 IL. in diamotar. I seo no reason why it should not grow on many other trees besides those mentioned above, soeing it thrives on such dissimilar ones. Why one correspondent has ailed to raise a single plant from many handreds of soeds planted, is a mystory; no doabt birds would pick them ont, but one wonld expect a few out of so great a number to escape them. Where birds are suspected of taking the seeds, a little matting mas be tied over for protoction. I think it would bo better to plant the sanny aspects.
R. Grexs.

A PLEA FOR HOUSE PLANTS.

[3568.]-Thovg " L. S. F.", (lettor 8792, p. 668) is quite correct in maintaining that plants in houses improve the air, I much doabt the possibility of having oo many in any dwalling as to produce any appreneither do I agree with "L. S. S. F." in attributing the ill offeet of close air wholly or chiefly to the excess of carbonic acid, though the proportion of that is not a bad measure of the degree of closeness. I believe the injury is almost entirely caused by that which certainly prodaces the feeling of cloneness, the organic mattor contained in pulmonary and cataneons perspiration. When the watery rapour, with the organic mattor combined with it or carried by it in a close room, is condensed with cold, the feeling of its closeness is greatly diminished, withont any dimination of the carbonic acid, and if a larger proportion of that acid than is ever found in intabited rooms be mixed with air, it prodaces no app
the solidif F." probzbly meant to say that carbon is ife, and wrote principle of most subatances possessing inadrertently of conrse, that carbon is the solidifsing principle of all enbstances possessing life. He meant
of most regetable substances, not remembering a he momont that our bones, the most solid parts of our bndy, are so because of the phosphate and ca:
bonate of lime they contain, and that some, bot bonate of lime they connain, and that some, both animal and vegetable living sabstancen, are renderet?
rigid by silica, and by other matter than carbon. rigid by silica, and by other matter than carbon.
Though plants give out carbonic acid at night, the quantity is too small to bo injurions.

VOICANIC MOUNTAINS V.-bOILING FOUN TAINS AND LAKES.-UNDERGROUND SOUNDS
[3869.]-Ir the eraptions of mad volcanose, spoket in tho former letter 3794, p. 668, Vol Xi, ver, sereral instances in which there aro thrown ap boiling waters, that are not at all interminglod with mad but in whioh the water is either pare or impregnated with some mineral which it holds in perfeot solation. Of this natare are the Gersers of Iceland and Californiz as mentioned in letter 8625, No. 361, p. 585 . In New the boiling wator issaing forth not in intermittent jets, as in the Geysers, but in perpetal fowing eprinzs, org point; these mpringe sud lakes are to be found as Rotomahana There are several basins raiced, oze bore the other, and strange, all higher than the large lake ; the highest is of an oval form, and about 250 ft . in circumforence; it is filled from an opening at the height of aboat looft. above the level of the lower lakes. At various stagea below this upper basin are numeroas解解 springs, from which several similar basins are Led, boiling hot, giving forth with a hissing noise volumes of white vapour. These wateri are richly impregnsted with carbonate of lime, which has formod all roand the margins of the bacins beantifal incrastations of snowy marginass. The sand round the lakes is very warm on oth banks of the river Waikato ; sleo in this neigh. bourhood are found nameroas basins fall of boiling mud or alime, which oannot be approached sare with extrome care, owing to the moltness and slippariness of the soil. The largest of theese basins is of an oral form. 14 ft . long by $8 \mathrm{8t}$. Wide, and about as much in dopth; it contains hot mud of a bright red colour, being strongly imprognated with oxide of iron; large viscous babbles are continually rising to the top, and on burating they emita fetid salpharons amell, and in many instances are nearly skin to those of a mad voloano. The anderground soandings produced by volcanio forces are rery remarkable. For the most part these are the prelades either of shocks of earthquakes or of yolcanic oruptions. Those for monthe preceded the aphearal of tho volcano of Jorallo (or Jorallo Monament).
Don Podro di Jorullo was a Mexican gentleman, who lired sboat the middle of the last centary; his residence Was aboat ninoty miles from the coast of the Paciic yearn, weatward or anexico. In the berground ramblings were heard, and requent shakings of the ground, which lasted fally two months, and then restod till September 28, when louder rumblings, like those of thander, were heard, which cansed the Indian servants to flee to the moantains. Next morning they sam that an imamense tract of land had beon upheared fally throe and a half miles square. The uphearal assomed the shape of an infated bladdar. At the edges this singular aloration rises onily a bout 89ft. above the level of the plain, bu wards the centre it swells ap to 524ft. above the original level. At this oraption thick clonde of ashes rose intw the air, illaminated by glowing fres bonesth, and the surface of the ground seemed to awell into billowe like those of a tempeatuons sea. Into the rast barniag chass into contect bjections wero kro increased the rialence of the eraptions; it was thrown into steam with explo. sive force; great quantities of mud and balls of basalt were ejectod. On the saricees of the swollen mad were height, and sending forth steam to heights varying from 20tt. to 80 ft. Thore are other cones, particularly one, which is $1,600 f$. high ; this constitates the volcano Jorallo.
The crater of this mountain (or cone) gent forth rast timen or moiten lara, and it still continues. han over its past history. About a month before the great mad eraption from Tangaaragua, ou the 4 th of Fobruary, 1797, there proceeded from the interior would occur suddenly. They were hoard by Antonio Pineda, the rataralist, who was there at the time, and they led him to foretell the approach of some greai

It is stated by Hamboldt that on the grasey plains Calabose, on the banks of the Rio Apare, a tribatarg of Orinool, there were heard ny any shaking of the grouna, whil the cratar of Morne Garon in the island of St. Vincent, at the dietence o no less than 632 miles. There have, nevortheless, been instances of the existence of such anderground noised vithoat their having been followed eithor by an earth quake, by a volcanic eraption, or any other outran appearance whatever. One of the most ramerkable cases of this kind is that mentioned by Hamboldt as having ocourred at Gaanaranto, in Miexico, 2 moantsin city, nituated far from any active volcano. He states that noises began on the 9th of Janaary, 1784, and very loud nor frequent, bat from the 15 th to the 16 th ol

REPLIES TO QUERIES.

- In their answers, Correspondents are respectfully requested to mention, in ea
and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat draw. inge for illustration on separate pieces of paper. 2 Put titles to queries, and when answering queries put the numbers as woll as the titles of the queries to which the queries, or replies. 4. Commeroialletters, or queries, or replies, are not insorted. S. No question asking for educational or coientifo information is answored throngh the post. 6. Letters sent to correspondents, nnder cover to the Editor, are not forwarded; and
[10578.]-Alezandra Palace Organ (U.Q.).I send, as promised, specilication of the orgen ereoted by Mr.
Grigat Organ

The compase of the manusila is C C to $\mathbf{A}, 58$ notes; and of the pedal, C C C to F, 21 octares, 80 notes. There are 6 pnenmatic pistons to each clavier, which arrange in fixed selections, the stops of each organ by the pressure of the inger. There are also several pedals which control the admisaion of wind to the various organs The wind is derived from bellows placed in the bese ment ; two of these are blown by ateam-engine of welvo horse-power, snd supply ordinary pressures of wind. Another bollows is of prodigious strength, and blown, in connection with sacaum apparstua, by another engine of eight horse-power. From these bellows the wind passes to 24 reservairs placed in olose proximity to the organs they are to anpply. The pneu matio-lever is applied both to the manuals and pedal as also, upon a new principle, to the draw-atop action -E. F. Conrata.
[10816.]-Oleate of Eoda. -In reply to "E. W. B., Peckham," I beg to inform him I hare a t last fonnd a chemist who professes to keep it in stock. I think apon analytis it will prove to be olive oil noap. Many
thanks to "E. W. B. for his kindness.-SoAp BubBLe.
[10816.]-Cream of Tartar (U. Q.).-Take grape aice and let it ferment, and cream of tartar will be loft in the form of an argol. Dissolve the argol in hot water, to which add oharcoal to take up the colouring mattor, then by boiling and filtering a clear colourless olation is obtained, irom which, on cooling, the aream of tartar soparates in the form of orystals.-GIG-LuMPB
[10675.] - Colowing for Outside Work (U. Q.) -To mix stone colonr for ontside work, grind whiteload with turps, and prit patent dryers to it.-H. B. E.
[10884.]-Iscquering Brasswork (J. Q.).1gt. Why doesn't "C.H.R." follow ont the directions already given? 2nd. Carriage wort is. not laoquered rith the erception of a fow ocoasional armorial beax nge, such as hammer-cloth creata, to.-J. A.
[10602.]-Tarra-Cotta (U. Q.).-The first process in ordinary proparation is that of grinding the olay used for the purpose, for which the best are the clays of Deronshire, and the brown and blue clays of Dorsetshire ; it is then submitted to the mill in the same oondition as taken from the pit. From the mill it is romoved and placed in ressels, Where it is aubjected to the action of water, alter which it is baked. It masy then be mixed with silica in various proportions according to the artioles it is intended to form. This silica is made by grindiag flint or coprolites, or it may be a mixture of sand used. If the preparation be required for fine work, it is then that washing and evaporation are necessary, but if only for common articles, the proportions of the compound may be mixed in the shape of dry powder, after which a small quantity of water is added, and then the whole may be kneaded or pagged in a mill. As different clays contract in the kild, the mixture mast be complete, or from shrinkage the article will certainly crack. After the clay, be it fine or coarse, has been taken from the slip, kiln, or the mill, it should not be nsed for four days. It has now two more operations to undergo before it is perfectly ready for use. The first is to beat it with an iron bar. The second is undertaken for the purpose of expelling the air that may have formed a lodgement. This is called wedging, and is performed by cutting the clay in pieces by means of a wire, and then throwing the several portions with force on the
mass. Any sculptor might now model a figure in this mass. Any sculptor might now model a figure in this drying. If an ornamental work be distorted in drying, it is destroyed, but this is not so with very common
articles, which may be dressed by a carver so as still to
 to sen
be available. The shrinkage in drying is about threequarters of an inch to a foot, in firing three-eighths of an inch to half an inch in the foot. The consumption of coal is enormons, averaging one ton and a half to each ton of ware to be fired, some of which require three days at a white heat. The revival of terra-cotta mannfecture in England is due to the esex," the Miases Conde, of Lyme Regis, who, nearls ninety years ago, constructed an eatablishment in the vicinity of Lambeth, which by their persoverance and good management attained s degree of calobrity. I have acen some remerkable designs in terra-ootta, nuch as the ornamented columns in the refreshmentrooms at South Kensington. They, I believe, were executed by Messrs. Blanchard, who have carried terra.
cotta manufacture to a degree of excellence never dreamed of by early terra-cotta workers. They patented a fire-proot ataircase, the great merit of which is that it does not orack and break like stone under the combined ordeal of fire and water.-H. B. E.
[10754.]- Velocipedes.-I am now working out one of the thousand and one designs for motive carriages, which I planned when the "velooe manis" was raging, and I thought, on reading "W. R. 8.'g" reply working upon the asme principlo ; mine in trioycle dovoid of oranky, embodying both power and apeed, and just the thing to meet the requirements of Mr. Browett's friend. "A. A. M."" page 619, states that he inds the forward push with the leg to be the best motion for velcoipedes; thill I rather doabt, it may be auperior to that used on the common bicycle; but has he ever tried the old-fashioned vertical tread? I think if he does try it, he will find it muperior as regards power, if not so easy a motion for the legs. I remember, when a youngitar at school, not hall a score years ago, in that locality four-wheolers with vartical tread were in general use, and I have no doubt they are 50 now which for apeed would put to shame the modern two wheeler; and, indeed, I have seen ite ancestor the "dandy-horse" propelled at a greater speed, which affair, with its rapture-producing and awkward kick. ing motion, I could never manage nor appreciate. If Mr. Browett's friend wishes to have a crank velocipede, or rather mannmotive carriage, allow me to tell him that for ease and power combined a rowing motion is far the best. Both the nteering and propalsion of the machine can be done with the hands, and a much longer crank can be nsed, if necesgary, than by any other motion. By a forward puish, I suppose "A. A. M." mesns a horizontal mokion, the same as recommended by Mr. H. Reveley in one of the back volumes of sketoh.-Frederic W. Shearing.
[10769.]-Food for Rabbits.-Il "Rusticus" will take the tronble to well dif and manure a fow squar yards of land, and wow olicory in drins about a 100 It may be cut evory month or six woeks during the summer.-Quracta.
[10807.]-Gearing Wagson Wheels. - Many thanks to "Wheolwright" for answering my query ; but I have one more question to ask him, and that is-if he had a woodep armed axle to put in, how would he line it out-by one line, as some do it, and get the hollow and length by same line? Does the height of wheols make any dirference to hollow and length of bed ? Sapposing he had to put two now axies to a waggon, would h have the front axle the same length as the hind ones, to make them look straight on the fronts and track the same? A bketch would oblige. - Young Wheelwbight
[10841.]-Radius of Surface of Object-Glass -I am much obliged to Mr. H. T. Vivian (p. 670, Vol XIV.), and for his former letter as to finding the two interior surfaces, which was just the formuls I was short of. He has kindly given me in his last letter all the four surfaces, but I would have been glad if he had just stated the intended focns: is it for 70in., or less? I believe now that the finding of the dispersive ratio would not have boen a donbtful matter if I had used a properly corrected eyepiece, not a simple lens. Would Mr. H. T. Vivian advise me to go over this all im. portant matter again, or is he satisfled, with what 1 have stated, the refractive index is correct? I am in doubt abont another matter. Sir J. Herschel says the foci of the lenses in the achromatic eyepiece onght to is a great difference in these pro portions.-W. H. Cash.
[10855.]-Pedal.-I here with inclose sketches of ra. scale $\frac{3}{3} \mathrm{in}$. to the foot; they should be made of lin. birch. and the sharps shonld rise above the naturals. The pin on which the pedals work can old stair rods about that size two will be required for each note, one at the back and under the stool, and ond working in a mortice in the front end of the pedal, jus under the thumping rai of tin, iron spring wire. If nformation, I will endeavonr
[10863.] - Sulphuric Acid.-Erratum. - To 20) must be burnt weekly.-George E. Davis.
[10871.]-Past Transits of Venus.-In further reply to Mr. Lowdon's inquiry as to the transit of Vonus on Jnne 6, 1761, I find from the second vol. of Browstar's "Ferguson's Astronomy," that the sun's place was Greenvieh by Gemini. The traner Royal, Dr. Blies ; in London by Mr. Short; at Hackney by Measra. Ellioot \& Dollond; in Spital-equare, London, by Mr. Canton; at Liskeard, in Cornwall, by the Rev. Richard Haydon, and by other pertons at rarions pleoes. It sppears that Mr. 8hort toots "an incredible deal of pains in deducing the quantity of the sun's parallax
from the best of those observations which were made both in Britain and abroad; and finds it to have been $8 \cdot 62^{\prime \prime}$ on the day of the transit, when the earth; and nearly at his greatest distarce from this mesn disennsequently $8.65^{\prime \prime}$ when the sun is at his mesn dis tnnce from the oarth." (P. 115.) "And longitude 1 h .12 m . vatory, latitnde 69 gith, the whole of the transit was risible ; the total ingress was observed by Mr. Wargentin to be at 8 h .39 m . 23 s . is the mornige the whole uration between the two internal conlack, asd 118.) that place, was 5h. 6om. ©s. Elementa are given for prose and probably bo intethey woald occupy a large epace, and probavises Msresting to bat few of the reand them, but should Mr. chanic, I do not now sed his addrese be oommaniLowdon wish for them, and his adiress be command cated to me, I shall have pleasare in forware the second only which has been observed. The first one known to have been observed took place in December, when Mr. Horrox observed if ait Hoo, n Manchester. C. W. M.
[10873.]-Tooth Stopping.- Your corresponden "Dentiste" is at fanlt in stating that a good amalgam for the above purpose should consist of equal parts of silvarta, tin loal $2 \neq$ parte, but the superior amalgams 4. parta, tin les. Chemically pare mercary should be nsed ; that which is commonly sold as pare is known to contain lead, antimony, \&c., which impurities cannot be separated by distillation, and if nsed quilo alcer the compound, and carse it to become discolonred.
[10897.]-Boilers. - It is impossible to answer Comjee" exactly in the manner he deeires. Which is the best boiler depends entirely art what it he ases the to do ; bat "Comje" cannot ge wrong ing of piping, ordinary "zaddle-back" for moderate eng rind the "tabular" where the piping is reckoned by and the "tabular" where the piping is quack pills, " miles." There are as mand their advantages as described by the vendors require to
[10927.]-Soalskin.-"Watts" mast get nome mahogany samdasi from the seam perfetly dry, he must plenty of this sifted fine, and perfectly dry, he must soundly rab his sealigin for two or the ap ; then bent tub or pan, werking hard with sleeves up ; then beal clean probably sweet ; but if not, he mast take charcoal, roduce it to powder, and put the skin in a box witha layer of this an inch or moore thick, and weeks, over it on both sides of skin; pat it by unt as before. then take it out and cleanim own secret for deodorising This latter was
[10939.]-sealakin.-How to distingaish, quotha? Not so ones ! But nil desperandum. The skine you Not know by their kize, 3 ft . to 4 ft . long, and two fin hales in the aides. In pieces it may bet by the shining silky appearance and golden brown colour of the fu ander the dyed sarface, to be peen by blowing into it all other furs excepting sea-otter haring a aro dred look underneath. The furs most ith more placked otter, and sea-otter paps, Dyed natria and beaver onderneath. Dyed musquash ar, and brown and blue andernean. Dy it also springs is too shining on surface, wrong wiy. Dyed sheared rabbit is much too harsh to be mistaken for seal, and dyed mole, though beantifully soft, may be known by its bmall
Furaikr.
[10956.]-Musical Box.-If "n Trovatore'口" [10956.]-Musical Box.- must get some watch masical-box is sire, and pin a small length ander the hairapring wire toott, and bend it form a curve of half-circle like a D laid thas θ, but do not let it quite tonch the point of tooth nor stand farther out, or it may be dramn ap with the pis, bat so that the pin in roller win notes in damper first. If a small box (and for lesser notes
large ones) he mast use a quill eplit no broader than the tooth point acraped thin, and cemented to the tooth with shellac, dissolved in spirits of wine or wood naphtha, but do not cement it to the
[10966.]-Doubling Frames.-I quite agree with \triangle New Correspondent" in What he sass on p. 646 . Vol. XIV., about doabling 40 and 60 from the con, but I am doabling 80 and 100 , and they are costine 1 igin. breaking at the none of the cop. The rollers ane per diametor, The spindle makes 4,080 per minate, and minate. The spinal of snarling betwoen the rollers there is a great deal of snaring berwoen the bobbins. and the spindlo. I hate plenty or the bobbing and gets nearly to the boclor, and when and breaks down. An

10982.]-Rook Inecriptions.-A fow years ago Mr. F. Good, the well-mown pabiler places risited the went to Syria, and amongi other place the Wady diacriot of Sinai, and photographose photographs Hokattab (the Written Valley). Those phon intereat are remarkablo, not anone for the peoneripts of, bat of the locality and objects thoy are raing, and general oven for thel artich
taken of English scenery, where the manipalator has or oan have every hetp and convenience of chems from the mechanical appliance, equalling those in defnition, parity, and brilliancy. They have been issued as stereograms by Mr. Good; amongst them are slides on the written rocks, and the most remarkable of the "wadss" (valleys or dry watercoubses). I sug or the to Mr. Good to employ his valuable negatives for the prodaction of lantern transparencies, and and he has have not seen them, I have reason to think he ha adopted my recommendation.-EDWARD B. FEN Hands.
[10996.]-How to use a Book without friend may -The misiortane ming very handy with his other limbs happily spared-not that 1 am going to suggest that happhoald make an exhibition as I have seen-riz. riting fring off a gun, and ahaving himself with his rriting, aring oif a gun, on his sake I fancied mysell remaining limus. arms, and thought, now what shall minus The English Mecannic lay before me, and managed to turn over the loaves quite easily with my lips, asing the upper lip for the upper corner, and the lower lip for the lower corner of the sheet. Here ne mechine is required, or wbuld get out of order, and it in mo most natural way as far as 1 can see, for ha can ho m his paper or book quite independent of his frienda and he will find many other thinge that he cen do pro bably mach quicker than could be suggested to him for is not necessity the mother of inventing for bending
[11009.]-Bending Tires.-Machispeared in back tires have appeared in band
rolumes. (8ee pp. 660 and
(81) Thetoh 681, Yol. X.) I The alyed by my pater's workmen, when the mach out of repair. It is used was ole and light-tires can be bent very quick by it. A is the tire, C is an old the size required it is no disadvantage), B is a horse riction in both cases works between steel and raby stone. He might just as well say "J. O." Woold do well not to oil the stail holes if to evers practical man that when oil thickens on many parts of a watch it interieres with its correct time. Tho best remedy, I find, for that is to have it removed and renewed with fresh oil. Camperil.
[11068.]-Moth v. Fur.-As some replies have appeared, allow me to affirm that I ofton take in fure with moths in, although protected by pepper, camphor. Rassian leather, colnoynth, or bitter apple, cay enne. cedar, Keating's powder, dec. Now preventives to motile must be either powerfal poisons or pangent volatile oils, or spirits, and these, though answering very in in a small way in private houses, would never do inaive shop, for if one uses the former, at arsenic or it ill man sublimate, in sufficient quantity to be effective, it woths: certainly destroy him as my little irion singentine, of and if the lattar, as parafin, creosoto, tat of the shop. and make the furs nnsaleable. Furriers keep their and whe hard work, as follows:-The furs are aid on table, and rapidly beaten over with a cane in laid on a hair is seen to fly, the each hand, a combed straight, and they are put away. This is the summer This the hotter the weather, the harder wo work. Bat practice brings dexterity (blisters on hands frat), and prock well kept is always half sold. In this way, and in this way only, I can assure "One" I do, and he may sole. - Practioal Funrier.
[11098.] - Champagne Stains.-Try benzine collas, which m
trifle.-H. B. E.
[11107.]-Table of Dates.-What Mr. W. R. Birt p. 674, Vol. XIV.) Wsnts could easily be supplied on the same principle as the table I gave before-that is for the number of days from any the of fire the same time in any other year, whilst the frat table would supplement the other for finding the nu
days from any one day to any other.
[11118.]- Weights of Wind in the Organ. The nsual method of obtaining varions praking the wind from ond pair of la head pressure reservoir, and feeders to supply the severallighter weights, which will, of conrse, be first inflated in the order of pressure from of conrse, bers. In each of the lighter reservoirs there light to heavy. In each of thed to the top board, so is a selfac the bellows is fally distendod, this valve is that an that no more wind can enter from the heavy
 pressare androir is kept fall so long as there is any lightest rezervoir is zept is not absolutely nocessary to Wind in the hearier, tranks, bat they are preferable, i use ebpandy axactly over one another as the win the bellows from the top of one reservoir to th can go dire other. I hope that this explanation will bottom of the other. "W.," if not, I will send him a be understood by "W.," if n. F. Conastr.
[11120.]-A Question of Sight. - I am no astro oiner, and therefore, perbaps, I do not understand "A. J.V.G.'s" supposition on p. 674, Vol. XIV., to my sun being equivalent to a laminous point, bais, being mind it wonld seem, on the contrary, that the san, berally considerably larger than the carth, wergent cone sarthrow a shadow in the form of a con
[11120.]-A Question of Sight.-Wearetold that Charl in a catch question to the Royal Societrial its early days, and "E. L. G." recently came to gre over quoting that event erroneoorly. give scamp, and of patting an fisdom would be exercised pose of seeing how much he has succeeded in illastratabont it. fact that there are a number of people always ing the fact that there areas serionsly, and to take a joke or ironical expression as an argument worthy joke or demolition. Two colnmns of close print an a serions demolition.
tributed by ten people (inclading one diagram) orer a tribated by ten peoplion which wonld be reasonable if asised by a chill question wears of age I The astute "E. L. G." ev.J.V. G." into the trap, and proceeds to demolish poor act that the in pure anconsciousness of question. And then J. ater was langhing all about the spaco betwon the Barwick, who tell us whether the atom of hydrogen is stars, and that of carbon square, nowialorms us hat round, and casts the earth's shadow on the sun the moon learn. I have seen the eleotric light cast a wo ive from the flame of a candle, and as action and shadow from the fal" it may be that the candle also produced a shadow of the electric light-cartainly I dia duced a shadow of in nothing. However, we may disregard such a mare detail as the relative photometric disregies of sun and moon; bat as it is now obrious, as Mr. Barvick says so, that "uight cas hardy bo deemed ribration," it will be interesting to learn the process by which the earth's shadow is cast by the moontar's the san during the eolipse." I really wish me how to devil would append a
[11128.] - Iantern Pinions.-"Tabal Kein"is not ight (see his ansurer p. 21, Vol. XV.) in seying that the pitch of the "pins or trassles" is the diatanoe of hith centres: though he is right in saying that which thes should be the same as that of tor simplicits; if their gear. Take a pinion of of pins $\begin{aligned} & \text { gitch were the distanco of centras, than the cir- }\end{aligned}$ pholographs is the eame in regard to the ruby pin and fork ? The

Cnmference of the pitch line wonld be six times thist distance; whereas it should be 31416×2 or $6.24: 2$, or aboat 5 per cent. more for such a small pinion. For larger oned the diecrepancy wonld be less; but then lanterns are made commonly with only 6 pins, and not frequeutly with more than 10 , so that the error mast
not be overlooked, particularly as they tend to act not be overlooked, particularly as they tend to act
before the line of centres, or to jam, if pat too close together.-J. K. P.
[11129.]-Making Swimming Bath.-If it is realls clay in which yon are to cut, you could not be in better cac. Throw ont the clas the siza sou want, let the sides have an inclination of 1 to 1 ; then, with any
kind of penn stick, which is heary enongh, well beat kind of penn stick, which is heary enonch, well beat the sides and fottom, a piece of rain water pipe with tho end nilcd ap will do; it mnst be thoronghy
rammed, never mivd the ronghness, for the next rammed, never mind the ronghness, for the next
Operation is to cast in some of the exrarated clay, operation is to cast in some of which hns heen cat into small pieces with the spade, Which hns been cat into small pieces with the spade, watered, and trod down till you get a thickness of 9in., Famming it in sin. layers. This method will succeed In any soil. 1iin. or gin. paring stonea nicoly jointed, in any sol. 1hin. or thin. paring stonet nicoly jointer, the joints can be pointed with cement. Flooring tiles the joints can be pointed with cement. Flooring tile
Thich are from 8in. to $12 \mathrm{in} .$. equaie woald also do, or the rammed clay can be faced with hari barned bricks set in hydranlic lime, or nay good cement; if rongh set in hydranic lime, or nny good cement; if rongh
bricks are ased they conld be plastered with ground bricks are nsed they conld be plastered with ground
Southam lime, which would make a clean whito waterSoutham lime, Whic
tight lining-S.
[11188.] - Violin.-It is impossible to answer "J. W. L." in toto ; and as for notations he had bettor begin as he intends to end, or rather must end-viz., in the old sctation. By all meanas get a good rioliz, and never change it, but make it your friend. To be short, I advise the parcharo of "Campagnoli's School for the Violin;" it is divided into forr parts, 78. each, and the syste
[11154.] Whellaw's Now Medical Dis-Covery.-This is, nodoubt,the work called "Whitlaw's
Niew Medical Discovery," and if so, is a description of a new method of treating disease by partable vapoar haths, medicated with different herbs. of which it has likewise a copions descriptinn, along with some acconnt of the Linnuran system of bintany. I read it twentyfive years agn, and it appeared to me to be an adapta. tion of thn Thnmpponian or botanic practics of medicine, in which herbs and vapori baths held so important a place. The anthor professed to bave travelled much in America, the birthplace of the Thompsouian practice; the smpposition is, therofore, not withont pro-
balility.-F. P.
[11158.1-Ermine Fur.-You cannot entirely remnve the enloar. To clenn, rab it well with dry phater of Paris and flonr or fine white saw-dnat ; the forther itnprove it hy damping the sarface with benzine, and dusting ou pleate of plaster of Paris (prezine, and dusting ou pleaty of plaster of Paris (pre-
vinusly well Fashed and dried). allow it to dry, then heat out the dast with a light cano.-Practical FuraRear.
[11168.] - Wood Rods.-If "Joiner" lives near a lead pencil mannfactory, the machine usod for ronnding the pencils before cntting into lengths would suit his purpose, I think. It consists of a small lathe is passed throngh the mandril, and coming into contact rith the rapidly revolving cutter is rounded with rapidity and ease.-Rno Sicisa.
[11175.]-Cutting Mounts.-The metal maides are made of stecl, abont !in. thick, and at least in. brod, one side is bevelled of. The knife is passed aloug the bevel, while the pride is held down firm. Straight gaides for strai, Ght lines, and an outer seament of an oval for oval moants, bnt for different sizes of ovals different guides are wanted; always cat the monnt from the body-i.e., lay the gnide upon that
nortion of the monnt which you are going to ase. Tue nortion of the monnt
Welsa Saepaerd.
[11179.]-Covered Wire.-"Magpie" can get pilk and cotton corered wire at any good philosophical ingtrnanort dealer's, of many colours, and of various
thicknesses, too numerous to mention.- Limo Sicina.
[11193.]-Road Material.-It depends entirely npon the quality of the bottom-if hard, a ches will do: if solt, a layer of handpacked stones 4in. thich, \%aps with gravel, and over that a layer of stone fin. thick, broken in plan to 3in. cabes, and blind with coarse
brokend, and on to
ein. cabes and filled in with sand.
If this is to be "pitched" or pared with rranite blocks, it mar be of ent stone and cin. thick; bnt if the surface of road is not to be block pared, the hardest granite
ehould be nced and blinded with gravel, and the thickness frcm 6 in . to 9 in . Ior heary trafle. Gare must be ased to provent ruts and unequal wear.-J. H.
[11186.]-Length of Sidereal Day.-"T. H. M."

[11188.] - Arithmetic.-£19 193. 11\}a. being only s farthing of

Upon the same principle, $£ 19 \times £ 19-$

Less \&゙89 39
Am I right ?-C. R. F., Shrembbary
[11191.]-Radius and Weight of Fly•wheel. Maltiply the number of horse-power of engine br 2,0rio and diride the prodact by the square of the velocity of
the circumference of the wheel in feet per second, the the circumierence of the wheel in feet per second,
guotient is the weight of the fly-wheel in handredguotient is the weight of the ny-wheel in handrea-
weights. Thero is no fised role for finding the dinmeter, as with large engines the diameter in fect is diameter, as with arge engines the diameter in feet is
more than the nmuber of horse-power, and in small more than the n number o. J
[11191.]-Radius and Weight of Fly-Wheel. Leet per second; $\mathrm{H}=$ horse-power ; $\mathrm{D}=$ the wheel in feet per second; $\mathrm{H}=$ horse-power ; $\mathrm{D}=$ mean dia. meter of rim in feet; $N=$ number of revolations per minate; $\mathrm{P}=$ the total average pressure on piston in peight of rim in cwts. $=\frac{\mathrm{PS}}{45 \mathrm{D}}=\frac{1844 \mathrm{H}}{\mathrm{D} \mathrm{N}} . \quad \mathrm{D}=\mathrm{gtroke}$, maltiplied by 3 f or 4 generally. Sectional area of rim in inches $=\frac{11 \cdot 42 \mathrm{~W}}{\mathrm{D}}$. In corn-mills, the velocity of the periphery of the fly-wheel mast exceed the volocity of the periphery of the stones, in order to prevent algebre, he vill ranire a litto more For instance, $\frac{\mathrm{P} \text { S }}{45 \mathrm{D}}$ means $\frac{\mathrm{P} \times \mathrm{S}}{45 \times \mathrm{D}} ; \frac{1944 \mathrm{H}}{\mathrm{DN}}$ means $\frac{1344 \times \mathrm{H}}{\mathrm{D} \times \mathrm{N}^{-}}$; and $\frac{11 \cdot 42 \mathrm{~W}}{\mathrm{D}}$ means $\frac{11 \cdot 42 \times \mathrm{W}}{\mathrm{D}}$. W . Airex.
[11191.]-Radius and Weight of Fly-Wheel. -Rennie's rule for fly-wheel:-
$r=$ radins of wheel.
$p=$ pressare on cylinder.
$c=$ capacity
$c=$ capacity of boiler.
$v=$ velocity of crank-pin.
$v=$ velocity of crank.pin.
$s=$ empirical constant, varying from -002 to 00015.
$\frac{r}{p}=\frac{c}{v}=s$; this gives the required radius.
Weight $=409 \times r^{8} \times r$; this gives the weight in pounds.-S. Treynyme, Cantab.
[11191.]-Radius and Weight of Fly.Wheel. -There are many considerations to be examined into of machinery to the ie prilled. (2), viz. - (1) The kind of machinery to be impelled ; (2) the regularits of mo-
tion reqnired ; (3) the rate of expansion of the steam in the cyliuder. The radins of dr-wheel is nsnally from 3 to 5 thint of the crank. The weight of the rim is gene 3 to 51001 l to 3001 lb for each actul the rim is gene rally lioth the rate of expanaion used. The larger the diameter the less will be dead weight on the journals. Tine diameter must not excead the limit of the tensional Tue diameter must not exceed the limit of the tensional
strength of the material of which the rim is made (usnally cast iron), that it shonld not be raptared by the centrifagal force. No engine-maker of any standing wonld pata fy-wheel witha rim of the same weight to any two engines he wonld build of one power and size, if they were intended for different parposes. For instance, if for puaping, a light (comparatively) ilywheel only is necessary, jast sulticient to tarn the engine over the dead centres; for driving corn-mills and gine over tine thread, a much heavicr one, and for spinnigg illse thread, a m nuch heavicr one, and for
rolling mils, a mach heavier one, wherein should be accumulated sufficient force, that the engise or the rolls may not be retarded when the material is beiag passed through.-TUBAL KaIN.
[11192.]-Chemical.-The nitrate of potash will crystallise at a temperatare of 490° Fabr. ; the caribo-
nate at $499^{\circ} 5^{\circ}$; so, by keeping the temperature of the
 crystallise out the whole of the pitrate.-S. Tremarise, Cantab.
[11193.]-Pumps of Portable Engine.-Tho reason why the pump won't act is because it has no back pressnre valve, which is another valve fixed between the pump and boiler. Eren then the valve will maddy. We frim tanks by siphons, and up these siphons it drew a piece of indiarabber which passed the pump-valves, and lodged in the back-pressure valve, so that we had act. valves wonld n, in this instance, the pomp with urre not to be trusted at all, if the workmanship is at al defectire. The valves shonld be examined and cleaned overy two or three months. A pump with two valves can be generally started with a head of clean water but not always. Thie diticulty increases as the pump becomes smaller. I don't see the need of two hose pipes, which is wants to draw from two separate tanks wetter.-P. W. H. J.
[11199.]-Pumps of Portable Engine.-Let " Δ. C. T." Ret a small wood mallet and give the valre have got dry and expanded, which has cansed them to atick a little. Do uot make mountrins of mole hills.C. A. N.
[11193.] - Pumps of Portable Engine. From the dencription given the delivery valve leading
from the pamp to the boiler is leaky, thereby allowing from the pnmp to the boiler is leaky. hereby allowing hot water to pass back from the boiler to the pamp.
The pamps with three valves really are only two. The
in the bniler when the relief-cock is opened to prevent the feed-pump injecting water into the boiler. It is a much better plan than a pump without the stop backvalve, as tur pamp is, so to say, constantly at work,
and any sarplas water that is not required in the boiler is allowed to escape by the relief-cock, and return is allowed to escape by the relief.cock, and retarn
throngh the second or small hose back again to the throngh the second or smail hose back again to the
feed-water tank. Any pamp can have this anxiliary ietd-water tank. Any pamp can have this anxiliary
stop back valve and relief-cock attached to it and the stop back valve and ro
boiler.-TUBAL KAIN.
[11195.]-McCarter's Improvements in Con. densation.-This improvement consists principally in using oil instead of water for injection; the condensed steam sinks to the bottom of the oil, and is forced from a hole at the bottom of the condenser by
the steam from the orlinder at each stroke.-S. Tremayny, Cantab.
[11197.]-Sharpening Steel Soraper.-Should be held vertically over " oil stone," and rabbed to and face to be at right angles with the sides, and slightly race to be al right angles with the sides, and slightly the centre and rork better thon if fut Δ little trition and practice in a regalar shop will soon instruct " Excelsior."-TUBAL KAIN.
[11197.]-Sharpening Steel Scraper.-First file the scraper on the edge atraight lengthways with a fine fiat flle; then lay it fat on the bench, and with a atont bradawl kopt flat on the scraper rob hard from
one end to the other on both sides, and then the edges. one end to the other on both sides, and then the edges. -Electro.
[11197.]-Sharpening Steel Scraper.-Rab the edge of the scraper perfectly square on the oil stone, then lay it flat on the bench, and with the scraper sharpener, barnish the flat side near the cutting edge bat holding the sharpener quite fat ; then set it ap on its end with the catting edge to the right, and give one stroke up, bearing a little towards the edge you wish to make cat, tarn it over and ropeat the process on the other angle.-M. 0
[11198.]-Birch Wood.-American birch is more likely to warp than, I think, any other wood, and it will be extremely difficalt to bore such small pieces withont eplitting. I have used birch every week (more or less) for above forty years, the only way fin. pieces could be bored
lathe. - I. 0 .
[11198.]-Birch.-Some of it is straight nnd easily Worked; bome of it carly and beantifal; it is easily worked. To bore it nse a clean ontting carpenter's pin Electro.
[11200.]-Horizontal Engine.-Cylinder 1tin. diameter by 3 in . stroke, diameter of crank-shaft in. diameter of pistou-rod fin., diameter of fly-wheel $12 i n$. No ither Use either "gan metal" or cast iron that parpose melted in a kitchen fire, that parpose. Better make your partern, and go wheel
founder to hare it cast for you. The rim of may be of lead.-Tcibal Kan.
[11201.]-Lias Insect Beds.-What better work can "W. F." require than the one named by the Rer.
P. B. Brodie, M.A.? It contains eleven plates and P. B. Brodia, M.A.? It contains eleven plates and
one handred and thirty pages of letier-pross, with mach one handred and thirty pages of letier-press, with mach
information apon the sabject. Plate ll gives a section information apon the sabject. Plate 11 gives a section
of the Vale of Bristol ; Bedminster Down is one locality named-there are four beds of insect limestone feparated hy clays, total thicknoss 1 ft . 9in.; these are
 not be the best for the parpose of stady, being one of the tirst which presented itself to my notice ; there may be mavy others far better; but a note addressed to the Rer. Mr. Brodie, Rowington Vicarage, Warwickshire, donbt not, will receive every allencioa, hang myeel experiencca his kiadness in a hboral sapply of connected with this sabject. Perhaps it may be unconnected with this subject. Perhaps it may necessarr to enter more fully into Mr. Brodie's worls. necessarr to enter more fally into er. Brodies
ince "W. F." appears acenninted with it. Shonld that not be so, I will gladly assist him as far as possible. that not he so, I will g
W. Paling, Newart.
[11201.]-Lias Insect Beds.-In reply to "W. F.," the insect limestone of the lias crops out at varions parts of a tract of country comprising portions of also found in parts of Somerset and Monmouth. Insect remaina ins, but the trae "insect limestone" occurs near the base of the lower lins. I believe tho finest section to be at Clast Cliff, on the Severn. but the clif is almost inaccessible. The Garden Cliff, at Westbary-on-Severn, and Wainlode Cliff, a few miles above Gloacester, also present good sections.
Thronghont this district. wherever the lower lias orros thoat this district. Wherever the insect limetone more or less fally developed. I shall be happy to give "W. F." more detailed and local information if he will farour me with his address.-Osa.
[11318.]-Carat. - The carat used in weighing precious stones is four grains, rather lighter than troy grains ($74 \frac{1}{16}$ carat grains are equal to 72 troy grains). When quoted in relation to gold alloy it is not an absolute weight, but means the twenty-fourth part of any weight. Thas 12 carnts signices that hal the material is puro gold; i.e.. 12 parts out of 24 , the other frait of an Abyssinian tree called "Kuara."-J. A.
[11218.]-Carat.-The oxact weight of
and pearls is four grains. 2. The weight which expreases the nneness of gold. Ahe whole mans of gold is divided into 24 equal parts, and as many 2ith parte as it contains of pure metal is called gold of so many
carats. Thns gold of 18 parts of pure metal is called carats. Thns gold of 18 parts of pure metal is called gold of 18 carats. Carat from the Greek, a little horn
or pod, apd the berry of a pod. From the Greeks it is or pod, and the berry of a pod. From the Greeks it is
thought the Arsbians borrowed their karat, a weight thought the Arabians borrowed their karat, a weight
used in Mecca equal to the trenty-fourth of a denarins used in Meccs The carat in Great Britain is divided into r cornier. the French into 82 parts.-Hzryes.
[11218.]-Carat.-Originally it was the name given to the seeds of the Abyssinian coral flower, and likewise to the carob-tree seeds. Goldsmiths and asayyers divide the troy ponnd, ounce, or any other weight, into 34 parts, and call each a carat, as means of stating the proportions of pare gold contained in any alloy of gold with other metals.-Gig-Inyps.
[11216.]-Divi-Divi.-The amount of divi-divi im. ported into England for 1869 was 22,008 ? $10 n 8$; in
$1870,29,198 t$; and in 1871 , first half-gear, 15,108 . S . Treyayne, Cantab.
[11216.] - Garden Gate.-The accompanying drawing is of a lattioe work gate or door of timber. It
looks exceedingly woll executed in oak and varnished, looks exoeedingly well executed in oak and varnished,
and especially if kept as masnive as pocsible. If made of
[11219.]-Silicate of Soda or Soluble Glass. -There is something wrong in rour method of preparation. It ought not to dissolve in cold water. See those directions. Substitute calcined bones, or a mixtare of clay and whiting for the chalk, and report pro-tress.-Willay H. Hey.
[11230.]-Wheel Tires.-"Un Jenne Forgeron" gives 14 threads to the inch for the jin. and $\frac{1}{2}$ in. gaspipes, which is wrong. It is $18.75=55$ threads in 4 in . trast "Un Jeane Forgeron" is not one of those gentlemen that think enything is near enongh. Bat
remember, if a job is worth doing, do it well. Does remember, if a job is worth doing, do it well. Does
E. Fardon wish to cut them in a lathe? If so, he must E. Fardon wish to cut them in a lathe? If so, he mast
nse compound wheels. Say A into B, and D into C. ase compound wheels. D gay A into B, and D into C. whether A is geared into B or C; plece them to suit yourself. For a lathe with leading- screw of two threads the wheels are drivers (20 and 80), driven 100 and 110. For a lathe with 4 threads to the leading-screw, drivers
20 and 80 , driven 50 and 110 . The way to prove if 20 and 80 , driven 50 and 110 . The way to prove if
given wheals will cut a given thread is $4 \times 4=16$, the given wheals will cut a given thread is $4 \times 4=16$, the
number of threads in the leading.screw. 18.75 , the number of threads to cut.

18.75
 $\overline{5500}$

20 and 80 drivers.

$\overline{1100}$

4) $\overline{88000}$
5) 22000
6) $\quad 6500$

110

50 and the 110 are driven.-C. A. M.
[11221.]-Fowling Punt.-Living many years ago close to the Thames at a part where the water wan in some places very ahallow, I found it neceasary to procure a boat for my fiohing excuraions drawing little water, and which should be stifir and light. I had seon
a desoription of a fowling pant which I thought would a desoription of a fowling pant which I thougst would work and built one, which I will desoribe as woll as my memory morves me. She was abont 15ft. long by
2ft. Bin. wide, pointed at both ende, with a itat floor rining about an inch at esch end. The bottom was made of three deal planks tin. thiok, dowelled together at the edges with iron pins ; the sides ware each of one plank, also deal, 1lin. wide.in the middle and 10 in . at each ond. Across the bottom inside were floor timbers
of clm, lin. aquare and 1ft. apart. The stom and storn of elm, lin. equare and 1ft, apart. The stom and storn posts were also of stout elm, each about 18in. high. were then Itted and nailed on, after which they were
strengthened by alm knees which aleo formed ribe. strongthened by alm knees which also formed ribe.
About 18in. were oovered in at each ond, forming airAbont 18in. were oovered in at each ond, forming air-
tight compartmente; there were three thwarta, one forward for the mast, one midships for rowing, and one aft; the 5 wo frst Were firmly fixed by alm znees, the last wa movable. She was fitted with a sprit maineail, small staysail and rudder. In putting the planks tar, pitch, and indiarubber colution, was pleced in every joint, another similar strip being laid over it, which again was covered by a strip of tin, $1 \frac{1}{2} \mathrm{in}$. wide, fastened by two rows of tin tacks. The same plan was adopted Where the siden were nailed to the bottom, the
tin being 2tin. Wide, half on the bottom, half np the tin being 2tin. Wide, hali on the bottom, halt np the side. This plan was 00 oficetual that there was not the least leakage, the tin did not rot awey as might be
sopponed, bnt lasted ceveral years. The floor was covered with thin boards, and the whole well painted inaide and out. This boat was very stiff and handy, would go any where, but was not fast. If I were to
baild another I shonld alter the shape aft, as a pointed baild another I shonld alter the shape aft, as a pointed
stern is a mistake in a flat bottomed-craft. When stern is a mistake in a flat bottomed-craft. When forcing her along under sail in a ctrong wind I have been nearly swamped by the water ourling over the
stern. The boat I should now recommend would be one built in the above manner, about 15ft. long, 2ft. to aft. 6in. wide, pointed at the stom, but with a stern turned up like a pant, and about 2ft. wide, to be fitted with two fred and one shifting thwarts; the latter is very convezient,as it leaves the whole sfter part of the boat nnincumbered. There should be swivel tholes, and if any sail be fitted it should be a small working lag.
No rudder is necessary, but an extre socket may be No rudder is necessary, but an extra socket may be Itted on each quarter to ship the tholes in and steer with a paddle. I omitted to state that the sides may be built with $\$$ wo or three strakes, as in ordinary boat
bailding instead of neing a siagle plank. In the former bailding instead of using a single plank. In the former case of course they must be riveted together
usual copper nails and roves.-A Bapristar.
[11224.]-Books on Ceylon.-" Damon" should apply to Mudie, Librarian, New Oxford-street, London, island, 2 Vols., $8 v o ., 50 \mathrm{n}$.; Also his Nutaral History illantrated, 1 Vol. 8vo., 12s. 6d. Bir Jamem was for come jears governor, and a more vigilant observer or pleasant writer is seldom mot with; his work is the universally accepted anthority now. I feel proad to be able to tender a little volunteer but raliable information derived from some personal friends who have been out in Ceylon, coffee planting, for some ten years. Avoid spirits as posson. Clothing should be of the very best light Bcoteh tweed. Preunming his military friend is a knight of the trigger, his battery should consiat of atrong plain No. 12 donble-barrel gan,
with bullet moulda; a mazzle loader I would suggest for economy. One of W. Greener's, of Birmingame, sporking snider carbines, with loops to sling; nush
sights up to 500 yards, a prettier tool I never handled; aights up to 100 yards you ought to be able to put your shots where you ploase. Being a military man he will know how to get ammunition eoonomically. The leat item, a good belt to carry a revolver that throws a largiah ball, and a contean de chasse, or hunting-knifo in case; and a coutean de chasse, or hunting-znife in case; hesry butcher's knifo, zach as is used for splitting up a sheep. The country abounds in large game, espeoially deer, so a large knife is necessary to do the cutting up. bo nsefu qninine and a few other medicines wona hands, he need not fear to embark. Bechelors generally reside in boarding houses, like a colony, but each having his privato room; and dine, de., at tablo d'hote. Plenty of rood male eociety at Colombo; fomale society scarce, and rery select, principally mar-ried.-JoE.
[11227.]-Duckweed.-There are four species of duokweed in England; the flowers are moncecions-that is, male and fomale inowers on the came plant, and in
this case they are inclosed in a spaths or kind of enveloping bract. The fowers are rarely to be met with, bat when foand it will be in Jane or July:-Cupruni.
[11227.]-Duckweed.-The flowers are very rarely seen, but they aproad rapidly by new fronds, budding summer hoping to see them, but failed. Bat I am going to watch socie this year, and I hope I shall be able to see them, and then will lot jor know.-GigLamps.
[11229.] - Ammoniac Chloride.- $\mathrm{NH}_{4} \mathrm{CL}_{4}$ ammonium ohloride, may be madefor laboratory purpoess by neatralising pure hydrochlorio acid with pare am-
monis, or by pacaing a stream of the gas through as monia, or by pacaing a stream of the ges through os
solation of the pare moid until saturnted, and then colation of the pare aoid until aatarated, and
eraporatiog and crystalliaing the alt. $\mathrm{NH}_{3}+\mathrm{HCL}=$ NHACl. This malt, for malytical uee, should volatilise completely when ignited on platinum foil. The sola tion ought to be neutral to teat paper, and it should

[11235.]-Fels in Paste.-(1.) Flour-and-water paste needs only to be made thin and damp, and allowed th get sour, when it will produce pawto cols. Bookbinders' pacte is the beat. It should be exposed to the air, but not allowed to got dry. A drop or two of vinegar may now and then bo poured on it with advantage, or vinegar and matar. on prevent its becoming dry. (2.) Braise bleck pepper, pat some in a gallos-pot or toa-oup about lin. in dopth, pour on it rain or river water to oover it abont an inch deep. Stir it wall together, and lot it atand for two or three days in the open aic, When a thin akin will be foand apon the top, whioh refeote the prismatio colours. Pat a minate portion of this skin ander the microscope, and it will be found to hold ani malcula by millions. Theso living organisms will in crease in numbers and in sise until the whole of the rid will soem an animatod mase. Lbout hall a dozen diferent and fantantically-ahaped areatares may be distinguished, comprising tape-worme, thread-rorms, cork-screws, globulos, שC. (8.) Cut a wisp of new-mado hay into small piecos, and soak it in rain or river water. After a few daye a whitish soum will be vialble on the surface, which will be foand on examination to contain myriads of living areatures of a vast variety of ahapes and forms and hinds. Here will be found some of our acquaintance scen in the pepper water; but the majority of these take an oval form, and aro in continual motion, darting about with amazing velooity. apinning and performing all sorts of strange gyrations. (4.) Vinegar left nncovered for a few days in warm weather will genarate eels, which may sometimes be visible to the naked eye. (5.) The water that drains from dang-hills is 50 thronged with snimalcula as to seem all alive; it mast bo diluted with water before they can be distinguished. (6.) An infusion of any herb, grain, frait, or flower in common water will, after a fow days, contain animalcala peouliar to the herb. cc., used. (7.) In the apring of the year almost overy microscopic investigation.-H. G. W.?
[11235.]-Eels in Paste.-To get them, make white paste, not thick, and let it be until it turns sonr; but it does not always succeed. If onoe got they can be kept for yeara by occacionally making fresh and adding a drop or two of the old. I hare had them about nine Jears, originally from a single drop on a slide, frosn Which I hare bred quarts. I mostly keep about hall a pint in a gallipot, with a tin cover with holes to admit eir, which keops the paste clean and white for obser-
vation. If "Microsoope" will advertise his address, I will send him some. To get animalculs address, I will send him some. To get animalcula, pat any for a fow days, and you will have plenty; the warmer for a fow days, and you will have plenty; the Warmer as anything : many large enough to be seen by the nated as anything : many large enough to be
eye as minate specks.-C. BENTLEY.
[11296.]-Coins.-Florins, shillings, aixpances, and threepences are the only silver coins now struck for Reneral carrency. Tho latitisuce of orowns was in the year 1851, and no halfcrowns have been isaned since 1851. No groate (or fourpenny pieces) have been coined since 1856.-HENRY W. Henfery, F.H.S., M.N.B., \&c.
[11239.]-Photography. - This question is 0 vague that my answer must be neoesaarily of the same it is absolutely necessary that he should be able to pro duce really ancoessial results, both in landscape aind
portrait photography. 8. The apparatas should be of the best modern constraction. 8. The lenses should be by one of the beot English opticians. 4. The stadio for portraiture uhould be of the form known as ridged-roof. can be obtained from any respectable photographic chemist. 6. The work cent out should be the best that can poasibly be obtained under the then existing circumstancos, as a really good photograph is a lasting honour, and an indifferent or bad one a lasting dis-
grace to the producer. 7. If really good pictures are sent out, alwayn have a good price, and never andersell a neighbour.-R. TUDOB WILLAYB.
[112s9.]-Photography.-I would adrise "Cas-mallon-ab-Daries" to get one of F. Coxe's (of LudgatoLill, London) books called "Compendinm of Photography." which will give him every information he requires. At the end of the book is a catalogne, with prices, atitached to every ardiole required in the trate. The ${ }^{\text {A. }}$.
[11248.]-Deap and Blind.-About twelve years ago 1 baw in the Institotion for the Doal and Damb, at Manchestor, a girl who was also blind, with vhom the master conversed with ease by tonching ber fingers and elbows. I should think this gentleman (or if he has the best mode of teaching the alphabet to one aimilarly affictod-R. 8 .
[11248.]-Dear and Blind.-There aro many in-tanght- the blind by reeding persons are received and on stout paper. No doubt, by advertisement, the information of the whereabonts of these establishments can be obtained.-Tibar Kars.
[11248.]-Deaf and Blind.-The use of the Morse telegraph alphabet would be a ready means of communication by means of touch on the hand or arm. After some practice the commanication woald becom rapid by the nie of abbreviations and contra
See single needie dial in No. 361.-WATERMAN.
[11244.]-Silicate ofBode.-Preparation: Solable glass may be obtained by dissolving prre silica in a boiling solntion of canstic potassa or soda; but this process is both costly and inconvenient to practise on a
large scale. If sand and carbonate of potaksa or soda large scale. If sand and carbonate of potafsa or soda
are hented together, the carbonic acid is never ontirely driven ofl, excepting when the sand is in excess; bnt the whole may be expelled by the addition of powdered charcoal, in such propertion that the carbonic acid which is not decomposed, may mix with a sufficient
quantity of carbon to convert it into carbonic oxide. In quantity of carbon to convert it into carbonic oxide. In
this way the silica Arst forms a silicate in the proporthis way the silica irst forms a silicate and drives of the appropriate equivalent of carbonic acid; then, at a high heat, the reat of the carbonate of potasfa or soda is decomposed by the carbon, the carbonic oxide escapes, and the alkeli, thus freed, either sablimes or
combines with the glass already formed. The sand (free from any trace of lime or alomina) and alkali are taken, ten parts of the jattor to afteen of sand and four parte of charcoal; no less quantity of charcoal
will suffice. If the alkali is not very pure, another proportion of charooal may be nased with adrantage ; this acceierates the iusion, and separates all carbonic acid,
which would otherwise remain, and have a very injurions Which woald otherwise remain, and have a very injurions
effect apon the glass. In other respects the saine preeffect apon the glass. In other respects the saine pre-
cantions are to be observed as in the manufactare of cantions are to be observed as in the manufactare of common gias. The mallarialtod in a glass pot, until the mases beoomes liquid and homogeneous. matter is taken ont of she pot with an iron ladle, and a pot is then alid with roin hirty pounds of alkali, forty-Ave pounds of sand, and twelre pounds
of charooal is the average charge. The crade glass, thas obtained, is neally fall of air bubbles; it is as transparent at the edges ; sometimes it has a colour approaching to whiteness, and at others it is yellowish or rodal hese are id acalions hat ine quantity of air for several weeks, it undergoes some slight changes, Which rather improve it than otherwise. To prepare it for solakion it it reanced to a coarse powder. One ion. The water is drst heated to ebrllition in an open boiler, the powdered silicate is then added to it by degreea, and muat be continaally stirred to prevent it
falling to the bottom. The eballition mast be con. tinued for three and a half to four houra, until no more glaes is diseolved; the liqnor will then have acquired glase is diseolved; the liqnor will then have acquired
the proper degree of concentration. If the eballition is checked before, carbonio scid will be absorbed from is checked before, carbonio acid wil bo absorbd from carg eraporation, which is then necossary, the the alkali, and the silica will be precipitated. If the liquor thickens too much before the glass is dissolved, boiling water mast be added. When the solation has the consistency of syrap, and a density of $1 \cdot 24$ or $1 \cdot 35$, cet anide to cool; and also to allow the insoluble percot anide to cool; and also to allow the insolable persarfaco, which, after a time disappears of itself, or
may foe redisolved by depressing it in the liguor. Wher the crude glacs is of a proper composition, it may be treatod as abover, bat if any considerable smount of imparitios exibs, it must be treated as follows:-The powdered glass is exposed to the action
of the air for three or four weeks, daring which it mast be frequently stirred, and if it runs into lompa, as it vill in moist weather, they mast be broken ap, The glank, moist weather, they mast be broken ap. The
foreign substances either separate or efforesce. It is then easy to rowove them. The mass is frequently sprinkled with water and stirred. After three or fons all the iliquor is removed; it then contains a part oh process is to be mities, and a trace of silica; than treated readily disaolvee in boiling water, and leaves nothing to be desired. To preserve it in the liquid no particular care is necgabary; even after 2 long space of time it undergoes no perceptible change, if the solution has been properly prepared. It is well to keep the mixtare from contact with the atmosphere. Silicate of soda forms a riscid solation, which when ooncentrated becomes turbid and opales. cent; it has an alkaline tasto and reaction. When it has a density of 1-26, it contains nearly 28 por cont. of glass; ; if the concentration is carried beyond this it beoomes so viscid that it may bo drawn oat in threads like molten glass. When the solntion is applied to bodies it dries rapidly at common temperatares, and forms a coat like a varnish. Solable glass when dried does not andergo any perceptible change when exposed to the air, nor does it attraot from it either moisture or carbonic acid; neither has the carbonic acid of the atmosphere any effect apon the concentrated solation; bnt when a current of carbonic acid is passed through the solution, the glass is decomposed, and hydrate of silica deposited. Solable glass dissolves readily in boiling water, but in cold water bo slowly as to lead to the belie? that it does not dissolve it at all. It is, however, never ontirely insolable ex cept when it onntains a much larger proportion o silica, or when it is mixed with other bodies, such as the earth's metallic oxides, \&o., with which doable or triple salts are formed, as in the case with the common glasses. Solable glass, after being exposed to the air, and aftorwards to the action of hent, swelis and cracks at first, and melts with difficalty; it then Inses aboat 12 per cent. of its weight. Alcohol precipitates it unnltercd from its solution in water. Wheu the solution is concentrated bat little alcoobol is required to precipitate it. Pare solnlle glass may be easily obtained from an impare solation by the use of alcohol. The alcobol being added the gelatinous precipitate is permitted to settle : the sapernatant liquor is decanted, no precipitate collected, rapialy stirred aiter the sure. The a littse cold water and subjected to presof giass ; they aliog sct upno it whon solid, separating
the silica in the form of powder.-WiLLIAs H. Hex.
[11245.]-Felspar.-This mineral is obtained in Cornwall, Devoushire, Scotiand, France, Norway, and other localities-in primitive rocks, and of varions
colourn, fazible by itgell. "Bendant":-Red commonf, Silica, 65.03; alamina, $17.96 ;$ potasea, 10.21 ; mon $\operatorname{limen} 0.85$; per oxide of iron, $0 \cdot 47$. Chapman's "Min
 (AlO3SiO). Specific gravity, 2304 to 2.541 , H6.-
[11247.]-Jacketed Cylinder Engine.-If the present steam pipe is now only safficient to supply the engine properiy, pat a new and separate stean pipe and cock of nt least 2in. bore, with a condensed water trap (self-acting) to tnke off the accuma
from the jacketed sarface.-Tubal Kans.
[11249.]-Concrete Walls and Buildings.The information your correapondent seeks would ne cessitate probably more space than could be afiorded in the querists' column, bat briefly I would state tbat after three years' impartial trial, not only in erecting bailairgs with, and in other wars asing concrete, portland cement, but by occapying a hoase constracted with it, I ann salisfied that to or ery many parposes, bat not ior all, far superior to most other bauding materials, and tion. Bnt it is evident the cost mist depend antrice ion. Bat it is evidoat hae cost mast depona entrels on the facility for oblaining the neccasary materials. broken Por land par or broken Portiand, Bath, or almost any shone chippingsanyshed thints, slag, river ballast, or old bricks and shoald be safficiently small to pass through any of which shonld be sumiciently small to pass through sand or tinely broken material mixed therewith. Alsanu or hnely brosen material mixed therewith. Are. care and discrimination is necessary. The proper procare and discrimination is necessary, tha proper pro-
portion of cement should be not less than one part ont portion of cement shoald be metnesure the cement ghould be the best of eight by measare; the cement ground, and weigh not less than 112lb. per bushel. Walls constructed thas. I estimate to be three or four times the strength of brick walls of the same thickness ; and from experience I am able to sar that 9in. walls are virtually impregnable against daup and drifting raius. If your correspondent contemplates building with concrete, if only a cottage, he shonld visit buildings that may be in the conrse of erection
with that material, and by so doing he would gain much with that material, and by so doing he would gain mach and it woald pay him to do so, even had he a haudred giles to travol for that parpose. I am just now $\mathrm{c} \pi \mathrm{m}$ pleting a bailding of three floors, almost entirely (roof oxcepted) conatracted with conerete, and which has een tested for strength, the result far excoeding the noat sangaine anticipation.-F. P.
[11250.1-Mr. Stanistreet's Astronomical Clock.-A reply to this
lettors in this number.-ED.
[11251.]-Iron Staing in Oak.-Spirits of ealts will remove iron stains in oak.-T. B. B.
[11251.]-Iron Stains in Oak.-Oxalic acid will remore
M. 0.
[11252.]-Tluminated Sign.-The cloth should white left withon and the parte that are to appear the white will not change. -M . 0 .
[11252.]- Tluminated Bign.-Lead and gas are
not consins, use white zinc.-C. A. M.
W. Hughes out his Walking.Sticks. - I expect W. Hughes out his sticks in summer, while the sap Was high, if 00 they are sure to aplit at the knots. They shoald be cat in winter, and in trimming ofl the side-shoots be carefal to leave half an inch on the atick; tie them together in a bandle and put them away in a dry place for a few months, then pare the knote
to "fancy." Scrape ofl the rind. Sand-paper and varnish them, and they will look well, and be nearly as tough as loather.-R. LangDon.
[11258.]-Rollers of Wringing Trachinea.rollers, R." mast ase well seasoned aycamore for his iron hoop, which shonld be shrank in so as to grip the wood tightly. I have a wringing machine which I treatod in this way some time ago, and have not been annoyed by the rollers splitting sinoe, althoagh before putting in the hoops this was a oommon occarrenco.RHO SIGXA.
[11260.]-Cutlers' Whoels. -These haveja tire of leather, which is thinly coated with glae and rabbed in emory powder bofore the glae has set. The emery,
of course, adheres, and forms the grinding surface.Excelsior.
[11263.]-Gas Tank.-"A C. S." has not ntated the proportions of his tent, or the number of burners or lighte aupplied from the said tank. The tank requires a cock at the bottom to allow the esoape of mospheric air when charging. Make your connec. ions at the top of your tank for your burners. You will want a cock there so that you can regulate your iecure. Δ low inches from your cock acrew a sipe plece of tin. or tin pipe into your main or supply pipe; lexible thbe other end of the pipe a sman piece a small pressure gange (procure a piece of glass tabe about a foot long, make it hot in the centre over a flame and bend it in the shape of a U; then half fill with water and you have a gauge). Not knowing the reainatiog power of your gas cannot the ont by your pressare to give: that you will soon has out in abont 15 tenths (gas is measured by tenths of nn inch). Open your cock and let your water rise $1 \frac{1}{d i n .=}$
15 tenths if that will do. As your gas is consamed you ill hths if that will do. As your gas is consamed you 15 tenths. Gas companies have to keep men day and iglis. Gas companies have to seep men day and are. If thok after the valres so as to regnlate the presto $\because 01 \mathrm{l}$. ponnd pressare $27 \times 30=810 \times 10=8100 \div 15=547 \cdot 6$, or you hare compressed 546.6 cabic feet of gas into the space of one at 15 tenths pressare.-C. A. M.
[11265.]-Drawing a Boundary Line.-Field.

-Tietamu, Horsham.
[i1265.]-Lifting Water.-" Ignoramas" has not stated where he wishes to pump the water from, neilher if it is nominal or actnal horse-power. An in minea horse-power performs 33,000 anits of work is a minate ; a nit of work is the force required to move minate, 83 , 200 space of 1 ft . in any direction in a minate, $33,000-7 \mathrm{ft} .=4714 \cdot 283$ anits of work per
minate $-1,000 \mathrm{oz}$. or $63.51 \mathrm{~b} .=$ cabic feet, or by 101 b eqnal gallons. Shoold think a lift pamp roald answer " 1 .'s" wants.-C.A. M.
[11266.]-Lifting Water.-I take it in the first place that the power of your engine is the nominal capable of lifting $33,000 \mathrm{lb}$. 1 ft . ligh per minite $=$ capable of lifting $33,0001 \mathrm{~b}$. 11t. high per minate $=$ 4.illb. 7it. Ligh per minate; and as the gallon $=$
iolu., $471 \mathrm{gals}$. may be lifted 7 ft . high per minate by your engine.-Excelsior.
[11266]-Lifting Water- -1 horse-power raises 33.0001 l . 1 ft . in ano minate, and oue cabic foot of water weighs $62 \cdot 51 \mathrm{l}$. Namber of pounds of water $=$ $\frac{33,000}{6 \%}=528$ cubic feet-P. W. H. J.
[11271.]-Naval Architecture. - There is no connection between the water line and the water way of a ship. The water lines are the parallel lines formed plates, or the sheets of copper ; and the water way is plater, or the sheets icoppor; sad the water way is to be water-borne whon her doable botto:n is fall of
water. 2. The tonnage of a ship cannot be determined water. 2. The tonnage of a ship cannot be determined
from the metacentre evolnte. but the centre of effort Irom the metacentre evonte. but the centre of effort
can; also, the rariation of the compass, if the evolute can; also, the rariation of the compass. If the evolute is made of copper instead of iron. as it generally is.
8. I think "dead water" mnst be a mis print for "head 3. It thing "dead water" mast be a misprint for "head
water." If this is so, the head water is never retained in the ship, bat is allowed to pass freely overboard. in. the ship, bat is allowed to pass freely overboard.
4. The scrow race is only formed when a ship is going 4. The screx race is only formed when a ship is poing
out of a narrow harbour or a dock. It is concrete for out of a narrow harbour or a dock. It is concrete for
twin screms, one screw annihilating the scrow race of twin screws, one screw annihilating the scrow race of
the other. It is abstract for a single screw and for the other. It is abstract for a single screw and for
Colman's jet propeller. 5. Marineglue is but opuringly Colman's jet propeller. 5. Marine glue is but spuringly
nsed, principally for fastening the engines and boilers nsed, principally for fastening the engines and boilers in their places in the ship. 6. The longitudinal balkhead is almays in a line with the donble bottom, and is scresed to it. The transverse bulkhead is never abaft the doable bottom, and is seldom fastened to the bilge pieces. 7. The run of a ship is connected with the wing passages by water-tight doors. 8. The deckstringers went out when iron ships were introdyced ; any mention of them,-S. Tremarne, Cantab.
[11273.]-Cement for Water.-" Goethe" should paint (red) the edges and bottom where they go together, and pack with red and white lead (mixed). Let the cistern remain three or four days before letting the water in, and that will make a perfect cure. I
have fixed many the same way, and always found have fixed many the same w
them to answer.-Bracknag.
[11878.]-Cement for Water.-" Goethe" should poar melted brimstone in the joints. Proved.-W. G.
[11276.]-Extracting Glass Stopper.-I once got one out by attaching the end of a stick of sealingwax to the broken stamp, and when it was quite cold, warming the neck of bottle by friction with a piece of
string taken a "round turn" and see-sawed. Other string taken a " round turn" and see-sawed. Other
tight stoppers, not broken, but cemented in by the stuff tight stoppers, not broken, but cemented in by the stuff that was in the bottle, I hare got out by patting a drop
of rangoon or paraffin oil to the neck, and warming it of rangoon or paraffin oil to the neck, and warming it
over a small taper or wax-vesta till you see the oil ran over a small taper or wal-resta till you see the oil ran in. I have drawn wine-corks by sticking another cork on with wax as above described. A atopper of a
varnish bottle, but not a gom bottle, vill be released Varnish bottle, but not a gam bottle, will be released
directly by warming the neck. If the broken stopper is rery tight in, it mast be drilled oat. A fiddle-drill With oil of tarpentine and elbow-grease will do it. When you have a hole once through, you may chip or file most of the stopper away, or, perhapa, hook it out with a bent wire.-J. K. P.
[11276.] - Ehxtracting Glaea-Stopper.-Let derately hot water will cance sufficient oxpansion to allow the stopper to fall out.-W. H. W. T.
[11276.]-Extracting Glass stopper.-Stand the bottle upside down in a little sweet oil for a fow days, then immerse it for abont hals a minute in
moderately hot wator, and give it a few taps. -J . Kina moderate
[11276.] - Extracting Glass Stopper. - If "A. H." puts the neck of the bottle in hot water the Bright.
[11278.]-Steam.-The flow of steam through a long pipe is given by Professor Rankine in his essay on
the "Flow of Gases," as follows:the "Flow of Gases," as follows:-

$$
\left\{\frac{12 \times l \times q}{p-q}\right\} \times \cdot 7854
$$

where $d=$ diameter of pipe.
and $l=$ length of pipe (both in square feet). $\boldsymbol{q}=$ hydranlic gradient.
$p=$ presarare in ponnds per foot.
$c=$ quantity in pints
"Vulcan" will be able to apply this formala to any numerical example.-C. W. Henwood.
[11279.]-Fire-Damp.-I would inform "Valcan" that I have often observed the drops he mentions in both copper and tin mines, bat never in lead mines. or tin mines, I am nnder the impression that they or tin mines, I am onder the impression that
are only condensed fire-damp.-C. W. HENWood.
[11284.]-Holtz's Induction Maohine.-I have not suftlciest açnaintance with this apparatus to give the information asked of me, bat if the querist resides in Ioondon, I may tell him that I sam one of these machines the other day in the window of Mr. Cox, the scientific instrnuent dealer, Ludgate-hill. Looking at
this might furnish the required information; the discs this might farnish the required
are of window-glass.-SIoma.
[11285.]-Chemist's Certificate.-" Phenix, does not give safficient information of his position before tho coming into forece of the Act of 1868, to enable me to give him all particalars which he desires. I shonld advise him to get the calendar of the Pharmaceatical Society, or write to the recretary of that
pociety (17, Bloomabary-square pociety (17, Bloomsbory-square, London), and he will [11285.]-Chemist's Certificate. - "Phonix" will bo reqnired to pass an examination at the Pharma. centical Societr. Bloomsbary-square. Write there to E. Bremridge, Esq., sec., who wonld, no doubt, return necesbary information.-J. King Harmis
[11287.]-Annuals.-It is not easy to make a long list of annnals remaining in bloom "at least three or four months;" but it is rery easy, by successional sowing, to hare any annaal in bloom all sammer and antumn. I presnme "Aster" understands
this, but means that he has not time to derote this, but means that he has not time to devote
to their successfal coltivation in this manner. If so, here is a list of long-blooming aunuala, each of
which will last a month-some three. Asters and ${ }^{\text {sthecirs }}$ to begin with; Phlox Dramenondi, Zicuia Agerapsisu, or Coreopsis), Helichrysum, (ereriasting),
Linum-all of which may be treated as "half-haray." Candytaft is an annal which remains in bloom for a cousiderable time; bat the list above in bloom for a considerable time; bat the list above
given will farnish a garden very fairly, especially if the given will farnish a garden very fairly, especially if the
dowers are cat frecly and all the seed pods removed dowers are cat frecy and all the seed pods renoved
as soon as the bloom decays. "Aster" should bay these in "mixed" packets. A slight hot-bed and plenty of air at all favoarable times when the seeds are up will ensble him to plant ont in May it he starts now. saul Ryara.
[11297.]-Annuals.-The rocket, the sweetWilliam, the wallfower, colnmbine, larkspur, doable daisy, white and pinls, and lupins.-W. Brigetr.
[11292.]-Linseed.-Linseed is only used in medicine for poaltices. Boiled in water, it makes a nonrishcine for porltices. Boilod in water, it mases a nonribh-
ing drink; by many esteemed a specific for consump-ion.-J. Kive Harris:
[11294.]-DiFlding Metal Disc.-To "Disc."Your diec of 12 in . diameter is to be cut into four equal parts, hence the middle piece (which will be a circle will be one-fourth the area of the whole, and the out side diameters of the intermediate rings will be those circles of half and three-quarters the area of the whole. Now, as circular areas are as the sqnares of their diameters, we need only consider the diameters whioh conversely are in proportion to the equare roots of the
areas ; and as the whole area is 123 , therefore the tia. areas ; and as the whole area is 12s, therefore the tiameter of the middle piece will be the square root of square roots of half and three-quarters of 144 respec tively, or $\mathcal{\lambda} 2=8 \cdot 485$ and $\sqrt{ } 108=10 \cdot 392$. -J. K. P.
[11294.]-Diviaing Metal Disc.-As the disc is homogeueons, the weights of the parts into which it it

Let $D=$ diameter of whole disc $=12 \mathrm{in}$.

"I $d_{2}=$ onter diameter of becond ring.
First, as regards the central disc. Its aren is to be $\frac{1}{4}$ of the area of the whole diso, and as the areas of meter of the small disc mast be halt the diameter of the larger one-viz., 6in. :-

$$
d=6 \mathrm{in} . \quad \text { (1) }
$$

The thickness of the smallest ring will be, of course,
$=\frac{1}{2}\left(d_{1}-d\right)$, and its area $=\left(d_{1}{ }^{2}-d^{2}\right) \frac{{ }^{2}}{4}$. This area
(by the conditions of the problem) is equal to \ddagger of the area of tho whole disc, and therefore to find d_{1} wo have the equation-

$$
\begin{aligned}
& \left(d_{1}{ }^{2}-d^{2}\right) \frac{\pi}{4}=\mathrm{J}^{2} \frac{\pi}{4} ; \\
& \text { whence } d_{1}^{2}=\frac{D^{2}+4 d^{2}}{4} .
\end{aligned}
$$

Sabstitating the known values of D and d, we get-

$$
d_{1}{ }^{2}=\frac{144+144}{4}=.72 .
$$

$\therefore d_{1}=\sqrt{72}=8.4853$. (2)
Similarly, we have for the second ring-

$$
\begin{gathered}
d_{3}^{2}=\frac{D^{2}+4 d_{1}^{2}}{4}=\frac{144+298}{4}=180 \\
\therefore d_{2}=\sqrt{108}=10 \cdot 3923 .
\end{gathered}
$$

Treating the onter ring in the same manner, we get-

$$
d_{3}{ }^{2}=\frac{D^{2}+4 d_{2}^{2}}{}=\underline{144+432}=144 .
$$

And $d_{3}=12=\mathrm{D}$: which evidently is as it ought to be
-V . B .
[11294.]-Dividing Metal Disc.-General solu. ion, applicable to any number of rings and discs :-

Let $r=$ radins of metal plate.
$a, b, c, d, \& c .=$ radii of concentric rings.
$t=$ thickness of plate.
$\rho=$ density.
Then, by the binomial theorem, wo have-
$(a+b+c+d+\& c .)^{t}=r \rho$.
In the example miven, taike $t=1 \mathrm{in}$., and $\rho=409 \mathrm{lb}$. per cubic foot. Then we tind-

$$
\begin{aligned}
& a=3.70 \text { inches. } \\
& b=2.75 \quad " \\
& c=2.50
\end{aligned}
$$

-C. W. Henwood.
[11298.]-Four-inch Centre Lathe.-The ase of a hole ap the mandril will be found if you are making (sas) a lot of mmall screws, which
may be cat off successively from the end of a rod of metal which is held in some grip chack, and gradually drawn formard, the tail end passing up the gralually drama frimara, the tail end passing ap the
hole in the mandri, and not only being out of the war, but effecting a saving of material. My mandril is drilled right through for another parpose-viz., contreing work that is beld in the grip chack, white the drill is passel throagh the mandril from the rear
end as described in answer to query 10299, p. 441, end as described in
Vol. XIV.-J. K. P.
[11801.]-Limits of Resistance in Telegraph Wire.-The resnlt of the researches of Professor Damerel Stokes in this direction was, that the namber of B.A. nnits in 1 mile of 19 wire gange copper wire
$1,216,750$. In une mile of 24 wire gange, which is the
most used size, the number was, $1,723,800$.-C. W Wood
[11301.]-Limits of Resistance of Telegra ph Wires.-Clarko gives the resistance of the iron wires fas 78 Ohman per statute mile, and 13.5 for namber 8 . The
Ohm is the B. A. nnit. I am not quite clear whether these figures refer to plain or galvanised wire. -Sigys.
[11304.]-Nessler's Ammonia Test.-Tiss reagent is an aqueous solntion of iodido of potassinum saturated with perchloride of mercary, and made drongly alkaline by sona or potash. It is a very delicate test, for it is capable of indicating 1 part of is an amber-vellow tint in weak solations, bat a hearyyellow precipitato when the ammonia is in a larger pellow precipitato when the ammonia is in a larger quantity. To prepare it, proceed as follows :-Dissolve metres of hot distilled water. Keep the whole in the metres of hot distiled water. Keep the whold in hot saturated aqueous solation of perchloride of mercary antil the red precipitate which forms ceases to be dis. solved by active stirring. This point being reached, stop the addition of the precipitant, filer, add 150 yrm . of canstic soda (or 200 grm . of canstic potash), dissolved in water. Add distilled water till the whole equals 1 itre ; finally add aboat 5 cubic centimetros of the porchloride of mercary solation, allow to sabside and perchloride of mercary is to promote clearing, and to perchloride of mercury is to
[11308.]-Geocentric Longitude and Lati-tude.-I should imagine that the reason why the Nautical Almanae is not incambered with geocontric latitades and longitudes required, is that they are only wanted by such persons an Zadkiel, Sagitlarias, Old Hoore, and other persons who profitably combine the occapations of astrologer and quack doctor. The method of conversion is fally described in every elementary treatise, and has been often explained in "our" Mrchaxic. However, again, tan. $\theta=\frac{\text { tan. dec. }}{\sin . \text { B. } \Delta}$ $\omega=$ obliquity, tan. long. $=\frac{\cos (\theta \cdot \alpha) \text { tan. R.A. }}{\cos \theta}$ tan. lat. $=$ sin. long. tan. $(\theta-\alpha) .-$ Ceronos.
[11809.]-Breaking-Strain of Hollow Iron Columns.-Hodgskinson's formula for cast iron:-

$$
P=\frac{R^{3}-r^{3}}{R^{3}+r^{s}} \times \frac{f}{2 E} \times \text { cosecant } 0 .
$$

Where R and r are the external and internal radii, $\frac{f}{2 \mathrm{E}}=$ modulas of resilience, and $\theta=$ slope or deflection. In the case of the plumb column, $\theta=90^{\circ}$. W. Henwood.
[11811.]-Flectric Bell.-(1.) One cell of the battery named would scarcely be strong enoagh, bat two would be sufficient. (2) A cslinder of zinc woald if any extra force woald be gained. (8.) No. 16 cotton if any extra force woald be gained. (8.) No. 16 cotton or gattapercha covered wire will be best if to be hang
indoors, either copper or galvanisad if ontdoors. (4.) Gas or, water pipes are more suitable for earth connec tions than the plan suggested by the querist, bat as tions than the plan suggested by the querist, bat as
the distance is so mhort, a retarn wire would be bettar. -W. Golding.
[11313.]-Setting Lathe.-I don't know, as I never made or even used a shifting head. I fancied they are always made to be quite true when screwed home in one direction, and only to have the power of moving away from the centre in the other direction. For turning taper I nse a centre point screwed into a plate, bolted to the collnr-plate itself, or else to the collar-plate headstock: Which arrangement I consider, on the whole, a better one, and certainly less expensive than making the head to shift. I don't think taper screws are ever wanted to be cat this way; bat I may as well say that if they were they would be drank, owing to tho unequal action of the pin of the driver cluck on the tail o the carrier when the work is ont of straight with the axis of mandril. 1 can tell you a very easy way of sotting your slide-rest parallel after you have been turning a cone, but that is not the sabject of your inquiry.-J. K: P.
[11318.]-Gravitation.-In the case of the in verted small thermometer the mercary retains its position by reason of the adhesion betreen it and the tabe. Bodies falling through the air experience resistance in proportion to the sarfaces they present. A piece of old the same amount of metal in the form of a small pellet. In a vacuum this resistance is withdrawn. The comIn a vacuum this resistance is willdrawn. mon experiment of placing a small dise of paper on the mon experiment of placing a small disc of paper on the fall, reach the groand together, proves this. Bodies attract, and are attracted, proportionally to their masses, as may be understond br conceiving each par ticle attracted separately, and the sum of attractions ill be the total attraction of the mass. Each particle will therefore (exclading resistance of air) fall with all equal velocity.-W. H. W. T.
[11818.]-Gravitation.-"C. W. H." is under the not ancommor delasion that the force of gravitation causes heary bodies to fall to the earth faster than light ones. Galileo, I believe, demonstrated the allacy of this theory by casting bodies of difrerent hat they all reang tower ord isa, where tive. The theory of aniversal gravitation is that every particle of matter attracts every ether. Consequently the earth attracts every particle of a heavy body and draws each one to its surface with a known velocity. It mattera
not whether the body is composed of few or of man particles. Each particle will be made to fall with the日ame velocity, and the collection of partioles which makes up the mass of the body will, therefore, only fall with the same velocity as each particle does. In considering, therefore, the attractive force of one body On another, the elements taken into account are the mass of the attracting body and the distance between ing the qnestion. What, however, does make the fall of some bodies to the earth slower than that of others is the resistance of the air, as in the case of the sovereign and the feather. By a simple contrivance howover, two sach bodies can be made to fall in the eame time withont the aid of an air-pump. For this parpose a large coin, such as a crown piece, is better than a small one. The feather, moreover, should be considerably maller than the face of the coin, and should be fiat on it. Now, hold the ooin with its plane horizontal ; place the feather on its apper side, and on letting both bodies drop together it rill be found that they will also arrive on the floor together; the coin having shielded the feather daring the fall from the resiating npward action of the air. The quicksilver in cohesion of its particles with those of the quicksilver in the balb.-V. B.
[11327.]-Monster Magnetic Machine.-There conld not be the smallest difficulty in accomplishing the parpose aimed at. If I were in the business I as M. Rendnitz in fact, he almost tempts me to under take the job. I know Mr. Browning's small machine, and a very good one it is, but do not thiut it capsble of giving of anything approsohing ton cubic feet of of griving of anything approsohing ten cubic feet of mixed gases, to say nothing of oxygen alone, per
minate; if it would, the simplest plan would be at once to ase ten of them, which would give $60,000 \mathrm{ft}$. per ten hours. I cannot andertake to devise the required machine, as it would require certain experiments to gettle a few fundamental principles, though I can see gettle a few fondamental principles, though resnits of their application, once detined, the instrument itsel is a very simple matter, and would run by no means into "thousands of ponnds;" and what may perbaps probably not be large.-J. T. Spragur.
[11834.]-Squinting.-If "G. WV. F." takes him to tho Fye Hospital, Moortields, London, he will get advice, -W. Baight.
[11384.]-Bquinting.-"G. W. F." asks if anything can be done to cure squinting. Cortainly. Surely operation.-Savi Ryara.
[11334.]-Squinting. - Ascertain which ere is fanlty (it is probably bat one, which is weak, and retanity (at is probably bat one, which is weak, and re-
quires strengthening by ase) and cover the other.-J. quires etredgth
King Habris.
[11337.]-Equation.-"Smoothing Plane" has asked for the solntion of an equation which every one Who knows ansthing of algebra is sware cannot be
solved oxcept by Nowton's "Approximations," it being colved oxcept by Nerton's "Approximations," it being triangle.-C. W. Henwood.
[11397.]-Equation.-There appears to be an error In the statement, as 8 is said to be requir ${ }^{\text {d, although }}$ are really manted are the valnes of 1 and μ. Snbstituting, therefore, in the second equation, the value of las given by the first, we get-
$S=\left\{a+(a+[n-1] d) ; \frac{n}{2}=\frac{d n^{2}+(2 a-d) n}{2}\right.$.
Whence $n=\frac{\prime^{\prime}-2 a \pm \sqrt{(2 n-1}, \overline{2}+8 d s}{2 d}$.
Patting this value of n in the first eqnation, we get the value of l as follows :
$\frac{d-2 a \pm \sqrt{(2 a-d)^{3}+8 d B}-2 d}{2 d} ; d$.
$=-\frac{l}{2} \pm \frac{\sqrt{2 a n-1}+\sqrt{4}+3 \mathrm{~s}}{4}$

[11341.]-Colouring Pinotos.-There are many Fays of preparing the cartes for colouring; some iccommend prepared oxgall; others a Feax sola-
tion of carbouate of soda; others again a coat tion of carbouate of soda; others again a coat
or two of isinglass size, with or withont a slight or two of isinglass size, with or withont a slight
eddion of carbonate of soda. It is well to ase, instean of pure water for mixing the colours, water rendered slightly alkaline by carbonate of soda, as it makea the colour run smoother. Ordinary water colours will do, they should be of the best kinds. Don't be too free with your colour, imitate natare, rather than fillow any absolnte rale ; practice and perseverance are essential.-W.H. W. T.
[11841.]- Colouring Photos. - Water-colours rill do tolerably well for this purpose, but it is necesaary to nue a little gam water aftermards by way of 7arniah. Colonrs in powder applied with a slightly
mointened brash mere more generally used.-J. Kivg mointene
Hynis.
[113:1.]-Galvanometer.-The question 48 pat is rather pozziling. What galranometer does it rolate of calculating, becanse there is no known law expreas.
ing the relntions of the deffection? In Noad's "Tert Book of Electricity," p. $1: 00$; or Miller's "Element as Cbemistry.' Kol. s., p. 4n7; also in Tyadals Heat process devised by Melloni be found an el gettin uniform expressions of value for bigh and low deflec tions. On this system a special set of experiment would be netded for each instrument. If "Honours fand or will obtain No. 283 (p. \%30, Vol. XI.), he will val there a tablo in which I have shown (Colamn 3), the as co of all the deffectinns of tangent gaivanometera can be dividing the patural a similar proct of each derree by that of 1^{\prime}; by logarithms it is still easier. Bat the only true and satisfactory process is to ascertain the actasal definite ralue of the deflections in some standard of carrent, as Vebers or obemical equivalents. The practical process for this is to arrange a constant battery-a copper-depositing cell-and the tangent or sine galranometer, so as to get a very exact defiection for some hoars; weigh the copper doposited, and divile by $31 \cdot 6$ (grains). This gives the chemical equivalen of the current, and, divided or multiplied by the time gives a measure which, of means of the known ratios of the deflections, will give the standard degree of deflection of the nuit current, and this enables us to valuc every other deflection, as is done in Colamn 4 of the Table for my own instrament, the only one, by the bye, that I know of which is thus enabled to give at e glance ell the information needed. With a tangent or sine galvanomeier once thus graduated, it only needs thi instrnment to be ased in a circnit with any other to ascertain ouce for all the valne of all deflections of this latter, whatever its form, in fixed anits. If "Honours" will look over my papers bearing o:a this, I think he will find all the information required. I suppose the time will come whon instrament makers will sell instrament showing the current passing in Vebers, instead o dividing every instrument into mere degrees, which give no information whaterer, thas rendering it im possiblo to compare observations made with difleren instraments.-SigMa

ONANSWERED QUERIES.

The mumbers and titles of queries which remain un annoered for five weeks are inserted in this lint. We trus mation they can for the benefit of their fellow contributors.

Since onr last E. F. Conrath has answned 1057R 1064.

10829 Electrical, p.
10 s 30 Feru Printing on 5
lasis5 Re-lacquering, 571
10810 Munufacturing Sulphate of Soda, 571
10×18 Chernical, 1
10847 Ensmelling, 571
liusio Granite Sweating Oxide of Iron, 571
lusis Textual Revision of New 'Testameut, 571
$\begin{array}{ll}10657 & \text { Imitation Marbles, \&o., p. } 672 \\ 10458 & \text { Voicing Organ Reeds, } 572\end{array}$
Wheel Cuttera,
Oil staing in Marble, 672
Oil stains in
Bone Ash, 572
Rock-borine Machinery, 572
Heck-bostat. 572
Dr. Stokes's Magneto-Electric Machine, 573
Carbon Points, 572
Refining Archangel Tar, 573
Wilde's Machine, 573
Brewing Quostions, 572
Essence of Driuks,
Oxford Framas, 572

Oxford Fratnes, 57
Swizs Mandril, 57

Lenvir Gas Engine, 072
$\begin{array}{ll}10901 & \text { Rulcs, } 572 \\ 10912 & \text { Gut Strings for Mnsical Instruments, } 672\end{array}$
$\begin{array}{ll}10913 \\ 10917 & \begin{array}{l}\text { Screw Catting, } \\ \text { Power, } 573\end{array}\end{array}$
10917 Power, 672

The electric light has boen introduced into the lighthouse at the south Foreland. This is now the third liphthouse sitation in Eugland at which the eldectric light is establivhed, and the French have established oue at Cape Cirisnez.
Workshop Dust.-The injurious effect of expoante to the dust of various mannafact uring establishments han not unfrequently been dwelt upon with more or less fores: but we are hardly prepared for the result of cer tain specifioinvestigations on this subject. It has long bren a disputed point wh ther the particles of iron, silica, \&ec., mercly loige within the nir cells of the lungs, or pencirate through their walls into the ti-sue between thein. But Prokesor Zenker informs us that, on cxamining the lung of a woman who had been exlow to the dust of iron oxide, used in preparing books
of ald-leaf, he found the powder in the tissur between of arld-laf. he found the powder in the tissue between the air-cell and in thrir waik, na woll as in their cavities. From less than two ounces of this lung over turelve grains of irou oville were obtained liy chemical methuds, so that, if cqually distributed through both lunge, there must have bren at last three-quarters of
an ounce inhal. In another cas-that of a workman axposed to the dust of a mixture used in preparing ultmanarine rubstance-he found a puantity eatimated at fully an ounce.

QUERIBS.

[11852.]-Fox Skin.-Would any follow roader be kind enough to inform me what to use to stop the hai
rus
[1195s.]-Distilled Water. - What is the chomical diffrence between this and ordinary water, and in wha
dous its superiority cousist? dous its superiority cousist ?-G. W. B
[11954.]- Fire Balloons.- Roferring to a reply to
to corrospondent, on the rubject of fire bnlloons (ieo Vol inform me whint kind of paper or other materina is need in the constraction of a balloon 2014. in oircumference no a the meang used of inflating, so that there would
A1951-MOdel
[11853.]-Model Steamboat. - Will socoo kind fellow reader inform me what is the Lest sort of boiler to drive a pair of marino oscillatiog eukines, lin. stroke, and
itiu. bore, not to exceed sin. lu dopth, sin. in widtu, and 10in. in length; what gauge of oppper to stand solb pressure, and the best means of hoating same ?-N. G. H
[11950]-Candied Peel. - Will any brother corre spondent oblige by informing mo of the method of
mannfacturing candied poel, as sold by the grocera Race.
[11357.]-Berlin Black. - Would some correspondent give us some information how Berlin blaok is made, and now it is applied to revister gratos, to give them that
[11353]-Pressure of Water.-Will some kind render please to give me rale fur tuding the pressare of water upon a vesbol For instance, say a tank on tho
ground floor supplifd from one on the top of the house the top tank 35 th. hicher than the bottom one, and supplied by a pipe lin. in diameter. Please give it in plain Mgures,
k. IRONs.
[11359.]-Casting Brass Solid.-Will any kind correspondent give me what relinule information he can
on tho followiug subject? -Living in the couatry, and never having had the advantace of aooiug a practioal man porforin the operatiou, my onstings are giverally houoycombed. What is the resson of this? Ins runniug the metal hot or cold, or the wny the moulds are
made, anything to do withit? Also la what proportion made, anything to do with it? Also In what proportion
should the wetals be mixed for bearings 9-D Derse should the metals be mixed for bearings 9-Durfin
[11860.]-Sun's Deolination.-I should estsem it a great favour if any of your astronomical contributors
could toll me how 1 can pet the correct declination of the sun for an intermediate time, between the npprarent noon of esch day. The term "diff. for one hour," on page 1 of our Nautical Almanac seems to be a very incorrect one. I have always boen told the way to tnd the tho number of hours clapsed since the precoding noon by the so-called "diff. for one hoar" (regardless of socond difference), and then add or subiract aocorilingly. Certainly, in some observations of the sun, a scoond or two is not of mach importance, but would it not be
better if cur Nautical Almanace publivised a table of second difforences, 80 that you could get a oorrect declination? There could surely be no objootion or acof the almanac a kradual decrease in the number of pages, and I supposo a corresponding docrease in the computing stary, but if thealmanao is to be conflined to a certain number of pagus, why not ornit the trashy exWhantion, und insert one or two useful tablos?-HENRY Wood.
[11861.] - Preserved Meat. - Would any correspondent explain tho modus operandi as oonduoted in Anstralia, with regard to the filling, bolling, and soldering up of the tins. The reason why the ends are con-
cave, and what is the uso of the bent strips of tha soldered Inside the lid?-Curio
[11362.]-SilverTubes for Meerschaum Pipes.Could auy of the readers of the Mechavic iuforin me how to make bent silver tubes for meorschaum pipes ? I can do the straight ones, but often lose a jub through
not being able to do the bent ones. An answer will oblige-a. Yeasis Subscriber.
[11363.]-Hankey's Comet.-Anxious as "F.R.A.S." always is to assist any one desiruas of information, can
he give ine the mothod fir calculating the next places of he give ine the mothod for calculating the next places of
Hsinkey's comet, which, whou completed, I would gladly Hnnkey's comet, which, whou completed, I would gladyy
counnunicate to our Mechanic. I have De Morgan's well-knowa sheet of logarthms, a slide rule (by sinith), a sextant and a Guater's acale, and a very accurately materials, perhaps "F.ha.S." will kindly inform me what other articles are feynired. -Youno Abtbunomeb.
[11384.]-Lettering the Backs of Books. - Will
sone reader kitdy tell mo how the gilt lettering on the sone reader kindly tell me how the pilt letterind on the
backs of books is done, or on slips of leather ? -W. StiAD. [1135.]-The Wind. - Will any of your readers in form ine from lich quarter the mind blows mustly during the year in London ?-Animometbr
[11366.]-Blankets.-Will any fellow reader inform me of the bent method of whiniug and whitening
blankets that havo becotne yellow? Shoula any chemical blankets that havo becutne
bo used ? Hocinkemera.
[11:367]-Magnesium Lights.-C2n any one tell mo how to make masheriun lighty? I mappose the addi thon of magoesium tilings to an ordinary blue light
would answer; but as the thlings are expensive, 1 wiala to would answer; but as the thli
avoid experimenting. -T. I .
[11968.]-Precious Stones.- Will some of your cor espoldents kindly inform ime what relation in value do the chebper precanas stonce, such as garnet, embrald,
Lhood-atono. dic., boar to their nettings of gine carat goll? Or if indurmation in this form bo not convenient nreference to a wirk ou the aubject will be thankfully
[1195).]-Etching Steel.-What acid will ont steel quickly?
that I do not wigh to soften.-H. D. B.
[11970.]-Electrioal-How is it that in the following combination ourrent can be detected A strip of copper
and of xinc, with a piece of clath between them, are juined together at the ends: then apon oxciting this compound strip and bena be plainly felt with the tongue Now, I shonld have thought that joining both ends of copper and sinc would have dostroyed all corrent what. ever. Which is the negative pole in auch a oombination -H. D. B.
[11871.]-Steel for Lathe Tools.-As I Hive a great
 silde-rest, eccentric, vertical nad horisortal catior
and drills, I want to order some nefol-sized stool to hare by me when required. Would "J. K. P." kindly let me know the most nefulu sizes and names of best steel? The contre of my sin. lathe is in. above alide-rest.
Would he also giro me his advice how to mend a pioce of the cast-iron frame that the mandril runs in, which is the front bearing of mandril in its place) baing too thight $9-L$. s .
[11372]-Oral Ohnok-Would "Jaok of All Trades" kindly help mo in constructing his oval chack (VoL. XII.,
No. 289), as 1 do not anderstand Ba^{2} the micrometer screw and head with divided and sub-divided rings, nor screw and hoad wist and plan C and section C? 18 he wonld give me a fer measarements I should be greatly obliged.
My face-plate is soren inchea and afteen- 1 Inteentha in diameter.-L. S.
[11878]. -Fistory of England.-Can any of " our" correspondente intorm me of a good cheap History ol England far boys of ten and eleven? 1 have had Lttue
Arthur's, Johns, and MoLaurie', and require one now botween the latter and Dickens'a. Mrs. Markham's is to lengthy, and Collier's too dimpalt.-BETA.
[11974.]-Fixing Beits on Tires-I wish to know on Barnard \& Bishop's lawn mower tires, and if they can be
broken, and by what procoss.-Brackno.
[11875.]-Brickmaking in Canada.-I should feel obige of Canada could inform me of the part wherein soll might be dug snitable for making brickg-sand, clay, and chalks are the necessary materials for compo-
sition. If the plant is situated adjacent to some rising sition. If the plant is sitanted adjacent to some rising
nelghbourhood the advantages would be more proaltablo. Gilize.
[11876.]-Marble Busta.-I have several marble oxposure to the influence of duat and amoke. Can any one instrat me how to clean (without injuring) them
[11877.]-Pocket Umbilicue.-I have a amall 6 in pocket umbilicus, the internal mechanism of which has become deranged, in consequence of the geodesio having become entangled with the oscapement wheel on to indicatrix ; in addition to which, ama afraid some teeth have booome bent, producing non-isochronous move. ments in the parsbolio governor. Can any or your me Without breaking the air-tight joints in the covers, and so vitiating the vacuam? The cylindrical oase of the nmbilicus is made of plete-glass, and not of the
alloy of shoet tin and cast iron. -R . $\mathrm{KACMCEAEL}$.
[11378.]-Killing Beetles.-How oan Y kill the larger kinds of beellos for monanting in a oollection without
deetroying their colour, snd in the quiekest manner, deetroying their colour, and in the quipkost menvi
as not to cause unnecessary paln P-SExpzavivo.
[11879.]-Wardian Case.-Will some kind resder chanic moo is ambitions of constructing a wardian case chanic who ia ambittous of constructing a wardian case, completeness and a cortaln amount of ohabtenems ?-
[11388.]-Sand for Canting-Could any of your subscribers inform me of the method of preparation of the sand which is applied to the purposes of
and oanting Iron and brasswork ?-Lioxibus.
[11381.]-Rhamkorfs Oofl-Would "Sligma" or conld use with gafoty for morking a Rhumkori's coil oonsisting of three layers of No. 18 copper wire for pri-
mary; also, how they are to be arranged 2-J. B. W.
[lise2]- Parrot-Oan any one tall me the osare of ningare an no hempsoed, and keeping him almost on bread and
milk, but it makes no diforence. It is a grey bird, and millk, but it makes no difference.
never has meat or bones. -Crexus.
[11983] - Sulphur Soap. - How is sulphar soap is a pound of the soap, and how is it worked in ? Pxaonzlix.
[1198.]-Small.Pox: Its Prevention and Cure. mentioned as a oure and proyentive of amall.pox. can any one ilve me any Information concernlign it? I have
tried to obtain it, bat have beon nonuccosful. Has car. tried to obtain it, bat have boen nobucocossful. H
bollo acid the same virtues ?-F. W. SBEarro.
[11885.]-Salt.-Wu any of your correspondents inform me what are the tests for nalt? 1. For purity. 2 .
For strength. 3. What changes does galt undergo by Ising in stock (say) from four to six months it. Is there any difcrence in the quanlity (chemical or otherrise) of
the salts made in difforent parts of England ? Criogide the salts ma
or Sodiuk.
[11380.]-Crystale in Gas Tar.-About nine months since I had occasion to use some gas tar from the gna works. I procured some in a tin quart can. After I had
nsed what I wanted I put the lid on the can and laid it by in the cellar. Some time after I wanted a little more
tar, and to $m y$ eurprise, when I moved the lid off the can, I saw some beautiful white crystala projecting from
the tar on the sidea of the can. Now, if shoald feel oblifed if our chemical correspondents, Fould extend their favours and explain the chemical action; aliso the
equations worked out, so as to explain the formale of these arjatale-Aтaxic.
[11887.]-Sundiels.- Fin one of your astronomical crrespondents kindiy inform me whether a sundia it on a pirot so plane, and sotting it from time to time by a gradnated circle divided into days or weeks, sccording to the degree of accaracy required? Or would it be also neces sary to have the gnomoa oapable of adjastment rerti-
cally? Coald a fimilar arrangement be applled to other forms of dial, such as the vertical ?-L. C. E.
[11888]-To Mr. Fennell. - Wull Mr. Fennell be good onoukh to state whother the organ shown in section on
p. 665 of the last volumg is the game as the one of Which he formerly sent a drawing? Also, whether he ever made the instrument, or merely designed the
which was an oxtremely elaborate one? -L . E .
[13880]-On Fortifications-Will some reader in form me of the plan of the late Earl of Dundonald on and wish to know if they are anything like mine. plan rises ont of the earth, and when down the enemy play hises out of
mresenco.-J. T.
[11890.]-Brown Hat. - Will somebody kindly toll no how to dye my straw hat brown? It used to be an masy matter to get done, but now bolh general dyers and fancy for a brown hat, I tried to do my own and got a sispenny bottle of dye for the purpose, bat as it was
barely enough to cover the crown I thought it dear, barely enough oo cover ha bit of one chemical and a bi of another, until the hat was presentablo and evon wearable; bat having no idea of the quantitios of the thinge mit to being another moman guided by "rule of thamb." -SARAB.
[11891.]-Insulating Coil.-Will any kind reader inform me whether it is absolutely neceasary to ingulate else that would do as well? If properly insuisted what th the average length of spark a fib. of No. 32 silk covered wire ought to give $9-H$. Corbert.
[11892.]-Scent from Fiolets and Roses.-Can nny one inform me the way to
violets or roses?-H. Corbert.
[11888.]-Metallic Harmonioon.-Having lately seen a drawing of a metallio harmonicon, would bome ind roader give mo some partoulats about it? What he notes reat the and are the pins which keep the notes in their places driven down through tho heart of the cord into the ribs? and is it, after all, an instrumeat that is of mach pracIcal valia to the musician, or ia it only a masion toy ? Valve.
[11394]-Opera Glase.-I wish one of your corre spondents woald inform me how to make an opera-glass sildo-Ixaviarg.
[11895.] - Fioreign Wood. - Can any of your numerous readers inlorm me what kind of wrod it is
that is bound outsido the cases that cocos fibre comes in? It is a vory dark and heavy wood, and comes in small plecos about lin. aquaro?-C. C.
[11396.]-Ivory Handles for Whipa.-I have bat having at irregular intorvals knote in imitation oo those in holly and other woods? How is thls done? I think The result might be producad by turning beade at incareful examinacion of one of the handles makes me hink it is not done no.-JANMIFRED.
[11807.]-Sting-proof Gloves.-Could any one toll me how conta make a pair of sting-proof glo
proof agalnat the atinging of beea ?-ApIARINX.
[11898.] - Stinging of Bees, Hornets, and the above to prevent swelling? - Apinkiax.
[11899]- Water Power Wantod. - WII some brother reader inform me what nizo turbine wheel by a man and lad? I have a cistern which It th! nk will supply sumpiont water, holding aboat 400 gallons. I can dill 18in. fall from bottom of oistorn to top of wheel; size Fill be neceisary. Of coursie I can always have that quantity of water in cistern, as I have a good supply.
Please state the depth of whoel and size of buckets. Please state the depth of wheel and size of bry
aketch of one will greatly oblige.-E. TAPPix.
[11400.]-Pedals for Planoforte. - Woald some kind reader give a plan of a set of 29 pedais for practice or the piano, and how to oonneot
board of a octave piano ?-J. $\mathrm{W} . \mathrm{s}$.
[11401.]-Filectric Formula.-I have had some Jears' practical work in the engineering department of
telegraph company - chiefly in construction work. I have purchased Culiey's "Handbook of Practional Telegraphy;" but casnot understand the soientiaio ingtruc-
tions for teating, 8 cc Will nome brother reader kindly say if I can acquire this information without a mastor, and if so what books I must purchase ?-BLadod.
[11402.]-Water Power to Work Saw Bench.On page 671 of last rol., your obliging correspondent of 6 Ift., Will kire an effective power about equal to i horse. I wish to know the size of an opening from a
head of water that would allow the oscape of that quan tity. Would a sit. opening, with 6 in. of water fowing over the cill, be near that weight? "Tubal Kain" is
better at gigares than I am, and
 whers in "our" juurnal are the paddles of water wheel set at right anjles from dram, or inclined to re-
ceive the flowiug wator 9 I bope to turn the above query to some adrantage in the western country.allee.
[11403.]-Cras.- Will some one tell me where the gas burned in the carringos on th
supplied from ?-W. BRiart.
[11404]-Analysis of Albite.-Will Mr. Dal
 quanliadiv is oxidied into the hrongh its aquerns solution if MnCl is MnCl_{4} ander the same cireumatances, and if potegsio nitrite in like condition is converted into the chloride ?
-w. J.
[11405.]-Purifying Zinc Wire.-Will you or any of your readers be kind encugh to inform me of any
ther means of purifying zinc wire for a battary, other than asing mercury ?-Josn 8. Dastor.
[11406.]-Steam Pump. - What kind of aloam pump is best to try an artesian bearing from 2 bore hole
forty yards deop, which stands thirty.three yarde in

[11407.]-Magic and Conjuring.-I want to give a lecture on magic, and wish to give as many startiling experiments as I oan. I should like to make the stago as altractive as a conjuror's. What mean by magio is
those tricks that are done by natural causes ; for instance, the double fannel where you pretend to pump water out of a person's arm, the water being kept in the annel by the pressare of the atmosphere, and is allowed o ran out on hiting the ginger from a atio hole in the handle of the fannel. This is mapic. Cooking plam puddings in gentlemen'e hats is conjuring. Can any of
your numerous readers tell me of any magical tricks ?

[11408.]-Sewing Machine-Being aboat to pare chase a sewing machine, nnd reading np the subject, 1 and those instruments are divided into tro classes, whlch do Bo by means of a reciprocating shuttle Now I wish to know which of those methode is the simplest or the least linble to get out of order, presuming that alther make the sewing with similare excellence. I want he ingtrument for general ase in a privato tamy than for a lady who does not appear to
mediocre mechanical abillty.-E. B. F.
[11409.]-Canine. - Can any brother reader of this very valuable journal pat me in possession of a remedy lor the lalling off of the hair of a retriever pup? I may
jast atate that it is black and three monthe old, and ap just atate .that it is black and three months ola, and up that tme tithas gradually fallen or until it is almost bare. I hava washed it frequently with dog soap to dostroy fieas, and have also adininistered areca nut for 1 may also state that it is full of mischief and as hearty as it can be, but the hair coming off oompletely spoils this otherwise promising and valuable pap; therefore, if any of my brother readerd can tell me what will oure
this falling, he will confer a great favour on- J . H .
[11410.]-Geometrical Question.-AB is the base of a triangle, of which the sides AC and CB are equal to hore a line drawn from A makes a right angle with DB. It is required to show that the angle DAB is equal
to balf of the angle ACB at the vertox of the isumoeles to hale of the angle ACB at the
[1141L]-Line Shaft-Will some one give a quick and correct mode of fixing a line abaft, any 1608t. long ? -Tyo
[11412]-Painting.-I have soen an oil painting by ome orrech which vory mueh takes my haicy good painter, and if his works are mach sought aftor? Lactex.
[11418.]-Lathe Chuok.-Would "Goat " kindly give a more minute descriptiou of the lathe chuck be refers to, in his reply to query 108ss, as I do not quite under-
stand him ? A detail drawing would greauly oblige-Lilir. П1414.]-Unripe Se
Seods.- Il seeds are gathergd so is the plant dogenorate ? - Z.
[11415.]-Soarlet Runners.-Will some reader tell me which is the best sort for sowing, and how I can proront the flowers dropping off, which happened to me last year instead of growiug to be beans? Also a fow
hinte for the sucossfal oultivation of this dellaious regetable.-Z
[11416.]-Crossbow.-Would some brother reader Inform mo how 1 could ma
will oarry well ?-TVAxER.
[11417.]-White Poligh.-Win any of your readers
 apple ? and also give mo
varnish?
[11418] - Absorbing Qaality of Printing Paper.-Cian niny of your correspondents inform mo if obriated? I should feel oblised if gonuo one would atato abriandy method of doing this.-E. W. P. EDWin.
[11419.]-Hale-Horse Power Turbine-Would a brother reader of "ours kindly inform me if it is pos-
sible to get, say, thorse power (or less would dol from a infine erectedoin coujinction with a common honse Fater tap, through which runs a Rood supply of Fater
througha in. diamcter pipe, supylid by amain of (say) through, 1 in . diamete
[11420.]-Sewing Machine Extras.-I want to
 ammon nse are silverch, or are they white metal,
[11421.]-Photography.-I am just commenoing the practice (or study) of photography, and am, to the best of my knowledge, stricliy followin the instructions given in all works on the subject. I think I have succeeded ilver bath for four or tive minutes, derelop with iron developing solution, fy by rlunsiug in hypo. bath for
about ten miuntes ; the picture looks well till I wash it, and as soon as 1 Hood it with water the pictare uaarly disappears, leaving little more than the appor part of background, which looks muddled and blotohy. If sume
xperienced hand will kinuly oome to the rescue I ghall oxperienced hand wiak kindil.
bo very
[[11423]-Night and Das Temperatare dec-

[11433]-Surgery.-Can any one give me information on this case? Three months ago a peraon of my family got about a quarter of an inch of ine point of a
needle in her finger. As it is exactly in tho middle joint, no surgeon has been willing to answer for the resalt of an operation. The Anger, at firgt much swollen and extromely palinful, has now, for the last two weeks, resumed its former state, axcept a litile white tumour opposite side ; it is still palntul when bent. Is there any dapger ?-A Country Subscribir. (Wo hope no spoak with authority. -ED.]
[11424)-Botany.- Wanted, information about a South of England. Are there any with analytioal keys for young beginnera ?-AME EN PxIME.
Watch. Will one of our watchmaking sabseribers windly inform me how to put a new roller and lever to a watch, also how meature them ? JoBEri.
[11426.-8screw Outting. - WII any kind reader of for a 4 in . centre lathe, and what size i and what distance from centro of lathe mandril to contro of sorew?
fromy.
[11497.1-Degrees in Chemiatry.-Will some sub mybelf to take a degroe in of the bistry? Also what would myneir to tate a degroo in chemisiry? Also what would okeit at? Will some one kindy give me a fow examples of questions that have
Axbitioual Ceramar.
[11428.]-Violin.-Can ans of your oorrespondents learvog inside the following insoription is likely to be gennine: "Made by Thomas Smith, at the Harp and
Eantboy in Picoadiuy, London, 1756 ;" and if genuine Hentboy in Picosdill ${ }^{\text {L }}$ London,
would it be valuable ? W. P. D.
[11499.]-Ferne.-Wil some reader kindly tell me under a glaks shade?-E. T. 8 .
[11480.]-Lapidaries' Tools.-Wil some brother reader kindly tell mee the way lapidarios oat the pebbles Cound on the sea-Rhore, and what tools are required, and will oblige. - J. CHAMarahany.
[11431.]-THnned Water Bottles.- Our corps have bean ordered to carry water bottles, and they aro tinned oanses the iron to rust. In wish to know whether they can be easily plated with wilror inside, and how - it
with battery which, and what size wili be required ?
They are black japanned entaide.
[11432]-Tuttle's Comet. -No one has given the places for every day of Tutlue's comet in "ours," hoyond
 some one oblige me by giving the places for the early
[11888.]-Porous Chareoal-Will any reader in. form me how the porous charcoai blocks are made, a
what are the ingredients for flters $9 \rightarrow$. Walcon.
[11484]-Salmon Spawn as Bait.-Would any for fishing. I mave a book for fishing which bays, "Salmon apawn is a good bait,"for all hidds of fish when mixed lo a peculiar manner."-Kika Fisisz.
[11435.]-Bootmaking. - If it necossary to soak leather in water bofore using it for the soles of boots?
If so, does that not damago the leather, and render it If so, does that not damage the leather, and rea
[11488]-Marmonium.-Is it absolataly necossary harmonium pan p-E. T. E .

A Showrer of Stones.-A shower of stones is reported from Rosario, in December. A great tempest was felt, ending in a shower of stones from N.W. to S.W., and doing much damage. The shower lasted ten minutes, and the stones were abundant and large, cornbelds have severely suffered. It is remarked the like occurrence had not been seen for many y cars, so it is to be inferred such a phenomenon is not unknown. As the Bernstadt colony was affected some European observations may be received.

The Healthiast Sites for Dwalling-Houses.

 The, healthiest sites for dwelling-houses (said Dr. Hime. in a paper recently read before the Sheffield Architcctural and Archeological Society) are knownto be those on trap, granite, and other metamorphic to be those on trap, granite, and other metamorphic
rocks, where water, readily escapes, and the soil, and consequently the air, is dry. Cholera is rare in houses on such sites. Permeable sandstone, gravel, and chalk. If unmixed with clag, are also healthy. Snnds which contain organic matter, clay, and alluvial soll are
always to be suspected. Thorough draining, both subahways to be suspected. Thorough draining, both subRoil and surface, is a necessary preliminary to building.
Dampness of ground necessitates dampness of the air Dampness of ground necessitates dampness of the air
and of the walls. Houses should never be built on ground Nled up with ashes and other debris. The large amount'ot organic matter contained in it, which is freely exposed to the action of the air and moisture, becoming decomy:osed, must cause poisonous emanations do
structive to those who, living above, muat breathe it

DOMESTIO BEOIPES.

From the Food Journal.

Puree De Legumes.-Boil in some stock with a bundle of sweet herbs, pepper, salt, and spices to taste any combination you like of such vegetables as carrots lem artichokes, etc. When thoronghly done, pass the whole through a fine hair thore pir in ane, pass th piece of butter and a little flour, then add a little of than purece, and when this is well mixed add the the Finish by stirring in, off the fire, a coaple of yolks of Finish by stirring in, off the fire, a coaple of yolks of with or without any sippets fried in butter. N.B.The above is one way of maing use of the trimmings of vegetables produced by cattiog them ap with fancy cutters.

Filets de Veau a Littalienne.-Cat from a plece of leg of veal some nice fillets, three-eighths of an with pepper oil. Put the tin in the oven just long enough to cook the fillets, then drain and arrange them in a circle on the dish, with the following sance in the middle:-Fry in a little salad oil a couple of shallots, minced fine; when they are a pale straw colour add two or three mushrooms and a little parsley, minced in the same wine in equal parts to make the sagice ; add perper salt to taste, a clove of garlic, some sweet herbs, and a bay leaf tied up in a bundle. Let the sauce boil half an hour, and remove the bundle. Melt a piece of butter. add a very little flour to it , then the sance, stir it well on the fire, and it is ready.

Crappit Heads.-A Scottish dish, of which the name signifies stuffed hends. It consists of the heads of haddocks, stuffed with a mixture of oatmeal and suet, favoured with onions chopped small, and pepper, to Which the roes of the haddocks are sometimes added. The heads are then placed in a pudding dish with a little suet, sprinkled with oatmeal, and baked in an oven. This was formerly a favourite supper dish in Scotland,
and is mentioned in "Guy Mannering" as one of the and is mentioned in "Guy Mannering" as one of the good things prepared by the landiady of a village inn for a guest to whom she wished to show particular atten-
tion. Although a very pleasant dish, it has, however, tion. Although a very
fallen much into disuse.
Omelette ad Parmbsan.- Beat up three eggs with pepper and salt to taste, and a tablespoonful of grated Parmesan cheese; ; ry a light colour, and serve
with plenty of grated Parmesan stewed over the omelet.

USEFUL AND SOIENTITIO NOTES.

A Cosmopolitan Move-It is asserted, and, we believe, on good authority, that Prince Bismarck is to discuss thon to Berlin an international Congress, world ; and that he is prepared to lay before the members the following proposals, as a basis for negotiation: -1. That all the States of Europe, Russia in Asia, Turkey in Asia, Canada, the United States, Algeria, ac., shall form one postal union. 2. That throughout this union there shall be adopted a nulform rate of postage of twopence per half ounce. 8. That throughout the union, newspapers, printed matter, patterng, \&c., shall be conveyed at the rate of one penny for every two ounces. 4. That to all countries not included in the Postal Union double the above rates shall be charged. 5. The uniform registration fee for all parts charged. 5. The uniform registr
of the world shall be twopence.

A Wave of Cold.-The meteorological observations now made and telegraphed daily in America disclosed, in February, the path of a great atmospheric Wave of cold across that continent. The chicago to that city announced that at Fort Benton the ther mometer had suddenly fallen to 15° below the ther none of the other signal stations exhibited any marked cell 35° of temperature. On the 12 th, the thermomete until midnight, with a very light movement of th atmosphere ; the loy wind then arrived, and the mercury dropped 33° in ten hourg, and fell still lower in the evening, the wave passing on towards the south-east the rate of 25 to 30 miles per Fort Benton to Chicago a tended at least 100 milles north hour, and it is stated ex Benton to Omaha, but not so far to the south. The barometer rose as rapidly as the thermometer fell.
Copper Gas-Plpes.-The Journal de rEclairage notices an accident which once more proves the danger of using copper gas-pipes. Λ workman having, with of a square file, cut almost through half the diameter whicl gas-pipe of red copper of 8 in. internal diameter, tool whpplied the Liege station, was removing the tool when an explosion similar to the report of a rifle gas-pipes and workman was much burnt. some covered with 2 blackish coating, and showed evident signs of corrosion from ammoniacal condensation The black matter was analyeed, and was found to consist of an acetate of copper, which exploded between $203^{\circ}-248^{\circ}$, producing water, copper, carbon, carbonic acid, and traces of carbonic oxide.

Pearle.-Mr. R. Garner lately read a paper before the Linnean Socicty, in which he referred to the
theory, now generaily adopted, that the production of pearls in oysters and other molluscs is caused by the rritation produced by the attacks of the minute para site known as Disioma, and believed that, by artificial means, this parasite might be greatly increased. British pearls are obtained mostly from species of Unio, Anolon. and Mytilis, but it is probable that all molluscs, whether bivalve or univalve, with a nacreous lining to the shell, might be made to produce pearls.
Coating Oxidisable Metals.-A process devised by M. Nagel, of Hamburg, for coating Iron, steel, and other oxidisable metals with an electro deposit of nickel or cobalt, consists in taking 400 parts, by weight,
of pure sulphate of the protoxide of nickel by arystaof pure sulphate of the protoxide of nickel by arystalifsation, and 200 parts, by weight, of pure ammonia,
so as to form a double salt, which is dissolved in 6,000 so as to form a double salt, which is dissolved in 6,000
parts of distlled water, and 1,200 parts of ammoniacal solution, of the specific gravity of 0.009 sdded. The alectro deposit is affected by an ordinary galvanic current, using a platinum positive pole, the solution being heated to about 100° Fahr. The strength of the galvanic current is regulated according to the number
of objects to be coated. For coating with cobalt 138 of objects to be coated. For coating with cobalt 138 parts, by weight, of pure sulphate of cobalt are comcalt, which is then dissolved in 1000 parts a distilled water, and 120 parts of amm 1,01 parlution, of the same specific gravity as before, are added. The process of deposition with cobalt is the same as with nickel.Iron Age.
Liquid Glue.-An excellent liquid glue is made y dissolving glue in nitric ether. The ether will only dissoive a certaln amount of glue, consequently the solution cannot be made too thick. The gluo
thus made is about the consistency of molasses, and is doubly as tenacious as that made with hot water. If a few bits of indiarubber, cut into scraps the sise If a few bits of indiarubber, cut into scraps the sizo
of a buck shot, be added, and the solution allowed to tand a few days, being stirred frequently, it will be all the better, and will resist the dampness twice as well as glue made with water
Insanity in France.-History teaches us, says he Lancel, that when a nation passes through great political storms, that period is always followed by an increased development of insanity, which generally
takes a suicidal form. The throes through which takes a suicidal iorm. The throes throngh which France has lately passed have already materially in-
creased the number of lunatics in that country. The reased the number of lunatics in that country. The inmates of the various asylums and maisons de santé
have more than doubled in the course of the last eighteen months, and the arorgue in Paris is berely arge enough to contain the bodies which are dally ound in the Seine. Among the Communist prisoners who are now in durance at Brest, Cherbourg, Lorient,
and elsewhere, the tendency to insanity is very marked. and eisewhere. the tendency to insanity is very marked.
two per cent. having become doranged since their im prisonment. The appointment of a medical commlsprisonment. The appointment of a medical commis-
sion to inquire into and report upon this question sion to inquire into and report
would be both wise and humane.

The Production of Florida. White oak, live and water oak, gum, bay, hickory, magnohia, palm, dwarf palmetto, pine of several rarieties, Indian corn, cotton, sugar cane-which, unlike the Louisiana canc reaches a full maturity-sweet and Irish potatoes. celery, radishes, rice, tobacco. indigo-the principat production under the British occupation of Florida; Sisal hemp, the magney plant or Agave Americana, castor bean, the mulberry, peas, pea-nuts, wild arrowroot, rye and oats, tomatoes, cucumbers, melons, beans cabbages, turnips, beets, oranges, lemons, limes, citrons, peaches, grapes, figs, pomegranates, plums, blackberries, olives. bananas, pine-apples, guava, tamarind, plantain cocoanuts, de. Wheat does not succeed ; but flour may of course, be readily procured by the immigrant who is not willing to live on Indian corn, sweet and Irish potatoes, rice, or the almost countless fruits, added to his meats and fish. As for cattle, they may live on outdoor supplies, and range for ten months of the year in Northern Florida, and for the whole year in Southern.

The attemitom of ale Readebs of the "Englibr Deniuio engagod ar inemwith in the Arts af Conviractian or "Bow, or cogaato thaumtrion, is eppecinlly directod to tho
 articles on:-Cartiages; The Coniervancy of Rivers ; Decorativo Procestes; How to Bulld sclentheculy wih the Atd of Modern Inventioni-IX; Japanose Art; Royal Inatletoto of Britioh Archllocts; The Palestine Exploration Pund ; Honte in Boston, United Cavil: Chimner-plocon-Holmwood villa, near Glangow; The Glazing; Interception of the sowace of the City of Loodon froum tho Thames; Compotitions; The S. Holen'\& Townhall Competi-
tion; Paper as a Building Material; Oxiord Architectaral and Historical society; Archsological: Bailding Intolligenco (the
 arda Yodel Houne; Ballding stone and How to Jadgo It-II.: Station:; How Architectare Treated in the Weat; G insboroung Corn Exchanso ; Bconomising the Sewago; Intarcommanication

 prosent provalling in the Ballding Trader with repard to the Nine
Hours' Morement. de., \&ce., \&c. Illastrations :-Chimnor.picoces,

thB english mechanic lipedoat fond. Baiscorptions to bo gorwarided to the Fiftor, at the omea, 31

ANSWERS TO CORRESPONDENT'S.

*** Sll communicatione should be addressed to the Edrtor of the Enalien Mbchanio, 31, Tavintock-etreet, Cooent Garden, W.O.

The following are the initials, te., of letters to hand up to Tuesday morning, March 36, and unacknowledged olsewhere :-
W. H. Caell.-G. R. Hallane.-Philip P. Hanson.-L. Michals.-Geo. E. Jee.- Young Moulder.-Georde
Lampbard.-Wm. Moore, jun.-John Ridgway.-R. G. Kent-P. W. Mayor.- C. Scopas.-Greybeard.-S Bottone.-R. A. Proctor.-Cameo.-Old Dog Tray.-
The Harmonious Blacksmith.- W. Pengelly.-Sigma.The Barmonious Biacksmith.-N. Pengelly.-SigmanZoo Andra.-F. T. S. S. D.-Interrogator--Fond of Singing.-E Naylor.-A New Subscriber.-Samnel Davis.-S. G.-Wm. Hutchins. - N. Du Fai.-J. Walton.
-M . Paris.-J. B.-Jack of $\triangle \mathrm{Al}$ Trades.-R. B. T.-Screw.-Photo.-M. R. C. S.-Hy. Nowinan.-A. Z.-
E. H. W.-H. D.-R. Langdon.-A. W. C. Price.-W. H. Harrig.-W. C. Hughes.-G. H. Hurst.-A. J. White.-
G. F. H. - W. G. Clarko.-An Anxious Mechanic. G. F. H.-W. G. Clarko.-An Anxious Mecbanic.-
Rosge.-G. A. D.- Ratn.-Semaj.-Full Stop.-W.J. H.
-H. F.-A.J. V.G.-R. Tervet.-Samuel Smither.-J, Rose.-G. A. D.- Ratr.- Semaj.-Funnel Smither.-J.
R. Froctor. J. E. B. R. Fennessy.-Erperior.-C. B. B.R. Proctor.-E. B. Fennessy.-Experior--C. B. B.-
Iriossl.-Archer.-Tonchstone-Country Bright.-Matthew Berth.-A. Liverpool. - Litima Thule.
-Lyons.-Anxions.-W. W.-Bed of 8: 1 - Che.-Cham--Lyons.-Anxions.-W. W.-Bed of S:one.-Cham-
pagne Charlic.-Geo. Knott.-B. H. Harris.-Henry
White, - King Fisher, - Kaiph Lowdon,-F. R.A. B.E. R. E. A.-T. Leith.-AmLitions Chomist.-R. D. D.
 Digbs.-G. D.-Zeta.- Youngster. - A Chemical Student.-F. B. T.-R. G. A.-A subscriber.-S. W. Dudley.-J. Westwood.-Wm. Riohardson.-K O.-W. H. Skelton.-Old Coin.-Barbaros.-F. T. C.-Geo. N.
Dobson.-A Young Student.-C. N. Abbeit.-L C. E.Young Reader. - J. Chamborlaia. - Khóds Bux. -Jobber.-Thetama.-Telescopic.-W. E. E. Henning.-
F. A. Edwards.-Welshman.-J. W.-J. W. Card.F. A. Edwards.- Welshman.-J. W.-J. W. Card.-
Northern.-J. D. Hards.-Galashiels.-Fletcher nid Sinclair.-Coastguard.-E. A. Hansom.-J. H. H.-Detritus.-Sharp and Good.-Boatswain.-Social Roformer.
John Shaw.-Yes.
B. Bodd.-Your letter is not forwarded, becanse it is our rale not to forward such lettors.
Education, Lnbour, L. Langdon, Youngster, and C. P. E.: Your queries are advertisements.
L.- Monthly, price one shilling, and a poor shilling's worth it
S. Smither.-Ornamental Turning, No. 7, next nember.

Frazer Hafle, LL.D-Scientific Education next week-
J. K. P.-Your other answers next week.
E. L. G.-The P.S. to "Save Cs from Decimalism" came too late for this number. It will appear as a separate
V. C. B.-Don't ask ailly questions.
J. D. -The Organ Built, No. 6, next week.

Crbvus.-Though you donbtlessly disclaim with trath still the insertion of your letter would look like an advertisement, and would certainly have the effect of one. Finnlf.r.- You have mandered rather too distantly into the regions of speculation in your letter ou "A quesPlease sec vuranswer to "Phobluo" in last number, p. idi.
Pnelpatic Lever.-Please send the draught of "the novelarrangement from
R. Irons. - We should be glad of the partioulars of
galvaniting iron works in general. galvanieing iron works in general.
One who Considers Darwin a Fool- You are more emphatic than you are polite or truthful. Darwin, in sll probability, if he considered you worth consideration at all, would prefer
such au opinion of him.
SENEx.- Your answer about combing hair smouthly over the head being the cause of baluncss cannot be correct, as women would then become bald sooner than men.
Janes Smith. - Your query, is inserted and answered, would bave no general value, as it would only be use ful or interesting to onc person-yourself. We desire interesting to the largest number.
Correspondents whose communications are not inserted for reazons given in "Hints to Correspondents."Vermilion, E. Barber (1st reply), Alpha (Luiversity
Club), Peronelle (irat query), J. H., F. B., Clock Fancier, Semperviva (Gist query), Thomas Marsianil, Mancier, Samuel Hill.
W. T.-It is unreasonable that you should ask "F.R.A.S." to give sou the desired Information. Your letter is not
forwarded because it is contrary to our rules, and if it were not "F.K. A. B.' would nut ocmply with gour request.

A Country Serscriber-Ask a surgeon. It is astonich Ing how complacently some of our subsoribers submit serions meaical questious to a host of people whom they have never seen, and who will never see them;
and of whose qualitications they are entirely ignorant. and of whose qualitications they are entirely ignorant. We expect one of these days to recelve a query askidq
for information on tho best and easiest way of ampufor information on the
Joskpil Davies.-We should be glad to receive a short series of letters on the subject of nail making

Mrller-See indices to back vols.

G. W.-For information on tinning see pp. 01, 141, 164, Tacefitr.-Too frivolous. Write to some of the "Penny
Dreadfuls."
EdMinn W. Cocke.-For paint for engine, see pp. 318 ,
366, 368 , and 417, Vol. XIII.
J. L. Reilly (Boston, U.S.A.)-We cannot send volumes by post at all, nor back numbers, except at greatly jncreased postage rates. For the same reason we had better not send yon monthly parts. Any instrnctions should be given throunh the agency by moans of
which rou subscribe. Back numbers are Sd. each including postage.

H. B. E.-In No. 367

Liferpool, Subschiber.-See reply to "Country Subscriber."
Battle.-See indices to back vols., and the next six
queries yon send try and lot one of them be abont queries yna send try and lat one of them be abont
something that has not been answered in back nambers.
Cref refeach.-For information on galvanising iron,
gee pp. $432,478,523,576$, and 623 , Vol. XII., 343 and 540 кee pp.
Vol. XIIt.
G. Whittie.-For directions to mako collodion balloons, see p. 382, Vol. XII.
A Novice in the Art.-An illustration and description of Cantelo's appratusi for egg-batching, was given in vol. XII.
. J. Recordon.-We have no space for any more replies to the query
J. Rak (Sydney, N.S.W.)-The photos. with your second letter are quite clear, and will appear in our next number. We cannot send the vols. to you for M. Tornaghi, as recent regulations of the English Post
Oftce prevent their transmission by post. We therefore have commenced his subscription with the last number, which begins Vol. XV., and await your forther number, which begins Vol. XV., and await your forther
instructions. We have never sent daplicates of your vols., and trust the original parcel has by this time reached you. We shall send weekly numbers, and not monthly parts, as the postage for the latteris so heavy. A Watchmaker.-Your question is too vbgue. You had
better send the battery to the makers to be repaired. Boors.-Badness of leather, or a habit of buying boots too narrow for your feet.
Adax.-" Traditions of Pre-Adsmite Races," are matters of too vague a nature for our pages. Never mind
about your "decenh," but pay more attention to your spelling.
Advertiseifent. - We will not help you to disflgare the streets.
W. D. T.-Yes; apply at the Patent Office.

Excrisior.-We shall be glad if one of the correspondeuts using this nom de plame will change it.
R.-Try poison. If your dogs are good for anything they will not interfere with a kitten if brought into the
house soung, aud care taken to faniliarise them with it Un Ecos recosse.-The "editor is not agreeable." It is un
reasonable of you to ask Mr . Tonkes to repent infor reationafter he has referred you to page and volume and when you can obiain the number for twopence! A. J. F.-For information on skeletonising leaves, see . XI .
W. F.-We do not intond reporting them this year. Jasigs Cunliffe.-See back numbers.
Cypher.-There is a difficulty in reproducing music in our pages, especially of other than the establishod notation. We were enabled to illustrate H. T. W.s letter by the kinduess of the Kev. Jno. Curwen, who voluntarily offered to supply the necessary stereos. If the supporters of Vour system will do the same, we all necessary, as the principle of the oypher system is apparent to any one who has seen the tonic sol-fa notation; neither do we see how the printing of your first letter would bave prevented what you call tho "extraordinary Rssertions" of "A Schoolmaster."
" II. T. W.," in a letter to us, expressed a $\pi i=1$ to know more of the cypher syster, Wre have a rivi to know an excention to our rule, and forwarded yonr letter to him, rud adrised him to communicato with yon by advertisemeat in these pages.
J. A. Winson.-Similar answers preceded yours.

Isqrirer.-Between freezing and boiling temperatura, rols of glass expand soin. in 100,010 ; of copper,
1ilin.; of cast iron, 109 in ; of brass, 18 sin. ; and of stecl, 114 in .
R. H.-Yes; you will ensily anderstand how-thongh the principle is somerhat differently applicd-by reference ban articio on the uagio bux, on p. 300, Vol. X
Hobert Harrison.-For information on vuloanising indiarubber, see p. 415, Vol. XIV.
A. Luffinin (Iowa, C.S.A.)-Sto reply to J. L. Reilly for reason why back numbers are not forwarded.
W. D. -What do you mean?
E. Toye.-Sice "Sable's" articles on printing magic-lan tern slides, and his occasional answers.
C. T. O.-Beck with's sewing-machine is an American in vention many correspundents have been inquiring about.
T. Stingbr.-Yonr reply is an adyertisement. See notice to advertisers on firat page.

THE INVENTOR

\triangle PPLIOATIONS FOR RETTERS PATBNT DOBUDG THE WEEE ENDING MARCH $10,1872$.

7 70 J. H. Johnson, Lincoln's Inn. for improvements in machinery or upparatus
municuion.
$\because: 1$ W. R
Wi Rose, Halesowen, Worcestershire, for fopprovements in
treating waste boiler plates and other similar plates for the manufacture of gun barrels and nail rous.
769 E. Watteen, Middlesbro'.on.Tees, for improvements in ex-
plosive c cmpounds. A comrnunlcation. 753 8. Gibson and J. Gibann, Hebdenhridge, Haitfax, for iso-
provemento in sowing ingchiues. 7St J. Simpson, Wortley, Yorkshire, for a new or improved
derice ir protecting growiug celery and cardong, or 735 S. Burton, Jun, Cannon-street. City, for an Improved rose
and noille or jut to be used tue councclion with syringes and other appraratus for diatribating wator.
 757 A. M. Clark. chsoging the shattes in lostas. A communization. 7bs R. A. Browne. Richmond hill, Sarroy, for en Improved
atonsil for posching eags und other culinary puiposes.
 7io W. R. Iatie Southampton-buildings, for improvements in
the mannfacture of boots and ahoes, and in apparatas theretor. A cummunication.
iol s. Dearda, Harlow, Fasex, for an improved apparatun for idi s. Dearda, Harlow, Fasex, for an improved apparaton for 769 A. N. Clark, Chancery-lane, for an Improved batiery gan. A 763 T. Bradiord, Fliect-ntreet, for improvements in the means of
beating cylindrimal ur uther vartaces uned for mangling, calondering, beating cylindrwat or other rurtiace.
of ironing textie or other fabice.

OH C. W. Heat in and R. E. H. Franeis, Chering. cross Hospital,
for improvements in apparatus for nitering oll and other 766 S. J. Beaman and J. Unions, Wodnesbury, for an improred puddling furnsce.
767 A. Schanschiof. Tanaton-terrace. MIddlesex, for Improve-
ments in apparatue for facilitutiag tolegraghic aignuling upon ments in apparmus. A communication.
fos T. J. 8mith, Fleet-ntreet, for Improvemonts in npparatus for
the production of gases for heating and other parpusies. A com
mes A. Schanschiff, Tannton-torrace, Middlenex, for improve
ments in apparatus for receiving telegraphic eiguala und deapatihea. A combinumpation.
770 W. R. Lake, Snnthampton bulldings, for an improved ap-
paratus for preventing injury to railway carriages by the itoplaco paratus for preventing injury to railway carriages by the iteplace-
inemt of renuval of the ruis, the slipping of the whoels theretrum
or other like actidets. utber
771 8 . R. Gregg, Lombard strcet, City, and D. Evang, Casisnd
rond, south Hackney. for improvementy in the method iforatag the nurfaces of road, rallways, fovetpaths, phatorme, and ataer
ruadwase, which improvements nee applicaiole to the construction ruadwas, which improvements nre ap
of bridges, phars, aud other buildiags.
Tis J . Bavin, Lambeth walk, Lambeth, for improvements in
steam engines und in gentratiag nteam. T73 W. R. Lake, Southampton.luildings, for an improved roll for $\bar{\prime} / \mathrm{W}$ W. J. Locliser. Bristol, for improvements in the preparation
of artifinil manures. 776 W. Palliser, Cromwell-piace, South Kensington, for improve 776 J. Sumerville. Dublin, for Improvemonts in gas retort His
and mouthpieces, and machinory for luting the game. 77 E. Edwards, Routhampton-buildinge, for improvemente in
disi plates for calendar clock aud watches. A commanicution. TTB W. G. James, Storey's Gate, Westminster, for improvemente in the construction of trape for deains. 779 J. C. Mewburn, Fleet. atreet, for n nem or improved asfety
thermmometer or alarm apparatua for steam boilers aud uther parposes. a com andation.
700 A. M. Clark, Chancery.lene, for an improved safety boat-
lowering and deticiling apparatud. A comunnication. 781 H. B. Barlow, jon.. for Improvements in the mannfacture
of healds for weaving end in hould ahafta. A c cumanication. 782
8ir J. Whitworth, Manchestor, for improvements in wheals
ran on ruilrads and common roais. to ran on ruilroads and common roads.
763 W . R. Lake, Southampton-balidings, for an improved
eloctric t, ch for hithiog gas. A communication. 784 E Kaulbarh, Warwick -street, Regent street, for tho improve-
ment , the neant ot obtaintnk parallel notion, and of coavortung ment , the incun ot outaintnk parallet motion, and of coavortuag ins. J. Colinge.
mowing machines. T8B W W. R. Lake, Southampton banlaings, for improvements in
bout and blive heeli. A coummunicutiun. 787 A. Longsdon, Denmark-hill, Sarrey, for improvements in rhips or vesserly of war, and in forts, batteries, and bther
miltury ntructures or apparatua for upe on sou und land.
iex M. Yuyue and C. I. Payne, Thrapaton, Northampton, for
improrectucnt. ia brick-making machines and in appatatuy con-
ix, J. Kincaid, Rt. James'A-street, MLJdlesex, for Improvements 7,0 R. A. Robertson, Fletoria Docks, for Improvaments in ovaporating inquals and in the apparatay io be oaphoyed werein.
 792 R. Clachar, Glingow, for improvements in preases for prass
ing cotton and oticer Hbruus substuncod lutu balus. A cilumulicu-
 Nis J. Iarwoll, Bonnyfleld, Stirling, and w. R. Hatt)n, Strling, 795 W. E. Thomas and E. Taylor, Balford, Por improvemants in
the method of und appniatus for Hiuk ruiura ou bo the asied of wrimelug, mangling, and cther machines.
7 Si J. Warbunton. Blagleg, Yorkshire. for an improw cork

 oil, ary in the apparatue for perforimiag the name. A comwinica
tion. in the E. Laporto and C. D. Fontaine, Brassels, Sor improctionat

©ht Ctrylish Cflechanir

awd

WORLD OF SCIENCE AND ART.

JRIDAY, APRIL E, 1872.

ARTIOLES.

LUNAR METEOROLOGY.

By W. R. Birt, F.R.A.S., F.M.S.

A LL metconologioal processes depend more or less on the sun for their exintence. It is his heat that warms the surftoe of our planet, the earth; its atmosphere, partaking of the warmth communicated by his beams, is rendered capable of sustaining the maximum density of aqueons rapour at its then existing temperature, and all the meteorological phenomens we are aoquainted with follow. As the sun affects the terrestrial surface so does he those of the other planets of his system, and it may, perhaps, contribute to a clearness of conception if the operation and effects of hest upon those planets be considered under the term planetary meteorology; snd in like manner, if we are able to trace the effects of heat upon the moon's surface, and detect appearances which cannot be referred to known agencies, but whioh are not unlike many meteorological phenomena on the earth and planets, the classification of such effects and appearances under the designation of Lanar Meteorology-although we

We have already hinted that heat is the agency which contributes in the greatest degree to meteorological phenomena. The derelopment of hent on the surface of a planet or satellite is proportional to the altitude of the sun above any given spot on the surface, and we know that the dinrnal and annual progressions of temperature on the earth's surface are functions of the sun's altitude and declination. Although we cannot measure the effeot of heat on the moon's aurface thermometrically, yet, as we know that on the earth the sun's rays are capable of effecting changes of colour in terrestrial bodies, so changes of colour of portions of the moon's surface are not unlikely to be exponents of the effeet of the heating power of the sun apon them.

There are three methods by which alterations in the tints of lunar objects may be ascertained: First by estimation, second by comparison with a graduated series of tints to which a more precise numerical value can be applied than to mere estimation, and third by the use of an instrument so constructed that the observer may readily record the numerical value of the tint presented to his notice. In carrying out a series of observations on either of these methods the obstacles are considerable, but not insurmountable. There is nothing particularly inviting in registering night after night the colour of a emall spot on the moon. What is to come of it 9 is a not anlikely question, and unless the observer has faith in obtsining results that will repay him for his labour. either from the discussion of his own observations, or from a combination of them with the observations of others, he is apt to grow weary, especially if he has to wait two or three years before any of his observations can be turned to account. Again, it
attached-light 0.33 , medinm 0.50 , and dark 0.66 . The observations treated in this way have yielded a curve which unmistakably tells ns that the material of the floor of Plato undergoes changes of colour immediately dependent upon the altitude of the sun above its horizon, and also that these changes of colour bear (with regard to the moon) the same relation to solar influence as the expansion of mercury in our thermometers does on the earth.

Although it has long been suspected that the forms of objects on the moon's eurface are affected by the angle of illumination, as it is termed-i.e., the angle in which light falls as dependent upon the altitude and azimuth of the sun - the apparent variations arising from changes in the illuminating angle have, so far m_{8} we are aware, never been subjected to a close comparison ; and, while changes of colour, so far as regards the aspects of bodies, have been sapposed to depend upon different illuminations, we believe this to be the first instance in which the conneotion has been really shown; indeed, in the curve befcre ns we have something more than mare change of aspect, for the deepening of the tint as the sun approches the meridian, in our opinion, arises from a temporary change effected by heat in the material of (or over ?) the floor of Plato, whatever it may be. We must not, however, regard the present result as one warranting is to lay down our arms. If we desine to become really acquainted with lanar physios we mast be up and doing, for it is only one, perhaps, of a long series of results conducing to this end; certain bright spots have been suspected of fading, and cortain light arees, if earlior records be correct, have become permanently darker. The ocean of lunar researah is before

are unable to deteot by optical methods the existence of a lunsr atmosphere-may be both suitable and legitimate.

The stady of Lanar Meteorology must neoessarily be a difficult one. The ordinary training of the astronomical mind is inadequate to grapple with it; it does not depend apon acouracy of measurement, nor can it be elucidated by instramental methods exceptinoneimportant particular. A keen eye to detect with facility minnte differences of colour, a correot appreciation of definition, contrasted with a want of that necessary quality for seizing the smallest detail as manifested on neighbouring portions of the moon's surface, and a disburdening of the mind of any preconoeived opinions as to the existence or non-existence of hypothetical oonditions, are mong the elements of successful study. These, however, are not all the requisites ; it is not only exceedingly difficult, bat almost impossible, for one observer to carry on the inquiry single-handed. Co-operation is necessary, and co-operation of a peculiar kind. The mere detection of differences of colour or definition in the present state of selenography is not of itself sufficient to establish the existence of Lanar Meteorology. Astronomers have been trained in a different school : they ask for prooj, and they have a right to demand it, and proof can only be obtsined by a long series of observations. Several observers must unite in a course of laborious and almost uninviting observation, and register night after night the general appearance, kind of definition, colour, and brightness of a small portion of the moon's surface. It is only after two or more years that these records can field any frait, and the frait will greatly depend upon the character of the mind that undertakes the finad investigation.
is not improbable that his enthusiasm may be insufficient to carry him through so irksome a labour, if a thought orosses his mind that he is only one of several workers, and that somebody else may reap the benefit of his exertions, forgetting that if a few earnest observers are banded together to raise the backet from the well, the dissemination of the truth when once obtained is of far greater importance than the aggrandisement of one or even of all who have sought for and found it. The present popalarity, or the enduring reputation of a great discoverer, is as nothing compared with the trath found and promulgated. We revere such names as Copernicus, Kepler, Newton, Hersohel, and others; but what would those names be without the great trathe which the men who bore them were the instraments of unveiling!

Discoveries of whatever nature, whether commanding the admiration of mankind or confined to the knowledge of a few, are mostly the results of laborious investigations conducted by means of weight and measure into which number necessarily enters. We have said that the progress of lunar meteorology does not depend apon accurate measuremant, except in one partioular : that particular we will now examine. Of the three methods alluded to for determining ohanges of colorr on the moon's surface one only has yielded any result : it is thnt of estimation, but this would have been useless without number. A well-known spot on the moon, Ylato, has been selected for the observations, and some half-dozen observers entered energetically into the work : mostly three gradations of tint were observed-light, medinm, and darik. In the course of two years 133 estimates were made, varying from very light to very dark, and to each estimate a numerical value was
ns : we have piaked up one pebble, we hope many more will follow.
Passing from the consideration of the effect of solar heat upon the colours of lunar objects, as partaking of the nature of a meteorologioal process, we may bestow a thought or two on a few phenomena in which heat may be intimately concerned. It has been our lot on several occasions to witness simultaneously on the moon's surface two very different aspects, and we have found instances on reoord precisoly the reverse of those which we have noticed. It would awell this artiole to too great a length to quote such instances, or give our own experiences, suffice it to say, that we have remarked the definition of a region-the Mare Serenitatis, for exemple-to be anything but clear and distinct : scarcely a crater conld be detected upon it; at the aame time the region to the east, jnoluding the Palus Putredinis, and the Palus Nebularam, has been so alear and well detined, that very minute objects coold be readily discerned. As the manifestation of these different states, slthough synchronous as regards the earth view, are referred to different portions of the lani-solar day, and appear to be connected with the position of the san in the heavens, they may be appropriately classed as meteorological phenomens.
In the foregoing remarks we are not aware that any theoretical considerations have been introduced; a connection between ohanges of the sun's altitude and colour has been shown, and a connection between clearness and obecurity of the moon's surfsoe on the one hand, and the sun's altitude on the other, hified at. So far as th.co remarks may be supposed to have a theor bearing, it would be on the vexed question: lanar/ atmosphere; but whether the cont.
on this question be terminated in the negatire or
affirmative, the faots mentioned above, as well ns their connection with and dependence upon solar infanco, will vemain as ascertained purtions of selenographical maienco.

brperences to illestration.

Curves of solas altitudes and variations of colour at the Lumar Crater Plato.
The dotted curve is that of the san's altitnde. the continuous aurye that of the variations of colour.
The horizontal lines represent intervals of 10 degreas of altituda, and $0 \cdot 10$ of chromatio varistion.

The vertical lines represent intervals of twelve hours in the lusi-solar day, from sanrise to sanset.

IRON AS AN ELECTROTYPE.

WITHIN the laet ten years on so the attention of electro-metallargists in England and on the Continant has bean devoted to the attempt to discover a sucoessful mothod of forming an elootrotype in iron, and it wae only so reoently as last year that the announgement of the sucoess of the researchen of M. Klain, as official of the state paper-maills at S. Pelarsburg, was publicly made, and speoimens of bank-note, and other plates, medels, a page of printing type, and sundry other artioles produced by the prooess were placed in the International Exhibition two or three months before its close. Although the pablication of the modus operandi of M. Klein's process, and the exhibition of some of ita most satisfactory results, are so comparatively recent, we believe that iron electrotypes have been in use in Government departments in Rassia for nearly four years, especially for printing bank-notes. Most of our readers are aware of the great strides that have been made in the art of eleotrotyping since the time of its discovery by Mr. Spencer in England and Professor Jacobi in Russia some thirty years ago, a discovery which has developed into an important manufacture, not the least usefnl branch of which is the employment of eleotrotypes, both in letterpress and what is commonly known as copperplate printing. $U p$ to the present time copper is the metal whioh has given the most satisfaotory results from all ppints of view, as the production of electrotypes in that metal is remarkably easy, and consequently cheap, while they are sufficiently durahle to answer all ordinary parposes. As substitutes for the original wood engravings they are almost invariably employed in standard works which ara likely torun through numerous editions. the wood blocks being thans preserved in as good condition as when they left the ongraver's hands. The copper electrotype has also proved iteelf a formidable rival to the ordinary stereotype for works which are repeatedly reprinted, such as Bibles, prayer-boaks, \&e Bat: copper hae its disadvantages for the purpose as wall as its advantages. Although far more durable than jet all too solt to withatend the mear and tear of many thousende of impressions; it is lisble to corrosion if pat away damp ; and it is utterly unguitable for use with cartain ooloured inkse.g., rod, Which, containing vermilion, a com-
pound of mereury and sulphur, eats awry the fine lines of an engraving in a vesy short time, rendering the copper eloetro totally useless for printing purposes,
Up to the preaent time the only process which has been muoh employed in obtaining a harder and more durable surfaee is that of M. Jeaquin, known as acierage, which consists is coating a copper plate with a thin film of iron. It has been asserted, however, that the iron electrotype plates of the new process are almost indestractible; that they are better able to withatend the inevitable: socidents constantly ocourring in printing-ofloees and that, above all, they can be prove can be little deabt that the prooese of iron electrotyping, once understood and reduced to working ordex would be as ohoap as, if not cheaper than, the employment of copper, while, as far, as the obapter of acoidents is concerned, softer metal. Bat with regard to indestructibility it is not so easy to draw the line, for though iron weuld doubtleas be the most suitsble material where the priating gurface is always protected fion damp, as in bank-note printing, the tendenoy to rust must be elimi in the far more general and widely-axtended de-
velopments of letter-press printing, where, from the nature of the surrounding conditions in those situations where durability would be most serviceable, the electrotypes wonld be subjected to frequent dampings, occasioning action of a most destructive character. Whether any means osn be fornd to obviate this defect remains to be seen; the atility of the discovery is in other direotions of so much importance that we proceed to lay before our readers what is known of its principal features and the uses to which it has hitherto been put in the arts.
The first specimens of iron electrotype were, we believe, exhibited at the Paris Exposition of 1867, and were produced by M. Fenquières, but according to Professor Jsoobi, althongh they presented a tolerably good sarface, the reverse was full of small holes, and altogether they were muoh inferior to those of M. Klein, produced by an entirely different method in the following year. M. Klein had previously made many experimenta npon the anbjeot, and after witneasing the resalts of M. Feuquières he retarned home and subsequently bronght the art to its present degree of perfeotion.
Professor Jacobi, who has written more on this special branch of electro-metallurgy than any other gavant, states that the quality of the iron deposit depends almost entirely on the greater solubility of the anode, and with this fact in view, M. Klein combined the uron anode with one of copper-Professor Jacobi afterwards modifying this arrangement by substituting charcoal made from horn in place of the copper, by this means obtaining more powerfal results. From the socount of his experiments recorded by M. Klein in a letter to the Academy of Sciences of S. Petersbarg, we learn that his first attempts were made in coating engraved copper-plates with iron, for which purpose he employed a bath of the chlorates of ammonia and iron, to which was added a small quantity of glycerine; but, in endeavouring to obtain a thicker deposit, this process was found to be unsuitable, as the iron not only cracked on the surface bat fell off in brittle flakes. To remedy this M. Klein prepared three baths, the first consisting of a concentrated solution of the crystals of double salt- $\mathrm{FeO}, \mathrm{SO}_{8}+\mathrm{NH}_{4} \mathrm{O}, \mathrm{SO}_{3}+6 \mathrm{HO}$; the seeond was composed of the same salts, but mixed in the proportion of their equivalents; while the third was prepared from a solution of galphate of iron by precipitating the irom with carbonate of ammonia, dissolving the precipitate with sulphuric acid, and removing excess of acid. These solutions were cencentrated as much as possible; and iron plates, with a surface nearly eight times that of the copper, were used as the anode. Using a Daniell battery a deposit was obtained in aboat 24 hours, bat this was a complete failure, being full of holes and breaking up easily. With the weaker action of a differen battery slightly improved deposits were obtained bat still so far from the results desired that M Klein oast about for the disoovery of the caase and the means of remedying it. This he pltimately fonad to be the acid character of the bath which he attributed to the faot that more iron was deposited than was dissolved, and in order to give the anode a greater solubility M. Klein unitod a plate of copper with the iron, as befare mentioned-the resalt boing that the bath composed by the first method ramained in good condition after many hours' working, and the deposits beomme perfectly satisfactory. The process is ono, however, requiring great oare and atteation to prevent too free a disengagement of gas, the best results being obtained by keeping the current so that neither oxygen nor hydrogen is disengaged. Prof. Jacobi found that this stage could be ascertained by means of a galvanometer, which indieates when the ourrent is too feeble or too strong.
Such are some of the facts of probably the most important invention in electro-metallargy sinoe the primary discovery of that art. For the mare costing of a plate with an iron face, the process of M. Jacquin before referred to has been used. with excellent results for some jears. In this a solation of hydroohlorate of ammonia (1 to 10 of water) is placed in a trough lined with guttapercha, a plate of iron nearly as long and as deep as the bath is conneoted with the positive pole of a Bunsen battery, and another plate about half the size of the other attached to the negative pole. These are immersed in the solution. and the bath left for several days, till it arrives at the proper condition for working. The article to be coated is then sabstituted for the smaller iron plate attached to the negative poie, and im-
mersed in the bath; if the article is not immediately covered with a bright coat of iron the bath is not ready, while it should not be allowed to remain in after the bright coating begins to show a black deposit around the edge. But this process is, we believe, only applicable to the coating of copper-plates or electros, or articles made of alloys of that metal.

METALLURGY OF IRON AND STEEL.

 (Continued from p. 29.)THE Hindoo process of extracting iron, ss previously described, is in use not only in that country, but has been employed from time immemorial in India, Burmah, Borneo, Madagascar, and Africs. These people, however, do not get perfectly pare ore to operate upon, and one oommon imparity in it is silion (a compound of vilicon and oxygen). It has the property of aniting with the oxide of iron to form a slag, and when we extract iron from ore of this sort we get, in addition to a lump of metal, a quantity of fasible glass-like stuff called "slag "-a siligate of iron. After these people get their iron out of the furnnoe, they ant it into two pieces (or more, according to the size of the lump) and work each part separately (i. e., heat it and forge it) under the hammer, and in this. way they will produce good iron, in small piecos, at about $f 8$ per ton. Now, we are apt to look down on these people with boastful superiority, but let us see what they have done. They have produced a solid iron column at Delhi, between 40ft. and 50ft. highuccounts vary as to depth in the grouna, socording to one it is 16 ft .-in circumference 5 ft ., and highly ornarnental at top. A cast of this column is now in the South Kensington Museum, and a piece of the iron which the lecturer had had presented to him he had submitted to be tested, and it turned out to be wrought iron. It was probably forged piece by piece, end on by hammering. According to one account it was made 900 в.c., bat another and more probable statement pat it at 400 b.c.
Carbonic oxide (CO) is a most important agent in metallargical operations; and its applications form one of the most valuable steps in modern times. It is a colourless, inodorous, highly poisonous gas, burning with a very hot blue flame, and forming, with the oxygen of the air, carbonia acid. Passed over red hot iron oxide it takes up an atom of oxygen and forms CO_{2}. It may frequently be seen barning at the top of a common fire with a blue flame, and is due to the carbonio acid produced at the bottom of the fire taking up an additional atom of carbon, and becoming two atoms of carbonio oxide. The greater part of the iron extracted in this and other countries is obtained from the oxide of iron, by the application of this carbonio oxide.

Catalan Process.-This mode of extreoting iron is so called from the Province of Catalonia, in Spain, where it is extencively carried ont, as also in the moth of France. There is a small furnace in a corresponding forge, with a blowing maohine outside, and vary rude premature hammer moved by water powar. Their forges are no better than more havels or respectable cowhouses. Their size may be imsgined from the fact that the lecturer, when in the Pyranees, being anxions to see one of these places, actually passed by it without being aware of its existence. The ore employed is the peroxide, combined with watar, or, as we oall it, brown iron ore, and it is very good for the purpose. In an angle of the forge is fashioned the furnece of the best material they esm find to resist heat, if not firc-brick, of good igneous rock, as gneiss, so. The furnace is nearly square, 3 ft . or 4 ft . deep, and 3 ft . or 4 ft . in section at the top; ane wall is vertical another not quite so, bat leaning upwards and outwards. The left-hand side is of blocks of iron and stane; the other side is entirely of iron; the back is wholly of fire-brick or stone, while the front oonsists of two large plates of iron, nearly vertioal, and not quite meeting down the centre Near the bottom of this slit is a horizontal bar of iron, which serves as falorum for the rod used in stirring up the iron, the apper part of the opening being stopped with olay. The bottom is formed by a large stone of porphyry or anything of that kind, and on the right side thore is a bank or platform.

Now for the blowing machine. Theirs is only to be resorted to in cases where water-power is availabie, and the mountain streams of the Pyrenees furnish this in abusdance. It is callod a

Trompe, and requires a fall of water about $20 f t$. or 30 it . At the top oatside the forge is a tank, mesually of wood, provided with a contingous flow of water, and containing not less than 10 tons, At the bottom nearly on level with the furnace is an airo-hest of wood; it may be made round, but it is best made trapezoidal in plan, with narrow end Lowards fire; this wind chest is completely closed, with the exception of four openings, t wo for the entrance of the water, one for its exit, and one for exit of sir. This chest is pat in connection with the tank above by two pump "trees," or pipes, generally trunks of pine (from the mountains) hollowed out, the upper ends being tixed in, but projeoting a little above the base of tank, and Jower ends in broad part of top of obest. Over the top of the pipe is a wedge-shaped body, or
plag, at the end of a lever, and a chain from the other and of the lever goes down into the building cloes to where the workmen stand, and by means of this plag they can regulate the blast by letting a greater or less quantity of water flow down the trees. Just below the tank, oblique (downward) holes are bored in the side of the trees, or a kind of funnel arrangement is made at top, the object being to bring air into contact with the flowing Wiber, by Which a large quantity is carried the bottom of the broad end for the outflow of the water, and at top of opposite end for the air into the blast-pipe, the arrangement being made so as
slwaye to have a certain quantity of water left in the ahest. A mercery or other geage is inserted in the pipe to messure the etrength of the blast At the broad and of the oheot, and underneath the opening of the trees, is placed a ledge of wood, and exactly underneath the openings are laid two stones, which effect a double purpose-namely, prevent the otherwise enormous wear of the wood, and also throw the watar more forward and soatter it, and thas effect a more complete separation of the water and air. It is said, on good authority, that there is no apparatus known which gives a more uniform blast then the "trompe" if properly coastructed and regulated. There is one great objection, however; the air is always very moist, seturated with water, and the smallest diminution of temperatare causes it to bo deposited; moreover, it oarries along with it into the furneoe a quantity of finely divided particles of water. With a height of abeat twenty or thirty feet they get a pressure of one or two pounds to a square inch.

The trompe has been used for the ventilation of mines. Its principle is seen whenever a liquid is poared from one vessel to another, like the froth on beer, ec., when poured out. An experiment was made to show how the principle might be neefully employed in the house when a continuous blast for blow-pipe, do., is required, if water power be avileble. A large fumnel was fixed to the top of a pipe, the lower end of which comsmanicated with a bell jar set in a large vessel of water, 28 in collecting gases, \&c., in water troughs. When water ran down the funnel and pipe, a strong continuous current of air was forced through a latasal pipe communioating with an opening in the neck of the jar.
The tube from the chest oarrying the air passed first into blast-pipe-a rather loose leather bagand again by a pipe into "twyer." This twyer is a cheet of copper folded over into form of tube, the upper part having its edges somewhat open, the lower part against the fursace, having the edges overlapping. By means of the trompe an air carrent, having a velocity of about 6ft. per second, is maintained.

While the fornace is still warm from the preceding charge, a layer of charcoal is pat in, then the iron are (previously ornahed to round this ore and beaten down with epades, cc.., the object being to prevent, as far as postraversing the charcoal, bat to turn them amongst the ore. The hot CO formed from the charcoal as above described acts on the ore in two ways, first driving off the water, and then reduaing it. Charooal and ore are added from time to time as required. About $1,000 \mathrm{lb}$. of ore are used for a charge, and 30 per cent. of metal is obtained, or a lump weighing about 3cwt. After being exposed in the furnace for aboat Ave or six hours, the melted metal falls through to the bottom, and a slag is formed precisely similar to that in the operation of puddling.
Three men are required to get out the lamp, and haring got it out, they at onoe proceed to work it They make it hot, and then bammer it with
large stone for anvil, then cut it into two pieces, and work each piece separately. These pieces are again divided in balves, and the four lumps worked into bars, being heated from time to time to the right degree of tomperature. The hammer is at one end of a lever, the other end being depressed by four pegs fixed on the axle of a waterwheel.

It is nltogether a very simple process, the nseful effect, however, is estimsted at only onetenth of the total amount of power employed. It requires a large quantity of charcoal, and a large amount of labour, and, in fact, it can only be usefully employed where the latter is cheap and abandant. Under this system the total profits of an ironmaster for a year would amount to about $£ 150$. On this account it has been generally given up, but it is still in use in some parts of the United States, as well as North Spain and South France. The iron obtained is very good for certain purposes ; on examination it is found that the mass is not perfectly uniform, some parts being considerably harder than others, and more steellike. By modifying the proportions of iron ore and charcoal used we get different degrees of hardness-c.g., by increasing the quantity of charcoal the iron becomes harder and more like steel.
Erratum.-On p. 29 read "the Hindoos, who have no double bellows, properly so called," \&o., instead of "who have no doubt," \&ic.

ON THE TREATMENT OF ASTHMA.*

TN the summer of 1870 , I was summoned to
lady saffering from an acute attack of asthma. For several nights she had been restricted to the sitting posture, bent over a table, with the forehead resting on her hands. The distress was very great indeed. She was subjeot to frequent attacks of the kind, complicated to a very moderate extent with oatarrh and broaohtic exudation. Her physician, gentleman who holds high professional rank, was out of town. Nothing had been omitted in the treatment, which of late was simply palliative. She wes reoognised as constitutionally asthmatic, and little hope was entertained of permsnent amondment. The asthma first ocourred on the subridence of nervous symptoms a few years previons. It had not, as far as I am aware, any marked organic basis. There was observable on the logs an eazematous eraption. Under these oiroum. stances, I directed that the chloroform liniment of the British Pharmacopcia should be rabbed briskly into the chest for an hour's space, if possible ; and this was done daily by a very efficient attendant, who had sufficient intelligence to comprehend and carry out the treatment. Very early mach relief was experienced. On the reture of her physician to town at the end of three daye she was already so very much changed for the better that he directed the treatment to be continued. From that time it consisted in the daily repetition of the rubbing process for a month, or nearly so, without aid from medicine, and with little restriction as to diet. Beyond the information I received that she was daily improving. I had really little or nothing to do with her professionally after one or two visits. Under the hasde of her attendant, she speedily got rid of the asthma. The patient went out of town in the antamn, and enjoyed perfect health and spirits. She took much walking exercise, with exposare, in the cold of the ensaing winter; and, what is very singalar, two years have aince elapsed with no return of the asthma.
I aball now make a few observations on this method of treatment. For some years, in Paris, asthmatics have been in the habit of resorting to a rubber in the Boulevard Saint Michel, a certain Widow Pan, who pursaes there very much the method which I have laid down, only that her nostrum is a secret. She is resorted to by a fow wealthy people from this country, and has honour able mention in some of our West End clabs. At the end of the treatment, her patients are presented with a little book or brochare containing her successes, which may be said to be fairly written for a book of its class. The cure is sab. ject to disappoint for a fow days ; bat generally great benefit will be found in a fortnight, or even in less time. There is a hint that it is best suited to cases with catarrhal and bronchitic complica. tion. The instance whioh I have here brought forward seems exactly to correspond with those

- By Grozaz Gaskorr, Esq., Surgeon to the Britiah
Hoapital for Diseases of the Sik.
which are boasted of and detailed historioslly by Madame Pan.
Before giving directions as to how this treatment should be carried out, I will speak as to the rationale. Counter-irritation, especially by blister, issue, and moxa, are of such well establishod repute in the treatment of asthma, that I need not dwell on them; bat, besides this, a jolthig vehicle, anything that leads to displacement of the air stagnant in the vesicles, is proved to give relief in many instances. I should advise, then, that the frictions should be made with such roughness as the case admits. Slight blows with the palm of the hand or the end of a towel on the ribs are quite allowable; and the friction should be extended to the front of the neck at the lower part, where the ragi enter the ohest. I do not think that the composition of the liniment reed trouble us, provided it be warm and works easilly. Anything like Roohe's embrocation would anmover very well.

I am not without some experience of asthoms, and I am persuaded that the present method will be found a valuable addition to our therapeutic means. If proved not to be novel, it muat be conceded that it has fallen tnto utter negleot.

SEA BICKNESS.

JAMES GARDNER, M.R.C.P. Ed., in a lattar on this subject in the British Madical Journal, says :-"Old sailors have frequently told me that, although thoy have never suffared from sickness in sailing ships daring long voyage, yet they invarisbly suffered when crossing in the Channel steamers. So far as regards myself, I havenever suffered from sickness, slthough swinging and a rotatory motion on shore always affected me so mach that I never could waltz. It appears to me that the sickness arises from three causes : first, impression on the brain; secondly, on the stomach, through the sympathetic system; and thirdly, on the imagination; chiefly, however, on the stomach, as those persons who have a healthy digestion and are careful in diet are better able to withstand the attack. Much depends on the position of the person, and on that of the berth. At either end of the vessel there is, of course, in a head sea, most motion, and, therefore, the nearer the centre is the best place. I have found also that, after trying all other plans, a fixed berth placed athwart ships, or across, is preferable. Iced ohampagne with dry biscuit, or an effervescent dranght with a fow drops of sal volatile or chloric ether, I have found give the greatest relief. As a preventive, in the short passage across the Channel, I would recommend that precantion should be taken not to go on board with an empty stomach, and that something colid should be taken, either a chop or a steak with a glass of bitter ale or cold brandy and water, no pastry, and not to overload the stomach ; if the weather be fine, to keep on deck as mach as possible, and to keep the attention employed. I consider it would be a great advantage and comfort to passengers if the Channel steamers were larger, giving more space
above, and below better ventilated. There shoth above, and below better ventilated. There shoth more attendants and applia to shatp emergencies. The present steamers are too suap in the bow, nct high enough in the water, and
too long in proportion to breadth, so that they have s short, pitching, jerking motion, to which old sailors succumb. It would be far better and answer the parpose to have a eeparate class of steamers-in the summer season especially-for carrying passengers.

BELL'S PATENT FEED-WATER HEATER.

TE products of combuntion soldom or never leave the flues of a Cornish boiler at a less temperature than 400°. The feed-water from the hot well has a temperature of not more than 100°, while that of the water in the boiler is probably 290°. A considerable saving in fael may be effected by atilieing the heat of the waste gases in raising the temperature of the feedwater in the case of the beet set boilers, while the saving will be very considerable indeed when the boilers are so badily set that a good heater will raise the temperature of the feed to th it of the water in the boiler. A large mamber of patents has been taken out for feed-heaters applicable to stationary boilers. One great difficolty attending thoir wee in deo to the rapid d posit of soot on the heating murface, beonuse it colder than the esoaping prodiacts of combrat To get rid of this difigerlty virious foru

scraper have been adopted from time to time with

 varying success.In the annexed engravings we illustrate a very ingenious feed heater, the invention of Mr. A. Bell, of Clara-street, Huddersfield, which has been for some time in successful operation at the works of Messrs. Thomas Ackroyd and Son, worsted manufacturers, Birkenshaw, near Leeds, where it has given such satisfaction that a second has been ordered.
It will be seen that the heater consiste simply of three coils of cast-iron pipe. Mr. Bell has succeeded in doing that which has hitherto been regarded as almost an impossibility, namely, casting a complete coil of pipe in one piece; and we commend these coils to the attention of our readers, as likely to prove useful for many other purposes beside those for which they have been designed.
The arrangement of the heater, or "fuel economiser," as Mr. Bell calls it, will be understood at a glance. The mode of working the scrapers which keep the heaters free of soot will be gathered from the sketch, Fig. 3. There are two scrapers to each coil ; these are propelled by two vertical arms, A A, which are attached to a crossbead, B B, at the top and bottom of each coil, these cross-heads being fixed to the centre shaft C by means of set screws; therefore, when the centre shaft revolves by means of the worm and wheel, Figs. 1 and 2, the crossheads are propelled round, carrying the upright arms, and thereby forcing the scrapers in their course before them round the screw until they reach the bottom of each coil, when the reversing motion, fitted to
ingenuity and industry that scarcely an article which appeared in his previous dictionary could be admitted in the present without either modification or amplification. The title of the book is in itself a very illusory guide as to its real character and scope; no subject which can possibly be said to be connected with engineering, in however indirect a manner, being omitted. The nature and properties of labour-saving machines are fully explained; useful instruments, important tools, and ingenions mechanical contrivances receiving especial attention, while such subjects as engines, hydraulic machines, bridges, embankments, mines, and the various cognate matters of which these are but generic headings, are treated in the fullest manner possible in a work not specially devoted to them. The rudiments of the arts and sciences described are not deemed unworthy of explanation, and such articles as "Algebraical Signs," and "Atomic Weights "are written in the clearest style, so as to place them within the intellectual grasp of the average mechanic. Woodents are supplied in abundance, from a cow-milking apparatus to a bradawl, while the machinery employed in the prithcipal arts and manufactures is illustrated by the best and most modern examples. Altogether the work is most elaborate, and should find a place in the library of every mechanics' institute, and in the office of every engineer, civil and mechanical.
A Dictionary of Chemistry. By Henry Watts, B.A., F.R.S., F.C.S. London: Longmans.

Watts' "Dictionary of Chemistry" is so well
but the truths enunciated are enforced and explained in a simple yet entertaining manner. We have read every word, we believe, of Balfour Stewart's " Physics," and we see no reason why it should not be adopted as an ordinary class reading-book, as well as a text-book for the acquirement of a knowledge of its special subject. Now that there is a prospect of science being taught in schools to a small extent, we hope the trustess or managers will not begrudge the money for the purchase of the necessary apparatus and materials for performing the experiments described in these "Primers." What we have said of the "Physios" primer, applies equally to the one devoted to "Chemistry ;" and if the subsequent volumes of the series are as good, a want long felt will be well supplied. Science will be better-more widely-understood, and the seeds thus sown at school will, we may hope, give an abundant yield of fruit in the years to come.

Scales for the Ready Comparison of British and Metric Weights and Measures. By A. L. Nrwdigate, M.A. London : E. \& F. N. Spon.
These are a series of twelve slips of very stout card on which are printed, in such a manner as to be readily compared, the scale of an English weight or measure and the corresponding metric weight or measure. Thus, on the scale comparing English feet with metres, we find that 100 ft . are marked, and that they nearly correspond with 30.5 mètres; the two measures being printed close together, the feet divided to the half-foot, and the mètres to

the boiler gear by its own action, reverses and propels the scrapers to the top, and so on alternately. The lower halves of the scrapers are kept up to the pipe by means of small balance weights. It will at once be perceived that the pipes cannot escape being thoronghly cleansed, which is a very important object; the simplicity of the arrangement is also so complete that there is scarcely any possibility of its getting out of order. The machine can be constructed of any number of coils, either in single or double rows, according to the number of boilers in use. Each machine is fitted with a safety-valve, stop-valve, and mud-tap. The cost is, we understand, extremely moderate, and the space occupied very small.

REVIEWS.

Spon's Dictionary of Enqineering, Civil, Mechanical, Military, and Naval. Edited by Oliver Byrne. London: E. \& F. N. Spon.

T^{H}HE fifth division or volume of this valuable work has just been issued by the publishers, and ample opportunity is now afforded for judging of its character and soope. The editor is carefully and faithfully following ont the plan laid down in the specimen part, and the work will undoubtedly be the best of its kind in the English language. Mr. Byrne was the editor of Appleton's "Dictionary of Machines, Mechanics, En-gine-work, and Engineering," but since that work was published so great have been the strides made in science and in the various fields of
known that we need say no more than that this is the supplemental volume, bringing the record of chemical discovery and knowledge down to the commencement of 1870, with addenda of im. portant matters up to the end of 1871. It contains nearly 1,140 pages of matter, including interesting and valuable articles on electricity, heat, chemical action of light, spectral analysis, beer, proteids, aniline and the aniline colours, analysis by flame reactions, and many others too numerous to mention.

Science Primers. Chemistry. By Prof. Roscoe. Physics. By Prof. Balfocr Stewart. London: Macmillan.
We have received two of the series of "Science Primers" jointly edited by Profs. Huxley, Roscoe, and Balfour Stewart. They are published at a cheap rate, and are written in the simplest language, the object of the anthors being to state the fundamental principles of the sciences in a manner suited to pupils of an early age. A series of simple experiments has been devised
for the, purpose of bringing the mind of the pupil into immediate contact with Nature, and to impress upon it indelibly the chief truths of each science. The editors consider that "the power of observation in the pupils will thus be awakened and strengthened," but they are careful to point out that " the amount and accuracy of the knowledge gained must be tested and increased by a thorough system of questioning." These litile volnmes are pure gold throughont; there is a total abseace of the flashy experiment
décimètres. Each mètre up to nine has its equivalent in English feet shown to six places of decimals and each 10 ft . has the equiralent measure in mètres up to the same number of decimals; while on the back of the scale inches and sixteenths are given reduced to decimals of a foot. As a specimen of the utility and approximate accuracy of these useful scales we suppose a question put: The length of the tunnel at Mont Cénis is $12 \cdot 291$ kilomètres, how many English miles is that? By referring to the scale, we find that opposite $12 \cdot 291$ kilomètres is 7.64 miles, and according to the table at the back 64 of a mile is equal to 5 furlongs 20 yards $=7$ miles 5 furlongs 20 yards. If greater accuracy is desired, by making use of the equivalents for the kilomètres which are given to 6 places of decimals we readily bring the sum to 7.6374 miles, and as by the table $\cdot 6364$ mile $=5$ furlongs 20 yards, and -001 $=2$ yards, the correct answer is 7 miles 5 furlongs 22 yards, which is found in practice in much less time than it has taken to write the explanation. These scales must be remarkably useful to all who have to convert metric measures into English ones.

A Treatise on the Theory of Friction. By JoHn H. Jellett, B.D., President of the Royal Irish Academy. Dublin: Hodges, Foster, \& Co. London: Macmillan.
The anthor of this book considers that the theory of friction, as a part of rational mechanics, thas scarcely received the amount of attention if deserves, and as a corsequence he has attempred to meet what he felt to be a want. It seems pre jbable
he says, that many etudents have been led to regand friction less as a part of rational meohanios than as a correction to be applied before the investigations of that science can be made practically useful. Such an iden is a mistake. The theory of friction is as truly a part of rational meahanios as the theory of gtavitation. The force, friotion, is subject to laws as definite, and as oapable of mathematical expression as the force of gravity. All we can may of the book at present is that it is worthy of the attention of mathematicians, and the author, who thinks the theory is deserving of more ample discussion than has jet been bestowed upon it, will think himgelf repaid, for certainly a laborious work, if he saccoeds in obtaining it.

An Elementary Treatise on Curve Tracina, by Percival Frost, M.A. (Macmillan), a sabject whioh, in the words of the preface, presents so many faces pointing in directions towards which the mind of the intended mathomatician has to radiate, that it would be difficult to find another whioh combines so many valusble hints of methods of calculations to be employed hereafter,

A UNIVERSAL ANGULAR DRILIING MACHINE

W^{1}illustrate in the annexed diagram one of the useful American inventions introduced by Mr. Charohill, of Wilson-street, Finsbary. This is a drilling-machine capable of being fixed in almost any position, and of drilling a hole at any angle. It is, we believe, made in two sizes, the upright shaft A being either $1 \frac{1}{4} \mathrm{in}$. or $1 \frac{1}{2} \mathrm{in}$. in diameter, the whole machine weighing respectively 281b. or 36lb., and drilling up to in. or lin. holes. Atteohed to the shaft A, which is 2 ft . long, by the collar or movable joint CD, is an arm, B, whioh is permitted by the joint to swing to any point right or left of the shaft A. The collar or ring D turning on the shaft A, and being secured by a set-sorew, enables the operator to drill in a circular line, while the arm B, turning in the socket C, allows the drill to be worked at any angle from the perpendicular. The whole of these parts are also adjustable as to height on the shaft, and can be raised or lowered to suit the length of the drill or the thickness of the work. The crank E is shown in the position for drilling small holes-i.e., on the spindle passing through

with so mach pleasure in its present use.-A Handbook of Sewage Utilisation, by U. R. Burke (E. \& N. F. Bpon), is a brief acconnt of the varions processes of deodorisation and atilisation hitherto experimented npon.-How to Cook, by T. L. Nichols, M.D. (Longmans), is merely another cookery book, strongly spiced with the author's crotchets. On p. 33 we are told that " swine are alwnys unclean and often diseased, and infested with the germs of tapeworms and scrofula." Livers and kidneys should be avoided, but sweetbreads and tripe "ought to be as pare as any portion of the body." Poular science, Domestic Hints, Eminent Men, Animal and Vegetable Life, Oddities of History, and Thoughts for Times and Seasons (Grifin \& Co.) are six manuals edited by Jorn Timbs. They are made up of usefal and soientific notes and " olegant extracts," and are generally taken from acknowledged anthorities or atandard works.
\triangle Holiz electric machine, one of the largest and, probabbly, most eflective in the world, way forwarded hately to the University of Pennaglvania. The revolv-ing-plato is 86 in . in diameter, and the machine is capatho of giving an 18iD. apary
arm B, the gearing being 2 to 1 ; bat for large holes the orank should be shifted to the spindle F, which is provided with a ratchet attachment for the parpose. It will be seen on examining the engraving that the screw thread on the shaft, together with the screw G, and the clamps H H, enable the workman to secure the machine on benches of any ordinary thickness, or to any nupport which affords a holding place within the limits of the olamps. It will also be apparent that by means of the joint and ring. $C D$, the drill can be worked at any conceivable angle. This is one of the handiest and most useful American inventions that have been introduced to the notice of mechanics.

DEFAOLTING SOVEREIGNS.

$A^{\text {N }}$N ingenious machine has been recently devised which threatens, in the course of a fow months, to stop the career of certain sovereigas Who have been travelling about under false pretences. As our readers are aware the British sovereign is a very "noble" coin. When issued from the mint the intrinsic value of the metal alone is exactly equivalent to that of the finished medal
of Queen Victoria which many of us regard with so large a share of our affection. But by contact with the world this noble sovereign loses several of its glittoring partioles, and is looked apon with a suspicious eye by certain gentlemen who have a penchant for trying everything in the balance, and rejeoting all that are found wanting-or, rather, of rating sovereigns at their proper value, for as long as they are of true metal and good they have no objection to take them in and send them to be re-formed. With a view to assist them in this labour Mr. James M. Napiar, of the firm of D. Napier \& Son, Engineers, Lambeth, has invented and perfected a mashine to provide bankers with ready and acourate means for rejeoting light gold at the connter in presence of the proprietor, "and so place them in a pocition to charge the user with the loss of weight and terminate the career of the large quaitity of worn and fraudulently reduced coins now in circulation, as well as to maintain the integrity of our gold currency at the expense of the wearers of it." The machine referred to differs considerably from those in use at the Bank of England, constructed by Messrs. Napiar. It covers a apace of $8 \frac{1}{2}$ in. by 5fin., or little more than a half-gheet of notepaper, and is worked by turning a handle. The most interesting feature in it is the employment of eleotricity to take note instantaneousily of the action of the weighing beam, and to dispose a directing apparatus to determine the destination of the light coins. The machine is self-supplying from a reservoir; its ordinary speed is 60 per minute, and a tonoh seta it for soveraigns or halfsovereigns. The details are worked out with a view to simplicity, handiness, and durability, while the results combine rapid treatment and exactanes.

VALUE OF AGRICULTURAL CHEMIBTRY.

THE following is a portion of a lecture delivered by the Rev. J. Smith, B.D., at Newhills, Aberdeenshire. Mr. Bmith, responding to the wish of several farmers of the parish, that he would give course of instruction on agricultural chemistry, has, for the last few months, been delivering lectures weekly before well-attended meetings of agriculturists. On the conclusion of the course Mr. Smith said :-Considering the season of the year, we have found it advisable to make our reading and conversation converge as much as possible to the subject of manures. When our course commenced, ammonia was selling at $£ 80$ per ton, being a rise of $£ 8$ to $£ 10$ since the previons season. At the present moment, this indispensable substance is valued at something like $£ 100$ per ton. or abont 1 s per lb. This fect must surely be moro porerful then eny words in enforcing the adoption poweriul than any words in enforcing the adoption of the beat methods of retaining the nitrogen of our manare heaps, preventing its escape by evaporation or drainage, and in showing the importance of not allowing a drop of waste liquid from dwellings and offices to be lost. The rapid incresse in the cost of ammonia may be expected to stimulate the spouting of premises, the formation of tanks, the making of the bottom and sides of dang-courts impervious, and similar mechanical improvements. And these would be not merely agricultural but also sanitary improvements, which, if generally adopted, might help to ward off typhoid fever, diphtheris, and other disenses from farmsteads, where, strange to $88 y$, thoy are but too common. The enormous price of a main ingredient of manures may contribate more than anything else conla possibly do to promote such studies as we cons pose ongeged in and so to intellectualise the have been engaged in, and so to intellectualise the agricultural mind-an appeal to the pocket being generally more efficscious than verbal advice. The farmer must have ammonia, and generally a great denl more ammonia then can be produced on the farm; and when this substance costs 18 . per lb., it
is surely of immense pecuniary interest to him to is surely of immense pecnniary interest to him to ascertain what quantity of ammonis will be moss remunerstive in his circumstances, and in what form he can purchase it most chesply. Now, how is he to satiafy himself on these points? Take, for example, the turnip crop, on which, I believo, ing $£ 2$ to $£ 8$ gorth of fartilisers per acre over and above a dressing of farm-yard. Well, the manufacturers prepare a turnip manure, and doubtless these special mixtures are often compounded with great anxiety and skill to meot the requirements of the plant. But the experiments conducted of the plant. But ther the superintendence of Dr. Voelcker, under the superintendence of Dr. Voelczer,
and reported in a late number of the Journal and reported in a late number of the Journal
of the Royal Agricultural Bociety, concur of the Royal Agricultural Bociety, concur concluaively that the samo turnip manure producen very diffarent effects on different soils. And this is just what might have been expected when we consider how soils differ, both as regards the proportion of organic and inorganic matter, and also with respect to the constituents of the inorganic matter. Thas the very natare of things renders it impossible
to oompound a turaip manure that shall be at ance effective and economical in different soils. Withoat going beyond our own parish, it would be very surprising indeed if the mixtare remunerative on Clinterily. And it is gratifying to lowm on refiable ovidence that a moderate dose of ferthieer may in some circumstances be more profisable than a heary dose ; for in the experiments of the cirencester Cy Professor Wrightson, sowt. suparphosphate per pore for swedes was sewt. suparphosphate per zare cor swot which is the more remarkable that
" $A B G E N T O$ " PICTURES

$\mathrm{T}_{\mathrm{T}}^{\mathrm{T}} \mathrm{m}$Les following desoription of the manipulations for obtaining "Aigento" pictures
Δ carbon pxint is made by exposing a piece of carbon tissue sensidised by bichromate of potash, under an orfitary negative, in the usnal way of mininting eartuor prints. divered surace is teken and ribbed by rubbing it
Wkth s. manded bruah, to deaden tho polish and to give eflect to the pieturse The piate is the papase so Foll), and then leid apon a sheet of paper on a tiont is now laid face down upan the print, paper laid apon 3. and a squeagee (made of a piece of wood and overal the end) used to force out the superfinons cloohol between the pictare and the plate, and to mine the one adhere to the other. The aloohol Ilse whole is now immeried in a pan of water of sboak 100° semperatare, and devaleped in the of which conniat of the colour. lights, or rather, the highest lights of the sarface This part of the operation, as all carbon printers toow, is most frecinating and beantiful-more like the devaloping of a collodion plate than anything ase. a s way, the pictures (now on the metal plates) washed away, the picturester, and hung apon a line by cllps to dry.
io zender tham more lasting still (though a carbon mrint on a metal plate seems they ars, when dry, hermetically senled to glass in the following manner:A litile stand should be provided, made of a plate of cast iron, say one quarter of an incur thick and twelve by twenty inchos in size, smooth an this upper surface, riveted to a leg at each oorner. being applied at one end, so that the end of the plate furthest from the heat will be considerably cooler than the other. Now lay the picture upon the iron plate at the warmest end. When it becomes warm, drop npon it a small piece of white ary, which will soon melt, and nature. Now, having first heated the glass, place it upon the surface of the pioture, place them under a weight on the coler end of your iron plate, where they will gradnally cool and become effectuall sealed together. They are thien
The results are very beantiful, and are made The results are very besatirul, and are made
more brillinnt by the metal plate on which they are monnted. The prints are made by "cat onts," 80 that, when fivished, the white motal plate
the margin, which adds greatly to the effect.

HOW A MAN FEELS WHEN FREEZING.

DURING the recent cold weather, Dr. McMillan, a young dentist, while travelling from North Middletown, Ohio, to the adjoining town of Paris, Was overcome by the intense cold, wis experience, in the Cincinnati Enquirer, as follows:-
"After having procoeded about three miles on my journey, my feet became vory cold. By stamping my feet upon the fioor of the buggy
imagined I wae perfectly warm, me feet troubled me no longer, and the cold sensations through my body ceased. I, howover, felt dall and ulee py, like a man who is drunk. I didn't care for anything. At this point, I beliero, I began to freeze, and ought to have known it, bat felt so comfortable that I did Dot examine my situation, hat was blown off, bat, aboan in a miles to resch Paris, I did not atop to bunt for it. When I had proceeded perhaps a mile hunt for it. When Ihad proceeded pottom of the further, hat paying no attontion to my driving, my horae shied off the side of the road and ran upon a rock pile. I then attempted to get the lines and pau
him off. when I diecovered I had lost the entire use him off. When I diecovered I had lost the entirend ; of my rigbt, and could barely noe the lefle but the bugey wheels being locked, I could not do
it. I then got out of my baggy, and in doing so struck the bridge of my nose across the wheel and cat it severely. I then went to the head of the harse, took hold of the bit ande. I then commenoed around, bat he would with the expectation of pulling the buggy off the rocks myself, feeling all the time the buggy off the rocks I had almost completed the task of unhitching the horse from the buggy, the desire for sleep became so great that I conld bear it desire for sleep became so greapon the rooke by the no longer, and and went to sleep. I mnst hare hin there some fifteen or thirty minates, whom I wan asonsed by a coloured boy who fonnd me. his aeking me where he shona take my critical condition. Upon arriving in Paris, my feet were put into cold water, which entirely, I wind cared as they do not hart me. My left hand does not give me muoh pain, end I think will be all right in athing days ; but my right hand was badly frozen; nothing soemed to do it any good, of my fingers. Last night when I arrived in Paris, I eould give no account of maveident."

SUGGESTIONS FOR MAKING HALP-WORNOUT IRON SHIPS PERFEC
CHERE can be no dorbt that the half-worn-out 1 plates of tron ships may be much strengthened by the application of the coments in ordinary use, composed of silicate of hime scales of oxide of iron, plates are found conert is applied in a wet state, an and when the cemal union is formed, consisting of imperfect chemile and alnmina, which hardens silicate of iron, into an artificial slone the ship is much strengthare firmly backed up, and the ship as long es thena io ened throughout her structare; as ong sation water, little cargo in the ship, she mazes bas the longent noa-royages.
This, however, is delusive, for whes the atis is loaded, say 20 ft . deep, and her plates are a 1 latie strained by the motion of the ship, she bagias to leak; for although the scales of iron, strengthened by the artificial stone, may easily resist the preware of water where it is only 2 ft . or 3 ft . deep, with a pressure of 1 lb . or $1 \frac{1}{2} \mathrm{lb}$. on the square inch, yek generally yield to a pressure of 101 b . onft. of water inch, or $1,4001 \mathrm{l}$. on the square loot, in through som At that depth a littie water oozes ande, and collect small orince on the scale; it gradaally aocuma behind a strengrely as in a Bramah press, aots wit lates, ana, as sur a 10 lb . per inch pressure onent of water is then from its place; an inward oure to enlarge the leak. established, which is sure to anarge trongth to Sometimes the scales are of sameient strodg is inresist this pressure, but the risk is greal. It is in structive to remember that the soale of cessent was found to be gone off from the lowest part of ane bottom of the Megara near the ked, andechod in the oftom shales of iron anip.
By affixing cement upon the imside piates of man on ship, a most deaeptive trap is laid. In dook, ron sip, a the ship appears abuntanthy atrong, ander survoy, the strenuous and honest strokes of a and resists the strenuous and be taken which seem wood mallet; borings mot even leak till a small compact-the sep in the outward surface from workhole occurs doep ior when the ship laboars, the trap falls, and lucky are the sailors if they escape.
falls, and lucky are the sailors ir the ewell to fll in
In cementing vessels and flush with the lining solid between the rames, an coal bankers, leaving or ceiling aboat the bottoms of coal anch bsy in a course for water in the contre os onch bay by inserting a piece of iron piping; the bottorn parts of serting vessel, fore and aft, should be filled in to nearly the top of the floor plates, and such other parts a it is difficalt to gain access to.
Should it be desirable to preserve an iron ship for Should whose framework is of adequate strength, but where the state of the plates is precarious-this but where the stated by lifting all platforms, and may he roco that covers over the inside of the plates every in the the plates ontside Irom and Amarican elm under thick, of pitch pine abo by means of metal acrews 3 in. the deep water sem the inside of the plates into the long turned from the insiappen still to be of sufficient strength, the application of an iron washer rith a hole throagh its midule for the screw work a bat found enough; but where tre plate may be advanta. plate secured between I shonld recommend a screw cast in Prince's metal, din. in atmost diameter, with six tarns in three inches. This ucrew will swip port $1,200 \mathrm{lb}$. without drawing, aud cost 2d. Th port k_{r} el, and such like parts, can be sheathed and fastened by means of metal screws and nuts, coantersants in the wood, and covered with stopper

Read by Vrisiay Poo
of guttapercha and sand ; the outside of the wood sheathing thas cut off from all electric commanicetion from the iron plates and frames can he coppered, and thas the transport will sail better by far than and thas but the copper should be kept at least 3in. belore, but all ironwork, such as the screw pro distant irnm ais rood sheathing be caulked with peller. If this weod sheathog (not oakum piaked oakum, made that ropen trom the merine-store doaler), the ahip may be safely sent out for a fire ithout fear of her lenking, and ald the attachment of his sams bo inspectod for fifteen good, the gheathing wimlking, the ship thas sailing at small cost.

MORE " PSYCHIC" MANIFESTATTONE.
THE following account of some curious psychical or spiritualistic phenomena are publiahed by he Edinburgh Courant, which must be responsible for the trath of the statements contained it appears that in thesent on riow soveral paintbugb, thire are peonliar interent attached to get who ecoount of thoir intringio vine as works of art as from the faot that they heve been produced in the dark by a person. The in an entranced or somnled to the production of circumstances which have lead to the production the these pictures may be brieny stated. Durinitnse last visit to Edinburgh by Mr. Home, the spiritas list, his séances wese attended by several gentiemen who were sception ts to the power attribated to spiritualiom, and they forsed themsolves into clab, which held maet rowice a week for the parclub, which heligetime subjeot. After a number pose oxperiments thes acceeded in producing some of the so-callad nemorena, but nothing thet conld of the $80-\mathrm{ca}$ note arpininged by natural laws. In the not have beea empinian the members of the club course of them inguapion piritualistic licerature ant sought information in prithey soon learned that a woniants "pulat"g medinm" was to be found in the parson of Ma, D. a was gtated that this man, meater in Ghaven had no knowledge of painting, in his nocmat ber fell into a trance he painted exbak then when he fell into a order to sstisfy themselves in the goint a meeting was held in a house is Inthermin, which erected, and a piece present, a happay millbonk peaged or oil painting, was nailed on it. The "s medinm "then sat down on a chair and said that tae cempany need not refrain from conversation, an it would not hinder the manifestations. In the cours of ten minates he fel to ally appearance into a deep sleep, and immedraty started to his feet, his countore intellectual aspec changed, ${ }^{\text {He shols hands with a number of }}$ than ber His eyes were shu imaginary porcoat part of the time, except when daring tho grear the balls of the eyes sppeared he spore to thom, and nothing bat the white to be turned round, and ne opened o parcel visible. In a minate or wing contained a large made up in a newspaper, whe cath oil oolours number of ppint brushes, a in tubes, and a pallat. He first of all selected their brushes with which he was to work, hrying their points on his tongae and on his thumb nail, as a painter would do. He then selected colours from painter would and put them on the pallet. Having chnnged the position of the easel from what it was when he was awake, he took a pencil and outlined When he with great rapidity and no little skill. While he was drawing, the gas was ouce or twice put down, and when it was put up in the dark as that he had made as mnch progress present stood in the light. Some of the gentlemen prasts stated that close to the easol, the eyes of the mad been outlined, Mr. D- took After the pictare had commencel to paint, not in a up the pallet, and cole and the slow carefal manner, 32 minates a picture of Looh result was that in 38 . The epiritualists sey that Achray was completed. mare wonderfal maniforation, the production o " spirit paintings," in whioh the medium's havi is not called into exercise at all. The production o theso spirit paintings takes place (of course) in tots darkness, sud at the meeting whe attended a specimen was given. The medium took his seat at one end of a table, and the colour box was placed at the opposite end. Soversl gentiene sat betweon him and the culours, so that he conl not reach them withont the company being awas of the circumstance. He took from his pociset number of cards and rabbed them with operation. as if feeling for a card suitable for asleep, bat was Ho appeared from cis mana carry on a conversa tion. He nt last chose a card the size of a carte do visite, prepared for oil painting. It was laid an the the back. so that oposite the brushes. The cop of probably require to wait some time before auy munlestat, and
wouh be shown. The light was then pat out,
in a few minatesthere was es sheup sournd, asa if w Wire was being drawn over a piece of paper, and a
noise was madere in a branh wes thrown on the noise was maderas if a brash wess thrown on the
table. That was the vignal for the lighting of the gas, and the company then saw the card olose to the place where it had been laid. On turaing it up it was found that a picture had been painted on the
under side, and was still wet. As some of the comunder side, and was still wet. As some of the company had doabts as to the experiment, a request was again pat ort; sud in a shert time a pencil war dashed on the table. On the eards being examined, it was found that there were two subjects very cleverty drawn-a faithfal portrait of Hagh the trance about three hours; and when he awnoke he appeared to telke great interest in the picturesan interest which could not be simusated. He said that ho trad seen in a ahap window sorbewhere the
original of one of the piotures be had down. We state

Oar coritemporary sags that the greatest prime were taken to teat the trath of the statements mande and that the reporters whose evidenoe is given mer by no means to be regerded as spiritualists, Btill, it is a remarkable thing that the "upirits" must have "darkness" before they can exhibit thair talents, and few sensible people win believe in these supernatural paintings anless they are permitted to furnish the cards and see them painted in hooed daylight, the handmaid of Trath

THE STEAM JACKET.

TERRE is a practical objection to the ase of the jacket to which we have not yet referred. High -pressure steam, especially if quite dry, appears
to exert a peculiar solveat effeot on cast iron. Al ready wo hear rumours in numerous directions o the rapid wear of the hight pressure cylinders of componad engines, an ovil which grows in proportion with each augumentation of the weight of the casting. It appears to be fortursate that the remedy for this evil affords the best possible method of applying the true theory of tbe jacket in practice nn certain cases the jacket is made by putting a him steel tabe into a cast-iron cylinder bored out to receive it. The Readiag Works Company have tion, for example, with exscellent resalts. How far the schemample, with excellent results. How far
the applicable to marine engines wa are unable to say. We suge st that, especially in marine engines, instead of steel-notably an un cartain material-hard brass, or more strictly speaking gra-metal, liners should be nsed for the high
pressare cylinders. Properly made, the material is mach harder than cast iron, and will take a beanti ful surface ; while the material, being an excellent condactor, would comply with one of the fundamental conditions of eminent success in using the jacket. The idea is a mere extension of the system of lining air pumps. We do not claim it as orimiael, but we believe this is the first time the scheme has been mentioned in any journal; and it appeare 0 ns to be well worth the consideration of engineers engaged in the construction of large steam engine

PRESERVING PLASTER CASTS.

CORRESPONDENT of the Athenmum writes: A. -"In view of the appronching Royal Acaworth while to draw the attention of sculptors to the use of parafin for saturating the surface of plaster of Paris casts, fnstead of erphloying stra. rme, or clogging them with coats of paint. Paraffin, chemical affinities (parmen asfivis) the variety it tained from peat or mineral tar, indeed, having been tried for ages by exposure to all sorts of cos. mical vicissitudes, seems, d priorri, more likely to be durable in colour and other qualities than stea. rome. It softens at 110°, melts ak 130°, and is then
eamily applied, in one or more dressings, to casts made previonsly one or mare dressings, to casts stove. It imparts to the plaster an agrecable ap pearance of subdued transparency, combined with solidity, far preferable to the effects produced by tone, and their surface is destitute of any greasy foel or any unplensant glare; unlike those gripped In stearine, they do not appear, after a trinl of many cheap. Of course the casts to be treated with it mast be clean to begin with, and any seams shordd bo neathy finished onf. When properly saturated for haif an inch or less in dopth from the surfuce, the parafinned casts are smooth and dry to the touch, 80 to thast if it gathers apon them, does not adbor may te washed ofl with aved by a fine brash, o Water, either with, or better, withont soap. Warm or hot water makes then adhesivo, melts the treaks. Any exposure to andue tre hent or solar
heat also affects them injarionaly, and, of necessity, oity dusters or gressy fingers will soil them. With
care, however, they may be wept, even in London care, however, they may be kept, even in London
honses, without the hideons covering of a glasi honses, without the hideons covering of a glase
shade. This process of paraffining casts appears to be admirably suited for works intended for public oxhibition, which are necessarily subjeoted to the influence of many atmospheric impurities. It not ouly enables them to be preserved in a comparatively cloan state, but it enbestitates for the dull, cold, and ghastly whiteness of the raw plaster en agreemble hae, srbbstance, and sarface. The suggestion of this ase of parafin was hade by Professor Marshall, and it has been practionlly tested by Mr Tharnycroft and his son

ON ECONOMY OF FUEL AND PREVENTION OF SMFOKE.

T
WE heating surface being in proportion to the resplt required, there is still in all furnaces and particularly in those of marine engines, a loss imperfect combustion. Indeed, it, has recently been stated, on the anthority of a Royal Commis sion, that our best Cornish engiaes only atilise one-eighth of the coals barnt, and the majority of engines not more than one-thirteenth.
In order that I may explain the object that I have in view, and the principle of my system, by which I seak to prevent this loss, it is necessary to consider the neture of those effects which we find in opera tion in the furnaces of our engines.
When coal is barnt in the open or in the ordinary house grate. the principal products of combastion are carbonic acid and water; a certain portion of finely-divided carbon escapes combustion and constitutes the soot or visible smoke of a coal-fire When the decomposition of coal is effected in retorts or vessels from which the air is excluded, the products are mach more numerous and complicated a large amount of volatile matter is expelled, partly in the form of hydrocarbon gases, and partly in the form of hydrocerbons in the state of vapour, solid cose remaining in the retort
Now, different parts of the farnace frequently represent the conditions of the open fire and retort Isco constantly varying in place and temperature. In the laboratory, if we want a smokeless gas flame, we adopt some contrivance similar to the Bunsen burner, in which a mixture of air and gas takes place (as in some varieties) through wire ganze, the particles of air and gas being thoronghly disribated through the entire volume; the molecules of each gas coming into individual contact, a condition that is essential, and the result is a smokeless flame, in which glass tubes and white porcelain capsules may be heated without becoming blackened This would not be the case with the ordinary gas.jet burning in the open; the supply of air in this is abundant, but it is not commingled with the flame, only coming into contact rith the soot on any other object placed in it, pointing ou the absolute necessity of maintaining the conditions of combustion that we possess in the Bunsen's buraer.
It wonld be simply ridiculons to attempt to make ganpowder by the haphazard throwing together of saltpetre, salphor, and charcoal. The proportions of the gan and projectile might be the best, but what result shold we have irom an ex-
plosive so prepared It is doubtful whether it ponld ever burn. Is there not a close analogy wonld ever burn. Is there not a close analogy between this and the well-constructed boiler and
furnace, and the condition of the combustible furnace, and the condition of the combustible mixture of uir and flame?
Not only may vast quantities of unconsumed carbon pass off is a dense smoke, bat also volumes of invisible and inflammable gases escape ignition as they would from the retort of a gas factory, and at a low temperatare the furnace may actually be distilling hydrocarbon oils, as in one specially bailt for that purpose.
It is this visible loss in smoke, and visible loss in onconsumed gases and vapours, which it is our object to save by the proper admirture of the atraospheric oxygen

Various comtrivances have been proposed for this purpose, and adopted with more or less success. mprovements at the bottom of the furnace, as in tribution of the air, at the lower part of the fael. In ofhers the air has been admitted at the fire-door and at the back of the bridge; but the volume of air has generally been greater than necessary, chilling the gases below the point of ignition, the stream o cold air caly coming into surface contact with the
heated gases, as some ocean currents of hot and cold water are said to flow side by side without minghing with each other.
It is, therefore, the thorough admixture of the heated gases with air, as in the Bansen's barner which is the essential feature of the syatem which is the sabject of this paper.
The object in view I seek to attain es follows:-

In each tube of an ordinary tabular boiler is inserted another of mach smaller diameter, perforated at its end nearest the fire in such manner as to canso an induced dranght when required, by a current of air flowing through the said tnbe, or being forced through by a blower or steam jet, this being nuder perfect control by opening or closing a valve. Fach of the boiler tobes is in this manner filled by smokeless flame of great intensity-the deposit of soot and dust is reduced to a minimom, there not being any smoke except on first lighting the fires. being any smoke except on first lighting the fires.
No obstruction is offered to cheansing the tubes, and No obstruction is offered to chasnaing the tubes, and moved in sets, when it is required to prick oat the perferations or to renew the ande.
The expease is small, the air pipes costing not more than a fow pence par foot, and no alteration
for thoir intreduotion being receired exoept of moat triling nature.
The same aystem is appliceble to locomotives and other engimes.

WANT OF OBSERVATION IN THE FARMER.

DERHAPS the best way of testing whether the
farmer acts justly by his workman is to seel an answer to the question whether the latter doe or does not generally receive a fall equivalent for the value of the labear he is able to supply. Of course this point is not so easy and simple to solve as in the case of many manafacturing matters, but reasonable conclasions might be drawn by any one thoughtfully estimating the value of crops and the proportion of cost which labour represented in thet production. Probably little difficalty would be found in showing that the labourer's pay, taking all the year, came fully op to or exceeded, a fair valuation of the work he did. This being so, no rise of wage could take place under existing oircumstances with out a dead loss to the employer. How, then, conld effort be made to improve the status and raise the income of the labouring man? The answer seems plain and iuevitable-increase the value of his work But how, again, can this be doнe? By making him a better workman in the matter of individual tasks. Seize systematically every method for making men dexterous at sowing a field, ploughing a farrow mending a harness, sharpening a hoppole, fodder ing a bullock, and managing a yard of dang. Thi was not a matter of vague generality, but of harc fact. He (Dr. Monckton) had seen with his own eyes within twelve months, important tasks so badly done that donble the wages might have been paid for good work with profit to the farmer. He had seen wartzel seed so unevenly drilled in point of depth, that five times the man's daily paywas thrown away, because he had never been tanght that mere holding straight was not drilling, but that regular and shallow deposit of the seed was even more os-
sential. He knew a hop-garden of favourable sential. He knew a hop-garden of favourable
clays, and not of ranning sand, that had been clays, and not of ranning band, that had bern drained three times in nine years, becanse of the imperfect fall secured on the earlier occasions. He had seen last season gangs engaged in hop syring ing ; tho work aecomplished by one gang would bs more cheaply paid for at $£ 1$ a day than that by the others at a crown. Again, why shoald not every hands conld thatch, or stack, or build a pig-sty, or paint a waggon, or shear a sheep, or mend a fonce It had been too much the castom for a whole paris to depend on one thatcher and sheep shearer, who often earned 30s. in three days, and was drank for the rest of the week. Surely our own workpeople might be enabled to benefit by these rather better paying jobs. A great industry had sprang up in the country in the use of creosote. How many o hocse now listening had ever so studied the matte as to know the very best time, temperature, and method for the process? He had himsel seen protessors of the art, men who let out tanks, and took contracts for their neighbours, and who did not even know what a thermometer was, an yet pole-dipping could never be done to the bost advantage without its aid. Many workpeopie in charge of those tanks now receiving 2s. ba. alay servant, more painstaking, and better instructed.

the dirgction of labour.

But this leads us to the second method of agmenting the value of the workmen's toil-vis. a more skilled and studied dirention of his tasks Of course it was clear in connection with what had already been said that the master must instruc himself, and exercise increasingly his own wits a well as those of his workman. and this tar must never be blinked. Not only morally, bat in basiness aptitude, the man will be what the maste makes him. Take a clutch of pointer pappies and give four away to four different people; the valu of thair labour in two yeark will depend almos entirely upon the pains and skill with which their respeotive mastera have cet and kept them to their work. An army of soldiars way be of exemplary skill and courage, and yot see their efforts nul by unwise or insuffcient planning and dires

In the matter of labour a farmer must be exercising a perpetual foresight to make his operations dove-
tail and harmonise. The job of to-day must be habitually so done as to render more cheap and effective the work of to-morrow. Laboar so
directed will yield value and show a result. Withdirected will yield value and show a resalt. Withont such management, men, though industrious and
well enough mester of each particular task, will inevitably muddle away time, and wasto money -laboriose nihil agendo.

ORNAMENTATION OF SUVER PLATE.

ORNAMENTATION of silver plato is at the prothe specimens handed down to us from the last century; bat, by the aid of steam, a more intelligent class of workmen, and a better class of tools, added to a purer tasto for the elegant, have worked wonders in this respect, and now oven the commonest artioles of silver plate bear the impress
of beanty. One of the most striking inventions of beanty. One of the most striking inventions Mr. J. A. Rhodes, of Sheffleld, a description of which cannot fail to be interesting, and we quote the following from a recent article in Nature:"A thin plate of metal perforated by punching, shows a depression of the edges of the perforations, while the surface of a plate cat by saw piercing preserves its even uniformity. It may be supposed that the flgures so cut out would at times be remarkable for beanty of form, and, indeed, they are so more or less, but still it seems to have leen left for Mr. Rhodes to atilise these, Bo as apply them to relief ornaments. It masf be remarked
that Mr. Rhodes is not only his own designer, but for nearly twenty years has been the dexigner and piercer to the principal firms in Sheffeld, and his trade. 'The idea is very simple, bnt like all other ideas of value, might have remained a long while dormant, had not Mr. Rhodes, Columbtus-like, put it to practical application. To give our readers a clear idea of the new method of ornamentation, we will take the tea and coffee service for example, and suppose the pasels complete and ready to become the design. Δ plate of gold having been provided of a suitable substance, the intending design is drawn on it, and so prepared and applied that the design or ornament becomes solidified with the metal of the vessel, with an appearance of having been adapted by some curious and singalarly precise method of casting, and quite excluding all supposition of parcel-gilding." After referring in detail to some engravinge of gpoons and a salt-cellar, which appear along with the articles, the writer adds:"With respect to the cost of these table requisites, householders, unless the ornament be unusually rich. The low relief ornaments, on the less expen. objects yet less costly it is not necessary that they be of silver. We all know the infirmity of gilding, or parcel-gilding; its existence is only a question stance of the superimposed gold or alaminium will, with fair treatment. last half a centary, without any very conspicuous show of wear and tear. This invery conspicuous show of wear and tear. This in-
vention, being only in its infancy, is open to amevention, being only in its infanoy, is open to ame-
lioration in perhaps many directions. One advanloration in perhaps many directions. One adran-
tage whioh strikes us most forcibly and directly, would be the picking out, or clearing with a sharp point those bas-relief forms which may not be suffl. ciently definite; and thus the invention woald be
raised more nearly to the level of fine art. The raised more nearly to the level of fine art. The
process, as we understand, does not limit designs process, as we understand, does not limit designs tation of compositions even approaching high relief, and the latter manner of treatment would raise wellconsidered products into competition with the most beantiful and valuable metal works of the most colebrated producers of any time. There is nothing
repoussé that conld equal what may be conceived of the prominence of detail and delicacy of finish of such works. Their effect would resemble that of insertod ivory-carving, with, if necessary, sharper catting. This is only an idea of the perfection to which the invention may be carried, for nothing of
this kind has yet beon produced. Mr. Rhodes has patented as well a method of ornamenting metals with enamel or of embellishing with enamela suparimposed metal design.'

An Important Discovery.-An important discorery beariog on the antiquity of man bas junt taken place, Mr. Edward Charlesworth, F.G.S., one of the correspondonts of the Englisi Mrchamic. having dinteeth of the oxtinet shark (Carcharodon), apparently perforatod by human agency, se well an many ooncrotionary nodules with longitadianl perforations anlike
those produced by the antion of boring mallasca. The specimens will be exhibited and doscribed at the meeting of the Anthropologioal Inatitute on the 8th of April. If this discovery is rerifed, it will curry beck the ear. ince of man in England to a period coeral with the todon arvernensis, and far more ancient than the

SOIENTIFIO SOOIETIES.

HACKNEY SCIENTIFIC:ASSOCIATION.

$\mathbf{A}^{\text {T the nsual fortnightly meeting, held on March }}$ read an able paper on

The Rewards of Soience
Mr. Birt said: The similes of running a race, climbing a ladder, or atriving to attain the summil of a stoep and rugged asoent, have very frequently been employed to indicato the earnestnees of mon in seeking to obtain a recognition of their labours in whatever departments their anergies have boen eossful competitor recived a laurel orown, porish able in itselk; yot the fact of the successfal termination to him of the conflict in which he had been ongaged, opened up rewards of a much highar and onduring charector The cheriot of the perliko onduring character. The chariot of the warinko
conqueror was prepared for him, and in it he was seated, to be conveyed by four horses to his own city. On his passage homewards he was received in every city with the greatest acclamations, but he in every city with the greatest acclamations, but he was not permitted to pass through the gates of his own. He had been a conqueror in athletio gamea or in the horse and chariot race, owhe had excelled
in poetry, in eloquence, or the Fine Arts, and his in poetry, in eloquence, or the Fine Arts, and his citizen. He had won the crown, the symbol of the friend to hamanity; he appeared before them as a conqueror, and he must enter the city as such hrough a breach in the walls. The painters and sculptors of his country perpetuated the game ho had won. A statae commemorative of his victory was erected in the sacred wood of Jupiter, at Olympia, and his name was celebrated by phets and thus handed down to posterity.
Tbe cultivation of science may be likened to a race, or still more to the climbing of a hill, from the summit of which, to speak hyperbolically, we obtain an unbounded prospect. Methinks I see a number of hard-working students rumning this raco-climbng this hill. Every portion of the natural world is ransacked by them to obtain materials with which o construct their theories, or by which they hopa o enlarge the boundaries of knowledge. Here and here they separate into little groups, ect of thoroughly exploring portions of the hill in he conrse of their toilsome journey to the top, others give their attention to the natural produc-
tions of the hillside-the trees, the flowers, the grasses which adorn it ; others, again, not content with earthly things, turn their attention to the heavenly, as night after night the earth is enveloped in darkness and the spangled sky showeth unto hem knowledge. By the aid of their instroments they sonnd the depths of the illimitable space above them, and they put such questions as these to themselves:-How are these mighty orbs districonstitatio imimitable space? What is the physioal ras thation of the sun shining abors which fell few years ago from the sky?-with others of a like nature. A partial solation of these questions urges them onwards in their researches.
Now and then I behold some little commotion among the groups ; I am desirons of ascertaining to what it is due, and upon attentive consideration I and that an advance in knowledge has been made y a successfal investigator, and his fellows are aboat to reward him by a mark of their approbation,
which he receives at their hands. The award is which he receives at their hands. The award is
made by a few who have themselves been rewarded made by a few who have themselves been rewarded
by their fellows by being elevated from the mass of workers to the positions whioh they occapy. some having already received a similar mark of approbatiou, while others are still striving for it. This mark is considered as the impress of the sovereign upon the genaine coin: it gives currency to philosophical thought, the ideas worked out by the recipients are generally received as exponents of trath: they are, in fact, rendered current among philosophers.
Dropping the figure, it may not be uninteresting if we offer a few impartial remarks on the "rewards or science given in this country. The groups of radent workers, our scientific societies. give rewards appointmont as office the pablication of papars. councils, the highest reward in the gift of a society being the " medal," or in some cases "medals." In the distribution of these rewards the greatest care should be, and generally is, exercised in the appointment of officers and members of conncils, for on them depends the award of the medal which is to
stamp in the eyes of the general pablic the philosophical value of the work of the medallist. In most societies the appointment of office bearers and members of council is by ballot, a list having been presented by the retiring council of fellows recommended by it as suitable for the various offices to be filled. To the rote by ballot or the recommendation of the retiring council there cannot be the least objection, for it is presumed that a body of gentlomen forming the ellte of the society are above prejudice, and, besides, it is a guarantee tical ecquaintance with the branch of science calti-
vated by the society will be recommended to fill the offlees.
There can be no question that in our larger scientific societies the appointment of a fellow as member of conncil carries with it a prestige equiva lent to a revard for cerviees rendered to scisence and to give an opportanity for rewarding a labearer in the field which it is the provinoe of any particolar society to oultivato, provisions exiet in some by which no fellow can cerve in may office for a longor poriod than two jears, at the expiration of which a momber of conncil may be maranced to 5 higieer poat, as secretary or rice-premident, and and as the society should be pruaided over by gentleman well rarsed in the branch of ecieno caltivated by it, the greateat care is generally ezer. cised by the retiring connail in recommending gentleman qualified in every respeot for filling the chair at the expiration of the then president's period of office. The rewarde, therefore, in the girt of a society aro-pablication of papers, apthe presidency; beyond this is the medal
a consideration of the rewards given by the Universitios and the 8tate will not oocupy us long: mention of them will be sufficient for our prenen purpose. Honorary degrees, appointments in the gift of the Government, honours conferred upon the most distingaished cultivators of science, and pon sions granted to those who have mace romarkable discoveries, are the prinoipal. As may be readily imagined, the attaimenent of these rewards depend more or lees apon the reocmmendations to the to vernment of the recipients by influential men who are personally acquainted with them.
The "Rewards of Boience," as we have thu sketohed them, are emphatioally external. Thay are marks of the estimates which men make of the labours of their fellows. They are by no means to be despised, yet it is oxceedingly important that they thould not be overvalued. From the very nature of things, especielly when evary field of inquiry is literally crowded with laboarers, a mall minority oan only hope to aucoeed in obtaining the chewns "of the various societies, and astill smaller the Must her whi Must he depend entirely upon his fellow-man for the recognition of his labours? Most assuredly, i he undertake the caltivation of acience only with the hope of one day becoming great and eminent the probability is that he will fail in the attainmen of his object. There are rewards superior to any that men com bestow. We know that ability for scientific research is not confined to the rich and graat, and many a student who has occupied his leisure in the scquirement of knowledge has also contribated to its extension withoai aven altaining a position beyond a worker Which he has abtained and for went of sofficion energy in mating them known, they have slumberad until some one, having obtained similar results and remarked their bearing on our present knowledge has given them to the pablia, who has reaped the adrantago. The real source of satisfaction to the student is a love of scienoe for its own sake, or rather, for the sake of the Bestower of every good and perfect gift. We have heard of "Natare" Aristocaracy," a better expression would be, "God's Aristocracy" consisting of men on whom such gifte are bestowod. In the employment of his gift, ench step the stadent takes is accompanied with it own reward. For there is nothing better than that : man should rejoice in his own worics, for that is hi portion." The plasare experienced in overy ad vance which to a student is really a discovery, is the highest, the greatest the purest reward, beoause him.
tifiere is another source of pleasure to the scienresults from these labours, he woald not add to the stock of knowledge unless he were to communicate the results to bis fellows. From the very birth of science a commanication of the results of the labours of its votaries, either orally or in writing, has been the means of increasing and perpetuating knowledge. In the present day the channels are numerous through which information may be com. municated to mantind. Publication in the transactions of societies implies a sapervision on the part of conncils or editors, and must be regarded in the light of a reward. There are, howevar, channels of a different kind through which stadents may commanicate their views to their fellow workers, and in which such viewn are frealy and impartially diacussed. Other channele are also
open which need not be specified here. It is the opon which need not be specified here. It is the
press that gives stability to works of science. Δ thought embodying int brought for the first time to light is committed by its author to this general repository of all knowledge ; it may, from a variety of circumstances-its non-acceptance by those who are looked up to as the leaders of the acientific thought-its being in advance of being unable to appreciate it-lay dormant and
buried, bat there it in, not onty to opring forth at eome futaro time and bear fruit in daro senson, bat To testify that che athar bad not reboared in vain coverioe whioh the prese had already ahronidod, bot little notico had been taken of them at the time, the discoverers were little known untill come strik. given to it, when the earlier pabliontion was theaght of and the original ncoovint diainterred to the honoser of the plioneer whe thus received his due rovrard, if living, and if removed from this state of oxistence, the pross bore testimony to a suocesaful resalt of his inbours.
The members of this mesocistion are cultivatorn of trae science in a true reientiflo apirit, and aeoking thair reward only in their work. Soch need not be disheartened if thair labours aro not readily appro-
cisted. In the ciated. In the great majjority of inntancoes in which reed knowledgo has boem commanicated to mankind fect is reciived with ontion, ofteon vith dintrast the general recognition of it may be long doferred, but truth can never alter, and the highest reward mana can have is the satiaffection of knowing thai in oommumicating to his f
Mr. Birt concluded by presenting to the library a raluable series of works on the subject of lonar changes, and a cordial vote of thanks was accorded to the eminent lecturer by the nsemembled members.

USEFUL AND SOIENTIFIO NOTES.

CooMineal Inceots.-It takes, mays the Viroinia thate Jownal, sixts-ave thousand coohineal inseots to make one pound in woight, and the amonnt imported annaal alanghtor of these harmleas insecti, therefore, to supply carmine for A merionn ledies' toilote, and the various dyes and tints for their ribbons, foathers, and dreeses. actually reachen $190,209,780,000$ in number These iggares are perfoctly avful, bat some of the asos farmine are worta.

Wrup of Oofiea. - This proparation is of great half a ponnd of the beak cronnd 00100 ; pat it into a mancepan, containing three pints of wator, and boil it down to one pint. Cool tho liquor, pat it into another sancopan, well scoured, and boil it again. As it boils, yrap. Take it from the tire, and when it is oold put it inso a bottle and seal. When travolling, if you wioh for a cap of good coffee, you have only to put fwo tempooniads oi kith ayrup into an ordinary onileo-pot, and get it.
The Artemian Well in Bonton, U.B.-The work of boring this wall was began in the latter part of the month of March, 1871, and has been going ateadily forward ap to the preeent time, the progress made being from 1ft. to 15ft. each day, at a cost of 15 dollars per 100 L . The woll had reached a depth of $1,000 \mathrm{ft}$. when wo lant heard of it. When the work was Arst commenced, drin woald lant thirty-nix honrs without sharpening; now the came kind of drill will only last one hour. The diameter of the bore is 5in.; the drill is 1 in . aoross. The drill and iron ehafting which connecte it weigh now 1,2001b., and the rope by which it is lowered woighs
9001 b . The power fo surnished by a 16 in . horso-power 900lb. The powar is furnished by a 16 in . horse-powar ongine, with a walking-beam of 86in. stroze, at tho rato of sbont thirty strokes par minate. It is maid to be the intention of the company volume of water for thair ase chey obtain as enfficient volume of water for thour moe the other side.
Ievel and Angle Indicator.- We have received from Meara. Fletcher and Sinclair, of Liverpool, a hand in angle incioator, a mariner's compaes, a simple form of theodolite, and a mandial, together with a handy table for accertaining the height of distant objeots. All these re contained in a lat compact mahogany case, which contributa to the formation of the level and angle indicator.

Copying Drawinge by Eleotrioity.-A mothod of rapidly copying drawings or engravings is aggested by M. Chandaray, who nses the induction on cont parpose. The zethod adopigh the deaign on outline, which is aubeoquently tranafarred by alfting plambago or other powder rrawing is large or has manch detail. In the plan proposed, a table covered with tin foil is conneoted placed as many a crato. Amotal bar, inanlated with grattapercha, eorree as the positive polo, and as a paroil for oopying the he ongraving, and sparks pass through the paper to the tin aheot underlying it overy time connection is each prasage. It is said that bet littlo skill is road conductort, carry the pancil amily along.

LETTERS TO THE EDITOR.
[We do not hold oursines repponsible for the opinion of our correspondenti. The EXditor reeplectfilly requerto pacelble.]
All communioatione should bo addressed to the Editor Garden, W.O.
416 Cheques and Post Opllee Orders to be made payabl o J. Pasgmone EDPWADI.
"I woald have every one write what he know, and ae much at ho knows but no more; and that not in thi only, but in all other subjecta: For such a person may matare of aucha person or euch a fountain, that an to other thingh, know no more than what everybody doen and yot to keep a cluttor with thie little pittance of hia,
will andertake to write the whole body of phyicis: vice from whence great inconveniences dorive thel ordinal"-Monfaigme's Easaye.
** In erdor to facilitate reforence, Correspondonts wion opoabing of any Letter preoiowaly tacorted, will oblige by on which if appears.

CONGRATULATORY - CRITICAL - OPTIOAL ASTRONOMICAL - COSMICAL - ARITHMETI-
CAL-SOLARIOLOGICAL-AND COMETIC.
[3870.]-BEFORE entering apon the more immediate object of this letter, that of replying to varions querios
which, direotly or indirectly, have been pat to me, I which, direotly or indirectly, have been pat to me, I
wuald refer to two or three communioations whioh wuald rofer to
appear in No. 865.
Let me, then, commence by saying that it was with sincere ploasure that I read (in lottor 3804, p. 11) the gratifying account by the Measra. Lambert and Taylor of their parsuit of the most sublims of all the sciences, discorragement, so many thonamid miles from discouragement, so many thousand miles from Where I write; and ank them to accopt my asac-
rance that (under whatever lack of appreciation they may earry on the atudy of astronomy in Anckland) they will certainly not want sympathicer among the numorous astronomers who are nambered among ther
And next, I would ask "E. L. G." whether he eeri
And next, I would msk " F. L. G." Whether he seri-
onsly regards his reply (10091, p. 19) to question as ously regards his reply (10091, p. 19) to a question as
to the formation of tarret-shaped hills, as a acientific one? Because, if so, I would commend to his attention Mr. Scrope's "Volcanoes of Central France" notably p. 206), Hagh Miller's "Testimony of the notably p. 206), Hagh Millor's "Testimony of the
Rooks," and Lyell's "Antiquity of Man," as three Rooks, and Lyells Ankiquity of man, as three lacy of his answer. If ho will further supplement the theorotical knowledge thus acquired by some field practice nader the guidance of a ompetent practical
geologist, I thint I mas ventare to hope that he will georer again drag in the quasi-mythical Noachian never again drag in the quasi-mythical Noschimn Delage to sccount for phenomena of which
does nor can afford any explanation whaterer
Admirable as is the anggeation of Mr. M. Paris (letter 3807, p. 12), it occurs to me that his echeme would break down in a point of detail. I fear that there are scarcely enough departod men of science to atand as godfathers to every "oright particular star " in the heavens; While it would be obv
invidious to seek our "lights" among the livers. invidious to seek our "lights among the livera.
In compliance with the reqnest preferred In compliance with the reqnest preferred by E. J. D." (letier 3823, p. 16), I have turned back to
his original question (contained in letter 3493, p. 510 , Vol. XIV.), and, after having carefally perused it three times, confess my ontire inability to make head or tail of it. I ntterly fail to pictare to myself the rela tive positions of his "hole in the shutter," "screen" (the acreen is pecaliarly unintelligible) "tables," and "camera;" and am therefore reduced to the necessity of questioning my querist. Firstly, then, has ho ever himself tried the experiment whose explanation he is desirous of obtaining? Δ nd, mezt, should he hare done 50 , woald he mind rendering it apprehenaible to my very limited capacity by the aid of a diagram ? Pending the resuit of the observations of the transi of Fenus in 1874, "A Young Aetronomer" (query of are as the mean distance of the san," at 450 miles Withont muoh chance of orror.
Will Mr. H. Ellis (query 11308, p. 24) permit me to point ont that the Nautical Almanac is not a treatise on practical astronomy, and that, therefore, nothing more can reasonably be demanded than that it should contain a full and complete explanation of the table of which it is composed. This, to give it its due, it does. I may add that, inasmoch ss there is internal vidence in Mr. Ellis's queation that he is not unfamiliar with compatation, it will, perhaps, suffice for his purpose if I gire him the formale for calcalating the ight ascension and declination. Let us call L the ongitude of the star, l its latitade, and a the obliquity of the ocliptic. Then say ain. R.A. cot. dec. $=\tan \mathrm{a}_{\mathrm{c}}$ This being ${ }^{2} 0$,

> Tan. $L=\sin .(a+\sigma)$ tan. R.A. coves a
> Tan. $l=\cot (a+\Xi)$ ain. L.
> Sin. $l=\cos .(\pi+\pi)$ sid. Dec. aec. a.
> Sin. $L=\tan .(\sigma+\sigma) \tan .2$

If Mr. John Taylor (query 11323, p. 24) had lookod at the MoOn hersoll, instead of "in several astronomica worke," I think that he might have anowered his own queation. I assume, in limine, that he is aware that fred atar risee, sonths, and eote overy day 8 m . 568. cooner (by ordinary alock time) than it did on the preceding one. Very well, then, if the Moon were ooincident with such a atar, and apparently immovable like it an the face of the celestial varalt, she would do the same. But if Mr. Taylor will notioe the Moon's position in the bearens with reforence to any bright star on a give night, and repeat his observation at the same hour on the next one, he will see that she has trevelled many timee her own diametor towards the Rhaet ; in fact, ahe goes right round the Earth, from Went to Esest, in the sourse of a laner month. Without, then, pazeling Mr. Taylor with amy consideration of the Earth's diurna rotation, it may anmoe to point out that 20 all the heavenly bodies ries in the Beat, the farther the Moon travels towards that region the lator she will rise. I unppose that this is what your correspondont means by "rotardation."
Lot me try to clear up the wonderfal dimonty of W. W. J. Porter (query 11389, p. 25), by the intimatio that thereis nothing in existonce answering to a siderea day of the month ! Owing to a cause whioh I deapair o hare explaining to him, the fece of the night sky does alter in the course of ages; but this has nothing to do with the condition of things, in coneequence of which Mr. Porter predicts the occarrence of so eceentric resalt 183 yoars hence. Parhaps, in this conneotion, he would not mind turning beok to some articles on Time by the present writer, in your tenth and oleventh
rolumes? As for the scoond part of his query, it will volumes ? As for the second part of hin query, it will probably be enough to observe that the Earth's axi remains parallel to itsolf (co to npeak) during its entiv orbit ronnd the sun; and that-owing to the (practioally) infinite distance of the Pole star-shat orbit, $184,900,000$
miles in dimmeter ! chrivels up into anathemation point as viawed from it.
I think that a percsal of Whiston's vagariea would antidy Mr. J. Songent (query 11348, p. 25) that Mr. M Paris was in error in supposing that the ex-Lucasian Professor and Editor of "Josephus," held the "origin of the solar syatem" to have been comotic. What Whiston really did say was, that the great oomet of 1680 was in our part of the univarse at the time of the areation os the world ; and that, happening to "collide" with ris (es our American cousins cay) it eent the earth spinning on its axis. Sabsequently (and this I commend to "E. L. G.") We got into its tail, and the "deluge" Was the result. I ought, perhaps, further to state that Whiston goes on to prediot that this identioal comet is to canse the general and inal conflagration of all things mundano. It strikes methough, that in mach event the watery tail might possibly play upon un.
In which oase we should, dorbsless, merely be very In which oase
It only shows to what litfle purpose many people read heir Machamic, when wo find the subject of multipli astion by concrete quantitios (97.11188) agsin cropping pin there columns. Once for all, multiplication by a conerete quantity is MPOSSIBLE. How can we cen coivably asy 20 pounds times anything? What would of the numerical result of 17 vibrations $\times 11$ cheeses? nasmuch, however, as this has all been previously 20 orth in former volumes with no epparent result, perhaps the most conalusive way of dealing with those who, like "C. R. F." (p. 45), gravoly give directions for performing an impossibility, will be to soleot one of heir own examples and 100 what their wild notion loads to. I sasume that it will be admitted that $\boldsymbol{\Sigma} 20=19,200$ farthings. Let "C. R. F.," then, equare ewh of these quantibies, eccording to his method, and onmpare the results. If it be true, as he asserts, that $\mathbf{2 2 0} \times \mathbf{2} 20=\mathbf{£ 4 0 0}$; then asearedly 19,200 farthings x 19,200 farthings ought to be $=£ 400$ too. Is this so ? It was from no forgetfalness-as far as I am con-cerned-that I omitted any reference to the moon' parallex in the reply tonching her rising and setting at lolbourne, in my letior (3795, p. 9). I imaginedhat her R. A. and Dec., as given in the Nautical Almanac, were geocentric.
I am, of course, ignorant for what purpose Mr. Henry Wood (query 11860, p. 49) requires the san's declingtion with such extraordinary acouracy ; bat I think he must be slmost, if not quite, unique in his wish that what he calls) "the trashy explanatiou" of the con ents of the Nautical Almanac should be omitted, merely to make room for a table of second differences in connection with the san's declination! Why can e not make such a one for himself? If he will honour me by tarning to a letter of mine (2087) on p. 305 of your thirteenth volume, he will fina directions how to proceed. To refine, however (for any practical purpost), apon the method examplified on p. 539 of He Naulici Alinanac for this year, seems to me in order o gee better over the heads of a crowd.
It would be fatile oven to attempt to answor the query (11863) of "A Young Astronomer," on page 49; inasmach as it containg internal evidence that the mathematical acquirements of my brother correspondent are of infnitely too radimentary a character to permit him to deal with the computation of the ophemeris of a comet. The calcalation of its path by the aid of "a slide rule (by Smith), a sextant, a Gunter's scalo, and a very acourately divided triangalator" would be "Hankey" (panky) work indeed; amoanting, in fact, to legitimato conjuring. I mast I mish to discourage or be ankind to him; bat the determination of a cometary orbit is really a matter of conaiderable difficulty. Cartain geometrical relations arerepresented by equations, and these equations have
to be solved by successive epproximations. I enly know that it is a tank that I would not face, except
andor compalsion. I amsome, by the why, that it is undor compalsion. I ansume, by the What
Sincke's comot which my querist refers to. argeon Δ bernethy, and commencing the detail of his ermptoms with "Oh, Doctor 1 if I lift op my arm like this, such a frightfal pain runs through my shoulder," Wae summarily extingnished by the coarae rejoinder, ceeding apon bomething of the same prineiple as the bragque nd doctor, I wonld venture to ask "L. C. E."
(query 11887, p. 50) if a enndial will give correet indi(query $11887, \mathrm{p} .50$) if a enndial will give correet indi-
cations when immovably fixed, that in the world an cations when ingorably fixed, and rotate it in a hori. he want to monnt
zontal plane for?
I am namble to give Mr. Skelton (query 11482, p. 51 sny fartherinformation with referenoe to the comet of
whioh he speaks. It has not, that I am aware of, been Which he speaks. It has not, th
A Fillow qy the Royal Astronomical Society.

JUPITER'S SATELLITES AND "F. R. A. 太."

 [8871.]-I Axr glad that "Philo" did pot mean. what he seemed to imply enent "F. R. A. A. $;$ for the latter has so long and oo ably contribated to the colamps ofthe Enalish Mectanio that few of your readers can bear patiently to read anpleasant of your readers can bear patiently to read unpleasant remarks respecting
him. "Fhilo" speaks of the freedom of "F.R.A.S.'s" comments; but I have never seen a line in sny lottor from "F.R A.S." which conld be regarded as nnpleasant, respondent. I mast admit that once or twice when this respondent. I mast admit that once or twice when this has happened he bas " lashed out
"I quite readily coneede that the passages quoted by "Philo," taken apart from the context, seom to indiopinion about the accuracy of prediction respecting opinion sboat the accuracy of prediction respecting Jupiter's eatelites. But when the omitted pentences
are supplied (as in my letter), Sir John Kersohel's are supplied (as in my letter), fir John Hersohel's opinion aesnmes a difterent aepeot. It may be that in that case, we learn that Herschel entertained erroneons views in 1898, and corrected them snbsequentlv. In views in 1838, and corrected them snbsequentlv. In any cate, Airy she satter. If "Philo" wants further evidence, let him hear what Hind (from whom the "predictions" arn recoived) has to say respocting them. "Independentlr," he remarks, "of defects in the tables, there are diff. which nitit them for accurate detarminations of longi tude."-Lirplanation of Nautical Almanac.
I should be sorry to deprive "Philo"' of the satisfaction he seems to derive from haring "erred in good schel actually made the mistake impated to bim. A word as to the Astronomical Bociety. In that so oiety, as in all seientific bodies, there are individnal members who are not anthorities in the hranch of rcience to whose caltivation the society is devoted. percentage that there are few socieries in which the tronomicul Society. Spesking for myself, I mast eny that in addressing communications to the Fellows of the Astronomical Society, I always feel that it hehoves me to exercise exceptional care, beoanse of the large proportion of first-class critics in an average andience sonrce of our monthly meetidgs. It that a man like the late Professor De Morgan, whose apecial views would not permit him to put himself in nomination for the Royal Society, accopted and retained a Fellowship schel, tho demical society; and that Bir John Her society, held four times (that is, daring eight yeare
the chair of the latter. Richard A. Proctor.

HOW TO USE A BOOK WITHOUT HANDS.

[3872.]-OUR Lesideratum, kindly insertedin No. 861 query 10996, hes brought many admirable replies, and we shall be proad in leed if a perfect solntion bearrived at through the active intolligenco of yarr right-hoarted Mecuanic have learnt to respect and estoem. Ther are. no donbt, many cases besides that of our disabled engine driver where it would be hailed as a real Godsend; many military men and officers, mechanior. miners, and others have to endare this terrible afliction. The helplessness is bad enough where the man cares little for mental pursaits, but is tenfold distressing when the intellect is healthy and vigorous. For overy response we tender our best thanks-mhat of
"M. O." has been read with gennine omotion, and if he will refer to "Addresses Advertifed "we shall gladly pat him in direct commanication with this case. We have кcen "Dominy's" plan, but fear it is too expenaive, enmplicated, and limited; it never came into mnch practical use, and we do not know the present makers ; the patent must have ran out. The snggestion of
"W. R. B." gecms good, but the beads being so mneh below the ojes, the tongue has to pick out the right one, and will often miss. We have not the means hands of testing that of "Philanthropist," but a neigh. bonr (Mr. Tenz, the ingenions 8wiss carrer and modeller to the Palestine Exploration Commission) saw something like it in Paris and conaiders it quite practicable. "Philo," and all your readers, shall certainly hear of onr success, with the editor's permission. " cireb's " suggestion, with the little cut, is excellent: he plate is improved by a cross form, which gives firmpes to the cane or atick; it requires more practice
an one would think, as the action of "a wet anger"
(no dummy) is both pecaliar nad heavier than one is conscions of. The plan of "Carolus" has the qualitios of great merit-rccessible, light, simple, general, and
at onee practicable. Gattaperoha for the tabe is the at onee practicable. Gattapsaroha for the tabe is the
pleasantest, anl the little instrument stands in a glass pleasantest, and the intte iustrument aiands
oady for use, leaving the band and oyes free.
Our flrst iden was to mount the pages apon somothing Our first iden was to mount the pages apon somothing rollers to be moped by a pedal, but we wished to see what conld be fonnd applicable to an ordinary book. What conld be fonnd applicable to an ordinary book.
Any opening of the ENGLisa Mechaxic to an armless iny opening of the ENGLish IECHaxic to an armless intelligent man must be a real treat; but to be able, without troubling uthers, to read the whole number
weekly wonld he an inerpressible boon, and if "M. O." week invent such a revolvitug desk as to accomplish this, can invent such a revolvit
he ought to be crowned:
The writer could not ses onr armless engine driver yesterday as he was thirty miles ufl again with the limb-maker, who, after ton meeks' painfal anxiety, is still parsning the needial experiments. The atnmps are extremel
we hope on.
T. M. W.

A METHOD OF MULTIPLICATION.

[3873.]-"E. L. G.," in replying to query 11054, reproduces a very neat method of maltipiying aby
78539 , \&c. The following. which (to asve space) I hare illastrated br the aamo example, is mach shorter, easior remembered, and more correct :-

18.78135

9.646875 given number, but 1 place out. 9646875 repeat, but another place out 19293750 ditto, $\times 2$ nnother place on
1929375 sepeat, another place ont.
Sum $\overline{10.82379375}$
Less 275625 (given number, $\times 2$, six places $\overline{10.8237661875}$

Screft.
TO MR. DAVIS AND "CEEMTICAL STUDENT." [3874.]-Mr. Davis in bis reply (p. 18) asserts that portiqu of my method for the practical separation of the metals in the hydric-ammonic salphide gronp is inbe seems perfectly familiar. As the matter stauds his assertion is more or less correct, but his deductions do not appear to be exaclly the same. The method given by myself is qnite correct, with this simple addition, that the acetic acid solution mast be treated with $\left(\mathrm{NH}_{4}\right)_{\Sigma} \mathrm{S}$, and the zinc from this precipitate dis. with (NHites, and the zidc from his precipitate dis. by misadventure. Even had it not, however, no tronble woald bave been foand, is both the zinc and the manganese would have given their respective reactions. As the matter stands Mr. Davis is not quite correct, as the precipitate wonld not, as stated, contain $\mathrm{CaC}_{3} \mathrm{O}_{4}, \mathrm{BaSO}_{4}, \mathrm{MnO}_{3} \mathrm{Mn}_{2} \mathrm{O}_{3}$, and ZnO , but simply BaSO_{4} and $\mathrm{CaC}_{2} \mathrm{O}_{4}$, and, Has_{3} on adding ecotic acid, nothing bnt amere trece would have been precipitated, the illtrate wonld, of course, then have been treated for zinc and manganese, and at once fonnd. As in the case in point ziac, magdesiava, and manganese not being precipitated onder the circnmstanoes, and unless with very bad manipalation, woald not be thrown down by sodinm phosphate in testing for Mg , but would remain in the filtrate from the preoipitate. In conclasion, I hope that Mr. Davis will be so kind as to point out in this way any more such mistakes that he may detect in my correspondence.

ALLINGHAM'S PROPELLER.

[3875.]-Since forwarding the description (let. 3843, p. 39) of my propeller to you, I have been trying the creased considerabls by making the blades 1 ifin. broad each, instead of in., and so reducing the number on each side to 10 instead of 82, which, of course, simplifies the construction atill more.

Jorm James Ampnghun.

ELEOTRIC SPARKS.

[3876.]-I should not think it worth while to say anything abont "Philo's" remarke (9866, p. 42) had he not put a distinct questiou; and as he seems to have so very limited a power of comprehension I will endea-
vonr to bring my reply withiu his range. I do not "deny the possibility of gas being lighted by a spark from the finger, the electricity being nuintentionally excited." I do not claim to bo infallible, or to know any thing except from experiment and dednctions there from. On the other hand I do not believe that such an deduction therefrom within my cognisance justifies the belief. I trast "Philo" is able to distingnish be tween the two mental conditions of not denying, yet not believing, though he has some extraordinary nofions as to what constitutes evidence; he really is the arst person I have heard of who wonld admit that he
would decide a acientific question according to whether an opinion came from "a pretty joung lady" or "a crusty old bachelor." I know jaries are induenced in that way, but the jarors do not asually give that for a reason. At the aame time it may be matisfeotory to "Philo" to learn that I am neither crnsty, nor old, nor bachelor, and cortainly not a protty young
lady. Further, I assure him I am not "mistaken in lady. Further, I asarare him I am not "mistaken in thinking sarcasm to be my forte," for I do not think ao
and should be serry if it were. Sarcaam is like pepper-
a-arofal seasoning, but not a malin-olement of diot. A
 thinge of similar nature. If "Philo" has reooired e epriakling he bes to thank himeolf ouly; he took npon himeelf to write very strongly on matters that he knew nothing abont; he was further pleased to speat very cfiensivaly and personally, and to falsify what I did say very plainly, whether he is able to maderatand it or no. Any one who takcs that line with me stands a rery tair chance of a sharp retarn, jast as any one who conzteonsly dispates any proposition or argament is secare of an immediate and kindly discuasion, as Philo' ought to know, if he is not very recent reader. I hisk he a recent contribntor, as 1 de not romember Lis signature, and in the low reco foltord have ob that it is are so many errors of finct and deduction that it is scarcely probable they would have long
eccaped attontion, to say nothing of the spirlt corne of ceaped ettontion, to say nothing of the spirit eorne of apologising for his misconoeption, he again strulbute he implies that I men angry with him becareo he dic be implies that I an angry with'him becasae ho dia deserve. It is a mattor of the amaliest moments to me else presumion he gives them, bat before he or any one me presumes to remark npon onything caid either by honest attention, to falsify; and if from either some and is a risal absurilo doty of an honoarable man to apologise, not to exercise his powers of casnistry and repeat the oflence.

```
                                    Brama.
```


AUBTRALTAN MEAT.

[3377.]-You have, Mr. Editor, lately incarted several letters-pro and con-on Australian meat, and I was somewhat aurprised to gee the manner in whiah thonght insufficient fonndetion, as to the comperative non-nutritions properties of this mest. I am atraid prejadice in such matters with some people goes prejadice in such matters with some people goas a
long way. Besiden, many people who have been eatars of English beol aud mantion all their lives, make.a meal or two off Australian meat, and becanse they don't feel as well, or fancy they don't, after the first moal or two, as well, or fancy they don't, aiter the first meal or two,
they jamp to the conclasion that English beef and mutton are chespest. My opinion, lonnded on my own experience in. thoy are mistaten; and I aleo beg to give the following corroborative testimony:-
Some carcfal calculations have been made at 8 . Cathbert's Parochial Board, Edinbargh, as to the cost of feeding the 124 inmates of the establishment, and it was fonnd that the quantity of meat nsed in the ordinary soup was 511 b ., which cost, at 6 d . per lb., £1 53. 9d. Lese Australian moat, viz., $88!1 \mathrm{lb}$. Was was to obtain the same amonnt of sollp, and the cost of 5 s .93 A . By varying the cooking of the colonial meat, and making it into a potato hash, $8 \frac{1}{2} \mathrm{~d}$. a day more was spent; but even with this extraragance the parative results as these that the real value of the meat is to be found.
It should be noted tha: both home and colonial meat was estimated at 6d. per lb . When it is borne in mind that colonial meat can be had a: two thirds of the cost of home meat, the difference will be atil
more striking.
Ecovomical.

CURIOUS PHENOMENOK.

[3878.]-HAs any photographic reader of the
NOLISR MECFANIC noticed the curious result of English Mecfanic noticed the carious result of dropping a semi-congealed particle of collodion from the corver of a plate into a pan of water, or, better etill,
a tub? Owiag probably to the repalsion of the ether a tub? Owing probably to the repalsion of the ether
and the water, it immediatels grrates, sometimes with and the water, it immediatelr gyrates, sometimes with
great regularity and surpriping apeed, and at other great regularity and surprieing apeed, and at other
times slowly and eccentrically. The appearance often times slowly and eccentrically. The appearance ofton depicted in ear atronomical primers.

Coryctibsals.
THE PROPOSED BRIDGE CONNECTING ENGLAND AND FRANCE.
[3879.]-The objeot of this publication is to abow the practicability of conetructing a nafe and darabl bridge between England and France that wonid moet the requirements of both nations, for we may reat assured that the capitaliste of Earope would not risk their money to oomplote soch a gigantie anderiang, exoept something more practioable in dotail ann be
brought to bear apon the subjeot then the plans and brought to bear upon the subjeot then the plans and ochemes which have hit
brought before the pablic.
If we nre by any means to eonneot the two metions s bridge should be conctivatod of sunhoient dimenaions to allow of three separate lines for railway trafile. horse and carriage way ohouk th leest be gots. in breath, and the aide paths for foot passengers zot be than loft. or 19ft. each.
Like Mr. Hawkebaw and others I hat long thooght of a tonnel, but when I conatdored the many dificenlite required to be overceme, and the fantis that wowld in all probability be mot with in the chalt formation, ov at hondreds of feet below the bottom, i conitiae ohields could be omploged with may degree of aifoty to onder a rush of water imposeible.
On the other hand, the diffoukilies comnoted with a

this part the water is never still (it is that of a rapid tidoway ranning at the rate of throe miles per hoar for abort six hours of every spring tide, and with strong and long continued ap or down channel galea), a still greater surface velocity is imparted, reaching, probably,
to the bottom, across the entirechannel ; andto construct to the bottom, across the entire channel; andto construct a bridgo this bottom must be resohed, and strong masaive stone piers or abatments brought up irnm a
vertical depth of 170 ft. to the surface, safficiently strong to resist the greatest storms whioh are known to occar in this part of the channel. We have no experience of diving at this depth either with bell or belmet; and to construet ahields or coflerdame of sufficient dimenaions and strength, the expence becomes dieconraging.
a the pressare of see wator of a depth of 170 it. is nearly 761 b . per square inch, so that if circniar shields or cofferdamis were emplnyed only 88it. in diameter, or 1,306in. in the circumference, the arerage pressare on the frst 9tt. in height from the bottom would be nearly 761b. per square inch, or 2,199,7441b. on that portion of the circumference alone, which is only the 85th part of the total height to the sarface of the water. It will be observed that this pressare is equal to a crashing force of 982 tons, whioh overy part al that aepta would have to resist; the next succoeding 2at., would have in
like manner to resist 969 tons ; the pressure, of courso, diminishing in proportion, as the surface is approeched; therafore, the total force that such a ahield or coffer: 41,786 tons.
It is ency to furninge it to be whinin the haith of a
 wrong to repiot this protisero, and mome plase might bo found to comnect chemr togother in parta and stols then to the bottom at me place requined for tho forrinationa, vet when it is considered the risk of wetor burethig up required in raising and restokng them for eanh pior of sbutment in that vait structare, I have no conflence in the ase
The plan by wheh I propese to ovencome these diffculties will be bent explained in the general description of the bridge, which, aecordleg to sy, plan, would consiat of a hage wrought iron thbor ahailar to those ased in the Britannis Bridge over the Mnai Straito, resting apon stone pierse or abatroettorght ap from the 459ft., and carried up to shedien eofficiently abote high rator
The tnibe woald be dtvided into three separate compartments rannin arece langta, and to Alow sufficient open son enef set of rails within the orter shell worala to memare about 45ft. in broedth; and to obtain the grvace, strength the aides ahoald be aboas son. de
bottom oelle, neaity 26 tic
Under every ajecustmace, I werfe propose that the abe should be minte sufficiently emegeg to sustain not only its own weight but in addetios to that load 8,000 tons, equally distributed over each. Jingth between the supports, a load ri
regnired to carry.
Fig. I will give wa idea of the gmoral construction of the great combined tube, sho whay the three separate sots of rails withis. It will be observed that the top cell projects 2 ft .6 h . over oach stide making a breadit of sott. on the top available for a redway. The side railings should not bo less ther ont height from the footways or pathe to the irom cope plees. The railings can be either plain or ornamentah, shond be pat np after the lengths of the great tnbe set in their places.
Fig. 2 is a plase of a portion of tive piers or bottom towers, extending in two paralled rowe in a direct line from shore to shore, except at the wrion towers, each S3Aft. in diameter, sot in paire sor apart from their contres, and 469 K from centro to cuitro of each pair. It will be obserred that this lesegth is reduced to about $250 f t$. at the nnion towers sed subor abatments. The object of this is to balanee the temptit on every, part of
the combined tube extending sometethe channel. The expansion aud contrnetion that take place in a
continuons stretchof this length wrín volurthorexplained continnonstretcaor
in firisg the lengthes
Fig. 8 is party plan and paetry colton of one of the piers or abatmente 8ft, above thator line, Where, are anited into one oblong towor or yler 84ft. over the extremes by $82 / k$, whero it currves is at this height to
26 t , then ranniog ap with a sidec, except in the recosses, whore tho tabos are raised. The sents or bede for recoiving the oylinders of the 8 bydraulic preeses that aro required in raising the tubes pressure of the cylindern from injuwhag the stone work. I will now endeqvorr to explain ting plan of erecting the circolar torers, or abatmenta, spa in preparing
them for their deep foundations. It is to be anderstood that a carrofal mirey at the veitose dopths has been takon where the brlofe is zund to oross, and the formation accertainod. This will eove as a gride in constracting the circalar shrouds wherein the founds. tions are laid npon the sarfoce of the water, and graof the anished mason-work progresses.
A plan so novel and so conventent camoot fail to recommend itself as the best means of erecting buildings of this class in deep water, as the workmen can at all tames continue their work efther ot the surface or at as many feet above it as may be fornd conveniont.
The Arat thing required in this procese is a hollow cylinder or shroad s2ft, in dismetor, constrqceted of
Whor. All the lap plater are pat on the ortaide.

The rivet-holes in the shroud plates are coantersunk on the inelide, no that the interior presente a platn and mooth sarface.
Fig. 4 is a mectional elevation of the shroud, showing the anglo irone for Hxing the timbers B and C of the foundation. The upper courso of timbora B are well jointed tozether, and made to nt acourately into the shroud, $s 0$ as to be perfectly wator. tight; bot tho timbers C are kept a littlo apart from eash other, on that a froe
peacape in left at the onds of each, commonicating with pacaage in left at the onds of each, oomenanicatipg with
the groove E cat roond the circomference of the timbers This groove E cat roond the circamference of the timbers. This pronve comamnicatos with an pump fixed on the
ontaide of the shrond not shown in the Fig. There in ontaide of the shrond not shown in the Fig. There in
also a valve npening oatwards or apwards on a line at sleo a valve opening outwards or apwards
P that oun be opened and ehat at pleacure.
that oun be opened and ahnt at ploacure.
The top timbers T are all woll jointed together and nxed to a olrcalar gaide of plato iron H , made to slide freely through the whole length of the shroud to the bottom timbera \mathbf{B} and 0 .
The leathors A are for securing a water-tight joint, and are, in addition to the water, prensed oat ag
the interior of the shrond by indiarnbber bands.
All the shrouds shonld be construetod on shore, and the bottom timbera B and C secarely fixed in thelr places. The timbers T require only to be temporarily axed to provent the water from forcing them inwards daring the time that they ase being floated oat to their places.
This it necomplishod by means of a atenm tug taining two of them in tor and prooeeding out what them to Where two pontonne are seourety moored, heving on board, and in readinees, all the applinnces for letting up; and as there appromeh, the water is allowed to for
fow into them antif their botiom onds sink considerably, Bringing them nearly to a vertical position in the wator; and whenever they are catat off from the tag the valres should be regulated, so ne juit to keep themg from tourching the bottom, while the ends of the guide ropes are passed round the windlasses, so that they can bo correctly gaided to their places; and when they are correctly set, the pampe ahoald be pat in motion; bat sooner as the inclosed water nnder the timbers B and C escapes throagh the pamp valves, keeptng them open so long as any sinking takes place-that is to say, it freoly escapes through the ralres when the pumprame at rost, as it is erident that if no protision was made for an oscape to take place, the witor wonld be forced down under the bottom edges of the shrouds, apd woald beds ap on the outside, tearing and cuthog wworld be ohosen for this oprration should be wher the tide is near the turn, so that before it again begins to fiom the pumps aro put in motion, end a racuam, so to speak, speedily formed amongst the particles of mattor nuder the timbers B and C, thus bringing not only the Wight of the ahrouds to bear on the bottom, bat, in sddition to that of theis own weight, the weight also of The whole quantity of water inclosed within them. that thoy are thas each secarely bound or fixed to tha bottom with E lowd, mot ineluding the presecure of the atmosphere, equal to aboat 4,000 tons-a weight which nelther gales nor tides will be able to distarb.
The time required to secare them thas from the fime thet they are cast off from the tag need not occupy more than fifteen or twenty minates. The bottom valives are then shat by means of the ride roda, and the temporary fixings of the timbers 'T' of the great pistons removed; and if it is found that the water does not hy them to the reqnired height, thay can be rused the foed ralves frow the pamps. The stubility on the shrouds are farther secared by strong timber frames onitiag anoh pair together at theiy nppor uxtrambices. These frames aro for carrying the travelling cranes placing th inting the stones, \&c., froun the compet the erecting of the permanent towers can be im. mediately proceeded with.
The stones shonld all be prepared on shore, and accurately fitted, so as to shorten, as mach as possible the laboar of setting them in their places.
The fonndation courses are carried ap perpendicular and in a solid form for aboat 6ft. or 7 ff. from bottom, to Where the inverted domo X starts and intersects the surrounding walla at a height of abont 17 ft . from the 2 ft . in dismeter, and extending up to W , as shown by the dotted lines R, Fig. 5.
The object of the bottom dome X ins to distribute the weight equally over every part of the foandntion, and as each conrse of the atonework is completed, the persn in charge of the bottom ralves regulates the are lowered only the depth of themselves, thas i,ringing the upper-beds for the next enarse to the samu height from the acaffold on whteh the vorkmen ste id when ongaged in laying the courgns in their proper linoes. The scaftolds are suspended by
frame-work abore that carries th. cravos, aco, aul shenld be placed or arranged convenient, wit is make rapid prngrese, and whenever it is foand that they have reached the bottom, the seaffolds filled in reath conc, and the nererior of the they shoald be filled up with wat:r to the sarface level Whioh can be done by means of a siphon, thas bringing a weight to bear on each, in addition to that of the stone(Fig. 5) should be completed, and the space surroanding them loft as a clearance of the shroad, tilled in with a darable composition of cement, thas completing them, so far as the deep sea bnildings are concerned. They should be left to atand over the winter months before
oommencing the sarlace towers that aff to sūpport the tabe.
Before learing thin part of the subjeet, I masy state that the weight of stonework in each tower just im-
medistely before they reach the bottom amounts it mediately before they reach the bottom amonnts it
4,600 tons. The iron shroads bave to resist the tion 4,600 tons. The iron shronds have to resist the in-
ternal pressare, as the stone-work is about 800 tons cornal prossure, as the stone- Work is about 800 tons
heavier than the water displacod that is to say, the heavier than the rater displeood-that is to say, the
ppecino gravity of the stonework at the depth of i70ft. that much haniser than the wator, no that the pressure nader the timbere or piston \mathbf{T} before reaching the bottom amounts to nearly 901 b . per square inoh wherens, at fall tide the chrouds are prossed only by tho earrounding wator to 701b., and at low water many not exceed 601b. per square inoh ; therefore, the shronds should be made rainciently etrong, to resist the
differenco of this pressare, otherwice thoy would barst.
The bilge water at E , before having been filled in with coment as mentioned above, is lept constantly at the same level as the water on the ontside by means of a siphon, so that the presaure is balanaing equally in all directions except nuder the timbers. This, boing
understood, it will be observed that the strouds should understood, it will be observed that the sh
increase in strength towards the botiom.
The thiokness of the plates and the pressure at the various dopthe may be exprossed as follows :-

Dejth in foets	Peocsure in poundo pue 49. in.	Thidimess of plates in inahos
10	4.4	male.
20 30		there-stxtoenthe.
40	17.8	
50	22.2	-v-dighthe.
60 70	$26-7$ 81.1	eloven-aixtoenthe,
80	$35 \cdot 6$	
90	40	threo-quarters.
100	44.4	
110	48.9 58.4	thirteen-aixtoenths,
180	67.9	ceven-eighths.
140	68.8	
150	${ }_{71.8}^{66}$	chen-sixteenthg.
180 170	71.2 75	one
180	$80 \cdot 1$	"

Before oommencing the surfaoy twrors the framework and the uppar portion of the stweds at the flange joint should bo removed, so that the arch connecting each pair of the under towers can be Bridged over with
the stonowork at the doaired hoight st shown in the the stonowork ${ }^{\text {at }}$
Daring the time the baildings in progress the erecting of the tubes on shore ahoali not be neglected, and as they are completed they should be floated out to their destinations in procisely the meme way 28 that adopted with the tabes of the Britamma Bridge; bat I would strongly advise a difforent play to be taken in the raising of them, ase they are nearly doable the weight of the Britannia tabes; it mould bo tery ansale to trast to any combination of chains, as the sanpping of a single link would cause conniderable delay. The friction also to be overoome in such a combination of chains as would
be required to zaico a weight nearly 8,400 tons would be be require
The plax by which I propose to theo them is from below, as it is safe and more expeditiona, as when they are broaghtin buwoen the towers hiey are immpediately rested rpon the temporary timbere strown by the doted po for . The ponto are pat in motion by pomps for raising the presses are pat in motion by timbers at the opposite side of each cowor.
The proesure pipes leading from the pamps to the hydranilio presses pases through porte loft in the stonework at K ; the foar presses in comblation for raising each end of the tabes should have odear lift or range of 8 ft . 3 In., so that the 8 ft . lengths of packings have a sumfiontolearance to be pat in as ound lift is completed, and in addition to the cast-iron pactioga the tabes are farther sovared by following them ap with wood packngs. During each lift the tabes are raised about 3in. per minute, so that in one day, from the time that they are rested apon the temporary suppitien or bearay, they can be rained to their permanent pleoet.
The namber of hydranlic presses employed should not be lese than 24, as the first set--ix., 8 , are required to remain in their places before the tubes are riveted; the second set can be in operation raising the nex ength while the third set are fitting ap to bo in readi ness for the next suoceeding leugth, and so on.
The short lengths passing throagth the towers should bo fittod up in thair places, and shonld rest apon castron framos which project down a fow inches on the edges of the stonework. Each of the 459 ft . lengths are raised 2fh 6in. at one end above the level, while the ower emd is riveted to the tower length. The raised ond is then lowered to the game level as the length passing throngh the next tower, mod than riveted to it; so that by thin process, instead of any dedection taking place in the tobe with its own weight, it cau be made to raiso itwoll apwards in the centro betweon the supports, bat this shoald not be carried too mer it the proper limit be observed it will greatly add to the strength rigidity of the tube, as the cension of wrony is greater than the forve required to crush reason the tower lengths should be well se acat-iron frames, as the grealoat oompression
engthways at this point.
It will be observed that no provision
supporting the tabes on rollers, ase the
the towors and abatmenta wherem thi

Britannia Bridge are supported on 32 sets of nicely adjusted rollers, set in paire consisting of 22 rollers esch, and with this adjust the greatest expansion that exceed Bin. or $10 \frac{1}{2}$ in. per mile.
In a length of 20 miles at this rate the expansion would not exceed 17 ft . 4 in . From this statement it may be inferred that nearly one half of the expansion must be resisted by the friction of the rollers caused by the weight of the tubes they are supporting; for it is found that the expansion of wrought iron between 32° and 212° is 0012 , or for every increase of 15° from 32° up to 212° it expands 0001 part of its own length. Therefore a tube 1518ft. long, exposed to the rays of the sun during the heat of summer, would undoubtedly at times reach 82°; the expansion at this temperature (if not
of uniting the lengths together, and secaring the ends of the tube to the land or shore abutments. It will be observed that the expansion between 52° and 92° would be $28 \cdot 16 \mathrm{ft}$., this wonld have to be resisted by a force or weight equal to what would compress or shorten the tube to the same extent.
The contraction between 52° and 32° wonld be 14.08 ft .; the force or tension to resist or overcome the contraction mast act in a contrary direction. To find the force required to resist the expansion of any length of wrought-iron tabe,multiply the number of square inches contained in the cross section by 2,492 , the snm found will express the number of pounds required to compress any length of the same tabe -0001 part of its own length.
Example.-Although the plates, angle irons, \&c., of

Cast iron.

Stone work $227^{\text {* }}$ Height in feet.
"
\because $\begin{array}{cc}227 * & \text { Height in feet. } \\ 2 \dagger & 85\end{array}$ 87000

Surpace Tot
 Total $\overline{2857010}$
 - Surface towers.
 + Shore abatments.
 \ddagger Bottom towers' average height.

Concrete or composition for footpaths,
Timbers for foundation, \&c., 1, $1, \ldots 93,700$
cubic feet, or.
Total. \qquad 3846196

partly resisted) ought to be 6.052in., and as the combined or treble-way tabe when finished would consist of an entire length stretching from shore to shore, I woald propose that the expansion and contraction that wonld take place in its length, from $32^{\circ} \mathrm{up}$ to 92°, or say 100°, should be overcome simply by its own weight and the strength or weight of the land or shore abutments.

This at first sight may be thought impossible, but from what is known of the properties of iron it will be found to be the only safe and practical plan that can be adopted in any iron structure of such vast diminsions, as the expansion from 32° to 90° on a length of twenty miles wonld amount to $42.24 f t$. All the lengths composing the tube should be set and riveted together in their places at a tcmperature of sbout $52{ }^{\circ}$,
the great tabe vary in thickness between the supports they should be arranged so that the section is the same in all parts of the length-viz., 3,600 square inches. This, multiplied by 2,492 is equal to $8,971,2001$ b., or 4,005 tons. The force required to compress it 0001 of its own length, or 10.56 ft ., therefore, to resist or compress it $28 \cdot 16 \mathrm{ft}$., it would require 10,680 tons.
To prevent dispute I may mention that the number 2,492 is the 10,000 th part of the force in pounds corre ponding with the modulus elasticity of wrought iron in. being the unit, 17,8001b. per square inch would compress or extend it the 1,400 part of its own length, or $75,428 \mathrm{ft}$., which is equal to the expansion or contraction that would take place between 82° and 139°, a temperature or atmospheric heat unknown, even at the equator.
I am not sufficiently acquainted with the formation of the shores to state the dimensions and the precise form the land abutments should have. This and the approaches leading to the bridge can be modified ac cording to circumstances. The double set of anion towers are further intended to facilitate the progres required to be made in raising the lengths of the main tube, and to give time for connecting their end o the short lengths passing through the towers; as many as six lengths of the great tube can be in progress at the eame time, raising fixing, \&o., as they divide the bridge into three sections of $6 \frac{g}{3}$ miles each, so that by beginning the work of setting the tubes at

the centre of each section and working from right and left of each starting point, they can be completed much sooner than otherwise.

The side tubes, as will be observed at the above named towers, should be constructed similar to the corresponding lengths of the main tube, and are for supporting the station-houses, \&c.; that should be erected for the comfort and convenience of passengers besides those who are required in connection with the great stracture, and during the winter the tabes should be lighted up with gas, and the method of ventilating them so adjusted that the atmosphere at all times could be kept free from the obnoxious gases that are generally found to accumulate in railway tunnels. The following items will furnish sufficient data for calculating the costs, \&c., of the entire structure.
Column 1 gives the number of tubes, \&c., required to complete the bridge.

Remarks.	Number of tubes, \&c.	Length in feet.	Weight in tons.
Wrought iron...	222	459	743700
	6	240	10500
$"$	227^{*}	10	16844
$"$	8^{*}	240	9300
$"$	$462 \dagger$	85	45000
	Total	824844	

* Side lengths at union towers. Shrouds average length.

Or, including station-houses, side railings, water, gas-pipes, \&c., say
about.. and by employing suitable machinery for constracting the various parts of the ironwork, \&c., the whole might rom theted and opened for traffic within lour year exceeding $£ 18,000,000$, as it wonld be fonnd, by adopt ing the plans I have given of building the bottom towers and resisting the expansion and contraction of the tube, that a considerable saving of time and money would be effected; and in conclusion, I would further

FIG. 4

propose that my plan of constructing a roadway on the top of the great tube should receive due consideration, as such a mode of communication would undoubtedly be preferable to any class of underground tunnels, aad if earried out would serve as a neful monument to illustrate the enterprise and wisdom of the age in spanning the waters of the channel with a stupendons bridge worthy of the nations it would unite together in friendly intercourse with each other.
The experiments, so far as have been made with the circular shrouds, have been perfectly sucocessful in every respect, $巳$

April 5, 1872. ENGLISH MECHANIC AND WORLD OF SCIENCE.-Na 367.
[IANO CONsthliction.-To Mr. Schucht and
[38s0.]-Is Mr. Schucht again poking his fun at the somarkisbly ecrious iudividual the ungractical "Har-
monious Blackumith"? Aiter enumerating somo of monious Blackamith Aiter enumerating somo of plano trebles, he very coolly suggests that I, the unprac-
tical blacksmith, of all men, whould give such emitical blacksmith, of all men, should give such emi-
nently practical man as himeelf a hint or two how to nently practical man as himself a hint or two how to
get over those difficultice. Verily, as Mr. William shakeapeare hath th. some mon the blacksmith to wit) have honours thrust upon them.
With regard to giving hints, I might say, "Would that I could." It does geem rather presumptnous for man unpractical blacksmith even to hint at (much more the probable means of improvemont ; bosides which Mr. Behucht estoppe me to some extent by refusing me some of which 1 may remark, en pasaant, are generally supp
pesulte.

In ray subjoined observations on this subject, I have purposely avoided morely theoretical-Which ary but too commonly aynonymous with controversal-mattera; but that "when we hear the deepest base note we also hear ald the netos in the piana," to excroise the free briton's privilege of becoming like most of my neighmay be then end there present among the "obertones" of the said lowest bass gtrings, especially if we hypothetically lnclude all the theoretically possible "oberCones of those obertones," bot to say we hear them all is emply asying the thing which is not. Possibly, are popularly supposed to IIsten continuously to the heevenly music of the sphores, whatevor that music may be, we might heay all thone sounds; but the whiter's eara, however musical they may be, are not,
he in happy to aver, quito long enough to enablo hlm to imagine he does heer all of them. Seldom, indeed, does he hear, in a well-made plano, more than one or two of the said obertones, alias harmonias, of the suld open otring, eapecially if it be as tight as it
ought to be, which, by the way, it seldom la.
Mr. Schucht mays we cannot make a plano treble, the mace of whowe materiale shall equal that of those of a double base ; perhapa, if wo could, it might be incon-
venient to "chin" it, exceptiag by the Analim. We veniont to "chin" it, excepting by the Anakim. We as DIg as a bombardon; a free ried whioh sounds C, Which sounde the so-callod 82ft. CCCC Of the bass; thece reede quite so big as the huge pedal-pipe whose nound is uniconous with the lattor. There are, howextent for the diferences in their masses, or of the masses of alr contained in sucl pipes. One of these
things is blowing the small pipe or reed with air at greater pressure, something like which it is possible to do with piano strings-but of thls more anon. Another thing is emploging more little plpes than big ones, and this is the very course Indicated by Nature, who
endown a dozen Iittle children with voices quite capable of out-squalling any one man-or woman either. N.B. The latter is saying something; in fact a good deal.
Mr. Schucht also says, "If a planoforte-maker discovered a method of making a treble equal in power to the base, he would at once apply the same means to She tenor and bass, which would leave the treble as
relatively weak to them as at first ;" this seems to me very doubtful. Not to mention that organ-bullders do not commit such an absurdity, for they no moro use as many pedal-pipes as they do treble ones than a Wise harmonium-maker uses as many reeds of 10 ft .
tone as he does of tft. : the " unvise" harmonlummakers do does of the relative weaknese of the trebles of thelr vile, cosrse-toned instruments. I think Mr. Schucht pays but an 111 compliment to the taste and Judgment oi his fellows in assuming they would act so absurdy, besides which. it is just posible the means lapppllcable (or, at least, not desirable to apply) to the tenor and bass, One, such meaps, herelinafter dewould induce a very bad and wharmonicky" quallty may not overpower the treble is no novelty; in lact, we prectically do it deily by covering the bass hammers more thickly than thowe which strike
the treble strings. Possibly Mr. Schucht has read Mesars. Broadwood's little book, printed for privato circulation in 1862, and will remember they distinctly state that in addition to using softer hammers to improve the quality of and keep down the power of the trating that portion of they also purposely avolded under the bass strings in the same manner as they treated that portion beneath the treble strings, lest the mounds of the former should overpower those of the Latter. Probably Messrs. Broadwoods are not the only makere of horizontal grand planos who have done the eame or slanlar things, for the practice is very common In some other mpaical instrumenta, and is universal in togethar. Which we call orchestras.
When we design an orchestra we usually amploy
nore Ruddes then contra basues, more cornets and futeg, han trombones, ophicleldes, and bombardous. When
build an orgas or barmonjum wo don't put quite so
ecccc pipes or reeds into it as we do of those
something very like this in the plano, for we uac morn notes. May I guess even Mr. Schucht himself employs but single strings for the latter, and two or three strings for histrebles, not withstanding ho has estopped me from suggesting the use of threc strings instrail of two, forgettlug that it is a practical fact that many mickle strings, if not equal to are at least more suitable than only one to be used along with his sligle but muckle bass string
Probably no other unpractical indlvidual ever experimented further in the multiplication of unisonous strings in piano trobles than I have done. On C. itwo
octaves above pitch C. I have tried no less than eeven octaves above pitch C, I have tried no less than reven
No. 14 strings 8 in. long, but the honest truth is that 1 found liftle or no increase of londnces when the numound litte or no increase of londare when the num
ber exceeded fire. Irobably the failure resulted from ber exceeded fire. Irobably the fainure resulted from
the weakness of the action. I being then unable to strike seven strings morr forclbly than five. In the orchestra seven fiddles have not one bow common to all. but seven bows, one to each. Lat me nild, rach to "saw "with them in every instance I ever " kaved," in other words, seven times the motive fore when needed which one aldler could apply to one bow needed which one addier could apply to one bow.
Now my seven strings wore all struck by one hummer certainly somewhat heavier, about a fourth, than usual. Seven strings mean more than twice the resis ance to the hammer's blow that three atrings can have, and as I had not then learned how to iucrense
the force of the blow in proportion to the inthe force of the blow in proportion to the in-
creased resistance of so many striugs (at least not without increasing the weight of the touch, until it became too great for pleassant performance). For I
then only had tho means of experimenting with the then only had tho menns of experimenting with the
common horizontal grand action, Der "Euglish Mecommon horizontal grand hetion, Der "Einglish Me-
chanio" of Mr. Schucht and his countrymen, which, in common with all other actions, howover excellent. cannot, without too much increasiug the weight of touch, be made to strike so powerful a blow when its hammer is horizontal as when it is inserted in the top of the butt, as it must be for upright strings; lience, we need hardly be surpurleed to find if 1 produced powerlul sounds from three, cousiderably more powerful sounds from four, and yet more powerful strings from five strings, that after that number were used, but little If any increase of louduess resulted, probably because the same force of impact (being distributed over so many) each string was not moved so far, and consequently they did not lift the soundboard so high, and the aitriel wave generated by its motion, waslecis ample than it would have been had the seven strings bean raised by the hammer as far as five strings were. It is, howover, hardly worth while theorising about the matter, because I have since learued that three No. 17 wires 4in. long, wires, whose length is only 31 n
However unpractical I may be doemed I have far too keen a senge of commercial considerations, and, let me add, of business responsibility, to recommend Mr. with and his fellow manufacturers to make planos with five strings in the treble for each note. somo of he very best trebles I have yet heard had but two unl struction not to mention the increased which after all would not be so very heavy, I greatly lear the tuning of such instruments would bo found rather costly. Besides this merely pecunlary consideration, which I for one would be quite willing to pay the additional cost of if proportionate excellence resulted. I although I have but little falth that my future lifo could be largely influenced by human maledictions) wauld rather not (for his sake) desire the tunor should wish me supposed to be unpleasantly high every time he dorth his office, for, after all. I havo written in disparagement of their class., I do acknowledge that tuners are "men and brothers." Now I much desire to be at peace and brctherly love with all men, yea, even with tuneri
Had not Mr. Schucht estopped me, I would also ha suggested that those hammers which are what he terms polnted at their striking faces, are generally belouder sounds, but also sounds of mot only to protuc, quality, especially if the sald maininerg be rather quaity, especially
thinly covered. Now the sald hammers be rather worth something in musical instruments-in fact, but for it the trebles of planos would be almost inaudible I have not the slightest desire to inflict on Mr. Schucht and my other fellow readers a long tedious schucht and my other tellow readers a long tedious
disquisition on timbre, and the prolable (query hypothetical) causes of the great differences thereof, whith may, or mayy not be, caused by the predoninance of may, or may not bee, caused by the predowill simply the deal to notorious facts within our daily experience. appeal tomiliar example of this penetrating quality of tono A ramiliar example of this penetrating quality of tono which may be heard above all the other instruments in which may be heard above all the other instruments in
an orchestra, but no flute, or stopped diapason pipe, in an orchestra, but no flute, or stopped diapason pipe, in
unlson with the Bfo, would be audible under the same unison with the bife, would bo audible under the same circamstances. Without pretending to verbal scien-
tific accuracy-a thing not to be expected from ixnotific accuracy-a thing not to be expected from ikno-
rant blacksmiths-we commonly say the sound of the fife penetrates through commonly say the sound of fife penetrates through those of all ments. I am sorry to add it doth also "penetrate my poor ears very unpleasantly indeed, but, nevertheCulottes" of North Briton are aaid to like the bagpipes. Well, De guetions, \&c.
Besides the ordinary practice of focreasing the penetrating quality, and, therefore the apparent power, of piano trebles by employlng thinner coverings for the
treble hammers than are used for the bass treble hammers than are used for the bass hammers, by the English makers of horizontal as far, eqpecially by the English makers of horizontal grand planos, as
fo compatible with the production of sounds of pleasing
qunlity-perhaps in some instances eren yot furtheralthough I think if their bass hammers were made heavier and covered yot more thickly, which latter tion the practice of most continental makers, the quallit. There is another stmple and old fashifoned wny of inreasing the power of the trebles-ris., to go back to hat exemplification of the wisdom of our ancestors and time-honoured method scema to have totally and time-honoured method seema to have totally escaped the penetration of modern pianoforte makrry, ing out. likeall "ancient" men what ongs to the period when Windham wrote "Puzillsm hard knocks, if not for tho civillsution of mankind, at hand knocks, if not for the civilsation of mankind. at
least for the production of loud sounds in the treble of pianos, for when this process is applied to theirstring pianos, for when this process is applied to their sirtugs
it induces much the same consequcnces whioh reanlt it induces much the same consequarnces whioh reant
from its arlication to jovenile humans- to wit. it causes from its aricication to
them to "cry alond."
Hard hitting in pianos may be carried out by two methods, we may elther make our hammors double the
weight they were without incrensing their velocity, which, however much it would improve the bas would greatly int eriorate the treble, in fact, altuough doubliug he total force of the blow, it would also render it what Mr. Eavestaff termed " thuddy," which is just
what we don't want it to become ; to confoss the truth what we don't want it to become ; to confoss the truth,
it often is far too much so already. Thuddy blowe It often is far too much so already. Thuddy blows
answer vory well for driving plles or forging red hot answer vory Well for driving plines or forging red hot of the ram or hammer does no harm, but for inducing the musical vibrations of short strings the sooner the hammer relounds from them after it strikes them the botter, hecause their vibrations must be at roast ensibly impeded, not to say damped, by the coninuance of contact between the hammer and strings : in a word their tones, never anything wo long, become yet shorter and more "blocky" the more time elapees before the hammer robounds. I think it follows that heavy liammers, which strike thudity blows, "arent " xactly what we want for plano treblea, so, as we don't desire to damp our strings before the hammers have time to rebound from them, we shall have socopy the risdom of our ancestore, who made grands bejore the arst quarter of this century expliced, in so far es making light hammers strike hard by moving them at a high velocity when they do strike is an oxample theroof. Strange to say, ye modern practical men (who probably elevate thelr nasal organs at the name of the blacksmith, and plously thank beaven they aro not as that unpractical sinner is-well, happily, liko Thomas Ingoldsby's celebrated jackilaw, Isi don't feel the penny the worse) Reem nevor to have percolvad the advantages of this syatem. Inderd, so far from lucreasing the velocity of their troble hammers, they have, in most of the actions they employ, actually resduced their velocity about one-thind, driving thrm no faster-sometimes a trifle slower-than they do those
in the bass. In the old grands, whose touch was what we should now term very shallow-ouly about tin. deupp - the hammer was moved elght or nine times as fant as the key, in modern actions they reldom move more than six times faster, and its welght is about double that of the old hammer. Such being the facte, need we wonder that modern hammers, efpecially when heavy loaded strikers are hung to them, strike "thuddy" blows? Probably their blows are rather more powerful than those of old grand troblea. Additional welght, how although its ovil conerquences may be to mme extent compensated for in modern pianor by employing No. treble strings.
I will nay something more on "Plano Construction" in another letter

The IIarmonious Blacksmitt.

KING-NUMBERS.

[3881.]-May I ask "E. L. G." (let. 36:4, p. G0i) to publish in the columns of the English Mbchanic his demonstration that there are no other king-numbers than those he gives in the letter I refer to, and also the method of ascertaining each step in the seriws of "noblo numbers thrre given, which method he there says lo fact in connection with the talie he gives, which I should be glad to pablish in these columine, but should Ifike to sce his demonatration of what he mwerts beforc I do mo. Mey I be ailowed to point out what appears two lowent king-numbers, two and six, aron the only onos that, multiplied, produce a third king-number. Surely, 6 times 60 la 860 Alfaed M, Box.

COLLLERY EXPLOSIONS AND THEIR PREVENTION.

[3832.]-Allow me to express my gratifieation that " King Coal's" opinion (letter $3 \times 16, p, 14$) does not
materially difer from my orn as to the best. I think materially differ from my orn as to the best. I think
the only cffective method of diminiwhing the frequency of explosione-ie., by ample supplios of air well dilstributed, and insuring attention to that by rendering it moro costly to neglect than to observe the conditions
essential to safety. I quite agree that as a rule acciessential to safety. I quite agree that as a rule acci-
dents are most frequent in this smaller colli"ries, but on the other hand, when explosions do occur mont live. are endangered in large ones. To limit this expoxit of very many lives to one riak, the select comm
of the House of Commons recommend that larg.
flery mines should be divided into sections or
came section. Such division would cause both cost and inconvenience possibly greater even than the additional security to life would compensate for; that, however, security not bo assumed without careful consideration. My impression is that if the lives of colliers were in. sured, as they ought to be, it would be found cheaper to adopt the precaution than to pay for the risks, and unless the precaution would cost very much more it ought to be adopted, for the lives of our countrymen, especially if they be busbands and fathers, are of exespecially if
I do not see any probability of the cost of compen. sating for lives lost by explosion being greater than I assumed, for, Wreckless as the pitmen often are, they
will not be more bat less so, when greater carefulness by others becomes common, and my calculation is bysed upon the assumption that fatal accidents will not increase, while they will most cortainly diminish, if increses, While they will most cortainly diminish, if danger be made more costly than safety to those who
can mostually enforce procautions. Pinco.

EXTINCT VOLCANOFS.-VI.

[3888.]-ThERE aro a good many traces of extinct volcanoes in Italy, besides those of tho Phlegrean Ielde. In general character they resemble those pro-
viously described. The chief localitics aro certain lakes near Volterra in Tuscany, which give forth very hot and sulphurous and boracic acid vapours; a small sulphurous lake near Viterbo, continually giving
forth bubbles of gas ; and the lake of Vico, forth bubbles of gas; and the lake of Vico, Apennines in the province of the Basilicata; and Lake Agnano ncar Naples. Of these the Lakes of
Vico and Agnano are the most interesting-the Vico and Agnano are the most Interesting-the
former, as the ancient Lacus Cimini. Old anthors state that its aite was once occupled by a town, whose ruins ueed to be visible at the bottom of the lake when the water was clear. The ground where the town is said to have stood is supposed to have been engulfed during a volcanic eruption, when the said lake was formed.
The Iake Agnano is the site of an anoient volcanic The Lake Agnano is the site of an ancient volcanic Cane, $t 0$ famous for the deadly vapours it exhalestheee consist of carbonic acid ges, in combination with Whetery vapour. This celebrated grotto is thus described In his work on volcanoes by Dr. Danbeny :- ${ }^{14}$ The mouth of the cavern being eomewhat more elevated
then its interior, a atratum of carbonic actd goes on constantly accumulating at the bottom, but upon rising above the level of the mouth, flows, like so much water, over the brim, hence the upper part of the oavern is free from any noxious vapour, but the air of that below is so fully impregnated that it proves speedily fatal to any animal that is immersed in it. Also it is impossible to fire a pistol at the bottom of the cavern, for although gunpowder may be exploded even in carbonic acid by the application of a heat safficient to decompose the nitre, and consequently to envelop the mass in an atmosphere of oxygen gas,
yet the mere influence of a spark from steel produces Yet the mere infinence of a spark from steel produces
too slight an augmentation of temperature for this too slight an augmentation of temperature for this
purpose." Similar phenomena, but on a grander scale, parpose. similar phenomena, but on a grander scale, Jara, called Guevo Upas, " the poison valley." It is level, about half a mile in circumference, surrounded by precipitous rocks. From various parts of its soil carbonic acid gas is discharged in such quantitios as valloy gave rise to the celebrated igment about the upas tree which once obtained such general belief in Europe that it was credited even by Dr. Derwin.
There is another extinct crater in Java where are exhaled vapours equally deadly, but which exert a
most peculiar effeot on the dead carcases subjected to most peculiar effeot on the dead carcases subjected to Guevo Upas, reduced to skeletons, the carcases have all their bones dissolved by the rapours, while the lesh, skin, halr, and nails are preserved from decay. To the westward of the town of Le Puy there are a number of small volcanic craters, of which the two largest are the Lake De Bouchet and the crater of Bar,
which also appears to have been at one time a lake, but to now dry; the former has its greatest diameter about 2,300ft., with a depth of about 90 ft . ; and the Intter is on the top of a mountain which is composed entirely of such substances as are ejocted from volabout 180 th, while it is almoer $1,660 f t$., and its depth The mountains near Vlenne exhibit etreams of lave Which socommodate themselves to the existing valleys near Agde, also on the shores of Gulf of Lyons, on
the top of a hill-viz., St. Loup, there is an extinct the top of a hill-viz., 8t. Loup, there is an extinct apparently of recent origin. On one of them the town ${ }^{0}$ oceanil
The district of Eyfel, on the borders of the Rhine, is another in which extinct rolcanoes abound; they occur mostly in the form of circular craters, which re now ejections; they also exhiblt various superficial streams of lava. One of the most remarkable of these round oraters lies near Andernuch, a little west of the Bhine. in dircumference; volcanic ejections exactly resembling those of Mount Vesurius. Notwithstanding these evidences that the extinot volcanoes of Eyfel have been in activity since the country acquired its present formation, there are no historical records of their operations. There is, indoed, a paseage in Tacitus referring to flres that issued from the earth near Cologne, but his description does not warrant the conclusion that the event to which he alludes was of the nature of volcanic eruption. The Drachenfalh, on the eeotern bank of the Rhine, and the
other mountains in its nelghbourhood, belong to the more anclent volcanic formation. The same may bo affirmed of the other mountains scattered throughout Germany and central Europe generally, in which rocks
of origin occur. But of all the extinct
o remarkable as the Dead Sanoes in the world none is 80 remarkable as the Dead Sca. This singular collection of salt and bitter water has the level of its surface de-
prossed 1,312 feet below that of the Mediterranean, thus indicating an enormons subsidence. The Dead Sea indicating sn enormons subsidence. The Dead Sea Jordan, described as having been well watered everyWhere, like the land of Egypt. One part of it. called
Sheddem, was full of slime pita, the only indications of Sheddem, was full of slime pita, the only indications of
volcanic action. When the cities of Sodom and volcanic action. When the cities of Sodom and
Gomorrah, which stood in the plain were destroyed, it is said it ralned upon them fre and brimstone from Heaven, but it appears that they must have been primarily discharged from the earth, for the smoke of the country went up as the smoke of a furnace. The phenomens, therefore, most likely resembled in the first instance those of Jorullo, but the catastrophe scems to
have ended like the great eruption of Timor-the have ended liko the great eruption of Timor-the
whole of the plain having been ingulfed and replaced by the salt lake, whose depressed level so clearly indicates the nature of its origin.

Ralpi Lowdon.

NOMENCLATURE, \&\&.

[3s84.]-I was a few days ago worting my way slowly and laboriously through an old manuscript book on alchemy written in 1608 , and as I read page after page about "aurum potabile." "the elixir," the
"white blood of the green dragon," And so forth, I could not help thinking that there was a strong recould not help thinking that there was a strong re-
gemblance between the jargon of the seventeenth censemblance between the jargon of the seventeenth cen-
tury and the nomenclature used in the science of the tury and the nomenclature used in the science of the
nineteenth, and wondering whether it was necessary ninetecnth, and wondering whether it was necessary
to involve matters in extra obscurity by the use of to invoive matters in extra obscurity by the use of
terms that are almost unintelligible except to the initiated, especially when each writer exeems to invent whole sets of new ones, or, worse still, cmploys old whole sets of new ones, or, worse still, employs old
ones in a new eense. Far be it from me to say anyones in a new sense. Far be it from me to say any-"
thing againgt our talented and obliging friend "Sigma," but he is an instance in point, and has employed several names-Farads, Vebers, ec.-that are, I think, quite new, in his recent papers in the Englisi Mechanic. It is, however, in chemistry that the most outrageous names occur: cren the "white blood of the green dragon" is a joke compared to the polysyllabic combination of Greek and Lstin that ocour in organlo chemistry, and in inorganic too, for that matter. Then. too, what a grammatical barbarism is such a compound as Platinic Chloride. True, it may be a syllable shorter han, but is it so easy to pronounce as, its old name chloride of platinum. As for zincic chloride, I can make nothing of it; if the " c " is hard, the word
borders on the ludicrous, if it is soft the name of the borders on th
metal is lost.
Just now wo are having a battle about valencles and atoms and molecules are flying about pentads and hexads in a most alarming manner. In connection with this, I remember in some book on chemistry a remark that it was scarcely an explanation of a fact to affinity, and they have an affinity because they have an amnity, and they have an affinity because they combine," yet all this discussion about valencies" seems to my style
Another thing that often strikes me in my discursive reading (I am a Jack of all Trades in reading, and I fear I must add a master of none in understanding) ; is the tendency to dwell on minutia rather than on broad facts.
Take astronomy as exemplited in our pages; look at those straxgling sketches intended to represent some mountain or crater of the moon, and then read the long discussion as to whether a little crooked mark is a cleft
or a rill. What on earth does it matter which it is? or rill. What on earth does it matter which it is ? moreover,

Again, read Secchi's papers on sun flames, divided by him into a hundred different kinds, yet who would dream of classifying the shapes of the flames that filcker up and down in our grates? Is the one of more real use than the other?
Then take microscopy : what pages have been written, What a paper war rages as to (say) Fozoïn cansdense I What hours have been spent over Infinitesimal differences in the markings
specks in a tadpoie's tail!
I might dwell also on mioroscopical anatomy: has thousands of obsgery been sensibly benefited by all the muscle, and so forth? Has cancer been checked by means of knowledge gained from the examination of its cells? Has tubercle been arrested? Has any practical result followed from all this prying into the laboratory of life? Some trifling knowledge may have been question must bo-Very, very uttle.
L. C. E.

BEES AND BEE-KERPING.

[3885.]-THE weather anticipated in my last lettor has come upon us with a vengeance, and wind and freczing-point, have stopped all bee operations, and confined the bees to their homes. The immediate effect of it will be that the queen will cease to deposit eggs in the cells, and the bees will huddle together for mutual warmth. In a strong stock little harm will arise beyond loss of time, as there would at no time be cared for by the nursing bees, and, although the temperature outside the hive is 80 much lower than it wres

It has happily caused the foragers to keep within the hive and so to keep up the temperature within ; but stocks are rackuce by suddin atress of wreather to the verge of atarvation, the bees crase fceding the queen on prepared food and allow her honey only; they consume all the eggs, and as the pressure increases the with the larye for its sustenance As time the colis and the pressure bres of the full-frown nymphs and eat all the soft parts of helr bodiea throwing out at the month of the hive only the bony formation of the head and thorax, and after that sheer starvation induces them to swerm out which ther often do and pitching on the ground ctoee which they in and and plching on-tour geors hardly ught to need reminding that a little holp would pre vent so dire a catastrophe. C. N. AbBott.

DUST IN THE SPECTROSCOPE.

[3886.]-I HAVE great pleasure in replying to the courteous request of your correspondent, "A Fellow of the Royal Astronomical Soclety," as to the best method of cleaning the slit of a spectroscope. I faar. however, that I shall not be able to render him muoh
assirtance. When a spectroscope is of considerable disassiftance. When a spectroscope is of considerable dis-
spersive power the slit may be opened for such a disspersive power the slit may be opened fill up the space
tance that particles of dust will not between the jaws, and still the instrument will give a tolerably pure spectrum. But when the instrument has a very low dispersive power, the slit can scarcely be wider open than the three-thousandth part of aninch. and it is, of course, eleceedingly difficult to prevent particles of dust of this diameter from lodging between
the jaws of the slit : this causes the spectra to be stripod with the longltudinal lines which so much annoy observers.
All this is, no doubt, well known to your correspondent; my objoct in writing it is not for his information but for many other readers in whose interest he evidently writes. As your correspondent saya, a camel'shair pencil is of no use-generally I have found it matie matters much worse-but a freshly cut splinter of dogwood should have been useful. I have found any small piece of soft wood, cut carefully round, and rubbed on a cloth,so as to free it from all small particles, effectual if used in the following manner:-First blow on the slit, allow time for any slight amount of moisture which may have condensed to evaporate, close the slit by means of the screw motion, open it a tolerable width, and wipe the edges of the jaws with a aplinter f wood : blow on the slit again, close the jaws of the slit completely by means of the screw motion, and on re-opening the jaws will generally be found free from dust. Though this method is not always succesaful on the first trial, it is the best method I have yet been able o find, and after some practice your correspondent. who I have good reasons for thinking is a most exper manipulator, will be certain to sucoeed at any time.
John Buowning.

ATMOSPHERIC DUST

[3887.]-IT may intercst your readers to learn that Dr. Tyndall's cotton respirator has been anticipated by the inhabitants of some parts of South America. The fact, which soems well authenticated (Boussingault), that the inhabitants of South America are enabled in some localities to withstand the attacks of endernic diseases by mechanical application, such as veils placed before the organs of respiration, 80 as to ift the air from morbid solld particles, supports tho organic nature of malarious polson. Absorbent porous bodies used instead of vells, such as charcoal, havo been long disused in manufactories from thelr power of condensing gases, which are replaced by the inspired ir in its passage through them, and are thercby carried into the circulation."-Dr. R. D. Thomson, in Cholera Report," 1854.
Dr. Thomson holds the opinion, which I some time ago stated to be mine, that putrefying bodies are nut to be dreaded, but living matter. I believe fresh sewage to be far more dangerous than old. Putrefaction gases may kill, but do not give contagious or infectious diseases. And, I may add that what we require in a disinfectant is something to kill the living germ, not an agent to prevent comparativoly harmess putrefaction. It must also bo remembered that the cilia in the lungs enable them to free themselves from germs and dust for the most part. We have always
ep alive.
M. Paris.

POTATO CULTURE.

[3388.]-Having seen various articles on the above subject in your paper, I venture to send a few remarks. For some years I have paid considerable attention to best means, and I will state what I believe to be the bout 25 in . between rows, and 151 n . between the potatocs, liberal manuring, and large sets (whole). I As soon as the tops are 3in. or 4in. above ground, I pull out all the sprouts, except three of the strongest. and though fewer in number, a better sample and greater weight of crop. I earth up very high. If disease appears I mow off the haulm close to the ground, as soon as any spots are seen on the leaves by this means I saved, last season, a splondid crop of I cannotes "When my neighbours lost most o thames manuring for the diseaso-it is quite the contrary in my experience, and without manure planting
is waste of time and ground. Isquisiso

SCTENTIFIC EDUCATION.

[3889.]-IN my communication to you of November 10, 1871 . I reported the last contributions towards an exact science of mind in support and extension of the coul-theory of Plato. l'ermit me to report progress in relation to the exact ecience of reasoning or exact Hall, reported in the Englisi Mechanic of the 9th ult, takes us back to aud endeavours to resuscitate lower forms of barbaric thought which some of our own naturalists have also attempted unsuccessfully to render again faehionable. They are attempting vainly centuries. There are few things more difficult than the exact obsorvation of facts. The exact interpretation of exheir natural language is a rare achievement. To the man of average capacity, who has toiled long and painfully, and has at last been able to exhibit a few hitherto unobserved snd unexciting particulars, the result is most disappointing. His is no master-mind, and he is to gencrallise subtly and reech discovery. So he abandons the straight and narrow path of fame to gathor Olympic duat in the broadway of sensation. The last publio rebuke of Huxley appeared in the Morning Pout, then reporting has lectures at kensington. The writer
then quoted against fim the "Brancassine criteria,"" then quotod against fim the "Brancassine criteria,",
Man cannot reason by means of uncertaninties," "The recognaltions of man cannot extend beyond the Himits of certainty," "Certaintios must spring from an exnct experience," "Superstition, scientific, is the acknowledgment of uncertainty as certainty, "Exact ogic must have as its basis an initial certainty." These
criteria part of the "Doctrine of Logical Limits," first pubhiahed, the writer states, in 1842 , are obviously a furthor development of the Engilsh school of philosophy founded by Roger and Francis liacon, as opposed to the motaphysical schoois both of the Continent and India Eanglish cochool, according to its last deducation of the the Indian substitute. "Man." says the former Che Indian substitute. "Exact Philosophy," Book in " is sertainly a part of nature, He is physically carbon, oxygen, hydrogen, nitrogen, chlorine, iron, lime," \&c. "The chlef elements of the external world are constantly becoming physical bumanity." Now, mind is also a part of man-his chief
part. What any one may imagine mind to be is a quantity outside critical logic, which acknowledges the existence of certainties only. Certain it is that mind Is a part of man; therefore of nature. It is impossible for an exact thinker to take any known quality of mind and attach it to inanimate entities. It is impossible to dinlocate one quality of mind without dislocating at infer that a brickbat has a soul is an tmpossible inference. Logical inference, strictly so-called, is an ontity entogether beyond mere human volltion. 80 soon as an altogether beyond mere human rolition. so soon as an
inference is exposed as having the fatal quality of uncertainty it becomes extinct. It is destroyed by the frat criterion, or tirst law, just quoted. Exact logio is
immited to facts or certainties : it sweeps away into nolimited to facts ore sayings, ss the "Modern Orecilar" thingness all mere sayings, as the "Modern Oracular"
("Exact Philosophy!" Book 2.) It annihllates the ("Exact Philosophy." Book ${ }^{2 .}$) It anniliates of all inexact terms, eapecially those which are often applied to inanimate objects, and which, zcoording to tities. To say that a "stone endeavours," or that any object known to be senseleas acts, operates, contrives, erranges, we. is to use spurious terms. These belong to the follies of fable, and are mythle verbiage, belonging not to mythology, but to the "hyper-supersome form of mind. The mythos of monstrosity acsigns all ite marvela to the absence of it. It, in fact, ignores its very exietence. Now, when A. Jiram Row talks to the higher class of educated Englishmen about "concrote existence in all its varieties " as only the expresthey think it wholly unnecessary to exhibit any law of oract logic, any "Brancanaine oriteria" for the extinotion of this rare bit of the modern and ancient oracular. It tea self-annihilator. It is plainly metaphysic jargon. Its author shut out mind suing merely siguifes exnctly that excliagion.

There are those amongst us who would drag us back to the mythic teaching of the middle ages. We have not the stone of transmatation, the alkahoet, the elixir rite, upheld es searchworthy ; but wo hear occasionally of something infinitely moremarvolious-unconeciousprotoplarm ; natural selection, that, unmentally, selects; and psychic force; all ultra-miraculous agencien. All these new disooveriee teach us that, aince more can be achleved without mind than with is, a lunatio asylum mont sxilful administrator, a coverelgn, or even a god!
Professor Huxley did not reply directly to his eritio, but he replied indirectly'; as may be seen in the Enocisin Kecianic. No. 348. p. 112. There, at Owen's College, he complained that scientific men were reproached or
departing from the Baconian or sclentific method, and for not being allowed to guess, or imagine, or spocuhate, or invent hypotheses. "Nine.tenths of what sclenHac men dealt with were," he adds, "only probable conclusions and that we must wait more than a centnry
for real evidence of the truth of Darwin's hypotheeis! Now wo have a good answer to this complaint Newton obtalned his grand resalts by rigoroasly ob serving and interpreting natural facta, and not by opeculating. Of the speculative method he speaks with coloesal diedain:- "Philosophis nataralis id revera prxcipuum sit et offlium et anis," he affirmed (Opt. 98,
$Q u$.) "nt ex phanomenis sine fictis hypothesitua arguaua ot ab effectls ratiocinatione, progrediamur ad (is and without sictive or prove by reaen ning from
tonian method. What would he have ald to the century-to-come Darwinian possible?

Fraser Halle.

SAVE US FROM DECMALIBM!

[3s90.]-What we sorely need of "Philo " (p. 12) does of worts, Indeed; though 1 will not say, as he sort being, with him and most of us, enough to spare, but far better ones even than his being by no means the things wanted, rspecially in this metric matter; but judgment and real thought. of a kind he never betrays a trace of-thinklag out some one thing, however small, to its end.

To adopt one of his last ideas, he must have a very low estimate of expected readers to set up gravely a parallel between the new French measures and an inas if this moreover, such an invention 28 logarithms. the moet furious revolution, to supersede a chmotic host of local and trade standards) involved eny inventlon at all! But above all, a brother to logarthms: Why, it is not half so comparable as the man of WaggeWagga is "just like Roger!" They were both men, at least. and had both been in England and Chill; but all the parallel we can find here is that both thlngs were once new, or, rather, new to Lurope : It is surion to the same order of mind as Mr. Bottone's comparison on p. 588, of two sums which, because they are stated, be taken for one question! and when offered the choice which of the two he will state in both notations. $s o$ as to work one identical question in both (p. 608), declares off, with the faleehood * that I propesed he "should first reduce Engish notation to decimal," and fatly rofuses to compare the two methods on any one sum at all.
And, by the way, what dap-trap and hocus-pocus are all those comparative calculations hitherto? We are ahown long multiplications, reductions, and the these were practically used. They must necessarly be these were practically nsed. They must necesaerily be
taught to school-boys, to ground them in the theory of the matter; but who in England uses them in real ecoounts? They are avolded, and in commercial reckoning can be totally eo, ard even ahort multiplicarton used as little as possible, and all eles is done on the principle of the rule the school-books call "Practice." This form or application of short division, not merely the most valuable and used rale, but the very cream and practically sole used portion of the school arithmetio, arguers luke "Sigman" and Mr. Bottone simply ignore, the fact being that its whole value and provalence that mo well earn its name, are one great all hangs dimply on that auperiority I have been pointing out, of the truly metric numbers, those art sullychosen ones that connect the units of our ancestral weight and moasure systems (that "sigma " necribes 0 accident!) over the mere denary powers that arise rom the accident of counting by fingers. The rule of tables of all the "aliquot parts" "p they are called of ε, a ton, dc. Systems formed by "cocldent." or any wuch as Mr. Bottone imagines were what he calls "Consistent," repeating, the same multiplier step after ton, with these numerous submultiples, or sufficiently divisible, i.e., sufficiently metric, to lead to this most useful and rapld method, so well-named "Practice." The miserable Gallo. Chinese paeudo-gystem in question miscalling itself "metric," in which alone, of all syatems, accident really has a chilef part, scarcely admits of any such method, only of its berrest rudiments, as dividing by 2 and 4 lnstead of multiplying by 6 and 25, and I suppose French achool arithmetics by 6 and 25, and 1 suppose French echool arithmetics idea-I had none myself till yesterday - of the helght to which you must carry the powers of ten before they which you must carry the powers of ten before they numbers of my " eumetric" list, on p. 607. Reckoning numbers of my" eumetric last, on p. 607. Reckoning found that

In 10,000 aro
 In 100,000 are
 In $1,000,000$ aro
 In 10,000,000 are
 In 1 milliand are 69, or no more than in
 位
 In 1,000 bilion are 254, or no more than in 1,081,080
 tilloas aro 30, or no moro than in $0,486,480$

Thus we find it would take 20 deoimal places to make a donary unit divisible by morely as many divisope (and not near as common or convenient ones) as a unit ol only 7 figures derived from the noble namber aystom ylelda. And observe that the highest prime fector in this 6,486,480 is bot 13, so that sapposing a metric table haring this for the ratio of its highest and lowest units, there need be no stop larger than 13, and children could as well learn to carry thirteens as they now do twelves from pence to salinge. But such a table, instead of tho three steps 7. 11 , and 13, might embody them in the efogle stop 1001 ; it being actually easler to carry 1001's, or to divide (in our denary arithmetic) by 1001 in one line, than by 13. Now, con-
> - In this "parilamentary" or ordinarily otvil? Wo
thlok not A correspondent may bo in error without knowing it, but "a falsehood " involves intentional dit honoty. "F. L. G. is Well able to difoes his poantions
without the freo nse of offonsive opithets and wo trust which becomes the true phlloeopher.-ED.
aldering that 13 has a place in our time system, being the number of weoks in a quarter of a year, I (having
more faith than "Sigma" in the "survival of tho attest") can by no means venture to prodict that we chall always be Chinese enough to perpetuato even a aytem following the noble numbers no farther than those whose largest prime factors are 5, 7, or 11 . We the 11 in long and land measure), and we might by combining them with the next prime (13) make the largest unit in any table the noble number $720, i 20$,
he most divisible under a million. Thus if we had, for the poor's sake, like most of our neighbour nations, unit, mite, or lopt ($\lambda_{\text {sf roo }}$)as small as tho tenth of our penny, we could keep accounts by:-

60 lepts $=1$ tannor.
 6 tanners $=1$ deniar (denarius)
 $2,520 \Rightarrow=7$ denlars $=1$ guines.
 $\begin{aligned} 550,440 & =22 \text { guineas }=1 \mathrm{~min}(\min \pi) .\end{aligned}$

And each unit would have the most numerous aliquot parti or "practico-table" possible in its range, and the talent be the lowest sum having 287, two talents the loweat having 287, three talents the lowest having more, four the lowest having more, five the lowrst having more, alx the lowest having more, nine the lowent having more, ten the lowest having more,
twelve the lowest having more, fifteen the lowest twelve the lowest having more, fifteen the lowest having more, twenty the lowest having more, and then
$24,30,45$, and 60 , each a noble number of lepts. Only 24, 30, 45, and 60, each a noble number of lepts. Only lactor 17. Such a syatem (which need involve the cilling n of no coin but the farthing) would lead to exactly parallel tables of weight and all kinds of measure, and be carrying out the ancient and truly scientific metric principle that gave us the arithmetic of Fractice, as tar as 1 think it likely to bo carried. whether under our rade denary notation, if the be "survival of the fittest") some day to dirplaco ours. But supposing the fact of 2.520 ,being the highest of what I term "king numbers" (the highest that must be doubled to become more divisible), be taken as a sort of natural reason for stopping thereat as the highest unit, and so having no carryings of more than tens and sixes (as at present) and sevons, then it is someWhat notable that the largest English coin yet struck was for exactly this number of our commonest and practically lowest coin, the halfpenny (which has ao long been so notoriously our copper unit that our name for coppers is nelther farthings nor the short word pence, but "hafponce ". The fiod-ouinea piece was
exactly 2,520 "ha'penoe," and isupposing wo revi ved this fine coln (our present sovereign being, for a rich nation, one of the lowest maximum ones), and replaced the present two gold ones by its third and seventh (they might be called terce or bezant and sept or mark), and restored for the an
obol, we should hare-

60 obols $=1$ deniar (hall-crown)
360 obols $=6$ deniars $=1 \mathrm{mark}$ (or sept)
And pounds would be reduced to these mins by simply adding a cipher, and the half of them, and halving the sum. Nor would any present coin become superfluous but the gold ones and the florin. The "practice-table, or list of divisors of this min, would be 47 , that of tho pound belng but 19.
In the matter of namos there is vastly more con sideration required than projectors like "Philo" dream of, and I will explain, if you grant me a fature column the grounds for wishing the above names, especially deniar," min (and talent perhaps) thus revived.
The most amusing thing is that "Philo " himself says he is "not convinoed that a decimal division of days and hours will be better than that now in us Then, how on earth can he have discovered a decimal division to be bettor than sexagintal of anything else Is not division division? He might as well say tho decimals are best for weighing meat, but he is "not convinoed they are best" for cheese! And does he no begin his next paragraph by telling us "of course the full advantages will not be obtained unless all weights and measures of things to be bought or sold, as well as money. are dirided decimally"? Are weeks, days hours, then, things not either bought or sold? That " money, value," and time ought to be divided "in liko manner," he says I assert, "which is easier than prov ing." If, "In like manner means commensurably and proof ta wanted that they ought to be so relatod I shall certainly not deign to give more than "Philo himself has. Moreover, so unlucky is he, that even th reason he offers me for use against decades of days is faliecions, and cuts exactly the other way! That 7 di vides natural years better than 10 , is the reverse of the fact. One year exceeds 52 weeks more than twice a much as 2 years difiers from 73 deoades, and more than the four (with their bissextile) differ from 146, and these make the nearest group of true years to a whol number of days under a century. The week aliko the Bhuddiat 60-day cycle) is purely artiticial (which word does not necesearily imply human) and as for "a feel ing " of anything "right as well as expedient," in the weekly rest, I challenge him to produce, apart from the Bible, one shadow of ground for cither more right or more expediency in leaying a seventh of days for rest than a third or a three-thousandth
On one point I will readily take "Philo's" word that speating out of book, my general denial of civilisind doolmalists before Marat was against a fact, and thint "every one knows " the Chinese have remained so fr.... "belore history." He is entirely welcome to
appent example, which adds to the analogies I k
apdot between the two wieest in their own conc
nations. But having returned to that opening of his letter. I wish to know where is the "bad taste," of which he "will say nothing," in my quoting the glorious system's own originators? If anything be
unhcred into our world in an extraorilinary wny, with nehered into our world in an extrancinnary way, with
nnique pomp-a birth, say, proclaimed by angela, or as nnique pomp-a birth, eay, proclaimed by angela, or as trampet flourish, as pre-eminently this or that, or in the name of one or the othor-in short, if a goddees
brings us a glorlous system, is she not to have the credit? Does good taste require the authors of a good thing to be ignored, and all their most vaunted reacons and views of its why and its connections if you are advocating, say weekly rest. or trial by jury, do you keep Moses or Alfred out of view? Or If I am explainIng gravitation, must I avoid the bad taste of either
quoting or naming Newton more than once or at all? quoting or naming Newton more than once or at all? If the " metrio system" be good, I repeat. glory to
Marat apd the Goddess of Reason.
E.
In G.

DRCIMAL COINAGE.

[3801.]-I mave read with much interest the correspondence on the proposed change in our currency to a decimal system. I am strongly in favour of such a clange, But if the ohange be made, so that 1,000 farthings equal one pound, and wo reckon either by pounds and farthings or by pounds, forius, and far-
things, why ts there any necessity for giving any other name to the new 10 -farthing piece than 10 farthings: A new name would be a uspless element of confusion. In America, where they reckon by dollars and cents, the 10 -cent piece, though called a dime, is yet in practice never named in calculations, or but rarcly in retall transactions. I would suggest the oystem: :-Farthing ; halfpenny equal 2 farthings penny equal 4 farthings ; 10 -farthing plece equal 10 larthings; 20 -farthing picce equal 10 farthings ; shilling equal 50 farthings ; forin equal 100 farthlngs; crown equal 250 farthings; half-8overeign equal soo farthings: soverelgn equal 1,000 farthings. The following method oll the adopted for making the change :--ins : after that is lone, and not untll after issuo the new 10 and $90-$ furthing pleces; call in all the sixpences, fourpenny, and threepenny pleces, and enact the uew scale of values. The new silver 10 and 20 -farthing pieces to be respecand curreney, they will very soon wish for 2 decimnl system of welghts and measures. To attempt to decimalise out welghts and measures before decimalising the colnage is putting the cart before the horse.
[3R92.] - THE remarks of your correspondent, "Philo," at the close of his letter (3306), belag in purport very similar to mine inserted in your paper of
the 22 nd February, perhaps you will allow me to aday the 22 nd February, perhaps you will a.

Philo " proposes to call in the threepenny and ourpenny pieces, and to issuc no more halfcrowns or sixpences. 1 should ray it would be very inconvenient thave no silver coin totweea tho "ullag or halpposes calling it, but which I fancy it would be better poses camng it, butre, being about the value of the Egyptian and not very far from that of a Turkdah piastre); and I would euggest that a quarter florin thould still be issued. Half-crowns might be allowed to die out or wear out, but while in circulation would, of course, be $12 t$ cents. (piastres), or 125 mils (farthings); and the same might apply to the four(arthings); and the same might apply to the fourpenny pieces (of which there are lew now in oircula-
tion, and those well worn), which might be used as one-half piastre pleces, or they might be withdrawn. The threepenay pleces must, of course, be withdrawn. A Subscbiaga.

COBTLESS VENTILATION.

[3893.]-4 constint sapply of frosh air is 80 fm portant to our well-being, and in the prevention and cure of disease, that the subjoct needs no comment ; an attendance, however, at any publio meeting, is only aeoessary to convince how much this axiom is ignorod o sulfocation" indeed, belng the conventional term used to express a full assemblage.
For some time I recommended to my pafients the plan of opening the window-sash at the top, and atan, to intercept blacks aidd prevent draught but the prinelple is wrong and the result unsatisfactory, as the principle is wrong and the result unsatisfactory, as the prazerds towards the celling; the screen. too is any, thing but ornamental, and becomes clogged with blecka, oo as to require removal nnd repals.
The method I now use is simple, economical, quite free from draught, and does not get out of order, Ralse the lower sash of the window, and place in front of the opening at the bottom rall a piece of wood of any approved depth-Irom two to three inches is suft. meeting rails in the middle of the window, through wheeting the current of air is directed towardis the ceilIng; hesvy blacks cannot ascend with the air, which is ing; hesvy biacks cannot ascend with the air , Which is Hght blacke are not admitted in ordinary conditione of the atmosphere, though doubtless they are in cases of violent commotion caused by yery high Wind-the more the lower sash is ralsed, the more the dimculty of blacks entering bet weeen othe meeting rails it waya, making the botiom frame of wire blinds super sede the strip of wood, or if this be placed above, and
the top sash drawn down to a eorvesponding depth, the asme result will obtain; in a word, open the lower
sash of the window two or three incles, and block it zash of the winduw two or three inclues, and block it up anyhow, and the air ente
and is carried to the celling.
The opening between the meeting ralls will doubtless be found to admit more air than the various patented plans so erroneously applied to the top of the sash, whethor of wire gauzo, perforated zinc, or glass louvres : and while I am asusfiod of a constant current of fresh alr in wards, I um disposed to belleve that occaslonally there is a passage of heated air outwards, in which case the latter is always at the sides of the window, the fresh alr
rubhing in at the centre;-however, provision should rushing in at the oentre; -hawever, provision should always be made for the escape of heated foul air irom
the celling, through a large valvular opening in the fue or elcewhere
It will be scen that this oimple plan is adapted for the oottages of the poor and the mansions of the rich; in the latter, however, the draperies must be arranged so as not to intertere with the current of air towaris the colling: It may be used in any weather, day and night. summer and winter; indeed, In the house of a medical friend, to whom I had demonstrated the plan, to in sure constant action, the window of his receppion evom has been nalled open, and the same is the case months of the yoar a moulication of this plan may be adapted to French casements, by allowing the upper portion, generally fixed, to fall inwards on hinges.
But, although the above plan answers for ordinary dally vontulation for windows without overhanging drapery-at night. with gas in crowded rooms, it is not at all equal to the occasion; in these cases I adopt the following, also costloss, very efficacious,
may be used with overhanging draperies :-
At gin. above the beight of an ordinery person, eay cene farthest from the नodom on ach edig and another in. below the moulding on ench oide in front of win-dow-alll. Hightly stretch acrose the window a langth of then or calico with amall loops or rings to atsech to the tour hooke, leaving the calico 10 lerger than required to heng doept loosely on each side ; this forms, what is, I believa technically ealled by architects a "hopper" Throw up the lower mash as required and draw the bitnd domp to the lower rall of the windowrash, whererer it may be Tis atr entere in full rasb, whe strikes egainst the broed surface of the callico and is directed upward tomarde the colling Herso, the edventage of a window more or less open, with privacy, and without draught. When not ia use this callico can be rolled up into a vory amall compans.
Costless Fileter.-Take a fower-pot and plug the bole, not too tightly with a plese of sponge ; add a layor of powdered charcoal about lin. thick, then the same gravel. P. Hinckrs Bird, M.D., F.R.C.s., F.L.S.
1, Norfolk-square, Suesex-gardens, W., London.

metal mines regulation bill.

[3894.]-IT Is proposed to enact by this bill that an adequate amount of ventliation shall be constantly produced in every mine, so that the alr shall be in a fit state !or working therein. No attempt is made to deAne how bad air may be to be deemed it to work in, nor how its state is to be tested; and perhaps in a first attempt it is expedient to leave this Indefinite, and to be content with enacting that there shall be some venthation, leaving it to the justices in case of complaint to decide if it be adequate, It would, however, be far more satigfactory if it were possible to enact that the proportion of carbonic acid shall not exceed a certain ratio, and perhaps some of your numerous readers can suggest an easy method of showing in a mine when such proportion is reached or approached.
Two methods have been proposed, assuming that the maximum proportion of carbonlc acld should never be allowed to exceed ten times its usual proportion in the open air of
Dr. Angus Smith suggested that half an ounce of uimewater be thaken in a 7 foz. bottle, alied with air containing 4 por cont. of carbonic acid ; as much carbonate of ilme will be formed as if the ceme quantity of limewator were shaken in ton times as much air con, talning ot me much earbonic acid-fi.e., the eame quantity of CO_{g} in ten times as much air, and this quantity would render the limewater perceptibly turbld. The pian is as simple as poodible, and the ouly of lo diffionit to keop the bottles used clear, so as to render the tur: bidness of the limewater equaly risible, a difficulty easy to overcorpe by those who wish to overcome it, but formidable if those who have to use the method do not wiah it to be succeseful. Another plan: I have tried also to estimate the impurity of air by the of it. but without obtaining consistent results, chiedy, I think, because the flame differed \ln size, and, therefore, burnt up the air confined at different ratea. Moreover, when the oxygen was nearly all burnt, the fame, instead of golug out, became gradnally amaller which it began to fade could not be diatinctiy marked but I do not despalr of the difficulty being overoome or avolded.
1 shall be very grateful, and the poor miners will be creatly benefted, if any one can devise a method by which the quadity of mine air can be tasted with apcostly, which can be eneily carriod intor and ueod in the level of a mine.

I have tried, but with only partial success, that of a lamp with only a limited supply of air. enough to bura
brightly if the air be pure, but dimly if it be impure brightly if the air be pure, but dimly if it be impure.
The diffculty with this is to entimate by the eye the The difficulty with this is to eatimate by the eye is no diminution of light of a lamp where there is no andiminished light to compare with it; moreover, other causes than diminution of oxygen affect the bright-
nees of the light, and it is difficult to exclude all such sources of error-such as the exact length and quality o the wick, the condition of the tallow or oll, the tom perature, and other circumstances unknown to me.

Рнilo.

ATOMICITIES.

[3895.]-WITn Mr. Bottone's kind permission, I will take upon myself to answer "Mercuric's" lette y, page ir out do so eifectually 1 mast an rapour density of ammonlum to enable him to affrm ax cathedra, that its formale is $\left\{\begin{array}{l}\mathrm{NH}_{4} \\ \mathrm{NH}_{4}\end{array}\right.$ instead of NH_{4} ? 2. Does not Mr. Bottone, in his table, refer the ralen cies of the clements to that of hydrogen, and has hercuric ever prepared NH_{5} Pins, eo., that are lays down as law that nitrogen and phosphorus lod to directly combined with one atom of phosphorus, in phosphorus pentachloride, how does it happen that its vapour density is $104 \cdot 25$, instead of beling 208.5? 4. aium chloride $\mathrm{NH}_{4} \mathrm{CL}$, cyanide $\mathrm{NH}_{4} \mathrm{CN}$, sulphydrate NHISS, agree with their calculated molecular weights? Until he can do this, I fear ho is much more getray than Mr. Bottone, who at least honestly tells us not o place too much trust in any of the existing hypo
N. Do FAI.

CONTACT OF COMETS WITH THP EARTH.
[3896 .]-Sone numbers back remarks were exchanger on the yucstion whether the earth had lacreased in bulk of xtraneous deposits aits here was clear proof of cometa haviug come into con hort with the arthin formertimes and what atil mor都 a cooked upoa mo comet should at times come in contact with the aath mient line but what of the supposed result I write thepected ut whe reny ars or or any remarks on tho вubject by other correspondents.
I venture, therefore, to call "E. L. G.'s" attention to it, and request him to favour us with all the information on this interentlog sulject which he is able to furnish.
fion on
N. C.

REMARKABLE ELECTRICAL PHENOMENOS-

 LIFE IN DARKNESS[8807.]-I Think Mr. Highton (lottop 8808, p. 18) will find in Faraday's resoarches that Faraday paid a good deal of attention to this matter, and came to the
 jar. In fact, all partially insulated wires behave more or less in this way.
I would call the attention of those of your roadere interested in this curious subject, lifo in darkness (letter 8821, p. 15) to the fauma and fiors of our coliara. Thare are many, cellars to whish not a ray of daylight ever penotratee, and rarely illuminated by lamp or candle. yet inhabited by numerous spiders, which onnnot tive by eating one another. In one cellar I visited I mever conld ind anything caught by their webs. The water mains in London are sald to contain enormous quenti lies of some species of polype, and in them thare must o absolute darkness. The spiders I mention appear to be of the kind forming cobwebe eisewhere lalight b at what fies into their nets is a myatory to mo
K. Paria
bOILER CONSTRUCTION AND MANAGEMENT.
[3808.]-I HavB mach pleqeure in offering "T. L. F. letter 3s18, p. 18) my advico, asouring him that is is ract plece, I thint bie rarioble eccantric may be very ingenlous, and might answer bie parpose, but think the matter may be very much simplitiod by putting a valve close to the bollar and lieving a return pipe (betwoen that and the purap valve), vitha tap in , so that by partly opening the tap the surphus water trids yourned to the feed watar alatorn, to just suppiy the waste, and it will require very little attention. With regard to the boiler I certainly should not advise a copper cne, as the cost would be very condrerable, and unless he is very young, and means to last as be very old, 1 think a good is
If " T. L. F." means to have a self-contained boller I should think a vertical oze would sult him, as they take vary little rooma, and make steum rapidly; he might which could be worked at the lathe by the ald of a litule cord and a few pulleys.
I am daily using an engine (for drivipg an 8in. centre screw-cutting lathe) that I bellieve woutd just ouit him; it is a horizontal englue, the cyllinder is
1lin. long and 3yin. diamoter, and with the steam st 5(19l). Ho cupable of driving fwo or three lathes

DUST IN SPEOTROSCOPE.

[3899.]-TuE longitadinal lines reforred to by "A Fellow of the Royal Astronomical Sooijots" (lettor 8796), as ceen in the speotroscope Whon the nit is nearly eloned, are doe, It the, not to partioles or daat alihering to the edges of the alit, bat to impertect polishing of one or more of the priama. The surfice of the giace eridently retains traces of the emery coptib, which, although exceedingty hae, are quite percophible when vewod with the leartposibie quantity of light mamitiod through the slit. Haring seen these in one of Mr. Browning's etar-epectroseopes, I oame to tion. Mr. Browning will porhaps tall ni.

F. Bird.

THE METRIC SYSTEM.

[3900.]-Harixa weded through the three or four columns contribated to thia subjoot by " E.L.G." pagoe oxpreecion of nome for mathomatio crotchetre, and the very compact amortion as to the metric syatam, that ory compact acartion anly falso, its failure more than remartable oniguo, ironical, almost eapernataral" "E.L.G." is realls s very alovar follom, and one of wide if rather sopartain information; but I mpat enbmi that his stylo of sieientifo argument is only tited for cirale of anciont maidans enjoying their tea favoured with brandy instoed of mills.
It is pure abilaishnees to rave and foam in this lashion, and to suppose that mere contemptrous roviling will prove a nystom to be abeurd which has gined the approval of the great majority of seientiico men, and is stomaly sorcing its way into prectical adoption in commerce, notwithstanding the zeriout objeotions to a ahan
There are only two modes of treating the crebjeotVis., the scientific and the practical, and these two must be connectod together. II wo waro commencing the world anow, and arranging a poricot ayciem to be amployed by "E.L.G."" might bo vorthy diecuanion, annd wed might weigh the ralativo mertits of decimal, anodecimal, zeoxgesimal, co., notations; bat the world counts by tens, and we may protty ralely asoume that the world will connt by tens for a good many ages yot to come, if net as long as man himpoll endures. It Jot to comer, is net as long as man himsole endurad. It tagoe any olber aystom of motation might bave. Therefore we need not discuse any more whether the due decimal notalion which "E.L.G." calls a "proposter fapoerite Acgyrian doablo notetion by 6 and 10 , hioh appears to me to be a proposterous complication. One thing is porfootly cartain, whichever may bo bettar o Thichover wores, the world will have nothing to lay the wo have to do, then, is to sette how wo can make the beat use of our ton figures and the arithmetic baced Ipon them. Men of solence havo snswored that by reThey either adopt the Frosoh systom, or thoy uce grain or ar pound an their anit and decimalise from it,
 Englich aystam, hey ase Grimas aptem (7 graino), roferred to by Mr. Allen (p. 87), as the unit, being a decimal divinion of the ponnd and gallon, and horefore convartible into common measares; brt they entirely ignore those moseures themselves, that is to say, they Prectical men vond be equally unanimons if they once Pried such a tried such a system-that is to say, no human being mould ever think (except some occasional fantaotic dreamer) of changing from a decimalised nyatem to any other. The one only reason againat adopting a docima aystom zow in that the change woula invaive
 decimalising of exinting woights and measuren, and to decimalining of em
If this be so (and
If this bo 80 (and fow will dispute it), the bace of a new cyatem, the nnit, is perfectly indifferent; we may with equal gavantage adopt the metre, the foot, the cubil All we have to care for is to establish a siandard nnit mo also Whether that unit is a rod of platinum carefally preserved from injary, or the width of the doorway o St. Panl's Cathedral, or the lopgth of a pendalum at a given spot, is equally a mattar of more detail, argament aboat Which is only scattering dast aboat tho true object of any importanco. Let ns sappose we have to decide whether the English foot shall be used or the French metre. We know the foot very woll; bat when maltiply it by 10 or 100, will not the new denominemandiply it by tions or 100 , will not the new denominaequally great an though the metro and ite concequences equally great as though the metro and its consequences had been substaced foot for our bace of capacity, will our market women be pecks than if they were asked to ane the litro.
Pecke foot, we aro told, is common to England, Rassia and some other nations, and we are invited to use this for their convenience. What results ? We go through link to the past, and after ondaring all the nie fances hare a syitem in only limitod ase, nolloss we can porhave a syatem in only limitod ase, nolloss we can portrouble by changing thoir whole gyitom The rest of the rorla changing the worla would say: No, gerdemen, we havo shown You the was, wo have already the decimal ayatom you the syatem together, and follom our axamplo; dond moppooe wo will again go throagh the heary annoyanco of apoce we will again go throngh the heary annoyanoo
pride by foreing the Engliah foot apon the world ; you had mach bettor follow the good example set you, and adopt the French metre, aready adopted by
nations and by scientifio men all over the word.
There might be plenty of anits devised far superior to the French metro, and for scienticic parposer a new modification of some parts of the syetem will probably be employed in order to correlate the meanires of forco as well as matter to the atomic aystom of natare, bu disposectical oonaiderations I have set inrth enurei or attay where wo are.
sioxa.

SIMPLE WRATHER-GLASS.

[3901.]-I huvz had a weather-glace like sketch in uve for twalve montha. It acts rory correctly; A_{1} Florence fack; B, pickle bottle. Well wash the greace pat the neck of A through the neck of B, so that the

ond of Δ is lin. below the surface of the water. That dono, the weathar-glass is comploto. Directions for reading :-Lot it atand for a day. When the watar it the top dry, when at the bottom wot. For the other points you mast notice its movementa. The beat place for it is in an outhoase.

Cis the scale.
W. Beigit.

ORNAMENTAL TURNING.-VII.
[3902.]-Next to the spiral twitit for ornamental par ponea, sutivg has a very neat appearance. The work plain turning. The article ohoald also be tarned plain traig. The article shoula also be zarned rgicor than work hat has to bollod, ior tom fating. The beat tool for the parpose in a if or ? tarning, or some may profer carving, gouge; bat it must bo borne in mind that the gouge should be ground somewhat difierent to that for'turning parposes (I am now stating what I deem to be the most workmanlike manner). To the general turner, who is often times pushed for a mowent, cortain makeshifts are made which should not be tolerated by an amatear. I have myeelf frequently tarned a column and flated the same at one operation with the same small gonge; but no dorbt I conld have done the job in a more workman like manner with proper tools

The best mode of proceeding is this:-Having pre pared the work by turning, papering, \&c., mark ont one, two, or three strands, same as for twist (the too described a fow nambers back will be the beat for those anased to martigg out; to the general tarner in comonly skill required is to remove the lines so marked with a sharp goage, ground so that it presents more of a square face than for turning. It is chiefly at the top and cornera where it cuts. Care should be taken that the cat is of equal depth from top to bottom. The palley should be beld in the left hand, the gouge in the contre of the ring on the T reat a trife above should pass ander the right arm. by 10 doing it should pass undar the right arm; by so doing it helpa to standy the gunge and facilitates the cat of the fate. The goage shoald be held at the same angle an the mark on the rork, the gonge held firm, the palley gentiy mored round at the same time catting glass-paper and a pitce of deal cut in the shape of a

Todge, called in the trado a barnichor; it will cauce the work to ahine; with a little practioe, flating can be eabily acquired. In a fatare number of the MzCHuxic I will send sketchen of a few chnoka for difforent par poses, with the use of the same. I have apent a doa of time aince I had firat to do with the trade of tarn ing apon different chacks. My idea, always prominent was to do as much as ponsible in the lathe, thereby saring an amount of hand labour. To toll of my failares would amuse come of "our" mechanical reader no doabt, but as that would not instruct, I shall only state what I know to adswer. It behoves all of us to moot any new plan, but at the same time it should be stated that it has not been tried, thereby saving in experienced pernons both timo and moner.
I send for the editor's approval a skotah of an aqua. rium stand. I tarned handreds of them for the trado nome eightean monthe ago; they are vary aimple, and any person at all uned to the lathe can manafacture one. raiorials required: squaro piece of wood (mahogany the best appearance) about 6in. square on tho luce y in. deep, a piece of board 10in. squaro, lin. thick aracer paitern, the top A ahould be bollow, camo at bottom of the pien. holela fixed in a hollow tarned in the bottom. Whan anished taken out of the lathe, and fastened together by moans of two morewe anderneath. A common bell-glass, to be purchased at most glasi warehouses, makes a very neal aquariom, with a little shingle and a fow weedepratty window ornament for the sammer months. I pas aere atato for our remers information tana a 1 gin. boll-ghasa oan bo purchaced ior about 2h. or 2b. pa, and will hold a pail or more of water.
in "Attontion has beon eallod to your remarks Practical Amateur Tarners' Society in London being a cocknoy mybalf, and haring acquired a knowledge of wood-tarning, and ita intarmodinte branchee, I would have no objection to forward wneh movement in London. If "March "has a fow friends of the same mind, who will advertise their addrems, I will dommazicate with them with a viow to form suoh society at requirod. At prosent i am conneored wilh the anving trade, baing proprictor of a Band and Oif cular Sawing Mill. I have had aleo considerable ex perionce with societion in general, being sooretary to four nocietios at the precent time.

LIGHTANING CONDUCTORS.

[3908.] - Reprering to "Philo'a" lettor (8846, p. 89), King's Norton, called commonly Norton-by.Galby, or simply Norton, is 64 milen E.S.E. from the oentre of Leicestor town. The spire was totally thrown down and, I believe, every stone aplit from dowal to dowel: these wero oopper. The tower was aplit in front an far as the clock, which was abont on the leval of the roof. Ia my letter (No. 8793, p. 668), I anod the word stoeple for tower incorrectly. The repairs, without ro-bailding the apire, cont, I think, over 2400 .
"Philo" ahonld recolleot, when he says that I uped a common bat insoccrato expresuion, that the setual worda I used, 800 lotter 8793, and used intentionally were "the flaid or whatever you call it" made a hole. Now, thongh ignorant I am moek. I did not presume to may that the lightning was a frid and made the hele, nor that the oxpanaion of ateam produced from the water of eryatallieation in the bsdrate of the mortar by the action of aleotricity did it ; not yot that a repalion of partioles, prodiced no one krown how (for "Philo" admits he does not, see p. 39), did it. I meraly atated that thero was lightring (eo-alled) and a hole, oridently due to ite action. I remember the hole was much bigger inside than ontaide the tower. It "Sigma," who knows well at least what is the opinion hald at the preeent day about eloctriaity and it action, ware to tell me that it is a flaid and does the work of a solid, I should bow to his authority withoat argaing ; and, mutatis mutandis, do not intend to argue it with "Philo," nor bow to his anthority eithor. At ho has omitted to give any anower to my queetion in lettor 8798, Arat line, I will obearve that I have an improseion that Ferguson in his "Eloctricity" malies the statement that sarlaces conduot or elec that the power of conducting is proportional to the surface: I think the former, bat it is thirty jeart at least uince I read the passage. I donbted it then and disbolieve it now. If he were apeaking of come thing very thin, liko tinfoil ; then the aurfece and soction woald vary together, which might acoount for the statement being mado, even if it is not true gene. rally. I should like to know whether it is or not I will give "Philo" another chance of anowering a ques-
tion rix. this: Is he quito sure that andor any tion-viz., this: Is be quito aure that undor any ordinary circoumotances an eloctrical dieoharge (including lightning) through wator, producos ateam enough to do any damage ? Or, pattiug it another way, doet
bo mean to stand by the statemant made in linee $6,7,8$ of his letter 8846, whinh includes substances only partly charged with moistare, or matarated tharewith ?
J. K. P.

WHAT HAS BECOME OF THE PSYCHIC
[3904.]-Sonse
comments on
challenge to
claimg. Mr
certain exper
his. These
the exhilitio

As these pentlemen expended a large number of words, and no small amount of temper without agroeing, yon suggosted that similar experiments should be made in the presence of comppetent and reliable witnesses, when no mistake conld be made as to what did or did not sake place. you aiso oficred this meeting of scientitic
gentiomen a room froe of expense, and every opportaRentuomen a room free of expense, and every opporta-
nity of aliciting the truth. The only condition you nity of eliciting the truth. The only condition you
insisted on was that the experiments, whatever they insigtod on was that the experiments, whatever they
might be, ahould be performed in the light. I have might be, should be performent in the light. I have
been anxioasly watching our WORLD or SCIENCE from been anxioasly watching our WORLD or Science from
that time to the present to know the resalt of the offer. I fally expected that Messrs. Crookes and Varley would I fully expected that Messrs. Crookes and Varley woald have met you on your own terms, bat I have looked, and
looked in vain. feappose that negotiatioss mutt have looked in vain. I sappose that negotiations maft have
commenced and been broken throngh because you could not agree upor terms. If so, I for one would like to not agree upon terms. If so, I for one wonld like to
lnow wherein you difiered, or what is the canse of the know therein you diriered, or what is the canse of the
oxpertmente not having been made, or if made, what expertmentian not having been made, or if made, what
in the result. I cannot believe that the spiritualistic or "preshic force" party so lacked coarage or contidence or "paychic forco" party so lackred coarage or confldence
in their newly-dicoovered principle as not to come np in their newly-dicoovered principle as not to come up to the seratch, But whatever the cause of the silence, I think an explanation of come sort is due to your
seaders all orer the world, and I hope, Mr. Editor, you will roucheafe to enlighten us at your very eariliest compenience.

A Mfirber of thes Socity or Abtb.
HMbe trath of the matter is wo have no information so impart, and no explanation to give beyond the foot
thot Kr. Varley and his frionds never accepted the
challongo, and wo hare hemrd nothing of them in any cenpe. Wo suppone they connidered "diecretion the beltar part of valour. '-E ED.]

SUN'S DECLINATION.

[8905.]-Hentry Wood (qy. 11360) can scoarcely have reath the "A tractry explanation" to the Nastical Alimamao
 *ersers declination for transiti over any merldian other than Greenwloh, he mast first and the variation In one hour of longitade for a time midway between tply thin variation by the difference of longitude, and apply it with the proper sign to the san's deolination at Greenwioh tranoth, whioh will give him the correct declination for the meridiatr required.
Example. Required the san's declination at transit at Quobec (long. 4 h. 44 m .49 .02 s . W.) on Δ pril $8,1872$. rariations in one hour for April 8, and succoeding day-iE., $0.82^{\prime \prime}$, the proportional part of which for 9 h .22 m .24 .51 s . (f.e., midway between Greenwich and Quaboc) is $0.00{ }^{\circ}$, which, subtracted (becanse the raria-
 aprit gives b5 86 for the variation required. This gives $265^{-2} 2^{\prime \prime}$, which, madded (becnase the decilinations are increasing and the long. is W.) to the sun's deolinations on April 8) gives N $7^{\circ} 80^{\circ} 9.9^{\prime \prime}$ for transit at Quebeo. than at trancit, find the corresponding Green wioh mean time, and prooeed as before, taking care to apply p. 2 of the almanac, which is for Greenwich mean noon, the variations being assumed the same for mean as apparent noon. Henry Wood will peroeive that the ariations given in the almanac are for the inatant of clination through the period, a half-hour bofore to a half-hour after transit, and by finding the variation midway between Green wich noon and the time roquired he is virtaally correcting for second differences, and his results are obtained to the ntmost nicety.
If our quorist will take the tronble to look at the lator Navtical Almanacs, he will find instemd of less information being given a much larger amount is now contained in them, notwithstanding the actanal number of pagos is lows, which has apparently of its detaila. For instance, I am now looking at the almanae for 1875 (the last publighed), and observe given for all otars domn to maccultations has been magnitade 6 , and down to magnitade ${ }^{2}$ increamed from aboat 600 to above 1,500 per annum, also that the variation in 10 minntes is given for the moon's R.A. in eddition to the variation in docination previously given, which will evable the aetronomer to with tho greatest precision, and including the effect of second differences by the same method as that the independent star oonstants (as they are termed) for correcting the places of etars, are given for each midnight throughout the yoar, instead of each fith as formerly, a rery great boon to professional astronomers Who wish to get the mean place of an nncatalogaed
atar. The positions are given daily for ave circumpolar stars instead of two, and are, moreover, folly correoted for nutation, and in the moon colmina: ting division the moon's semi.-diameter and horizontal parallax is given at tranait, thas avoiding the trouble of at p. 3 of ench month. 1 think that Henry Wood will see that he has been rather rash with his stato monta respecting the quantity of information given in the almapac, and will likewise inform him that I have understood that the explanation be torms "trashy" Wes compiled by the highest profesaional and nautical atronomers for the uae of seamon, and has been universally praised for its clearness, and pronouncod
adapted to the meaneut capacity.

THE ORGAN BUILT.-NO. VII.
[3906.]-ApTBE carefully getting the whole of the top fold finiohed, as directod in my last letter, proceed with the lower lold ; begin by fastening the ribs to the middle frame with the tape, then pat the leather on over the tape, and allow it to dry; now lay the mid ${ }^{\circ}$ board of the bellows on the bench with the trank band apwards, and fasten the ribs to the tape in the same way, and pat the leather on over; when dry, tarn the bellows up again, and begin with the feeder; get two
bsttens 2 ft . 8in. long, Bin. wide, and the same thickness as the ribs, fix one firmly on the feeder board a the end where it is to be hinged to the middle board; the other is to be fixed to the middle board, bat under it in shallow groores fix foar pieces of webbing; nail the wobbing to the middle board, then glue and screw the batten over it; the webbing must be left long enough to turn down to the feeder board, to which it must be firmly attaohed, as shown in Fig. 1; then alons the joint glue a piece of leather both inside and oatside; now proceed to ax the ribs in the same way as directed for the lower fold of the reservoir; when dry open the reservoir to its fall height, and eat ont a pattern in paper of the four corner pieces for the lower fold then, when you have got the pattorn nicely to at, cut your corner pieces ont of anstrained loather, pare the edgos all round neatly, and glue on, well working it down at the corners and edges; a small cat will have to be made in the middle of each side of the leathor Where the two ribs are joined, so as to get the oornor piece to lay fat on the rib. Now take one of the strip: of leather, such se the ribs aro faetened together with, and cat sixteen pioces 2 in . long ; pare the edges neatly, and glue a piece over each cut in the middle of the corner pieces on both folds to provent any leakage there; when neatly done it gives a nice finishod appesrance to the work; when dry, open the feoder wide and put on the corner pieces tho same way. Now get a pieee of inch
board 10 in . $\times \sin$., and in the middle of it cat a hole Sin. \times tin. ; get a pieoe of three-quarter atall 6in. $\times 5$ in and cover it with two thioknesses of leather, leaving the leather projectaty an inch at one ond for a hinge ;
now fx this over the mole by glaeing tho projecting

leather firmly down, and over it nail a thin piece of wood; bore a hule in the middle of the ralve large enough to let a piece of tape go through; fasten one ond of the tape to the middle board of the bellows, pat the othet end through the hole in the valve, then firmly screm the valve board with the valre to the inside of the bellows down on to the top board of the bellows over the hole left for it, a thickness of leather being placed between the boards to make it air tight. Now try the bellows; haring closed the holes for the wind the top, place a weight of thirty or forty poands on be nearly a quartor of an hour soing down; ascertain what height you want the bellows to rise, and tie a knot in the tape at that height, so that the valre may be palled open if the bellows rises beyond that point. While tho bellows is inflated, carethem, as aftermardo it will be diffoult to do oso. Now proceed to got eat the stuff for the frame. For this parpoes yos will require foar pieces of stafi 3in. \times Sin. and 4t. 4in. high, two rails of inch stuff 4 ft . \sin. long and 4in. deep, aiso two raill of inoh staff tit. long and Plane dill an true more the same length, bat gin. doep. posta, the ap trae, and tenon two short rails into the posta, the top of the bottom rail being eleven inches top of the pssts. Bo careful to place the deep rail a the top for the windchests to lay apon; these two pair of rails and posts make the ends of the frame. Next tenon the long rails into the poste, the rail at the back to be 2 ft Sin. from the groand, the front one to be 2ft. only. Get out twe pieces of gin. staff, 4 ft .81 n . long and in. Wide, lay one end on the back rail, and to keep it
level, Ax a block (the same width as the board and 5in deep) on to the front rail. Screw these two pleces down to the rails exactly 2 ft . 6 fin. apart, which is the width of the keyboard, to that the frame of the keyboard will rest on these boarda, and the keys will be between. Fig. 2 shows how the frame is pat together. A, bottom
rail for bollows to lay on; B, top rail for the windchesta ; C, back rail to sapport keyboard, \&o. ; D, fron rail; E, block to keep koy rail level.

With regard to the foeders described by "A Young Organoiot" (3746), they are well known, only in hiadrawing answer; bat as in my letter Iam deseribing one specific instrament, I do not think it wise or necessary to show in how many ways it may be made. In all probability, if six organ-buildera shonld baild such an organ as I am describing, we should find six diferent patterns. The French feedera are powertal and good, bat cannot bo blown by the loot.
J. D.

SPONTANEOUS COMBUSTION, BLECTRICAL, MAGNETIC, \& C .
[3907.]-(10941.)-Spontanbous Combustion.-I will resdily grant "Manus" the excuse he asks for, on condition that he will equally excnse me for informing him that he has introduced two eloments tending to aseist spontaneons combustion (if sach a thing really exists), which did not entar into the ori,yinal query, and were not, thecofore, taken into acoount in my reply-riz., the oimmediato presence if not absolate contact botwery both oxposed to an Indian son. Neither of theen conditions mere prosapposed by the drarist, nor woald they be esageoted ty the general readar; but had they bean bo tharefore know nothing of the habite and ecoentricitien of the men who are employed in the gan leetory there, I am not in a position to deny other of the atatements cognicaoco.
Bat I muat record the impilied facte that "Masas" is not in a position to contradiot me, at is the Arst plece "Masus," who witneesed the phonomenon, it it reelly ocourred, and "Manas" conld not have beon present in the second instance, or he woald not have given si to a man for giving the aherm of Arol I provame, in Indian tribes (rith ouchome of Poohnees and oltan Indian tribee (wih whom "Manas" is familiay), that gonous to the barbarian practices of European or Amor rican workmen; and, therefore, a stray apark from a contraband pipe conld noither have assistod the sua in the sase of the oily waste nor the linseed oil in that of the satarated samdust? For my own part, I have nover seen nor hoard of a troe osse from a coinpetont gyewitness that would lead me to believe in what "Rabe Rowlinge" cells "Spantainyas Kambarshan," either cotton waste exposed as the original querist indicates.
(11188.)-Amitemertic.-Sir,-The cirole squarern, lunarian rotatists, and Parallaxians have beon driven ignominioasly from your pagen into Lethe. Spare as then, oh 1 spare us irom are-inundation of noneonso
mongers - worse if possible than any or all of
 $£ 19$ 19s. $11 \frac{13}{4} \mathrm{~d}$. Never did Phoenix rise from its ashef with greater certitade and perseverance than does this nonsensical evidenes of untrained mathemation
reasoning. "Onrs" has already in earlier numbers reasoning. "Oars" has already in earlier numberse
teemed with it and what scientific journal has not toemed with it and what scientife journal has not
been bored with itad naweoum? For the love of those who been bored with it adnaweum for the love of those who
(11295.)-Eleotrical.-I do not think I misnnderstood "Forked Lightning," sinoe by desiring to exhibit 13 in . sparks he is evidently more desirous of showing the more glaring effects of electricity than commanicating the principles apon which the science is
based. All the phenomena necessary to be exhibited based. All the phenomena necessary to be oxhibitod to an andience, say of 900 persons, in order to convince
their eyes as well as their oars in a lecture, can be as nell prodncod by a disc of ebonite 12in. diameter giving a tin. spark ander farourable circumstances, as by the largeat machine yet mannfactured, and with the additional advantage of the lecturer running no personal risk, even by misadventare. When the London Panopticon was in its glory in Leicestar ingare (shame to the metropolis that allowed such an nessation to bo degraded to its present loval), it pos and and the phenomena produced by it were traly striking applanage applanse drawn from adnilt and juvenile spectators al that vastly efiect produced. Yet 1 dare ventare to avor tricity was not only communicated to bat instilled into the minds of his large andiences by the sir so-called "Lectares to Javeniles," given by Protessor Tyndall a few years ago at the Royal Ingtitation's Lecture Hall, and if I remember rightly, the mont costly and elaborato instrament he ased was a large glass tube and a thick stick of sealing-wax-more real knorledge, I sar, was communicated than the monster machine ever afforded from the day of itz constraction to the present dato. in an early volume of the Evalish Mbchanic, bat I have not time jast now to relor to it.
(11311.)-Elbctaic Bell.-One "Lelanche"shoald work a bellif properly constructed-that is, the arms of malices wound with a large namber of fine wire of zinc, as offering greator surfice, if the other wesge tions of construction admit its ase. 3. No. 16 wire woald be ample, or ordinary iron telegraph wire, if more readily obtainable, iusulated wonld do equally For indoor work, and lias pliable for indoor ixing. tarn wire would be far preferable and more reliable than an earth plate ; I have recently seen some triplo as cod cotion wires admirably saited for indoor work, pass throngh a call through the wall, and yot giving very falr insultation.
(14827.)-Monstier Maonetxc Macamn.-Although addressed directly to Mr. Sprague, I foel that gentlehais quary. In the first placo, Ithint, Siegm. Rand nitz of Bobemin, ought. When suah large sums of money wero at his disposal, to have ascortained as a fect be yond doubt that a amall machine of Browning's was "capable of producing ton anbio feot of oxygen per minnte, "nd in a caso where such a sum as the manll mahines require, the parchase of one of theso ortlay in ordor to detarmine the fact. The principle thas opee proven, over a fair apace of time and not by got up ebances, would be worth all the opinions of all the electricians the earth has given birth to, and nothing more than a more question in simplo pro partion or two rould be required to gaide salely as to whether he should specalate his thousands in a single monster or a given numbor of mall elleots he desired to attain. These data settled defini. tively in hin own mind, I scarcely think itsmedible that a pation who have supplied a Britastita tabe over Monaid a brige acrosi Niagara, a Grat conetern ateanfingaremen that triding litio matter alled the
 mon
 represemmenempisuthity in so far as a finite mind can Torm a mach ran infinity. I am not inclined, and mach mon intention, to be drawn into the metaph ${ }^{1}$ ingriry of "indnite divisibility," to
whiah wishes min of "g. J." oridently tends. If he I mast Mraminalo Liebnitz or De Morgan's "Diferenin eithequat "acter atill, to E. A. Poe's "Eareka" for his mafas ingead of wastin
ablo menaing. I can believe in
ble meaning. I an beliere in one infinity ! of two I nnow nching, and beliove less if possible. "Infinity
within, dinfinity without, belie areation," vide P. B. Silhin, Manintty wishont, belie areation;" vide \&. B. physically, I tried to do so mathematicall
(11846.) ${ }^{\text {al }}$ am sorry that my time is so limited just now that I-annat comply with the request of "T.H.;", Whion till tietaila and dmawing of Siemen's coil, Whioh orras, I believe, the first practical develop. hould he mado; he ectuling hit the right nail on the heed, and Mersrs. Siemen drove it home. The as mpay seqparate compartments as you desire, which
 primary woll, to that they form, in fact, a series of secomiany oolls, each ingulated by the disos from its aeighbour, thareby avoiding the danger too often experienced in coils (as ordinarily wound in suocessive
layers) of the static induotive charge, set up in the secondary, fashing back to the primary or the fae se ano, instead of becoming developed through the extre mitios or poles of the secondary, electricity always
choosing, py "natural selection," the shortest path ito equilibrimm or a atate of quietcence ; the natnualmesult brobg either destruotion to your insulation, or guite probably disraption and melthing of the secondary wixe of coils by ebonite discs, the disruytive diadharge would only affect berionsly one or two, nt ruost, af she coils, leaving the rest aninjured ; and as I bolore atabed the injared ones can be readily rophach, aoompared with disruptive discharge imeidentally, bat I do not think it possible for any such phenomenana to take place in a coil with the seacmanay so divided; and the facility of are is equally cha, hat the tauts mieo how it may-(11818.)-Ge advantige
(11818.)-Gravitation.-A memem, por \propto, does not affect the force of gravitation, it oimply removes the opposing resistance of the atmospbare, which in come cases, such as the ligtri down of feathers, soap bubbles, balloosa, acc, is so great as not only to connterbalance gravitation, but to (repalaion) even greater than attraction tiouth, eosaing suah matter to rise from the earth instead of falling to Ward it. Take away the resistanoe of thoatmosphere (that is, form a racuam), and down plamps agy or all these bnoyant substances with the same velocity se the hearlest metal-riz., that dse to the onremiated sorce of gravitation. "C. W. H." math remember that the same crateltgn oan bo drawn oat into suah a atate of tonnity trat it would full even in the open air no more rapidly has the feather. Well now, that is jout what nature mosed, for a very wine and apparent purpone ther is come. posed, for a very wieo and apparent parpose. The whole ationalo of this subjeot wat folly diconmed, and all the dicmertice atcending it arplained away, in ono of the early rolumes of "ours ;" the discumion ma, bowerer, cocmenhat ludicrouely broaght to a termination by the ciginal querind (being unoble to comprebeand the arguMante a adivood) nairaly inquiring "how is it, then, 4nem a plank londed mith balletsdoes nof cien up ghrough

II lif tiar than either the water or the ballotas?
[3909.]-Tins subject of artiffcial limbs has more Than ozce been referred to in the Englisi Micianic I was invited a short time since by a poor man, whose so had the misfortune to loee his leg, to contribnte through the medium of its columns some information on the abbject. " S. H."" in his query of March 8, says :-
"I sappose it is too much to expect manufactarers to 1 sappose it is too much to expect manafactarers to give instructions," "c. There are some, no doabt, who
could be reluctant to do so. As sabseriber, and one ould be relactant to do so. As $\$$ sinbacriber, and one Who has benefted by the information imparted by others, who have boen always ready to ansiver any query I have sent, I feel pleased to give you my expe ience on this subjoct without foeling that I shal if I may call it oue, for the bettor understanding the sabject, I will oue, firide it into the following tece cions :-1. The bumaningend its principle of constrac tian 2. How ardingmintrales an artificial leg should cupanto 8. Axppumices, and the points at which to chpoliate when the merem has the option. 4. The

 bemeath. New, theratiop illhen io, not run donn nertivally Irom thair heatior wooket; ; ff they atid the seet would be as wide apait at the ihigh, but the 'ehighs irom the hip jointo dibruce im do mide the iknoes, bo cline invards in more in wormen Mhisabivengence or incline inwards is more in woumen man mone men, as the cometimes to carry. Anemes the have yheloage ran down vertically, almost tofbotect, eocthat thema mean stande properly erect his gectmansi proetty cimeo conelbber, but to make the beoe firmouthe teatiturn amparis to widen the beeo of staniting. In goustand emets rapd bend the knee for ward and look over it at your toes, you will find
that the great toe is almost in a line withithe ontside of the knee, leavingithe foatits midth outsilie of the knee.
These, then, arejust the oneves given to the natural leg

that thegravity of the body may be well sustained. I would next say alfew swords abont the join ts in the leg. The
lsnee joint is assimple hiuge joint, the centre of which is ocoentrio-that is to say, tite oentro of the knee joint is not in the opntre, but extends back towards the
baok of the leg. Thas, when a man is standing areot beok of the log. Thus, when a man is standing areol toes (see dotied line No. 1). Thus the gravity of the body falle in front of the knce comire, and the treee so to spenk, beoomes looked; thas he standa at oase in poribed comiort and saloty. The ankie joint
 ibraction reeombles an arch, on the contre of which the leg bone enta. Thina the leg bone doeenot come down in a hine whithe theel; if it did the loot would fall overy time with a thama, and jar the Whole apper
 af shownh, gropelin back; than in walking the point of she heol tovohoe the groand arat and pitches at an angle ; thus the toot salle gently down, and the jar is broken as soon es the foot is hat, the tendon 4 chilles drava the heal ap and throws the body on the great and nhime-bocomes the pivot on which the body moves and tarns. I have given just in this simplo way the construction of the haman leg- What I may aall its meohanioal part, in which paints an artivoial los the matarialy arcoied, and the alosar no keep to the ing an artibcial limb.
9. How and by what rales an artifacial limb ahould be made. An artiacial leg for amputation above the knee ahould not bo mede almont straight, as many are, bat from hip to knee it shoma diverge inwards, and taro the mame linee me the metural limb. The foot, matead of boing atruight with the bg, ghonld tprn out, Its wholo width outaide the tone ; il mado atraight with the lon the toos will tarn in in walling when they choald tarn oat; the hace eqnatre should not be in the centro, bat extend beok to the back, so that Whan
tront of the centre to lock ithe foint and enable the wearer to stand in safoty (ceo dottod line E, sketch No. 1). If the comteo of the knee e put in the centre of the knee ath wearer oannot stand in salqty, becarze she motentint the gravity of the body falla behind the knoe contre the knee gives
out, and down he comes, becanse thore is no natural rectus muscle to help the kree. A patent log was ro-
 ge for ampatation sbove and bolow kneo. The mechanism and workmanship was all that wae ${ }^{\text {deedred }}$ bat the knee-centro of the IeR for above the knee wai athe contro, thus it was a matter imponiblo to weac. he leg in safety. The inventor had lost his leg below rell. and made a log that anserd parpore but it Tae monting in principlo. If the kno centrobed
 ronld hace peret bet it mea hal, the leg rould have boen pordeot, but it was : not my placo to of the a a chid

 hich thore has beon ao man aboat, gives an an ondy limb inter zots erery makeri' limbe to rear. in 2 wore of gor jears in can gee their conetmetion tand ou ohic anom and the rrestor number, und er werience rovid eas simple flexion and atema experieace wobla iay simplo axion oren bon ometnop protona hey have nome wosderfal interna all moonshine ; you can have nothing cimpler in eon truction than the sketehes represent.
8. Ampatations, and the pointe at whioh a lep shoald be amputatod. The suceess of min artiscian imb in a great measure dopenda upon the natare of the operation. Bad operations and bedy-fitted logs are號 Nithout his logs ho is in conatank misory and pain. the bett place the matal che optho th al the part of the mind bod ar ar good levar and stamp for the pationt to use the limb, and it makes a good stamp for the mechanic to presi he difaltio. 14 stamp long or too short presents ainculios to the mechanio, ang arways an annoyance to the loser of Bhab. Long stamps come in the oltho mochan a in and got incent the thi a bo din. 100 bour in The edges of the bone should also be flled or nipped off to prevent the round edges cutting through the muacle to prevent the round edges catting through the mancle forceps, and cut off so as not to be broaght op with the forceps, and cut ofr eo as not to bo broaght ap with the
flap. The best lap is the posterior and anterior fap, as it briggs a good cashion of mnscie ap ander the bone ; bat should not be cut ap too higin laterally. Some legs are ampatated from dicease, often sarofula ; the legs are ampatated from dicease, orten saroruia; the
disease sometimes lingers in the stamp, which makes the wearing of a leg tediona
4. I now come to the manufactaring of the loga. Different makers employ different material and different plans of constraction; bat the principal, with knoe. tokie, and toe joints, are mach the same. Legs in eneral are made of wood, millow, nominally called cork, becanase of its lightness, the sockets of which are hol-
lowed to fit the stanup. But to the conatruction of my own manafactory I shall confine myself. No. 1 reprosents a section of my loather leg. A and C are leather backets made of the best light ox.hide. The
foot and shank $D \mathrm{D}$ are made of wood-wiHow. As my oot and shank D D are made of wood-wilow. As my original bubiness was working in leather, I have a pro-
cess whereby I can mould the hardest butt leather to he anatomy of the leg. The shank D is secared in he leather call bucke. The tendion at the back C F is a spring of hinge, and is regalated by serow nata F is a spring of racanite rabber, or a spiral spring
cecured ky gat to flex the foot. Thus, when the fool secured gy gat or thes pitches at the heel, the foot fans hat; the pressar:e on coot flexes, and the tendon Achilles supports the ankle and helps the beal np when standing on the toes. E he toes, s leather sheath to ahape, staried with horme hair. This givee the creabo ha ho boot and thes awny the woody appearance of the foot. J is the outaide the leg. ho thigh and calr buaket are secared ogethar by the lateral steel. J. Jointed at the knee with catch joints, K is a laced tendon to save the strain on ho knee joint, and prevent the anck of the aame. is a spring which is reguiatod to bring the leg forwara are where the atraps are socared for fxing the leg. 8 represents a log for ampatation below knoe, the moaring baing taren in the tapar or cone of the thigh, leaving the knee lree to act withont bearing mast is the same in conatrnation an lag above meo.
For a working-man an artificial lag is expean aive in the wear and toar of the anthe joint. He can not aflord troo logs, 10 by aecuring the peg in the shank bo can knook abont to work; but when dresed lop church, can take out his peg and pat in his 2 a
can be applied to a log above or bolow kneen can bo applied to a leg above or balom kneay
Lactly comes the giting. A log firet mechanism may be well exeonted, brit if f is neoless. For ampatation above kneal the atamp without proseing the manalo nake a soaret on the cant of leathery anto the top of the leg, No. 1 B. Groesp
asing this, or it will throw gho MT
thas trangferring tho fas-aimilo ad
tain amount of bearing. On setting the bone the leg is bound to fit. Till within this last month I have fitted a leg a week for four months in succession to all kinds of operations. I have not had a single case where the patient has is on to walk with without a stick, after the leg is on to walk with and without a stick, and walk np and down stairs, which is the drill they have all to go through. The boy represented in the Mechanic some time back with both legs off, one close ander the knee and the other in the middle of the chigh, thinks nothing of waiking ive miles; in fact, as he waiks the streets he is taken no more notice of than of your space, and the chances are that you will not be ablo to find room for this article.

Jamis Gillingham.

WARMING AND VENTILATING.

[3909.]-Nothing can be more mischievous in every sanitary point of view, than the admission of a room' sapply of fresh air warmed to the extreme degrees
named by "An Architect" (letter 3848), or indeed, to named by "An Architect" (letter 3848), or indeed, to any degree above the external temperature when that
is higher than 50° Fahrenheit. For either the room is is higher than $5 \theta^{\circ}$ Fahrenheit. For either the room is self-ventilating (like a lantern or the House of Commons), or it is (like English architects rooms) non ventilative, preventing by irs maly breatheding an possible escape of the immediatey breathed air, and louling the whole centents as speedily and permanently as possibly. Now, in the former rare case, the heated Iresh air will simply rise straight to the oukto and pas away, instead of the foul, which is loss ligh, wasting aln if it hed net passed, than if it had not passed through. But in the other case, the common on wis thence the brea the air that is always there, collecting and cooling, and send it down to be rebreathed even quicker and more per it down to be rebreathed even guiplies of more per petually than the successive supplies of more and warmer breath would have don. 1 l our Architect's" treatment ($p .40$) makes them so.
E. L. G.

PROTOPLASMIC LIFE.

[3910.]-If the pages of the English Mechanic are Samiliar to the eyes of Dr. Crace-Calvert, perhaps he will kindly favour as with an explanation how happens it that he-having succeeded in preparing water so that ' why did not life appear in the liquid contained in the flask as well as in the tubes which had been exposed to the air?" (Vide p. 33 ante.) Now granting posed to the mesns described in the Chemical News of July 1ith, 1871, Dr. Calvert is enabled to prepare water so nearly optically and chemically pure as to be absolutely free from all " germs" (an attainment which Professor Huxley once ridiculed, as one ntterly hopeless to strive for), then the question naturally arises, why should Dr. Calvert put the above interregatory? For from what possible sonrce, contained in the flask in question, were living things to derive their origin? Whence were they to get their nitrogen? Surely Dr Calvert does not impliedly accuse Abiogenists of entertaining an idea-obvionsly too absurd-that living things arise spontaneously in a flask containing chemically pure water. What Abiogenists really contend for is, that living things may and do arise de novo, in solutions in which all pre-existing life had been destroyed; that as regards the pancity of life observed in one result and the abundance of life in another result, much depends upon the nature of the solntion employed; and, that when living things are said to come into being de novo they are only supposed to originate from the re-arrangement of nonliving matter which previously existed in a state of solntion. If, out of the many writers on the subject of "Spontaneous Generation," there be one individual who has expressed his belief to be that it is possible for organisms to arise in fluids similar in condition to the contents of Dr. Calvert's flask, then, perhaps, Dr Calvert will be so kind as to acquaint us with name of writer and title of work. I do not suppose that Dr. Calvert has examined the contents of his flask in order to ascertain whether crystals of any particnlar salt have appeared therein, but why net? As well might he expect crystals to appear as living organisms.
A. J. V. G.

ARE ANTS PIRATES.

[3911.]-"SAUl Rymea" (letter 3778, p. 667, Vol. XIV:) quotes a "popular authority," in which it is stated that ants eat the centres of flowers. He does not state the name of the authority ; and I would remind him that popular authorities are not by any means authorities in regard to reliability. All I can say is, that the ants whose acquaintance I have made have to all appearance been almost exclusively animal feederssweet articles, whether animal or vegetable, coming in for a share of their attention. The argument that the ants are blameable for part of the mischief wrought by the aphides on account of their consumption of the honeydew seems to me new and curious; but supposing it to be a fact that the ants in consuming the honeydew actually do cause the aphides to produce more of it than they otherwise would, it would only be an additiona cause for the destruction of the aphides; thus sending the ants elsewhere to procure food, resulting in more profit to the gardener and horticulturist. I may say more on this subject at some future time. J. C.

THE LATHE AND ITS ACCESSORIES.

[3912.]-I sEND you photographs of an epicycloidal chuck which I have just constructed. From the photographs it will be seen that I have not departed from the principle of Bergeron, the father of the chack, for all the others are but modifications of the one figured in the "Mannel de Tournour." I mean giving eccentricity by the flange movement of the radial arm carrying the change wheels. I have done this after a carefal consideration of the admirable thongh complicated chuck of Mr. Plant, because I think the flange movement is the simpler. It avoids the necessity of the eccentric chuck movement, the radial arms, and link motions, all

So much for the priaciple of the chack, now for its construction. To return to the photographs. No. 1 , of which I now inclose a better proof, shows the chuck screwed on the nose of the rose engine. It will be seen that the lathe can be worked either by the hand eccentric and oval chnck, and farther to the right a straight line chuck, both belonging to the rose engine. By using a magnifying glass, the whole detaila may be seen at a glance.
No. 2 shows the back of the chuck, the foundation plate A, which is merely a face plate, very true on both faces, with boss C to screw on the nose of the lathe On this boss the wheel B revolves, except when held

rather difficult for an amateur to construct, and it is equally efficient, as whatever amount of eccestricity is given, the wheels are always in gear.
In my old chuck the reversing motion was obtained by an intermediate wheel slipped on when required. In the new one I employ what I call the sun and planet motion. The steel bracket (see 6, No. 4) carrying the planet wheel is pierced at one end (a) to receive the spindle of the wheel (8, No. 4), the centre of motion of the radial arm, and at the other end has a slot concentric with the centre of No. 8, so that the sun and planet wheels are always in gear, and the motion is direct or inverse, acenrding as the pinion on the axle of the driving whe 1 (1) g ars with the one or the other.
fast by the pointer placed in one of the holes shown. It then romains stationary, and gives motion to the driving whoel D , which, in its tarn communicates motion to the wheels in the front of the chnck. This arrangement is the same as that adopted by Mr. Plant. No. 3 is a front view of the chuck, showing all the wheels in gear, a combination which gives 180 loops in one continuous line.
No. 4 will give a better idea of the construction of the different parts, as the driving wheel (18), the main wheel (14), and the division wheel (15), are removed to show the position of the radial arm (2), and the central stud (5), on which 14 and 15 turn. Both are countersunk to turn on the bosses, which gives steadiness to
the washer 19，having a key way to fit a pin on the stud and the screw 18，which allows them to tarn without a shake．
Instead of the slot in the fonndation－plate，concentris with the centre of the lathe mandril adopted by Ber－ geron，I employ a bracket，seen at 12，whose inner sur－ face beds truly on the periphery of the foundation－ plate，with slots to allow of lateral motion for different sizes of pinions，and two capstan－headed screws to fix it in place．This is a better arrangement，as the screws
Wo not interiere with the pinions，whatever their size． chuck is all at centre，and wonld make dots or circles， chuck is all at centre，and would make dot
according as the slide－rest is central or not．
The boss of the main wheel，which I originally in－ tended to make the depth of one of the change wheels， I subsequently made the depth of two，and altimately I extended it to the depth of three，for a reason which I will immediately explaia．The bracket 6 for carrying No．13，are wade of the same face of the radial arm carrying the change wheels．
addition of a division plate．It is not quite completed；
but I do not consider it a part of the chuck，any more but I do not consider it a part of the chuck，any more
than the rose engine，though both may be combined to give variety to the figures．It is merely a combination give variety to the figures．It is merely a co
of the eccentric with the epicycloidal cbuck．
I should have noticed the rest of the disjecta membra of the chuck in No．4．The part 3 is rebated and kept of the chuck in No．4．The part 8 is rebated and kept
in position by two capstan－headed screws，which are in position by two capstan－headed screws，which are loosened to allow the radial arm 2 to be moved to the right for eccentricity． 8 is graduated for the purpose． 20 is the axle of 13，passing through 12 ．The whee 13 is keyed on the flanged end，and the nut 21 retains it in place． $22,23,24,25$ ，are the change pinions keyed on the other end of the axie． 17 is a washer of the thickness of the wheel，which is placed above or below the pinion to correspond with the level of 8 when in gear or ont of gear with the main wheel，and 16 is mill－headed nut for retaining the pinions in place．
I have not had sufficient time to try the powers of the chuck．The frials I have made have been satis factory；but I shall，no doubt，find several alterations
is cast with a boss on one or on both sides．On this boss the smaller wheels and washers are fitted，and soldered in some cases，and in others fixed with a pin The axles of the larger wheel．
The axles of the wheels，the bracket carrying the planet wheel，the screws，spring and catch，are all of steel，burnished and tempered blae．The rest of the chuck is of gan metal polished and lacquered．It is a if it it works as well as it looks I shall be quite satisfied． Sydney，N．S．W．

John Rag．

COMPETITIVE EXAMINATIONS．

［3913．］－I fear that some little misconception has arisen in＂Hedera＇s＂mind with regard to my design in pointing out the paragraphs in Professor Barff＇s admirable little work．My intention was not to criti－ cise Professor Barff，for he is，evidently，a thorough master of his subject；and what is more important，a truth－seeking and unbiased writer．Nor did I propose entering into the merits of the terms＂anhydride＂ or＂acid，＂as＂Heders＇s＂reference to the preface and p． 174 would lead one to infer．My only purpose was to show that although Williansson and others have de－ monstrated that when sulphar is burned at high tem－ peratures a compound（call it what you will）containing one equivalent of sulphur united to three equivalents of oxygen，is formed，yet this fact is to be ignored by candidates under examination，and something else sub stituted．Professor Barfi，like a conscientions man teaches the truth，for in the text he quotes Professor Williamson to prove that the above compound is formed．Like a conscientions adviser，in the fly－note he tells the reader that to meet the wishes of the examiners the intending candidate had better not say that，but something else．Is comment necessary ？I believe not；but shonld＂Hedera＂feel disposed to make any I will read it with great pleasure．The stricture which I threw out does not apply to chemica examinations only；for while under examination，some time back，by the Civil Service Examiners，I ventured to correct an error in a dictation，in which a verb in the past and present tenses，both referring to the same time and action，was made use of in the same sentence but the examiner politely told me to mind my business， elling me that I was expected to write exactly as he dictated，whether correctly or otherwise．

S．Bottone．

TELESCOPE WORK FOR MOONLIGHT NIGHTS
［3914．］－Permit me，if yon please，as one who is greatly attached to the purauit of observationa astronomy，very sincerely to thank your valued cor－ respondent，Mr．Birt，for his commanication（letter 8856），entitled＂Lunar Objects for Observation，April 1872 ；and also to express a hope，in which I feel quite to the English Mechanic and World of Sarence that Mr．Birt will kindly continne to give a similar list for each successive month，so that henceforth we may anticipate that gentleman＇s working catalogue of lunar objects for examination and research，with mach the same feelings of interest and pleasnre as we have long been accustomed to regard the＂Astronomical Notes＂ of＂our＂obliging guide＂F．R．A．S．＂Rogans．

AIR－BLADDER IN FISHES
［3915．］－＂Latrator＂（let．3810，p．31），if an old dog，must have had his sensitive feelings very often hurt by persons either not quite up to the last new thing in science，or else tenaciously clinging to an old creed．I may in this case comfort him with the assur－ ance that there are no signs of anybody＇s＂advocating＂ the Borellian theory．I put forward the view gener－ ally held by writers on natural history and compara－ tive physiology，and if I am not mistaken one still to be found in Miller．I wear my scientific creeds very loosely，and am quite willing to adopt the one chosen by＂Latrator，＂to whom I owe particular thanks for the correction．

M．Paris．

The Speed of Bicycles．－Some idea of the speed at which bicycles may be made to travel can be gathered from the exploits of the proficient riders at the recent amateur champion meeting of athletes in London． The four－miles bicycle championship drew five entries， but F．V．Honeywell（Surbiton）had no difficulty in prov－ ing himself the swiftest，his times for the miles being－ first， 4 m ． $35 \mathrm{~s} . ;$ seceud， 8 m ． 49 s ．；third， 18 m .9 s ．； foarth， 17 m .21 s ．The pace was slow at first，but it warmed up in the last mile，and he came in very fast． Keen，the bicycle builder，and said to be the most ac－ complished bicyclist ont，started on a 52 in ．－wheel to do two miles under seven minutes，which he accomplished with $2 \frac{1}{2}$ seconds to spare－the first mile being travelled in 3 m .29 s ．，quite good enough to show the great pace which can be obtained on a large－wheeled bicycle．
A brute of a man，says the Farmer，has been rightly served by an Edinburgh magistrate for cruelly illusing a horse injudiciously intrusted to his charge． He belaboured the poor dumb animal until it fell apachi idobtion its knees，and then beat it azain more savae日inilar zalimiee falling．It was only after half an hour＇s 圆 been＂IOOd 祭 of natare that the wretch enough．＂For this fiendish gratificatio［tu trate，Bailie Cousin（all honour to him），po pispurpuqgopipo pqupu －heaven save the word ！－thirty daymaresornatonaminussosn option of a fine．We should like to lido dqubradopdodi ido bquota same fidney served in a similar mannor zalimienimilar zalimiee

The sizes of the wheels may easily be calculated，as the main wheel of 120 teeth is 4 in ．diameter．In the number of teeth I was restricted by the number on the divisicn plate of my lathe．The numbers adopted are as follows ：The fixed and driving wheels on the back of the chnck 96 each；on the front the planet wheel 7 has 24，gearing with No． 8 of 40 ，attached to one of 20 below，which moves No． 9 of 60 teeth，carrying one above of 30 ，which gears into No． 10 of 60 teeth，having one of 24 below，which turns No． 11 of 60 teeth，which has ore of 20 en a level with the main wheel，and gearing with it．
The advantage of the depth of the boss of the main wheel will now be perceived．The whole of the pins on which the change wheels revolve are of the same height as that of No．11．In plate No． 8 it will be seen that the whole of the wheels are on a lower level than the main wheel，except the last，which gears with it ；but the position of the pins is so arranged that any one of the series may be made to gear with the main wheel by inserting a washer of the thickness of the wheel， and raising it to the level required
The arrangement for placing the fignres on any part of the plate is the same as in my old chuck，with the
compare the workmanship of on unpractised amateur like myself，working by gaslight for amusement，with that of an experienced mechanic，such as Mr．Plant but I have studied the action of the epicycloidal chuck for years，and believe the principle 1 have adopted is simpler and fully as efficient as that of the single geo－ metric chuck，which，however，I have never seen but on paper．Of one thing，at least，I feel assured，that the amateur who may wish to construct one for himsel
will have no difficulty in deciding to which to give the will have no difficulty in deciding to which to give the preference．

I could send you some specimens on wood and metal，but they are rather heavy for the post，or rather for the pocket；but I may find an opportunity of for Warding some soon by a private hand．I need hardly add that nothing will afford me greater pleasure than explaining any portion of the work that may have been overlooked to any one who has the curiosity to ask for information
I may state that the depth of the boss of the main wheel is ten－sixteenths of an inch．The wheels and washers are each three－sixteenths，which leaves one－
sixteenth for clearance．To insure centrality in the wheels and washers on the same axle the larger wheel

REPLIBS TO QUBRIEB.

-* In their amowere, Oorrespondonts are neapectfully requested to montion, in eack instance, the title and number of the query ashed.

HINTS TO CORRESPONDENTE.

1. Writo on one side of the paper only, and pat drawInge for illustretion on separate pleces of papper. \& Pui titlen to queries, and when snswering queries pat the numbers af well 28 the titile of the quarias to which the replies refer. 8. Nochargo is mado formsorting letters,
 edreational or coilentific information is anspyered through the post. a Letters sent to correapandenta, under cover to the Editor, are not forwardea; and the asmes of correspondents are not given to inquirere.
[7182.]-Timein England end New Zegland. -The difference of time between two places is cooording to the ralative difforence in longitade, menearedin degrees. Greenvich longitude is $0^{\circ} 0^{\prime} 0^{\prime \prime}$, and conselington. Nem Zooland, from the Thames, say (via Cape of Good Hope) $174^{\circ} 82^{\prime \prime}$. The enath sevelving from weat to east, wo Naw Zealandera see the cun mooner than you do in Exgland by 11 h .80 m , so that when yonare at churoh ona Sunder morning, we mre going to bed the same ovening. For pablic convenience a mean time is calcolated, this is dedaced from the mean moridian of longitude of the ialands, which is $172^{\circ} 90^{\prime \prime}$ east ; this gives Now Zoaland time 11 h .30 m . in advance of Eng. lish time.-RArA, Wallington, New Zoaland.
[9846.]-Now Zealand. - For 2 read 1b. The following is from statistice publinhed annually by the Geueral Government of New Zealand:-Export ralue of wool during the year 1861, 7,855,92016.' valne \&523,728; 1865, 19,180,5001b., valae 21,141,761; 1889,
$27,785,6361 \mathrm{~b}$., value $81,871,280$. 1861 and 1865 are
 valued at 18. Ad. per 1 b . 1880 to the ralue aedared by
shippers, statiotion for 1870 not yet puhlishod. The Tool of 1600 exporto whine 26,860,1521b. ; Now South Wales, 888,4041b. ; Viotoris,
$1,023,080$. I will sond 1870 when published, which will $1,029,080$. I will send 1870 when published, which will
answer another correapondent, as to quantity shippod to answer another correapondent, as to quantity
Amerioa.- Bara, Wallington, New Zealand.
[10702.]-Terrestrial Gravitation.-From the reply to my quary on p. 18, I tancy "Philo" cannot have read my lettor on p. 406, nor Mr. Proctor' remark thereon in letter 8886, or, even at the ribl of belng somewhat tedious, he would have given the eas pron mentioned on p. 18, "that the joint athractis the same as it would be if the attraction of all of them were exerted at the centre," becanso it is exactly what is required to ahow that the attraction at the oquator of an oblste spheroid is less than at the poles. At spresentj I am of opinion it is igreater, and that
 R-E, these equations showing it to be mo. Perhaps, bofore "rorking ont his easy proos, it wonld be si well ments apon the behariour of liquid matter.-T. A.
[10739.]-Centre Drill Ohuok.-This is no more than a piece of good round iron, in., fitted to the ordinary round drill sooket. A hole is bored up the back for clearance, conaiderably larger than the wire nsed for the drills within \%in. from the point, which is drilled the uize of wire, a nut is tapped half way in with a thread, the other hals a cone. The end of chuck is chased or scrowed, and cone turned to fit the nat. The cone of chuak is then split from the point up, about \$in., in three places, into the central holes, which allow it to act like a ppring forcops, and when the wire is pat into its place and the nut tightaned up, it holds it very firm. It will need case hardening, which can be done with prassiate of potash, or wet some finely-powdered charcoal with a solation of the same, and encase it therein in an envelope of old tin, and give it an hour or two's roasting at a dall red

[10776.]-Gilaing on Glaes (U.Q.)-If "Ola Limelight" will use ieinglasa instead of size he will be able to gill his glase bright. It is what japannors aiways ase. A pinoh between the thamb aminate or two, and atrain throagt a piece of mualin.-E. 0 .
[10816.] - Scouring Paisley Shawls.-The following is most excellent recipe for scouring Tartan shavls, and I should think might with perfect safety be used for Paisley plaids. Bcrape it down in sumaisat war ena edd three tablespoonfule cold, beat it wilmentine and one of apirits of hartshorn of spirits of tarpentino anly in this mixtura, then ringe Wash the shant thoroughly in this is taken off. Next, in cold water until all he soap to prevent the colours ringe it in malt and witor, in order to provent the colours atriking. Wring the wher out (wita a pees two ehoetad if your corroeponaent has one fole of the artiolo washod to lis tagether; manglo and iron with a cool ironOXAMPAONE Charits.
10822.]-Permanent Polinh (U.Q.)-French polish: Wood naphtha, 40z. ; gum shellac, loz. ; bendine, fox. ; dragon's blood, tov. Finish with wood maphtha.-SEAwFORTR.
[10829.]-THeotrical (D.Q.)-This bation of questions really involves a complote treatise. , 1. The copper
deposited at the bottom of porous colle is due to local adtions set up by particlos of zinc and maintainad by a prooess of conduction. 2 They waste the sulphate and break the pots. 8. "Square inches axposed to action" has difierant, meanings in difreront casity 4. The ravistance of each pot depende on its porosity 5. Strength of current ghould mean quantity, an
intensity of carrent is the same. 6. The back of the intensity of carrent is the same. 6. The back of the
plate takes part in tho action, though much less than plate takes part in
the front. Groxa.
[10882.]-Damp Walle - Red briak is very porous, and rain comes casily through it, as I know from experience. The only care in a ooating of Portiand cement, I havo besa tota. Our villase frest tried, bat the best thing is the dement.-M. Pasis.
[10922.]-TAngine Querry.- Your valve has too mach lead. -Jace or All Teades.
[10928.]- Varnieh for Oxford PrameanIf requirod dark, ase brown hard varnizh; if light, $\mathbf{0 5 0}$ white hard varuish. If the grain is not rery porons the varnish will fill it up; but is porous, ase plaster of Paris mixed with witer before rarnishing. Paper down well after each coast; Enish off with glaze. Many SAMUEL finculy
 thing I men reememead, it root done, is the following: An asb-pmin desppar; yem bollores hhould be protected with some monecomaneting metarial, your oylinder and steamspipe cieo. Contreot your chimpey at the bace, and extrast thene, if poemble, and use your atoam more expanively. Ganat, bat not loact, drive off a reguinar strap dram, and not of the ariving wheel. Is yondo of sudome ; your boiler ought to do it.—JACE or Aix of a dome
Trades.
[10941]- mpomitaneops Combustion.-As a
 dropes an 7 . 28 I corith, if secoespary, quoto similiar amee whare earchbition, minout immodiate, hee been producod by rage, coatsining lingeed oil, being oare0^{\prime} 'gh Narown maice. zanyy years ago sir Cal ontte, han trat insood ou (eav more than boiled) was, Mation wing ther, Ithin the subjeot desorves thorough ventilation in thit country.-J. G.
[10950.]-Madeira.-The remark that Portaguese s the hardest of the Romanesque dialects was aimply oopiad from the Athenamm's leading article of the proviove felurday, on a society lately formed for tranalat. ing Portaguese and Brazilian literatare. I knov nothing of the language, but have heard that it containg more grammatical niceties and as many anom\&lies of pronunciation as the French; which, suppose, is as far from frica mond moumione as any knowing lafiags, its poverty, and also zn memeroeen to English in idiom

[10954.1-Ciroutina of the Bnoal,-Is not " O. W. H." (p. 18), when the supposece exiocese of carbonic acid gle in the atr to bo idention with "oxygen starvatium? Carbocicic noid is held by geol nathorities to be not a dilutier like ntarogen, bata a sedative poisoo. I may add that whon seapiration in
affeoted the eimalation of the bleod is so silo. Paris.
[10954.] - Checulation of the Bicod-If a "Fellow of the Poyal College no flencome"" whi reacm sider the oaso, the will, I doatb nuat, eve wip to old end in $\$$ prevalent opinion that the ccarwo mion moon what in the reins towamit the heart in aer guemare of the rix apon the bill motiog diren guat then in it. Frint, bo cause the diffisemee of such preearre in, anhoss in or coptional camos, wery mein ; cecondy, beomano she vina are not protided with ringe act the eration-pipe of ninoengine, and as the nindipipe is, 80 ne to meamain epre of
 hose-pipe would beocme \%hen wat aintended with blood as they do ; while thiring, it is ofident rrom the fact of the veivs beooming mose tistensded if the free passage of blood be impeded, siven onwards by force from behind, not drawn towards the heart, as is often supposed. It does not necessarily follow that the blood is sent throughout the whole cirealation by the force of the heart alone, nor is it.-M. R. C. S.
[10968].-How to Uee a Book Without Elanda -Let our friend pick op a bit of indiarabber with his teeth, and apply it to the beal ho wishen to tarn ovec. Ee it over emaily.一amboonate.
[10874.]-Folimhing Granito-- Bar-Fies " need not be so sceptical. The information suppliod by me was quite correct. "Paropa-Rosa ${ }^{n}$ atterwards, in a more detailed manner, zoceratoly deteribed the procem. if " Baz - Faz " will adrertico his adr pivees of granito, rarying in colocur wha 4 . It the piece were poilshea lit 18 , ho wishes to pollun is of ose first trials can easily acoomplish that which in hard irat triaks can easily anmio. If the piece is amall bo worit ior thone in then of speceese. "I Learn to laborr and to wait !"-Iroosal. [10987.]-The Organ.-The thicknesses of the bars
are the nominal thickness of boards as bought ; hall
noch boerde nevar mensure half min troh. If a J. Duwn vorth"" will lay out his soundboard no desoribed, thee wy his bars on, he will goon find the apaces required. The tenor C ohannal should be fin. Wiae, and the upprin a tin.-J. D.
[10998.]-How to Use a Book Jithout Hande. - My tather, who was conamed to aid bed, and gradually loat the une of all ho goat, co that at lat of gratifying his teate for reading 4 very simpile way of gratiofig book wem placod on © wishout kreable to othat hie bed and he troned orer roeding stand made to at he bead, by a long porcapins the leares with comparakive oune by a I
[11001,]-Fiortices in Frard Weoden-Whe annexed extetoh, if earried out, win corre you. It mill sequire eome atting, bat I belove it will be round to pay. It consists of a ohnok of cast iron, ece Fig. 4, hat being a front or top riow, ond Fig. 1 m M neions aide; F B B are the boring tools, end is tred in the
views of the morticing tool, whioh if tion holder or ahuok in a mortice E, to any dietance from

the borice boal to suat all cizes, by the set serem D, the the boridg toal to suat with packing apon the lront siae sent the fith, so that it will clear, the bit revolves Thene tho encival zamina stationary. This chnck to bo bolted simen the thoo of lathe head or general joince, and as month of mortising tool forces the ohip isto the hole the ronter bit clears it.-JACX of the Trases.
[11017.]-Stuffing for Sofa.-Everything is nod for this job-such as coconnut abre, hay, straw, rushes or sedge, horsehair, shavings of woed, to. You cll use any of them, or all, as they are more genernull mixed. Haniag a ing tho canvaid to neil on tho, ebbing ecross, then oover, arst procoed rour onves and nail it This should be dane wiit broad-beeded alon anat Ain. or sin and they ghonim broma-headed alouks, about sur tarned ont for a day A bo put boll swo to dry beioro uaing, as that piving made your
 paoked unitormly, spread it evenly over the aame, aci with a long apholeterer's needlo thok it down lighly in ita plano. For thais parpose I mate needlen oot of stich umbralle ribs, which are ejed, tempened, and oniy now a point. Pass the cover over it and out to fit een down in its place with Hemish tacke, and finish al with braeo beading, which can be bought at most irct. nacugern, er with gimp and ginp pine. Aftar that heed it down, aither with leather batione or tates or wor y an the oase may be, to matoh cover; ink Tansal.
[11058.]-Rising and Eutting of the 耳oon, A friend has pointed out an error 1 made 19 h , Vol. XIV.), in subtracting 24 mm . Yrom 19 g . Thich should lenve 15 . sistake of 9 m . is of trial this case aren the large mistake of The diso af the
moon occapien more than 2 m . in panoing the meridian, moon occapien more inan 2 m . change the ffth Agure of the logarithm. Strietly, when the semi-diurnal aro has been tentatively fonad, the deolination corresponding to the approximate times of rising and netung should then be employed to give a more correot semi-diarnal avo. Bat in ordinary
coses on thore this refiaement is annecessary, because from intervening hilh the moments of rising and setting are not perceivable. In my coes the moon is sometimes a quartar of an hour bohind the prodicted time, her prosenco, however, throwing a glow over the enatern 6ry. With a perfecty dear horizom the full reality the appar edge was barely becoming visible. Thin is ceansed by rofreotion. Consalting Rioe' table, which apecifies the accomsononl difference for all latitudes from 1° to 644°, and deolinationa from 1° to 90°
inclusive, I And the ase to be added to 8 hours for lak 87°, dee. 24°, to bo 1 hb . 18 ma . for lat. 80°, deo. 25°, lh . 25 mm . The emaiest way of intorpolating quantitiee in tables of double or treble argament in that given
 diference betreen of and 95° is $4 \mathrm{~mm} \cdot \frac{97 \cdot 8}{80}$ of 4 m . $=$ 9jm. Ae all these quantities are additive, we get

1h. 88 m.

which agrees vith the enleulated aro within leas than hall a minate. Rion table alls two quarto pages, and would oceapy a fall page of the Kecrensic. If
deeirable I would send a oopy. Perhaps such a nniversal table sxight be anoful to your numerons amatear atronomical sibscribers.-Tromas Bocranan.
[11054.]-Caloulating Contenta of Cylin drical Vesseda- - Your correspondent "E. L. G." has made a stil greater mistate than A. J. Shaw, or there
in a mieprint. 1 it. 8in. is 1.666 ft not $1 \cdot 95$, nor yet is a misprint.
$1.72-W$.
.
[11054.]-Caloulatins
drical Vessels.-I think is "E. I. G." will kindly reler to qy. 11054 (No. 363, p. 648), he will see tha A. J. Sbaw's formala in right, and far aimplar than that which ho giver. There is in that lettor, I believe, a typographical error, and, as the haman race ara all prone to error (typos not exoepted), it is there given heen 1.75^{2}, toe, that being the decimal equivalent in feet for 1ft. 9in. Hence, as I take it, not an error on the part of A. J. Bham. The orbical contente is also correct, as near as it is possible to got it. Now, in
"E.L. G.s" lettor (p. 19, No. 365) there is also an error, whether clerical on his part, or misprint by "typor" I don't know. It is 1 ft. 8in., ingtesed of 1ft. 9in., althongh the resalt coincides with A. J. Shaw) $=$
 where-
$=$ dinmeter in feet or inchoe, as the ense may be.
H = height in feet or inches, as the case may be.
-7854 $=k$, or the co.efficient ratio $=\frac{5}{4}$,
 over 1.0 on D , gives the diametors of oircles on D , and the corresponding areas on C . In this case it would read 1.75 on $\mathrm{D}=2.4$ on C . This, maltiplied by 4.5 ,
the hoight. would give 10.8 the cabic contentr, and the hoight, woald give $10 \cdot 8$ the oubic contents, and KAIN.
[11054.]-Calculating Contents of Cylindrical Vessels. - Thanks to "A Barrister" for calling attention 10 my "terrible blunder." I shonld havo said "the solid oontent of a cylinder is eqnal to the square
of the semi-diamoter \times the height $\times 8.14159$, , or, to of the semi-diamoter \times the height $\times 8.14169$, , or, to
put the formula in another way, "i the ocontent in equal pat the formula in another way, "the content in equal \times 8.14159." I distinctly remember my attention being several limee distructed when writing my replies to queries for that week, which may accoant for my minolag. I hope this explination will be accepted:
apologising to the queriat for having so nearly lod him apologising to the queriat for ha
into a fatal error.-Excecsion.
[11061.]-Polishing Mahogany.-This is bright, and is composed of equal parts of shellac and pale possible to polish sach and is noed pretiy generally now for cheav goods.-Jack op all Trades.
[11075.]-French Polishing.-See reply 11061. you need a solt bruak. Ifud the haman hair far better than camel's bair brushes. It needs no proparation.-
Jacr or all Trades. aci of alle Trades.
[11075.]- French Polishing.-If the article is in the latbe nee French polish with a rabber, and linish of with apirit; but, if not so particular, use brown hard Mrnish, paper down, then ose glaze with a brab
[11080.]-Tarkey Stone Cutting.-Vise a piece of zinc or copper, or iron booping will do, and vilver eand.-Jack or all Trades.
[11081.]-Organ Pallets.-If "E. F. C." will try the experimeut himself und lot us know the resuit.
it woald ite satisfactury to a good many of us. Where vould "E.F. F.," pat his pallets-into the channels, or where $?$ The last sentence in the query is anneces-
arry.-J. D.
[11089.]-The Organ.-The inside line on the fore, two seven-eighths from the loft or straight edge ore, two seven-eighths from the left or straight edge The sizes given are the inside diameters.-J. D.
[11096.]-Varnishing Wall Paper.-If you paper has not been sized, and you varnish with tarpen tine rarnish, into which you have pat a little linseed oil, it will have the desired effect in places. But as the
article has been more or less pasted and saturated in article has been more or less pasted and saturated in
places with boiled paste it will be glazed in patches places with boiled paste it will be glazed in patches, was pat on with ractoro oradicate, bat is your papol atand a bettor chanoe of saccess.-JAOK or ALL Tradss.
[11109.]-Soldering Tron-II "G. F. F." gets some of the best German silver and melts it down with one-fourth zinc he will have a solder that will suit him. -Jaci of Ale Tradis.
[11112.]-Artificial Leg.-There is no spring required at the toe joint, as that is only for the convenience of getting on the boot, as the patient can mo more bear the thrust upon the flees then upon the
stamp ; it is mado to take ite strain equally, the backet being packed with some coarse worsted material, and the bottom with a horsohnir oushion, and sometimes a spring, cork, on indiarabber. It is keld up by three
etrape to atrap that pacces around the waist, and atrape to a atrap that pasces around the whist, and a
shoulder strap ta uned. I have used, or rather fitsed up, shouldor strepp is used. I have nued, or rathar fitsed up,
the ald timber toes in various waya; the legs of some tolesoopio with toen in varione waya; the legs of some made of leather, and an indiarubber ball inside ; and I
and have used oork for the same. In all cases the heel sboald either be of cork or rabber, and the thrust of dend hoad should be apon the knuokle, and not apon the pin-hole or tonon. Indiarabber is very good when warm, bat in cold weathar becomes very hard. Where it is in conteot with parts having any ciroulation of
the blood it can alvays be depondod npon for its elasthe blood it can alwaye bo depe
ticity. $-J \wedge$ or $\triangle L i t ~ T r a d e s . ~$
T11117.1-Water. Wheels. - I am obliged to Wheels, bat not knowing the rale, I am obliged to copy from others. Finding the foarth bueket to come square with tha centre staff I am now in a fix to knoe bow to ind the namber of bucketa. Shonld feel obligod to "Tubal-Kain" for an ansmer. - Youngster.
[11119.] - Heat of Briok Eiln. - This is thing that has been wanted tome time. Leave two clearancos right across from the entrance, ebnat 1 ft. apart. and when the entrance is bricked np, mako it so chat you can take out at brick, and inopect it abzat
half-way down ; you will have a better idea from thero hali-way down ; you will have a better ides.
than the top part.-JACK of ALL Trades.
[11120.]-A Question of Sight. - Something mnst surely pave preventod your meate correspondent "E. L. G." perceiving the ironical tenor of my remarks at p. 674. My meaning would, howover, have been nndorlined in the "copy." "V. B." atks "Why shoald 'A.J. V. G.' consider the san as a laminous point?' Why, indeed ! The fact is I never had so considered I ditinctly said " if the sun be regarded as a laminous point," sc. Bat who, other than an idiot, would so in the "if;" and so with "Fidder'a", whestion. It the ether which tills space, not only transmitted light from a lominons source by wave motion, bat also scattered light like onr dast laden a!mosphere; and if at a distance from the earth, of (say) 30 or 40 diameters, a reflectin "Fiddler's" room, then, and then only, woald inhabitants of our earth bo in a position in Ahywiee relative to that of the sapposed dwollers on "Fiddlet's" orauge. Because "Fiddler" would not tronble himself to ascertain whether the onases, which obtained to prodnce the etrfect observed in his experiment also obtain in natare, he rnshes his absurdities into print, coolly informing us that probably there is more therein than is apparent at first sight.-A. J. V. G.
[11120.]-A Question of Sight.-Steady: J. Barwict, steady: Sound has not a velocity of 11090 ft . (!) per second throngh atmospheric air. Yon surely made
a slip tbere (p . 20), and meant 1109 ft . Yet why say a slip tbere (p. 20), and meant 1109ft. Yet why say
sound bas one-cighteenth the velocity of liyht: the one sond has one-cighteenth the velocity of light: the one
handred and eightieth is nearer the mark.-Toucastone.
[11120.]-A Question of Sight.-Mr. Barwick querist and "A. J. V. G." themselves. We know nothing about the comparative nearness of atoms, of ether, or of air, ar any other mattor. Tho velocity of jnst the same (at the same temperature) if the atome be twice as near or twice as distant. "Fiddler" neod not cat off "from himself" cither direct or reflected
candlelight-their reaching him nowise affects the experiment, but their reaching the orange. His own face, eren if a negro, will send it more than the moon does the earth. Direct rays from the largest sans do not injure "our sight power" if we are Jistant enuogh,
gs in looking at the Pleindes or the Milly Way; bat reflected ones will very speedily, if he pats his ege at refected ones wil very speedir, a tablespon. Light cannot he the
the solar focns of, say.
said to be " said to be "deemed vitaradion : it is as wewn that Ireland is smaller than England. Ligat does not cesse "instan tly that combastion stups." If we are as far off as from many stars, we may not
begin to see the light till the combastion has alroady ceased 1,000 years. An earth's shadow" cast by the moon on the sun" is sheer uonsense. The distance of
namely, the extreme extent of her shadow, is readily reckoned, being that at which the earth and sun subtend forthame angle; this angle being least when we ar longest, and shortost on January 1, when we are nearest him. It extends but loar times the moon's distance and therefore oan approach no other body. If we had a astellite $1,000,000$ miles distant, or as far as Jupiter's fourth is from him, it woold be too distant ever to be eclipsed-E. L. $\mathbf{G}_{\text {. }}$
[11126.]-Turning Perpendicular Shaft. "One in a Fix" wants to tarn a shaft vertically withcourse it oould be driven by a orank and connecting rod, by so doing it would be of no adivantage, on the contrary, a vortical shatt is required to revolve to do certain work. The bent plan in by a pair of apar whenls, or the noxt beat plen by a strap; by these manns tise speed can be regulated as required, bat if driven by a

sond sketoh of two plans modity in wao : A is a connoohon by a pair of apur wheols, they oan be fixed to be thrown out of gear withoat stopping the engine. Hornbeam and cast iron are the beat materialo-shey make the least noiso. B is the ordinary whoal and pelley haft must be on a line with the countre of the driving wheal, or the dand will run of. This leat plan oan be reon in operation on any large bailding works in use for driving the mortar-mills, or for pumps at asy pamping-station.-SAnusl Sertierr.
[11129.]-Greek " Upsillon"-It ought to have beea geid that this in amiospelling of the letter'y name, astronamanty in French-due, (beacing Mr. Proctor' pardon) ought not to copy, knowing as they mast that its established rendering in our lettors for 2,000 yeara, and the only one intelligible on any principles of trazsliteration is Hypsilon. Δs all words beginning with it were aspirsted, so the tendency to mix an h with the sonnd when emphatic may be noted now, as in French priests aaying mass. The "Harrow Fellom" had better only soand of the Greek apsilon,"-(the Harrow upsilon, that is). Now trat, what is "the Engish u "? Rale, mule, pall, oull, carlt Here are at least four sounds, if you pass over mere difference of quantity, rule and pull as nothing. Next, how can there be all only alwa of a letter that is notorionsly in ancient greet But the and in modern mosily a consonant? "English u " neither the ancient rowel Υ nor the modern consonant ! (Soe " Argent sable's "roply.) Then, oar "Harrow Follow's ", Way of writing in Euglish the Greek for "I stribe," oak, and dirole, could not be reconciled with any possible way of distinguishing other word. His "tupto," "droe" and "saklos" could und xou $\lambda \lambda \pi_{5}$ the termination os representing none vut ws, while us is the sole rendering of os, and ins of ous.) The historical and sole right way of patting these words inour letters, even at Harrow, is typto, drys, and cychus; and imnovations like "A Harrow Fullow's" pazzles like the MSS. of the dark aues oonfasion,
[11133.]-Curing Bacon.-Hare a cistern bnilt of bricks and homan cement, aboat 2ft. deep, aud line with Koman cement. Have a grating made of wood edgeways, and nooat Gin. doep, pat in the bottom for the titches to rest npon. After they have laid for a day or so, take for every peck or 7 lb . of salt toz. of and well mix brown sagar, and jib. basal, blade-bones and knackles of cushions and gammone, and well crammed with the compost, pat abouta conple of inches of water in the bottom of tank. Well rub the Hitches with this compost, and lay them one upon the top of the other, with a good eprinkle between. After they have been there for four days, tara them abont; let them be for foar days, taru aysin, and sprinkle some more; tarn over three or four times, then pat them into the brine, and in three weeks they will be ready for smoking. For which, take out, urang and dress dry with pollurd, and hang a
left for a week.-JACK of ALL Trankg.
[11141.]-Phrenology.--Procare Dr. Gall's works
or Fowler and Wulls' works. I have read phrenolvencal or Fuwler and Wells' works. I have read phrenological works for jears past. Altuyagh do not indurse all taat tion from sach sources.- SanukL SMITHERA.
[11148.]-How to Diainfect a House.-" A Barrister" may think it "absurd "t to talk of fuling a honss (ad have done a small onthouse) with chlorine,
aud it monild be absurd to nase the quantitios neceesary
for anch alling if any one had ascertained, by " practioal knowledge of the erbject," what proportion of ohlorine and air may be dopended on as infallibly disinfeoting. I should not myself, however bad the caco, employ in a house (as I did in the outhouse) the fall quantitiod I named, or perhepe a quarter; bat this would be pare
 air by chlorine may, and I hope does, exist; brit plainly, if "A Barriator" had this knowledge any The question being absolntely "how to dirinfect" place, however bad, I confined mysell to eaying how this may be done infallibly, leaving to the querist's judgenent how far he would go. There is neither dife culty nor danger in stranging to caprize a whole carboy of acid into a pan by pulling a cord ontaide the house. If the old enlphurous acid plan, used before the discovery of ohlorine, be really comparable to it (Dary, proportion of sulphar to air required, for the "pound proportion of suiphar to nir required, for the "poand rister," a " vice joke." I have not the shightest laith in it, and the sulphur dioxdde boing a veporr, not a gas, and aniting with steam to deporititeolf, corrodee paper and vegetable aloth, and hangs about woollen thing chlorine flies of withort leaving a trace, and when dry (as I directed) neither bleeches nor corrodes dry things. But beware of thinting you can get it thas good and harmiens from muriatic acid instead of salt and sulphario, and do not confuse it with the vilo rapours given ofir by chloride of lime; they are very different. r. Davis's reply ($p .21$) is very enggeatire, andiom what tainly try that plan on a house of any aise, rather than truet to a very parilal filing with chlorine. But as for clothee or bedding. I woald aimply pat them in a cloeet or cace in the open air, with all bat its top made airtight, and an arrangement for capaizing salpharic acid on mixed calt and mangances within it, in the quantitioa adequate to displece all the air by dry chlorine, as deseribed in my former reply (p. 675). This is both cheaper and more fully verifed an effectual, I beliove, than any baking or imbuing with vapours; and how. over oftensire the clothea, the chlorine will leave them more scentlees than if now from the loom.-E. L. G.
[11148.]-EOw to Disinfect a Elouse.-Chlorine and sulphurous acid are both oheap and effeotual difinfectants, and as mirch as will hil the place with a decided amell of the disinfectant, if continued an hour or so, should be anmient to destroy all organio impurity; there is no oceasion for any suah quantity as for a good-aized town. Iodine, thongh dearer than the thers, is one not 50 dear as to make its cost prohibi ory; it is lese dinagreenble than chlorine, and leen njurious to cloches and some furniture than anlphur of acia. 1t mor been very rich uned, bab some for proventing annoying small, and probably for dotroying infection-I any probably, for that is ofton difficult aither to prove or disprove, as many exposed to infection are not affected, and many who are affected infection arre not afrected, sod many who are ancected Lave been injur
[11149.]-Eremination Quention. I fail to see why an ocaminar shoula not 60 ficoh an question, 88 it is only by such physioo-chomical questions that he can assure himnelf that the stadent has acquired a knowledge of the lawe of gaseons combination, and tho lawi which control the rational formalm of volatile com. peands.

Original Fats Experimest
 Aftor the addition of oxygen
 Aftor explosion ($16 \mathrm{t} \times 4=$ Aftor abeorption of CO
 After abeorption of OH_{2}
 $=100$ rol $=400 " 1$ $=485$ $=295$ $=25$

This residual gas can conaiat only of unburnt oxygen. The total amonit of oxygen barnt is equal to 805 the carbonic anhydride), which is 5 volumes more than what was added to the original gen. This 5 , plus the residual 25 , equals 80 volumes, which must bave been combined in the original gas. The volume of hydrogen equals the volume of aqueors vapori (270). The volume of carbon vapour equals hall the volume of carbonic anhydride (85).

Parcentage composition :-

$100 \cdot 0$

Sxcomd Expermiget

Original gas
After the addition of oxygen
Attor exploaion ($17.5 \times \mathbb{5}=70$)
Artor exploaion ($17.5 \times$
Aftor absorption of CO_{2}
After absorption of OH_{2}
This residue conaists of oxjgen. The total oxygen consumed equals 820 volumes, found according to the above mothod, being 20 volumes more than what was added to tho original gas. This 20 rolames, and the residal 10 rolames, equals 80 volumes, which must volumes; carbon equale 90 volumes.
visogen equals

-R. Tervet.
[11166.]-Area of Segment of Oircular Ring -"Bernardin," on p. 22, has fallen into a greater miaake than "Thanktul" by his rather indefnite deta for the quention. What meaning can be atteohed to apothegm, n, aceuracy to 886 ? He cortainly muat mean $\left\{\sqrt{8}, \quad 8660254\right.$, the cosine of 80°. As the breadth must undoabtedly be understood as the differonce of radii of the two sentore (not the differance of the two cosines) with radii 70 and 50 respectively, as "Bernardin" intimates. The solntion muast be thas :

$\frac{70^{2}-5!}{8} \times 8 \cdot 1416=125684$

as "V. B." rightly performs and "J. K. P." corro-borates.-W. Hoomze
[11166.]-Area of Segment of Oiroular Bing. If "Thenkful" had either once need the word soctor instead of "segment," or indicated, by some approximation of the diagram (p. 650) to a seotor, that he meant this, and supposed segment an equivalent rord, I should have answered it like "V. B," as the imensions given were enough to deane it if a meotor, and show it to be asixth of the ring. Bat as it wae roither so called, nor drawn ast if with an intention to make $A C$ perpendioular to the carves, I supposed the passive word "segment," something cat onf, was rightly need, and not as the more limited notive on "a eector," that which eate ont an aceertained portion of the whole ring. If you want a sixth or any other atated fraction of a circle or a ring, it will be rather boyond "Thankfol's " mathematicy to get this in the form of a segment ; bat a sector at onco cate
the notive form of name.-E. L. G.
[11168.]-Wood Rods.-The quickent mode of making them is with a hollow mandril of anficiont strength. A person can thas manufactare rode from tin. in diameter, ap to handrailing or cornice poles, of ooke jor the edrertisoments of the MECBumic be will and adrerticed what is roquired. Those who have had practice at the le the conld manniocture one for a temporary purpose. If "Joiner" is not saited in a for rooks I will eend sketch of a catter ohnck for manafactaring suoh articlea.-SAMORL SxITHBR.
r11178.1-Drilling Xachine.-I mend aketch of a machine that may moet the wants of "F.T. S. S. D." I have used a machine for drilling one hole nt a time,
but a double rod ts as oasy to work as one, in fact, a but a double rod is as aeny to work as one, in fact, a
dozen could be worked at once at the same apeed and

bore the same depth. Of coarse the inquirer understands the ordinary machine for drilling, therefore I need not entar into full detaile. \mathbf{A} is a drilling-machine with two rods driven from the latbe; it can easily be adapted for steam power; one rod drives the other rod by means of a pair of lin. oog-wheels, same siz
of courte the same speed. -SAMUEL Syitrar.
[11186.]-Length of sidereal Day.-The apparent discrepancy between wy statement of the lengit of the sidereal and mean solar day, quoted from Herschel, and that quoted by "J. M." Irom the Nautical siderenl days, but only 865$\}$ solar days, one being ap. parontly lont by the earth's revolation round the sun, the mean solar day mast be nearly 1.365 th longer than the sidereal day, and the hours, minutes, and reconds longer in the same proportion; the sidereal day, which 8m. $55 \cdot 91 \mathrm{~s}$. shorter, rockoned in solar time is 8 m . 56.553 . ahorter; reckoned in sidereal time, the real difiereace being the same-the pendalam of a sidefillh of an inch aborter, if I reoollect right, and if wrong, no doubt "Sigma " will set me right in his usnal polite manner.-Prico.
[11186.]-Length of Sidereal Day.-There must be a difference betwoen the interval of two retarns of a diar (supposed to have no proper motion) to the meri dian, and the retarn of the equinoctial point; which latter, I believe, is what astronomers always ander. stand by a aidereal day. Moreover, as the procession is
not uniform from day to day, the latter oannot be no not uniform from day to Nay, the latter 0 a
conatant a period no the former.-E. L. G.
[11188.]-Arithmetio-Will J. Lewis try and reduce $£ 19$ 193. 11 fd . to decimala, and then maltiply Firat to the decimal of pounde, the rosults of which will be a little short of est0. Seoondly, to shillinge and decimals of a shilling, and thon maltiply; the result will be nearly 88,000 . Thirdly, to pence with docimale, the reant will be nearly 296,000. Apd, malliply; bo will and the resalt to be nearly £384,000. If the above four results do not open hia ojee lot him try to maltiply 191b. of sugar and 7oz of pepper by 191b. of coap and 70z. of cnan. By moan graina operation porhape the reqn. Bat, joking apart, a little experiment of the above kind in rary good for practically ahowing that concrote numbers. cannot be maltipliod togother.-MOnETA.
[11188.]-Arithmetic.-Memers. Harris, Lewris, Donosrigbe can eridently enjoy a joke, alce how is it posible to nocount for the grone absurdities perpetrated ayove query ? From the coveral replios to this quary the inference is ineritable that pounds maltiplied by pounde give a product in equare pounds in the aame pounde givat prothor maltiplied by breadth ronld pro doe ser duco a denomination to be reforred to the table of land Transatiantic brethren to answer a queation by asking Tranaztiantic brethren to anawer a question by asking to deflue a square peand ? When this is done in otialeotory maner the point will be conoeded in his favour. Until then the replies (2) are worne than nes invour. and are equally unworthy of the ninoteonth ceantary and of the Evalise Mecennic.-Jas. Hastre.
[11188.]-Arithmetic.-The objeot of a " Yankee anawar " Was to induce J. Lewis to consider whether his quostion had any meaning, and if so, what he meant, and whether he coold not say it. Maltiplying a concrete quantity by another concrote quantity (or
the same) has no meaning. Ho might as woll talk of the same) has no meaning. Ho might as woll talk of
eabtrecting 10 yards from 15 pounds-what is tho remainder? Bat 219 19a. 11券. is $£ 19 \frac{959}{980}$, and though you cannot speak of multiplying thise sum by itsolf aymbola, then you cen maltiply that cum by the abstract number $19 \frac{959}{960}$, or this abstract number by itcolf, and in two linea, by my method of gquarimg. latoly discused, and need in reply 11051 (p. 19). It it $20-\frac{1}{960}$, and therefore ite equare is $=400-$ $2\left(\frac{1}{960}\right) 20+\left(\frac{1}{960}\right)^{2} \quad \mathrm{If}$ it be the money 219 18a.11za. that is to be moltiplied (not, observe, by $219 \frac{959}{960}$ bat by $19 \frac{959}{960}$, without the ℓ), you have but to subtrect from 2400 twice $\frac{90}{960} £$, that is 10 farthinge (not J. Fing Harris's 20) and add $\frac{1}{960}$ of a farthing. So thet the answer is 8899 108. $2 \frac{1}{8840} \mathrm{~d}$. O'Gorman's "rales" are nonsense.-E. L. G.
[11192.]-Chemical.-"Oxygen" can try this plan for soparatiog his nitrato and carbonate of potaninm, which I thing he will find to anawer:- Evaporate down cantionsly, and allow to orystallise, when oryatale of nitrate containing a little carbonate will be obtained. To separate these repent the above two or three timea, when crystals of nitrate praotically paro will be obtained. The carbonate can be beat parified by evaporating the remaining liquors (from eaoh oryatalization) down to drynema and igniting with oharoollice, when carbonato water, evaporate down, and crystallis.
of potacaiam will be obtained.-J. B.
[11198.]-Pumps of Portable Kingine.- 1 cannot underatand the explanation of "Mendex" P. 28 , No. 885, nor dan I conceive bow the pleoing of a third valve in a pump woald convort it into a aoll-acting machine, able to emply a pond, allhough a siphon
would do so. The ceause of the engine feed pump not woala do so. buc cance of the engine feed pump not drawing is bocause the wator in the barrel of pump gete
The remedy
may be applied oither by placing as alome es convonient to the boiler, po that the valve in feed pipe may keep cool, or by reising part of the in foed pipe may keep cool, or by raising part of the ing, some of the cold water will fow of its own accord ing, some of the cold water will fow of its own acord, Liverpool.
[11217.]-Platinio Chloride.-I think Mr. Somerville will und this plan answer. Add to the solation chloride of ammonia and a little alonhol, let it atand a Bufflient length of time for a precipitate to form, then niter, and wash the precipitate- Which will, of course,
be the ammoniac ohloride of platinam-with chloride of ammoniaun and aloohol; then ignite it, and if the ammoniana and aloohol; then ignite it, and if the
ohloride of platinam be deaired treat the aponey ohloride of platinnm be dosired treat the
platinum obtained in the asaal way.J. B.
[1225.] -Jupiter's Batelutes.-I have to thank F. R. A. B." for bis prompt reply to my query, and at same time to asy my lat. is $50^{\circ} 40^{\circ} 88^{\prime \prime}$ and long. W. $=8^{\circ} 14^{\prime} 10^{\prime \prime}$, for which I reckon 12 min . 57 sec . for the colmination of a star after Greenwich (allowing aloo for accoleration). Am 1 correct in supponing that such a small interval would have no offect as to the instant, whether viewed at mg atation or Greenwich, or at any rato only the fraction of a second?-Vega.
"J. N." how to maku the substance mentioned abore I
may as woll toll hisn that he cannot make it cheaper than he oan bay it. He can make it roadily in the fol. lowing mannoer: Take pare hydroohlorio acid, if slightly dilated it will be bettar, and neutraliso with ammoniam bydrate (common ammonie); he can tell when it is nontral by its noither tarning red litmne paper blue, or blae red. Having neatraliced it, evaporate down canationaly, and allow it to cryatallien, when aryatale of ammonio chloride will be oblained.-J. B.
[11244.]-silioate of Soda.-Silicate of soda, or coluble glats, is neaally mado on the small soale by fusing togother in a craciblo 15 parta of sand with 8 parte of carbonate of soda and 1 part of oharcoal. The bot tienas formod is scarcely solabio ai al in cold wabr, alkalite large seale. I mart rofer "8." to some of the beok volumea, where several exoellent deecriptiona have boen given, Fith engravinge of the furnaces rese in the prowhis in, but porhape some of "our" corresponicate may remember.-J. B.
[11865.]-Drawing a Boundary Tine.-Or rather correeting a boundary line incorreotly laid down. The piece marked I projeote beyond A B, the sollowing piecea, vix. : $-2.20 \times 20+2 \cdot 48 \times 24+$ $1.98 \times 30 ;$ or, altogether, 1.6892 chaina. The other pioce marked G projeots beyond $A B$, the following 2. 28 chains, and the difference betw;en theno two is 2.28 chaizs, 4 a x than I and the beundary prill hare to be drame to than I, and the beundary will have to be drame tomardo I to make G project laen, and I project more, Which it will do both at the same time; or, in othor worda, half of 6508 aquare ohain has to bo taiken ofr ${ }^{\text {and }}$ leng, and hence $\frac{8254}{129}$ square chains will give the distance $A B$ has to be shifted. This, worked out, gives $2 \frac{461}{888}$ K. P.
[11285.] - Drawing a Boundary Line. (1) Find the area of the triangles $\Delta g h$, ced, $i \bar{B}$, thich are cut ofl from the field I by the trial-ine 1 B . $(\underline{980} \times 80)+(948 \times 24)+(198 \times 80)$
-8146 square links.
(2) Find the area of $h m o, d k i$, cat from G.
$(\underset{ }{(240 \times 80)+(260 \times 60)}$ \qquad
(B) Difide the difference of these two resalts by the

total leagth of the trial line ΔB, and the quotient will to the answer required.

$$
\frac{11400-8148}{220+240+248+260+198}=\frac{8254}{1168}=2 \frac{922}{1168} .
$$

Dividing the fraction by 2 , we got $2 \frac{461}{688}$ links as the distance which the trial-line A B mant be moved towards I, in order that the area of the three triangles ont of from I many equal the area of the two triangles ent off from "G. Assaming the sarreyor to be in the
ield I, the "hoights" o \& l are termed "olleets," and aeld I, the "hoights" o \& ${ }^{2}$.
[11286.]-Lifting Wator.-Ithinkif" Ignoramus" were to got a small centrifugal pomp it woald answor his parpose bent, as it disoharges a continuous and grit. There was a small centrifagal pamp exhibited at the Bath and West of England Show at Soathampton, 1869, worked by a ono-horno ongine, that delivered a stroam of water at the rate of 20 gallons a minute. A Coumtey Tinkre.
[11271.]-Naval Arohiteoture - Mieapplied Wit.-On p. 47, there is a tissae of rubbich signed, question on p. 677, whioh I And ia a similar tiesue of question on p. 677, whioh I And in a mimilar tiesue of mayne" or "Jnak of all Trades." Perhaps thece peoplo, who have not sense enoagh to understand the ase and parposs of the queation dopartment of the exolisy umchamic (and whose mental eaibre aboun and trench ofl door troctera in seareb of andiows and wrench oif door rnockers in coareh of amusoment beatho gondemen), wa to hwo or, goodness to madress their fatare wittiolems to Fio, or, as "Dt clined without thanks," some of the more deotitate of the diamul prints, shioh call theme mositato might be indaced to woloome Mr. W. M. Hirpen, and gratify his landable deaire to Mre himself in print. gratify his landable deaire to tee himself in prini
[11974.]- Ooment for Stourbridge Clay Fire Beoha-Fire clay, 42.5 ; loam sand, 42.5 ; glaga, 10.0 ; ohloride of odium, 5.0 . Another : Fire clay, nnburnt,
66 B ; barnt, 88.4 . Mix wall with ammonicoal liquor.G.8:
G. D .
[11276.]-Erxraoting Glase Stopper.-Warm
the stopper, then give it a smart blew on the bottom with the hand, tarning the bettle apside down, of ounc.-EUREXA
[11876.]-Extraoting Glass Stopper.-With a feather rub a drop or two of salad oil round the atopper close to the moath of the bottle, which must then be placed before the fire at a distance of eighteen inches; the heat will cance the oil to insinuate itsell betwoen the atopper and the neck. When the bottle hae grown warm, gently striko it on one side and then on the othar with any light wooden instrument. If it will not yot move, place il again before the Are, adding another drop of oil. After a while, strike again as before. and by perserering in this process, however tightly it may be fantened in, you
getting it ont.-F. T. B. B. D.
[11976.]-Rxtracting Glams Stopper.-Pat the bottle into boiling water, the expansion of the air will drive out the stoppor.-W. L. Gmes.
[11976.]-Extracting Glass Stopper.-If there is no atump left by which to take hold of with pinchers, a hole muat be drilled in the steppor, into whioh to coment or to screw a strong wire; then warm the bottle gradually in very warm water to expel air ; when warm, hold it upright, and keep some water round the stopper antil it is cold. Whilst the bottle is cooling, the watar is drawn in and loosens the atopper. Twioe or three times ropentod has always been saccessiful in laboratorien.-Barbabos.
[11877.]-Soap Boiling.-The following is a rough ontline of the manafactare of soap:-A vat is charged with barilla, kelp, or potash, or a mixture of all three ; a small quantity of quick lime is added, and afterwards water sufficient to slack the lime. Near the plughole of the rat nome straw is generally placed to prevent any solid particles from passing through when the ley is drawn off. Water is then added to fll ap the rat; after standing several hours, the solntion is drawn off into a lower reservoir. Wator is again added to the matorial in the vat; the first loy is removed from the reservoir into one nearer the boiler; and then the second
jey is drawn off. This is done on parposo to have tro jey is drawn off. This is done on parposo to have two The number of waters added to the materials in the mat depends cbiefy apon their quality and the experience of the operator ; a good workman can generally toll by the tacto whether the water has discolvod the whole of the alkali. The ley being ready to ladle out of the reserroif, which is noar the boilor, the tallow or oil, haring been weighed, is put in. When it is sufficiontly haring beon weighea, $\begin{aligned} & \text { melted, the workman begins adding the ley and stirring }\end{aligned}$ the mixture. The alkali and the oil soon begin to unite and form a milky flaid. As more ley is added the mix. tare times more till emell portions of the soap tana ont from time to time agame a proper congietenoy The vorkman then adde s quantity of common alt. which has the effect of cepareting the wetery part from, whing, hioh contane proption of neptral selts that exinifed in the crude alkali, especially when more than enongh bes been edded. The fire is now with than ouragh the mass left to cool The ratery part is found at the bottom, and is removed by means of a pamp fixed to the side of the boiler. Whon this is removed, the fre is rekindled, and if the mass does not melt freely, a little water is added. As soon as the Whole beoomes liquid, and is made aniform by atirring with mooden poles, the fire is again withdrawn, add the mass is nlowed to assume a proper consistency for lading It in laded hto equare moun; heso are compose that a num the of shrula lying on when the wor work can of remove, beginais orery interral Yallow hard soap is formed of code and tallo bot it. Yo conteins rosip and sometimes palm oil In boiling the jellow esosp, the resin and oil or oil in a similar manner to that for the phite pepp sad in a similar manaer to that for tha whed in containing soap difler in compositson from hara with colourlese no akall bat potan. solt onp mat wis coliviong lat is a whit unctaona sobolance, abour hecasis on th of lar. 1 on the Continent it is penerally coloared same challo oxide Thos made with jellomoured with ractalio and nometimes colocred with inaro, whioh gives them green culour. The oils generally asod are the cheape. oils-auch as rape, huas, homp, do. an hounda in some parts of the Continent, owing to its oflensive in some parts oc tre con soft oil, which gives a transparent mass of a yellow coloar. In commarce, it is seldom quite transparent, for the yellow part is generally interspersed with whito spots giving the Whole a strong resemblance to the inaide of
dried Ag . Wrilux H . Hzy .
[11277.]-Soap Boiling.-Soap is composed of fatty sabutanoen, sods, and potash. The proportiona rary entirely with the kind of sonp required, and even gredients are varied by different manufactarers Ordinary white soap requires 10 to 14 owt . of tallow or olive oil per ton, and from 10 to if parts of soda, and 15 to 20 of potash to every 100 parts of fat. In manipulation, again, differont manufactarers rary moat considerably, so mach so indeed that it moald boalmost aselase to state any particulars. The monlds are of wood or cast-iron, those of the int.
used for jellow soap.- Excession.
r11278.1-Steam.-My own formula is $V=8 \times$ $\sqrt{P-p \times 2.3}$. It does not agree with that given by oihor mathnrities.
iince. Where-
$\nabla=$ the velocity in foet per mecond.
$\mathrm{P}=$ the pressure of supply in pounds per square inch, atmosphere included.
$p=$ the back prosaure in pounds par square inch, atmosphero included.
Care being taken to allow for the friotion of passage through long pipes, their diameter boing increased to maintain the preasare. Arguing from theory, it is imponsible to have a stoam pipe too large ; bat with size is aiso incroaced the disadvantage of condenastion,
both by convection and radiation ; therefore, there is a practical limit, and a near approximation to a doAnite size for genoral ueo.-TUBAL KADr.
[11280.]-IIght for the Middle of a FoomThe treatmont mant depend on at least three dimensions that the querist has omittod to give. 1. How hich are the tops (highest glace) of the nide mindows above the objecte you want to illaminate in the middle of same level) are the near, suridinge ortaide the win. dows ? State thene for both sides if there is any dif. forence betreen them. Almost the last words of Sir David Brewster were some valuable hints on this sabject in the Builder ; bat evergthing tarns on the ponition and height of noighbonring walle, if any. The treatmont of anch a room in a atroet or in open country will have to be totally differant.-E. L. G.
[11880.]-IIght for the Middle of a Room.I have found a form sheote of tin factiond to a board vory effeotive in throwing light apon dark panages, the Dark" might, the Dark , bit min the purpose. A hind might be taiton from the stations
[11281.]- Value of One Second on the Sun's Diso.-This question will vary in its resalt acoording to the values assigned to sun's parallax and to the earth's semi-diametor. Taking the parallax, as given by the Nautical 1 Imanac, $8 \cdot 6776$, which is the value assigned by Encke, and the earth's diamoter 7912.5, which is Bescol's detorminative, wo got $\frac{7912 \cdot 5}{2 \times 8 \cdot 5778}=$ 462 miles, for the sun's parallax is nothing more than the angle subtended by the earth's nemi-diametar at the sun's mean distance.-Willun Hugres.
[11281.]-Value of One Second on the Sun's Disc.- The value of one second on the sun's dise is equal to the sin. one second maltiplied by the san's distance. Taking the mean valao of the lattor as $91,400,000$ miles, We have $00,0004,848 \times 91,400,000=$ 443 miles. For the ralue, when the sun is reapectively ${ }^{n} 450$ miles and farthest from the earth, wo have 486 and 450 miles.-G. F. H.
[11285.]-Ohemint's Oertificate. - "Phanix" alhould write to the Registrar of the Pharmacentical Society, Mr. Elias Bremridge, 17, Bloomabary-square, London, W. C., who will give the required information in fall.-PBmhdelpeion.
[11239.]-Linsoed. TThis seed is a nutritious and fattening food, the value of which is well known to farmers. As a remedial agent, the crashed seed, containing all the oil, is mooh used for poultioos, whioh remain soft and comfortable longor than those made with ordinary linsoed meal or bread. Linsoed oil, mixed with an equal quantity of lime wator, is usefal as a arst applicamon to tor hin tion of linseed (inseed hea) is druat to allay irrication of the macous membranses in catarrh, bronchitis, dy sentry, gonorrbcoa, de.; and is likely to be injarions, for inseed concalias mothing ba What the digestive organs may ascimilato as food. Philadelpios.
[11294.] - Dividing Ketal Disc. - The moat simple way that I know of is to find the area of the 12 in . disc. Divide the same by foar, which will be the ares of each of the three ringa and diec required. Now And the diameters by dividing quartor the major diso area by $785 \pm$ and extracting the square root of the product for diameter of minor diso. Then take tworing, and throe-fourths of the same area, aca, for No.

2 ring, and the product will be No. 3 ring as required. As shown
are equal.
$18 \cdot \times 7854=118 \cdot 0976$.

Areas.

$118 \cdot 0976$
$=\frac{28 \cdot 2744}{-754}=138=6$
diam. of minor disc.
$28-2744 \times 2=\frac{56 \cdot 5488}{-7554}=\cdot 72=8 \cdot 485 \quad$ ", No. 1 ri
7
$28.2744 \times 8=\frac{84 \cdot 8282}{.7854}=108=10.892$, of No. 2
[11294.]-Dividing Metal Disc.-Let a bcabe the difc; draw any rading, as d 4. divide it into the mame nomber of equal parts as it is required to divide
the disc into; draw a semicircle on $d 4$ and arect per-

pendicalars from the pointe of the divioion to out the aemicircle from the points of interceotion of the parpendiculars and the samioircle ; denoribe the circles as
per Fig., which will give the required divisions.-G.F. H. [11294.]-Dividing Metal Diec.-Firat find the centre of the dicc. Per question, the madizs is 6 in. Then, as circles are to each other ns the squares of diec will bo-
$0 \sqrt{3} .6\left(\sqrt{\frac{1}{1}}-\sqrt{\frac{4}{4}}\right), 8\left(\sqrt{\frac{7}{4}}-\sqrt{1}\right)$ and $6(1-\sqrt{4})$ $=8,1-48842,963514$, and -ce0844 inches.
"Diec" has not epecifed what other divisions he wishes, so it is impossiblo to comply with his request in that particalar; bat perhaps the following may be aseful, riz. :- Having given the radins (r) to be divic
oqual parta, other conditions as per query :-
$r \sqrt{\frac{1}{n}} r\left(\sqrt{\frac{\bar{Q}}{n}}-\sqrt{\frac{1}{n}}\right), r\left(\sqrt{\frac{8}{n}}-\sqrt{\frac{\bar{Q}}{n}}\right)$
$r\left(1-\sqrt{\frac{n-1}{n}}\right)$.
-Jıs. Hastrie.
[11290.]-Ohemilosi.-Try black oxide of manga-neso.-ExCELE10R
[11296.]-Chemical.-I think "Forked Lightning" will find that mixture of sulphide of antimony and snlphur will answer his pu
and readily explosive.一J. B.
[11297.]-Spruce Beex.- Pour eight gallons of cold water into a barrel, and then bolling oight gallons more, pat that in aleo; to this add 121b. of molaspes, mith about half a pound of the ensence of sprece, and on its getting a little cooler, add hall a plot of good ale yoert. The whole being well atirrea, or rollod in the barrel, must be loft with the bung out for two or thatee dajs, altor whioh well corked up, and packed in as wdost or sand, bottled, well corked up, and packed in sawdust or band,
When it will be ripe and fit to drink in a fortnight. When it will be ripe and at to drink in a fortnigit. Remember that it ahould be drawn off into quart atone bottles and wired. If "Constant Reader" wishes, have a good recipe for white
spruce wine. J. H. GIIBERT.
[11298.]-Four.Inch Lathe.-The hole is inteaded to carry the end of a boring bar.-EORBKA.
[11300.]-Air-pumpen.-The atafing bozes of air panp may be packed with ootton that is well greaced with tallow, or intion number or laathar washers that they the rod and interior of the stanngebor tailomy; that shonld be previonaly dipped in melted tailow that
not hot enongh to carl them up. Both these packings not hot enongh to carl them up. Both these packings

 filaments of cotton being dramm throagh into the barrol. The largo piston has no packing at all, it is merely a 10 or 12 fine grooved tarned on ite surface to baffle the air should it try to get past it. The small piston may airther be made in the pame way or conaist of leather washers boltod tightly together, and tarned afterwards to at the bore. This makee a good piston, which lasts. \rightarrow long time. There is no ralro in the pipe that con. neots the two barrals, and thic is tho a coll famplifo in the whole arrangement, tonding not only to simplification, but matoriall was best result, as there is no impodiment to the iree pasdafe of the air. siomen's pomp has two barrels of rod, and there are five valves altogether. It has never rod, and there are ire rilros atogethar. by any theory be considered equal to the one I have
described. I hope "Laat" Will and these additional particulars of gervico. Any proportion may be adopted or the barrels, 1 lin. $80 r$ in Tor the
Turton.
[11802.]-Oiroular Brans Box Levels.-Oil is offentimes
Exczlesion.
[11804.]-Kremaler's Ammonia Tent.-Nessler teat for ammonis is propared thas: Add to a solution of mereurio chloride, a molntion of potacaio iodide, till the red precipinato Arst formed is nearly all liesolved. Then add large exceess of canstic potash; lot the mixture
stand in a itoppered bottlo for three or for daya, docant stand in a atoppered bottle for three or for daya, doannt
when clear. it gives a brown precipitate whon added
to a solation eontaining a salt of ammonia. This ennsists of $\mathrm{H}_{[} \mathrm{H}_{3} \mathrm{NI}$.) (From
Chemistry," page 217.)-G. H. A .
[11804.]-Nessler's Ammonia Test.-This re agont is an aqueous bolntion of putassic iodine saturated with mercuric iodide, and rendered strongl alium 3.5 grammes, mercuric chloride 1.6 grammes, water 40 c . c. Bolution of potash, a suffciency. Dis: nolve the iodide of potassium in 10 c e. of water ; the mercuric chloride in 30 c . o. of water. Add the latter to the former gradaally till a permanent precipitate is formed. Then add solution of potash till the frid measures 100 c . c., and fiter. As exposure to the air renders this reagent somewhat tarbid, therofore koep the stock in large bottie, whick only shonid be openic
to enpply emall bottle, which in kept to hold that which is in immedinte noes. This reagent added in exceen to a liquid containiog a trace of ammonia or ita melts, ascumes a brownigh tinge or brown precipitate, zocarding as the proportion of ammoniac componnd is less or more, tetramercuric diammoniac diniodine being
formed.-Hrames.
[11804].-Neaplex's Ammonin Teet-The beat way of making the Nessler tent is thie, whioh is beoc apon one of Miller's :-Dissolve afty grains of iodide of potasinum in a small quantity of hot digillied water. Place the ressel containing this solation in a watior bath, and add cantionely to it a atrong aqueors sola tion of bichloride of meroary, shaking up as it is added, so that ace fant as the preeipitato is formed it will be rediasolved. After oontinuing the sddition of the biohloride of meroury for some time, a point will altimately be reached at which the precipitate will ooase to dissolve. Whan this bogins, atop the sdaition of the bichloride of mercars, filter, and add to the solution 150 grammes of solia caustio soda in atrong aqueous colution, then dilate the liquid 30 as to make its volume equal one litre, edd to it about 50.001 a mataratod aqueous solation of bichloride of mercary, allow to sabside, and deoant the cloar liquid, which is the Nessler test. It is adrisable to keep a stock of the teat in a large bottle, which should only be opened to sapply a small bottle kept for immediate ase, as exposure to the air randors the Nessler test somerhat turbid.-J. B.
[11809.]-Breaking Strain of Hollow Iran Columns.-In long (i.e., in proportion to diameter) hollow cast-iron columns the breaking weight in tona is equal to

$$
42 \frac{D^{28 \cdot \gamma}-d^{38 \%}}{\mu \cdot 1 \cdot 8 s}
$$

where $D=$ onter diameter in inches, $d=$ inner diameter in inches, and $l=$ length in feet. The formala for the atrength " when standing at an angle" would be of no praotical nse. Who ever heard of an iron colamn being so disposed with reference to ite load 9-ExCELEIOR.
[11810.]-Logarithms.-Those are for facilitating calculations. By the addition or subtraction of logarithms of numbers the same purpose is served, as if plied and divided. Uge Chambera" "Mathematioal plied and divided.
Tables."-ExcsLsior.
[11810.]-Logarithms. - Undoubtedly the bent hand-book of logarithms for general purposea is that published by W. \& R. Chambers, in their edocational paries. It is a 7 -place table, and oontains, in addition to the asaal logarithmic tables, tables of the trigonometrical fanctions and their logs., together with a variety of nsofal matter (price 8s. 6d.). A amaller table, of $\overline{\text { bit place logs., containing the logs. of natural nam- }}$ of 0 -pineo the trigonometric fanctions only, is that pablinhed by Walton (Jamos). It is very convenient and smited to the pooket, and the logs. are readily tarned ap in it (price 1s. 6d.). It is anid to have been compiled ndder A . De Morgan's supervision. A larger volume of 7 -place logarithms, by Brulue, has juat been pablished (Williams A Norgate). prioe about 5s. Schion's tables, edited by De Morgan, are aleo very generally used, bat the work is large and expencive. I full degeription of the method of axing logan, *c., is appended
 A. B.
[11810.]-Logarithms.-I wonder Mr. Proctor has the pationce to answor many questions of this olace. Remember that he is an advanood mathomatiocian, and that logarithms are understood, at loaet as far an their
application, by any sharp schoolboy of sixteen. The application, by any sharp schoolboy of sixtoen. The use of the tables is always carefully explained in the
preface to each volume, but then the preface to any prefece to each volume, but then the preface to any
work is exactly what is not looked into, instoad of being work is exactly what is not looked into, instoad of being
made the anbject of careful reading. As to hyperbolio logs., I am not ashamed to any that I have not tho remotest idea of their practical application, which is in oonnection with the caloulus, bat I believe that the hyperbolio log. has to be multiplied by a cortain amoant -riz. It vould be convert it into a Brigus's or common log. It would be a very one-tided arrangement to give the logs. of numbers from 9,099 up to 20,000 , and to go no further with numbers of five digits. They havo, however. boen calcolated to 100,000 . I think the maniho-
matical tables at 1s., by Law, in Woale's "Radimentary matical tables at 1s., by Lam, in Woalo's "Radimeniary
Series," z very handy book, and it contaips fall Series," ${ }^{2}$ very hand
instractions.-J. K. P.
[11814.]-Poliahing Oak Floars.-The floor in Aret planed smooth, then amoared with beoswax discolved in tarpentine, and faally polished with shor rre stained before the was io put on, to give thoma are stained boiore the wax in put on, rather habotions work to got up a good surface.-E. P. Conkate.
[11814.]-Polishing Oak Floors.-Une the sol-lowing:-40z. beeswax, loz. cantille soap, boz. soff wator, 6 oz. tarpentine, 1 drachm borax ; pat into a jar and allowed to remain till diseolvod.-Exoecator.
[11814.]-Polishing Oak Floors.-Polish your oak floor with the
[11317.] - Eugar Boiling.-The renson of the sugas arambling after boing boiled is eithor too little aroam of tartar wes resed, or your covor does not fit your pana. The corer should be without a rim and kept on the sagar lor ton minntes after it boila; if you road and practios with care the reaipes I have aent I do no in mint jounhions are a portion of the sangar palled on in mint oushions are a portion of the angar palled on
a hook uatil white, than doublo ap until even and a hook uatil white
rogalar.-L. W. D.
[11318.]-Gravitation.-"C. W. H." is midaken in tapponing their masses rall with valooines pro littlo to do with it in the case of torrestrial geavilation the proportion boing thet of the joint maee of the earth and attwated body. The deacer the body the moses rapid it will fall, aimply beoanee the air resieste it only to the same degree that it would a substance of the name volume bat loss mass, whilst the momentam, bo not the valocity, of it is greator than that of acities being attribatable to the reaistanco of the air, of courne When the roniftanco in remored the volocitios are equal. - G. F. \mathbf{H}.
[11818.]-Gravitation.-1. The meroury in an invorted thermometer would have to alter itz forman 0 mach, and take so much more longthy and narrow : Igare bofore it could descond, that, even suppooning the racoum porioot (which it raroiy in), its conedion seen it in the comproter form, and so nuepond its smal weight in the balb. 2. Apart from reaistances (a) friction and air), because the weights of bodies are proportional to their massen, gravity (at one places given thom all the same velocity. Δ pull of a pound can only give to a poand of matter the oxaot velocity that a pull of a grain gives to a grain of matter. Hono both fall together whon they have oalr hemselvan to move, as in racuo. It is very diflerent whan the lighter thing has to displaoe (and raise) porhaps hal its weight of air, and the heavier thing not a thou anndth of its weight.-E.I. G.
[11818.]-Gravitation.-The fact montioned by "C. W. H.," in the opening sentence of this query, operates in nowise to the prejodice of the theory of gravitation. The phenomena was observed in 1792 by Haggens, and is evidently a resalt of the adheaion of the mercary to the internal surface of the capillary tabe. The "gainea and feather experinaent " is bortainly capable to demonstrate the "contrary effect" which obtains on removing the resistance effered by the air to the motion of bodies (differing in density) When falling by the attraction of gravity. The resistance of the air is proportional to the sarface which the body presents in the direction of its motion. Now the guinea not only may present a amsller sarface than tho feather, bat also the force which it exarts to overcome the resistakice is many timese greater, becanse of its greater donsity, than io exerthe by the feather; ergo, the gnines will reach the earth's surface before the feather; remove the renistance of the air by allowing the bodies to fall in racno, ana grinos and feather will fall towards the earthnal to the with equal rapidity. Atitraction is prop the distanoes of miferent attracting bodies bo the same); ergo, the attraction exercised by the earth on a goinea boars to attraction oxercised by the attraction exercisad by the earth on a feather the the atiraction exercismd by the earth on a heabear to that of tho they fall with equal rapidity.-A. J. V. G.
[11821.]-Galvanometer.-Although this quary is addrosed to "Sigma," I have taken the liberty of attemptiang to renty to i. The examiner doubtlees refers to a method, due to ' Melloni,' dosaribod in his own work (where the querist will "ind it at ine
ond of the toath chapter, I bolieve)"On Hoak," het ond of the tont
edition.-A. B.
[11834.]-Salt Damp in Walls.-Unless "W. M." has particalar reasons to think that there is calt in the sand, he may be sare that it is not salt, but saltpouro; ho may convinoe himsoll by throwing a little on the fire, when he will nee little stars sparkling. The cause of this is dampnesa from hiquid manare, although at
some distance, outside or ander the wall Sabscriber who appreciatos the Mrciensic." The scale of the Lieblich Godect varies in different instances, but the nesal dimenaions are CC $=3 \mathrm{in} . \times 2$ 3-19in. Tenor C $17 \mathrm{in} . \times 1 \mathrm{gin}$. Middle C 1 inin. \times zin. Treble $\mathbf{C}=7 \mathrm{in} . \times 7.16 \mathrm{in}$. It will have to be eet out in the manner deecribed by
" J . D. for the stopped diapacon, to get the other notes in the octave. The lowest notes should be of i pine, the next 2 or 94 potares of tin., and the remaninder of din. stafl. The hoights of mouthe rary with the pros. oure of wind, bat for 8 in. are generally aboat one-hal the width of the pipes, diminishing to absat one-thirr in the treble. The salicional scale depends upon that of the open diapesion, the tenor \mathbf{C} fitt. of the focmer being of the same diametor as the midaving virc af ehort cylindrical trbes; in consequence of the small acele the length is little more than half of a fall scato trumpot; for it is a notioceable faot that Whareat, in
fue wart, the inereme of scale reduces the length of
the upeaking part of the pipe, and vice oersA, in reed pipes it is juat the reverso. Tha Cremons is now frequently placed in a box to subdue tho reedinese
harnhness oommon to this stop.-E. F. Coxrate.
[I18s4.]-squinting.-I would advise "G. W. F." o procare a lettor and take his little boy to one of the ophthalmio hoepitals in London, where by undergoing an operation ho would be onred. A.friend of mine was quito cared by 80 doing.-J. Chambrehains.
[11884.]-Sturinding.-Spectacies having black aned glasses (perhaps metal disas wonld answer), with remedy for this defect in viaion.-J. G.
[11884.] -fquintine.-Bquinting frequently aricee rom the unequal strength of the eyer, the weaker ey boing trarned away from the objeet by the fatigue of exer tion. Cases of squinting of long atandiug have oftem been cared by covering the stronger eye, and thereby
compelling the weaker one to exertion. "G. W. F." compelling the waaker one to oxertion.
could try the above with the littlo boy.-R. T. S. S. D
[11888:]-To Fr. Tonkea-Mey I aks what is ' S. J.'s"' deanition or idee of what is expreased by the ugn 0 in mathematios ? It does not rignify what wo number. Since then, 1 is, at any rate, an appreciable amber, it mast be an infinite namber of times grenter thase 0 , or

$$
\begin{aligned}
1 & =0 \times \infty \\
\therefore \infty & =\frac{1}{0} .
\end{aligned}
$$

Or, again, since 0 is an infinitoly small quantity; its reciprocal muet be an inftinitely large quantity-i.e. must bo $=\infty$. Again, how can "S. J." make $\infty+\infty$ $=2 \infty$? How can there be number which is $>$ in unity? "S.J." is juatiliod in writing-
and $1: 0: \infty: \infty: 1$
But he eminot writo-

Since, if we sllow 0 a value on the left-hand side of he equation, it is only fair to do the sameon the right cenrot therafore mitte-

$$
\begin{aligned}
& 1: 0:: \infty: \infty \\
& 1: \infty:: 0: 0 \\
& 1: 0:: \infty
\end{aligned}
$$

 Grixs.
[11886.]-To Mr. Tonkes.-Perhaps by the time 8. J." has mastered the following ho may be shle to comprehend Mr. Tonkes :-

$$
\begin{aligned}
x(x-x) & =x^{2}-x^{2} \\
(x+x)(x-x) & =x^{2}-x^{2}
\end{aligned}
$$

-Excelsior.
[11897.]-Equation.-It is simple enough to those Tho understand it, bat to solve it requires more date than is given on 9.25, No. 965 . To render it maore simple sigon an ord

$$
\begin{array}{ll}
=a+(n-1) \times d \\
\frac{s=(a) \times n .}{2}
\end{array}
$$

By formala (1) $l=$ a plas n_{1} minus 1 , multipliod by a By formala (2) $S=a_{1}$, plues l, maltiplied by m, and by 2.-Tubal Katr.
[11887.]-Equation:-

$$
\begin{aligned}
S & =\frac{(a+n) n}{2} \therefore \frac{2 S}{n}-a=l . \\
l & =a+(n-1) d=\frac{2 S}{n}-a \\
2 l & =\frac{2 S}{n}+(n-1) d . \\
l & =\frac{S^{n}}{n}+\frac{(n-1) d}{2} \cdot-\text { Answer. }
\end{aligned}
$$

Thetamt, Horahman.
[11338.]-Marseilles Soap.-This is an oleomargarate of soda, produced by boiling an aqneoas solation of canstio soda with olive oil. An analysis by Braconnot gavo:-

Oily acids	68.40
Soda	10.24
Water	21.86

-W. W. 100°
[11839.]-Astronomical.-It is not true that 365 colar dayn are 368 sidereal days. It takes $365-354$, co., solar daye to oquar 366-254, do. (the bame exac (ruction) sidereal daya. - E. L. G.
[11811.]-Colowing Photos.-Lick thom. Yes.
[11848.]-Meteore, Cometa, \&c.-Perhaps 1 shonid have said "of the earth" bat if Whiston could have shown our globe to have been originally a comet, andosbtedyy the other bodien in onr syatem mant have been cometra aleo. Whiston'e rathor abeurd theory Nomahian delago.-M. P\RIs.
[11858.]-Distilled Water.-Distilled water is che whijeh by distillation has been separatod from al
therefore, peeuliarly adapted to all delicate chemico processes, such as electrotspe, photography, analysis, dc., Where the introduotion of imparity would de teriorate or falsify the results; but it is not adapter for drinking, so it contains little or no air, and hence ther ria and aisagreenble to the palato. For some tur on Chemistry," page 578 , Vol. XIV.-8. Bottonk.
[11367.]-Berlin Blach-This is identical with Branswick black, for which I gave a recipe at p. 442, Vol. XIV. That reeipeis excollent. Should " Rexistor requiro more information, let him road "Larkin's iron and Brass Founder," where
[11858.]-Pressure of Water.-"Templeton" says the side of sny veesel con Waining as fluid sustain" says the side of smy vessel containing a fluid sustaing
a pressure equal to the area of the side, multipliod by a prossare equal to the aren of the side, mainiplied by
half the depth. Than, suppose each side of a reseal to be 12 ft . long and 5 ft . deep, when filled with waier, What prosere is apon each side?
$12 \times 5=60 \mathrm{ft}$ tae area of side
2.5 ft . $=$ half the depth, and
$62 \cdot 5 \mathrm{~b}$. $=$ the weight of a oubic foot of water

I wonld engyest to "R. Irons" that if a pipe of any horo, no mattor how mani, bo ativehod to a tank, the in proportion to its height 20 it the siden of the tank in proportion to its height 28 ir the siden of the tank
[11360.]-Sun's Dealination.-See "Altair's lettar.
[11861.]-Preserved LIeat.-The reason why the snds of the ting are concare is beonase of the vactum produced daring boiling and subrequent cooling Hence, the atmosphere prosses with a force of aboa 151b. to the square inch on the surface of the tin and thas prodaces the concavity--S. Bottone.
[11867.]-Magnesium Iights. - The most effectual and satisfactory mode of producing these lights is by barning the wire or ribbon in a lamp expressly made in which the wire or ribbon is fed through the made of and our leading philosophical instrument makers sapply these lamps.-S. Botrons.
[11870.]-TReotrical.-Tr this cace the tongre aots the part of the liquid in the coll of a battery, and the copper is the nogative plato, as it is in the cell, though the wire from it is the positive pole externally. siam.
[11878.]-Killing Beotios.-1. Place them ander a wineglass, in whioh a few pieces of blotting paper moistened with a caturated solation of oyanide o potassinm are laying. This is a painless mode. 2 Throw tham in boiling water, and dry on blotting paper. 8. Immerse them in a solution of oorrosive
sublimate in alcohol. I always use the first method both for Lepidoptera and Coleoptera.-S. Botrons.
[11378.]-Killing Beetlee.-Pin them by one pin with their backe downwarde tiphtly to a large cork when in this situation open their mouthe with a ben needle, and let a drop of the atrongent rectided spirite of wine fall into it from the ond of a quill or smal feather. For the amaller beotlee boil some spirits of
wine and dip them in for an inateant, and afterwards dry them carefally in an oven.-FANTAIL.
[11381.]-Rhumkorfs. Ooil.-The number of of coperas A bort teo to six Banene coupled in sarice are oommonly used.-SigMA.
[11382.]-Parrot.-Let "Cygnus" give "Polly" pills oocasionally of bread-pacte and cayenne pepper, let her have plonty of fresh air and sunlight ia little fruit now and then will do Her no bimrm; cortainty keep all fats aud animal food amay from hor. She ghoold also have plenty of fresh water, not only for drink, but for the bath, of which she will gladly avail hersolf. I had a fine bird whioh used to moalt all the yoar roand; before she came into my poasesaion she never had any sail to show worth spealidigg of. She was than fed from the dinner table with any food the wonld teka. Whon I gnt her she never had angthing but bread and milk, 2 little frait, not too mach hompseed, and abondanee of water. She never monlted again in the eight yoari I had her, bnt had always a splondid plumage and tail Poor "Polly" was shot once in both wings, one of which was broken, she having been out all one night $"$ on the spree " miles away, bat she sarvived this acci-
dent by carefal nursing for sevaral years, only to be dent by earefal narsing for bovaral y
poisoned by burglars.-Gsomaz Berk.
[11897.]-Sundisle.-No sumdial could poosibly pire correot indioalions for any other hour than noon, either by rotating it on a pirot or adjabing the gnomon vertically, as the fundamental principle of all sundials is that the twelve o'cloct line mist be troly in tho plane of the meridian, and the elevation of the guomon equal to the latitade of the place. The correotion for the equation of time by the tables is far simpler in appliance than any "setting" of the dial conld be, wore it even pomible.-George Brll.
[11898.] - Ketallio Harmonicon.-This is only toy, and is of no service to the masician. An instra-ment-in which are vibrating metal strips in connec ion with key and hammer aotion-hae been lately reived ty Messra. Cramer $\& C O$., under the name of the "Bell Pianetto." This is really a usefnl little in. trument for practice, and as its tones resemblo trongly those of a harp it is agreasble as well as useal. A patent for this instrnment was takea oot towrords the latter end of last centary, so "aive
reed be ander no appreheasion il he make ove for
himself. If he can aall on Mesmrs. Cramor he oan see the constrnotion ; if not, let him write again and I will give details.-s. Bortonz.
[11398.]-Giniging of Bees, Hornota, and Wasple.- Strong brandy or spirits of wine; elae Hinegar applied with the finger or azall aponge. $\mathrm{F}_{\text {antail. }}$
[11400.]-Pedals for Planoforte.-If " J. W. S." will call on Messra. Broadwood and Sona he will see what he is to do to get the desired reealt.-A. Bortons.
[11408.]-Gas.-It is obtained from the company's maing, and is led by a hose into long metril distorns on he top of the cars, where it socumulates under con siderable pressure. From these cistorne it pason into is empty or fall, is pleced on one aide af the car.- B is empty
Bottons.
[11405.]-Purifying zinc Wire.-Thic wire should never be uned ' Jr a battery. Mercury does not purify zine at all; it amalgamates it, Puro sino may be obtained by precipitatiog its sulphate by an alkal, mixing the oxide thas prodiced with etharcon. powder and oxposing the mirtare to a bright red heat in covered cracible, in which the pare motad. wh be foand as a button at the bothem when cold.-G. Botrons.
[11410.]-Geometrical Gueation. - The sidee $A 0$ and A B being equal, the angles A and B are there ore equal. heing equal to $\mathrm{A}, 180$ - 2 A , the half of which is $90-\mathrm{A}$ The triaogle D A B belog right-angled at D, D AB is
 qual to $180-90-\mathrm{B}$. Bat o angle B boing oommon tho apto $C A B$ is hareore $D B$ is parar to
 $180-60-A=80-A$, which is shown above to bo the the eide B C hat to be produced, the same reacozDor O.-George Bele
[11410.]-Geometrical

a iconcolestinangla, and lot ΔD be a linedraina perpeo. dientar to B O. An all the agoes of a triangle are and alno that tring which too orgal to them. refore the anglee A D B, D B A, B A D are together年ual to the angies \triangle OE, OEA, CAE. OI these $C E A$ (angles at the hagie C A E is equal to tho anel the re maintog angie D A B is equed to the remaining anglo $\Delta \mathrm{CE}$, which lattor is half of the angle \triangle C B: There ore the line A D desoribed right anglee to B D forma with the line $\triangle B$ an angle equal to half the to th the sesereperio illantrationam. P. R.
[11410.]- Goometrical Quewtion. - "Underradante", T. Odgor Pholpa, "S. M. B." H. D. Mead Areowmith, "Just Promoted," ead "E. L. G." havo dee amemred it this quecy.
[11421.]-Photography.-Coat your piate with collodion:- let it " set" " nntil the bottom edge takes the mpress of the Anger proased against it, withoet atiokll oily atreaks have dis.
 come out woll without eny logging? If it doen, wahh it in a rery gentlo strenur of water: Fix it, by impersion in a satarated solation of hyposulphite, bat do no leare it ten minates. As boon as the creamy iodide is re moved, withdran the plato, and wash again carefnuly in gendle stream of water. If your pioture still comes away, jou may be sure of one of three things. 1. Your ahemionle are impare, or your glasses dirty. 2. Your collodion is made with bad gan-cotton, and is what is technically called "rotton." 8. You waeh too heavily 30 as to carry off the film bodily. I should be inolined to think, frome the "mottled" appearmance, that dirty glanes lio at the bottom of all the evil_-8. Bortons.
[11422]-Night and Day Temperature.-If "A. E. S." Fill hang out a minimam and maximum registering: thermometer, he will soon ene how much Irach there is in the assertion. With regard to winds, I am not in a position to say anything positive ; but from personad observation, I think that winds are rather
more preralent at night than in the day.-S. Borrons.
[11427.]-Desreen in Ohemiatry.-Read. mark, learn, and inwardy digest, the centents of Roscoe's and Barfi" "Chemistry." In the latter
ers from 1885 to 1871 ,
[11489.]-Ferns
give a littlo n
iuserting a we
drainago to t
[11434.]-5
Water, strain
Thia is a vel.
Thia is a ve.

UNANSWERED QUERIES.

The numbers and tillet of quorice onioh ramain anancooved for foe weekse are incorted in thio list. We truet our readers will look over the list, and sand what information.
Slince our last "R. O." has answered 10776;"8hswLorth," 10889; "8igme," 10829 10988 Electric Lamp, p. 697 1094 Plan for Setting Retorte, 50 1094 Porthand 8tone, 607 10946 Joinera' Tool-cheet, 597 10951 Applying Goldleal to Silk Fubrics, 597 10958 Modal Boiler, 597
10900 Btraightenlng Tinned Wire, 597
10968 Braying Fishing-rod Ferrules, 597
10935 Racta and Pinions for Teloscopes, 597
10970 Porking and Sealing Bottles, 597
10975 Aratralian Meat in the Royal Navy, p. 698
10976 Tartan of Clan of Sir R. Marchison, 59
10984 Lapidary's Developing Solution,
10988 Midew In Old Engravings, 598
1009 Economy in 8team Power, 698
11007 Roman Sopulchral Ineorigtion, 698
11008 Thlt Hammer, 598

QUERIES.

[11487.]-Sash Tool Handles.-By what prosessare the handles of painters' gagh tools made i-Sinpletox. [11488.]-Temon Marinalade.-I shruld feel very much indebted to any of the readers of the KEGHANIC, Who would tell me how lemon marmalade is made, and also vege
Emipzn.
[11s89.]-Cost of Chamber Sulphurio Acid.Will Mr. G. E. Davis have the goodness to inform me the cont of manufa
[11440.] - Double Bass and Violin Btain Would any correapondent be kind enongh to give me the kind of rood beat suited to make one? Would good eolocted yollow pine make the breast or does it require cod utain for a violin-reddish brown or wny other good oolour? and oblige-Bexsom:
[11411.] - Dyeing Cottoin Thread Jet Black for Poltahing, Can any of our readers inf
[11442]-Old Wiven' Boience.-Oan any reader of ours" toll mo whet is the reason that if the wun shines apon the ture it pats it out $9-A$. Liverpool.
[11448]-Warming Greenhouses,-Win "F. T. B." pleage inform me how he usen his petroleum lamp to
ceep the frost out of his greenhouse? (Reply to query reep the frost out of his greanhouse ? (Reply to query 10063, page 419, Vol. XIV.) In there any plping to oarry plants at all P-Arxiove.
[1144.]-Buratinf of Compreased Air Rocorrespondents on the following:-What would be the efreot of the bureting of an air recoiver (eay for axample s0ft. long, oft. diametor, and made of in. boller plate)? Would the recatvar be merely lald open, allowing the compresed air to axpend itsel, whenout damage, or would it be socompanied by the disastroua results ugrally attending the explosion of
[1146.]-EMeotrical.-Wonid Mr. Tonkes kindly give me a lithe informan il wh to make a medioal coll poweriul enough to aroot three porsons when thei hands are joined. I propose to make it ang ionows :The paper znbe to 16 ootton oovered, wire for primary; seoondary, 6 layors of 28 with a further length of No. 38 , soldered on. Wiil Mr. Tonkes kindly give me his
opinion on the above coil, and say how am to insulate opinion on the aboverly ? J. H.
[1144.]-Emall Coil.-I wish to construct a shocking coil mmall enough to carry in the waintcoat pocket, battery included. I have tried hitherto, but without anoceas, as I make it too bulky owing to bad arrangement of the difierent parts. Will some of onr electrical contribators oblige by giving me fall ingtractions for ABxIOUS MECHAMIO
[11417.]-Blundered Coin.-I have oopper halspenny of Charles II, With \& blunder in the talo, which Carole." Has any brother oolleotor mot with a slmilar coin 2-Moserth
[11448.]-Ohronometer Balance Spring.-Would any of your horological correspondentes tindly give some information on the nteel chronometer balance apring in had unless one gives a good price for them. I have a lever watoh which I gave 86 ga . for bome eight or nine months ago, with a chronometor balance apring (at loant I Was told so), and it has never yet kept good dime. Also what effoct will dampness have upon the balance? Also wh
[11449.]-Angelet.- I have in my possession a gold coin, which seems to be an angelot of and find any deseription of it in any work on coling. On the obverse a ship with the titie, do., Jaco. In.
 sond. Dro. GLonis. I am sorry to nay it is muah worn, and pierced in two places, and
condition but 80 grains.-Mosmra.
[11450.]-Adjusting Equatorial.-In adjusting the eqnatoria "that the pclar axis may be piaced ai the altitude oi the poie, sacoraing to the ruio given oy the decination of nome favourably aituate star be obtained, and compared with its declination given in the
Nautical Almanac. An example is given, © Urse Minoris
being the star selected. Reforring to the Nautical Almanac for the present year 1 ind the apparont position of this atar (given at p. 871 for the npper tranait of
Greenwich) for this day is $82^{\circ} 14^{\prime} 17 \theta^{\prime \prime}$. My poaltion is Greenwich) for this day is $82^{\circ} 14^{\prime} 176^{\prime \prime}$. My poaltion is
mome degrees ($2^{\circ} 21^{\circ} \cdot 23^{\prime \prime}$) north of Greenwich. Under ome degrees ($8^{\circ} 21^{\circ} 23^{\prime \prime}$) north of Greenwich. Under the oircamstances should Inot apply a correction to the latitude ? and if so what correction should be applied? I make the inquiry since no mention of any correotion is made by Chambers or in Loomis, where the came rale is given.-LayRoot.
[11451.]- Weight for Bafety Valve-I have made a safoty valve for a boiler, and have tried to work out What Weight I ghall require for that valve, and the dir tance to place it on bar, but I oannot get it ight. My
lever from A to B is $16 i n$. ; weight of lever, 12 foz. ; weight required to balance ditto at A, 1 lb . 140z; walght of ralvo, 703 . diameter of valve at H , 1 itn. ; distanco and what distance I sm to place it from the fulorum A to blow off at 851 b ., 801b., 851b, and 401b. PDR N 4 YLER.
[11458.]-Rain-water Tanks, I am about to confall of the roof of wator-tank to avoll be greatly indobted to any one of experlence in such constructions for advice as to the best method of building them, the section of bottom and sides, and as to the cover. My cistern should contain 1,500 cuble feet. I have clay, atone, and gravel for concrete, bat no brick. How is the connection best mand
how is it to be cleaned out ?-Rosso.
[11458.]-Baturn.-In looking throngh some foraign observations of Saturn, I find it gtated that the ball of
Baturn has been observed. Would any readers inform Saturn has been observed. Would any readers inform Almanac is for the ball or the ring of Beturn 2-Winhian Hutcema.
[11454.]-Commercial.-I occesionally find E \& OE, writien at the loot of a bill or account to the left hand corner;
of it $9-R$.
[11455.] - Daisy Extractor. - Can any brother reader of the Mecianic inform me how to make an im. plement to extract daisie
drawing 2-F. T. S. S. D.
[11456.] - Saw Sharpening and Gulleting Kachine.-Can any brother reador inform me how to make the above machine, to be driven by steam?
I want it to sharpen circularssws and pit maws, with a I want it to sharpen oircular sa
drawing of game-F. T. B. S. D.
[11457.]-Motive Power for Amatewre, -I send drawing of a saw bench I am Atting up, and which almost explaing isolf. It will be seen that tho long bar, P, which is suspended irom the rool. ats as a pendulum, requisito movement being given with the handio H. This peadulum works a lover hinged at the bottom; on
this lever is the allding part A whlch can be fixed in any
position (on the lever) by the thnmb screw. In this manner the swing of the pendulum is regulated. Could any reader tell mo if it is possible to arrange a system weights so as to work a ratchet wheel in connection rould swing thendulam (same as If this is pos ible "there is the motive power for amateurs." I should like to know of any improvement to the above.ZOO ANDRA
[11488]-Carmine Staining.- Should this be done a sections of animal tissue immediately after cutting or after the meoeration in glycerine, and when in case of
the use of re-agents ? Does the same answer apply to seotions of vegetable tissue? -Imtrerogator.
[11459.]-Printers' Ink. -Instructions for making the finest dark blue and red inks, for ball programmes and fancy work, would be very acceptable. The common colours run too light-W. J. H.
[11460.]-The Bee Eive.-Mr. Abbott, at p. 19, recover except when under observation, as they are dan gerous things in a house. I wish he wonld be so kind as to explain the particular danger, and huw to avoid it. I have a hive in a conservatory with entrance from the tory, apparently trying to enter the bive, and some of tory, apparently trying to enter the bive, and some of
them died before I could pick them np and carry them to the hive entrance. Is it probable that the bees were really trying to get into the hive when they saw it ? When we covered it over with a cloth fewer bees came Into the conservatory, but I am not sure that that was because the hive was hidden. They made very Uitile honey lat jear, iowers belig scarce mereabate. In live Gardeng Kensington, about haif a milo irom Kensingto tances too far for bees to fly for food \%-PHilo
[11461]-Reviving Black Cloth Coats, EcWould some of your correspondents give a reaipe io
reviving black cloth costs, waistcoats, \&c. ? I have tried solation of carbonate of ammonia and dilute apirits of hartahorn. These remove groase, \&c., but leave the cloth of a whitish hue, and when a trife threadbere, make it look worse than bofore.-A. Desporme, Dublin
[11482.]-Steel Flardening Paste.-At an exLenaive machine works in Lanosohire a few weeks ago. sam the turning tools and drills dipped red hot into a patent red paste. The blacksmith sadd this coollng or it was improved all toole belore tempering, and that could get, pahall be pleased to learn more abont this red steel pasto.-A. B. C.
[11463.]-Working Engines.- I have two twelve-twenty-four horse donble tubed Cornieh bofler-one of the ongines (only) working three or four days in tho week the other aliddays Is there not a great loss in fnel by vorking with the oue boller? What should I save by getting a separste boiler to each engine? A reply irom any of your numerous readora will mach
[11464]-Spring Beds.-When I Hiod in Paris I used to sleop on a bed mado with metal springsy whioh required no mattresn or feather bed. Is such a bed to be got in London, and where 8-A8socute.
[11465.]-Problem.-Two traing 98tt, and 84tt. lonz ralls in opposite me with uniform veloaities on paralle ralls in opposite direotions; they pass each other in 1 , velooities being the same as before, the faster trais passes the other in aix seconds; find the rate at which each train moves.-Poszled.
[11460.]- Vermin and Pigeons.-Can "Jack of o destroy vermin in pigeons and pigeon houses, slso, Which kind of food is beat for them, and what amoant ought to be given dally to each bird, and would camphor prevent the nits and leas breeding in the nests? -
[11467.]-Tests for a Telesoope.-Would our obliging "F.RA.S." kindly furnish me with a fow tests for a 4 fia. With-Browning reflector of Bft. focus, also tho inenrotical dividing, and light-grasping power of the
Bame. For pioking ap the teits I have Mr. Proctor's new atlag-A. L. B.
[11488.]-Observation Book. -Will some kind astronomioal friend tell me a good plan for an observeI could rofor withoat troable to any observation before made.-A. I. B.
[11409.]-Air and Warmith.-How many cuble foet of air spece should a dormitory oontain ? And what his room to ?-Assoolltre.
[11470.]-Pooket Barrel Organ.-What is a pocket
barrel organ, and how is it constructed ?-R. B. F. [11471.]-Bow.- Would any reader kindly toll me the bent kind of
-Arcerza.
[11478.]-Plaster of Paris.-I read and hear that

it solldilies and becomes a hard and wolld mess; bet When I try to use it. it crumbles down almost by this is, snd how I may correct it ? Also, ought it not to allow of being placed in water without softoning again? for it is, as I read, need instead of poroas earthe
vessels in Danieli's and other batteries-C. B. B.
[11473.]-Weak Voice.-Will some kind reader inform me of the best means of strengthening the lungh and whether milk is a good thing ?-Foxd or Buranse.
[11474.]-Botanical Bpeaimens.-Can any one ip form mo what is the most convenient and effeotral
[11475.]-Artifiaial Butter.-Can any of your readers inform mo how this is made? I beliove s patent whs taken out for it in France, in 1870, and also that it
was made regularly in Paris during the aiege-A 8 us. Was made
sCRIBRR.
[11476.]-Pattern Making.- Will "Jeok of Trades" or any other kind subscriber tell me of eo good book or books on pattern making ?-Deluta
[11477.]-Iamplough's Pyretic Saline. - Will some of our chemical friends kindly give mo the result best of my ability, but being a beginner, I ahould like to know how near the truth I am.一H. C.J.
[11478.]-Bilver Bath.-Will some one please tell me how many plates (oarto do visite size) 8oz. of nitrain
of silver solution ought to be sufficient for ?-F. C. O.
[11479.]-Tempering Cutting Tools.- I have A quonld esteem is a favour if any one could give me seme little instruction how to heat them in a lead bath to prevent oxidation of the lead, or how to construct a leed bath on the best principle; also what plan 1 am to sapp to tomper them in an oll bath heated to about
what oil i had better ase.-As ORD Sobsoribera.
[11480.]-Model Steamboat. - I have a [11480.]-Model Steamboat. - I have a manll
double-acting osclliating cylinder. Can any one fell double-acting osclliating cylinder. Can any one iell me if it would be able to turn a small pair of padios about 8 jin . diameter? Could any one also give me in.
struotions how to out out a model steamboat, as small a cize as ann be mede, with a cabin three inohes doep, ghowing the shape at dirorent parts by diagrame ? how
much lead ahould bo put on tho koo, and about how much woald it cont?-Dertiove.
[11481.]-Organ Building.-To "J. D."-I have got
 pipoe. Does it matter is the wood pipes are placed quito alose to each other, both sidewaya and back to back ? 1 your valuable papers otherviso I, pith naninio more rery likely, ohali' be thrown on'my beam-ende. I shonid Hise to ask a number of questions concerning my work, bat I refrain from tronaling yon, as I
doubi you wil oxplain all before long. ALIPR.
[11482]-Algebra.-I ahould bo glad is any of your readert would work out the
cannot arrive at the answers :-
-Pozemid.

$$
\begin{gathered}
x: y=z: t \\
x+t=14 \\
y+z=11 \\
z^{x}+4=84020
\end{gathered}
$$

(11488)-Dyeing Parchment.-Will any correspondent bo hind enongh to give me the following informa. tion? How can 1 make some good colours 88 dyes for bloe are what I sm in need of most, which mast not be affected or changed by coming in contact with water, oil, or grease. Also, give the method of applying the

[1484.]-MTanures and Their Values,-Can any, caltaral chemistry where all the different kinds of manuro arn tronted oi, as weil as their relative value and diferent effecte on the soill Also, will some one say What would be the best way this time of the year to crop apiece of ground of four acres? The whole thing is
almont now mo me. I have not any manure. I intend to rort on the smail farm system more than the gardon turnips or mangolds, and a amell portion of wheat and cabbeger. I intended to keep a cow or two for the there any manures that would do inotead of fermyard manure? The land is onily of moderate qualify.
[11480.]-FINorentine or Brown Broneo.-Will Hindy toll me if any of the bronee mentioned on p. 642 Vol. IIV query 10861, will do for tinwork, or one that
[11486]-Arithmetical Question.-A settler in the Frar Weat beginning his ballding had the misfortuno prepared two rods of 6ft. and 71t respectivaly theze alde only he measured the length, breadih, and rarious proportions (ln foet) of his log-house. Pray, how
did he nocompliah this, being uraconainted goometry? The log-house was 4885 . by $288 t$, and 118 f
[11487.]-Proventing Rust.-WII any of you readers inform mo how to provent iron from ruating tallow and oll with no good result. No paint allowed. 0008Tatind
[11488]-Coating Wooden Conorete Moulds. proof mastic. I have pat ap a boiler, and shall try it. now want a rectpe for coosting wooden moulde in whith witharaw the monids sooner than I can when the concrete is in direot contact with the wood. I have tried unseed oul, bat it discoloure the cemen. Wil any oi the gums, such as shculac, copal, dc., dissolved in spirit,
form a oonting to which the oonoreto will not adhere? Kroda Bux
[11480.]-Weight of COattle.-Will any correapon dent be kind enough to give me a rulo by which I can mont? Problem: A farmer bought a heifer calf, which at three yeara of age began to breed a heifer calf every jear, and the whole Lsare at three years of age commenced to breed heifer calvos in like mannor. Required,
the number of the farmer's stock at the eni of fwenty the number of the
years. - SHEPMERD.
[11480]-Dampy Level-Will any brother reador tell me what is wrong with my dnmpr level, ard hom to rectify it ${ }^{\text {I cannot get the air bable to remain in the }}$ centre of its run during a complete revolation of the

[11491.]-Kid Dreasing-Will anmo one be good enavgh oo inform me how I can restore kid skins that
have beon once dressed, bat are now gone rough and brown :-J. R., Leicester.
[11402]-Carbonic Ink Paper.-Cnn nny of your made? T-TELEGEPPE me how carbonic ink papor is [11489.]-Indiaru
jour sabscribers kindly inform me how Will any of the sdhesive solution for repairing the seame in the above? I have had one in wear for anme time, and now the seame are giving way, but otherwise the cont is very
good. W . P .
[11494]-Utilising Slack. Will you oblizo by requeribe the me of your talented correspondents to de "patent fuel" (a mixture of sinck and fine coal), with n doicription of the ovens or furnaces in which it is pre-
pared 4c.? Or in there any work published where the -11405.]-Double Oscillating Bteam Cylinder. tin. diameter. It is supplited with steam from a strong
 splrits of wine. I annnot make the steana raioe the
plston. In the canse from the ptonm not belng strong piston. Is the canse from the ptoam not belng strong
onogig, or is it from the differout parta of the ongine not Leing pat together properly? Would two hrass tutes
put througt the boiler increaso the power of the steamin? put through the boiler iocreaso the
sLociDask.
[11498.] [11498.]-Lotion of Hydro. Sulphate of Sode-
soda is prepared? Does it destroy organic tissue $9-$ omitted.? - ED.
[11497.]-Removing Oil Stains from Billiard Cloth. -Is there nny way of removing colza oll stain ELFIKLD.
"[11489]-Re-'Scaping Ola Verge Wheel.-Wm hand sect hand say which is the best
wheel by hand $9-$ B. JAMEs.
[11499.]-Zymotic Diseases.-We are told that overy particle composing our bodios is removed and roled to sappose that ímmanity frotim second attack of disease like small-pox is owing to the frat attack haring exhansi
Parrs.
[11500]-Welding Cest Iron-Would any rellow abacribers inform me how I may weld two pleoes of cast ateal together?
recipe or twa-Dravil
[11501.]- Frhalations and Consumption. the nowepaper extracts from medical reports of the decrease of consumptive onsea in loonlitios where the garfece moisture is rapldy y arrried ofl by good drainage. It would be interesting to me to hear why this is so, and What erfect exbaing water has upon the haman lange.
It has also occurred to me that it might be found by it has also occurred to me that it mipht be found by a
party of
reason that tha evnporation of water from paves in close rooms was injurious to persons of delicate atoves in close rooms wis
chesta.-Consubirssis.
[11502.]-Stair Noses-What is the best protection for of brass, and also slips of lead fastened to the nose of the atair, but probably this wonld cost as much as a new stair covering. -R. \mathbf{H}. P.
[11503.]-Wollaston's Differential Barometer. - Woand some oorrespondent describe Wollaston' mine the dranght ming the draught of obimneys? A sketch of th
woald make it easior anderstood. V sNTLLATION.
[11504.]-Photographio.-Can any of your corre apondonts give the name of a good sabatituto for oanva, or carpot in a large photographio stadio? The sitter: part has a squaro or carpet ;it is the rest of the room don't know very weil what cost of oanyas it wears offin pinces, and it has oocurred
to me that it would be possible to staln the floor in lmi tation of tllos, and then virnish; the tilles to bo the width of the boards.-Conncierengis.
[11505.]-A Wooden Pump.-A friend of mine has a wooden pump on his farm which has become worn by the aotion of the bucket so that no water aan be drawn, and a nnm bucket cannot be substituted, as it mon't go down to the loose place Is there any alternative ba taking up the pamp and reboriog.-Cosurbisuash
[11508.]-Refractive Index of Glase.-How is the
refractive index of glans fonnd? refractive indox of ginas fonnd?
with ita specifio gravity
?-Zivit.
[11507.]-Mathematical Astronomy.-Allow me to appeai to F.R.A.s." or Mr. R. A. Proctor to solve a question lor me. It is, of courso, possible to and the orbit, mean diatance, and other ephemerides of any planet or ocmot from hour or ivo observations of it required for this? and woald an acqualntance with the elements of spherical trigonometry co-ordinate geo metry (algebraloal) and conic sootions be sumcient, or must 1 study the diferential and integral calculua Also, would it he possibie for ".r.a.s. to indicate in a detter the outhines of this method f-ARMTAEOBOE.
[11508.]-Star Magnitudes-WIM "F.R.A.8." on aome other of your correspondents kindily give the magniandes of Argelander, struve, and Hersozioh equal to hose of smy is darb abo the are Who wigh to nase the varions star astolognes tod all many of our correspondeuts, as Mr. Knott, Mr. Burnham \&c... use different scales, without wach a table these letters can but be of limited use. If "F.RA.S." is anable to spare the time,
might.-ABratabchue
[11509]-Adepting Barrel to Plenoforta-wn any snbscriber tell me how to adapt a barrel to a piano-
orte (one of Bord's) How aro the barrele mado forte (one of Bord's) ? How aro the barrele made ? How are the pins mado
would it interfere with ordinary playlog ? with any wonld it interfore with ordinary playlog? with any
other information that would be a guide to the asme Adrawing would greatly assiat me.-G. W. Wookvax, Sydney, N. S. W.
[11510.] - Defective Sewing Machine- Will slipping of the hook froely (one of Wheeler \& Wilson's machines) it haugs on the bevelled part after the brush has let go, when the puint of the hook has passed the brush, the loop still clings to honk. Any information about machines in general would be acceptable to
manv readers out here.-G, W. Woolver, Sydney, many
I1151.]-Rubber Tires.-Conld some of our scienific readers tell me if there is not a disadvantage in the rubher tires of bicyclo wheels in consequenco of the
guction which there tnuet he, I think. canased by the suction which herf nu t ie,
fattening of the surface of the rabber on the ground with fhe weight of the rider upon it. We know that it is mach ensier tor a horso so d:aw a oart, \&o., over a hard smooth rond than over a solt one, because it don't draw bo
 o the rabber and iron tiree, which would be the lightest drawing? Rulber tirps must make the bioycles go
quict, and pive nicely to the uncrenneas of the roads quit, and give nicely to the unevenness of the roads;
but is there not more suction, and thorefore do they not drav heavier? P'erhaps gimo one who has had some cxplanation to the above, and oblige-A Chngive an axplant REDER
CONSTAT
[11:12]-Lathe Chuck- - obserro in No. 362 a de-
 havitle. Porlar"s "G a:" or "Semper Paratas " will
instruct we.-T. Lerri.

THE ENGLISH YECHANIO LITEBOAT FUMD.

ANSWEBS TO CORRESPONDEETY.
\#. © All oommumications should be eddreseod to ate Cooent Garden, W.C.

The following are the intifils, Ae., of letters to hand ap to Tueaday
R. Gay and Co. John Browaing.-J. 8. Darton-H Dolan.- Wm. Hoalker.- Francia Hawina.-E. T Buthife. Wha. Read.-R. G. Yoberly.-W. H. Balley.
-Thos. W. Cowan.-R. Nolen.-R. Warchard. Clark.-E H. Greg.-W. L_ Pondered.-J. and H. Crace. -H. W. Hollia.-GoL. Anderson. - A. Ledger.
H. E. Havergal. Jas. Johnson. Wm. Atwood-J. E. Muspear.-T. C. Mulvany.-W. G. Roberta, - V. B. Webb and Co.-Charles Bakor. - Lieut Coil Neillo --E. James.-Q. Eharles Baker.-Lieut Cok. Fendall. Agrioola-E. L G.-Sboet Iron. - Wallaca-Zeta-Equations.-Ramsgate-E. Barber.-R. A. G.-A Con tant Reader. - Aspirant. - W.-A Barristor.-ILu sionist.-R M. -Lamprook.-Rood Maker.-W. R. A. -Redirivas.-C.J. R. - Geo. Blaoklodge. - W. J. Trindor-- Beacon Longh. J. H. Lancaster.-J. K. P.- Boeptio.

 ardin.-J. Pemilington.-J. R D. DJ. C.-Ezoalolor. P
 Trlandeia. - Peter Walleoe-Thetama.-C. J.-Gonge Rat-Tat-T. L. ${ }^{\text {Joiner.-C. E. S. }}$ - Woisa.-J. W. Lea mington.-Joo.-Wost Corn Wall-T.A.-Harry Balloy Af. R. T. H. Bender minghama. B. Zulo.-Melodione, O. Phtpph 8. K. 8.T. - Wm. Cooke-R Lapwarde-PracticuatlJ
 Winiag-Robert Walker.-W. Quy. Tantalas-F. L.
-Novice-J. O. B. Kenny.-Wm. Olaiold. Wrum Tonkes. A Constant Rosior. -W. Hughos.- Reader. A V. Bottone. F. Be A. S. Capital and Labour. Na.
Briphan Vivo.-Look in future, before you Frito oom-
plaining. Your query was replicd to in Na. $888, \mathrm{p} .6 \mathrm{M}$. P. Flaining. Your query wan replied to in Na. 8 R. D. O. - 800 indioes to beok role
c. Mice (Reading).-Stampe onty sumetent for one adTOBAL Kats.-Should be gled of the paper with diagram al your coavonience
Cortox OrL, J. I. 8. - Yoar queries are advertisements. Sas. Habrie (Goatioot Colleries, near Killmarnock)The Enalisi MsankNic is rogalarly published on Thursday morning, and is yor do not got
 scribera, or you would not alk to be answered by post. W. OLDPIELD.-Yed.
E. L. E. Thou must try and work out the rums for your-
self. The Exacise MxCHusic is not A schoolboy's R. ${ }_{\text {organ. }}^{\text {or. }}$.

CHUXP. - Lay the case before some -ell boom trustworthy neighboar, such as mayor, clersyman, or
magisirate From what W.C. Bocknelz.-Soe "Hints to Correspondenta," No.4. E. RAE-SLEALI have attention.

Dolonits.-First query ingerted, the socond is ab
advertisement, as it can in no way interest any one bat yourself.
Barribter.-Thanks for your letter on query 12971
and answer. "Sigma " hat also repliod and answer. "Sigma" hat alao ropllied. There aro who asked and answered this' question is one. We sometimes receive hundreds of letters a day, and in the harry of preparing for the press for this and other pablications it is almost impossible to prevent a query liko this occasionally slipping into our colamns. During the last two years wo have recoived socres of queries and answers, nritten by men who have more time and money than wit, and who, we suppose, think they are
playing practical jokes. But thoy hardly evor find us papping; we don't evon acknowledge their letters but we keep them as testimonies against them, and it is very likely that one of these days there will be a nico little exposure in oar columna or in a law court, As we havee no doubt that we shall be ablo to trace the handwritiog to the suthors. "A Barrister, "Sigma," or any othor cor
hnawriting, and so help u
letters are proservod
are the erratest offender
J.
Wrise oovering machine.
B. - No room for suoh proftlesk oommanications. You frat ask an involvad arithmetical question, then solve it in joar was, and conolude by asking "E. L. G." his
opinion of the solation. Did the thought ovar nocur to you that the nvalisble space of the RNaLrsi Meraxic is ta a sense publio property, and that it ehould not be wasted in airing individual idiosvn. oracion? If not please bear the hint in mind. We esteem those correspondents the most who any the
beat things in the feweat worln, so that the lirgest poesiblo number may receive the greatest benefit. H. F.-Soe indices to baok vols
Δ Naw Subacaibre. - Ask nny maker. You can hardly expect as to engrave representations of ordinary "onn-
certinas and accordions, that you may be told
the - difference between them."

Commanications which can only apparar as advertisements 20 hands frum M. A. Adnmi, Citima Thale, A

R. .T. -To destroy moths in lurniture, \&o., see p. 21, ,
its ingertion. Would bo itersitand your query aright semson. The evant is not one for discusalion in these pages.
BUBBCRIERR (St. Anstell)-We do not know the makers. Adaress was given, write them.
308 and 588 Voi Fon- Fivor cement for aquariums, see pr. 308 and 588 , Vol. XIV
L. W. D.-A pint contains $34-88$ cabic inches.
the whint that "Maroh" wiehes to see supplied. We bave agsin and agion rocelved complaints of tho kid gloved charsoter of sald socioty, and heard wishes expressed that a morerobust one shoald be ingtituted, and in more than one instance from members of the eald socioty themselves.

THE IIVENTOR.

Tere miblio

 sis in Gorga, Belfact, Ireland, for synoptie spritem andcharmotern eraplojed theretn for the porm ensy losening of the prontinctation of Ragksh and fortign languakes. cratioc. publey, shemeld,
820 R. Feldtmann, Mark-lana, Crty, for an apparatas for beathy

 ort W. Mrarahall, Bootlo, Latroceshire, for Improvements io clog eas J. Copeland, Mancherter. for an itnproved vaive to be uned tor reprinting and atopping the sapply of ateam, water, alr, gac, or
other galds. for photertuptric Abordees, for troproveconts in proparting paper RY7 J. H. Johnson, ILncoln's Inn. folida, for improvements in
compenitions to be used in fireworks and for signaling parpoces. 1 communication. Sonthampton.bnildinge, for improvements in priming tolegraphe. A compmunicalion.
p2y W. R. Lake, Bouthnmpton-kuildings, for Improvemente in
printing tolegraphi. A communication. siso W. R. Lake, Southampton-balidings, for impmomaments in
npparatar for raising, retainiog, and lowering boaty. A com. munication.

PATEETS SEALKD
2511 J. Verity, for improvements in the constraction of chim-
noyu for gas burncra and oll and other lampe, and ta reflectors and
protoctora for the same. protoctors for the same
 9597 C. A. Hardy and A. E. Stapner for finprovel methed and \$an C. A. Hardr and A. E. Stayner. for finproved metbat nni
appliancoe for whatting plike und uther tools, such ac ase gonerully
tormed with an eye. iopmad with an eye.
2028 J . Bailey.
2628 J. Bailey, for a now or improved jotat for serew plles.
 motive power

 atonin in porthile auginua, locompivive en, sums. aud other engities 2514 A. Pecaud, for a new brake to be adapted to rallway carren R. Long, for an troproved freezing machine and refi. 3604 T. Jeckeon, for the improvement of pianoforte actions. 8043 H. sprenzel, for tmprovements in the proparation of ex-
plosive compound.

 2iss J. H. Johnoon, for improvements in disintegratort

2e27 G. Kallmover, for improvementa in sen wing mack:nen.
 improvements iu tra tini engines.
for improvemests in apparatua for making rting. 品 improveme
 119 W .H. France, for improvementi in macninery for combing 191 J . Hither fibrea. Greenhili, for improvements in datatogratiog ma-
abinery. 119 A. M. Ciark, for improvements in appiring colours or timta
 homoral of slag from blant furnaces.
gag W. R. Lere for an Improved method of preparing and pre.
serving hopa for the manufactare of beer, and for medicinal pur${ }_{3 \times 7}$ jasen. W. R. Lake, for impmraments in engines to be operated by
 $\underset{\text { gis }}{\text { gis }}$ II. P. Armatrong, for improved instruments or apparntus

 ${ }_{20} 567 \mathrm{C}$. de Chastolain, ion improrements in the moits of and apparrilus for intarcepting, collocting, and Altoring iweal and sowago ${ }_{3673} \mathrm{H}$. Turner ciilines. Hurner, for improvements in the formation of plagtored
cornices, being also applicable to wall surfaces gonerally. F. Gedgo, for an improved screening apparatan.
 2s87 J . Mh. Plesaner for inmproveruen hanks. in obtaining modve
 2591 H. Stapter, for improvements in the nitration or separa.
ton of mineral or other oil from oleagtnona matter or trom mater tion of mineral or other oil from oleagtnonat mattor or from mattor
or componnde containing oil, and in apparatue therefor, applicable
aleo to the fitration of or componnde continining ofl, and in epparatue theretor, appliceble frewh hot or cold air or mixed hot and cold air in ingrmaries, hos.

 working and protecting impruance and othar aroarma, and for the
dratinee of the men in chure of the wame.

 stances. O. Demailly, for improvements in disegrrepsting temt tie

 engatraction of tramwayo und rullwayo and applioabie to other
imilar purpuees.
$26+3$ H. Walker, for an imprered apparatur for making batton. jo Burrow, for improvements in treating sewago and other ${ }_{9676} \mathbf{9} 6$. J. 8mith, for an improved proceen for treating nilaments,
 parata: for burning palveisedd fuel.
2700 \&. Brannon for mpruvements in the construction of aro
proof hoases and other bulfdinga.
 dial faoh. $\begin{aligned} & 7831 \\ & \text { girders. }\end{aligned}$ Homan, for improvemente in rolled iron jolate and n7 40 O. D. Abol. for fmprovoments in the manufacture of irion
and utool and of alioys of varions mat ale, and in the apparata

uch ike parposioy, ind for improvements in apparatas for propol 28820 W. R. Lake, for an 1 mproved inkstand and appliserees to be
ned in connoction therewth. asod in connocilon
W. Waldon, for an improved mothod of drying chlorine
 donigned for ont of door nituationa. in in purifying paramn
8221 J. Hodges. for improvernenta
$\$ 2 y s$ manterisis. To tidooley, for an limproved in the annealing of cast iron to product s81a W W. Verity and B. Fority, for an improved perforsted are
clay clay Rat burntr udapted for heating or oooking parposes.
H. Highton. for improvements in electric telegraphs.
and veget
194 T. K. Sernton, for improvements in the manafacture of
neckisee or crivite.
202 A. HilR inson, for improvements applicable to motire-pover enctnes. cnitine Rovernors and puanps.
240. Abraham, for improvements in the attiogs of window eng wouving lair cloth. Hondarson, for improvements in meohinery gso J. H. Johnson, for improvemente in nall machines.
Rs0 J. J. Johnson, for improvements in barning hydr and is apparatua to be employed theretor.

ADDRESSEG

WATER-WHEELS (Query 11117).-

IO BRASS FINTSHEPS. - WANTED,

 SSOCLA'LE ${ }^{\prime \prime}$ is asked to Adrertise his

Terms of Subsoription, PAYABLE IN ADVANCE.
5n. 6d. for Six Months and 118. for Twelve Morthe, Post
 bound in oloth, 7s. Gech

Vol. XIV. will Shortle be Reapr.
Indexe for each half-yearly volumo, up to Vol X.
(except (except Vols. II., V., and X.) inclusive,
Free, $2 \downarrow$ d. Oases for Binding, 1s. 6d. each.
*** Subsoribern are requested to order Cages and Vole through their booksellers, and not to send direct. The new regulations of the Post-office prevent their trans
mission throngh tha Prat.

To American Subscribers.

Subscribers in the United States can be supplied with the ENGLISH MEOHANIC post free from this Omice, ior the sum
in advance.
The romittence should be made by Intermetiocal RS The romittanoe should be made by Intermatiocil
Post-office Order. Back numbers cannot be sent by the ordinary newspaper post.

Notice to Subscribers.

Subscribers recoiving their copies direct from the office, are requested to obsorve that the last number of the term for Which their gabseription is paia, will be tion that a fresh remittance is necessary, is it be dedred to contiaue the Sabseription.

Charges for Advertising.
 AIL ADVERTISEMENTS (except in the Exchenge Every adational line

(No advertisementingerted for less than in.
Larger Advertisements Contracted for. ADVERTIRF, MENTS In EXCHANGR COLUMX for Sixteen Words $\begin{array}{ll}0 & 6 \\ 0 & 6\end{array}$ The address is included as part of the advertisement and charged for.
Advertisoments must reach the office by mid-day on Tuesdey to ensure insertion in the following Friday's Tuesiay
number.

OUR EXOHANGE OOLDMN.
Bzorinyan Adoertiocmente are eharged at the rate of Shapuce for the frat Sixtsen

Fols. XI, XII, XIII., and XIV. of ExGLiGt Mreohamic
 Skiing Macmine or qood Violin and Case for BeoondTwo Large Pair Stocks, good as now, dies for smallest
 Books for Typo, 2-line Pica Sang, or any sort. Send
 Large Culinder Electrigal Machine oomplote for aroet, Monchentar.
Splendid Camrra and Leva Box of Lantern Sudee Spanieri. RETRIMVER Doo, handsome, taken witar Vionis, Concert Flute, or English Concortian, for olreet. Oxford-otrent, London.
Demy svo., with 91 Woodcute and 28 Platoo. cloth hoarda. Publlehor

MECHANICAL ENGINEERING; A Proctical Treatioo on. BY BRANCIS CAMPIN, CR, Alrder Author, The prablicher who rocently advertised a work by the mene souther A rimilar title has found it uncemeny to sa heti:at

Now ready, 19 mo., eloth Loards, to. 61., postage th.
ПHE WORKMAN'S MANUAL OF EN

 drawiag office."-Einginecring.
An iudionnabie book tur teaobers of ensineoring drawing:
Mechanict

THE TIMBER IMPOR'TER'S, TIMBEF

 BAILEY'S ILLUSTRATED USEFCL

[^3]
The Ctuglish tattechanic

AxD
WORLD OF SCIENCE AND ART.
FRIDAY, $A P B I L$ 12, 1872.

ARTIOLE 8.

PUDDLING MACHINES.

INthe account of Danks's rotary puddling furnace, which we gave on p. 579 of our last volume, we alluded to the probability of supplementary reporta being presented at the meeting of the Iron and Steel Institate, in order that a clearer idea of the whole bearing of the new invention on the iron industry might be rendered more easily obtainable than was possible from the necessarily incomplete description of the process furnished by the Commissioners on their return to this country. Mr. G. J. Snelus, one of the Commissioners, has now presented to the Institute at its recent meeting, as fall a report on the scientific, practical, and commercial aspects of the process as the time at his disposal enabled him to accomplish; and from the manner in which the invention was epoken of at the meeting, a great and important change in the manufacture of iron is about to be inaugurated. In fact, it has been stated that Mr. Danks has entered into an agree-
positively known, bat it is believed to unite with the slag as sulphide of iron, or, becoming oxidised, to pass away with the gases from the furnace. In the Danks furnace, however, the whole of the neoessary oxygen is obtained from the fettling, and it wat the failure to secure this necessary property in the lining of the metal bath that proved so great a stambling-block to the introduction of a machine for mechanical puddling; for some years ago Mr. Menelans, who is a most antiring experimenter in this direction, all bat succeeded in producing a rotary padding furnace, being stopped solely by the difficulty of procuring a suitable compound for fettling purposes. It was at this atage of the invention that Mr. Danks, of Cincinnati, took up the anbjeot, and after numerous experiments hit upon a method of fettling with a material whioh gave the desired results. The revolving ahamber or puddling bath of his machine, which we illustrated on p. 579 of the previons volume, is constracted with longitadinal wedge-shaped recesses on its interior face, which assist in firmly holding the mixture forming the first or initial lining of the puddling chamber. This lining. consists of an ore free from silica, ground up and mixed with lime cream, so as to form a kind of mortar, which adheres to the plates forming the revolving obamber, and when dried becomes refractory, and sufficiently cohesive to allow of the fettling proper being melted upon it without itself melting, or separating from the plates of the farnace. On this initial lining a quantity of ore, free from silica, is melted and distribated over the whole surface by slowly revolving the chamber, and

ment with a namber of iron-masters, representing various districts, to permit them to pat ap 200 furnaces on his plan in consideration of a payment ca $£ 50,000$ in six months. As few of the manufacturers intend to remove their old handpuddling furnaces, this will represent an enormous increase in the puddling power of the industry, equal to an additional make of 300,000 tons - year.

The theory of the prddling process is described by Mr. Snelus at the opening of his report, and if we give an abstract of this, the advantages obtained by the employment of Danks's furnace will be apparent to our readers. Pig iron is the metal in what may be termed its raw state; it is combined with sufficient carbon to render it fusible at what is comparatively s low temperature, and is possensed of little malleability. A few other elements are generally found in the raw pig, such as sulphur, phosphorus, silicon, and manganese, and the objeot of the paddling process is to render the iron malleable by removing these "impurities" and the excess of carbon. This is socomplished by submitting the iron to a process of oxidation, the oxygen for which is obtained, in the old process, partly from the "fettling" or lining of the pretal bath, and partly from the air whioh finds its way in throngh the door at which the puddler introduces his rabble or stirring-rod. By this means the carbon is converted into carbonic oride or carbonic acid, the silicon into silica, the phosphorus into phoaphoric acid, and the monganese into manganous oxide, and these are cither carried away or pass into the slag. What hecomes of the sulphur is not
while this costing is in the molten statelarge lomps of similar ore are thrown in, and being cold cause the melted metal to set round them and fix them firmoly, thas producing a rough lining with a largely increased surface to act non the charge of pig iron. It is absolutely necessary that these lumps should be of such a texture that they will not orumble with heat, and they mast be nearly free from silica. "Tap cinder"-i.e., cinder obtained from a heating furnace where a bath of oxidised iron is used to protect the plates instead of sand-is a suitable material both for the lining and the lumps, but where this cannot be had, and ores free from silica are difficult to obtain and expensive, Mr. Snelus thinks it would pay to oxidise sorap iron for the special parpose. A great advantage of the mechanical puddling process is found in the larger yield of metallic iron, a portion of which is obtained from the lining of the furnsce; for it is obvious that if the necessary oxygen for oxidising the carbon in the pig is obtained solely from the oxide of iron forming the lining the latter must be reduced to the metallic state, and so help to swell the yiald of puddled iron. It is also worth mention that under these conditions the carbon is oxidised to its highest point, and more pure metal is obtained than when carbonic oxide alone is produced.
The fettling having been successfully accomplished, the pig iron to be paddled is introdnced in large lumps, the charge being generally about 6001 b . The chamber is then slowly rotated at intervals, so as to expose the charge equally to the action of the flame, and when the whole is in the molten atate the ahamber is made to revolve
about once every half-minute for the firat eight minutes or so in order to insure the perfect action of the cinder apon the molten metal. At this stage of the process a jet of water is directed against the lining on the descending side, so as to solidify a portion of the cinder, which is thus carried under the melted iron, and rising up through it combines with and removes the impurities in a more effectual manner than has hitherto been the case, even with hand puddling. Mr. Snelus thinks that the jet of water also has the effect of carrying off sulphar from the cinder. In about ten minates after the pig iron is all melted the cinder is run off, carrying with it a large portion of the products of the sulphur, phosphorus, and silicon, and the iron begins to boil. The chamber is now made to revolve six or eight times in a minute, and a high temperature being kept up the iron is thrown about violently till the process is complete, and the apeed being reduced the ball begins to form. The stopper hole is now opened, and the ball partially solidifled by means of a tool, when the head-piece is removed and the ball taken out by means of a lifting-fork, as described in the previous article.
The defect of the prooess as here described, however, consists in the fact that the time taken to melt the oharge is actually longer than that occupied in puddling-viz., from 30 to 50 minutes for a charge of 600lb., and this time consequently represents a large consumption of fuel. It is so far satisfactory to find, nevertheless, that this defect is one the removal of which offers no insuperable difficulty; for finding that while the new puddling furnace is economical in the working of its own peculiar duty, it is a bad melter of the iron, Mr. Snelus points out that the charge mast be melted elsewhere and brought to the meokanical puddler in the molten state. By the adoption of this method, he thinks that not only would a moiety of the fuel be saved, bat twice the number of heats might be obtained in the same time. The arrangements for firing and regulating the blast of the farnace form an important part of the invention, and contribnte largely to the success of the system as a whole. The puddler has, in fact, complete control of his fire; by means of a valve he can so reguiate the blast as to urge the farnace to an intense heat or to almost stop combustion altogether. This blast also serves to prevent the entrance of air at the joint between the revolving chamber and the furnace, the full pressure inside stopping its ingress, and thus avoiding all waste of iron which might be caused by the admission of free oxygen.

With regard to the cost of puddled iron by the Danks process, Mr. Jones, the member of the Commission who has drawn up the supplemental report upon this part of the question, estimates a saving of 10s. 8d. a ton, but considers that this is considerably underestimated. Mr. Danks, however, claims a saving of $\mathrm{f1}$ a ton, and it is probable that when the machine is brought into extensive operation, that Ggare will be reached if it is not exceeded. The effeot of so large a reduction in the cost of producing malleable iron, together with the ascertained fact that 12 of Danks's rotary puddlers will turn out as much as 50 of the old hand-worked furnaces, for which of late years it has been difficult to obtain a supply of competent men, owing to the laborious and exhausting nature of the work, will speedily make itself felt in commerce. So that taking into account that this now rotary puddler dispanses with the killing labour of its haman namesake, besides doing his work better and cheaper, it is not to be wondered at that the report of the Committee has been received and adopted by the Iron and Stoel Institute, and that arrangements are boing made for the ereotion of a large number of Mr. Danka's furnaces. The opinions expressed at the meeting were unanimous in its favour, and, together with the high commendation pronounced by Mr. Menelaus, must be very gratifying to Mr. Danks.
It must not, however, be supposed that while success has thus fallen to the lot of an American, it has not been striven for, and in a measure obtained by, our own inventors. Mr. Spencer has succeeded in constructing a rotary puddling machine, in which the revolving chamber is made up of troughs. The remults obtained from this machine are desoribed as being highly successful, bat as the iron is divided into comparatively small balle, althoagh this is convenient for after operations, the general opinion was that from the greater expenditure of the fuel and the increased size of the machine itself, it was not so valuable an innovation as the Danks
maonine. We may, however, give an illustration and description of it in a future number. In the meas time we illustrate what we may term an adaptation of Mr. Danks's principle to the existing furnaces, the joint derign of Messrs. Howson and Thomas. The object of these gentiemen is to constract a machine which, while operating on the principle of the rotary puddler, shall utihise as much of the present working plant as pomible, so as to avoid the large expenditure of capital rendered necessary by the impending rovolation in the iron trade. Experiments have as yet only been made under imperfect arrangements, but the inventors consider that with more complete details their machine will provide a eatisfactory makeshift for the Danks's farnace, and thas avoid the total loss of the now "oldfashioned "plant which is still sound and good. The section represents an ordinary padding furnsoe, from which the hearth is entirely removed, and the revolving chamber B mounted in its place. A is the ordinary firegrate, which, however, it may be advisable to slightly modify, and C is the flue leading to the aptake, which would remain in mach the same state as at present. The rovolving ohamber, B, is of wrought iron with cast iron trunnions, and is preferably constructed of two cones, fitted base to base, for convenience in lining. The trannions are mounted on rollers on a carriage which rans on wheels in a direction across the axis of the farnace. By means of this carriage the chamber is ran out between the flae and the firegrate for the purposes of being lined and charged, and for removing the puddled ball. The lining is made of brioks of ground oxide of iron burnt very hard, and the shape of the chamber being favourable a lining thus formed will wear down to fin. without giving way. The great difficulty to overcome in adapting this ohamber to the present furnace consists, of course, in rendering harmess the cold air which finds its way in at the gap between the chamber and the firegreto-a gap which is obliged to be left in consequence of the expension of the casing by heat. This is accomplished by making the opening againgt which the trannion works of two cast-iren rings inclosing an annular space which commanioates either with the chimney, by means of a separate floe, or with the fire, as shown in the figure, by means of a pipe, E. A draught is thua formed in the annular epace, which draws away the air leaking in at the joint, atilising it at the most serviceable point, and reducing leakage into the working charaber to a minimum. Screens are provided to prevent loss of heat when the chamber is run out, and the paddled ball is readily removed by tipping the chamber when it is drawn beyond the soreens, which are perforated with boles for observation and manipulation. The chamber is worked by a stoam-engine with 7 in . oylinder and 7 in . stroke, the gearing giving revolations of three and six to the minate. It is probable that Fithin the mext few months great improvements will be made in the puddling process, now that so many minds will be directed to the subject, and are acquainted with what has been already accomplished; for economy in fuel alone is well worth anxious stady and enterprising experiment.

LESSONS ON CHEMISTRY.*
 By Semmo R. Botione.

(Late of the Istituto Bellino, Novara, Italy.) (Continued from p. 30.)

119-OTHER compounds containing chlorine - and oxygen exist, but their constitation is doubtful, their composition uncertain, and their very existence as definite compounds is, by many, disallowed. We will notice briefly a few of these bodies, referriog the reader who may be desirous of entoring into details to the works of Gmelin, Watta, and Millon.
120.- Evchlorine.-If a mixture of a chlorate along with hydrochloric acid be gently heated, a bright yellow explosive gas is evolved, which is the body in question. The composition of this body is constant ; bat as, by exposure to cold, it resolves itself into chlorine gas and another oride of chlorine, it is regarded by chemists as a mere mixture. Its composition would appear to be

$$
\mathrm{Cl}_{7}^{\prime}, 2 \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{3^{\prime \prime}}, \mathrm{Cl}_{2}^{\prime} \mathrm{O}_{3^{\prime \prime}} ; \text { or } \mathrm{Cl}_{18}{ }^{\prime} \mathrm{O}_{13^{\prime \prime}}
$$

Some chemists look upon this as the missing link in the chain of oxides of chlorine, and represent its formula by a abmultiple of the above pro-
portions-viz., $\mathrm{Cl}_{2} \mathbf{O}_{2}{ }^{\prime \prime}$. (See Odling, Beoquerel, Gmalin, 8.0.)
121.-Chloro-Chloric Acid.-Symonym: Chlorate of Chlorine Trioxide. When a carrent of enchlorine is passed through a series of U. shaped tubes, cooled by a freezing mixture, this body condenses as a red flaid, while ohlorine gas escapes. It resembles strongly ohlorine tetroxide, but differs from it, inasmuoh ss it does not boil till it reaches $89 \cdot 6^{\circ}$ Fahr. ${ }^{1}$, nor explode below 70° Fahr: The composition of this body has been given by Millon as $2 \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{6}{ }^{\prime \prime}, \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$, or, what amounts to the same thing, $\mathrm{Cl}_{6}^{\prime} \mathrm{O}_{13^{\prime 2}}{ }^{\prime 2}$. Its formation from eachlorine may be expressed thes:-
$\mathrm{Cl}_{18} \mathrm{O}_{13}{ }^{\prime \prime}=2 \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{5}, \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}+7 \mathrm{Cl}^{\prime}$.
122.-Chloro-Pbrcilorio Actd.-Synonym. Perchlorate of Chloride Trioxide.-On exposing chlorine trioxide to the action of light, at a temperatare of aboat 68° Fahr., this compound separates as a reddish brown liquid, smelling somewhat like bromine, and faming strongly in the air. When acted on by canstic potash, a mixture of two moleoules of potassiam percholate, $\mathrm{K}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}^{\prime \prime}$, and one molecale of potassiam chlorate, $\mathrm{K}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{3}^{\prime \prime}$ is formed, hence its composition is supposed to be

$$
2 \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{7}^{\prime \prime}, \mathrm{Cl}_{2}{ }^{\prime} \mathrm{O}_{3}^{\prime \prime}=\mathrm{Cl}_{6}^{\prime} \mathrm{O}_{17}{ }^{\prime \prime}
$$

123.-We have seen that the most stable compound of chlorine with oxygen is chlorine heptoxide; indeed, all the others are resolved into this by heat; hence Millon, who gave the subject much attention, inclined to the belief that the only definite compoands.: chlorine with oxygen are chlorine monoxide, chlorine trioxide and ohlorine heptoxide.

Section 6c.-Compounds of Oxygen wieh Bromine.
124.-Several oxides of bromine corresponding with those of chlorine are known. Them mavert great analogy whth the relative chluture wathet but as thay have bean little stilich and mex ut to the prasent of no praetiol cor wo than out ane the ateot kimportmak.
4. Dimanar Monoxide.-Synonym: Hypobromone unhyundot. Symbol: $\mathrm{Br}_{8} \mathrm{O}^{\prime \prime}$ (?) Molecalar wagitt : 178 ($\%$)
125.- Op to the present thme this body has not been isolated. In unien with the cho
 Hypobromited, Symbol: in
126.-Mmopertime.-Alment exsotly those of hypoohlorous acid; but as bremine hotds oxygen with greater tenacity than chlorine does, its bleaching powers are not so active. The hypobromites are almost indistinguishable from the corresponding hypochlorites.
127.-Preparation.-When an aqueous solution of bromine aots on mercury oxide it gives rise to meroury bromide and hypobromous acid. (8ee 101.)
B. Bromine Pentoxide.-Synonym : Bromic anhydride. ${ }^{3}$ Symbol: $\mathrm{Br}_{\mathbf{2}}{ }^{\prime} \mathbf{O}_{6}{ }^{\prime \prime}$? Molecular weight : 240 (?).
128. - Like the relative ohlorime oxide this body is unknown in the separate state.
B (2). Bromic Acrd.-Synonym: Hydrogen bromate. ${ }^{6}$ symbol: $\mathrm{H}^{\prime} \mathrm{Br}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$. Molecular and combining weight : 129.
129.-Properties.-A colourless, almost inodorous, oily fluid, strongly acid to the taste. It first reddens and afterwards bleaches vegetable blues. In all its properties it strongly resembles chloric acid, but owing to the greater affinity of bromine for oxygen it does not part with its oxygen so readily.
130.-Preparation.-By aoting on potassiam hydroxide, $\mathrm{K}^{\prime} \mathrm{H}^{\prime} \mathrm{O}^{\prime \prime}$, with bromine, a mixture of a bro mide and a bromate is prodnced. From this the acid may be prepared in the same manner as recommended for chloric acid, or advantage may be taken of the power which bromine has of abstracting oxigen from the oxides of ohloride by the following proceeding:-Chlorine is passed into a warm concentrated solution of potassinm carbonate. Potassinm chlorate is thereby formed. On adding an equivalent of bromine this latter

[^4]seizes on the oxygen of the chloric acid, expels the chlorine, and takes its plece, thas :-
$\mathbf{K}^{\prime} \mathrm{Cl}^{\prime} \mathbf{O}_{8}{ }^{\prime \prime}+\mathrm{Br}^{\prime}=\mathbf{K}^{\prime} \mathrm{Br}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}+\mathrm{Ol}^{\prime}$.
From the bromate bromic acid may be prepared as mentioned at paragraph 115, substituting the bromate for the chlorate.
c. Bromine Heptoxide.-Synonym: Perbromic anhydride. ${ }^{7}$ Symbol: $\mathrm{Br}_{2}{ }^{\prime} \mathbf{O}_{7}{ }^{\prime \prime}$ (?) Molecular weight : 272 (?).
131. Unknown in the free state. Combined with the elements of water, it forms :-
c (2). Perbroyic Acid.-Synonym: Hydrogen Perbromate. ${ }^{8}$ Symbol: $\mathbf{H}^{\prime} \mathrm{Br}^{\prime} \mathrm{O}_{4}{ }^{\prime \prime}$. Molecular veight: 145.
182.-Propentics.-Very similar to those of perchloric acid; but its oxidising power is not so great, and its affinities are not so powerful.
133.-Preparation.-By adding bromine to perchloric acid as long as chlorine is evolved. The interchange is expressed by the annoced equation:-
$$
\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}^{\prime \prime}+\mathrm{Br}^{\prime}=\mathrm{H}^{\prime} \mathrm{Br}_{4}^{\prime \prime}+\mathrm{Cr}^{\prime} .
$$

By this we learn, that although the affinity of chlorine for hydrogen is greater than that of bromine, yet this latter element has a stronger attraction for oxygen than chlorine has, and hence is able to expel chlorine from its oxygen compounds.

Section 6d.-Compounds of Oxyern with

 Iodixe.Several of these have been desoribed. We shall notice the three most important.
A. Iodine Monoxrde.-Synonym: Hypo-iodous anhydride. Symbol : $\mathrm{I}_{\mathbf{2}}{ }^{\prime} \mathrm{O}^{\prime \prime}$ (?). Molecular weight : 270 (?).
134. This body is zalknown in the areo state.
(2).-H rrowbeus Acrd.-Synonym: Hydrogen中ppoiodite. Symbol: M'I'O". Diolecular
woinht: 144

 It first roddens and then bleashres regetable blaes, bort the bleaching eetien is very mandy and imperfect.
 be pinced in a withenglaes, mider a हins bell, with a stratum well-slaked liwe sarrounding the watch-glass, the iodine gradaelly metilises and is abeorbed by the line, which beresare of a more brilliant whito, and is fotuad to possess properties fimilar to those of "ehterfte of lime," but not mearly so active. Own mate bo taken that the temperature does not exceed 80° Fahr. $a s$ in this case little or no hypoiodite is formed.
When the body thas formed (consisting of alcinm iodide and hypoiodite) is distilled aloos with dila with dilate nitric acid, or, better, winn ailat acetic acid (1 part acid to 4 of water), hypoiodons acid passes over. (S. Bottone.) It is worthy of note that the "iodide of lime," prepared as directed above, possesses more active bleaching powers than does the free acid itself. If, in the preperation of the acid (from the hypoiodite), sulpharic acid be used instead of nitric, or if the nitric aoid be too strong, iodine, together with hydriodic acid, and not hypoiodons acid, is liberated.
b.-Iodine Pentoxide.-Synonym: Iodic anhy-
dride. ${ }^{9}$ Symbol: $\mathrm{I}_{2} \mathrm{O}_{8}^{\prime \prime}$. Molecular weight: 334.
137.-A white crystalline solid with a strong acid taste. Prepared by heating iodic aoid (see below) to a temperature not exceeding 938° Fahr. It dissolves freely in water, and if the solntion be concentrated, crystallises from it, withont taking up water.
B (2). Iodic Acid.-Synonym: Hydroqen iodate. ${ }^{10}$ Symbol: H'I'O ${ }^{\prime \prime}$. Conbining weight: 176.
138.-Properties.-Iodic acid forms coloarless, six-sided tables, very sour to the taste, and reddening litmus strongly. It is very similar to cbloric and bromis acids. Like them it combines with metals to form a class of bodies called iodates, which, like the corresponding oblorates, are decomposed by heat. The iodates differ from the chlorates, inasmuoh as the iodstes of the heavy metals, instead of yielding oxygen and an iodide, give, on heating, metallic oxides, iodine, and oxygen. The iodates of the ligh' s : metals, however, bebave like the corresponinim?

chlorates, that is to say, they give off oxygen, and are converted into iodides, thas :-

$$
\mathbf{M}^{\prime} \mathrm{I}^{\prime} \mathrm{O}_{3}^{\prime \prime}=\mathrm{M}^{\prime} \mathrm{I}^{\prime}+30^{\prime \prime}
$$

189.-Preparation.-Iodic acid may be prepared by several methods. 1. 1 part of iodine and 40 parts of nitric acid of the specifio gravity of 1.5 , are to be boiled together in a porcelain capeale, until all the iodine dissolvas. The solntion is then to be cantiously evaporated to drynese, rediseolved in water, filtered through asbestos (while hot), and allowed to crystallise. In this process the nitrio acid loses its oxygen, which it gives up to the iodine, thereby converting it into iodio acid. The resulte of the operation mas be seen by the following equation:-
$\mathrm{I}^{\prime}+\mathrm{H}^{\prime} \mathrm{N}^{\prime \prime \prime} \mathrm{O}_{\mathrm{s}^{\prime \prime}}=\mathrm{N}^{\prime \prime}+\mathrm{H}^{\prime} \mathrm{I}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$.
In practice, however, pure nitrogen is very seldom evolved, the nitric acid being generally reduced to a lower oxide, and not to nitrogen itself. 2. If a current of chlorine be passed hydrochloric acid and iodic acid are formed. By virtue of its saperior affinity for hydrogen, the chlorine combines with this element, while the iodine seizes on the oxygen thas set free.
$\mathrm{I}^{\prime}+3 \mathrm{H}_{\mathbf{3}}{ }^{\prime} \mathrm{O}^{\prime \prime}+5 \mathrm{Cl}^{\prime}=5 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime}+\mathrm{H}^{\prime} \mathrm{I}^{\prime} \mathrm{O}_{3}{ }^{\prime \prime}$.
The resulting iodic acid may be purified from the hydrochloric acid by boiling, and allowing the liqnid to orystallise.

The iodates of the lighter metals may be conveniently prepared by dissolving iodine in a solation of the motallic oxide, and then passing a current of chlorine through the liquid. A chloride, along with an iodate of the metal employed, is the resnlt. The following equation illustrates the interchange :-

$3 \mathrm{M}_{\mathbf{2}}{ }^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{I}^{\prime}+5 \mathrm{Cl}^{\prime}=5 \mathrm{M}^{\prime} \mathrm{Cl}^{\prime}+\mathrm{M}^{\prime} \mathrm{I}^{\prime} \mathrm{O}_{\mathbf{s}}{ }^{\prime \prime}$.

From these iodates the acid may be obtained in the mode deseribed for chloric acid.
c. Iodne Heptoxide. - Synonym : Per-iodic ashydride. ${ }^{11}$ Symbol: $\mathrm{I}_{2}{ }^{\prime} \mathrm{O}_{7}^{\prime \prime}$. Combining 20cight: 366.
140. - Properfies. - A white spongy mass, Ireely soluble in water. It is obtained by cartionsly heating the naxt compound to about 320° Fahr. At a higher temperature oxygen and iodine are given off.
c (2). Prr-iodic Aomd.-Synomym: Hydragen per-iodate. ${ }^{18}$ Aymbol: $\mathrm{H}^{\prime} \mathrm{I}^{\prime} \mathrm{O}_{4}^{\prime \prime}$. Combining -cight 152.
141.-Proprrties.-Per-iodio acid is a white solid, which crystallises in colourless plates, somewhat resembling potassiam ohlorate. The crybtals are permanent in the air. At 266° Fahr. they fuse without undergoing any change. At a higher temperature they lose the elements of Water, and are converted into per-iodic anhydride. Theacid, as well as its componnds with metals, bears a strong resemblance to per-chlorio acid and its compounds; and, althongh the oxygen is much more tenaoiously held, yet the periodates (and iodates) deflagrate when heated with charcoal.
142.-Prbparation. - By adding iodine sto perchloric acid, when the following substitution takes place:-

$\mathbf{I}^{\prime}+\mathrm{H}^{\prime} \mathrm{Cl}^{\prime} \mathrm{O}_{4}^{\prime \prime}=\mathrm{Cl}^{\prime}+\mathrm{H}^{\prime} \mathrm{I}^{\prime} \mathrm{O}_{4}^{\prime \prime}$.

143.- Besides the compounds above mentioned, others, supposed to contain oxygen and iodine in different proportions, have been desoribed by several chemists; bat their existence is very doubtful. What little is known of them may be found in Gmelin's "Diotionary." The names of

> Iodio oxide (?)

Hypoiodio acid, $\mathrm{I}_{2} \mathrm{O}_{4}$ (?)
Iodous acid (?) Subhypoiodic acid $\mathrm{I}_{10} \mathrm{O}_{19}$ (?)
144. No compounds of oxygen with fleorine
have as jet been obtained.

METALLURGY OF IRON AND STEEL. (Continued from p. 55.)
A METAL which requires for fusing a very perty of "welding." Iron may be exposed to a considerable range of temperature before melting, and all the time it retaing a pasty dough-like state. It is not so with all metals, some pass almost immediately from a solid to a liquid condition. irem together, and press them firmly into contact,
union takes place, or, in other words, welding occurs. In the Catalan process the iron falls to the bottom of the furnace particle by particle, formiag one spongy lump, but the particles brought into contact during the process of hammering become firmly united into a solid compact mass, while Coy slag which might be diffused through it (and there always is some slag) is expelled by that operation. The lump is familiarly known as " blooms."
As was mentioned before, by varying the proportion of ore and oharcoal (or other carbon used as fuel) we get a variety in the quality of the iron produced. The greater the quantity of charcosal used the more steely is the iron obtained, for metallio iron, when exposed to carbonaceous matters at a high temperature, has the property of imbibiog or taking op a portion of that carbon, which, although the iron may remain quite solid, becomes diffnsed through the mass, and it is in this way that steel is produced on a large scale.
Let ns endeavour to trace the progress of the growth of the iron manufacture from its radest stages, as seen in the Hindoo and in the more advanced Catalan process. Man would try to economise fuel and labour, and probably his first idea would be to construct a furnace having a greater altitude. This is done in the "Osmand furnace," so named from the kind of iron produced, used in Sweden. It is a step in advance of the Catalan forge. In the winter time, the Swedes, not being occupied by their agrioultural operations, produce very good malleable weldable iron from the ore; but instead of the Catalan forgo they employ a much doeper furnace. It is made of material capable of resisting fire, cased outaide with wood, and the ore and fuel used is oxide of iron and charcoal. In many cases it is the "lake ore," or brown oxide-i.e., the peroxide combined with water. This ore is formed at the bottom of certain lakes in Sweden, near the places where the rivers supplying these lakes enter, and principally on reedy ground; it is composed of particles of various sizes, some are small-" pearl ore," others larger," money ore; sometimes "cake ore," while a kind composed of very small particles is known as "gunpowder ore." In the winter time, when the lakes are frozen over, holes are made in the ice, and the ore dredged up and washed. It is found that in places where the ore has been removed, in the course of abont twenty or thirty years a fresh supply has been deposited. The furnace is charged with ore and charcoal, and after some hours (during which the blast is kept up by bellows) a lump of iron is formed at the bottom. This is not extracted from the top as in the Catalan process, owing to the greater height of the furnace, but a contrivance is made for extracting the metal from the bottom. At the bottom of one side a hole is made, or a part of the furnace is made removable, a hole being left for the outllow of the slag. A larger lamp of iron can be made in the same time by this method than in a Catalan forge.

Now we come to a furnace 16 ft . or 20 ft . high, in section quadrangular or circular, with the blast injected at the back by a doulle-acting bellows worked by men or by water-power. In the front part a space is left which can be olosed or unstopped at will. In such a furnace it was found that either malleable or cast iron could be produced. When charged suitably for the production of wronght iron, a lump of metal from six to seven handredweight might be extracted at the front part of the furnace, with great hooks and chainwork attached to a drum connected with a water-wheel. When extracted the lump is divided and sabdivided till the parts are sufficiently small to be forged into bars, heating and hammeriug during the working as required. There is usually some cast iron accompanying the production of a malleable lump-even in the Hindoo process a small quantity occurs, and therefore the discovery would soon naturally be made that by altering the proportion of the charge malleable or cast iron could be produced at pleasure.
Now we have come from the Hindoo direot process to the modern blast furnace, thongh at present only on a small scale. And first the fursome years ago a farnace 30ft. or 40 ft . high was considered very large, now in Middlesbrongh district furnaces have been erected, with the best possible resalts, not unfrequently Soft. high : in some cases 100ft. All are not constructed of a
similar form, some are every rhere circular in section, others like two trancated cones set base to base. The furnace is constructed of a material which stands a good high temperature, and
what better than good honest fire-clay? The interior may be made of good fire-brick, the exterior of some refractory material. By the term refractory applied to olay is meant a substanco Which has the power of resisting a high temperature withont melting or softening. There mast be a good solid foundation, where water cannot have access. The part of the bottom immediately underneath the shaft of the furnace may be made of good fire-brick, or of good sandistone, or of some portions of the slag. This latter forms one of the most refractory bodies accessible to us. Next, there mast be provided the means of injecting air, through three apertares usually -one at back and one on each side. For that parpose is provided three arohed recesses large enough to allow a workman to get easily through. The front part of the furnace is prolonged forwards, because from that part the molten iron is tapped ont. In front of this opening, to prevent the iron running away, is placed astrong dam of good thick cast-iron plate, and lined internally with some fire resisting substance. The lower part of the farnace is left open, the top is olosed more or less daring the working. The furnace shaft is bound firmly by rings of iron round it at intervals from top to bottom, and to prevent accidents from the breaking and falling of the rings ohains are hung longitudinally round. A more common method now is to make the rings more expansive, and to encase them in stont boiler plate. Now as to the means of injecting the air: in each of the throe openings is placed a large iron twyer. The twyer, if introduced into the farnace would burn away, so precautions are taken to proteot it as much as possible hy asing a water twyer. It is construoted of wrought iron, and consists of two hollow trunated cones, the smaller inside the larger, coinciding at both ends and welded together. There is a clear space left round the inner cone (owing to the inequality of their sizes), and at the thicker end, away from the fire, two wronght-iron pipes communicate with this space, and it is so contrived that when the furnace is in operation a plentiful sapply of cold water thas passes aronnd the inner cone. This water twyer does not pre-
vent altogether the burning of the iron, but it vent altogether the burning of the iron, but it keeps it from barning so rapidly away as it would otherwise do. Round the farnace above the twyers is constracted a circolar iron pipe sas. pended above them, and bent or elbow tabes ran from this, the nozzle of one being placed in each of the twyers, and the elbow (containing a hole in the joint) serving to allow of inspection, or, in case of hot blast, of ascertaining the temperature. The blast is injected under considerable pressare-not less than three pounds to a square inch-and is produced by double-acting cylinders (about 14in diameter). In order to sapport the lower par of the farnace, that part in which the metal accumulates, in some cases water "boshes" are employed, being thick plates of cast iron, through the intcrior of which water is circulated. The term "bosh" is applied to the lower contracted part of the furnace, and is doubtless a corruption of the German bosche, a slope, probably introduced by the German workmen brought over by Eliznbetb.
Now let as see what occurs in the blast furnace, and for this parpose we will suppose it is in working order, having had time to dry. To simplify matters we will also assume that the materials employed are quite pure. The fire mast be made slowly, and brought up gradually; the material employed may be coal, coke, or charcoal : we will suppose it to be an easily combustible fnel of pare carbon. We must keep adding this from time to time till we have filled the structure with it, all the cime injecting air at a pressure of three or four pounds. The bottom aperture is closed so as to make the air find its way up ward, and thus we get an upward stream of carbonic oxide and nitrogen. Hitherto we have been considering the fuel only; now we will pat into the top of the furnace oxide of iron, no matter which kiad. In the first place, the temperature of the furnace will be the highest towards the lower part, and the oxide of iron and fuel being added alternately, as the former desconds, it at length reaches a place where the CO streaming apward is sufficiently hot to to aot apon and reduce the oxide, and so we get the iron in a metallic state. $\mathbf{C O}$ is the grand agent in the reduction of iron ore; almost the whole of the iron produced in the world is produced from the oxide by means of this agent. The CO, by combining with the 0 in the ore, becomes converted into carbonic acid, and this latter pr duct must not be allowed to remain for one sec in contset with the iron, or the reverse a would ocour and the iron again be oxidised.
removal is effected by keeping up a good blast. The rapidity of reduction varies with the nature of the ore and with respeot to its compactness. The iron after being thus reduced still goes on desoending with the glowing oarbon to a hotter part of the furnsoe, and when these two substances are heated very strongly in contact with each other they combine, and we get an easily fusible, comparatively speaking, "pig iron." The term "carburisation" is applied to this part of the action. Descending to still hotter parts the iron beoomes perfectly meltod, and owing to its high specific gravity falls down on to the hearth.
Practically, we cannot get either pure carbon or pure ore. The ores which we are obliged to use contain certain materials which are very difficult to melt, e.g., sifica, whiob cannot be melted under ordinary conditions. We often have ores with silica or clay, and our fuel employed contains eartly matters. In this case the iron will be reduced as it descends into the furnace, being influenoed somedwat by the impurities mixed with the ore; if this stuff associate with the reduced iron, that metallic iron will be intermired with this infusible staff, and so contact between the reduced iron and the highly heated oharcoal prevented. But in order to get pig iron we must have that contact. The material existing in most of our ores and in fuel is easily converted into g glass-like, easily melted substance-slag-by lime. We, therefore, put in chalk or limestone with the ore, and the same phenomens exactly take place as before. The slag resulting from the addition of lime will contain all the silica and elayey impure matter of the ore, and the ashy matter of the fael run together. This componnd is much lighter than pig iron, and they will not mir with each other ; the consequence is the slag swims at the top of the melted iron. Thus from the ore, limestone, and fuel pat in alternately at the top of the furnace, we get two things at bottom -blag 'and pig iron. A hole is made in the side of the furnace for the slag to flow away through, and out of the dam. When the bottom part of the furnace has beoome nearly full of melted iron it is drawn off. Δ hole is there, but stopped with clay during the reduction; now with a long bar of iron the clay is broken out, and the metal allowed to run into moulds, sometimes of iron, sometimes of sand, ranning parallel to the furnace, and thins we get the bars commonly termed pig iron. The limestone is called the "flux."

MICROSCOPICAL NOTES.*

ARTIFICIAL CALCAREOUS FORMA-TIONS.-Professor Harting has been for some time engaged in researches into the origin and atructure of certain organic calcareous structures, and has sucoeeded in imitating Nature in the manufacture of some of the more interesting forms of these structures. These results may be obtained by placing in the liquid containing the organic matter-albamen, solution of gelatine, a mixture of these, blood, bile, mucus from Arion rufus, tissue of the umbrells of Surelia aurita, and the liquor obtained by tritnrating chopped-up oysters in a mortar; salts which, by their double decomposition, produce insoluble salts of caloium. These salts are, on the one hand, calcinm chloride, calcium nitrate, calcinm acetate, magnesinm chloride, and, magnesium sulphate; and, on the other hand, sodiam bicarbonate, potassinm carbonate, sodium phosphate, and ammonium phosphate. The experiments occupy many weeks, owing to the extreme slowness of the reactions involved. The most frequently ecourring form effected by calcium carbonate in connection with albumen, gelatine, or the other organic substances mentioned, the Professor ohristens calcospherites (Fig. 1, copied from the anthor's figure in the Quarterly Journal of Microscopical Science) ; when these are formed in the midst of the liquid and it is perfectly tranquil, they are perfectly spherical ("a ") and vary from the 002 of a millimetre to 2 of a millimetre, and become larger in proportion as their formation takes place with greater tranquillity and slowness. They often contain a nucleus, and all of a certain size are seen to be formed of concentric layers and radiating lines. If the state of equilibrium of the fuid be not perfeot the calcospherites undergo in the course of their derelopment transformations in consequence of which their fofm is very much modified, and they become ellipsoidal, oval, or lenticular bodies. One very remarkable form,

- Extracted and condensed from the Quarterly Journal of Microscopical Seionce
the conostat is shown in Fig. 2, and is characterised by the presence of a cap or goblet-shaped enlargement which becomes filled with air, and by this the conostat remains floating.
When developed in the neighbourhood of one another, the calcosplerites matally adhere and form dumb-bells, plates, and polyhedric bodies recalling the structure of the shells of various Lamelli branchiata, \&ec. (Figs. 3 and 4.)

In certain definite circumstances the oalciam carbonate, oombined with albuman, forms very thin curved laminas, procisely resembling the calcareous plates of the "bone" of the Sepia. These concretions consist of a combination of calciam carbonate with organic matter, which is the sole residue when the salt is removed with an acid If the development has taken place in albumen, or a liquid containing it, this fundamental organie substance remains with the form and structure of the caloareous body; bat this fundamentalsubstance is no longer albumen, but is albumen transformed

They are either perfectly homogeneous or show fine fibres, sometimes disposed in a parallel manner, sometimes divergent, and ooncentrio bands, and have precisely the conformation of the calcareous substance which constitutes the internal layer of the shell of the Lamelli branchiata and forms almost exclasively the shell of Gasteropoda. On other plates are thickened patches similar to those which exist on the external layer of the scales of osseons fishes. Under the influence of a low and constant temperature there are developed both on the calcospherites and on the plates curved spinous projections (Fig. 5). If the liquid contains in addition gelatine, these projections have a warty appearance, and they themselves have either secondary projections or they branch until they come to precisely resemble the sclerites of Aloyonaris. Similar selerites, but different in form, are developed in oartilage, which is first impregnated with calcium chloride, and then placed in a solution of potassium carbonate mixed with a little sodiuma phosphate. All these calcareous formations become charged with any colouring matter contained in the liquid, and thus the coloured caloareons formations of nature may be olosely imitated. Biologists will wait with impatience the pablioation of the author's complete memoir on this most interesting subject.

Stricture of Tendon.-Dr. Mitchall Bruce, in an exhaustive but purely technical artiole on the structure of tendon, gives the following method for preparing cross sections of this tissue, which may be of value to some of our readers. The distal half of the tail is removed from the living animal (rat), the skin atripped off, and the organ placed in a 5 per cent. solution of chloride of gold for fifteen or twenty minutes, after which time it is removed and exposed to the light in distilled water until coloured. It is then placed in a one-lenth or on one-eighth per cent. solution of chromic acid for two or three days until the bonea become softened, then transferred to alcohol for a quarter or half an hour and then cut into sections. The sections when cut should be washed in water and mounted in glycerine.

Illumination of Opaque Objects.-The following ingenions plan, which our "binocaler' friends may find nsefal, is taken from the Lens, a new American Journal of Miaroscopy. A beam of light is sent down the oblique body of the binocalar mioroscope, the prism being in position for use binocularly by a plane mirror rectangular prism or ordinary drawing camera, and is directed by the Wenham prism through the objective upon the slide. A small portion of the centre of the field will, if all the adjastments be correct, be brilliantly illuminated. This ought to be of service to diatomists.
New Staning Reagent.-Molybdate of ammonium, a concentrated solation, is dilated with two to three parts of water; to this are added as much iron filings as will lie upon the point of a knife (!) and commeroial hydrochloric acid slowly added drop by drop with continual agitation till a deep blue, almost black, colour is produced. When it has acquired the desired colour it is allowed to stand for ten seconds and then filtered. Merkel recommends this for use in staining preparations of the nervous system.
Batceria and Putrefaction.-Professor Cohn has conducted researohes into the relation between bacteria and patrefaction, and conoludes that all putrefaction is accompanied by the development of bacteria ; it is wanting if the access of these be prevented; it commences as soon as they are present ever in the smallest number; it proceeds in the same ratio as these multiply, and with its completion ceases also their multiplication. They are then precipitated either as a powder or in gelatinous lomps (zooglea), just as yeast precipitates in completely fermented sugar solation. There can thas be no doubt that there is the same relation between bacteria and patrefaction as between the yeast fungus and fermentation. They are, therefore, exciters of putrefaction (saprogenous), whilst the other 2000 mpaniments of putrefaction-monld, fungi, and infusoria-are only to be regarded as accompaniments (saprophilous). There is no genetic rolation between bacteria and mould fungi. Professor Cohn's papar - print of a lectare delivered before the Silesian Society for Natural Calture, reprinted in abstraot in the Quarterly Journal of Microscopical Science -is worth careful study by those intarested in sanitary science, and especially by our medical friends. We bave not space for a further reference to it.
H. P. H.

THE HEATING OF RAILWAY CARRIAGES.

THE means hitherto in use for this parpose have found only a limited application, owing chiefly to the trouble of working them, and the expense they involve. In a pamphlet recently of this subjeot, he enumerates the following modes:-1. Hesting by stoves. 2. Heating by oases or vessels; (a) filled with hot water; (b) filled with sand; (c)'filled with glowing charcoal; (d) acted on by a spirit flame. 3. Heating by steam. 4, Heating by heated air.
makes the train independent of sloves, though it makes the train independent of stoppage at
stations for heating purposes, is open to the stations for heating purposes, is open to the heat is unequally distributed. For spacious compartmente arranged for a comparatively small number of passengers, stoves are suitable, and on some of the East Prussian railways they have
been used with success. The fuel is supplied from above, and without incommoding the pas. sengers, and the heating effect is regulated by the admission of air, by an apparatus under conattention, however, and in a long train this becomes burdensome. In the special kind of stove just referred to it is necessary to use charcoal, as any other fuel would be apt to cause extinction

Heating
or sand is of frequent use. The sand absorbs a much larger quantity of heat than the water, and gives it out more slowly. The cases are sometimes placed under the seats, sometimes between them; in the latter case they are either placed lcose under the feet or thrust into preferable for cases placed under the seat, and water for the others. This method, is, however, also expensive and troublesome. Heating appa, ratas is required at the stations, and if all the carriages are to be supplied, there must hot ressels, or a large staff of men mast be employed to do the thing quickly. Where sand is used, it is renewed every four hours; water must be renewed mach more frequently.
Another mode is that of filling cases with an artificial fuel, Which, in Kienast's method, constaroh. At first this was put in iron aases staroh. At first this was pat in iron oases
628 mm . long, 105 mm . broad, and 65 mm . high, which were perforated in the sides. This was found, however, to be productive of headaches, and the fuel was, therefore, put into olosed cases, Whioh were pushed from the outside under the
seats. The fuel, as used, was made up in halfpoand pieces, 105 mm . long, 80 mm . broad, and poand pieces, 105 mm . long, 80 mm . broad, and
60 mm . thick. In an experiment on the line between Aix and Berlin, eight pieces were used, in four cases, for the heating of one compartcharcoal were still glowing, and a thorough heating of the compartment had taken place. The cost of a hondredweight of the fuel is 10 thalers (30s.), and the heating now referred to cost $10 \frac{1}{2} \mathrm{~g}$ gr., or
aboat ls. A furth
is produced by a spirit flame. The apparatus consists of a long flat case, with perforated sides and a top of wire gauze. A spirit lamp of peenliar shape is suspended in the interior, in such a tamed on either of its axes. The fleme is surrounded with wire gauze, and between the top of it and the oover is a steatite plate. Cross-bars are placed above the case, and there are bags oin sapply lasts 50 hours, and the cost is very
imall mall.

We come next to the heating by steam, a mathod developed in varions forms by Haag, in Auguburg, and which has many advantages. The from one point in the train; and it can be readily applied to an entire train, while, with suitable arragement of the pipes, the heat is equably dis-
tributed, and no additionsl appar tribated, and no additionsl apparatus is required ranged; a main-pipe pipes may be variously arranged a main-pipe may be placed along the
entire length of the train, with branohing off into the compantments, or the pipes conducting the steam may be used directly for the objection of presenting former case, there udencation surface, while it has the amount of at it in possible to shat off the sapply of steam
com aingle compartments. It is always of impor.

L
tance so to lay the pipes that they mas be filled only with steam. It is inconvenient to use steam at a high tension, on account of the necessity in such a case of having strong and acourately fiting joints between the carrisges. Two atmospheres may be regarded as the limit. The steam may be brought either from the locomotive boiler or from a boiler specially constructed for
the purpose. In the latter the purpose. In the latter case there is the taking up of space to be considered, and the injourney a fresh supply of fuel and water mast be taken in, and the apparatus requires a special attendant. These objections fall away when the steam is taken from the locomotive boiler, and allowed a certain expansion before admission into the pipes. Where a separate vessel is employed the supply of steam is soon used, and it becomes the other hand steam taken from the locomotive the other hand steam taken from the locomotive
boiler diminishes the working power. In recent experiments made with reference to this on a rail way in Lower Schleswig, the steam was taken from the locomotive, and it was found that a very small quantity of additional fuel was adequate to produce the required sapply. The quession of cost was decided in favoar of the plan adopted.
Finally, in the use of heated air, the casing of the stove is formed of some badly conducting manterial. The cold air enters the stove by openings in the lower part, gets warmed, and rises to the roof of the carriage. By this means a alow circulation is produced, and the temperature is equalised more than in the method first Hanover This plan is adopted on many of the is conveyed by pipes from the stove to the ends of the carriage.
A. B. M.

A CHEAP WATER FLLTER.*

 AST summer, not believing my drinking water to be pure enongh, I had a filter made to order. First, I bonght a galvanised iron pail, and botiom. Just above that about an inch from the botiom. Just above that, on the inside, were fixed (loose) a false bottome ledges, on which was placed 2in. above that were fixed aimilar ledges on which Was placed a zinc tray, having a lead rim, and in the centre a small circular box with a perforated bottom. This box is let into the tray and soldered; through which passes all the water to filter. The rim (about an inch high) should be wrapped round through the sponge. Between the tray mand false bottom is fllled with charcoal broken to about the size of nats.

I have had one in use for nearly twelve months, and it has givea me a plentiful supply of pure water, and this is a necessity in Col. 8. Wortley's new process.
1 append 2 section of the filter:-A, galvanised pail ; B, tap for drawing off purified water; \mathbf{C}, small zinc ledges; D, removable false bottom of perforated zinc ; E, charcoal ; F, zinc tray, lead rim; G, sponge box (3in. diameter) and sponge ;
H, handle. H, handle.
If any water egcape between the rim of the tray and the pail-which you can tell by the bubblesyou must rap the rim until it ceases to do so. The sponge should be kept cleau, and the charcoal changed occasionally.

POLYZOA.
THE following interesting account of these beantifal creatures, and of the method of Mr. Lattey, M.M.C.P., and was read before the Mir. Lattey, M.K.C.P., and was read before the
Quekett Microscopical Society a few months ago:-

Amongst the vast number of animated beings of whose very existence we should have remained in profonnd ignorance were it not for the invention of the mioroscope-so justly termed a sixth sensefew afford more beantiful or interesting objects for our contemplation than the group to which the name of Polyzoa has been given; so called f om two Greek words-polus (many) and zoon (animal) and many of found aggregated together in masses, mach mo as of them resembling minute plants, so much so as to have been classed, by early observers, Their complex members of the vegetable kingdom. Their complex organisation has obtained for them a high position in the animal kingdom, and the exquisite form which rome of them possess cannot fail to excite our admiration. When, for instance, we see the elegant Sertularians, projecting like by thairns from the side of a rock-pool, attractive has revealed the forms, even before the microscope their branches like living flowers, or the Polyzoary of the Halodactylus, with its exquisite bell-shaped creatures emerging, one by one, from the jelly. like mass costing the seaweed, like the ribs of a folded umbrella, stripped of its covering, and then radually expanding into a beantiful bell, the cilizs keeping up a constant eddy in the surpounding water so es to bring the floating the surrounding water matter wilhing the floating partiales of nutritieus' Amongst all these of their opan mouths. Amongst all these creatures, none are more
ourious than the species of Bugula, called Bugnle avicularia, from its possessing those strange appendages called birds' head processes, and most appropriately so, from their very exact rean mosi to the head and beak of a bird. They are attached to the margins of the cells by means of a footetalt and each has two "mandibles i" the npper fixed and the lower one movable, just as in birds, and they are opened and shat by powerful mascles within the "head." A most aingular and curious sight it is to watch the movements of these "ob jects " when a portion of the Polyzoary is viewed onder an inch or two-inch objective so as to allow a number of these bodies to be in sight at once. It will then be seen that each head keeps up slowly beck, which its joint-like union to the cell allows, at the same time gradually the the ing its jaws, or rather depressing the lower jaw antil the month is open to its toll extent jaw when the head has gone baok as far as it can roach, it suddenly resumes its former position, the mouth olosing at the same instant with a sudden snap, and ontrapping any luckleas animal that may be passing at the time; and then the same proceeding takes place over and over again, without any intormission. It certainly is a most singularI might almost say ludicrous-aight to see all the avicularia within the field of the microscope size and this perpetual "snapping." The great they are apparent strength of the animals which grasp must impress us with a sense of the enormous strength of the muscles which move the jaw, for they seize and retain not only small vermicules, \&c. and rery creatures as caprellm, entomostracæ and struggles of one of these comparatively gigantic rictims in its vain efforts to escape from captive is seized by another, or oven onently the avicularis, in other parts of its body, thus making assurance denbly sure, and so deadly is the grip that I have never seen one of them relax it grip on the application of the medium which is fatal to themselves.

Various have been the conjectures as to the office function in the economy of thise" and their exact supposing that their office is to protect the delicate creatures over whom they mount gaard from the rude contact of foreign bodies which might injure their frail structure; but many equally delicate animals, the Halodactylus, for instance, are nuprovided with any such protection. Others suppose that and hold them in their firm trap the passing animals, and hold them in their firm grip until decomposition has diffused them in the surrounding water, thas fornishing the creatures with a sapply of nourish. explanation. I hy mind, appears the mond feasible abundance at lifracombe, especially apon the rocks near the harbour, mostly depending from the under surface ; the Campanularia dichotome in the same locality on the leaves of brown sea-weeds, and the Sertularixe growing from the sides of rockpools at St. Leonards and Exmouth. The Halodactylus may be found in any locality where there are rocks, encrusting the stems and fronds of the common bladder wrack (Facus vesiculosus) at low water, especially during spring tides. It looks like arm gelatinous coating of a brown colour, and has a semi-transparent appearance. When put into iresh sea-water, it is seen to become gradually, as the animals emerge from their cells, overspread
with what appears, to the naked eye, to be m minute white downy covering If it is a covering

By albert Dunsday, in Photographic Acust
muccessfal plan. Their extreme sensitiveness, and the rapidity with whioh they withdraw themselves
into their cells upon the slightest touch or jar intores it necessary to adopt a peculiar plan of proceeding. I would premise that before commencing operations with the Halodactrlus it is desirable to cut it into the length required to fit the cell in which it is to be placed whilat the animal is contracted. as it may then be cut in any direction without injury, but when expanded it requires to be very carefully handled, as, if the bells are in any way pressed or pat out of shape, they cannot be restored. For this reason it should be so cnt as to fit the cell tiabtly, 80 as to prevent its being shifted. The object is to coax the animals ont of their tiny homes, and to keep them out until you can kill them. To accomplish the first object, it is best to keep them out of the water for several hours, and then to put them into fresh sea-water in any appropriate vessel. I have found a circular glass dish, such as is nsed for calses of transparent soap, answer very well, as it can be pat upnn the stage of the microscope, and the effects of different stages of the operations watched, which is of im-
portance. Some alcoholic spirit must now be added very gradually-spirit of wine, brandy, whiskey, or gin, it matters not which-when they will be ob gerved to come out in greater numbers, evidently attracted by the taste of the spirit, and as it continues to be added they become evidently excited, withdrawing into their oclls, and coming out again, bonding about, and the ciliso meanwhile moving in a most rapid manner. This continnes for some time, until at length they begin to fiag in their movements, which beoome more and more sluggish the animals being apparently drunk. This is the moment to pour off the alcoholised sea-water, and pour upon them the preservative fluid, which has Ie desired effect of bringing ont all that are stil it has their cells, and gradually killing them, and time a most excellent fluid for preserving the same that they can remain in it. I find it of great serthet they can remain in it. I and it of great ser-
vice to let the Halodactylus lie for a considerable vioe to lot the Halodactylus lie for a considerable as a certain amount of deposit takes place from the sea-weed, which it is better to exclude from the
cell. The preserving fluid I use is one recommended cell. 'The preserving fluid I use is one recommended
by Dr. Beale, as a modification of Thwaites', and is prepared as follows:-
Mix three drachms of creosote with six ounces of wood-naphtha, and add, in a mortar, as much pre pared chalk as may bo necessary to form a smooth thick paste : water must be gradually added to the eztent of $640 z$., a few lumps of camphor thrown in and the mixture allowed to stand for two or three weeks in a lightly covered vessel, with occasiona stirring; after which it should be filtered and pre served in well-stopped bottles.

HINTS ON PAINTING.*-IV.

(Continued from p. 689, Vol. XIV.)

Varnishing.

THE rarnish-room should be well cleaned, walls dusted, floor well wet, and if the weather is cold, a temperature of seventr-five or eighty degrees maintained by a clean tight stove, or what is better, steam pipes. The carriage part and body having now been nicely rabbed down and well cleaued, we begin with the carriage part. Raising all the wheels from the floor by two boxes or barrels placed under the axles, We prepare the varnish aud brusbes. American finishing varnish is good enough for this ". "tool" we take our position in front of the wheel "ith our left band on the rim to turn it, witi the "tool" we spread the varnish heavily between the spokes, and up the front as far as the V shape of spolses extend; theu with the large brush we lay on an nimudance of varnish on the side of the spoke nearest our left hand, then opposite, and then reach over and cover the back.
Now, wiping out all the varnish in the brush on the edge of the cup, we repeat the operation with the dried brush. laying off the varnish smoothly and removing the bubbles. Next we varnish the hub, and wipe with the "tool aronnd the "butt of the spokes; then varnish the inside of the rim between the spokes, finisbing the back and front
sides last. We keep the wheel turning for a mowent sides last. We keep the wheel turning for a moment or two until the varnish flows evenly, and proceed with the other whecls in the same manuer, finishing the springs, axles, fec, lastly.
The body is next looked after. Taking our body fuishing brushes (the fitch hair brushea are liest for the bugpy), we begia with the inside-for which we should have a pair of brushes aud a cup expressly. In laying ou a beary coat, we level it off nicely, leaving the brush marks faintly perceptible up aid down the pancls, always leaving tie work beiore it begins to set
The outside we next look after, and fow the varnish on very beavily, but as evculy as possible. bottom to top, and repeat; wiping out the brush on
the cnp, and leave the panel with the last movement apand down. We clean out ander the mouldings with a small brash, and bear in mind that a heaty flow must be wiped upward, never down. Having been all over the body with a piece of
whalebove-which shonld be at hand, one egd being barpened to a point-we go over the work, picking out any hairs, dust, \&c., and then close up or darken the room and leave the job to dry
In cleaning a body preparatory to varnishing, find it an excellent plan to use, after dusting wit the dusting brush, a piece of silk dampened with sweet oil. With this I gently wipe the job over, but not enough to grease the surface, and it removes every little particle of dust or lint left by the shammy and duster.

Varnishes.

There is no class of people more pestered with pedlars, if I may so term them, than carriage-makers are with varnish agents. Every few days an agent of this sort makes his appearance, and sometimes proves an intolerable bore. I do not frown upon the enterprise and go-a-head-a-tive-ness of the agent or his employers, for such a spirit is well enough; but I have frequently had occasion to object to the perseverance of such men in seeking the foreman, after a denial from the "boss," and trying, sometimes by bribery, to get him to assist with his influence in introducing the vaunted varnish. Some bosses, to get rid of the agent, order varnish "for trial", and the workman then has to ran the risk of spoiling his job; for being nuacquainted with spoiling his job; all varnishes manufactured by different makers have their respective pecaliarities -he goes at the work with more or less nervousuess or hesitancy, and is almost cerrain to tarn out a poor job.
Always "let well cnough alone," if you have good varnish and know how to ase it; let the new man, with his new varnish, negotiate with some new shop, where new work is done, by new hands.
I do not wish to be understood as taking a stand against improvement, but as a general thing, there are too many changes with regard to varnish made n many shops. Neither woald I speak disparag. ingly of varnish manufacturers. but would give all a fair show. Let those, however, who prefer one maker's gonds patronize him. "Each one to his taste." I echo the sentiments of a score of painters, and should not be judged harshly therefor.
There are different opinions exiuting as regards the necessary qualitios of varnishes-some preferring a quick-settiug varnish, and others, a slowsetting one to enshle them to "lay of well ; conse quently each must try for himeelf. In re-varnish ing old work it is not well to put English on the old sarface, it being apt to "orawl" or "pit." A newly fivished job should always be washed with clear cold water, and dried with a clean shammy, before nllowing it to leave the paint shop; this bardens the suriace and prevents the dust from sticking to it.
If varnish is found to "crawl." wipe the surface with a damp shamnay. Never dilnte varnish with it by the stove or place the cap on a warm iran.

Polishing.

Polishing on carriages is now among the thinge of the past ; but to describe the mothod will not be amiss, parhaps.
Fiuish your job as smonthly and olenenly as possible with American finishing varvish, mand let it stand atleast teu days ; then rab down with pumice stone the same as if a rubting coat; olean off
and rub again with rotten-stone gromid frae, until and rub again with rotten-stone ground frae, anti next rub tith rotten-stone sud oil mutil a gloss ap pears. Tben fulbstitnte tpanish whiting for the rotten-stone; this shanld be washen, i.e.:-Mix the whiting in a pail of waker, matil like milk: let it settle a moment to oct the stones, dirt, or hamps oat pour off the milky liquid into a clean pan, and let it settle thoronghly: pour off the clear water and dry the sediment ; it will be an impalpable powder, an mixed with the sweet oil will produce n good polish on the panel. Clean all off nvith soft silk, and you have a glossy surface, superior to varnish in point of wear-but not in looks.
Fancy boxes may be polished in this ray, and are better than varnished surfaces. Fnrnitare, pinnos and fancy articles are generally polished, and ther are proparations to be had at furniture atores
polishing, which answer a very good parpose.

Painting Coaches, \&c.

The modus operandi of painting heary jobs differs but little in the foundation onaty from light work therefore I will not enter into details with regard
to it. The workman must be more particnlar with to it. The workman must be more particnlar with
this work, but one who can paint a bugay well this work, but one who can paint a bugay well
should beable to ret ap a good joh on heavy work. should be able to sct ap a good joh on beavy work
Contidence in your alilities is one half the batle. Contidence in your atilities is one half the bat the.
The pancls of sncl work are generalls painted in colours, while the pillars, top stripe, quarters, deck Sc., are alyars black. Umber colours, lakes. greens, and illues are some of the best colours used on this work. To prepare the boty for any of these colours, we shonld use a ground colour in the place

The following are a few of the grounds most mpproved.
Lake.-Indian red and vermilion mixed to dark brown, though some prefer a black ground "or lake. Lake should never be mixed to dry "dead," but with a subdued appearanco, by putting in varnish enongh. The best way is to try it on a beard before laying on. If "dead," it loses one half its brilliancy, and will be apt to be cloads.
Ultramarine.-Mix a medium blue with keg lead and Prassian blue.
Vermilion.-A light pink colour is generally used as a ground for verminion, but if a pare white ground is gotten up from the beginaing, you will tind the colour to cover well, and lose none of it pristine beanty. Don't forget to pat flowers of salphar into your vermilion, (as spozen of on page (j06, Vol. XIV.) to preserve the colour.
Grean.-Green and all heavy bodied colours will cover
colour.

To Paint Panels Cermine.

To make a good job with carmine, we should at up an Euglish vermilion ground, into colourimg varnish, well rabbed down with pumice stone; for we cannot rab a great deal after the job is glazed. Some painters mix their carmine glazing with rubbing varnish and oil, but you will find such jobe requently "spotted;" the best way is to mix in English varnish, adding a little gold size for aryer ; this flows evenly, and does not clond or spo if properly pat on. When a job is glazed, rab carefully and apply a coat of American ciaisung and rabbing, mixed in equal parts. This can be rabbed for finishing coats, whereas i rabbing varnut the
put on over the glazing it might crack-but put on over the glazing it might ar
mixture will stand the wear of years.

Ultramarine blue panels can be made the same way, the ground being gotten ap with Prassian blae. A beantiful wine colour or lake may be made by glazing Indian red or brown with carmine. A brilliant green may be produced by a light pea groen glazed with verdigris or with Paris green. Striping may be glazed in the same manner, but of course on dead striping col in the place of, colouring varuish. I think this a very poor plan, as you have no chance to rab the surface until there is so mach varnish over it that the colour is injured.

The workman by experiment aan discover many splendid variations of shades and tints by the glaz. ing process, and his labours will be better rewarded by knowledge acquired in that manner than if I were to extend this article to greater length with more precepts.

Striping.

When tabe colours are used for striping, there will be no trouble experienced in miring, as they only require thinning with tarpentine, and the addition of a little sugar of lead. We mast nse our own taste in otriping; though governed a littie by prevailing styles. It would be folly for me to dicstrining is done can be learned in three minutes by looking at a workman while at work, but long exlooking at a workman while at work, bationg experience is required to perform the operation well
suffice it, then, for me to say, get good tools aud suffice it, then, for me to say, get good tools a colours and prantil you can master the art, for only practice, patience, aud perseverance can accomplash

When striping on solid colour, the ends of the stripes or any imperiections can be "cat off" or improved with a little of the "dead" "colour," would show th or her colour thus employed on thest colours we have a little oil ready, and before the stripes are dry, we draw a pencil filled with the oil across the ends. Then the stripes will dry ever. where but in those places where the oil is, and then they can be washed of with soap and water after all the rest is dry, and thus leave the stripes with a equare end. Brouze striping is fashionalle, while clazed stripes are always considered beautiful. Siriping with a mathematical or drawing pen will be found excellent on panels or sleigbs. Scotch
plaid work is now out of fasbion, as well as casi plaid work is now out of fasbion, as well as cal"
work, or raised cane. The latter "raised Caia" with many who did not know its secret, and althongh an extended article could be written on that kind of work alone, and would bo cousilered interesting ly some, its antiquity will not warrant more thian this brief notice.

THE INDUSTRIAL CLASSES IN BRAZIL.

TE daily papers lately contained a notice from the Consul-General of the Empire of Brazil setting forth the facmities winch win oe aforded on to that country. How far the prospects of such per sons are favournble or otherwise we will endenvary to show. Brizil occupies such a vast territory that great difrerences are to ne in respect of natural advantages, such as wood, water, climate, and roads, and the reports of the cousuls of the seven selected
in the most northern provinee, is situated as nearly as possible on the equinoctial line, whereas Rio Grande is abont 33 deg. south latitude. But the land is so much elevated above the sea, and is so well watered by magnificent rivers, that though it lies mostly within the tropics, the climate is, on the whole, healthy and delightfal. Some of the ports are an e ception to this rale. Though splendid to pidemic of fever sometimes occur. Brazil is at present in a transition state, as the emancipation of the slaves is being now rapidly carried out. When this weasure has been fally accomplished it is reathis weasure has been fally accomplisised it is reasiderable demand for labour. The Government is siderable demand for labour. The Government is
also constructing railways and new reads in the also constructing railways and new reads in the
interior, and the greatly increased steam communiinterior, and the greaty increased steam commanication slready conveys large importations of reany-
made goods of every description. These are chiefly, as far as we are concerned, menufactared cotton goods, wrought and unwrought iron, linens, and woollens, and we receive from Brasil in return, raw cotton, coffee, and unrefined sugar. In fact, our Brasilian trado is nearly three times as large as that
of Franeo, and five times as large as that of any of France, and five times as large as that of any other country. The country is peopled by a very married extensively with the Indian women, and there was a further intermixture of race with the African slaves. The Indian element preponderates in the north, while at the seaports the population is chieft Enropean; the Portuguese predominating. Besides these there are not a few groups of settlers -Englisb, Swiss, and German-who have formed, $8 s$ it were, separate colonies, having obtained grants of land from the Government. Most of these are in a very flouribhing condition, and the men have built for themselves good dwelling-honses. In some cases they have established mannfactories, in others they parsne agricultare, but they receive every enconragement from the Brazilian anthorities. There are a considerable number of Eaglish miners, many were upwards of 140 Enropean miners and mechanics employed ; according to Captain Burton's report, they were well paid and cared for, and as their cotiages were built for them by the company, and let to thesa at a meraly nominal rent, they ought to put by money.
European artisans and mechanics are not here, as in most foreign countries, expozed to the disad. as in most foreign countries, expozed to the disad-
rantage of having to compete with cheap native vantage of baving to compete with cheap native
lahnur. The Brazilian is not by nature a handi. lahnur. The Brazilian is not by nature a handi-
crnftaman. He prefers keeping a shop or breading craftsman. He prefers keeping a shop or breeding
and selling cattle; but above all he desires a place nnder Government. As a workman he is independfnt, careless, and deficient in stealy iulnstry. When he has earned a little money be givas np a job and remains idle ontil he has spent it. The rate of wages is very high. Tailors, shoemakerg, sarldlers, miths, joiners, carriage builders, bakers, hattons, tinkers, and painters, from 4 s . to 6 s . 6d. ; masons. and bricklayers, 48 . to 6 s . At Sao Panlo, smiths, turnars, and moalders get from 8s. to lus, railway lahourers from 48 . to 68 . There is, according to Consal M. Heinesen, \& great demand for iemale domestic servants. Chambermaids and general servants receive from $£ 210 \mathrm{~s}$. to $£ 3$, and cooke tet per month. As a rule, all engineering and construoting work. macbine making and repairing, saddle and carriage making, brewing, \&c., are done by Euro-
peans. The Portuguese are the most numerous, peans. The Portuguese are the most numerous, orderly in their conduct ; the Germans are very steady and save mach money. A very profitable brancls of labour for six montibs in the year is the atraction of the jnice of the rubber-tree. A single msn will put up a temporary hat in the forest, and, with a provision of dried fish and mendioca root, in addition to the frnit and game which abound every. where, can live very comfortably. Ahout 8 lb . of rubber is an average day's work, value 13 s . 41. ; but some men have been known to earn as mach as vers. in one day. The operation is performed in a very prinitive manner; bat already an American
and an English,man bave produced two inventions and an Englist,man bave produced two inventions for performing it more expeditionsly and methodi-
cally. The Topayo, or civilised Indian, is very fond of this kind of work, but it is at present carried on in a most wasteful and short-sighted way, for hough the accessible rubber districts are becoming exhausted, no care is taken to plant young trees to re-supply them. It is stated, however, that vast supplies exist in the interior, and wben more roads are constracted, it is evident that with care a cource of considerable riches might be established by industrious and enterprising colonists. Under the same conditians plantations of cotton, rice, sugar, culture.
The deily wages to be earned in Brazil by a good workman are, as wo have shown, exceptionally high; statements given by the consuls vary according to statements given by the consuls vary according to
the digtrich. In Para it is estimated as about half hat it is in England. In Rio de Janeiro an Eng. 4 mechanic would be about as well off with £20 t month 28 he would at home with £15. In Per-
thirds, whereas in Rio Grande, Consul Callander, after balancing the high house-rent against the cheapness of food, considers money goes about as far chere as here, and Consul Heinssen agrees with him. Consul Dundas thinks that supposing 10s. there is worth only 58 . here in parchase power, still, to a man who chose to save money, the advantage would be considerably in his favour, and explains it thas :-The milreis (coin of the coustry) may only bay there as much as a shilling would here, but it is valued at 28. exclange. His savings, therefore, he could convert into sterling at the current rate of exchange ; and if he earns 9s. a day, he can live on 5s., or less, very comfortably, and he bas the full value of what he is able to lay by. It is affirmed that a steady skilled mechanic, even if married and with a family, onght to save at least one-fourth of his wages, but at the very least he would find him self with aboat 35s. in hand at the end of each month. From the evidence given we shonld place this mach higher. If emigrant workmen in a distant country insist on having imported luxuries, such as tea, wine, butter, bottled English ale and porter (the only way it can be procured), and wheaten floar, of course they can spend any amonnt of money; bat a reasonable and intelligent emigrant adapts himself to the castoms and requirements of the country and accepts its luxuries in exchange for those he has left in England. For example, in Brazil he would use coffee instead of tea, the small-beer and wine made in the country instead of bottled ale or spirits, nde in c con stend of whe thil delicions tronical frits various kinds of game anknown here, but cheap and abnndant there, would very much abate the severity of his self.denial.-Pall Mall Gazettc.

RESTORING CHARRED MANUSCRIPT.

TE wholesale destraction by the fire in Chicago of the receptacles nsed for the safc-keeping of. valnable written and printer documents has called hor some means of restoring burnt manuscrip and the like, at least so far as to permit the same of the larned city, has attempted to meet the neces sity by a patented process, which he describes as follows:-
The charred paper is to be first separated into singlo leaves, and then immersed in a solntion of a soluble compound of silver or copper for such a time as may be required to render the printing or writing selficientsy legible. A solation of the nitrate of silver containing forty graing of that salt to one floil omes of distilled water is preferred. If the restoration is only required to be made on one sid of the sheet, the solntion may be applied with a brush. or by floating the paper apon the sarface of the liquid.
The process succeeds best in a dark or a feebly lighted room. After snfficient legibility has been attained, the paper should be soaked for some time in prore water to remove the excess of the erl used-in the case of silver salts, a dilute solution of hyposulphite of sode or of cyanide of potassium may be used-after which the paper may he exposed to the light, and, whan ary. covered with a

THE PREVENTION OF PUTREFACTION AND THE DEVELOPMENT OT PROTOPLASMIC and FUngUS LIFE.

TE following is an abstract of two papers 1, Dr. F. Crace-Calvert, F.R.S., read wefore the Royal Society, on the relative power of various substances to prevent patrefaction and development of protoplasmic and fangus life :-
To carry out this series of experiments, small test-tabes were thoronghly cleansed and heated to dall redness. Into each was placed 2 tigrms. of a solation of albnmen containing 1 part of white of egg to 4 parts of pare distilled water, prepared as described in my paper on protoplasmic life. To this was added 1000 th , or 0.02 tigrms ., of ench of the substances the action of which I desired to
study. study.
The reasons why I employed 1 part in 1000 are twofold. First, the employment of larger proportions woald, in some instances, have coagulated the albumen;• secondly, it would have increased the difficalty of observing the relative powers of the most efficacions antiseptics in preventing the development of the germs of putrefaction or decay.
A drop was taken from each of the tubes, and examined under a microscope having a magnifying power of 800 diameters. This operstion was repeated daily with the contents of each tube for thirty-nine days, and from time to time for eighty days. During this time, the tabes were kept in a room the temperature of which did not vary more than 3°-viz., from $12.5^{\circ} \mathrm{C}$. to $15.5^{\circ} \mathrm{C}$.
In order the better to show the inflnence of the antiseptics used, I examined two specimens of the same solution at the same time, one of which was kept in the laboratory, the other in the open air.
A marked difference was observed in the result;
animal life in less than helf the time requirod by the other, while as many vibrios were developed in six days in the tube kept outside as were developed in thirty days in the tube in the laboratory.
A summary of the results of the experiments given in the following table, in which the substances a
nature :-

	Daya required for Development of	
	Fungi.	Vibrion.
1.- Stimpard Soletions, Albamen lscpt in laboratory for comparison Albumen exposed outaido liboratory	18	12
	None	5
2.-Acros.	21	11
Sulphuric acld	9	9
Nitric acil	10	10
Arsenious acid	18	22
Acotie acid	${ }^{9}$	30
Prussio acid..	None	9
Caustic soda ${ }^{\text {3.-Alukaliss. }}$	18	24
Caustic potash.	16	26
Canstic mmmonta	20	${ }^{24}$
Caustic lime..........................	None	13
4.-Chlorine Compounds. Solution of chlorine	29	7
Chlorids of sodium	19	14
Chloride of calcium.................	18	7
Chloride of Aluminium	21	10
Chluride of zine.....................	53	Nono
Bichloride of mercury	81	None
Chloride of limm...	16	7
Cblorate of putasi........................ 5.-Sthiphta Compounds.	19	17
Sulphate of limn....................	19	${ }^{9}$
Protosulphate of iron	15	7
Bisulphite of lime..................	18	11
Hypusulphite of smala....................	18	11
g-Pbospliates.	17	13
l'husphave of line..	22	7
Permanganate of putizh.	22	9
8-Tar Serieg.		
Carbolie acid	None	None
Cresylic scid................	None	None
9.-Shiphearmolates.		
Sulphocarb late of prash.	17	18
Sulpherartolate of sondr.	19	18
Sulphucarbilute of zinc	17	Noxe
Sulphata of quinine.	Nono	${ }^{25}$
Picric acid	19	17
Prper	Naze	+
Turpentino	4	14
11.		

In comparing the resnlts described in the above talle, the snbstances can be classed under four dis-
tinct heads- viz. those which prevent the developtinct heads- viz., those which prevent the development of protoplasnic and fungas lifo; those which prevent the production of vibrio life, but do not prevent the appearance of fungus life; those whioh permit the prodaction of vibrio life, but prevent the appearance of fungas life; and those which do not prevent the appearance of either protaplasmic or fungus life
The first class contains only two substances, carbolic and cresylic acids. In the second class, also there are only two componnds, chloride of zinc and bichloride of mercury. In the third class there are five substances, lime, sulphate of quinine pepper, turpentine, and prnssic acid. In the fourth class is included the remaining twenty-five substances. The acids, while not preventing the pro-
duction of vibrio life, have a marked tendency to duction of vibrio life, have a marked tendency to promote the growth of fungus lifo. This is especially noticeable in the case of salphuric and acetic acids. Alkalies, on the contrary, are not favoarthe do the prodaction of fangus ch, but prof zinc and mercury, while completely preventing the development of animalcules, do not entirely provent fungus life, but I would call special attention to the interesting and unexpected results obtained in the cases of chlorine and bleaching powder When ased in the proportion above stated they do not prevent the production of vibrio life. In order to do so they must be employed in excess; and I have ascertained, by a distinct scries of experi ments, that large quantities of bleaching-powder are necessary. I found that part of the carbon
was converted into carbonic ncid, and part of was converted into carbonic ncid, and part of
the nitrogen was liberated. If, however, the the nitrogen was liberated. If, however, the bleaching-powder be not in excess, tho anima matter will still readily enter into patrefacLien. The assumption on which its employment as a disinfectant has been based, namely, that the affinity of the chlorine for hydrogen
to destroy the germs, is erroneous. call sttention is the tar series, where neither the carbolic nor the cresylic acid thids gave any signs of vibrionio fnngus life daring the whole eighty days during ingurs life anring the whole eighty days dariag whits obtained with sulphate of quinine. and turpentine, deserve notice. None of vent the development of vibrio life; bi of quinine and pepper antirels prevent
able efficacy of salphate of quinine in cases of intermittent fever, woald load to the supposition that this class of disease is due to the introduction into the system of fangus-germs; and this is rendered the more probable if we bear in mind that these fevers are provalent only in low marshy situations, where vegetable decay abounds, and never appear to any extent in dry climates, even in the midst of dense popalations, where ventilation is bad, and putrefaction is rife. The results obtained in the case of oharcoal show that it possesses no antiseptic properties, but that it prevents the emanation of putrid gases, owing to its extraordinary porosity, which condenses the gases, thus bringing them into contact with the oxygen of th atmosphere, which is simultaneously condensed.
The above results have been confirmed by a second series.
A series of experiments was also undertaken, substitnting gelatine for albumen, and was continued fos forty-seven days. Vibrios appeared in two days in the standard gelatine solution, and bacteria after four or five; and during the whole time of the experiment, life was far more abundant than in the albumen solution. A distinct putrid smell was emitted after twenty-six days. With bleachingpowder it took twenty days for life to appear, in. stead of seven, as in the case of albamen; while at no time during the twenty-nine days which remained was life abandant. No putrid odour was emitted; but a mouldy one could be detected on the thirtieth day. With chlorine solution vibrio life was only observed after forty days; no patrid nor moaldy smell was given off at any time. The protosulphate of iron gave, with this solution, results quite differemembun those with abamen, in Which deye and fungi after fifteen : whilst, with gelatine, neither protoplamio nor fangis life appeared doring the protoplasmic nor fuagus life appeared daring the time the experiments Were continufd. Another substance, arsenious acid, also presented a marked difference it its aotion in tht two solutions, for al fore ribrios were present, and eighteen before fangi, with gelatine animal life appeared after two days, and at no time did any fungl exist. The effects of the other substances with gelatine were so similar to those with albumen that it is unnecessary to state them here.
Another series of experiments was andertaken as complementary to thoso described above, and consisted in adding to a solution of albumen, swarmiag with microscopic life, one-thousandth part of the substances already onumerated, and examining the resmits produced immediately after the addition of the substances, and after one, six, and sixteen days ; but in this abstract, only the results obtained in the first and last cases will be noticed.
The solations were placed in test-tabes similar to those described in my last paper. The experiments were began on September 20th, 1871, the solations being rept at a temperature of 15° to 18 C. In the standard solation, the amount of life and putrescence increased during the whole of the time. The first cless includes those substances Which completely destroyed the locomotive power of the vibrios immediately, and completely preveariments regaining it during the time
The second class contains those compounds which nearly destroyed the locomotive power of all the vibrios present when added, and afterwards only one or two could be seen swimming abont in each fleld:-Carbolic acid, sulphate of quinine, chloride of zinc, and sulphario acid.
The third class are those which acted injariously on the vibrios on their addition, leaving only a small number retaining the power of swimming, but which allowed the vibrios gradually to increase in number, the flaid, nevertheless, containing less Fe after sixteen days than the standard putrid of zinc.

The fourth class includes those substances which acted injuriously at first, bat permitted the vibrios to regain their former locomotive power, and which after sixteen days, contained as much vibrio-life as the standard patrid albamen:-Chloride of ala miniam, sulpharous acid, and prassic acid.
The fifth class contains those compounds which acted injuriously at first, destroying the locomotive power of most of the vibrios, but which afterwards permitted the vibrios to increase more rapidly than in the standard albumen solution:-Bleaching-powder bichloride of mercury, chlorine solution, caustio sook, acetic and nitric acids, sulphate of iron nd soda.
The sixth class contains these compounds which exercised no action on the animalcules either a first or after sixteen days:-Arsenious acid, common salt, chloride of calcium, chlorate of potash, sulphate of lime, bisalphite of lime, hypoenalphite of soda, phosphate of lime, tarpentine, and pepper.
The seventh class includes those substances which favour the prodaction of animalcules, and promote patrefaction:-Lime, charcoal, permanga nate of potash, phosphate of sods, and ammoria

HOLTZ'S ELECTRICAL MACEINE.

SERAL inquiries as to the construction of Holtz's electrical machine having appeared in our columns without eliciting a reply so satisfactory as queries generally obtain, we have thoaght it advisable to make an abstract of the best de-
scription with which we are acquainted, and have scription with which we are acquainted, and have
accordingly borrowed the illastration aud descripaccordingly borrowed the illustration and descrip-
tion contained in the supplemental volume of tion contained in the supplemental volume of
Watts' "Dictionary of Chemistry" just published by Messrs. Longmans.
This is a contrivance by which a very small initial charge is made to give rise to an indefnitely great quantity of electricity of high tension; its action may be described in general terms as equivalent to that of an electrophorus and a condenser combined together in such a way as to act upon each other alternately, the condenser being first charged by the electrophorns, then reacting upon it so as to increase the charge of the cake; next being charged by the electrophorus to a higher degree and react. ing apon it more strongly than before; and so on, the charge of each becoming gradually greater and greater until the insulation is overcome. The form nsually given to the machine is shown in the figure. Its construction is as follows: A circular plate of thin and very flat glass, B b, is mounted upon an insulating ebonite axle, so that it can rotate in a vertical plane, and a second glass plate, A, A, also as thin and tlat as possible, is tixed parallel to it, with its centre in the same horizontal line, and at a very short distance (fin. to fin.) from it. At the middle of the fixed plate there is a round hole, through which the axle of the movable plate can pass with. out touching, and there are two deep notches or windows, y Y, cut out at opposite ends of a diameter ;
frequency, when the discharging knobs are moved farther apart, but if the distance between them is made greater than a certain limit, depending chiefty machine thaulion of the to pass altogether, and, unless the knobs are quickly brought nearer to each other, the machine soon ceases to act.
For further information as to the action of the machine, and for an explanation of the principles which govern its constraction, we must refer our readers to the book itself, which assuredly decerves a place in every pablic library and chemist's laboratory in the kingdom.

OUR FOOD SUPPLY.

T
HE Rev. Henry Moule, writing from Fording. ton Vicarage on the inadequacy of the food supply of this country, comes to the following con-clusions:-Let farmers, whatever be the extent of their holdings, make a more provident nse of straw. and of stalks of almost every kind, for foed for cattle and sheep. Let them makea more provident use of their pastures. Full two-thirds of the pasture of most inclosed flelds in the ordinary mode of grazing are wasted. Let far the larger proportion of cattle be fed in stalls, and in that proportion woald this waste be prevented, and economy of straw, \&c., be promoted. With the abandance of food thas provided there would soon be an end put to the wasteful slaughter of calves and lambs; and by this means alone the stock of a farm would soors be increased. But beyond this, if the manure of the stalls be carafully preserved, and treated in the way in which I propose to treat the refuse of towns, and of which I gave a Decamber 3, 1871, then the corn produce and live atock of our 47,000,000 sares might soon be doubled. For, with a due supply of dry earth to the stall and the proper admixtare of other substances with this earth, a single cow will produce 12 tons of manare per annum, one, or at the vary largely increase the produce of an acre of pasture. On an ordinary farm two or even three ecrea are two or even three acres are deemed requisite for one be practised sud the cosg be properly tended, and the be properly tended, and the pasture duly manured, one acre will keep two cows; and, if the land be good, even three cows. The remaining 10 tons of manure from one cow might be applied with great advantage to 10 acres of land, drilled in with corn or the soed of roots. If so, then, together with a saving of nino-teen-twentieths on the ordinary carriage of manure (which would of itself ad-
at the back of the glass (that is, on the side turned ocay from the rotating plate) a piece of papar, p_{3} about 2 in . broad is pasted along the lower edge of one of these openings, and a similar piece, p, is pasted along the uppar edge of the other opening, each of these pieces of paper having projecting rom it a couple of tongues of stifi paper, $n n^{\prime}$, long enough to project through the opening and just touch the movable plate; both the papers and their projecting tongues are well varnished. On the side of the movable plate which is farthest away from the fixed plate, and opposite to the two pieces of paper just mentioned, are two collectors, jecting consisting of a row of metal points pro very small distance of the rotating plate. These collectors are connected with the main conductors of the machine, c c, each of which is provided with a movable discharging rod, $\mathrm{K} \mathrm{k}^{\prime}$, by means of which they can at will be placed in electrical connection with each other, or separated by any required interval. In order to pat the machine in action, the two conductors are connected together, the movable plate is sot rotating at a moderate speed, and while it is moving, an electrified body, such as a piece of ebonite excited by friction, or the cover of an electrophoras, is brought near to, or into contact With, one of the paper armatures. Both the papers kinds of electricity, and if the knobs, $r r$, of the discharging rods are seplarated te a short distance, a stream of sparks is seen to pass between them. These sparks become less frequent, but larger and brighter, if each of the conductors is connected with the inside coating of an uninsulated foyden jar
human labour throughout the year), 10 cows, besides reeping up their own supply of food from three or four acres, would afford an annual supply of manure for 100 acres of corn or roots, the almost ineriteble result of which would soon be the doubling of the ive stock and a very large increase of the corn produce of the country. Much more than this, however, might lve effected by calling in the aid of the working classes themselves.

PHOTOGRAPHY FOR THE UNINITIATED.

 (Continued from p. 270, Vol. XIV.)A FRIEND said to me a day or two since, that A. my letters to you were all well enough in their way, but didnot enter as fully into detail as the subect required. He stated that they were too general in their ctaracter, and had the appearance of passing
too hastily cver the subject. If such is the fact, too hastily cver the subject. If such is the fact,
then I have succeeded in doing just as I inthen I have succoeded in doing just as I intended, so far as writing in 2 general rather than in an exhaustive style. To write exhanstingly woald
be to write a volame. That I never intended, as be to write a volume. That I never intended, as quantity to the oninitiated is rather more confusing to the most excellent works of Vogel and Lea. It may be well, however, to look over the letters which I have written, and upon a few points be a little more explicit, and abso make some changes and additions.
In letter No. 4 (p. 34, Vol. XIV.) wherein I wrote ${ }^{d}$ s to the use of albumen as a substratum npol the plate, and reoommended its flowing thereo

While still wet, I have to add as follows:At a recent meeting of our photographic society, it
was stated by Mr. Gardner, as the resalt of his experience, that if the plate was well rubbed with a piece of canton-flannol or Joseph paper dampened with a solation of alcohol slightly acidulated with acetic acid, that over this dried surface the albumen strongly recommended the use of dilnte albumen withont the addition of ammonia. This plan presents advantages over the one directed in my letter above referred to, and is fally worth a careful trial As yet, not having had an opportunity to test it. I cannot speak from personal knowledge as to its nerits.
While considering the use of albumen, I may as well state that in my experience it materially "slows" (i.e., lengthens) the time required for the exposare of both wet and dry plates; it decreases
intensity in the dry and increases the same in the intensity in the dry and increases the same in the wet. At the same meeting above referred to, this of amall portion of alcoldol was added to the dilate albumen in place of the ammonia the "slowing" effect would be overcome.
The troables most often met with in out-door photography, in my experience, are those which I shall name in a general way, and suggest the most likely cause of such, so far as my practice and exрегіенсе go.

Fogging.

This may arise from many canses. 1. From diffused light, either in the operating-room during he sensitising and developing processes, from some defect in the camera or plate-shield. 2. By use of a freshy-made rample of collodion. 3. By ittle acid in the developer. These are but a few of the many possible causes, but the most probsble.
As to the finish, I need only say, examine the room and articles referred to with great care. To make sertain as to the room, ge through all the operations of sensitising and developing a plate within the room; if it remains clear, next test your camera and shield, by proceeding the same as you would in all use thereol, except removing the caps from the lenses. If both of these stand the test, you may rest satisfied as to them. As to No. 2, add a trifle of an older and redder collodion to the new lot, until you have it a reddish-yellow tinge, or a drop or two an alconolic solation of iodine. If log sian conmaking it ap, exercising even greater caation. making it np, exercising even greater cation.
Finally, try more acid in the developer, and be more cautions to wash the plate well before you leave our dark room for the purpose of "fixing." A fog rom light is deep-seated and throughout the alm; that from the collodion, bath, developer, and insumf.
cient washing, is of a surface character, and can, cient washing, is of a surface character, and can,
when dry, be to some extent removed, and leares when dry, be to some extent removed, and leaves
below a polished silver surface not easily forgotten when once seen.
Stains and markings result most often in warm Weather, from a too great delay in the various nperations, especially in keeping a plate too long betwenn the time of its remoral from the nitrate bath and development, also from dipping before the film has properly set, from improperly dipping, from improperly draining the plate, from a wet and sloppy shield, scum upon the surface of the bath, \&\&C.

Spotes and Pinholes.

Oftener dust than anything else causes them; keep clean. Fixing solution allowed to fall apon the table or floor, becoming dry soon, raises a fine powder or dust, and spoils your work as fast as made ; improperly filtered collodion, bath, and developer; sudden shatting of the slide of the plateshield, dirty camera, and an old bath solution which requires to be overhauled-aboat which I shall write you some of these days.
Dirty fingers, wet with developing and fixing solations, used when collodionising or sensitising, do not help matters.

Pressure in Steam Boilers.-The question as to whether the pressure in a steam boiler was equal or diffirent at top and bottom, concerning which there kecms to be some difference of opinion amongst engi-
neers-though it is difficult, from the simplicity of the neers-though it is difficult, from the simplicity of the
facts involved in considering the question, to see how facts involved in considering the question, to see how
3 difference of opinion should exist-has nevertheless a difference of opinion should exist-has nevertheless hecn experimentally determined by the Sessrs. Hunter, attaclind to the end of the blow-of pipe which entered the muddrum; into this a plug was screwed, and tapped to receive a fin. pipe; to this a steam gauge Was attached and the coek opened. On comparing the indcations of the gaugesattached at top of boller and
to the top of drum, as above described, it was found tho the top of drum, as above described, it was found
that the pressure was greatest at the botom, by 1 lit., proving, as might readily have been predicted, that the pr"saure apon the bottom of a boller ds equal to a wateam presesum indicated abore, plus the weight of a wner column equal in height to the difference in
inrelpotween drum and surface of water in boiler, and is thaneter to that acting on the gauge.

LETTERS TO THE EDITOR.

[W] do not hold owrelves responeible for the opiniona of our correspondents. The Editor respectfully requasts posible.]
All oommmineatione should be addressed to the Editor of the Knalisi Magining, 81, Tavitoch-atrcet, Oovent Gardon, W.C.
J. Pasgers and Port Offlee Orders to be mado payeblo
J. Pasgiong Edwakds.
"I woild have every one write what he knowa, and $2 s$ noch as ho knows but no moro; and that not in this only, but in all other subjects: For such a person may
have some particalar nature of suck a person or sueh a fountain, that as to nature of suck a person or such a rountain that at that and yet to keep a clutter with this little pittence of hif, dice from whence write the whole bory of phyeioks: original"- Xontaigne's Esaays.
*** In order to facilitate reforence, Correspondento when opeahting of any Lettor previously ineerted, will oblipe by on which it appears.

4

CONTACT OF COMETS WITH THE EARTH.
[3916.]-Tux oertainty of "astronomical cataitrophes" (as the 8pectator euphemisen falls of oomets on our oarth), both past and future-the formor being a fhowed "F. R. A. B." in your columns above three years agot-depends on a rast mase of evidence of various kinds that may be divided into-1. The proofs of the average rate at which this planot in (co far ss accessible statiatics can show) enconntering comets, i.c., observe their ponderable matter or heads, not meraly their showy and mysterions tails, which, being non-ponderant, there is no reason to suppose we should even be aware of pasaing through; and mnech evidence dar of 1091 pithort tnoming it and probably, our ancestors in slmost every age as nnconscionaly. Entering a ball of ponderant matter (which sciouliy. Entrening domot ponderant matter (whing handred or thousand times rarer than hydrogen, or handred or thousand times rarar than hydrogen, of
than the beet " vacunm" of our Geisaler tubes) is a very different thing indeed, and yet a thing jast as very different thing indeed, and yet a thing just as
demonstrably happening to our oarth from time to time, and therefore one that any peology must needs time, and therefore one that any peology must needs "F. R. A. S." commends to my attention on p. 61 (whioh, "F. R. A. S." commends tomy attention on p. 61 (whioh,
with thanks to him, I have seen enough of, and which with thanks to him, I have seen enough of, and which I cannot oall anything bat Lyellology) may do or leave
nndone. 2. The past duration of our planet as an nndone. 2. The past auration of our planet as an
inhabited one, whother by vegetables, animals, or men, inhabited one, whother by vegetables, animala, or mon, is, of course, a point co-ordinate to this proof ; becanse its age might be fonnd such that there might be a pro(or even since far earlier geological periods) met, overtaken, or fallen upon her. 1 comparison, hoveror of taken, or fallen upon her. A comparison, however, of cometary statistios with the demonstrable past dara-
tion of animal life (which though not 80 great as most Lyelliats fancy, is certainly more then a million years) Lyellints fancy, is certainly more than a million years) leares no chance of this time having olapsed without anndry and probably many cometialis. In fact I shall show that (anpposing there were no traces or no geowhet might be explicable without them) it would not be open to a scientific theorist to assume there bave been none. On the contrary, he woald have to explain how it happened that suoh events had left no traces. It it happened that anah events had loit no fyell to asy, "pould be no more allowable for scrope or Lyell to cay, perhaps in theso $1,000,00$ years no comet may hare in the surface of an English bailding ten years old, by in the suriace of an English building ten jears old, by a dry locality, there may not have happened any shower here during these here during these ton years. Scrope, in the page to page of the page of the own "ooks), harps apon what he thinzs an unlimited "allowance of time might do to cortain most nnlimited drafts npon antiquity." and a page later, breaks into this beantifally scientific stylo- pag
"Time! Time! Time!"
Yes, Mr. Serope, don't jon wish you may get it? Suppose time would give the effects you vainly attempt to explain (Which it would not, and has no tendency towards), in order to get your "almost nnlimited drafts," you have first to got millions of comets out of the skies
For in this actual universe and order of known nature the average drafte aflorded yon between cometfall sid cometfall the Lyellology, to " s acore of books", of phich "F.R.A.S." would commend my attention, is the my thical goology of a mythical and anknown aniverse, one without comets ! 8. Bat a third part of the oridence, that might or might not eriat, is the presence of iacts on earth not explicable bat by cometralla, or the last cometfall. Were there no such facts at all, this wonld nowise tend to alter the astronomical necessity that (in the time known to have elapsed) we must huve picked np comets, or exonerate a science of geology rem tating account of such necessity, snd explaining how falls might tate place and leave no enfect but those seen. In fact, however, the globe is covered with millions of eflects utterly inexplicable without a cometiall, and one almost datable to a century, certainly betwoen forty-Ite and tifty-onc contariea ago ; and
the attompt to geologise without this, and to sc-
connt for extent phenomens by "canees now in connt for extent phenomens by "casues now in action" alone, has been 80 resolutaly and perseveringly coade in this generation-we may Bay the life of Leyoll rom early manhood till now mainly given to this one attempt-that all time will really be indebted to him and his compeors for mating it imposaible to $1 a y$ thio trial has not been fully made, fally exhanstel, and the resalt utter and ridiculons failure. (Fide, "soore of book in quertion, and any valley on earth).
The multiplicity of evidence belaring on all thees points is $s 0$ great that in the ombarras de richeres I information as "J. C." (p 68) ants oegin beat an fragments, the only way kito Evalish Mreramio cond admit it, ss any such fragment seen alone is sure to call up some grandiloquent "ventare to hope," like
that of "F. R. A. 8." (p. 61, Par 8) from Tgelliste that of "F. R. A. 8." (p. 61, par. 8), from Frelliste,
Who little dream the ridiouloug fgares thay and their "science" are infallibly doomed to out in a few yearn on a general deluge as "one of the remalts" mont certain to have accompanied each puat comethall, leaving any is the point i had the averace frequency of falls, as be admits they "might be oxpected." But I shall have to be gaided by the directiona that his or other "surprisce" and objections may take. Wherever they may lead I promise to follow, and to show fancied on this point exista of ovidence that oould be also much, I believe I thall show, that could not be fancied d priori. And there is no coniliot of evilence. All is harmonions, and talls one talo. "F. R. A. 8." is not going to have his wish to hoar no more of a geologers have had "A ohial amang yo tahin' noten," and from him or othori, a good deal about the "quantare now in thoy are not going to hear the end of. They and with some nuts to arack that I have often ons ors. them to beware they aid not break thotr teeth on.
E. I. G.

THE METROPOLITAN CRATER OF THE MOON

 -LUNAR MAPG-CATALOGUES, \&C.[8917.]-Mr. Brat cays (lot. 8806) that he falied to And, eithor in a cortain anpabliahod map that liny, before him, or in Schmidt's "Rillon aus dom Monde," any appearance of a cleft Igured in M. Gaudibert's aketch of Tycho (let. 8485). Regarding its sbeonoe from the Rillen it may be inferred that Schmide did not look on it as a rill properly so called; and, oertainly, it appears to me as no other than one of
those clefts that separate the terraces of orater ramparts. In some instances the clefte, after running a cartain diatance in a more or loss rough, and often interrapted, parallelism with the contour of the exterior ridge, are seen to strike across the latter, forming a gap, as M. Gandibert shows in the wall of Tycho, and as may also be well obeerved in the not distant cratar of Ballialdua. The claft, or ravine, found by M. Gradibert outaide. Tycho, certainly rang from the sonth-west in the direction of the gap, but I could not ssy frommy own observations thet it forms a part of the same formation. I have often notioed a cloft longitudinally aplitting the exterior couth-westarn alope of Plato, and reaching with its northern ond the summit of the wall. It is rary woll defined, and is, I should say, quite as striking a feature as the oleft in Tycho, but still I never looked on it as anything more
than a ahesm between terraces] formed, perhaps, by a than a
landelip

We mast all heartily conour in the tribute paid by Mr. Birt to M. Gaudibert's interesting communications that appear in the EngLisi Mecianic, and we mast also see the foroe of Mr. Birt's romarks relative to a cataloguc of lanar objects. The chief point now sought to be diseovered in lunar science relates to evidences of topographical change which would prove the continued action of the forces from which the arpect of the moon has been derived, and for this parpose catalognes and maps of the most comprehensive possible character are required. All obsarvations up to the present seem to show that no recent indication of those forces operating on a large seale is to be expected, and that there is little ree in seeking for now formations except in a locality of whioh overy vinible leature, even to the smallest, is correctly mapped and catalogued. Any one who has examined those catio logues and sections of his great map which Mr. Birt has, up to this time, been enabled to publiah, raust see that it is by such aid as they afford, that we can hope to detect with any cortaintyfa now loature appearing on the moon's sariace.
Another great map-the result of thirty-two years Iabour-has been completed bylDr. Bchmidt, of Athens, but it is, unfortunataly, not as yet given to the pablic. With a diameter of aix French foet-double that 0 ? Beer and Madler's-it is executed in a style that makes it what may be called a panoramio view as well as a map, while it exhibits a wealth of detail that
leoks perfectly astuanding in the work of a single leoks perfectly astuanding in the work of a single
Birt's far larger map, on a scalo that will give it a diameter of no less than 16 ft . 8in., is constructed on quite a different plan, showing the festures only in outline, so that additions can be conveniently drawn on it if necessary. Besides references to previon anthorities, and the names and synonyms principal objects, it gives several measurements and metres, with statements and symbols a of character and hypsometrical relations everything is marked with number of
fall description is found in the catalogre.

It eannot be too deoply regrettod that of these two groat works, one (Birt'b) has only a small portion to be pabliohed for a considerable period. The differonce of design in their construction prevents all rivalry once of design in thoir oonstruction provents all rivalry
botween them, and the time may be expected when botw will be connidered indispensable to the stadent of lanar phyuica.

ATMOKPHERIC DUST.

[9918.]-I AI gled to find that M. Paris wears his ccientitio croeds loosoly, for thore is hope, ander these airoumatanoes, that he will reosnt thone most heretioal
 dreeded, but living matter," and that "treeh sewafe is far maro dangerous than old," ware onanciated withon firat statoment appears to mo to bo a contradiction in tarma, for it is when bodioes are patrofying that living mantiar prodominaloa. Lifo out of death is trne of everything in a state of mature; for though a dead body it is not be the cause of the life-may not generate itbollook and leate it somee of in a celd : it vill potrefg and become the hebitation of innumerable living thinge, apparently, Remorated by it, bat certainly doreloped and noarished by it. Some of these hiving sble to suppose there may bo others we do not see. Whether this life is spontancously gonerated by the dead carcase is immaterial to the point; if the dead itee'f apparent, even if it had oxistod an a germ, and cortainly not if apontanoonaly generated. So, if the carcace had been ntilised before patrefection set in, no dangerous living matitor wonld have been developed. there-what oan there be-in fresh somage to give rise to there-what oan there be-in fresh sewage to give rise to the microzymes (7) of contagion? it is only where wo allow the sewage to patrofy that it becomes so rioh a living germs. True, wo want a disinfectant to kill the living germs, bat failing that, it woald, I think, be adrisable to do what we can to prevent patrefaction, or atance.
Bat where does M. Paris imagine that living germs have their origin? It they are originated by the ordinary procges of reproduction, the parent germ mutt have oonditions raitable for its multiplication; if it things, die and leave its place nnfilled. A thistle seed in a farmer's writing-deak is powerless for good or evil so long as it remanins there; but let the farmer drop it in one of his fields and allow it to grow numeeded, and Juat so with "living germs": while few in number, and separated from their food-matter, they are barmless or nearly so; but kive them the opportunity of malti. plring in "pntrofying" matter and thes then spread plring in "patrofing
Medical men are divided in opinion on what is known as the germ theory of disease-some agroeing with Professor Ty ndall, others considering that dikease is
produced by the action of dead or dying matter npon produced by the action of dead or ding matter npon
living tissue; but I never yet read or heard of any scientitio man who conld venture to assert that pntrofying bodien and festering sewage were not dangerous. Dr. R. D. Thomson (letter 3ss7) appears to think that "gases" are the canse of discass; ; but what gas
known to the chemist has ever afforded the slightest known to the chemist has ever afforded the slightest
sappicina of being the actual "formenting poixon "of zrmotic epidicmics? St:1l, M. Paris mast acknowledge
that the activity of the living germs may that the activity of the living germs may be largely increased when barroanded by "patrefaction Races." proportion of the germs and dust which reach them, bat that some of the latter is retained we know, and there is every reason to beliove that the prison of typhus, rariola, and other diseases, whose c.unrse the silil o no physician in atterly powerless to stop, is couvered
into the system in this manuer, as well as in the food we eat and drink.
Let an, then, prevent patrefaction of dangerons matior, and remove also those condilions which appear
congenial to the development of anhealthy fuvgus lifg. Decasing matter is doabtleas only el-mente "ont of place;" but while they are trying to lift themselves into more respectable positions, they are helping to are bo unpleasautly mixed.
It juast oceurs to me that the blow-ay, with a natural mastinot, anways deposits ite eggs on those parts of a ancrase where parrefaction commences earliest; and
and an acizidentascot made in the anrgeon's fir ger while diswhich never accrue when more extenaive wounds are mede in oparating on the living body.
saul Rysiea.
ALIINGHAM'S PROPELLER.
[3919.] - Unfortokatrly for Mr. Allingham, his very feasible invention (as shown on p. 89) id, slightly altered, very old. The old form was a framework fixed to oach side of the ship, and propalsion was effected by rolling in tead of pitching, with similar venetians. It is, perhapa, not necessary to inform the inventor that an anmasted ship rolls (from side to side) more than she pitches in a seaway.
He will find the ship
He will find the ship scarcely moves with the most carefully arranged machinery, this being, perhaps, one
of the most inefectaal arrangementa of atilising the of the moat ineffectual arrangementa
motion of the waves for propalsion.
motion of the
Cleethorpes.
AXOS APPLEYARD.

CONCRETE BUILDINGS.

[8920.]-I HID intended, with your permission, to 12are inflicted on your readers, in answer to query the last two yeara, but want of time has prevented me. I will, however, when I have finished what I am now doing in concrete-which will involve not less than one handred thonasand oubic feet of work-give you in detail my failures and my successes. The former are umerons. I will back up F.P." in his advice in toll bave been exeonted before ho goes to the expense of a single bushel of cement. If your correepondent has do determination to stand over the work, to see all or laboarers, nor yet to a oontractor, he will not regret sabstitating concrete for बither brick or stone, either on the score of economy, atrength, darability, or freedom from damp. Close attention is required from the corresping to whe ond. Withont close allonion your the reore of eeonomy he mast not be led away by the flaming accounts of the cement doctors. I have before me an acconnt in whioh an equal number of yards of cement, sand, gravel, and broken stone are made to prodace an equal namber of yards in work. My could I get more than 60tt. to 66ft. in the rolid oat of the 100 ft . of material measnred in-even in the oake of walls. For roonng. which requires very hard beating, 7.28 ft . of cement and gravel produced only 9.34 ft . ing stones not larger than wonld pasas throngh a 11 inch screen would weigh about 84 or 851 b ; ; a block of pare lint woald weigh about doable that per cubic foot; cement and sand, or air, or both. To make the calcalation as to the comparative econemy of concrete and brickwork-a rod of brick work will take aboat 4,500 bricks, $26 / \mathrm{t}$. of stono, or 86 ft . of chalk, lime, and 70ft. to 7.5 ft . of sand. Three handred and six feet of concrete, in proportions of one in ton-i.c.. 9 parts gravel 1 part cement,-will reqaire to labour, I beliave the nanal caiculation for ordinary to labour, I beliape the nanal caiculation for ordinary
brickwork in walls not less than 9in. thick per rod is 3y days of a bricklayer and labonrer. In cement I and a carpenter, to keep frames going to mix and fili about carpenter, to keep rames going to mix andic feet per day in walling. The lakour bill for concreto is higher than that of brickwork. The Mr. Tall pats his labour at 2 s . per yard, and 6d. per yard for the carpenter ; in other words, $1 \frac{3}{27} \mathrm{~d}$. per foot. From the above yoar correspondent can make his calculationg as to cost.
Quality of Cement.- Your Portland cement sbonld weifh 1121b. per bnchel; the hearier the cementwerovided it ia parsed throngh not less than fortg-gange
sicre, or 1600 holes to the inch-the better. The heavier the cement the slower it sets, and the harder it is when set.
Gravel.-The real economp of concrete cepends upon the quality aud cost at which and, gravel, and other washing my grarel-I ouly regret I did not do it from the first ; the slightest quantity of loana destroys the effect of a large quautity oí cement. If neither gravel nor sand is procarable in the neikhbourbood barnt clay saud and grarol.

Mixing.-The coment, gravel, and sand shoald be tarued orer no leas than tive times-three times dry and twice wet. By trining over I do not mean simply
chacking a shovelial from one side of the miving board chacking a shoveltal from one side of the miving board a time, so that ccment, eand, and stones are all intimatels mixed.
Water.-The quantity of this depends mach on the state of yonr gravel aud sand. In no case should it be riore moist than moist browa sngar; on this you will
have a battle long and tierce with vour morkmen. Do not give in. The drier the cencrete is pat in the firmer it sets.
Filling in Frames.-I again say pat in as dry as you can, and ram as hard as you can, and do not till oftever spoed of olling apon flling is atterly destractire of god work. One cement doctor recommends his framing able to fill twenty-four inches at a time as against that of his rival, who can ouly fill eighteen inches. Eschem as you mould poisor the flling your cement
ont of buckets. The nse of buckets ind nces the work. men to mix the concrate with far too much water. Fill from the barrow in small shovelfals, and let the shoveller take his time. This will secare more ramming twenty feet run your oement on planks and stage; above that height set up a horse ran.
As to the frames to be nsed, you can hire or bny either Tall's or Drake's. If yon hare any ingenoity is the great drawback. If you are going to boild only one house, hire; if you are going to baild several, and are not in a harry, buy, or make for yomrself. I am play i have gone into this at greater lengto hran iair piny to other contribators winm requires more information, a letter addressed
to "P. T. A.," Post-oflice, Suathemptod, containing real name and address, will be answered by

Kroda Bux.

SOIENTIFIO NOMENCLATURH.

[8921.] - "L. C. E." (let. 3884, P. 68) mast have a marvellons faenlty for discovering likenesses, if he dicovers so atrong a resomblanoce betwoen the ond alohomiste jargon of names and those beatowed by arbitrary and meaningleat, with the excoption of some rory fow olasies, sach as the "Vitriols," Which did reoogy
named
conceen conceal the subatance they indicated from all bot adranced adepts. Modern ohemistry, on the other band, gives names intended to exactiy describe the constitution of the substance; this certainly resalts is constitation of the sabstance; this certainity regulta is because the rapid growth of knowledge ahow that many names thas given (and given correctly in the many names thas given (and given correctly in the
then state of knowledge) are not sufficiently correct. The polysyllabio names of organic compounds thus attained-for instance, "L.C. E." may consider that snch a nams as phenyldibenzamide is grammatical barbarism ft to be compared as mers jargos with the "white blood of the green dragon ;" but this Latter name has no meaning whatever, it may possibit indioate that in a given experiment a white precipitate forms in a green solation, or some such reaction, but phenyldibenzsmide describes the exect snbstance: it tells us that it is an ammonia, the three hydroges atoms of which have boen substitutod by 1 atore of phenyl and 8 of bensoyl:-

$$
\left.\begin{array}{l}
\mathbf{C}_{6} \mathrm{H}_{5} \\
\mathbf{C}_{7} \mathrm{H}_{8} \\
\mathrm{C}_{7} \mathrm{H}_{5}
\end{array}\right\} \mathrm{N}
$$

It is true this is "intelligible only to the initiated," but this is so with all knowledge; it is absolntely im. possible to make astrononay or chemintry intelligible to an ignorant conntry bumpkin, and jast as those who wish to read the classics must learn their langaages, to any one who wishes to comprehead a sciance mast do so by long sustained ollor and orgenised for its stadents-the initiated-not lor mere he prefers chloride of platinum to platinic chlorido, and eems to suppose the latter, which be calls a grammatical barbarism, is adopted only becease it is a syllable shorter. Not so : chloride of platinom is in the terminals ic and ons distinguish them; better names might be, and, donbtless will be, derised, when chemical theory is better defined, bat they serve daring the present transition state of the science. Zincic chloride, on the other hand, is erroneous and very few chemists wonld use it, becanse there is only one known chloride, and its proper name is, therefore, zine chloride, ZoCl_{3}.
Electrical terms are very mnch misanderstood by
"L. C. E." It is only since some ten yeare or so that "L. C. E." It is only since some ten yeare or so the has been thoroughly developed; units for the porpose being devised they required names, and the comraittet of the British Association adopted Clarks's suggestion and gave to these units the names of distingaisbed electricians, and hence we have the Volt, the Ohm, the Veber, the Farad. These names, therefore, are gives by the highest possible anthority-that, namely, whe
devised the measares they now indicato, and, so far from being introdaced by me in my papers as novelicu as "L. C. E." supposes, ther are the establived teris ased by all electricians. Of conres, they are koodo
only to the initiated, becanse to them only has the isis only detinitely measuring clectricity become a thing it of detinitely messuring clectricity become a thidg if
reality. One name alone have I on my orn authority emplored, as it was not only my right, bat my neces.
sity to do. I nsed the term equirolt becanzo I for the: lirst time introdinced the idea of a defiuite electric measure, connecting the other measures mith wis:
Furaday called the eqnivalent of electricity, and thas combined the hitherto distiact ideas of "tension" and quantity" in one anit; this, of conrse, needed a name, and following scientitic precedent, fare it one Which doacribes its valuo-viz., a voli of electric ten-
sion acting throngh a chemical equivalent in grainosinn acting throngh a che
Lence the term equivolt.
The four last paragraphs of "L. C. E.'s"' letter mest really bo read in the light of the preceding one. Many scientitic dispates may be valuelesa, rery many may seem so to those who hare no comprebeusion of ther
meaning. It is easy to sneer at the "hours apent orer nfiniterimal markings on the Diatomacew or the sperits denly throw light npon some obscure problems in the nystery of life; but suppose they never give us one particle of knowledge, are we to connt for nothing training in habits of exact observation, of rigidly
nate recording of facts? Is it nothing that for the nute recording of facts? is it nothing that lor these tudies, worthiess it may struments of priceless value for other and most mo mentous parpos?
May not the true lesson be, not that Secohi's obser vations on the sun fames are worthless, beoanse " no grates," but that some one may yet atudy these latter lanues and
aniverse?
What use is it? Oh! despicable formals, beloved of the "practical" masa. Where would the world b if there was no nobler spirit than this? if men science were not ever roady to give their time, their
lives, for things of -no nee? Cancer is not cheoked, tabercle hal not been arrested; therefore, ye delvers, the mines not been arrested; therefore, ye delver further. What use is it ? Does the tin or or miner aot thas ? Is he oonte
after digging for a fow foet?

In 1810 Caroted diceoverod that a magnotic needle moved when an celeotric ourrent pacsed in ite noighbourhood. Poor fallow, what waste of time. Why did
he not diz potatoes? that woald have been nseful. Ampera, Farnday, and a lot of other foolith people played for years with a lot of wires and steel needles, and philosophical instrument-makers made complicatod toys (they, however, wore aseful, of course, becanase they were for sale). In 1845 Wheatstone patentod his telegraphic instrument-26 yeara, O"L. C.E." " during which you would have gaid, "Hes any practicar reanlt followed ?" "Some trifing knowledge may have been grined." Bat now, nak the eharoholders in eabmarino cable companiea. Ah! the mott "practical" mon now oan eee what nue it is, but between 1819 and
1845 how grand their contempt for the poor triflers of philonophers :
There is no knowledge of which we can cay it is of no use : the moat indignificant things in appearance may prove to be guides to prioclese truthss. The man Who atks of his stuctiee the question "what nse is it ?" Will never pass boyond mediocrity, will never foel his hoeart tharill with that glowing onergy, that delight in troth for trall's own sako, which is the reward of the their own exceeding freat reward.

Broma.

LIGHTNNNG CONDUCTORS, LIMITS OF REgIBTANCE IN TKWEGRAPH FIRES, *O
[8922.]-(8846.)-Ir reference to the destructive force of a deab of lightning when impoded in its progrems by non-condnotors, if we may place any retianse apt hee researches of eowpoten reondite hypotheses such as the inatantaneoons formation of stoam, nor the unknown or at loast ill-understoed ropulvive action, in order to mocount for any phonomena fairly attribatable to this ceace. Mr. R. Hant, in his papor rond bofore the Inatitato of Civil Engincers so far back as 1857, stated (and I have nevor moon nor meard of hil statement boing ehallenged) that "the mechanical
 - 12,220 horre-power and that the mititial explosive lorco was equal to a pressare of 800,000,000 tons the pranks played by intercepted diecharges may ada thint the presence of water would be more litely to inerense the coodactivity of the atrootare, and honee ineromet th?
(11801.)-Limits of Ribistaxce in Tilegraph Wress.- Our friond "gigme," in replying to this query (p. 48), hat omittod to state that the 98 ohms for granted that Clarie's exporiments were confined excluaively to galvanised wire. Wherever Mr. C. W. Henwood got the flguree from which he hes given in the reply preceding "sigma's" I eannot conceive, espedilly as haring refarance to the question as
originally pat. Who, in the name of all that is originally pat. Who, in the name of all that is
wonderful, over nses No. 19 mach less No. 24 wire gange copper vire for "ordinary overhead telegraph wre "? Bat granting that any one should be so inhow did Professor Stokes get the million and a hall Ohm reaistance per mile from with a coppar condactor?
(11859.)-Castina Banss Solid.-Tbe ohiof fanlt lies in not giving sufficient ventilation in the top box frocess of soliditiontion, and, above all, the allowance of safficient git or head of metal to aupply the conraction due to the casting, while cooling a good git is itho il any lose of meta, and almost iavariably in semerings, well testod ander sovere trinla, in \rightarrow copper 16, tin 3, zinc \ddagger. The temperalure mast be detormined by axperience aloze. All alloye are diffoult to mange in cer sphare at the high tomperatare to viich they mast of necossity be raied in order to ran thom into manlds ponibh bsie evil mast be oonquered ta maoh a porediantes and by texpertrese ing the ing ag of the thes only to be obtained by constant aare and preotice.
(11870.)-Eliscraical.-I know of no hypotheais by which sueh a phenomenon anin be sooounted for, other than that the dolicato norvos of the moistened hongre cloth, whioh in the case aseumed, forms the remaining part of the intornal recistanoe of the cell. In this caee part of the carrent will flow through the tongue and give evidonce of ita existence, and part-bat probe cloth. In order to teat this thoroughly allow mo to aggoten exheastive experiment. Let " H. D. B." drint (eaf) three glanies of what is cold in London andor the name of Sootoh whiskey, and while doing to amoke al many "congation cigars" at one penny aach, retire to rest (if he can rest at all aftor such an ordeal); the next morning immediately apon waking apply the terminale to his tongue, and favour nis with his pacoing through what a reoent writer oalle "the sudjeund engine of expreseion." My impression ta that tho wonld bo nill, bat the experimont is vorth a triad by
in aither oase there woald, of lorel we, be the polen, an the whole would form a cloeed In dith, bat the ocrrent would tiow in the aame direotion in ityervery other dynamic combination.
(11891.)-Insulamera Coni.-It as not absolatoly oecessary to insulate the secondary from the primary by evonite. but when setting out to make an expenaive machine, it is wise to use every precantion to avoid bud memory of think it mory of names, especrally but I do remember that aome ahort time ago an attempt was made to very me over the coais," bocnase 1 insisted apon this I, gir point. The success of the projected kcel-haning Readers," leave in the hande of your Constant opinion I then gave, that any indnction coil intended for the exbibition of effects, wherein electricity of high tension was to be obtained between the terminals of the poles of the secondary coil, should be so constracted as to have a fall and perfeot insalation between the secondary coil and primary coils. The ground assumed by my opponent was that in the three coils forming the primary the tension never rose so high as to reqaire the interposition of special insulation, bathe forgot, as I ind many of your readers do, the objeot of the tension-viz., the setring op in the secondary of static oharge of extremely high tension, bat smal quantity (intensity of current), which ohagge would pleane itsell whether it would overcome the resistance of atmonpheric air placed between the terminals of the secondary, and so exhibit the 2 in . 3in., de., aro of fame or, finding a bettar conductor intornally, fash beok through the protective insalating mediam with a large metallic mass, invitingly opened before it, and restore equilibriam throagh the shortest and mosi tempting track, leaving the intervening insulation, and, consequeatiy, the coil itsoli, A porioct wreck. Wub no suct costing of sealing wax, varnished, or at mont two tarns of brown paper saturated with parafin, wenld be ampla, but as for the length of spari obtainable, that is a matior that, 1 believe, cannot as yet be predicatoa, nat be discovered by the stern hand of experienoe torminols of thing is very certain, if he inmornes the no necessity lor calling in the aid of the floating freongines.
(11401.)-Elbctrical Formula-When I first glanced over this query I gave vent to a mental excla. mation "Go to Bath," for "Bladud" was vividly impressed upon my memory, bat upon zeore matare conideration a Pickwickian sollnass sell upon my spirita, and I resolved to ent the Prinog, What are the partion1863 edition) earnestly and thoughtitaly, and except fow minor trifes (light as air) which have been all or nearly all corrected in a later edition which I have read, but unfortanately do not possess, if over there was a science reduced to practice in one volume that science is elootricity, and Oalley is: he anthor. In speaking thris emphatically, sir, let me be thoroughly aderatood. I know as much personally of Mr. Calley as do of the individuals whooe daty it is to trap bear southern poles, grease for labreme will clear me from any anspicion of trging to thrast a contraband adverisement apon gon when I say that the work rolerred to is the most ample jet succinct, most elaborate yet imple treatiae evor yet offered, not merely to the British pablic, bat to the telographio world. If, therefore, Prince "Bladad" finds any difficalty in comprehending any of the formale it contains, det him at once engage a mastor to teach him the Arst tour rules of arithmetic, and assist him to a alight knowledge of their application, and all will go wil; batit ta the mean time he has any particalar diffiouth to contend againat (bond fde, mind, or I shall bowl him ent) I shall nost willingly render him all the assistence in $m y$ power when he telle as where his ailing lies.
(11405.)-Purifingo Zinc Wire.-Jaha 8. Dartion bas anealy made o mictake. Zinc wiro in may condi-
 atteat, but Ihsven never been able to obtain it in Iondion; but even if procarable for battory parposes, I for one bat even if procarable for "batcary purposes, 1 for one
am at a lose to know what "J. S. D." means by parifyam at a lose to know what "J. S. D." means by parifyith mercary, bat it is thereby adulterated, not parified. Will "J. B. D." kindly say what he really does mean?
(11406.)-Streay Puxp.-Try one of Wilon and Co.'s "'persuaders"- Valgo, donker pampa : manafaotory,
Wandsworth-romd, London, s.W. They will foteb
. Wandsworth-road, London, S.W. They will roten tollow.

WM. Tonsse.
LIGHTNING CONDUCTORS.
[8928.]-TExse: in constderable intereat in the coveral details given by "J. K. P." (lot. 8908, p. 69), of the destraction of the eburch steoplo nt King's Nerton. The partial ennduction by the pendalum of the olock, and the aplitting of the itozer, oridontly in the pertial linee of couduotion for: red by the oopper domols, are good illaotrutiry. it tuc law nit leasit ro-
sistance, lite the fact that the tigutning will find ita sistance, like the faot that the ligitaning will find its way into a baildiog in order to follow the path pro great importance of oonneoting by good cond every metaltic portion of bualdinge. In chureb large factaries parfoot eafety mintht bo obtal carcolily graarding the elepabed parta, steople gatiora, to., and then loating good condactors ,

that the chief discharge would be quietry led through danger very paths which asually constitate a source ol obstacies, such as walls, to rench them.
Δ_{s} to some of "J. K. P. 'a" questions, he appears to have overlooked a lettor of mine as to sarface action. Sarface relates only to static electricity : it collects apon them in readiness for discharge; this is the condition of the cloads and the earth in a thunder-storm, When surfaces being in opposito electrical conditions. beom the disharge oocura, the electrioity (so-called) lawe of resistance; a wire would be as good (nay better) as the same metal beaten out into foil.
I certainly shall not tell "J. K. P." that "electricity is a finid, and does the work of a solid," because it is protty well known by this thme that i do not bellive na the existonce of any mach thing as oleotricity at all, imply to ene effects we alase under that name as due onergy among the molecules of matter, which, when the rate of motion exceeds the measure of the cohecive forces of matter, breaks the matter up. It is the which rend centrates an onormons amount of energy upon the recistance to be orercome. The condactor, by reducing the resintance, allown the energy to be exected in developing a rapid but harmbeas carrent, and in heat spread through a large masa of earth.
sigit.
[8924.]-Is anowes to " J. G." (p. 89), abretute comtact of the metal of lightaing conduotors, thengh dosirable, is not essential to their anceess; for eleotricity of high tension will pass from one conductor to another near it, thongh not in contact; the only dangor is loot it ahould pass through some part of the brilding it may damage, bat this is unlikely it the broak of motallic conneotion be amall, and the contact wifh the ground good. Nothing oan be better than oontect with a water or gas main; if that be not within reach,
" J. G." should carry his down-pipas no as to reach soil which in al ways damp.
I think it would be pradent to see that the eare gutters are in oontact with the down-pipea, and in obnnection with the ridges, and it would be wall to conpect the obimney condactor directly with the down-pipes by copper wire rope (which will not easily
The more completely all the metal is connectod the better.

Pamba,
CIRCULAR SAW-SPINDLE
[3925.]-I don't know how many yours old the patent of the sar spindle shown on p. 18 may be ; bat ased-an exactly ímilar derice. And probably, as in other cases, many others have long need it also.

Hemiess

THE SOPER RIFLE
[8928.] -Foz some time part I have been compoliced to forego all writing ; however, this mnraing the reto two geitlomen who have hed fie kindness to migread my lest lemer upon the Sopor Riiaco In our exp rond my last euber upon the soper Rico. In our ex. periments in January our mole ain wae to and tho weakest piace in the weapon. The question Was, will vies verrea if The result of our experimenta was to blor the breach to pieces, tho barral remainiog inteot ${ }^{2} \mathrm{th}$ he breoch to piecos, the barrol remaining imbalt, wer no the slighteat injary. 1 then mitated that it believed ao gun had mithstood a similar strain, but that in all uther cases the breech meahanism had been rendored uselens by a alighter strain. I had no idea, and can scarcely conceive of my teker convoring to the strength my remarks wonld be taken as reforring to the strength df the barrel. The gan depends apon its weakest part

- will leat part bearr all ordinary and a great marginal dtrain? if so, the gen is motrong enough for military parposes.
I would humbly suggest that any gentleman who desires to make remarks apon any sabject should at ap your. space. C. H. W. B.

WARMING AND VENTTIATING.

[8987.]-Ter novolty of "Levis's patent warm airebamber froplace" doscribod by "An Arohitoot," at p. 40, is by no meana erident to me. I prosume
some peenliarity in its design, for its principle is too some pecaliarity in its design, for its principle is too
old to be a logaily protected monopoly. Noither to the old to bo a logally protectod monopoly. Noilher th the
adrantage evident, of conAning air in a olhamber, if adrantage erident, of conaning air in a oturned into the hall," sestated. The only apparent advantage of coninning air to bo warmod being that fresh air warmed, if confined in a ohannel, is forced into the dwoling, to as to diminimb, and i! in anficient quantity prevent, all cold air dranght.

An Archite

INFLUENCE OF COLD ON VEGETABLE GRAINS: [8928.]-M. Duclaux, who formerly experimented on the effects of the cold on the eggs of the silkworm, and found that the winter cold was a necessary condition of their hatching, has communicated to the Académie des Sciences a note on vegetable grains as
influenced by cold. Some grains, falling, when ripe, influenced by cold. Some grains, falling, when ripe, year without germinating, and it is not till spring that they show signs of life. Such are the grains of Belle-de-Nuit (Mirabilis jalapa) and of Volubilis (Ipomea purpurea). M. Duclanx experimented with grains of these plants, on account of the similarity in their evolntion to that of the eggs of the silkworm. Having taken them immediately on ripening, and before they were exposed in cold nights, he divided them into three lots. One was kept in a chamber heated constantly to about
15°. The two others were exposed (one for a month, the 15°. The two others were exposed (one for a month, the
other for two months) in a glacier, with a surronnding other for two months) in a glacier, with a surrounding
atmosphere of 3°. On the 10th of November he sowed atmosphere of 3°. On the 10th of November he sowed
grains from each of these lots in pots, which were then grains from each of these lots in pots, which were the placed sice by the 25th of January, and after the 15th of February it appeared to cease. The following was the result :-
Belle-de-Nuit (6 grains in each pot) : Grains exposed to cold 2 months, 5 grains had germinated; grains expot exposed to cold, 0 grains had germinated.
Volabilis (12 grains in each pot): Grains exposed to cold 2 months, 0 grains had germinated; grains ex posed to cold 1 month, 2 grains had germinated ; grains
not exposed to cold, 0 grains had germinated. not exposed to cold, 0 grains had germinated.
The cold of winter has, therefore, a real influence on the germination of these grains, and this influence is operative in certain cases, jast as on the eggs of the silkworm. But, M. Duclaux asks, is it equally neces-
sary? He thinks not: for grains that have been kept all winter in a heated chamber germinate none the less in their season when they have been sewn at a proper time, and everything takes place as if what they
specially needed was a variation of temperature, whidh might be either that of zero from the ondinary tempe rature, or this latter from the nsual heat of the days of spring. He proposes to investigate farther the fact that in such conditions they germinate with dififerent
degrees of activity. If, in fine, there be grains, which, dike the silkworm's eggs, need to pass the winter before opening, there are others which germinate immediately after having become ripe, and when placed under of this; but the discovered inflaence of the winter's cold on some is a presumption that the others do not
entirely escape it.
A. B. M. trey erapo
" PHILO'S" HUNDREDWEIGHT THEORY.
[3929.]- Is refatation of this theory of the origin of the 1121b. (p. 663) I gave "Philo" (p. 36) six other numbers each equally the sum of only seven that woula their total. But he will find this equally possible with any total below 128 , the seventh power of 2 . And similarly his pedlar conld make six weights serve for all the anits under 26 , and n weight for all those under $2^{\text {n. }}$ If, however, he notes that the seven making the 112 are each an aliquot part thereof, this property, I grant, is less common. Still, it is shared by 96 and 120 , this atter a more convenient unit than 112. To have of two powers of 2 (say, $2^{a}-2^{b)}$ such that b is less than $a-1$, but not less than $\frac{1}{(}(a-1)$. Thus, any of the following series (continually doabled) can be weighed, like the 112, with aliquot parts only:-

6, 12, 24, 48, 96, 192, 384, \&c.
28, 56, 112, 224, 448, 896, \&c.
120, 240, 480, 960, 1920, \$ce.
496, 992, 1984, 3968, \&c.
$2016,4032,8064$, \&c.
Becanse the $6=2^{3}-2$, the $28=2^{5}-22$, the $120=27-2^{3}$, the $496=2^{3}-2^{4}$, \&c. Asd their
doubles are $2^{4}-2^{3}$, and $2^{6}-2^{3}$, \&c. E. L. G.

A SUGGESTION FOR THE POSTAL

 AUTHORITIES.[3930.]-Having frequently observed in the country lines of telegraph poles along roads which, with their tributaries, are quite unprovided with direction posts, it occurs to one that (pending the time when the Post Office or some other government body undertakes the supply in a complete way of these useful guides) Mr. Sonamore might well give a general direction, that in
future lines, and in cases of renewal, the poles should always be so arranged as to bring one at each junction and at cross roads. Could there be any objection to such an arrangement, and to allowing the parishes to encircle such posts (to avoid morticing and so weakening the posts) with stout iron bands, or tubes, constructed with three or more sockets to receive the direction boards?
These boards, fastened into the sockets with brass which Devonshire direction posts for that re-lettering lack.

Jannifred.
[We have had little opportanity of judging the dis. positions of those who manage the telegraphric department of the postal service, but if they at all resemble their brethren who control the newspaper post, we
r any useful suggestion is likely to meet with but a
a reception. -ED.]

SPIRAL GRAILING.

[8981.]-I wAS much interested in the article (p. 34, No. 366) on the subject of "Spiral Grailing." It is now over twenty-five years since I commenced in a small and simple way as an amateur turaer, dabbling a little "G. C. C." states, how difficalt, not to say almost im possible, it was to "grail," or " line"-as I have been accustomed to hear it called-the surface of my work evenly, in concentric circles by hand, and I came to the conclasion that to effect the object satisfactorily, the operation must be self-acting, and if so it must be by making one continuous spiral cat from ciraunsference to centre; and the cut being so very fine not see that it could make any difference in the effect, whether it was concentric or spiral. I therefore set to work (more than twenty years ago) to construct a very simple and inexpensive apparatus, which I found to answer the purpose admirably, and, from its working independently of the overhead motion, it obviates some of the difficulty which "G.C. C." describes, as sometimes arising when that motion is made ase of for the parpose, from its not having sufficient range back wards or forwards. A sood about 2 in . by ${ }^{\text {in in }}$., connected top and bottom by stretcher rods, of (bay) sin. iron (wood woold do); the size of frame is about 15in. square. B is a spinde
of wood about 2 in. diameter, working with an iron pin driven in the ends, in the sides of the frame. C is

a wooden wheel or pulley, 11 in . in diameter, and 3 in. or 7 in. thick, strengthened at the boss by a piece glued on each side to make a broader and firmer bearing on the spindle. A key bed is cut in the spindle, and one to correspond in the boss of the pulley, and a wooden key, slightly taper, fixes it snfficiently firm; the rest of the spindle has a series of V grooves turned on it. This
frame is suspended from the ceiling by an iron rod frame is suspended from the ceiling by an iron rod passing through the tops of the two sides, on which it can swing backwards or forwards, in order the better to adapt itself to any altered position of the slide-rest,
and is hung in a line with the lathe bed, and as directly over the pulley on the slide-rest as it conveniently can be. It can be worked from the lathe mandril pulley, or, if that gives too quick a speed, it can be worked from the chuck as shown in plan, which is the mode I adopted. As I generally used the serew chuck, I turned a V on the back part where it screws on to the nose of
the mandril, and which is 1 in . indiameter the mandril, and which is 1 in. in diameter ; from this a fin. or three-sixteenths of an inch gat goes over the 11in. palley in the frame, another gat from the spindle itself down to a 7 in . pulley (of wood) D on the slide-rest screw.
This arrangement makes a spiral that it requires good eyeright to see, but if too fine, the speed can be easily modified, as required, by having ene or two differentsized pulleys for the slide-rest, and by driving it from iathe mandrils. If the frame is found to be in the way of the working of the overhead motion, by attaching a cor to the bottom rod and passing it over a pulley overhead, it can be pulled up and out of the way when not in ase.
It would be an improvement it the frame weres stispended
by indiarubber bands. Many years ago I constructed a very simple effective over-head motion, which
not seen represented in the various plans of that apparatus which have appeared from time to time in your paper. If you think it worth while, I shall be glad to
send you a sketch.
N. N.
[Please send.-Ed.]

HOW WE SEE A DISTANT OBJECT.

[3932.]-I have paid some attention to the discnssion on the above subject, bat I am sorry to say colty $\begin{aligned} & \text { not } \\ & \text { aben } \\ & \text { able }\end{aligned}$ culty is or what is its explanation. T think the matter might be simplified if we were to take into considerapresence of reflected light as by its absence. This may seem a somewhat Hibernian way of expressing myself, but I will explain. Objects, then, arediscernea by their hadows or shaded parts. If I were to look out upon a landscape and the light were to be reliected to my eyes rom every object and rom every park of each object wothing but a broad field of uniform light, and if the niformity of reflection were perfect I shonld not discern even the faintest ontline of any object. In every landscape there is a point of greatest illamination or landscape there is a point oreat a chalk cliff, or a highest light, be it a white clond, a chalk cliff, or a
shining river. This point the eye unconsciously takes shining river. This ploint the eye nnconscionsily take
for its standard of illamination and discerns all other orjects by their relative dimness. If I wish to make a drawing of this landscape I take a white sheet of paper; drawing of this landscape itake a whis from every part, it this paper reflects the light tqually rom every
therefore represents what the landscape would appesr if every object reflected the light in an equal degree, a broad field of uniform reflected light. Having made an ontline I proceed to shade-that is, I begin to obscare the light reflected from my paper in different degrees on theferent parts of my paper according to the objects I wish to represent, so that the objects begin to be discernible on my paper, not so mach by the reflected light from my paper-for that was there before I began my drawing -bat rather by my obseuring that reflection in certain parts by covering my paper with a less reflecting substance, beit pencil or sepia, so that it appears to me that objects are discerned not so much by the reflected light thence proceeding as by the varying degree of absence of refected light-in other words, shade. Of course I do not contend that reflected light we could see nothing in total darkness, neither could we discern any object in aniform light. I merely conwe discern any object in aniform light. M merery con ness-in fact, by their shaded parts. Bobo.
[3933.]-I beg to thank Mr. Proctor for his very kind letter (let. 3829, p. 36) and am very sorry that he should have been kept eight weeks trying to ind out the meaning of my letter (3493, p. pio), particularly as
he says, "And as I could not explain his dificuly, but greatly wanted to have his query explained. I waited greatly wanted to have his query explained.
the action of the clever correspondents." H_{0} further says, "I am utterly bewildered." Mr. Proctor says in this case the answer is undonbtediy, that seattered reflection renders the frame of the mirror descernible. The glass of the mirror is not seen." And he further ads. but we recognise the shape of the mirror whenever does not specularly reflect the incident light (or mach of it), while the quicksilvered glass does." The ray of sunlight is supposed, in the present case, to strike the centre of the mirror only; where, then, does the ine dental ight come from, frame is made visible, We says that the frame does not rellect specalary. Wory, the hame is moalaed in certain curves, and every curve has its proper angle of right lines. The theory of light says " every ray of right lines. The theory of light says "every ray of
light carries with it the image of the point from which it was emitted. If, therefore, the pencils of rays from every point of an object are united in the same orde in which they proceeded when first emitted, they wil form a perfect image or representation of that object at the place where they are thus united. The rays of light proceeding in straight lines, it is obvious, that to make an object visible at any place to which a straigh line can be drawn from it to the eye, they must b detached from every physical point of it in all direo tions; but only those rays. which enter our eyes can
render them visible to uas." Now, according to this render them visible to us." Now, according to this
theory if one or more pencils of rays happen to be reflected by any ceanse from the direct line, the point in any object from which such rays came must be in visible to the observer. Now, the atmosphere is fall organic dust, and as it is sufficiently dense to make th the passage of the rays of light which if the distance the passage of the rays of light which, if the distance
be extended, the ray is wtterly lost. I did not ask Mr. Proctor what rendered the sunbeam lumi nous; but I want to know how we see it when standing some distance off? There is nothing to reflect the light but the organic dust, and the rays, a stated above, cannot penetrate far in a lateral direc
tion. The same observations will apply to distan tion. The same observations will apply to distant
rocks, te. We see the entire of the illaminated parts rocks, \&e. We see the entire of the illaminated parts;
and less distinctly parts in shadow. But I cannot con. and less distinctly parts in shadow. But I cannot co ceive how rays of light can reach ns from every
the angles of reflection being innumerable. the angles of reflection being innumerable. explanation, and not for the purpose of putting forw a new theory. I have
tion will be given me.
hiano construction.-Part II.-To Mr. Schucht and his Fellows.
[B934.]-Several methods naturally suggest themselves to any one familiar with ordinary piano actions by which increased velocity may be imparted to the trelle hammers. Perhaps the very simplest and most
obvous of all is that nased by the old grand makers, obvous of all is that used by the old grand makers, whe were, in this matter, somewhat in advance of ye mocern practical men. They made the butt shoulder or motch considerably higher than the horizontal plane obvious the higher the shonlder (against which the obvipas the giger lifting the hopper acts when lifting the hammer) be made, the by the spring and goided by it- hopper confined to it by the spring and guided by mas go over towards situaled; in other words, the nearer a perpendicular drawn from the top of the hopper (when it has lifted the hammer to the string) will approach that in which the hemmer centre is fixed. Of course, as it thus approackes the latter the acting length of the leverage, measured horizontally from one perpendicular to the other, becomes diminished ; consequently, if the hopper be supposed to be raised by the key with an aniform velecity thronghout its path, it will commnnicate a constantly increasing velocity to the hammer it lifts. The hammer's velocity may be thus accelerated to any any such extent.
as the hammer centre, or at least not more than from one-sixth to one-fonrth the radius above it. In the latter case, the leverage will become shortened as the hopper rises to some extent, and it will be yet more rapidly shortened by the set-off motion. As in these actions there can be but little objection to the set-off motion commencing with and continning throughont the motion of the hammer, I think an obliqne, doable-centred ever, the position of whose fork is capable of adjustnent for the purpose of determining the instant the mopper shan escape, would not only be the simplest to be a very efficient guide for the hopper, which wond require no other guidance, if its clothed lower end be require no other guidance, if its clothed lower end be bottom of a socket in the key. This is the cheapest effectual method of supporting and griding the lower end of a hopper I have yet thought of. It has no friction in the hole in the rail, which prevents it from straying about when the action is lifted ont (off the keys), becanse it cannot touch the sides of that hole when in use, and it never becomes noisy, but in common with ase, and it never becomes noisy, but in common with with the keys, when used for a transposing instrument, it renders necessary the shifting of the keys with the hammers.
In horizontal actions the imparting of increasing velocity to the hammer as it rises soon reaches its practical limit, in consequence of the increase of resistance to the finger which necessarily ensues. When we

I may remark this old-fashioned, but most effective, method of communicating accelerated velocity to the hammer may be easily carried out in Carey's or Molyneux actions, which are but modern modifications of the old grand action arranged saitably for upright striags, and in which the escapement takes place at the butt-in my opinion, by far the best place for it. It is hardly applicable to sticker actions, in which the stickers are hung from the batts by leather hinges, because very high quirks would subject the leather hinges to excessive wear. It would also be unsuitable, unless some strings than the common loaded sticker were employed, trings than the common loaded sticker were employed, front of the vertical plane of the ront of ther touches the strings its weight centre when het little power to pll the her bat little power to pall the hammer back. This plan, however, answered very well in a model I had contructed, in which the sickith whod may then be made as light as is consistent with needful rigidity, a very mportant consideralion then it is hung to a treble centre ; the hammer may be retarned either wy enring which is perhas, preferable sphat which is, perhaps, preferable for strings less weight projecting nearly horizontally, which I much weight projecting nearly ho
prefer for the tenor and bass.
In some actions the hopper is "set off" towards, inthe dstead of from, the centre; in all these communicating aval accelerated velocity to the hammer as it appronches $\mathrm{d}_{\mathrm{l}}^{\text {malce the batt fhoalder in the same horizontal plane }}$
consider that to double the hammer's velocity the leverage must be diminished one-half, and that deing his must (if the weight of the hammer remains the same) donble that resistance to the finger which is
cansed by the hammer's weight, it is obrions that caused by the hammer's weight, it is obvious that greatly increasing the hammer's velocity must be sirable), whose hammers are all the bett is alone dewhat Dr whose hammers are all the better for being what., "light-headed." Probably, if we can, consistently
vil with their being strong. headed enough-they must not be thick-headed-make them sofficiently light-headed, we may succeed in carryiag ont this principle, so far we may succeed in carryiag ont this principle, so far
as to increase their velocity three or even four-fold at the instant they strike the strings. I need hardly point the itstant they strike the strings. I need hardy point ontruments, what influence this would have on the power and quality of their trebles, usaally so inferior to that of their bases; it would, as one Will Shakspeare sayeth, "Reform them altogether." Nay, it would convert sayeth, "Reform them altogether." Nay, it would convert
many a well-made grand with a weak treble into a many a well-made grand with a weak treble in
superior instrument to the very best we now have.

If we may hope, by reducing the weight of the treb hammers of grands to augment their velocity three or four fold, what may we not hope to effect when we come to carry out this principle in upright instruments? In these the hammer's weight resists the finger so greatly When it is on the rest that, in ordinary actions, the weights of the bass hammers are limited thereby, althey usually are made, to the great improvement of the bass tone. It is obvious that the radius at which the
hopper or hammer-lifter acts on its batt being a given quantity, a hammer must resist the finger in proportion to its weight, and that there are only two possible means-so long as the key-balance remains unalteredby which that resistance can be diminished, one being the reduction of the hammer's weight, and the other the elongation of the radius at which the hopper acts. Now, asthe hammer's velocity is not of the slightest practical importance during any other portion of its path, how much we increase the radius at which the moter how much we increase the radias at which' the hopper acts at the commencement of the hammer's motion, so hag as that radius becomes short enough to canse the instant it strikes the strings. From this it will be perinstant it strikes the strings. From this it will be per-
ceived that this principle not only enables us to drive the treble hammers mach faster than we nor do bat also to employ mich heavier hammers for our base also to employ mnch heavier hammers for our bass arings, and
A moment's reflection will enable the reader to perceive that as the hammer of an apright piane rises towards its strings more and more of that hammer's weight becormes supported on its centre. Consequently, as a mere matter of course, less and less of its weight model, constructed for me by my late friend and fellow model, constructed for me by my late friend and fellow correspondent "W.'., in which the escapement occurs.
from the hammer's centre, which, by the way, is the from the hammer's contre, which, by the way, is the
only one centre in this action, because its damper is only one centre in this action, becanse its damper is an inside check, d la Stumpff, which insares ged with an insias check, tion, from its great simplicity and the fewness of its
tion tion, from its great simplicity and the fewness of its
parts, notwithstanding its immense power, costs acparts, notwithstanding its immense power, oosts ac-
tually less to make than the common cottage action tually less to make than the common cotlage action
without a check. The hammer centre is about $\frac{\text { fin }}{}$. without a check.
from the string, and the leverage at which the hopper from the string, and the leverage at which the hopper
acts on the batt diminishes while the hammer is rising, acts on the butt diminishes while the hammer is rising,
until, when it reaches the string, it becomes barely onefourth what it originally was at the commencement of the key's and hammer's motions. The same weight-2oz.key'stly balances the hammer in every intermediate position between $\frac{1}{8}$ in. above its rest to within gin. of the ptrings. I guess, Mr. Schucht, yeu will allow this is a tolerably equal tonch, and that this is a test few upright actions in ordinary use would bear. It is, indeed, more nearly equal than any pianist would require, because an instrument whose touch is 2 foz . at the commencement of the key's motion, and increases to 3oz. at the instant the hammer strikes, has, by an eminent professor, been deemed very far from unpleasant to play on-mach less so than he deemed the common cottage and Zeiter's grand actions, in both of which the resistance to the finger is greatest at the commencement of the key's motion and diminishes as the. hammer rises ; and it would diminish to a much more sensible extent in the former action were it not for the searly uniform resistance cansed by the loaded striker and the damper, which act throughout the whole of the key's path. When the resistance to the finger-tested by a weight laid on the key-is perfectly equal throughout the whole depth of touch, the mere inertia of the key, \&c., will always canse a sensation of slightly greater resistance at first, so that the touch becomes apparently lighter and more pleasant when the resistance is rendered a trifle less at the commencement. Messrs. Broadwood and others effect this in grands by delaying the contact of the ley with the damper lever until the former has descended from half to two-thirds its path. Of course, if the damper be attached to the hammer, in which case it causes no additional resistance to the finger, this plan is inapplicable, and it is seldona applied to upright instruments which have Collard dampers, although to them it easily may be by leaving a space of about onetenth of an inch between the damper lever and the. batton which lifts it. If the damper lever be pre-perly-i.e., thickly-clothed no noise ensues.
A moderately increasing resistance to the finger being, as I have shown, not only admissible bat actaally used in modern practice, we may fairly be entitled to employ it for the more important purpose
of increasing the power of cottage trebles. When the acting leverage is shortened to one -ifth or sixth the inacting leverage is shortened to one-fifth or sixth the inportion 12 to 9 or $30 z$. to 2 foz.; need I tell so practical portion 12 to 9 or 3 oz. to 2 foz. need I tell so practical
a pianoforte maker as Mr. Schacht that this will a pianoforte maker as Mr. Schncht that chis will would be "very much eurprised to hear." Probably so great an increase in the force of the blow as this great an increase in the force of the blow as this
might necessitate some increase of form of strings. Say, instead of those me now in three No. 16 or 174 in. long on his top C .
Besides improvements in scales and actions it seems probable some increase of power may be obtained by improved belying; many designs for which havo been published. In 1860 Mr . Nosworthy designed a method of increasing the power of the trebles (see his patent, May 29 , No. 1329, price 10d.), by extending the soandboard in upright pianos (and in down striking horizontal grands) above or beyond the bar, which, bar, which acted as a bridge, and which was itself sapported (on the bracing) by pillars. Others, notably Godwin and Alfred Wornum, have done, or proposed to do, the same thing by other means. That such an axfect the time sound sonndboard below the bridge is found to do this. That the vibrations of strings from 2in. to 3in. long cannot -unless they be bowed or its 2 in. to sin. long cannot endure long enough to cause vibrations which prodnce ondure long enough to canse vibrations which prodnce surface of the soundboard which are more than Sin din, from the bridge. In No. 208 of Engish Mecha

Mr. Jenkinson-with whom I mach desiro to com-manicale-proposed to apply to pianos Stein's gystem ofoonstracting clavichorde-that is making the unisonoas atrings continuous end on, instend of wide by side, as they noually are. I saggested how this
might be carried oat in No. 218, bat mast confess the might be carried oat in No. 218, bat must confess the
mechanioal diffoulties are very great indeed, not to mechanioal dimpoutiee are very great indeed, not to
Bay imposible, which word, of course, English gechanios don't believe in. Probably nothing-ax. cepting improvements in actions-yet saggestod for increasing the power of pisno trebles is so promising as
this. Mr. Jenkinson proposed to place both his belly this. Mr. Jenkinson proposed to place both his belly
bridges on the eame soondboard, the strings, of course, bridgos on the eame sonndboard, the atrings, of conrse,
recting on a metal bridge similar to Mr . Nosworthr's resting on a metal bridge similar to Mr. Nobworthr's
arrangement, bat after all the principle of Mr.
 piano. Now, for doing this there can be no necesaity that only one soundboard shall be employed. If, from any practical considerations, it be thonght desirable to emplos two soandboards it may be done-tbat is to say, a second connaboard might be provided for those hich the doblo.headed hammers atrikto bhidge near mich the to lade of had and donblo whin brige pins being as clove together as they conveniently could pins ineing as so that the two hammer heads may not be lar apart.

Ter Harmonious Blacksmith.
P.S.-Having in this paper reforred to two upright actions which have not yet been published, it hae occorred to me that doee relcreaces would be more in. telligible is diagrams of the two actions were printed. It tharafore, intend sanding those diagrams shortly.

degomiption of tee piguris.

N.B.-The mame parts are lettered alike in all the Ags.

Fig. 1.-A, hammer-head ; B, hammer-shank; \mathbf{C}, arna carrying counterweight D; D, connterweight which
returna the hammer ; E, hammer-butt ; F, hammerreturna ho ammer ; 1 which supporta the centre wire of the aticker-hinge Q; Which supporta the centre wire of the aticker-hinge Q;
Q, ticker-hinge $;$, hammer-rail ; \mathbf{S}, the string for lowest a tin. dinmeter.
Fig. 9.-This is a dagram, double the real rize, representing the relative positions of the hammer: centre F and the efticker. hinge Q at the commenoenent and the tarmination of its motion, aloo, at three intermedial places. For the parpose of rendering more eanily understood the gradual dimination of the leverage butt, I have drawn ave equidistant apright lines parallel to line 6 , which represents the vertical plane line 1 to that plane is exactly 1 fin., but from line 5 to line in but ina. - piaze., only one-fifth the distance of line 1 . As the aticker-hinge Q risee from line 1 , it saccessively passes through the points at which lines $2,3,4$, and 5 paseos inrough the pointa at which lines $2,3,4$, and 5 of those points being fin. nearer the line 6 than the line immediately to its jeft. A moment's thought will enable the reader to percoive that as the aticker-hinge Q travels from lines 1 to 2 the loverage at which it acts on the hammor becomes redoced fin. Whan it has arrived at line 8 that leverage is redaced another tin.,
and so on until it becomes diminished to only tin. When and so on unilit becomes diminished to only in. When it arrives at line 5 . Consequently it must-asauming
the rate of the sticker's ascent to be uniform-then bo the rate of the sticker's ascent to be noiform-then bo
driving the hammer four times faster than it did when it commenced to move it at line 1. The fact that the it commenced to moved at ine 1 . The fact that tho hammer is propellod with a constantly-increasing
velocity until it is stopped by its striking against the velooity until it is stopped by its striking against the
strings is, perhaps, even yet moro conclasively domonstrings is, perhaps, even yet moro conclasively domon-
strated by the lines $7,8,9$, and 10 . Line 7 intersects the arc I V, which represents the hammer's path when the sticker-hinge Q is in its lowest position, and he spaces between these lines: represent three equal ond of the etticker by which it is hifted. As the key rises the first thitd of its path it moves the sticker from where line 7 interseets the aro to where it is intersocted by line 8, between which points of intersection there are many more degrees as the apace betweer 7 and 8 does, but the apace between the intersections of lines 9 and 10 actaally includes more degrees than both the other two spaces. Conseqnently, the hammor must be movod motion of the key through the first two-thirds of the depth of the touch, and through rathor more than hald its path by the descent of the toy daring the last onethird of the total depth of the toueh.
Fig. 8.-A, hammer-head; B, hammer-shank; C, rotams the hampoer ; \mathbf{E}, hammer-butt ; \mathbf{F}, hammercontre ; G, damper ; H, hoppar, which oarrios the wire choek; K, set-oll senow passing tirrough hopper H, and regrlatod in front.
onding acroen im represents the soction of a rail excomer portions of theis, whore use is to prevent the when she action is lifted ont of the instrument. The boles in this rall should be bored aboat threeirteonths of an inch larger than the oylindrical porof itw thicknees ait top, which Bhoold be bored about one-Aftioth of an inob larger than the sootet which reoeives the lower ond of the hopper and its clothing. out injury whon a singlo hoppor is takon oat of the
N.B.-Tbe cylindrical portion of the hoppers these holes are bored in any of the pooid motions commentiatiod during per-
farmanoe to the upper onds of the hoppers in consequence of their being gaided by the hammer-batta. L sepresents toke back part of a koy, near the ond of wiich a socket, abont three-tenths of an inch in
diameter, is bored for the recoption and confnement of a har, is bored for the roception and conanement gined on the bottom end of the hopper H. This piece of cloth or felt shonld at in but not tightly, so as just to be pashed in easily and conane hopper laterally. This socket is connterann at top tor the more easy introdaction of the hoppera When the action, alter being liftod ont, it replaced in the inatrament, and its depth adjastod by a Bcrew in the kay, on the heed of whish the hopper reate. Thi aflords the maans of readily and cheaply regulating the height of the top of the hoppor to suit the pusition the batt-shoulder, against which it acts when lifting the hammer, and onables the regulator to take out an that abomination jclept "wasto tozch." The head of this regalating scrow ought to be alightly rounded to prevent its edge from outting into the cloth or felt. I mach donbt if many of my practical friends in the pianoforio-making line win readivy contrive a man the hopper than this, but gruth compels lower and of hat hopper than chia, but truth compels me to add it has not much originality. I have been told Mesars. Coliard mind Mr. Kohlmaa both inariod strikers into sockets bored in keys, although thay did not employ the head of a sarew to form the bottom of the socket. I believe the rail M m also to be original in so far that
it does not touch or guide the hoppers during per. tormanoe.

THE HARMONTOUS BLACEBMITE.

HERSCHEAL NO DECDMALIST.

[8935.]-Mr. AELEN well saya (etter 8831, p; 86) he onn bot these he should have diatinguisked is, we have abous'ten lines of Hersohel at ond of first paragraph, and all the reat is Allen. I beg, therofore, you will reprodace the sentences Wherein the late phidocimel atrisioms, becanse their cantions question on geaind the aract idege it is norer gonght to fothar apon bim in get a little remartable. Iu pit of the eagea entitleat the "T Yerd" remare insists on the indendence of the two questiong of thanderd and division.-"Wha is intrimomally the boest and most available unit of linear monanre to adopt as a banis ? and secondly, What syemem of nemerical maltiplication and aliquot its decination buith anit for memares of songth, ana (for theve all refer themselves natarally and eapily to the trit of linear measure, or at least onght to do ao), commontto like our own, or for the great maes of man. kind in the ordinary transections of life 9 Itcanno bo too atrongly improased, and too perseveringly born in mind, that these two queetions stand in no nataral and neceseary remtion to each other, bat are poriechil
independent. We may resolve, with perfoct logical conspencency, either to tom rosolve, with perfoct logical toto, and adopt the seetrical" [French] "one in preference; or to retain our fandamental unit (bla Imperial foot or yard) and decimalise eur system of denomina tions. We may, too, rotaining sll the oonare convenient), superadd to thems by (eo far as they are convenient), stiperad to thiom, by parmimive logis-
lation, the additional convenienco of a docimal oyetom for facility of calculation, relying on ita holding its ground if really affording suoh facility, or working its way into general nse, and altimately driving oat the old system, if found by the mase of the popalation to be practisil preferablo. this last is the coarse would myself prefer, and I think it best to say so in shonld imagine a foregone conalation to be uryed apon shoald imagine a foregone conalanion to be uryod apon
them under the semblance of free inquary." Accord. ingly, the essay continues parely on the quention of stundards ; that is, according to "Sigma" (p. 69), is exclasivoly devoted to "only socattering duat about the true object of any importance"-and he does not touch that of decimal or other divisions, sare to expresaly dioclain it (p. 90), -nor allade to it again till dhe last paragraph, p. 28, Where he says:-

號 malised denominations, thich mako any deel maireo to bay mall or contrict by perybing migta agrean a donbt whether such io now, the case [1888] and if so, the la \quad ohould I think be altered. Bat I if no, the law houll 14 thetr relations the standard and the only and thetr rolations to the standara, and the only now some other name at prevent unoccupied) of 50 modular inches, being the excet ten mintionth of the polar axia, learing its nase quite voluntary."
In p. 20 bowover, he had well remarked-on the metre and ita decimal sabdivisione-that wo must " oarry oat the change in all its train of coneequencos, to the rejection of our entire tyatem of weights, stop short of this. It would bo sod soort of thia. It would bo standing reproaoh change, if we make it, must be complete and thoroagh. And this in the face of the fact that England is, beyond all quention, the nation whoee commercial rohations, both external and internal, Britioh eyctom of measures is received and nated, not only throughoat the whole British Empire (lor the to be eightean British imperial inchos) bat thed by law to be eightean Britich imperial inobos) bat throughoat the whemoure of length is ooncerned) also throughout
the Russian Empire; the atandard anit of which, the Sagens, is deolared by an imperial rkeee to contain Verny seven Brilian lapparial oin end he Ar chins mat -arnobock prociee iractions of the Bagene. Takips commeroc, popalation, and area of soil, thon, into se connt, here would seem to bo far better reacon lor mor Cont irtar conld it adranco the same, or a botior a priori clacm,
than for the move to come from our side," [and by that for the move to come from our side,
parity of remoning, for their retara to divisions bj B_{1} 12, and even 7, rether than for our decimalising]
As "Sigma" accases pao (p. 69) of raving againht a aybtom that has gained the approval of the greal mojority of soientific men. I wish be would name impe of this majority. The only soiontific man, Frozeh or not, that is knomn to me ne having ever used the docimal angular meakares in Lapleco; a first-rato ene, I grant, bat I am not guro that evan he rejeotod zoari and minatas, or parsevered in the angular decivals; and if he did, "Sigma" has a few mare to find to man
np a "majority."
I_

THE FALRLIE LOCONOTIVE.

[3987.]-Althovar concuaring in most of his viems, 1 eannot naderatand the ergument of "Osa" (let 10 . laid ap, will be better that 50 Fairlie's, with five moder repair, seeing that, we the latter may be made wth connterpart boilers and bogies, only one-third of enoh ongine noed remain idle-the parts being interobangeable, as in a military rifle. The adrantages of the regalarity of wator loval over the fire-box on in breaking down, chen three oglinders eill still remain cleotive, are also overlooked.

CO-OPERATIVE SOOLETIES.

[3988.]-Thougr this is not aboat co-operative societios, it can only appear under that false title, that it maay be known to continae the subject of letior calling by, calling by something eiso's name, until it can be shown that is naying the thing that is, instoad of the three holdern." Firet I entirely soree with him thet the propomal of "Pro Bono" to "enter the quantity of every article sold" mast be preposteroasly impracticable. It would at least double the storekeeper's work, and, there lose, in any jast syatem, dorble the entire expense of the "society." For no aystem is just till it arrive at this that his remaneration conaist wholly and simply of a settiod and anilorm fee for every parcel solld. The cestomor Δ who comes for " 20 s . of toe, 11 b . of sugne. pay, besidea the and 1 pennyworth of biccuita," mumis pas, besidea their marked, price, foar of these unilora mast take them smes mith tin chacke meoneling simp his payment for the goods (not theoe fees), and givins him olaim at the fatare settling day to proportionat divideod of the surplus (mincalled "profts"). But if B bays and hakes away a out of oheese and nothim else (bat the checks for its price) he is only to pay ane the whole of the e fees the atorakeoper is to inv, and customers-that is to sas, apportioned bo roburnoa to (rhether shareholders or not) amonnts of ceturmed abeote; brt the dividends so portioned ant onls be paid to thae tho are fall ahne holdern. The airidend of him who is not yot a fall sharoholder is not payable, bat only to be credited to him in the books, as going towerde meking up hi share. It belongs to him, indeed, 20 an to be payable after leaving the event of his death, or to himgeal ano ho has enjoyed us I explained in the he benoki rative societies" proper (i. $e_{\text {, }}$, inctories) in taut rol. let. 8044, art. 5,8 ; and in mot overything these anid

Abstract

\section*{or city), once adopting the principlas of riebt dealing} bat no society without them-will afford a basis for anemies there enumerated, the adrentare trader, the aioliness dootor (i. e., every doctor, whether farming men for health-fees or mot, who takes any sickness foe at all. from anybody), the endertaker, the barial olub, benefit-olob, every eleomonyoary degrader, and, indeed, evorkaelly all theae fonl cankers that oall themselves "4oodety" Wbile they are barning nociety down; and nimesoin to kill or be killed by If "IF. C. S." had reierred to the pagee I mentioned, I only promised solution it bis dat gwi cito dat, I had given them twice already empordent my power, as long ss Il aca the only ooran "Mr. 1872 " complained to the editor ($p .26$) I keep outaido the questions in erratio manderinge" and eay but it it on the questions themselves." Then whose loen not "1872" or some one take ap "the quations hemselves "? Are they too trifling? Of the atoro "F. C. B." represents, after what he now tells, I have no hesitation in saying, stick to it as the members may. is will not pay, never pay, antil arse, he does not afford me the means of ascovering. 1. They mast get rid of their unpaid secindicated (p. 666). 8. Consequently, they must each e able to state protty nearly his last jear's cost of bread, and also that of groceries. "F.C. S." does not cee "how a poor man can be expected to know this." If not see how a man incapable of telling this can be other than poor, very and increasingly poor, that woald be a remark worthy of a secretary, paid or anpaid; and I shonld say, keep him. But his actual aan can only be evor by hesing been gard, which I take leave to dispate. As a poor man, I maintain that in these days one may be very poor without any snch heedlessness and sloth as he says must be expected in "a poor man." 3. They mast r common) consistently. It is qnite open to them, if bey think hat "hold fate" menns "let go," or that a worker chall be called manager, and on the other hand, manage" be their lingo for "work," or any other ecrets of dialect. Bat they mast not have a secrelary who will say in one sentence (3847, par. 2), that hey have one "manager" to many "co-operatore," and in the next that many "manage or mismanage," and only one works; their lingo, however strange, muat consiat with itself. 4. They mast not bave a scoretary who does "not profess to nnderstand" the methods I have been partially describing (let. 30 44 , kc.), bat on the contrary, he mast profess to anderstand orrect interest in even more than siderably farther. E. L. G.

[3939.]-IT is so very important to avoid the temptaion to, or even the suspicion of, frand, that it is worth while to take much tronble and incur some expense to gnard against it. To do so without trouble is imposible, bat I think the following plan is the least tronble ome one proposed. Let books be prepared of altervate eaves of thick and thin paper, each with corresponding numbers. When a sheet of carbon paper is interposed, Whaterer is written on the thin paper will be marked
also on the thick. It will not require very mach tronble also on the thick. It will not require very mach trouble or time to write down what every customer buys and page of thick paper on which it is marked in doplicate corresponding with the leaf of thin paper, with the corresponding with the leaf of thin paper, with the
same number of page. The thick lea! the customer same number of page. The thick leal the customer
keeps as his voncher to entitle him to his share of soceeps as his voncher to entitle him to his share of so-
called proft (really saving of shopkeeper's profit), while caled proat (resily saving of shopkeeper's proat , while
thetal of the amonnts of sums shown on the thin leares of the books as paid by all the customers is the sum that ought to have been received and be in the
This is the plan customary in many drapers' shops, where, as an additional precantion, the customers acounts are written by one person and checked by another, being initialed by both. After a little praetice frands are scarcely possible the, whe mistakes and There no fuch syctem is adopted. Mistates they are lwars called, bat always called, but they are generally made in favou
of the seller, so far as I have observad. Philo.

COLOUR.

[8940.]-YoUR correepondent " E. H." (letter 3413, Na 856) is inclined to doabt the safficioncy of the theary of three colour sensations to explain all the phenomena of colonr, and thinks that the sensation of
white, thongh produced by a mirture of red, green, and white, thongh produced by a mixture of red, green, and
blae lights, may be really a simple indivisible sensablne lights, may be really a simple indivisible sensa-
tion. There seems, howerer, no need tor this more complicated and difficult hypothesis; and thare are phenomena which atrongly oppose it. The only thing which "E. H." mentions as leading to his view is that "if a red object is placed in juxtaposition With s white object, the tone or strength of the red wa sengation is present in the white sensation, for the red Irrul in the white must be very mach richer than that of the if diared objeok" But let us examine this matior more
closely, and there will appenr nothing incomsistent with the sccepted doctrine.
To do this woll, two similar spots of the same red should be pleoed, one upon a white gronnd and the other upon bleok, side by side. In shifting the ere from one to the other we are immodiately straols with the comparative darkness of the spot on the white, mo matoh the othe gill spot on the "Escr to maze it does not lower the tone of the red, but leaves it as nearly a pure red as before-perhaps it oven a little improves it. This is just what we might expect; becanse no red that wo ean procure is free from a rery considerable mixture of green and blne, which dilates the red with white, and the brighter white of the ground takes off from this dilating white at least as mach proportionately as it tekes off irom the red, and the result entirely accords with the theory.
The following fact, however, tends still more to eatablish the doctrine that white is a componnd sonsation. When the eyo has been fixed for a while apos a briliant red, green, or blue spot, upon perfeotly black baokground, and is then suddenly direoted to a white or gray surface, there appears a sea-green, pink, or yellow epot, slightly darker then the white or gray. This appearance is easily explaiaed as the effect of a diminished sensibility for the red, green, or blne conatitaent of the white or gray, as the case may be; bht if White is a simple colour, what can be tho canse of so remarkable a phenomenon
The great canse of the hesitation which many feel in admiting the compoand nature of white is the extraordinary brightneas of white objects as compared with hose whose colours approach to a pare red, green, or blae, a circumstance that arises mainly from the fact hat sabstances which reflect all kinds of light commonly reflect them all powerfally. If we take a pare gray, more or less approaching to black, we find it by no means so difficult to imagine in it a combination of the different colours. Indeed, when a gradation is carefolly made from the colour of scarlat vermilion to that of fresh verdigris, passing through pure gray of mediam brightness, the eye is at once satisfiod that there is a unifcrm increase of red from the verdigris end to the vermilion end, and a nuiform increase of sengreen from the vermilion end to the verdigris end. The like may be equally well effected with respect to green and blne, and their complimentary secondarios pink and yellow, by making gradations from the colour of emerald green to that of light rose madder, and from the colour of French blae to that of lemon yellow, through the same pure gray. When such gradations are well made, the eye in viewing them seems to see the diferent complementary colours by tarns in the The difficulty of conceiving sellow to white by itself. ho dincalty of conceiving yellow to be a componad of red and greon srises from a similar canse-the intense briliancy of the yellow, which is prodaced by a combianion or all the brighter rars of the speotrom; and if the mindness is reduced till it becomes an olive green, green, it is by no means difficult to see both red and green in it.

Willlay Benson.
"SCREW'S" * MULTIPLICATION.
[3941.]-I was somewhat pazzied by "Screw's" figares in letter 3873, as other readers may probably to be " he means " 7 times given number." I only multiply by 2 twice and 3 (the latter a part of the figures ouly), and he by 7 and 2 twice (and the former the whole of the given figures). To compare the rosalts, it is easiest to operate on 4 , ao as to get the relative
approaches to the well-known $3 \cdot 1415926536$, and the 0^{\prime} 's will show the number of figures required if the given namber were complex:-
"Screw's" Method.
4.00000000

Given number $\times 7$, one place ont $2 \cdot 80000000$ Same, another place ont 28100000

Same, $\times 2$, another place ont	5600000
Same, ancuther place out	560000

Dednct given No. $\times 2$, ive places ont $\begin{array}{r}8 \cdot 14160000 \\ 800\end{array}$
My Method.
3•14159200
4.00000000

Add 20th $\mathbf{4} 20000000$
Deduct quarter $1 \cdot 05000000$ And De. 2 places ont (A) 1050000 Aud 3 more places ont

1050
Add 2 of $A^{3 \cdot 13948950}$
And 8 of same, 3 ddaces ort
$\begin{array}{r}1000 \\ 315\end{array}$
8.14159265
being a handred times nearer than $3 \cdot 141592$.
E. L. G.

Erratum.-In let. 3878, p. 62, the first line of the sum should be, "Given number $\times 7$, but 1 place out." Screw.

CALIPER COMPASSES.
[8942.]-In reply to "K.T. L." and "J. K. P." (letters 8825 and 3836) the above articles are sold in Manchestor under the name of "Boller-coverers' Compasses," and are used for covering mith leather small
iron rollers used in cotton mechinary. \quad G. W.

AMATEUR TURNRRS' GOOEFTY.
[3943.]-Sering from time to time the many queries and answers eoncerning merhanieal manipnlation in your journal, I am surprised that in this metropolis and ite subnrbs some cestral institation has not been sstabiched in order to aford nication between amateurs who are interested in the mechanical arts. I ventare to suggest that it would be quite poaible to hire a room in some readily-accesRoilway or pibus route (perhapa, as a tentapolitan perimen in a perimest, conda meet in order to compare notes asd o diecnes conters ming to comparo nolos and onits Such an institntion if eatabliehed onght pararen to all an open to all whor to pay arion providing for the erclasion of pudestrable pertans proving lts can be hoped for if such a pociety ohond good results can be hoped for if such 8 socioty shonld e started in a narrow spirit, and confined entirely to ndividuals who may luckily be possessed of expensive apparatus in the way of tools, de.; but it ought, on the
contrary, to be open to all who really love mechanical contrary, to be open to
The art of ornamental and plein turning has hitherto been almost entirely a rich maan's hobby, by reason of he great expense of the various chnoks, slide-rests, and other appendages to the lathe. What n my opinion, is this : a common place of rendezrous where all who are interested in ench mattars conld meet and mutually assist each other
Nobody can be unaware of the immense advantages to be derived from an interchange of ideas amongst persons of a scientific tarn of mind. Many projects of a mechsnical natare are allowed to remain undeveloped. owng to the fact that the originators want the stimulas to be derived from matnal emalation. How often does it occur that amateurs who have some inyearite soheme to carry out are prevented from bringing their inventions to perfection owing solely to the want of ascistance and advice as to certain operations of a practical natnre that are only known to a fow initiated members of the mechanical profession?
Mr. Editor, I have dropped these few hints in order that, perhaps, some of your readers who, like me, take great delight in mechanical pursaits may be indaced to express their views through the mediam of your journal in a far abler manner than I have done or can

[8944]-80ME two or three mealuen In saw in anamer to a correspondent that ary oblliging editor therefors beg ay such society as above to the formation of snch a society. It would be necessary, previons to forming snch an association, that a number of those interested should deposit a small sam to be flyed hereafter to cover incidental expenses; next, that a cummittee of (say) six gentloman should meet and endeavoar to form a fonndation to wert ngon; as in all would heos and clubs the qualification formambership. I wonld angeest 55. an an entrance fee, and $£ 3$ per annum snbscription. This would enable the society to hire a suitable workshop, fix lathes, benches, sc., to be open to all members ut times specified. All members should be tanglet by compctent workmen, at certain atated times; matcriais, tiouls, aud artioles found gratis. shonld bou should be attached, with lavatory, ac. I gentlemen will advertise their addresses, with a viow to co-operation.

Samuel Sifithaz.

TERRESTRIAL GRAVITATION.

[3945.]-So my method of deciding whether the attractive force at the poles of an oblate spheroid is less or more than at the equator is condemned as inspplicable by Mir. Proctor, who declares that nothing short imagined that in spberoids of considersble eccentricity my simple mode of determining the point was admissible, and that the superiority of the attracting missible, and that the equator of an oblate or the poles of a prolate spheroid was the reason why globules of liquid prolate apheroid was the reason why globalos of ing pressare, and why a viscons liquid when dropped from pressare, and why a viscons liguid when

But Mr. Proetor's letter (3828) has upset all my preeonceived notions, 60 I will elose the subject with many thanks for his kind replies, which are doubtless as valuable to others as they are to me. There is one more query I shonld like to ask for more perfect satisfaction of a lingering donbt. Is it perfectly certain a minns sign is not by some oversight ased in place of a plas
sign in the formalm for these calculations? T. A.

DUST IN THE SPECTROSCOPE.

[8946.] -Sesing that our valued friend "F. R. A. 8.' asks for information about that very annoying phenomenon, "Dast in the Spectroscope," pleading the fact that have used one of Brownigs instruments during much of my leisure time for the last fow months, I crave indulgence to send my experienco. I see that one correspondet effect arises from imperfect polishing of the prism, from unduly deep cuts in the glass by the poly
powder; the fallacy of this notion will be apy powder; the fallagy of this notion will be ant
when it is remembered that the prisme are pol:
circular strokes.

I believe that the nuieance occasionally arises from the fact that the jaws of the alit are alightly irregalar, although oftener from particles of dust lodged therein (as your obliging correspondent knows well). The mont effectual means of removing the lattor I have found in an old quill-pen and, haring stripped most of the
feathers off.
g. W.

ORNAMENTAL TURNING.-VIII.

[8917.]-Is wood tarning the ohncta used are Various, according to the class of work to be per--riz., the prong or atrat ohnck, hollow chack, end serew chuck. Chucks should be made from wrought iron, Many turnere use chuoks made of wood-beech or box-bat it will be found cheapor by far to have them of iron. Some are made of cast iron or brass, bat the extra cost is so little that I advise wroughtiron chncks. I asnally pay 4s. to bs. cach for them. I mend a drawing of the three chacks. Any artiole can be made by the use of these that can be tarned in a lathe. Should any ornamental ahacka be required they should be made to screw apon the screw chnck, and when not wanted hang up in readiness for nse. I make it a plan to ix pieces of wood apon my serow chacks, tarn them shapeable, bore a hole, and fix any boriag bits I may want to use. When required for use I have only to malect the one required,
and it fixed on in moment. Fig. 1, prong chnck for tarning wood between centres. Fig. 2 , hollow chack, the wood to be driven in the ehnck with 2 hammer, after paring the ends taper, the most suitable size 17is. in the bore. Fig. 8, gerew chack, the screw should be 2 in . from nocket to end, diamotor at the base fin., taper to the point, which ahould be tin. If the poin't of the sorer is made gimlet-pointed it will onter the work without horing (that is to say, in soft woods). I omittod to state at the commencement that the best mandril for tho amatour's use is a male sorev for iron chacks, but if wood chacks are inaisted apon, either on the acore of cost or fancy, I certainly adrise a female mandril.
I rend a list of a fow artioles that may be easily turned by the amateur ; for patterns, de., he mast nee his own judgment and arill. Bread plattars, size 8 in . diemoter, lin. thick-sycamore is the wood most suit ablo. The platters ahould be tarned with a thumb

FIC.t
moulding, with a bead at the edge. Plain ink stands beee 6in., top 8in., aunk for ink-pan lid to cover, with penwiper on top; mahogany, box, roserood, walnut, or maple is suitable. Gliast or jug stands 6 in. disthe inner edge, tin. doep, to contain ging groovo at Walnut or mahogany gas blocks, 2 tin. any overflom thick. Mahogany or ayeamore shade atands mards, fin. sort, aycamore; common mort, deal and pine ; beot sort, walnat, ebony, rosewood, or makogany. Looking. glace or picture frames have a pretty appearance if turned of oak or even mahogany. In conclading my amply repay the troable incurred-viz. more that will Some fow years ago they had quite a run. The cap f. tarned from a wood called Quantis wood. Very it dealers roep it I purchaced what I wood. Very few lane, smilhifild. The lant time I inguired in Long, they ware out of it. I had at the time an order for a quantity, but did not troablo to fintoh them on aocount of the coarcity of the wood. I I unally pan
4d. Iper lb. for it. 4. Iper lb . for it. To tarn thom, out ofr a piepeo of
wood 5 in . or 6 in . long, mood bin. or 6in. long, pare the end to at hollow chack drive it in firm, tarr the shape required-a goblet looks woll-hollow out the inaide, do not take out rery mach wood, as in that eces it will not terre so long for private une. I almays tarned a lid for the purpose of tonlo-quito harmless to a child or adult. Pour in the watar, let it stand for two or throe minates, then drink I ased one for ale at dinner. Do not wash them ander any circumstancee. If dirty rineo them with cold walar only. One cup will laet monthe in use. The chipe are uneful in many cacee.
I also sond drawing of a cast stool knifo (Fig. 4), be lound. The ane of it will 1000
BAMUEL 8 MTTBE

SPONTANEOUS COMBUSTION

[8948.]-I $\Delta \mathrm{M}$ led to believe that if Mr. Tonkes had seen as mach of the world, and had received the wide experience of it which "Manus" has aoquired, and whs not so insolently self-sufficient at he has ohown himsell to be, he would be amount of pratical would have socured a larger amount of praotical knowledge; and I cannot but
mpress my surprise that he addreases contributors as
does. - does.

I will, however, relate another case of spontaneors combustion. Soreral truak-cloths weredressed with bleck paint and boilod linseed oil, folded, and placed one on the other before they were safficiently dry. The resalt was that they were soen to smoko, and when removed from their pillod ap poeition (in the open air) meveral were tound barnt through, and others charred so badly as to be useless. The discovery of this case was made nuder my own parsonal obvervation. It was only in the heart of the pile of cloths that combastion was genersted. And had a apark, or piece of lighted waete or coild han, been placed in the seat of combustion

A TOOL FOR DESCRIBING PATTERNS.
[8949.]-" One good turn deserves another," and a I have reogived a good many nince I havo been a subscriber to the ENGLIBH MBCEANIC, I now Bond a de-

$\therefore \begin{gathered}= \\ 1 \\ 1 \\ \because \\ 1\end{gathered}$ecription of a little tool which may be The manner of nsing it is thas: On the The manner of naing it is thas: On the
edges of the covars or round the margin odges of the covars or round the margin
of your book, and alco across the haok lay a little resin, in fine powder, and on thie gold-leaf. Now for the tool: a is the handie, of wood (soe skotch); b, an iron
fixed in it, forked at the end. Little Wheela, round the odges of which devican Wheols, round the edges of which devioes fork. Haring fixed the wheel, e, that you want in the tool, heat it and ran it along the edge of a ruler; the reain will malt and wherever the tool pacsod in the devicos graven on the edge of the whoel. The superficous leaf may then be wiped off.

IMPROVED METHOD OF GLAZNNG.

[8950.]-THE method which you hava pabliched (p.88) Bath ary transparent infringement of thast of Pallon, of the garden of the Royal Horticultural Socioty at south Kensington lat year. Groored bara in both soad and iron are by no meann nncommon, as I hare known the former in use for more than twenty yeara, and, the former in use cat more than twenty years, and,
therofore, there can be no patent in them. When Mesurs. Rendle \& Burrows were obtaining their patent, I wonder they did not claim for a rofrigerator as well, for it must be clear to every one at all acquainted with hot-house heating, that a more effectual method of absorbing the heat generated could searcoly be devised than that of converting oach sash-bar into a refrigerator frequently gilled with snow-broth to carry the heat away. Iron sash-bara, when protectod by felt, as in Beard's patent, are bsid enough, but to convert them into regalar coolers for the carriage of watar is the height of absurdity.
The great objection to iron for horticultural parposes has been its rapid conducting properties, scorohing a one time and freezing at another. The only pernon Who has coped with that diffeulty, or who oan cope
with it during his patont, is Mr. H. P. Ayres, of the Imperishable Hot-house Company who, dispensing altogether with sash-bars, places the glass in one continnous sheet, like slaten upon a roof, and thus the glase acta as an insulator by housing nearly the Whale of the ironwork, and proventing the radiation of heat. Many thourand feet of this glase may be seen at
the nursery of Mr. John Wills, foral decorator to her Majesty the Queen, Sassex-plaOe, Old Brompton, S.W.

Peter Wallace.
[3951.]-Trs plan recommended by my fellowcontributor " sanal Rymea" (let. 8840) is, for its many and ingen, well worthy of sucoess. It is both aimple and ingenione, and cannot fall to come into general glaze their own windows with greator facility and conrenience than the profersional glazier, while the work done, if properiy execated, will excel any done by the old patty system. It hee often occurred to many people that panes could be inserted and fastened in the same way as the glase of an ordinary carriage, with a ranning groove in the sach each side and a rece日s at the botiom to receive the lower ond of the pane let down through an open slit in the top. The glass woald thrs stand in an inclined poaition, the ends overlapping eanh slates. The panes might deriate very little from an npright position, and in this way throw off a good deal of
moisture from the framework. To koep the glaes in moistare from the framework. To koep the glass in poaition and provent its remoral, except from the in-
side, the open alit at top could be closed with a binding scrow over the centre of eanh pane, as represented in the figuro. A upper pane,
B lower pane, C receas in ash (end riow) to recoive lo कer end of pane, D sarew to provant its boing raieed till withdrawn. It also
c: ${ }^{\text {a }}$ - cots as a cramp screw, and prossen the odgen 01
other, closing the interatioes and making the joints water-tight. The plan has come adrantages over the old system, 28 a broen pane can be easily reparea or time, and one or two can be raisod for the parpose of
rentilation, or for a breath of freah air daring the ventilation, or for a breath of fresh air daring the
summer or antumn montha.
Rat-TAT.

PREPARATION OF PUTTY POWDER OR OXIDE OF TIN FOR OPTICAL PURPOSES.
[8938.]-HANING aeen from time to time eomen ${ }^{1}$ inquirios as to the preparation of oxide of tin, I amd you the following mothod, which is the reanlt of a great deal of experionco. Motallio tin is dissolved th olation by ic acid, and precipitatod from the filter dilated by liquid ammonia, both flaids being leopely washed in wator. The peroxide of tin is cos filter and squanazed of watar. Coilocted in a cots now linen. The mases is now sabjected to proseare ine serev preas, or between two lever boards, to make it me dry as poseible. When the lamp thas producod hae boen broken it is plaoed in a cracible, and corared np tight to prevent jots from ontering, and is then axposed and hoatod to a white heat, and ground for uee in the anaal way; this oxide in nsed specially for coments, pollahing of astronomical object-glasess for astro-telescopes. The patty powder of commeree, if good fair quality, is alloyod with aboat equal parts of hin and load, which answers for ordinary parposes, bat not for polishing leuses, in which good work is wholly dependent on the quality of the powder.

Wk. Oldfield.
" SUNRISE CURVE" $A N D$ OTHER CURVES. [8058.]-In co far as the times of sunrise, sunset oal noon, beginning and onding of twilights are, for a given latitude and a given year, fanotions of the date of he jear, they may bo representod by carves. 8uch curven will not be strictly corzeot for any other year, bat they will be safficiontly so for all ordinary purposes of life, aince, owing to the nice adjastment of the Gregorian calendar, errors conld not amount, for
a long time to come, to more than a minate or two of along
time.
Not having yot ceen this very simple iden carried ont, I beg learo, Mr. Editor, to send you the following ulotch of a drawing which, when fally execated, ahould be on a mach larger scalo.

a $\beta^{\prime} \gamma^{\delta}$ is a square, of whigh $A B C D$ are the midale points of sides. $\triangle B$ may be called the "axis of datos," and C D the "axie of diarnal time." Suppose A B and D divided into 864 and 860 equal parts respectivaly, and lines paraliel to C D and A B respectively drawn rough the points of division. Denote the 805 poink nd a to B by the 365 succesaive datea of the jear, ime the 801 points from C to D by the ladiontion the next. By con fir minates irom one mit rill now be ansy to mark on each horizontal line the correaponding timea of sunrise, sunset, \&c., and, by joining theas points, to obtain such curves as M N or sunrise ourve. $\mathbf{F}^{\prime} \mathrm{N}^{\prime}$ or sunset curre, \mathbf{P} Q or real noon curve, R 8 T U or morning twilight carve, $R^{\prime} 8^{\prime} T^{\prime} U^{\prime}$ or evening twiight curve. The draming is supposed adapted to the atitude of London.
The surface of the whole square representing a year's woen M in and M w will the space between M N and R S T \mathbf{U} the proportional monnt of morning twilight, the corner spaces the proportional amonnt of total absence of sunlight strictly speaking, a 865th horizontal space should be added below γ dor this parpose). The inclination to the vertical of the tangent to the sanrise or sanset curve at may date will be proportional to the rates of incresse or cecrease of mornings and evenings at that date. Suitable shading might be introdnced, $s 0$ as to indicato the gradual pasaing from daylight to darknees. I need not add that analogons curves might be used or indicating the times of rising, eouthing, and setting. at a given place and during a given pariod, of the
moon and planets.
C. J. Rrcorpor.

VELOOIPEDES.-To Mr Shearing.
[8954.]-Mr. F. W. Sifiarns (p. 48, No. 866) anka me if I have over tried the old-fachioned vertionl tread. I am not quite curo whether I understand what he means by the old-fachioned vartical tread. I have ased two kinds of these old relocipedes. The fret, the rual form, is that in which the weat is pleood over the driving-wheols, and to the oranked axles of which long treadies are atteched, their forward end belng hang apon light rods; on each treadle is fixed a olon and strap, within which the foot is placed; the twip
froat wheois are to guide, and are controlled merely by a long handle; the force exerted by the legs in these velocipedes consists partly of a forward and partly of a downward presurue, principally of the former. Tho great objeotion I always had to this kind was, that at each stroke of the leg the toes were jammed into the end of the boot, the sajd toes becoming, in about two or three hoars time, torribly sore in consequence. This kind of rolocipede is no doubt well known to Mr. Shearing. The second has the driving- wheels in front, and the treadles are of such 2 shape that the force ex erted is nearly all downward; the guiding-wheels are placed behind, and are sctuated in front by any suit able contrivance-an apright rod with cross-handle pullery, and strong gat line answers excoodingly well In this form of carriage the toe objection is, of course, done away with, but I always found it to induce a
painful-and, no doabt, if ridden in for long, injurious -strain upon the abdominal muscles
But in a velocipede which is propelled by a thoroughly forward thrast, and provided with a properly-hinged clog or receptacle for the foot, both these serious objeetions aro almost ontirely, if not quite, removed. send with this a diagram, which, io you, sir, wil rindly find apace for, will give Mr. Shesring some notion of a volocipede I am at present making, ypon
the principle of forward thrust of the leg. The the principle of forward thrust of the legs. The
diagrama, I think, will explain itself, but I will just say diagrana, I think, will explain itself, but I will junt say
in addition that there are four wheels, each Bft. 6 in . in
 diameter; cranks ar the foot-quite enough. Let me more say that in a stroke of this kind the log should never be allowed to bocome quite straight.

There are two seats, and two cloge on each treadle, the partons facing one another, as in an ordinary carrage. The machine boing light, one parson will be able to use it, however, with perfect ense. For ascending inclines, hand-levers, as indicated, wilu bo provided they can also be usod on the level, inatead of the feot, when it is deaired to rest the lather membera. The levers will fold oat of the way when not in ase; as, like many other persons and thinga, they are 2 mont intolerable naisance, and assert themselves very disagreeably when not in actaal ane. The two ateering which will be motuated by a simple arrangement ath in omitted in the bletch). When two persons ccapy the carriage, the necesbity for tarning it round to run in an opposite direction will be obviated, as the steering-gear will be able to be shifted instantaneonsly from one person to another. It may be an advantage in Mr. Shearing' oyes that in this carriage, by rerersing the seat botween the steering-wheels, and proriding a light lootboard, apron, ac., a very comfortable seat can be arranged for a fair companion. This is, howerar, on the supposition that the mascles of the Christian who has the honour of working the tresdmill on the occasion are tolarably developed, and that the balanoe in companion is at least a little too ${ }^{\text {angh }}$ mr Shearing anks if my ides of a forward thrast is the same a that ahown in a drawing of Mr. Reveley's some time ago. From my diagram he will see that the
principle is jery much the same.
A. A. M.

atomicities v. VALENCIES.

[8955.]-Mr. Bottons is taking quite a wrong view of the meaning of the term atomicily in his Mettar 3862, pago il. This corm when appliod to atoms means the ite chemical value in oxchange, the atom of hydrogen being taken as unity. Atomicity when appliod to belocales meana the number of atoma whioh a molocalo contains, but as we have not been considering the atomiaity of molecalee he ought not to look at it in that hight, as wo are only doaling with atoms at the presemt moment.
Diferent olementa poseens different atomicities: those Which have an even atomioity are tormed artiads, and thone Which have an odd atomicity are termed parisaeds, or a perissad an artisd.
Nitrogon being a pentad is thus equal to five atoms of hydrogen (I don't mean to say that there is such a compound as 1 atom of N , anited with 5 of H), and as the atom-Axing powers of an olement can only dis. appear in paira, nitrogen mast always have an atomicity
of 1,8 , or 5 , and how 1 atom of nitrogen can be made to exist in combination with 4 of hydrogen in am. monium, except as $\left\{\begin{array}{c}\mathrm{NH}_{4} \\ \mathrm{NH}_{4}, ~ I ~ c a n n o t ~ p e r c e i v e, ~ w i t h o u t ~\end{array}\right.$ our friend Mr. Bottone has been among the atoms of thin substance, and cut eway all the afth bonde of all for his information (which I vary much doubt). Also to bo 9.00 . I may aleo inform him that it is anoniam tion to the reneral rolo of vapour densities, an in also
 No. 885, p. 4.
With regard to phosphoras acid, Mr. Bottone mast Dot tribacic do tribasic, an hin graphio formule would lead peopie
to think il he vill look at the oonatitutional formale
in my letter (3801) which is POHHOs, providing he knows anything abont such formuls, he will seethat one of the atome of the hydrogen is in direat combination With the phosphorus, and consequentiy not aisplace able, the two other atoms of hyarogen in the radical sider his graphic formalay as correot in relation to this sider his
In the preparation of chloric ecid (p. 80, No. 366 In the preparation of chloric acid (p. 80, No. ${ }^{366}$)
the formula for potacio silioe fuoride is printed $\mathrm{K}_{2} \mathrm{SiF}_{4}$ it ahould be $\mathrm{K}_{2} \mathrm{SiF}_{6}$ or $\mathrm{SiF}_{4} ; 2$ (KF). I presume thic
 is only a p

Bottone's.

Ammoninm in the free state is similar to the monatomic alkali metals ; potassium and sodium whioh oxist in the free state as $\left\{\begin{array}{l}\mathrm{K} \\ \mathrm{K}\end{array}\right.$ or $(\mathrm{P}) \longrightarrow \leftarrow(3)$ or
K_{1} and $\left\{\begin{array}{l}\mathrm{Na} \\ \mathrm{Na} \\ \mathrm{Na}\end{array} \rightarrow \leftarrow\right.$ or Nas ; tharefore,
ammoniam in the free state muat exist, as $\left\{\begin{array}{l}\mathrm{NH}_{4} \\ \mathrm{NH}_{4}\end{array}\right.$

Mercuric.
DISOOVERY OF A MINOR PLANET.
[8956.]-I bRG to send for pablication in the English Mischavic a copy of a note which I rooeived on the 8rd inst. from one of the Fellows of the Roya
Astronomical Society.

Royal Astronomical Socibty.
Discovery of a minor planet (118), Peitho, at Bilk, by Dr. R. Lether:
$1872 \quad$ Mean Time at
March 15 14h. $18 \mathrm{~m} .{ }^{59.6 \mathrm{~s},}$, R. A. $12 \mathrm{~h} .7 \mathrm{~m} .26 \cdot 78 \mathrm{~s}$. N.P.D. 79° /42' $83 \cdot 5^{\prime \prime}$.

From an obserration made by Dr. Tietjen, at Borlin:
Mean Time at 1872 Mean Time
Berlin
March $21 \quad 9 \mathrm{~h} .38 \mathrm{~m} .{ }^{283}$. R. A. $12 \mathrm{~h} .1 \mathrm{~m} .86 \cdot 86 \mathrm{~m}$. N. P. D. $79^{\circ} 20^{\prime} 46^{-1} 1^{\prime \prime}$.

The daily motion obtained from these observations it in R.A. 60.6 B ., and in N. P. D. $8^{\prime} 45^{\prime \prime}$. The planet is of the 11th maguitude
March 25, 1872.

ANOTHER COMBINED TOOL.
[8957.]-I inclose a sketoh of a tool I have made. It in combined qquare, straight odge, plumb-line, serves as a be used for obtaining the proportion of pipes, in the same portion or pipes, in ingtrated on manner as illastrated on
p. 35 , No. 368 , both edgea
being marked off. Zoo Andia.

Errata.-In letter 8890, last line of table in col. 1 for " 891 " read 898. Col. 2, after last table, for "And pounds would be rednced to these mins,", read "And these mins would be reduced to pounds." The reduction of pounds into five gainea pieces would be nearly, not quite, as rapid, by adding athird, and then diriding the anm by 7.-E. L. G.
Errath.-In my letter (3879, p. 63), where it reads "the pamps should be pat in motion bat sooner," should be read, "bat not sooner." The weight of the hore abatmenta should have been " 42,000 tons," in tead of "4,200 tons," and their height, "101fth," instosd of "85ft." which is the average hoight of the 482 bottom towers. Thair weight should have been " $1,191,960$ tons," not " 119,160 tons," as printed iv
the items of weights, do. (p. 64). Siolto Dovahs.

The Study of Natural Science.-The examina tions for scholarships in natural science, which have recently been held at Clare and at Emmanuel College, Cambridge, have both terminated without an election being made. The reason of this is that at neither of
the colleges did candidatos present themselves whose the colleges did candidatos present themselves whose
attainments, in the opinion of the examiners, entitled them to recelve the distinction. The number of com. pettors was but small in each case-in one three only.
Education in Saxony.-Up to the present time the youth of this little kingdom, when apprenticed to a trade, have been left at liberty to forget what hey learnt at achool. Attendance at Sunday or eveniges schools provided by the State and chartuble socie iberty is abridged, and compulsory attendance at evening schools exacted for a period of three yoars. This is suid to be the first time in the annals of the world that an attempt has been made by a state to extend the education of the humbler classes beyond the merest rudimente, and after they have entered upon the business of ife. Saxony, although the best taught portion of Germany, will, by the new law, be more than ever in advance of her aister States.

REPLIES TO QUERIBS.

** In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat drew inga for illantration on separate piecos of paper. o Pu tities to quories, and Then answoring queries pat the numbers as well as the tilles oi the quarios to whicn the repilios refer. 8. No Charge is made 1or inserting lotters, replies, aro not inserted. . No question asting for odacational or solenticio information in answered through the post. 6 . Letters sent to correspondonts, under oover to the Editor, are not forwarded; and the names os correspondente are not glven to inquirest.
[10450.]-Wet and Dry Copper Ageay."Experimentar" must excuse my long delay in farnishing him with the promised comparison between the produoe of copper ore samples determined by the "dry way" and that found by volumetric analyais, at litro, I believe, many more of "our" contributors, it it only in my loisure time that I can attend to queries only in my loisea o late that has bean soent indead. However, for the futare, I hope to be less remiss. The produce of the following samples has been detormined most carefally by the dry Cornish assay, and by most carefally standard solntion of potassic cyanide in my laboralory, with the following resalts :-

Nature of Sample.	Dry Assay.	Wet Asany.	Differenco.
Amerioan Rogalus...	per cent c9, $=69.50$		$\begin{array}{ll} \text { por cent. } \\ 2.10 \\ W-D \end{array}$
Carbonate of Copper	$281=29 \cdot 625$	30.70	1.07 W-D
Slime Ore..............	= 4.000	4.84	$0.34 \mathrm{~W}-\mathrm{D}$
Argontiferous Ore....	$t=0.750$	$1 \cdot 40$	0.85 W-D

"Experimenter" will 200 from the foregoing table the impossibility of Axing any definite ratio of diference between the tro syatems of assay, as, in leot, they are not comparable. 8houid experimanter to aiford him, it is his with pleasure.-Un IRIANDAIS.
[10501.]-Wator-Power ((O.Q.) - I soe your correspondent "K. K." anawers quary No. 10501, on p. 17, and atates that "gmall tarbines are humbugs." As no size is given I oannot say what I should like upon tha sabject. On former occasions I have ventured to adrooate, throagh your kindne日s, their more general adoption. There are, I admit, limits to size, as in all classes of machinery, for efflciency. In the absence of any size being civen, I venture to say that the far famed tarbine at S. Blazien is only 14in. in diameter with cortainly a large hoad, 22 yards ; bat its calcalated power is 40 horse. Those also at Lowell are small, but give every satiafaction; of one in the sonth of England know which gives every satiefaction, it being 15 in . armeter and gives out 10 horse-power ander ahead of 45tt., the sapply-pipe being sin. diameter. These are each constracted npon different principles by different makers, and yet aro not "humbugs." There are, andoubtedly, many tarbines made which, if large or small, are radically wrong in their working, becanse their conatraction is fanlty. I am sure if a turbine be constraoted upon soand principles from, (say) 12 in . dismeter up to 4ft. diameter, when sofficient water is at command, that their superiority will be found over every other clase of motor.-J. G.
[10556.] Jamaica (U.Q.)-What "No Name" says in his excellent lettor on p. 541 of Demerara applies for the most part to Jamaioa as woll, particalariy his remarks on intemperance. I cannot recommona Jamaica to a fortane-seezer of the type of thoee who
go to the "diggings "to make haste to got rich; bat to a bond-fda settler it ofers pecaliar adrantagea, and to a bond-fide setiler it orers pecniar adrantages, and
 affrenoc, and onjoy an honourable pooition. I obamaenoo, and onjoy an honourable poeition. Io ob-
served that some one olse replied to "Mascorado," inviting to a partnership in a tartlo-preserring basineas. I do not know the gentleman, but should think the buainess proftable. It is a now trade, carriod on by only one firm, I boliere. There seems to be hardly a limit to the variety of ways of using capital with adrantage hero. Jamaica is becoming Amerion's tropioal garden- trade in bananas and plantaino haring just now sprung ap, and, considering the enormong just now sprang ap, and, considering the eaorious fow New Yorkers shall have tastod West Indian fraits, there is no fear of the markets being overatocked there is no fear of the markets being overstocked.
Store-keopers, who import, might get good proft, and undersell all others. I fancy that the splendid woods wndersel all otherb. In palling down old baildings, I have met with massive timbers as sound as the day they wore sawn-perhaps a huordred years ago-and es hard as bone. Many of my follow-readore, I know, would gladly rescue some of these from the flames or ignominious service. Statio tica fhom that orar since emancipation this octony hica bhow that over since emantipation thas oen lod to the blessing of Crown goverament. Nor ahe is rising again, and, in addition to cofioo, Mgar, and rising again, and, in addition to cotroo, farar ram, hor fertile rocourcos are to be dovelopad jast m indusmios. apply to the Government for coolio. Thi apply to the Government for coolio. Mrejudi.
eatates' labour amongat many of the poople. But I mant may that the majority of negroes indalge in the
expennive laxary of idleneas and rage, and that exponive laxary of ciniters here mininters herse, an eleowhere, in proalaiming the Foarth
Commandment, do not lay suffaciont stress npon "Bix Commandmont, do not lay soffaciont stress npon "Bis
days ahalt thou labour." Othera, again, do not so days ahalt thou labour." Othera, again, do not so complain, and profer the lusty negro to the delicate
coolio. It is predicted that this labour difficulty will correct itsolis in time by the establishment of central correot itsolk in time by the astablishmont of central
factories for the mannfacture of sagar and ram, the factorien gor the mannactare of sagar and ram, the rort there is an abundance of raboar at is. to 18. 3d. a day por man. I cannot adrice "Mascovado"
as to the chanco of his finding suitable employment whilo noquorining experience before embarking oapital. This is a dolicate matter, and involved with too much reaponsibility. I see no difficulty if he comes fortited with introductione, nor the least improbability if ho given to hoapitality, and might, with an oatiay of 520 for a stort mole and asddio-bags, make a tour of the ialnnd at but little expence beeides, by being passed from one friend to another, and I shonid be happy to lavach him. I conld write moch more, bat am matior of general interest. If I know "Mascovado's" circumetancoe-such as age, habits, cocopation, whether married or single, do -I could, perhapa, serve him rther. Will he adver [10664.]-Angle of Refleotion and Incidence - A having seen may farther onmmnniaation from "A. P. S." I presume ho is satisfed with the answors which he has received. I agroe with "Lichfeld" that the yielding of the cashion is the caase of the deriation. " think "V. B." or myself have mistaken "hat dence referring to the diagram on page 591 . Is not $\triangle B E$ the angle of incidence and E B F the angle of rafection \& Howover, certum eat that with a gentle
blow the ball \mathbf{B} striking the cashion in the direction blow the ball B striking the cashion in the direction
$A B$ is reflected in the direction B F, bot with a hard blow will be refiected to the right of the point F. I think your kind correspondent "F. N." is in error whon he atates that the co-efficient of elasticity is the force of rostitation divided by the force of oompression, and that the co-efficient of elasticity diminishes with the increase of momentum. This is equivalent to saving that the greater the momentam the greater the differInce between the forces of compression and reatitation. comes in contact with when at reat the greater the momentam with which the ball in motion strikes the one at rest the lesser the ditierence between the forces of compression and reatitntion.-Bllliskdiet.
[10692.]-Terra Cotta.-Messrs. Miaton, of Stoke-upon-Trent, were the manafaotarers of the ornamented colnmne at Sonth Kensington, not Messra. Blanchard, furnished by the department.-Hi. B. E.
[10096.] - Teating Vegetable Labrioating Olis.-In "Philo's " reply, on p. 18, he does not soem to be aware that there if a machine for the parpose. I
beg to atate that Mesgrs. John Bailey and Co. have inbeg to atate that Mossrs. John Bailey and Co. have in-
vented and patented a machine for testing oila or grease, vented and patented a machine for testing oilk or grease,
which I have used for two or three years with the Which I have nsed for two or three years with the many oils posseas good labricating properties the first time of asing, but after atanding a night they become to riocid or gammy that the lathes or planing maohinos to which they have been applied have had to be taken to piecos and oloaned belore they could be started again. Now, as an oil of this eort not only causes great annoyanco, but in the bands of a careloss workman is onlou-
Inted to injure the machines to which it is applied, it becomes a matter of great importance to ascertain the amount of atickiness (to use a familiar term) that the oil bas acquired after once using. Messrs. Bailey's machine not only determines the labricating power on Arat asing, but also the loss of labricating power or the amount of stickinese on the second using. In the in.
cloeed sketch, A is a friction dram or palley of cast-

iron, aboat 8in. diameter, keyed on a ahaft B. C and Q' are two olips or eaddies of brase, eaoh extending
peurly hals round the cirroumforenco of the dram, and peurly hals round the ciroumference of the dram, and two woighted lovera D D'. E in a thermometer fixed on the hop saddle or clip C, and sorves to indicate the
heat canter by the friction of the dram revolving be. heat catery by the friction of the dram rovolving bo.
tween the tin saddles $\mathrm{C} \mathrm{O}^{\prime}$. The mathod of using is M follows: The shaft B and palley A are made to rovalre at a spoed of 1,800 or 2,000 revalations per nate, the number of rovolations boing shown by a
inting meahine indiontiog ap to one million, but

Which ta not shown on the eketeh to arodd complication. It will be evident that this rolooity continued ceveral
minntes will ganerate considerable heat, and that minatos will ganerate considorable hoat, and tha when a bed oil is nsed than whan an oil of saperior labricatiag power is used. For instance, if it requires 50 revolotions to raise 1 degree of heat in one oil and 100 revolations in another, it is evident that the quality of the firat will only be half as good as the mecond. Before aterting the meohing the temperature at which the thermomater stands is noted; this, of conrso, will be the temperature of the room or workahop. A portion of the oil or grease to be tested is poured or smeared on the friction palley, and the ceddles, with thair woightod levera, allowed to preas on the drum. The thermometer iadicates a temperature of 200 degrees Fahr. When it is stopped, and the number of revoatione it has made is taken from the "connter," then the namber of revolntions divided by the number of degrees of heat that the thermometer has been raised will ohow its labricating power. After the first trial the machine is allowed to reat twenty-four houra, and hen it is started again without adding any more oil, and withont breaking the contact of the saddles with the drum. The number of revolutions of the dram is again taken, and divided by the number of degrees of heat raised in this second trial, and if the resnlt is not more than Irom 10 to 80 per cent. leas than the frat be saddles are that the machine cannot be started a second time, and in some cases it requires considerable forces to breat he contact or adhesion between the dram and the brass saddles.-F. R. W
[10731.]-Fastening Eecape Wheel in Iever Watch.-I am surprised to see "A Yorkahire Pivot" ecommending " D. H. L." to eolder his colet on the es cape-wheel arbor. This is very wrong, and most un work manlike. What neeesaity is there for soldering it on ? Why use soft solder in repairing when not a particle enters into the original composition of the watch The love of solder among a certain clese of watch obbers is a little too strong. It forms the great maintay in all their operations-a sort of universal remedy or almost all the ills a watch is heir to. It is a practice that cannot be too strongly condomned. The proper,
method of patting on a nuw escape- wheel is to turn the colet on an arbor and rab on the wheel whilat the Colet is still on the arbor, as recommended by "Ex. Watchmaker."-West Cornwall.
[10838.]-Fork and Wedge Motion (U.Q).The following is the description of a "fork-motion" engine bailt by Stephenson \& Co., about 1844, which I saw about six weeks ago:-ln this engine the steamchests and slide-valves are placed on the tops of the cylinders. There are four eccentrics and eccentricrods, the same as for the " link-motion," only that the onds of the eccentric-rods are formed into large vertical forks, with a notch at the bottom of each. These notches are to take hold of steel pins fixed into the ower ends of two levers, which are fastened on to the onds of a horizontal shaft or weigh-bar, and hanging ar twormed the "lower levers'). On the same weigh he lower levers, bat standing op (end termed "npper evers'). Two horizontal links are attached to the tops of the "npper levers" by steel pins; the other euds of hese links are attached to soakets on the ends of the valve spindles. There is another weigh-bar with lift. ing arms at right angles to each other. with four suspending links from the ends of the lifting arms to the ends of the eccentric-rods, and an arm and rod from the weigh-bar to the reveraing lever on the foot-plate. The effect of putting the reversing lever in "forward gear" is to tarn the weigh-bar quarter of a turn ronnd, and, with two of the suspending links, to raise the two forward eccentric-rods, till the forks take hold of the steel pins in the "lower ioks lower the backward eccentric rods, so thending forks are clear of the pins. The forks take hold of the ping in the lower levers, and make them move backwards and forwards, and with them the weigh-bar and apper levers, and they commanicate the motion to the valve spindles, through the horizontal links. The motion being taken from the forward eccentrics, the engine will ran forward the same as in "link mution." The upper "and "lower" levers, being the same length, the travel of the ralve in the same as the throw of the eccentric. The horizontal links are to allow for the oblique motion of the "upper" levers, which move in the arc of a cirole, and the valve spindles move in a horizontal position. If the reversing lever be pat in " back gear," the weigh-bar with the lifting arms will wor the two forward eccentric-rods, and lift up the gear). The forks of the backward eccentric-rods now taze hold of the steel pins, and only with this diffarence that as the motion is from the backward eccentrics the engine rens backwards. If the reverning lever be put in the middla, or "Ont of gear," the weigh-bar will only torn one-aghth roand, and the elleot is that none of the forks take hold of the stoel pins, 80 that no motion is given to the valve epindles, and of course the engine remains stationary. This motion is going ont of date, and scon there will be none to be seen. I'hare is a great fanlt in it-which is, that if a driver neea did, the ahoad he dare not revarse the engine, 28 , if he break the pine anddenly taking hold of the pina, wiw the "link motion" was invented. Your readers will see the diferance between the aimplicity of the "link motion "and the complications of the "fork motion."
[1081.]-Radius of surface of Objeot-Gliaes_ In reply to Mr. Cahh, p. 43, the radil I gave were for \& teloscope af 70 inchea pocal length, an he required. If he grinds ans lenses to these curves and has properly determined the refractive indices, the convex lons wil 40.02 locnl langtu of 25 4o lackes, and uhe convox 300. 1 owaen that tho por ta poit perchese mend the matter by alighly altering me parhap,, mond tha malior by thing laring cao o ration will not ift the cor ration tan noticeble ortart. If coph cinn aber on grinding his ourves to a great nicoty he had prin on grinding his ourves to a groat nicoly, ho had, pat poseaible acceracy, and Ill And time to go opr tho posaibie sccaracy, and I will and time to go ovar the thates again for him with he correclod nambar, so do not kay commanco that the retio of the focal lengtha in the Hagghenian that the ratio of the focal longths in the Hayghonias do asece shoula be as 3 to 2 , bat ihis proportioa will they wolld rere; and indo wr Cach need not bo they shonld have; and, indoed, Mr. Cash noed not be very particular in this respeot, but to make the ejepiece achromatio it is indispensablo, if made of the sance from each other of hall the sum of thair snites local longths. The lenaes are gonerally plano-ean ocal longth. The leases are gonerally plano-con aromed limeer of rery anequl redii bit lir ease thet the fold lens shorld be a meneane miii 11:1, ith converity towarda the objeot-glass, We cyo loasa crace feld leva. tolescose the fold ono is a misane, and the ajo lens p poris a plean convor, and conrar conva lonas. I berites thio ho cal eyepieee wrich he can entiruly depend on ; it may, por-
[10858.]-Textual Rovision of Now Tester ment (U.Q.).-The ancients had no pedantic rales abont varying the forms of letters. Each letter had bat one form throaghoat the same manascript or in scription; the writing-masters' pedantry to make cer tain letters diferenly when ending a word began pro bably among Jows or arabs of the middle ages ; and European scribes, by the time prinking arois, had made it a rule for their s (whether Greok or Latio) to be thas varied. To understand how suoh nicoties really aided rcading, we mat remember that till the fifteenth century no one had thought of leaving mare apeon hetween words than between letiors of the same word. This invention saperseden many expedients that wers introduoed to marik off the length of words. We gol rid, about a century ago, of the iwo s^{\prime} a by raking oat medial like our final one; and Tisohendorf, by a coatrary conrue with the two nigmas, merely follows pait, and rolieves
[10857.]-Imitation Marbles, \&c. (J.Q.)"Plaster of Paris, quicblime, salt, ox blood, stones o different colours, also pieces of glass, all beat to powder beer, or sour milk, and then lay of pastd with rinegar, or what you will; let it atand so long till it is thoronghly dry; then rub it first with pumice stone and polish it dry; then rub it firat with pamice stone and polish it
with tripoli, giving it the finishing stroke by rabbing it with tripoli, giving it the finishing stroke by rabbing it
over with leather and oil." The above is a quotatioa over with leather and oil.
from an old work.-Schoolboy.
[10859.] - Wheel Catters.-Theshape of the gattern vary with the shape of the teeth of the whools to be cat Pinions, or small wheela, require a cutter for nealy every different namber of teeth in the pinion; wheels or those with large nambers of teeth, one catter will serve the parpose of catting many wheols varying from 7 to 20 teeth, although strictly correct only for the one for which it was purposely made. To describe the various forms of teeth uctd would require a long article, whioh perhaps "our" Mr. Editor may not care to allow the space for.-Tubal-Kain.
[10888.]-Bust in Iron Vat'-The salt aryatal lised is nitre; th
salphatos.-R. J.
[10889.]-Rose Trees.-In replying to this query I undertook to affirm something which I beg loespo to "ithdra" from. I ind that narserymen do appply stocks. Under these cireamstances defnitions are in atate of fog.-8ave Rymes.
[10889.]-Rose Trees.-What is a dwarl and What is a standard rose tree? These yames refar ontirely to the height of tho tree, and have nothiag Whatever to do with the rose tree being badded or gralted, or on its own roots. 4 rose tree badded or grafted on a short stock a few inches from the ground is equally a dwart with one on ite own roots the mae height. Also a rose tree on its own roota with a aingle stema 3 ft . or more in height, is equally a standard with one of the same height that may be badded or graltod. "Saul Rymea" (p. 18) mas depend that if an ordor ia son to a nareeryman for dwarl roses he will be more litely to send
T. M.
[10913.] -Sorew Cutting(O.Q.) - Where the carow to bocat has an nnequal namber of threads it is a dimboll matter to stop the lathe and wind back the saddle of hand to meet in the threed partially cat; for abort sorem time would be saved in having a reverse motion to the
lathe. The wear of the lathe would certainly be in cremeed, but that woald bear no comparinon with the time sored. -TUAL-Kars.
[10917.]-Power.-"Undecided's" deseription of his shafting and gearing seemps a roundabont way to apply the poyer from a steam engine to a single machine. If
he candriva direct from the engine shaft to the machine, there woald certainly be a great saring of friction, say (1) horse-power of ongine, (2) horse-power required to work the machine, (2) namber of revolotions ongino per minate, (4) revolutions al machine per minate, (4) diameter and breadth of pallay on machine,
(5) and what is the largeat diametor palleg admissible (5) apd what is the largest diametor
upon his engine shaft.-TuBAL-KAn.
[10980.]-Want of Steam Power.-I should adrive "Agri" to direct exhanat pipe into ohimney, and it woold oease more dranght ; if it dees not answar make your slide ralvo longer by patting an eighth of an meh both ends of the alide, or a quarter of an inoh. I shall leave the alze for you to oboowe for yourself, it would make the engine ran a trife festor and will not burn mo much cool. If son do not like to take the slide out and alter it youraelf, let a mechanic dq it or you, and you wir nevar rogret hie outlay. sa have tion, and consume less coal, bat if you should feel inalined to do it yourself, I will give any information you shonld require. A larger Ay -wheel on the engine should require. A larger ff-Wheel on the engine
mould increase the speed, bat it would be expensive; Tonld increase the speed, bat it wonld be expenaive; makers ase for your power engive; you can work your makers use for your power engive; you can work your
engine to o 01 l . pressure with safoty.-F. T. S. 8. D. [10968.] - Brasing Fishtng-rod Ferrales (ర. Q.).-After eutting to aize, bring the adges Alash, confine with some rery fine iron the wire; rub a piece of borax on a piece of shate, with a little water, antil the consiatency of cream. Mix it with a small quantity of apelter, lay it down the seam, hold the ferrule over a
forge fire; do not let the ferrale tonch the cinders or forge fire; do not let the ferrale tonch the cinders or the brass may collapse; as soon as the apelter rape, re-
move, or your ferrale will ran too. You can do them move, or your ferrale will ran too. You oun do them
in a hitchen fre if made bright; coke moat be used in a bitchen fire if made brib
broken small. -NEVER RUET.
[11009.]-Bending Tires.-I once saw a very simple tire bender, of which I send a deevription; it consists of two iron plates of the shape shows, bolted eallerg, the top one fixed, and the others loose to place in the difforent bearings ; for various sized tires, the

ond of the tire must be bent with the eledge for the Arst bite. The two loose rollers mast have one of their godgeons broaght out to a square for etting on a pair of winctes. Each jourral is , fin. Jower
cha other, from the midde.-ANGLO-A Mrioun.
[11028.] - Pocket Aneroid Barometers.ield. Mine has accompanied me over many of the Welsh mountains, and I have been able to measure to abont 101t. by it. An ascent or descent almost unsp. preciable to the eye has been daly marked by the aneroid, bot so small a difference as a yard is not to be determined by it. Nevertheless, I find my anoroid a J. A.
[11120.]-A Question of Sight.-I shall eateem it a favorr if I smallowed to refer to the second part of "E. L. G.' A " answer (p . 674), in which he says"After sunset we continue as before to see the mass of air that the aelar rays penetrate above and around ns,
and call it eky." Does our friend and instructor mean to saf that we cannot see light by day bejond the mass to say that we cannot see light by day beyond the mass
of air that surronnds the earth, and that the canse of of air that sarronnds the earth, and that the cacse of
darkness by night is becanse there is no matter to redarkness by night is becanse there is no matter to re-
fieal the san's raya? When I look at the blue expanse beot dhe sun's raya? No light seems in finite, throngh space. What, by day the light soems infinite, throngh space. What,
then, becomes of this illaminated apace beyond our stmosphope, and how is it we campot see it by night silmospinated as by day? I dare cay the answer is very illominated as by day? I dare say the answer is very
simple; will some one please inform an ignorantsimple;
FiDDEER.
[11128.]-Lantern Pinions.-I will sot be so rade as to fatty contradict "J. K. P.," bat I think if hat I am correct The word "traudles," in my frat reply, was, by mistake, printed "trusselle," That is a
slight mistake, poesibly caned by my writing not being silight mistake poesibly canered by my writing nnt being
over plain so thot is. K. P. will kindly overlook that over plain, so that "J. K. P." will kivdly overlook that admitted error; 1 sam. it, but did not consider it necessary to eend a notice at the time for its correction.
"J. K. P." admits that I am right in sening the pitch shonld be the game. I did not give any diameter for the pitch circle. I will now do no, taking bis nomber and pitch. I make it for 6 teeth $\times 1$ in. pitch $=2 \mathrm{in}$. diameter. He will, therefore, please not confound
pich with any term I did not mention. To explain
the rationale. It is generalls expressed by mathematicians that the relative velocitios and revolations of
any two wheels (bevil or spar) are to esch other in strict proportion to their diamoters and circumferences at the pitoh circles. So they are, if the teeth were, so to say, innumersble. Take, for example, a pinion of 6 teeth \times lin. pitch, by the ciroumferential measare ment, wonld be abont 1-91in. diameter, and a wheel of 30 teeth $\times 1 \mathrm{in}$. pitch wonld be abont $19 \cdot 10 \mathrm{in}$. diameter. To make a wheel and pinion of these diameters and nombers, supposing lin. pitch, the pinion would be too fine in the pitch for the wheel; or, what is the same, expressed in other words, the wheel would be too coarse in piteh for the pinion. The pitch of pinion woald be abont 950in., and the wheel aboat 9995in. It will then be proper to asamme wheel and pinions to be polygons, and the pitch to be the side of the polygon, with the number of sides corresponding to the namber of teolh, and the pitch to be the distance from contro to centre of the teath in the pitch airale. In this case, the circamscribing, or pitoh circle, of a pinion of
toeth \times lin. pitch toeth \times lin. pitch mnuld be. 2in. diameter, and that of
the wheel $19 \cdot 108 i n$. diameter. Por wheels with comparatively large numbers of teeth, when workisg int each other, the "diametrical" pitch, as it is termed, will answer all ordinary parposes, and is a mach more accurate mode of messurement for very fine pitches, bat it will not do for herge or heary gearing, or for whoels usaally pmplojed in engineoring and mill work, and of anequal nambers. I write from experience and daily practioe, and I again repeat that the pitch of the "trundles, or the distance of their centros, or, putting it this way,
from contre to centre of the trandles, should equal the from contre to centre of the trandies, should equal the pitch of the wheel into which they are to gear. These lantern pinions require a peonliar form of tooth in of " bas leal" form na thoy were anciently called by the then workmen. It is, however, a kind of gearing so seldom mot with in general use that it will be annecessary for see to prolong this letier. The length
of the tooth in the reverse of that where ordinary of the tooth in the reverse of that where ordinary wheels and pinions are now applice. It is longer from the pitah eircle to the point than it is troun the piton circle to the rest, and the curve is formed by rolling a circle of equal diameter to that of the pileh circio of the lantern pinion, upon a circle of the diamoter of the pitch circle of the wheel. Allow me to saggert to
those who are willing to become acquainted with the those who are willing to become acquainted with the theory of the teeth o! "heols to consait "Camus on
the Teeth of Wheels." "What I have termed "trundies" the Teeth of Wheels.", What I have tormed "trunajos",
are also, in mill wort, known ty tho mames of "ruaga" are also, in mill wort, known by
and "rounde."-TEBAL-KANs.
[11157.]-Stoarine.-As noithar Richard H. Garth nor "Jack of All Trades" has responded to this query, perhaps it may not be out of place for me, as a person of some experience in this branch of business, to ask "A Pazzled Sabscriber" What kind of stearine he has got? also to What nate he intends the our to be put altor tallow, olive, or palm oils $?$ or is it stearine from any of the hundred and one greases that are recovered from soapy suds? Reliable information on questions of this Lind is not to be got. If "Pazzied Sabsoriber" is in the trade let him got a man of proctical experienoo, and he will pat him all right. As to the other part of the query "the beat method of pressing," there is only one method that I know of, and I have boen in scriber will adrortice hin addrese in the Exolish MECEANIC I will be happy to commanicate with him on the subject -Jozn Murrax.
[14168.]-Wood Rods.-Many thanka to Samuel Smither for his kind offer of sketoh of catter, and shall be glad to see it. I have an ordinary foot lathe to which I hope to Ax it. If it is not asking too maoh

[11188.]-Arithmetic.-I remember some volumes back a hast of letters wero written upon the sabject of abstract and conorcte multiplication. Would not some correspondents who are now writhg apon this subject
do well to read those letters? This is only a sugges. tion, but, if acted upon, would probably save our nerves, for it makes one nervoas to read rabbish Would it nat save Bo
als. H. W. B.
[11192] - Ohemionl-If the salt mixed with nitrate of potash be really carbonato of potash it is very easy to separate the greater part of the ditrate, as the lattar requires 7 partsoo water at 60° Fahr. for its solation, Whereme the carbodate of potash is a deliquescent sall dissolvizg in 1 part of water. In this case the liqaid when the concentrated by boiling, and set aside to cool, oryatallise out. These crystals may be quickly washed with pure ratar, redissoived, and recrystallised. this be done two or three times the orgstals may be obtained almoet chemically pare. Shoald the salt be the bi-carbonato of potash she dimoalty would be mach increased, as it is not a deliquescent anl and requa th a parts of water at 60° Fahr. to diseairo it. trying to soparate the salts.-A Barpierse.
[11208.]-Incubator.-In reply to " M. O. ${ }^{\nu}$ the arrangement was designed for my own nee in an ex-
periment requiring a constant heat. $A_{B} I$ gather from perimont requiring a constant heat. As I gather from
" M. O.'s" letter that be has bat a poor opinion of it I shoald be much obliged it he would kindly point out the defects. I shonld be sorry to be the means of misleading other readers.-Siryock.
[11248.]-Diamond Fields.-As I have a brother
in the neighboarhood of the diamond fields, with whom
I am in constant commonication, I am eanslod to givo
"Digger" the following information, which may be of aome ase to him :-The Natal roate is andoubtedly the The winter senson commenoes abont April or May; it is by for the pleasentest part of the year indey; it is by har the plarpasing the momer of Baden. Biden
 dispose of it he hould fod it readily saleable at a ispose of th ho wiger ment at the dismond felas oseily, bot the wages nonid bo so low is to merely form a aubsiatencee. Kafir labor so laboar being so aheap in Boaks Atrion (aboatirely. af
 are ran tice anth by the Union Steamship and are ran int in the times stenage fore is $£ 20$ leneth of paseage forty tro dars. He wonld get much information from the Nolal If No Colonial Newspeper Office, London, they will forward it him.-ZuLu
[11249.]-Conarete Butldings.-See letters.-ED.
[11265.] - Drawing a Boundary Line. haetama, in his answer to this question (on p. in) has not stated whether his boandary line is to be
shifted from B or Δ only, or equally from both. In shirted from B or A ont, or equally from both. In
either of the first cases he is right ; bat in the other either of the first cases he is right ; bat only require to be shifted half the quantity, as he soon would find out, on adding and subtracting this amount to the different offets.-W. Hoemes
[11287.]-Annuale. - In addition to those named, I would add Saponaria Calabrica (red), and Sap. alba (white). The former is the most offeotive, and for growing in a mass, it is inforior to none.-Irisa Mechanic.
[11294.]-Dividing Mrotal Diso.-Dio diageam is needed to show the simplest solution of this and all gimilar problems; and with a straight edge and square, than there are circles. Carry the radins of the oatermost round it, so as to make sir equidistant marks $\triangle B C D E F$. With the straight edge, join any tro, neither adjaeent nor opposite, as A O. Then a ooncentric aircle touching the line A C winter hall With the straight edse and square make a perpendicalar to A C, torching this inner circlo, and thrnagh the moeting of this perpendicolar with 4 C, draw a meconid circle, which will contain twioe the imner one. Again, make a perpendicular to A C, touching this socond circlo, and hrough its meeting wits A rings and dise, all of equal weight, are produced. It would not be worth while to print "matacem hima prelf, from tha him to see the four radii thas obtained are neoonarily as $1,{ }^{2} 2, \sqrt{3}, 2$.-E. L. G.
[11804.]-Nessler's Ammonia Test in propared by taking 85 grammes iodide of potassinm, and dicolring it in 10 o.c. of watar, 1.6 grammes mercaric
chloride disolved in 80 o.c., and adding this lact sollochion 0 tion to the irri untur permanoco with eolntion of duced. Then make up to 100 c.c. with solazion os potash, and fllter. In order to use it for the oftimation of ammonia, a standard ammonia sointion will bo roquired, prepared by diseolving 815 grammos in a hitre
of diatilled water free from $\mathrm{NH}_{8}, 1$ c.c. of this eolation of diotilled water free from NH_{8}, o.c. of this eolation equals one-tenth of a militramme Nis. Paloorthe solution to be tosted in a oylimaor of pare coloartecs glass, and stand it on a perloor and add $1+0$, Noes ler's solation: a tint will be produced. In another cylinder of the same form and size, containing 100 c a. cylinder of the same form asa aize, con a c.c. as will be lisely to prodice the same tint (a point to be learned only by practice) of the standard solation of ammonis, and then 1i c.c. Nessler's solation; allow to stand a few minates, and then compare the tints. If not equal repeat the experiment antil they are, and from the number of c.c. standard ammona asen calo amivia This process is only suitable for the entimation of very This process is only suitable for the eatimation of
minute
quantities of ammonia.-ON IRLAsDas.
[11808.]-Geocentric Longitude and Lati-tude.-The followiug is the menner of obtalaing the geocentric longitade and latitude from the heliocentrio ones. The formala given last week by "Ohronos" (p. 48) only isdicate the connection between the erth,

8 the run, P a point of Ardes, or the rernal equihe plane of the ecliptic. Then A s p will be the
haliocentric longihallocentric ongi-
tude, \mathbf{A} E the
geocentric longitade $\mathbf{P} \mathbf{S}$ S tion tnde, and P E p
the geocentrie latitude. Call the two latter quantities L and l respeetively. Then, from A 8 pand $\mathbf{P} \boldsymbol{8} p$, supposed to be given, we have to deduce A E p and PEP. Besides the given can do being the radins rector of the earth, and $p \mathrm{f}$ the planet x cos. L. We next arrive at the angle
heliocentric longitudes of the planet and of the earth, the lattor quantity being the lengitude of the ann (given for every day in the Nautical Almanac) added to 180°. Therefore, in the triangle ES S p, we now know the two aides E S, p S, and the contained angle E S p,
called the angle of commatation. We can thos readily called the angle of commntation. We can thus readity obtain the angle $p \mathrm{E}$, , or angle of elongation; which,
added to $\mathbf{A} \mathbf{E}$, the longitade of the san, gives the geocentric longitade of the planet. To find the geocentric latitade, we have :-
$\mathrm{P} p=\mathrm{E} p \times \tan . l=\mathrm{S} p \times \tan \mathrm{L}$.
-V.B.
$\therefore \frac{\tan . l}{\tan . \mathrm{L}}=\frac{\mathrm{S} p}{\mathrm{E} p}=\frac{\sin . p \mathrm{ES}}{\sin . p \mathrm{SE}}$.
And tan. $l=\frac{\sin . p E S}{\sin . p \operatorname{SE}} \tan . \mathrm{L}$.
[11809.]-Breaking-Strain of Hollow Tron Columne. - The
$\begin{aligned} \text { For flat ends, } W & =44 \cdot 84 . \\ \text { For round ends, } W & =13 .\end{aligned}$
For round enids, $W=13$.

$\frac{\mathrm{D} 8: 5 \mathrm{~s}-\mathrm{ds:55}}{\mathrm{~L} 1.7}$

$$
\begin{aligned}
& \text { D = ontaide diametar. } \\
& \boldsymbol{d}=\text { inside diameter. } \\
& \mathrm{L}=\text { length. }
\end{aligned}
$$

$O_{\text {, }}$ by Lowndes, thas:-
(Diametar in inches) 3.6 (Length in feet) 1.7×44
for fiat ends, and 15 for round ends. The strength nearly equale the diference between that of two solid columne, the diameter of which equal the internal and oxternal diameters of the hollow one.-EUREKA.
[11884.]-Squinting.-As it is probably only one eye that is weak, let "G. W. F." cance his little boy to wear apeotacles with the glase next the meak eye coverod with paper with a bmall hole in the contre, so that the oye, in endeavouring to see through the small hole, will pull iteelf straight. The spectacles should be the sight. Indeed, if it were man own case, I should pull the glasese out altogether, and substitate cardboard with holos pierced exactly in the line of sight. There is a diffenity in making the child wear them, as they reatrict the viaion ; but it is well worth persevering in, the results are ao importank. The expense is trifing,
the trouble a labour of love, whilst a cure would be a joy for life.-J. H., Lancester.
[11887.]-Equation-The given equations are formales of the arithmetical progressions, and colution of them can be found in many antthors of algebra.Bermardin.
[11889.]-Astronomical.-The reason why the polar atar does not change ite situation is becanae the earth's axis in all parts of hor orbit is constantly directod towards the same part of the hearens. The greatest dinearence in the position of the earth is the width of the parallel lines that may be drawn through whe aris of the earth from the opposite parts of her orbit. From this we infer that either the poles have orbii. From this we inier that either the pales have somo siggat deviation to that point of the heavens, or
more probably that the polar star is fixed at such an more probably that the poiar star in fred st such an ponition produces no perceptible effect. If the polar poaition prodacos no perceptible offect est ine polar circle in the hearens with the annual revolation of our carth.-C. W. H.
[11858.]-Distilled Water. - Chemically pure distilled water is absolately pare, and contains nothing but oxygen and hydrogen. Ordinary water has multitudinous imparities, organic and inorganic, and is unfit for chemioal manipulation, though more fit in general for drinking than the former, which is insipid and пяпиеоия.-М. А. в.
[11857.1-Berlin Black.-Take 11b. of drop black and $\frac{1 \mathrm{lb}}{}$. of Prassian blue; grind well down with tarps, mix with torps to the consistency of paint, then add copal rarniak to the gloss jou require. A little
of lead will make it more adhesive.-G. Ashrs.
[11858.]-Preasure of Water.-Maltiply the height of the rop cistern in feet by 4835 , or divide the height in feet by 2.307, will give the preasure in poands per aquare inah. R. Irons mast be a dall scholar not to understand this. This is the theory, and for mast be made for the friction of the water in the pipe; mast be made ior the iriction of tho water in the pipe; cistorn is not too large to reduce the prossure therein. -Tubal-King.
[11859.]-Casting Brass Solid.-Dry your mould well, torch it if you can get at it with reain in a moale, or dust well with blecking, and blow it well ont again. Hare two runners to the object, one to let and do not have your metal too hot. Yoa can bave your metal of what componition you like, from 1 of copper to 8 of spelter and upwards.-G. Ashesk.
[11859.]-Casting Brass Solid.-It about 1lb. of load be added to 161b. of old brass, when just at the molting point, solid brasees will be the result. In (when flaid) oxidises freely, consequently the propor(Then ficid) oxidises freely, consequently the proporsimilar to the aboro. Is the brase require an addition a little lose lead will do, bat if recast several timen it man take tho iall quantity. - Novice.
[11362.]-Silver Tabes for Meersohaum Pipes.- Having made the ailver tabe to the gange o it to neem and mouth, soften the silver tabe by heating it to nearly a red heat (jast below faxing point), and
plange it at once into a silver pickle bath. Then, with plunge it at once into a silver pickle bath. Then, with a wooden mallet, and piece of bent half round iren or steel bar to size fixed in a vice, hammer to shape re-
quirod. If it harden before it is properly shaped re quired. If it hardon before it is properly shaped repeat the softening process and frinh. Any shape,
carve, or taper may be got by bending and shaping curve, or taper may be got by bending and shaping
iron or steel rod to form the pattern or stake to hamiron or steel rod to form the pattern
mer upon.-Practical Horologibt.
[11862.]-Silver Tubes for Meerschanm Plpes. -Silver ferrules may be curved the same as any other metal by filling them with lead; have a pin of atont vire something smaller than the ferrule inside the piece of wood, take off the sharp edges as if it had pieen conntersunt, and bend to the curve required. Nefier Rubt.
[11364.]-Lettering the Backe of Books.-W. Stead will have to procure the irons necessary for this parpose. Those for lettering are simply panches with letters on the ends; others are made with veriou devices. These irons must be heated protty hot, bat by no means red hot, and wiped quite clean. A little finely-powdered rosin is then dusted on the leather, on which gold leaf is laid. The hot punch is then applied with firm pressure, by which the rosin is melted, forming a cement which retains the gold in the required form. The superitious leaf is then wiped off. paper.-V.
[11865.]-The Wind.-The south-west wind is the most prevalent ; the average number of days the wind blows from this quarter is 114, the next being west with 62 days. "The above valuee are trom 1861 to 1870 " paper on the "Direction of the Wind, 1861 to 1870," Nov. 1871, to which I would refer "Anemometer" for further information on the same subject.-W. N. M.
[11865.]-The Wind.-In an old weathar book find the wind blowi the following average number of days : - N. wind 42 days, N. W. wind 33 days, W. wind 77 days, 8. W. wind 58 daym, 8 . wind 88 days, B. E. Monte Caisto.
[11889.] Wtahing Eteel.-Nitric add or nitro muriatic add.-Pembanteropist.
[11369.]-Etching Steel.-Dip the end (say one inch) of your apring in molting beeswax. When coated and cold make a hole in the wax with a fine-pointed of strons to the steel the size you require; puta drop and apply again; it will gradually eat through.M. A. B.
[11871.]-Steel for Tathe Tools.-"L. S." will find economy in buying the best cast steel of any aize. I should think tin. and nine-nixteenths of an inch square would sait him for heary turning tools for ateal or iron, and fin. to fin. for brass. The best way for him would be to go to one of the warehouses and look over their stock of odd lengths, and take sny that look
likels. The standard size-f.e., Holtzapffel's for ornamental slide tools is about $\frac{11}{82} \mathrm{in} . \times \frac{5}{82} \mathrm{in} .$, or, say,
nearly 85×15 hundredthe. The iy and eccentric Muters are much smaler-viz., 21×11 hundredtas. Sons, and col, which comes really from Vickers's XXX is a great deal better if you can get it Stubs's are first-alass, and to my notion Banderson Brothers are as good as any I ever had. Buck, of Nowgato-street, keeps them in all sizes, and Moser, High-street, Borough, all sizes. I used to get Strabs's and Cottineld, in Broad-atreet, Soho, and Hedgococ whioh cothn and Johnson, in Soho, keep Marshall s, for cellent steel is per lb. is charged for anall stam. Ex corner of St. John's-square, Clerkenwell, and all sorts of odd cizes at Mrs. Gray's, Clerkenwell-green, close by the Churoh. It is convenient to have by you a piece o? steel that you can cut off in short lengtha for making serew-dies. Also some for cutters to fit the different sized boring tars and conntersink outter bars. The better the steel looks outsido-i.c., the more carefully rolled round or square, as the case may be, the better chance there is of good inside ; don't take any that has any exteraal symptom of a crack, or that is muoh out of trath in respect to breadth of sides or squareness of edges, and the straight pieces will not require so mach "setting" as the crooked ones. You will, of course, take care not to be at a loss for any square sive under sin., or any round under lin. I generally have it out in lengths of three or four feet. I don't see how you are to mend a broken casting; the only way out of your differity seems to be to drill and tap the screw bole a great deal deeper, so as to get down to solid motal, and it another and a longer sorew. I set my fnco against ncrews being such tight fits ; bat I suppose if slack fits were allowed in that nothing alse would ever get fited properly.-J. K. P.
[11871.]-Steal for Lathe Tools.-Better order direct from a good maker in Shetlicld, asd have beat quality silver cast steel. State the purpose for which you require it to the maker, and he will iuse the mix tare accordingly.-TUBAL-KANN
[11878.]-Eistory of England.-"Inco's Outlines of English History ${ }^{\prime \prime}$ possesses considerable lines of English History ${ }^{\prime \prime}$ possesses
attractions for young pupilg.-ExCELsiob.
[11874.]-Fiding Belte on Tires.-The reacioent way of putting a new indiarubber tire on the intermediate wheel is to use a mall post ariven into the ground or ised in a vice, the top end of which shoold juat at the inside of wheol, which is thus held in a tuesdy position. Place one edge of the tire on the wheol. holding it firmily vith the lolt hand, insert turnsarew, ss shown in diagram, and pall it ronnd the wheal, which will stratch the tire suflaciently to snap it on. I do not think it worth While for
mond old tires.-F. 'T. B. B. D.
[11876.] - Marble Busts.-Warm water, sode and solp, using a bruah where neceseary ; well rinse with clean water, leather off and inish with clean eoft rag; if any staing remain make a strong solntion of soda or potash, add soft soap, and a little lime or whiting to make a paste ; apply to atains, lot it be day or two, thon wash as before.-F. H. Baundens.
[11876.]-Marble Buste.-Let "M. B." wash the busts with turpentine, applying mame with a sponge. Wee Pex.
[11878.]-Killing Beetles.-The beat way is to rown them in apirits of tarpentine or in spirits of am monis fortis (amm. spir. fort.)-Wy. Fred. Tanver
[11878.]- Killing Beetlem,-Put them Lionting on beer and sugar mixed in a soup plate, they will die drunk.-M. A. B.
[11878.]-Filling Beetles.-For killing beotles, tec, without injury and also without pain, I have always found the following method to be very
 the dragrist's and nsed for holding violot pomder and tho
 wadding to ft the bottom of the iaside of the bor then lag on that a disc of perforatad zine or of fine wire gerze to prevent the foet, for of the beetles of other ingecte from getting entangled in the abres of the cotton The box is no resdy for use. To use it cotton. The box is now reade the cotton wadding with mothylated chloroform corer it vith the diec of metal then place the form, cover ath insect in the bor and shat it in and leave it for a time. I have generally pat the bor away for half a day, and on re-opening it I have in
 a perfect freedom from pain by this method.-Yorsa.
[11878.]-Rilling Beetles.-Carbonic acid gas is usod to destroy large moths; perhaps it may answor for beetles. It produces death so quiakly that the
[11880.]-8and for Cesting.-If you reaide nee a town where there is a foundry, you oan easily acesptain where the sand they use is obtai
thou and do likewise."-TuBAL-KAr.
[11880.]-Sand for Casting.-"Leonides" must anderstand that the same sort of asand used for iron will not do for brass. To make good work, sand for ron should be flne and loamy, but not clayey, such at little aharcoal dret, and nsed not too wet. When the monld is made dust over vith s slight duat of real yello loam sand and then with coal dust or blaching pot ronr pattern in again it will msto s finx and s print For brass the sand should be a deal closer and tougher, and should be dried and torahed, as it strikes so in damp sand; Moxley is the best sand for brass.G. Ashrip
[11882.]-Parrot.- Your bird oither has vermin of requires vegetable food, manshine, and open air; for the former take the head into your hand to protect the eyos, and blow fine snafi throngh his eathers, and
sink the cage for an hour in boiling water. For the latter give a green or dry pepper pod, any kind of nuts, and a bit of apple or softer fruit eccasionally, so as to scour gently. A warm bath submerging the body for a minute or two, and the head for a second or two before the application will make the snuff stick better
and make the bird healthier; pat some braised aniseed and make the bird healthier; pat son
at the bottom of the cage.-M. A. B.
[11882.]-Parrot.-"Cygnus" must give his bird a little Howers of sulphur (jadge the quantity for himsalf) with its lood, and aro hemp seed, also sugar; bot are rocy hoat 1 in the Brazil some yenrs ago, have never fonnd it to tail in many diseases parrots are subject to. -F. L.
[11384.]-Small Pox: Its Prevention and Cure.-Phenic acid is another name for carbolic acid. -A. P. 8 .
[11884.]-Small Pox: Its Prevention and Cure. - In Bloxam's "Laboratory Teaching " pheaic acid is described as boing the same as carbolic acid. Liquid carbolic acid is usually met with as a brownish or brown liquid, having a powerful smell of tar. When poared into water, it sinks to the bottom. It is also found in moist needle-like crjstals, colouriess or pale ingly. Easily solable in potash. Alcohol dissolves it
ingly. Ensily solable in potash. Alcohol diasolves it
readily. -y .
[11887.]-Bundtale. - The gnomon hae an azaile of ahat the latitade want of 90 g-Prinuntiropist.
[11388.]-To Trr. Fennell.-The organ alladed to, formerly contribatod by me in tho Britioh and Forsign Mechannc, March 5, 1870, p. 595, is in no wise
conneoted with the section whioh appeared in theae pages. As the section sent was partly arranged by me pages. As the section sent was partly arranged by me
from a sman organ in the oharch of 8 . Bartholometron the-Lees, 8t. Bartholomew's Heapital. The deaign the-Lees, 88. Bartholomew's Hogpital. The doaign only demignod but mado by me, and is now in my posonly doniknod but made by me, and in now in my pos-
 thall doecoend to C C C O in the lover rocalo on the harshail deecond to COC CO in the lover soalo on the harmoniam pringipio. The dimenaions I will furnigh:
 tares-ris., C CC np to F, tho noundboard is pierced for 802 pipea, the romaining will havo podal arrango802 pipen, the romaiaing, will have podal arrange-
mente. The dimenaions given are not for the noetion, bat my own inatrament.-Josep Wizuink Faknele.
[11898.]- Metallio Harmonioon.-I suppose "Valvo" means an inatroment which is played by ctriking stripe of motal or glaces with piecoes of wood in the same manner as playing a duloimer. I once bought one, the notes of Whioh looked like fan motal, bat after uaing it anhile I found out that the notes were glack corered over with bronzo. Since then I hare made one of glese, haring five ootares with all tbe half notes. Each note is got by cotting pieces of glasa into strips of different lengths, the notos he tunes by breaking aman pieces off the onds with a pair of pinchers. An immoense quantity of glases is ased, or rather wasted, in obtaining these notes, as the least maintion in the thiokneas of the glese will cance the notos to be wrong, whether it is the right size or not. If "Valve "intende constructing a musioal inutrament, and is not particular an to expense, let me recommend him to make, or rathar put together, the sollowing. Its name I never heard, and this one was constructod by my father many years since, and as far as I hoow cosit a lot of monoy. It consiste of a series of glase globes, cimilar to an inverted aquariam (Fig. 1), only inatead of a knob as on an aquarium glass shere is a tang, varying in mocordance with the size of the globes. Some of these globes are as amall as 1|in.

๕omoo

diamotor, and others as large an 8in. diameter. Thoy are arranged in proper order (Fig. 2) in a shallow box sboat
ploce of drawing-room farnitare. To bring the tops of All the glacesen to a level a piece of wood in fastoned to the bottom of the box, aceen in Fig. 8. Each globe mants to be fixod firm, and where there are any ahakera mants to be firod firm, and where there are any shakers,
trom the holes being bored too large, a little worated irom the holes being bored too large, a
in bound round the tang and the goratode attol in its place agrin. To play the instrument: make a concenproce again. To play the instroment : make a concenwanh the hands olean, to remove all groace, and dip the middlo finger in the alum water, and gently run the midale Anger in the alum wator, and gently run the
Anger round the top edge of one of the globes (Fig. 4) anger round the top edge of one of the globes (Fig. 4) and it will emit a clear aweot nound such as will neve is the maxic produced by an Eolian harp. In playing both hande are ased. The alum sorves in in playing Thy as rovin does to a violin bow, giving an odge, as it Hore, to the angerr. Now for the great dramback in the alove instrament-expenise i It will be seent that the least variation in the size or thickness of the glase will cance the notee to difier; so all depende apon the वhas-blower, you might order fifty and still not get the Dote you wnitod, and it is there the expenso lice Foould prosed glans globen do instond of blown glases? If so, any quantity of one note coald be manufectared rend then the great diffoulty would be surmountod. If or alve" rishes to experiment a bit, let him get two ar three wine glaseor and play thom as atated abore,
and he will thing I forgot to way, that is, the edges of the globea 1 sog rounded to say, that it, the odges of the globes thtake of mahing one his beat plan would be to try prowed glee globes; if he does, I ahoald like to know Eravery Fould givo semme improved shapo of glaceos to prodico the requiredin notes.-Z200 ANDM.
What poin-Opera chace.-Is "Iaquirer" will may

Whether he wants to know how to make the framework, or how to make the lensees, or both, I will try to holp him, though the query is rather etrong in its require-mente.-W. OldPisld.
[11898.]-Stinging of Bees, Hornets, and Wasps.-If "Apiarian" rubs the part stang with a braised leaf of common house leok, he will have immediate reliel, it is equally neoful for blistored hando and foet.-F: L.
[11898.]-stinging of Bees, Hornets, and Wasps, -In anawer to "Apiarian," the Arat thing he mast do in to extraot the sting, which can be beat effloctod by preceing the point of a small hollow key on the part, and then removing the ating by a pair of treessera. Next, a fow drops of camphorated spirite should be allowed to ran orer the stang parte. If this Ia not available, a little common salt may be rubbed in. (From the "Family Homcoopathist," by Dr. Shald-ham.)-J. E. A.
[11898.]-Stinging of Bees, Horneta, and Wasps.-Many yeara ago, in India, I contrived, in the dark, to pat my handa, on a hornet's neot. I was stang in two places. The pain was fearful. My native stang in two places. The pain was foartal. My native
cervant (a Bengulco) out a emall red onion, or rather coveral, snd ropt rabbing the places stang gurfice. In about two hours the pain had wased, ond I went to eleep, and barring a littlo atifiness in the Frm) next morning (barring a not fitho sthiness in the Since then I have unod the same method for others, with succose-KHODA BUX.
[11898.]-Stinging of Been, Hornets, and Wasps.-II "Apiarian " in going aboat the boes, le him carry a phial of atrong water of ammonia, woll corked, and with a camel's-hair brash in it. When otang, pat on a drop of ammonia for a recond, and wahk of. There will be no pain or swelling if immediatoly applicd. -M. A. B.
[11899.]-Water Power Wanted.-How many gellona or cubic feet of wator per minute can you get. and what fall cen you also got, to be applied as a motor? I fear a aketch of a tarbine woald be of little ase to you. Better go to a maker of such if one is applicable.-TubaL-KAIX.
[11402.]-Water Power to Work Saw Bench. $-\mathrm{I} \cdot$ inclose you drawing of this water wheel and it. 2in. broad in clear of shrouds ; ahrouds, 7in. deep;

backets, 6in. doep; 24 buckets of sheet iron, pitch about 9 lin. ; dianneter of shaft at large end for torsion and to carry pit wheel, Bin., of wrought iron, wiath ol 2ain. or slope of bottom of leandor, 1 in 80 . A, the maconry of wheel pit and embankmont; B, the water whool; C, the pillow blooks of oak or stone ; D, the sapports for end of launder; E, the rood to lannder: supportior the elluice and frasee; G, the head water in pond; H, the tail water bolow the wheel; I, the pitch paving H, the tail water bolow the wheel; I, the pitch paving the slaice, or gear may be applied. A lengthy descripho sjaioe, or gear may be applied. A longthy descrip. lip of the lannder ahoald be brought down very thin ; the extreme end is adrisable to be made of sheet iron, sbout tin. thick, and jast sufficiont space to allow the Wheol to revolve under it withont striting, and ahould be aboat 2in. short of reaching as far as an plamb be aboat $2 i n$. stort of reaching as har as a plamb required to give the water paseing through the lanander greater velocity than that of the wheel. "Paddles" is a term applied to the floats of wheols working in an in a torm appiod to the ioats of Wheols working in an
unlimited enpply of water, or in flowing stream. In this caes bucketa is the unanl torm, from its somewhat similarity to that common ntensil, to hold or to carry water.-TUBAL-KAms.
[11409.]-Gas.-The ges supplied for lighting the underground rail ray carriages is carriod in large tank: on top of some of the carriages, and carried to oach carriage by means of indiarrbber tabing. The tanks
are filled every morning from a gas-works.-F.T.S.S.D.
[11407.]-Magic and Conjuring.-Drill a amall hole in the bottom of a tranaparont docanter, partly all it with a docoction of logwood in imjation of vine, and cork wo the decantar's moath; place the bottom cealod i maz or hollow stana is to oorer the deenter entiroly; then conatruct another similar onese with a obamber in ite upper part having a hole at the top and anotber at bottom; all this aloo vith artitial vine
and cort the top hole as bofore. Exhibit your bottle of wine at one ond of the room, pull out the cork, pat on the cover, and allow the liquid to ran slowly oat of night: meanawhile, place the other cover over an empty tombler at the opponite end of the room, take ont its oork, and the liqnid will slowly ran down and all the tumblor; so that when the covers aro removed tho wine appears to have paned from decanter to glace by magio, thoagh actanlly done by atroophario pressure. It helps the delusion to conneot them by a long string or chain while the wine is flowing.-Cmar.
[11408.]-Sowing Tachine.-Undoubtedly the rotating hook is the rimpleat, quiotent, and leant liable to get out of order, and thil I alay after aix yeara' net of the name.-J. W., Leamington.
[11408.]-Sewing Mrohino.-Seving meohines I ahould eay, aro divided into three clasees. (1) The singlo-threed chain-atitch. This is rery simplo to work, but the atitoh opena out backwards like a stook ing. It also nees up a great quantity of throed, fally tour times the longth of the soam. (2) Tho doable thread chain-stitoh-such as Grovor and Baicor's. The upper thread is supplied from a apool in the ordinasy way; the andor thread also from a mmall apool paeses through a snake, which loops it into the apper thread on the under side of the fabrio, and prosents an ap pearance very like the chain-atitoh, brit if anything still more unaightif. Thin atitoh is not so liable to unravel if cut at any part an the single thread-stitoh It can also be takon out backwards; pulling out Am the fander threed and then tho appor. The quantity of thread used is still greator than by the chain-stitoh (3) The lockstitoh, formed in two waya, as stated by "E. B. F." -the shattle as in Bingor's, and revolving hook as in Wheeler and Wilson'g. In both the under thread has to be wound on the ahnttle ; the seam doen not rip, and the thread consumed is much lees than by the other mothods. In the formor the needio it straight, and descende parpendicalarly, and is, there fore, bettor suited for leather and hoary aloths. In the lattor, the needle has a alight curve answering to the motion of the arm. I should, therefore, reoom mend Singer's for heary work, and Whealer and Wilson's for moderate and light work. The underthread apparatus of the latter ia no more apt to got out of order than the shatilo, while it worch more lightly and noiselessly. The seam of tho look-stitch is alhread is too great, when it rans right along the under
 ceald, bateractiy in the tansverse line of the sharing, edge," upon which he wonld place a spirit or other level, talcing care to prove both the "straight edge and level," by seeing they are troe, and
mane result.-TuBaL-KAn.
[11410.] - Geometrical Question. - Constract figure und draw C E perpendioular on A B, it will easily be seon that C D E and $A D B$ are similar triangles, and
that ECB, the half of $A C B=D A B$.-Branardin.
[11414]-Unripe Seeds.-M. P. Duchartre in his "Elemants de Botaniqne," Pris, 1867, gives an extract of a papes on the subject by M. Cohn, of Berlin ; the conclusions of that paper are:-1. The germinating power does not coiscide with the mainrity of the
ceeds, but precedes it. 2. In many plants belonging to several ordurs a seed can germinate when its derelopment is not yet very mach advenced; it seems, of the cavity of the tegnmente, and that the albumen has been absorbed or has taken consistence. 8. In geperal, plants coming from unripe seeds are not weaker place in the least space of time possible at a mean degree of formation of the seeds; younger or older they germinate alow
[11415.]-Scarlet Fwnners,-The red and white (York and Lencaster) are the most ornamental. The favoured, and the beans are mach larger and the plant astronger and taller grower than the other two. All require a soil well manured with rotten dung. The the case with mine last season, as I wanted all I conld spare for marrows. All legaminous vegetables require their growing season it is impossible to give them too mnch. Sow the second wetk in May, in seed beds, and when the seed leaf is fully developed, transplant where they are to grow, taking especial cars to plant them
deep enongh for the seod leaves to toach the groand. They come into bloom noomer when transplanted. Ayateur.
[11417.]-White Polish.-Let "Stilton Cheese" take rectified spirits of wine 2 galions, gum andarach 51b., gam mastic 1lb., gam anime 4oz., pat them into a clean can or bottle to dissolve in a warm place. the gams are dissolved, strain it through a lawn sieve and it will be fitfor nee-OwDEMY Karny.
[11418.] - Absorbing Aualty of Frinting Paper.-I quote the fonlowing trem "Notes and Queries":-"Finely powdered pounce, rabbed in inghtly with the finger and then barnished with an if, ss is generally the case with German manufacture, the paper has a tinge, the burnishing whitens it. For poaltry yard) the white of a fresh egg applied lightily foolscap. It tates but a few minntes to dry end is per foolscap. Is takes but a few minuteo to dry and is per-
fectly, transpareat.-S. H. A."-Eman. W. Hanrigy. [11419.]-Half.Horse Power Turbine,-Bee reply to query 11399 .-TubaL-Kann.
[11421.]-Photography.-"Camera" should be careful in developing, to see that the developer flows evenly over the whole surface of the pla'e without being checked nntil it reaches the opposite extremity, When by gentle oscillation it will fow backwards and forwards antil the pictnre is fully developed, when it ghould be gently washed, and then placed in the
"hypo. bath" and left there for about three minates, if left longer it may dissolve off a portion of the film, and, of course, carry away part of the picture. The coating, sensitising, developing, and fing, should all
be done in the dark room, and as little artificial light be done in the dark room, and
used as possible.-C. S. W.
[11421.]-Photography.-" Camera" seems to be wrong considerably. The plates should not be in the bath so long s, four or five cinates; I have generally
found two minntes quite sufflient. After developing with iron they shonld be well washed, which is appeshoald be intensified or "redeveloped." an slmost andless variety of methods and formula for which are given in the works referred to. I hare tried a great "any, and prefer the pyrogallic and silver. The potassinm, wasbed over the plate until the undecomposed iodide is dissolved. This is mach better than planging into bath of hypo. It is possible that in addition to the errors in working, a bad collodion is will juat observe that the art of photography is by no will juat observe that the art of photography is by no means easily learned. Dificulties and disappointments crop op constantly, and it is often the case dace nothing bat "failares" in the hands of a novice will yicld carital pictures whon manipalated by a more wail yield capital pictares when manipalated by a more advanced stadent. Let yoar motto be "Ni
randam," and pash on till yon sacceed.-J. A.

[11421.]-Photography.-" Camers" sionid not

 let his plate remain in the bypo. bath so long. As soon thoronghly to free the film from the hipo. He mant aleo wash well after the iron aolation, before fixing.Perhaps there is enmothing bed in the wahing tiater Perhaps there is somothing bad in the whehing
whiah canses the dititulty. Ooca grosar Paoto.
[11421.]-Photography.-To "Cayrbra."-One of two things. 1. Your bath is not atrong enough
a You do not expose long enough, or your pictures wantinten not expose long enough, or your pictares iron developsing with py rogallic acia and ailvar alive of glass, and compare it with yours by transmitted light (by reflected light yours, of conrse, will have a yellow flm of andissolved iodide of silver over it). After the iron development, wash well, and add two drops of
your silver-bath to some pyrogallic acid, and swill over plate till by transmitted light it is a shade darte than you require. Fix by swilling plate with solntion cyanide potarsians, not hypo., and wash well. Wash M. A.B.
[11422]] -Night and Day Temperature, soc. -1. The only instance in which the sensible heat is greater by night than by day is, whan a bright oles case the heat radiated from the surface of the earth would be reflected baok to it by the alouds; the convective ourrents (which on a fine and starry night repidly carry of the heat) woald be less rapid; and, lastly, in the day, by the convaraion of water to vapour and by the or 932° Fshr. of heat are rendered latent 167 Fahr., on the settiog of the san a reaction sets in, and a large proportion of this vapour is liquefed, which, with (in winter) the freezing of water greatly increases the tempersture of the air by the laberation influence of this latter cause alone would be insufficient influence of this latter cause alone would be insanacient day, were it not for the combined action of the two dras, mentioned. To sum np all, we may say that the cooling of the earth results from radiation, convection, and free heat becoming latent-hence, when these processes are in any way hindered or reversed, as on a cloudy night, when the clouds act in the game way as the root of a building, it is plain that the heat by night would often be greater than it wonld be by day in any place not subject to the direct rays of the san. 2. Again, with respect to winds, similar canses come nder consideration; convection is, perhape, one of the principal of these; that is, air being incapable of receiving heat directly from the san, is heated only by contact with the surface, considerably, if the sarface be earth, and in a less degree if it be weter, which acconnts for the fact that the strongeat winds flow from the ocean. This rarefied air ascends, giving place ascending, deacending, and horizontal carrents, the latter of which we call winds. Now, as this can only effectually be carried on by day in those parts receiving the direct rays of the snn, it is not improbable that the riolence of a wind shonld be decreased by the withdrawal of thore rays. But there are evidently exceptions to this rule, for-(1) the sun mast bo shining currentere, sud consequenty the that part; (2) there are some invariable winds, suoh as the trade winds, Which are cansed by the rotation of the earth on its axis, the thin film of air being left behind by the denser matter of our globe. Bat still there is saffcient ground for the opinion, universal among sailors, respecting the influen
[11423.]-Eurcery. - Do nothing. There is no danger; the piece of needle will work its way out. When the point has protraded sufficientiy from the skin for it to be seized by the fingers, lay hold of it and pull it out. It will be rasty and brittle, so no attemp should be rasde to take hold of it with pliers or any
wther instrament, as the point might get broken off, other instrament, as the point ming the rest might then remain in the finger for an indeffite period, perhsps for life. Do not let it be out down apon, for the operation is by no means a simple one, and might not sacceed.-F. R.C. S.
[11423.]-Surgery.-I speat from the authority of being a F.R.C.S., with fifteon years constant army and civil practice. No surgeon in his senses wonld and the finger might be cut to mincemeat and the needle not found. My adrice is, "let it alone," carefally shielding from accidental hart. Tho needle in tine will work itself ont, and if any point shoald become painfal, poaltice it oontinaously with hot will be discharged throngh this. Preserve as much motion in the joint as possible withont creating pain or inflammation. Pins that foolish girls have swallowed have been extracted after long intervals from the thigh ortracted a entered the left cheek. Above all things, let no one be bandling or examining the finger; there
save from meddlesome sargery.-M. \mathbf{A}. \mathbf{B}.
[11426.]-Sorew Outting.-A 4in. centre lathe will require a leading screw of tin. or ¿̧in. dismeter and the most convenient pitch would be fnar thresd per inoh, with the angle of the thread $22 \frac{1}{2}$. The dis
tance will depend on the design of lathe.-TuBAL Kain
[11426.]-Sorew Cutting.-The diameter of your screw depends partly on the length of vonr bed. I am having one cut now for a 4 ft . bed, the largest size that 1 lin. ateel will contain, and 8 thraads to an inch. A
thread is mach better than a square one for conrenience in getling the nut to clasp on comfortably My old lathe with 3 ft. sin. bed has only a fin. screw, but that has a mpport under the front end of the
mandril head, as shown in Fig. 1, No. 187, p. 20, and mandril head, es shown in Fig. 1, No. 187, p. 20, and
juat omittedimmediately over the word lathe in No. 297 , just omitted immediately over the word lathe in No. 297,
Fig. 6, p. 256 , of the eame volume. I like this way of
doingit best, as you can ohange ends with the cerew, both eids being fitted to the socket, and any other arrangemb tor to pore it is not of ane Wore whit Withoalhis or whitporth's atandord lin. in diamoter, and 8 to au inch would suit yea perlin. in diamoter, and 8 and relieve yon of all dificulty sbout making your not, which should be made in one piece and cot is half after tapping, if of cast iron, or may be in 6 wo pieces soldered together if of gan metal. I don't think there is any better plan for the arrangement of the nat they the one I gave in No. 207, P. 20, and fart plan seems to have anited the lourd to be atteched to some machine monggt the "useful wrought apd cast-iron wort" at the sale of his toos ta mate 1st difticult, in fact, straight ones properly pleoed wonld difticalt, in fact straight ongt prything of. Bat it is a misteke to suppoee that a V thread has any more tendency than a square one ophould do, nearly half of the circumference of the screw. It they do not, then, of couree, it has such a tendency, and straight slotg of couree, The screw should be abont halfway down the bed if outgide in front, which makes 6 in . to $6 \frac{1}{2} \mathrm{in}$. distance of centres for a 4in. lathe. Leading acrews have so and times square threads, and sometimes round tops and bottoms with upright sides. for Mr. Wilkinson to cot about sew one by, flat at the top and bottom, bat with my new one by, 10 degrees, and he declared the nat would not open and shat on such a sorow, from the sides not sloping enfficiently. I bave not tried it, bat I can see it wonld be a near thing whether it would or not, no I have decided on a rounded V thread $\$$ pitch In the drawing (p. 20) I have put "doable thtaiding pitch," but that was done for the parpose of obtaiding very high pitches which are not commonly wanted and with my new screw inala kear tree times as fast spinde wher In whitmorth's 5 in. lathe the natemas the mandri. In braces about a quartor of altorether, and mach less each side, or barle wich acconnts for the nut beias towards the able to open at all on tho rounded thread with aprigbs
sides. (See Vol. XIII., No. 314, p. 37, for drawing.)J. K. P.

[11428.] - Violin.-In reply to "W. P. D." in reference to violins made by Thomas Smith, London. may inform him they are of n y famed name or par| ticular value. Smith was n pupil of Wamaley, and |
| :--- |
| 1800 . The violoncellose | wronght antil about tho year 1800 . The viotimation of this maker were hetched good prices-viz., Et 0 and £45, but his violins are rather mediocre in quality.P. Dawipsons Author of "The Violin."

[11429.]-Ferns.-If "E. T. S." will try carbolic acid in his fern-case I should think he would get rid of mildew, it being one of the best preventatives of fangs life, as is shown in Dr. Craoe-Calvert's last paper ress
before the Royal Society. Pat a few drops of oarbolic before the Royal Society. Pat enver the ecid with acid into a smail botle, heep, to prevent ite too rapis water abotio Man weare ago, before carbolio acid trown commercialiy, I had to abandon fern-casu, becanse all the most delicsto. ferns were killed of mildew ; so that if "E. T. B." tries this I shall much interested in knowing the result.-B. D. T.
[11431.]-Tinned Water Bottles.-"Londos Rifle" eannot plate them by any means whaterer. I. had better parchase Britannia Metal or German silra bottles. They ara, of course, better if plated.-J. A
[11431.]-Tinned Water Bottles can be platal. but "London R tie" will find it rather tedious. ase most likely to fail. To make a respectable job, nalnid used to plating, he had better let a practical person , bat iron rast will do no harm th erm water, at llowed washed the boting it, the tin and salts and in soldering will give the liquor a bad flapour. Tse bottle shoald be rinsed, and dried in a warm plsce,
with the month open and appermost, before pattiog it away after use. -ILLUBIONist.
[11434.]-Salmon Spawn as Bait.- " Pantila" in answering this querf, shonld have added that by sectior 9 of the Salmun Aot, $2 t$ and 25 Vic., 0.100, yisi. img," or "buy, sell, or have in his possension, ajy salmon roe." Penalty 40st for each offence. only exception made is possession of salmon roe artificial propagation or scientific parposen-Jaysi. ERED.
[11434.] - Salmon Spawn as Bait. - This querist mast be an intended poacher. But, for has consolation, I beg to quote the gist of the Act of P_{2} "
liament, 25 and 26 Vic., c. 97 , s. 11 : "To use, or hare possession, salmon roe, incurs $£ 2$ penalty, and for sure of the roe." I hope no gentleman will answ inquiry; or yon, Mr. Editor, tarn your colnmens a nursery school for the vilept desoription of posching.-Jов.
> [11484.]-Balmon Spawne as Eadt-That (surreptitionsly) is the roe, ate it is termed, of the fes fish, small globales aboat ${ }^{\text {dismeter. Porhaps "King. Fisher" is not awarer }}$ its use is prohibited. Some time aince.
"Advjee to young men abont to marry" was, "Don'k." I vould angrest dimilar adrice to "King-Fiaher" repeoting anlmon opawn.-TUBAL-KAIs
[11485.]-BoDtroaktng.-"Crispin" might as woll ank a baker to make a loat with dry fiour as ask a bootmaker to work leather without soaking. Sole leather should be well sonked, and when half dry woll hammered, it will wear well then. I have been thirty
nearg at the trado bat never attomptod working dry rears at the trade bat
jeather.-CORDWAINER.
[11488.]-Eiarmonitum.-" K. T. I." ought to be macialan and moohanie onough to know that the channols of an harmonium reservoir (or pan, an he eallis it) should be gradanted the whole way throngh the har-
moniam according to the wiath and length of the moniom according to the wiath and length of the
ribratore, leasting plonty of airway and depth for stop alide.-Preacrical Hozolocist.
[11487.]-Sanh Tool Handles are, I am inelined to think, made now jast es they were forty years agn, i.e., let, out to the required length by a baw; ; 20d, droesed by an axe to the nearly required diameter; 8rd, darned in the ordinary way in a common lathe. No improved proevess hase, I fanoy, ever boen athempted.
"Simpleton" may bear to mind (shonld he be not "Simpleton" may bear tn mind (shonld he be not mash-tool handle properiy it should be tarned down or grooved, as it is technically tormed, at the larger end to a depth corresponding with the thickness of the string to prevent the binding from slipping off. Few are made
best. \rightarrow J. G.
[11442]-Old Wives' Science.-There is no fonndation in the statement that when the san shines on the fire it puts it out. It is said that if the fire be
gearly out, and you put a screen hefore it, or draw the bearly out, and soa pat a sareen he ore it, or draw the to revive. Bat it is forgotten that a fire which, in a well-lighted room, lookg dall, or out, will appear to be in tolerable comdition when the same room is darkened.* If "A. Livarpool" will refer to Philosophical Magazine, September, 1869, he will find an account of a series of experimente andortaken ad hoe, by Mr. Tomlinson,
which tond to prove that if the sun's rays exart any inFhich tond to prove that if the sun口 rays exert any in-
fivenee at all it is rather in favour of the fire than tuenee at all it is rathe
against it. -8 . Bortonk.

[" See Rod well's "Dictionary of Science.']

[11451.]-Weight for safety-Valve.-I sand the fotlowing for E . Nayler's benefit. Let me first point out the errors which are most commooly made in caicalating safety-valres. The frst is that of treatng the levar as one of the first order instead of the the ralvo end the end of the lever by the distance betreen fulerum and valve contre, instead of dividing the full length of the lever by the same. The next is in calcalating the weight of the lover. The effective weight of the lever is foond by maltiplying the weigh of the lever by the distance of the eentre of gravity of the lever from the folcram, and dividing by the dis. tance between centre of ralre and fa!crum, which mast be divided by the area of the valve in finding the pressure per square inch. Now, the ares of the valre question is 1.767 square inches, and if the lerer is parallel, its effective woight will be about $\frac{12 \cdot 5}{2} \mathrm{oz} . \times 8$ $=500 z$., which, together with the valro, will equal $\frac{1.767 \times 40-8.5}{\frac{16}{2}}=8.897 \mathrm{lb}$.
to be placed at eod of lever to blow off at 401b. Now,
we want the position of this weight for 301b.$1.767 \times 80-8.5$

$=11-8 \mathrm{in}$.

8.397

Irom falcrum. In the same matner, by subetizuting $2 \overline{3}$ and 85 for 80 , may be fonnd the positions for blow. ing off at 251 b . and 8jolb. -Tantalus.
[11454.]-Commerolel.-E. and O. E. that " R" frequently sees on bills, to., stand for "Errors and
Omissious excopted."-AN OLd Contributor. Omissious excepted."-An Old Contributor.
[11455.]-Dairy Extractor. - Faston a small hock of wood on the back of an ordinary steel pronged
dianer fork to act as fulcrum to the lerer.
[11457.]-Motive Power for Amateurs.-No combination of weights would give the pendulam power magh to drive the raw. Complication only wastes puor by friction, dec, and if a falling weight won't do,
o thing added in the way of wheels or mechanivm whimprove your position. In your sketch the driving band of the saw comes above the saw table. You tnast aroid this in actaal praetice anless the table is
very wide.-W. J. Howaed.
[11457.]-Motive Power for Amateurs.-As "Zoo Andra" roald like to hnow of any better ar-
iangemeat. than his, he will perhnps forgive me for iangement than his, he will perhaps forgive me for
telling him that he is departing from the first principles telling him that he is departing from tho frst principles
of mechanics in using (nnless the nrrangement is otherrise imposiible)any reciprocating motion to prodace rotary one, as the consersion of the one
into the other motion implies additional friction. A fimple fy-wheel arank handlo and strap would bo inDintely preferablo. If to be driven by hand, and if with a welght, a movement somewhat similar to an eight-
day clock, with an adjustable fan to regulate the speed instesd of the pendalam, would be far preferalile. $-A$, arirpoof.
[11460.]-The Beehive.-To Prilo.-I probably know less about bees than even aboat electricity, bat I at Tottenham who kept them, that beos do not go to fowers for hovey, bat only for the meateriala for wax and that his bees, to feed, or at any rato to ret honey, wert right away meross the Lea into Essex to the forest and that honey is oollected from the leares of the forest trees. He aleo said that a bee on the ring is one of the festest Ayers in nature; also that he lost many in their attempt, when laden, to croas the Lea when a mudien shower ocourred.-J. K. P
[11464.]-Spring Beds.-I wonld advise "Associate" to have nothing to do with apring beds or mattressen. The weight of the body depresses them most ander the rogion of the heart and langs, and canses the feet to be unduly olevated, thereby caunig the feet to become very cold. Though luxtrious at frat apparently. they are gonerally emervaling after a while.-W. J. Loward.
[11466.]- Vermin and Pigeons.-Carbolio acid is the best wash for pigeon-houses and for pigeons. One of Domonts patent paffs (whioh can be bought the birds. Carbolio acid will also prevent mite and toas breeding.-Dyonc.
[11469.]-Air and Warmth.-The amount of sir per man in sleeping rooms varies greatly with the season of the year, and the namber of persons in the oubic One person will do well enough with 800 or 400 but 800 fat all wealiert, bat anless rith would be poor supply bed-room con tains $\delta, 000$ veet lor self, wife and bahv. The temperatare shonld range from 50° to 60° Fahr., bat for young children
not below $60^{\circ}-\mathrm{W}$. J. Howird.
[11470.]-Pooket Barrel Organ.-This is simply masical-box withont a spring, instead of which the arrel is turned round by hande:-FiDDLer
[1i471.]-Bow.-Firat hickory, eocond lancemood. -A., Liverpool.
[11472.]-Plaster of Paris.-Your plaster of Paris has become valaeless by exposure to the atmo-sphere.-A., Liverpool.
[11479.]-Weak Foice.-Milk will cettainly do your roice no harm, but raw eggs are said to strengthen
the voice. In my opinion the best thing of all is to the voice. In my opinion the best thing of all is to
practice regalarly every day the ordimary soales, practice regalarly every day the ordinary soalea,
standing npright, with the head well thrown back, or standing opright, with the head well thrown back, or
jnin a singing-clase, and sing as loud as you can.Whinatarer.
Wind
[11473.]-Weak Voice.-I am inolined to think that the best remedy is to practice singing with another instrument that has good wind. This will prove the nost medicine if the lange are not too far gone; for he langs if load speaking or singing wilh sirengtion yonng people should aing heartily, and thas banish asthnia till they get to a good old age. The best nostrum is a little cold water alber your ainging. Fiddlif.
[11478.]-silver Bath.-It will depend on two things. 1. The amonnt of nitrate of ailver in the bath. 2. The amoant of iodide in the collodion. A the ounce of water will not give tan 20grah of siver to hence we may take this as the minimuct to phictares; henirable to work a bath. Therefore, supposing the desirahie to work a bath. Therefore, supposing the
collodion not to contain more than 4 gres of iodide to the ounce, the following will be approximations to the amonnt of collodion which may be sensitised in baths of the two nsusl strengths :-1. 8oz. bath, containing 86 grs . of silver to the ounce; ${ }^{32 \mathrm{oz} \text {. of collodion. } 2 .} \mathrm{C}$.
8oz. bath, containing 80 grse of silver to the ounce : 8oz. bath, containing 80 grs . of silver to the ounce:
20oz. of collodion. It is almost impossible to tate the nomber of plates, as some operators leave so much number of pintor, as some operators leave so much
more collodion on the glass than others.-S. Botrone.
[11480.]-Model Steamboat.-You do not state the size of your cylinder, but in any case I may tell you that you cannot have a "cabin" 8in. deep in a bont propelled by paddlen so amall as 3tin. diameter. in proportion to their size than in regular ships. But if you determine totry (and after fifteen years' painful experience I would solemnly sey "don"t") make the boat of tin, it in the lightest material and gives most room inside, and as to shape, copy any row-boat you ©oe.-W. J. Howard
[11487.]-Preventing Rust.-Give the iron a coating of linseed oil and whiting, mixed together in the form of a paste; it can soon be cleaned of again
when you want to use the iron, and will keop the iron from rusting for years.-Gic-LAMPs.
[11489.]-Weight of Oattle.-Take the girth of the arimal just behind the fore lege in feet and tenthes. Take also the length from the top of the shonlier to the tail head in the same way ; multiply the sqnare of he girth by the length, and the prodact by a fraction, Thich varies nccording to the sort of animal; for the orreign beasts commonly imported maltiply by 22.
 nark. The reand will be the maliple verv near the If 14 ih . each. For example : a ballook girting fit. Gin. nd measaring 4 ft .9 in ., will be 6.5 ft . by 6.5 ft . by 75 ft . by $2 \overline{2}=50.175$ imperial stones. The above ras the measurement of an Irish shorthorn heifer
rhic' I sold as $8 \overline{5}$ gcore, and which realised ia the
scales $85 \$$ seore, or $710 \mathrm{lb} .=50$ atone 10 lb . To measure accarately requires atill, not only in the actaal measurement, but also in the making the "Enoyclopmdia of Agricalkare," under the title "Ox." Butchers do not like buying by measurement; in fact, if they know their business they will always bay by hand. If they have not baying by weight of dead meat in the scales. I not reconmend the owner of tat cattle to adopt this plan, se the batcher, if so inolined, has the opportanity of diminiahing the weight vory materially. An I fatten a score or boore and s half besste yearily, I have parchased a weigh bridge and sell by hand, tating parchased a weigh bridge and sell by hand, taking eare
previonsly to ascertain the tive weight, and I then reoken 60 of the live woight as the tamater to be turned out of the dead meat soales, in case of to boratoly fat animals This is vithin' 2 par cont of the roal weight. The old mode of caloniating 14 to 8 the too mach in favoar of the batoker.-KHODA BUX.
[11490.]-Dumpy Level.-" Shepherd's" inseruis prection ary common complaint, Whioh fortumataly want of trath in the fitting of tabe of the rotating plate on the central stalk. Mine was that way for a length of time, and I found on examination that the firat bearing of the end of tabe on the plate had a alight ineqnality. If you find which pair of adjasting sorew: the tabe rtands best over, and place that pair of geraws so as to be in line with any one of the three loge, and then mark that leg so that you can alwayg know it from from oare to let that leg, when on the groand, alwaye point in the direction from which yon are travelling, you will slways have the telescope in the most favoarable position for both back and fore sight, and the marked leg will always be in the best direction for setting the instrument roughly. If you live in or near London, and address me at Pitcairn's Library, King's Collegeroad, N.W., I can arrange to show you how to rectify it, and, perhaps, pat you ap to a dodge or two in ad. jasting, and possibly in field-book too.-J. K. P.
[11492.]-Carbonio Ink Paper.-War, and iron out, betwoen folds of bibulous paper, the desired
quantity of any nosized paper. Smoke carefulty on both side any nusized paper. Smoke carciaity onsnuffed candle. I presume this is to be ased for oopying.-8. Bottone.
[11495.]-Double Osodllating Steam Cylin-der.-It is evident that your engine is not in working order-something jammed-piston, probably, Paoked
too tight. Very dangerous to use out for your eyes. Will eat into holes gaickly-more out ior your eyes.
so, if any other metal, as brase, be introdaced. Go to a copperamith and get a little boiler made with a flue a coppersmith and got a fitte boilor made with a fue
running ap the middle for the smoke.- A., Ifiverpool.
[11505.]-A Wooden Pump.-This can eacily be done by catting safflient oft the pump spear, so that formerly worked, and it will then dram the where as well as before, fil the water, from draw the water as weit ack before, it the water, from narfice of well to - A., Liverpool.
[11506.]-Retractive Index of Glags.-This can only be obtained by direct exporimont Generally apeaking, the higher the specific gravity the greater the
refraotive index. See "Dictionary of Photography," by Satton, 1807.-S. Bortone.

UNANSWERED QUERIES.

The nombers and Hities of quertes whoh romaln en. annoersed for five weeks are incortod in this lich. Wo truet our readers wolll look over the tist, and send what information they can for the beneft of their follow eontrib. butora.

Since
noe our last "J. G." has answored 10501; "Coocea
 Rust," 10363.
\qquad London Strata, $p 622$
Green Stain, 629
Green Stain, 699
Stronkest Bressnmmer, p. 633
Steam EnIne, 823
Wheel Cuting, 629
Periodicnl Winds
Polishing Serpentine ned Molachite, 698
Carbon Enlarging. 693
The Bug Bible, 623
Engine Surveyor for Board of Trade, 623
Fishing Tackle, 633
Ropino Drivers nnd Stokers, 63
Red Stain and Polish for Kitchen Ohairs, 623
Testing Enginea, 823
Cesting Enqinea, 623 ,
Anrora Borculis, p. 624
Eoonomy in Steam Power, 634
Fronting Electro-Gilt Articler, 624
Miceroscoplic Depoitito on Bricks, G94
Hydranalic Pumhing Mnchines 624

Sotting Single Fluc Cornish Boilers, $6 \$ 4$
Hydraulio Lift, 624
Tanning Lenther, 624
11105 Cotton Splaning, 694
11110 Incubatos, 6i4)

QUERIES.

T11518] - Refining Animal Oil for Sowing
 animal
ington.
Tlis14.;-Branswick Black,-Can "Jack of All the above-named paint-the same is sold in 6d. bottles by all lronmongers, end has a ploss on it when dry-as I want to make it choaper as inse a great deal of it, and
ite cost is enormous? Can it be made cheaper? F.T. B. S. D.
[11515.] - Wood-Planing Machine. - Can any brother reader inform me how to make a wood
machine to be driven by steam ? - F. T. S. S. D.
[11510.]- Voneering. - Will some reader give mea litheling an tha orain of the mod, and adtervards the of alling ap the grain of the wood, and
process of Frenck polishing? -Jorvir.
[1517.]-Lathe Queries.-Dividing (or counting) index $10 r$
spherical chuck, with the latest improvementa. In wonld be much obliged if any reader wonld explain the constraction of any of the nbove, and, if possible, with a sketch of same. a description of the clliptical cotting frame, as, thongh an explanntion of it has becn asked for through the
columag of the Examar Mrechanio (on noe or two occncolumna of the Exalish Mrchanic (on noe or two occh-
aiong), I have never been it so described that I conld construct one.-H. E.
[11518.]-Respirator.- Will avy one explain the best plan lor maing a reapirator tn wear whed
gaws with emery wbeel?-JEnsey Craupaud.
n1519.1-Horse Power of Compound Marine Steam Engine.- Would nay of your readers kindly inform me the best method or rulo of calculating the
horse-power of compound marine steam-ongine $7-\mathrm{G}$. harsers.
LAMR
[11520.]-Small Photographs - Wonld some of your renders he so kind 2 s to tell mo how I cen take small camera for taking them, if possihle, out of spectacle or microscope glasses?-Simple Equations.
[118si.]-Dirty Flannel. - Will any fellow ronder inform me the best method of washing and whitesing small pieces of dirty finnol, and the best washing [11522.]-Gold Fish.-Can any render finform me how to jndgn the healthiness of gold fish when buging
[11520.] - Rolla's System of Teaching the
Planofte. What is it? Is it really any good?Planofort
[11624.]-Pitch of Roof. - What is ennsidered as the pitch of a rool, and where measured ?-S. K. Sc. T. [11595.]- Fresh Water Aquarium. - What different kinds of fash and plants wicht bo kopt in a
freeh water aquariam, to agree with each other ? freeh water
S. K. Sc. T.
[1520.]-Harmonium StoD.- Would J. J. Hartler be kind enouyh to explain the "Cremona Melodio" stop, if it is a 4 ft . or 8 ft . st
fute or not $?$ MeLodious.
[11527.]-Barrister.-Will some nf "ours" be kind

[11538.j-8ilicate of Soda.- I am anzions to know Whather any of your renders harvo trice silicate of soda

 rospoctively. I ahould be glad to learn where I could
get it pure, as
nnderstand it is sold in a prepared form as as solid $i-J$. H., Lancaster.
[11529.1] Vermestes. - Conld any correspondent of "ours" kindly tetl me nnything aneunt a "smell
ravenous bethe," named Vermestes? It has been used for preparing skeletons of animals, for which
parpose I want it. If any friend could describe it he purpose much obligo-REDIvirves.
[11580]-Violin Construction.-Can some one of your correspondents inform me which is ine easiest of violin in course of construction, as described by Savart? His moaning I don't fully comprehend.-REED Maxer.
H1531.]-Water Wheel.-Will any brother reader kindly inform me what horse-power a water. Wheel soft.
in diamoter, with a stream of water 2ft. broad and 3in. doep running on to it would be equal to? Also, what Would be the cost of a good centrifugal engine, equal to same horse
Cozombo.
[11882.]-Steam Fire Engine-I saw some time by Shand and Mason, in whioh it was stated that the weight was 4001b. Is this the fact? as out bere they welgh from 1 to 3 tons. Information on this head would be interesting to a groat many.-Anolo-Avericans.
[11538.]-Area of Boat.-Is there any rule to deter-
mine the smount of suporticial area of a bost to carry a toni?-Axalo-Akgricax.
[11594.]-Cleaning Metal Buttons, Jackets, ailver and brass battons on uniforin? What is the best mode of whitening the white cloth jackets? bud what
Is best to use to clean German silver keys of futes $2-$ Is best
Fipir.
[11535] - Small Wheel-Cutting MachineI, with many others, would leol greatly assistod if some one could Yurnish practical instruction for making a
small wheel-cutting machlne, to attach to a lathe for small wheel-cutting machine, to attinch to a lathe, for
cutting clock and othor small wheels. Simple working drawings or recipe would angwer quary lovs9, p. 572 , MsCHANIC.
[11536.]-Character of Curve-II a circular piece
of any elastic materiad be streicued (as a d:utahead and

Water or other liquid poared appn it, the elastionamarial
will bulge forming a will bulge, forming a carve. What is the characte
the curve thas formed, or does it vary 9 - SBylook.
[11637.]-Soott's Patent Moulding Machine.Can any one give any information respecting the prin-
ciple of working fcot's patent moalding machine ciple of working
which makestis patent mand deccription or slze of teeth wheols ? AKGLO-AMEBICAK,
[116s8.]-Dry Solder.-Wonld any reader inform
me how dry zolder is mede, and how nsed ?-Yorme me how dry
Mectanic.
[11569.]-Wooden Beehive. - I am much plessed in No 850 encription of wooden beelive by C. N. Abbott keeping, but as I do not anderstand the nge and coe struction of the frames or bars for interior of hire, I shall be obliged if C. N. Abbott or some other bee koeper will explain the matter to me, and, if
give sketch and arrangement of frames.-H. A . D.
[11540.]-Preserving Tub Buttor.-How long will a tub of Irish butter keep good, and what sort of place
is beat to keep it in during aumaor and winter? Any is beat to keep it in during enmomer and
information will oblige.-PATTERA MAXER.
[11541.]-Dissolving Bonea.-Oan any one inform me of the aize of ordinary pits for dissolving bones, and nverage quantitios they hold ? Also, the nsual process
iollowed in the manufacture of dissolved bones?
[11542]-Small Intensity Coil.-I have made n smill intensity coill ahinut 3ifin. lonk and 3 in. diameter. It concists of abont 30 or 40 sards of No. 18 cotton
covered wire for the nrimnry, and ahnnt 6 oz. cotton insulated with ghellne varnigh, and gattapercha tisenge. Now, what I want to know is, is there a limit to the size va condenser? Will 50 pleces on tinfoll, 4in. W 3in. with
varuished paper bet ween, do for this coil? Would solid paraffin be as good as, or better than, shellac varnish,
for the papers of condenser? I find shellac keeps sticks, as I made a condcuser that way, and as it did not napers ndbered so firmly to tho tinfoil that I bad to had toin in pieces, and that with difficalty. The papers had then varniched at least a week previous, W
length spark ought this coil to give?-R. W. P., jun.
[11543]- Amateur Observations.- Would Mr. Prictor kindly say what observations may be usefully ahlo apertures-say, over six inches? No doubt, many ike myself are able and willing to provide themselves with largo and good instruments, bat are deterrod by the only toys. The inspection of star after star to try if class with the particular power nsed will divido themor even the employment of a akilled observer uselegsly
to repeat Greenwich observations would probably soon to repeat Greenwich obse
cease to amtise.-P. 8. T.
[1154.]-Feed Pump. - Will any reader inform me
how I can make a feed pamp for steam-engine about how I can make a feed pamp for steam-engine about
half horse-power? The beat way of making the valves is what I require.-Roundroor.
[11545.]-Sulphur.-To Jack or All Trades.-In replies to qucries, Dec. 22, 1871, No. 10062, you say,
"I have nover yet found it to separate when I have pre: II have nover yet found it to separate when I have pre-
pared ti.". Winl you kindly give me jour mode of pre-
[11546]-Electric 8i
$[11646]-,E l e c t r i c ~ S i g n a l ~ B e l l .-I ~ h a v e ~ m a d e ~ a ~ b e l l ~$ as described by it to monkes, on p. 683, Vol. XIV., but fault? Battery (one cell) charged thas:-P Porons cell carbon block, 1lin. \times lin. square, packed with black oxide manganeese and pounded coke (equal quantitiog), outside cell, chloride of ammonjum $20 z$, , water one quart,
magnet colled with 4 ieyers of magnet coiled Tith 4 layers of No. 24 cotton-oovered
copper I believe if I conld get the magnet to attract I should succeed, but that's the rub. Height of zinc cylinder trical Bearnarl
[11547.]-Bass's Beer.-Wil some of your correApondenis is me ho analysis of tho water of which If they can, by whom the anslysis was made?-R. F Jenner.
$[11548]-$ Bending Amber.-How is amber bent ?
-F. H. Locas.
[11549.1- Water Floats. - Will some pratical ongiare of any use in a boiler worked at 851 b , pressure per square inch. I find mine to be a fruitiul sorarco of
trontle, alwars blowing where the wire enters the boiler or otherwise so tight that it cannot work.-YOUNG Firk man.
 coming ronnd again, and I am wishfal to form a ool-
lection, will some one giro me some adrice nbout pre lection, will some one give me some adrice nbont pro-
serving egra, and the differnat kinds of varnish for coloured ogRs ? also, whethar it is necessary to destroy doing so?-Youna Nest Huater.
[11551.]-Cement.-I ahould much'like to know how tried all those advertised in news anpers. is composed of slicn, wagnesia, and water, and when manufactured intu pipes cannot be subjected to heat,
the cement must, thorefore, be liquid.
[11553]-Meerschaum.-Can any of your scientifio readers inform me mitan
pipe from the imitation, as her Majesty's Commissioners came to the conclusion that there was no certain test, at the Great Exhibition of 18517 I Ihould also like
to know how to analyse this mineral. -ZETA, Beading.
[1155s.]-A griculture.-I am very desirous to make myself sequaintod with the principles apon whioh the Will any of your nomerous readers give the names of the books I should read ?-AGRicolis.
[11554.]-Pedestrian Tour.-I shall be glad if some rellow reader will give mu A fow hints on a toar amonks
the lakes of Cumberland, which myself and a frieud contemplato making this summer or antumn, starting from Sunderland (1) What is the must suitable time? (2)
Ths iveit druss? (8) The amallest amount of laggege
necossary P (4) The hest inns? And (5) last, bat not

 is called soap-root? In the Scientife Press of San Francisco, of February 2fth, it is said that in Callfornis

[11556.]-Po-ca-de Wood.- What kind of wood is P.C. D. [11557.]-Treasury of Botany.-I wish to know which is the anst edition of in the price of that book
sary of anry of Bota
TEANFYUL.
[1155s.]-Refuse Paint.-Is there any method of working up paint akins, geraplnge of knge, sce.? If
particulara of the plan would muoh oblige.-W. T. [11559.]-Jupiter's Gatelliten-I ghoald be glad if Phee of Eclinze of Japiter's Satellites for an Inverling Telescupe.: I cannot quite ondergtand the explanation given at the end of the
Sxectox
M1560.]-Gold Polishing on Stone, \&ce.-Will "Mason," "Jack of All Trades," or some other kind reader inform me through these columns, the bent mothod of polighing gold, after it has been
stone, marble, slate, \&c. 9 -T. PExBLINOTON.
[11561.]-Electrio Light.-There was on view at the Exhibition in London, in 18i2, a machine consistiof of a number of permanent horseshoe magnets mountedy
a poriphery or wheel, whereby they were onatled, when connected with a motive power, to revolve with great rapidity in front of their armatures, and throziz b the medium of connecting wires an olectric light of coD-
siderable intensity was produced. Will some one plesec siderable intensity was produced. Will some one plesic
inform me how I can make andine on the same inform me how I can make maohine on the sams
principle, Bo as to obtain alight equal to 40 call Grove? -Electaic Light.
H15621-The Zither.-Will any one versed in the intricacies of zither planying say whether it is an adran. trings? A new arrangement, having six strings io. teau nakera ciaim easier and swifter diagering as with his opinion on the matter. I would be glad know , also, where in the long range of pricegiven in catalogues-from thirty shillings to nearly as
ponds-usefalness and real valne ond, end oras
besins; in other words, what a good honest ingtrumen
[11563.]-Moon. - Will any correqpondent infirm
whether the presence of the mnon iufluences the orbi: Whether the presence of the mon iufunanees the orbit
the carth so as to affect its distnnce from the gun ?
the monn could be annihilated, how would the earti act ?-m. Paris.
[1150..]-Blackberry and Strawberry.-There raused by place of Has any attempt been mide to calirato
made a bed of the wild wood strawberry to experimen ith, and have a notion that our now enermias bai
tonder varieties require a little wild blood to bring ba: the fisvour, and to retard ripening. I
above thankfully received. - M. PARIs
[11565.]-Carrot--Has anybody observed the "aleef" PABrs.
[11566.]-Equisetum.-Has the movement of th [11587.]-Rigging Model Yachts.-Will "W.F.W. W.
kindly inform me how he intends the mainsall and fore. sail to be fatened to silng to be used, how many, or how far apert, shocil
ring be 1 ghould like, also to know the nealost wiy
they they be? I should like, also, to know the neel
to fasten the shrouds to the sides. FULL STOP.
$[11568$]-Turbine. Will any correspondent give we
instructions how to construet a turbine of suthicien: instructlons how to construct a turbin
power to drive a 6 in. lathe $9-T$. Leith.
[11569.]-Telegraph Posta-WM any one tell why the Post-oftce posts should have an interral of bree leet, just between wind and earth, neither pais in part which is most liable to decay? At least the por are so economically tarred and painted in my ne are so
bourhood. -M . P.
[11570.]-Furniture Polish.-N M. O." (ln No. ss wnter as a reviver, bat does not tell how to mix tis and water, and what proportions, or whether the
apnlied to the rabber the same as in polishing. will kindly answer these querles he will oblige.-
[11571.]-Virginia: Ita Climate and Soil. to ank, through lts pages, If any of my brother there can inform me if Professor Manry's report on olimate and soil of Virglnia made to the departman
Washington has ever been pablliked, like his phra Nashington has ever been publighed, , Ke
report of Virginia (which I have read). [11572.]-Compressing Water.-I should feel tremely obliged to any readera for their opinion
the compression of witer. I am of opinion that possible to tion of the largest hydranlic press ever made for the ca of the Euglish Government at the Pembroke Dockria my reanon for thinkiag as I do. The press is comp rated by four mat in iron. weighing 25 tons eacb, ratod by four massive colams ated with nuts of equal strength to to rosist
bloch pressare of the ram, the ram being forty laches rings. The cylinder is composed of seven lerge of steel one inch shick massive set of pumps by a copper pipe. Now. whes block, we shall consider the oylinder full of water in after to gain the pressure of four thousand zou, cannot say how much is pumped in exactiy. bat in
[11578.]-Small Boat.-Wil some reader kindly give me the dimenaions for a man fat-botiomed bont
to hold one? It muct be light, as I wish to oarry it to and from the cannlat aboat a quarter of a mile.-J. K. D. [11574.]-Gas.- Will one of your numerous corre spondenta inform mee of the best way of regalating gas?
I have tried a mercury rogulator, but have not suocoeded as my gas bill has increased every corrosponding quartar for the lagt three ye
[11575.)-Well Sinidng-Can any reader inform moe 1 gunk
Torkmen. I want the sink one 2 at. or so in diameter. Is there any meane
tobe ?-scroolsox.
[[11676]-Water Wheel.-I havo a fow of water on know if 1 Ax a water wheel with a pamp attached, will it sond a jet of water lor a foontain a distance of 300 yarde and about 15ft. above the water, and what size o
wheal ahould I require?
[11577.]- Eiydraulic Lifte. - What is the natare of the construchon or haranain ins sach as those at the Royal Albert Hall, the Langham, she Grosvenor, and lifted by a piston below them, the chain by which they are suspended being only a cheok agninst accidents. It so, as they are capable of beingraised some gooft. above the bagement, the platon being of course of the same ength, it follows that thero must be a piston cylinder sunk in adoep well ninder ali. How is the water suppied to the ing room can be stopped at any moment by an attenden nsdie, who, by pulling the proper ropes, causes the greatest facility. Any information on so interesting a matier vould oblige.-T. V. B.
[11578.]-Sun's Declination. - I return mp thanke for the lucid manner in which they treatod $m y$ nery (11360, p. 49). I mast etill reiterate my former statement in saying that the term "diff. for 1 hour" ${ }^{\text {is }}$ is
incorrcet one. Howover, I see in the olater editions an incorrect one. However, I see in the later editions of the Nautical Almanac the term" "Var. in 1 hour;" Which andonbtediy is the correct one. At the the declination is sreatest, but the question is, does this ajways occur at greatest, but the question is, does this awnya occar at
noon $?$ if not, how in it posiblble to get the corroot decll antion for an intermediate time betwoon the noons o June 20, 91, and 23, when the second differences are tated (in reply) that the sign bas changed, but what ndication have we to that effect? The change in the "equation of time" is marked by a straight line at the diff. for 1 hourn n not indicated in a similar manner I am surprised that our valued correspondent FF.R.A.S." should think me unique is my winh to omit the trasiy explanation. our Nautical Almanae which aro improvements; on the contrary there are others Whioh are questionable. of
what use are the 1,000 additional atars ingerted in the What use are the 1,000 additional stars ingerted in the
Nautical Almanac when we find that the times of disNautical Ale one latitude, viz., Green wich. If the times were given for other latitudes, then the Nautical Almanae would be of great service to travellersin far distant countries, who at the present time require further information than that of the limiting parallels. Belicring that the ferred a great boon apon those situate in the latitude of Greenwich, still, I llould like to be informed why it is that the meridian passage on page 4 is only given for

[nls79.]-Blue Billy.-" "Sigma," in roply to a query ho had made an analysis of it, and had predicted that it round makto as "hard fron," and that such was the resuit When tried in the blast furngce. May 1 ask him
what lod him to that decision? coppor, or arbenic, or both? If the arsenic is the canase, conld it not be voletilised? Is his use of the words
"hard iron" Bynonymous with "forge iron ?"-Fs. $8 \cot$
[11580.]-Soda Ash in Bollers. -Will "Busy Beo" kindly tell me what quantity of ash to pat into and-horse
[11581.]-Wood Polishing.-I would be thankfal if plan of polishing light erticles in the lithe rood plan of polishing light articlea in the lathe-such as the lant article is grippod when undergoing thal procesa -Chibs
[11582.] - Bpiral Turning.-I am certain some subscribers could instruct me as to the oonstruction of a
opiral lathe. A aimple drawing would greatly assist.Govan.
[11588.]- Facuum in Baromoter Tube.-Will in the top of barometer tube (one with weights at the back)? Iakewite how to All anew one; I hase bolled the morcury sboat bin. or 8in. in top of tube, but atill in the lower part of the tabe the morcury is divided-air and quick wilver. Any other advioe on
[11588]-Cleaning Cornopean.- Would some kind inside parts of the tobing of my cornopean, as it is very dirty ? - Wex PET.
[11585.]-Chemical - Woald Mr. Bottone kindly in. chloride of sodium inte chlorine gas, and sodium re chloride of sodium into chlorine gus, and sodium re-
apectively ?
Would $h e$ also tell me what ohemicals would be nsed, and what mould be left (aftor getting the chlorino gan and the rodium separat
[11588.]-Chloride of Nitrogen-Would "Exploprossure to the equare inch chioride of nitrogen would give? Would he piengo to pat it in Agares? Also tell me What prc pritions the chlorino gns bears to the hydro-
chlorate or nitrate of ammonia? I
do not intond to put ang one's uto in joopardy by malding any yet for some
time, till r cas do so with comparative galety, but I wish to know, so
VOLCANITE.
[11587.]-Cleaning Scarlet Cloth-Osn any of scarlet cloth? - W, MITLABD
[11588]-Frmery Cloth. - Will any one practically aoquainted with the buainess be kiad enough to say how coth is prepared for making into emery oloth, so that
the cement ased may not sink through the cloth? And what is the beet cement for fixing the emery to the ath 9-Corunden.
[11580.]-Dry Steam.-Can any of "our" ohemioal correspondents give an analysis of what is termed dry coil ${ }^{7}$ When steam in superineated by pagsing throagh ssue int pipes placed over a furnsce and allowed to nelt lead or kindle timber, it does not condense into Is this or mist, and soems to be no longer ateam at all. is this a oanc of allotropism or what i-Calonic.
[11590.]-Carbolio Acid for Cagen.-I want to know if any of your correspondents can tel me if there
is any risk of poisoning my birds by using the carbolio acid wanh for a large oage, about 5itt. by ${ }^{2}$ ftht in which I have 80 canariee, and thoy are infested with the ilitle red lice every gpring. I wash the birds with precipitate powder, but I want some way of cloaning the cage. It is mahogany and ornamental, so that I do not wish to part with it. In what prop
bolio acid ?-A. Wegtlake.
[11591.]-Lighthouses.-How is a situstion obtained n any of the Trinity lighthouses that ase the eleotric light? What are the necessary quaifioations, and to
whom is application made? Any information respecting foreign lighthonses and situations connected
[11592.] - Medical. - What salt of iron is most easily
beorbed by the system ? Wilulax H. Hzy. [1159) by the system P-Wilitax H. HEY
[11593]-Lime.juice and Glycerine.-Will some one tell me how the sove-naued preparation for the
hair is made hair is made? I don't thin
lime-jaice in it. -DUFFER.
[11594.] - Foraign Calculation of Engine Power. war power of steam ongines is oaloalated in the principal
forelgn countries of Earope and in the United States? What is taken as the unit of work, and what answers to our 83,000 foot pounds, whiob, when done in a minate, we denominate a horse-power? No doubt one or other of the correspondents who have been recently ventilating
their opinions in regard to the metrio system will be able to answer my question as regards the countries where that aystem is in vogue.-V. B.

DOMESTIO REOIPES.

From the Food Journal.

To Boil rice as in India.-Into a sancepan of quarte of water, when boiling, throw a tablespoonfa of salt; then throw in 1 pint of rice, after it has been
woll washed in cold wator; let it boil 20 minutes. Throw it out on a cullonder, and drain of the water. Throw it out on a culender, and drain or the water. can or sancepan, dried by the fre, and let it stan near the Are for some minates, or until required to be dished up; thus the grains appear soparate and not
mashed together. mashed togother
Risart Haddooks.-A mode of dreesing heddock very common in scouland is by drying thom in the san To rizar is explained, in Jamieson's Seottish Dic tionary, as signifying to dry in the sun; and ite pao participle, rizart, as equiralent to the French ressore, from which the Soottish word is derived (or they have common rook, from Whioh, probably, the word raisin also (comes). The haddooks to be propared for the nowly taken, midalle-sized, and are most saitable they thoy are gatted, thoroughly washed, and allowed to lie in salt for a night. They are then atrung on a thick wire passed throagh their eyes, and hung ap for two days in the open air on a wall, but not whare they are much exposed to the direct rays of the sun; after which they are skinned, the backbones are taken out and they are broiled on a gridiron and rabhod with a little batter. Thus prepared, they are extremaly palatable, and excellent for breakfast or aupper.
Orange Marmalade.-For 7llb. sugar (lump), 41b. of oranges (Seville) are required. Boil the oranges antil sufficiently tender for a pin's hend to go through the skin, having arst grated half the number to provent the marmalade from boing too bitter; for it the whole of them are used the jam will be as bitter as the waters of Marah. Cat the oranges in half when you have boiled them sump Cat the satins into thin pips; acuop out all the pulp preserving jar, diseolve it in a pint and a halis of water, and boil it twenty minutea. Skim it wellWhatever you do, skim it well-and on no account add the palp and peel until the ayrup is as clear as "wator from the arystal spring." Then pat in the pulp and the strips of peal, and boil all together for a quarter of an hoar.
Haricots Verts on Salade-Boil some French beans whole; when cold, dress them with oil, vinogar, pepper and salt, come parrloy and capers finely minced, rook. The dich mart be woll rabbed with an onion.

Varnish.-To Varnish Beech.-It is a poor looking wood, with little curl or Agare: therefore and if ang to ota give :- Barnt amber and soap lees stand to dry ; the day following size it over twice ; and the next day varnigh it ; une the best varnish.

USEFUL AND SOIENTIFIO NOTES

Improvement in Telegraphy.-We hear of an ingenious arrangement by which coples of messages sent by telegraph can be left at different stations along the line of transmission. This is the invention o Mr. Little, of New Jersey, United States By meana of a rheostat at each station, the current is divided portion doing its onk and passing to the earth The telegraph employed belongs to the printing variety.

Removal of the Standerds.-In consequence of the wall of the Palace at Westminster, In which the imperial standards were immared, having been pulled down in order to form an entrance to the refreshmen rooms, the standards have been deposited in the wall on the right-hand side of the second landing of the public staircase, leading from the lower waiting hall up to the Commons' Committee Room. One alte ration has been made. When the standards wer originally immured, a brass plate was fixed upon the wail bearing the following inscription in old English letters:-" Within this wall are deposited standards o the British yard and the British pound weight, 1853." The word "measure" has now been inserted after yard.
Detecting Sulphur in Gas.-Von Wartha describes a neat method of illustrating the presence of sulphur in illuminating gas. He places, on a platinam wire, a bead of carbonate of soda on the edge of the flame of a Bunsen burner for a minute, and obtaing then, by partially cutting off the air supply, a smal cone of light in the flame. Into this the bead i placed, and the sulphate and sulpbite of soda previously formed is brought to the condition of sulphide of so dium by the reducing action of the glowing carbon particles. The bead is then crushed in a porcelain dish, and a solution of the pitro prusside of sodium added, when the characteristic reaction of sulphur is readily obtained. The reaction is sald to be more than ofty times as sensitive as that with silver, which is ordinarily used. A minate suffices to obtain it.
thi english mrchanic lifeboat pund

ANSWERS TO CORRESPONDENTS.

** 18 communicatione ohould be addressed to the EDitoz of the Englige Mscienaid, 81, Tavistook-otrect, Oovent Garden, W.O.

The following are the initiala, de., of letters to hand ap to Tuesday morning, April 9, and unmoknowledged
Jak. R. Gordon-Jas. Petori-B. Edwards.-B. C.
 Watson. - Heary Jackson. - Whitney Partnera.-J. S.
Cooke. Mra Petria.-W. A. Gibbong.-W. Simmons.
 Wm. Hughea.-G. M.-Raren-Bob. J.-C. F. S.-C
 Square.-R Langdon.-Ohampagne Charlie.-J. W.
Fenneil.- Rara Avis. - Numismatiti..-LeFato.-Den-tiste.-J. Newton- Esmoy.- Analyst. F. Hume-
 Saron.-J. B. Yorke-J. Barwiok-H. E. H.-Valvo. -King Ooal-J. E. H. Ambition.-Proven.-Zeta.-Opaling.-A. D. W.-Joseph Unwin-James Weldon-:
W. W.-Ioan Gooh.-Equilibrim-J. L. T.-H. H. Cosmopolitan. - E. L. G.-R A. Prootor.-A Now Sab
 Yamber- Yo. Gaucho.-A Country fiamber.-A W. Oriap.-Country Tinker, Woordstock.-F. W. W.-
Z. Y. X-W. J. H.-J. B. Sharpley.-A. B. M.-The tamn.-A. J. Adems.-R.Laparpord.-Juning. - PhilanW. H. Hes.-Bookworm. W. D. Mead.-A. PA. Puria. -Bannders-Corax.-R N. Knight.-Veritas.-Transit. Smither, L. M. F.- J. K. P.-8. Bottone.-A Foreign Sabscriber.-A. W. Festing (with copy of work) Figinans.-In speaking damagingly of another correspondent, you might have given your name and address, in the sbsence of whioh we think you have soted cowardly, and your lett
serves-into the waste-basket.
serves-into the waste-basket.
Hor. P. Hill -A notice next week.
Gro. P. Hilli-A notice next weok.
8. Caozish-See answer to S. Bottone.
Foovs.-The plan you suggest for "baffing ptrates" Fould no doubt ingure accuray, but at the expense, we fear, of inconvenient delay.
Noysisatist.-As it is donbiful whether the coin is worth anything, and as the drawing would cortainly cost 6s. or 7a. to engrave and as, after all, it oould bo
of no benefit to any one olse, we munt decline ingerting of no benef
the query.
. Bimther-Twenty-six ahilingg

MAC. - We do not receive or forward replies to sdvertisomente. Advertisements mast be prepaid.
Ax OLD Corrairutos - You had better in guch matters speak for jonrself, nnd not for "F.RA. 8. ." or nny one
efse. The Evarisi Mscravic is intendnd for all classes of inquirers Its numerous correspondente, Who are ever trying to instract and correot each other, impart to it a peouliar aptitude and power. Line That elephant, it can root up an onk or pick up a pio. The
whloh may appear trifing to you, is vnlued by others. BeD or Broxre. - Your frat query is one for a dog fancier. Your second wonld take to
Consult any good grammar.
C. 8. F.- -Gee back vols. as the other has not yet roonohed us, will at any rate wait till it does. Should you not gend.
may infer you are not equal to the tåk.
A. B. C.- Use Judson's dyes.
A. BMRy. White. - Afk an archtrect.

DABRIADA-Thanke See our answer to "A Bartister" lapt weok.
J. M.-8ee adveitisement, No. 362, VoL XIV. March 1.
 Enolish Mrobasio for ine years, you refect no credit ha its brotherhood of readera. nuring that period no soswet querles by post.
W. H. Duger (Newark, N.J, U.S.A.)-Last remittance pays ap to Δ aguat 29, 1878 , inclusive.
ss advertisements. For second quers can only appear bs adverisements. For seco quit Scsprio.- It would be well for you to be more perfectly
scquainted with the principles of the scienco you acquainted with the principles of the scienco you the opportanity of doing so.
E. BARBRR-All requeats for private commanieation must be paid for as advertisements.
Commonicstions which can only appear as advertise. ments to hand Irom J. C. P. P. Sinsecribar, Arkyrius, Norice, Stranger, W. Edwards, Almost Distracted, A 2 , X. Y. Z., P. M., Little BIrd, Qui Quarri
W. MrLlard.-COnsult a

DaLurg. If you had looked back a fow numbers yon XIV. and provious rols.
G. B. \mathbf{B} - Given long ago.
8. Botrons asks whether momething cannot be done to prevent a single line of the Engligh MEcrininio being wasted by "cndb," like correspondents signing themgelves "s. Tremayne, Cantab," and W. M. Hirpon.
We fear not, as long as cowards and scoundrels exist; We fear not, as long ass cownras and sconndrels exist;
 contempt of some such a person throwing orange peel
instance, of
on the pavement on purpose to throw pedeatrians on the pavement on parpose to throw pedestrians
down. Imaine the depravity of a mind that could extract fun from the broken lifobs or broken heads of unofiending passers.by 1 Just of the same quality of heart and mind are those who endeavour to pervert and Encinim Mmcranio, which, from maltitudinous testimosy, is a blessing to thousands. Two or three mony, is a blesing tope recently been sending some. times indecent, and at other times adroitly worded, bat, nt the same time, hoiligh and decelving com murfications, to the Evalisi M ECFAMC, for a gimilar rearon, we sappose, to that which in to deliberatoly throw orange peel or the pavement.
Happily, a vast majority of sach commanications Happily, have been spotted as zorn as read. Though rejected, they have not been consigned to the wastebesket, and may be seen by any respectable corre spondent who may feel interested in detecting the offenders. From information already recetved we are on the track of one, and we belleve we have a olue to
 remarks on it (\mathbf{p}. 81), we have received an insulting remarise on "a. Tremayne. Conntab," and the same letter oontains insulting alluaions to "Sigma," and "A Barriater." We need scarcely eny that "Sigma," and "A Barfster," are men animated by pure snd disidterested motives; they, and particularly "Sigma." gratatiously and ongrudgingly pond un information, in the befief that they gre benefuling large numbers of porsone wherever maintain that it is a mean and the other hand, wo maintain that it it, for a correspondent, akulking behind an asaumed name, to throw insalting words at such men. But such work is in perfeot keeping with the other communications recoived from ${ }^{4}$ g. Tremayne, Cantab." Wo hope to havo more to say about this gentleman, and one or two who are in league with him, soon.
R-Our reply was intended to havon general application. that the traing move in opposite directions
"L. C. E." says:-"I was rmitred at 'F.R.A.S's' chaffing reply to my query on suadials, but the sbsurdity repis to my query on sundials,
arose from the omigeion of the word
menn. $"$
Winhini Sroat. - Consalt indices of two or three last vole., for finformation on painting magio lantern alides.

A. Ledozr - For further information concerning Atking's ire-engine, address the gentieman mentioned
at eud of articlo. We do not know the number of the patont.

THE INVENTOR.

APPLYCAZTONE FOR IRTTERS PATENT DURMAC THE FEEE ENDING APRIL $2,1872$.
881 A. Pye-8mith and 0 . Ribhana. East Greenwich, for improvementa non-ennducting compositions for coating steam pipas and
bol:ern, applicable also for preventing the pasasgo of hoat or cold
 A3s C. A. MeBroy, Bear-lane, Sonthwnik, for fimgrovementis in
connecting olectrio cabies and corductors. ars J. Molesworth, Leicestor, for improvementa in the mannsst P. J. Rkrann, Stowk holm, Sweden, for improvemeats in the nitruction of window assho and freme
عess N. Prain, Now Bridge-street, City, for improvements in
preserving nimal subetaices and in agente for the purpose.

kse D. Nicoll. St. Panl'a Charchyard, for improvemonta in com-
poinds for and in the treatment of fubrica to reader the same waterproor and nalnch mabl.
ag7 R. Wonteith, Carotnirn, Lanark, for an improved process for
preserring animal and vegotable subatances. A commanication. 889 A. M. Clart, Chancery-lane, for an tmproved oomponad for
8, commanication. R. Howson and J. J. Thomns, Middlesboroagh-on-Tees, for mprovemento in revolving puidling farnaces.
B4
proved R. Window, Baker-street, Portman-zquare, for an im811 J. Rawcliffe, Jan., W. Bibby, and A. Flaming, Preston, for 842 R. 8 mith, Plymnath, for improvements in sounding boards or pianofortes and other sirtnged mualcalinatruments. P48 F. G. Sievier. Alderagato-street. for improvements in the
manufncture of umbrelles and parasols and in the machinery to e employed therein.
s44 J. D. H. T. Decampas, Brest, Paris, for an Improved manpen-
ory apparatu3 for ralsing and supporting the sick or wounded, and others. 845 W. White, jnn. Glangow, for imprnvements in boilers to Ets F. Lehacq. Larite-terrace, Sonthwars, for shoplng horses by
esystem of finted ion to prevent the contraction of the foot. $847 \mathrm{~J} . \mathrm{J}$. Bleckly, Warington. for improvements in machincry apparntas for rolling irmn, ateol, or other metal bars into wire ods, hoops, or small sections.
 ${ }^{3} 49$ H. Y. D. 8 oott, Faling, for isprorovements to the treatment Rso G. Wittic, Oldham, for imponvements in mechines for comb. Rso G. Littic. Oldham, for impmomem
ing cotton and other Abrous matorish.
881 J. A. Jaques, Tottenham, and J. T. Oakley, Grange-road,
Bermonisey, for improvements apolicabio to mathinery for grind: ermondsey, for improvements appin 853 E.

Malhere, Parts, for improred miachinery for the mann838 R. Bpence and E. J. Spence, Bridgwater, for improvements
in machiuery for the manofactare of bricks from plastic clay. 854 W. R. Nowton, Chancery. lane, for improvemente in breech-
oading ordnace. A oommunication. ess W. R. Iake, southampton-bafldings. for improvements to ess W. R, Lake, Sonthamptn bnillinga, for improvemonts in
in
In machinis for settidg and securing
otber materisis. A commanication.
E57 W. R. Lake, Southamptinn.hantaings, for fimprovemente in
ovens, chiefly designed for balding broed, blsoults, and other uike articles. A commantication.
858 W. Carr, Bary, Lancaehire, for improvements in epindies 8,9 J. Hopkinson, acn, and J. Hopkinson, Jnn., Manchaster,
for im jrovementa in the construction of street pro . A. BuAenberk. Manchenter, for impeoremonta in pulloy
blocks. A commancation. 861 J. Rtce, Oxford-stroet, for improvements in apparatas for B08 J. Jefferson, C. Jefferson, L. Jefferson, apd M. Jefferson,
Bradora, for taprovoments in machinery for comblag wool and Bradiora, for
other nbres.
863 W. Benson. Allerwash, Northumberiend, for improvemente
884 W . R. Lske, Southampton. buildinge, fer improvementa in
button-hole sewing machines. A commanication.
 asks, and tubs, and for other like parposes.

 tramway capr, oponibnses, pub:ic
also applicabie to pable bara, reit
check on payments is debirublo.
B67 W. A. Lrtlle, The Grove, Hammerowith, for improvements ARA J. Yonng, Kelly Eonfrewhire, for Improvements in ap-
parstus emplosed in the manafactaro of the carbonates of anda pard potaeh. emplosed in the manafactaro of the carbontea of adal
and Ps E.T. Huphes, Chancery-lane, for improvements ta mochant
esi movements for convertinx motion. A commanication. g70 A. C. Stevenson, Glaggow, for improverants in glase and 87 H. B. Bariow, Manchester, for improvementa in looms for a72 H. Adlam, Battersea-park, for an mprovement in stays.
 E7t J. 日. Brown, Bridgwater, Somersetehire, for improvements 876 A. V. Newton, Chancery-lane, for improved means for con-
verting a rociprocating inw e rotary motion. a communication. 87 s J. Lepis, Birmingham, for tmprovements in Jofning or
conceting the parts of the head. foot. and aide ralls of metallic bedtend an nis cots, and metailic railling for varions purposes
which improvements are also upplicable to the connecting of which improvement ar arnaments to articles of metalic fornlture.

SAt Pickard, Leeds. for an fmoroved arrangement of mat
of apparatas for transmiting mouton to sewisg machines.
 merefor
Eas C. Owen. City-rosd, for the better protection of wealdients the
ailway tunnelic. er7 E. A. Comper, Great Genge.street, Weatmingter, for ime
provements in regoneralive hot-blast stoved for heatiog atr, stease and other gases.
88 NI. Danlow. North Woolwieh, for impcovemente in portable
magnots for cnat. and

 891 T. Oiles, Mancheator, for improvement in safoty rifies. Bja W. Walton, Worcenter-ntreot, Pimilloo, loe an new or theproted gog W. H. Baxter Braton hill, for imprnvements in machinery or apparatai for welighing or monsuring corm and got J. F. Allen, Mott-Haren, Rew 895 W. R. Latre, soathampton buitdings, for an tmproved eart
Hdxe for fre arms. A commanicallon
 An W. R. Lake, gonthampton builiding, for improvementr in c. 4 commatice
 Rng W. Garton, southampton, for improvementa in browty900 W. R. Lake, Sonthampton-bnilidings. for tmprovements in sol A. M. Clark, Chaneery-fane, for an Improved joist toes the gon A. M. Clark, Chancery. Inge, for Improved elaratime ar
q03 W. R. Lake. Southampton bn!ldinge, for an improved node and apingatas for supplyink and asing stenm for difing atrensPOt G. Little, Oldham, Laneahire, and T. C. Eantwond. Bradpos J. Howard and E. T. Boasfeld, Bodford, for tmpromementer 905 J. Howard
n steam botlera.
for W. Noill, Bold, Lanenahire, for improverionts in the thives
 hair pina, and other aimilar articles.
 beds of reverbratory furancers.
 910 8. Moorhnaee, Cheadio Brikeley, Chenter, and W. J. Fondall, 910 S. Moorhnase, Cheadio Brikeley, Cbenter, and W. J. Fondall,
Henton N/rris, IAnceshife, for improvements in the cosecructior 911 T. Sinith, Leeds, for an improvel fre esoape.
912 W. Trimmer, Hornany Rise, for improvementa in cack. 919 J. C. Mewhirn, Fleet-atreet, for an fimproved mode of and git J. H. Johnson. Lincoln' Ann-folda, for tmptoveneate is pis H. B. Fox, Oxton, Chenhire, and J. Wilde, LJreppool, for aE mprover implexmem for
pin a. Allix, Church ternare, Isle of Dogs, and H. Gardant, Cliftn-road, Middiesex, for improvements in stoppere raived, os
appratus for closing the necks, mouths, or openings of botises and
other vesools, and in appliances connected there with.
917 W. R. Newton, Chancory. lane, for improvements the the 918 J. Bellly. Barrack etrent, Manchester. for improved arrambs
9 and 910 J. Lewson and B Einsworth, Halifax, for improverient in siphon ventilators. pen C. R. Mathewr, High-atreet, Bloomsbary, for improveneets In apparntus for sofe, apeedy, and easy mode In fixing, cennectige nnd disconnecting R ss pendunt. bracket. Dillar or gray
tions, eqpecially adupted for ontade redecting lampa.
og1 G. H. Emith, Sonthampton-bulldingn, for an improved moda
and appliances for preventing the corroaton of iron pipe of of and appliances for preventing the corrention
tabes, and keeping them free from incrustation.
913 B. Richards, Penzanco, for improvements in waling 923 J. E. Holmen Bnekingham-street. Strand, for improvequatia n anparstns for utilizing ntmospheric prenkure as a mntire-power
part of which improvements relate to pistons for the sanio em for other purposes.
mentin thean pumping onizines.
925 a. D. Morisseana, Paria, for tmprovectents in buttona ter
 irntin privias for the manofactare of salphate of amamonla, theothes
with the apoaratio therefor tha bill provens heing equalls ap

927 J. 8. Josenh. Rhoshamrchrrgog. Denblahbhire, for taprove
ments in the prepaintion and treatment if oxides of fron for the ments in the prepxintion and treatein parposes.
manafacture of paint and octher uref ol

 931 T. R. Cinmpto:, Great George-street, Weatminater, ter to 932 W. H. Dlinutt. Mawbey-road, old Kent-roma, for 迫yrow
ments in farnace tro bars. 978 6. Weatinghonxa, Jin, Rothampton-knildingr, for luprove
gents in pneumatic appuratna for working brakes ind cammand

 a35 E. Melirnm, Dechmont. N. B., for improvementa in the purt-
fication of parafin oils sad parath u.

The Ctuglish Gllterhanic

 WORLD OF SCIENCE AND ART.FRIDAY, $A P R I L$ 19, 1872.

ARTIOLES.

THE ALCOHOL QUESTION.

T HE Manifesto of the doctors issued a few months ago, together with the efforts of the teetotallers and the Permissive Bill men, to limit or stop the use of alcohol, will probably produce a whole volume-fall of opinions on the old vexed questions whether or no alcohol is food, whether its use is attended with good or evil results, as well as on the pressing question as to what extent its sale is to be legalised and permitted. With what may be termed the sentimental aspect of the snbject we have but little concern in this article, our purpose being merely to lay before our readers what is known by scientific men of the physiological action of alcohol, and to point out to what extent its use may be beneficial or useful to mankind. Stadents of chemistry will not require to be told that there are many kinds of alcohol, or that the one to which we bave applied the name is really ethyl alcohol, which forms the "spirit" principle of the various decoctions, extracts, and mysterions componnds of the wineshop and the pablic-house. Absolute alcohol, when perfectly pare, consists of carbon, hydrogen, and oxygen combined in the proportions which the chemist represents by $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, and when ordinary methods-viz., inhalation of its vapour, injection into the tissues immediately ander the skin, or by means of that long-guffering organ the stomach, produces those effects with which dwellers in our cities and towns are only too familiar. Dr. Pereira divided these effects into three well-marked stages-excitement, intoxication, and coma or true apoplexy, and we know that the ohanges produced are invariably uniform, by whatever channel the alcohol is administered. According to Dr. Richardson, who has written an able article on this subjectin the Popular Science Review, his researches have shown that the maximum effect is produced when the quantity of spirit is in the proportion of sixty grains to the pound weight of the animal's body.

Is alcohol food, however; and, if so, is it wholesome food, fit for man and beast? A firat glance at the ohemical formals which is employed to denote this combination of certain elements would induce a reply in the affirmative; for alcohol contains carbon, and that, we know, is heatgiving, and in one or other of its forms is an article of diet at ncarly every meal. But there is another point to be considered, by far the most important of the two, and that is can the haman stomach split up the alcohol, separate it into its constituent elements, and while sending those which are useless to the varions eliminatory channels, can it assin'thte and atilise what there may be of nutriment in the remainder? Or, on the other hand, is not alcohol eliminated, in some way or the other, as an nochanged chemical compound ? The weight of the evidence which we
have at present tarns the balancein favour of the latter view ; but if we regard the question as in. capable of settlement with our present knowledge, we can, at any rate, study the effects of alcohol When administered to the haman being, or to members of what is called the brate oreation. If, then, we apply to alcohol the same rigorous method of investigation which we employ in estimating the force produced by coal in the furnace of a steam-boiler, we shall find that the "energy" stimulated by spirits is delusive; that it is as much
wasted force as that thrown away by a careless stoker who, urging his fire beyond what is requisile, canses his valve to open and permit the escape of steam which has not done its quantum of work. If this were the only effect of the ad ministration or drinking of alcohol little harm Foald be wrought ; bat here the analogy of the
steam-boiler fails us ; for while with the latter no damsge is done save the possible straining of the boiler-plates, the force exerted by the alcohol is not merely wasted, but is in reality a powerful gent for injury, which cannot be many times spplici withoat making its ivjarious effects ap. pareat.

When alcohol begins to exercise its powers on the animal body the first symptom which attracts attention is the increased action of the heart and the arteries; the heart beats quicker, th:- arterics are filled more frequently, and the surface circulation is accelerared, the minate vessels becoming at the same time distended. These cffects are made apparent by the heightened colour of the cheeks, and when the use of alcohol is habitual they become permanent and exhibit themselves commonly in the rabicand nose of
the confirmed toper. This phase of alcoholisation, which is the stage denominated "excitement," is recognised in the expression " flushed with wine ;" but it would be a mistake to suppose, as is commonly done, that this acceleration of blood-flow and distension of the vessels is peculiar to the parts which exhibit these effects to the observer, for if it were possible to see the lungs, the brain and spinal cord, the stomach, the liver, and other organs, the same conditions would be found to prevail. This quickening of the pulse, these extra beats of the heart, are really so much wasted force, the amount of which has been ascertained by the observations of Dr. Parkes and Count Wollowicz. Their experiments were made upon a young and healthy man who for eight days drank nothing but water; during this period the beats of the heart were connted at intervals, and the same course was parsued on six following days when gradually increasing doses of alcohol were administered. Daring the water period the average number of beats of the heart in twenty-four-hours was 106,000 ; bat when the subject of observation was ander the influence of alcohol the beats of the heart increased to 127,000 , being 21,000 extrs beats in twenty-four hours. On the first day only one fluid ounce of alcohol was taken, causing 430 extra beats; but 4 oz . on the third day produced 12,960 extra beats; and $60 z$. on the following day caused no fewer than 30,672 extra bests. As there was ephemeral fever on this day a deduction was made to bring its total between that of the previons and the following day, when eight fluid onnces were given and 23,904 beats calculated. The mean daily excess of beats during the alcoholic period, subject to the correctinn above mentioned, was thas found to be 14,492 . Now, taking the daily work of the heart as equal to 122 tons lifted one foot, we find that under the influence of alcohol it was made to do extra work nearly equal to lifting sixteen tons one foot. "Little wonder is it," says Dr. Richardson, "that after the labour imposed apon it by 6oz. of alcohol the heart should flag; still less wonder that the brain and muscles, which depend apon the heart for their blood supply, should be languid for many hours, and should require the rest of long sleep for renovation." How or why the alcohol produces this action of the heart is not clearly established ; brt, according to Dr. Richardson, recent inquiries have thrown a light upon the subject, and afforded an explanation of the phenomenon which appears to satisly him of the erroneonsness of the idea that alcohol acts directly upon the heart, stimulating it to increased action. On the contrary, it would seem that the accelcration of the heart's action is due to the removal of resistances which in the normal condition are always existing. We have now learned, he says, that there exist many chemical bodies which aot directly by producing a paralysis of the organic nervous supply of the vessels forming the minute vasoular circuit. These vessels when paralysed offer inefficient resistance to the stroke of the heart, which thas liberated, quickens in action, dilating the minate and feebly-acting vessels, and giving evidence really not of increased but of wasted power.
When the amount of alcohol imbibed is suff cient to produce the phenomena of the second stage, the well-known state of intoxication is observed. The nervous control of some of the muscles is lost, and they begin to lose their contractile power. The seats of thought and volition in the larger brain are upset; the intellectual part of the man is shanted, and the animal nature has full play. till nervous power is atterly exbausted, the muscles refuse to act, and the whole system becomes insensible in a doep sleep. Daring the progress to this stage there is a gradual but steady decline of the bodily temperature, which, slightly raised in the first stage by the increased circulation on the surface, declines, for the simple reason that no heat has been really added to the body. It is this well marked and invariable fall in the temperature that helps to prove that alcohol cannot act as food; and that "drops" of spirits taken "to keep ont the cold" neither supply vital heat nor assist in preyenting its loss. But, instead,
nfter the temporary feeling of increasel warmth has passed away, there is a steady decline of heat to several degrees below the normal temperature, and but a slow-a very slow-recovery towards the nataral state when the alcohol is eliminsted.

Dr. Richardson says that alcohol is in reality a narcotic agent, and he compares its efects with those produced by chloroform-the result being that the action of the two is very gimilnr, save that alcohol is less fatal than the well-known ansesthetic. This is possibly attribatable to the fact that under alcohol the different systems act evenly thoagh slowly to the last, and that howerer much the brain may be influenced the nervous centres which govern the respiratory movements and stimulate the action of the heart remain on duty till the end-the latter the longest; for if death occurs during alcoholisation its canse is purely mechanical, from oondensation of fluid on the bronchial surfaces and stoppage of respiration. "The animal is litcrally drowned in his own secretion."

So far we have spoken only of the effects produced by the abuse of alcohol. There are times, however, when the use of alcohul is beneficial to the human economy as we find it among the.ordinary sarroundings of civilised life. Bat these times are few and far between. When the sotion of the heart is opyressed by too great a resistance, when blood flows languidly, and the springe of life are weakend by disease or other causes, then alcohol is of use; bat its use is limited by the rigid line we have pointed out. It may and does serve a temporary purpose; beyond this it is waste of force, waste of health, and waste of money. In short, we may say, as Dr. Richardson says, "The evidence is all-perfect that alcohol gives no potential power to brain or muscle." It is like a fire, hot and energetic while it lasts, but leaving desolation behind; it dees nothing at its own cost; it gives nothing for what it destroys; even the effects we see produced are accomplished, so far as we know. without any expenditure on the part of the alcoinol itself; it merely accelerates the consumption of useful matter and leaves behind it injuries more or less irremediable. True, the human system is so "wonderfally and fearfully made" that it adapts itself in a measure to the influences of alcohol, and we see its persistent nsers occasionally living to the allotted span of the haman race. But we know that alcohol does its fatal work surely if slowly; the functions of the organs are destroyed and their structure is altered, and if life still continues, it is in spite of its action. Suoh are some of the scientific aspects of the alconol question, recorded withont bias to one side or the other ; alcohol is not food, and it does more harm than good. With regard to the restrictions, if any, to be imposed upon its sale we have nothing to do with them here.

THE STAR DEPTHS.

M^{R}R. RICHARD A. PROCTOR, Hon. Seo R.A.S., delivered last Saturday, at three o'clook, at the Royal Institution, a lecture on the above sabject. This lecture, the first of a course of five, was devoted to the consideration of the ancient constellations, and the traces of them now discernible among the star groups, with the object of showing that the flgures of the objects associated with certain star groups can really be recognised at the present time if the bonndaries of the modern figures be extended, and that, there fore, the stars may be assumed to shine for the most part with a steadfast lustre. Thus oar sun, so far as probable inferences from the star depths are concerned, is likely to shine as he now does for thousands of years yet to come. The second division of the lecture was devoted to the consideration of the soale on which the stellar anjverse is formed.

A series of mishaps with the illuminating apparatus somewhat interfered with the lecturer's efforts. It may be a consolation to amatenr manipalators who have come to grief when using the lantern, that in a single lecture at the Royal Institution the oxybydrogen light was tuice suffered to go out altogether, and that scarcely one out of some score of illustrations was brought centrally on the screen or pioperly focussed. Such mishaps suffice to confuce the most practised lecturer, and it seemed to us that during the delays thas occasioned Mr. Pioctor continued speaking rather to divert the attention of the audience from the unfortnate lautern than to advance his argament. Logioally, a lecturer should remain silent rather than attempt to fill any gap in his discourse with extraucous matter
but does the lectarer live who would remain ab－ solntely silent for ten minates before a Royal In． stitution andience？Trath compels as to notice， moreover，that owing to the delays we have re－ ferred to，the second part of the lecture seemed incomplete．The reasoning was satisfactory as far as it went，though delivered with nnusual bat enforced rapidity of atterance．But the ex－ perienced auditor could scarcely fail to notice that a minate or two before four o＇clook the sub． ject was broken off in order that the lecture might terminate at the proper hour．

We think that lecturers should be protected from such mischanoes，which cannot possibly be regarded as unavoidable．The more carefully a lecture has been prepared，and the more thoronghly the argaments have been weighed，the more mis－ chievons is the effect of interruptions involving， as in the present instance， 2 considerable delas．

DANES＇S PUDDLING MACHINE．

TBE ralidity of the patent obtained in this country by Mr．Danks is contested，and the agreement entered into，but not ratifled，between that gentleman and certain ironmaeters，noder which Mr．Danks was to have received $\mathrm{E}^{50} 0,000$ ，is not likely to be carried out as far as one of its pro－ visions is concerned．It appears that in 1858 a Mr．B．P．Walker patented a rotary puddling machine which differed＂in no essential par－ ticular＂from the one claimed as original by Mr． Danks．The failure of Mr．Walker＇s machine， when tried by the Dowlais Iron Company，is at－ tribated partly to the imperfect method of working it then adopted，bat chiefly to an insufficient tem－ perature．In these experiments a fan was used to arge the blast，instead of reliance being placed on the draught produced by the chimney．Mr． Danks，it seems，knew of this machine，as he ro－ ferred to its failure at the Duwlais Works，when at the meeting of the Iron and Steel Institute．We hope，however，whether the patent is good or not，that Mr．Danks will be able to secure some recompense for his ingenaity．

METALLURGY OF IRON AND STEEL．•

 （Continued from p ．86．）THE sollowing tabular statement was given showing the composition of the gases of a furnace at Alfreton，En
Bunsen and Playfair：－

$\begin{aligned} & \dot{H} \\ & \stackrel{y}{\Delta} \\ & \vdots \\ & \vdots \\ & \stackrel{y}{H} \\ & \underset{H}{4} \end{aligned}$	\pm		$\stackrel{10}{10}$
	\cdots		$\begin{aligned} & \underset{\sim}{x} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$
	\％		$\stackrel{\stackrel{+}{¢}}{+}$
弟	$\stackrel{\square}{\square}$		－
	\pm		䔍
	\pm		$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{3} \end{aligned}$
	\cdots		¢
	∞	 	$\stackrel{\square}{\square}$
	\cdots		$\stackrel{\text { ® }}{\underset{\sim}{-1}}$

The old furnaces were very irregular shaped thiuge，the worst possibie shonpe，bceader affurding －An abstract report of a conre of betures by Dr
opportanity for lodgment of the materials in descending．We may consider the matter in the interior of the farnace as consisting of two columns ：one of solid materials perpetually going down，being replenished at the top，and going ont at the bottom in the form of pig iron or slag； and an upward colnmn of gaseous matter．It is evident that the furnace ought to be constructed to allow the gradual descent of the material，so as to prevent stoppage，and especially lodgment． It was，however，years and years before man learnt the lesson of experience．Not many years ago，Mr．Gibbons examined into the state of far－ naces，and he found that a furnace never worked well until a certain period had elapsed，and that during this time the furnace underwent certain changes of form is the interior by the action of the fire and heat，and when that operation was effected the furnace was in good working order． He found that it is necessary that the furnsce should have a regular curvature，otherwise a cer－ tain time is required to fll up the inequalities． It may be inquired why the lower part of the furnace is oonstricted．When the air is blown in at the lower part of the furnace vigorous combus－ tion takes place，and that matter is converted rapidly into gas．The temperature here，more over，is very high－sufficient，and more than saff cient，to fuse pig iron－and therefore a great con－ traction of valume occurs，because the carbon is continually disappearing，and the materials re－ maining occupy a much less space．Accordingly the lower part of the furnace mast be constructed proportionally to the relative bulk of the material in its descent．There is another reason why there should be this contraction．We have a great mass of ore，limestone，and fuel in the furnace which will，of course，exert great pressure．If we had the furnace cylindrical down to the bottom，we should get all the pressure of that column of superincumbent material bearing like a dead weight on the fased metal，which would，therefore， be pressed upwards，and there would be no room for the gaseons column，bat by means of the con－ traction，the sides of the furnace take off a great deal of that dead weight，and prevent this con－ tingency．They are usually also contracted at the top，for the convenience of supplying the materials，and in order to prevent too great loss of heat by radiation．

Hot Blast．

This effect was invented by a gas engineer of Glasgow－Mr．Lindsay，－which fact drew forth from the lecturer some remarks abont the benefits Which had accraed to metallurgy since the mana－ facturers themselves set to work to become ac－ quainted with the process both in theory and practice．The utility of the hot blast may be seen from the fact that in some furnaces where to obtain a ton of pig iron required $8 \frac{1}{4}$ tons of cosl，on the application of a blast heated to a temperature less than that of melted lead，the samo amonnt of iron was obtained with 3 tons of coal．As to the theory of the hot blast，there is at present great uncertainty and little agree－ ment．Some ironmasters are disposed to think that，if the farnace was made high enough，so as to intercept as mach of the heat as possible from the gases rising upwards，then you would have as much effect as can be obtained by hot blast．The greater quantity of heat kept in the farnace，the better it should be for the working of it．In the case of a low furnace the gas which has been very highly heated below soon escapes into the air as a waste useless article，carrying off with it an enormous quantity of heat．The first idea， therefore，is to make the furnace higher aud higher， and，this being filled with cool solid materials，thus absorbs from that ascending current of gas heat， and becomes warm，and thas is a nseful oontribu－ tion to the economical working of the farnace．
One mode of heating the blast，commonly sdopted in South Staffordshire，was then de－ scribed．The blast is heated by stores，and may be considered as not fewer than four stoves built together．The heating apparatns consists of two mains of cast iron placed parallel to each other at each side of a fireplace．In these mains are tixed a vertical sories of pipes of a siphon form， set by socket or other joints in the main；these pipes are usually oval in section，this form ex－ posing a greater heating sarface than circular． The whole of the pipes and anparatus is inclosed in brickwork，a fire is made between the pipes， and air is bluwn iuto one of the mains and male to traverse tho whole series of pipes by plars beiug placed in the maius on each side alternately． The air is thas henied to a temperature asaaliy

These are more
These are more or less earthy，like glees，and often crystalline．The leoturar exhibited one fine piece which he had obtained from South Stafford－ shire，whch in one part showed quite a crystalline structare，while in another it wes ontirely earthy and stone－like；yet the composition of both was substantially the same．The reason of this was explained to be that the part of the melted mass which is most rapidly cooled rataing its glace－like stracture ；the interior，which is cooled more slowly，becomes highly cryatalline，exactly as obtains in glass working．If you take a piede of common green bottle－glass and heat it for a long time at a temperature far below ita melting－point， it ceases to be transparent，becomes much harder， opaque，and highly crystalline．The same thing takes place in a piece of barley－sugar；and so also in the slags from a furnace．The more rapidly it is cooled the more certain is the part to be glass－like．It often assumes various colours， black，brown，blue，green，\＆c．Its constituents are the ash of the fuel，the lime，\＆c．，and on analysis they are found frequently to contain silica，alumina，lime，maguesia，oxide of iron， oxide of manganese，and in some cases potash． One specimen was sbown，which the lecturer said contained one per cent．of potash，or one ponnd＇s worth in a ton of the slag，but no process had yet been discovared by which to extract the sab－ stance economioally．Attempts have been made to fashion the slag into varions ornamental objects．

Waste Hest．
Formerly a great deal of heat was wastod by the furnaces being left open at the top daring their workiag．Because we have large deposit of coal we ougat not to be profligate in the use of that material．Although delicate arabject to touch on，the British fireplace really atilises only about one－eighth of the hast of the coal con sumed．The lecturar said he wonld andertalse to warm any house effeotually and far more pleasantly with aboat one－tenth of the coal now consumed．He did not beliere thare was any foundstion for bolieving that a substitate for cosl would be found．It is a question whether we are wise in exporting 80 mach，or eny，of this wonder ful subterranean treasure we possess．
There are several ways of economising hest in the blast furaace；one means is as follows：－A large quantity of heat is oarried up by the ascending column of gas，and if this be allowed to escape at once into the air，the whole of this heat is wastefully dissipated．Now，however． this hot gas is extensivaly used for heating the blast，for which purpose it is conveyed into the stoves and there burnt with the due admission of atmospheric air．Or it may be mired with a dre proportion of atmonpheric air，and convoyed avay and burnt under the boilers of engines．Another method is to plase in the top of the farnece a cast－iron pan of conical form，with the apex of the cone npwards，saspended by a ohain to the end of a lever，so that although，in its nsual posi－ tion，it entirely stops ap the orifice at the top of the furnace，it can be let down a short distanco to admit of the introduction of materials for the operations．Under this cone a hole is made in the side of the furnaoe，and a pipe fitted into it to convey away the gasea from the furnace to be utilised．
The first time these methods were applied in this country was at Swansea，in 1848，bat they had been previously and successfully employed in Gcrmany，and the Germans were thought to be the inventors of the process．Bat on looking a little farthar back I came upon a French article published so long ago as 1814，giving an account of the application of the gases from the top of the blast furnace in 1811．Lat－me onos more remind you that it is nct so much（possibly not at all）the seusible heat of the gases which is em－ ployed，but the heat evolved daring their com－ bustion．

Wrought Iron and Cast Iron．
These terms are commonly used to denote two diffrent kinds of commercial iron．The former is of ten called＂malleable iron，＂the name imply ing that it is malleable or hammerable；it is the vearest approaci to the pare metal，which is extremely difficult to obtain．It can be rolled out into thin sheets，or drawn out into very fing wire－in other words，it is very ductile．It is iurgosble and weldable．
Ii you try and hammer pig iron it will break directily；it is more or less brittle ；it melts ensily， wroundt iron requiring a very high degree of teun－
is. the cause of this difference.? Malleable iron gives no evidence of the presence of carbon, or only a very emall quantity, under one-tenth per cent. : pig iron has three or four per cent. of car-
bon. In fact, pig iron is iron essentially combined bon. In fact,
with oarbon.
There are two kinds of pig iron, grey and white; both agree in containing carbon. If oxide of iron be heated with oharcoal, nntil you reduce the oxide, and get the metal to take up 88 mach car bon as possible, the result will be grey cast iron. Now, if this be acted on with spirits of salts dis solving all the iron, there remains a black residue of "black lead" or graphite, and this in the grey cast iron is separate, but diffused through the macs in fine scales, so that grey "pig"is nothing
more than wrought inon containing black lead more than wrough
diffased through it.

iron barges.

THE question of building iren barges for canal transit is beginning to attract considerable attankion at Buffalo and other eities immediately inlerested in canal basiness. The experiment of iron becanse of the many years ago, and only failed ard the want of facilities which now exist for repairing the iron halls. These objections no longer pairist, and we understand the rolative advantages of wood and iron are to be apain tested by the construction of iron barges to ran in competition with boats already ongaged in the canal service. The advantages alaimed for iron boats are that they are lighter, and, owing to the thinness of their sides, have a greater stowage capacity for freights than the most capacions wooden boats that can pass the sctaal trial-and we have no donbt, says Van Nostrand's Mfagazine, they will-it is not improbable nosiron will supersede wood npon canals, as it is now doing in river, coastwise, and ocean navigation.

SPONTANEOUS COMBUSTION.

IMarch last, a well known Detroit drnggist, as loring gentlemen, resolved to make a number of experiments to test the worth of the talk abont sponfaneons comburtion, and their experiments are well Torth the alteution of every reader.
They first took a piece of cotton cloth, which had once formed part of a sheet, and which had been used until quite threadbare, and smeared it with boiled linseed oil. An old chest was placed in the loft of a atore room back of the drag store, a piece of zine over it, another piece under it, and then the chest filled with paper and rags, and this particular piece of cloth placed in the centre. Although the room was not a light one, and the weather cold, in eight days there was such a smell of fire abont the trunk, and the chances were so good for a conflagration within it, that the contents were empticd.
An examination showed that the fibre of the oil cloth had untwisted and shrivelled up, and that the rag looked as if it had beeu held too near a hot blaze. In April, when the rays of the sun were stronger, a pair of paiuter's overalls, literally covered with paint and oil, were rolled ap, a handful of pine sbavings placed inside, and these were crowded in next to the roof boards of the loft. The
experiment was not a week old when, daning one experiment was not a week old when, during one man in the next room, and he fuund the operall barning, and so tinderlike was the cloth that it had o be crowded into a pail of weter to prevent tota destraction.
Daring the hot weather of August, 2 handful of old cotton rags, in which two matches were placed but which were not sweared with oil or other matter, were shat up in a tin box, and hung up in to shine a directly on and anding the afternoon sun to shine directly on the box for several hours. Toward the close of the fourth day the druggist took down the bex to see how the experiment was procressing, and fonnd the contents to consist of uothing bat a puff of black cinders, which flew all over bim as the lid was lifted. Having a vacant corver in his brick wood-house at home, the drug.
gist tock the trunk up there, where there gist took the trunk up there, where there was no
danger of burning a building. He filled the trunk with the contents of the paper rag-bag, and then smcared one with benzine and threw it in last of all The trunk was shut tigit, everything cleared a asay from its vicioity, and he commenced watching One day the fanily came home to find a few ashes. marking the place where the truyk atood, while the bricks above nud aronnd were badly stained with smoke.-Scientijic P'ress.

Proposed Submarine Tunnel-It is proposed Sootia and Cape Breton in Cansean, between Nove way at Cape Breton with the muinland. The distance is abont 24 miles. It is estimated to cost the modorate ram of $2 t$ millions of dollare to cost the

THE GERMAN $\dot{\text { NORTH POLE }}$ EXPEDITION.

THE Girman Correspondent states that in a sitting of the Geographical and Statistical Society of Frankfort, beld on the 27th nlt. Lieutenant Weyprecht spoke at some length of his approsching North Pole Expedition. He bases his calculations chiefly on the great Siberian currents, whieh, on acoount of their high temperature, greatly contributo to free the nor thern coasts of Siberia from ice. This effect is most strongly observable in September. The ex pedition is to sail in its own ship, which will be provisioned for three years. It is to leave Bremerhaven in June, toneh at Tramsoe to coal, then leaving Nova Zembla on tho south, it will seek its first wintering quarters as tar as posible to the east of Tcheljuskin, the most northern cape of be undertaken. Now bloris aledge joumeys will year the expedition will endeavour to refuen by way of Bebring's Straits. Should ther prove impossibie, nothing will be left bat to abandon the ship, and to endeavour with the boats to make the manth of some Siberian river, and reach the nearest Cossack posts. One of the weakest points of the expedition is the fact that the store of coal after alculating what will be required to heat the calins and for cooking purposes, will only enable the ship to steam at full speed for forty days tharing the whole period of the expedition In othar respects the versel is fitted up in a manner admirably achapted to the wamats of the expedition, and the provisions have beeaz very carefully selected. In order to avoid sourvy, all salt meat has been excladed, and preserved vegetables hare been plentifully provided. Meiding's rega lation stoves, which Kollewey's axpedition proved to be the most satisfactory, will be employed for heating parposes.

LESSONS ONY CHEMISTRY.

By Selizo R. Bottone.

(Late of the Istituto Bellino, Novara, Italy.) (Continucd from p. 85.)
Section 7.-Solphur.-Symbol: $\mathbf{S}^{\prime \prime}{ }^{1}$ Atomic weight: 32. Molecular weight: 64.

145-PROPERTIES.-In its ordinary condition, sulphur (also called brimstone) is a pale lemon-yellow coloured solid, possessing little or no taste, tolerably hard, but very brittle. Its specific gravity varies from 2.05 to 2.08 . On brealing a rod of sulphur, the fresh surfaces are found to be strongiy electrical. If meltedi sulphur be pouved into a wine-glass, and a handle of wood be held in it until the sulphar is solidified, on removing the cone of solid sulphur from the glass it is found to be charged with eleotrieity. By friction also sulphur becomes electritied, as it is a very bad conductor of electricity; daring friction a peculiar odour is generated. Salphar melts at about 232° Fahr., and from that temperature up to 280° appears as a light amber-coloured fluid. On increasing the heat, it darkens in colour, gradually loses fluidity, until on reaching a temperature of 450° Fahr. it becomes so visoid that the containing vessel may be momentarily inverted without spilling the contents. At aboat 500° it again becomes flaid, and at 824^{12} Fahr. sulphar boils. yielding a red vapour, which condenses on cold surfaces in the form of a fine fellow powder, known in commerce as flowers of sulphur. Sulphur is insoluble in water, bat is slightly soluble in alcohol and ether, and freely so in oils, hot turpention (which dissolves about ten per cent.), and in carbon bisalphide. The affinities of sulphar are very powerful, and its vapour snpports the combastion of many metals. The compounds formed by the onion of sulphur with the other elements are very similar to, and generally isomorphons with, the corresponding oxygen compounds. Like oxyen, it can assume the - Cropic state; several well defined forms being
*The right of translation and reproduction is reserved. ${ }^{1} 1$ Acoording to several chemists, gnlphur is to be con. sidered heravalent. bence Dr. Frankland notes it an Svi.
But no corupound with hydruen with furimule
 quadrivalence or hexaralence is breed on very dabious Gronnds. If sulphar be hexavalent, oxysen mat be
so likewise, for oxverucxn be pabztituted fur salphur in almost overy known compound.
2 Damas. Sime give 559° as the boiling point of known it to boil (uuder the ordicary presaure) belor
800° Fahr.
known, of which the following are the most im

1. Ordinary sulphor, distingaished by orystallising in octahedra, and having an average specific gravity of 2.05 . -This variety appears 0 be the normal state of sulphur, an all the others gradually return to this form. It is solable in oil of tarpentine, in salphar chloride, in carbon bisulphide, and in benzole.
2. Prismatic salphur.-This variety is obtained by melting ordinary sulphar at 232° Fahr., allowing it to cool until a crust ferms on the surface, when, on piercing the crast, and pouring off the fluid sulphur remaining, the inner surfaces are fonnd strewn with transparent prismatic crystals. These, however, soon become opaque, and are then found to consist of an agglomeration of octahedral crystals of ordinary sulphar. The specific gravity of this variety is 1.98 . It is also soluble in carbon bisriphide.
3. Amorphons ${ }^{8}$ solable sulphar.-This is a milky white powder, obtained by preeipitating sulphar from a satphide by mears of an acid. This variety also is soluble in oarbon bisulphide.
4. Amorphous insoluble sulphar.—This is a dirty-looking magma formed by docomposing sulphar chloride by the addition of water. It is insolnble in bisalphide of oarbon.
5. Plastic sulphur.- If sulphar be heated to about 500° Fahr., and then be poured into cold water, it assumes the appearance and consistence of softened guttaperchs, and retaing this state for several hours, or even days. Hence it may be need for taking impressions. In this form the specific gravity of sulphar is 1.96 . If plastio salphar be gradually heated to 212° Fahr., it suddenly becomes flaid, while the temperature simultaneously rises to 232°, owing to the evolation of the latent heat contained in the plastic sulphur; or, in other words, owing to the change in its molecular arrangement. Plastic sulphar is insoluble in carbon bisulphide.
146.-Sulphur is a very important element, both as regards its place in the economy of Nature, and its uses in the arts.
147.-State in Nature.-Sulphar occurs in the free state in volcanic districts, orystallised in the octahedral form; often incased in pipe-like incrustatione of calcareous tufa. (See Fig. 11.) The ores of the commoner metals are mostly componnds of these metals with sulphur (euch compounds are called sulphides). Sulphar also occurs combined with many metals and oxygen, as sulphate of lime, plaster of Paris or gypsam, heavy spar \&c. It also enters into the composition of many vegetables, as parlic, horse-radish, mostard, onion leeks, \&c., and occurs in the animal kingdom, in albumen, hair, wool, \&c.
148.-Preparation.-Two processes are followed, one by which the crude sulphar as it occurs in Sicily, \&c., is puritied from the blue clay, tufa, \&c., with which it is mixed, and the other by means of which the sulphar contained in iron pyrites (iron sulphide) is caused to separate rom the iron :-
6. Crude sulphar is introduced into the first of a series of large earthonware jars, furnighed with sponts at different heights, those of the first jars being nearly at the top, while those of the last are near the bottom. (See Fig. 12.) Heat is then applied, the sulphur in the first jar melte, the earthy impurities sink to bottom of the jar, while the flaid sulphur flows from the spont into the next jar, where a similar deposition of impurity takes place, antil, on arriving in the last jar, it is oonsidered sufficiently pare to be run off into wooden tabs containing water, which conls it. Thus prepared, sulphur contains abont 15 per cent. of earthy imparities, and is sabjected to a second fasion and decantation to obtsin it in a purer state.
7. On heating iron pyrites (which is a compound of iron with anlphur) in closed reesele, the aulphar volatilises and may be collected in the ordinary mode. The apparatus required is a large earthenware retort connected with a cool receiver Sulphur is now manufactnred on a large scale by these means. After being preparel be either of the above methods, sulphar is ge and run into oylindrical moulds, as "roll salphur." Or it is p retort connected with a lar (Fig. 13.) On the application volatilises, parsesinto the ch
as a fine powder (llowers of
very pare form of sulphur, bat it still contains traces of arsenic and other volatile bodies. From these it may be purified by solation in carbon bisulphide and crystallisation.
149.-The uses of sulphur are many and varied. Many important manufactures depend almost entirely upon sulphur; such are the preparation of oil of vitriol, valoanite, gunpowder. \&o. It is also much used in medicine as a mild purgative, and is an excellent application, either alone or in conjunction with iodine for several cutaneous disorders.

Section 7a.-Compounds of Selphur with Hydroges.

A. Hydrogen Monosulphide.-Synonym: Sulphuretted hydrogen; hydrosulphuric acid; hydrogen sulphide. ${ }^{4}$ Symbol: $\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime}$. Molecular weight : 34.
150.-Pboprrties.-At ordinary temperatures this compound is a transparent colourless gas, possessing a most disgasting odour of rotten eggss. Its specific gravity (air $=1 \cdot 00$) is $1 \cdot 171$. It is a potent poison, the presence of $\frac{1}{250}$ by volume is air being sufficient to kill a horse. One volume of water at 32° Fahr. dissolves $4 \cdot 3706$ volumes of this gas, and the resulting solution possesses the characteristio odour and most of the properties of the gas itself. When hydrogen salpbide acts on metallio oxides an interchange of the metal in the oxide for the hydrogen in the sulphide takes place, as illustrated by the following equation :-

$$
M_{2}{ }^{\prime \prime} O^{\prime \prime}+H_{2}{ }^{\prime} \mathrm{S}^{\prime \prime}=M_{2}{ }^{\prime} \mathrm{S}^{\prime \prime}+\mathrm{H}_{2} O
$$

It also reddens vegetable blues; hence it is entitled to be considered as an acid, and is often called hydrosulpharic, or sulphydric acid. The compounds, which result from the action of sulphydric acid on many metallic solations, are insolable, and generally endowed with very charaoteristic colours; hence a solation of sulphydric acid is in daily use by the analytic chemist as a tesf for the presence of certain metals. Under a pressure of seventeen atmospheres, or when cooled down to 101° Fahr., sn'pharetted hydrogen gas becomes liquid. This liquid is transparent and colourless, and has a specific gravity of $0 \cdot 9$. Exposed to a temperature of -122° Fahr., it solidities to \& white ice-like mass.
151. - In order to reduce gases to the liquid or solid state, three processes are generally followed. The flrst consists in compressing the gas in a strong oast-iron vessel until liquefaction takes place. The second depends on applying freezing mixtures to the outside of the vessel containing the gas. The third consists in the simultaneons application of cold and pressure. In the first case a strong, egg-shaped, cast-iron vessel, provided with s stop-cock at top and bottom, is provided. Into this the gas to be liquefied is pumped by means of a condenser. When the requisite pressure has been obtained the gas begins to liquefy. The stop-cock which commanicates with the con densing-pump is then to be closed, when the liquid may be drawn off for examination from the lower stop-cock. Generally speaking, on allowing the liquefied gas to escape in a fine stream, it returns to its primitive form with such rapidity as to freeze a portion of the liquid to a snow-like mass. This is owing to the fact, that the heat necessary to convert the liquid into gas is abstraoted from part of the liquid issaing, whioh consequently assumes the solid form. Fig. 14 illustrates the apparatus required. In the second process, the gas to be liquefied is passed into a U.shaped tube (see Fig. 9) immersed in a Ireezing misture.
We owe the third mode to Professor Faraday. A strong glass tube, bent at right angles and closed at one end, is provided. A sabstance, capable of evolving the gas to be liquefied on the application of heat, is introduced into the tabe and caused to fall into the closed extremity of the tube. The open end of the tube is now closed by melting the tube over the flame of a lamp, \&c. Heat is now applied to the extremily containing the gas generating substance, while the other extremity is immersed into a freezing mixture. Under the combined influence of pressure (from the evolving gas) and cold (from the freezing mixture) the gas liquefies. (See Fig. 15.) The

4 Hydric salphide.
s Their smell arises from the presence of this gas, derived from the deccmpodition of the albumen.
tube may be quickly divided and sealed over a flame, and the resalting liquid preserved.

ducts of this combustion are water and oxide of sulphar, as the following equation illustrates ${ }^{6}$:$\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime}+30^{\circ}=\mathrm{H}_{4}{ }^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{B}^{\prime \prime} \mathrm{O}_{2}{ }^{\prime \prime}$.
As the elements of the chlorine group posseas a much stronger affinity for hydrogen than sulphur is endowed with, they are able to decompose hydrogen solphide, by preoipitating the sulphar and combinisa with its hydrogen. In the case of iodine the following equation exemplifies the interchange :-

$$
H_{2}^{\prime} \mathbf{S}^{\prime \prime}+2 \mathbf{I}^{\prime}=2 H^{\prime} \mathrm{I}^{\prime}+\mathrm{S}^{\prime \prime}
$$

Advantage may be taken of this property for the preparation of hydriodic and hydrobromic acids. Hydrogen monosalphide may be regarded as water;, in which the oxygen has been replaoed by an equiralent quantity of anlphur. Hydrogen monoxide (water) being $\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$, hydrogen monosulphide is $\mathrm{H}_{\mathbf{\prime}} \mathbf{S}^{\prime \prime}$. The molecular constitution of bydrogen sulphide may be represented in seversl modes, according to our estimation of the valency of sulphar :--

1. Sulphar conaidered bivalent H

153.-Preparation.-Sulphur can be made to unite directly with hydrogen by the applioation of beat; hence, if sulphar be sublimed in an atmosphere of bydrogen, or if hydrogen be passed through melted sulphar, sulphuretted hydrogen is the result. For laboratory usea a simple method is adopted, depending on the power which ohlorine and several other bodies have of displacing sulphar from its compounds with the metals and sulbstitutiog it. For this purpose a sulphide (generally iron sulphide) is introduced into a widemouthed phial. A cork carrying two tubes, one bent at right angles, and the other terminating in a thistle funnel, is adapted to the phisl. Hydrochloric acid is poured in through the funnel, and, ooming into contact with the iron sulphide. combines with the iron, liberating the gas, which may be collected from the hent tube in the ordinary mode (over warm water). Or it may be colleoted in recipients half filled with water, which will absorb it, and the resalting solation preserved for use. Figa. 16 and 17 represent these two modes of operating. The following equation illustrates the changes which take place when iron sulphide and hydrochloric acid are used :-
$\mathrm{Fe}^{\prime \prime} \mathrm{S}^{\prime \prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime}=\mathrm{Fe}^{\prime} \mathrm{Cl}_{9}{ }^{\prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} .{ }^{7}$
154.-State in Nature.-Sulphuretted hydrogen occurs among the gases evolved from rolcanoes, and is found dissolved in severnl mineral waters, such as those from Harrogate, \&e.
b. Hydrogen Bibulphide.-Synonym: Hydroger disulphide ${ }^{8}$ Symbol: $\mathbf{H}_{9} \mathbf{S}_{\mathbf{2}}{ }^{\prime}$. Combining veight: 66.
155.- Propertifs.-This compound appears 25 2 viscid, jellow, oily-looking body, heavier then water. Its specicic gravity is 1.769 . Like its relative oxygen compound (hydrogen dioxide) it is very unstable, being easily decomposed by beat into sulphar and hydrogen monosulphide, this :-

$$
H_{2}{ }^{\prime} S_{2}^{\prime \prime}=H_{2}{ }^{\prime} \mathbf{S}^{\prime \prime}+\mathbf{8}^{\prime \prime}
$$

It possesses distinct bleaching properties, and whitens the skin. Its odour and taste are simile to those of sulpharetted hydrogen. The constitution of this compound may be expressed graphically as follows:-

156.-Preparation.-We have alreads seer that when acids act on certain metallic dioride. in the presence of water, bydrogen dioxide is prot duced. In like manner, when hydrochlorio ar acts on calcinm disulphide, hydrogen disulphi/2 is found and sinks to the bottom of the conteriniu: vessel, while calcium chloride remains in solation. as the following equation illastrates:-
$\mathrm{Ca}^{\prime \prime} \mathrm{S}_{2}{ }^{\prime \prime}+2 \mathrm{H}^{\prime} \mathrm{Cl}^{\prime}=\mathrm{Ca}^{\prime} \mathrm{Cl}_{2}+\mathrm{H}_{2}{ }^{\prime} \mathrm{B}_{2}{ }^{\circ}$.
6 As the niltrogen contained in the alr takes no part in the reaction, no notice is taken of it in tho shom. oquation.
7 lron is by many regarded as quadrivalent ; bet order not to confuse tne stadent, we have
note of the two reciprccally satisfled valenciee.
102. - Hydrogen sulphide barns in air on igraition with a pale blaish white flame. The pro-

HIMMER'S GALTANIC BATTERY.

TVE grive a brief account on p. 844 of our last volume of a new arrangement of galvanic cell, for which it was claimed that the power could be regulated at will, and the action made continuous so long as the supply of the materials lasted. In order that our readers may be enabled to form a better idea of this cell and to test its adrantages, if any, we give an illustration of it as patented in the United States. In the figare, A is a glass jar, resting on the bottom of which is a smaller vessel B in the shape of a truncated cone. In this latter the copper element C is placed, being a thin hollow oylinder to whioh the wire D is connected. E is the sinc, also a hollow cylinder, supported on the top of the jar A by mesns of a rim, and attached to which by a screw cap is the wire F. An inverted flask G is $s 0$ beld by the internal edge of the zinc cylinder that its neok just dips into the copper cylinder C contained within the vessel B. The mouth of this fiask is stopped by a cork fitted with two tubes, the upper ends of which are drawn out fine to prevent blocking up by the copper salt. The fissk is filled with sulphate of copper orystals and water; the jar A being supplied with a solution of magnesinm sulphate. The flask is then inverted, and the water dissolving the orystals, the solution graduslly flows out into the vessel B, where the pressure being

brlanced it rises only up to the tubes in the cork of the flast. The inventor, however, does not state to what height in the jar A the magnesinm salphate solution is allowed to stand. The amount of copper thus brought into contact with the sulphate solation will be active in the cell, and the copper of the solution is deposited by electrolysis on the oylinder C. The sulphate of zinc deposits at the bottom of the jar A, being preveuted from dropping into the vessel B by the form of the latter's sides. By this arrangement the inventor claims that the cell will work until the copper salt has been all decomposed or the zinc consumed; but as there is always sufficient copper solution in \mathbf{B} to keep the cell in aotion while the flask is reflled the constancy of the battery is only determined by the duration of the zinc. Now that we have given an illustration of an arrangement which bas been thought sufficiently valuable to patent in America, possibly scme of our eleotrical readers may experiment apon it and let us know the result.

Amber.-It is thought that the supply of this substance will soon be considerably augmented. Hitherto amber-gathering has been a very uncertain operation: but it has now been ascertained. by boring, that the blue clay in the neighbourhood of Kinaigsberg, in which amber deposits occur, is of greater extent than Was supposed, and arrangementsare being made to ex-
plore this clay in the usual mining style.

SOME RECENT IMPROVEMENTS IN ENGLISH

 AND AMERICAN BOILERS.*
By W. Forsytif Bhack.

MUCH has been done to perfect the steamengine, while, as regards the inseparable fundamental source of its power, comparatively little attention has been given to the improvement of the design of the boiler. It has been estimated that from 80 to 86 per cent. of the whole power furnished by the boiler has been employed by the engine in the work it performs, whereas the best boilers commonly in use do not yield over 10 per cent. of the power produced by the combnstion of the fuel. I parpose describing as briefly as I can, and as clearly as the means at my disposal will allow me, a cast-iron boitor which has been for some time in use in this conntry. Before entering on the arrangement and details of this boiler, let me describe some simple expeziments, which give a general ides of the principles the inventor of this class of boilers clains to have carried out in their construction.
The first was originally made by the late Charles Wje Williams, of Liverpool, and is as folluws :-A flask like the oue represented at Fig. 1, and shown n section, was employed. The upper portion was made of copper, and securely fastened to the lower part of glass. This Aask was placed, after having been partly filled with water, over a gus jet, the mouth being closed with a stopper. As soon as the pressure of steam in the interior was sufficient to force out the stopper, the steam not only esceped, but the greaiest part of the water was also forced out. Mr. Joseph A. Miller, of New York, made a somewhat similar experiment, but with a flask suff. ciently strong to stand a pressure of 501 b . to the square inch, on which he placed a safety-ralve so arranged that it would lift suddenly at a pressare of 30lb. After this flask had been pleced on a fire, his assistant and himself watched what would result through a small hole bored thruagh a plank which they placed before them for safety.

Steam is an elsstic vapour, and its pressure is proportionate to its balk, or to the whole space which a given number of atoms (8o to speak) occapy at any temperature. When a boiler is working ander a pressure of 451b., the temperature of the steam is 290°, both in the water and steam space. Water cannor, under atmospheric pressure be raised to a higher temperature than 212°, and water being a medium 813 times denser than steam, it has the capacity of retaining in mechanical mix ture with itself; steam nuder at least the same pressure as that in the steam space, and the steam contained in the water cennot be relessed until the pressurt in the steam space is effectually relieved, or sufficient heat or power added to force it from or sufficient heat or power adied to force in the water. This immense power stored its place in the water. This immense power stored up in the water is the cause, but of the sad and disastrous effects of boiler itself, bat o.
explosions.

In the first experiment the whole of the water was forced out along with the steam, because the water being itself full of steam, contained the power which expelled it. When the experimeut was tried, as I have described, with the iaddition of a safety. valve, this valve allowed the steam alone to escape, but the space thus vacated by this steam was intantly occnpied ly what had been previously in stantly occupied wy what had been previousiy in mixtore with the water. greater supply then thus set loose, action exerted by more rapiuly by the mechanical action exerted the its rash into the space previously occupied by the
steam which had escaped by the safoty-valve, dashed the water against the sides of the flask and, as I have stated, destroyed it. In the second experiment the water above the line of the shicld only was driven out. simply because the portion below that limit contained no steam, but water aloue, which had given up its steam in consequence of the rapid, though partial, circulation induced as ex pluined. Most of the water above the rhitld, like all the water of the fisk in the first experiment,
oontained as mach steam, bulk for bulk, as there was in the steam space itself. In the third ex periment, the circalation, hy raising the shicld to
the watar-level. was extender to the whole mass of the watar-level. was extender to the whole mass of water, each part of which gave up its steam as it appronched the water-line; and when the steam escaped there was no force remaining behind stored up in the water, either entirely or partially, as in the first aud second experiments, to force the water ont after the steam. The steam, then, in the third experiment escaned as nearly dry stenm by itself and the rater which remnined in its entirety in the Hask was simply water without adoixtare o vanorr.

If steam be carried mechanically into the steam space and separated from the water. it will rise freely into its own element, no matter what the pressur may be. For instance, if the steam in the st:an space be at a pressure (say) of 100 lb ., and stcam be generated of (say) 1001 b . pressure and mechanicall freed from the water, the latter is simply compressei into smaller batk by the superior pressire, and bring surrounded by this it will remain. and by the very
compression it will be raised in temperature. This compression it will be raised in temperature. This is evident. from the fact, that pressure and tempera
ture of steam are, one may say, convertible terms. ture of steam are, one may say, convertible terms. In a boiler where proper circila soon as formed, mast find its way into the steam space, and that, too, without pushing or forcing its way throngh superincumbent water. And thus are secured the important results of rapid production of steam-a steaily increase of pressure,
water, aud water free from stean,
frat experipent most important requ from t^{1} first experiment, a most important requisite to in
sure safety. For when it is necessary to ense sure safety. For wheu it is uecessary to ease the
safety-valve (if such circulation has not been pro safety-valve (if such circulation has not been pro-
vided for by proper construction) a local relief of pressare only is obtained, the water nearest the valve rises first, anil then snddenly falls. and thu produces a mech nical apitation of the mhole mass and the steam held in the water suddemly escapes in large quautities, and exprcises such an immense force that must canee rapture, if the boiler is werat in any part, which result would not have ensued on a re gular escape of steam. It is true, a judicious regnlation of the mode of escape for the steam may be and often is, provided; but in many cases this is absolutely neglected. What I rufer to is, to har in connection with the valve-chest, a long and anficiently large pipe which is extensively perfant ciently large pipe, which is extensively perforater on the upper surface by a great number of small
holes, aud this has the effect of distributiug the relief given to the boiler; whereas, when no such rrangemant is employed the ateam is drawn en tirely from the part of the boiler immediatuly in connection with the valve-ohest.
(To be continued.)

THE PRODUCTION OF HONEYDEW

TE following is an abstract of a paper by aject which was discassed Comp,tes Rendus, on a subject wbioh was ciscussed some time back in Prof columns. Chis tranalation was read by recent meeting. On July 21, 1869, at Liebfrauenrecent me leaves of alime were coated on their upper berg, the leaves of a lime were coated on their upper
surface with an extremely saccharine viscid mattur. surface with an extremely asccharine viscid mather.
The tree, in fact, afiorded an example of the production of boneydew, a manna-ke ance, which i freqnently obsirvable apon the lime, the black alder, the maple, and the rose. I have nusselt noticed it upon a plum-tree and upon a young oak. On the 22nd the honeyidew was sufficiently abundant in the morning to fall in large drops upon the ground. It was a shower of manna. At three oclock the saccharine matter no longer $r \in$ mained tlaid upon the leaves which were exposed to the snu. It had sufficient consistency not to adhere to the fingers when touched; it formed, in fact, a sort of the honerdew still retained its viscous condition. On the 23 rd, at seven in the evening, several leaves at the extremity of a branch were washed and sponged, so as to remove all the saccharine matter. sponged, so as to remove all the sacclarine matter.
At six o'clock the following morning the leaves which had been washed seemed free from honeydew, which ond examination with a lens, minute glistening but, on examination with a lens, minute glistenuly
dots, due to very small drops, were observable. dots, due to very smanl drops, were observable.
At seven the same evening the appearance of the At seven the same evening the appearance of the
leaves remained the same. Tue day had been warm; the temperature in the shade δt°. On the 25th numerons spots of boneydew were scattered
over the leaves, hut there was none upon the pinciover the leaves, hut there was none upon the pinci-
pal vins; at three oclock the temperature was si; During the night a violent shower removed a great part of the honcydew firmod during the erining. It became. therffore, impossible to follow, as had been proposed, the progress of the secretion upon the leaves washed upni the 22ud. A swarm
of bees settled upon the tres. On the 27 th, the whole of the hon-gnew had disnppeared, iu consequevee of the rain which full durug the evening of tho 26 th. The temperature had stood at hetwe wn
62° and 75° Fuhr. On the moruing of the 28 iu the leaves bore numerous spots of boncydew. wiich had made their appearance during the night. On
he 29th it had increased; on some of the leaves it occnpied a third of the snrface. At two o'clock the
temperature was 84s. On the 30th the honeydew temperature was 84s. On the 30th the honeydew
was very abuudant. The lime tree remained covered was very abuadant. The lime tree remained covered
with it till the conmencement of persistent rains, which took place at the beginning of Septemher.
On two occasions-namely, July 22 aul August 1, honeydew was collected by waihing the lenves. The solution, after treatinent with lead-snbacitate to precipitate alhnminons and macilacinous matters. iefled a syrup in which crystals of sugar formed. On cramination it contrined a snear analogons to canc-sugar, aud also a redu\&ing sugar. By fermenIntion with yeast the two sugars disappeared completcly. In the fermented liquid, however, a sub)stance remained possessed of very strona powers of right-handed rotation. This proved to be dextrine, already amnnnced be berthelot as existing in the nanuas of Siuai and Kurdi tan, and subsequently by Buignet in a manna occurring in "tears" (mame n larnes). I bave pultavonred to find manuite and with especial care, becanse Langlois, an ex perienced observer, has found it in a sacclarine
matter collected from the leaves of a lime. Mannite matter collected from the leaves of a lime. Mannite
is so easy to detect that I bave not the slightest is so easy to detect that I bave not the slightest donbt as to its preseuce in the proluct studied by Langlois.
Optical obscrations have shown that the reducing sngar detected in lime-tree manna is not glacose grape sugar), of which the rotatory power is $56{ }^{\prime}$ in the rinht-hnnded direction, but levulose (inverted or frnit sugar) which has a left-banded rotutury power
Tasine into concilerati n those substances onls Which rutate the pularised ray, the composition of which rotate the
Loneydew will be:

	July 22.		August
Cave sngar........	4386		$55 \cdot 4$
Inverted sugar ...	24.59	21.75
Dextrine............	22.55		1981
	100.00		00.00

These analyses show that the composition of honeydew collecten with several days' interval bas not remained the same. No doubt, one has no ripht to expert that the composition should remain pre cisely identical; what, howover, is remarkable is the annlogy which exists in composition between the honeydew of the line and the manua of Monnt Sinai analysed by Berthelot. Its composition is is fact, identical with that of the honeydew collected on August 1.

100
It is a discovery not withoat interest to have found the manna of Mount Sinai in the Vosges.
In attempting to compare by aualysia the quantity of honerdew existing upon the leaves of the lime which was affected with the saccharine matter con-
tained in the lcaves iu their normal state, wearrived tamed in thelcaves iu the
at the following result :-

In 1 Square Metre of Healthy Leaves:-

	Inverted		
Sugar.	Suqar.	Duxtriue.	Grawmes.

$8 \cdot 57$	- 6	$0 \cdot 00$	4.43
In Honerilew Collected from ditto :-			
13.92	$7 \cdot 23$	562	26.77
Differenoe :-			
10.35	6.37	362	22.34

The amount of manna, therefore, which exmiles from the affected leaves is considerable, especially when ono takes into consilderation the amonnt of dextrine, a substance which does not exist in the healtuy leaves at all. Frum calculations made upon a tree of the same age and size, the leaves of the affected line-tree would have a surface of 940 square metres, or rather of 120) square meties (cqual to 145 square yards), since the manua only covers one side July 20,1 sise. the lime bore $\frac{1}{2}$ to 3 lilogramues (equal to about dlb. to 7 lb .) of honesdew, reckoned in a dry state.
In the normal conditions of vegetation the saccharine matters claborated by the leaves, under the influence of lipht and heat, are distributed trough the organisu of the plant with the descending sap. In the abwormal state, which determines the prolnction of the honcydes, the sacelarine matters are accumbated at the unpar surface of he leaves, either because the movement of the sap is interrupted, or because it is retarded by the visThe problting from the formation of dextrine.
The prollactinh of honcylew cannot be due mer.ly to in.teorological iuilumen-to the effect of warm and dry summers. No doubt the lime of Sielfranenberg secrethd it during a sumber when there wroperisals of bigh teluperature accompanind
by creat dran-ss: we mist not however lose sinit by crent dronss: we mist not. however, lose sight of the fact that it was a single tree that was attacked by the maluily, and that at a little distance there were limes which were periectly healthy.

It has been supposed that aphides, after haring rawn the boneydew from the parenchyma, dis charge it again searcely altered; but it is contrary o the resolts of aunlysis to assign it a composition similar to that of leaf sap. It is, however, admitted hat certain insects possess the faculty of determin ing the proluction of maman. Thas it is to the panctares of a coccus that Elirenberg and Heimprich attribute the formation of the manna which is still omid on the mountains of Sinai.
The manna falls to the ground from the air (that is to say, from the summit of a tree and not from the sivy). The Arabs call it man. and they, as well as thu Greek mouks. collect it to eat upon bread in the same way as honey. I have ruyself seren it fall collected it, nud bronght it to Berlin with the plant and the remains of the insect. This species of manna is produced by Tamarix manifira, Elr ss with many other iunntis it is the result of the punctures of an insect. whicin in the present caze is occus manniparas, H. \& Eur.
The manna, consequently, collected in 1569 at Liebfrauenberg, had not the same oricin as the Sinai mnnna, though it had the same composition. At the time of its appearance apon the lime no ingects were observable. It was later that a few
aphides were seen glued nuon 2 certuin number of phindes we
I have already stated that after having washed the extremity of a brancl, glutinuns points were seen gradually to rise ; at first scarcely perceptible, they incrensed ench day, so as tinally to cover the Fhole of the npper surface of the leaf. This slon and progressive development of the honevilew was clemrly dfected without the intervention of aphides. which did not make their appearance till subse quently, like the tlies and bees, either to feed upon he secretion or to pilfer it
In a subsequent number Harting states that honeydew is produced by Aphis tilise, which, living on the under surface of the leaves of the lime, drops its exarement on the upper suriace of the laares
beneath. Analysed by Gunning at Amosterdam, it proved to cousist of cane sugar. Boussingealt romarked, in reply, that the manns of liellrazuaberg, like the Sinaitic manna analysed by Berthalot, oondextrine ho addel clane sugar, fruil sugar and lime contain considerable amounts of cape suggar almost pare, the o
Professor Dyer then quoted Goethe, as eaping, "I have seen limes, of which the leaves soemed rarnishod, bat where not a siughe iurect was visible. Hanbury informed him that ho potioed the exadotion of a saccharine matter from a canella, and that after repeated cleansings it still mado its appearafter repeated cleansings it still mado its appear-
anco. IIe had seen also the occurrence of minate crystals of sugar upon the corolla of the azalea. De Candolle mentions the same thing ia hhododer dron ponticnm. This is, horever, different to the secretion which takes piace on leaves, hecause it is prombly merely due to the loss of water from the Hower preparatory to farling.
De Candolle remarke that gravular secretions are found on the young shoots of the larch, and are collected locally zuder the name of manne of Briançon; they also occur on Salix alba, and upon some other trees. "Wo caunot affirm," he says either that they are a natural oxcretion, or that they are produced by insecta." Dr. Masters states that a manua-like substance is proinced from species of Alhagi, and that it is an exulation from species of anagi, anches of the plant only appearing
the leaves and bruncies on in hot weather. Saine secretious from leaves have been more frequentls olsserved. De Saussure been more frequenty observed.
states that an accumalation of paline matte:s at states that an accumulation of paline mates:s a
their suriace ofteu occurs in cardeu vegetables, their suriace ofteu occurs in cardeu vegetables,
transpiration being impeded, the leaves are ultimately destroyed. De Candolle found a salin secretion from the leaves of a Reaumuria to consis of carbonates of sodu and potash.

THE PROGRESS OF GEOLOGY.

THE following abstract of the annual address of Prestwe Presinent of the Geological Society (Mr. J ar.) will bo founl to contain much made in the sciencien concerning the progresa and important facts iu cuanection with the geoloty of the Thames Basin and the water supply of the metropolis. In comanencing his addresa, Mr. Prest. wich said: Locking at the labours of the Societs daring the past year, it is satisfactory to notice the samo activits, the same wide rance of suljects as ever, and the same independence of research for truth's sabe which there ever should he. But though rood work lins been done iu apecial brauches and the techical details of Geulogy, wot so much pro ress has been mado in its higher problems.
The great question of the bistory of our globe Iaring tac Quateruas period seems to be adraneing owarls more compietenese. Many able observers both in and ont of our own socicty. are edogate 3 aud publications of our local sociatius periusid contributions bearing apon this interesting andj

APRIL 19, 1872. ENGLISH MECHANIC AND WORLD OF SCTENCE.-No. 369.

There is no more wondarful ohapter in the earth' history than that which embraces the phenomena conneoted with the prevalence of greas and excpp-
tional eold immediately preceding our time-the first dim appearanee of man-his association with a
race of great extinct Mammalia belonging to a cold climate- the persistent zoological characters of the one, bo far as we have yet gone, in opposition to the variable types presented in geological time by the others-the search for connecting links, and the measure of man's antiquity, all of whitur
atitute theoretical problems of the highest interest and are now occapying the attention of geologists of all countries. Allied also to this subject are the great questions relating to the form of our present
continents-the elevation of the land-the origin of valleys and plains-and of all that which prepared this globe for the advent of man.
But while treating of these abstract and philoso phical questions, geology deals also with the requirements of civilised men, showing him the geiting him in the search of mach that is necessary for his wel fare. The questions of water-supply, of building materials, of motalliferous reins, of iron and coalsapply, and of surface soils, all come ander this head. The site of a spring or the presence of a stream
determined, probshly, the first settlements of savage man: and his civilised descendants have continned, antil the last few years, equally dependent apon like conditions-conditions connected first with the rainfall, and, secondly, with the distribution of the permeable and impermeable strata forming the sarfew large towns have arisen except where there has been an easily accessible localised water-supply, and where the catchment-basin on which depends the volume of the rivers has been large, and permeable strata prevail. Take, for example, London. mew sites could be more favorrable in every respect. Beneath it are strata rich in springs, winlo
at a distance there is that large development of those massive permeable strata so necessary to maintain a safticient and permanent How in our
London north of the Thames stands on a bed of gravel, varving in thickness from loft. to 20 ft . in round numbers, and overlying strata of tenacious
clay from $100 f t$ to 200 ft. The former being easily permealle, the rain falling on its surfuce filters thronch it, until stopped by the impermeable London clay, where it accumulates and forms a neverwells that have been sunk all over London from time inmemorial. and which for centuries constituted its sole water-suprly. Not ouly does it form an easily accessible underground reservoir, although sectius vallefs cut down through the bed of gravel sectine valleys cut down through the bed of gravel
into tue London clay, a portion of the water in this reservoir escapes at the junction of the two strats,
and gives rise to several springs formerly in mach repute, such as those of Bringigge Well, Holy-well, Clerken-well, St. Cbad's Well, aud others.
The early growth of London followed anerringly the direction of this bed of gravel, enst-
ward towards Whitechapul, Bow, and Stepney; north-rastward townrds Hackney, Cllapton, and Kensington; while northward it came for many Bloomsbnry, Marcletone, Yaddington, and Barswater. A map of Londun, so recent as 1817 , shows
how well-defined was the extension of houses how welf-detaned was the extension of houses beyond the main body of the gravel there were a ew outliers, such as those at I Ylington and Highway, sonth of the Thames, villages and buildings were gradually extended over the valleg-gravels to Peckh:m, Camberwell. Brixton, and Clapiam; while, beyond, honses and villages rose on the
gravel-capped hills of Strentham. Denmark Hill, and Norwood. It was not until the facilities were afforded for an independent water-supply by the rapid extension of the works of the great water companies, that it became practicable to establish a town popnlation in the clay districts of Holloray, Westboarne, and Notting Hill.
On the outskirts of Londou a succession of villages grew up for miles on the great beds of gravel ranging north, following the valley of the Lea to Edmonton and Hoddesion; and on the West. up the Thamesralley to Ealing; Honnslow, Slough, Hammersmaith, and beyond; whereas, with the exception of Kil years since between Padilington and Edgware, or betwetn Maryleboue and Hendon; and not many erea between the New-road and Highgate and
Hampatead. As a marked case of the excluding effocts of a large tract of impermeable strata close to a great city, I may mention the denuded Londonclay district extendiug from a mile north of Acton,
Rating, and Hnnwell, to Stanmore, Piener, and Iekentham, near Uxbridge. With the exception of Karrow (which utands on on outlier of the Bagshot
Sands), and Perivale and Greenford (on outliers of gravel), there are only the small villages of North-
holt and Greenford Green. In the earlier edition of the Ordnance Maps, there was a tract of ten sqnare miles north and westward of Harrow within
which there were only four hoases. Yet the ground Which there were onily four hoases. Yet the ground
is all cultivated and productive. But immodiately eastward of this area, and ranging thence to the valley of the Lea, the cround rises higher, and most of the London-clay bills are capped by gravel of an older age than that of the London valley, and belonging to the bonlder-clay series. On these we havg the old settlements of Hendon, Stanmore,
Finchley, Barnet, Totteridge, Whetstone, Soathgate, and others.
There is yet another very common source of wellwater supply from bels of gravel directing popalation to low sites in valleys, which is this. Everywhere on the banks of the Thames and its tribataries there is a lower-lying bed of valley-gravel or taries there is a lower. lying bed of valley-gravel or
of rabble, on, and often passing beneath, the level of the river. This bed is sapplied with water both by rain falling on it, by springs thrown out from the adjacent hills, or by the drainage from those hills,
and in places by infiltration from the river, when, from any cause, the lide of water in the gravel falls below that of the adjacent river; while, on the other hand, the sarplas land-sapplies find their way direct and unseen from the bed of gravel to the river. It is, however, only in case of exceedingly dry eeasons or of excessive pumping, that the supply requires to be supplemented by the river-
waters. As in ground of this description, the land. water is generally darnmed back by the stream, the level of the water in the wells, which are always shallow, varies with the level of the water in the streams, rising and falling more or less with them.
A few of the higher London-clay hills in the neigh boarhood of London are also capped by ontliers of the Bagshot Sands, as, for example, Harrow,
Hampstead, and Highgate, all of which are sites of old habitations. The sands at these places attain a thickness of from 30 ft . to 8oft., are very permeable, aud afford a sufficient water supply by means of
wells to a limited popnlation. A number of wellknown small springs are thrown ont at the contret of the sands and tho clay on the slopes jnit below
and around the summit both of Higharte and ana around the summit both of Highpate and
Hampstead Hills. In eome instances, owiug to the presence of iron in the sands, they are slightly chalybeate. When the Bagshot Sands, further west ward of London, attain their fuller development of from 300ft. to 400 ft ., the depth to the water level beds are left high nud dry and form uncultivated wastes, snch as Barshot Heath, Frimley Heath, aud others; but on the outside of this area, where the sands become thinner, and the watr-level more
 hame Alderstone, Esher, Weybringe, Woking, \&e. There are also some the middu of the saties which hatd up a satticient in the midaly of the satics whil hocal supplies, and Bive rive to smal streans in The valres of the of Cholham. The running nature of portions of these sands, and the presence of beds of ferruginons and green samis, oflen interture
much with the construction of deep wells, and the much with the constriction of deep wells, ald the
quantity of the well-water ; nnd, externally. th mixed clay-and-sand claracter of the upper beds liue for the chay fails ha any orlstaming springs, but oozes out from the gencral surface of the intermediate spongy mass.
The 70 ft . Lo 100 ft . of sauds and peblle-beds helong ing to the Lower Tertiary strata ander the London clay, and overlying the chalk, are also very permetentive clay. they give rise to one or two levels of water, affurding, wherevar these strata form the gnrface-as at Blackicath. Bexley. Chise hiurst, and
Bromley-a moderate water-supply to sl allow wells. Where these sands dip muder the London clay, ann only preseut a narrow belt on the surace, a smal valler is commonly formed into which the London clay hills drain on the one side, and on the other the chalk dammed back by the Tertiary strata throws out its springe, and the cauds nre thus k -pt clarged with water up to a short depth from the surface.
But besides furnishing a supply by ordinary wells Lower Tertiary sands have of late years contributed to the metropolitan supply, as well as to the supply of those nijacent districts where the surface is formed of tellacious clay, and water is scarce, by meaus of artesian wells. For along the line of convtry just named, and along a more irregalar beat the London clay, so that the water they receive from rain and springs on the surface passes underground where it is prevented from rising by the impermeable superincumbent clay; consequently, as there is no
outlet for the water below ground, these sand-beds outlet for the water below ground, these sand-beds
are filled with water aloug their whole undergromed are filled with water aloug their whole undergromnd
range, "et ween their outcrop in Surrey and that in range, "et ween their outcrop in Surrey and that in Hertfordshire.
The surface of the ground at the ontcrop, jast re100ft. above the level of the Tbames, whilst under London the sands are at a depth of from 100 ft . to
220 ft . below that level, thus forming the shell of a
basin from 200ft. to 300ft. deep, the centre of which is alled with a depressed mass of impermeable clay. There is, however, a notch in the lip of the basin where it is traversed by the Thames, at Deptford than the rest of the rim. Below this level, as there is no escape for the water, the atrata are naturally perpetually water-logged; and if any water is with drawn from one part, it is, owing to the permea bility of the strata, at once replaced from adjacent parts of the same strata. Early in the present cen tury, bore-holes were made through the overiying London clay to the snnds at depths of from 80ft. to 140 th, and the water from these deep-seated springs rose at once to a height of several feet above the level of the Thames, where it tended to maintain itself, and thas form, in the lower-lying districts permanent natural fonntains. Bat the ease and facility with which this sbondant sapply was ob tained, led to the construction of so great a number of sach wells that a time soon came when the annua rain ontfall no longer sufficed to meet the demand or, rather, it could not be transmitted fast enoagh to the central arca of abstraction to replace the out dranght. The conseqnence was that, after some years, the water censed to overtiow, and the line of water-level has gradually sunk at London, until it
now stands some 70 ft. or 80ft. beneath the sarface level.

In order to supply the deflciency thas cansed in the Lower Tertiary sand, most of the artesian wells in London have of late years been carried down into the underlying chalk, which also extends beneath London at depths of from 150ft. to 280 ft . Both for mations are permeablo, bat in different ways. On mission of it is effected in different ways. Throngh mission of it is effected in different ways. Throngh
the sands it filters at once ; but not so with the chalk. A cubic foot of the latter will hold two gallons of water by mere cnpillary attraction; but it parts witho this with dimicnity. Still, in time it finds its way nble joints, fis-urcs, and lines of flints by which this formation is traversed; and, when once ander the line of saturation, the water in these fissares circulates freely. This line of sataration is governed in this as well as in all other permeable formations, by the level of the lowest natural point of escape which is cither the coast-line if Dear, or the neares river-valley. Below these levels permeahle strata are London the chaik is everywhere water-bearing Upp as the Lower Cbalk is more compact than the upper, and is less fissured, especially when covered logged chalk delivers its charge with extreme slowness, it is not until a fissare is met with that a free supply of water is obtained. Further, as there is no law regulating the position of the fs sures, the depth to which the chalk has to be tra versen before meting with a frce supply of wate
is quite uncertain. It is a question of probability lepending upon mecting with a fissure sooncr or deep London wells, whereas in others it has been necessary to rink to a depth of from looft. to 200 ft . or more hefore hittivg on the necessary fissares. nprated in the caise of the sauds liave told also on the cbalk supplies (and, no doalit, there is some community between the two), and the great de mands on it have occasioned a similar lowering of the water-line.
Numerous and nseful as the London artesian wells are, they sink into insimnificance when com pared with the application of the game system in Paris. Our deepest wells range from abont 4noft. to 500 Ot ., and the water comes from the chalk liills at a nearest distance of from 15 to $\%$ miles from Lindon; whereas in Paris the well of Grenelle is 1,793ft. deep, and derives its smpplies from the rain water fulling in the Lower Greensands of Cham psgae, and travelling above 100 miles andergronnd
hefore reaching Paris. The well of Passy, sank hefore reaching Paris. The well of Passy, sank
also through the Chalk into the Lower Greensands at a depth of 1923 ft ., derives its sopplies frosand same eource. The water-delivery is large and wel maintnined. These results were considered so en conraging, that in 1865 the Municipality of Paris decided on sinking two artesian wells of anes ampled maquitude.
One of these experimental wells is in the north of Pario, at La Cunpelle, St. Denis, 157ft. above the sea-level. A shaft, with a diameter of $6 \frac{\mathrm{ft} \text {, , was }}{}$ inst sunk throagh Tertiary strata to a depth of with a diameter of 51 ft ., and carried throngh difficalt Tertiary strata to e depth of 450 ft ., when the Chall was reached. A fresh bore-hole was here com menced which hns now reached the great depth of 2.034 ft ., with a diameter of 4 ft .4 in . It is now in the Grey Clalk: nndit is calculated that the Lower Greensands will be reached at a depth of about
2.30oft. The other artesian well is at the Buttes 2.300it. The other artesian well is at the Battes-
anx-Cailles, on the sonth-east of Paris, at an eleva anx-Cailles, on the sonth-east of Paris, at an eleva
tion of 203ft. abore the sea. The Tertiary strata are there only 205 ft . thick. This well is not quite on so large a scale as the other, and is still, at the
depth of 1,640 aft., in the White Cualk. The discharge from these great wells will probably be equal
to that of a small river. At Passy, notwithstanding some defective tabage, and the circumstance that the surface of the ground is there 86ft. shove the Seine, the discharge at the surface is equal to $3 \frac{1}{5}$ millions of gallong daily; sud it has been above 5 millions of gallons daily; and it has been above 5
millions, or enough for the supply of a town of millions, or enougl
150,0 en inhabitants.
The question may arise, and has arisen, why, with a like geological structure, shonld not like results be obtained at Iondon as at Paris; and, to a certain extent. it has been answered. At lientish
Town an artesian well was, in 18.5 , carried through Town an artesian well was, in 18.55 , carried through
30.4 ft . of Tertiary atrata, $64, \mathrm{ft}$. of Chalk. 11 ft . of 3.1 ft . of Tertiary atrata, 6.5 ft . of Chalk. 1 ft . of
Upper Greensand, and 130 ft . of Gault. Instead of then meeting with the water-bearing Lower Greensands which crop out from beneath the Cbalk, both on the north and south of London, unexpected geological conditions were found to prevail, and not only were these Greensands found to be absent, but likewise all the Oolitic and Liassic series. The bore-hole passed at once from the Gault into a series of red and grey sandstones, probably of
Palizozoic age, and not water-bearing. The Chalk has more recently been traversed at Crossness, near Plumstead, where its baso was reached at a
depth of 785 ft ., and the bore-hole carried $159 f$. depth of 785 ft ., and the bore-hole carried 159ft.
deeper into. bat not throngh, the Gaalt, when, deeper into, but not throngh, the Gaalt, when,
owing to difficulties caused by the small size of the owing to difficulties caused by the small sid
bore-hole, the worls had to be abandoned.
Such is the geological structure of the ground on
which London is dependent for its first and immewhich London is dependent for its first and immedinte water-supply by means of wells. The highest seam of water, that in the drift-gravel, extends almost everymbere under the streets and houses, at depths of from 12 ft . to 25 ft ., forming what is called gronnd-springs. The Lower Tertiary sands, with their greater thickness, and their larger and larger nnderground body of water beneath London. The third nuderground reservoir is the Chalk, Which, from its large dimensions- 500 ft . to $1,000 \mathrm{ft}$, thick-and extensive superficial area, forms a still thick-and extensive supericial area, forms
larger reservoir, and source of water supply.
With the increase of population, however, the need for larger quantities necessitated the reconrse
to river-supply ; and this supply, equally with the other, is regulated by geological conditions, only that in this case the question concerns those conditions which affect the strata throaghout the catch. ment-basia of the river itself above the town which needs its sapply.
(To be continued.)
THE PHOSPHORESCENCE OF THE SEA.

THE phosphorescence of the transparent compouns, ascidian pyrosoma, which occurs floating in occasional shoals both in the Atlantic and Pacific exceans as well as in the Mediterranean, has fishermen of Naples know the pyrosoma by the fishermen of Naples know the pyrosoma by the is so intense, yet zoologists have not hitherto rightly ascertained what are the organs which produce the light. Professor Paolo Panceri, of Naples, in the course of his admirable researches on the phosphorescence of marine animals, has, says the Athenzum,
lately stadied that of pyrosoma, and conclnsively lately studied that of pyrosoma, and conclnsively
demonstrated, to the satisfaction of Dr. Krohn and demonstrated, to the satisfaction of Dr. Krohn and emitting organs are two large granular patches, placed on either side near the mouth of each of the cunicate constituents of the compound mass. By cutting a section of the pyrosoma, placing it in fresh room, it is at once seen that the light is produced by these two masses. Professor Panceri has, at the same time, made important observations on the development and anatomant observations on were also stadied during his vojage in the lattle-
snake by Professor Huxles. Professor Pauceri has found that from a single egg not only do four mbryos develop, bat that the "cap". to which they are attached represents a fifth, which attains its development first, has a month, nervons system, and a heart, that pumps blood into the chain of four embryos encircling it. It is, in fact, a "aurse." The Italian Professor has also discovered a socalled "colonial" muscular system in pyrosoma, by which it is probnble that the excitation causing a wave of phosphorescent light as observel in these animals is transmitted. In his entirely novel and ahly worked-out investigations of the phenomenon of phosphorescence (he has already published memoirs ou that of Pennatula, Pholas, Beroe, and Ctrotopterus), Professor Panceri is doing a woik Worthy to be ranked with the researches of the
grat Neapolitan naturalists, Cavallini, Poli, and grat Neapol
Delle Chiaje.

New Safety-Lamp. - Some experiments of. apparently, a satinfactory characerer, were made on the lamp for collieries, invented by Mr. Heary D limasoil. The principal features in the lamp were. tiat it was immediutely extinguished when in an explosive atmopphrere ; and that, as the flame was ansrounded witho glass cylinder hastead of wire gauze. the light was very brillinnt. We learn that the lampa are tricd in some of the fery collieries of South Yorkshire.

LETTERS TO THE EDITOR.

[We do not hold ourrelves responsible for the opiniona of our correopondents. The Editor respectfully request that all co
pessible.]
dil commmnications should be addressed to the Editor of the Englibe Miccinanic, 31, Tavistock-strect, Coven Garden, W.a.

All Cheques and Pont Office Orders to be made payable to J. Pasemore Edwardb.
"I would have every one write what he knows, and as much as be knows but no more: and that not in this
only, but in nll other suhjects: For such a person may only, but in anticular knowledge and experience of the nature of such a person or such a fi,untain, that as to othor things, knows no more than what everybody dues,
and yet to keep a cintter with this little pittance of his will undertake to write the whole body of physicks: Wice from Whence great inconveniences derive thoir
original."-Montaigne's Eseays.
** In order to facilitate reforence, Correspondentes whon speaking of any Letter previously inserted, will oblige by
mentioning the number of the Letter, as well as the page mentioning the number
on which it appears.

JUPITER'S SATELIITEES-ADJUSTMENT OF AN EQUATORIAL-SATURN'S SEMI-DIAMETERTESTS FOR A 4\}IN. REFLECTOR-PLANETARY AND COMETARY ORBITS-BTAR MAGNITUDES -GRAVITATION-AND THE NAUTICAL AL. MANAC.
[3958.]-I muat apologise to "Vega" for haring ather crigioal question (112as, P. 676, iol. XIV. really fancied that he had observed the reappearance of Jupiter's first antellite on the night of January 12th 1871, at 8h. 6m. 67s. Local mean time. Now, however, I find that he saw it at (what he imagines to have been) 8h. 6m. 57a. Greenwich mean time, which renders the whole sffair inexplicable, even on the assumption that the spertare of his telescope differed to some extent from that of the one employed by Mr. Christie. Of coarse an eolipse of one of Jnpiter's satellites is a phenomenon happening at the same absolute instant, at every place a bright light were susponded in the air at a sufficient beight to be seen over a largo area of the earth's sur face, and such light were to be extinguished. Putlecting, then, on the fact that a satellite does not plunge into, nor emerge irom, could operate in altering the apparent Greenwich time of the disappearance or resppearance of any given one, as viewed at his station, from that at Which the be difference of telescopic spertare. Obrionsly, the bigger the object-glass or mirror, the later the satellito could seem to disappear, and the sonner to reappear; bat if he and Mr. Christie had been observing with the ame sized instrnments, then, as Mr. Caristie asw the "Vega " ought to have canght it at 7 h .55 m .18 .3 s . of its Gral mean time-i.c., at the identical instant of 12 m .56 .667 s . I do not know quite what your correspondent means about "allowing also for acceleration.
If "Lamroch" (q. $11450, \mathrm{p}$. 80) will consider for an instant, he will see that the polar distance (or declingtion) of a star mast be the same, whetber his place of tude of the pole varies, but not the distance of individual stars from it; so that the only correction required is one for refraction, for which he will find ample direc-
tions in "Loomis." I wrote on this same snoject some ime azo in these colnmns, and illustrated the effect of refraction on the identical star mentioned by your cor. respondent, by the aid of a diagram. "Lamroch" will find this letter and illastration on p. 417 of your welfth volume.
In answer to Mr. Hatehing (query 11453, p. 80) it is pp. 301 and 303 of this year's Nautical Almanac. The elements for the determination of the dimensions and appearance of his rings are given on p. 513.
may reply to the first query (11467, p. 80) of
A. L. B." by saying that the theoretical power of his tifin. Browning-With rethector, would render a $12 \cdot 1$ magnitude star of Argelander's Scale his minimum risibile; and that itareparating power would
he about 0.96 , or, say, 1". For tests be might try σ^{2} Cancri, ζ Caucri (I doubt if he will do mnel with this),
St Virgitis, 126 P XI. Virginis, sfry diflicnlt), Strave 1884 Bointis, 35 Como Berenicia Majnris.
A. L. B." will find his second queation (11468) answered on p. 273 of your last volame. He surely can devise an index for himself.

All I can possibly hope to do for "Aristarchns" query 11507, p. 8!) is to give him some kind of ides comets are compated. To go into anything like numerical detail wonld be wholly imporsible within the limits of a letter, inasmnch as many pages are devoted to the methods of calculation of the orbits of these thea, with celerence to the cloments of the orbitsty planet. They are seven. 1. The periodic time.

This is obtained directly by observing its right ascension and declination for eeveral days when it is in or near one of its nodes. These we mast turn into whitndes and latitndes, in the manner orempined a week or two ago. Then by s simple proportinn we. and it is, of the latitude of tbe planits node. We have only to make similar observations when the planet comes round to the same node again, and this will give us the time of one revolution. 2. The mean distance from the san, or semi-axis-major of its orbit. This is most easily Rot by Kepler's law, when we know the periodic time. Otherwise by observation which I cannot ask for space to explain. 8. The longitnde of the ascending node. This is calculated from the observed longitude of the planet in one of its nodes; snd earth at the same instant. These data are again
obtained when the planet returns to the same node, and hence the direction of the line of nodes calcalated. 4. The inclination of the plane of the planet's orbit to that of tho ecliptic. This is found by the longitude and latitude of the planet being determined at the instant when the sun's longitade is the same as the heliocentric longitude of the node then a very simple formala in Epherical trigonomeiry gives us the required quantity. The hrigonometrically de rived 5. The eccentricity of the orbit ; and (6) the longitude of the perihelion are found by ascertaining the langth and position of three radii vectores (assuming the orbit to be an ellipse). 7. The place of the planet at a particular epooh is the subject of direct observation. There is nothing in all this beyond the mathemntical eapacity of "Aristarchus." In order to determine the orbit of a comet we, in the first place, reqnire its posilonger the intcrial whiree direrentes these times, the more trustworthy will be the ultimate results. It implifes calculation if the intervals are eqnal. Well, sions and declinations are tarned into longitudes and latitudes. Next, the longitudes of the san, at the three instants of observation, are taken from the Navtical Almanac, and from these data a diagram is constructed which I cannot here reproduce. The first calculations of a cometary orbit are made on the supposition that it is parabolic, and it is assnmed, as a matser of course. hat the plane of the orbit passes through the san, is cribed by the , that the quotient of the time, is a constant quantity; and that for difforent bodien revolving round the sun these quotients are properional o the parameters of their orbits. Then a plane is hypothetically assigned to the comet's orbit, and it is seen whether any of the canons just enunciated are riolated. If they are not, we have hit upon the right plane; it they are, we must try again. Bo then at last by a then places of the comet are calculated for some time in adrance on the supposition that the orbit is parabolic and described in that plane. By the comparison of its observed places with the predicted ones, wo 500 n find out whether the comet is really describing a para bola, or whether its orbit is a hyperbols or sn elipse. to arrive at the fignre and dimensions of a cometary orbit. In practice, as I told a "Young Astronomer," the geometrical relations involved are represented by eqnations, and thon are solved by successive approximstions. My querist should get Chanvenet's, Norton's Main's, or some other work on spherical astronems, as I must repeat that it is hcpelessly impossible In reforence to query 11508 such a letter as this. express my exceeding surprise that "Aristarchas," as an amatear astronomer, does not possess a copy of inesm Celestial Objects for Common Telescoper, every ohservatory in England. From it I have oopied the little table which follows:
Smofth's Mag. Strave. Herschel. Argelander.

10	9.3	10.4	9.4
11	10.4	11.8	10.4
12	10.4	11.7	10.6
18	10.7	12.5	11.9
14	109	18.8	11.8
15	10.9	14.5	19.4
16	10.9	15.9	18.0

I do not quite see the natare of Mr. Skelton's diffculty (qnery 11559, p. 108) with regard to the diagrams Almanac. Let us take that for the present month (p . 4si) as an example. On the night of the $2 \overline{0}$ th satellite 1 will reappear from eclipse at 8 h . 39 m . 30 s ., Greenwich mean time. Well, in order to observe this phenomenon Mr. Skelton mnst direct his telescope (presamably fornished with a Haygbenian or inverting eyepiece) to the littlo spot marked r in figure 1. Or it he shoald be on the look ont for the reappearance of satellite 2 from eclipso during the early mnrining of the 28 rd , he mast eclipso daring the early merning of the 2srd, he mast
watch the spot markcd r in Fig. 2. Again, the disapvarch the spot marticd r in Fig. 2. Again, the disap-
pearance of satellite 3 in celipne, 88 minutos and il seconds after miduight on the 18th will take place at d in Fig. 8, and ita reappearance next morning (after Jupiter has set) at r in the same fignre, and so on. Tit only thing which strikes me as possibly being a lityh the explanation on p. 56.3 to this will diseppear when Mr Sulton ropponton w that time Jupiter's shadow-as viesed from the ons shifto from one side of him to the other. so the diagram can possibly be true for the whole mont diagram can possibly be true for

Speating thooreritally, tho moon in one part of ber Orbit polle the earth in the ame diration nat the and
 it in the eantro of grarity of the osytem of the earth

 be that the centre of gravity of the earth itaell would ontinue to describe that orbit
With reference to what Mr. Woods reiterates (in qy. 11578, p. 107), an to the defecta of the Nautical
Almanac. I must say that I demar altogether to his dimanac, 1 must eny that I demar altogether to his
designation of the explanation given on p. 599 as designation of the explanation given on p. 539 as
"trashy," inasmach as, as far as it goes, it is perfectly "trashy," inasminch as, as far as it goes, it is perfectly
sound and good. The Nautical Almanac has enongh to answer for in the shape of its defective tables of the phenomens of Japitar's satallitos, and sbsolately ecandalous ephemeris of Uranns, without being made
responsible for fants from which it is free. Mr. responsible for faults from which it is free. Mr.
Woods munt really forgive me for saying that he oan Woods must really forgive me for saving that he oan Work, or he would never make ench an astounding demand as that the times of occultations should be given for other latitudes, than that of Greenwich :
Why, does he know that the time of an ocenltation Wiflers even as seen from Greenwich and from Highdifers even as seen from Greenwich and from High-
gate $?$ and that, in fact, it is conoeivable that a star gate 7 and that, in fact, it is conocivable that a star other at all? The Nautical Almanac contains all the data noedful for making the calcalations for any given locality: to make and tabulate the computations of the times of all visible lunar ocoultations for every inhabited place on the globe would be to produce a book
to whioh the "Enoyclopmain Britannice," Would stand to whioh the "Enoyclopesdis Britannica," would stand in the relation of a thin pamphlet. I muat further
crave my queriat's parion if 1 point out that it is not the time of meridian pacasge of the "apper limb" of the moon (however, such a phenomenon may be
imagined to cocur) which is given on p. iv, of each imagined to cocur) which is given on p. iv., of each month ; but the ingtant at which the moon's contre is on the apper meridian at Greenwich-i.c., dre sonth. When ahe is on the lower meridian, she is, of courne, due north, and below the horizon-which, on the whole; entinfactorily secounts for the latter phenoA Fenizon boing latt unnoticed in the Nautical Almanae.

DUST IN THE SPECTROSCOPE

[8959.]-Mr. Browning (lot. 8886, p. 66) in altogother right in his armise that I did not pat the repliod molely in my own intorest; and therefore, in thanking him, I think that I may, at the same time, legitimately oongratalato not only mysalf but a goodly number of my brother readors on having elicited so rery unefal and practical an answer from the Dollond of the spectroscope. I say usefal and practical an succeeded perfectly in froeing the slit of my own in. atrament from duat on the Arst trial.
Whether it be the faet or not, that ntriation of the prisms does produce longitadinal lines in the spectrum, "when the alit in nearly closed," as statod by Mr. F'. own case, the etriping proceeded from minute particles of dust; inasmuch as I always examined the jaws of the alit with a powerful magnifier, after my attempts to lean them.
a Fellow of ther Royal Abtronomical Societt. P.S.-I must not forget to thank " S. W." also for his lettor (3946, p. 97).

CONTACT OF COMETS WITH THE EARTH.

[3960.]-The most charitable conclusion that I can come to with reference to letter 3916, p. 91, is that tion when mast be laboaring ander some hallucina things "in your colamns," do. Ho, more oue, made some dogmatic assertions, bat, nntil I (and others) can rise to his sablime height of beliet in his own omdoabting that be has shown anything.
Δs far as his sneers at Mr. Poalett-Scrope are concerned the whole matter lies in a nutshell. Mr. Scrope,
and every one else who has examined the artinct rolca. noes of Auvergne in situ, are agreed in referring them to a period oxtending from the Upper Eocene through the Miocene and Pliocene. The minimum an tiquity of the last named epoch is perfectly familiar
to every geologist who reads these lines. But, upon the steep sides of these cones lie, absolately undisturbed, scorine, lapills, and pumico-stone, which anything is of six thounand-years ago, mast inevitably have swept away, and redoposited in a chaotic mass elsewhere. Hence, wherever the Noachian deluge went it did not penotrate to the Valley of the Auvergne. Wital
ithol

As for the "grandiloguent" brag abont what " I shall ouly sey that I seem to have an idea that men have
 trato and confonnd all the "goologers," so did a cer-
tain man oalled Hampden essay but the other day to show that astronomers were idiots, and that the world was oven as a pancake. If my memory serves me,
though, it was Hampden himself-and not the earth -Who wias proved to be a "Iat.)
a fillow of tif Rotal abtroxomical Societt.

NOMENCLATURE, \&C.

[$8961 \cdot \mathrm{~F}-\mathrm{I}$ RATERR fail to soe, exactly, what "L. C.E." (better 8884, p. 66) is driving at ; inamach as his aim would appear, on the sarface, to be to " run a-muk and tilt at all he meeta."
In limine, he suraly doos not mean serioualy to deny the inestimable advantage of tochnioal terms in Science ; nor imagine the English langnage to be so rich in words as neither to require, nor admit of, any additions : Had he read the most valuable and popalar series of papers on Electricity, by "Sigma," running sulted Vol. XI., p. 290, he need have been onder no diffculty as to the exact meaning of the "quite new" words to which he takes exception; but which even he I think, cannot deny aro short, easily remembered and conveniont. Besides, I assume that a period mast have existed When every word wal "quite new." name for matches igniting by friction, mast have had its origin : While, in our om, "foris" and "telegrem" are two out of several which strike me as hasing arisen in, or been adopted into, the English tongue.
It seems almost idle to point out how oircumlocation and periphrasis are avoided by the ase of a single with those need by "Sigma" on any other gronna than that of their novelty (to "I. C.E.").
Into the terminology of chemistry I mast decline to onter. "Ne eutor," de., and wo have plenty of excellent Chemists both able and willing to take their own parts in which selenography appears to be parsued, I would in which selenography appears to be pursued, I would the casses which have operated in the production of the moon's existing physical condition at all, it must be by the patient and almost nigoling collection of such details as those to which he takes exception. I fancy that we have "broad facts" onough-and to spare-a to the general state of our satollite as it is.
And again, with regard to Seochi's researches on the solar fames, we know that these consist of stapendons uprushes of incandescent hydrogen gas: obvionaly through a resisting modinm-and that is vory nearly sun's surface, beloren, how high taey extend above th out-to note carefolly any peonliar spiral conformation or the like-is to add to a mass of facts whence, some day, the most important possible dednotions will probably be derived.
I nm not concerned to defend my brother microseopists, who have, I fear, wasted a great deal of time over Distomacess; and made species and inventoc spend as moque ad nauseam. family, for three months, on a single objeot-glass, merely in order to resolv
dismaily, to do it, after all.
A_{s} for microscopic anatomg, though, it is in its infancy; and no man may eay wheroto it will grow "What," said Franklin, "is the use of a new-born baby ?" Oersted's famons discovery was only made in
1820 ; and already the electric telegraph girdles the earth:
A Filliow of the Royal Agtronomical Society.
[3962.]-"TAEx astronomy as exemplifed in ' our pages; look at those straggling sketches intended to represent some mountain or crater of the moon, and orookod mark is a cleft or a rill. What on earth does it matter which it is ?"
This passage (which ocours in let. 8884 , No. 867, P. 66) having arrested my attention, a fow remarks on
it, approhend, may not be out of place. "L. C. E." is cortainly not "a master in nnderstanding" things regarding the moon. It is well for him to fear when such is the caso, as he may then be excused for putting the question, " What on earth, 1 cc.? To thone who of indifference whether a "straggling sketoh" repre sents one thing or another, and the signitication of "a little crookod mark " is a matter of very little moment. If wo were looking on the motley group pacing to and
fro in St. Paul's Churchyard from the gallery surmountfro in bi panle Churichyard from the gallery surmount-
ing the dome we might be inclined to think that the creatures thas engagod were of Lilipatian stature; but we take a higher standpoint, and from the car of a balloon wo gaze upon the "map" spread oat below us, n which the very dome on which we lately stood has diminished to a mere point. Stretohing ont in every
direction from the vast masses of brilding, themselves fringed with buildings, are narrow lines, some straight and others crooked, quite distingaishable at a certain levation, bat growing narrower as greater altitudes are able agency our aerial travellers have lost-not oonable agency our aerial travellers have lost-not oon-
aciousness, but-discernment. forgetfol of what they scionsvess, but-discernment, forgetfol of what they
saw on terra Arma. A namber of twinkling points of light engage their attention, and they begin to specnsate as to what they can be. They are the minutia of
the scene ; and while the aceronata remain in the mental state in which we suppose them to be, it is only by a process of observation and reaboaing that they twinkling points were lamps to enlighten the darkness of the Lilipatian inhabitanta, themselves minutice mongst the larger featares seen by daylight. Wo readily grant that such a process as we have sapposed
if apparcntly anaccompaniea by any targible benfft; is apparently anaccompanied by any tangible bencfit;
bat persolal bentit, apart frnm the discipline of the mind, is one thing, and the discipline of the mind is
anether. The atraggling lunar aketch, the little crooked mark, are lettors in Nature's alphabet. The great $A^{\prime \prime}$ and crooked $\mathrm{S}^{\prime} \mathrm{s}$ grat attract the attention of intollectual children, and they learn to regard them as exponenta of mountains and valeys, olerations and depressions
of the moon's surface. By-and - by they and that the of the moon's suriace. By-and be stadied, the B's and minative of the language mast be stadiod, the B'E and
E's and $\mathrm{M}^{\prime} \mathrm{s}$ mast be combined to form words, and When enentences are introduced they would be in a meeoWhen sentences are introat the minutive of pointe-the commas, semicolons, and periods. Selenographers have made ont many of the broad facts of their seience, and they are proceeding slowly to combine with such minution as will enable them or presented to their in interpreting the phenomena pressentad thing seen at a distance no little mental discipline is necessary, but rather well-trained habits of observation, accom panied by a facility of grouping and oxamining facts, panied by z facility of grouping and oxamining facts,
not neglecting such as are seomingly animportantnot neglecting such as are seemingly
"a single grain will turn the acalo."
W. R. Brrt.
P.S.-" Sigma's" letter (3921, No. 868, p. 92) is much to

THE METRIO SYBTEM.

[3963.]-" E. L. G." (liet. 8985, p. 98) akks me for evidence that the metric systom has "gained the ap-
proval of the vast majority of acientito men." That proval of the vast majority of scienticio men. Firnat decimal metric system of weights and measares, and also to the general principle of decimalising measures " E is, ther G " "E. L. G." to set forth Laplace as the only one who
 not speaking, and which, howevor neeouarily balong to may not be
It is quite needless to seok for names ; we neod only open any acientific book, and we shall find that decimal measures are always employed. If any one wishes to express the mechanical equiralent of any agoney, we
ond foot-pounds ran ont to millions, or olso foot-tong And foot-pounds run out to millions, or else foot-tons
taken for a larger unit. I do not bolieve that a single taken for a larger unit. I do not boliove that a single instance can be found of any one roducing those decimal fares to tons, hundred wights, quartert, ana poanda. Why? Becanse the docimal igares are all comparable among themselves with the amailost mental effort, while the others are not se, but require conmider able effort to nnderstand; but this is exactly the reaso
why the decimal aystom is advocutod for general nee.
The same illogtration rill give us farther evidence of the adoption of the French system by most scientific men, for we have only to glance over the beat ohemical manuals to find that they use that syatom almost exclusively. Again, why? Simply because to scientiflo that they will no longer barden their papils with the uaeless complications of the English weights, do.
It is really of very small consequence whether Herschal mas a decimalist or no, because every man has a right to his own opinion; but the quotations given us by ". L. G., so far from proving him an ant--ands on the subjeot. He distinguishes clearly the two parts of the question, the onit and the divisiong. As to the first, the unit and its standard, there may be plenty to be said, and the arguments as to the superiority of the English anit over the metre would be perfectily nound if all the world were afflicted with a confusing system like ours, and anxions to nuite with ns in remedying the eril; but this is not the cane -those who have the metre have none of our confasion, and to ask them to adopt our foot, oven would be to invite them to make a change for change sake, to give them a porfectly neediess trouble withont in the least diminishing our own share of trouble; for it is self-erident that if we change our whole syetem of measures, our retaining the foot for the anit wonld not be one fraction less confasing than the adoption of the metre.
It is for this reason that I ssid that discassion about the merits of units and standards was " scestering dust abont the true object of any importance." The question or importance is this: Are the troubles aftendant on our present weighta and measures great enongh to warrant our endaring the great tamporary trouble of any change ? If any ohange is to be made, the quession
becomes a practical one, simply that of least trouble becomes a practical one, simply that of least trouble
anited to greatest advantage, and is resolved by the fact of half the world (civilised) having already adopted fact of half the world (civilised) having already adopted
a batibfactory decimal system ; practical considerations a satibiactory decimal system; practical considrat phipat ont of question all debato aboat any abstract phi-
losophical quidities as to units and atandards: left to decide simply whether we will adopt the same systom as others, who clearly will not change their system to please ns; or whether for the sake of preserf. ing some fragments of our own old system, we will deprive ourselves of the great adrantage of partaking of a universal aystom.
Herschel, in his quoted remarka, simply points out the various courses at oar option, bat inatead of being "no decimalist," actually suggests that it we do still cling to our prosent systom, it woald be desirable to
superadd to them "the edditional ocnvenience of a decimal system for, facility of calculation," leaving the result to the procens of nataral selection. And nataral selection we can easily foresee will allimatoly bring ns
the metric system, because one natinn: after another is already adopting it, and each one puts it: $:$ easing straiu apon others to follow the example
signa.

DECMALS AND THE DECIMAL SYSTEM. [8964.]-Try praises of a decimal system of coinage, weighte, and messares cannol, I bliovo, be too often sang; and it is a plom in "ours." In these daya of improvement in every branch of manufacture, of adrancement in education, in arts and science, it seems marrolloses that wo, as a nation who have hitherto done mo much, shoald in some respects be content to anere to old and effete ideas rather than follow in the White of those who have so wisely led.
If wo, labouring ander the infuence of our insular pride and prejadice, are determined to eling tenacionaly to aystoma as intricate as Chinese pazzles, we muir pernicions effect in the decline of our commo-cial intercourse with foreign nations; for what coantry is there which will care to traffic much with one whose carrency, dc., are no diffcalt of comprehension, when car can ikin fill ralue for its money in other ports it can obtain
From time immemorial nearly every nation on the globe made use of a series of numorala, of which 10 was the limit, all above that namber being in "progression of tenfold proportions;" in other words, a ecimal no "applied to the cardinal nambers-from " digitus," a finger.
Now, it seems reasoakble to suppose that if, by the repetition of those nombers, we are able to increase them to any extent in a decimal proportio, wion With this abe before is is not difficilt to conceive the minner in which decimals were originated. As already manner in which a citation with 10 for its. As already ataled, we had notalion with 10 or what fractions panding in decimal proportions, yel wen
were to be considered, confasion.

In their case no ready meang of comparison was at hand, and in order to effect it, it became necessary to create a new notation, lees than anity, yet possessing all the advantages of the other-croo, ho art of tenth, or decimal arithmetic," invented by Stevinug, a Flemiah mathematician, which was improved upon by Oughtrede, in the year 1631, from which date the said system may be considered as fally established. Thas we became possessed of a simple form of notation capable of either expansion or dimination, according to the same law. and to any extent, commencing froni nnity as a Axed number. In order, therefore, to dis tingoish between the integral snd fractional notation, a sign became necessary. Varions sinds were used, but not one met with so much favour as ine dot, or decimal point, now finally adnpted. What greater prool have we of the udvantages of the said syst tried ability and of carefnl research, who, from the very natare of their pursuits, are luth to undertake any reform that affects them withont very mature deliberation? Ye When we step oateide the pale of scientific research, and come into the precincts of commercial life, we find a syatem unique in its eccentricities, and totally at
rariance with all nniformity and order. If, as the variance with all nniformity and order. If, as the
old "wise saw" hath it. "order is of aniversal imporold "wise saw" hath it, "order is of neirerealimpor. be of such are, surely commerce, so intimately onnpected as it is with science, shonld profit thereby. It is pecnliar that we who are so precise and methidical
in other matters, shonld thas far so signally fail to in other matters, shonld thas far so signally fail to sapport the character in this particalar, and, I imagine. it can only be put down to sheer obstinacy or shortsightidness on our part. Comparativelv ferw there are at the present day who do not coincide in the views herein set forth, ada taking it or granted thate the
majority carry the day, it beboves as to undertake the majority carry the day, it behoves ns to undertake the
reform with as little inconvenience to the public mind reform with as litile inconvenience to the pablic mind
as possible. This can be done by the introduction of as possible. This can be done by the introduction
the metric aystem, which, as 1 have above shown already exists as far as our integral notation is concerned. Whatever adrantages a duodecima or other scale may possess, would at once be cblite-
rated br the dificolty and magnitade of the change rated br the dificolty and magnitade of the change
necessitated by the introduction of either, and cannot be bronght forward as a reform for the better. It has been arged by some short-sighted persons that a ani veranal currency wonld be of immense advantage; simply, I presume, becanse they posaess a pecnliar in ability to ecmprehend a foreign coinage. Even were such to be started, excbange transactions woald exis so lodg as commercial interconrse took place between conntries, thas rerdering the rarious coinages as widely
different as before. So long as it becomes necosoary to remit money from one conntry to another, exchang - Which is nothing more than the combination

In 1858, now nineteen jears ago, the selent committee appointed by Parliament to inquire into and report apon the advisability and means of introdncing a decimal system, forwarded its report. It recommended the metric system of weights and measnres as adopted by France, and with respect to the coins stated that it would be desirable to withdraw certain of them from circalation, and to substitute certain others haviug reference to a decimal scale. It contemplated "the retention nnder any circamstances of the present sovereign (1,000 mild), half-sovereign (500 mils, or 50 cents), florin (100 mils, or 10 cents), and shilling (50 mila, or 5 cents)," and eonsidered "that the present sixpence under the denomination of 25 mils might be retained, and the crown or piece of
250 mils ($2 \hat{*}$ cents), of which fow were in circnlation, 250 mils (${ }^{2}$? cents), of which fow were in circalation,
need not $b=$ ithiram.". It arged the desirability of upeasing \boldsymbol{T} th the half-crown, the threepenny and
and contemplated the introduction "of copper coins of
and oontemplated the introdaction of copper coins of and 2 cents), to which shonld be added such others as experience might show to be requisite."
There are bat few, I should thint, who can raise any objection to the plan suggested by the said committee. Daring a period of eighteen years, spent in varions parts of the world, I have had mach to do with very varied currencies, and have been fortanate enough to contribato a little townrds commercial literature (Tahles of Fxchange for Gibraltar, 1855; and Tables of Exchange for North America. Canada G. E. De Mi, New York, appleton a co., ard to tuax R. T. Mnir), and in my opinion words

0 extol the praises of a decimal system
 ability will ever be iresh in the memories of those who are acquainted with his whim,

1. All computations would be performed by same rules as in the arithmetic of whole numbera. 2. An extended maltiplication table would be a better interest table than any which has yet been constructed. 8. The application of logarithms woald be materially racilitated, and would become aniversal, as also that of the sliding rule.

4. The namber of good commercial comput

soon be many times greater than at present.
5. All decimal tables, as those of compound interest, to, , would be popalar tablet, instead of being mathematical mysteries.
6. The old coinage would be reduced to the new by the aimple rule. (Vide bis contribations in the "Compadion to the Almanac," 1853)
7. When the decimal coinage came to be completely establisbed, the introdaction of a decimal system of weights and measares would be very mach facilitated, and its advantages would be seen.
The opinions of numerons other men remarkable for their erndition and research conld be cited in
anpport of this change, all of which agree with the abore.
It is necessary to call especial attention to paragraph 7 here, as it is somemhat opposed to the views which have been advanced br snme writers as well as to the proceedings of the meeting held at the Mansion
Hoase somo tine ago. The said paragraph conceives Hoase somo time ago. The said paragraph conceives
the iutroduction of a decimal coinage as the frat the introduction of a decimal coinage as the frrt
measure, and I entirely coucnr in the opinion so ably measure, and I entirely coucnr in the opinion so ahly
set forth, becanse the present coiuage being aniversal set forth, becanse the present coiuage being aniversal
throughout the kingdom, the change woald be more throughout the hingdon, the change woald be more
easily effected than in the cage of the weights and easily effected than in the cuse of the weights and
neasares which, as every one knows, vary considerably measares which, as every one knoxs, vary considerably
with almost every connty. The introduction of a with almost every connty. The introdaction of a decimal coinage wonld be the insertion of the "sman end of the wedge," and the other change would follow
ao soon as it became generally anderstood. All who so soon as it became generally anderstood. All who have mritten on this subject agree to the advisability
of retaining the present sovereigu, and of dividing it, of retaining the present sovereigu, a
as berein referred to, into 1000 tails .
The following simple rule, which I bave constructed, will be foond vers nseful in converting the old coinaze into the new, and it can be mastered with a very little practice :-
(1) Old coinage into the new. -Shillings : Place a cipher to the right and divide by 2 ; the result will be 10 or 85 , add 1 or 2 , respectivily, thereto; the result will be mils.

Example.-Reduce 15s. 10d. to new coinage :-

$$
\left.\begin{array}{r}
\frac{150}{3}=75 \\
+2=.042
\end{array}\right\}=\cdot 792 .
$$

(2) As it may be usefal to possess a simple rale for edncing decimals of a ponnd to shillings and pence, the reverse of the abore will suffice, viz :-If there be ess than 3 decimal figares, apperd as many ciphers to he ripht as are required to make op the unmber 5 for divide the first two taken together, or the rents hy third fignors. mils there be no remaind If, there be remainder, prefix it to the mils aud divide. If, after
dividing, there be more than 2 remainins add dividing
peuny.
Example.-Reduce 20.792 to shillinge and pence:-

Whilst on the subject of decimals, I think it desirable to add one or two more simple roles, which I tras will be acceptable. They are as follows :-
(8) Inches into decimals of a foot, or monthe into decimals of a year.-For the first two places of decimals: Multiply the inches or months by 8 , and if the product exceed 24, 48, or 72 , add 1, 2 , or 3 respectively; in the case of oue inch only, prefix a cipher thereto For the third place : If the number of inches or monthe be even, add 5 to the second decimal, and adopt the number of their sum for the third place; 10 the decimal. In either case the third figare is a recarring decimal.
Decimals of a foot into inches.-When great acouraoy is not required, and if the tirst tro places exceed and diride bs 8 ; if the remainder be either 9 , 1 or G, add k, k, or $\frac{3}{3}$.
Examples.- Reduce 4in. and 7in. to decimale of a
(and 4 being eveo, repest ${ }^{8)}=339 ; 7 \times 8=56$ ($\mathbf{w h i c h}$ exceeds 48, \because add 2) $=58$ (7 being odd, $8+6$ and 0.105 is the third place $=583$. Redace 0.683 and 0.125 of a foot to inches. $8 \div 8=1$ and no
remainder $=1$ inch. $18 \div 8=1$ and 4 over, or $1,=1 \frac{1}{2} \mathrm{in}$.
(4) Oasces into decimals of a pound, or drachma into decimals of an onnoe (aveirdapois weight).-
For the frst two places of doeimals: Maltigly the oances or drachms by 6 , and if the produch exoeed 24 ,
48 , or 72 add 1,2 or 8 respectively ; in the ases of 48, or 72, add 1, 8, or For the or drachm, prefix a cipher
Arat two ploup places of dermala: Multiply the the prodnot ; if the remaining tigares equal 24,48 , or 72 in value, add 1,2 , or 8 respectively therato.
Examples.-Reduce 1 and 11 ounces to decimale of ${ }_{8}{ }_{8}$ pound (avoirdapons). $1 \times 0=0$ (preaxing 0) $=06$; $6 \times 4=94$ (add 1), $\therefore 1$ ox. $=0625$ of 4 poand
$11 \times 6=66$ (exceeding $48, \therefore$, add 2) $=68$) $=8875$.
In the reverse of the above, when great accuracy is not required, if the first two places exceod 24, 48, or 72, deduct 1,2 , or 8 respectively therefrom, and divide by 6 for onnces or drachms, and if the remaindar be either 1,8 , or 5 , add $\frac{1}{2}$, \downarrow, or $\{$.
(5) The following diagram of days in decimale of a week will, I trust, be foand usoful:-

$\begin{array}{ccccccc}\text { Days.............. } & 1 & 8 & 2 & 6 & 4 & 5 \\ \text { Decimals........ } & \text { i } & 4 & 2 & 8 & 5 & 7\end{array}$

Here the whole of the docimals are recurring, and to and the equivalent to any particnlar day commence with the figare therennder, and read on, repoating in - 857142 of a weok.

We oannot, I think, arge too atrongly the adoption of a complete system of decimal ooinage, weighta, and measares, and when we think of the small majority that sufticed to "throw out" the last bill on the subject, we may ret hope to find it pass into law ere lorg. Perchance a petition signed by as many as can be
foand to support the measure would go some way fonnd to support the measure won
towards effecting the desired reform.
A. M. Fegting, F.M.S.

METRIC AND OTHER DECTMAL SYSTEMSDUODECIMAL ARITHMETIC.
[3965.]-Ir is curions to see how a man of srientific acquirements, like "E. L. G." (letter 38:0), can fall foul of the decimal aystem in tho way he does,
and I think that he can hare had very little pracand I think that he can hare had very fittle prac-
tical accanaintance with matters of accjunt, or be tical acquaintance vith matters of accjant, or be
wonld have hesitated before passing such a wholeaale and sweeping condemnation on the system.
Alluw me, Mr. Editor, to recommend "E. L. G.," by way of experiment. to add ap (sar) 40 colamns of
50 or 60 lines each of moners, and 40 men 50 or 60 lines each of moners, and 40 more of aroir-
dnpois weight, tons to pounds, and mal:o the totals dappis weight, tons to pounds, and mal:o the totals
of the columns agree with those of the lives. By the of the columns agree with those of the lives. By the
time be has done with this I tbink he will a arte with time be has done with this I think he will acree with ns poor accountants that the nge of the decimalsys. tem, and consequent abolition of the moponnd rnles,
wonld materinlly facilitate such operations, and woald, therefore, be a great boon.
While on this snbject, allow me to make a few rewarks on a decimal money grstem. I sabmit that there are grave objections to the proposed use of the pound sterling as the unit of ralue, inaemnch as al the smaller of our present coins except the floris would be useless, and the mass of the peoplo (the chief asers of the small coins) would be great losers before hey conld become nsed to the new ones. To remed this, I would suggest that the new coinage should be in dollars aud cents, the cent being exactly eqniraicnt to our balfpenny. Then all our present coins woald be available, and the tronble of learning the new sys.
tem would be reduced to a minimnm, which to most tem would be rednced to a minimnm, which to most
people, especially the poor and nueducated, would be people, espec
a great boon
great boon.
What, in the name of wonder, can be the meaning of the fuss made about the multiplication of concret quantities (query 11188)? Verily, the doctore disagree on this point as on others. Herewe bave "F. R. A. S., "E. L. G.," "Moneta," and others, proclaiming the impossibility of the thing, while in manst anthorities on arithmetic a rule is given for doing it. Passing over "Walkinghame" as antiquated, take, for example "The Principles and Practice of Arithmetic." by
less a person than John Hind, M.A., F.C.P.S., F.R.A.S less a person than John Hind, M.A., F.C.P.S., F.R.A.S.
\&c., hailing from the classic (or mathematic) shades of Cambridge.
His drst example is as follows :- Find the ares of a rectangular parallelogram whose adjacent sides are
Eft. Sin. and 4ft. 9in. He proceeds to do this in this wise :-

$$
\begin{aligned}
& \text { St. in. } \\
& 58=\text { longth. } \\
& 48=\text { breadih. } \\
& 4210=\text { prodnot by } 4 \text { ft. } \\
& 811 \cdot 8=\text { produat by } 9.2
\end{aligned}
$$

Now, if feet oan be maltiplied by feet, and inchee ky inches, why not pounds by poinds, or shillings bj shillinga?
I may add that most computations of timber me sure are performed in this way.

No. 170.

MODE OF DIBCOVERING THE LONGITUDE AT

 SEA BY THE MOON AND FIXED STARS.[8966.]-SOPPOsE, when the moon comes to the meridian of Greenwich, that say one of the fixed stars is then two degrees to the west of the moon, if an observer at sea finds on that day that fixed star one degree
less to the west when that planet (moon) comes to the less to the west when that planet (moon) comes to the
meridian he is in, and that as to its velocitr it precedes meridian he is in, and that as to its velocitr it precedes
in mean pragression, the observer is then 27 deg. in mean progression, the observer is then 27 deg.
19 min . 176 sec . to the east of the Greenwich meridian. If the fixpd star be finnd at sea one degree more to
the west, the ship is 27 drg . 10 min . 17 sec . to the west the west, the ship is 27 drg .10 min . 17 sec . to the west
of the meridinn of Greenwich. Conseqnently, if thn fired star is 27 min . to the east of the meridian of Greenmich, or if 1 min . more to the west, the ship is
37 min . to the weat of the meridian of Green wich, and so on in proportion. But ns the mnon's velocity varies,
allowances mast be made for these variations, and equation tables made accordingly. These tablos cen be made to ns great exactoess as is requisite by mating observations with the telescope and micrnmeter, where-
with the distances to some of the fixed stars in to be measnred, not precisely from the moon, bint from the meridian when the moon comes to it. The meridian must be distinguished by lines in the telescope from the higher to the lower part thereof, one end of which line in the observation mast seem to tonch some re markable apot or mnantain of the lunar orh when it is
at its meridian altitude: then the said line exactly shown the meridien.
The distance of any of the fixed stars in the neighbourbood of the moon from the meridian onght to be messured by the screw of the micrometor, or by lines
divided into digits, and sub-divided into lesser denominations, which lines mast cat the meridian line of the telercope in right angles.
In making observations at ses the telescope onght to be flyed on a pedestal (being a pole or rnle of a proper height), farnished with plammets depending on Fires
or plateens, and traversing to contrary points of the or plateens, and traversi
compass and of the ship.

Example: If one plammet traverses north or sonth, or from atarboard to larboard, or larboard to starboard, another must be ao placed as that it may traverse east
or west, or from stern to stem, vice versa. The pedestal or west, or from stern to stem, vice versd. The pedestal
mant be kept exsctly even with these plamnets, and mant be kept exsctly even with these plamisets, and has an even hand, and by a machinery resembling that of a mariner's compass, in which, by means of proporClanate weighta, the pedestal mast traverse on pivots n contrary ways. \triangle microscope must be made ase of site to keep off the wind, thereby the telescope or not other mathematical instrament will always be, position with regsrd to the zenith, especially in moderate weather. Pedestals may be made in which one
plammet only wonld show the varions declinations of the ship with regard to the zenith. The telescope is to be ao placed on the pedestal as that it may be essily
moved from one point of the compass to another without moving the pedestal.
In this method it is not requisite to know the place of the monas an its declination, either at aea, or at requisite only to find the moon's right ascension, of Which tables may be made according to the general opinions of astronomers by the observations already
made, within one or two minutes of a degree; bnt by observation one or two minutes of which measores the distance of the fired stars directly from the
meridian, it may be pre-calculated within a fow seconds of a degree, on which the more exact discovery of the longitude depends.
It is nezt to an impossibility to find the moon's exact place as to its declination, because the moon has always within the tropics, refraction of declination, except just in the zenith. But the moon's right ascension can be exactly observed with the meridional micrometer every time it appears at its meridian altitude near any oltitade it has no becanse, When it is at its meridian sion. It is requisite to take notice of the declination of a Axed star, becanse the greater its declination the less apace will make a degree, minute, or second distance remarkable mian. The meridian altita of aken by another observer mith any of the quadrants that nre commonly made use of at sea. He must give notice therenf to the observer who ohserves with the telescope and micrometer, who mast then observa the distance moon'a meridian altitude can be exsctly taken by the same obverver with the anme telescope and micrometer disposed in an astronomical quadrant, kept by the same marbinery as the telescope, in smeh a position withent a horizin. The plammets of the marine pedestal which I have described will inevitably direct froper prition at rea for makiug the necessary ob. ferrations. Althongh the motion of a ship or any other cause wonld nera-inn an error of a few minntes of a orb, it wonld eanse an error only of a few minntes of it degree in the lnngitade, because there wonld be abont adiference of a few seconds of a degree as to the dis-
ance of a fixed atar from the meridian ling of the lescope. But in case of such an error, and that the ced star maxt by all means be in the vicinity of the if it he on a proper distance from the zenith. pa's parallel of doclination, the more remote it is
from the zenith, and the mors exact the observation as is demonstrated by a triangle, one side of which will be a megment of a line passing from any certain ooint of the moon (when it is a few minates of its meridian altitude or a few minutes below), another gide of the
said triangle a line from the raid point of the moon to said triangle a line from the said point of the moon to the star of observation, and the other side a line from the star to the zenith line, so as to join the zenith line at right angles. Bat if the star be on the other side of the moon's parallel of declination, the nenrer it is to the zenish the more exact still the observation, as is proved by a similar triaugle on the other sile of tho moon's parallel of decliuntion. In either ca: e , the more the plece of observation is north or sonth of the moon's parallel of declination the more exact the observation. As it requires extranrdinary accoracy and
expertuess, and counot be learnt bnt by dilizence aud expertuesa, and cnunot be learnt but by diligence aud practice, it wonld be commendable that particnlar astronomical schools were more establithed for this branoh of experimental astronomy. I apprehend
the lungitude can be easily and certaidy discovered at the lungitude can be easily and certaidly discovered at
sea by this method within hall a degree of acircle, and requently nearer.
It will be an adrantage in narigation, althongh the cthor method ${ }^{2}$-viz., by observing Japiter's satelites
(I need not say much regarding these minate bodies) (I need not say much requrding these ninate bodies)
with which, by mensuing timu with a watch, with which, by mensming time with a watch,
shonld likewife prove true, as it is to be hoped they rill, because observation of the longitnde can be mere frequently and exactly made by the moon and star than by the eclipses of Jnpiter's gatellites, as a watch must be sometimes corrected. By this method it can be corrected at sea, and therefore can be usofal for discovering the longitude when the moon is invisible at the time it comes to the meridian, or the star imperceptible by the interposition of clonde, or from the light of the san. Thia method can be rendered immediately practicable if the tables that are made of the moos's right ascension are pre-calculated to sufficient exactuess, which can be soou known by experiments; probably they are. By future observation the said precalculation may be improred and bronght to as great perfection as can be expected-that is, within a second or two of a degree. The other great difficalties proceeding from parallaxes and refractions are in this method completely obviated. This method of dis. covering the longitade at sea depends on the experimental astronomers and mat
High Heworth, Gatenhead.
Raype Lowdon.

"SCREW'S" MULTTPLICATION.

[8967.]-I pon'r see the good of "Sorew's" mode (let. 8941). Bat it reminds me of one pablished in "The Short Calculator" (Longman, Lancester), which shortens process for heary numbers-c.g., to mnltiply by 999, add 3 ciphers, and dednct the maltiplicand.
Thus, maltiply 476521 by 999999 : add 6 ciphers, \&c.476521000 OnO
$=476,520,523,479$ the product.
Maltiplying thas by 1 additional (which is simply adding ciphers), and subtracting the maltiplicand to compensate for it, completes the who
multiply by 998 , add 3 ciphers, thas-

476531000 , and deduct $2 \times$ maltiplicand
95304:
$=\overline{475,567,958}$ the product.
To maltiply by 7999 , add 4 ciphers; and, as it reqnires 2001 to cornpleto the maltiplior to the namber 10,000 ,

$$
\left.\begin{array}{rl}
\frac{4765210000}{953040100} & =\times 3999 \\
3812068000
\end{array}\right)
$$

$=3,811,591,479$ the product.
In the mame way, to maltiply .99 19s. 11d. by itself, moltiply $£ 10$ by itself $=£ 100$, and dednct 1s. Sd. for added ld. to each eide involved, maltiplier and maltiolicand. Thas-

This is right, I believe, within the 57 Coth of a penny J. Barwick.

"E. L. G." AND GEOLOGY.

[3968.]-Sons weeks ago I endearoured to extract from " E. L. G." some facts in support of his thenry of comet-falls, bat withont success. 1 whs mach disappointed at the tone in which hecarriad on the dis cussion, for the question was a bond-fide attempt to correct possibly erroneons opininne, and, as the event proves, the question wan not without interest to other readers; as the theme has again been opesed, perhaps nuelopes allowed to make a few remarks. . E. L. G. he puts me in mind of the cnttle-fi-h, which retreats from his enemies noder cover of a discharge of ink The name of Lyell acta nopon him like a red rag on a he has never tho letters he l:as written on "Geology, it has bern all asacrtinn, somethiny or of his theory demenstrable, then why on earth dies he not demin atrate it? Let us have no more palaver about Lsell

What does it matter whether this or that man arivocates the doctrine of continnity? What we wish to nnow is whether that doctrine be true or falee. Let "E. L. G." give us but one faot (we do not want millions), which is inexplicable on the supposition that cataclysms have never occurred, and he will gain at least one follower, and although I am now of opinion that the present and past distribation of life on the earth is incompatible with the occarrence of any aniversal catastrophe, I will proclaim myself n convert. For instance, let him show that the ordiuary lorces of nature are incapable of forming turretshaped hills, and that they must have been fashioned in a fow days, or let him show that his floods of water
conld haroliad no effect in interrupting the growth of the coral reefs of Florida, and ha will go far to apset the doctrine which oo raises his chole
P. Santalinus.

TERRESTRIAL GRAVITATION AND MERCURIAL

VAPOUR.

[3969.]-Appreciating as I do Mr. Proctor's mathematical knowledge, aud being rather ditident of my own, I would hisitato before questioning any statement of his on a mathematical subject, but it 1 understand him in letter 8828, p. 86, ante, I am under the impression that he must be wrong. Ho there distiuctly states that without the use of the integral calculus it is impossible to determine the attraction of a sphere on a particle ontside, or on its surface. Now, if I am not very mach mistaken, this is done without the integral calculus in Thomson and Tait's "Natural Philosophy," articles 471 and scq. If I am wrong will Mr. Proctor be good enough to set me right?

In reply to WV. R. Birt's question about mercarial vapour (letters 8558 and 3674 , Vul. XIV., p. 611) the only experiments that $I \mathrm{am}$ aware of to measure the actual elastic force of mercurial vaponr at different temperatures are those of Avogrado in 1832, and Reguault in 1814 -the former at varions temperatores from 230° to $290^{\circ} \mathrm{C}$., being 58 mm . at the former and 253 mm . at the latter, from which ho deduced a formala, giving 0.03 mm . at $100^{\circ} \mathrm{C}$., 19.30 at $200^{\circ}, 302.00 \mathrm{~mm}$. at 300°, and $760^{\circ} 00 \mathrm{~mm}$. at 360°, or boiling point of mereryy. Begnault conld disoover no measurable force at $0^{\circ} \mathrm{C}$., at $25.4^{\circ}=0.034 \mathrm{~mm}$., at $49.15^{\circ}=0.087 \mathrm{~mm}$., at $72.74^{\circ}=0.183 \mathrm{~mm}$., at $100^{\circ}=-407 \mathrm{~mm}$., at $146.3^{\circ}=$ 3.46 mm , at $178^{\circ}=10.72 \mathrm{~mm}$, at $200.5^{\circ}=22.01 \mathrm{~mm}$. As donaity of mercury vapour, according to Binesu, is 6.7 , it is easy calculating the weight of mercury vapoar in a cubic foot by following formule $\frac{x}{760} 7.6$ (weight of cubic foot of air at atmospherio preasure), whing elastic force in millimetres.

AMERICAN AND SCOTCH INVENTIONS.

[3970.]-Is No. 868 I observe an illastration of a aniversal angalar drilling machine. The selfame kind of tool was in use here, in Dundee, eighteen years ago,
and it is twelve yesrs since I frat need it in different and it is tweive years since I arsh well hnown here at Workshops here. The inventor whas well knownhere ant that tine-a poor working fiter, who never eaw means. The machine is and was chietly used for small means. The machine is and was chieny ased mor matine holes, buch as boring steady-pin holes in machine framing. The only apparent difference is that instead of the crank handle a ty-pheel was and is nsed with
handle fastened in the rim. FitzBzRTLE.

DR. CARPENTER AND PERSPECTIVE.

[8971.]-I bEG to quote the following from a paper by Sir David Brewster, as it appears to relate to the statement made by Dr. Carpenter: "This tendency of the eye to invert the perspective of rectauglo prevents or diminishes that appearance of coavergeracy on tho plane face of a lofty square tower when we are standing not very far from the base. A photograph of the tower taken from the same apot would exhivit a pain-" fnl convergency apwards which is not seen by the ey. Being acoustomed to sketch, I may add my opinion, perbaps, Whioh is that in prac do not draw high towers near their base.
M. PABIS.

LUNAR OBJECTS FOR OBSERVATION,

 MAY, 1872.[8973.]-May 9, Mere Cribinm, Hansen, Alhazen; Muy 10, Cleomedes, Burckhardt, Geminas, Messala. Miny 11, Endymion, De La Rue (a thue formatiun north of Endymion). May 12, Lucus Mortis, Plaua, Burg. May 13, Aristoteles, Eudoxus, Alcxandor (a futmation south of Eadoxas). May 14, Hipparchus, Triesuecker,
Hyginus. May 15, Albalegnias, Parrot, Airy. May 16, Clavins, Tcrra Photographia (a region Weot of Claviar).
May 17, Laplace, Manpertias, Condamine. Mas 18, Mare Hamurnm, Doppelmaser, Vitello.

W. R. Birt.

P.S.-The monogram of Hipparchas contains the objects at present known in the interior. For detain of the clefs near Iriesnecker,' conbali Work for Moonlight Evenings," ENGLise Mechanic,
March 10, 1871, No. 811, p. 575 ; and " Catalugue of Lanar Objects," area 1A, alpha. This pystem, witi he Hygians Cleft, is abown in a large drawing by Miadler appended to the vew edition of the large map.

Errata.-Letter 3856, No. 866, p. 40, April 14, for April 18, for Airius Irıdurn read Sinus Iridum-W

HOW WE SEE A DISTANT OBJECT.
[8973.]-" Boso" is clear and corract; "" E. J. D." should study modern optics. We must not forget that which itsalf cannot be seen; that it is only when we see our own eyes in a mirror that we see by rays that robound or refect to us without any angle, and when all the rays of light received are retarned (as is done by and from a mirror's anrface) the surface that reflects is itself unseen and colourleas, becanne it reflects every ray; the raye angularly received on the mirror are reiected at the like angle. Aobo" shom, by its shading of or not reflecting all the received rays : it reflects bat those that denote ta colour.
Light is repeatedly refected, upward, downward, or latorally, distinctaces fading with degree of distance, according to the laws of perspective, whether observed in atmonpheric dust or in the objects of a Iendscape. The fading of visibility of diatant objecto, t lake it, is obstruct more extensively as distance increases; bat also raye diverging. fower rays reach the eve as distance also raye diverging, fewer rays reach the eye as distance
increaces. "E. J. D." may learn nomething from Sir increases. "E. Herschel's "Lecture on Light," the sirth of his "Familiar Iectures," published by Strahan.
J. BARWICK.
[8974.]-Ir reply to the letter of "F. R. A. 8." (8870, p. 61) I beg to sey that as Mr. Proctor has, to a
certain oxtent, adswered my letter (8498, p. 510), the certain oxtent, adswered my letter (8498, p. 510), the
fact of "F. R. A. B." not boing able to nnderstand it, fact of "F. R. A. B." not baing able to understand it, is now of no consequence. I beg to sasure him, that haring ofton watched with intoreat the entrance of a sunbeam into a darkened room, and boing unable to satisty myself how amall objecta illuminated by it became visible to me at some dintance, I read the theory of light, and have come to the oonaluan that it does not explain in a rational manner how wo see
distant objecto. I, therefore, pat forward the problem with a view of ascertaining the opisions of soientitio men. I will now propose a question, if he will tindly answer it. Bappose 2 vact multitude of persons are aseembled on a plain, and that in front of them nome conspicuous object is elevated, so high that all can 800 it (gay, a large atatue of black polished marble); to enable all to see it, the theory of light says:-"The rays of light must be detached from every physical point of it in all directions; but only those rays which onter our eyes can render them vialble to us." It is evident from this that two distinct sets of rays must proceed from the object to each of the spectators-that is, one for each eye, and yot the polished surfece of the statue ought to reflect the light specularly. Of oourse I am aware that we cannot make a perfectly polinhed marface, and yot after making due allowance for the namerove cecondary refections of the atomic prisms (Which some sappose all bodies consist of) I cannot concoive how the refections can be so numerous and 80 convoniontly arranged that they fiash in right lines from every phyaical point of the statue to the eyes of the apectators, and that additional raye must proceed to any distance, or to any point from which the atatue can be seen, even to twenty miles, when viewed through a telescope. I shall feel obliged if "F. B. A. 8." can remore my doabte reapecting this point in the theory of light. I scarcely thint he can mistake my meaning, which is to sacertain how, considering the various carves in the statre, it is nevertheless able to send an ancountable number of rays to so conveniently meet the requirements of every spectator, no matter how numerous or where pleced, whether far or near, pro-
vided the otatae is in view.
E. J. D.

LUNAR METROROLOGY.

[8975.] Will yon allow me to call Mr. Birt's attenion to the subject of meteors, in connection with posaible lunar atmosphere? Our satellite must be as liable to be cannonaded by meteors as the earth, and having no appreciable atmoaphere, theno must impinge upon her surface " as they were," not anflering for the most part dispersion, as is the case with our shooting stars. Now wo know that these bolides contain, at all events, occluded hydrogen, and possibly other gases, and as the foroe of collision must be suffeiont, if not to vaponrise, at least to pulverise, the bolide, wo have here, I think, a source of rapour and gas, of whioh the otherwise perfect vacuum would prevent the liquefaction or solidification. Again, wo know that whatever may be the composition of the moon's rocks, they cannot be pare metal, or the reflection of light from her surface would be different. There mast, therefore, be oxidation, and it appears very unlikely for the amount of oxjgen to have been only enough to burn up her urface, except upon a supposition I made some time ago-namely, that the moon wat herself a bolide, which consisted of pure metal, and had passed through an atmosphere of oxygen in her wanderinga. We aleo know that metals amell, therefore evaporato, as in fact most mineral subetances do, and this andor a precaure of 153b. to the square inch. It there be almost a perleot racuam orer the moon's surfece, metals, de., mast avaporate much more readily.
Bolides contain substances such as iron, mulphur, sc., which have a powerful odour, and as they must for ages have been showered apon the moon, it seems to me to be certain that our satellite possesses an atmophere, at all eventa of vaporr, of many of the subatances composing them. Whether the light emitted by the collision of an enormons bolide on the dark limb of the moon corld be seen by it tolescope secidentally turned that way, I think doubtfol, yet, if I am not in error there have been coma appearances which render such e supponition junt poasible.
M. Plais.

BASKET-MAKING.

[8976.]-In back numbers queries asking for information on basket-mating have appeared. The following, extracted by the Journal of Horticulture from J. C. London's "Snbarban Horticaltari
One jear's shoots of the common willow, or of some ther species of that family, are most generally used. The shoots are cat the preceding antumn, and tied in bardles, and if they are intended to be peeled, their hick ends are placed in standing water to the depth of 3 or tin. ; and when the shoots begin to sproat in spring they are drawn through a split stick stuck in the ground, or an apparatus consisting of two round rode of iron, nearly balf an inch thick, 1 ft . 4in. long, and capering a little apwards, welded together at the one ond, which is sharpened so that the instrament may be bench, on which the operator sits. In using it, the

operator takea the wand in his right hand by the amall end, and pats a foot or more of the thick ond into the instroment, the prongs of which he presses together with his left hand, while with his right he drawe the willow towards him, by which the bark is at once eparated from the wood: the amall end is then treated in the same manner, and the peeling is completed. Every basket consists of two parts: the framework of the structure, and the flling in or wattled part. The principal ribe in common baskets are two: a vertical rib or hoop, the npper part of which is destined to form the handle; and a horizontal hoop or rim, whioh is destined to support all the subordinate ribs on which the wands are wattled. The two main ribs are first bent o the reqnired form, and made fast at their extremities
by nails or wire. They are then joined together in their proper position, the one interyecting the other; and they are afterwards nailed together, or tied by wire at the points of intersection. The operation of wat-
tling is next commenced, by taking the nemall cend
of a wand, and passing it once or twice round the croas formed by the pointe of interteotion; after which one or perhaps two seoondary ribs, are introduced on each de ol the rertical little forther then tro or more procendery ribe are introdoced, and the procene is continced fill arper
 are pat in to support the war tructure. The whole art, as far as concerns the gardener, will be anderstood from the following
Fig. 1 shows the handle and rim of what is called the Scotoh basket, made fast at the points of intareection. Fig. 8 ahows the same gkaloton, with the ribe of one de maded, and tho watling or woven work commenced. Fig. 8 represents the commencement of what is called the English mode of batiot-making; in Which three parallel rods of 2ft. or 88 t . in length, according to the intended diameter of the bottom of the banket, are laid fiat on the ground, and three other rods of the same longth laid acrose them at right angles, as at a : and next the weaving process is commenced, as at δ.
Fig. 5 and Fig. 6 show the progrese of wesving the bottom; the latter boing what ultimataly becomes the under side, and the former the upper side.
Fig. 7 shows the bottom complete, the under side of it boing rppermost.
Fis. 8 shows the bottom turned rpaide down, the points of some of the radiating ribs eut off, some of the rode which are to form the aide ribe inserted, and the aide weaving 00 mmenced.
Fig. 9 shows the beaket nearly completed, with part of the rim finished, and the rod on which the handilo is to be formed inserted.
Fig. 10 shows the rim comploted and part of the handle plaited.

AxDROCNE.

LIGETMNING CONDUOTORS.

[3977.]-I WI8E to exprem thanks to "Sigma" for taking any notioe of what I wrote on the above subject, es he has been kind onough to do in letter 8923, but at the same time I regret that I should have led him to suppose I ask queations with a viow to obtaining knowledge instead of taking the trouble of reading for it.
I put the quentions to "Philo" to ascertain whether he had any ground for two statements he mado-ris., frst, that condacting bodies (800 letter 8783) conduet by means of or through thoir eurfaces, as diatinct from their interior anbatance, and, secondly, that a dischargo bursts things (eee lettor 8846) by the expanaion of stoam produced, "or else" by the repaltion among the particles.
I alked him the scoond quention because he did not notice the first, and beoause he had taken upon himcelf to try to sot me right (lettor 8846), and from the evidence of his letters genorally, and 8783 in particaler, I did not think he was the right man for the job, Otherwise I shenk have let him slide on.
When I put into "Sigma's" month the words "electricity is a fluid," do., I colected the least likely ones that I could at the moment imagine, and the reply he has actrally made is, I am gled to say, just nearly about what I should have anticipated, if I had
been on the look out for an answar at all. J. I. P.

VERDE ANTICO.

[8978.]-ETHEL TAYLOR (p. 560, Vol. XIV.) ald whether the antique green bronze can be perfectly reproduced by chemical meanh. I guess not; no maro than you can reproduce the eract tone of a picture by Raphasl, or of an Ameti violin. You can imitaio them, of course, and so fou oan the antique green bronze, but only ap to a certain polnt. Moreover, I doubt whether the green now seen on metals at Pompeii had the same tint or tone 8,000 years ago, when tirst the castings were made, that it has now. This most exquisite tone and tint is probably prodnced by the oxygen heving in twenty centuries worked into the body of the metal, whereas any chemical applioation in confined to the surface only.
I congratalate Ethal Taylor on the absorbing and intaresting pursuit she has taken up. The only objection to it is the way it cuts one's hands to pleces Mine look very much like those of an inharmonins blacksmith washed clean, for I can't work in gloves a Ethel Taylor doee. If ahe will mention more exactly the way the reproduces the metal objects in 8tockholm I may be of use to her, as I am familiar with all the methode of working in wax and metal, and no prolessional gold, silver, or other metal.worker seems is. clined to come to the resone. "Trbal-Kain" ought, from the name, to be able to help her. It is only s pity that more ladies do not adopt a pursait co whi adapted to them as working in metale is, especially th procions metals, which require a more tastofal ar
dalicate manipalation.
Ppoves.

LENEES.

[3979.]-IF "F.R.A.B." (let. 8710) will examine a gla which has the deposit he mentiong, he will 800 it to a fangus myceliam, and will find plenty of spores. is vary troablesome, and if it be not repored ir quently it will, after a time, deatroy the poll.s of th glass, and this in a good one is not very p The only prevention, if it be one, is air, and the glasses occasionally with dry blotting-paper (m) into a roll, and then tho end saraped with a knife) or with very soft velvet. The good of dry blotting-pa is that it effeotally remores damp and grease. washleather never will do for long, and withont

PUTREFACTION AFTER DEATH.

[3980.] -IT is admitted, in medico-legal investigations, that the appearances of rigidity and putrefaction In dead bodies may be called in to determine the time of death. Soch signs may, however, appear more readily in some circumstances than in others. The canses which favour and haston decomponition lie both in the surroundings and'in the body itself, in the former cace depondiog on heat, humidity, and electricity in the air; in the latter, on the age of the person, his degree of obesity, the more or less hamid constitation of caused his death. Thns, among general affections, those which alter the hamours and solid organisms daring life, such as scorbutic disease, ratiola, dropsy, patrid fevers, \&c., hasten patrefaction after death. May the same be maid of the effects of aloohol, largely used? M. Champonillon thinls it is so, and he has fonnd proof of it in facts observed during the conflicts in Paris last year.
On the 29nd May, between three and four a.m.i fourteen Communists were executed near the Autenil cemetary. By sbout midday the bodies had assamed a violet tint, the face was livid and very much swollen, commencing putrefaction. Phenomena of decomposi. tion, quite as rapid as this, were witnessed at variuns points in Paris where the insurgents fell in fight. Ont of $1 \leqslant 1$ bodies examined it Tas ascertained that 296 were those of men that had been given to drunken habits. The bodies of 58 soldiers killed in attacking barricades, or other encounters, presented, in the matter of preservation, atriking contrast to those of insurgents that foll at the rame place and time. From Monday, the 22ad, to Thursday, 25th May, the weather was warm, but not stormy. On Friday, the 26th, rain fell in abandance, and the temperatare of the air foll conaiderably, a circumstance fitted to retard patrefaction. Never theless, M. Champouillon observed that in the Plece des Vosges, Place de la Bastillo, and neighbonring streeta, the bodies of insurgenta, lying pell-mell along with those of the military, had preserved a marked advence in the progress of their decomposition. He considers it established, from numerous observation, that drankenness indeces in the bodily orgenism a state which favours the rapidity of decomposition after death; and that the bodies of drankards decompose at a more rapid rate than those of eober persons. He hopes to be able to determine, with precioion, what arethe limits of this advance in decompo-
(ition.
A. B. M. dion.

THE FLIGHT OF BIRDS.
[8881.]-Treaz are in Asam ample opportunities of observing the flight of those birds that not only move onwarda, bat aetaally riso for considerable hoights without vibrating the wings. Being a swampy coantry waders abonnd ; the larger ones, as the Korson, or Cyras, the Bor Taellia, Bor Tokolla, and Koonooa, all rive after a fow proliminary flapa, and to conniderable hoights, in this way. I have often speculated on the phonomenon and its carase, and at last find it in a simple affair. If carefally noted, the bird will be seen to travel to leeward in large circles thas: On starting and taking a wide sweep to leeward, it gets up considerable impetas, and on rounding to face the breeze, the winge are more highly inclined, and it rises like a kite, and higher than it was before as the circle is closed. Circle it really is not, nor yet spiral, for the part against the wind has less traverse than the part with it. The latter taking (say) twenty seconds, the former only (asy) fifteen seconds, or even ton seconds. Often I have tried to shoot them ere they were too high, and it was by taking aim carefully againat a tree stem, that I found each retarn was both more to leeTard and higher, yet the wings never tapped once. There is no possibility of donbting this as a fact. I have never seen them thus rise withont a breeze (though I don't asay it is impossible). On asking my dusky doorkeeper as I write, he conflrma this part, anying, "Bota pallie, pakie na mari" [wind having got, wings (need) not atriko).
The Korson it most remarkable of all. Once, at tiffin, $300 n$ after I came out, I heard a loud crawk crawk just over the house, and runaing out to see the Korson Ay over was well langhed at; not a feather was vinible, though the noise was so lond overhead still. A friend came out, and pointing op told me to look steadily a moment, and sure enongb, there, miles up it seemed, Fere a lot of little black dote seemingly stationary, and they were the Korson, with wings of 9ft. or 10 ft .
stretch. I afterwards watched them with binoculara, and never saw one of them fiap a ving once.
The remarks of your correspondent (let. 8260, p. 382) aboat noise of wings sounds comical here. My brother and 1 , both pretty good canociste, were only yestorday nearly apset by the start we got at five Hooangs or large hornbills saddenly flying off the top of a tree we were paddling past, eaoh flap sounding like tearing sharply a yard of calico. The noise of their wings can be heard at leant 910 yards againat a breoze: that I have measured.
Capakattie, Seebragur, Asam.

COMPETITIVE EXAMINATIONS.

[8982.]-IN reforenoe to letter 8918 (page 73) I now understand what Mr. Bottone menas ; bat what does Prof. Barll mean-that it is donbtiol that SO_{s} is ever prodiced, or that Prof. Odling and Dr. Debas, the Flight exd Millere (the abistantexaminers are Dra. Sarely not the latter.

CONSTRUOTION OF TRANSIT LINES.

[8988.]-In the hope that it may be of service to the readers of the Exalish Mychanic, I now describe my plan for the construction of transit linen, which I have or many years employed with succoss. I can claim no originality in the invention. This is due to Dr. abridgement of the "Philosophical Transactions for 1721," Vol. I., chap. 8, p. 227. A bar of iron, 1 A, Fig. 1, aboat 5 ft . 6 in. in length, is fixed to a wall as nearly in the meridian as may be. To this bar aro attached by nuts and screws two holdfasts, B B, at about 4ft. dietance from each other. Thene, also, are farnished with nuts at their retarned ende. Upon these boldfasts, as centres, tarn the iron bars O C, D D. The bars are olamped in any required position by the nuts on B B. at the ends of each bar are sliding. pieces, which have clamping nats for adjostment, and also slots, in which are the carriers for plamb-lines and the sights for viewing the same. These are secured in their places by thamb-sorets. One of these sliding-pieces (oarrying a sight) is shown on an enlarged scale at E. The bars are 2 ft . in length. The adjustment to the meridian

can be made by any of the usual methods omployed for bringing a transit instrument into the meridian; or, supposing the trae time of the sun's meridian pasiage dise at that moment, viewing the southern line through the northern sight, This having been done correctiy, the sonthern sight and the northern line may then be adjusted thrs: Bring the northern line over the eyehole of the northern sight, and bring the eye-hole of the southern sight to agree with the soathern line. For greater accaracy, the contact of the two limbs of the sun will, of course, be observed as well as the contral pasagge. The first rough adjastment is made by tarning the two bare with sheir lines and sighte on the holdfaste, and then clamping them; the next by the plamb-line in its slot, and the final one by the sight in ite alot. By the slide in the direction of the length of the bara the lines and aights can be bronght to near or clone contact. The weighta are susponded in water to angles to their axes.
If solar observalions only are required, then, of course, one line and one sight are sufficient. In this case, the line may be carried in a slot at the end of a
juated in the alot at the ond of another bar or rod of ron atiached to the wall st the required hoight and distance. This is a very simple and vory effootive hind of transit line, which I have or many y ears amployed. Fig. 2 reprosenta a portable form of tranait line for travalling or the pocket. The stem $\Delta \Delta$ is screwed (say) into the apper part of a windon-irame, having a son harn aspect. A piece of bruas wire suder in a hole at the ond of this stom, and can bo fxed in any position by a clamping-screm. The end of this wire is parforated with a small hole for a plamb-ino. C in a sight-rane, having a dari shade tre aight-hole aiding in a dovetail for ajuasment, and farnienod, aloo, wing a olamping-scrow. Misaightraoe is screwed (say) into the dill or the wiadow or other At place, at the requisite distanco from the plamb-line, and as near as may bo in the moridian. The rough adjustment is mado by the hole in the atom A A, and clamping it by the screv; he final adjoument dy me alio in wo algatrane, and then Axing by it clamping-sorew. All the parta in Fig. 2 are given hall sive, and 1 shall bo obiged the position in which they are reprosented in the the position in whioh in if any reduction is neconeary I tract your on-
get isetch. If any reduotion is necomary I trat your on-
graver will state the ratio. Those of yqur readors who may be intereated in the anbject of transit linea may me referred to the paper in the "Pbilocophical Trang. be reierred tro tady papored ; also to Dann's "Introduction aotions " alroady quoted ; also to
to Astronomy " 1774), p. 28, and Adam's "Geometrical and Graphioal Eseays," by Jozes (1797), P. 427. When once properly adjuntod theno maridian lines are far superior to any sundial, and give resalts nearly ap-
 With ure compared. However, the one involves the quastion ol an outlay
shillinga.
Sidmonth, April 12.
N. B. Hemoirgx.

ARE ANTS PIRATES?

[3984.]-CAx this possibly mean do ants rob at sen? If so I most anawer that I don't know. But I do know from years of experience that they do rob on hand, and that most peraeveringly and effoctaally, and to an extent that makes them mont formidable and expensive opponents to thone living in hot countrion. My experience was in Buenos Ayrea, whare we were kept oontinually on the alert to circumvent, and, if posaible, destrey them, or otherwise they would soon have robbed us of every vegetable that grow in the quinta.

W. Gavozo.

GARDEN STUEF.
[3985.]-(3888).-Potato Cultuas.-An experiencod farmer to whom I related my succome lant year in raising a large orop without manare, told me that the coil of my garden was so good as to ronder any cort of manure ior potatoes anneccesary, Ho added that in all soile rank or arade manure wae poicon to the plant. (3911).-Agi Ants Piratze ?-I ontirely agree with " J. O." on this subject. How oan the ants increace the appetites of the aphides by acting as their scavengers? Earwigs and woodlice I End are torrible bud-eatorn. Ladybirds prey upon the aphis, and hop-growors love ladybird and its larva can effect very little in keoping down the fly.

Wezde.-Alwaye leave a fair proportion of weede in the garden for the autoobthones, luggs, snails, and other varmint, whose anceators wore the lords of the soil ages before man came to usurp it. Thoy, unlike Red Indinns, can never beentirely extirpated, and if they do not find their native weods will derour what wo sow. Their nambera can bo kept within ren limits by traps, sach at amall heaps here and there ol old bricks or vegetable relase, to be looked ovar from time to time.
Rockwonk.-Ferneries and heaps of tree rootu are fertile sources of troable, as hosta of slogg will broed therein in apite of every caro. This shoald be born in mind in choosing a situation for zuch ornamonta.
Onions.-An ocoanional dreating vith powderod washing soda in a firut rato applioation.
Strawbraries.- You can bcarcoly tread the ground of your atravberry bed too hard. Cover the blossoma with atraw lightly on frenty nights, and look out careand s beollo which eats the centro of the flower. This beetle was particularly boay at Wimbledon when I resided there aboat ten years ago.
Prıs.-Soak the seed in strong infation of tobacoo to keep ofll mice and birds. When coming up ailt a little soot over them to diggust the aparrown. Pars.

AN ERbATIC METEOR.

[8986.]- On the 16th of March, I was engaged with a friend in telescopio work, whon I just happened to oatch sight of a meteor, which, darting down from the head of Tanras, parsued a course over Aries to the horizon; unlike most metcort, instead of parsaing a atraight line, it took that of a double curve. It was mooh avifter in ite fight than as ordinary metoor. Are such appearances common, or havo they been noted before $?$ I was unvilling to commanicato this belore, becanse people are apt to cavil at others obcorving What thoy hare not done; and at once to dothings coald not be. Witness my obearrations of the apots on Venas a month or tmo back.

EXAMINATIONS, ATOMICITIES, ac.

[8987.]-I AM very much aurprised that so many of vorr chemical onrrespondeats shonld have taken so great a liberty with Dr. Frankland 's nama in connec
tion with what. has been styled "a legal syatem" of chemical notation. Many of those who liave been writing npon the snhject of the Government exemina mriting npon the anhject of tho Government examinations, text-hooks, \&c. (if they mill nexase me, zud not apon which they hare written. Asa srieno, teacher apon whif and one have rimars. passed 80 par ceacter myenlf, and one who alware passed so per cent. of
thnee who were exnminad at these Government examinations, I onght to knor somethivg about what is required, and also what Dr. Fiantiland mi-hes to be done. In a conversation with the learned doctor he told ma "that in the examiantions an equal number of matks wnold be given for a correct answer upon any recognised aretem ;" and in mo onnrse of teaching I have never introdnced onnstitntional formula, more than that which was required to show the stadents
 graphic firnnme. and have innctratrd my lectures hy of all the oljectiona raicel nopinst these sectome of all the oljectinna raised ngainst there ryctums, nerer hat one even of my nmpils who thonght for a
moment that the glyptic apparatus represented in moment that the glyptic apparatus represented in reanared in the molecrle nor had I ver ono fooli arrangh to think that the bonds actrally exi-ted, lite pibes aticking out of the sidea of each atom, The spibes sticking out of the sidea of each atom. The broached br met of high standing-those accuctomed to teach classical scbolars, whose perception is supposed to he mach clearer than men of the ordinary stamp. If, then, the difficalties actaally existed with hem. it does not say mueh for a classical training hor with my pupifa, all of whom save one only receivca that not one was ever foolish enongh to think that the glyptic molecale actually existed, or that the graphic liyptic molecale actually existed, or that the graphic representation of the radicle or molecule was realy theese pyatems because I have found them of great ose in teaching organic chemistry; bat the system apon which I have alwave laid the greatest siress is the trpical fnrmala of Williamson. This aystem I have aways fully dwelt apon, my pupils have alway haverered their questions by its nse, and that they most of the cortifiontes obtained by my pupils has been in the frot olecs of write this becanso it seems from the senoral tone of most of the letters whic from the general tone of most of the letters whic have beea seat you that Dr. Frankiand is set down a bably disconrage the tyro if it met his ere. A refuta bably this is not needed by any one who is acqnainted Gith the doctor; no one fhem bim wonld have prononnoed bim sa soch; end therelore, any one sho pronoonoed bim as such; and, tberefore, any one wh did not know him, and the exan.
Bat to retarn to formulm. That of $\mathrm{H}_{3} \mathrm{SO}_{4}$ does not give as any insight into the constitation of the mole onle; wo do not hao whether the byrirogen is pos sessed of tremendors chemical force, snfficient, in fac to anite with one salphar a:3d fore orrgen atnms, or whether the salpbnr is capable of nniting with fou oxygens and two hydragens. Constitutiona, trpica,
or graphic formalm will tell us a little nore, thas:-
$\mathrm{SO}_{3}{ }^{\prime \mathrm{H}} \mathrm{Hog}_{2}$
\(\left.\begin{array}{c}\mathrm{H}

\mathrm{SO}_{2}{ }^{\prime \prime}

\mathbf{H}

Typic.\end{array}\right\}\)| 0 |
| :--- |
| 0 |

$$
\begin{aligned}
& 0 \\
& 0, \text { Hin-0 } \\
& \text { Graphic: }
\end{aligned}
$$

Now, how do these formalrs explain facta? When sulpharic acid is droppad apon red-hot platiunm it is at that temperature, and so forma $\mathrm{H}_{2} \mathrm{O}$ and O ; it also esplaing this reaction- $-\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{SO}_{3} \mathrm{H}_{2}$. This gives a primd fa ie pronf that two atoms of the oxsgen are more firmly anited to the salphar than the other two, whilnt it in no wise preventa the explanation of its constitutional and graphio organic enemintry where inatance il a stodent following molecule was called $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$, he mint the Sollowing molecule was called, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{2}$, he might say propionic acid, a other might say methyl acetate, and
ethyl formiate might be the anawer of another. The coustitational formula wonld admit of a direct answer for those thrce isomeric bodies, and would be writton thas:-

Propionic acid. Methyl scetate. Ethyl formiato. Where Men stands for the eronp $\left(\mathrm{OCH}_{3}\right)^{\text {, analogons to }}$ (HO)', and Eto for ($\mathrm{OC}_{2} \mathrm{H}_{5}$)'. On Gerhardt's and William sus's water tspe they would be :-
$\left.\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O} \mathrm{H}^{\prime}\right\} \mathrm{H}^{\prime \prime} ; \begin{array}{l}\left.\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)^{\prime}\right) \\ \left(\mathrm{CH}_{3}\right)^{\prime} ; \mathrm{O}^{\prime \prime} ;\end{array} \begin{array}{l}\left(\mathrm{CHO}^{\prime}\right)^{\prime} \\ \left(\mathrm{C}_{3} \mathrm{H}_{5}\right)^{\prime}\end{array}\right\} 0^{\prime \prime}$
Propionic acid. Mothyl acetate. Ethyl formiate.
Now, all this is not mere speculation, as some people Fonid have it, but agrees with analy sis aud synthesis. Mr. Bothne (letter B862) fays he is beginaing to doubt the existence of valeder. I can assore bim that there are many chemists who have not began to doulit it, bnt have for some time denied it in toto, and 1 do not believe in it myself as now pat forth; bnt I am not quite so mad as ton stand on the topmost round of a ladder, and kunck it away frum under me, without
bnilding op a support to beep me from falling; still, I make tue ant of thert, an imperfect relinquish hold of that which has been of great ase to
me in my course of teaching. Mr. Bottone also says "we can acconnt for the existence of phouphoras aci thus:-

H - $\mathbf{O}^{\prime \prime}-\mathbf{P}^{\prime י}$ - $\mathbf{O}^{\prime \prime}$ - H

$\mathbf{O}^{\prime \prime}$ $\mathbf{1}$ \mathbf{H}

T the abore formnia were correct why cannot we form PNions)? simply becanse the graphic formula should

$$
\mathrm{H}-\mathrm{O}-\stackrel{\stackrel{0}{\mathrm{O}}}{\stackrel{1}{\mathrm{P}}} \underset{\mathrm{H}}{\mathbf{1}}-\mathrm{O}-\mathrm{H}
$$

In support of his formoln, will Mr. Bottone kindlr give me as an illastration any mineral oxyacid which contains the gronp HO any number of times which is
not canable of bing replaced by the metallic gronp not canable of being replaced by the metalic gronp
Mo, where MI ginnities one atom of a monad metal? Phosphorns nuikes with oxygen to form a triad radicle phosphoryl, and wo have the trichloride of this radicle Which, when boiled with water, produces hydrochlori and phosphorio arids; moreover, this phosphoryl tri-
chloride is formed from the pentachloride of phos chioride is formed from the pentachlarite of phns phorus, two atoms or one molecnle of the chlorine oxygen. Now, if we represent phosphoras as only possessing a triadic signification, and that the penta hloride be formed by the combination of the two molecules, PCls and Cl_{2} (see "Chemical Philosophy, Wartz), thia barmonaion reasoniog is herroyed when we nite PCls with one-hall molecnle of oxyren, or, speak more correctly, when we replace a molecule o chloine by an atom or hall-mulecale of oxygen Sarely no mocular forco exiln whero hor exin ao molecule, and in we call chlorine a monad element, and phosphorus a triad, where is there suy chemica nffnity if all is neatralised by combination or malaa sataration- 3 to 3 ? 1 have not broaghi this formard becanse I am specially addicted to this pentad natare of phosphatar sod nitrogen, for nearig all the element alter in thear so-ealled valencr, and the ralency alters
because wo have firmly fixed hydrogen an the gtarting point, never allowing it to appoar to become an element of higher equivalency, for the proponnders of dared to challenge the hitherto accepted monovalency of hydrogen. Fur this is their starting point, and the whole theory would then be andermined, and be found to rest npon e very ineacare basis
For my part I do not believe in moleoular combina tion, but rather in the polvvalency of some of those clements which are now called monads. The donble chiorides are carious specimens of this, and as chlorine and the halogeus generally all form double salts, the hight metals withine hea assert that chlorine muat be a polyad in those mole calen; bat wilh some of these donble chlorides there Cl_{3}, I am inclined to think that the baspls are the polrad constitnonts
Now Iam on this subject perhaps it will please the worthy discoverer of the ntmonia tspe, and the pre dictor of sulphur nrea, "Eiolecticns," if I give the putassiom chloroplatinate formala, whica might
either be writton:either be written :

$$
\left\{\begin{array} { l }
{ \mathrm { K } = \mathrm { Cl } _ { 3 } } \\
{ 1 } \\
{ \mathrm { Pt } = \mathrm { Cl } _ { 2 } } \\
{ 1 } \\
{ \mathrm { K } = \mathrm { Cl } _ { 3 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\mathrm{K}-\mathrm{Cl} \\
\mathrm{~g}=\mathrm{Cl}_{2}
\end{array}\right.\right.
$$

The alumininm and pitassinm ohloride, zo-called dontile sait, and its corresponding salphate, may be

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{K}=\mathrm{Cl}_{2} \\
1 \\
\mathrm{Al}=\mathrm{Cl}_{2} \\
1 \\
\mathrm{Al}=\mathrm{Cl}_{2} \\
1 \\
\mathrm{~K}=\mathrm{Cl}_{2}
\end{array} ; \quad\left\{\begin{array}{l}
\mathrm{K}=80_{4} \\
1 \\
\mathrm{Al}=80_{4} \\
1 \\
\mathrm{Al}=\mathrm{SO} \\
1 \\
\mathrm{~K}=80_{4}
\end{array}\right.\right. \\
& \text { Cnloride. }
\end{aligned}
$$

Both these molecnles cannot be halved, if any faith is put in Gerbardt's law of uneven aftidities, nuless alnmininm is made to act as a triad; but then, again, artiad, and a perisead alwars an element of uneven artiad, and a perisesd alwars an element of uneven
ralency or atomicity, and it is in this latter respect that 1 cannot agree (nnd uit only myself, but many other chemists) with Mr. Buttone, when he tries to make chlorine appear to he first a monsd and then a drad. "Eclecticas "" asks whether gold really replaces three at,ms of bydrogen? Tuking eithrr the old notation
or the nem, I say, most emphatically, "Yce." Thas :-
Water trebly Anric Water doably Potassiam
$\begin{aligned} & \text { condensca oxide. } \begin{array}{l}\text { eondensed } \\ \text { molecale. }\end{array} \text { molecule. }\end{aligned}$

We will now turn to the old notation-

and the chloride :-

$\underset{\mathrm{H}}{\mathbf{H}}\} \mathrm{Cl}_{3}$

Hydrochloric acid
condensed molecule
$\Delta \mathbf{n}^{\prime \prime \prime}>\mathrm{Cl}_{3}$
Anric
Certainly gold does not directly displace three atoms of bydrogen in hydrochloric arid, for in that menstrmam gold in oot soluble, bat anric oxide ensily dissolve therebr, indirectly replaciug thren atoms of hydrogen for overy one of gold tixed, and that this is the norma alt of gold may easily be seen by the ease with which the aurons compoands split op into anrnm and the auric ralts. This eentence alio sppears in the letter of "Eclecticus": "Now. the thenry is that Pt is dia-
thmic or dnad, and that it replaces two at ms of H . onmic or dnad, and that it replaces two at ms of H Of course it will do so with doable the old atomic weight.",
Now I beg respectfolly to s.hmit to "E.lecticas " Now. I beg respectfally to sibmit to "E.lecticas, that double the old atomic weinht is not necessary.
on the old notation we hal PiCl and PiCl2. Now in On the old notation we hiad PiCl and PtCl_{2}. Now in this latter salt the Pt (with an atamic or combining
wright of 98 5) actually replaces tro atoms of bydrogen thas:-

$\left.{ }_{\mathrm{H}}^{\mathrm{H}}\right\} \mathrm{Cl}_{2}$

Hydrogen chloride. Platinam bi-chloride.
In answer to his other quers, the weight of platinum deposited electrotypically is half the modern theory, if we take an atom of hydrogen; bnt then theory indi cates that the metals (heary) havo nn atounic and mole
cular weight identical, so a molecnle ia deposited for cular weight identical, so a molecnle is deposited for
every majecule of hydrogen-this brings us square every
again.
I am very glad to welenme nnch a chemist a "Eclecticus" to "onr" columns, for dnring the past ew years I have read his papers wity considerable interest, and I feel sare if he continnes with ns that
every one of us will learn something from bis commaevery one
I wish now to have a few words upon the designation atomicities and valencies, as exponuded by Mr. Bot one, who positively declares that shomicily is incor rect, and argues hal nitrogen cannot be pentatomic or one atom of nitrogen can only contain one alom Now, when this nsme was first introdnced into chemica cience, did not the promoters of the ralenoy-hthe chen-called atomicily theoribs kiv lis or course they knew that one atom of a diatomic elemont did not contain two atoms; ana, just the same, they bew hat one atom of a pentatomic element did not contain ve atoms. Whal was meant by the horm dishomie was that the atom was capable of fixing or neakralich hydrogen or chlorine, and a pentatomic element fivo thoms
I have often been sarprised that the valency theories have been so generally accepted, seeing that we cannat atir out of any one series of salts without meeting with strange inconsistencies, snch incunsi-tencies Which rally resulted in the adoption of a special thoory far rally resalted in
Tarving again to the standard monad hydrogen, ean it be belioved that it is a perfect unit of comparison and the same with chlorine, when we bare sach com ponnds as hydrogen chioroplativata, H_{3} PiClo, which Fclecticns" woold prefer being thns writton $\mathrm{HCl}+\mathrm{PtClq}$, and hydrogen faosilicate, H_{2} SiFe, passiag
over the rast series of donble chloridea, iodidea, and over the rast series of donble chloridea, iodidea, and
the more complicated cranides and ferrocyanides, of the more complicated cranides and ferrocya
Mr. Bottone also ears that sulphar is ouly known to combine with two monads. This may be true as regard monad elements, hat that sn phnr is at least a kefrad may be inferred irom the existence of the triethyl
 tetrachloride of sulphur, SCl_{4}; bnt this may b objected to by Mr. Buttone, who considers chlorima
adyad, althongh its dihydride has not, as far as I an a dyad, althongh its dihydrid
aware, been ret discovered.
Before I cloese this letter, I shonld like to pat a fer queries, and make a few remarks apon N. Da Fai's communication on page 68 , I frst wnald ask him, is he sure tuat ammomium (NH_{4} or $\left(\mathrm{NH}_{4}\right.$) $)$ has evar been obtained, or ever will be. It he porserses the secret of its formation, as we woald suppose from the athori tative aspect of the qners, by all means let us have columan repeat what that ammoniom is not a metal, bat that the columns, that ammoniom is not a metal, bat of a very lengthy series, and that NH_{4} or its donbled molecale ($\left.\mathrm{NH}_{4}\right)_{2}$, has no separate existence. I know a grea many will oppose this; bat it is my caudid opinion and both analogy and experiment will bear mo oat in my statements. In speaking of vapour densities, the denaities of the anumoninu chloride, snlphide, and cranide do accord with the theory, for theory state
that they dissociate, and at high teinperatures are de that they dissociate, and at high tomperanares are do-
composed into ammachia, and the hydrugen salt of the composed into ammachia, and the hydrugen salt of the
acid radicle: this can be seen to be the caso whea acid radicle; this can be seen to be the caso whes
workivg with properlg-constructed apparatue, dissocis workidg with properig-constructed apparatur, dissocis
tion does take place, aud the two gaves can be sepa tion does take phace, and tue two paves can be eepa.
rated from each wher. I have mentioned the penta rated from each other. Thave mentioned the perme
valency of phopphorn avd nitrogen in a forme
 refer to it. I am very glad to see "Sigran's" name
among those who ntick up for the metric anstem. among those who htick up for the motric aystem.
ase no other in all inv calculations, and in commercial use no other in all iny calculations, and in commercial
testivg I have iutroduced it amoug the workmen as far as I have been ablo, in preference to the old and inconvenient -

20 grains $=1$ aermple.
8 scrnples
$=1$ drachm.
8 drachmes $=1$ ounce.

I am niso pleased at the general tone of "Sigma's" letter. If we are to have a change, why not change to a system now so armly establigea, ana not key to decimalise our pound, so that calculation will have to be made as before, when one conntry is trading with
another ; better by hals had we adopt the metric another; better by hals had we adopt the metric
gystem as it now stands, and so in our commercial intercourse ase a coin which shall be common to all.

Grobge E. Davis.

ATOMICITIES ∇. VALENCIES.

[8988.]-I ΔM delighted to find that "Merouric " has hought at to misiaterpret my meaning with regard to "atomicity," as it gives me anotber occasion to point ont the neceseity of discontinuing the age of this word, my being wrong, or ignorant of the generally received ase of the term, I beg to inform him that I whs conversant with the term as soon as it Was applied by
Wartz, Gerhardt. dc., and I have pointed ont its correct Wartz, Gerhardt. \&c., and I have pointed out its correct application, in the last ten lines, st paragraph 46, of
my lessons. But I have also pointed out how condamy lessons. Bat I have also pointed ont how conda-
cive to misconception it is, to continue to make nse of cive to misconception it is, to continue to make nse of
an expression, which conveys one ides, when applied to an expression, which conveys one idea, when applied to atoms, and another totally different, when it refers to
molecules. This would bo excusable, had no other molecules. This would bo axcuasble, had no other
better term been proposed; buf many years ago Probetter term been proposed; baf many years ago Pro-
fessor Hoffmann coided the rory precise word quantifessor H, Ifmann coided the vory precise word quanti-
valence (since contracted to "valancy") to express the valence (aince contracted to "vaiancy iot not the reader for one instant imagine that the objectionable vagueness of the term is a frait of my imagination ; the "monatomic," "diatomic," "triatomic," \&c., slcohols (Oding) serve to show that suoh is not the case; while a cursory glance at any of our atandard authors will
ahow that these terms are often med, not only with ahow that these terms are often med, not only with
regard to the number of atoms in the molecule, not regard to the number of atoms in the molecale, not but also with reference to a supposed resemblance to the several types:-

| (H9O) | $\left(\mathrm{H}_{2} \mathrm{O}\right.$
 Monatom ic. | Diatomic. |
| :---: | :---: | :---: |\quad| $\left(3 \mathrm{H}_{3} \mathrm{O}\right)$ te. |
| :--- |

(See Roscoe, Odling, Miller, Wartz, Ac.)
With reference to the "artiad" and "perissad" thoory, I have already shown (paragraph 78) that it is inapplicable in several cases, hence anworthy of the confidenco of the traly scientitic man. Of the ridionlons rersonality-(pnssibly meant for wit (?))-respecting my caling attention to the fact that a personality is no argnment, and only tends to prove the weakness of tho premises of the pergnn who descende to nes it.
Up to the present time, ammoniam has not been ob-
trined in the state of vaponr, without dissociation (see thined in the state of vaponr, without dissociation (see Rorcoe, page 218, two last lines). Conrequently, the statement that its raponr density is 900 is, as might bave been expected, withont any fonndatio
hence worth just nothing in an argament.

Ammoniom, in the free state is not "similar to the monatomic alkali motala; " for these latter are clements, bence the molecnle must (according to our present ideac) be composed of two or moreatoms, whereas, ammoninm being a componnd, the
The idea of "Mercnric" coning forward to "inform" me of something which I bave already tanght in my lessons, and referring me for information to my own notes, is snfficiently amising; bat it is evidently done to arrid giving an explanation of the abnormal vapoar densities of all the ammonium com

Another personality, totally besides the argument and devoid of one redeeming epark of wit, is the one regarding my knowledge of Dr. Franklard's onnatitutional forminla in
Were it rot that I disdain to resort to personal al. lusiods, I might retort and compliment "Mercario" on his great powers of reasoning, in not being able to convince himself that by regarding phorphorus as a triad we can aeconnt for the divalence of phosphoras acid consider it a pentad. The asnezed graphic formola (which, by the bye, I had aent elong with my previons
letter, but which was not inserted) will elncidate this.

In conclusion, while begging to be exeused from oontinving the discuasion, which is becoming offensively personal ; I quote the following Italian proverb, which may induce "Mercaric" to panee ere he repeats questions: " A baon intenditor, poobe parol
g. BOTTONR.

REMOVAL OF THE STANDARDS.
[3989.]-I sEx on P. 107 that the stasiards of measure and weight have been removed from their old after "yard" on the brass plate. Now, it seems all right that after "pound" the word "weight" should appear, as there is such a thing ace a pound "sterling;"
but why " is a piece of wood Btin. long, used by haberdashers, just as a 8 ft. "role" is a 24in. jointed atick nsed by meanare, bot it is a longer piece of metal bearing on it marise to indicate what the length of a yard is. If they

KING NOMBERB.

[8990.]-I have not ventared to troable jou with what I promised at p .607 , and of which promise Mr . Box (let. 8881) asks a fuliliment, becanse he mast be reminded that according to "Philo" (let. 3806) I have wasted all the space I took at p. 607, there being nothing there but what "everyoneknew befcre." Everynambere" numbers, "ad explain ther. Box the metbod of nscertaining each step, and when he once applies this, he will find that (to use another happy expression of paper-wasting) to demonstrate", trigorously, that there paper-wasting to demonstrate rigorousiy, that there
can be no number above 2,520 which requires so great an increase as doabling to gain more divisors ; and consequently, that $2,6,12,60,360$, and 2,5200 are all the "king numbers" possible. Mr. Box points out the obrions error of my remark that 12 was the only one produced by the maltiplication of two below it. I 8 anw,
before it was in type, but forgot to add a note, that 860 also is, as he aays, 6×60.
To be as brief, then, as I can, with what "everyone knows," it is shown in Barlow, Legendre, and other works on "Theory of Numbers," that every composite namber is the product of two or more primee, ench in that if vowels represent prien to some higher power; so (back to any letter), represent all numbers indifferently prime or composite), overy composito namber it
 N posseses N mat numecr or divisori any number
 tiself and anity, so that there can never be less than 2)
it is $D=(z+1)(y+1)(x+1)(w+1) d c$.

For N is divisible by a, and by every power of a up ax; and by e, and every power of e ap to $e y$; and by i and every power hereor up to is ; and, moreover, by
every combination of any terma in these several meries ; that is, of the series-

> 1, $a_{,}, a^{4}, a^{3}$, tce., to $a=(z+1$ in number)
> 1, $e, e^{2}, e^{3}, * c$., to $e y(y+1$ in number)
> $1, i, i^{1}, i^{3}$, \&c., to $i x(x+1$ in namber $)$,
and the number of combinations of all these terms is the prodact of $(z+1) \times(y+1) \times(x+1) \times$ sco,
which prodnct, therefore, will $=D$. Now, as this depends only, on the indices $z=y, x$, \&c., and is unaffected by the magnitade of the primea a, e, i, o, sc. (orovided they are all different), it is evident that if any prime factor be present withont a prime factor
that comes below it (if the proposed nnmber N, for instance, be divinible by 7 and not by 5), it is not a noble number, for we may sabstitnte the factor 5 for 7 , have D as large as before. The prime factors of every noble number must, whether few or many, consist of the lowest primer, $2,3,5, \& c_{\text {., withont skippigg any. }}$ If there If there are foar they must be $2,8,5,7$. If tive, they farther $2,3,5,7,11$; and so with an that no factor can be repeated proved in the same way mposition than a lower factor is. Thas, a noble nnniber cannat divide more times by 9 than by 2, or more times by 5 than by
3, \&c. It cannot be divisible by 9^{2} and not by 2^{2} or by a bigher power of 5 than it is of 3 , \&c. In short, when decomposed into this form $2=.3 y .5 x$. not $7 x$, dc., the index y cannot exceed z, nor x exceed y or
aur index exceed an index that comes before it. Now, suppose we want to find the lowest noble numto make the method clear, be a very composite nnmber say the noble one 27720. This mast be decomposed into its prime factors, and under them you write their indices each augmented by 1 , which are the factors of its D, thas :-

> Factors of $\mathrm{N}, 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11=27720$ Factors of $\mathrm{D}, 4.3 \cdot 3 \cdot 2 \cdot 2={ }_{96}$

Now examine the effects on D of the varinus angmentations, beginning from the amallest, that might be made in N'a indices. Tlis will be greatly facilitated by having a table at hand of all the powers and prodaods of the Arst fer prime nambers arranged in order

magnitade, thas :-			
8 (primes)	$8=2^{3}$	$14=2.7$	$20=29.5$
$4=2^{2}$	$9=3^{\circ}$	$15=3.5$	$21=3.7$
5 (prime)	$10=2.5$	$16=24$	$23=3.11$
$6=2.3$	$12=2^{\circ} .3$	$18=2.3^{\circ}$	$24=2^{8.3}$

and still more if you have all the ratioe between sneh numbers tabulated, so that you may eee by their order Whether, for instance, the fraction Ave-sevonths or often rather unobvions at mere sight. Now the smallest increase we could make in the above \mathbf{N} would he an $12: 18$, by redacing the indices of 2 and 3 , frotn 23 3s
to 8181 , and prittiog the now factor 13 . The lattor, by adding \& 2 to the factora of D, would doable it, but the Arut imo of those factors, from 4.8, woald become 2.2, which is roducing to less than half, or more than nentraliving the doabling, so that we loarn the factor 18 is not yet admiscible. Next consider an increase as tuting $9 \cdot .8$. This will alter the firat two factors of D from 4.8 to 8.4 , jast doable, or jast restoring the prodont that would be halved by the lose of jts last 2; so that me learn the augmentation of 27720 by 20 as $10: 11$, is at once seen to be aseless, becanse it would quite remore the factor 5, while bigber ones remain; and, moreover. would girev 11 a higher index have seen to bo impossibilities in a noble nam-
ber. So again a change of 9 into 10 would
wholly remore the factor 8 , while increasing the index of 5. Next, a change as 8:9 (that is, romoving 2^{3} to insert ${ }^{32}$) woald leave the highor
factors of N^{2} withont their base 2 to stand on; and one lachors of N withoat their base 2 to stand on; and one if we remored 6 (he 23) withourare the 7 , this latter would carry a higher index than the 8 or 5 preceding it. And similar objections, quicker seen than written, will prevent the changes of 5 into 6 , or 4 into 5 , or 7 into 9 . As for removisg a 8 to insert a 4 (that is, 2^{2}), it would alter the fret factors of D from 4.8 into 6.2 , leaving jast the same product. Then the changes 5: 7,
or $7: 10$, will be seen to transgress our rales. Next or $7: 10$, will be seen to transgress our rales. Next consider 11: 15-that is, remoring the last factor of N to augment the indices of 3 and 5 . The last 2 of D will be lost, while its 3.2 beeomes only 4.3 , thas learing D naltered. Again, we might, instead of this 16, introdace $16=2$, making the first factor of D from
into 8 , and thue merely compensating the loss of the into 8,
last 2.
We now come to the atop of altering a 2 of N into 8 ; bat this would only trangpose the first two indicos of N, or first two factors of D, leaving the prodact the Bat change of 8 into 5 will have the same objoction. Bat firat factors of D from 4.8 into 5.5 (more than doable), and thas more than compensating for the loss of the anal 2. Thus we and the smallest increase of 27720 , that will gain it more divisors, it an increaco as $11: 18$, mating the factors of the mais N -

so large ma increase of N onty adaing 4 to the aumber to Mr. Bux, this step the most explaining the method table, because of the nnique property of this number, 277:0, the only one in my table, or, I believe, possible beyond it, that requires more than half donbling to yield the next noble namber, and yet does not require doabling. Now if he observes bow this comes to happen jnst this once only, immediately on the introduction of the factor 11, and notes that no two successive primes above 11 can bear so bigh a ratio as these tro, 7:11, he will see on what principles to prove that there can be no king number above 2520. This 27730 we may call the only one that is more than semi-royal, the latter term applying to those that cannot gain dirisors withoat hali doubling (or being increased as $2: 3$) and these beoome less and less frequent, till at some step, I cannot say where, but above a billien, the last of them will occar.
The series of these numbers resembles on the whole a geometrical one of a rate slowly decrensing, so that between anccessive powers of any high namber there will be more and more terms. Thus, between 1 and are 33 ; between this and actilliard 31, and so on. Hence, as the ratio $1: 2$ occurs but 7 times, so that of 2:3 will have a limited number at occurrences, some one bevond billions being the last. And 8:4 will time; and so with $4: 5$, and every lesser ratio definable.
E. L. G.

IMPROVED DIRECTING POSTS.

(9991.]-The snggestion of "Jannifred" (let. 3930, p. 94) mikht be proditahly extended by having the dipainted of cast iron, with tho lettere in high relief, not higher than 5 ft . from the groand.

I remember some years back, when going along a strabge conutry road on a pitoh dark night, I came to a sput where two roads branched off; I was at a loss to ascertain which to taie; there was no house apparently near; it was raining heavily, and a direotion pnat was there, but it was too dark to read, and considerably above my head. Now, had it been witha the letters been raised, and I lost a quarter of an hour, when a cuantryman came along and set me on my way. The cost woald be a triffe dearer than the ordiuary methods, bat the increased durability monld soon repay the extra cost. With regard to your editorial note, it was stated some time beek that the Postmaster. General kept one clerk, whose duty it was to hant the newspapers for saggestions and idess; perand so improve his mind, as well as the departmental service.

Caxis Minor.

COMMUNICATING ROTARY MOTION TO BALL FIRED FROM SMOOTH-BORED GUN.
[8992.]-TER idea has strack me is it possible to commanicate a rotary motion to a ball ared ont of a lowing:-The diagram shown a seotion of the ball, the internal black space is filled with a slow burning composition, such as is nsed for Ca-
therino wheeld, \&c.; shis is ignited by Aring the gan, and, escaping by the bolen A B, gives by ita recolion a rotary motion to the ball.
If a hydranilio rum were secured afloat-a) as to admit of an op and down motion capable of adjastment throngh it batha, do., thne diepensing with menaal labour?

ORNAMENTAL TURNENG.-IX. [8998.]-IN ortardenting turning many devices are
nsed, aimple in themsen vsed, aimple in themselvee, bat with a good resalt; many parts of cablinet work, is less combersome, could be ornamented in the lathe, and with better resalts. Those Who have noticed ornamental chair-tops may have seen circalar rosettes, fowers, dic. These are done in two
ways-Firat, by carving out the same from the solid; ways-Firat, by carving out the same from the solid; zecond, by boring a hole with a centre- bit, and flxing a tarned palley, glacipg in the same; in some instasces carring it afterwards; in others, it is loft as turned. $80 m e$ fow years ago I suggested to a chairmaker that
I coold turn the palleys out of the solid, thas giving I coold turn the palleys out of the solia, thas giving atrength to the chair. I tarned a great quantitr. both
tops and splats. I send a sketch of the same. Fix. 1 : tops and splate. I send a sketch of the same. Fig. 1: The ahnct made from a piece of dry beech, front view AA; alot cat in the chuct to fix the articio C, which is in this instance, as shown, a ohair len, fired for the
parpose of ornamenting the ball. Fig. 2: Side viem of purpose of ornamenting the ball. Fig. 2: Side view of
chuck; Δ is the hole to fix or screw on the nose or chuck ; A As the hole to fix or screw on the nose or
cerow of the iron ohack, already deccribed in mo last: serrow of the iron ohuck, already described in my last;
B B B thomb acrews to hold the article secure; C, side view
of the alot; the chuck can be made any convenient size.

Fig. 8 is a chnck of the same description, only deeper, for the parpose of ornamenting balls, or the intormediate part of table pillars, aide view only is shown. rose a ploce of dry beech, say $6 i n$. long by tin, square, for the serew chnate to hold by; serew it up tight, then triah off the shape shown in sketch; then bore a hole with a centro-bit throwah the wood at A; draw a line the lines with a fine asw ; by that means the inside of the ebvek will be even. The hobs for the thambsorews should be bored half way betwixt the chnck and tapped with the ordinary tap. I find fin. tap and box the most useful size. In ornamenting eccentric work, care should be taken to fix the work true and secure before commencing to turn the same, otherwise the wood may be apoilt, a it is almost impossible to refix exactly the same afterwards. The speed should be slow, to prevent jarring. In my next, I will send sketch of table pillar, with ornamental ball, showing how fixed, \&c. I have zent gketch of a set of till blocks, very nseful articles for the amateur to turn. The block should be of dry marked ont an ehown Fig. 4. When marked out, a piece of wood about 6in. diameter shoald be acrewed apon the iron sorew chack, just thick enough to allow the nose of the screw to project fin.; a hole tin. in depth nose of the screw to project fin. ; a hole fin. in depth to fix; mascew the iron chuck from the mandril ; place to fix; unscrew the iron chuck from the mandril ; place
the chack upon one of the circles (the largest first ahould be turned); then fasten to the till-block with ordinary screws, having previonsly bored holes for the same in the circle of wood, by this means a bowl can be turned with only a $\frac{t}{i}$ in. bottom ; a breakfast cup is a good patiern for the inside. The holes should be turned and finished with a fin. gonge; oval holes asn be mede by turning two circles or bowls one half over the other, and finished off with a carving gonge. In turning articles, if the lathe is wesk, it should have a

temporary prop from well to mandril ; only a slow motion shonld be used. Turning the larger holes first ensbles one to use more speed upon the smaller holes. Several correspondents of late have inqaired how hammer handles are tarned. I do not know how they are made in the country, but I have made some, as well Ys bradawl handles, by turning them same as nsual, only learing a flat each side of the larger part, and finishing them of in the vice witb a rasp and glase paper, bat no donbt this plan would not be quick
enough for the trade.
Samuen Smither.

COLLIERY EXPLOSIONS AND THEIR PREVENTION.
[8994.]-"ARLEy Minz," in his last letter, says that all parts of a coal-mine may be ventilated by a proper arrapgement of the colliery from the commencement. whereby the large "noal" of a colliery can have the ges always removed and made safe, he will be con-
ferring a benefit to hamanity by explaining it, becanse ferring a benefit to hamanity by explaining it, becanse
(as I said before) this has been the great problem (as I eaid before) this has been the
hitherto nnsolved by mining englneers.
"Philo," in one of his former letters, adrocates a colliery owner boing made liable for injury to his own men, and instanced the case of railway companies as an example. I maintain the cases are not analogons; a railway company carries passengers by virtue of a contract between itaell and the pablic ; if any injury occara in performing that contract the company aro
liable to pay compenaation for any such injary, the liable to pay compenation for any such injary, the
same an in an ordinary buaineas transaction ; but does same as in an ordinary business trangaction; bat does
" Philo" know of cases where injary to the paid ser"Philo" know of casea Where injary to the paid sermach doubt if he does.
This, I maintain, is the parallel case-and not injury done to passengers ; in each case the workman recoives pay for his work, but the passenger pays
money for his ticket. money for his ticket.
O have observed that a colliary proprietor in Staffordshire has been latoly fined f20 for keeping his pit
badly ventilatod. In erfdence, some bady rentilatod. In erldence, some of his men said from their working places ; yot these very men went day after day to work at the same pit, knowing how dangerous it gas. This ahows that colliers are heedless of danger to themselves ; if they had been the "model colliers" that both "Philo" and myself wish model coliners" that both Philo and myself wish pit again until better rentilated. King Coal.

ATMOSPHERIC DUST.

[8995.]-I asad this commanioation in accordance with a rery naefal rule, though it has nothing to do with atmospheric dust. I merely wish to point out to contractod only when tho subject is prosh that is to say, shortly after death; but that in a little time, when putrefaction has fully sot in, theme wonnds are attended with immunity. I have been twice nearly killed from accidents in making post-mortem examinations, but never anfered from a cut contracted in the dissecting room.
F. R. O. 8 .

CASTING METAL IN AIRTIGHT MOULD.

[3996.]-IN costing metal into an airtight mould, such as Aro-clay, a tube must be prorided through which the air can escape, and a Ggare cast by this
method (called by the Italians with whom it is much in
 vogue, "cern perduta," or lost wax, the wax figure being melted out) presents the annexed appearance. A, the aperture into which the metal is poured; B, the opening of the air tabe; \mathbf{C}, the overplas metal to cause pressare on the figure. Now, when the metal is poured, and the git C, the bollow tigare and the pipe B are all fall, and the metal in a molten state, is the pressure on the figure equal to that of the column C, or to that of the thin trbe B ? C, we will sappose being double the weight of B. It is by this method that lizards and everything that can be barnt or melted ont, aro cast in Rome and Florence. They use for their moalde an earth called Tripoli,
but differing, I suspect, from but differing, I suspect, from
the sabstance sold here under that name, as it bakes into a sort of brick. They also use two parts brickdust, one plaster of Parin, mixed into a cream.

Proven.

CHEAP OBSERVATORY CLOCK.

[3997.]-I WIsA to thank your correapendent C. B. Fennessy (let. 3859, p. 40) for the saggestion which he offers, as an improve
p. 680 of Vol. XIV.
It seems to me, however, that the proposed palley would virtaally restore (and in an objectionable form, from its greater friction) a species of "dial work," the entire suppression of which wes a leading featare in the clock designed by me. It would also sacrifice the contrivance of showing the sideresal tion required in an observatory.
I have jast added to its convenience in this respect, by marking upon the aidereal time-band the position of all the most useful stars for transit observations, placing opposite each star its decination (+ or -) to not only shows what stars are approaching the meridien, but points to the proper setting of the declinatiom circle, so that their transit may be observed withont even looking at the Nautical Almanac, which may be referred to any time afterwards to ascertain the exact clock error. I can imagine nothing more convenient than this is for observatory work.
I have felt as much surprised as gratified by the amonnt of originality which has been very generally credited to my simple clock arrangement, considering, as I do, that it contains nothing really new in horology. The Astronomer Royal has kindly informed me that the celebrated Franklin contrived a clock in which the "dial work" was suppressed, though by other and less preference in this respect.
I may add that my first clock continues to perform 30 perfectly, that I feel littie indacement to proceed with a seoond clock, which I had onmmenced apon the same model, bat with higher finish, the 'scape Wheel being made of alumininm bronze, and the pendalam
boing nourly twice the woight of the first.

I have been looking in your pages for the promised description of the "Now Maintaining Power" by your
correapondent "Regalator" (query 11250, page 6i7).

Johin F. Btanistreet
Abercramby-iquare, Liverpool, April 12.

NACASCOLO OR DIVI-DIVI.

[8998.]-Soxe time ago I replied to a query about the nacascolo of Hondaras, that I believed it was the pod of a species of Casalpinia, and that it deserved an investigetion in order to accertain if it was not good for daeing or for tanning parposes. A further inguiry has and is nearly neglected in Honduras, though it might and is nearly neglected in Honduras, thongh it might
aflord a good article for exportation. Bamsamdus.

SELF-ACTING BLOWING APPARATUS.

[3999.]-I send a sketoh of a self-acting blowing apparatas which I saw in use the other day, and with which I was much pleased. I should think it would ontirely sapersede the old blow-pipe, its advantages
over which would be obvions on a

much chesper than the ordinary method of blowing, does the work more quickly, and as the fiame is smokeless the best work is not discoloured.
Painters will find it a beantifal apparatas for blistaring ofl old paint, it being adapted for that parpose by a jot of peonliar atruotare, by which the fiame is flattoned and spread ont so that the heat is dispersed over a broad sarface. It is aasily managed by hals flling the boiler with spirit, and flling the lamp rith the same, naing a piece of lamp ootton as a riok; in about a minute from the tiare of lighting, the blat will be emittod, and can be directed to any point. By pulling ap the wick with a suddem jerk, a etronger
blast is emitted. I may mention a safety valve is blast is emitted. I may montion a eafoty valve is
adaptod to the apparatus.
H. B.E.

IMPROVED METHOD OF GLAZING.
[4000.]-THRRR is no trade oarriod on-m far as the earth is concerned at least-in which a greater amonnt of hambug is put forth to bamboozle the pub-
lic than that which deals with matters horticultural. lic than that Thich deals with matters horticultaral. Whether seeds, manaren, lawn-mowers, boilors, or hot-honses form the anbject of the advertisoment, yor invariably find that the advertiser is the only maker of the gezuine artiole. We are now gravely informed by Mr. Peter Walleoe (let. 3950, p. 98) that Mr. Ayree is the only person who has coped, or oan successially cope, with a diffculty, more or lese imaginary, supposed to
erections.
I am pleased to hear that Measra. Bendle and Burrows pleased to hear that Measrs. Rende and at once leaves the way olear for those of your readars who can nae the plane to make the improved aash-bar Who can use the plane to make the improved sash-bar
for themselres-i.e., in wood, a section of which I in. for themselves-i.e., in Tood, a section of Which I in.
close, showing the cap lifted half off. This cap, I close, showing the cap lifted half off. This cap, 1 to the dimensions of the glass, 80 that where the lat tor ore laps, the cap is made

piece bo ω spear, on piece abore is, thus allows glass, and at the same time aflording entrance to tho gatter cut in the sash-bar. If any of your readers feel inclined to try the iron sashbar described in my prerioas letter (8840 , p. 88), I hope
they ill not be deterred by they will not be deterred
Mr. Peter Wallace's assertion that it sots as a refrigerttor (l). Snow-broth ranning in the gatters of the iron sash-bars would, undoubtodily cariy off some of the heat ob tuined from the inside of the house; but if this is to be taken into consideration, What are we to substitate for the glass itself, which, presenting a far larger area, must get rid of an amonn of heat compared with which that condactod away by the irom sinks into insignificance? And althongh glass dans not conduct heat so rapidy as iran it must be recollected that it radiates it much quicker, especially if the iron is painted white, which it would be. According to the most reliable experiments on the conducting power of various matoriais, if wa; fonnd that, tating silver at 100, iron was only 90 , While the radiating or emissive power of glase was alc lamp-black being 100 . It should be remembered alc
that white load radiatos as muoh heat as lamp-black
w that colour for ateam-pipen, iron ansh-hars, do. honla be made of some cther material than the ubual pigment employed for light-coloured paints. I observe that Mr. Poter Wallace does not explain, except
vaguely, the construction of the trinly wonderfal and imperishable (!) hothouses he mentions.
saul Rpmea.
HARMONTCON PIANOS AND HARMONICONS \triangle LA DULCMMER-METAL, GLASS, AND WOOD.
[1001.]-Mr. Botronz (No. 11993) is quito mistaken in deecribing the metal harmonioon as a more toy: on ac contrary, it may be so constractod as o bo apor for ita nousds to be andible in the largest of concert nooms. I well remember the late M. Jallien need it very oflectivoly aboat twenty years ago at his promenade concerts, probably the best shilliigg'r-worth of good (and other) masic then to be parchaced for the
Although, like its ordinary glass congenor, the metal harmonicon is usually made in such proportions as to be a mere toy, it can, like bells, be constracted on a coale whioh aflorids sounds of great power and ploasing quality, becanse, as is the case of belle, loudness cateris paribued depends on the masas of material in vibradon. There is no novelty in the principle of this aribed by Sir Stamford Rafles, is, if Irightly remem de true harmonicon, the sonnds of whose metallic bars, or piates, are angmented by the resonance of masse of air contained in bamboo tubes, which are veritable musical pipes, whose lengths have barmonic relations ind of harm of the metallio bars. A yet more ancien mong the African and other "niggers." This old thing wh, a few yeara ago, brought out as a novelty-there nothing new under the san-and pablicly performed on by clever Mantor Bonny, ander the Greek title of ylophone. (N.B.-There is nothing so effective as moath-alling Greek, or yet better, a compound barharoas Greso-Latin polysyllabic word for arresting the attention of the uhlearded. Some thirty years aro I well remember exciting the wonder-it don't take magh to do that-of my fellow cocknevs by knocking God Save the Queen" out of that Asiatic mystery- the Tylophone, alias wooden harmonican, in the East India Museam, then "gituate, lying, and being," as my legal friends say, in Leadenhall-street. So, a late tellow oorregpondent who said the wooden harmonicon vas invented by a German organ builder, is of course mintaken, unless, indeed, the said organ builder was gailty of the same folly too often committed by the mittor of reinventiag ancient things. (N.B.-He is not the only unwise person who has committed this folly, as the patent rolls only too plainly testify.)
metal, wood, or glass-supported at their two nodes so that their supports may not damp their vibrations. They, therefore, form a class of musical instruments (which might fairly be designated dulcimers without ctrings) apart from those whose sounds are cansed by the ribrations of elastic bars on springs fixed at only one of their ends, the other being left free to vibrate. The taning-fork, however different from a straight bar in mere form, belengs to the former class, for it really is apported at its tro nodes, which (by bending the bar into a fork) are brought near each other. Mr. Crawford's pianoforte without strings (see his patent of 1862), lately advertised so extensively by Messrs. Cramer, belongs to the latter class. However excellent of this ce is really fine), it is bat one of many antented by Dr. Cleggart, A.D. 1778. Groll, 1812; GoldsworthyGurney, 1833 ; Pape, 1850 ; and Matthews, 1853 , have produced rariations on the same tune-I mean instra-ment-Which has the great advantage of never requiring cotimatod Then novelty of such instruments may be constracted-with glass bars-apwards of forts years ago, by Me8ers. Chappell, with a hammer-action and keys d la piano-which, indeed, it then became, jast as the same meohanism converte a stringed dalcimer into a pianoforte.
The great defoct of all I have heard is the weakness and bad quality of their bases. Probably, if their upring bars or vibrators were of much greater size they might-like big bells-be made to sield eatisfactory grand pianoforte long bass string, can hardly be ex pected from a steel spring or vibrator 5in. or bin. long, even when belped by the resonauce of a soandboard. Groll, and also Goldsworthy-Garney, employed spring bart of mach greator length; the former, if I remember correctly, nsed bars abont 26 in . long for his lower nasi notes, bat then their sounds were not assisted the resonance of a soundboard. Pape had so hithe that he employed covered stringa made of firehardened and spring-tempered stoel wire, which he said hardly ever required retaning, bat for doing this be provided an apparatas in which an index pointed to the name of the noto on an arched segment when ite pitch was correct-at least, be said so. In the absence of experience I will say nothing to the contrary, al though how he compengated for the variations of pitch cansed by alternate expangions and contractions of the trame (i.e., the bracing) of his pianos which result from ohangea of temparatare, is rather more than auy ordinary "fella" can anderatand, Being an oldfachioned "fella" mynelf, I prefer toning strings by ear to taning (or ontuning) them by sight.

The Harmosiovs Blacsemith.

LANTERN PINTONS.

[4002.]-I rully appreciate " Tabal-Kain's" politoness in not contradicting me (soe reply 11123, p. 101), but it would not make the slighteat difference if he had done so ever go fiatly.
I thought "trussella" might be a local name for trundles," and as the word had nothing to do with the question I took no notice of it.
I have only one notion of the meaning of "pitch" as applied to wheel gearing, and that is the distance of centres of toeth or trundles, mesared, not straight, but along the curve of the "pitch line," and if I am to be obliged to use it in his sense-viz., as the actual distance in 2 biraight line, then I mast reverse what I said before, and asy instead, "Tabal-Kain" is not right in saying that the pitch of wheel and pinion shonld be the same.
I do not understand what is meant by "diemotrical pitch," or any other sort than the one mentioned above. I have never read, or oven seen, "Camus on the Teeth of Wheels ;"" bat I have read, and carefally too, Professor Willis's "Principles of Meohanism," which is a much more modern work, and also Binns's am pretty confident if "Camas" told "Tabal-Kain" to set out wheels in the way he says his practioal daily

face of the tooth $h f i$ and the trundle k, and the working of such gearing woold be charming to listen to.
The object of the task of making such a pair as mentioned was to show firut the true form of tooth; econ 6 the posibily of drivig wiln a whoel of only 6 woin ; slwaye driven but nerer has to drive the havera is any ny circamsances ; loarthly, to show that the epicy(whether the teeth ra large or amall), rith the apeed smooth ection ea is the pith lines on one another and ath the werely rolling on one anothor, and ally, hat the trandes masy be picy or id in the hooln aro only gauged rigal. The for flhicker ones the carve onght to be ganged of which smounts to the same thing in proctico es put ting the template that you have out to the true epioycloid rather nearer the contre of the wheel, ar well at half the thickness of the trundle back from the centre line of the tooth space. It it is not put nearer the contre of the wheel (in draving full pointed teeth, at least) the carve is not so true al it might be.
Fig. 2 ahowa a portion of a very large wheel of many reeth (to wit, , , ,000) geared with a pinion of 6 trandles, distine pinion of Bin B.14 ith The pitch po mer 8.1 call the right asy of doin it I proped to what pinion on "Thbl- Kain'" " pinion on rabal-Kaine plan. He gaye, make the pinion a polygon, ach side being equal to the pitch of the large wei. I have done so-ris., thien a 0 al a radias, and "rawn are the centre of Tabal-Kain's enlarged pinion, and pinion a co that centre d drawn the pitah line of the pinion a cef, and set off ac, ce, ef, the pitoh (as be I need nor only call ettention to the prition co a co 1 noed sow red to a to ing appo iato tho aso toating wond approcialo the amo the gearing wo lions.
rionoed perienoed man like "Tubal-Kain," so I have only ranning a-mack.

SUN'S DECLINATION.
[4003.]-Ir Henry Woods (q. 11578) will tarn to the pages in the Nautical Almanae for 1872 headed Pbenomena "一pp. $510-512-\mathrm{he}$ will ind that this will be the time at mich the 20d. 15h. 32m., and greateat declination porth the apparent obliquity of the pi $\begin{array}{ll}29^{\circ} & 27^{\prime} \\ 23^{\circ} \cdot 6^{\prime \prime} \\ \text {, which wonld }\end{array}$ assaming that at this tima he had no latitnde. ference to p. iii. of June he will find that his latitude at this time is - $0 \cdot 4$ ", which, applied to the obliquity, at this time is - ${ }^{\circ} 4^{\prime \prime}$ " Which, applied to the obliquity,
will give $23^{\circ} 27^{\circ} 23^{\circ} 3^{\prime \prime}$ for the san's declination at the summer solatice. It may also be obtained approximately from pp. i. and ii. by interpolation, thas from p. ii. the daily differences of doclination commoncing from June 19 are $+{ }^{+}{ }^{\prime \prime}$ 28.2", ${ }^{\prime \prime}$ mean second difference of $24 \cdot 7^{\prime \prime}$, which divided into $8 \cdot 4^{\prime \prime}$ gives 3 h . 18m. This quantity 20. 12h. (becanse $+3 \cdot 4^{\prime \prime}$ is 20d. 12 h . (becanse $+3 \cdot 4$ " is this time), and will give Juas 20d. 15h. 18m., differing only a fem minutes from the time previously stated. If the declination be com. the declinntion be com-
pated for this time, and pated for this time, and ence. it will produce
 compated from the declinations at apparent noom thus:-Thedifference of the differences, sa stated by
 Which, divided into $0.66^{\prime \prime}$, gives 0.641 of a day, or noon of Jane 20 , which
experience leads him to do, that either Willis or Binns would have pointed ent the absurdity of his teaching long ago.
My own very first exercies in wheel-making was a pair of 6 teeth each only-viz., wheel of 6 teeth, same size, only with the trundles varying from tin. to 1fin. diameter. Of this I send a sketch (Fig 1). The biggest trondle is shown bottoming the largest space betreen the toeth; $a b, b c$ are the sides of the true epicycloid toeth, supposing the trandles had no thick. ners. def shows the form of tooth for the trundle b when a piece half as vide as the trandle has been ganged of from the true epicycloid, which is the proper way of doing it. $h f f_{2}$ is the reverse side of the right-hand tooth suitable for the amall trundle k. It does not require much pazzling to find out where k would be if the distance from b to k were $3 \cdot 14$ instead of 8 in . exactly. The reanlt may be mentioned-riz.,
that we should have 14 or $\frac{1}{7} \mathrm{ib}$. becklagh between the
is Jane 20d. 10̄h. 25 m ., mean time. If the san's menn hourly variation $\left(0.83^{\prime \prime}\right)$ for a time midway between noon and the apparent time required be maltiplied by $15 \cdot 42 \mathrm{~h}$. it will give $5 \cdot 2^{\prime \prime}$ to bo added to $33^{\circ} 27^{\prime} 28-2^{\prime \prime}$, and with which I trast Henry Woods will be satistled.
With regard to indicating the change in aigns, the cases stated are not analogous-the equation of time being a primary quantity, and the variation merely the hourly motion of the declination. If Henry Woods turn to p .122 he will see no line placed to indicate that the equation of time bas attained its maximum, and is then getting less. The line is placed to read with the precopt at the head of the colamn, and changes of dimination of the quantities themselves. I may here remart that our nantical friends up to the presen remark that on averse to the introduction of algebraical signs, which only tend to confuse them, and pp. i. and ii. are essentially sailors' pager.

If Henry Woods knows anything of compatation, he must be aware that it would be ntterly impossible, with the prefent staff of the Nautical lomanac, to give lists
of occaltatione for any other place than Greenwich. of occuitations for any other place than Groenwioh,
A list as long as that there given woald be required for erery place on the face of the globe. It is, therefore,
loft to those interested with thees phenomena to work loft to those interested with these phenomena to work ont for themseives a list apeciallivadapted to any given
place, and the elements of occultations are given with Wis now.
With respect to the query about the transit of the moon's apper limb, I presame be meane the moon's apper transit. The time of transit (apper or lower) at of interpolation.

Altarb.

SIMPLE WEATHER-GLASS, BURSTING OF AIR

 CHAMBERS, ELECTRICAL, \& SPIRITUALISTIC. [4004.]-Instantly I saw the not very pietnresque onaraving accompanying letter 3801, page 69, it reSquire Baxter's papers in one of our earlier volumes, llthough, like a real genias, he gave us not only the orade notion "Which bad appeared before the public long before, but he improved apon it, and when he last glass which woald not coat more than eighteenpence if the work was done ont, and ove.too, from my experience of the past five years (for of coarsc I made one) far more reliable as a mere weather indicator than a 30 s . mercarial barometer. I have not time jost now to refer W. Bright to MIr. Bixter's last, as it appeared in oumbers, and then try his hand at something equally " simple," and, I must say, far more beantifal.(8914.)-Psychio Force People, ac.-"M. S. A." shonld rend "Spirituali-m Answered bv Science," himeelf for a medinm for a fow months ; he will then himeiflor a medinm ior a yew months; he will then
probably write less lightly upou so serions a subjcct. probably write less highty apou so serions a subjct. since the means are inadequate to the end, so if darkness is insuperable for apiritasal manifestations,
Why should we jndge thnse who can and have produced the phenomena satisfactorily by a standard in the phenomena satis/aotorily by a standard in Probahly ono of the severest testa of a true diamond wonld be a darkened room, although it may require Tonld be a darkened ronm, although it may require the circumatance that probably not the most senaitive sobject of Reichenhach could discern the phosphorescent Od emanating from his person while he was expmed in the fnll glory of annlight. Trne, more than
eighteen hundred vears ngo One said that " men loved eighteen hundred vears ago one said that "men loved
darkness rather than light," amd assigned a not very complimentary reason therefor, but then that was only directed ngainst a cortain class of men, aud coula not be intended for the medinms or paschics of oar time. be ther did not exist in those dars. "M. S. A." is ovidently too nearly a kin to Thomes Didymns ever to become a mediam, and I therefore venture to advise him not to attemnt to develop farth "
(11294.--Dividing Metal Disc.-"G. F. H." has reproduced a very neat solation A(geomi tricalls) to this querr which appeared in the Nechanicis Majazine abont the yrar 1849, bat then as now, withont demon-
atration. Will "G. F. H." kindy snpply this desideratnm? I for one think it well worth the troable and apace it woold occapy.
(11443.)-Old Wives" Scrence.-If "A., Liverpool," will mako up his fire with the same care, and pay the same attention to it as he wonld on a day
when thesun ia nnder a clond, he will get jnst as mach heat from the fuel consnmed, and cook a jni.t jnat a rapidly when the sun's rays fall full opon the tre; he will not have the parception by means of his eyes that the fire is ns bright, bat the heat will be there, and the coals will burn jast as long in the one case as die" even ander the direct gaze of Phobus while any carbon is left.
(11444)-Bunstryg of Compressed Air Chimbras between the barsting of comparison can be formed between the barsting of a compressed air chamber and
that of a steam biorer. True, they are both elastic gases, and if nothing else was present there is every probability that cateris paribus the results would be eqnal, but in the steam boiler there is another element necersary for the formation of stean, and only pre-
 already generated, and the strength of the containing vessel. Now if a ariven volame of the steam is re. moved by any outlet, its place is instantly supplied by fresh evaporation, and with a scarcely perceptible diminntion of temperatare in the whole mass, bat if the retaining ressel pives way at a weak point then there is not only the soddes rnsh of imprisoned gases, but the instantaneons conversion of a reat portion of
she overbeated water into steam, and that not merely \&be overheated water into steam, and that not merely with it the particles of water not yet converted iuto the with it the particles of water not yet converted iuto the
gaseors state ; then (it the other portions of the boiler gaseors state; then (ir the other portions of the briler
are not sufficiently strong to resist it) comes the crash a larger orifice is formed, and the whole, or nearly the Whole of the water, fasshes into steam, at a lower pressure, kranted, buthiciently great to account for any boiler axplonion jot recorded.
Bome poople can "read sermons in atones," and as some people can "read sermons in atones," and as
the sabject is one of a rather momentoas natare, allow the subject is one of a rather momentous natare, nllow
me to lay before your readers one of the many
calculw whereby I have thought myself worthy oc"boiler explosions." Nearly
 labouring mad, who was employed nnder me, was in he habit of warming his coffee for breaklast in a tin can by placing the can on a piece of red hot iron pre-
viously prepared for the purpose. On one occasion, to viously prepared for the parpose. On one occasion, to which Inow advert, he had forgotten to remore the cork from the month of the tin. All of a sndied we had a miniatnre boiler explosion; the cork was viplently ejocted, like a bad paring tenant, there was a tolerable volume of steam, and on the coiling, which was at
least $15 f t$. high, there was a nearly circular patch least 15 ft . high, there was a nearly circular patch abnat 5in. diameter, the sole relic of naarly a quart of
coffee infasion, for, nowhere aronnd or about was the coffee infasion, for nowhere aronnd or about was tho slightest trace of a single drop haring fallen or been
dispersed, and yet the can was perfectly dry and empty dispersed, and yet the can was perlectly dry and empty,
bat no longer on the hot iron plate : it was capsized, bat no longer
bat not barst.
Leaving the study of this carious instance of tho effecte of vaporisation to oar friend "Lyons," and believing that he most have witnessed somewhat analogoas effects produced on opening indiscreetly a bottla of lemousde or soda-water, I will proceed to
(11445.)-Elbctrical.-Don't do it, "J. H." If you hare not onough of No. 22 to complete yoar coil, sell what yon have and bay No. 32 to use with "thefarther ength you possese," how mach farther yon ao not These things are not made for the pnrpose of "affecting three persons at the same time," any more than is electricity suited to benome a anivereal nostrnm ander all conditions or idiosyncrasies of a patient. "J. H." may not know why, bat he may, in the exuberance of his philanthropy in diaplaying his electrical attainments, be actuany hint ond the proposition equally admits of the obverse hrpothesis: he may kill two in trying to care ono. Electricity, so far as we know it, is not a panacea for all ills, but, jadicionsly applied, is one of the great bonna Liparen has granted to its creatares; but it mnst be nsed with intelligence and the akill that a master mind, properly directed by experience, can alnne nse to revder it available. To any one who can show that he possesses these primordial reqnisites I am always "at home," and only too happy to cive any information, in mr poor way, in the constractive department, and now and then the theoretical, bat in the wholesale destructiva
departmpnt of bill or crie three pationts at a time I respectfilly bag to withdra:p until "J. H." ean assnre me that he really nnderstands the fcll uatare and ex
(11446.)-Small Cerl.-This query is go directly the antitheris of the preceding, that it merits a line if only or its foppishnean. "An Anxiona Nechanic " wishr for an indaction coil that he cand d.0nsit in the samm
receptacle as he nsanlly places his tunthpick receptacle as he nsully places his tunthpick ! Now,
sone over-zrdent el ctriciang militht come out with Pio Nonn's "Non possumns "in replying to this quers, hat
I cannot do so, sidec I bave seen a morking model of a t cannot do bo, site I have seen a morking model of n
steam.engine, with boiler completo, exhibited in the wiodnow of one Bramah, an optician, \&c., of Brist,l,
tho whole of which was contained in half a walnnt shell, and I have read of an ingenions blacksmith makinga and have read of an ingenions blarksmith making a
chain of thirty links which was fastened with a lock chain of thirtelinks which was fastened with a lock Arem the whole with marvillous rapidity, the chain ker, lick, and fia, weighing cleven grains. I bave
forther heard of things even more wonderfal, bnt as I have never done any anch feats nor even attempted them, "An Anxions Mechavic" will reanily pardinn
me for mr want of ability to help him ont of his me for mr mant of ability to help him ont of his
present diftirnty when I assure him that if he asks for any information that is worthy of occopying yoar aprceand my time, he will find no one more ready to arsist him to the full extent of my power.
(11465.)-Pbobley. -" Pazzled" may well be in a quandary if he attempts to read this query as
it is written. The first hipothesis nasumes that the trains, uneqnal in length, "move with nniform relnci ties," and, in the second case, that ther move with the same (that is, nniform) veloritipa, and ret one is a farter train nad oatstrips the other in six reconds! Sarely there is a want of nniformity and coherence of thonght in the proponnder of snch a problem, an
small reason to wonder that " P puzzed " is pozzled.
(11472.)-Plaster of Piris.-"C. B. B." mast have been imposed upon by the parson who sold him, under the guise of plaster of Paris, some old ill. used, or it may be originally worthless, material. It is not anited for continaons exposnre in the Daniell's cell; hat if originally good of its kind, it answera admirably as a sabatitate for the ordinary porous cell, being rery cheap, always to be obtained, and. though not lasting long, will give good resnlts, and it is ala so enay to make the cells at home. Some of the finest with a little battery of six cells, with plaster of Paris porone cells; bnt they reqnire great care iu handling When thoronghly satarated, and hence when I conld nbtain biscait ware I discontinned the ase of plaster. bave even used porous oflls of this material far
Grove's when I wanted "effect" for 2 limited period, but I had to pay for brillianoy in zinc coin.

Wx. Tonkxs.

INFLUENCE OF COLD ON VEGETABLE

 Grains.[40M5.]-I was pleased to see our friend "Sigms" nt his font down on "L. C. E.'日" rather "anwise" letter; bat I hope he will not misunderatand me if I
inquire what is the ase of the experiments of M. Duolaus
detailed by "A. B. M." in lotter 3928, p. 04 ? Tho oonclanions arrived at by M. Daclanx are not very clearly stated by "A. B. M.,". for in the frst plaoe it is waid that "the cold of winter has a real influence on winter in a heated chamber germiante none the tect in their season ;" and thirdly, that "the diseovered (?) inflaence of the winter's on bome [grains] ia a i cannot hon that the others do not entirely escape it." mast, must, therefore, appeal to A. B. M. There are, how-
ever, oue or two thing in this letter which attract my ever, oive or two things in this letter which attract my
attention, and appear to show that the experimente of M. Daclaax have not been condacted in a very ecientific manner. For instance, if his object is to shom that an expnsare to a very cold temperature is absoIntely necessary to the germination of soeds, why select those of marvel of Pera and convoivalus ? the first a native of the West Indios and the gecond, I
beliove, of the warmer parts of America. I submit beliove, of the warmer parts of Americe. I enbmit
that, growing in their native habitata, Mirabilis jalapa that, growing in their native habitats, Mirabilis jalape and Ipomea purpurea are never snhject td to the intense cold of a glacier, nor their seeds either; therefore all that oan be traly eaid of the experimente Duolanx is that cold has no effect on these seedn. reason that none of the rreins unexposed to the
flaence of cold germinated requires explanation, flannes of cold germinated requires explanation, found in the muspicinn that that explapation wuat I perceive thet at six of carrying oat ine oxperiment endared two months' oold, five germinated ; of six exposed one month ooly, hio grime six not oxposed at all nonth, oriy throe ; while of six nontradictory result atiended the experiment with the seode of I. purpurea. Of twolve seeds exposed two months, none germinated; of a similar nunber exposed one month, two germinated; while of those not exposed, none germinated. Bat these seeds were all sown in pots and placed side by sido in a hented chamber on Nor. 10. and germination did not compaence till Jan 95,76
ders alterwards! This fact, I think, nallites the ders afterwards ! This fact, I think, nallides the whole experiment, and points to improper sowing or
treatment of the seeds. We all know that many seails germinate seeds. We all know that masy pod; others will remain exposed to the winter and germinate in the apring thongh to the winter and apecies are destroyed. Bnt needs of the same plants nuny be taken when ripe, kept on a shell in the hothouse, or stored away in the drawer of a seedsman's shop where they sre exposed to air heated by gas
and yet, properiy soma (no matter when, so that tha reqnisite beat is applied), never fail to germinate. It forther experiments are mado I wnald sngqest that seeds of the Antirrlinam and the poppy should be tried.

Saul Rymi.

EXTRAOTS FROM OORRESPONDENOE.

Australian Meat.-I hare seen varions commnications, some approving, and rome disapproring time, and I must may I consider it a it for a leugth of not much morie than half tise erpense of botchers meat, and as to thencnsense some talk abnut the noarish ment bsing abstracted, it is quite absard. It is cooked in almost a close vereel, aud not boilcd in a quantity mater, which dops abiract adeal of poond of bef. Where in Eughand, except at Christ mastime a yon get meat like it? it is pare grass fed, antaral m"at, which cajnot be eaid of hutchera' meat with all the artiticial food with which animals here are have grent donbts whether it is altozether healihy fas lent, I often think this wants consideration.-E. T. S .

The Oxyhydric Lisht.-The oxyhydric lisht has not proved a surcess in Paris, and it hins been dis continued in the public lamps on the Boulevard def
Italicus. It is not generally known that a carburatiug apparatus is alwars employed in conjunction with oxygen, is always employed in conjunction with ratus as well as the cost of the light. Thero are but few, remarks Le oraz, who will consent to have installed in their houses two meters, two regulators. a carburator, and two distinct systems of plpes. For if the ain alone, the system was certain to fail, ereo been tho case.
Adulteration of Aniline Colours.-The intruse thectorisl power of the aniline dye seems to offor irresiftible temptation to dishonest dealers to imitate or melulterate them with worthless ingredients. A sample of fuchsine (an aniline red) lately placed in our hands by Dr. Genth was composed antirely of sugar crystals saturated with the colouring matter. To ang one familiar with the peculinr arborescent appearance of the pure fuchsine particles, the sugar crystale, with their rhombic prisma, would betray the impoaition at a glance; but without this knowledge the det"ction would be attended with some difficulty, sinee the colour of both genuine and counterleit uwnples is equally inten+e. One of the simplest methode to detect this and similar impositions is simply to digesta sumple of the suypected substance in ether or aboolnte alcohol, whum the colouring matter will be dissolved with ense, and the sugar, crystals, or wood gibro (whieh is alou used
for divhonent purposes) will remain undissolved.
Journal of Iranl:lin Institute. for diuhonent purposes) will
Journal of Iran:lin Instilute.

REPLIES TO QUERIES.

-.* In their anstocrs, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

Writa no one side of the paper only, and put drawines for illnatration on spparate pipces of puner. 2. Put

 gurvies, or remies. 4. Commercial lettara, or inaries, or
 through the post. f. Lettere gent to corrappondents,
nuder cover to the Filitor. ar: unt formarded; and the

[10114.]-Retrievers (\mathbf{U}. Q).-As anortemen do not seem to natrunive (?) the Enolish Mechanio and World of Science, I should adrine yonr eorrespnn-
dent to train thas:--First, they mast learn to ober dent to train thas:-First, they mist learn to obey
implicitls: that done, with such dogs evervthing is casy. implicitls: that done, with such dogs everrthing is easy. I shonld teach a dog lirst to carry and then to fetch a lesson once learut every act of disobedience mast be pnaisbed; take him by the ear, soold him, then give three or fonr cute with a light switoh, no more ; no act
of disobedience mast be overlooked, and the dog will of disobedience mast be overlooked, and the dog will
soon oease to disoher. Most gamekeepers for the first koon dease to diginher. Most gamekeepers for the first
beason chain the dog to their helt, for a young dog when he sees a hare alwass bolts alter it ; but if doring the Dext forr months "A Snbscriber" can take his dogs Where Rame is, he will sonn teach them not to move
when they see game; they will at first, but pnnish each time. Retrievers oaght to be fed no oatmeal and bran made into cakes, and then made into a sort of rough mash with milk; bat 1 feed mine on the scraps of the hnuse; she is perfectly bealthy, only rather too fat.
There dogs are as inteligent as most children, and these dogs are as interigent as most children, and Hsores.
[10609.] - Soparating Iron from Brass (D.Q.). and ingot it. and when not vory heard of a machive like a grindstone-box, with magnets fixed on radiating arme in place of the grindstone, the tilings being removed by coming in contact with brash.-Anglo-Anerach.
[10617.]-Watohmaking (U. Q).-Isochronism is meant when the watch is truly balanced and beats precisely equal.-Anolo-Aarerioa.
[10as30]-Fern Printing on White Wood (O . Q)-One method of doing this is to fasten, with gum or sine piris, fern fronds, or other suitable leaves, on the anrface to be ornamented, which is then "spotted nver with Indian ink or sepia, rabhed thick ting mast be done evenir, and gradually shaded off to the outsine. A pood effect is prodaced by taking ofi
 makes them appear in the background.-Q. Q. R.
[10873]-Tooth Stopping. -With respert to this I do not agree with H. G. Yonng. No sensihlo dentist monld ose more silver than tin; if oo, the
stopping is almont gure to diseolour. I certainly stopping is almont sure to dincollar. Dentiste.
[10882.]-Damp Walls. - Not knowing all the circumstances, and failing to elicit any detailod statement, it is anmewhat difficalt to give a direct repls. Cqual in both gables, the infercnce is that aspect has sowething to do with it, for althongh a driving rain may not be anflicient to satarate a 9in. brick wall, it mar be of considerable assistance to that which falls vertically, the wet being absorbed by two faces at the ame time, for the same reason exposed angles are habe to damp. Another place especially liabio ill, as is geverally the case in "R.J.s" class of house In a diving rain all that which fulls on windows is fent on to bricks beneath. increasing the
eataration twentrfold.-T. H. SAUNiErs.
[10919.]-Screw Cutting (U Q).-If "Perevering Sill Cutar will aule to he rollowing Plan he will not fill to accomplish what he refuire.
Having run back his sadde cluge to the poppet bead. Haring ran back his saddu cluee to the peppet head. of work, he muat turn the lathe ronnal until the saddle is inear with the leading screw, then take a piece o chalk and mark top of faceplate add tup of leadias screw; now fet your lathe in motion, then haring ral and then tain the lathe round as bifure ontil the marks appear on the top.-F. Hume.
[10917.]-Power (U.Q)-It is dimenlt to sar what and be the friction of simplif. li. cli, pinions gear ; berel-wheels, to fay nothing of sitrats aud might amount to one horne power.-Q Q.R.
[10922]-Engine Query.-I shond read the indicator diagrams thus: Front end hay ample lend on the eteum ride oteam cat air almat 5 of atrobe, The exhanat is too slow, or has too mach lap on the
exhauat porta, therefore bad. The racoum (as it is atroke, whereas, from the reilaced riressare of the steam at the end of the strobe it shoold he very mnch hetter. It wonld appear to me. withont the data relating to the slide valre or valves, that the montion is very slugzish, and the exhanst ports too small to give good resnlts. Back end-lead too small. the stenu cat ofl aboat 20 of stroke, the same remarka as to the exhnnat here also apply. It monld appenr that a miannint is in the formalm, $1-20 \mathrm{in}$. $=1$ horse-power. It is intended, I $\begin{aligned} & \text { iormalm, } \\ & \text { presnme, } 1-20 \mathrm{in} .\end{aligned}=1 \mathrm{~h}$, preannre. If that is the correct scale for the pressares. the gross stram preasure at the commencement of the front sitio of stroke winld be Titlo. expaut d to 1 fib. below the atmo. aphere at the end of the stroke, nid the commencement of the racnain onle 2!lb. below tha atmosphere, ending at 51 b . at completion of strake. The back end, ending at 5ib. at enmpletion ni strake. The back end,
fith. steam preazre at benginning of stroke, and is
 stroke, the vacinin commencing nt Bllo. prosenre below the atmosilhere, and ending at 4$\} \mathrm{hb}$. nt crimpletion of
 tith. on the piston at comenencement seemis a grest contrat. The iend ne the valve shonld bo eqnal at both ends, nad the exhanat ports epened not larger to give a freer passaze the condenser. Yon can do an ports on valve fane. The velncity of piston being 324ft. per minate, the lend of slide valve on the steam sides at ends of strike shonld be - 103 of the width of the port.-Tubal-Kain.
[10941.] - Spontaneous Combustion. - This Tnestion seems to me to have met with an nmonat of diecredit which is scarcely consistent with kopwh phenomena. I have never had an opportnnity of witnessing the fact myself. probably through the precautions I hare alwny taisen in order to avoid such an accident, for I thought it was generally admitted that sach might happan. Nor are wo nnaware of its rationale. I should bave thought that most of the ohjectors wero acquainted with certain snbatances upon mere exposure to the air. Notably among these is iron when reduced to a atate of very minute division, and which, on being thrown into oxygen gas, immediately ignoites, and, if my memory serves zo
 coarses of bectares on chomistry where this is not exhibited; at any rate, I witnesied it in those I at-tonded-namely, of Profeseors Thénard and Gay Labsac in Paris, and of Professors Tarner and Graham at the anbstance in the cantee of the action as farouring its rapid oxpgenation, and herein, essentiallv, combnation consists. Now. I suppose we all know that some oils have an aptitade for oxygenation ; perhape, for anght I know to the contrary, linseed oil more than othera. boiled oil sid one sejected for the manafucture Wo know, firther, that when we wish to bara oil in a lamp we do so throngh the intermediom of a wick, which effects the segregation of the separate particles of the nil, (enmbustion). But if the oil is taken up by lonee cotton it will difnasp itell inton mach more minate state of division along each hair of the cottin, and I nnbstances so situated, an effective prrophorng, eepe cially if aided by some other and extraneoas source of heat.-F. R. C. S.
[109.54.] - Circulation of the Blood.-My answer on this subject, at page 18, was intended for the requirements of "Corien," as expressed on p. 597, of Voids circilation. There had been several reppiration aids circnlation. There had heen several replies, bn none of them were cnicalated to aifora tho querist satis raction, for most of them denied that any sach ald exists, and some diverged alkogether fom the matte fining mejp to fining myself to answering the question. and in as few mords as possible. I mentioned hat here are man inroes that coneribute to the circulation of the blood irreleranto th o qua irrelerant to the que-tion before ns. I was, indecd, so reticent as to spent of what we will, for conveniwnce,
call "the suction power of the cbest " aqbeingeserciaed at only the vers lact atage of the cireniation-riz., when at only the very lact atage nthe circniation-ninction of
the two currentg of blood bad met from the junction of the arcending and desoending vena care. and I addnced the instance of a wound in the chest to bhow that snch a ?nower reallv exista. I now find misell met br ider the cace," in order "to give up the old and still prevalent opininn," \&e. I donbt not that "M. R.C.S. when I inform him tiat I have been for many years a iccored leather of anatnoy and physiolur, whos echint arb recokaired hy haminiog boarde, nod hat it is, therefore, iny dnty to keep myself acynainted
with the most recent discoveriea, and to test their ac with the most recent discoveriea, and to test their ac
rnracy. It often happens, in scientific rescarah, that n henry that has gab-isted for some time, tuila an op mnent who hrings forzard a planaible experiment a finh secures to hima decent following of couverta, till
in the argument. when all are annteut a flaw is fonud in the arkument. When all are onnteut
to resume the oriminal creed. Now this in jnst what to requme the oriminal creed. Niow thata in jnst what There was a penersin helief in a snetion-power in the hest during in-pirnting, what wes thonght to ravour the retarn of the blood to the heart.
but an objecher was foand who bescd his opposibut an objechir was ionvd who bascd his opposi-
tinn on the illuini:g coxperianent if we tuke the jugalar vein of a horse, or a portion of the
intestine of a fowl, and connect one end with an exhanating syringe, and then place the other ond in water, we shall find that on frawing ap the piston the air in the tabe will be withdrawn, when the atmospheric preasure without will caure collapse of its sides, and no flaid will pass throngh it. It was, therefore, argaod that the chest could exercise no suction action on the ing, for the tnlee was inert, dead, and cmpty, while the ing, or the tnibe was inert, dead, and cmptr, while the ditions not being identical, the experiment was worthless. There is no necessity for ring; to keep the veins patent, beranae they are not only almara fall, hat the enrent throngh them is alwars in the amme direction: these conditions do not obtain in the mindpipe, and hence the diference in atrnctrre. The while vascenar with the finest needle withont blond foring frou the punctore, and there wonld be no circnlation at all wero there no gap in the circnit, bat snch is farbished by the dinstole of the benrt, or the right side from the eratemic to the palmonary circle, aut, na the left from the palmenary to the ayatemic. I truat this will be deemed a sufficiant jnatification of what I have advanced; at any rate. I decline any fnrther © ntroversy, as his wonld, most probable, onls lead us farther and qneation, and necessitate the bringing formard of qneateric matters which are acarcely calcolated to edify the general reader. Shonld, however, nily such desire a pnrely mechanical illnstration, the following may be adopted :-Having procared a pair of bellows, remove adopted:- nozie and screm into the larger end of this nozzie a tribe of two or three inches in leugth, to the free end of which attach a flaceid bladler. Now introdaco tho bladder and tabe throngh the noee of the bellows, and fit the nozzle in its place as bafore. The valve in the nnder leal of the bellows being stonped, we hava a representation of the lanus in the chest, the bladder standing in lien of the areregate of the sir-celld, and the pipe as the windpipe. The bellows being worked the air will be admitted to and expelled from the bladder throagh the bellows pipe, but has no access to the walls of the bellows. If we now make a hole in the lower lea the lower extremitr of the glass tabe in wator, wo shall find that on continaing the action of the bellows the water will ascend into them. The analogy woald be more perfect if the apper end of the glosy tobe commanicated with hollow indiarnbber bull within the bellows.-F. R.C. S.
[10993.]-Mildew in Old Engrevings (V. Q.). -The plan I find answer beyt is to pat dried salt on the engraving. and win a thicir lico of bread (not too atalo) to acour it well, and then to place it between blotting paper, after having bhaken off the salt and bread orambs.-Esmey
[10996.]-How to Usea Book Without Fands. -I believe there are contrivances for this parpose, but I don't know what they are. The following will answer the parpose. A stand, B atem, made of gas-pipe, C
dosk. The movement is as follows:-Conneot a pedal

lift the long wooden lever D; on the lever being itt did the brass wire E slidee throagh the blocr F, end and ou the page, pashiug npwards so as to raind J, which elides through the bluck K, so that the brass , which elides through tho bluck K , so that the brass nire arm L is pusied bact off the other puge, and is instanuly turned ruand by the string, wiich pasmes over
iwo suall alieares (one of which is in the bluck ill), and is tied to a cilb. sasinweight touving in the stem B . The wo stops now come into contact, one of wich is adjustable by a thambsores, so that the arm is just opposite the pusied up leaf. The pedml no now ruleased Le spring P then briugs the wire arm neder the page the stops are disconnected and the striug pullo ruand the opiadlo, turaiag uver the page. Lacia revolation of we npiudle turns orer two leares. Tho wijght may
be wounu up by the arms L , it may ran turough the tand to ket a good fall. The wire E rhould be aboat stand to get a good full. Tho wire E rhoula bo nooat
point mast be very obtase $s 0$ as not to bite through into the next leaf; try this part of the dodge with a dry pen. The mechanism may be covered with a board.-
Anolo-Amsaica.
[11058.]-Rod Stain and Polioh for Kitohen Ohairs (U. Q.). - I find the beat thing is to paint with will find they look very wall not varnished.-H. B. E.
[11059.]-Spinal Complaint.-A boy of my soquaintance was cared of corrature of the spine in the following way, and be is now a "crack" oaraman :rocurea roand wooden (or iron) rod about aighior Drivo an mooth iron pin in at the top, and over it pat atapering horizontal pieoely. It will require a mall washer and some grease under it. To the outer and attach a shor strap and padded coller of loather to fix round the boy's neck compor
 To the noder side of the inner end, aboat aix inchen from the apright pole, screw any kind of a chair or sofa cabter, bo that its wheel may ran on a round piece of wood like a little table fimtoned under it. This round piece has 2 hole in the centre of it, through which the upright rod passea, and it must be firmly axed in a slightly sloping direction, as shown. The machine acts as follows:- When the collar is tied round the patient's neck (strap behind) he is made to walk round the pole, of coarse bringing the horizontal bar round with him. Whenever the castor is treading the lower aide of the sloping diec the strap is only jnat sept atraight by the flexibility of the bar to which it is atteched (all wood is flexible enough) but on the opposito side it will be raised ap co as almost to lift the boy of his foet-thereby giving a regniar intermitting strotch and release to the apine. Care mant bo taken that the rertical pole doet not move, bat, above all, the boy mant koep hin arme and legs down straight whilst walking, and not be allowed to get tired.-W. J. Howard.
[11095.]-Micromoopio Deponita on Bricke (J. Q).-Egge of stone mite (Trombidium lapidun). -G. W. R
[11101.]-Mortioes in Hard Woods. -I am pleaced to ind "Jack of All Trades" " kind reply to my quary as above. Kay I beg for fuller explanation? It will not be wasted. I really cannot make anything out of the sketch and description. I wish to apply the application to a lathe, for which the writer, "Jack of All Trades," says it is applicable. I do not see how, or where, to fasten it to 8 sce plate, nor how the chisel is hald; in short, I fail to recognise or undertand eithor the application or mode of working the apparatas. Could e mortice be cat with it? To what does the lotter F on Figs. 1 and 2 reler, and C on Fig. 17 I have benefted very mach by one of "Jack of All Trades'" kind replies, and I hope he will overlook my ignormece in this mattor, and ravour me with a mare explicit description.-Lzander.
[11108.]-THIt Hammer (V. Q.).-The diagram sent, I think, will explain itsalf, bat as I have net them ont after my own fashion, and am no engineor or mechanical araughema, any he roporioution good bed of concrete, see C; on the top of, the concreto
[11120.]-A Questionofsight.-"Touchatone" is right. Sound travels through air at relocity of 1180 名. per second, a apeed but the one hundred and seventieth part of thatof iggh soand ravis throagh cast iron "E. L. G." says wo know nothing about the comparative nearness of atoms; and asys the velocity is the tive nearness
same irrespective of their distance. Such aesertions same irrespective of their distance. Such assertions are easy, and may asvo him tronblo of opening his oyes ;
bat let him suppose s single deedle to extend from his batiet him suppose a single Deede the extend rom his eye to the source of light, wonld not, I abi, the impulse at one end be instantly carried o $\begin{aligned} & \text { the other, and the } \\ & \text { tranemiesion of force be thns instantaneona? But cut }\end{aligned}$ transmiesion of force be this the needle ofl and divide the other half into ten haif the needio off and divide the other hali into ten parts

$\begin{array}{lllllllll}1 & 2 & 8 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

The impalse imparted to No. 1 has to travel over nine gaps, whioh, if occupying but a secend each, will occapy nine seconds before they reach No. 10. So is the transmission of light and sound quioker or slower, or, rather, of longer or shorter period, scoording to the total amonnt of fpace or vacunm that exists betweon the total of the atoms in the whole line. What other reason can possibly be given ? Though through the pores of glass the luminiferous ether vibrates with as much ease as the late Daniel O'Connell could drive a coach through any Act of Parliament, yet so close are ite atoms or molecules that sonnd travels through it sixteen or seventeen times more quickly than it does throngh atmospheric air; through steel sound trarels 17,000ft. per second, its stoms or molecules being slightly farther apart. And this point of distance of atoms or particles apart being meararable by the degrees of transit speed of the sonnd or the aight they con. vey is what I wish to imprees on "E. L. G." and all studenta of science, for I have not found it notioed by any one but myself; and it is ridioulous of "E. I. G." to reply to me that the valocity is just the same if the atoms be twice as near or twice as distant; discoverers derpise no rational theory. Why are we in total dark. ness the moment flame is extiogniahed if light ceaces not instantly that combustion stops? of cource I spenk not of the light from stars, which to reach un ocenpies a thousand yearr ; but if a flame exists juat a minute the light from it exists just a minate likewise, noither more nor leas. "E. L. G." eays our ghadow is longest on July 1st and shortest on January 1st. Can he prove this? The nearer we are to the light the more rays we intercept, and shadow is nothing more than the absence of intercepted rays; and whatover hinders us from ceoing the flame or any part of it in the intervening objeot that intarcepts the rays, and in whome shadow we are ; and I take it a shadow in pace has no precise boundery, bat pales gradually till, to our fooble sight, it becomes imparceptible, but rays onco cut oir I take it cannot reappear; and if a shadow hes no foous or dimination of size it darkons an extont of spaco in length immenanrable, if not illimitable. may ask "E. L. G." how he proves the earth's shadow to extend to bat fonr times the moon's distance. Its size will not diminish with the equare of the dintance whatever its intensity may.-J. Barwick.
[11120.]-A Question of Sight.-"Fiddler" may be quite sure that what be calls "illaminated space" and "infinite" is only the denser bottom layer of air ; hat the main aky-light all comes from within foar miles of the ground, or rathor of the sea level. Hamcoldt and all climbers who have approached 4 miles, or mess, have spoken of the indigo or bleck darkness of mass, have epoken of the indigo or black darkness of
the zenith eky (which, of course, balloonern can get no

I should baild brickwork in separate layers or cells, crussing and re-crossing in party divisions, oach division to be well rammed down with sand, or filled in with concrete; on this 1 should bed my stone blocks (ste Δ), the screv sockets I should ran in with molton lead. Between the oblique pedestal or plammer blocke I have introduced 8in. timber; the whole, with the plammer blocks, is armly screwed down to $\Delta(\omega 00 \mathrm{H})$. The hammer F is worked by an occontric motion with fangee on each aide (uther motion might be sabstitated) by a boas , With 8 cams (see K). The anvil 18 marked block for anvil; M, labrioator to boariags.-JOBE. WK. HenNELL.
aight on, and if "Fiddler" could be corked ap in a big soda.water bottle of oxygen, and raieed 30 miles he would doabtless find it at all hoars equally blaok and equally starry as on a moonlose midnight. I sky-light came from anght beyond the shallow, watch glass-like lens of air sbore as, why should the zeuith at any time be any less bright than the horizontal layer? Would not a photograpt of sky be all of even tint, and the day aky give, like the noctarual, the idea of 2 hemisphere or cupola, rather than the wide, slightly-raised watch-glass coiling that it does ?-E. L. G [11122.]-Strength of Boller.- "Data" not safi oient to answer
plator-tin. or
zin. ? Burely the atrength depende a
little on the thicknoss and condition of the material of which the boiler is made.-E. M.
[11123.]-Lantern Pinions,-See "J. K. P.'s"
[11129.]-Greex" Upailon."-"A Harron Follow" (p. 75) is clearly wrong, when he atates that the Engaleo is the Greek upailon; and "E. L. G." appeass Romans not having the Greok x, for apsilon. The or ii German, adopted the lettor y to represent ita sonnd when they Latinised Greek works ; bat our y has quite a different sound, and it would be jast as absurd to write "Müller" as Miller or Myller, as tapto typto, or drus drys ; the y in these cales being no nearer the u than i. "' E. L. G." meems to be confuning Latinined Groek words with tranaliteration. If wo really winh to represent the Greek sound, we must do what the Romans dia, ute a nev character, and wo might, there foro, write tiipto withoat offence.- M. Paris.
[11187.]-Repairing Concertina.-There is no dificalty in taning the reeds of concertina notes; file Diffarent motal tharpen, and near the rivet to ratten. Diffarent motal may be made to give a note of the proper pitoh, but the timbre of the tone will not be the ame exaothy as the notes of another motal. A difformat quality of the same motal can be rectified by filing.E. M.
[11146.]-Lamp for Foreing Pan.-I never tried anything of this kind, but as no one has answered the quary, I may say that the best lamp of all is a a Bansen burner; bat that means gas alao. It "Soedsman " has not the gas laid on, a paraffin lamp with a squat chimney will probably ane wer. Colzs oil woald be better, bat rather expenaive. I and no diffcalty in gorminating tender seeds by placing the pots near the RYME.
[11160.]-Area of Begment of Circular Ring. mencunot holp acknowledging that the word "megment" was loosely or even incorrecuy unod by "I agree, however, with "E. L. G.," Vol. XV., p. 76, tha any one reading the question conld misunderstand the $F \begin{aligned} & \text { meaning, or that the } \\ & \text { aketch, VoL XIV., } p: 650,\end{aligned}$ meaning or $\begin{aligned} & \text { aretch, VoL XIV., } p \text { : 650, } \\ & \text { fails to indicato }\end{aligned}$
 was desired. Following "E. L. G."'p. 675 , lot no make the inner are $C D$ and nee what $A B$ or $A^{\prime} B^{\prime}$ comes out like; cee Fig. Nomes b" "E. Li. GG"A C
ND being sapposed a BD bent $A C$, $C D$, and
$B D$, mast BD, mast be in one
straight line, as they are all parts of the chord, or in this case of the diemetar, Which they do not appear to be, to any serious extant. In fact, work it how you will, I do not see any other conclasion to arrive at than that "Thankful" meant, and fairly represented a portion of an annulac boasded by lines AC, BD, pointing to the centre, or that at though he gaid " megroent," anything bat "soctor" could bo anderstood.-J. K. P.
[11168.]-Area of Segment of Circular Riag. -I gave my solation ($\rho .675$) belioving, from the agare given by "Thankfal," that A E B was a tangent, and I altorwards saw in that case the conditions ware inof the circle inceribed to a regalar polygon. The of the circle inheribed to a regnlar polygon. Tho apothegm ol
BERNADDE
[11202.]-Transfer of Prints to Wood.-The only varnish I have used in transferring has been the white or brown hard spirit varnish.of commerce. The piotares were printed on transfer paper, and what I did was for the parpose of furnitaro ornamentation before French polish was introduced, which I notice is now becoming very common in the trade, with the dilfereuce that it is now done with polish instomed of varuish. Great care mast be taken to have well seasoned wood. Give two coats of the varnish and let the second cuat be nearly set before placing the piotare in position ; alightly damp the pictare with methylatod spirit, do not rub it down too hard, or you will rab some of the varnish into the fibre of the papor, which will make, it ditticalt to remove the beck. When it has all set hard, alter which, and the pictare having bean well devaloped by carefal rabbing off the back with damp cloth, give two or three coats of the varnish, oach coat being allowed to well dry before the other is ap plied. As a last process we would sometimes rab the sarface of varnish down with the palm of the hand, or, for 2 large surface, with a smooth cabinet-maker's cork with chamois leather over it, roagh side ooh and Anish off with sweet oil and flour, which, when done, was eqnal to French polish. Why should not the most beantifal ornaments be transferred to wood in the same manner or by a similar procese as the willow pattern is given to our common plates, and even others uf a better quality and appearance by the picture boing printed on propared skins, and afterwards immediataly transferred? - Szuabe
[11206.]-Defective Plating Solution.-It is only for needles and similar goods I wish to silvor. Watts says it can be done (see p. 118, foarth edi tiou) by simply dipping a spouge in the solation, and rubling it over the steel. As "J. A." has kiudly offered help, I beg to say that it is only amall atoal goods I cannot ailver or gild and copper. I make all the solations by battery process. I have triod both Gose and Watts.-Cuabler.
[11276.]-Erxtracting Glass Stopper.-A very refractory case of the above complaint was once brought to me. The atopper of a handsome decanter was broken short off at the plag, and resisted all attempts at its extrication, to jar it, a handle baring neck warmed and rapped to jar it, a hanain in vain, I drilled a hole tin. diameter through the bottom of the decanter in the centre on an ornamental engraved star. A straight stoel wire was introduoed through the hole, and a fow taps on it with a hammer soon drove ont the stopper. The hole was pluggod up with a small piece of valoanised indiarabber, stopper the deing together the broken parts of the stopper beon in canter was made porfectiy usabie, and Q. Q. R.
[11318.]-Setting Lathe. - I beg to thank query, bat I am afraid I did not render mysolf saffi. query, but ciently expit; if not. I will now endeavour to do so. The lathe which I \#ork is somewhat aimilar, both in shape and aize, to the one advertised in our journal by Blackett, and the length of the width of gap in the centre of lathe bed, so that if you turn the screw it will shift the head either way; there is one at either end of the
head. Now, you will perceive the inconvenience I am pat to; after tarning anything conicsl, I am obliged to take ara cut down the next articie I have to turn for the parpose of knowing whethar the lathe parallel or not. Woald "J. K. P." give design of hif inttle contrivance for torning taper screwt as offered $?$ for I quite agreo with him with regard to st offere foing drunk, bat I do not see how it wonld cods.-F. HU ME.
[11314.]-Polishing Oak Floors.-The French, who indalge in polisbed fioors, whether of oak o effecting their object. Ther nse beeswax, and brashes eftached to the soles of their feet, by a simple strap attached the the for ver the this moty on mives of motion passed. This not only gives facility of motion, bu he weight of the operator adds to the effoct. In fac he akates alboat the room. some ase bat one foot vomen eapecially, but this is is engaged in a rood egtahliahment he is a maysaineses a man is hired the (rabber). In more m. ame as we a lor bealing ourpe. Inster ehortly aftor the sarprise I experienced, as a yonngster, shortiy aftor wy first arrival in Franco, oide of tho street, tearing empty rooms on the opposite aide of is imsoinable. I boub with the of course, drew the attontion of thoso in the house in Which I was residing, to the strange sight, whon learned that my anpposed madman Tas merely poliab ing the floor. Persons may dance for a whole night on a floor which has been so prepared, with mnch more comfort and less fatiguo chalked, or is covered with a carpet, bat beware, ye noricen, for you have wher you be young lad cost of some mortification, whe har you be young lad or young gentlemen, as you will, on setting out, in a probability perform that sudden transition from the perpendicalar to the horizontal which is not considered a mpet or noceptable Euphrosjae.-F.R.C.S.
[11859.]-Canting Brass Solld.-The metal shonld not be run any hotter than is necessary to in sare sharp castings, which practice nill shon. The probablo canse of the hnneycombing of the castings is have proper vents made for it from the highest part of the mould. The maetal should ran in near or at the bottom of the moald. By sttention to these points good castings may be obtained, bat a little practical teaching is very necessary in such a case, and would
[11866.]-To Mr Tonkes.-It is not my opinion, nor is it my belief, that $\frac{1}{0}=\infty$. For if $\frac{1}{0}=\infty$, then is $\frac{1}{3} \doteq 0$, and hence wo have $0 \times \infty=\infty \times 0=1$ a most traly absurd conclasion to arrive at. You may
probably deaire to know what $\frac{1}{0}$ is equal to. Permit me to aseart and to prove that $\frac{1}{0}=\frac{1}{0}$. For as the which was to be shown. Neither Liabnitz's nor De Morgan's "Differential Calculus" do 1 dosire to look at in relation to the arithmetical snhject ander consideration. In addition to E. A. Poe's poetica
eluasions, "Fear not the Raven," ac., I have some eflusions, "Fear not the Raven," ac., I have some
slight recolleotion of s few words in one of P. B. Shelley's pablished worki, even after forty years' neglect of such "metaphysical" stufing, at per example: To your adherenta I have only to remark that I decline to be drawn by W. L. Giles into the differential maze; and as to "Excolisior's" eqnational pun, I fear that he has not yot so carofolly atadied as he may now
be led to do the mathematioian's trinity, formed of be led to do the m.
1,0 , and
∞
[11871.]-Steel for Tools.-I really mnst point out an orratum or two in my anawer on p. 102 . I am steel or Vickern's "are first-class," bowevor fanny it may cound to say "Btabs's io." Alno, "B Buck keeps Sandersonds small (not alh) cizes."-J. K. P.
[11878.]-Killing Beetles.- When "Semperviro" has constracted a " suflocsting" box, with its tin-loi, cotton-wool, and chloroform, which complication will donbtless offect its purpose, he will ind that easieat way to kill beeties, especially the argorstant in is to immerse them, legs downwards, lor an is founded boiling (212° F.) wator. This simple method is is located on the knowledge that the nerrons it suem the game on the underside of beetier, and it hat atul mode of time the advantage of being the least painiasation and death, the heat of the water destroying seasas boiling a little practice will soon show the fraction of a second necessary to immerse to kill. I believe it varies a little with different kinds of beetleo-a simple dip being sufficient for most.-Saul Rymed.
[11382.]-Parrot.-I should adrise "Cygnus" to disoontinge milk for a time, ss this is heathg to the MenELAUE.
[11886.]-Crystals in Gas Tar.-These wore, n all probability, crystals of vaphthaline. This body a contained in large quantity ir some samples of tar, and crystallises out when the tar loses its more volatile constituents, which dissolve the naphthaine. $\mathrm{C}_{10} \mathrm{H}_{3}$, probably linked together in the following mode:-
HC=

It is now uned in the manafacture of artificial aliIt is now nged in
[11393.]-Scent from Violets and Roses.The scent of these and other iowers is ohtained by placing thin layers of buther in fall of the fresh ravers, together with Bhallow ara renewed when their cent is go The bitter absorbs the scent, which is
 in some similar manner.-Q. Q. B .
[11398.]-Stinging of Bees, Hornets, and Wasps.-The sting of a bee is genorally mire vira lent than that of a wasp, and with some pecple attended with very violent effects. The bee sting is tharbeand. the end, sud, consequentry, always in That of a wasp and hornet is pee cannot do. When ating more than once, w bee let the sting be immedia person will pierce, and emit more poison. The palling on of the sting should be done carelaly, all remedie hand, for if any part of it breaks in, Whan the will be, in a great measure, ineded part, if possible, ating is extracted, nfack vation, if any, will onane. It and very little infiammadime imately rabbed in, the drops of hartshorn are
cure will be complete. Sweet oil, bruised parsley, cure will be complete. Surious trials, to be of no ase ta. apnear, on
or benefit.-H. B. E.
[11409.]-Canine.-It the pap has lost all its hair, and its body is covered with dark palches and larg pustules, commence by frees punctariog theo. Thi produces no pain, and the punclares soon heal ; also, proan the pustales. This done, tenderly wash the bare shin with warm water and a soft aponge ; then smear the body with an ointment conpored of eqnal parts of camphor powdered, mercarial ointment, and elar ourire ment. Repeat this daily. This kind of mange require some months' good nursing.
lie on barler stram, or to subsist entirely on flesh food - Monta Cristo.
[11484.]-Salmon Spawn as Bait.-First, let me state that it is now illegal in this conntry to bave in your possession. But it "Kingtisher wishes The it in some country where it is legal, hell washed in broken roe is the best, and must greasiness disappears several waters (cold) antu allace in a bag, and han up for a day or two to drain all wator away ; the up or with salt antil it feels tough in the teeth, wher it may be put into jars for use, and will keep for years in a cool place.-Gost.
[11485.]-Bootmaking.-When leather is soalsed in water, and "beat " well, it is more durable than is workod dry. To work
the wearer.-CobBLER.
[11488.]-Lemon Marmalade.-Pampkin marms lade is thus made :-Take regetahle marrow or pump kin, young or old, rather old preferred. Boil till quite tender, and peel or scoop the pulp from the rind with a spoon ; put the pulp into a cloth and wring it to remove the excess of water; put the pulp into a preserving pan ; to each pound of pulp add 4oz. proserved
lemon peol, cat thin, or fresh lemon peel boiled till lemon peel, cat can, or shreds; to each pound of palp add lib. sugar, boil and stir antil a snfficiently firm add ilb. sugar, boil aind; stir the whole time if you wish to be quick over it and bave the preserve keep wish this rule holds good in all soft frait preserving. If the tivenar of orange is preferres, proserved orange pecl or well boiled Sevila drachma or toz. citrio acid to the pound till improre both.-Dran.
[11438.]-Lomon Marmalade.-To each pound lemons allow 18oz. of fine lost sugar. Pare the thin yellow rida as posito and pat them into a mastin bag. Cat the lemone in loar tate of the white eking and remove the eots Pat the pulp in the pan, and break it tho roaghly with the hand or a potato beator. To each ponnd of lemons add half a pint of cold wator, pat in the bag of chips, and let all boil for hals an hour Poar a little boiling water over the gratinga, and let atand until the other is boiled; then pour the paip through a hair-sieve into a baain. Wash the pan and siere into and pour the juioe baok again thom the bag and pat them into the pan also, add the sagar and le and pat inemetho the gratinge are aleo nor addod. Boil ior hail an hour or until is jollies, which may be koin in by patting a s poonful into a sanoer, and aetting it in a cool place. Pot it, then eat it.-CEAMPagna Charlif.
[11442.]-Old Wives' Solence.-Mr. Tomlinsen's experiments referred to are very inconclasive. The weights of candle consumed in equal times, in snnsbine and in "a dark oupboard wero compared the capboard having, of course ${ }^{2}$ and down an ceiling, that is, an air-mixer maploa to sand an the carbonic acid, and as rapidly deoxygenate the store of air, and keep it as anchanged as posaiblo wita the given inlets: In fact, an Engisi bullors indoor atmosphere was compar an "Ola Wires" that the smo I have alwayt hala, wit in pate out fiame, because 1 usod to hy, as papor, wood, or haen lazo wion or mirror be capeble ways in rain ; and though the lens or nimoris pose The of melting iron, never have 1 lound this por bit. . wood or rag may barn with zocendesco por baret int in the son, and if there be a cartor flame the instant the locas is our . Bat nevor can I make it do no in the concontrath rallo. glass, altering tempt it again, however, with yellow
[11444.]-Bursting of Compressed Air Ro-ceivers.-The effect depends very much on the material ; cast iron is nasally broven in ragmonch Boiler-plate, I think, would be affected protty mach is same as by an explosion canased by stoam. In the is not so briome of aniler exploding (say) at 601 b . to the case of the temperature corresponding to this preseure ach, the tempor, when the pressure is remored by the burating of the boiler, the water in the boiler, which was at 300°, cools down almost immediately to 212°, the boiling pcint at atmospberic pressare, and thas about one-thirteenth of it is suddenly flashed into sleam, the one-thirteenth of is is saddenible heats of steam being nm of the latent and sensisalding with steam or hot water in the case of an air reservoir is avoided. Philantiropigt.
[11448.]-Chronometer Balenoe Spring."O. M." has got an inferior article, se the low price might have told him, for an article. He is rightly informed be had gooless he Fith chronometor balance cannot bo had anless he fives a good price for 1 , mysell, a short thm back inquired the price of a irsb-rato siver watoted (with class, haviag its balanoe soieatiacally adasiod (with out which they arealm
 however, that " O. M." may procare a go
of this class for (say) $£ 12 .-$ Excersion.
[11450.]-Adjuating Equatorial.-Declination being reckoned from the equator does not require any correction for ancereses or decreases by going north or sonth.-0. M. 94021.
[11451.]-Weight for Safety-Valve.-The lever me to be very weak, only 12! oz. weight. Tho weight to be placed at the extremity for the stoam to blow off, at 401b. pressure, will be 8 lb . Boz., and the ball shitted 2in. in each
the other pressares.-Bob J.
[11456.] - Saw sharpening and Galleting Machine.- I believe the BA sharpening machine is a patent; bat il "F.T. S. S. D." requires one for his ase, his purpose. The working gear, he will, no donbt niderstand, that is, if he is a working sawyer or en gineer. The wheels are made of wood, and covered witt emery and glae. One or two things have to be consi dered in these machines. First, is the sharpening re quired sufflcient to eventually repay the oaday; second, the saws require torohing ap atter leaving the ma chine; thirdly, the use of the maohise on the saw hardens them, so that an old ils will not hoch them. On the other hand, if a number of sams are in ase, it will repay the cost very soon, also the regular depth the gallet enables the saw to perform its work from superior manner. What Ithachine a trial. I kno af a mill proprietor in my immediate neighbourhood who parchased one, but did not And it answer either circular saws or frame saws, nevertholeas, if I conk procure a machine to sharpen band baws, if fonnd to Rnswer,
SuTTHER
[11457.]-Mative Power for Areateurs.have seen lately a machine Which, I think, nerviceable lor that purposo. in consists of connocted springe, inclosed in dens acting by dent wheels and pinions on a pallisy wit strap. The springs are mound an very
handle, and their elasticity is moderated by a fly. The motor I saw is applied to a sewing machine, and, indeed, many readers of the Englise Mbchanic may have scen it aiso, since there were two of the said (French section). But, that motivo power can, of course, be applied to a grest many machines which are now worked by the hand or the look, I am awarefor instance, those connected springs have been of late dapted to the "Hughea' Printing Telegraph," an a mbetitute for the beary weights which the telegraph clerk had to lift up with his foos at every momont.Novi, Amiens.
[11457.]-Motive Power for Amateurs.-Is "Zoo Andra" poking fun at "oar" readers? The lever-i. e., his weighted pendulam-will, no donbt,
give a certain amonat of power to his saw; but this I give a certain amount of power to his saw ; but this I
how from practice (not theory), that I will produce mow from practice (not theory), that I will prodace pondulum ; that is to say, for the same person to exert his atreogth in tarning a fis-wheel as will sting the pendalom; as for ratchet-wheels it would be a great mistake. The best motive power lor anatears is the readie, aniess they can incar the " 700 ant harse-mill, or steam-engine. If "Z00 Andra" is actually atting up a bench in the atyle sent, Fhen completo, will he nse it for a weok together, and lot the tibility? -SAMUEL Smitrier.
[1140.]-Printer's Ints-Red Brasil wood Loux cances; dilnted soetic acid ono pint, sum half an sam.-E. B. E.
[11459.]-Printeres Ink.-Linseed oil boiled to a shick varnish, and a sufficient quantity of vermilion o Prussian blue groand with it to
of coloar.-Williay H. Her.
[11459.]-Printer's Ink.-"W. J. H." oan bay what he wante cheapor than he can make it. Tae Anest dark blues are Prussian; Chinese, and Antwerp they are very hard to grind, and when ased too thin have a greenish hae. Vermilion (pure) is, of coarse the best "red," but a little bright drop late improves it, where richness of tone is wanted. These require to be ground on a clean slab with a clean muller and clean varnish-the very best. I hope "W. J. H." is a modern Hercales, for he will find it a toagh job; bat they may be groand in turpentine frat, and mired with the varnish afterwards. This saves a little labour. If only a small quantity is required, and very fine, use Canada balsam as the varvish. I have seen excellent work produced by takingen impression with gold size and dusting on the colonr required in a very fine powderspecially prepared, I think. This latter method is by far the quickest for a small quantity, and
retain their colour well.-Saun Rymed.
[11462.]-Steel Eardening Paste.-The red paste must Have been "J. Fielden's Rouge Steel Paste," which is used to improve cutting tools and to restore burnt cast ateel, or for case hardening small iron castings. We have given five shillings per pound for it. We dip all our gatting tools, and find that a few pounds will serve a long time if the dust cover is kept upon case supplied with "rouge paste." If "A. B. C." will advertise his address in these columng I shall be pleased to let him know where the "rouge steel paste" may be parchased.-Hazirax.
[11464.] -Spring Beds.- It would be a trade advertisement if I sent the address of maker, but if "Associate" will look at the London Directory, or apply at some large bedding manafactarer he will procare
what he wants, I have no doubt. -SAMUEL Bristher.
[11469.]-Air and Warmth.-From 700 to 1000 cabic feet per head; from 55° to 60° Fahrenheit.Excelaion.
[11471.]-Bow.-Yew is the wood ased to make the best bowe. Should "Archer" not be able to procure it apply at a respectable coach bailder's for a piece of lance wood, let it be quite sunnd and dry; one inch by st each end to five eighths of an inch by one half inch. steach end to five eighths of an inch by one half inch rounded on the outside. A bharp stoel aeraper is very -Bamuel Smither.
[11471.]-Bow. - Bows of Yew-wood won Cressy and Agincourt; why should they not win at archery matches now ?-HEDERA.
[11472.]-Plaster of Paris.-" C. B. B." has evidently betn using the common plaster ased by bauders. Te shonld get either fne or supertine plaft in water for a long time, bot docs not fall to pieces. Porous pets aro somutimes made of it, bnt unly as temporary appliance.-Dentistr.
[11478.]-Silver Bath.-"F. C. C." should get a Rood munual of phutugraphy. In reply to his ques-
tion no definito namber of plates can be given, it is tion no definite number of plates can be given, it is
quite possible to contiune prepariag plates with the 80 z . silver wath outil there is not onfficient left to cover the plates in the bath. This, however, is not very likely to be the case, as "F. C. C." will doabtless find he cannot get good phutographs aftar having nsed his nitrate of silver bach till abont a third of it has been wasted. By this time he will tind it has got somewhat ort of crder. The beat way to set it right again will be as follows :-1. Puar the solvtion into a clean dish and set it in the oven, or on the stove, till it has nearly all evipirated, baving first made it olightly alkaline by arding a drop or two of streag liquor am. monia. 2. dddsuffient distilled water to make np
to 80z. once more. 8. Set it in the ann for a fom
hoars, or eren a few dnss. 4. Filer, and then add anfioient prire nitrate of ailver to make the strength up not work well add a drup or $\mathbf{t w o}$ of dilute nitric acid. -G. Avery.

[11489.]-Algebra:- | x | |
| ---: | :--- |
| $x+y:=z: t$ | |
| $x+z$ | $=11$ |
| $x^{4}+y^{4}+z+t$ | $=24929$ |

Let $x=a ; y=a+d ; z=n(a) ; t=n(a+d)$ We have-a: $a+d:: n(a): n(a+d)$. By udditiou- $a+$ By subtraction-a+n(a+d)-(a+d)-n(a)=8 $=(n-1) d$. As $5 \times 5=25 \therefore n+1=2 a+d=0$
and $n=5-1=4, d=\frac{3}{a}=\frac{3}{3}=1$, and $2 a+$ $d=4+1$. That is, $2 a=4$, and $a=2$.

$$
\begin{aligned}
\therefore \text { the analogy is } 2: 8 & =8=19 \\
2+12 & =14 \\
3+8 & =11 \\
16+81+4096+20756 & =24929
\end{aligned}
$$

TEEYM(EDOTsham)
[W. R. Kemp, Williain Hughes, and "A Now Subcriber," have also answered chis question.-ED.]
[11488.]-Dyeing Parchment.-Dye it blas by brashing over with a solution of pearlash, two onnces ood and an ounce of pearlah in a gallon of water and while hot brush over the parchment until of a good and while hot brash
[11484.]-Manures and their Values.-If Mr. Richardson is within carting distance of ses-weed, he ill find it a rich and stimalating manure when dried, burnt, and the ashes, mixed with sand, wood or coal ashes, hand-spread over his land.-Mands.
[11486.]-Arithmetical Question.-This is most aasily accomplished. For the
longth, 4 lengths of each
breadth, 6 of the 5 less 1 of the $7 \times 5+4 \times 7=48$ heighth, 3 of the 7 less 2 of the $5 \quad 3 \times 7-2 \times 5=23$ -Willlam Hughes.
[T. P. Lucas, "H. H. C.," "Excelsior," and "Philanthropist," have also anawered thia query.-ED.]
[11486.]-Arithmetical.-Snrely any men in such a position wuald tirst measare off gft . on the 7 ft . rod,
by the aseistance of the Eft. rod $(7-5=3)$, and then by the aseistance of the Eft . rod $(7-5=3)$, and then
divide the 2 ft . into two parts; or, having got the 2 ft . divide the 2 ft . into two parts; or, having got the 2 ft .
length, he wonld mark of from each end of the 5 ft . length, he wonld mark of from each end of the 5 ft . rod, 2 ft . ; the interval between these marks would, of
course, be Ift. What more would he want?-Heders course, be Ift. What more would he want ?-Hedera
[11487.]-Preventing Rust.-One part white-iead to two of tuliow will auswer the parpose, and rab of easily with a little turps.-Manus.
[11487.]-Preventing Rust.-Bright work is generally covered with a compound of tallow and white
lead.-Excelsior.
[11489.] - Weight of Cattle.-(Shrparbids "Problem").-As it is not likely that all his heifers would live to brecd ior twenty years, what would he allow for deaths?-T. P. Locas.
[11498.]-Indiarubber Overcoat.-"W. P." can repair his orercoat with indiarobber solution; clean finger pus within cost of solation. let an with the Anger pat a thia coat of solacion; let stand for two hoars ; make warm a 102 g down the seam, cat up loz. botlo rabber, patiato make the solution in. When diseolved, use it. Cobbler.
[11499.]-Zymotio Diseaces.-It seems to me that M. Paris has answered his own question by the very designation he has given to the diseases. Zumé (Greek) fermentim, leaven. If I take a mass of dongh, to which I add a portion of leaven, I shall cause the whole mass to ferment. I may now remare saccessive pirtions, and add others of anfermented dough in their stead, and the process will still go on, thongh the ag greciute of portions removed may embrace the whole of thero be any such. I give no opinion.F. R. C.'s.
[11503.]-Stair Noses.-Nail a little oil canvass on the edyes, or it yun have canvass on the stairs mak it duable at the edges; this is if you havecarpet down if nut, wail lead on, unt don
under the carpet. -H. B. E.
[11504.]-Photographic. - I would saggest to "Cornabiensls" the use of cocos fibre matting for the covering of the floor of his stadio. He will tind it durable, of nice afpparance, noiseless, and should he work with a tripod tiad, there is no fear of the legs moving on the fluor.-W. Pasles.
[11505.]-A Wooden Pamp.-"Cornnbiensia"" frietd may set his painp in good order by either at the following methods:-First (if not already done), horten the spear or rid that is connected to the t p bucket may get a large gan re ith work the month of the parp anflicient to ando and open the month of the parpanficient
to allow a new backet backet.-H. D.
[11511.]-Rubber Tires.-I cannot conccive any saction, but, perhnpa, there may be a litule mor arhesion will the rabbar than with the iron tire, but the reanlt is that wilh the rabler tires ecarcely hals
the fatigue is experiesoed as with the iron-indoed, ero is no comparison.-T. P. LUCAs.
[11511.]-Rubber Tires.-It the roads are vory bmooth there is little advantage to be gains with of orinding a difference rinding said utones Soft roede and rabber tires bear grindigg a ooen not elentio and as regards saction is is only in wet felde and moasy ground that it impedes oeomotion pleces mhere fov velocipediste will think of straying, -G. Symte.
[11512.]-Iathe Chnok.-As a further deseriplion of my oval chack seems wantod by some of our readers I give details :-Fig. 1 shows the face of the chuck, S being a hole tapped to ecrew in any kind of poppet required; Fig. 2 showe the chuck plate betore slide, and justing bars are added; H hole tapped to screm upos the spindle of lathe, b blot holes, throagh which two pins or gabs wort, marted a.a; Fig. 5, Fig. 8,
orow scetion of chrok wishout alide-bars ; Fis. i

shows slide-bar face side; Figr. 5 and 6 aections of slidebar ; Figs. 7 aud 8 are justing bars fixed from back with two screws, each rame as Fig. 10; C C C C are jantiog
gcrews to mate slide-bar to werk right. The headetoct gcrews to mate slide-bar to work right. The headetock hows how the ring is fixed to it, with t wo serews, outide of which the two pins marked a a revolve. The other end of the shaft works npon the dead centre, and conrse ronnd, which is an advantige when making sprig bit handles to get the ferrule on. The drawing is made to scale quarter size of mine.-Goat.
[11514.]-Brunswick Black.-Recipes for this, nader the nemes of Berlin black, jupan, \&c., hape been frequently
-8. Botrone.
[11517.]-Lathe Queries.-"H. E." mill Ind a description of index pegs for counting in Vol. XIL, p. 180.-J. K. P.
[11524.]-Pitch of ROOR. -The onls " measure" of the pitch is the number of degrees of a roof's inclination. Certsin pitches in fashion at different times ish toubiess " old " or " onmpen ages, mant that of Westminiter Hall, the grea typical old English roof, whose internal spen is standard perches, and corresponding rafter-slope 8 perches. This gives the inclinstion about $48^{\circ} 12^{\prime}$, and the lowest of "high" or "gable" pitches, that is, of those above 45° or the " square pitch;" fur so nusighty bas this latter seemed to all races that nowhere hart roofs of this pitch, or within several degrees thereof, above or beluw, been either common or tolerated in buildings of any pretension to dignitr. Thongh thers may be even cathedrals (as Langre:) with a aquarepitched roof, yet, as Raskin sayp, mon have overywhere made a great gait between the two kinds of roof-the "low-pitched "(i.e., belnw 3 , , and the beain (i.e., above 53). The above Westminster pitca from being too near the "square, is incurvenient buse and ulopa height incommessurable wita themselvea much troable (or the architecto for them) by keeping, lize the ancients, to angles whose fanction are all commensurable (as slope 13 to bases 12 and 5 0 - lope 25 to beses 24 and 7). The simplest of all known as "Plato's triangle" (of 3, 4, and 5), tarned one war, makes what is rightly the luwest high pitah (or lowert tolerable on Gotuic buildiags), approzi mately $687^{\prime} 48^{\prime \prime} 38^{\prime \prime}$, or, as I would write sexagintal compactly, $5_{8}{ }^{\circ} 0_{4} 4_{8} 3_{8}$; and the other war, the bighest low pitch cor higuent tulerated on non.G.athio build ings), $8_{8}{ }^{\circ} 5_{3} 1_{1} 2_{2}$. This latter (which is hardiy low enuagh to be called a "pediment" piteb) seemes to bave been universal from tho decline of Rome fill tue grand twelth-century movement that originated "Gotnic" architectare, and which Viollet lo Duc attribatas to
the anti-clerisal apirit of the "Communes" and othor lay gailds then arising. It certainly was a Radical or anti-traditional, and therefore anti-churchmenly movement ; and the new cathodrale wure a proteot against the abbeys. This movement was weakest in England, and our Gothio bailding the most timid; and it seems never noted that the high roois distinolive thereot were frome the boginning higher in all Continental Countries than here. I do not know of a single Old English roof so steep as 60°; While all over Germany and France, even soath of the Loire, it is donbtfal it they were not oftener above that pitch than below it. Anothor point overlooked is that the builders of the ticalar pitches (or proportions of height to width), simed at some simple ratio of their vertical height to that of the walle they orowned-either making heighta of wall and rool equal, or as $2: 1$, or as $8: 1$, in their grandeat erectinns. $\Delta 8$ examples of their equality, Fe England and Franoe日-Westminstor Hall, and the exqaisite Palais de Jastice of Ronen. Of course, plenty of hamble ohurchee also illnatrated this, espocually in England (thoy having probably noted, from the Book of Exodna, that the Mosaic Tabernacle did
(2); bat I doubt if more than one cathedral is thns poofy (to coin a much-needed mdjective)-that of
Vienna. Then, of the next degree of rooknest-the roots half the height of whatever bears them-you hare the nobleat of all civic brildinge, the Sted thonse of Brassols; and of oathedrale, that of Rheime, and, perhaps, other first-rete (but many second-rate) on the Continent; though in England, I think, only Lincoln. The general praportios for grand oharches, both French and English, was the roof a third of its sapports. In the decline of bailding, the first architects, by some centaries, to retarn to low roofs wore oar English, who depressed them frat on aide aisles (as at Westminster, 1800; Winchester, 1400) ; and the first nave, agsin, made low-pitched (as in pre-Gothic
times) was York, aboat the latter date. From low ther times) was York, aboat the latter date. From low they enme to make them invisible, to mimio, I suppose, the effect of the platiforms of castles; and at length, for the three centaries proceding the present, no Eaglish bailding coand be held reapectable that did not appear routess. In ne other land did this idea gain absolate sway, even in the maddest swing of Classicism; and thengh St. Peter's, at Rome eet the example, Lonis XIV., indeed, seems to have held that only sacred buildings ought to show any rool, as appears by the wondrons oontrast
and its chapel. -E. L. G.
[11580.]-Violin Construction.-" Beed Maker" has touched npon the principal point to be conidered in the constraetion of the violin-viz. the divergence of tone to be prodaced by making he "oreasi and back diseimilar. The last article a maple back in opposition to the deal hreast and I am in doabt whether he has eatiofied him. self so as to have two deal resonants opposite to each baciri, mine (to inflict panishment on some and create jor in others) had a soft back. I fonnd no diffieulty in taniog my pieces of wood, for I made them all a different thickuess. Now, if I am not anderstood, I beg to say that everything has a sonnd or tone of itd own,
and many of us have heard muzic hammered out of pieces of hard wood of different sizes and thickness, 3nd was it not Lulli who, while a senllion, knockod airs ont of the cook sompans? I have also heard
that Handel broke Corelli's violin over his head bethat Handel broke Corelli's violin over his head be-
canse the latter did not understand the French style of playing. There is a grest diffurence in prodacing tones by bowing (that' ' polite) or hammering. Porcasaion is easy in comparision with bowing, bat I have reason to believe does not affect tho senses 80 enjosably.
I think I am right when I state that two stringo of the I think I am right when I state that two strings of tha same calibre, on the same bridge, soundboard, and of the same tone, do not increase the power but protuce a whirr, also heard in the organ accordion, when are all say what the effeot woald be if the power. I canno placed close the effeot wonla be if two vibrators were crease of power, bat if I am wrong here, coald not the Angoolet be made more powerful by blowing through hare the tone the same tala? 1 do not thiuk so. W trebling the mire, bat beyond foar I byink dobling and wiss any further extension of power withont more soundbosids, or a more violeut method of bringing out the toue, viz., moving the soundboard. Now, in the
riolin we hear tones produced by the weakeat method of moving a sonndboard-therefore, the various parts must be made of different sizes and thickness, so as to form a varioty of ceatres or tones (or rather they be-
come places for tones to nound on or in). I wish some come places for tones to soond on or in). I wish some 'I "oar", contributors would kindly inform us aboat the
harp, especially the constraction ai the soandboard barp, especially the constraction ai the soandboard, Whether the etrings would sound as well if they were
atrung at right angles with or to the soandbord, What lind of tone woald bowing prodnce? I fancy rery poor. I foar the harp is not so fashionsble 28 it
used to be, more's the pity. If we maks the breast of the violin large: we require a thicker atring to move it and the thicker the string the lowor the tone mast be ; ino make the breast sasaller we redace the plane in
which the tones can be produced, thus we have only se size for the violio proper, nud кo only one amonnt power. This is true with all inotramonte, they have ir limite, alchougb, of course, nll are open to im.
vermente-fur iantauce, the drnm ould be made - tormidable if, instuad o! atraiued sisin, a ribras
shoet or face of metal was substitated. It may
be sain, but this would not be a dram-trae, and if we alt er the violin evar so little we lose the violin tone. Then the question will alarays remain, hom can a bowed instrument be made to sound loader than the violin, ret having the sume notes? In a back namber the "Harmonizas Blacksmith" has presented to our potice a fade without a back, a groat curiosity, and perhaps a abadow of good things to come. As it has no beck it conld easily be joined to a series of breasts, one under the other, but hare is the dificulty, a gat itring woald not move more thann one breest, no mater bow the atring was placed or axed, with a briage, or weaker still, harp fashion. A stoel wire would sound well, bat only by palling and not by bowing. I have noticed in the toy harps (all wires are ned) that when played in a box suifed to its Bize the tone is onndiderably imoreased, yet when the violin is sabstitated in its place no increase ensued. Thon it oomes to this, can one porformer play on many riolins at once and so practical method of playing a serien of violins, \&c., by means of a keyboard ?-Fiddici
[11535.]-8mall Wheel Outting Mrahine."A Horological Mechanio" will And fall deecription of dividing apparatas for lathe in Vol. XII., p. 877 , and of the cattor-frame, for use with slide-rest, in Vol. X. No. 245, p. 231. To answer q. 10859 would require ond dispersed throagh the last four volnmes. You cannot get 2 " recipe" to make catters, like a dose to care a bellyache, and it requires as mach knowledge of a mort, to do it properly, as a modical man would require for his parpose. Moreover, "simple" working drawings oan only be made by those who thorongaly anderstand the job, and an how traw horoughy well too. Hl soa wank cat whels yoa can gel them in yor enat 0 otters yon can than 21s. each at Holtzapfel'b--J. K. P.
[11547.]-Baes's Beer.-Some years age Mr. well found-

Amount of ingrorlicats in imperial gallon rop

Carbonate of lime			9.98
Snlphate of line ..	.	\cdots	$54 \cdot 40$
Chloride of calciam	..		18.28
Sulphate of magneaia	\cdots		0.6

- Yorza.

[11579.]-Blue Billy.-It wae owing chiely to the prosence of armenic that 1 expected hard iron to be produced. I imagine that it is provented from escaping by being picked np in the apper parts of the farrthee by the lime, and thas continnally brought back. At all events it does not escape. The copper is in great part volatilised, and colours the flame of the farnace. By hard iron, I did not mean the technical term for "strogg forge" iron, but a brittle nature. The iron produced was very small grained, whitith in colour (not white iron), and brittle. I tried redacing some by itself in a cupola farnace, and produced a pig, the fractare of which was mors like bad steel than pig irov, so mach so that I had it tried for forging, bat it broke ap at the lirst blow. I am informed that it is nsed a good deal by some farnace ownera, and that thes get a fair iron from it. Bat, in my case it was not worth while trying to do anything with it, as the oarriage made the material as dear as others at com mand, and the make of iron being one of the best in England, it was not worth while to ran any riak o damaging it-SIGXA.
[11585.]-Chemical.-To prepare chlorine from chloride of nodium, in sach a manuer as to obtain a one operation sodiam aloo, is a most expenivive affair as it necessitates the omployment of a powerfal battery. Bat it is ears to proceed in such a mamaer as to pre pare hydrocbloric acid from the sodiam chloride (see second process, paragraph 54, of the Lessons), and from the hydrochloric acid chlorine may be easily obtained, as explained at paragraph 51 . The residae obtained by acting on sodiam ciloride wita salphario acid is a soliam sulphate. From this sodiam sulphate sodiam carbonate is prepared by heating it strongly with a mixture of chatik and slack, and dissolving and crystaliising. The carbonate, when dried, may be mixed with finely-powdered charcoal, and strongly heated in a cast iron retort, when it is resolved into sodiam and carbonic anbydride. Tho changes, resalts, to., of these operations are briefly expressed in the following equations:-1. Separation of ollorine and sodiam from sodian chloride by means of electricity-

$\mathrm{NaCl}=\mathrm{Cl}+\mathrm{Na}$.

The results of this mode of procedure are, therefore, oothing bat chlorine on the one hand, and sodiam on the other. 2. Soparation of chlorine and sodium from sodinm chloride by chomical mosns. (a) Separation of the chlorino from the sodinm by the action of salphario acid-
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{NaHSO}_{4}+\mathrm{HOl}$.
Here we obtain hydrochloric acid and hydrogen sodium alphate. (b) Separation of the chlorine from the bydrochloric acid by munas of manganese dioxide-
$4 \mathrm{HCl}+\mathrm{MnO}_{\mathbf{3}}=2 \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathrm{MnCl}_{9}+2 \mathrm{Cl}$.
Here we obtain free ehlorive on the one hand, and a solation of mangancse ebluride on the other. (c) Preparation of sudium carbonate from the residue of the preparation of hydiochtoic acid-see (a)-by the a
of carlon (shack) and calciv carbunuto (chalis)-
$2 \mathrm{NaHSO}_{4}+4 \mathrm{C}=4 \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{Na}_{2} \mathrm{~S}$, them
$\mathrm{Nas}_{3} \mathrm{~S}+\mathrm{CaCO}_{3}=\mathrm{CaS}+\mathrm{Na}_{2} \mathrm{CO}_{3}$.
From this mixtare of calciam sulphide the sodiam oarbonate is separated by liriviation with mater, and its aarboneto.

$\mathrm{Na}_{9} \mathrm{CO}_{3}+2 \mathrm{O}=3 \mathrm{CO}+\mathrm{Na}$.

-S. Botrome.

[11587.]-Cleaning Scarlet Cloth.-Take 3oz of sal ammoniac, lylb. of nitric acid, and heat the mixtare slightly. Then ada, litue by little, 8oz. of pare tin. When the tiu is entirely disaolved, add 6oz. of rater. This constitates the famons "oan dearlate," require farther for rovivifying faded oolours. It may
[11592.]-Mredical.-The protosulphate, the pro-
tonitrate, and the acetate.-S. Botrons.

UNANSWERED QUERIES.

> The mumbers and Htles of quarises tohish remain wnancooved for floe vocecks ars insertted in this hot. WFa wnots mation thay can for the bensfit of their follow costrie butors.

> Since our last "Hodera" has answered 10414 F. Hume, 10913;" "Esney," 10993; "H. B. E.," 11058 "G. W. K.," 11095; J. W. Fonnell, 11108.
> 11118 Malt from Oats, p. 649
> $\begin{array}{ll}11121 & \text { Dr. Blair's Fluid Obyect-Glass, } 049 \\ 11124 \\ \text { Dissolving Cotton, jict }\end{array}$
> $11124 \begin{aligned} & \text { Dissolving Cotton, } \\ & 11127 \\ & \text { Refining Olive Oil, } 619\end{aligned}$
> 11180 Centrifugal Pamps, 649
> 11185 Edinburgh Preliminary Exnminations, 649
> 11140 Redacing Gold to Powder, Cis
> Cbarcoal Dust, p. 650
> Marsella, 650
> Bisalphide of Carbon Hagine-To Mr. R. H. Garth, 650
> 11160 Private Study, 650
> 11161 Fixing Sorew Valves and Taps in Lathe, 650
> 11167 Optical, 650
> 11169 Household Bones, 650
> $\begin{array}{ll}11170 & \text { Harris's Mill, } 650 \\ 11174 & \text { Parifying Oii, } 550\end{array}$
> $\begin{array}{ll}11177 & \text { Sorer Press, } 650 \\ 11178 \\ \text { Hair Nots, } 650\end{array}$
> 11180 Power Loom for Weaving SBk, 830
> 11190 Copying Ink, 6 , ${ }^{10} 0$

QUERIES.

[11595.]-Starlings.-Acting apon "Joo's" advice, althongh not "a young lady." I havo resolved to try the and, if possible, teach it to talk. Will "Joe" kindly give his valuable opinions on the following queries:(1) What kind of cagce is the best? (2) At what age
should the bird be caged? (8) Ought the oloth to be kept over the cage all day and (t) Should food be given at nxed periods, or left in the
cage? Othor hints will be gladig recalved by-BARA cage?
Avas.
[11598.1- Photographing Engravings.- Would保 5in. by 3in.), and what sized camera wili it require? Vebitas.
[11597.]-Mean Longitude of the Sun, \&o.longitude of the sun? (3) Its variation in 100 yeara? The longitude of the porigee, and its variation in 100 years? (4) The obliquity of the ecliptic, and ite variation at any epoch in the latest astronomical tablos
(8ay, Leverrier'y)? (5) Alio those of the monn? 1 am (8ay, Leverrier'f)? (5) Also thase of the moon? I am are not sufficiently accurate for modern astronomical are not sufficiently
caloulations. W.
[11598]-Long and Short Rifies.- I have a rifle $288 i n$. long. 1 Want to cat it at $26 i 11$. ; it I did so would 1 shoot as well atter being cut as it does now. hack put of the barrel), what height would they require to be to shoot well at 100, 200, and 300 yards after being oat?A. G. Miller.
[11599.]-Lint.-How can it be most easily made, and what is the best material ?-LON Gocr.
[11600.]-Analysis of Water.-Can some corre spondents give me a method of estimating the comparaive wholesomeness of different waters for domestio purposes, or tell me in what work I can ond the subjeo but the boty I haje say very little on this subjeot I want a process that shall be both quiok and accurato if any such process exists.-ANALrss.
[11801.]-Cracked Oven.-My oven is cracked down it, and how 7 -Demtiste.
[11602]-Iigurian Bees. -1 shoald be
of my fellicw readers would be kind on
me from their own experience. Whet he
Also how to unite a que en (Livariaia)
Also howt to unie a queea fork the be a
be no dificulty in getious rid of the
old hive would be groatly helped :
great advantage. I should also Ike to know how it is
that these Ligarian swarms are so very dear. $£ 3$ 2s. that these Ligarian swarms are so very dear. $£ 32 \mathrm{~s}$.
seemg to be the lowest, and 12 s . Gd . for queens. G . M. [11608]-Dinas Firebrick. -The Dinas Arebrick is made out of coarso ground atone. Can any of your
readers recommend me a machine for making these bricks? Muck pressare is not required, bat owing to bricks? Much pressare is not requirod, bat owing to
the silicious natare of the stone, the wear and tear in
any elaborately constructed mnehine would be very any elaborately constracted machine would be very
great. At present they aro made in hand presseg-a great. At present they aro made in
slow and oxpensive process.-DINAs.
 speaking of retting the resinnus and silicious matter from rood, thinks to accomplish it by bolling in osastic
of 180 T ., for three or four hours. If he has snccoeded of $18{ }^{\circ}$ Th., tor three or toar hoars. If he has succoeded anwards of six months, and I have been nabie to get the resin out except that which was sapericial, by such a method? I conld also show "Busy Bee" a picce of
wood which has bnen soaking in a blenching-liquor Wood which has boen soaking in a bleaching-1iquor
cistern for upwards of eight months, and when the onter layer of fin. is shaved off. the wood is just as
tough and reainous as ever underneath. - Grobgr E . tough
[11605.]-The Organ Bullt.-Winl "J. D." please to furthor explain Flg. 7, p. 638 , Vol XIV., as I have got into a fog at this point? What is that part of the leather
(Fir. 7) for that projects inside? By so doing he will oblige -W. C. MANNIN.
(11606.]-Organ Pipes.-Will some correspondent for a pipe 4 it in length, messuring 4 in . by 34 in. interfor anily, and for one half that size ? and what should be the height of the moath of each pipe ?-C. F. S.
[11607.]-Ebonising Wood.-Can any one descrihe the process and materisls required for ebonising furniture in the best manner, to be polighed afterwards in
tha vanal way? I have tried the logwood and copperas solation, but cannot succeed in obtaining an good black.
such as sean on ebonised articles, - W. C . such as seen on ebonised articles.-W. C.W.
[11608.]-Boiling by Steam. - Can any reader inform me how to boil by steam? The contents to be
 kept stirred all the timo, so that a s
through would not answer.-A. W. B.
[11009.1- Sorew Cutting. - Will some practical
 gettiag 1 re or six ohango wheels, for cutting $14,16,18$,
or 20 threads per inch, left hand. I can get plonty of wheels for outting right hand, bat the quadrant is go small it will not allow for anothor stud with the ordinary
wheels for outting right-hand threads. The leading screw is 3 per inch. with wheole in single train; nlso I can eet 4, 6 , or 8 wheols to cat coarse pitch
[11610]-Defective Battery.-I have a Smee's six colled battery with coil, which I nse as an invalid Recently it became nnworkable, and the coil was taken be wrong with the battery. The silver plates have been replatinised, and the zinc ones re-amalgamated. When the connections were completed, the vibrator imme.
diatoly acted, but when the two handles were held, there was only a gengation felt two or three seconds, and, oo casionally, nonent all. A fow days ago, on trying $i t$, the sensation continued for about fire minates, when the vibration ceased, since which time there is no action
whatever. Has the insulation been destroyed, or may the cause be polaitsation? and how should I procoed to disoover and remedy the evil? If "Sigma," or Mr direet me, I would feel greatly obliged. The distance (40 milles) irom a repairer, and the expense are serious
[1101.]-Opaline Photographs.-WII1 anr snb.
scriber help me ont of my present diffculty? Having scriber help me out of my present difficulty? Having
coated the albumenised plate with chloridised collodion When dry, I find it has settled in rings, presenting a my collodion at fault? A formala will oblige.-Opatinne.
[11612]-Injury to Vecuum Tubes.-I have broken off at one end. The wire is broten off cloge np to the Rlass, bat the tubes are not damaged in any other way. Will some one please tell me how I can remedy the broken wire in mercarry-is there any better plan? zeta.
[116133.]-Staffing and Preserving Animaals.-
Would any 0 one of your numerous subscribers give me Would any one of your numerous subscribers give me
some information as to the ataffing and preservation of dead animals 7^{-H}. S .
[11614]-Gums.- Will some correspondent give me a list of those gama which are soluble in methylated prisis) wine
[11615.]-Teeth.-Will taking tincture of iron and quinine or strengthoning parposes, as recommended in the Mscianic, tend to loosen the teeth If perserered in
for some time? What will set them fast ngain when for gome time? What
loonened ? Mineriaus.
[11616.]-Engraving. - What is the uquid used in
qua hinhigi-miniclaves
[11617.]-Numismatical. - I should be glad to know
something about the valae and oricin something about the value and origia of the following cosend, ". Copper coin.-Obverse, elophant and oastle ; legend, "Coventry Hnifpenn;
legend, "Pro bono Pablico, 1792
Obvers.
 1s11;" reverse, fish, legend, "For the Accunmonation
of the County." Brass coin, very saill.-Ubverse,
hesd of king hend of king ilegend, "Carolas Rex;" roverse, a crown,
"X. S."-C. Coryas.
[11818]-Deadening Sound.-Will any one tell me ho lenst inexpensive method of dendeniug gound
hotween two rooms which are divided only by aboarded
[11819.]- Electrical. - Will gome correapondent
hindly inform me why I can only get exceedinuly fnint Lindly ioform me why I can only Ret exceedinuly fnint
hocks from my Leyden phind, when it is charged with
h) or 100 maiks

with tinfoll two-thirds of its height inslde and out; the and interior coating is perfect ; the stoppor is of baked wood, covered with shellao varnish. 1 may add the ghass is reee from crack or break of any kind. The shock it givos in about equal to
from prime conduotor.-F. T. z .
[11630]-Capturing Moths.-I have heard that entomologists attract and capture moths with a composition they call sugar. Will any one kindly tell me ho
it is made? Also how, when, and where, to nee it for it is made? Also how, When,
that parpose? Entomolograt.
[11631.]-Kilining Roots of Trees. What acid or other stuff will kill trees if emptied into a hole bored into thom ? I am troubled by largo willow tree roots
closing ap drains and making mischiet. [11622]-Chaldron.-What is the exact value of a
[11623.]-Bell Pianette. - I should be much obliged to 8. Bottone (11993) for details of the Bell Planette.-
[11624.]-Photography.- I live in the coantry where rain- Whter may be had purar, prohab, y, than in not be used for the same parposes as distilled water is prescribed, and, it not, whether there is anything short of a distilling apparatas, by which it can be made pare enongh, and, if so, how? The experience of some prac-
tical photographer or ohemist on this sabject woald be tical photographer or ohemist on this sabject would be
valuable, I have no doubt, to others besides-A CoNValuable, I hav
GTANT READER
[11635.]-Deap Dog.-We have a dog that is almost lotally deaf (nine months old). His ears are not aropped; I can soo nothing pealiar hboat tham; he can
hear a loud whiste it close to him. Could any reader give a remady?-spor.
[11620.]-Electric Bells.-I would be much obliged monld give me alittle information apon the conatruction of electric bells and their mode of working. I have made various electric machines from infurmation recived in these columns, for which I sm thankfal, and I have no doubt that with the information I ghall re-

[11687.]-Gilding Strips of Wood.-Whenever

 ny dimculty or question with moderate clearnese its columus who will help me to a solution. Well I mant some help now. I wish to gild some flat strips of wood noout 1in. broad, and tin. thiok, so sa to give them a dead geld look, all but one odge, whioh mast be bur-
nished. How am I to prepare the wood for gilding ? and how am I to gild it?-Ironsides.
[11628.]-Fiolin.-Would Mr. Davidson (the anthor of "The Violin") oblive by telling me if an old violin,
made by Ursula Collier, at the siga of the Correllis made by Ursula
Head, on old London Bridge, is of mach value $-T$. R. Head, on
[11629.]-Skeletons.-How can the skeletons of small anmals ap ato, say, a cat) ab abtained, without a
knowledge of anatomy, or without a very great deal of knowlodge
troable ? -HEDERA
[11630.]-Compendious Perpetual Calendar.Would any of your correspondents tell me the best way Soctr.
[11631.]-Income. Tax.- A maiden lady formerly had cama from the "Albert" Insurance Office and one ihird from money in the funds. The first is apparently lost, and upon paying the other, inoome-tax has been in-
varinbly deducted by the Bank of England. How mast third party proceed to claim exemption, and oan he cover any of the former dedactions ?-Hzipless.
[11833.]-Deblilty.-I have been unable to follow my ness, singing in the head, indigestion, snd genera debility. woali any homacopathio doctor kindly give

[11689.]-Fever Tree.-The fever tree of Tasmanis has been cultivated in the south of France, and seems name of that troe, and if it is adopted in the pharma copoia ?-Quinquina
[11634]-Tudibi Gum.-Is the tudibi or black boy that gam ?-T.
[11635.1-Davis's Refrigerator Oar.-A fom partiployed in the United States for oonvoying ligh perishable victuals.-D. R.C.
[11636.]-Desert of Sahara.-Many anthors say the Frenchman, at a recent meeting, pretendod the average height was 400 ft . or 500 ft . above that level, and that
there were no shells nor any other marine remaing there were no shels nor any other marine renaing
found there. Δ fow particulars nbout suoh statements found there. A fow particulars nbont
تill oblige many readers, and-W. W.
[[11637.]-Cormona Wood.-I read in Paven's "rraite de Chinise." that cormona wood contains 55 per
cent. of carbon. What kind of wood is this? and where cent. of carbon. What kind
is it obtalned ?-GOILLAUME
[11638]-Silkworm Disease.-Is there a credible onuse assigned to the plazue which affocts silkworms in
[11639.]-The Rook Inscriptions.-Will "E. L. G." inscriptise ern inscripions rems:n so neglected
acquaintance with the reports concerning them, it has been a matter of wonder and disappointmont that thoy have not been energetic.lly explored and transcribed.
II thero is ouly a colourable probability that they were

Which might be axtracted from these, either corrobora tive of language and letters. A tithe of the moner and time spent in triangulating Palestine or groping the sewers of Jerasslem, would secure photographic tran scripts, apon which linguists and arohwologiste migh:
operate, if the la wless nomads of the deaert cannot bo operate. If the la wless nomaus of the deasert cannot reached by grmans or edicts, Why should not a atrong
covering lorce be organised ${ }^{\text {P }}$ Such a crusado would covering force be orgnised
find plenty of volunteers. Excarions to siacia are not and plemmon now that the Red Ses is a highway. But whence the apathy about them? Are there doabt about their repated genuineness, or are there appre-
hongsing Mosaio traditions ?-H. E. H.
[11640.]-Photographing Sun.-Is it possible to photograph the sun with a Bin. schromatio toleace, pe mounted on pilla
of any kind ?-
[11641.]-Observatory Clock.-How can I makn use of an ordinary clook as a sideroal clook fur amtronomical parposes :-X.
[11642.]-Romsey Observatory.-Has any one ever built an observatory on the Romsey principle, nging
sheet iron for the walls? Can 16 be recommendod for cheapneas and effoctivenens?
[11648.]-Fistate Agency.-I shall be glad to hare
any information on the subject of eatate agenoy. What are the dutios of the profession, \&c. ${ }^{2}-\mathrm{L}$.
[11644.]-Mending Copper. - Will any aubseriber inform me how to put n patch on a coppor and make it watertight, without common solder $\boldsymbol{\text { -Y. B. }}$
[11645.]-Boes (Managing Old Stocks).-I hare kept bees in a gmali way for some yosia, but dont knjs
how to manage my old stocks. Boon aifor they have how to mannge my old stocks. Boon altor they have
hwarmed they get very weak, and do not get enoojt swarmed they get very weak, and do not ket enoojn
food to keep them through the wintor. I food them, bit all to no purpose, for they generally die the early part of the next hummer. Ondition. I am trying to teed but they will not take the food. I have been told that bees will not stay in a hire more than three years, bat
I can't think that is true. I! Mr. Abbott or any kiod reader will tell me the reason and remeds, I shonld bo much obliged. -J.
[11618.]-Eleotrical Apparatus Wanted-Wil
 ond obtail ane electric spark in. long. by bringiag to named (sin.) the wires to be bronght together soll named
separated again, four times in a second, and the spart not to pass between them when at a grostar diatanct
than ${ }^{[n}$. What will be the cheapest and most affective apparatus to prodace the above result for the epace of (his) six hours Y have arotaling ghate at my disponsi this oan we takea ho consideration whea orapario cost of working per houe
good order?-J. Hicks.
[11647.1- Cabbage Plants.- Will some brotbe readg to

[11648.]-Bee Management.-I commenced bee keeping near London last year, and as I am away froc home daring the day I have no one to attend to my difficulty of the swarming season by artificiel swarmin I shall, therefore, be obliged to some of your astatcorrespondonts, for information as to the best mode o! procedare to obtain a swarm from a campaon aire-tis and prosperous oondition. I intended to try the plsy placing the present hive of bees over an empty hit nd, feversing the postions of the hiven, drinng
bees into the empty hive, leaving the narse bees and brood in the old hive. The instructions I have hed fr: bee books are not safficiently clesr. I Wish to ka before I commence operations-whether I ahould rsise the hive of bees from the foot-board in the same niz
as attempt to drive them? How long the hives abur be left together after the bees are driven into the up one, belore they are separated for removal-the ald a Whether it is advisable or necessary to biar aress: and any other information saitable to the asty that any stupefring material shonld be used. 1 when I formerly kept bees I have not been suocessf: the application, a great many bees dying from th
of it, and the stocks never thriving after.-ApIs.
[11649.] - Astronomical Formula. Will 90\% astronomer show practically the method of workind the following formula from the Nautical Almaner For any place not far distant from Llverpool
wich mean time of the beginning of the solar eclip
May 25th, 1873, may be compated by the for
cos. $=9.0892-[0.18987]$ sin. $l \times[9.98336]$ cos.
$\left(\lambda-114^{\circ} 0 \cdot 1\right) t=20 \mathrm{~h} .58 \mathrm{in} .183 .-[3.59312]$ sin.

[11650.]-Annealing Steel.-I shall be glad process for annealing steel so as to insure free and e prorning with a fine cutter. My present process anmes results is failure, and gives muoh trouble in and tear of cut.
[11651.]-Analysing Ash of Cane Sugar-wish to ascertain the quantity of ash left by baraia
sample of cane sugar, bution great diffoulty in be sample cf cane sugar, but find great dimoulty in be quickiy performed. I do not know what allownace
anke in the resultinu as? for the SO_{3} added. Can qake in the rosultiny ash for the SOs added. Can
G. E. Davis help mu? Uinerrais. [116:2]-Tasmania.- Will nny of the p10i-

trant, bo noeoplablo to more of your readers than to

 n the onbject will be gratetully reeeiteced. A . .i. Cooks. Clissi, -Cleaning Violoneollo- What ist be beat

to Fabrion- Would Gome rad sur vor Loaf Aahere

anlobal boiller for small Stoamban-Haring

 Meetho benoft of their oxperioneo in advisings to to the the stabilty of the boats not goodi-L M. F.
joicod mben Thorough Base -I was vory mach ro.
 musiont by tit Exas, has ing on deiriro to boome

Machina- Powner to Drive Grown Printing

 bo arrapged bo as to oork. drrect enthe bould posibily

 Leam bo gat, and what dosecription ot bollur (dimensions

 Any information with regard to above will be gratefally
received. Axperinnd.
Obijects. - M Baoik Varnish For Mricrosooppo

 doing the esmo? $\boldsymbol{r l}$. T. 1 .

 matit havo iron? Hito

 slate or lead colour. Will any able readcr kindly inform
me the beet way to commence?

 colour ?-STryocil.

 rection in your noxt luaca-HANMuF Woops

dgefol and soientifio notes.

Formation of Ozone.-Dr. Pincus states that that if a flame of this gas is allowed hydrogen : and flne point, the smell of ozone can be distinctly recognised. This statement recalls to mind the announcement made some time since by Loew, of New York, that ozone might be obtained in sufficient quantity for the heated air on the edge of an ordinary Bupsen blowing with the aid of a glass tube, into a glass receiver,
wid ordinary Bunsen flame, containing tho ordinary reagent for testing an oxidie ing agent-lodide of potassium, acetic acid and starch almont instantly makes its appearance. At the time Locris annonncemient met with some objectors, who ught to explain the phenomenon by assuming that nitrogen compounds formed by the heat of the flame lirmlsts, that it is impossible to unite nitrogen ace ox ven directly, by any means short of the electr nti
aid rk, the explanation of iark, the explanation of Loew would seem to epread
riect one. -Jurina! of ficul:lin Intitute.

Waterproof Leather.-An ingenious patent is now being worked, by which leuther for the soles of
boots and shoes is rendered impervious to wet and boots and shoes is rendered impervious to wet and
damp by exhausting the air from the pores of the lamp by exhausting the air from the pores of the
leand filling them up with a substance which unites with and adheres to the fibre, thereby strengthening without impairing the clasticity of the material. It is stated that the patent, known as "Fanshawe's Waterproof Leather," is not only likely to be largely employed for the purpose to which we have recerred, but that when asphalte pavement be-
comes more gencral, it will be possible to shoe horses comes more gencral, it will be possible to shoe horses
with a material as hard as the asphalte itself, and which will prevent them slipping.

Road Locomotives.-We believe that Lord Dunmore intends to introduce his Road Locomotive Bill tunate non-compliance with standing orders prevented its introduction last year ; but as no difficulties stand in the way this session, we may hope for at least a discussion on the advisability of relieving road locowhich at present hamper their nse, abud tend to retions their development and improve, and tend to retard seek to abolish the regulation which preecribes will use of the red flag in advance of the locomotive, and will allow of a speed of four miles while passing through towns, and eight when on country roads.
Abyssinisn or Talmi Gold.-According to Dr. Winkler, writing in Dinylur's Journal, this is a brass composed of about 91 parts of copper to 8 of zinc. The appearance of gold is obtained by cansing a very trin sheet of that metal to adhere by passing the compound through rollers. This gilded sheet is then cut and formed into ornamental articles by means of ingeniously-constructed steel tools.
Conductivity of Copper Wire.-It appears that a very inferior kind of copper wire is finding its way into the market, and has been used extensively in the construction of the coils for use with electric bells.
Sir William Thomson has recently quantity of cotton-covered wire of this tested a large foand its resistance per metergramme to be -439 of a B.A. unit, good wire being about 16 of a B.A. unit.
V. C. A. or Velut Cera Adhaerescens.Under this rather fantastical name we have recrived a preparation which will donbtless be found of use by many of our readers in various ways. It consists of shects of paper gummed on one or both sides and pertorated in equares or atrips so as to be readily torn up to the desired size. It will be found useful by those Who do not keep a gum bottle, or keeping that article havo so little occasion to employ it that the gum becomes thick and dirty, and is often not to be found when wanted. For flxing scraps in albums, cuttings from newspapers, and periodicals in an "Index rerum," for mending torn leaves in books, and in many other ways, this prepared paper must be handy, as it can be carried in the pocket-book or kept in the writing dest and is always ready when wanted. The inventor has also prepared a "glue muslin" and a "glue paper," which merely requires dipping in boiling water to render it as serviceable as the ordinary glue-pot for numerous little "odd jobs," such as mending the binding of books or securing the corners of cardboard boxes, fixing handles on umbrellas or knobs on drawers. According to the inventor the glue paper when thoroughly wetted forms a kind of "pulp" that is even stronger than glue when dry. Mr. G. P. Hill of Redhill, the inventor, bays he has no desire to keep the process of preparation secret, but will communi cate it to any of our subscribers-the best way of doing which would be to publish it in these columns.
Destroging Aphides. -The black-fly is the its destrucmy to cherries. We append two recipes for plants of the aphis pest. The first is a mixture of plants of the aphis pest. The first is a mixture of
pith oue-rixteenth part of powdered orpiment pitch, with one-sixteenth part of powdered orpiment
and one-sixteenth part of sulphur, dissolved over a slow fire in an parthern pipkin, until they are well incorporated ; when cold, divide it into small pleces about the size of a hen's egg, and burn it under damp straw, drecting the smoke, as a spare possible, whore the insectuare most numerous. A spare piece of sheeting, suspended from the top of he wall, will keep the smoke in position ; or if the trees mild the open air quarters, draw on the caps on a moist, mild, quict, evening, which will keep the smoke a little nnder. A good ryringing or two afterwaris will
bring down the dead or dying aphides. Mr. Rivers's bring down the dead or dying aphides. Mr. Rivers's
recipe is a more simple one. He says:-The best remedy is a mixture made by boiling 40z. of quassia chips in a gallon of soft water ten minutes, and dissolving in it as it cools, $40 z$ of soft soap. It should be stirred, and tho trees syringed with it twice or thrice. The day
following they should besyringed with pure water.
$\xrightarrow[\text { The "Butibna Nrws," No. 901, ApRil 12, Contains: }]{ }$

THE ENGLISH MECRANIO LIFEBOAT FUNE
abeoriptione to be forwardod to the Editor, at the Oance, s1,
Tavistock-atreet, Covent-gardan, W.O.

ANSWERS TO CORRESPONDENTG.

. All communications ehould be addresed to the
EDrron of the EnGLIsB MscEANIO, 81, Tavistoek-otroct,
Covent Garden, W.C.
The following are the initisis. sce., of letters to hand ap to Tuesday morning, April 16, and unacknowiedzed
$\underset{\text { Odgen and Gibbs.-J. Gillingham.-Wm. Hill }-W \mathrm{~m}}{\text { Brown }}$ Brown.-John Walton.-Fletcher and Sinclair.-G. K.
Prole.-W. F. Healey.-W. H. Cuell.-E. S. Hunter.Alex. Giller.-Alex. B. Macdowall.-Soui-Hong.-Geo.
Parson.-W. Marden.-C. N. Parson.-W. Marden.-C. N. Abbott.-F.C. Rdchardson.
-C. B. Bostock.-Major J. N. Besiey.-Rob. Allen A. B. Bostock.-Major J. N. Beasley.-Rob. Allan-A Hongekeeper.-Charles Fletcher.-R, A. Proctor.-A
Horological Mechanic. Ginger Beer. C. S. Aceticam.-Hector.- F. N.-Apiarisn.-A Yorkshire F. Ating.-R. T.-Loach.-Pare-Farmer-E. W. J.-
 -Proudfcot,-Youngster.- 8ulphar.-S. B.-J. S. S. Berthon.-Jack of All Trades.-Musa.-Khoda Bux.
Tubal-Kain.-J. D. H.-J. M. Taylor.-C. P. E.-F. L. C. Pmuel Smither.-M. Paris.-J. L.-J. Kipax.-
T. P. Gray.-W. R. Birt-Fantail-E. Barber.J. H. B.-Journeyman Painter.-Science.-Charies
George Payne.-J. F. E.-G. E. H.-Brightonian.-A.,
 F. C. S.-T. A.-An Engine Driver.-J. D.-J. J.
Knight.-Hy. Franklin ZZ. A.-S. T.-Neville-York.
-Linea.-C. J. R-Thetamu.-A Reader.-John
Pearson-A. P. B.-Cincinnatus.-Tingmith-A Young Becinner.-Milled.-G. 8.-Jasper.-J. H. Grahsm.-
Philo-Sanl Rymea.-P. E. M.-A. M.-E. Parker.J. S.-A. Macdowell.-W. H. Lockwood.-C. Warkilime A Novice.-An Old Subacriber.-Paper Makeres.J. K. P. $_{\text {. }}$ -An English Mechanio.
7 9-We have not hard of the spiritualistic wonder, and anxious, 8. Botrone, G. 8.-See "Hints to Correspondents," No. 4.
post cards referred to in by sending is the letters and
omismatist.-Just serionsly ask yourself the question why you should endeavour to injure men who would not injure you?
A Sorferer.-Ask a ohemist and druggist.
J. Foster.-We don't know, bat you might ascertaln by
advertisemont.
E. G.-We have oertainly caught one, and shall edGro. Hy. Shizx.-You inclosed no postage stamps.
Mosicar. Monsy-Box hopes Henry Newman or some one
Charch give the pin modal of r Fubricant
to paper-making. W. H. Prany.-See "Hints to Correspondents," Nos. 4 R. E. 81
R. ELITHBor.-No P.O.O. inolosed.

Yoizh-Optional on the part of writer.
W. Krazyan (Nottingham).-Mr. Wallace's pamphlet was printed for private circulation His address is
A. R. Wallace, Holly House, Barking, E. John A. R. Wallace, Holly House, Barking, E. John Beardsley s pamphlet oame to hand, but it wes simply
unworthy of a passing thought. What would you unworthy of a passing thought. What would you mathematics, who had never mastered the frst rudiments of arithmetic? You might laggh at him, cer-
tainly. But might he not be more worthy of pity? T. Bucs. But might he not be more worthy of pity . Bocx, Jun.-The agent is trying to impose upon youn.
Cases for any volumes can be had at 1s. 6 d each 4 Cripple.- We cannot assist yon. Fou oould only obtain the information by personal inquiry of the proprietors of such establishments.
A Country Pluybre-We do not recommend mana.
facturera.
Commanications which ean only appoar as adverticements to hand from J. Franklin, Panl Gill, A Joiner, Cincinnatus.
Whitaker.-A printeres error.
Jack Fack-Your reply is an advertisement
Trebor.-We do not sen how you can dye thom white
For other colours nse Judson's dyes.
Robertus Reeicus.-Make and try your model engine Legato. - Buy
Legato.-Buy the indices to onr last five volumes, and
your will nint again send auch a simple question you will unt again send such a simple question. Morrison, 3, Adelaide-place, London-bridge. A LeEDS MAN - Write to the makers, or employ a Jalent agent to make a search.
J. Unwin.- Sucli private commanications can only be effected by means of an advertisement.
anaro-Saxon - We have given in baok volumes all the
recipes for copying ink we have space for rocipes fir copying ink we have space for.
J. O. J.- Y'rs ; Luy the indices. P!anoforte keys will do.
A. M. Frisrivg.-The letter sppeare, but it is too

Wrodstock.-The book.
mely but very useful naturo; yours is only of use to Wi) 8.8.

W. C.-Wo do not remember your reply; probably the others that appenred were already in typo. Anything sont on the subject mast be sent as all other contriyou to expect the insertion of any lengthy contribution on phrenology.
B. H. H. - Varings methods of deatroving hags were piven swered.
"Prisu" is " plad to see the remarks of 'Manus' ooncerning the had "Humility is the best tost of wisdom," and "he who is wise is cantious of his own opinion, and tender to that of othera."
A Poor Mar.-Consalt a medical rasu.
M. L. L. -No doubt sometbing will be done in the way of forming a piano alliarce before long.
A. O. and R. Spaxcme- Your queries are advertisemente. W. A. Wrire-Advertise.

Kroda Box expresses his sorrow that so many perennalities have cropt into the Enolish Mrchanio recently through "Philo," Wm. Tonkes, and "E.L G." Bnd hopes that oorrespondents will constantly remember questiong; and, secondly, the space of the ENGLisi mestanio is precioul.

THE INVENTOR.

APPLCATIONE FOR LETYERS PATENT DURIXG THE WETE ENDING APRIL P, 1872.

pes J. J. F. Manont. Paria, for improvemanta in the princional
 pianication.

 208 W. R. Lake, soathampton-bnildinge, for improvements in paper rag epsliea. A communication.

oft J. J. Johnnon, Lincoin'a Inn- felda, for improvemonts in
uqneuri or cordinal and other bererakes, and in apparatus to bo mployed in their manalacture. A cominunication.
 m7s J. H. Johnson. Lincoin's Yn. finlda, for tmprovemonts in
 apparatat tor propetiling
gps F. Pradencli and. J. F. Cotterall, Dath, for an Improved
apparatui for to

opt W. Lh. Lake, Sonthampthn buildirgs, for tmprovements in trating the liktit of the same. A communciaton.
 g79 W. R. Lnke. Soathampton-builings. for an Improvod oom.
pound for cieansiug cacputa and viher woven fabriec. Δ commani-

 improveswentsin to bo oxed hiseriur.

 mot J. I. Cseartollu, Manchentor, for improvemonta in pyropiss R. H. Mach, Branswick, Germany, for improvements in
cofoe machine. Re. O. O. Hill, Nottingham, for fmprovements in mechisery for
gofioring, futing, und crimping faltritst. per J. O. Hanctin, Paria, fro imprormmona in machinery for
poandiag, grinding, and mixing moudding sund and other subdanoen.
 nd small boatio generally.
 cos^{200} A. A. Ronaignol, Paris, for nn improved apparatas for reportage minic plased on the pianntorto, organ, harmuniam, and gop P. C. B. Robintan. Teddington, for detaching both tackien
almaltanooniy from

 ployed in tho anid manulaoture.
of gas for Lighoting and hieating. and in apparatuas omploged

 Sin C. Dalnatre, Doubaix, Frace, for improvements in ootton.
 entert.
ment.
1noo
ind
g99 J. P. Wartriek and J. Clexg, Bolton, for an improved ad

 ther fibrous sabstances.
1001 J. Resnolde, Belfast. Iroland, for improvements in roritg or alahbing Rismomes, partly applicabie for impartiog motion in other
machinery. macbinery.
1002 w.
 rallway ralls. A communication.
1003 C. Stevenson, Milngevile, X.B., for fmproverontis in ap. paratua.employed in con verting
oimilar subetnices into pulp.
1034 B. Hunt, Serie.streat. Lincoin's Inn tor an improved epped ndicator for railmay and other aimilur porpocoo. \& comanuicas.
1200s W. Wrinht, ghoffold, for Improvamentes in valves and ap.
paratua for dushing water.closets and other purposes. paras J. Or uerod and D. Speira, Watorfoot. Manchoqtor. Por 1 m . provemer.
mater in the mod
mor
1007 G. Tideombe. Inn.. Wattori, Herta, for Improvemante in
 1009 W . Walton and J.T. Fallown. Denton. Manchertor, for im . provements in and machin
carde and for othor parpoces.
 1010 F. Reoven. Bratton. Wrlteghire. For improvements in the
 puratue connected therevith. A communication.
1012 A. \cdot. Nowton. Chancerv-lere, for an improvement in the
mode of and appuatus tor obtainiog and metallicislig olectromode of and apparatis for obtainiog and metallicising olectro-
ape mould. A communication. 1013 F. Conles. Chicheley, Backs, for an improvement in the 1014 W. Clar. Birkenhead. in Improvementa in tools for eatting and shaping notals, and in tho means of keoplog the samo cout while in use
1215 J . R. Wigham. Monkstown, Dnhlin, frimproroments in 1018 G. T. Bonntield. Brixton, for sowing and other machino
 1018 J. H. Johnson, Linconn's Inn-fielde, for improvements in in apparatus emplosed therefor. A communication. 1013 W. R. Lake. Sonthampton-buldiags, for improvementa in
beoviliten. A connuunicution.

nachinos. w. Bmith, Oxten, Cheobiro, for an Improvement in the rentilation
${ }^{1029}$ A. B. Wimpenny, Hevifild, Darbyblure, tar improvements
 paratus to bo employsd taerelin.

1028 A. Pilling, Bochdale, for improvements in venthatting 1097 J. Weboter. Birmingham, for tmprovemonts in the manu facture oi froo and stect.
solting from the operation
1028 M. Tildesiey. Wolverhampton, for an improved oven for

 1031 s. Norris, Lombard-atreot, Cty, for an tmproved pave1098 A. M. Clark, Chancery. lane. for improvemente in the
manufacture of illuminatiog ges and in apparatua for the same. A
 improvementi in the wanutactire of hata
ind in apparatas for such manufacture.
 1035 T. Nutting, Rhode Ioland, U.S. for improvements in
machinery
for spinning woal or varione other abrous mattert. ${ }^{1028}$ F. Hurd, Wakefild, and \mathbf{s}. Firth, Leeds, for mprovecmonta In wachinery for excapatitir conal and
pormanont way for the ralli of the same.
1037 P. E. Baxby and J. Wiannintino. Lora-stroet. Hulme, for

1098 J. II. Mills, Collegc-strect, Ctts. fer improvements in ap. paratus ior Roneralilig heat oy the combastion of gas.
1073 J. H. Mul, Collegs-Atreeh City, for improvemanta in atenm ${ }^{1440}$ J. B. Manchamp. Fensington, foe a now or improved aiarat-
 bher plantic materiala.
 mas chinery for doubling and twisting two or more yarna or thronde
of ibroan subatances. 1013 A. M. Clark. Chancory-lane, for an Improved loon for weavlig. A A communication.
 and other matariala. A communication.

PATERTS EEALED.

9618 R. V. Neale, for toproramente in apparatus ar appliapcee for torping and reguating the extent of apguiler raotion, nnd in
cendea, though not excinaivoly so, to be adaptad to doon and Frencti and othor windowa.
2839 N. Wilion, for improvemonts in zowing machinos.

$2 \operatorname{lin}$ O. I. Scott, for improvementa in ventiasuag minea aid

2ast G. Sterevxon, finr improvemente in apparatua for the pre-
paration and mannfacture of iron and steel. $3 e 57$ J. Dariington, for improvements in oteam and proumertic ongine
2681 M. Tonsell, for an improved mode or monar of veatiation. وces J . Btockiey and \mathbf{M}. Stainton, for improvemanta in and ap2574 T. Walkor, for improvamonte in tho construction and 2975 H. Haghes, for improvementa in apparatus tor attach

${ }_{2700}$ J. R. Holmas, for improvements in teeth for cemers and in

2709 J. s. Templeton, for improvesmenta in appection to bo ated in wearing looped-pile fabrics.
 also applicable for veld hospitals and otber parpones.
2728 H. Wullama, lar improveinents in tanta and othar weather
2741 G. Longhton, for improvementa in baiknoos or welestas nents in the production of colverst

2749 J. S. Croaland, for tmprovemonta tin wamm bollers ar | seni2 |
| :--- |
| H. Jackson, for tmprovements in apparatas for beatiag |

 2881 W. Heworth, for improvements in machinory for rolling toe loant. Cand iot improrements in the conctruction of har-

 chloride oo potastiam.
2875 W. R. Lnke, for an improved mothod of prosorring wood 2943 \&. V. Nowiton, far an theroved construction of twiteo 9979 O. Featrbiirn, for improvamenta in bolt-making nackibery. 2933 J . Macintonh, for improvements in waterprooi campocance 8860 D . Stowart, for improvemente in sngar-cane mills.
3s. 7 E. H. Bentall for improvements in maclungery for mana

${ }_{24}^{24 s} \mathrm{H}$. Ashworth, for improvemonts in the constraction of
8177 J. W. W. Bbaw, for an improved depilatory compoation fer
 chldren, or for artistical purpoees.

59 J. H. Johnson, for fmprovements in moltiag farnacos.
so J. H. Johnson, for improvements in discharging or tapping moten metal
49 J. H. Johnoon. for improvements in stoum generatore, and tin 420 J. H. Johnson, for improvementa in refrigerating apperation. s21 W. R. Lato, for improvements in moving and rosplas
教 to stoam and other boilers.
soo W. R. Lake, for improvemonts in the manufhoture of bools uso D. G. Low, for an improved sall hank.
sea W. R. Lake, for an improved lawn mowing machlina.
2677 W . Yateo, for tmprovementa in mineri' lampa.
2 cas J. Tagall, for an mproved satomatic nut-erowing ${ }_{9688}$ J. M. Joznnides and L. M. Adntt, for a new or improted apparatas for vontiluting aud protecting or preserving goode vhe 2339 ing 4 pparatue tor the tmprorements in steam bollors add in cleas-
 ment
graplic and other imprensiona

 ${ }_{20} 2395 \mathrm{~W}$. H. Ronald, for improvements in umbrollas, suachades and paraeula.

272n E. Heywood, for improvementa in washnq maohlnes, part $2721 \quad 0$.
 and domestic parposes. o . T. Keniall, for improvemonts in
 2:88 J. Horrocks, for improvemonts in pickers usod in hooms
 27s7 C. Randolph. for liprovoments in oommon road stoem 2776 J. R. Napler, for improvements in water-prsasere apoed

 2797 A. Quat laci, for improvementa in ynoumatic telagrapa
2eni L. M. Casella, for improvements in maximum rozlotectas 2810 J . Wabstor, for the manufactare of metaliti lead pilt 2eno A. IL. Oliart, for improromenta in elecirio telogation or

2910 A. X. Oleck, for improvemeats in rollors aned in opperin
machinary
 soss c. o. Johngon, for froproverenta in ap?ara!ar or d yi

saia J. Oidroydani n. Oliroyd, for a now or improrod e ir
${ }^{\text {82a4 }}$ J. Oidayd an h. Oinroyd, for a now or moprorod e

Ohe Cfuglish Gfltechanic

WORLD OF SCIENCE AND ART.

TRIDAT, $A P R I L ~ 26 ; 1872$.

ARTIOLES

METALLURGY OF IRON AND STEEL.*

 (Continued from p. 111.PG-IRON is essentially iron and carbon ; when these two things are heated together strongly they combine, and if the temperature be high enough to fuse the produot we get pig or cast iron. There are some remarkable properties about this pig-iron, essentially it is iron and carbon combined in certain proportions; with other proportions of carbon we get various kinds of steel If we take pig-iron containing a large proportion of carbon, say some four or five per cent. and melt it in mass, and then allow it to cool very slowly, on examining the product we shall find it to be gray pig, having a granular, darkrasish, white appearance. The carbon in the mass after melting, if allowed to cool slowly, separates throughout the entire substance, in the form of graphite (crystallised in cubical system) acids do not attack it. Gray pig-iron is, therefore, essentially metallic iron with graphite diffused through it, and we may make it so that nearly the whole of the carbon is separated as graphite by the act of slow cooling.
If we take a mass of gray pig-iron, melt it, and instesd of allowing it to cool slowly, cool it rapidly, then it is possible to get a product so entirely differcnt in appearance from gray pigiron that we can hardly believe that one may be transformed into the other. This is white pigiron. In some cases we can get a product partly white and partly gray. The fracture of white pig iron is very different from that of gray, so also is the colour, being a nniform white; it is likewise muoh harde r and highly crystalline. If the white pig be acted on by an acid, as common muriatic, \&ic., we get a brown residue quite different in appearance and chemical composition from that which is left in the other case, with no graphite or no sensible portion of it. Yet it consists chiefly of carbon in a totally different state from graphite. If graphite be treated with canstic potash or soda no action occurs, but this residue is dissolved if so treated. In the white pig the carbon is in a state of combination. If gray pig-iron is cooled very rapidly we get a particular kind of pig-iron called Spiegeleisen (from the German word spiegel, meaning a mirror), now in great demand for the Bessemer process, and imported in large quantities from Germany, and some from Sweden, and we also make a small quantity ourselves, but we have only a limited quantity of saitable ore. It contains a large proportion of manganese, in some cases as much as 10 per cent. It contains also 5 per cent. carbon, and although other matters are generally present, about 85 per cent. of iron. When manganese is present it is found that the whole, or nearly the whole of the carbon, is retained in combination. This variety is exceedingly hard, and when freshly broken is very bright. Perfectly pure iron would not be acted on by acids. If we take white pig and act on it by acid, and cool the gas evolved, it is possible to get some remarkable products from it, or at least one product from which others can be obtained. If, for example, the hydrogen evolved when iron is acted on by oil of vitriol be produced by iron containing carbon in combination, then union between the hydrogen and carbon takes place and the result is a volatile oil. The lecturer exhibited a quantity of liquid hydrocarbon obtained from Spiegeleisen in the metallurgical laboratory connected with the institution.
Conversion of Pig-Iron into Malleable Iron.
In former times the process adopted was very simple, and charcoal wrs always the fael em. ployed. Usually a square forge-like hearth was cmployed for that object, with one jet of blast pig-iron was put into the furnace along with the harcoal, and by means of a powerfal blast the F was enabled to reach the surface of the metal. elo iron was burnt immediately into the oxide,
and so was the carbon in that portion of the iron. The result was the formation of the oxide of iron and the workmen then used to stir up the whole mass and mix it up thoroughly with the molten pig-iron, and finally bring out of the furnace a lump weighing sbout three handredweight, exmotly similar to the lamp produced in the Catalan forge. All the malleable iron in this and other countries was, until recently, produced in this manner.
In the above case there was direct contact between the charcosl and the molten iron. Now charcoal is devoid of one impurity which exists in all coal and coke-namely, sulphide of iron. This ancient mode is still carried on in South Wales, and extensively in some parts of Staffordshire The best kind of iron known for tinning is called charcoal plate, and is manufactured by this process, being the only stage of the process in which charcoal is used at all.
If we take some pig-iron and pound it, or otherwise finely divide it, and then mix with it oxide of iron (the scale of iron seen on the surface of iron a'ter a red heat is oxide of iron), and heat the mass so as to melt it, we should get a vigorons action between the carbon and the oxygen. If we took a given weightof pig-iron and reduced it to coarse powder, and knew the exact quantity of carbon it contained, then if we added a proper quantity of oxide of iron to supply the oxygen requisite to barn the carbon into carbonic oxide, we should get wronght iron. So that by intermixing the oxide with it in the right proportion and exposing to a high temperatara we could barn up the whole of the carbon. The same principle is employed in the process of "paddling;" in both cases the oxide of iron is used, being either added or generated.
The question is how to accomplish the oonversion of pig into wrought iron economically on a large scale. It would incur a great expense to reduce the iron to powder, \&c. When wood became dear, and consequently charcoal scarce, attempts would be made to substitute coal or coke for the charcoal. If coke were applied in the former process in the same manner as charcoal a very bad article would be the result. It became essential to devise some means of asing coal so as to prevent contact between the solid fuel and the pig-iron operated on. That was accomplished in the so-called reverberatory furnace where the two are kept completely apart. A reverberatory furnace is one where the flame is reflected or reverberated down on to the material to be heated. If we make the flame from one of these furnaces to set upon the pig-iron, the latter may be satisfactorily and economically converted into malleable iron. That is done in paddling.

Puddling.
This process is ascribed to a Mr. Cort, who took out a patent for it in 1784. The process is known as Cort's puddling process; the history of it is very interesting and somewhat painful. Cort spent his private fortune, about $£ 20,000$, in carrying out these investigations. After this a gentleman employed in the Admiralty adranced him money, which subsequently was found to be not his own, bat the nation's. Thereupon the Government came down upon Cort. The other unfortunate individual died, and the Government, instead of allowing Cort to work his way and pay off the money, which he would soon have done, stopped the whole thing, and gave what advantage there was to certain ironmasters, whereas they might have recouped themselves a handredfold. Cort died a rained man, depending for subsistence upon a small bounty from the public purse. Here was a man who systematically developed this process by which not only private individuals, but the nation at large, has been immensely benefited, yet that man was allowed to die only just out of the workhouse.
Other persons had puddled iron by much the same process as Cort shortly byfore him, bat it is perfectly certain that these persons did not appear to be aware of the value of that process, and Cort was the first to develop it on systematic ground. Remember, the principle is the removal of carbon from pig-iron in a reverberatory fur
A reverberatory furnace consists essentially of three parts-the fireplace, the bed, and the "stack" or high chimney. The fireplace is separated from the bed by a wall of fire-brickshe " bridge"-resching ap some distance towards the roof, and often a little wall separates the bed from the flae, where it is much contracted. All theee must be made of good fire-brick, or other highly refractory material. Underneath, the wall
temperature is very high, and must consequently be kept down. This is done by placing a castiron girder, anchor-shaped, and protected from the fire by fire-brick, opposite it is another girder, and over the top another piece of cast iron, the whole encased in fire-briok, somewhat overhanging, and thas affording means for a free circulation of the air.

In former times, when Cort lived, the bed was made of sand, agglatinated together by oxide of iron, bat this did not answer well. In 1819 Mr. Rogers substituted the use of iron bottoms, which has proved to be a very important improvement. Like Cort, he died in great poverty a few years ago. Since then these bottoms have been everywhere adopted. They consist of two parts, one called the frame, of cast iron. and laid between the fire-bridge and the flue wall; the other portion consists of four flat plates of iron dropped into the frame. These latter are sapported by girders of wrought iron ranning along and resting on standards of cast iron. All underneath this bottom is left perfectly clear, so as to allow of a ree contact with the air, and thus the intense temperature is kept down, which would of course otherwise be sufficient to fuse the bottom itself as well as the materials laid on it. The walls of the furnace somewhat overbang the bed, and also certain stops are put so as to make a border running round, exoept facing the door.

The bottom of the furnace is covered with "fettling," and for this parpose we cannot do better than take some kinds of iron ore, or of slag, the latter well calcined-" bull dog;" take the fettling right under where the walls overhang. The door is an iron frame, filled in with fire-brick, and suspended on a lever worked between two projecting ribs. The door may be wedged np, leaving a draughtway between the chimney and the edge of the door; there is also a small hole in the bottom of the door. The door drops upon a piece or bar of iron, called a fore plate, and the puddler has to work a long iron rod resting apon this fore plate. The action of this rod soon wears away the fore plate where it acts, and this is to some extent provided against by cutting out a piece of the iron from the plate at this place and putting in a piece of much harder iron, which can be renewed from time to time. The fore plate rests on a vertical plate of cast iron containing a hole with a plag, through which the slag is from time to time tapped ont. The whole of the furnace is cased in plates of cast iron, supported on standards, tied at the top by tie rods. It may be observed how large the fireplace is in comparison with the bed. The roof of the furnace dips down towards the flue.
Now, let us suppose the farnace in working order, being heated ready, the last charge having just been drawn off. The puddler is there-it takes a good strong man to be a puddler. Now take a charge of pig-iron, weighing (say) about 4 cwt ., the iron to which the common name of forge pig is applied. Pat in the farnace along with this, or rather previous to the iron, on an average about lewt. of smithy scalesin fact, oxide of iron. The iron is melted, and after a time we are strack by the appearance of boiling in the metal, and it rises up considerably and swells up so as sometimes to come out at the hole in the door. This phenomenon is called pig boiling, and the process is comparatively moderd The boiling is caused by the generation of carbonic oxide gas and its escaping through the molten metal. After a time the boiling subsides, and in proportion as the cast iron loses carbon it becomes less and less fusible, and wrought iron is produced in bright grains, multiplying very rapidly, and by-and-by the paddler will collect all those small portions into a series of balls, each weighing about 801 lb ., and in one hour and twenty minutes these balls are drawn from the furnace in succession, and subjected to mechanical treatment, and made into bar iron. There is also produced a very infusible silicate of iron, being the combination of the silicon in the pig-iron and iron, every one part of silicon carrying off not less than four of iron.
What is known as "puddle-bar" is nothing more than a spongy mass of malleable iron, containing slag in its pores; when the balls are taken out of the furnace at an exceedingly high temperature they ara pressed in a squeezing apparatus at a welding temperature, the slag is equeezed ont, and we get a bloom or metallic mass. It is next parsed under grooved rollers and drawn ont, into puddle bar, which is a comparatively impure bar iron.

CAPILLARITY.

WHEN the end of a capillary tube is thrust into a liquid, such as pure water (the tube having been previonsly moistened with water), 2ho liquid rises in it, quickly at first, and the mete of rise is gradually diminished as the liquid arproaches its altimate limit, which it is very si. Fw of reaching in tabes of small diamcter. N. Decharme is investigating this spontaneons upward movement, and he proposes the following points for inquiry :-Is the motion retarded uniformly or irregularly? What is the nature of it? Fiow do the rate of ascent and the space vary, by the end of a determinate time, with the diameter and inclination of the tabe, the natnre and temperature of the liquid, and with anch physical and chemical properties as density, specific heat, boiling point, equivalent, \&c. ? What lignids rise most rapidly? and do these reach the greatest height, or is the opposite the case? What relation does this kind of rise bear to that a liquids moving in a tube under constant pressure? What is the relation between this capillary motion and the endosmotic motion of the same hiquid?
With regard to the nature of the motion, he frads from experiment that it is not uniformly relarded. If a curve be drawn to represent the namerical resulte connecting the epice with the time, each liquid being ander identical conditions of experiment, it appears that while the carve las for some liquids some analogy to a parabola in the first part of its development, it departs from this more and more in proportion to the time, its lattro part approaching to n byperbola. It belongs to the category of logarithmio curves, and M. Decharme has not yet satisfied himself $2 s$ to its formula.
He gives the following general results from his experiments:-

1. Each liquid has its own rate of motion in a capillary tabe (say) one millimetre in diameter, the liquid and tube being kept at a fixed tem-peratare-zero (e.g.).
2. For the same tube, kept at the same inclination, and for different liquids taken at the same temperature, the rates of rise are not in direct proportion to the ultimate lengths of the tube
occapied. Viscous liquils, such as snlphuric acid, glycerive, or oils, have a slower initial and continned motion than very fluid liquids like alcohol, sulphnret of carbon, or ether, and yet the former rise higher than the latter. The rate of rise is, moreover, neither in an aractly inverse proportion to the entire time occupied, nor to the density of the liquids. The law appears to be somewhat complex.
3. Of the liquids submitted to experiment (more than 150, chosen principally from the chlorides, iodides, bromides, and the salts of ammonia, petrab, lithia, glucina), the aqueons solution of hydrochlorate of ammonis had the quickest rate of rise-a rate which increased in proportion that of water in proportion as the tempemature was raised. Chloride of lithinm in anueons solation, the only liqnid which, after the eolntion of sal-ammoniac, rises higher than pure water, has a rate of rise considerably less
than that of water, which is surpassed by those of a large number of liquids. It is to be remarked that an alcoholic solution of sal-smmoniac, in conditions identically similar, always rises lees rapidly than anhydrous alcohol, while at the same time it reaches a greater height nltimately. Chloride of lithinm diminisbes similarly the rate of rise of its solvent, but the alcoholic solation dees not rise so high as the pure alcohol.
4. For all liquids, rate of rise in a capillary site increases with the temperature. Even
mater, when near its maximum density, is not an exception to this law. It may be stated, however, that if the rate increnses in a continuons manner, bosween zero and 10° or so, it increases much mome rapidly if the temperature is farther raised. The increase in rate of rise due to temperature Taries besides with the rate of rise peculiar to the liquil. This rate, in some cases, is even donbled for an elevation of temperature 50°.
5. For each liquid, and the same inclination of the tabe, the motion by the end of a unit of time, or more simply, the space passed in a second, increases ir proportion to the diameter of the tobe.
6. For the same liquid, and the same tabe. the rate of motion iucreases with the inclination of the tabe. In proportion to the time, these ditierences in rate of motion successively diminish, i.cn disappear, then show themselves in the
contrary direction, and the heights ultimately reached are inversely as the diameters. So that the ourves relating to one tube and one liquid do not out each other, while the carves relating to one liquid and to tubes of different diameters, placed at the same inclination, cut each other at
points which are nearar the initial point, in propoints which are nearar the initial point, in pro-
portion as the difference of diameters is greater.
A. B. M.

ASTRONOMICAL NOTES FOR MAY.

BrHE right ascension of the Sun at Greenwich mean noon on May 1st is 2 h .35 m . $46 \cdot 82 \mathrm{~s}$., and his declination north is $15^{\circ} 15^{\prime} 21 \cdot 6^{\prime \prime}$. He angle with the two small stars, π and σ Arietis. He rises in London on the 1 st at 4 h .33 m . a.m., and sets at 7 h .21 m . p.m. : while on the 31st his rising and setting will take place at $3 \mathrm{~h} .51 \mathrm{~m} .8 . \mathrm{m}$., and 8 h .4 m. p.m. respectively. On and after the 22nd there will be no real night, inasmnch as, oven at midnight, the Sun will never descond more than 18° below the horizon, and twilight does not cease until his angular distance from it exceeds that quantity. The equation of time is subtractive during the whole of May. On the 1 st 3 m .6 .03 s . must be taken from the instant of apparont noon to obtain the time which a properly-regulated olock ought to show; while on the $31 \mathrm{st}, 2 \mathrm{~m} .34 \cdot 28 \mathrm{~s}$. must be subtracted from the time shown by a transit or sundial to get true mean time. The semi-diameter of the Bnn at his Greenwich transit in, on the 1st, 15' $53 \cdot 8^{\prime \prime}$, and this occapies $1 \mathrm{~m} .6 \cdot 09 \mathrm{~s}$. of sidereal time (convertible into mean time by the subtraction of 0.18 s .) in its transit. On the 31st the Sun's semi-diameter will have diminished to $15^{\prime} 48^{\prime \prime} 2^{\prime \prime}$, and the meridian passage of such semi-diameter
will take 1 m .8 .37 s . of sidereal time (or 1 m . will take 1 m .8 .37 s . of sidereal time or 1 m . time at mean noon on the 1 st is 2 h .38 m . $\overline{2} 3.87 \mathrm{~s}$., and on the $31 \mathrm{st}, 4 \mathrm{~h} .37 \mathrm{~m} .957 \mathrm{~s}$. : the mean timo at sidereal noon-or mean time of transit of the frst point of Aries being $21 \mathrm{~h} .17 \mathrm{~m} .37 \cdot 25 \mathrm{~s} .$, and 19 h .19 m .39 .93 s . on those days respectively. The absence of Solar activity, as indicated by the paucity and small size of spots, \&cc., continues.
The Moon will be New on the afternoon of the 7th at 1 h .18 .7 m . ; enter her first quarter at 4 h .56 m . on that of the 15th ; be Full at 11 h . 8.3 m . on the night of the 22 nd ; and enter her last quarter on the 29 th at 2 h . $12 \cdot 4 \mathrm{~m}$. in the afternoon. She is $23 \cdot 5$ days old at noon on the
1 st, and so on until the same hour on the 7 th, when her age will obviously be 29.5 days. Then on the 8th at noon her age will be 0.9 dry, and, increasing de dic in diem, 23.9 days on the noon of the 31st. Libration will, at 7 in the morning of the 5 th, render more of her \mathbf{S}. W. quadrant visible; and at 3 a.m. on the 19 th it will cause additional surface in her S. E. quadrant to come into view ; while again on the 31st, at 9 at night, the same canse will oporate in once more bringing an extra portion of her S. W. limb into view. The Moon will be in conjunction with Venus at 8 h .48 m . in the evening on the 5 th; with Mercury at 2 h .44 m . a.m. on the 6th; with Mars at 5 h .9 m . in the afternoon of the 7 th ; with Jupiter at 1 h .54 m . a.m. on the 13 th ; afterwards with Uranus at 7h. 58 m . a.m.; and, lastly, with Saturn at 5 h .34 m . a.m. on the 26 th .
There will be a small partial eclipse of the Moon, visible at Greenwich, on the night of May 22nd; but even at the time of greatest obscaration, the magnitude of the eclipse will only amount to 0.116 , the Moon's diameter being taken as $=1$. The first contact with the shadow will happen at 177° from the north point of the Moon's limb, towards the east (i.e., in point of fact, almost at the sontaern part of the lunar limb), the last contact at 143° to wards the west. In each of these cases we assame the Moon to be viewed with the naked eje, or with an ordinary terrestrial talescope.

First contact with penumbra, May 22
First contact with shadow
Middle of the eclipse
Last contact with shadow
Last contact with penumbra
 dars during May, and come nlmost into contact First, on the evening of the 12 th, B.A.C. 2514 will disappear at her dark limb at 6 h .59 m . ; reappearing at her bright limb at 84.10 m . Then ou
the 16th, just 2842 Leonis is setting, at 2 h .1 m . a.m., it will disappear at the Moon's dark limb; it will emerge (below the horizon) at 2h. 36m. from behind the bright limb; but will, as a matter of course, be invisible here. On the evening of the 17 th , at $8 \mathrm{~h} .5 \mathrm{~m} ., \nu$ Virginis will disappear at the dark limb; reappearing at the bright one at 9 h .20 m . At 9 h .15 m . on the night of the 19th 65 Virginis will disappear at the dark limb of the Moon; as will 66 Virginis at 10 h .8 m . 65 Virginis will reappear at the dark limb at 10 h .25 m ., and 66 at 11 h .20 m . Then, at 2 h .44 m . the next morning, l^{2} Virginis will be occalted by the dark limb, bat will set ere its reappearance at the bright one at 3 h .41 m . On the evening of the 20 th , at 8 h .28 m ., κ Virginis will disappear at the dark limb, reappearing at the bright limb at 9 h .8 m ; while at 2 h .54 m . the next morning 2 Libre will be similarly occulted, setting, however, ere its reappearance, at 3 h .36 m . At 9 h .15 m . in the evening on the 21st the Moon will pass quite close to ν^{1} Libre. On the night of the 22nd ω^{1} Scorpii will be occulted at 9 h .26 m ., and ω^{2} Scorpii at 9 h .52 m . ; in each case at the Moon's dark limb -which, however, in this case, will be very close to the enlightened part. ω^{1} will reappear at 10 h .34 m ., and ω^{2} at 10 h . 59 m ., both, of course, at the bright limb. At 1 h .13 m . in the early morning of the next day (the 23rd) B.A.C. 5395 will disappear at the Moon's bright limb; reappearing from behind her dark limb at 2 h . 24m. The moon will pass quite alose to 390 phiachi at 2 h .26 m . a.m. on the 23 rd . Afterwards at 4 h . 10 m . θ Ophiuchi will disappearat her bright limb. Its reappearance from behind the dark one will take place at 4 h .49 m . after it has set. Lastly, at 2h. 49 m a m on the 28 th the Moon will be slmost in contact with 37 Capricorni.
So unfarourable a month for the observation of planetary phenomens as May, 1872, is hardly within our recolleotion.

Morcury, having passed his inferior conjunction on the 24th of April, is now travelling towards the west again; but his proximity to the Sun daring the earlier part of May, and his consequent rising, sonthing, and setting in the glare of bright twilight and daylight, will render him invisible. On the 22 nd at 9 h .5 m . a.m. he will attain hia greatest elongation west $\left(25^{\circ}\right)$ from the Sun; but, inasmnch as his declination north will be considerably less than that of that luminary, he will even then rise in twilight too bright for him to be discernible save by the aid of an equatoreal. He will be, as before, observed in conjunction with the Moon at 2 h .44 m . a.m. on the 6th, and with Yenus at $10 \mathrm{~h} .52 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. on the 8 th .

Venus is moving towards her superior conjnnction. Her diameter diminishes slightly during May; being about 11" at the beginning and aboat $10^{\prime \prime}$ at the end of the month. Mrutatis mutandis, all our remarks with reference to the bad positien of Meroury in the sky apply with equal force to this planet too. She will, as just remarked, be in conjunction with Mercury at 10 h .52 m . a.m. on the 8 th, and with the Moon at 8 h .48 m . on the evening of the 5 th.
Mars is invisible during the whole of this month; being in conjanction with the gan st be in conjunction with the Moon, as previously intimated, at 5 h .9 m . on that of the 7 th .
Jupiter is the single conspicuous object in the sky during the earlier part of tho night, and may be seen in the west and north-west part of the heavens up to about 1 a.m. at the beginning of the month, and until a little after $11 o^{\prime}$ clock at the end of it. He rises on the 1 st at $8 \mathrm{~h} .55 \mathrm{~m} . \mathrm{a} . \mathrm{m}$., souths at $5 \mathrm{~h} .0 \cdot 6 \mathrm{~m}$. in the afternoon, and sets at 1 h .7 m . the next morning; while on the 31 st his rising, sonthing, and setting takes place at 7 h .23 m. a.m., $3 \mathrm{~h} .22 \cdot 5 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. , and 11 h . 23 m . p. respectively. He is now travelling slowly frow Gemini into the confines of Cancer, and th. crooked line which he forms with Castor ar: Pollax daring the early part of the mons approaches to a straight one towards the end night of the 31 st, and almost exactly sonth that star; and will, farther, be in the immediat neighbourhood of Uranas, which will
slightly to the west of him at this date.
As a matter of conrse, the phenomena exhibited by Jupiter's satellites are becoming fewer and less perceptible. Beginning with the 1st eveuing o May. Perhaps the ingress of the shadow of satellite itself at 8 h .13 m . may be osught in
twilight. When it gets darker, the ingress astellite 1 will begin at 9 h .52 m ., the egress of

Apprl 26, 1872. ENGLISH MECHANIC AND WORLD OF SCIENCE.-No. 370.
the shadow of satellite 2 will takeplace at 10 h .40 m . and the ingress of the shadow of satellite 1 at 11 h . 5 m . If Jupiter be not too near the horizon satellite 1 may be seen to leave his diso 11 minates aftor midnight. On the night of the 2nd satellite 2 will reappear from eclipse at 10 h . 35 m . The the evening of the 3 rd , and the occultation of satellite 4 at 12 h .28 m . the anme night, may perchance be perceptible. On the night of the 6th the egress of satellite 3 will take place at 9 L .13 m ., its shadow not entering on to Jupiter's opposite limb until 10 h .30 m . Perhaps the beginning of the transit of satellite 2 may be discerned at 8 h. 1 m. p.m. on the 8 th. Its shadow will afterwards enter on to the plavet's face at 10 h .21 m ., and the satellite itself pass off at 10 h .57 m . Afterwards at 11 h .50 m . the ingress of satellite 1 may possibly be detected. This same satellite 1 will disappear in oconltation at 9 h .2 m . on the night of the 9 th, to reappear from eclipse under very unfavourable circumstances for observation 30 m . 28 s . after midnight. It is possible that batellite 2 may be seen to reappear from eolipse at 8 h .3 m . 42s. on the evening of the 10th. Afterwards the egress of satellite 1 will take place at
8 h .39 m ., and that of its shadow at 9 h .49 m . $8 \mathrm{~h} .39 \mathrm{~m} .$, and that of its ehadow at 9 h .49 m .
If it bu not too light, the ingress of the shadow of satellite 4 may be seen at 7 h .54 m . in the evening of the 12 th . On the night of the 13 th satellite 3 will begin its transit at 9 h . 55 m . The ingress of satellite 2, on Jupiter's disc, will
occar at 10 h .46 m . on the night of the 15th. 0 n occar at 10 h .46 m . on the night of the 15th. On
that of the 16 th satellite 1 will be occulted at 11 h .1 m . Dariug the evening twilight of the 17 th satellite 3 will reappear from eclipse a
8 h .6 m .88 s . 8 h .6 m .88 s . ; and the transit of satellite 1 begin
at 8 h .18 m . Subsequently at 9 h . 24 m . the ingrese of the shadow of satellite 1 will occur; while the egress of the satallite carating it will happen at 10 h .37 m . Immediately afterwards at 10 h .38 m . 30 s . satellite 2 will reappear from eclipse: and fanally, if Jupiter be not toe low
down, ace agras of the shadow of satallite 1 may, perhapg be qaught at 11 h . 44 m . On the next night, that of the 18 th , satellite 1 will rappear
from 41 m . Satellute will be ocoulted in bright twilight at 7 h . 51 m . on
 of gatellite 8 in eclipee at 8 h . 87 ma . 44 st . Will oeove during the evening of the \$4th. Later, satellite shadow at 11 h .18 m . The observation of the
the latter phenomenon is problematical. The same may be said of the reappearance from eclipse of satellite 1 at 10 h .50 m .3 s . on the night of the 25 th ; of the egress of its shadow at 8 h .7 m . on the evening of the 26th, and lastly, of the ocenltations of satellites 3 and 2 on the 31st at 8 h .44 m . in the evening, and at 11 h .2 m . at night respectively.
Saturn is now coming into view again, but is only above the horizon for a short time and at rery inconvenient hours. He rises on the 1st 49 minutes after midnight; souths at $4 \mathrm{~h} .54 \cdot 1 \mathrm{~m}$. the next morning; and sets in bright sunlight at
$89 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. On the night of the 31 st he rises. 410 h . 43 m ., souths at 2 h . 48 m . 8 s . the next zorning, and sets at 6 h .53 m . He remains in a
ery barren region in Sagittoring; and is still ar too low down for effeotive telescopic sorntiny.
$H e$ is, as mentioned previonsly, in conjunction He is, as mentioned previously, in conjunction With the Moon at 5 h .34 m . a.m. on the 26 th .
Uranns, very slightly to the east of the position Which he occapied last month in Cancer, is so Dear to Jnpiter that, for all practical purposes, reference to the rising, sonthing, setting, and general visibility of the latter planet, will apply
equally to him. He will be precisely south of u^{2} Cancri about the middle of May. His conjancion with the moon at 7 h .58 m . a.m. on the 13 th been before referred to
isible.
It is exceedingly debateable whether anything uring this month. If such a one exists it should 'ipen aboat the middle of May.
W. eat Fuel In Canada.-Prepared pent has been ad as a subatitute for wood on the Grand Trunk tted longer than half a cord of wood. It is reported t those concerned are satisfied of the superiority of
dncw fuel, the supply of which is practically inex-
dible.

THF following is the snbstance of a lecture by Darid Forbes, F.R.S., delivered at St. George's Hall, London :-After giving a sketch of man's knowledge of the sulject from prebistoric times, the lecturer referred to the superstitious ideas which commonly associnte the appearance of these bodies with impending calamities, or
even the destration of that in destruction of our globe, and showed Romans, as well as in later times amongst the Tartars and Negroes, meteoric stones were regarded with extreme vencration, and even wor shipped as representatives of the gods themselves. The idea of their containing withiu them treasures, which often, eren in this century, led to their being broken into fragments, might, he thought, have originated from the practice, common in still earlier periods, of ooncealing
valuables within the statnes of the valuables within the statnes of the gods to protect them from pillage. If this costom had prothe diso prehistoric times, it would have led to than gold-viz., native iron, which composes the mass of many meteorites. He believed that iron had been known as a meteoric product ages before it had been extracted from its ores, and he regarded the fable that Vulcan forged the thunderbolts of Jupiter as evidence that the ancient Greeks knew fallen stars or meteorites
to be composed of iron ; and that the similarity of the Latin word "sideres," the stars, with the Greek "sideros," iron, was more than a mero accidental coincidence. Mention was mado of several Asiatic and American nations who, with-
ont knowing the art of smelting iron ores, used meteoric iron for their weapons and tools. such as the Mexicans, Esquimaux, and Jnkute. Coming down to historioal times, the Chinese were atated to have lept alaborate records of meteors from as eqriy as the sevonth oen
tury before Chriat, whioh had now begn translated and found to be of great value to European
astronomers. Alluaions were thon made to those astronomers Allosions ware then made to those
meteorites momianed by the aucient Groek and Roman witorm, and to the apathy with which this aubjoct was magerded during tho middle and Nase statad to data fromene pablication, in 1794 , of Chladni's momoir on the great Siberian iron matearite, which, although at first reoeived with derision from hie advocating the oelestido origin of these bodies, direoted the attention of the lourned to thair examination. A description of next given, with explanations of the causes of these appearances, and it was stated that, besides those which fall at sea or beyond the reach of observation, it had been estimated that 700 must fall per annum on our sphere, or abunt one each year on a tract of country as large as Great
Britain and France. The mineralogy, chemistry, and physical structure of meteorites were next entered into by the lecturor, who remarked that in these respocts meteorites are totally distinct from any known terrestrial products, natural or artificial. Of the sixty-four chemical elements which compose onr globe, nineteen have been found in meteorites, and as no single element has been discovered in them whioh was not previously known on earth, it is sapposed that the more distant parts of the universe are similar in composition to our sphere. Tho discovery that moteorites coutain hydrogen occluded within them proves this gas to predominate in the space from whence they have descended, and consemast be totaly different from those which obtain on the earth. The different theories which have, from the oldest time downwards, beon proponnded to account for these bodies were next inquired into, and shown to prove reoeived, explanation has its germ in a crude hypothesis of the ancient Greeks, and that the united labours of later sciontifio men, amongst whom Schiaparclli was the most prominent, lead to the conclusion that falling stars, meteors, fering only in size (probably composed of fragments of planetary bodies drawn within the infuence of the sun's action), which from their extraordinary elongated orbits do not form part of our system as at first constitated, but are falling etars bearing the same relation to oomets as seteroids bear to planets. In conclusion, the lecturer drew attention to the question of the ntility of meteorites in the economy of nature-
the two muppositions advanced being, first, that of

Mayer. Who maintained that by their falling into the surface of the sun they restored to it the heat which it luses hy radiation to this earth and other parts of the uivirarse; whilst the second is the startling hypothesis adranced last year by sir Willium Thompson, that the oligin of life on oar globe, and introduction from time to time of new epecies, is due to the arrival of aürolites, which, being fragments of other worlds apon which lifo alrendy existed, have carrled with then the germs of scod, or even " living plants and animals." This later hypothesis the lectarer strongly protested against, both becanse the received thenry of meteors teaches that they are bodies which have been revolving, probably for conntless afea in space devoid of atmospheric conditions; aid
because we find that metcorites lave becn 90 heated as actually to melt and vitrefy their cesternal surface: so that no vegetable or animal seed or germ, oould be expected, ander such conditions, either to retain its vitality, or to reach the earth unconsumed.

THE NEW PHOTOGRAPHIC PROCESS.

THE new urano-bromide emulsion process, do-
vised by Colonel Stuart Wortley, was made the subject of a paper recently read before the Dryplate Clab, from which we abstraet the following etains:-
It will not be necessary for mo to occopy mach of vour time in civing you the formula, as simplicity is one of the most prominent featares of the process; and ron are all so well versed in the various technicalitios of dry-plate phatography, wasted over them. My search has been particalarly directed to two points-one the obtaining of a necrative by a dry process which should have as much delicacy and quality as a wet necgative, in opplates ; and another, the preparation of an cmatplates ; and another, the preparation of an cmatwithout obange, for a mouth or six weekg To do withont obange, for a month ar six weekg To do
this 1 have availed myself of certain prepertics posaessed by the nitrate of uranium
A long serien of exporimenta undertaken when I Was working the Wothlytype process oonviuced me
that a delicacy of imuge greuter than could be obthat a delicacy of image gremter than could be obtained hy other mequs was secured by the use of that salt ; and as the callolion preparen and sensifor years, I felt sure tema I should obtain important results by usiug nitrate of uranium in combination with bromide and nitrate of silver. You will remember how strenuously I advocsted last year tho necessity of a vory large excesa of nitrate of silver if great seusitiveness were required in an emalsion, I the do not depart in any way from anything that I then said. In point of fact, every gram of nitrate of silver that is added to an emulsion ap to gataration increases the sensitiveness of the resulting emulbion. Although nitrate of aranium is capable
to a certain extent of replacing nitrate of siver, I do not prefer to use it in that way where great sensitiveness is required; on the contrary, I still use plenty of silver, and use the nitrate of arsniam to pive stability to the emulsion, extra sensitivences delicacy of image, and a power of restraining fog analogons to that posseased by free bromide, but without the loss of sensitiveness and other injarious tendencies whioh accompany the use of the latter.
Another remarkable point in conngction with nirate of uranium is the great advantage it has where film is acted on by tho silver in the dereloper, and great additional power is thereby obtained. I have made many experizaents as to the ase of the ni-
trate of silver and uraniun separate, bnt have not succoeded so well as by combining them in an emul sion. I recommend yon, if yor wish to try the process, to commence with the following formula:-
Plain collodion
 Nitrate of uraniam
Nitrate of silver .. 1 ounce.
7 grains.
30 "
18
Samples of nitrate of nranium vary oonsiderably, and I purify what I use in the following manner:Dissolve one part of uranium in two parts of ethee, and let stand for some hours; the water of erystaslination that is in the uranium will fall to the bottome of the bottle, leaving a top layer of ether containing pure uraniam, rud it is this top lajer
for the preparation of the emulsion.
I think it is desirable that the nitrate of uraninom shonld be acid; and should it not, after solution is ether, give an acid roantion to test paper, it will be advisable to add to it a minim or two per onnce of acid. Both nitric and acetic have ambwered in my hands, and, on the whole, I should be amelined to
recommend the former. It mast be remembered recommend the former. It mast be remaembered
that great cantion is to be exercised in the cuec of a mineral acid in collodion as if too mach be asol

This brings me to a point which I am anxious to impress strongly apon you-viz., that to succeed with an emulsion process the first and most essential requisite is to have a collodion suited to the work. Some kinds of cotton give a collodion from which a good result cannot be obtained, and I feel sure that many experimentalists fail in getting an emulaion to work satisfactorily from the use of a collodion unsuited to this peculiar work.
I hope this process nity have a fair trial at your hands, and I mast ask yon not to forget that it is one of entire novelty, and that the conditions of its working are somewhat differant to those of any working are somewhat differant to those of any process with whin ion am acquainted. I say this becanse there is an unfortunate tendency among
photographers, when they try and do not succeed to photographers, when they try and do not succeed to their satisfaction with a now process, to throw the blame of their failure apon it; whereas, in truth,
the blame should be laid apon their own imperfect acquaintance with the cenditions of the process, or, what is still more likely, that they are using chemicals which are unsuited to the pecaliarities of the process.
EWith regard to the development, I think I need not take up much time on that sabject. I will say, however, that I prefer to use a strong alkaline developer. And here, again, nitrate of uraninm has its use, as it certainly onables one to use (combined its use, as it certeinly onabies one of use (combined With its other good quailies) a developer sumcientily
strong to render the development of a dry plate no strong to render the development of a dry plate no
longer a tedious operation. One point I must here longer a tedious operation. One point I must here ask leave to impress apon you strongly-namely. a plate with this emulsion, whether used wet or dry. In either of these cases the amount of bromide in the developer has a marked effect on the result. If, then, very sensitive negatives are re-

SOME RECENT IMPROVEMENTS IN ENGLISH AND AMEBICAN BOILERS.*

By W. Forgyth Black.

A^{s}NOTHER most important enemy to combat is incrustation. In all cases it is a bad conductor of heat, and prevents the contact of the water with the plates of the boiler, so that they become overheated, and are, consequently, rapidly destroyed. Circulation of water in a boiler depends on the difference in weight of two colamns, the lighter of which is displaced by the hearier. To produce this we must have one column or body of water exposed to the heat, by which means it becomes lighter, and the other protected from the becomes lighter, and the other protected from the heat, that its descent
may not be prevented; as thas it remains heavier may not poe prevented; as thas it remain
The following may be considered the essential principles to be observed in the construction of a good boiler, both for the economioal raising of steam-power, and for the prevention of destractive explosions.

1. A steam-boiler should be constructed of the greatest practicable namber of parts, or, as Mr. Miller calls them, "units," so that the giving way miler cal
of one of these throngh excessive pressure will of one of these throngh
relieve the whole boiler.
2. Each part or unit should constitute, so to 2. Each part or unit shonid constitute, so to
speak, a complete boiler, having its water space exspeak, a complete boiler, having its water space ex-
posed to the fire, its stesm space above the fire, and a posed to the ire, its stesm space above the fire, and a
receptacle for sediment below the inflience of the fire.
3. All heating surfaces should be as nearly vertical as the principle on which the boiler is constructed will permit to the plane of the fire.
4. Free and perfect circulation of the water phould be secured by exposing thin films of water
the part of somebody-the engineer. the manufacturer, or the parchaser of a boiler either known to be insufficiently and poorly constracted, or of which nothing whatever is known. It is imposaible to guard against such things, but it is surely not impossible to construct a boiler of such form and material that its explosion ahall occasion the least possible disaster to life or property, and that such explosion shall be localised, that this most essential end shail be obtained; and, in addition, that by such localisation, repairs shall be effected at the least ontlay of labour and money.
The American cast-iron safety boiler, designed by Mr. J. A. Miller, of New York, has been proved successful from an experienoe of three years in this country, not to speak of what has been done in the United States, where it has been very largely em ployed. This boiler, as shown in the engraving (Fig. 2), is formed of cast-iron sections or units of two kinds. A series of one of ssid sections or units is employed over the Aregrate, and a seriea of the other for the portion beyond the firegrate Each section or unit is cast in one piece, and tested separately to 5001 b . by hydrostatic pressure. The front units (Fig. 4) are arched, and are shaped like aront units (Fig. ${ }^{\text {a }}$) are arched, and are shaped co a U turned apside down, with a pipe at top for conveying the steam to the steam connecting pipe.
The rear anits (Fig. 5) consist of five vertical tabes cast in one piece, united by a transverse tical tabes cast in one piece, united by a transverss
horizontal tube at top and bottom, and flnished at horizontal tube at top and bothom, and finished at from which small pipes take the steam on to the steam connecting pipe. The several sections are bolted together at the bottom by flange jointe, the front arched anits at one leg, and the rear nuits a single connection in the cantre;
these connections form continuous longitudias)

RECENT IMPROVEMENTS IN ENGLISH AND AMERICAN BOLLERS.
quired, or very rapid development, use bromide in the developer in minimum quantity. If, on the contrary, you like to be slow and sare, use plenty contrary, you like to be slow and sure, use plenty
of bromide, and take your time about the developof bromide, and take your time about the developbe required, before fixing, so as to utilise the uranium in the fllm. One last point :-The light in your dart room must be as orange as possible, and a light which is quite sufficiently orange for the wet process will not be orange enough for working the emulsion process.
I may mention that, having been consulted by many friends as to the peculiarity of varions dry plates that they were experimenting on, I found out in many cases that the failure was due to the weakness or badness of either the paro. or the carweakness or badness of either the pyro. or the carcortainly be of the best kind, and the carbonate of cartainly be of the best kind, and the carbonate of
ammonia, as you are doubtless aware, varies much ammonia, as you are doabtiess aware, varies much
in its qualities, and in an old sample it frequently happens that but little ammonia is present.
I will not occupy your time with a discussion on preservatives, partionlarly as every one h2s, in all probability, a pet one of his own. I am somewhat pleased with my own latest one, however, as it possesses two pecaliar advantages-one, in that it keeps any time after it is mado; and another, that it obviates any tendenoy to blistering of the finished plate. I have brought down this negative to show pou what, in my opinion, is the quality of negative we should seek for in a dry plate. It was talren we shonld seek for in a dry plate. It was talen Dallmeser's rapid rectilinear lens for 18×16 plates, of 2 sin. focus, and yot you will notice that under those adverse circumstances it has borne a someWhat pashing developpent without losing the delicacy of its lights, or bringing any fog into the shadowe.
to the heat, which water shall ascend, and large spaces for the water not exposed to the immediate action of the heat, which water from its lower tempersture shall descend.
The most striking feature in the boiler I shall now proceed to describe is that cast iron is the material employed in its construction. This description of metal is an excellent conductor of heat, and when the material itself, or the form of the boiler, may be imperfect, a timely warning will be given by cracking, even under low pressure, when fire is applied, and when it breaks or gives way the fracture that ensues is sharp and equare.
The strength of a boiler does not ultimately depend on the tensile strength of the material of whioh it is constracted, it depends primarily on the adaptation of its form to resist internal pressure, not on the strength of its weakest part to resist not on the strength of its weakest part to resist
rupture. The extreme strength of Low Moor ruptare.
plates is $65,0001 \mathrm{lb}$. to each square inch of cross secplates is 65.000 lb . 0 each square inch of cross sec-
tion, and that of cast iron of good quality is tion, and that of cast iron of good quality is
$40,0001 b$. Sir William Fairbairu has given it as the 4n, 000 l . Sar Wiliam Fairbairu has given it as the
result of
careful experiment that 2.5 per cent. must se deducted for even perfectly riveted joints, which approximates it more nearly to the cast iron strength. There is another element of wieaken in wronght-iron boilers of the ordinary form which should not be lost sight of, and that is the great etrain and even distortion to which several of the plates have to be subjected to bring tbem into the desired
Corm. The plates so treated are stretched, palled, lorm. The plates so treated are stretched, palled,
and hammered sometimes more than the iron can hear, and their strength is, consequently, much diminished before they are fixed in the boiler.
There are fow, if any, explosions which are not traceable to ignorance, carelessness, or cupidity on

- Read before the Civil and Mechanical Engipoera' Soclety.
tabes at the bottom of the boiler, which are closed by flanged cap at each end, as shown in the draw ing. The tubes of the front of fire-box units are fin diameter inside at bottom, and 6 in . at top, and 9 ft 4 in wide in the arched opening; the vertical tubes of th rear nnits are taper in form, 4in. diameter inside bottom and 6 in . at top, and they are 2 ft . 6 in . 10 n in the vertical portion, with an average of sin. cle space between the tubes. The conuecting fienga of the rear units are placed out of centre with re gard to the tubes, so that simply reversing ab units when fixing them together brings the space bet ween the tubes of one unit opposite the sate oi the next anit for the parpose of more effectun intercepting the flame and heated gases. castings are \ddagger in. thick, the rear anits weigh a 10 cwt . ench, and the front arched anits aboat 5 ce each. Special provision is made for maintainit the circulation in each part of the boiler. In ts front arched units a feather is cast in each les? each unit, and extends from nearks top to botto each unit, and extends from nearis top to boterty water on the inner or fire side is separated from cooler water on the outer side of this diaphrate

In the rear units an internal circulating tabe suspended in each of their component vertical tot causing the heated water to ascend throagh outer annular space, and the cooler water to gcesd within the circulating tabo, whioh is of iron, and is held in its central position by eirr snugs cast on it.

The steam is carried from the top of each a! quits by a 2 in . wrought-iron pipe branch bind right angles. These branch pipes are cannect a main horizontal steam pipe of cast iron diameter, which extends the whole length boiler, and is carried outside the brick se flim The branoh pipes are connected with
connecting pipe and with the several units by flanges. The expansion of the cast-iron units when these are heated does not affect the joints, because in the case of the rear units the separate castings are connected together at the bottom only by a single joint, and are thus free to expand without any injury. In the front arched units the effect of expansion is to widen the arch to the extent of about three-eighths of an inch; the arched units are connected to the first of the rear sections for the purpose of affording a continuous water-way through the whole length of the boiler, but as this connection is at one end only they are left otherwise free to expand. The wrought-iron pipe branches connecting the units at top to the main horizontal steam pipe readily spring to a sufficient extent to allow for the excess of expansion of the units mithout throwing any objectionable strain on the joints.
The joints of the flanges are all carefully and truly faced, and put together with wire ganze and red lead; so that they can be readily separated and re-made if required; they are all finished to a standard template, so that any portion of the boiler can be readily removed and replaced, withont disturbing the other units; for the front units are all duplicates, as are also the rear units. The front mits are all to the same length of 11 in . at the bottom joint, and the rear units to 12 in . All joints are so placed that they are thoronghly protected from the fire, and are found to continue steam-tight. The bottom connecting joints are all below the level of the fire, those of front units being below the
posed to the heat of the fire or flne; and the crowns of the arched units which are directly acted on by the fire are found to be completely free from scale. In one instance one of these boilers had not been blown down for a period of seven months, and during that time had been kept at work almost constantly night and day; and the first of the rear units became entirely choked with scale in all the vertical tubes save one, and a crack took place in that tube at about the middle of its height. The fracture, being in cast iron, had a clean sharp edge. The water escaped through the crack, and the steam pressure was eased by this means without any other injury being inflicted, and without any of the brickwork being displaced.
The cast iron bears the heat without injury, because the steam is carried off as quickly as it is generated, and an efficient circulation is constantly maintained, so that the metal of the tubes is constantly protected by having solid water always in contact with it. This boiler has also been applied to balling and re-heating furnaces at iron works, and it appears to stand their great heat without injury.
(To be concluded next week.)

POSITIVE PHILOSOPHY AND MEDICINE.

M.LITTRE has lately published, under the title of "Médecine et Médecins," a series of fragments which had already appeared in varions
periodicals. He relates in his preface, says a writer
"This saying," observes a critic in the Temps "is decidedly happy, and well describes the present is decidediy happy, and well describes the present a philosophical point of view, any sharply defined boundary between health and disease.

Nascentes morimer, finisque ab origine pendet.

The idea of development has not only been followed in the chain of organised beings, in the successive phases of the individual, it has been sought in the history of each anatomical element. Disease is but a disturbance in the development of certain anatomical elements determined by various causes. The experimental method has, of late years, been led into new ways unknown to Auguste Comte ; the works of Claude Bernard and his school lead is mach further into a knowledge of the organised being than the works of the medical men who have been M Littre's contem medal A y ittri surprised that poraries. And yet is not M. Linde Bernard's conceptions have gradually assumed a character which differs more and more from those of the Positivist school. There are phenomena which seem withdrawn from uny explavation derived from the purely descriptive and experimental method. Great surprise, for instance was felt at first on seeing that if a fragment of periosteum be grafted on any fleshy part of the body, the fragment receives nourishment, assimilates the sanguineous elements it requires, develops itself, and becomes a rudiment of bone. Up to this point the phenomenon seems wholly favourable to the materialist school ; anatomical elements ap-

Fig. 6.

RECENT IMPROVEMENTS IN ENGLISH AND AMERICAN BOILERS.

firegrate, and those of the rear units are covered by the deposit of dust in the bottom of the flue. The joints at the top are protected by a leyer of brickwork which rests on the castings (Fig. 2), and the rear units are cast with a small projection which fills up the small spaces between the round parts at water-line, and thus a close top to the fue is formed. The whole boiler is inclosed by side walls of brickwork, which are carried up above, and the top is covered in with loose cast-iron plates that can be readily removed for inspection. A large sight hole with cast-iron cover plate is made in one side wall opposite every alternate unit, which allows of all the surfaces of the cast-iron tubes being cleaned from soot and dust by means of a jet of steam introduced by a flexible pipe through each of the holes in succession ; this operation is repeated daily.

Blow-off cocks are fixed on the front ends of t two bottom side tubes. by which means all sediment forming in the boiler is regularly blown out at freforming in the boiler is regularly blown out at fre-
quent intervals; the boiler is usually completely blown down once a week, and a small portion of the water is also blown off three times each week. Any deposit accumulating in the bottom portions of the boiler can be raked out when necessary by taling off the flanged bottom covers at the ends of the boiler. The feed water is istroduced at the bottom of the boiler below the fire-level. The feed pipe is connected to one of the bottom main pipes of the first arched unit and to that of the first rear unit. The experience of three years' continuous working of this boiler has proved that when it is periodically blown out under pressure, sediment does not injuriously collect in any of the parts that are ex.
in the Pall Mall Gazette, that, although he has no medical title and is not a doctor, he has none the less been half a physician all his life. He had com. pleted his medical studies in 1827, and was about to go in for examinations, when the death of his father stopped his medical career by obliging him immediately to seek remunerative occupations. He soon devoted himself almost entirely to the dictionary of the French language undertaken by M. Hachette, but the curiosity of his philosophical mind, his early studies, the personal ties which bound him to famous physicians, always brought him willingly back to medical questions, especially to these in their relation to general science and Positive philosophy.
"Medicine," says M. Littré, "was at the time I began to study undergoing a considerable amendment in doctrine; antil then pathology had been considered as a phenomenon which had its canse of being within itself; it was held that disease, fever, inflammation, cancer, was something possessed of independent existence, and having laws of its own. Thus, no connection was supposed to exist between the pathological condition and the physiological the first was merely superinduced on the second and the second did not lead to the first. This view was inevitable so long as physiology had not become positive ; but it became so at the beginning of this century, and after the interval of time necessary for spreading the influence of the great methods it renewed the whole doctrine of medicine. It became established that no new and peculiar law is manifested in disease; that pathology is nothing but disordered physiology.'
pear to have a life of their own-a life independent of a more general existence, of a geometrical design, or of a functional arrangement. But what happens Nature, deceived for an instant, so to speak, soon resumes her rights; that beginning of bone which has no part to play, which would be monstrous if it lasted, does not last; life undoes what it had itself began; little by little the anatomical elements put ont of place become atrophied, are reabsorbed, are drawn into the circulation, and rejected. How is such a phenomenon to be explained ? May not the so-called spiritualist school find its account herein Has it not a right to proclaim that life, that its forms, are subject to laws the expression of which cannot be found in simple contact and in the procannot be found in simple contact and is the properties of anatomical elements alone? Is there not here an appearance of a design, of a pre-established
anatomical harmony? I merely state the problem. I well know that the Positive philosophy disclaims being either spiritualist or materialist, it has given up searching into canses, and studies only phenomena. But the medical school which has sought its patronage is generally much more inclined to ma terialism than to spiritualism; and the most serion reproach one can make to it is a dogmatic tone and habits of assertion which seem to exclade all doubts all hesitations. There is nothing, and perhaps there can be nothing, finished and perfect in the sciences which relate to life. In M. Littre's fine essay on Magendie will be found the most complete exposition of the principles of Positive philosophy in the matter of biology stripped of the exaggerations of some of its disciples. Magendie londly confessed his ignorance when it came to explaining those
vitel onbenomenn which he observed with such raro
pebetration: 'If I know by what mechanism a pemetration: If I know by what mechanism a ahich ruakes the mascular fibre contract or renders the nerve sensitive.' M. Littre adds that Magendie was quite right to confess his ignorauce of this, but this ighorance is neither accidental nor provisional. It is necersary and permanent. The physiologist is not, in regard to the property which renders the redsele contractile and the nervo sencitive, in any other position than the physicist in regard to the property which renders matter electrical, heary,
hot. or Inminous. According to M. Inttre, no more explanetion can be given of phycical or chemical qublitics than of vital qualitics. Science has com-
pispal its work when it reaches irreducible things pinfer its wark when it reaches irreducible tbings -wright, electricity, life. Life is not in iteelf more mogy alson invert the proposition, and say that it is not in itself lesp explicaule, and when one is imberd with this thonght one is dramin into sceing nothing more emplas and mnre marvellous in the phenomena of life and thonsht, than in the most ordinary plenomena of inorganic nature. A man who thiuks, a
stone which falls, are two irreducible phenomena; they exist, amd that is all that can ever be known abont them. Does not Positive philosnphy, which abant them. Does not Positive philosnphy, which has warch sneh a war acrainst occult qualities, bring
them to life again under another name, and without ibem to life
imsending it

COAL-CUTTING MACHINERY.

THE importance of adapting machinery to the winning of coal, which, for the mest part, has hitherto been accomplisiced by manual labour, las
arain, says the Enopinerr, befy forced upon invenarain, suys the Enginerr, beren forced npon inven-
tors and patentees by Mr. W. Firth, of Lecals, who has generously offered $£ 500$ to be given for the maehine that will bore or hole in the nost perfect manner, as to reduce the quantity of mannal
piain labort to the minimum. This seems to be piex labont to the minimam. This seems to be prizes to induce patantees to devolop and perfect
this ciase of machinery. In 186 the south York. shire Coalowaers' Association announcent their insention ol subacribing $\{500$ towards the cost of pattion down three machines at as many district patiog down three machines at as many district
pits. The choice fell npon that of Mr. G. C. Jones, of the Elaina Ironworks, Mommonthabire, which one casting supported on four wheels, the pick was so arrnnged that it could be fixed in say position,
ly which means vertical. horizontal, or angular grooves conld be cot. After a time the machines were, howerer, withirewn. From this time to 1867 no pecmiary indscensents mare beld out, but jatfntees still contearded ngainst the innumerable
difficulties which surmonded their track; some of them, as Mr. Firth, of Leels, experding thousands of pounds in order to perfect as much as possible their own machiwes. Torrants the close of 1867 the members of the south Laticashire and Cheshire Civil Association susonnced their intention of giving $£ 800$ dirided in three prizes "for the best appointed for that phrposc, shall be most suitable appointel for that pmrpose, shall be most suitable
to the requirements of the trade." To all appearance the progress and development which coalgiting machinery was likely to derive from this liberality promised to be creat. This, however, was not the case, as when the conditions were an-
sonnced it was found that patenters would not sonnced it was fonnd that patenters would not cInventors taking a prize must be bound by the following conditions, viz., that no annual payment or tomnage royalty as patent right shall be charged to any present or future member of the above as mociation, but that such member shall pay a patent right on the purchase of each machine, to include case eaceed $j 0$ per cent. of the cost of the machine" This and other conditions cansed only three competitors to send machines to be tested, and the carnmittee withdrew the money prizes and substitated turee medals. After a perind of neary five
gears another incentive is offered by Mr. W. Firth, gears anotuer incentive is offered by Mr. W. Firth,
who has deposited estuo in the nomes of three trnsWhe has de posited $t: 00$ in the momes of three tras-
tees with Blessrs. William Williams, Brown, and Co., bankers, Loeds, pending a trial. That gentleran has expressly stated that the cherge made by the owner for roralty or license shall not be a master for the judges to consider, their decision being foundeal solely upon the relative merits of the machines produced for competition, so that the rock upon which the Laucashire and Chealire competition foundered is clearly pointed out, or rather removed. Having point ed ont the inducements, we minht give a long list of machines which have from tina to time been patented or otherwise prodnced.
Many of the oldest pitmen in Northminberland are well argnaintral with what was termed "Willie Tromn's Iron Man," a machine now being noed in fiela. In $1 a j!$ Messra. Johnenn and Dixon, of Now castle-npon'Iyne, invented a machina which

Firths, Donisthorpe, and Ridley, took out a patent for a machine which was set to work in these pits,
and. we believe, has remained in usn, with the excoptinn of short intervals, when repars, ,ce, were necessary. The machine has from time to time beenimproved, and has stood the test remarkably mentinned Minssra more recent inventors may be Yorkshire ; Mr. Bartholomew, of Doncaster; Mr. Rothery of the Waterloo Mrain Colliery, near Stoko ; Mr. Hurd, Waketield, \&e. Mr. Chubb's onl-brenking machine. which has recently heen introduced into several of the Yo.
is also working very successfully.

THE BISULPHIDE OF CARBON ENGINE.

THE following remarks on Ellis's bisnlphide of carbon encine (illustrated on p. 526) were made br Dr. Vandir Weyde at n meeting of the New York
Polytechic Club:-Mr. Ellis, of Boaton, has lately Polytechnic Club:-Mr. Ellis, of Boaton, has lately waste steam from the engine to heat the bisulphide of carbon, and work another piston attached to the same engine. There have been two objections made to this, which I wish to answer. One objection is that we migit just as well have two steam cylinders, making a compound cncine, the steam from a highpressare encine working a low-pressure engine. The other objection is, that if we are to use the bisal phide of carbon, we do not need the steam, and I
will reply to this objection first. Volatile substances require very little heat to convert them into vapour. Water requires a temperature of 912 deg . to vaporise
at atmospheric pressure, and 966 units of heat beat atmospheric pressure, and 966 units of heat be-
come latent. But ether will vaporise at 96 deg., and only 165 units of heat are required. That is an immense saving of fuel. On that idea, some 15 vears ngo, an ether engine was built at the Novelty Works, New York. Bnt practical difficulties came ap. First, it was difficult to get the joints tight ; and when it leaked it took fire, and alarmed every one. Another difficulty was, that the latent hea nearly seven times as heary the vapour of ether i neary seven tines as hary as steam. It is a curions of vaporisation, and whatever amornt of heat becomes latent, in units, the amount of latent heat in a culic fuot of vapour, is always the same ; and as en Mines are driven. not by the weight of the vapour but by its volume, that takes away all the supposed ad-
vantage of volatile fuids with regand to their latent vanta
heat.
Th
The first objection was, that we might as wel use the steam from 2 high-pressare engine to drive a low-pressure engine. The simple answer to that is, that all the pressure you gat from the waste steam becomes back pressure on the first engine, and you have all the machinery and friction for nothing. But if you pass your waste steam freely through tubes which heat bisnlphide of carbon, there is no back pressure, and the pressare you obtain from the vaporisation of the brisulphide of carbon is a clear gain. Fairbank and Dunkin, in England, fonnded a method of judging of the performance of steam-engines, by measuring the water of condensation, as it was done in the recent trial at the American Institute Fair. In the best steam engine, the water of condensation is warmed some-
what. nnd that ninount of heat is lost. Now let us see what is the pressure with different vapours:-

Ether.	Bisulphide of Carbon.	Water.	Pre
9.5 deg.	110 deg.	212 deg.	1 atmosphe
115	130 ,	250	
125	119 "	276	3 "
133	148	291 ."	4 "

Now, if re take the steam at 212 drc.., you see that it will produce a pressare of much taore than 4 atmospheres in the bisulphide of carmon. It is asserted that, by this engine, a nenrer approach has broduced, than ever before.

Another point. In heating water from 212 deg. to about 21 A deg., you double the pressure; so that at least 2 deg. are necessary for every ponnd of
additional pressure. Bnt if you heat it to 500 deg., where the pressure is 50 atmospheres, then 15 deg. will produce 15 atmospheres more pressure, or a Whole atmosphero for every degree. Here we have
to keep the water at 500 deg. and upwards: but there to keep the water at 500 deg. and upwards: but there
are other liquids that do not reqnire that temperaare other liquids that do not reqnire that tempera-
ture. Take the linuefied carbonic acid gas, which ture. Take the linuefied carbonic acid gas, which
boils at 14% below zero. Heat it to 100 deg. below zern, and you have 2 atmospheres pressure : an additional atmocypere for abont $1:$ ifeg. But heat
it to 32 deg. and yon have 32 atmosplicres; and at it to 32 deg . and yon have 32 atmospheres; and at
50 deg. ycu have 50 atmospleres. making a whole atmosphere have sory atmospueres, is only necessary, then. to maintnin tho ordinary atmopheric temperatures. nud in the summer all you inare to do is cool with ice. Yonr eugine will require no coal. Bnt yon will have this dravback, that melting ico only consnmes 110 units of heat, Whereas the enmevery pound of coal, therefure, you will want 1001 b .
of ice ; aml ice is not so easy to keep, especially in the samrincr, as conl. Another difficulty is that the
boiler manst be strong enough to stand 50 to 65 boiler mnst be strong enough to stand 50 to 65
atmospheres of pressure. Of course, this whole phon is intensely absurd ; but as Cicero said that no theory mas so absurd that no man would adopt it so in mochanies, no plan is so absurd that no one will try to carry it out; and there is a joung gentleman now endeavouring to carry ont this plan will have a back pressure of 50 atmospheres on his piston-a very respectable back pressure.

SILICIAN STEEL.

A SERIES of very interesting stecl-making ex periments have lately been made in Cleve. land, Ohio, which are said to have been completely
snceessful. The materials nsed were "Silician" ore, snccessful. The matprials nsed were "Silician "ore,
mined in York Connty, Pr., and common Lake Superior pig, puidled together and making steel. Some time since, to solve its doubts, the Cleveland Iron Company ordered several tons of this ore for n experiment. The shippers gave directions as to how it should be nsed, and 12 per cent. of the pulverised ore was added to a furnace of common pis ron. The mass was worked in the same manner as if bar iron was to be produced, and in one hour after passing through the same operation as the bar does the company had several tons of very fair steel. Tools were made from it. A har was sent to a manufacturer of springs, and he pronounced it the most tenacions and malleable he had ever tried, aud the company immedintely secured a conract with an Ohio railroad company for five han dred tons of steel rails. Last week, having procured a quantity of the ore, the Otis Works, of Cleveland, also made an experiment. The per eent.
of the "Silician" ore was increased to tweaty, the throne was increased to tman
 $42=4$
 worked down and bandened, as fine almost as cver used It seems to bost Engish steel we through ; it works kindif uniter the hamener, ecales Well when hariened, poliskes black when finished, edges right on the oil-stone, and cuts well and holds
an edge. Could I got this steel in the rieth shape an edge. Could I get this steel in the ritht shape
and size, I should like to use it for poekebinives all the while." Desiring to make a further maverer test, a pecimen of the sboel was seant to the
Remingtom Manofacturcing Remingtom Manofactuxing Company, to see how it through the teste, and was onely barst when filled with powder and discharged. It has been tried as springs for watcher and clocks, and found to meet every demand required.

THE STAR DEPTHS.

M^{B}RICHARD A. PROCTOR, Hon. Sec. R.A.S., gave his second lecture on this subject last Saturday at threo o'dock. The first portion of the lecture was devoted to the comsideration of the spectroscopic analysis of the stars, and its interpretation; the latter to the double stars, and star systems generally. Aboat twenty illustrations were exhibited by means of the elec tric lamp (worked admirably by Mr. Ladd). Some of the coloured illustrations were of great beanty Five photographs of the eclipse of December 18
last, takeu by Mr. Davis at Baicull, were exhibited, last. takeu by Mr. Daris at Baicull, were exhibitod,
as illastrations of the appendages which we mast as illastrations of the appendages which we mast
conceive to surround all the stars regarded as so many suns.

THE DOMESTIC USES OF AMMONIA.

THEE utility of ammonis in various domestio transactions is not unknown to many of our readers, nevertheless, it is not so widely recognised as it might be, save wheu presented under some fancy name at an exorbitant price. We extract the following remarks upon the subject from the Country that the ammonia nsed for horticultural however, that the ammonia nsed for horticultural parposes is
in ratiably the sulphate, which shonld be dissolved inrariahly the salphate, which shonld be dissolved
in the proportion of toz. to 2 gallons of water:Ammonia is nearly taz. to asefal fallons of wating as sonp, nud its cheapness brings it within the reach of nll. For miny bonsehold parposes it is invaluable; yet its manifold nses are not so generally known as ther shonld be. It is a most refreshing agent at the toilet table; a few drops in a basin of water will make a better bath than pure water, and if the skin is oily, it will remove nll clossiness and disagreeable odours. Added to a foot-bath, it entirely absorbs all noxious smell so often arisin, frow the feet in parm weathe and uothing ia better for cleansing the hair from dandruff and dnst. For the beadache it is also desirable stimulant, and frequent inhaling of its pungent odours will often entirely remove catarrbal
[Doubtfal. Will it not gxedually remove the peint?] Put a tenspoonful of ammonia to a quart of warm soap-suds, dip in a flanuel cloth, and wipe
off the dust and fy specks, grime and smoke, and ore for yourselves how much labour it will save see for yourselves how much labour it will save
you. No scrabbing will be needful. It will cleanse you. No scrubbing will be needful. It will cleanse
and brighten wonderfully ; to a pint of bot sads and brighten wonderfully ; to a pint of hot snds
mix a teaepoonfal of the spirits, dip in your silver spoons, forks, \&c., rub with a brush, and then polish on chamois skin. For washing mirrors and
windows, it is also very desirable ; put a few drops windows, it is also very desirable ; put a few drops
of ammonia apon a piece of newspaper, and you will readily take off every spot or finger-mark on the glass. It will take out gresse spots from any fabric; pat on the ammonia nearly cloar, lay blotting paper over the placo, and press a hot flat
iron on it for a few moments. A few drops in water will clean leces and whiten them finely; also maslins.
For cleaning hair and nail brashes it is equally good. Pat a teaspoonful of ammonia into one pint of warm or cold water and shake the brashes through the wator ; when the bristles look white, or in a werm place to dry. The dirtiest brushes will come out from this bath white and clean. There is no better remedy for heartbarn and dyspepsia, and he aromatic spirit of ammonia is especially prepared for these troubles. Ten drops of it in a wineglass of wator are often a great relief. The spirits of ammonia can be taken in the same Way ; but it is not as palatable a dose. Farmers of ammonia on all kinds of vegetation; and if you come more fourishing you can try it npon them, by adding five oz six drops of it to every pint of warm water that you give them; but don't repeat the dose oftener than once in every five or six days, lest you stimulate them too highly- Rain-water is and rivies regetoble lifo So be aure and reep large bottle of ammonis in the house, and hare a glass stopper for it, as it is very evanescent aud also in. jurions to corks, exting them away.

THE PROGRESS OF GEOLOGY.-CONTAMI. NATION OF WATER SUPPLY.

(Continued from p. 116.)

I^{T}has been already mentioned that below a always saturated and water logged, and that any additionsl quantity added to this coustant quantity cannot be held permanently. It follows that
wherever, in all water beariug strata, after allowwherever, in all water beariug strata, after allow-
ing for any abstraction, usually but comparatively small, by wells, the surplus rainfull must, wheu the stratum is full, find its escape by nataral means, ir., by means of springs. The power and size of sions of the strata by which they are sappliet. In the gravel they are small, in the Lower Tertiary sands moderate; while in the Chalk they are very
large. The permanence of the spring depends on the lithological character, as well as on the dimensions of tho strata. Thus, in sands, where the Water can permeate the mass, the stores are large, and the delivery moderately quics ; in Limestones,
where the water is confined to crncks and fissures, the delivery is quick and not lasting, though often large; in rabbly Oolites, which are also prectically porous, the springs are well maintained; while in Chalk, owing to the characters before named, the
water delivery is slow, and the springs are large water delivery is slow, and the springs are large
and very permanent. At the same time the stornge capacity increases
with the resistance. Taking the extreme case of with the resistancc. Taking the extrene case of
the Chalk, the transmission of the rain water is so slow, that, on the chulk hills, it takes fuar or six months to pass from the surface to the line of
water level at the depth of $200 f t$. to 310 ft ., so that the heavy rainfall of winter is unt felt in the deep springs until the summer, and Mr. Bearimore estimates that the miniman effect of a hot dry sommer and autumn is not reached nutil at the end of the chalk is of sixteen months' duration. To eatimate this power we have to take the height and extent of the hills, and to note the lithological characters of the permeable strata. If these latter level of the rivers in two adjacent valleys. then the base of the underground water store will be ccinits sorface line will rise, as it recedes within the hill, escepertion to the resistance offered to the water's will thn the character of the permeable strata, and it height of which will vary in proportion to the rainfall. Conetion on the other hand, the permeable strata the surface of the adjacent rivers, then, as beneath is the surface of the adjacent rivers, then, as there is
no underground escape for the stored water, the hine of water-level on those permeable strata will
rise to, and be always maintained by, the level of

An abutract of the annaal address of the Preatdont
of the Geologieal Socioty.
the rivers, and therefore all the additional supplies terior of the rain mast, after traveraing the inof the valleys, and by the side or in thg the bottom rivers.

The same general rules govern the springs of all the more varied strats of the upper part of the Thames band Thers and Tertiary series, we hase a series of Jurassic
and
Liassic strata. Omitting the drift or gravel beds, the following are the average dimensions, character, and superficial areas of each of these for mations in that area:-
Strata of the Thajes Babin above Wallingford. Area. Avernge Thickness.

Chalk (above Kingston 1047)
Tpper Grecnsands
1010
Lower Greensauds
Purbeck and Portland beds
Coral Rag and grit.
Oxford Cla
Great aud Inferior Oolites....
Fulle
But although many of these water bearing strata are of large dimensions and well stored in the upper part of the Thames basin, none of those below for a well supply at Loudon. The Upper Greensand, so important in Wiltshire, is redaced to a few feet of comparatively impermeable argillaceous sands nnder London. The Oolitic series, so rich in springs in the district of the Cotawold Hills, have been ascer-
tnined to thin off as they rance eastward; and Mr. tnined to thin off as they range enstward; and Mr.
Hull has shown that the inferior Oolite and under Hull lans shown that the inferior Oolite and underlyiug sands in particular die out, in all probnbility, nnder the Oxford clay about the centre of Oxfordshire. Even apart, therefore, from the discovery clnded the Oolitic series as a possible source of supply to deep wells in the Lonlon district ; nlthongh, as sources of springs' supplies, they contribute so Fuw of those strata are, however, so homogrueous Fuw of those strata are, however, so homogrneous formatious often contain subordinate impermeable clays-seams which form water levels of more or ess importance, whilst the inpermeaile clays somewhich contain subordinate small local water beanng beds. It Which constitute small local water beanng beds. It each of theso subordinate features, and to distingaish the minor from the major sonrees.
Taking the Thames basin above Kingston, there is, according to Mr. J. D. Harrison, an area of 1,233 nquare niles of impermeable strata, and of fall in that district amounts to about 27 in . From the imperneable strata the rain flows off immediately as it falls, and is carricd at ouces to sea: wherend a large portion of that which falls on the permeable strata is. as we have shown, stored for greater or lesser time, and discharged in perennial springs. It is these which give permanence to our
rivers. The evidence taken before the commission rivers. The evidence taken before the commission
showed that the daily discharge of the Thames at Kingston, even in the driest season after weeks withoat rain, never falls below $350,000,000$ gallons, while the average for the year gives, according to Mr. Simpson amd Mr. Harrison, 1,353,000,000 gallons, or. according to Mr. Beardmore's louger observations. allons beiug to a fill of or sin, or rather less than one-third of the annaal quantity, the other two-thirds being lost by craporation and absorbed by the vegetation. This scems the proportion usual
In districts where impermeable strata predominate, the total water delivery, therefore, will be greater; but it follows close upon the rainfall; whereas, Where the permeuble strata predominate, a large
portion of the rainfall is stored in the hills, and its delivery is thereby spread over a greater or lesser period of time, according to the dimensions of those hills. This is well exemplitied in the case of the basins of the Thames and the Severn, which latter is formed in large part by the slate rocks of Wales. The former has an area above Kingston of 3,670 square miles, with an annual rainfall of whereas that of the latter above Gloucester of prob ably not less than 40 in ., and the mean daily disably not less than 40 n ., and themer $1,250,000$,(00) charge for and for the Severn aboat $1,600,000,000)$ gallons. Yet the summer discharge of the Thames gallons. Fet the summer docharge ainst $297,599,040$ gallons of the Sovern; and while the minimam discharge of the Thames in the driest seasons never
falls below $350,000,000$ gallons, that of the Severn
falls below 100,000,000 gallons. Agnin, in the cesse of the Lea, where there is a still larger proportion of permeable strata, the daily discharge at Brorhourne for the year is, according to Mr. Beardmore, $108 .(\mu \mathcal{O}, 006$ gallons, while for the summer months it remains as high as $71,000,000$, and in the dricet seasons does not fall below $42,000,000$ gallons
Let us now look at ore of the geological question dependent apon the solvent action of the waier on the strata it traverses. The analyees, made for the commission by Drs. Frankland and Odling, of the waters of the Thames and its tribntaries in the Oolitio and Cbalk area, show that every $1\left({ }^{(0)}, \mathbf{(1)}(1)\right.$ parte or grains of rainwater has taken up a quantity varying from 25.58 to 32.95 grains of stidid residiae, or an average of $29 \cdot 26$, which is equal to 20 is parts ot grains per gallon; annther analysis of the Thrmes water at Dittongives $20 \cdot 78$ grains per gallon of solid residne. It was also shown by Drs. Letheby and Odling and Professor Abel that the unfiltered watere of the Thames Companies, which talse their suppliea above Kingsten, contained 20.82 of solid residue. if from the average of $20 \cdot 68$ we deduct $1 \cdot 68$ grain for organic and saspended matter, we have 19 grains of inorganic residuo for every gallon of water flowing
past Kingston. This is, of course, apart from the past Kingston. This is, of conrs
sediment carried down in floods.
Taking the mean daily discharge of the Thames st Kingston at 1,250 million gallons, and the salts in solation at 19 grains per gallon, the mean quantity of dissolved mineral matter carried down by the Thames every twesty-fonr hours is equal to Of this or 1502 tons, or 548,230 tons annually. Of this daily quantity aboat two-thirds, or, 1.000 tores, of lime carbonate of lime, and 233 on carbonate of magnesis, eblorides of sodium and potressiam, selphates of soda and potash, silica and traces of iron. alumina, and phosphates, constitate the rest. If wo efer a small portion of the carbonates, and the
 we shall still bave at least 10 grains per galion of carbonate of lime, due to the Cretaceons and Oolitie strnta aud Marlstone, the sunerficial area of which. in the Thames basin above Kingston, is estimated by Mr. Harrison at 2,072 square miles. Therefore the annual quantity of carnonate of lime esrried way from this arca by the Thames is $290,90 \%$ toms or $\dot{i} 97$ tons daily, which gives 140 tons removed Yearly from each square mile; or, extending the cas.
culation to a contury, wo have 14 non tous remorel culation to a contury, we have 14,001 tons remored from each mile of surface. Taking a ton of chale as equal to 1 is cubic foet, this is equal to a emoral of the $930: 4$ part oi an inch from the sariaco 3,200 course of a century, so tiat in the course of one foot would be removed from our Chall and Oolitic districts.
I had some faint bope that this wear might furnish us with a rongh npproximate measure of time iu referenco to some of the phenomene connected with the Quaternary period; but we are not in a position to apply it. Those curions funuel shaped cavities, called sand and gravel pip*s, so common in mayy chalk districts, aro the resnlt of slow solution of the chalk by water at particular spots, whereby the superincumbent sand aud gravel have
been let down into the cavit5 so produced. Some of been let down into the cavits so prodaced. Some of
them are but a fivy feet leep, winile others attain them are but a fow feet deep, while others attain
dimensions of soft. in depti by 15 ft . 10 20ft, in diameter at top, tapering irregalarly to a point at botton. It is, however, evident from the varintion
in size that the wear has been naequal : and it is also clear that the sarface waters have been conducted throuft the es particular channels, where they existed, th the unl raronud water level, in preference to passing throngh the body of the chall, so that the ratio of wear at these points is in exceres. Nor can I see at present how otherwise to appls where the exposed wrere possible to find a spot wirn aniformly, and, from the quantity of fiints leit after the removal of the chalk and the known distance apart there of the seams of flint, to determiue the number of feet or inches removed, we misht have a base to proceed upon, provided all the quantitieq remained constant. But such is not the case. Also, although the annual rainfall in tize Thames now arerages 9 -in., and has probably no varied much from this amount during the present period, it was evidently much greater during the Quaternary period: for I hava elsewhere shown that. in the South of England and North of France ine rivers of those arens with the same catchment basins were of mnch greater size than at present, and Mr. W. Cannington bad belore poin with respec same fact in the upper part of the. M. Belgrand isae to some of the rivers of witsire. M. Bets with made an attempt to estimate its tribataries, and be ference to the Seine and its thaing the Q anter arrives at the conclasion the a nary (or, as Le considers it, rainfall wns so heavy that the discharge or thent was from 20 to 25 times freath than at an do not altoget her concar in this view, bit ceive that our rivers formerly were of important times the size they nent to be considered in nll questions bearing on the denudation of land burfaces.
vital phenomena which he observed with such rare penctration: ' It I know by what mechavism a membrane imbibes o liquid I seek in rain that Thich makes the muscular fibre contract or renders the nerve sensitive, M Littri adds that Mener the serte right to confess his imporance of thisendie Was quite right to confess his ignorance of this, bat It io neogsery and permanent It is neoessary and permanent. The physiologist is not, in regard to the property which renders the mascle contractile and the nerve sensitive, in any other position than the physicist in regard to the property which renders matter electrical, heary, hot, or luminous. According to M. Littré, no more explanation can be given of physical or chemical qualities than of vital qualities. Science has complated its work when it reaches irreducible things -weight, electricity, life. Life is not in itself more eapable of explanation than electricity or heat. One may also invert the proposition, and say that it is not in itself less explioable, and when one is imbued with this thought one is drawn into seeing nothing more coraplex and more marvellous in the phenomena of life and thought, then in the most ordinary phenomema of inorganic nature. A man who thinks, tone which falls are two irredncible phenomena a stone Which falls, are two irreducible phenomena; they exist; and that is all that can ever be known about them. Does no Positive phill has waged such a war against occult quaities, bring them to life aga
imtending it?"

COAL-COTTING MACHINERY.

THE importance of adapting machinery to the winning of coal, which, for the mest part, has hitherto been aceomplished by manual labour, has again, says the Engincer, been forced apon invencors and patentees by Mr. W. Firth, of Leeds, who has geseronsly offered 5500 to be given for the mactive that will bore or hole in the mont porfect mapnor, t atit to ratives the qumatity of manual picit laborer to the montulum. This peoms to be aboat the thited attenrpt which bes been made by prizes to moduce patentees to dovelop snd perfect shire Oonlowners' Antociation annomand their intention Anubertibing 2500 towards the cost of patting down three machines at as many district pationg The choice foll upon that of as mang . Sones, of the Blaina Ironwerke, Mommoathebire, which consisted of a cylinder bedplato and bering all in one casting supperted on four wheela, the pick was so arranged that it would be fued in any position, grooves cond grooves coald be out. Attor a time the machines were, however, withirewn. From this thase to 1867 ne peconiary indsewmeats were hola out, bat patentees still contended agaimet the thenumerable diffeulties which surromded their tration some of them, as Mr. Firth, of Leeds, expeming thousands of pounds in order to perfect as mech as possibl their own machimes. Tomandstivectose of 1867 the mernbers of the Lamenthire and Cheshir Civil Association monmeod their intention giring e800 divinell in three pelses "for the b mechine which, on the apieler of the commit appointed for that parpose, stalll be most suit appointed er that the requiremate ot most suit to the requirenuat of the envere." To all pearance the progrewe maveling maciinery whent likely to derive from giberaity promised to be great. This, ho liberaity promised to be great. This, ho
was not the case, as when the conditions w . was not the case, as when the conditions w
mounced it was found that patentees wo moanced it was found that patentees $w n$
contend in consequence of the following c^{\prime} contend in consequence of the following c
uInventors taking a prize must be bouns
"Inventors taking a prize must be bound:
following conditions, viz. that no annual following conditions, viz., that no annual
or tonnage royalty as patent right shall , or tonnage royalty as patent right shall 1 , to sny present or futare member of the mociation, but that such member shall P right on the purchase of each machin .
case exceed 50 per cent. of the cost of This and other comlitions cansed on petitors to send machines to be te committee withdrew the money priz tated three medals. After a perioid
years another incentive is offered 1
who has deposited 5500 in the nam
tees with Messrs. William Willin
Co., bankers, Leeds, pending otri
Coan has expressly stated that thi man has expressiy stated that the matter for the royalty or lice being founded solely upon the meachines produced for comput upon which tho I corpet upon which the Lancashire a mon oundered is clearly poin mored. Having pointed ou ${ }^{+}$ might give a long list of ma ime to time been patenter Many of the oldest pitmer well acquainted with w Brown's Irou Man," a m the diatrict collieries, as fieta. In 1859 Messrs New castlo- apon.Tyne, was successfully teste Northamberland, altt the pillar and stal!

Firths, Donisthorpe, and Ridley, took ont a pat for a machine which was set to work in these ! and, wo believe, has remained in use with th: ception of short intervals, when repairs, we. necessary. The machine has from time 1 . been improved, and has stood the test ren well. Amongst the more recent inventor: mentioned Messrs. Copley and Gillot. Yorkshire ; Mr. Bartholomew, of Donco Rothery, of the Waterloo Main C c Leeds ; Mr. S. P. Bidder, of Harecas Stoko ; Mr. Hard, Wakefield, \&c. coal-breaking machine, which has , introduced into several of the Yorks ${ }^{1}$ is also working very successfully.

THE BISULPHIDE OF CAIT
TIHE following remarks on I ? carbon engine (illustrated on by Dr. Vander Wejde at a meet Polytechnic Club:-Mr. Ellis, n constructed a bisulphide of car. waste steam from the engine t of carbon and work anoth. of carbon, and work anoth,r same engine. There have 1 to this, which I wish to a that we might just as well making a compound enyi pressure engine workinr
other objeetion is, that :
phide of carbon, we d
will reply to this obje require verylittle he Water requires a tel at atmospheric pr comelatent. But only 165 units immense saving
years ago, an
Works, New
up. First, it
and when it
one. Anot
was so muti
Was so mut
nearly sev.
property
of vapor
of vapo:
comes l.
a cubic
gines :
gines:
van!
hea

SOIENTIFIO SOOIETIES.

ROYAL ASTRONOMICAL SOCIETY.

THE ordinary monthly meeting of this Society was held on Friday, April 12, 1872 ; Professor caley, President, in the chair.
Insufficiency of National Observatories. Colonel Strange read an important paper entitled above, and in introducing it he remarked that it night be considered as aggressive, when we had so fficient an observatory at the head of astronomical science in England, presided over so ably by the Astronomer Royal, but he hoped to show that the paper was by no means aggressive. Of late years astronomy had made great advances, especially as regards the physics of the bodies composing the universe. The Royal Observatory was founded in the interest of navigation, and well and nobly had it done its work. The unbroken series of meridional tinguished astronomers who had from time to time tinguished astronomers who had from time to time presided over its operations, had conferred an inmight be appropriately styled "the physics of astromight be appropriately styled "the physics of astronomy (Colonel Strange) had ouly to refer to the paper read at a late meeting of the society on devoting an observatory to the especial work of observing the eclipses and transits of Jupiter's satellites (see
Engutar Mechanic, No. 357 . Jan. 26, 1872, p. 479), English Mechanic, No. 357, Jan. 26, 1872, p. 479).
to bear him out in advocating the importance of the establishment of observatories for investigating "the physics of astronomy." During a comparatively recent period much had been effected in In addition to the earnest seizing and utilising of the few precious moments of the intervals of totality on the occasions of total eclipses of the sun, a large amount of time and money bad been expended in obtaining a valuable series of photographic pictures brought to a close. He need not mention the men who stood foremost in the ranks of earnest inquirers into solar physics; they were known to us all, but such was the nature of private effiort, especially requiring pecuniary ontlay, that at any moment a to a close, and to remedy this defect he urged upon the society the importance of placing such inquiries as he had alluded to on a stable footing. There were also men who had taught us how or map eired
moon, but such was the extent of work require that private resources were quite inadequate to complete it in any reasonable period. Colonel Strange in his further remarks adverted to the connection of meteorology with astronomy. All the variations he said, be traced to the dominant influence of the sun, and he, therefore, deemed it expedient that an exhaustive systematic study of the sun should be shonld be founded for the daily registration of solar phenomena.
The Astronomer Royal, in commenting on Col. Strange's paper, remarked that he had had great general impression on his mind was that no observatory will stand unless it be connected with some secular object-an object of worldy importance The the benefit of navigation and the determination of the longitude, and for these objects steady observations of the mon were necessary, and were not under-
borne in mind that these obervations win taken and continued to the present time for elucidating the lunar theory, but primarily and essencollaterally for this object a branch of the obsergreat care, was the rating of chronometers, and no
less important was the dissomination of time signals, which were transmitted daily from the
Obseratory. The Astronomer Royal further re fornded, the theory of gravitation was established, and to employ this theory in the vital question of vations of the moon. To show the importance the connection of a subject of wornty interest that speaking to a friend of the assistance rendered by the Government the Harton Caliery experiment, the greater portion of the expense of that as a taxpayer he should protest agamst the cruplon
of public money for such purposes. Dr. De La Rue, in connection with the paper read
by Colonel Strange, called the attention of the by Colonel Strange, callet the ablishing a daily meeting to the importance or He said that the Government have gone to a great expense, no less
than $£ 10000$ annually, in obtaining meteorological
mation is published and distributed by 2 p.m. of the day of its reception. The observations thus accu mulated are arranged and discussed in various ways with a view of ascertaining the laws of weather changes. This method Dr. De La Rue considered as very cumbrous; centuries, perhaps, might elapse before the laws were discovered, and he pointed out that a secular change of a quarter of a degree in solar radiation would materially affect all our climatic relations. It was his impression that a series of solar pictures during a period of thirty or forty years, at an annual expense of from $£ 300$ to $£ 40$ would be very important for the Governmen take up at this juncture. A picture of the sun ob tained every day, furnishing data for the study of sun spots, faculx, and solar prominences, during cycles of ten or eleven years, would throw muck light on meteorological phenomena, for while loca influences had great effeet on the weather, solar in fluence was by far the most efficient agent in determining its character
In referring to the work of an obsservatory established by the Government, the Astronomer Royal said that it was not that of groping, as it were, in the dark after the canses of phenomena, but the making and collecting of observations for a definite object, immediately connected with some secular advantage to the State.

The Rev. Professor Selwyn annoanced that the series of sun pictures which had been taken under his superintendence during the last nine years, would be continued until February, 1874, completing the eleven years' cycle.

Discovery of Minor Planets:

M. Borelli communicated a paper containing observations of the newly-discovered minor planet Peitho (118), and of Ægina (91); also of six new nebulx, and a new variable star. Telegrams had been received at the Royal Observatory from M Delaunay within the last few days, announcing that two minor planets had been discovered at Pari 119) and (120). Referring to Peitho, discovered by Dr. Luther, Mr. Dunkin stated that this was the nineteenth minor planet which the dootor had discovered, being the
by one astronomer.

Binary Stars.

Papers were read from Mr. Hind on the orbits of 5 Boötis, and $\Sigma 1938$ (μ^{2} Boötis). Observations of ξ Boïtis during the next few years wil possess great value, and also those of $\Sigma 1938$ during the next four years.

The Recent Solar Eclipse
A paper was read from Mr. Tebbut, of Parematta, containing observations of the partial phase of the eclipse of December 12, 1871, in which the times of bisection of spots on the sun's dise are enumersted, and on which the Astronomer Royal remarked that such observations were of no use whatever. As regarded the eclipse itself the Astronomer Royal took this opportunity of stating that he had received telegrams from India in the morning of the London newspapers in time for publication in the afternoon of the same day.

Mathematical Papers.

The following were read or announced:-
On Proposition 38 of the Third Book of Newton's Principia," by Todhunter.
The second part of a memoir "On the Development of the Disturbing Function in the Lunar and Planetary Theories," by Professor Cayley.
"On the Method of Least Squares," by J. Lee Glaisher.

At the close of the meeting Mr. Browning exhibited Lord Lindsay's photographs of the late solar eclipse, combined stereoscopically, and Mr. Brothers exhibited a negative of the eclipse of Broth
1870.
Amongst the presents we noticed a fine porars of the late Ch

Removing a Furnace-Shaft Bodily. - The reat chimney of the Cabot mill, at Brunswick, Mano, ha been moved 20ft., to allow of the enlargement of the mill. The work was done by a process sim being that by which ships are launched, the chimney is 70 ft . slid along on greased planks. The chise and it was high and nearly 8 it. square at the base, andarted, in moved, the flues conn eight hours and a half.
Burnt-in Photographs.-The burnt-in photographs in enamel are well known to many of our readers, but it may not be generally known that the rocess is applicable to the ornamentatransfer paper, The pattern is drawn by hand on hin tixane of gum ad the glass being prepared with a mixafer paper is arabic and bichromate of potash, the transe colouring placed over it and exposed affected by the light, and a pattern is obtained wh this can be burnt in. Prints and woodcats are portraits method easily transferred to glass, but

There is yet another point which, although not in our direct field of research, yet depends so essentially upon the geological conditions we have
discussed, and is one, in a pablic point of view, of discussed, and is one, in a pablic point of view, of
such paramount importance, that I will say a few such paramount importance, that I will say a few
words on the subject. In an uninhabited country, the rain passes throagh the soil and issues as springs, bearing with it a cortain proportion of mineral matter, aiud only traces of such organic matter as vegetable origin, and the proportion would be in most cases very small. As man appeared, those
conditions would be at first bat little altered, for animal matters exposed on the surface rapidly deces and pass away in a gaseons form; but with increasing civilisation and fixed residences the soon be felt. I have shown how popalation followed the range of shallow permeable strata and the course of valleys, so as to obtain readily that indispensable necessity of life, a sufficient water sapply. But with the art of well digging it soon became apparent that. level of ground springs, it would remain dry, and that then, so far from holding water, any water poured into it would pass through the poroas strata down to the water-level beneath, keeping the shallower well or pit constantly drained. So conrenient and ready a means of getting rid of all re-
fuse liguids was not neglected. Whilst on one side fuse liquids was not neglected. Whilst on one side at a depth, say, of twenty feet, on the other side a dry well was sunk to a depth of ten feet, and this The sand or gravel acting as a filter the minor solid matter remained in the dry well, while the major liquid portion passed through the permeable stratum and went to feed the underlying springs. What was done in one house was done in the many; and what was done by our rude ancestors centuries back cultivated descendants to the present day, with a paraiatency in the methed only to be attribated to things among the masses, and to the ignorance of the real conditions and actual results of perpetuating such an evil-an evil common alike to the cottages
of the poor and, with few exceptions, to the mansions of the rich.
Not a connty, not a district, not a valley, not the smallest tract of permeable strata, is free from this plague spot. It haunts the land, and is the more dangerons from its unseen, hidden, and too often unsuspected existence. Bright as the water often is, withont objectionable taste or smell, it passes wility of suspicion until corrupted beyond the possiwhere we may, we never know when the poisoned where we may, we never know when the poisoned
chalice may be presented to our lips. The evil is self-generating; for the geologioal conditions supplying our necessities lend themselves to its maintenance and extension. The knowledge necessary to remedy it is of very slow growth. and the too frequent want of that knowledge, or disregard of the sabject, even amongst able architects and builders, is such that, without legislative enactment, I do not see how the evil
term of years.
But even our deeper and apparently inaccessible springs have not escaped contamination. As before mentioned, the underground water will, when tapped by artesian wells, rise to or above the surface, ac.
cording to the relative height of the surface of the cording to the relative and of the of the surf of the waterbearing bed or beds, so that if the former is higher than the latter, or if by artificial means the line of wator level in a given area becomes lowered, then the surface of the water belonging to those great undergronud natural reservoirs will be established accordingly at a certain fixed depth beneath the sarface. As each well deriving its supply in a stratum of this description represents a column of water communicating with one common reservoir, it follows that any cause permanently lowering the
level of ono well will tend to lower the level in the other wells in proportion to their number and distance. Further, it has been discoverell that a well of this class can absorb a quantity of rater equal to that whirh it can furnish; and as these wells give
greater supplies than shallow wells, the alsorbing greater sappies than shallow wells, the alborbing
wells of the same class are alike powerful in proportion to the others. The perverse ingenuity of man has here, again, taken advantage of these conditions to get rid of offensive waste waters by diverting thern into such deep wells, whence they pass away in hidden underground channels, unseen and unsuspeoted, and mingle with those deep seated water sources feeding the artesian wells depondent upon
them for their supply. them for their supply.
In Paris, where there are several alternating beds of permeable and impermeable strata, and the depth to reach them is not very great, this system of sbsorbing wells connected with factories became,
until regulated by the municipality, very common, to the great injary of many of the anderground fprings. Freat injary of many of the onderground alluded to, a great number of shallow wells have here become so contaminatcd as to necessitate
their abandonment. Our owa system of sur-
face drainage is generally too good, and the depth to the lower water-bearing strata too great,
to have rendered the use of such wells here equally advantageous; nevertheless, I have reason to believe that they do exist, and that the sources even of oar deep well water supply in the Lower Tertiary Sands and in the Chalk aro thus to some extent pollated and injured.
Nor do the great and perennial springs supplying our rivers altogether escape the evils arising from these obnoxious practices. On the high Oolitic ranges and amongst the andulating Cbalk hills, the line of water-level is often so deep below the surface, that only in few cases are wells made-the popula. tion being generally dependent on rain-water for their water sapply. But this does not prevent the construction of dry wells for the disposal of sewage and refase. It is true that the popalation in these hills is sparse-here and there a farm, a few cottages, and scarcely a village. Still, as the ground is everywhere absorbent, and there are no streams even in the valleys (I am now speaking of it
higher districts). every dwelling contribntes its quota; for the rain and all liquid matter absorbed in these strata necessarily pass down to the great underground reservoirs of water feeding the prings thrown out in the deeper river valleys. In
these cases, however, the thickness of strata throng h these cases. however, the thickness of strata throngh
which any liquid has to pass before reaching the line of water-level is such as to produce a more or less efficient filtration and complete decomposition; and as the injury cansed is in proportion to the relative volumes of the water-sources and to the
artificial additions, the great extent and dimensions articicial additions, the great extent and dimensions of these water-bearing strata and the scanty population of such districts reduce it to a minimom. experig to these condions, great as the esi, its vanishing-point. It may be considered at its maximam in some of the wells of Paris; our own London shallow-well pamps follow next in order; in our river waters away from towns it is but slight in some of the spritgs of the Chalk and Lower Areeusands it is hardly appreciable, while in the Grenelle, it sinks to the minimum attained by any potable waters, with the exception of rain-water It is also a fortunate circumstance that the wonder fal powers of oxidation possessed by air and water and the powers of absorption and decomposition by soils and earths, are such as, even in the surcharged
gravel-bed of London, to remove all the more offensive characters, and leave its spring-waters at al events limpid anu bright: whilst the quick eddy. the moving ripple, the bright sunshine, the brisk breeze, the living organisms, are ever at work in our rivers, destroying the almost inevitable accompaniments of the presence of man, and restoring the his health and welfare.
With regard to the character of waters as dependent on the geological nature of the strata, while the evidence ghowed that the waters flowing of hard and insolable rocks were, from their much mical for many domestic and manafacturing pur poses, yet that for drinking purposes waters such as those darived from our Chalk and Oolitic districts were, on the whole, as good and wholesome as those from any other sources; while as regards qy a structure presentel the most favonrable conditions for the large and maintained supply so essentinl for a great city. And if, from any canse, it should at supply of a yet more assured and undoabted Cbalk than a river supplv, the large springs of the Cbalk and the Lower Greensand, or the great underground rescrvoirs of the most efficiently
filtered water stored in those formations in Surrey filtered water stored in those formations in Surrey
and Hertfordshire, might, I believe, be resorted to and Hertfordshire, might, I believe, be resorted to
with advantage, by means of ordinary and artesian wells, as auxiliary sources of sapply for domestic and drinking purposes, sapposing the engineering difficulties connected with a doable water supply could be overcome-a difficulty which it, however, tion to our engineere than of cost to the public But in a great health question there are other con siderations than these which are of more primary importance.
(To be continued.)
geology in relation to plant life.
$\mathbf{W}_{\text {chemistry }}^{\text {HILE mand vegetable physiology-have }}$ chemistry and vegetable physiology-have done mach to farther a better knowledge of plant
life, and, in consequence, of plant calture, geology, from which we might have expected so much, has up to this time done comparatively little. The fact is, the majority of geologists, says the Gardenerg'
Chronicle. have occapied themselves with the study of the order and mode of deposition of the older strata, and hare done comparatively little to mn-
ravel the myitaries of the superficial deposits, which
are of the most importance to cultivators. From a geological point of view the Jondon Clay and the
Lias Clays are totally distinct formations, so are the Lias Clays are totally distinct formations, so are the
enornous Limestone beds of the Oolitic and of the enornous Limestone beds of the Oolitic and of the
Cretaceous piriods respectively. Yet for caltaral purposes there is not that great difference between them.
We know that certain fields invariably grow, under proper culture, good wheat crops, while
from the adjacent fields a good crop cannot be looked for. In the case of frait trees, the difference between neighbouring gardens is often still more marked. A pear which in one garden produces froit of first-rate quality, vields fruit of indifferent
quality in the next, and this often without any obvious difference in management, or even exposare. The experience of every fruit grower and market gardener conld furnish numerous examples of the differences we allude to, bat the causes producing these differences are often not obvious. Botanists turning their attention to limited areas are often enabled to draw up lists of clay plants, limestone plants, sand plants, seaside plants, plants of bogey ground, and the like. and to a certain extent these
differences hold good. Bat when the observations are made over a wider area, the distinctions are apt to break down. Many of our wild plants, which are confined to clay and limestone, or even to boggy wet places in this country, are fonud elsewhere growing in equal profusion and luxuriance in soil of
a totally different character. The beautiful Chlore a totally different character. The beautiful Chlore perfoliata is a characteristic limestone plant, yet we means imite on ganlt clay, and abroad a bog or marsh plant with as, grows equally well on dry soils in Switzerland. It follows, then, that the rules laid down for one conntry, will not always apply to other lands. Some years since we carefully compared the wild plants of Oxfordshire with those of the soil on which they grew, and to the nature conclusion that the large majority of the plants were ubiguitons or indifferent, so far as the chemical nature of the soil was concerned. Limestone soils, Whether of oolite or chalk, produced muoh the samo
vegetation in the two districts: vegetation in the two districts; and, to
tent. this was the case with clay plants or sand plants. The number of plants, however, that conld be ennmerated as peculiar to one or the other description of soil was extremely limited; and when a comparison was made with the observations of Coutinental anthorities, these few dwindled down to iusignificant proportions. Under cultivation, too, we see plants from all parts of the world, inbabiting various regions, and naturally growing in same iferent soils, all thriving in soil on enters same character. will afford abund illustration of this fact. The common parple Loosestrife (Lythrum Salicaria) was long since noted by Mr. Darwin as a marked illastration of this indifference to the natare of the soil. Naturally growing by the banks of rivers, with, its does just as well in any ordinary garden soil, it does just as well in any ordinary garden best th a bog, but it will grow almost anywhere. Rhododendrous. so commonly thought to require peat soil as a sine qua non, will do equally well in a stiff loam, and, indeed, anywhere where there is not too much lime.
It seems obvions, then, that, setting apart extreme cases, the chemical nature of the soil has less to do with the qnality of the vegetation it produces than the physical characteristics. The difference in the vegetation of drained and undrained land respectively supports this view of the case. It is even a question whether the mechanical changes profull as certain manures on the soil are not homical ingredients supplied. See, for instance, the great changes produced in the textare of the soil in the case of such experiments as have been carried on so long and on so extensive a scale at Rothamsted. See how some manures applied as a top-dressing, or, at east, supertacially, affect tas subjacent soil to 2 much to a much greater depth than others, altering the character of the soil as they go to a corresponding extent. Note, too, the varying quantities of water that issue from the drains in adjacent plots drained to the same depth and to the same extent, bat treated with different manures. In some cases a large proportion of the surface-water rans through, while in other instances, as where farmyard manure has been applied, the outfiow is comparatively mall. All these facts, and many others that might be cited, show how desirable it is for us to gain a greater ingight than we have at presoil in which we grow our plants, and into the mode of growth or general habit of the plant itself, as moditied by the soil on which it grows. To this end we seem to reqnire, to a much larger extent than we have yet had, the co-operation of geologists writh vegetable physiologists and chemists. The proslem is a very complex one, and it is only by ing
vestigating it from different stand-points. and chen comparing notes, that we can hope to solve infor draw usefal practical inferences from it.

PHOFESSOR MORSE.

SAMUEL FINLEY BRESSE MORSE has day evening. the 2nd of April, at the ripe age of 81 . Professor Morse's name will be for ever so closely associated with the development of the electric telegraph that we feel it our duty to kive some notice,
though it be a brief one, of his life. He was the though it be a brief one, of his life. He was the
son of the Rev. Jedediah Morse, well known as a geographer, and was born in Cbarlestowr, Massachasetts, on the 27th of April, 1791. Samuel Morse was educated at Yale College, but, having determined to become a painter, he came to England in 1811, formed a friendship with Leslie, whose portrait he painted, and in 1813 he exhibited at the Royal Academy a colossal picture of "The Dying Hercules." He returned to America and endeavoured to establish himself as a portrait paiater, but withoat mach success, untilin 1822 he settled in Now York, and painted for the corporation a full-leugth portrait of Lalayette, who was then on a Visit to the
United States. We find Mr. Morse again in England in 1829, remaining here until l832, when he returned to his own country. His companion on this rovage was Professor Jackson, the eminent American chemist and geologist. Who was then retarning from Paris, where the question of the time occupied in the passage of the electric current through a good conducting wire was occupying the attention of scientific men. From Dr. Jackson Mr. Morse appears to have first learnt that the passnge of the electric fuid was absolately instantaneons, and it occurred to him that it might be used for conveying intelligence rom one place to another. The friends of Professor Morse claim for him that during the voyage he had written out the general plan of his tolegraphic arrangement. In 1835 he certainly placed in the New Tork University a model of his "Recording Electrio Telegraph," and in 1837 he filed his cavent at the until 1840 that the patent was perfected, and then Professor Morse set about getting his telegraph used. Four years, however, passed away before he sucoeeded, the firat electrio telegraph completed in the Uniteri States being the line between Washington and Baltimore, which began to work in 1844. 8ince that time the recording electric telegraph of Morse has been adopted over the whole country, and at miles of eloctric wires stretching over the States between the Atlantic and the Pacific Oceans. Mr. Morse's first telegraph was a chemical one, the electric carrent being used to decompose the acetate or carbonate of lead, or turmeric paper moistened with a solntion of sulphate of soda. He, however, gave up this arrangement, and adopted the electro-
magnetic system instead. This was, however, in magnetic system instead. This was, however, in
his hands, a rather ponderous affair, his electrohis hands, a rather ponderous affair, his electronot sufficiently delicate for long distances. Experionce enabled Mr. Morse to simplify his arrange-
ments, and his " Simple Morse Circuit" was thonght ments, and his "Simple Morse Circuit" was thought to be so complete that in 1857 the French Adminis.
tration of Telegraphs adopted the Morse instrument tration of Telegraphs adopted the Morse instrument
before all others. The "Morse Code," the "Morse's before all others. The "Morse Code," the "Morse's
Transmitting Plate," his "Embosser," and Morse's tolegraph worked by induotion currents are sufficient to show how completely the American artist has olectricity to pass with the system of employing man, over earth and under the sea-Athencum.

Practice Makes Perfeot.-Mr. Bessemer, giving evidence before a committee of the Socicty of Arts, the other day, said :- "I have observed the sleight of hand that men acquire in various mechanical arts where they
have a certala thing to do and that only ; and it is bave a certain thing to do. and that only; and it is
really marvellous how, in three or four weeks, a man really marvellous how, in three or four weeks, a man
will do with ease what would have been pronounced an utter impossibility. Take, for example, the forging of steel. A man will take a bar of steel, which has to be forged into an octagon shape, and he will pass it
under a heavy hammer, striking about 300 blows a under a heavy hammer, striking about 300 blows a minute, and will turn it exactly one-eighth of a revoforged with the greatest exactitude, though he has to alcer the angle every 300 th part of a minute.
Now Mode of Washing.-The ill effects of soda on linen has given rise to a now method of washing which has been extensively adopted in Germany, and dissolving two pounds of soap in about three gallons of water as hot as the hand can bear, and adding to this one tablespoonful of turpentine and three of liquid ammonia : the mixture must then be well stirred, and the linen steeped in it for two or three hours, taking care to cover up the regsel which contains them as ararly hermetically as possible. The clothes are afterWards washed out and rinned in the usual way. The time, but in that case half a tablespoonful of turpentino and a tablespoonful of ammonia must be added. The process is satd to cause a great economy of time,
inbour, and fuel. The linen scarcely suffers at all, as thare in little nccesity for rubbing, and its cleanliness and colour aro perfect. The ammonia and turpentine, althongh their dotersive action is great, hare no inevaporates immeriately, the smell of the tatter is sald to disippear catiroly during the drying of the clothes.

SOIENTIFIO SOOLETIES.

ROYAL ASTRONOMICAL SOCIETY.

T
E ordinary monthly meeting of this Society Was held on Friday, April

Insufficiency of National Observatoriea.

Colonel Strange read an important paper entitl as above, and in introducing it he remarked that it might be considered as aggressive, when we had so efficient an observatory at the head of astronomical science in England. presided over so ably by the Astronomer Royal, but he hoped to show that the paper was by no means aggressive. Of late years astronomy had made great advances, especially as regards the physics of the bodies composing the aniverse. The Royal Observatory was fonnded in the interest of navigation, and well and nobly had it done its work. The unbroken series of meridional observations, made under the direction of the distinguished astronomers who had from time to time presided over its operations, had conferred an in-
calcalable benefit on astronomy; bat the branch which calcalable benefit on astronomy; but the branch which might be appropriately styled "the physics of astroHe (Colonel Strange) had only to refer to the paper read at a late meeting of the society on devoting an observatory to the especial work of observing the eclipses and transits of Jupiter's satellites (see Englibh Mectanic, No. 357, Jan. 26, 1872, p. 479), to bear him out in advocating the importance of the establishment of observatories for investigating "the physics of astronomy." During a comparatively recent period much had been effected in oxtending our knowledge of the physics of the sun. In addition to the earnest seizing and utilising of on the occasions of total eclipses of the sun, a large on the occasions of total eciupses of the sun, and money had been expended in obtaining a valuable series of photographic picture of the sun which, he learned with regret, had been
brought to a close. He need not mention the men brought to a close. He need not mention the men who stood foremost in the ranks of earnest inquirers into solar physics ; they were known to us all, but quiring pecuniary ontley, that at any moment a series of observations might suddenly be brought to a close, and to remedy this defect he urged upon as society the importance of placing such ioquiries were had alluded to on a stable fooling. There moon, bat such was the extent of work required that private resoarces were quite inadequate to complete it in any reasonable period. Colonel Strange in his further remarks adverted to the connection of meteorology with astronomy. All the variations of climate, alternations of temperature, ce., conld,
he said, be traced to the dominant inflience of the ho said, be traced to the dominant infinence of the
sun, and he, therefore, deemed it expedient that an sun, and he, therefore, deemed it expedient that an exhanstive systematic study of the sun should be
set on foot, and that a national establishment set on foot, and that a national establishment
should be founded for the daily registration of solar phenomena.
The Astronomer Roysl, in commenting on Col Strange's paper, remarked that he had had grast experience in the history of observatories, and the general impression on his mind was that no observatory will stand unless it be connected with some secular object-an object of worldly importance for the benefit of navigation and the determination of the longitude, and for these objects steady observations of the moon were necessary, and it should be borne in mind that these observations were not undertaken and continued to the present time for elucidating the lunar theory, hat primarily and essentially for the determination of the longitude, and collaterally for this object a branch of the obser vatory work, to which he had personally given
great care, was the rating of chronometers, and no great care, was the rating of chronometers, and no
less important was the dissemination of time signals, which were transmitted daily from the Observatory. The Astronomer Royal further remarked that when the Royal ObRervatory was founded, the theory of gravitation was essabished, and to employ this theory in the vital qua tationgitude needad an extensive series of obser the connection of a subject of worldly interest with an observatory, the Astronomer Royal said that speaking to a friend of the assistance rendered by ment, the greater portion of the expense of which he had personally borne, his friend replied that as a taxpayer he should protest against the employment of public money for such parposes.
Dr. De La Rae, in connection with the paper read by Colonel Strange, called the attention of the meeting to the importance of establishing a daily record of solar phenomena. He said that the Government have gone to a great expense, no less than $£ 10,000$ annually, in obtaining meteorological data, with a view to prognosticating the weather, have been established, at which self.recording instruments are continually at work, and in addition numerous other stations farnish information which is received in London at $8 \mathrm{a} . \mathrm{m}$. daily. This infor
mation is published and distributed by 2 p.m. of the
day of its reception. The observations thns aceumulated are arranged and discussed in various ways with a view of ascertaining the laws of weather changes. This method Dr. De La Rue considered as very cumbrous; centuries, perhaps, might elapse before the laws were discovered, and he pointed out that a secular change of a quarter of a degree in olar radiation woald materially affect all our climatic relations. It was hisimpression that a series of solar pictures during a period of thirty or forty years, at an annual expense of from $£ 300$ to $£ 400$ would be vary important for the Government to take up at this jancture. A pietare of the sun ob tained every day, famishing data for the study of sun spots, facula, and solar prominences, during oycles of ten or eleven jears, would throw mach nflo onces heteorological phenomena, for whilar in flance was by far the most efficient agent in determining its character.
In referring to the werk of an observatory established by the Government, the Astronomer Royal said that it was not that of groping, as it were, in the dark after the canses of phenomens but the making and collecting of observations for 2 definite object, immediately connected with some The Rer Praf to
The Rev. Professor Selmyn announced that the series of sun pictares whioh had been taken under his superintendence daring the last nine ycars,
would be continued until February, 1874, completing Would be continued unti.
the eleven years' cycle.

Discovery of IGuor Planets:

M. Borelli commanicated a paper containing observations of the newly-discovered minor planet Peitho (118), and of Eiging (91); also of six new nebula, and a new variable star. Telegrans had been received at the Royal Observatory from M. Delaunay within the last few days, announcing that two minor planets had been discovered at Paris (119) and (120). Referring to Peitho, disoovered by Dr. Luther, Mr. Dankin stated that' this was the nineteenth minor planet which the dootor had discovered, being the greateat number yet discovered by one astronomer

Binary Stary

Papers were read from Mr. Hind on the orbits of Boötis, and 1933 (μ^{2} Boötis). Observations of Boïtis during the next few years wih possesin great value, and also those of $\bar{x} 1938$ during the next four years.

The Recent Eolar Elipeo.

A paper was read from Mr. Tebbat, of Parematta, containing observations of the pertial phase of the eclipse of December 12, 1871, in which the times of bisection of spots on the sun's disc are enamerated and on which the Astronomer Royal remarked that such observations were of no use whatever. As regarded the eclipse itself the Astronomer Royal took this opportanity of stating that he had received telegrams from India in the morning of the day of the eclipse, and had forwarded them to the London newspapers in time for pablication in the afternoon of the same day.

Mathematical Papers.
The following were read or announced:-
On Proposition 38 of the Thind Book of Newton's Prinaipis," by Todhanter.
The second part of a memoir "On the Develop ment of the Disturbing Function in the Lunar and Planetary Theories," by Professor Cayley.
"On the Method of Least Squares," by J. Lee Glaisher.
At the close of the meeting Mr. Browning exhibited Lord Lindsay's photographs of the late solar eclipse, combined stereuscopically, and Mr.
Brothers exhibited a negative of the eclipse of solar
Broth
$18 i 0$.
Amo

Amongst the presents we noticed a fine portrait of the late Charles Bebbage, one of the foonders of the society.

Removing a Furniace-Shaft Bodily. - The great chimney of the Cabot mill, at Brunswick. Maine. ha been moved 20ft., to allow of the enlargement o the mill. The work was done by a proceas similur ein that by which ships are launched, the chimney being slld along on greased planks. The chimney is 70 it Ligh and nearly sit. square at the base, and it was eight hours and a half.
Burnt-in Photographs.-The burnt-in photorraphs in enamel are well known to many of our eaders, but it may not be generally known that the The pattern is drawn to the ornamentation of glass. and the glass being prepared with a mixture of gum arable and blchromate of potash, the transfer paper is placed over it and exposed to light. The colouring material is dusted on. This adheres to all parts not affected by the light, and a pattern is obtained which can be burnt in. Prints and woodcats are bortraits this process does not work fine enough.

PHOTOGRAPHFO NOTES.

To Prevent Albumen Paper from Blister-ing.-Some brands of albumen paper are subject to blisters when taken from the hypo. solation. To prevent this remove the prints, when fixed, from the
hypo. into a dish of salt water (a handful of salt to a gallon of water) before the regular washing; let them remain several minutes in the salt water.
Removing Organio Matter from a Bath.A correspondent of Anthony's Bulletin says:-"A bathe suecessfully in the following manner:-After flltering out the free iodide, and evaporating in the zsual manner, add, while the solution is warm, from five to ten drops of ammonia. I did so, and in five minates my sick bath turned black as ink. I then boiled it about half down, and set it aside to cool. The next morning I filtered out about a teato the bath enough acid (chemically pure nitric) to to the bath enough acid (chemically pure nitric) to
turn litmus. It requires considerable to do this. and caro should be taken not to get an overdose of aoid. If you do, a small quantity of ammonia will remove it. After this treatment my bath worked
splendidly, and was as good as new. I do not think splendidly, and was as good as ne
this has over appeared in print."
The Adulteration of Wax - A method of detecting the adulteration of wax with tallow by means of alcohol is described by Dr. Hardy, in the means of alcohol is described by Dr. Hardy, in the Journal de Pharmacic et Che mie. He first prepared
pure beef saet, and carefully determined the specific pure beef saet, and carefuly of this substance, which he found to be 0.8863 ; next he prepared an alcoholic fluid of such d degree of concentration that a piece of the suet alluded to remained suspended (that is to say, snnk therein to a cestain depth, and then remained at rest) in it. This alcohol was found to have a specific gravity of from 0.8882 to 0.8857 (between 71° and 72°) : the specific gravity of wax is between 0.962 and 0.963 ; hence it follows that alcohol at 29° will keep wax suspended. Starting from these data, Dr. Which it becomes possible to detect adalterations of wax with suet (tallew).
Photographing Children.-A photographer of San Francisce has adapted to bis camera an adjunct which he finds of noe in taking children's portraits. Instead of the cloth or brass cap which covers the tube of the camera, he employs a disc of brass or other metal, consisting of two semianar portions, which open and close like the blades of a pair of scissors. They are worked noiselessly and instantaneously by the slight pressure of a little knob on the top of the instrament, and the plate is exposed and closed again withoot any manipalations that can be seen by the sitter. The operator waits until the child assumes a favourable expression, when he presses the spring, exposes the plate, and takes the picture withont making any motion that attracts the attention or causes a
motion of his sitter. Like all useful inventions, motion of his sitter. Like all useful inventions, this is exceedingly simple
any photographic camera.
Maynard's Collodion Filter.-This consists of a pear-shaped vessel with a stoppered mouth, fitting firmby into the neck of a cylindrical or wool fiting firmly into the neck of a cylindrical gradu. ated pint measure. As our readers know, volatile liquids must be filtered ander cover to check evaporation, and various plans have been contrived for
effecting this. The especial claim of the filter effecting this. The especial claim of the filter
nnder notice is the elegance and convenience with nonder notice is the elegance and convenience with
which the operation is effected. An iadiarabber Which the operation is effected. An indiarnbber
tube connects the two vessels, and when the filtered tube connects the two vessels, and when the filtered
liquid passes from the apper vessel to the lower one, the air displaced mast pass through the tube into the upper vessel to take the place of the liquid which has passed through the filter. the proper pressure being thussteadily maintained without any Commanication with the air ontside the vessels. Collodion, varnish, and all volatile substances, are thas filtered with ease, and without loss or change. A pint of collodion or varnish, it is stated, may be thus filtered in ten minates.-Photographic Acus.
The Chemioal Infuence of Solar Light.-It has been observed that the intensity of the diffused
light of the sky (not of that reflected by the clouds) light of the sky (not of that reflected by the clouds) is proportional, within certain limits, to that of the sun. When the altitude of the latter above the
horizon does not reach 10°, the intensity of the horizon does not reach 10°, the intersity of the While the action of that which is reflected from the sky is quite appreciable. Now, we know that the
chemical intensity of the solar, light increases con. chemical intensity of the solar light increases constantly and regularly according as its altitude in-
creases, and that it reaches its maximam when it has passed the meridian. These phenomena are easily explained if we recollect that the higher the sun mounts in its apparent course, the less distance do
its rays have to traverse in the absorbing atmoite rays have to traverse in the absorbing atmo-
uphere of our planet. As the snn sinks in the afternoon, we remark a corresponding decrease in the active power of its light, and the relation pointed out exists without reference to variations in the state of the atmorphere.

LETTERS TO THE EDITOR.
[We 20 not hold ourselves responsible for the opinion of our correspondente. The Editor respectfully requests
that all communications should bo drawn up as briefy as that all possible.]
146 communications should bo addressed to the Editor of the Englise Mecranid, 81, Tavidock-atreet, Coven Garden, W.O.
All Cheques and Post Offiee Orders to be made payable to J. EAsemore Edwards.
"I would hare every one wilte what he knows, and as much as he knows, but no more; and that not in this only, bat in all other subjects: For auch a person may beve some particular knowledge and experience of the nature of suck a person or such a fountain, that as to and yet to krpp a clutter with this little pittance of his, Will nndertake to Write tho whole body of physicks:
vice from whence great inconveniencen derive shoir original"-Montaignc's Eseays.
*** In order to facilltate reforonca, Correspondonte when speaking of any Letter previously inserted, will obligs by on which it appamber of the Letter, as well as the pas on which it appears.

ON AN ABTICLE IN "NATURE."
[4006.]-There was an excellent article in Nature lately aboat newspaper science. With nearly all contained in it I cordially concar, and especially with the denanciation of the advertising style of scioncewriting; an attack obriously saggested by the reports of a late scientific expedition in a daily joarnal of high standing, in which one name was repeated in a manner intended to be friendly, but most mortifying, donbtless, to the person thns obtraded ad nauseam on pablic notice. Bat I cannot agree with the writer of this capital article in commending the style of a paper Cornhill "Magazine for March last, as worthy or in the adoption. Saine for March last, as worthy orgeneral that fancifal narrative, in which inferences were pre sented as facts, and all the reasoning omitted on which those inferences have been based. The very nature of such 8 narrative rendered this absolatoly necessary ;
but it is nusafe to recommend that style of writing for but it in
I say this in no spirit of hostility towards the write of the "Voraga to the Sun." Indeed, I write as I do with his fall knowledge and with the sanction of his opinion. After carefully reconsidering the subjeat he anlikely to write again in the same style.

Ricinad A. Pboctor.

TERRESTRIAL GRAVITATION.

[4007.]-I Do not possess Thomson's and Tait's "Natural Philosoply," nor have I ready access to the
volume. Wonld "F. N.," who refers to it (letter 39c9, polume. Wonlin), oblige by quoting the reasoning of tho page 119), oblige by quoting the reasoning of tho eminent Scotcter mithematicians, or describing its
general character? It is always possible, in tring to general character ? it is always possible, in trying to
solve sach problems by geometrical considerations, that solve snch problems iny geometrical considerations, that a simple mude of proof nuay escape one's notice; bat 1
certainly have long believed that there is no simple proof of the law of attraction for spheres on particles proof of the law of attraction for spheres on particles
outside of them. That the relation may be established without using the symbols of integration I can readily mithout using the aymboos of integration 1 can read
believe-in fact, I amin convinced that to much can be done in half a dozen different ways. Bat I should not consider in hat a dozen different ways. Bat 1 hinnla not consider there occured anywhere in the proof the device of dividing the sphere, or any portion of it, into n equal parts, obtaining an expression for the attraction in
terms of u, and then evaluatiug this expression terms of n, and then evaluating this expression on the assnmption that calcolad disgnised. Nor again should only the integral caicnias disgnisel. Nor again shousd with if the elenveutary attractions were ripresented by with in the elenueutary atractions were ripresented by
ordinate elements of a plane space having curvilinear ordinate elenents of a plane space haviog curvilinear
boundary, and so summed by a reference to the known area of sach space. It was a fashion of mine when at Cambridge (most unfortunately, so far as examination successes rero concerned) 0 to treat problems successes rero concerned) 0 to treat problems
really involving the integral calculus; and 1 have in my desk at this moment a fruit of such labours in a geometrical (9) solation of the following problem, the last example in Todhanter's "Integral Calculus": -
A messenger M starts from A towards B (distance a) at a rate of v miles per hour; bat before he arrives at B a slower of rain commencos at A and at all places occupying a certain distance z forards but not resohing
beyond B, and moves at the rate of v milea an horr beyond B, and moves at the rate of 0 miles an hour
towards A; is M is canght in this shower he will be obliged to stop antil it is over; he is also to receive for his errand a namber of shillings inversely proportional to the time occupicd in it, at the rate of n shillings for one hour. Supposing the distance z to be unknown, also the time at which the shower commenced, but all events to be equally probable, show that the value of M's expectation is, in shillings :-

$$
\frac{n v}{a}\left\{\frac{1}{2}-\frac{v}{v}+\frac{u(u+v)}{v^{1}} \log \cdot \frac{u+v}{u}\right\}
$$

But I know now perfectly well that this laboured proof (which is very much at your readers' eervice if thoy wonl care for it) is based merely on a disgrised
antegration and that by a direct use of the integral
calculus the above problem can be solved in hade a dozen lines.
What I should consider a simple proof of the problem T. A." is tronbled aboat is guch a proof an is given of the corresponding problem for the attraction exerted by a apherical shell on a partiele within it. Hare it in shown that if the particle be the vertex of a dooblo cone of minnte vertical angla, the parts of the shell incloded within the conical sarface on opponite sides of the particle exert equal, opporito, and theralar counterbalanoing atiractions on att parions oxertod by the shall is inferred, for what is true for a conical sum face is true for a pyramidioal sarisoo of small angle, and pyramidical surfaces may be made to include the whole sabstance of the shell. It is a direct and obriom proof such as this that I have arain and again triod to ind, and I shall be somewhat surprised, and a little
disappointod with mysell, if any sueh proof be shown to exist.
Of courno "T. A." may rest quito satiefted that no plus sign has been changed by inad vertonce into a minus sign in the solution. The problem, regarded as one α integration, is of extreme simplicity, and mas been independently moived many thousande of timeen, alray with one result.
His inference from the behaviour of dropes in of very unsale oharacter to begin with, for in drop cohesion is able to overoome gratity. Bat accaming that an oblate aphoroid of wator (any) as harge mour earth and at rest in spaco, would tare the globala iorm, then (though the polar parts of the obiate eppharoid woald retire from the centre, and the equanorial parta approach the centre) it by no means follow that the attraction on the polar parts is leas than the the attraction equatorial parts. a particle with the resqutant of the forces exertod on the particie. If a Anid in a C -shaped tabe atands higher in one log than in the other, the fluid in the formor leg will descend, which the the lattor will rive, bat the attracioan o which the particles
tharefore unequal.

RICIAED A. PROOTOR.
[4008.]-When writing letter 3804, p. 400, I fancied the statement there condemned as a glaring arror would be so readily recogrisod as such by any oan at able anveruant with the subject, that the remarti 8936 , p. 454, completely sarprised mo. To ascerthin the nature of the reasoning upon which it wac foended, 1 put query 10702, which alicited the opinion that, before we could attact the problem of the difference in weigh of an attracted particlo, at the equator and poles of non-rotating oblate spheroid of equal density, in wia necassary to calculate the exact amonant of attractin work of the integral calculus, coald be andertaken b no one but an accomplished mathematician. The decided character of tho answers of course preclnded all discassion, bat I fail to perceive the force of this objection.
If the difference in attractive power between tro globes of nnequal densities and rolnmes wan the problem to be solved, then indeed it woold be requisite Bat pioy the integral calcalus for their bammation. spheroid case of a particle upon the sariace at any point. This, however, is not the question, which is, forcher a particie is drawn to the surface with greak. force at the polen than at the equator. Here, 1 appreless, Lecapplication of the integral aalculas ion the surface of a masa as to have the attraction of its molecules nearly nentralised-for instance, the centro of a flat disc; while if the same disc is rolled into a cylinder, the attractive force of all ita moleonles can insexerted upon the particle in one direction, ably reasoned ent end. The subject is, Ganol's "Physics," seotion 127, p. 93, article "Capillarity." Those who are desirons of diseovering the trath concerning this question are ree.
chapter 2 of this excellent work.

SUNDRIES.

[4009.]-Trere are so many sabjecte reforred to in No. 369, in which some reference is mado or question of gossiping letter, just touching here and there apon a variety of matters as thoy turn up whille ranning orer the oolamps.
(3965.)-Congrete Molitiplication.-" No. 170" has made a most extraordinary oversight when he concrete numbers by themselves. Now, this is one of those extraordinary abarardities which clover people commit. On the very face of the matter, multiplyios pounds by ponads, or by pinta, or by Farde, is a proposberrdity. Bat on of a lungtio; it is ${ }^{2}$ dowarigh different mattor, because thero is such a thing as square foot or a cubic yard, vhile oven an idiof would scarcely imagine to himsell a pound aquare or a gallon
 quantitios.
Tikr Pound and the Mataic Sybigy.-There would be advantagea in the use of the dollar an sug Yontod by corins naight bo no delightod na to iat it off againat the Alabama claims altogether), bat the

respectod all the warld ovar; and while thinking, as a

 matter of personal opinion, that it would be well if the nations wonld agree apon some equal and exchangeable money system, I still think that the inconveniences of a money change would so overbalance the advantages that the sovereign would be best retained as the money unit, isaning decimel divisions of it to be used along with existing coins till the latter were gradually with drawn; in fact, the florin was coined for this very parpese. The coin question is quite distinot from that of weights and measures, becanse it is mainly an internal one. Our money ouly requires a decimal division to make it anit with the metric system in acconuts, and a sery simple peroentage correction woald convert it into foreign docimal moneys. No such reasoss apply to adoption of the metric measure system, which is completo in and by itself, and wonld equally adapt itself to any decimalised monetary system, while the dismay prodaced by the loss of the familiar sovereign, and the alteration of the valnes of vast money concerns, stocks, companies, dc., wrald prove a great obstacle to the adoption of the metrio system it the pablic were once nersiaded there was a necesgary connection between the two.babitable. I have left a basin of water containing sugar as a trap, and caught a pint of them in a night. "Saul Rymes" (let. 4005, p. 126) doubts the atility of some experiments lately recorded as to the inflaence of cold apon regetation, bat if he considers for a moment he will sarely see the ntility of any experiments which seek to discover the processes by which Nature conducts her operations. Any piven experi. ments may be erroneous or badly conducted, bat even then they give sume lessons, if only as to errors to be avoided.
In referencn to the process for destroving sphides (given on p. 183), readers should be cantioned as to the very poisonons character of the smoke prodnced, and the necessity of care in aroiding the breathing of it.

Bigri.

A BATCH FROM MR. BOTTONE

[4010.]-FEW things have given me so mach pleasure lately as the pernsal of Mr. Geo. E. Daris's sensible, kind, and instractive letter. That geutleman bas, in a most masterly manner, shown forth the absurdity of
the formalmo oonnected with them, as being absolates I am so convinced that nothing in this world is capable of absolute proof, that when I find an individaal make an absolate statement, I begin from that very moment to doubt his veracity. All our knowledge is ossentially relative: hence if I and Mr. Davis agreo to conailer hydrogen as monad, we are perfectly jnatified in say. ing that chloriue is a monad, oxygen a diad, nitrogen a triad, and silicon a tetrad; relaticily. Bat were we to take iron (for example) as our monad, these relations would probably no longer hold gond.
With regard to the ralency of hydrogen, it is worthy of remark that a componnd has been described (see Gmelin's "Dictionary") in which two atoms of iodine are supposed to be nuited with one of hydrogen. The name of this anomaly is hydriodons acid; its formals is given as $\mathrm{I}_{2} \mathrm{H}$. Now, until the existence of this body be disproved, we cannot look upon hydrogen as invariably monovalent; hence we are once more brought face to face with a grave objection to the ralency theory as it at prepent stands.
Mr. Davis will, I am sure, pardon me if I venture to point ont that I did not attempt "to make chlorine appear to be first a monad and then a djad." I simply

-	Graphic Formulo.	Salts with Modads.	Salts with Diads.	Salts with Triads.
Morobastc Actds:Hyirnehloric acid) 1 molecale (type);	($\mathrm{H} \mathrm{l}^{\prime} \mathrm{f} \mathrm{Cl}$)	(IH$\}^{\prime}$ ' $\mathrm{Cl}^{\text {c }}$)	$\left(\mathrm{M} \zeta^{\prime \prime}{ }^{\prime \prime}\binom{\right.$ Cl }{Cl}	$\left(\begin{array}{c}\text { c } \\ \bullet\end{array}\right.$
Dericatincs:- Fitric acid		(31\rangle^{\prime} ' $\left\{0 \mathrm{~N}_{0}^{0}\right.$)		
Iodic Acid	(H \}' ' ${ }^{\text {OOOI }}$)	(I$\}^{\prime}$ ' 2000 I)	(H ¢" " $\left\{\begin{array}{l}000 \mathrm{I} \\ 000 \mathrm{I}\end{array}\right\}$	(M ¢ ${ }^{\prime \prime \prime \prime \prime}\left(\begin{array}{l}0001 \\ 0001 \\ 0001\end{array}\right\}$
Dibasic Actids :- Hydrochlorio Acid) 2 moleculea (type))		$\left(\begin{array}{l}\mathrm{M} \\ \mathrm{M}\end{array}\right\}^{\prime \prime}{ }^{\prime \prime}\left(\begin{array}{lll}\mathrm{Cl}\end{array}\right)$	$(\mathrm{M}\rangle^{\prime \prime}$ " $\left\{\begin{array}{l}\mathrm{Cl} \\ \mathrm{Cl}\end{array}\right\}$	
Deritratires:- Phosphorons Acid ...	$\left(\begin{array}{l}\mathrm{H}) \\ \mathrm{H} ;\end{array}{ }^{\prime \prime}\right.$ " $\mathrm{P}^{\text {POOOH }}$)	$\left(\begin{array}{l}\text { M } \\ \text { M }\end{array}\right.$	($\mathrm{M} \boldsymbol{\gamma}^{+\cdots}$ ¢ POOOH)	$\left(\begin{array}{l}\mathrm{M}^{\prime \prime \prime}, \\ \left.\mathrm{S}^{\prime \prime}\right\}^{\text {vi }}\end{array}\right.$
-				\% $\left[\begin{array}{l}00 \\ 8 \\ 00\end{array}\right]$
Salpharic Acid	$\left(\begin{array}{l}\text { HI) } \\ \mathbf{H I}\end{array}\right.$	$\left(\begin{array}{l}M \\ M\end{array}\right\}^{\prime \prime}{ }^{\prime \prime}\left(\begin{array}{l}00 \\ \mathbf{S} \\ 0\end{array}\right)$		
Tribastc Acids:- Hydrnchloric acià 3 molecnles (type))	$\left(\begin{array}{llll}\mathrm{H} \\ \mathrm{H} & \cdots & \cdots & \binom{\mathrm{Cl}}{\mathrm{H}} \\ & & \\ \mathrm{Cl} \\ (\mathrm{Cl}\end{array}\right)$	$\left(\begin{array}{l}\mathrm{M} \\ \mathrm{M} \\ \mathrm{M}\end{array} \mathrm{l}^{\prime \prime} \quad \cdots \quad\left(\begin{array}{l}\text { Cl } \\ \mathrm{Cl} \\ \mathrm{Cl}\end{array}\right)\right.$		$\left(\begin{array}{lll}\text { ar } & \gamma & \cdots \prime \prime\end{array}\right.$
Dericatices :- Phosphoric acid dc.	s.e.	$\left(\begin{array}{l}M \\ M \\ M\end{array}\right\}^{\prime \prime}$ '" $\left\{\begin{array}{ll}-0-0 \\ -0 & 1 \\ -0 & \text { P }\end{array}\right\}$		

${ }^{\text {" J. K. P." (lek. 8977, p. 120) is in error in stipposing }}$ his remarke were at all misunderstood. I quite read bis lotters as meaning what he now says in sll respecta; but why should he regret that we should think he asked "questions with a view to obtaining knowledge instead of taking the trouble of reading for it ${ }^{\prime \prime}$ He gives a good deal of information, and bas good title to ask for any he requires. I do not often ank questions myself, becanse in the varions subjects in which I am interested I have the means of at once obtaining the knowledge I want; but if I desired some information out of my ready reach, I should surely ask or it in these pages, and feel that it was the right hing to do to arail myeelf of the more ready facilities or special information of others, whom in return I might ingtract in my own special subjects. For in. stance, I have often thought of treating myself to a lathe, and when I do I shall very likely ank "J. K. P." sotue very simple questions, to save myself the troable of finding out the anowers.
Are Ants Pirates ?-W. Gaucho suggests a doubt whather this can possibly mean "do ants rob at ses ?" I ean rery distinctly say that they do. I remember with 2 shipload of ungar being so swarmed with smal ced anta that they almost rendered the ship unin.
binding oneself to any one set form of belief with regard to theories or hypotheses. His remarks on Dr. Frankland in particular, and other examinors in general, are perfoctly in accordance with my own experience; and I did my best to point out the same in my letter (No. 3426). With regard to the convenience of trpic and graphic formulie his ideas coincide with mine. Two or three slight misconceptions appear to bave arisen (probably from some carelessness of expression on my part) as to my ideas of the valency of nitrogen, phosphorus, dec. I would wish it to be distinctly undertood that I do not for a moment deny that those bodies somrtimes act as if pentavalent. I have only onght to show that there is no merssity for considering bem such, and that thoy cannot be considered as otherwise than tricalent wien we measure their raloncy by direct reference to their componnids with that body (see letter 8470 et seq.). As I do not look apon hydroxyl as the replaceable part of acids, I feel that should be placing mysulf in a false position wero I to attempt to prove what I dunot believe. I may be wrong but I mast plead guilty to a partiality towards con sidering all acids as being reforable to the hydrochloric 5pe, single, donbled, or trebled (see table).
Far be it from me, however, to give theme ideas, or
showed that, with hrdrogen, chlorise forms only one compoand-viz., HCl, and that with iodine, sc^{C}., it formed compounds, of which our usual idea of its valency gave no satisfactory explanation.
On the gronnds of the varying valency of iodine, chlorine, hromine (I care not whether they be artiads or perisands), I mast object to sach componnds as tricthylsulpharons iodide being broaght forward a proofs of the quadrivalonce of salphar.

It wonld appiar that ammonium has been isolated, for Professor Roscoe deacribes it as being a blne metal lic-looking flaid, existing only at low temperatares (See Roscue's "Elementary Chemistry," p. 218, last edition.)
With regard to the metric system, I agree perfectly With Mr. Davis in every particular. Were we to attempt to introduco another deciomal system, we should segrepite o
neighbours.
"The Harmonious Blacksmith" has mistaken my meaning in reply 11393. I stated that the ordinary metal harmonicin was a tor: I certainly did not allade to the curmptutions, which both he and I hare concarred to praise. to praise.

Spontaneous combuation of oily waste, rags, do., is no myth. Many woll anthentioated oases have oc-
curred, eapecially in Reasia. (See "Natural Magic," curred, especiaily in
I F Derid Brewter. Tonkea's edification, I may state that I bought, some time ago, from Fries and Bispco, of Turin, a small pocket medioal ooil and battery, each of Which paoked into a in diametar. Amused by the lin. long by tin. in diameter. Amused by the the aame model, which worked equally well.
S. Bottone.

"F.B. A. S." AND GEO-MYTHOLOGY.

[4011.]-I CAF acesare "A Follow of the Royal Aatronomical Society" that if he could not ree anything has yot been shown him about contacts of comets with
the earth (let. 3900, p. 117) there are other eyes as worth ahowing and that partly have been, and atill more will be dhown a little, belore we have done. Aleo to Mr . Borope I shall return, and wo chall have some Scropians and Lyellians rather amasing when there is time. But, meanwhile, our "Follow of the Astro. nomionl Bociety" quite lenres his ncience and all cometo (which are not mentioned in his lettor, but only in its title) to thrast npon the thousands of your readers a bit of neither astronomy, geology, nor even Lyell or Serope, but aimply the moat sensational line or two from the irst "profeoce" of poor hozent ignorant littlo Bishop Colonso, exactly copied with every blunder, as the Chinese copy a worn pictaro 1 Cortain cones in Auvergne-there are nomething botwoen 100
and 150 , observe, in that province-certain of these are and 150 , obserre, in that province-certain of these are
of Plioceane or Koceno antiquity as volcanioes. Granted. of Pliocane or Rooeno antiquity as volcanoes. Granted.
" And upon the steop nides of thees cones lie, absolatoly
 anything in the natare of a flood, sixty thousand-to sas nothing of sex thoucand-years ago-[my theory,
and that of all the chiof geologists of Europe puts it at And that or all she chix] geologists of Europe puts it in apt away" A Admirable I But how long have the scorise been there to be awopt away? What has the "Eocene" age of the cone they "cover" to do with it 9 Is not
Primrose Hill, London, sn Eocene clay hill and Primrose Hill, London, sn Eocene clay hill and
oovered with grass ? Are we to conclude the grass is Eocene, and prove some Lyollian wonder thereby? Or is not Stromboli a volcano of, at least, Pliocene origin, and is it not covered with loose matter that any flood would have swept away? Yes, but part thereof was only thrown out last week, and there has been no delage since last week ! The conclusion that "hence, wherever the Noschian deluge went it did not penetrate to the Valley of the Aurergee" (which, by the way, is the exset reperse of a valley; it is what Dartmoor is to Devonshire, or as the French say, the chief massif of
their country) is amusingly unlike the conclusion I their country) is amasingly unlike the conclusion I
believe, the three first geologists living, De Beaumont, believe, the three first geologists living, De Beaumont,
D'Archiae, and De Villenenve-Flayox have now come D'Archiac, and De Villenenve-Flayox have now come
to-namely, that if there should even have been no to-namely, that if there should even have been no genaral oataraot or skyfall of scouring deluge elsewhere,
since Quarternary times, there certainly has been on that very province, Auvargne !
The parallal of me to "a certain man called Hampden" goes equally by contraries. Mr. Hampden, es "F. R. A. S." eays, was to set all the world right, not a little English coterie and mutnal admiration society, amusing themeelves with the lightest of light acience, and too caroleas even to note that their Sir Oracle keeps them as hopeleasly behind and counter to the woorld, the real advancers of knowledge out in the civilised orbis terrarum, $a s$ Voltaire complained that Carteaianism had kept his countrymen when he began teaching them Newton. I am only siding with the majority, with continental men of science. What other
conntry's cosmology and geography is it that Mr. conntry's cosmology and geography is it that Mr.
Hampden seeks to introduce to us?
Now as "A Fellow of the Royal Astronomical Now, as "A Fellow of the Royal Astronomical
Society" has chosen to thrast again apon ns this Auvergae myth (or whatever it be-myth, as far as yet appeare) this famons cone and pamioe-itone, which
made some noise ten jears baok, may I venture to hope made some noise ten jears baok, may I renture to hope What I have vainly sought from either Lyell or the Whole Geological Society for at leant eight years past, the situation of this famous cone, and the evidence as in Aaperges is no more information than "a hill in Yorkshire." It must be in some parish, of some commune of some canton. Even if it were in central Australis, and longitade. Am I to take it and believe in it, as the medisval Jews did in the " gabbatical fiver," that every one knew wes "in Tartary," that flows only six daye of aeven, and (as every Iaraolito knows) triumphantly refutes the Nazarenes by keoping ita Babbath noton Banday bat on batarday? As our ex-astronomion correspondent puts it to ne, and $2 s$ Lyell and the
geologers hare left it all these jears, ,their pumicestone and this "eabbatical river" are exactly of the same value to scionce. One proves precisoly manh as the other

I may add that, about eight years ago, in a widely circulated paper, still well known, I so far adopted Mr. Hampden's method as to offer 210 torards tho expenses of whoever would produce the evidences I now ank our "F.R.A.B." for-the aitantion, namely, of this pamice-atone, and the tangible facts that may indicate it to have lain in aitu (say) fifty centuries. I
conld not afford to offer more personaly, the intention conld not afford to offer more personaly, the intention being that others intereated might ap a suffeient bribo. To my great aurprise (espeaially as the paper chiefly circalates among the shilling! However, as I have not ohanged either my
name or roaidence, here I am, to be nued for the 810 for him, And inint it orer may answer this requent must in any case be sued for performance of the contract, the whole object being to bring the ovidence, or whatever and whoever is escential to it, before a jury of Englishmen, the only test of the power of ovidence that I acknowledge, or the law acknowledges. Our correspondent has chosen to make atatements. I must press him to give the partionlars and proof of them precedence before any other work. Eren the planetary positions for next month, I would anggent
can wait if necescary.
G. I. G.

ORNAMENTAL TURNING.-X.

[4012.]-ACOORDInG to promise, and in answer to a correspondent (" Joiner," qy. 11168), I mend aketch of a chuck by means of which a rod, the size of a penThe chuak oan be used on the ordinary mandril, but only for shart be used on the ordinary mandri, but then a hollow lengthe; if long lengths are required, that a hollow mandril is conntenoted from a piece of tabe steal, and ronning in two bearinge, it has no baok contre. In some reapects same as ordinary mandri but boing hollow, allows the work to pass through after being converted frem square wood into circalar 1. Front view of chnok. The hole of the chack, \mathbf{A}, must be bat little larger than the rod required when Anished, but muat tapar inwardly for lin. past the mouth ; the outter is an ordinary jeck plane, iron; eet fine if for hard wood; not so fine for deal or other noft woods. Fig. 8. Bide riow of the chuck, and ordinary wood chack fastened into the ordinary iron chnot described in No. 868, p. 98. Bods $1 f$ t. long can be made in this ohvek, but if required longer I adviee a
hollow mandril. I have made taper articles in a chuck

similar to the one deacribed. I had a quantity of spiles or vent pegs to zmake-the pegs are sold to the warehozes at 2s. 6d. to 88. per 1,000 , wood included, and made by ha terions for I mede rork being too wo ation ingtead of boing fired equare with the ohnck, was flxed taper to the angle required. The wood was aplit ap into nearly the size, and held with a pair of pincers. In making roda I adriee the asme, but as the rods may require to bo longer, is cod skoll of a tool anied a I cons and for my 0 m nee. The eketch of the trap I constrated parly in we the wood to be converted into s rod is fired betreen centres, the corners pre into a ring taten of with a plane; the trap placed nounly use much apeed at Arst, and de not close the trap all at once, but gradnally. It is a very quick way of maltion onco, bat rods If very long, 8itt or more, nae a bsat steady, and only fort one part at the time. Fig. 4 Sketoh of temporary hollo mandril. A, frame made of dry beeoh'; at B B cat and bored for bearings to of ary beeon all C to revolvo; the bearings are aut after boring and festened with coach screvg, so that after boring and anter with can be screwed tighter or renered To make the mendril, proceed as follows or renowed. To matin of steam sube, aboat $14 t$ in length ix it in the lathe, and having previonaly marked the tabe the width of the bearings, and three-sirteenthe deep. The groove should be slightly bigger in the deep. The groove should be slightly bigger in the
centre to allow more freedom in working. D D, lubri. cators when at work. I find nothing to beat the needle labricator. E , a socket to fit the tube; it will be given with the tube on parohasing the same. To farten the chnak, furn a hole the reverse side of the chnak, and
drive in the cooket, haring previonaly judged the samo, not forgetting to put an iron ring round the end of the chack to prevent splitting. F, the payy. if the power or fis-wheel. A vast quantity of rods can beturned, and one great advantage is that it matters not the wood being warped, as the distance in the chack is 60 litile that it will turs to the shape of the wood. For light work a ifin. iron will answor, but for heavy work a 2lin. iron will be required.

A mandril of this demoription can be made by ane amaterr, and need not oost more than a fow shillinge. should adries the stesm tabe to worked is called fin stoam tube. If ateam tube cannot be procured, gas tube will ayswer. Dry oak or mahogany is best for the frame, or, better still, teak wood, not being 20 liable to warp out of shape. In outting rods, it is advisable for two to work at the mandri, as whon it paseos remaining ont after lesping the hand of the operator. and also allow the rods to be eatered quicker.

Samubl Sxither.

ANNEALING STEEL, LINT, AND GLLDING

 STRIPS OF WOOD.[4018.]-(11650.)-Amnzaling BtezL.-Heat to 2 dull red in the forge, and bury in the ashes, so an to suffiontly soft for all prection purposes.
(11599.)-InIr.-O1d linen cheets, to., are profarred to new oloth on soconnt of the softness of the Abre. It is generally eut in pieces 10 in . or 12in. broad, rashed and dried, then taken to the lint mechine. This machine consiats of a steal knifo-blade, with parastraight; this knifo is fixed in a horisontal position in a frame, which is made to seoiprocato by means of pedal. When this pedal is promel by the workman'e foot it canses the blede to descend vertically with its edge across a boand, covered with leather, upon which the linen is pleced; on talting the preesure of a pedal the knife is lifted from the work by the agency of springs. The linen is rolled very evenly upon a ojlindrical atick, with the woft in the direction of the stick a fow inches of the oloth being uncoiled, and a few threads of the woft palled off at the end, lenving a fringe of the warp projecting ; the roller is hold stendily with both hands by the operator, who begins by placing the end of the aloth in ruch a position upon the workboard, that whon the knile deacends by the pressure on the pedal its odge ahall pass between the first and second thread of the woft and preas across all the warp threads; whilst the latter is thus held down to the table, the operator palit baok the gtiok through a
space of from a quartor to half an inch; the weft space of from a quartor to hall an inch; the weft
thread is thereby puahed farther along the warp thread is thereby pashed farther along the way
threads, and from them is saraped the lint by their threads, and from thom is acraped the lint by their
being drawn ander the edge of the knife. The foot being drawn under the edfe of the knife. and ane
being lifted from the pedal the knife ascends, and the being lifted from the pedal the knife acconds, and the operator puahea the cloth forward again to taice the
next thread, which, by the premsure of the tnife and next thread, which, by the premare or the beck, is moved along the threads of the warp after the first, and thins raining more lint. In this manner the operation is condacted thread affer thread, until all the aloth on the atiok is worked ari, and thus is produced, when the work is doxtoroasky perlormed, a prot of thiok downy lint. The dimealty of the operation consiats in mains ness; for if a woft thread is crossed by the knife, the ness; for if a Woft thread is arosed by the knife
wort is chooked or spoiled instead of forwarded.
(11627.)-Gridng Staips or Wood.-First prime your wood whin two or tares contings of boiled innceed oil and white lead to fll up the pores of the weod, and to render the surfece smooth and even. When the priming is dry, lay on cont of gold size. When the gold sise is suffloiently dry cut lesf-gold into strips, take up on the point of a brash, and apply to the parts already sized; presa gently all over with a ball of cotton wool; the gold sdheres to the sticky surface, and after a few minutes the suparfloons gold can be wiped of with oamel's-hair brush. For burnished gilding proceed to oover the surface to be gilded with parchment size; after the firat coat drying seven or eight more must be applied, consisting of the came size mixed with tine plaster of Paris or washed chalt; and when the whole is perfectly dry a moderately thick layer of sise mixed with bote or yollow ochre muat be applied as before, and while the aize remains the parts intended to bo bright must be burnished with a dog's tooth or agate burnisher. WM. Hamilutox Hey.

TEEE HOLLIS OBSERVING SEAT. [4014.] - I WRITE to thank the inventor of this very of very simploconstruction, bet very neat and oflective it aflords sapport for the hoad, as well as the rest of the body, koeping it perfeotly steady in any position, and is therefore a grast assistance in making obaervasions. Its price is so very low that I should imagine it would be well within reach of any who possess evea a w telescope, and I can say from experience that ment. As most valuable addition to arah an to live in a smoky atmosphere, my observations are necessarily confinod to ghort distances from the zenith, and I greatly appreciate anything that enables me to ex amine a vertical object, not only withons disioca neck, but as comfortably as if lying on a sefa.

Eysitus

THEOPHILUS AND CYRILLUS.

[4015.]-I aEND you a sketoh and decaription of the two eraters, Theophilas and Cyrillas, in the hope they will be of some net to a few of your
served theee objeots on April 14,1872 .
Theopmics.-The Floor- -1 is the prinoipal central moontain; 2 and 8 are also two monntaina, but 9 is partly hid by, and lower than, $8 ; 4$ and 6 , on the N. right angle with $3 ; 7,8,9$, are alco hills. The object right angle with 9; 7, 8, 9, are aleo hills. The objoct
E. of 3 and 6 reems to me very sugceative. Sappose E. of 8 and 6 seems to me very saggestive. Sappose a moantain, uplirted by an intorior foros, and its macorials rashing down in a 8.E. airection, the resuit the three digits 10, 11, and 19, but the two lact are not so easily seon as the Arat. On this objeet, between the digits 10 and 11, is a small lecuna or a marking of that kind, I think, and whown in the aletech by two ahort parallol linee. The line 26, 8.E. of the central
The Intesioz Slopz, N.-The line 18 shows the boundary of a large mound ocoapying all this portion of the alope, and apon which is the arater $14 ; 15$ and 16 are mounds with a longitudinal form. The portion of the alope between 17, 18, and 20 stands in contrast
with 28 , where the border is well deined. At frat wight it looke like a roundish form, with no particular aght iooka like a roundish form, with no particular mounds, 18,19 , and 20 , with corresponding valleys, rereal themealree and give a sort of satisfaction for the steady gazo thoy require (would "L. C. E.," let. 8884 beliore it 9). 21 a moand; 22 a ridge ; 28 is the well. denned border of the arater ; 24, 25,27, monnde ; 28 to 4., mounde of rarioun aizea. Between 86 and 88 a short ralloy or cloft rans in a somewhat N. and S. di-
rection. Also E . of this valley there is another, bat not so well seen, and ahown in the arketch by a aingle not so
line.
tained in my lottor 8698 towards the ond, where it is atated that the end of this valley reaches the east of Mreet. It must be "the eant of crator a of Beer and ent of Street.
Jumet-Hainat, Bolgiam.
G. Gaudibret.

ATMOSPHERIC DUST.

[4016.]-MY reacons for thinking that comparativoly recent sowage is more dangerous than sowage which has undergone patrofaction or is actively docompoaing (let. 3918, p. 92) are the following :-
The sabstances exaroted by an animal, although worn out by the woar and tear of its machinery, do not die immodiately; they posesese a sort of vitality, and in that state are notive poisons to the animal, it retained, or again takon into the syatem. An instance
of this may be found in the danger of dissecting wounds whan the subject is not perceptibly tainted, the danger paeming away when putrefaction has taken danger pasaiag away When patroiaction has hation place. Wo aro not oniy oonstantiy generating poicons most probably taking euch animal poisons in, and are for the most part anvod from the consequences by the forwar Which indabitably the organism possesses of ridding itsoll of injurioas substances, and doabtlose wo are indebted more frequently than we are aware to a smart attaok of dysentery or diarrhcoa for deliversnce from the consequences of such poisoning. There is not a shadow of evidence to ahow that zymotio or infections diseases are in any way eansed by vibrios, bacteria, or the other amall deer that disinfeetant-monbactoria, or the oith, smalt doer hat mese of eridenon tavour the theory that these diseases are produced by what may be called the degraded constituents of our bodies. I eapecially dislize the word "germ," and with the perminaion of "L. C. E." would propose instead the term "Nosogen," which is elastio enough to

ARE ANTS PIRATES?

[4017.]-In the article on ant piracy (let. 8778, p. 687), aigned "Saul Rymea," is a warning given to show no meroy to ants in our gardena. But a ploa fo the insect may be pat in: ants prey apon an kinds of larrw, \&c., and in woods the large ant attecks the blostoms of shrubs and trees only when extremedry nees cuta ofir all other supplies of food. I have neve seon a blosiom touched when suffioient moistare kept animal and vegetable life going on the soil.

Grbard Sxtry.

LIGHTNING

[4018.] Mre. Tonkes does not explain (letter 8928, p. 93) the modus operandi of lightning. If we call to mind the oxtraordinary pranks played by ficehos, it appeara to me wo mast graat that if steam plays no part, atioact the zadden expaniion of air, and, perraps,
 the oifecta. Some time ago 1 saw a tree that had bean intruak: a groal part or the trank had bon convortoa into amsill stripa inco inciler matchea. When we bore a hole through a oheot of glass by means of a spark If so is not the glases reporised? The lightning muet If 20 is uso somo tol the ment to bo, gonerally, enormously heatod air. In the majority or hat cases i have notod there
appear to have bean stoam at work. Pasis.

AURORA.

[4019.] - Ox the evening of the 10th April there was a rather fine display of aurora. As the twilight faded the northern and north-weatern horizon was ocoupied by a palo blac homogenconslight extending to a height of sbout 15° above come remarkable branohing dark cirras oloud, which appeared to radiate from the magnetic north. Theso alouds wero almost atationary. and the same form of clouds had been pertistent ali day, especially at aboat 8 h ., when some streamers of thin light haze radiatod in a remarkable manner frow a point above the WNW. horizon, and were 80 hharply out ofl on their south sides as to appear almont solid matter. (The same remarkable branohing oload polarised in the magnetio meridian was viaible in front of the fine aarore of April $9 \mathrm{th}, 1871$.)
At 9 h .80 m . nameroas ane streamers shot ap , all perpendicular to the horison, and in a fow minates mergod into one another, and mesumed a pale rony glow. The light in the north brightened, and at 11 h .80 m . became very intence in the magnetio north, Where some saperb blue and carmine atreamori shot up to within 15° of the zonith. The aurora was atill in the north at midnight.
On the 1lth extraordianry bands of haze radiated from pointe in the NE. and SW. (in whioh plecee the sky was exceodingly laminous), and stretched acrona the aky in gigantic archen.
Champion Hill, April 18. Eimbrert Inoduc.

INFLUENCE OF COLD ON VEGETABLE GRANNS.
[4020.]-I obszave " Saul Rymea's" criticism (p. 128) of M. Duclaux's experiments, and my account of them, and would make a remark or iwo in explanation.
The conolusion drawn by M. Duclan was, that cold had some infinence on the germination of those graing had some influence on the germination of those graing
of Belle-de-Nuit and Volubilis. Some of the grains of Belle-de-Nait and Volabilia. Some of the graing that had been exposed to cold had germiandeal-
none of those not expoeed had germinatod; and, although in one of the Volabilis potes none of the grains had germinated (though previously exposed to cold), yet this did not deatroy the preponderance of evidence on the otker side. Well, then he mdds that some grains that have not been exposed to cold-that havo been kept all winter in a healod chamber-garminato, nevertheloas, at a certain time (ana, propha, it had nala neverthelesi, for nino hio less, poeare to cold 0 posure to cold, so that the cold is not haispencable to the germination. Nevertholeas (and inere is nothing now atated which conficis with this inference), ract that those grain (in some may) by exposive gormination airectod (in some way) by exposare to cola is a presumption that other grains ao not encape the influence in some way or other of cold, when they are oxposed to it. The fact of germination in some cacea, Where there has been no exposure to cold, cold on the preclude the posaibility of eome infiaenoe of oold on the
mode of germination where exposare has taken place.
A. B. M.

GLAZING CONSERVATORIESS.
[4021.] Tres plan recommended by our friend "Saut Rymen," at page 88, ander the heading of "Improved Method of Glazing," is an old, tried, and costly one. I am of opinion that the old patty system equals it. Knowing a glass-house constructed on the iron aystom, it has not anawered well or anything liko one effliently glazed rith putty. The chief objeotion is the expannion, I know, but there are other ones besides this. In fect the owner told me he would not have another roof glazed on the principle on any acoount. It is woll onough for "Rat-Tat" to raiee a pase for ventilation ; let him try it. I smafraid he will break some in the experiment. I maintain a conservatory glazed well on the putty system, well sprigged, do., drives all iroa and glapa clate roofs into the shade. I shoald like to hear "Jaok of $4 l l$ Trades'," and a fow able correspondonts
opinionf. B. E.

BOWERS-CASTINGS-ROTATING SHOT.
[4032.]-Thbre bave lately heen several designs of engines for amatears in our MEchanic, bat hardly antthing has been said abont boilers, a part of the subject Wbich seems to me to require quite as mnch
attention, and afford almost as mnch scope for design attention, and afford almost as mach scope for design, as the engive itself. Indeed, 1 snepect it often happens that the amatear, having completed a highly-fuished onkine, finds himself " stnn nped" by the want of a boiler which be does ant feel sure be can malse safely himell, and of which he dres not quite know the most sititable kind to order. I shonld think that a vertical boiler would be the best, and, if possible, fred with gas, burnt tbrough wire zanze, as recormmended ty "Honhlon " some time aro. Some small field-tnbes might be added, or a lem tnbes bent to the shape of a U, with one leg longer than the other. The sbirter leg heing
fised in the crnwn of fire-bex, the bend wonld hang fised in the crown of fre-box, the bend world hang
down in the fire, and the fonger leg wnold rearli nearly down in the fire, and the fonger leg woild rearh nearly
to lowest water-level. I shonld think there wonld be a to lowest water-level. I shonld think there wonld be a
rapid circalation get ap. Wonld this be so ? Wonld it also be practicable to make the steam-pipe go down inside the boiler, and, it possible, throngh farnace?
This wonld euperheat the steam, and very little pipe This would euperheat, the steam, and very little pipe
would be exposed to the air. Have any of "ours" would be exposed to the air. Have any of "ours"
tried a boiler, illnatrated in one of the first volnmes, formed of a shea! of tubes connected top and bottom to two tobes encircling the whole? A few particulars as to cont (if admissible here) wonld be acceptable.
I hope "Proven" (let. 399f) will favoar us with some more particulars about casting with cera perdata. I bave often thonght it. Would be jnat the thing for an
amateur with the aid of a Griffin's gas fornace. Is amateur with the aid of a Gritin's gas farnace. Is
common beeswax naed, and how are the moulds mado and beked ?
I believe that the plan engrested by "Philanthropiat " (letter 3992) is emploged to rotate stickless military rockets, which have in the rear end a contral hole for the propelling jet, and a circle of oblique ones tor retating.

FABER.

HOUSEHOLD ELECTBICTTY.

[4028.] -Urdes this head one of your Transatiantic contamporaries maken the following statements, Which benr apon a dincasaion recontly carried on in the
Engligi Mmobanc. The moralising which followe Engelisi Msorinic. The moralising which follows them is not of a character to interest your readers, so only expreas the personal opinion that Boaston mast be
a favoured cito indeed. No need of Pulvermacher's a favoored city indeod. No need of Palvermacher's chains thero-or even lamplightars:-
"Daring the extraordinary clear cold woather which provalied in Febraary and March the eloctrical phenomena observed in somo hoases excited mach interest. In our own dwelling, for many days, no member of the family conld walk across a room and come in contact with a motallice substanco without receiring an eleotrical thock, socompanied with a spark and report. Tho
door knobs, stop-cocks comnooted with atesm radistors, gas-cocks, registers, \&c., were so oleotrionlly spitefal
that they wers handled with caantion. Oar ohildren that they were handled with cartion. Oar ohildron amused themselves in the evening by lighting the gas dition of the atmosphero was quite unasual. In order that this exhibition of household electricity may be witnessed in perfection, it is necessary that the weathor be clear and cold, and that the rooms be carpeted with heary carpets, and these shoald be insulated by paper mattings benenth. Under these favourabie conditions, a person scofting or evon walking across a room becomes so charged with olectricity that he can ignite
a gan-jot readily by applying to it the tip of his finger."
G. J. H.

NEW DOUBLE STABS.

[1024.]- I have not been able to do mach reoently in the way of Anding now deable atara, and have only the
tollowing to report

Gmanorina.-Weisse VII., 699, 7h. $94 \mathrm{ma}:$ 51s., N. 38 $77^{\prime}: 8,11$: $155^{\circ}: 7^{\prime \prime}$. About one degree s of Castor, and lin. 26e. p.
AORGGAL.-L 10096, 5h. 34m. 10s., N. $29^{\circ} 47^{\prime}: 8,11 \frac{1}{2}$: 200° : $6^{\prime \prime}$. Thia is 3 m .52 s . $f 26$ Aurigal, and about 37 farther a. It is nearer sici, which is about half a degree op. This pair is similar to the one in Gemini, neither of which are difficalt or very interesting. I notice ${ }^{2}$ second companion to 26 Aurigal not men-
tioned by Strure or Webb, but it is too eaay an object tioned by Strare or Webb, but it is too easy an object to have escaped obserration entirely. It is aboat
12 m ., the position angle being 115°, and the distance a 12m., the position angle being 115 , and the distance a
little more than doable that of Strave's compnaion, or In the neighboarhood of $30^{\prime \prime}$.
CRATRRIS.-L 21697, 11h. $17 \mathrm{~m} .11 \mathrm{~s} ., \mathrm{S} 9^{\circ} 42^{\circ}: 71,10 \ddagger$ $=80^{\circ}: 2^{\prime \prime}$. A very protty donble star abont 30° from, Crateris np; seen bat once; bat, probably, only
moderately diffenlt. H7pdes.-L 19303, 9h. 47m. 26s., S. $\left.18^{\circ} 62^{\prime}: 71,0\right\}:$
 maps, but given on Argolander's. Having loaned the catalogue accompanying the "Uranomotria Nova," I am unable to give ita designation there, bat it is No. 19433 of Lalando.
Canis Mrnonis.-7h. 55m. 4s., N. $\mathbf{s}^{\circ} 26^{\prime}: 8,12$: 180 : $2 \cdot 5$. The onis dithcalt pair for a Bin. aper.
ture in this list ; fonnd on the same evening with
Canis Canis Minoris, and probably more difficalt than that Canis. Minoris, and probablr more diticalt than that
phir.
the naked abont z s of P VII., 289 , a star visible to iLinoris; both shown on Proctor's maps, the first
both being in a low power field. There is an exceed ingly minate pair aboat $100^{\prime \prime} n p^{\text {t this pair, similar to }}$ that near n Canis Minoris, bat mach faintor and eloser
Sextantis.-10h. $15 \mathrm{~m} .$, S. $9^{\circ} 7^{\prime}: 8,10 \frac{1}{3}: 190^{\circ}: 175^{\prime \prime}$ I open my letter to add this fine pair, found last even ing. I have not ascertained its place exactly, but give
the nearest minute in R.A. It is some distance $f 17$ the nearest minute in R.A. It is some distance $f 17$
and 18 Sextantis, bnt $1^{\circ} 20^{\circ}$ e. It is also $8 j^{\circ}$ a Gm . star the designation of which I am not certain.
I am obliged to Mr. Knott for his measures obtained a micrometar, brt far want of secifntly cleckirork can do nothing in the way of measnring double stars. I have been acreeably dianppointed, howeser, in finding that miauto points of light near brighter stars are rather better seen with the instrument illnmiunted than otherwise. I have never before mpresion tor tingnish faint atars. Possibly the fact that I have been obliged t illurainate in a way never intended by the maker mas have something to do with it.
Chicago, Aprii 0.
S. W. Blerimam.

ALLINGHAN'S PROPELLER.

[4025.]-I womld be extremely obliged to Amos Appleyard (letter 3919), if he woild inform me where there is any pablished account of a method of propalion similar to mine, as I have never met with anything imilar, althoagh well read ap on such sabjects, and nsed all precantion before commencing to patent same. Wonld also suggest to him that it is, to say the least,
foolioh to pass a sweeping assertion relative to any foolioh to pass a sweeping assertion relative to any
apparatue which he hns never witnessed in operation. apparatua which he bns never nitnessed in operation.
I have exhibited a model, 7 it . long. propelling quickly agave exhibited a model, itt. long, propelling quickig at, perhaps, five miles per hour, as well as the united force of the wind and waves, all three forces against for, and am ready to show it to any one interested in her, and am readry to show it to any one interested in
such matters. There were scores of people sam it do so, and engineers declared that no steam-engine fitted 7 ft . $\times 8 \mathrm{in}$. beam, and draught, 2 in.; depth of blades 7r. \times sin. beam, and draght, in.; dopth of blades
from sorface, 20in. This apparatus world be invala. from sorfice,
able for lifeboats, as the time they are most noeded is able for lifeboats, as the time they are most needed is
that in which the singular advantages of my invention are brought into plag-riz., against a head wind.

Jobi James allingetam.

HORTICULTURAL JOTTINGS.

[4020.]-I SPND a few clippings which may be of interest to many of your readers. Some time back I spoke of the adrantages which accrae to the perseverthe horticultarikt in a commercial sense, as well as the ploasare afforded in watching the growth and
development of new varieties of plants. This was think, in connection with a discussion on the possibility of obtaining a change in the colour of primroses by means of chemicala, or of raising plants of cortain kinds with llowers of a coloar at present missing-c.g. bluo roses or dahling. In reply tn this it was asserted that there is no genus of plants which yields blooms on its different species of the so-called three primary colours, blae, jellow, red. One of yuar correspondents immediately pointed out the incorrectness of this statement, but as Mr. Sowerby has recently pablished a list of the genera having species of these three colours I copy it for the benefit of those interested in
the question. He sars:-An assertion is often made respecting the colonrs of ticwers of plants which is scarcely veritied by facts. It has been said that plants
with tlowers of the three primitive colonrs, red sellow, with flowers of the three primitive coloars, red, yellow,
blae, sre not fonnd belouging to the same genus; the blae, are not fonnd belouging to the asme genas; the following, howover, contain species with the threo colonrs more or lesa distinctly defined, and if pink be inclnded 29 a rod colonr, the list might be mach oxtended. The list is copied from a catalogne of planta,
but many of the genera are familiar to all growers of plants:-

Ajnga	Hibiscus	Phaca
Allium	Hyacinthas	Polsgala
Aloe	Ipomas	Poarretia
Amaryllis	Iris	Rondeletis
Auchusa	Ixia	Salvia
Anemone	Justicis	Scatellaris
Aquilegia	Lachenalia	Sedam
Astorocephalas	Lalia	Senecio
Astragalus	Lathyras	Solanam
Bahiana	Lavatera	Stachys
Billuergia	Linnm	Statice
Bromelia	Lohelia	Symphytum
Centanrea	Lnfints	Tephrosia
Cerens	Martynia	Teacriam
Chorozems	Meconopsis	Thunbergia
Cineraria	Miltonia	Tillandsia
Clitoria	Mimalns	Trichonema
Convolvalus	Monarda	Trifolinm
Carcuma	Ononis	Trigonelle
Eranthemam	Orobasche	Tropicolam
Erinas	Orobas	Vanda
Einpatoriam	Oxytrupis	Verbena
Goodenia	Pelargoninm	Vicia
Heliophila	Pentstemon	Viola, do.

The Maznolia conspicna deserves to be grown much more extonsively than it is. A magnificent specimen The birth of its stem close to the gronud is nearly fift. t covers a space about 3.5it. in beight and over 20 ft . top, so this corered with blossoms from bottom to top, so thickly piaced that 50 towers may be oonnted
in a square yard. Considering their size and colour,
this plant mast be a pictare of beanty waile in bloom. This Maguolia, where it has attained anything like the izo to which it is capable of growing. is certaiuly one of the most attractive plants that it is possible to be-
hold, and Mr. Record, tho gardener at Hatield, gars hold, and Mr. Record, tho pardener at Hatheld, Bays
truly :-" I am much afraid that in these sensational truly:- "Iam much arraid that in these sensational
times, gardeners-mnuy of them, at any rate-ara times, gardeners-mnuy of them, at any rate-are
committing an error when planting, by not assigning a commince to some of our old hervants, and especially to this beantiful and noble-looking Magnolia.
Blood manares, phosphated ditto, and sundry others which, in the " nnhappy "position of their elemonts are exceedingly offensive, becume serviceable friends whrn their powers are exercised in helpivg the roze to manafacture its porfame. After pruning the heads roje trees, dress with a mirtare of coft moap and black snlphar. This is said to make the bade less inviting to those caterpillars which bore into and oat out the hearts of the buds jast when they should be
barsting into leaf. Light-coloared roses are expecially appetising to these litule posta. . SUUL RTMEA.

COMMUNICATING ROTARY MOTION TO BALL

FIRED FROM SMOOTH-BORED GUN
[4027.]-"Philakthropist's" idea would be of no prantical nse. Eren smpposing that the projectile conla be rotated in a satisfactory way, the line of tre-
jectory would be too high. and the shot would travel too slowly. In "Philanthropist's" plan the interior of the shot is shown as being filled with a slow-barning compnsition-how woald he contrive a shell? It is a sine quad non that a con mast fire a shell; in fact, in our light gans we seldom use anything else. The iden rockets, in which the rocket is rotated during its fight by the escaping flre acting on a metal fan in rear; in fact, it is the principle of "Barkor's Mill."
The second query might certainly do. The Gar mans have hoaling corn-mills on the Rhine, which the force of the stream, and no work the machinery inside. artillery Captane.

THE DECIMAL STSTEM.

[4028.] -"AN ounce of practice is worth a pound of theory," I fairly confess I do not understand a good deal of the talk your learned correspondents indalge in about the decimal system; but then I do under stand the asstem itself, ay, and ase it and have it hore in mine own honse. Some years ago I went to the United States (I am sure if I had read anything like the learned dispatations the opponents of the decimal system indnlge in, I thonld not have ventured) ; I fell
in with the mode of notation there eacily euangh, and in with the mode of notation there essily ouoagh, and
worked with it withoat giving it mach thought or worked with it without giving it mach thought or
theorising about it. When I came home I had, of course, to adopt our barbarous style. Bat I soon found I was using a mass of flgures much greater than I had found necessary in the States, and that in many cases
conld not get the nice accaracy I required. I retarned to decimals, and now never nese anything else, except where compelled by the anage of those around me. As and mannfacturer, in estimating cont of production could get along without it. Haring this experience I marrel at the stupidity of the people who oppose the introdnction of the system here. To speak after the $\begin{array}{lll}\text { fact, as our railway carriages. } & \text { C. J. }\end{array}$

CO-OPERATIVE SOCLETIES.

[4099.]-Harnso proponnded a definite and practical problem of nital importance to co-operators, I am not generalities, nor be led away from my sabject into the untried paths of social scienoe with "E. L. G." Let me, ther
possible.
"Philo's" " check system" is the commonest, simthere is a flaw in it. as in overy system yet tried. It is that many parchasers do not take their vouchers, especially if they are non-members, or the amoant of thoir purchase is insignificant. In thene cases, if the shopman be dishonest, he hat me
"Philo's" system is chiefy nsefal as farnishing the data for a proportionate re-partition of profts (so called), bnt, an a "check system," it may be easily evaded, axan be intiry or a voacher (of which copy is bope this to be impossible, anless a clork is kept to take ybo money.
The metallic check system is open to the same objec tion. I wonld refer "Philo" and any other reader fin-
tereated in this saliject to the Co-operative Siews, spedial tereqted in this suhject to the Co-operative News, spegial
odition. April 4 , wherein a full neconat of the varicho edition, April 4 , wherein a full neconat of the variçu
 "E. L. G.'s" "Check system," if his letter be sapposec to give any. Is he not anare that if a ahopmanwer to be responsible for the invoicod weight of giols, he wonld have to bear the loss in retailing (which is an unknomn quantite)? It is not morely the profit called) Which bas to be checked (that is not an earsy
matter), bat also the loss from retailing, techaically termed leakake. If you make the shopman's allowance sufficient to cover this losa, yoa offer him a prominm the other hand, it son short weight and measare. On society, it is in rery dificult thing to detormine whal
amount of eash proft the shopman ought to hand over I am not discussing "E. L. G.'s" " defnition of oo-ope rntion. In another place 1 ahoold try to show that his and his social theories both immature and pornicious; and his social theories bothimmature and "pornicions; bat, as far as concerus this discussion, Philo has guffienty rindicated the commonplace cooperaive
Bociety from the attacks of the "roaring lion "in his admirablo letter, No. 8166, Vol. XIV. F. O. S.
[4030.]-I ay atraid "F. C. S." will not derive mnch adrantage from the replies to his appeal for a descrip tion of an effective check system; whether he pays
"E. L. G.'s " gecretary, or pars the stationer for - Philo's " rather expensive cash book, the result till, from a pecuniary point of view, be, I fear, equally nnsatisfactory. But the difficulty may be got over (not by a ebeck system), and has been got over by mere
than one large firm I conld name, who have to employ managers of branch coula name, who hare to employ pernonal supervision is impracticable. Lot "F. C. S. Lake a ledger-onter on the debit side the stock on hand (taken for the parpose) at selling prices, adding afterwards from time to time the amonnt of invoice for koods received at selling prioes. Enter on the
oredit aide the amounts of cash handed over by the
 again, enter the amount on the aredit aide, the balance winste-daring the interval between the two atock takinga. Now, the manager mast be made responsible Ior this waste, that is, he muat be engaged subject to the riability of maldiog good all loss which may arise, Which cannot he aceounted for-i..en not arising from ada dobts, legitimate deterioration in stock, do. O course, this liability would have to be coninidered in the present lorea, bat reakure to toy hat 1. . Creas prosent loss is
of malary to the marnagar of 2 . 6d. por week on the
matill wook out of the tranumction.

PIANOFORTE ACTIONS.

[1031.]-Probably the gabjoined observations on the actions engraved in No. 968 of the Evgirse Mrchanic may tend jet farther to elacidate this sab-
ject, which is of great importance to both musicians ject, which is of great
and pianoforte-makers.
Idid not think it worth the speese it would occapy to end a diagram of the conthrontion of the eticker 0 Fig. it downward, showing theconnection withe the lover and the hopper, by which the hetter is lifted. Theee parts of the common cottape eotion-of which Fig. 16 less to illaetrate them; but I moy remark that I mach prefer so connect the sticker O with the lever on which it reste by a bird's month, bemase of the facility it
afforta for removing it. I know no better method of hecting the hammer in a sticker action than that pathod of applying, Stumprice modification of Erard's instie oheek-i.e., placing of on the hopper. Some "drap " it of would seem very desirable. Probably cranking the hopper and cansing the cranked portion very beot method now in nse, nor do I think it can be very best me
The butt in this action has its lower pant forked to receive projections from the hammer-rail and sticker which che centre wires are sapporte. That projec nar, if preferred, be made in two parts, embracing the centre wire of the sticker joint. This method, which is a very good one, is often employed by French make, because it enablea tre pard Thave, for cheapness, represented the projecting pioce into an oblique hole bored in the sticker 0), fattened st its sides where it enters between the fork of the batt E. II made in two parts, that portion which projects mast be made of rectangalar section, and deep erongh top piece, which clamps the centre wire, may either be of metal-as the French makers prefer-or of hard ood, say beech or hornbeam.
Bhould it be proferred to attach the damper to the hammer, and the projecting piece P mado long enoagh to bring the sticker O anficiently forward to allow room for the damper behind it when the hammer strikes the strings. Fig. 2. This diagram shows that besides the advanincreasing the lorce of the blow important consideration in the treble-another great adrantage results from the hammar being propelled through rather more than half its path by the last third of the key's descent, becanee it neoessarily follows came quantity-viz, one-third of its path-there is nothing to prevent the hammer from falling back from path propelled it towards thera-do wit, mather more than halk ite path. Now, just mark the praction conthere can be no necessity is this action arcumstances hampuar very pear to ty atrings, although this ine hammor very poar to the strings, although this ie a
meocenity in ordinary actions for obtaining the power a repostion without mach rise of the kes. thin sotion-a rise of the key equal to
fros the atrings about one inch, and the kammer b abeeked at (say) 1 in. from the stringa, it followa that buta comparatively small portion of its weight can re bamin supported on its centre. Practically, the vertical plano of of gravity recedes so far from the it to fall so rapidly that it requires bat little assistance from the counterweight D to compl it to "follom th finger," as a pianist wonld express it I need hardla add that this is very important indeed when the trebl hammers are returned by counter weights, becange th lighter the latter can be mado for them to act effec tually the leas "thaddy" the blow, and consequently the less "blocky" the tone will become.
While writing on the subjoct of these setions, I may as well add that I fonnd it possible to make a vet cheaper satisfactory action than either by making the sticker 0 rest in a socket formed in the key, as shown by L, Fig. 4. When the regulating screw was adjasted so that the key raised the hammer to within sin. of the string, I found the momentum of the hammer quite unciont to carry it through the remsinder of its path and to canse it to strike the stringe with snfficient force oven when playing pianissimo. No donbt the hammer conld not have reached the strings anless some separasticker and the clothing of the bottom end of the scourred, but the head ot the adjasting acrew ba cocurred, but that separation was of so smail amoan very mach siprised beve learned that the vertical rise of the aticker daring the lait sin. of the hammer's path is almost in appreciable. For forming an elastic connection be weon the key and the aticker I made a saw ont in the side of the latter, inclining downward at about 30°, on himilar bo of which a very weak wire spring rested the other end of which apring was inserted in the ker, The sticker ond thich spring was inserted in the kcy. were thus compelled to descond with the hinder end of the key whose rnte of descent coald be determined by losding it safficiently.

I think it would

tion which wan diffenlt to make any upright act cha which can surpass this as a repeater or excal it
in cheapness. How it will work with very heavy ham. mers I cennot say, not hnving tried, bat if the strongth of the tie spring and the loading of the ker bo pro portionally increased I see no reason why it should no does. With the very light-headed treble hammer the ticker also being made as lizht as it can be with the soedful rigidity) in the model it answers edmirably the hamamer exhibiting no tendency to retarn to the tringend again atrike it-in fact, it is almost as ateady In whis moial the by a check
In M, Fig. 4, does the lower end of the ricker is rounded to onter the nockot in tho her. By lifting the tie-spring out of the saw cat wijch it normally reste, the key mav be an cul. also may any one sticker if made so hat it can to talceclea from the hammar balc. When needita t hal 11 the og ils teya, all the tie-springs mait be disconnected from be stickers by pashing them afide, which doing of this, and their after replecoment when the ction is reinstated, is bat the work of a fem minntes. So this "mechanick" is not very bad; indeed, the greatest defect
gilently stopping the key's motion in time to prevent gilently gtopping the key's motion in time to prevent
the hammer blocking aqaingt the etrings. However, not liking to be beaten, I sacceeded in overcoming this diffenlty by employing s back touch, about 2 in. wide on its lower surface, which was inclined at about 100°. on its lower sariace, which was inclined at aboat ion On the top of the ker an inclined plane at the same
angle was fived, and by sliding this plane to or from the key balance the key was silentiy stopped "dead" in he required position. Of course the cloth washer nder the front of the key was packed ap by paper aisos until the descending kev camo in contact with
trife earlier than its hinder cart impinged against a tribe earlier than its hinder cart impinged against
the back tonch, becanse the clothing of the latter was considerably thinner than the cloth washers beneath the fronts of the kess.
In Fig. 2 the proportions are about those which I hink would be generally preferred, but it mnst be obvious to any mechanic that thoao propertions may
vary, so that the force of the blow may be acreased in the treble if thought dosirable, or diminished in the bass. The first may bo effectod by allowing the notch or shonlder in the hammer batt to
travel farther back towards the plane of the hammer cravel farther back towards the plane of the hammer
may be ret more oentre, so that the leverage may be yet more
dinainished, and thereby the hammer's velocity yet diminished, and theroby the hammer's velocity yet larthor increses. It is obvious that, if at the instant itrikes, the leverago be diminished to one-hall that reprosented-ia., from ono-eighth to one-sixteenth of
an inch, the hammer's velocity muat be doabled, and the force of its blow increased in proportion. Under These circumstances the rise of the hopper would not be sonaibly increased, bat it would impel the hammer throngh more degrees of the circle-in
lenath of its path woald be increased.

There in no reason why the radias of the hammer should not exceed 4in.; hammers sin. and even 6in. long, have been employed. Now, caterip paribus it is obvious if the hammer's longth be increased from 4 in. to Sin., its hosd must travel fin., and if increased to 6in. 1 inin. 50 per oent., withoat causing its centre wire to rotato 50 per oont., withont cauring its cen

As the oentre of gravity in such long hammers must be further from the vertical plane of the hammer centre, the fingor will necaesarily bo more reaisted at the commencement of the key's motion than it is by
the preponderance of a 4 in . hammer, bat if the same additional velocity be impartod to the lin.
hammer - to effeot which its total path mist also be increaved the additional total path mest finger, cansed by the greater distance which the stin hammer's cestre of gravity is in front of the vartice plane of its cantre, will not becanse it then becomes noedfal to somack th hammer's motion with the butt considerablo lower. Now the or shoular ha the descends-antil it descends to the lowl of the centre-the farther in front of tho must be. which is oply saying in other corde, th hrommer Therage becomes al which it acts on tho the if. Ihis lowing of tho notch is a necessity il thing wice bppor nise bo not a minished the the deth of or the deption the sirt sixt and for athing thather of whal you are ased to and, or anything to tho contrary with which I an acquainted, old Bach, Mozart, Clementi, and othors o he old school of pianish (who are commonly sappose to none the worse in consequence of the fact that the kess of their encient pianos only decconded aboat tin. Oa the contrary, I ind a rather ahallow tozah in maab
easier for the performance of rapid rune, shatoe easier for
trills, sc.
The hopper in Fig. 8 is suffliciently cranked to allow the path of the hammer to be increased to 27 in . quite as long, I think, as it is desirable to make the path of a heary middle C hammer. Of cource, as wo horter. The more this is mer can deecend mithor is done the farther the ham bock tonching the hoat being stopped by the dampen mer arrives at the string, until we arrive at C above the lines, 7 tin. long in my scale, above which note it is not castomary to employ dampers. There will then be nothing to prevent the hammer being allowed to descend ontil it recedes to 8 din. from the string. Thi nch, eractly 50 por cent, more than it rises then the path of the hammer is only 2 tin., as reprosentod io Fig. 3, the hammer in which is impellod aboat oighteen times fastor than the koy dosconds under the fanger. By increasing the path of the hammer to 3fin., and diminishing the leverage, at which the hopper sots on the batt shoulder or notch, to ane-tonth of an inoh, the velocity of the hammer (in consequence of that per cort in thago combined with the lacrease of rather more than doabled. It is, in fact, driven abut forty times faster than the descent of the front and of the Eey. Of course the head of a hammar
ariven at this velocity must be comparativaly light, or the touch mast become heary.

The Habmomiovs Blacegyetre.

COLOUR.

[4032.]-I dryy Mr. Benson's right to assume corain "doctrines" as "accepted," as ho does at p. 97 . there cannok, as yet, bo said to bo any acopl doctine regarding colour gensations. To my mind his an quite inconcluaive ar regaras une point in question, similar resalts; gray being, according to my viow, not a colour, but merely complete light of a certain inensity
Mr. Benson apeaks of my mentioning only one thing in support of my viewe. I, however, indicated that ther lacts might be brought forward, and of ane of hese, which is well-known, Mr. Boason has ha hil books lomplo anory on : ighted only by windows of some one coloar-a gradual lightod only by windows of nome one coloar- gradaal by saring that the eye becomes less sensitive to that color. This, however, is sccompanied by the remartable circamstance to which I would dram particalar itention, that the strength or quantity of the light does not seem to diminish. The light becomes apparently hiter; but how can this be if whito is compoand colour? Tbe window is supposed to rays which the entering rays require to com n the composition theery, to make white. Then, in difierent ooloured rays composing daylisht a ter condifierent coloured rays composing daylight a very considerable prepondsrance is assigned to the yellow rays, really very zellow, bet jet berer it es pare white What Mr. Benson refers to in his third paragraph ts difficulty in conection with the non compoond views as to white. I have not suggested that the raps combined in white light are not heterogeneous, to certain of those rays has from any canse been diminished, other rays tending to produce an opporito disturbsince will produce a colour sensation. In my tormor letter I suggested that any ray giving rise simplest colour sensation alsars produced socompanying whitenes.
The irst sentence in Mr. Benson's lest paragraph is pecaliar ; he describes a certain fact in two dituerent ways, and apparently imagines he has atated the orrect mainder of the paragraph oalls for no partioniar remark, as it is not " difficult to imagine" a great many

Since I last wrote on this mbject in Jannary certain incta have come to my knowledge which, I think, favour the theory of ive simple colonr sensationg-red, yellow, green, blue, and violet. Formerly green was hald to be compound, becanse it was supposed to ie producible by mixing blue and yellow; but is now held to be simple. We shoald, therefore, be warned againgt hastily sesuming that yellow or blue aro compound, because they can apparently be produced, one by mixing green and violet light, and the other by mixing green and red light. When one looks through a prism at a strip of White on black, which is wide enough to show some white, the white is seen in the middle, dividing the colours into two different sets, one set having red shading rather suddenly into yellow and Aniahing with a slightly greenish yellow, and the other eot having violet ahading into blue and finishing with a ilightly greenish pale blue.
A person of my acquaintance, with a pood oye for colour, and who normally sees the colours under the statod ircumstances as just described, has recently had his ayes pecaliariy arected aiter taking a strychnine tonic. Withoat noticing any particular diference in the colonri of objecta generally, excepting that he seemed o mis ecoing eome of the Aner and richer shadea of blue, this person had his attention (one day recentiy) raidentally brok cut-glass gaoliar pendank, and coidentally looking through a prismatic part of it liwards a window was at once etruck by a remariable rered ith rathe in toent at once got proper colonr prism brt still fonnd the touco Rot propor colour prin, but stil ound aed did ro ed did nol appear altored, exceptiag tant the red to arimeon, brt in the other est of. colonit the riolet orimis, bar in the other siot eemed rioner and more to the oro alit. On looking throrgh the prism st a shad a amp in which or petrolenm sirit blue or petrolicen orily quito ruddenly into a rich green. Theso peculiarities quem differalt to explain on any aesumption excepting that the censitirenege to imple blne fer mach re duced, and that therofore, the normal eye mnat be capable of transmitting separate simple sensations for reen, blue, and riolet, at any rato, and in that cane it sobriously most probable that it can also trensmit soparate simple sensations for both yellow and red.
Why ahould we (mentally) recognise these five thot colours and no others? It is useless for the "three-primary" theorists to cay this or that colour can be made by mixing two of the three primaries, for the "three-primary" theory requires six distinct colonrs, and six distinct colours do not exist. There is no disinct colour between pare blue (antinged with violet) and pare green, between green and yellow, or between rellow and red; and aithough violets, purples, pinks, and crimsons are spoken of as between blue and red, blee and red are enggested by every one, and the only colour that can be called distinct between blae and red is one, Whatever be it name, in which neither blue nor red preponderates.
Glaggow.
E. H.

DOOR HINDLES OF RAILWAY CARRIAGES.
[4038.]-Pbeyrry me through your colamns to throw ta mall hint relative to rail pey carriage doors generally. It is simply this: That a handle (similar to those now in common use in moat private carriages) be fixed inside the doors of all the three clamees-riz., firat, second, and third ; in connection with the one ontlide ; so as to obviate the necessity, when opening the door, of putting the windows down when up, as woll avoiding at the same time a certain amount of riok. It is an easy mattor, and might be done by all railway companies at a rery little extre cont whon conetructing their carriages ; and wonld also be conferring a great convenience to the rast multitudes who travel apon our iron roads. I hope that yon will insert my lettar, and that the ides may meet with approval.

Nathaniel Waterall.

AMATBUR TURNERS' SOCIETY

[4034.]-What is now wanted is mechanical instruc tion to amsteurs by competent workmen, so that they may acquire an amount of arill and practice not to be attained in private. Many of our readers (this I can ployed by frms or in offices year by year, and natarally onough take to mechanics as a pastime and recrestion. If a society is started in London, as nearly central as posaible, open to any respectable man on payment of the usual fees (as moderate as possible, and pajable a the option of the member-monthly, quarterly, or yearly), I have no doubt it would succeed. I would propose somothing like the following: That s suitable pluce be hired annualy, and, as belore skied, hools, lower preminm ; that two or more meetings take plece in the year, on which all brainess shonld be brought forward; and further, that the committee shonld place themsolves in commanicstion with private firms (for preminms) to allow a few members at a certain time to risit the manufactories, and by that means gain practical kowledge. The sdrantagen to the members would be numerous. They would gain real knowledge and practice in the handling and working of the lathe and its accessories, also an insight into the art of cabinet-making, polinhing, \&c. Shonld any member
require advioe-such as reoommonding or purchacing any article for the use of bimself relating to turning, cabinet-making, de.-it ahoald be given gratis, any articles that should be turned out in a Anished atato by the members should be sold, and the profits ariaing be carried to the society, unless the same has been inished throughont by one member only. In a few
weoks I will advertise an addrese, whereby I can be weoks I will advertise an addrea

Samonl Smitiara.
A TRAVERSING SCREW CHUCR.
[1035.]-A Travibsing mandril for cutting short screws with socuracy and certainty would be coveted by many amateur tarners were it not that its cost and,
still more, its injarious metion upon the lathe for sill more, its injurious action upon the lathe for general parposes more than counter
I have lately designed and made a tool which seems to possess all the advantagos of a traversing mandril, without its defects; and as it can be adapted to any lathe, I hope it may be generally usefal. I propose to a description of the apparatus, with reference to the scompanying drawing:-
A. A steel cylindrical holder, which serews upon the noee of the lathe mandril, having a longitudinal keygroove a a (or it may have a left-handed apiral key. groove of one turn per inch, which would probably work even better than the parallel key-groove ; but the latter, as I have mado mine, is sufficient).
B. Δ gan-metal oglinder fitting nicely, and withont shake, upon A, having a key (b) which enters the groove a a and prevents it from tarning apon A, though it is free to traverse longitudinally. The cylinder \mathbf{B} ends in a bosa, haviag at its extremity a corew exactly like the acrew apon the the of the mand apon this screw any of the ordinary chacks for holaing the Fors to be operta
run tra in lathe.
of various pitahes) fitting (of which there may be sevara of various pitohes) filting tighlly and koyod upon B.
taobed to the angle of lover, up to the frame, and thase to gaiding axle. By omploying rollers on the cran pin the iriction may be mach reduced, traveling in the slot. I mark the various dimensions on the aketch. The arms on which the levers pivot, as woll as the atay, should be atrong as well as the levers themsalves. I asve thought of replacing the pair of gaiding vheal by a single wheel in a fork Ender the seat, steering it with the cords, but fear it might be difficult to preearre a balance. I believe you conld spin along st a great opeed with s single guider.
The handles are attached to a disc of hard wood is which the cord runs in a groove. The length of crank arm is 4 in . The end of arm on which the lever pivot must be directly ander the axis of the wheel, so thyt the levers may travel to and fro equally.
c. Towner.
\triangle NEW AND EXCELLENT SUN.SCREEN FOR ALL TELESCOPES.-CENTREING THE FLAT OR PRISM OF NEWTONLAN REFLECTORS.
[4037.]-Tug following mode of dofending the eye in viewing the sun is the most perfect that oan be con. ceived. Δ film of silver is deporited either on the field lenn of the eyepioce iteoli or upon aconcar vo lons insortod hare the Barlow is usuany placed. invored side ehould be turned away from tho ajo. The interposition of this partily transparent alm of pure
 tarning back all the rayi of hoat, while it allowe hat Alm mar pear pro thiok the mhole eperture of any tolescope bot it is bettor to havo it orly of havo it only of suoh a density al to require a rathor pale glass acroan is not heated in the rlightest dogree, nor is there any heat apon the ofe.
The process of silvoring in extromely oasy, and masy be done by any one in a fow minates. I and the coet of chemioals for three lemeen is one tarthing. A ctill

D. A fixed screw-gaide (of brass or gan metal) ftting the thread of the steel guide-acrem C, and partly embracing
Fig. 2.

The screw-guide is here shown (as I have made mine) held fast in the socket of the T hand-rest, but a better plan would be to have the averal acrew-guides lormed metal disc ant in thiot centred npon an eccentrio orm on mich it conld be turned and made to gear or chm, on whe jast like the rith the corresponding screw-guide , jas head-stock of Masers. Holtrappfol's best ornamental lathes, having of Messrs. Holtrapp.
Nots.-When this apparatus is used the proper crow-gaide D is pat into gear with the steol serewcride C and compels the latter, with the chack and vort which it holds, to adrance at the rate required for cutting ascre upon the work by means of a single point tool or chaser, held in the slide-rest or by hand The resnlting sorew, will be an exact copy (as to pitch) of the atoel guide-sarem 0 (except that if a spiral koyrroove is adopted in A it will have one turn per inch loss than the gnide-scret). Jofi F. Stantstrest.
Abercromby-iquare, Liverpool, April 16.

THE " TURRET" TRICYCLES.
[4086.]-As I know several of your rescers are incereated in the bioyale and trioycle movement, I forward you a sketch of a tricyole I have designed and constracted. I drive direct ofl the orank without the intervention of connecting rods. I form a alot in the lever which pivots on an arm bolted to the irame. The lever is bent at right angles so that the feet may assiat io working; cords lead from the handlos to palloys at-
better place to insert the silvered concave is between the fiat and the big speonlum, close to the former. The following will be interesting to all who nee Nowtonian reflectora. The want of perfect adjustment in the secondary mirror, thethor ab ar a priam, formance. I have never till now been satiafied with my centrning, nor have any of the published methode been sbsolntely perfect. The following mode leares nothing to deaire.
Together with my dynamometor is sold a very aimple and inexpensive miaroscope which clips on to any ejopiece for reading this power-gange, which it doen to the one-thousandth of an inch; around the little bright image of the aperture soen thas in front of the oyelens are certain darier circles which are the lmage of the inside of the tube, the rim of the fiat-holder and the fault is in the flat (or prism), which must be rie adjusted till they are so.
Though not so important this little contrivargeo detects the slightest want of coincidence between the axis of the great tube of a refractor and that of ita chyo tube.
If any of the readers of the English Mrcimanic desire eny further information upon either of che above hinte I shall be glad to give it.
E. L. Berthone
P. B.-Since writing the above I have reocired's ${ }^{\mathbf{2}}$ letter from Mr. Browning, to the effect that five yeap its ago he tried silvering the seoond lens of an oyepieg; ce. and a Barlow lons for viowing the sun. I am so Ir prised that so admirable a plan has remained $e 0$ lon pg unused. Mr. Browning aays that he found it betteyn (to insert a plane of glass silvered on both videa, ho 0 placed at an angle of 45°; but it munt fbe rery dat
colt to obtain sach a piece of glase with parfoetly flat and parallol surfacee, and it was this differalty which led me to profer a concare lens. I do not find the heat resoctod back into the tabe productive of any of the sapponed disturbanees, or that it impairs defnition. Mr. Browning's mothod requires a hole in the side of
the tube for the escape of the heat, and this is not the tube or the eacappo of the heat, and thit is not
 sabe, insert it inside his adaptor, and he will soe sunspote, to., as ho never did beforo.-E. L. B.

solar phenomena.

[4038.]-As it in my cnstom to make a daily sketch of the folar narface, when oloads do not hide the san Irom View, I have been able to trace the progrosa of remarkable among them were the shifting movements of a small spot, which I peroeived for the drat time on April 12th. It lay to the south of a tolerably large opening, situated apon the wost limb, in the northorn tuon an (the intersection of the bires being at th centre of the larger apot) were as follow: :-

April 12th 5h \qquad
On the 16th the pair were 00 edranced towards the....................... axtreme edge of the disc that I was anable to find any It of them, with a power of 140 .
It will be noticed that, with the exception of the slight retrogradation on the 15th ingt., the motion was srom weast to east, by the nonth. This direction was
alco observed by Mr. T. W. Backhouse, of Sanderland, aleo observed by Mr. T. W. Backhouso, of Sanderiand, to be takan by appot in its revolution roand another, 1870. The line joining them rotated through an angle of 80° or 90° in $5 \frac{1}{s}$ dasa. "It is interesting to observe," says a writar in Nature, "that the direction of this rotation (from sonth to east) is the same as that in Which cyclones rotate in the eartis norinern hemi opposite direction. This coincidence gives nome sup-
port to the theory of solar epots being produced by port to the theory of solar eppot
cyalones." (September 1, 1870.)
But the retrograde movement of the apot on the 15th inst. (from east to sonth) has its counterpart in a large opening which I observed in July, 1870. The small companion to it mored from sonth-eant to sonthsecnrred in the ann's northern hemisphore.
The solar surface, espocisilly in the equatorial regions, has of late been diversiffed by rast groupa of spots, which, from day to day, have prenented moat interesting and astonishing seried of changes. Had it struct me earlier, I might havo deilineated some of the of drawinge, their daily alterations in appoaranco as they passed acrons the disc. Fet, on several ocearions, the complexity of many of these spot-aggrogates mas
extranordinary, and might have sevorely taxed my artistic skill- Whatever that may bel
1 do not think that "P. S. T." (q7. 11548) would and a revision of double starn, and of othar oft-inspected heavenly objecte, an ocoupation of such trazaiont interent as ho seoms to apprehend; on the oontrary
if he onoe got over a few preliminary difliculties, I foel care the pleasire of the labour would excite him to "Aontinne it. Guided at first by a work such as Darby'e Cycle," a tolescope wonld soon conce to be a more toy Cycle," a telescope wonld soon coace to be a more toy hoar of unfailing and instrrotive employment in one of the most soal-stirring of the nataral aciences. Bat, suppoaing for a moment that "P. B. T." found hit
intereot in such stadies to be on the decrease, he might intereot in such stadies to be on the decrease, he might
endearour, with a good 9fin. or 10 inin. reflector, such as Mr. Browning aupplies, to aid the Moon Committee in their Solenographical iabourr. Our little satellite, in their solenographical habours. Our wide sale for remearch, and can never fail to yield a store of dotail to a carefal observer, provided with the requidite of the rizes mentioned wonld cont "P. S. T." from \& 100 to 8150 , s price about ono-fourth of the value of an equatorially-mounted 6in. refractor. As anch rean equatorialy-moanted bin. refractor. As anoh re-
fiectors perform beat in an observatory, construeted on fectors periorm bees in an obsorvatory, conatracted on No. St2, Vol. XIV., of the ExGLIBH Mechanic "P. 8. T." would bave at his disposal great power and omeency, combined with amall oxpense, by parchating one of them. Bat inave no doabt Mr. Prootor will
gire a fitting
reply to hia inquiries, and he could not hare applited for an answer to a more competent saide.
April 18.
W. Beown.

REVOLVING FURNACES-DRTLING MACHINE.
[4009.$]$ - Staveral years ago I read in a newapaper a report that the Manager of the Dowlaid Iron Works had constractod a revolving farnace, Whioh was giving great stitafaction, and opecimens of the paddied iron had boen exnibitod at m meeting of the trade in the Midand Countice. It wan likewise atatod to be tho in-
tantion of the Company to erect more farnaces on the tantion of the Company to erect more farnaces on the name plan. I hope it is not asking too mach, if thone
capable of doing so would let us humble readers kDow, if such had been the case i or, if not, what was ibe rusoon? Af it is reportod here, Danks's patent hat boen deciared invalid, and the agreement with the
Epglich iron matara broken through. A fall stato-
ment of this, if true, might be a very proper subjeot lor the pagos of "oura." A univeraal angular drilling the ruto hgarea on p. 1 och he ratenot mokion used on such fachine, as it is no whon in the ingraving ? A Mechanic, Angust 17, 1888, as inventod by Mesara. Westroy and Forater, Barrow-in-Furness, Lancanhire, which seems to me to have a stoater and better aliding bracket. Those who may have seen both tools would oblige by giving their opi nion of both machinos for actual hard cerrice.

Insum.
COMPRESSIBILITY OF THE ATMOSPHERE
[4040.]-OwING to this property, it follows that a ower elovations, two or more, or many piven rolumes must be compaoted together in a space, which at higher is the density such rolumo namces to occapy. Hence, a far lose degreo, ia the denity of the air at any level to that of tho sir immediately beneath it
It follows, therofore, that the ballet fred horizontally from a gan must be defiected apwards, though in A far losi degree in its course through the air, even as it is by striking the sarface of the denser fluid, wator. I wigh to ank your learned correspondents whether they have ovar considered that the well-known phe the line of aim, is thus acoounted for. I beg also to axpress my couriction that the spinning top is supported, placed or even replaced, in its vertical position from the same canse. If I am ripht, a top ahould no be able to spin in a vacuam. I have no means of
trjing this experiment, bat fool convinced that it will be able
troing
not.

Soer Green Vioarage.
J. M. Tayloz.

THE FAIRLIE LOCOMOTIVE.

[4041.]-Tens letter Mr. Fairlie has sent (page 11), signed by G. Allan, though giring many particalarn, it very far from completo.
1st. It makes no mention of the diamoters of the oylinders of the three engines : and, anlose I am mirtaken, the Fairlie had alightly the largent.
2nd. No montion is made of the stroke of aither the "Wonder," "Pony." or "Giant."
8rd. The prossure on the driving wheels is not mentioned, and thongh the total weight of the Fairliie is half a ton leas, yet if in the "Pony" or "Giant" there was less pressure on the driving whoels than in the Fairlie, the tractive power would, of course, be leas.
4th. It does not state whother annd was ased by any of the ongines after thoy first started.
5th. It in atatod that the Fairlie ongino is economieal in fuel, bat no mention is made of that average amount por mile, and as engines made from the same dosign and exactly alike, as far as can be ascertained in every respect, are some more economical than others, one cannot be surprised at some difference existing in this case.
6th. As regards steam pressure, if we compare it at the different points given on the journey, wo shall and it ae follows :-

	Giant.		Welgh Pony.	Little	
Wonder.					

Than, in overy instance given, the presaure in the Fairlie was in excese of the others. Hore again is nother omisnion-viz., the pressare in the Fairlie at he point where the other engines wore palled ap.
7 th. The diamoter of the driving wheels is not menHinod, either of the Fairlie or the other ongines.
8th. A point is made of the diminution of escillation, consequant on the ane of bogies; bat were not theme nsed on the ordinary engines some years before
the frat Fairlie was built ? and as it is not a the firat Fairlie was built ? and as it is not a thing belonging exalusively to this particalar class of
donble engine, we are not, therefore, obliged to adopt the Fairlie ayatem because we want to diminish oscillation.
I muat aay I agree with what our correspondent "Osa" (let. 8864, p. 41) says in his last paragraph. angines for drawing extra heavy loads on the ordinary gradients as woll as on very steep banke. Now, as there are engines on one of our main lines. Whose lond
is 40 fall or 60 empty trucks, enrely Mr. Fairlie vonld is 40 fall or 80 empty trucks, enrely Mr . Fairlie would not advocate trains of 80 losded or 120 empty tracks, mating a train of about 650 yards long, canaing a fearfol rtrain on the conplings, and rather nnmanago-
able if it was necessary to pall ap quickly. Bat if the able if it was necessary to pall up quickly. Bat if the
Fairlio is designed for overcoming steep gradients Fairlio is designed for overooming steep gradients, why
ran so muoh nnnecessary power wheri not required ? If ran so muoh nnnecessary power when not required ? If What in to hinder two ordinary locomotives boing coapled to one train
Oar correspondent " G. R." (let. 8987, p. 96). though porhape right as respects the 50 Fairlie, with 5 laid up boing about the same as 100 ordinary engines with 10 laid ap, yet seoms to forget that engine boilers, co., are not so easily interchangeablo as the parts of a military
rife, and that an engine must needs be "laid np "in rife, and that an engine must noeds be "laid np" in
order to have its boiler or whaterer is necessary changed. order to have its boiler or whatever is necessary changed. Then he says that another advantage is the regalarity Fairlie bas not on inclines; but he forgete that the Fairlie bas not an apright boilor, but a horizontal one. Again he gayn "the oontingency of one of the motions breaking down when three oylinders will remain
offeotive," is an advantage overlooked. Bat, if this in
so very deatrable, why not do as I said before-riz., couple two engines to one train? This would have one decided advantage oper the Fairlie, inasmuch an il an axle or tire of one of the two engines broke, or any part which totally diabbles an engine, you conld at least use the other engine, but with the Fairlie if
end was thus disabled the whole would be usoleas.
Whilet writing on the eabjeot of the Fairlie aystem, might I rofer to a statement I gaw in print a fow month might rofer to astatement naw in print a iow montha Mr. Fairlie had Inventod a now kind of buffer to facilitate the pacaage of trains round sharp curres? It consinted of a single central baffer instead of the ordinary double one. Now, in the "Engineers' and Me-
 (Vol. II), is an ongraving of an apparently similar conarraction that was used on the Dablin and Kingatown Railways.
I am sorry I was anable to answer Mr. Fairlio's letter sconer, but was unaroidably preventeg.
Cheshant, Herts, April 17.
A. G. Boyd.
[1042.]-Grant pace but for a few words more, because, as I take it, the object of the Fairlio locomotive, or, rather, that which ahould load the public to have an interest in it, is similar to that of the Enclisa Mrcranic-namely, the opening ap of new
felda of oporation and research. And the latter brings the same principles to bear-to wit, fioxibility of (wheel) base, easily adapting itself to the various carres (wheel) base, casily adapting itself to the various curves
and inclines, often very great, of the different branches and inclines, often very great, of the diferent branches (of knowledge); steadiness; malliness of gange (of
type); and longth (26 pages molid). Amos Appleyard says (page 96), that the companies could eacily build far heavior engines than they at present nee. He does not may how this is to be done, scoing that the limit of adherion is already quite reached, and every inch of width is taken np. So much so, that in some recent goods engines on the Brighton line, the silde vaives admit of longer bearinge on the orank axle. Moreover, it is not fornd adrantageons to couple more than ix wheels together.
However, our present traing are quite heary onough, and 1t is negred tor the Oin or bide wougo the zenerally required for the 4it. 8in. or Wide gange, the Goxican rallay boligg extrome caw, th abouning rinciplep inglien the poneibllity of bnilding an ongine principle suppliea the ponablity of bailaing an engine for the 3ft. gange of the same power as our present line on the emallor gange which will pay where the expense of the wider would be simply rainone. So that whole diskricts in this and other countries hitherto hat wholo diskret in this and othor coantrias hitherto ebarred trom tho advanag ol railway comm on wh the exking of the little Feetiniog line on boon the workiog of the litul reaknog ling, on which only lit por hour havo boen run, thon it its gange, nly 14 it the Indian and Brasian Commienions both reported保 And a bill of the Tondon and North-WPetern in no. bofore Parliement to extend the Welah live on the olore Pare to Btine on the regard to the flexibility of the atoam and exhanat pipes has been also so complataly orercome that they are now said to give very little trouble.

WARMING AND VENTHIATENG.
[4043.]-WILL "E. L. G."-who considers that any one who proposes to ventilate a room in any other way than by withdrawing, or allowing the eacape of, ita air from its very top, sapports a " mialeading and mischievous fallacy," and that any plan which permits any of the air which has once been breathed to mingle with that which will be breathed, "a murderous arrangement"-kindly explain to us how it is that shough all warm-blooded animals do, whenevar they breathe, draw baok into their lunga a large proportion of the air which has just left thoir lungs, they are not injured, but benefted thereby? Such being the nniversal arrangement for respiration, it is, of courbe, the right arrangoment, even though it be in direct opposition to "E. L. G.'s" dictam, and that it is the universal arrangement cannot be dirpated by any one who remembers that a large proportion of the air expelled from the langs on expiration necescarily remains in the windpipe and other air channels, to mingle with and help to warm the air drawn into the langa at the next inspiration. I do net know the proportion of the air inspired which does not entor the longs; but it in, probably, not mach less than hall, and this accounts for the proportion of carbonic acid in expired air being mach greater in that forced from the lungs by a very deep expiration than that of ordinary breathing, the air so forced being leas mixed with air which never ontored the lnags at all.
It is clear, therefore, that "E. L. G." is quite mirtakon in attribating dire offocta to the mere mixing with air of a small part which has been once breathed, for that we are doing constantly, yet it is quite easen tial to health and comiort that sir that has been bresthed should bo quicky removed, and I allow als room ; but deny that it is essential to
room ; but deny that it in essential
very frequently not done in rooms wl.
very irequently not done in rooms w
vontileted, en any one may prove
hore is barning air entors the
however high, nuleas, indeed, it
chimney.
for every cubic yard of inolosed apece to let in and ont just as much air as is bresthed, neither more or leas, or anything like it, I will believe to be possitlo when I 00 it dane.
Has " $\mathrm{F} . \mathrm{L} . \mathrm{G} .0$ " any evidence to prove that the air at the very top of a room is materially different except in temperature from that whioh has jnst deacendod irom the top from boing cooled by contact with the cold gless of the window, whon it is not oold enough to condense the moistare by the removal of which the air would be comewhat praited? If not, how will be prove of the room ?

DR. CARPENTER AND PERSPECTIVE.

[4044.]-How many more times will M. Paris need to be told that perspective is totally unconcerned with What the eye may notice or not notice (p. 119); being
matter of pare mathematics, and dependent on the plance of projection chosen? On a vertical plane, the plape of profection chosen 9 On a vertical plane,
all really vertical lines mast be projected vertical, and no tower not tapering can have ite picture tapering at no tower not tapering can hevo its pioture tapering at
all. Whether its hoight be 1008 or or 100 miles,
hairs-bresdth of hair's-bresath of convergency-is wrong, nor will any
levelled camers make its photograph converge one Levelled camera make its photograph converge one
hairg'-breadth. Tilt the camera npward, and, of course, hairg'.breadth. Tilt the camers upward, and, of course, vertical picture, butbe equally right, rightly viewed. M. Paris shows that he has the very firat notions of perepective jet to begin.
E. L. G.

DOODECMMAL SYSTEMY.

[4045.]-Thovar the last parmox of the anthor of lether 9965 (P . 118) would be far bettor answered by the learned and indefatigable astronomional ingtructor has, by going out of his way and role (let. 8980) incurred, as I contend, the paramount duty of going top the bottom of his geological atatoments, it becomes mine, however imperfectly, to help in the defence againgt "the maltiplier of 119 , to., by $£ 19 .{ }^{\circ}$
Feet can no more be maltiplied by feet or inches, than poanda can be multiplied by poeseds or chillings, In finding an ares of rectangle you are told to marely becanse we have chosen as the nnit of area the aquare whose side is a unit of length (and this not related to any partientar linear onit). That an oblong of 8 inches by 5 contains 15 square inches is only a short way of saying its area is to that of one an inch long and an inch broad as 15 to 1 . Thare is no natural reason for fixing on the square of a linear unit as the superficial unit, rather than the equilateral triangle on the same base, or the circle (which is, perhaps, the most natural). If we used circalar inches, the longth and breadth of an oblong maltiplied would not give the
nnits in its area. But the inahes in the length and nnits in its ares. But the inches in the length and breadth of an ellipse world give ita area exactly, by
mere multiplication. So, if we used trigonal inches, m trigon whose base wai 4 would have ite area 16 etactly; buta square or oblong would not have their areas expressed by the product of length and breadth. Thus lineal and areal measures are as distinct in kind as shillings and degrees of heat, and the connection between the nuits wo choose of each is puraly conventional.

Feet, therefore, multiplied by feet, do not make square feet. Not at all. No more than feet multiplied
by lb. make the mechanician's foot-ponnds. To say by 1 lb . make the mechanician's foot-ponnds. To say
that they " make square feet" is merely a compendious that they " make square feet" is merely a compendions
way of expressing the use of an arithmetical dodge; a way of expressing the use of an arithmetical dodge; a
way of saying ahortly that the number of feet in one line maltiplied by the namber in another line will give a prodnct equal to the ratio between certain areas. But regard it how you will, let feet \times feet make square
feet, then, as 0 eie has told jou, $£ \times \mathcal{L}$ can only feet, then, as oise has told jou, $£ \times \pm$ can only
make square $£$. Till you show us a "square pound," or its worth, or explain to us what it is, and what it will buy, your compatation has no meaning.
Hiad's Higares have plain meanings as units of area. The firat denemination are square feet; the next, twallths of square feet; the third, square inches. But the working by multiplication is never used bat by
eohoalboys. The rale of "Practice" is the only rational and practical treatment of such "squaring
and cabing."
E. L. G.

TO "THE HARMONIOUS BLACKSMITH."

[4046.]-Ir oar obliging friend "The Harmonions" visito the Exhibition early in the reason, perhaps he nill any which of the pianofortes are mont worthy of mandeally inclined, will only be able to spend one day musically inclined, will only be able to spend one day economise time as much as possible. A. B. I.

Fentenine Ioose Window Benihes,-The most convenient way to prevent loose window sashes from rattling unpleasantly when the wind blows is to make four one-sided buttons of wood, and screw thom to the stops which are nailed to the face casings of the window. making each button of proper length to button is turned down horizontally. The buttions operato like 2 cam. By having them of the correct length to cmoved the otiles of the sash outwards agalast the outer atop of the window frame, the sach
will not only be held of firmly that it cannot rattle, brit the crack which admitted dust and a current of cold alr will be closed so tightly that no window stripe will be requised.-Induetrial yonthly.

BEPLIES TO QUERIES.

-. In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS

1. Write on one side of the paper only, and pat draw. ings for illustration on separate pieces of paper. 2 Pat titles to queries, and when answoring queries put the
numbers as well as the titles of the quories to which the repliea refer. 8. No charge is made for inserting letters, queries, or replies. \&. Commerodal letters, or queries, or Taplies, are not inserted. S. No question asking for
educational or scientifio information is answered educational or sclentific information is answered
through tho post. a. Letters sent to correspondents, through the post. 6. Lettors sent to correspondents,
under cover to the Editor, Are not forwarded ; and tho under cover to the Editor, are not forwardod; end
names of oorrespondents are not given to inquirern.
[9440.] - Mathematical Question (U.Q.). The diametor of a circle being one, to inscribe in it a riangle, the rectangle of whose two sides shall be equal to the square of half the base of the trianglo. Aleo to
show what are the values of the three angles of the show what are the values of the three anglos of the
triangle, and of the sector in which the said triangle is triangle, and of the sector in which the said triangle is diameter. Let $\mathbf{A C Q} \mathbf{Q}=$ unity; \mathbf{C}, the centre $; \mathbf{A} \mathbf{B}_{1}$

 AD into $\mathrm{DB}=1 \times$ $x \sin .{ }^{m}=$ altitude of
triangle \times diameter of circle (Eaclid VI, C.). Draw DF perpendicular to $\triangle C$ in the point F; then $\Delta F=A D \times \sin$.
m; bat $\Delta D=\Delta C$ $\times \sin . \quad{ }^{m}=1 \times \sin$.
$m, \therefore \Delta F=1 \times \sin$.

 Arat dodoction. Make
 the circole in K , and dram to $\mathrm{K} \mathrm{L}_{\mathrm{H}}$ parallel to I and and and (Euclid VI., O.) wo have K K jinto K B $=K$ L into $A Q=A$ Dinto $D B=$ equare of halr the base of
the triangle, which wee demanded. Also, let the arc $K E$ be equal to (n), then the side $K A$ will be equal in value to $\sin .\left(\frac{m-n}{2}\right) \cdot 1 ;$ and K B $=\sin .\left(\frac{m+n}{2}\right) \cdot 1$; and A B will be eqnal to sin. $m .1$; or sine of halt the namber of dogrees in the nector; and, lastly, the angle $A K B=180^{\circ}-m$, of which the last named is also the sine.-Q. E. D.-Testamu, Horeham.
[10640.]-A Reason Wanted.-I am, and have been for many fears, accustomed to use a means of lifting beavy weights, such as cabinets of minerals,
chests of drawers, to., with ease, namely by layiug chests of dramers, aco. With ease, namely by laying lifting simaltaneoualy with the breathing; and I learned the method at college, where we placed a man on the groand, and took hold, each of us, four in number, of an arm or a leg. He came up easily While we breathed out, and fell as easily when we
ceased to do so : The breathing ont brings all the bones of the chest into a compact form, and dravs upwards the arms.-GErARD EMitr.
[10664.]-Angle of Reflection and Inoidence. -Dufton, in his work on "Practical Billiards" says the angle of incidenee is the acnte angle made by the incident line with a perpondienlar line touching the cushion. "Billiardist" and "F. N." take opposite views of the difference between the forces of compression and restitation. I always nuderstood that the momentum destroyed in restitntion bears to that destroyed in compression a constant ratio; that is, 2
ratio independent of the intensity of the impact ; bnt ratio independent of the intensity of the impact; but
if this were the case it would follow that in a case of oblique impact, as when one ball is played at another, a oblique impact, as when ono ball is played at another, a
half ball division, the balls should take the eame directions whatever be the magnitude of the momentum, bot it is well known to all billiard players that the
hardar you strike the wider the balls fy apart. hardar S
A. P.
.
[10664.]-Angle of Reflection and Incidence. -"Billiardist, on p. 100, thinks I am in error in atating that the oo-efflcient of olasticity is the force of
restitution dividod by the force of compression and that the co-efficient of elasticity diminishes with increase of momentum. If I err it is in good company,
as I made the statements, not on my own anthority or from my owa obeorvations, bat on what, I think, will be edmitted to be the very highest anthority, although in strictreas I ought to have employed the word valocity instead of foroe. Bat, in the frast place, allow me to generally accepted meaning of the words angle of incidemce and refeotion. Sometimos, however, the angles made with the plane struck are employed instead af those made with the perpendicular, and in my reply to the quarry I anfortanately did e by mistake. Nor, as to the meaning of the phrase co-efficient of elaoticity, I employed it-riz., the ratio of velocity of recoil to valoaity of approach. I thought of using the phrase coefficient of restitation an being more correct, bat did not like introducing any new term. I have since observed, howevar, that Sir Wm. Thomson has proposed that very expremion as being more in accordance with
facts. Again, as to the atatement that this co-effaciant diminisher with the momentum, I have meveral anhoorities; my chief, however, is M. Athanase Dapre, Who two years ago, published the results of his experimentes, being the most elaborate and carefully executod corion of collision of elastic bodies; he oxperimonted with inver of colision of elastic bodies ; he experimented with ivory balls of soven direrent sizes, from lin. to 2 ing diameter; falling on a marble alab from all inter-
mediate heights, from eight-tonths of an inoh to 8 in. mediate heights, from eight-tonths. of an inoh to 8 in. 10ft. long, and allowed to strike the same marble alab. and each other, horizontally in every possible way, from and each other, horizontally in every possible way, froms
distances varying from lin. to 40 in., and, of coarme, velocities in the anme ratios. The number of carefally velocities in the sarno ratios. The number of carelally
recorded experiments is over 200 , and in every inatance recorded experiments is over 200, and in every instance was the co-efficient of restitation less with incroased would not be difficalt to give a good and sumfioiont reason, if my remarks had not already extended too long; but, nevertheless, I shonld be most happy to long; bat, neverthel
have " Billiardiat's" proos to the contrary. I etaped in my first commanication that there was a very great variety of matlers to be considered in calculatiog the angle of reflection of a billiard ball, most of which tona to make the angle of reflection greater than that of inviz., the soft natare of the cuations, which by yialding viza, the the ball to rebound more to wards yhe perg cense the bal to reboand more towards ine perpendicular, a nd, no donbt, is quito sumcient to proremarks and all the experiments with which I My acquainted have been vith hand olaetio bodien greh as glass, steel irory marble to I shonld like mioh to giase "Billiardiet'e" proof that the harder mioh to with which one billiard hall etribes another the bletor is the ratio of recoil to approneb es it is contrert to all experiments with which I am aoquainted.- F. N.
[10731.]-Fastening Escape Wheel in Lever Watch.-I am surprised to ind "Woas Cornwall" fnding fanlt with my reply on page 100. If the job had been sent to me I shonld have done it withoat soft colder. I was infuenced by two considerations in my reply-(1) the wording of " S. H. L.'s" query led me to believe that he had little practical knowledge, and not the skill to make the nicety of at to get the wheal right height for the pallet stones, therefore I gare him a simple method by which he could make a tolerably good job of it; (2) I nent the information in the beliee that it woald suit his particular case. I spoke of the soldering iron becanes I had in my mind some men who When they hare had a verge contrate wheel or lever escape come looso on the staff, have used the blowpipo and softened both stall and pinion. Not a particlo of soft solder in the original composition of the watch. W. C." surely knows that the fasee and stop are
soldered on to the arbor ; that all verge colets (both English and Fo the arbor ; that all verge colets (both and I have often met with balance stafl colets done the same. For twenty jears I have been seeking the best methods of doing all kinds of jobbing work, and I am a learner yet. If soft solder forms the great maingtay of all my operations, I can yet give watch
querists a few practical wrinkles.-A Yozksims Prvor
[11024.]-Stuffing Birde.- "Frank M."" or nay other of our readers, woald, indeed, want to nee their Indgment if they depended on A. J. Sham's information perience and help "Frank M." irom my praoliod ail coagulate, then atnff a piece of ootton in tho month to soak op any moistare; dislocate the wings by tarning them oper the beot to bird will be easier to skin. Make an incicion from the centre of breastbone to vent, jast large enough for the body to pass through; having come to one of the lege, cut the sacond joint across with a pair of sciemore akin to the bend of the knee, and strip the fleet off the bono then take hold of the foot, and drase the bone bank in its place, treat the other leg the same; noxt oat the tail within a gastar of an Inch of the stamps of the feathere, and cat off all tiesh and fot ; then mict a hook in the ramp-bane, and suspend the bird; tarn down the akin cargollly and akin to the ving-joints ditioint and serve same an logs. Whan yon come to the heed skin a little below the eyen, but be very amelal not to out the eyelids; then out of the neak at the poll; tee the body as a gaide, lay the arin on a table, and ort ${ }^{2}$ amall an aperture as pomible at the beve of the etrall and take ont the brains. Remore the eyes and root of tongre, out off any fat that may be on the athin, and apply any prozervative you wish. I nee groand alum four parta, saltpetre and pepper one part, and find it a Aret-aleas preservative. Previons to akinning take a piees of wine of sritable thickness and meacore from the oentre of bill to tip of toen, have the wire twice that length and doable it in two, and point the doable other a hammor ; do not soparato them; point the twisted rome cotion on leg bone and alled an the apertare in akrull with a pieco of cork, thrast the donble end of the wire through the cork, and let it enter the base ol the besk; thon twist come cotton or tow round the wire same thickness and longth as neck; then town semand form a shoalaar on each wiro, roll ap the some thread round it; then thront the wires throogh it, one at each side; then curefally turn the ghin over your artifoial body, in doing 80 place the wing bonem beok of the loga ingide the phan, add a little to is the quired, sow op the apertare, and ax on stand by the pin, and piorm a pioce of wiro same ahape as a bair keep tail up; tie the bill Fith a piese of threed till it sets; then give the bird the natural cot, fix the winhe
in the right position, and pass a thread with a long needvo throagh the hoiry and last joints of wing and ticular attention to the eyer, repince stray fenthers ticular attention to the eyer, repince stray ferthers
with a needle, and brmsh down with a camel's-hair brash.-Frederice M. Roins.
[11045.]-The Bug Bible (U.Q.) was printed by John Day, 1651, with a prologuo hr Tindall. It derives
its name from itg rendering of Palm xei., 5, which its name from its rendering of Palm xei., 5 , which
reads, "So that thon shalt not need be afraid of the boag by night." This euition is rery sarece, and
rarely finds its way into the book-markut.-Juernexrarely finds its
MAN PANTIR
[11054.]-Calculating Contents of Cylindricel Vessels.-"Excclaior" will see that hia formnla is incorrect. I gave the more asua sod simple one.
Had he said, maltiply half the cirenmferene by half the diameter to give the area, he woold have been ripht. give the cabical coutents.-Tural-Kais.
[11083.] -Treacle Beer (U.Q.)-I see this in the list of anangwered querier, and as it is a refreshing,
harmless drink, it shonld not remain nnanswered. It was, and I suppose etill is, a popalar drink in Forfar. shire, and was made in perfection somewhat as fol-lows:-Heat four gallons of water to the biviling point, 2nd dissolve in it four ponnds of treacle. Let it coolt,
170° Fahr., and then add a quarter of a pint of freah 170° Fahr., and then add a quarter of a pint of fresh
yeast, or two pints of new ale taken from the fermentseast, or two pints of aew alo taken from the ferment-
ing tan, and stir briskly till thoronghly mixed. Botule, ing tan, and stir briskly till thoronghly mixed. Bottle,
but don't cork, for from twelve to twenty-four honrs, bat don't cork, for from twelve to twenty four honrs,
during which time the bottles hould stand in a warmish, or rather, not in a cold place. The time to cort is when the yeast rises fongng-like half a finger's
length from the mouths of the bottlea, and the heer length from the months of the bottlee, and the heer will be in excellent condition in two ders thereafter. The bottles shonld be pretty strong, as the quantity of carbonio acld formed is considerable. I am not sare
that the proportions here given are the best : I write from memory of thirty years ago. They will, however,
make a good beer, but any one who will take the make a good beer, but any one who will take the
tromble to experiment a little with varying proportions may make it better. One thing, howover, mast be kept in mind, the yeast or now ale must on no account
be added to the solntion of treacle till the temperature be sdided to the solntion of treacle till the temperature
has fallen to the 170°, or at the higheat 175°.-AvLD Bemine.
M1120.]-A Question of Bight.-J. Barwick mast surely have tanght our lively gatirist "A. J. V. G."
by this time the inntility of anvthing " wrote sarcastic" with the querists Wherevith "ours" has to do. It is aseloss to bo "agape with ppecalative wonder," and satirist says he meant to " "pealk in italics," p. 674) to prevant J. Barwicis regarding the san "as a point," is distinction of not finding "nctioed by any one but myeell." By the way, it was not I who asted "A. J. V. G.', aerionsly "Why he should regard the san as a point."
He will see (p . 20) I merely questioned his laminons Ho will see (p. 20) I merely questioned his laminons
point "illaminating half' his globe. which seems not po have been "wrote sarcastic." Being thas on the anject of sir. Barwick's last qnestions, first, I may as
well proceed to remind him he is makivg no distinction betweon the space whence all rays or the space whenco part of the rays of a laminary are intercepted. In
other words, he is regarding the sun "as a point"oomet wirds, hereof yourcangot hide any withont hiding oll. Shadow is not, ${ }^{\text {as }}$ he tells na, "the absence rayn (or all direot rays) of the lnmirary that
caste the shatom. The spacen whenco a part of its by any one, scientifio or not. There is no aall, in forme, the manecientific have no name for it ; but autronomers and opticians call it "pennmbra." The pecaliar
distinotpess of shadows cast by an electric or hime light arieses from their emallneas, and the consequent hairs, even at some foet distant from him ; which the hairs, even at some foet distant from him; which the
gun diamoter canses all shadows he casts to be bordered hy penumbra, the darker portion of Which, next the
chadow, seems a shadiny ofr, destrnying ita sharpness ; bat realiy the edge of sladow is a distinct line that may always be traced with care (at least when received on a White sarface), while the limit of penambra cannot,
and the outer portions of pennmbra are quite invisible to any ere, even on snow. Hince the moon is not eclipsed by merely tonching our penumbra, nor is anything recknoed as a lanar celinge but her tonchigg
the earth's phadow. the only shade whose limit we can the earth's phadow. the only shade whose limit we can
soe as a distinct line. On the other hand, we reckon as a solar eclippe every timo the moon's penambra touches our clobe, for cvery point in her penumbra
has part of the snn hidden. Her shadow need not touch the earth at all, and foes not in eclipses that are nowhere total-and a majority nf aolar onos are of this
kind - and in the minority, where the shadow dees reach the earth, it can nerer exceed two or 300 miles wide; so that rery few places, in a given centary, have
been in the moon's shadow, those only that have secn a total solar eclipse, while every place has, more than onee, pren in 2 child's life, been in her penambra.
Now Mr. Barwick has only (as I magested to A. J. V. G.." p. 20) to hang up a globe or bear in the ranshine, and measnre how far itt shadow (as diatinct from pennmbra) extende, which ho will find between
$10 n$ and 112 times ita dinmeter, ajd abont three din. 100 and 112 timos ith dinmeter, ajd abont three diameters farther in Jnls than in January, to have the
pronf ho nask, that the farth's ehndow does the same pronit he nats, that the farth's ohndow docs the snme
(and aleo the monn's). The shadow ends at the point
where an ove will have the sun exactly hidden by his hishe, but br nothing a hair's.breadth narrower than makes annalar eclipaea of the san, and ret sometime total ones, he knows that her shadow may or may not be long enongh to reach the earth, according to it to har own monthly rariation of distance from an, which a greater than onrs or hers from the san. If he admitt
hen that tho earth is less than 4 times the moon's diameter, he mast admit that "oar" shador, thongh dismeter, he mast admit that "oar" shador, thongh farther, can never exteud above 4 times as far. The
pruumbra of even tho mallest thing (which is what he falsely calls " shadow ") extonds, if he will, to intinity. Wo are in Mercury's penambra wheuerer to see hin the sma. Now, retaruigg to bis firat sabject, what can ho rocan by $11: 0$ fect per second being the "one handred
 part! Bat if air and ether are ench composed of atoms and one or other is, but we have no sure grounds for
raying hoth ara) we have nothing here to inform us which atoms are nearest. If, however, you take a bin cobe of air. and let it expand iuto 8 sach cabes, or a foot cobe, Mir. Barwick will grant. probably, that wo may be quite sare the atoms (if any) are now jnst twice a piar npart. Well, this can obriously be done in gas pipes or sewers long enough to try experimentally at
what rates sonnd may reach their end. This has been what ander Paris by M. Regnanlt, with air varring in density as 5 to 1 , the distance of atoms, therefore, as $\sqrt{ } 5$: 1 , or about $19: 11$, and the velocity of sonnd was nst the same at a given temperature. At different degrecs in heat, thong with the rame namber of atoms Long before this experiment (which was repeated in various pipes, Mom. de l'Acad: tom. 87, pp. 113, 171 551). clisabers on the Alpa, as Stampler and Myrbach, 822, Bravais and Martens, 184t, had measured the as dense gan repors whe the air is only ahoat hal been found. Heat or cold alters the rate, thongh the atoms be at one nualtered distance; but distance of atoms altorn it not at nll, at a given temperatare. Lastly, let Mr. Barwick observe that long before any of this had been tested by experiment, Sir Isaac Newon had predicled it all mainematicall, from the mere mechanical proporties of air, as settled in the wellhown "Law oi Hariote. Therefore, what J. Barwick n impress . E . little any of ns know of what air and other matter is we may know it is not a number of things kicking one Newton knew rather more of it, even two centaries ago than Mrr. Barwick in 187a.-E. L. G.
[11120.]-A Question of Sight.-Trndall asys that, according to Wertheim, sonnd travels through ture of $20^{\circ} \mathbf{C}$., quickening to 17,336 feet at $100^{\prime} \mathbf{C}$. Mr. Barwick, p. 128, gives only 11,090 fect per necond. I hare very little doubt which is right. but Mr. B. will probably state his anthority.-Sacl Rymes.
[11100.]-A Question of Sight.-Mr. J. Barvick states that sound travela through air at a velocity of 1, 180 feet per second, aud as many readers of " ours" may not have seen the acconnt of some late experiments on that subject made at the Cape of Good Hope, I subjoin the resnlt. Farther particulars, and the details Magazine, Vol. 48, No. 294, pp. 153-154, for Fobraary, 1873, on "As Experimental Determination of the Velocity of Sonnd," by J. E. Stone, F.R.S., Astronomer Royal at the Cape, on Febraary 37, 1871. "There were 38 observations, and in the redaction of the
equations, the co-eticient of elasticity of the air ander equations, the co-ethicient of elasticity of the air under a constant volmme (that is to say, the ratio of the in
 known quantity, as well as V, the velocity of sonnd at
$32^{\circ} \mathrm{F}$. The rednction of the equations furniahed by $32^{\circ} \mathrm{F}$. The rednction
the observations gave-

$\mathbf{V}=1030 \cdot 6$ feet por:socond. $a=0.0019$

Regnant's value of a being 0.0030 . There appeared to be but litt!e difference between the residal orrors as dependent on the motion of the air. The author
groaped the residnals into two classes, according to grooped the resi nais into tro classss, according to appreciable diference in the velocits as dependent apon dampnea.
[11129.]-Greek "Opsilon."-Nobody pretends ounds trasiteration is meant to convey the trne historical and matter of graminar, and after 2000 years, admits, I must again insist, of no innovation whaturer
E. L. G.
[11166.]-Area of Segment of Circular Ring. on p. 12. P, the most curced of the forms I remarised hat "Thankful's" se"mment misht hare had. I shonld In tho brondest senso, auything is a segment that is in tho $\begin{aligned} & \text { and, whether by one straight cat or two. It is not }\end{aligned}$ soctor unless the two cuta are directed to the centre, and there being no hint, either in the query or draw. an' bach conclusion. I ther fore gave "Thankfal" a rule equally applicable whetiner he meant "sector" or
[11196]-Turning Porpendicular ShaftBamael Smither's sketchas A aud B woaid possibly mis Aend an nurracticed hand. Tho wheels shown in sketch
 close sketch, plan, sud cleration: werether pat 2 h he ha shown them, they would not drive, auless thay were a

rery great diatance apart in comparison with their dismeters. My siketch shows the rolative positions of the pullegs to lead the belt right. If the shafts are required to move in the opposite direction, they wonla
havo to be reversed in positions to lead the belt right. Tubal-Kans.
[11208.]-Incubators.-IIy only wish was, if possible, to find an incabator that would hatch to a oertainty, and I thonght "Shylock's" plan would not, as there is mo hoat over the eggs. I have got soveral oxpensive patented ones, and no to a certainty. Brindly's, of Derby, does it the neareest, and the heat there is conveyed in copper pipes over the top of the egge. I have this night pat egis in ill give onbator of my own make, and if 1 succeed 1 will give you a drawing of it. I have eggs above and bolow the unp of the eqge, but not touching them. I have from $1,500^{\circ}$ to 1,800 eggs per year, many of which I try in my incabators, and I muat say spoil. I should be glad to hoar if "Hatoher " got an
he made (Cantelo's).-M. O.
[11229.] Stereotyping.-I am ander the impres. sion that the mode of stereotyping with the plaster promat in gith mast oil his type woll, and remove the enperinity with plester mired puther thinly porr it on, When dry more and bako in an oren pornding the pest on ere move and bake in an oven, btanding the gast on edge. tray with lid cepable of being sorewed domm and ray with a ha capable ol boing sorewed down, and with notched edges fitting the pottom of the tras plasteched edges auting the bottom of the tray. The face downeards on the flonting plate at the bottom of ansting ; the lid which has pieces cot off two casting. in position requisite thickness of metal for the plate. The whole is then planged into a bath of the molten metal, which flows in through the holes at the corners, lifting the
 foating plate sig the as of blat of the notches metal gradaaly spraads ovor and ingo theres and the in the plationg a proce procens is not an aasy one ior an amatoar; the plaster casts require a high tomporaluro to bake them, and line; if "H. W. R." wishes for detaile I will help him, or posgibly some of " onr" friends, who may hare suocoeded in getting good casts with more simple apparatus, will come to the rescae.-Saul Rymea
[11226.]-Concertinas.-I do not know what is the peculiarity of a "trio" concertins, bat a "bass" is merely an instrument snpplied with reeds yielding bass tones instead of the asnal treble onos; a "piano" is one with soft-speaking notes, and a course, similar in construction to the German concer tina and are as easy to play. The only thoroughly chromatic concertina is the Euglish.-E. M.
[11283.] - Marine Engineer. - Presuming that E. W. B. wishes to determine the proper velocity of the piston I copy the rule given by Templeton : Mul the steam is cut ofl by $2 \cdot 3$, and to the product add $\cdot 7$. Maltiply the sam by the distance in feet the piston has travelled when steam is cut off, and 120 times the square root of product will equal the proper velocity of piston in feet per minate. In condensing engines the upproximate velocity of piston with atroke of 22in. woald be about 150 ft. per minule.-E. M.
[11237.]-Four-Wheeled Vehicle.-Your carriage woald be drawn easier np hill with large wheels than with small ones. The reasons for which rou will see fully gone into in the number of tho
Mechanic for January 12, 1872 (reply 10054).101, Pank-gtreet.
[11255.]-Farm Fsptate Agent's Duties.The dutios of an estate agent (read the "General TextBond for Architects, Enginears, Sarverors, Land dgente, Solicitors, and Others," by E. Krde; and for Landowners, by ${ }^{\prime}$. Ry Robert E. Brown) being thes 80 maltitudintans, it is evident that the person thas o manititadinoas, it is evidont that the person audertaking them mnst be a man of high and general qualincations, such, indeed, as the most liberal, pracfirst place it most be his basiness to make himself thorongbly acguainted with the property, and with
things and persons connected with it. He mast superintend and conduct the whole of the work that is done on the eftate, give all orders himself to the sabordinate officera (each foreman in every department), and
see that each performs his duties. He ought to have a zee that each performs his duties. He ought to have a
thorongh knowledge of the principles and the best thorongh knowledge of the principles and the best practice of good farming, to enable him to encourage the system of calture best calcalated for the soil, the
climate, and the peouliar circumstances of the eatate. climate, and the peocliar circumstances of the estate.
The best practical book on farming I have met with is "The Book of the Farm." by Henry Stephens. Also read Morton's "Cyclopædia of Agricnitare." and "The Journal of the Royal Agricaltaral Society of England." For a general knowledge of agricultaral .chemisitry and geology, read the books written by
Jsmes F. W. Johnston. Of arboricaltare, or the raising James F. W. Johnston. Of arboricaltare, or the raisidg
of foreat trees, planting and forming new plantationg, the general management of old woods and plantationa, and of different descriptions of fences, read the hook written by John Grignr, The Narseries, Forree, N.B.; "The Forrester," by James Brown; "The Traneactions of the "Highland and Agricultaral Society of Scotland;" and "Transections of the Scottish Arboricnltaral Society of Scotland." Of surveying for making plana of roads, nep plantations, drainage, and compating the contents of pieces of land in exchange betreen estates, farms, to., for generalimprovements; on architecture, for the making of plans for farm baildings, cottages, sce., making specifications and estimates of all buildings and all other works on the estate, see the "Book of
Farm Baildinga : their Arrangement and Construetion," by Henry Stephens and Robert Scott Barns. Also, in the above-named books will be found a lot of nsefnl information on this matter, and the valuation of landed property, of the moil, honses, woods, minerals, manorial rights, royaltios, foe farm rents, tenant-rights, de.
He has, moreover, to let the farme, cottager, dc, to He has, moreover, to let the farms, cottagen, tc., to
the tenants under such conditions as shall indnce them the tenants under such conditions as shall indnce them to caltivate the land to increase its productivenese-
this ehoald be his constant aim. Collecting rents : This ghoald be his constant aim. Colecting rents: This is a very simple matter to do when the monev is
forthcoming-see the above-named books. A little knowledge of law between landlord and tenant is quite necessary. Read "Every Man His Own Lawfer,"
Dixon's
Law of the Farm," Rouse's " Practical Mixnn's "Law of the Farm," Rouse's "Practical
Man," and Arohbold's "Landlord and Tenant."Thirtien Yearg' Agent.
[11294.]-Dividing Metal Disc.-So simple a problem does not require an elaborate answer. Take the number of equal area smaller dises to be cat out of the same. It would be, $a=\frac{D^{\bullet}}{-2}$ ares of the several discs in circular inches; then for the smallest disc $\sqrt{ } a-d$, the diameter in inches, the next size $\sqrt{2 \times \times}$
[11299.]-Tarpaulings for Railway Carriages in the Tropica.-I have seen a material invented bs Spill and Co., Bow Commen, which is as pliable as a glove, and alwaya remains so, not being affected by
either extreme of temperature. It is the resalt of twenty years' experimentr, and the amicsble coo-operatwonty years' experiments, and the amicsble co-opera-
tion of two substances hitherto as opposed as fire and Water. It is in use on several English, American, and Indian railways.-Amateve.
[11818.]-Setting Lathe.-To F. Huve (additional). I don't think the serews between tho beds are intended to be moved; bat if they are, coald you not make a mark to indicate exactly how far you have to tapering is merely a hardened cone-point screwed into a hole in the collar-plate, or into a separate plate of in the collar-plate itself, of course taking care to keep the centre at the right height, ard set the head ap with a hamaper. Screws cnt taper with this plan woald not be dranki if, as well as palling the back centre over towards you, you also alter the mandril.head 50 as to
be truly in line with the back centre itsolf. Bat taper screws (true onet) are rarely, if erer. wanted. I think if I had to ase your lathe I shonald take out one setscrew or both and fit in a parallel piece of iron (or
brass) on each side to regnatate the position of the mandril-head, and the said pieces of metal need only be (say) lin. square or less, and if they had a rivet or stad sticking ont fin. on one side, which yon conld insert into the old screw-hole just when yon are patting the head-stock back in its place, they wonld not drop oat. Don't pinch your fingers in doing it. My mandril-head
is held by \& thin vedge on one ide.-J. K . P.
[11839.]-Astronomical.-It is asked "why does the polar star always occapy the zame place when the earth's axis, by reason of its orbit, changes position?".
The polar star may occupy the same place as compared with other atara, bat it does not occopy the same place as compared with the Pole, or rather the Pole does not occupy the same place as compared with the
star. In the year 1790 the Pole and the star were star. In the year 1790 the Pole and the star were
about $1^{\circ} 49$ apart; in 1839 the distance between them aboat $1^{\circ} 49^{\circ}$ apart ; in 1839 the distance between thema
Was about $1^{\circ} 33^{\circ}$, and now it has decreased to about $1^{\circ} 22^{\prime}$ only. Mr. Porter may consalt with advantage
apon thia subject Sir J. Herschel's "On Ondines ot npon thin subject Sir J. Herschel's "Ontlines oo
Astronomy", (s new edition of which, I see by the Enalish Mrchanic, has jast been brought oat), and the astronomical vol. of Orr's "Circle of the Sciences," and, donbllees, other works on astronomy, but 1 mention these becanse I happen to nnow of them. The star does now appear to describe a small circle in the
heavens once in twenty-foar hours, but this arises from hearens once in twenty-foar hours, bat this arises from
the rotation of the earth on her axis, not on account of her reralation in her orbit.-C. W. M.
[11854.]-Fire Balloons.-It yonr correspondent, William McDonald, refers in his question to Are halloons, the proper material Yor a fire balloon of 20 ott. in circumference will be 121b. doable crown paper,
that is paper of doable crown aize, each theet meathat is paper of doable crown size, each sheet men-
maring 80in. by 20in., and weighing 12lb. per ream. To infate it, a cotton pad soaked in spirits of wine is rastened to the jnnction of two crose wires arched uprards in the moath of the balloon, and the balloon
iteelf mast be sapported by a loop at the top fastened itself must be supported by a loop at the top fastened
to a head line, so as to hang 5 ft clear of the gronnd, to a head line, so as to hang 5ft. clear of the ground, and fastened so that by pulling a string the attach.
ment can be cast loose. The balloon should be held ment can be cast loose. The balloon should be held ont above the mouth by two persons, the spirita of wine
lighted, and when the balloon is thoroaghly infated lighted, and when the balloon is thoronghly infiated
the atring is palled and the balloon let go. It is genethe atring is palled and the balloon let go. It is gene-
rally the fanlt that they are let go mnek too soon, and rally the fanlt that they are let go mnch too soon, and
before they have power to rise rapidly. before they have power to rise rapidly. A balloon of
the size mentioned will require some small weight as a car to mentioned will require some small weigh th month should be about 12 in. or 14 in. in diameter.J. F. E.
[11887.]-Sundials.-" Philanthropist" mast oxcuse my mestioning it, but it appoars to me that his reply to this query may mislead some persons. That edge of the gnomon which casta the shadow which indicates the time on a sundial mast be parallel to the enrth's axis, and therefore, although in an ereot oorth dial it shonld form an angle with the plane or lace of the dial, equal to the co-latitude of the place, yet in a horizontal dial it should form an angle with For a ple of the dial equal to the latitade of the place. the same for hathg 45° of latitude, the angle would be may be drawn upon a plane in any position, bat the sbove rale for fixing the gnomon mast be adhered to.C. W. M.
[11898.]-Metallic Farmonicon.-What does " Zoo Andra" mean (in his reply to query 11893, p. 1NB) by " aimilar to an inverted aquariam," and then be partly filled with a solation of allam"? Does he mean an "inverted fern case," or what ?-TUBA.
Waspe]-Stinging of Bees, Hornets, and Wasps.-Take a pinch of tobacco, damp the palm of your hand, work and rab the tobacco antil you get the jnice well out, then rab the spot where stang well with it for five or ten minates. I have fonnd this a
perfect cure for bee stings, and ased it with success perfect care for bee stings, and ased it winn accos
only last Sunday. Let lhe atinglbe withdrawn as soon as possible.-S. W.
[11409.]-Canine.-The dosing with Dr. Rooke's Oriental Pille, recommended on p. 103, shoald be "for aboat inree
Amate.
[11415.]-Scarlet Ranners are searlet ranners 1i.a., there is only one searlet runner, a variety of tall prowing or ranning bean. There are white ranners, Painted Lady, and black-padded or Negro runners;
there is also so-called giant variety of the scarletthere is also so-called giant variety of the scariet-
not a bit better than the common scarlet as grown by bundreds of cottagers, but more than doable the price Sow as soon as you like, now; dig deep, at least 2 ft . pat in rotten dang if you have it ; mako a tolerably Arm trench or drill, lay the seeds 6in. apart at the hottom, and cover them aboat 2 in. When ap about If the soil is well dug, they will not require water in ordinary weather-i.e., watering at the root-bat they oraidery wenthor-i.e., watering at the root-bat they give them all the soap-suds you can get-either orerhead or at the root. Stop them at 5 ft . high, or some little distance before they reach the top of your supports Try a row as dwarls by stopping them at a foot, and pinching the growing shoota alterwards. If you have
no manure ready give liberally of guano or artificial and they will pay you handsomely. Yoar bloome fell and they will pay you handsomely. Your looms fill (nr rather scratching), or want of the ayringe.- BAUL (nr rathe
Rrugh.
[11423.]-Surgery.-Having snffered from a thing very similar-viz., a carled shaving passed with the graver, when engraving a stoel plate, into the fore part of the middle joint of the foretinger; and in catpiece sitherman biteel plate up that was hard, a piece either from the chisel or plate struck into the a pump drill it slipped and entered the ball of mv thamb and broke abont three-sixteenths of an inch off and left in behind, all of which were sore troubles for
four or five years. The former wes the canse of the lonr or five years. The former wes the canse of the other mischief. The severe pain in handling things made me clumsy. It is only dangerous in boring it
abont trying to pet it ont. The two former do not abont trying to ret it ont. The two former do not
tronble me, and althongh entering on the ingide have worked along to the oatside just ander the frat joint They never festered or gathered, but a hard coro, like a wart, kept growing ont of the place where they entered for a long time, which, when touched, was exceedingly painful, which led me to cut and boro it
aboat to no parpose. You mi-ht as well look for the about to no parpose. You minht as well look for the
article in a load of hay. If it appears inclined to gather take a strip of lint or a amall portion of cotton wool, nnd place npon it wet, and keep it constautly moist. rlace orer that a piece of oiled silk and a finger stall. This is the best form of pooltice, and will greatly
assiat the opening and the ejection of the enemy. Do assiat the opening and the ejection of the enemy. Do not apply erery nostrum, drawing salve, or plaster in
snccession that is recommended, for thereby mavy lose their limbs and frequently their lives.-JACE or ALL Trades.
[11480.]-Harmonium-1 am " masician and
harmoniam pan (there are no channels in the resarroir) "Pronld be pradastod the whole way through; bot "Practical Horologist" will excnse me if I tell him he is evidontly not a practical harmonium maker. What I wish to know is whether in practice an inequality of
(eay) 1 1-64th of an inch in catting the channel frame for (say) 1-64th of an inch in catting the channel frame for
divisions makoa any material difference in the tone of the note the anequal-sized channel is intonded to give 2-K. T. L.
[11442.]-Old Wives' Science.-If "A., Liverpool,", jnst glances at Dr. Brewer's "Gride to Scienco," question, why does the san shining on a fre mate it dnt and ofton put it ont, is, becargo the air (being rarefed by the sunshine) flows more alowly to the fire, and secondly, the chemical action of the san's rays is detrimental to combnstion. The sun'e rays are composed of three parts, lighting, heating, and actinie or chemical rays. Thene latter interfore with the process of comburtion.-Whe Prt.
[11442.]-Old Wives' Science.-With rempect to reply on page 105, I beg to say, not only for "A.'s"
information, bat aleo for that of B. Bottone's, that information, bat nleo for that of B. Bottone'a, that
there is vory good foundation for the statement that there is very good foundation for the statoment that
the aun shining on a fre pats it out, and the following are the only trae and propar reasons:-1. Becsuos the air (being rarefied by propor reasons:-1. Becauso the to the fire 2 The the suashine) fows more , ilowly is detrimental to combuction. The the san's raye composed of three parts : lighting, heating sand ctinie or chemical rays. The two latter intarfere with the process of combastion. 3. The air howi more siowly to the fire for being rarefied, because the greater the contrast botween the air in the room and tant which hae been heated by the ire, the more rapid will be the carrent of alr towarde the Aro. \& Because rarebed air containg lese oxygen than the shme brik of condensed air (or air that has not been rarefied by the hoating inanence of the sun's rays, in other worde shaded, and therefore condensed). 5. In frosty weathe the sir being more condensed by the cold than at other times, as indicated by the high readiags of the bero meter daring a frost, supplias more oxygen than a similar volame of warmer atr, and consequently falle more rapidly into the place of the hot ascending air,
and as we all know, makes a Are barn very brighlyand Ω a we
Scienck.
[11444.]-Burating of Compreased Dir Re ceivers. -The effects would be the same as thome of steam, except the scaldings. Too large for any parpose. A cories of egg-ended recefvers, 28 t . diametor, 108 t long, would be far better.-Jıcz or All Thines.
[11450.]-Adjusting Equatorial.-"Inquirer's'. latitude is $55^{\circ} 50^{\prime}$, and as is Ursw Minoris is $7^{\circ} 45^{\circ} 42 \cdot 4^{\prime \prime}$
from the Pole, it is plain that his circle ahould read : from the Pole, it is plain that his circle ahould read :

+ ref.
$\overline{61^{\circ} 86^{\prime} 15^{\prime \prime}}$ north declination at the
instant of transit, or
$-90^{\circ} 36^{\prime} 15^{\prime \prime}$

N. P. D. $={ }^{288^{\circ}} \mathbf{2 3 ^ { \prime }} \mathbf{~ 4 5 ^ { \prime \prime }}$ S. P. D. $=151^{\circ} 86^{\prime} 15^{\prime \prime}$

-Thomas Buchanas.
[1451.] - Weight for Safety Valves. - If E. Naylor had the time and means to look if past
vols., he woald find sufficient information on the vols., he would ind sufficient information on the
above. The following is an answer to his specific question:-Obtain a weight 9jlb.1 which at 16in from fulcrum will give $39 \cdot 961 \mathrm{~b}$; ; at 14 in . from falerum rill give 140 ; at 12 in. from falcram, will give This is ; ab 10, in. from likram, will givo 24.84 h This is worked out according to Templeton. The affec ite weight of lever is correctily obtained by maltiplring dividng in inchas by its weight in poands, then diviang th to point of rosistance. Thus a 60 la . lever, $15 \frac{1 \mathrm{lb}}{}$
 ment
[11457.]-Motive Power for Amateurs.-The poen shown is of no practical use, except to watto power by firiction, and possibly to render the motion is the: way this to the centre of gravity of the suspended weight, to wonld be, in all ordinary cases, the number of vibrations per miunte. Better apply your power, whatever it may be, in
TuBaL. Kans.
[11459.]-Printers' Ink-The recipe given by "H. B. E." (p. 130) is for common red ink, ngt
printers' red ink. $-\Delta$ BARRIster.
[11400.]-The Beehive.-In my reply to Mr M_{4} Godden I said that glass hives were dangeroas thing in a honse, bat I did not mean that they were likely tot go raviog mad and bite any one. The particalay by which the bees might be let into the room, perhaps, among nervons ladies or children. On that ground ouly I consider them dangerons, and recommend that they "Philo's" kipt nnder cover, for accidouts will happeng certainly; bat if his bees ever get loose he will tis some difficalty in getting then back to the hi ho unless he be an expert. The reason the bees go inhir. the conservatory is not because they see the hive the to
or their fellows, bat becanse there is some attrac aroma, probably from the bive itsolf, which pervemith
the closed conservatory, and becomes palpable to the beea immediately on its being opened. Beos are "led by the nose" into all sorts of places, but glass houses bother them amazingly, as they do not perceive the difforence between an open window and a closed one, and so they beat themsolves agaiast the glase until Many stocks are mach injured throngh being in proximity to greenhousos from this cause, as they are induced to enter them by the aroma from blossoms thersin, and perish there, and this in early epring
canses great lose.-C. N. AbBotr.
[11480.]-The Boehive.-I think no farther proof in needed to show. where the honey comes from than the diversity of its flavour, that from wild thyme, hosthor, and Narative Mind.
[11461.]-Rowiving Black Cloth Coats, seo.Black galle, braised logwood, copperas, sumach, foz, af each, vinegar, 1 pint; macerate in a close vessel
with heat for tweaty-four hours; strain ofl the clear

 [11461.]-Reviving Blaok Oloth Ooats, sec.and mixtares ; il you soe Indices you will find revirers and it is nap you require to une urine and ox gevilivers; hard brush, a tociel brash, or a brusk made of a piece of worn cotton coral. It utrikes me that they have had of worn ootton cord. It ntrikes me that they heve had them presentable. Jacie or All Tradse.
[11485.]-Problem-Mr. Tonkes appears to have "miapprehended this areay in hia letter (4004, p. 126). "Puzzled" does not say that the traing mote with equal but with uniform velocitiea. There is very little
aifenalty about the question. I see no answer to it, aifonalty about the question. I see no answer to it,
howeva, except Mr. Tonkes's rather weak criticism. The united velocity of the two trains is ($92 \times 84=$) 176 ft . in a second and a half, or 117 fft . per second. Now, the traine more with velocities such that one
runs over 176 ft . in eix seconds of time less than the runs over 176ft. in eix seconds of time less than the
other, or, in other words, moven with a velocity other, or, in other words, moven with a velocity
$\left(\frac{176}{6}=\right) 29$ ft., a second greater than the other. The united velocity of 117 fft . per second must, therefore,
be divided into two parts, of which one mnst exceed the be divided into two parts, of which one mast exceed the
other by 29$\}$. By a simple equation it is found that these parts are 73y and 44, whence the velocities of the trains are 73 fft. and 44ft. per second, or 50 and 30 miles an hour.-V. B.
[11465.]-Problem. -The trains move at the rate of 176 and 50 miles respectively. Thich is passed in $1 \frac{1}{4}$ sec., E rato of length per second, and $29 \cdot 3 \mathrm{ft}$. per second $=\frac{176}{6}$.

$\begin{aligned} b=44 \mathrm{ft.} \text { per tec. } & =30 \text { miles per hour. } \\ a=73 \cdot 3 \mathrm{tt} . & =50 \quad " \quad "\end{aligned}$

-Thomas Buchanan.

[l1465.]-Problemn-Mr. Tonkes says (p. 136) that this problem (p. 80) is badly propoanded. I consider it correctly worded and easy. First, take what is given
last-viz., that the fast train passes the other $92+84$
 foet in six Beconds, which gives ns 298ft. per seoond as the differeace of their speoda. Next, When they meet, as in the beginning of the question, they will passe each other in the same time, as if one stood still and the
other ran by with the joint velocities of both. Let the othor ran by with the joint velocities of both. Let the volosity os the slow one he v feet per second, then that
of the fast one is $v+29 \mathrm{~g}$, and their joint velocity $2 v+$ of the rast one is $v+29$, and their joint velocity $2 v+$
2t, and at that speed 176 f . are by the question sorered in $1 \frac{1}{2} \mathrm{sec}$, or $\frac{178}{2 y+29!}=1 \frac{1}{2} 800$, and $v=44$, which is the relocity of the slow train, and $44+29\}=$ 791 that of the fast train, or 30 and 50 miles an hour respectivoly. Mr. Tonkes has missed the signitication the trains, though different, remain analtered, while the "same" means that in the second half of the problem "aach train has the eame velocity as la the first hall.jach trai.
[11171.]-Bows.-Nothing ann equal Spanish yew. Its return when loosed has that excessive velocity which givon the greatest vigour to the arrow's fight. Hickory, They and Amerioan elm are very tough, but very eluggish. othervise in bow-making. Lancowood is very good when backed with any of the tough woods. I made some frenty years ago, and when shooting with them for Chenhire against Warwiokshire, could have sold them
for high prices. They mere made of bright ooloured for high prices. They were made of bright ooloured
lancewood, backed with hickory. After being shot with 3 day or two till they remained a little bent when an. strang, I cat out a piece of the lancowood from the centro of each bow, about 4 in . long, right through. In place of these two rather longer piocess were glaed in,
throwing back the horns of the bow. They proved in throwing back the horns of the bow. They proved in
this otate excellent target bows, and very durable as mell as handsome.-J. M. TAYLOR.
[11473.]-Weak Volce.-Practise singing daily, standing and leaning back "Os homini sablime." The gamain ing siatained notes sang creacendo and
diminuendo will be frund asefal. Over-exercise of the rocal organs is injarions. The rale "Ne quid nimis" is almang good as a check to enthasiasm. In thank Mr. Birt for pointing out my neglect of parallax. What I golte abore the horizon when really below it, is appae of golto abote the horizon when really below it, is trae of
parallax of the moon in a quantity far exceeding re (parallax pashing down and refraction raising op-the balls and bears of the uaperterrestrial exchange)-will nearly connterbalance each other. I have seen a oase rife batt refraction at the horizon, when sn invisible church, equal by estimation to four degrees.-Thoma BUCEANAN.
[11478.]-Pattern Making.-I know of no work on pattern making. To become a pattern maker you must have some idea of moulding, and it is only to be
learned by practice. If there is any special patterns you lequire instructions to get ont, there is not the yoa dequre tatracho you will find assistance in "our" columns.-J」ce or All Trades.
[11479.]-Tempering Outting Tools.-To pre vent a lead bath from becoming oxidised when heated for such purposes is out of the question. Colza or Gallpoli dila and Ginseng oll are the best both for hardening and tempering. The raw oils are best for
hardening, bat they must be well boiled for tempering hardening, bat they mast be well boiled for tempering.
Hare a wrought-iron cistern set apon some bricks the Hare a wrought-iron cistern set apon some bricks the size you require for your job, and a cover to at, in ease
it ehould fre, which it will very readily at that heat and your cietern not more than two-thirds fall.-JACE or All Teades.
[11481.]-Organ Brilding.-It does not matter be so firmly fixed that back and siad, but hey mas other. If "Aleph" is in any difinoulty about what I other. already written apon, I will be glad to answer any question, but if prospective difficulties, I must say "wait." I am sorry I shall not be able to continue my lettora for a few weeks, being confined to bed with a broken leg, and 100 miles from home.-J. D.
[11488.]-Dyeing Parohment.-Have you tried Judson's dyes ? To prevent them being affected with water or grease, nse a weak varnish of shellac ; one ounce of shellao put into a pint of spirit, and
shaken up for a minute or two and poared ofl answers shaken np for a minute or two and poared off an
well for auch parposes.-Jace or All Tandes.
[11484.]-Manures and their Valaes.-Johnrton's "Manaal of Agricaltaral Chemistry," or Sibson's "Agricultaral Chemistry". (pablished by Rontledge), preferably the former, will afford the information Mr. Richardson requires. Johnston's lectares, particalarly the appendix, would be nsefnl, also the articles on "Agricaltare and Manares" in the Encycloprdia Britannich, if these are available. As regards information to a beginner on the cnitivation of a lew acres of land this conld not readily be given withont some knowledge of the nature of the soil. Cannot the qnerist scrape acquantance with nome bncolic neighboar
GLAzIRR.
[11485.]-Florentine or Brown Bronze.-No. These bronzes will not do for tinwork, but a red bronze can be given to tinwork with a very small portion of sulphate of copper dissolved in water and applied. It can be done over after with blacklead and polished with a soft brush, and lacquered with dark or ligbt lacquer, as the case may be, and if the tin ware is wet all over with disated muriatic acia bofore it will give it to strength of bolations.-JACE or All Trades.
[11487.]-Preventing Rust.-Take an old stock. ing foot and danb it over with a mixtare of four parts beeswax to one of olive oil, and one of turps, molted, and keep in a pot for zse. When the above is rell
danbed orer with it your wipar will last some time danbed over with it your wipar will last some time
without a renewal of compost. After well polishing without a renewal of compost. Artor well polishing
vour work, well rab with the above rabbet.-JACK or your work, we
Ar. Trads.
[11488.]-Coating Wooden Concrete Moulds. it with a strong solution of mosp.-JLCE or ALL Tradge.
[11491.]-Rid Dressing.-If black, dress the face with a strong decoction of elder bark, afterwards With a docoction of nut gall and acetate of iron, fnish cloth with a few drops of olive oil apon it.-JAOE O or ALL TRADES.
[11493.] - Indiarabber Overooat. - Get nome pare rabber and diasolve it in other to a thick paste, and apply. The other will soon evaporate and leave
the seams sound.-JACE or ALL TrADEs. the seams sound. -JACK or ALl Trades.
[11497.]-Removing On Stains from BllHard Cloth.-Use Anely-powdered Bath brick and a Tarm ir
[11500.]-Welding Cast Iron-Should be welding cast steel. Two parts silver sand and one of sulphate of lime, or plaster of Paris, which is the samo, will do for the job. Heat your artiole and dast it with the above, place in the fire again until you get a good heat,
and it will wold. JAck or Alr Trades. and it will wold. Jace or ale Thades.
[11505.]-A Wooden Pump.-Pat in a motal working ohamber or barrel in which the bucket shall work, it may be either of copper, brasa, or cast iron. -TOBAL-KADF.
[11510.]-Defeotive Sewing Nachine. - The brush is there for retaining the loop until the point of hook has entered the next descending loop from the needio, and should then become free. I expect the spool not having anything to sapport it, drops down botweon the hook and ahield and jams the thread; it
tennon baw Ale, and grinding the shape and asing a block of wood for a rest, trin it ont in its place. have ou
Tradge.
[11511.]-Rabber Tires.-I oan asasare "Constant Reader "that rubber tires do not "dram" harder than ron ones, but easier over rough roads. On smooth suction between the tire and the road, which querist will find if he attempts to lift the wheel from the road If there was, I do not think it woald be an obstacle to a rolling motion. An indiarabber tire easen the draught in lifting the the vertion motion. Whatever force goes is, in rertical motion-is a dead loss to the doina horizontal motion. The analogy loss to the desired and soft roeds does not hold good Theor indiarabber and soft roads does not hold good. The parfect olasticity oonsumed in compressing case altogether. Force is given ont to the wheel when it in restored to it is again tata and it then urges the it offered an obstacle to the forward motion at first. Mad remains in a compressed state, consequently there work done, and force consumed.-101, PARE-RTPEE
[11518.]-Refining Animal Oll for Sewing Machines.-This can be done with areak mizture of salphuric acid and water, after with potantr or sods,
and fnally with lead ahavings or zinc chipm. Jack or and fnally
AnL Tbades.
[11518.]-Refining Animal Ofl for Sowing Maohines.-Tte two chief imparities in oil for delicate maohinery are margario and stoario acid. For gon locks and, I believe, for watohmaking also, There the course, to begin with, the parest aeggging, take, of oil, pat any quantity in a wide-monthed bottle, well corked, and sorape into it a quantity of bright, soft lead ohavings, nearly hall ail the botile with the lead, which mant be bright. Cork and expose to bright sunshine for a fortnight, shaking the botule every time you go near it. If not perfectly clear and limpid at
the end of that time, poar off oil, scrape in fresh quantity of lead, and repeat procesa. Margarato and atearate of lead are formed, and the acids removed from the oil.-M. A. B.
[11514.]-Brunswick Black.-Boiled oil and asphalte,
Trades.
[11514.]-Brunswick Black.-Fase 21b. of asphaltom in an iron pot, add of hot boiled linseed oil one pint; mix well, remore the pot from the fire, and when cooled a little add of oil of turpentine tmo quarts
[11518.]-Veneering.-Level the ground work tooth, and size it, wet the veneer on the top side, glae the other side evenly (which is the great secret in veneering clean), work the glae out with a voneering hammer. It very large wet the veneer again and rub on a hot flat to melt the glue and worls the hammer agsin, in this way you may lay a veneer any size. I
bave laid one 15 ft . long without assistance. For French bave laid one 15 fl . long without assist
polishing see back nambers.-M. 0 .
[11516.]-Veneering.- Vencers are laid on by the trade by means of a veneering hammor or caul, bat for well, if not better, as the nse of the csal with adranta requires a certain amonnt of practice. In veneering by the hammer the ground ehoald be warmed by the fire and the outside of the veneer wetted with warm water or glue made very thin, applied by means of a sponge, and the side to be laid covered with a coating of thin glae, and warmed at the fire. The veneer should next be laid on the groand or on a table, and worked with the hammer backwards and forwards till neither air nor glue will come out. Even for experienced workmen veneering with the hammer is best when the veneer are straight and even, but as that is seldom the case, work is generally done with the canal. There are some favoured individaals who take to the cand as natarally as a duck to the water, bat I have found the hammer his prejadices. A and is an course, every one ha solid wood hhaped to the in an ince to be reneered, reqnently the making of cauls will be rather expensive especially for amatenre who have only one or two thinge of each kind to reneer. The canl should be well hested then oiled and greased; it is screved down upon the veneers, and the heat and pressure sonds out the glue casising the veneer to bed close to the grouind. The veacers shonla be of an even thickness when warked by liable to blister the glae will colleet and khe wart groal fanlt with amateur veneering is blistering, and the workman's skill is exercised in no small degreo in getting rid of these nuaightly blemishes. The way this is generally done is as follows:-First, wash the exterior of the blister with boiling water, and with a coarse cloth remove dirt and grease; then place it bofore the fire, linseed oil ; ple a canl; oil its suriace win common make the oil penetrate quite through the repeer and softon the glae anderneath, then while hot raise the edge gently with a chisel, and it will separate complotely from the ground ; be caroful not to use too grea cot or you will apoil your work again. . 11 thould it again; repeat thin process till you bave entirely separated the veneer; then wash of the old glue, and separated the venear; then wash on the old glae, and
proceed to lay it again as an new weneor.-P. W. H. J,
[11518.]-Respirator.-"Jersey Craupand" will find a piece of ordinary calico, nnglazed, with a string sown on both ends answer his parpose; if one thic's nees is not close enough, nse two.-ELEOTRO.
[11518.]-Respirator. - An excellent respirator may be made of a thick sheet of carded cotton woal placed betreen two pieces of maslin. Professor Tyn-effectarlly.-A Banmistar.
[11518.]-Respirator.-Take some cotton wool and place between two picces of horsehair centh. Makes a very good one for grinding, millstone dressing,
or saw sharpening, bind it round the edgo with kid or baw sharpening, bind trades.
[11522.]-Goldfish.-See that the fins and tail are nobroken, that no scales are rubbed off, and that there is no appearauce of what I may call (for want of a better name) moaldiness aboat the fish. This latter indicates a dierease very common and almont always fatal to
freeb-water fish when kept in continement, and strongly fresh-water tish when kept in continement, and strongl resembles the white monld which sppears on stale
bread, frait, sc. It is very contagious; therefore, if bread, frait, sc. It is very contagious; therefore, if
apparent on one or more fish in an aquarinm, all the apparent on one or more figh in an aquarinm,
others shoald be considered doubtful.
[11529.]-Goldfish.-These fleh should be bright and lively, with perfect scales and fins. If any of the former are rabbed off, or the latter split, they never do well, and generally die soon. Goldfish require fre quent leeding. The best food is vermicelli, or dried Bapitstra.
[11522.]-Goldfish. When in good health the tails of these Ash are parfectly fat. The opening and ahatting of their pills occars at regalar intervala of
about one second, and the ejes have a blue tint. If about one second, and the eyes have a blue tint. II
the taile are crompled at all, or the eyes are at all red, the fish are not good, and I' shonld adrise "S. K." not to buy them.-Anon.
[11524.] - Pitch of Roof.-The proportion of the height of the roof above the eaves to halt its breadth is the nitch. What is called the trae pitch is $1: 1$, or 45". Honses are seldom built now with roof so steep.
See Bennycastlo's "Practical Geometry."-PricaN. THROPIST.
[11525.]-Freah Water Aquarium.-I have an squarium 3 ft . 6 in. $\times 1$ ft. 8 in. $\times 2$ 2f., which contains altogether the following thes and animala, which ive good example: 3 goldfishes, 1 ailver carp, 1 small torpedo eel, 12 minnows, 2 efts, 2 tritons, 6 water beetles, 1 pollock, 2 long-noses, 3 fresh-water whelks, and lob-worms; bread crnmbs I pat in for the silver and lob-worms; bread crnmbs I pat in for
carp and toast for the copper ditto.-ANon.
[11525.]-Fresh Water Aquarium-Any kind of fish, bat keep them as much as possible of the same size. Small fish, as a rule, will damage any larger ones in the same collection, unless the aquarinm bo very large. Plants : Fontanalis antipyrectica (if procurable) : Anacharis alsinastrum (procarable everywhere) The former is best, as carp and other coarse fish will oat Anacharis bat I never knew of any fish eating Fontanalis.-Loacr.
[11525.]-Fresh Water Aquarium.-Almost any abh may be kept, except shichevacks. These ittle wretches, althongh very interesting when kept by splitting their fins and tails, which soon brings them into a state of disenso. I have kept gold fish, carp. into a state of diseaso. Thare kept gole fill for carp, tench, gndyeon, minnows-these will do well for years. time, but are ranch more delicate. The best plants for an aqnariam are Valisneria and Anacharis. - A Barkister.
[11527.]-Barrister.-A person wishing to become a barrister must enter at one of the Inns of Court, pay aboat $£: 30$ for fees, doposit $£ 100$, and find two sureties Who ondertule that he shall conform to the rales of the society, \&c. The $£ 100$ is appropriated for the fees When he is called to the bar, or is returned shoald the student taks his name off the books. The sctual qualification consists in appearing in Hall a certain number of times, in each of twelve terms, at the dinner hour (commonly called eating terms), and the atndent must have been a member of the Inn at least three years. There is no doabt that very shortly a atrict legal enncation will be required as a qualification; at present I belicve the only examination is a voluntary one apon the snt jects of the lectrres lately institated by the different societies.-A Barristikr.
[11527.]-Barrister.-Qaalifcations required are too nnmerous almost to mention, bat thes, are sone of them. - gnod classical, and yet more, a good mathematical edncation, a knowledge of the ctatnte and
common law. the power of speaking, confidence in one's own powers, and a good constitation. Jas Nifred.
[11531.]-Water Wheel. $-\mathbf{V}=$ velocity of stream
 $30=$ H.P. (2), allowing 65 per cent. of the eflective power of the water available for ubefal parposes.
[115s1.]-Wator Wheel.-Bofore I can answer the frst part of this query I mast know with what velocity the stresm of water rans, and the angle at Which it strikes the buckets; aino: Colambo " meana a rotary engine, brenuse, if so, I would say don't. Δ rotary engine is the rock apon which the inexperienced split. No really practical man will new advocate a rotary ongine. In epite of all inventors may say to the con. beat the reciprocating encine. One may be invented beat the reciprocating engine. One may be invented
nome time, bat it feems far distant. If "Colombo"
will anamer the above questions, I will see whether I can satisfy his requirements.-P. W. H. J
[11592.] - Steam Fire-Engine. - Shnnd and Mason's enginos rre raty powrefal for their wripht. I extract the following from Recht ing experiment made with one of these encines at Messrs. Pennison's factory in 1864, with an engino having two cylinders of $\mathrm{G} \frac{9}{92} \mathrm{in}$. diameter, and 7 in . stroke, the power
generated with stenm of 1201 b . preasure in the briler. nud with 152 revolations per minnte, was shont "The engine exerted 32l actaal horse-power, and as the tal wight of the engine was only 32 cwt . the weight was ahont 1 cwt . per actual horse.pnwer, a very weight was a hont
remarkable resnlt." Farther information if desired.Philantriopist.
[11533.]-Area of Boat.-A cubic foot of water
weighs 62 thb., so the tonnage can be readily calca lated from the solid content of the immersed portion the area varies according to the model, boing greater
for a givan tonnage in a long, narrow, or sharply bait for a pivon tonnage in a long, narrow, or sharply bail boat.-Philantiropist.
[115s4.]-Cleaning Mretal Buttons, Jackets, scc.-Cat out of a clean piece of thin deal, a protector
 like sketcb, pat the batton ran the slit np on shank. This with very fine (not gritty) whiting and water cloth with pipe-clay, and brnsh off well, repea if necossary; this will not remore greage. Clean Gorman ailver with rotten stone and sil. -MI. A. B.
[11534.]-Cleaning Metal Buttons, Jackets, sco.-Use fnely washed whitiug for jacket, tak pollard or middings and a fresh baked loaf, the above will do for keya for fate. Preparation of whiting:Take a ball of whiting and pour boiling water upon it.
and make it of the consistence of new milk, let stand and make it of the consistonce of now milk, lot stand for two or three minates, phar the liqnor quietly off
into another vessel to settle for use.-JACE or AlL into 2not
Trades.
[11535.]-Small Wheol-Cutting Machine. See indices. There was one given to be fixed apon lathe bed.-Jack of all Tranes.
[11536].-Character of Curve.-This enrve will natnrally vary according to the place where the water
is ponred npon it, and it woald, I shonld think, assumo is ponred npon it, and it wonld, I shonja think, assumo the character of the different co
worth experiment.-P. W. H. J.
[11537.]-Scott's Patent Moulding Machine is nothing more nor less than a worm wheel dividing plate revolving ronnd npon a nedestal, and fnrnished with a hrizontal blide or radiating arm. It has a sertion efide, which is furniqued with jaws or the pattern maker of wood for the pitch. It is generally made with two or three teeth. There is a train of wheels, the same as an ordinary wheel-catting machine. Jack of all Trades.
[11537.]-Scott's Patent Moulding Machine. - Better write to the patentee aud maker in Manchester. Ho, no donbt, will he glad to snpply informawhich does not appoar to be no generally naed. Never theless, it is possiule to make good wheels withoat either of them.-Tural-Kain.
[11539.]-Wooden Beehive.- Many thanks to for i. D." for his good opinion of my suggestion perfectly bury's own description of his improvements in hives for apicaltare, and the har frame in particular.
Mr. Woodbary was the frrst adapter and mulgator of bar frames aud bar frame hives in Eugland; henco the hive bears his name. I ain glad to give iuformatinu at any time, bat think it unfuir to other inquirers and subscribers to occupp spuce ou a sobject which may be funnd so woll treated
of elearmere at so tritling a cost. If "H. A. D." will advertise his address I mill send him a bar frame as pattern if he will pay the postage.-C. N. Ausotr.
[11543.]-Amateur Observatories.-See Wm. Brown's letter on " Solar Phenomena."
[11545.]-Sulphur.-This has been answered several times. Take a pitch kettle and fill it abon onc.third fall of nil, and place пpon a fire to boil. At and the will tare will be then between 500° and 600°. Then pn enlphar in in proportion of loz. to every lb . of oil, and stir. It will becone mixed, nud when cold hare the or All Trades.
[11548.]-Bending Amber.-Drop it into some hot beeswax; after it has remained therea fow minate take it out and before the fire bend it to any shape.Jack of all Trades.
[11549.]-Water Floats.-Fionts are ecarenly "Young Fircman" bnx is a frnitfal canse of mischief, from corrosion. Wherever flents are nsed it will be necessary to raise the float ap and let it fall at least twice a day to present corrosion. The water-gange (glass) is so immensely snperior that few modern
boiler materg, having the interest of the bayer
at heart, would snpply a fioat, if offered bis chnice which he shoult sapply. Thate could be, and ero, mact perfectly but at the cost of nu immense umount of tronble. L plogers to get a glass water-gange.-P. W. H. J.
[11549.]-Water Floats.-Don't use them, they are worthless and anreliable, give endleas tronble, and packing depended oarire tho exsot tightaess - too packing aronnd the wire the exan "jos." Many a boiler has gone np like a balloon that was set with snch a defective fitting, and the poor anlucky " btoker Then bo little deserved it.-TvanL-Kars.
[11549.]-Water Floats. - Yes, they are of use if made to nct npon a valve in feod pipe, bat are a nuisance
through the joiler, by reason of the wire and gland.throngh the doiler, by re
Jack or Ale Trades.
[11550.] - Preserving Egga. - "Yonng Nest Hanter" had better leave the poor birds alone, unless ho has the definite object in view of benefiting sorse puhlic mnsenm or assistiug the canse of nataral his-
tory. Being "wishfnl to form a collection" seems to point too sady to deoreasing the number of specimens in this country of the more rare birds-suoh as king. fishers, grees woodpeckers, to.-as ane ean searcoly fancy even a yonth collecting linnets epgs. Pierce and blow the eggs; the "white akin " oannot and need not be removed. White hard spirit varnish, where there is reason to belleve colours will fade, will have a retarding effect.-Jannifred.
[11551.]-Cement.-After the meersehaum is mandactared there is nothing will cement it to make a job of it.-Jacs of All Trades.
[11551.]-Cement.-I have heard that a cement for meerschamm pipes can be mad with qe satisfactory it would be more frequently used.-SaUL Rraza.
[11552.]-Meerschaum.-The safest way to tent a pipa is to try if it will float liphtlv in water, as I have never feen any cnmpnsitinn which coald be mistak
meerschanm which would do so.-A., Liverpool.
[11553.]-Agriculture.-The best book for "Agrinoln" is nndonliterly "Evans on the Chemistry and Machinery of the Δg^{\prime} :caltare of the Present Day." In fal in hops, oats, \&c.-CIncinnatus.
[11557.] - Treasury of Botany. - The latest edition of this book was pablished in 1865. Cloth, 8ro. Its price is 7s. 6d.-ANox.
[11558.]-Refuse Paint. - Wake it hot with : emnall portion of linseed oil, and rub through some ganze wire with turps. It is cnarbe,
[11559.]-Refuse Paint.-See reply, p. 623, Vol. XIII., Sept. 8th. 1871, by "Os." If correspondents would search back vols. before sending queries, it would save mach time and tronble. By. Be-bye, what has become of "Os" and "Eos." I hope thes will
soon ro-appear after this protracted silence.-H. B. E.
[11558.] - Refase Paint. - Discolve sal. soda, $\frac{1}{2} \mathrm{l} \mathrm{h}$. in rain water, 1 gallon; cover the refase paint with sal. node water for two days, then heat it, adding in renace it to a proper consistence for painting
[11560.]-Gold Polishing on Stone, \&o.-This requires putting on in a pecnliar manner, and I beliave the gronud is laid in with Armenian bole; it can then be
polished with an agate burnisher.-JACK or AlL polisbed
Trades.
[11563.]-Moon.-The moon inflaences our distance from the sun in two ways. 1. It cances ns to be nearer to the san at the time of fall monn than at new moon, and rice verat. This is becanse the common centro o gravity of the earth and moon describes an exact ellipse roand the sun ; if we leave ont the small direr members of the solar systom. This being the case and the earth revolring roand this common centre of gravity, M. Paris will see that the earth is alternat within and withoat the gaid orhit, being withour
at time of new monn, and within at the fall mon. 2 The presence of the moon canses our mean distence from the sun to be greater than it otherwise would be, inr the distance is altered in inverse proportion to nint square ront of the mass of the s.in and moald be diminished by the t =enty-five millionth part, and we should revolve in an orbit farther from the sun by nearly two milea, a difference which, of coarse, wouk planets too woald be inflaenced in a like propartionG. F. H.
[11566-]-Equisetum.-I have seen the morement of the pollen mpself, and wonld se
men if I knew his address. -M . D .
[11567.]-Rigging Model Yacht.-Fasten main sail so mast with fifteen brass riugs, and foresail to mast with thirteen ditto; these shonld wot be too large for the respectire masts, bat jast large ennagh to traval ealack at the mast ncar deck, they wil haen bo qual to phat or bonnds of masts, when sail is chood to the hull of modent and the brass sarem evel, umall size, ased or sold to hang ap small pictures, these bare
a very good screw cat on thom, and if nerownd to
margin of deck m proposed in man artiole on "Model

Teount Ripxing " in a former rolume, will be out of and drave tight, and take two half hitches and cat of ends, allowing a little sarplas end for couvenienco. A good way to prevent ends of shronds fraying out, is W. Fip each ond with a litule hot pitoh or sealing-wax. \mathbf{F}.
[11568.]-Turbine.- Better go to a maker and give him the fall yon call obtain for your water, and the quantity in a given time.-Tvbal-Kain.
[11570.]-Furniture Polish.-My answer to TV. 10585 was not a farniture polish, bat a Frenoh polish
ceviver. The French polish aweats and the surface becomes rongh, and the sharpness of the neid is to take it will not remove it tale some vory to ng. The onantity of oil is sbont one tablespoonfal to pint, well shaken, which gives it a crenmiy appear ance. Finish off with a clean cloth, and see that you
[11572]-Compressing Water.-I oonsider this question to be one of great importance. Whter has alwaya, in my experiance at least, been considered to ticulars are given of this case, I should say that the extra gallon or so pumped in goes to wasto by
[1572.]-Compressing Water.-Water is cerainly compressible. There is an instrament called the piezometer for measuring the compressibility of water, and by its une it has been fonnd that at a pressare equal
to that of the atmosphere wator is compressed 00005 of its original bulk. This, it will be observed, is a very small amonnt; bat it shows an appreciahle degree of compression, and probably the enormons pressure in an bydradic press would compress water to the ertent indicated by the
ap-SAEL ITsFEA.
[11572.]-Compressing Water.-No donht bat compressed. The remainder mas that of the elasticity of the cylinder, the four side bars and nats, and the two large blocks spoken of. Aways remember nothing is non-elastic, bat every sabstance has more or leas of elasticity.-Tubal-Kain.
[11573.]-Compressing Water.-Water is is compressible in itwelf, but congisting of an infinite napied by air, and it is this air which is compressed, and allows of some more water being forced in after the cylinder is apparenty fall. is a bill of gold be made with a small hole in the centre, fill the ball with water, screw a plug and hard solder it, then place noder a hydraulic press, that the water will be forced ont like high pressure steam throagh the pores of the gold?-A., Liverpool.
[11574.]-Gas.-Try one of Carnaby's pateut rega-
1ators.-H. B. E.
[11574.]-Gas.-Let "II. J. W." turn down his main cock a tithe more, and une Bray's, patent barners, and night, and then report progress.-L.
[11575.]-Well Sinking.- You had better have the well sunk of the nanal diametor aboat 4it., and
brisk it ap to any diameter, and fill in ronnd it. It briek it ap to any diametor, and fill in rond it. It
would bo difficalt to bore larger than about 4in., and even then you mast go down to the rock, as it is called, by well borers. Water will not always rise to the top
of the earth; it depends upon where it is supplied from. of the ear
-M .0.
 Pebruary 16, 18i2, with drawing.-11. 0.
 Rust had better tinke the tabe out of his barometer, thon empty the quicksilror of the bothom short tinbo ; and tarn the tube bottom upwards; now lay baize or cloth doabled severul times upon counter or table, and keeping end covered, commence jarriug the tabe apon this pad till he eees the air bnbbles have all risen to tho surface of quicksilver. Let the jarring he performod light hand; well warming the whole tabe especially the light) before a good tire facilitates the operstion; pationce and the above mast succeed. Having got ont and repeat the inverting and jarring process ; or if he thinks the quicksilrer is dirty, see Vol. VIII., p. 566, for recipe to clean quirksilver. Having cleaned it, refll tabe in usual way. To adjust weights, let the one whicì rost upon silver be heaviest, tho whole flve in framo.-
Δ Hobological Mecuinic. hanic.
[11584.]-Cleaning Cornopean.-Mix a little Thriol with warm water, and ran throagh the instra-
mant $;$ it will clear all dirt ont mant ; it will clear all dirt oat.-J. P.

M1584.]-Oleaning Cornopean. - Lot "Wee Poth fill his slides with water and clean br means of a
smand bottlo-brash. Then pat in the slides and pour Wrmonster into the bell, and gradually turn the inst mment so that the watur mary ran throngh the tabes
and ont at tho monthpiece. The little water remainio. may be blown out at the ralves and wate--hes.
C. it cidstrint-Oloaning Cornopean.-I don't think if divetuilles if the inside of the tubing of a cornopean

same time. Yon may pnt it by lor months after this, and the valres will not stick-J. G. S.
[11539.]-Dry Steam.-The higher the pressure of steam the less the quantity of water contained in any given quantity of it. Steam from a toa kothe, evapo-
rating at 212°, will brisn you severely, while you may rating at 212 , will bngn you severely, while you may
plece your hand in high pressure steane with impunity. place your hand in high pressure stesin with impunity. to the cold air, conseqnently when at high pressure there is very little watur to be condensed, although there may be great heat to tly array.-A., Liverpool.
n1592.]- Medical - The ammonis citrato, or potassic tartrate of iron.-M. D.
[11593.]-Lime Juice and Gigcerine.-The article sold under this title is simply a calcareons soap. Which "Daffer" may imithte thns:-Take an orainary
wine bottle and fill it to the depth of three inches with good olive oil, or olive and castor oils mixed, add 3in. in depth of fresh line water, hall an inch of glycerine, and ten drops each of pessence of bergamot and essenco of lemnu, or any other acent which he may profer. of lemnu, or any other geent which he may prefer.
Shan it well and keep it in a moderately warm place, or the ingredients will soon eeparate. This preparation was origiually. introduced from Americe nnder the name of "Lime Jnlep,"" which is what it really is. The ingenionsly miklouring name of "Lize Jaice and Alycerine" was a happy thought of snme sharp parand with the additiny of one-forrth part of vinegar makes a capital salad dressing.-J. L.
[11503.1-Lime Juice and Glycerine 1 so called).-Take of almond nil 4lb., lime water 4 lib.,
oil of lemon 1 oz . Weinh the alm?nd oil into a dry oil of lemon 1 oz . Weigh the alm nnd oil into a dry
bottle, add the lime water in quantities of abont 50 . bottlo, add the lime water in quautities of abont 5oz.
or boz. at a time, with agitation, lastly, add the oil of or Boz. at a time.
lemons.-A. P. 8.
[11598.]-Long and Short Rifles.-The data given are not sumeient, the bore of rine, weight of
powder and bnllet, alio the initial velocity mast all be taken into account.- 4 Baraistsr.
[11598.]-Long and Short Rifies.-What reason has A. G. Miller for wishing to redaco the length of the barrel of his ritle? It wonld not shoot an well if cut
down to 26iv. As a rale, the shorter the barrel, the down to $26 i n$. As a rule, the shorter the barrel, the
quicker shonld be the twist of the rifing, for pxample, the long Snider has ono torn in 6ft. 6in., whereas the artillery oarbino, carrving the fame ammanition, has one turn in 4ft. If A. G. Miller will eapy what doscription of rifie ha has, and the diatnnco betwean
the forennd hind sinuts, I will tey to assist him with the fore and hind siphts, I will tey to assist him
respect to the sighting. Artileser Captain.
[11604.]-A Task for Chemists.-Extractriva Resinous and silicious matter prox Wood.If Gro. E. Davis will ent his wood into chips about 1 in. or 2 in . long, $\frac{1}{5}$ in. thick, pat them into a solation rater. A heat to indicate 880° Fahr. mist be given and maintained far an hour and a half or more; then he will find his wood an soft almost as wool, with all the resinons and silicions matter quite dissolved out. 380° heat means abont 1811b. pressure per square inch, which is the great ohjection to the present system of boiling wood for the parposes of paper making, and so far as I know there is no other system or 86 hours under a pressure of 501b. por inch with the canstic liquor at $16^{\text {J }} \mathrm{Tm}$.: the ouly change visiblo when taken out was their colour being redder, otherwise they were as tongh as ever. A rertain nmomnt of heat is wanted to dissolvo the resinons anbstannas, and with the chemicels at present in nese the requisits amount of
heat can't be aot withont pressure of from 180° to 200° heat can't be got withont
por inch.-Devonshire.
[11607.]-Ebonising Wood.-The wrinkle in this ease is to nse bloe poli,h. Stain work as before, addng powdered nat gall to the logwood and copperas sontion, dry, rab down well, oil, then ase French polish made tolerably dark with indiro or finely powdered thne blae. N. B.-This is a trade secret worth a little oonld respectfally sagecat that "W C. W." fortherit obtains at least one dozen new subacribers to "ours." -Wililay Glazire.
[11608.]-Boiling by Steam. - In reply to "A. W. B.," have an ontside casing on yoar boiler or
ressel, with inlet and blow-off cock, this latter cock to ressel, with inlet and blow-off cock, this latter cock to
be regulated to take away condensed water only. The be regulated to take away condensed water only. The
stenm will snrronnd the vessel, and is ased instead of stenm will snriond the ressel, add is
a coiled pipe inside. - De vosshire.
[11610.]-Defective Coil.-The fallt is in the coil, not tho battery. In all probability the recondary wire is broken, and the two euds only alightly toach; it is also most likely that this occars at one of the paints of attachment to binding screms or connections, and that he vibration of the contact breal:er jars the wire away rectls assamiog hat intact breaker works properly but the shock i 3 nnrelinble and nnsteady. The truth wonld easily bo discovered by nsing a galranometer in the circuit.-SIGMA.
[11612.1-Injury to Vacuum Tubes -Paste a minnte circle of tinfoil over the broken end of platinum, any small bell of motal that has a loop attached, hrasy batton with the top ent ont, 2nd the lise nell with tinfoil, and fasten it to the ghas tnbe with conguline riz., icinglase dissolved in acetic acid. At many of the opticians you mar bny little bells, mado on parpose, price 2d. each, bat the toy bolle children hang
round a kitton's necr, or a good brass batton, answer my tubes directly I get them, and before the platinum loop is brokon.-Priax.
[11617.]-Numismatical.-1. Obverse, arms of Coventry, "Coventry Halfpenny," Reverse, Lady Goriva anhorseback, "Pro Bono Pablico, 1792." Edge, "PaySome the Warehonse of Robert Reynolat © Co. worth, and Hinklos," torns in the localitang, Bed worth, and Hinklos, towns in the locality. It is an at the time (1792), and is one of the commonest of the immense iasue of totens at that period; of no ralue except it ia a fine cabinet specimen. 2. Is a coppar except it is a ine cabinet specinien. 2. Is a coppar penny token issaed by the Cornish copper carrency; it is rery common. Tha fionial between blocks of lead and tin. 3. Is a weight for a botween
gold coin valine 10 s . of the reign of Charles I ., and is worth about 6d.-D. T. Batty.
[11618.]-Deadening Sound.-If the partition is but a siuglo board, the best way will be to make it doable by nitixing stads npon one side-i. e., piecos of 15 in or 18 in . apart, and board it apon ceiling to floor, 15in. or 18in. apart, and board it apon the studg, have the boards tongned, and fill up all the spaces solid with sawdust.-Helphate.
[11619.]-Eleotrical.-I have no doubt the Lerden jar alluded to by "F. T. Z." is made of glabs containing lead. The thin German phials make the best better the insulation usually.-Prias.
[11621.]-Rilling Roots of Trees.-I think if "A Gardener" bores a large hole and fills it with sal. phate of iron (common green viriol),
bill the root, and at the same time stain the noon of a very nice gray colour.-A Barrister
[11622.]-Colouring Walls.-The bost liqnid to be nsed with distemper colours is stim milk; this will give a ourface almost equal to paint.-a Barisiger.
[11624.]-Photography.-Rain-water will answor all photographic parposes if prepared thas: Collect in bath put a crystal of nitrato of silver in it, and expose to the sun for a day; shake it then and flter any chloride of silver which may havo formed. What is chloride of silver which may hare sormed. What is
sold as pure distilled water often spoils solations; if your nitrate bath does not act mull with this add excess of Yashod black oxido of silver and ann it, then filter and add dilnte nitric acid till there is the faintest reaction to litmas.-M. A. B.
[11631.]-Income Tar_-A "Maiden Lady" shoald apply to the assessor of her parish, or the aurveyor of takes for the district in which she resies, and obtain cording to the printed directions contained in them and then send them to the tax surveror, and in dne course she will receive a letter from the Special Commiseioners of Income Tax, anthorising repayment of the tax dedacted from her dividends, either at Somerset Honse if in London. or at the nearest stamp oflice if in the country. "Helpless" esn fill ap the forms for her Shonld it be inconvenient for her to malke a persona Shonla it be inconvenient for her to make a persona appliagtion or the money she can and sigrise any one
to receive it for her, by filling ap and signg a form to raceive it for her, by tiling ap and signing a form limited to three years preceding the 5 th Δ pril in the vear in which the claims are mado. A separato torm No. 40 must be made for each year alaimed for.-Tas No.
[11633.]-Fever Tree.-Thescientific name of this treo is Encalyptus Globulns, or blue gum troe, a
native of Anstralia, bat cultivated in Corsica and native of Anstralia, but cultivated in Corgica and
Sonth Enrope. A tinctnre of the leaf, in two draehm doses, is ased in intermittent fever; it has also stimulant, tonic, expectorant, and antiseptic properties, I will refer "Qainquina" to Savory and Moore for all the preparations of the drag. Not ndopted in the Pharmacopcea.-Opdinsk.
[11639.]-Silkworm Disease.-The " aredible canse" of the silkworm digease will be fond on p. 9 ,
Vol. XII. English Mechavic, forming a portion of Professor Hnxley's address to the B. A.; see also a paper Professor Hatiey in a recent number of the Dritish Dicat Jouryal -SAUL Rynes.
[11639.]-The Rock Inscriptions.-The neglee of which "H. E. H." speats, is quite as grcat a mystery to me as to him. Ever since hearing of them, have thought them obviously the most important antiquitios to be examined or preserved on earth. As far as I can make out, the sudden oollapse of all interest in them ensued on Dean stanley's very Bingular. romarks in the volume I referred to. He had galloped through the country in a for days, happened to pass very fow of the inscriptions (which are acatitered over a country as large as Yorkshire), and set down that their namber and importance "had been greatly exaggerated," and so the whole matter beems, for this age, to have ended, perhaps lnokily or providentially, for after the miserable "Moabite stone" and similar cala-
strophes, we may well pray Heaven to keep any such things from nineteenth oentary discorery.-E. L. G.
[11646.]-Electric Spark.-The gimpleat way to gel ising sark would be to have a small induction col mate cell with it, monnting the zinc on a spring, t, him depressed, as reqnired, by a revolving cam monntel the shaft at disposal, the ordinary break of the:
boing serewed down, as the depression of the zinc into the liquid would produce one spark. Another plan, not so reliable, would be to rig a glass plate with rabbers, do, on the shaft, in fact, to make it work an ordinary oloctric machine, and connect to a amall Lerden jar, arranged to discharge at fin., the first would bo the simpleat plan, and a coil and cell for the parpose conld be had for £3. Cost of working woald be trifling, and Sroxa.
[11647.]-Cabbage Plants. - "Anon." cannot prevent cabbage plants from running to seed, whon once started, save by "heroic " measares-viz., catting ofl the tops and leaving the stamps to sproat, or pallall the plants have not started for seed he might find dnsting of bone-dast and superphosphate assiat in aving some of them. Cabbsges require manuremingral manure in "Anon's." case very likelf. Saul Rymea.
[11648.]-Bee Management.-If "Apis" will carry out the following directions, driving bees will give him no tronble, and one trinl will suffice to show him this. Blow two or three paffs of smike into the nivert the hiven to send the nees apin empty hive (of the same size) on it, making the junction secrre by winding some calico roand it and fastening this cloth with string. Then dram the sides of the lower hive with the hands or two sticks. The bees will soon ran np, and in tive to ten minntes he will have a good onough bees to cover the combs. The hives mast be separated and pat in their places at once, or the bee would soon descend to their old home. Wearing a voil is quite optional, and stapefying material worse than aseless. Large hives do not show signs of awarming so mach as small ones. - E. D.
[11655.]-Making Gold and Silver Leaf Adhere to Fabric.-I was told by a manufacturer that glaire of egg is nsed with gold or silver leaf on powder resin and rabrics, bat that ${ }^{2}$ mirture o pony rough surfaco.-A BAREIETER.

UNANSWERED QUERIES.

The numbere and titlee of queries whioh remain wnanswered for five wecks are inserted in this list. We trwet our readers will look over the list, and send what information they san for the beneft of their follow contrsbutors.

Bince our lagt "Thetamn"" has answered 9440;
"Joarneyman Painter,"11045; " Auld Reekie," 11083. 11195 M'Carter's Improvements in Condensation, p. 676 11199 Drowning,
11199 Blowing Engines, 676
11204 Turning Ivory Frames, 67
11205 Five Pound Telescope, 876
11207 Siphon Rottlo Caps, 676
11209 Making Gold Malleable, 676
11211 Pinno Keys, 676
11212 Tanning Nats, 676
11214 Import Duties on Books, 676
11223 Aphengescope,
11208 Vulcanite, 676
11230 Dyeing Vulcanite Black, 676
11294 Pianoforte.-To the "Harmonions Blacksmith," 678
11238 Sngar Test for Impare Water, 676
11241 Hot-air Apparatus, 676
11253 New Mechanical Agent, p. 677
11254 Diaphanie, 677
11257 Watchmaking, 677
$11234 \begin{aligned} & \text { Judging Distance, } 677 \\ & \\ & 11267\end{aligned}$
11368 Temperiog Knives and Trowels, 677
$\begin{array}{ll}11270 & \text { Friction, } 677 \\ 11273 & \text { Dlastase, } 677\end{array}$

QUERIES

[11663.]-Steam Power.-Will some correspondent kindly inform me if I shall obtain enongh steam to drive two lin. bore and 2in. atroke cylinders, from a vertioal boiler 13in. high, 8 in . in dismeter with inclosod firebnx, in. in dirmater at top, and Sin. at bottoni? Also what weight must the fy- Wheel be, so as to make 200 revolnchimney, which is lin. in diameter, and the fuel burnt is charcoal, -T. W. J. M.
[11664.]-Polishing Bullock's Horns.-How can
[11665.]-Ink.-Will any of your numerous readers be so kiad as to give me the recipe for makiug lrown ink,
[11666.] - Qualitative Analysis. - Would Mr Davis or any of our chomical friends kindly inform me of a rimple meth
water 9 -Gzatus.
[116:57.]-Carbon Points.-I am desirons to know What these sre. How are they produced, and where, Tabal-Kain." or any other kind correspondent give me ihls information ?-H. 8. C.

Chice8.] - Astronomical. - The appendix to White's "Ephemeris," for 1835 , oontaing a raluablo table
to abridge the computation of the longitude and latitude, o a bridge the compatation of the longitade and latitude, the right ascension and dechnation being given, or the
contrary. This table has been computed by J. O. Buckhardt to the obligulty $23^{\circ} 27^{\circ} 50^{\prime \prime}$. Wuill some one of our able astronomical correspondenth, who may possess a copy. kindly show how to make the necessary oorrection for tho present obliquity, so that in practice this tablo may continue to be need without sensible error? Alao, 1 should be glad to know how to find the latitude when
the "difr" is nill i, ie. between Arg. +030 snd 0.51 , or the "diff:" is nil ; i.e.: between Arg.
between +200 and 10.00 -Astrga.
[11609.]-Trunk Engine.-WHi any of our reaticrs kindly inform me if a trunk enzine with 2 cylindera, 1sin. bore and hin. stroke, wonld drive a sfi. boat, with
6 in. paddles? Also, would they give a drawing of a 6in. paddles ? Also, would they git
cheap pump for the same?
[11670.]-Electrical.-1. W. H. Coffin, in Rnswer 10447. glves, on Mr. Highton's anthority, the details of n battery. Can sny reader speak from experience as to the merits of the arrangement? And particularly I wish
to know the proprtions of nitre and mercary used to to know the proportions of nitre and mercury used to amalgamate fased. zinc. 2, Can any reader give me an
opininn about M. Bnaman's Leclanché, mentioned in pininn abnot M. Bnaman's Leclanche, mentioned in
No. 857, p. 479 . Will Mr. Tonkes stry whether felt can take the place of a porons pot? 8. What is the best work on electro-metallarky, at a reasonable price9 4 . Where can I get the "needled manganese" used by Leclanché? -M . .
[1167.]-Spectrum Analysis.- Wiu sope one kindly tell me whether it is possibie to condact nay spectroscone? And also what is the best work on the gpectrnscone?
subjoct?
Ar
M.
[11672.1-Birth and Death Rates.-Might I ask ome of our mathematical readers to help me to nolve will lie the yearly death rates per 1,000 living in A and B ach vear for 20 years? Also what will be the popnla. tion of A, and what that of B nt the end of 20 years? A is a atom of 100,000 inhabitants, \mathbf{B} is a town of 100,000 inhabitants. The numbers in each town of the same age are the same. The birth rate in 4 is
1,000 per annum; in B it is 90 per 1,000 per annum. The death rate to be taken is 189 in 1,000 in the first year of ife; 18 in the ofth; 6 in the tenth ; 5 in the sixteenth sixty-Arst ; 70 in the seventy-first ; 153 in the eikhty first; and 307 in the ninety first year of lifo.-P. Q. P. V.
[11873.]-Hydravilic Rams. - What modifications are made in the ram when intended to
great height? What is the practical limit to the height to whiol, the whter can bo raised by a ram with a given fall? What is the modinas of the ram or the proportion of the power atllised by it $9-$ Pirianctiropist.
[11674.] - Stretched Indiarubber. - How mach power in nats of work may be accumulated by strotch ing an hndiarabber band or rope ronnd a drum f And
wonld this he any ase as a motive power for amaters, or for propelling ferty boats ?-Philawtiroribt.
[11675.] - Solder for Britannia Metal-Will any of "nur" kind readers tell mo what kind of solder is ased
for Britannia metal, and how to nge it, and the proper for Britannia metal, and how to ase it, and the
fax to use in soft soldering copper ?-LisARNE.
[1676.]-Lemonade Syrup.-Can any reader toll me hinw to make lemonade byrup for aërated drinks ?Lemonade.
[1677.]-Rendering Wood Incombastible-Is there any eagy and ohenp why of making dean bard material for roolng, incombnatibie? I wish to ereot a summerhouse, ar small cottage of two rooms, in a garden that I rant. Boards would be the most convenient material for my use, because they conld be easily romoved at the expiration of my tenancy. I am told that, White lead, or some similar paint. on both sides, and nase some sort (query, what sort) of feit for the rool, then my buildiag would be as safe from fire as most honses are Is the adrioe givon me correct, or can I adopt any better plan ?-Clerk
[11678.]-Photographic. - As the photographic songon for nmatern is com about the new dry plan of coating the plate with a col lodion prepared with silver. If any of your numerons sclentific correspondents have tried the process, and been successful, a hint from such would be gladiy re-
ceived by a gormandiser of the ENOLIB MECANIO.-A. coived by 2
Cnalymes.
[11679.]-Fork and Wedge Valve Motion.Having just noticed in your last isgie a replr (1088s, p. 100) from one of your correspondents referring your readors to the fork and, wedge ralve motion itted to one
of Stophenson and Co.'s enginea in 1844, I wibh to ask your correspondent or any of your namerons readers if in due. One wonld naturally sappose from reading "O. E. S.'s" letter that the invention is due to Stephen son, which, Mr. Editor, 1 very much donbt ; in fact. I believe that Stephenson in this manner gets praise for
a good many inventions that he is not at all entitled to. a good many inventions that he is

- One ix Search or tha Tbuti.
[11680.]-MIldew in Boat Sails.-Will any one rive a recipe for curing the ahove? What do they
use in bleaching factories for the parpose? Would carbolic acid havo effect ?-KIREWAT
[11681.]-Water Glass-How would this do for the parpose of painting the bottoms of boots used in salt vater 2-KIREWAT.
[11682]-Wheatstone's Bridge.-I bave a small Wheatstone's bridge for ancertnining the resistance in wire. The screw for tightening the cland on the main
apinde is made of copper. Now, I am of opinion the spinde is mate of copper. Now, I am of opinion that
thia tends to lower the reasting mediam below what it ought to be, and below what it would be it the screw were made of mome nentral metal, such as iron or nickel,
so I cannot depend on my resuits. I should like Mr.

Tonkes to inform me whether Iam right ; and if no, what metal I had better use for the Bcrem.-Axox.
[11883]. - Hoight of Sea Waves.-Would Followis.", or Mr. Proctor kindly solve, if possible, the in the cas Is there any recognised method of te from. trough to summit, how mioh of that height is above the level of the ocean when perfectly quiescont? and is they kindy offer their opinions?-A., Liverpool.
[11684.]- Pressure on Cork of Bottle. - Given, an ordinary bottle of soda-water, which is filled to withie 3 in. of the oork: Is there more pressure on the onrk down the air shace risht abovo the liquor thas when it is lying on its side ?-Soda-water.
[11685.]-Canary's Song.-I have a mottled canary. which commenced its second monlting last Augagi, which was over apparently abont Christman, but up to
the present time it has not sung at all It is very lively. the present timo it has not sung at all It is very lively.
and apparently in good health. I have ropeatediy sad apparently in good health. changed its food, and occasionally bnag it nut in the open air within hearing of annther bird, a good anogster, bat it only chirrups a few times. It has not, to my knowledge, received any fright or injary. Can any fellnw reader inform me of any means of getting it to sing
again, as last joar it sung very well ?-Exor. again, as last jear it suag very well ?-Exom
[11636.]-Dement for Fixing Glass Getters.Doos any render know of anv recipo for fixing glass lett ers on glass? Uolonr o
it must rosist wet.
[11697.]-Speeding Machinery.-Will any of oar numerous readers kindly inform me what is the most simple and certaln mode of obtaining the corrnct diameters of palleys, or whela to increase or diminith the spend of a machine? I find the rules laid down in
most scientific works are se complicated that I cannot most gientific works are ss complicated that cannot
nse thom. I will give a ense in point. Suppose my use thnm. I wiil give a cense in point. Suppnse my
driving shaft runs 50 revolutiong per minate, and I want to drive a machine (any) 133 revolntions por minnte, what size wheels and the namber of teeth in ditto, or palleys, would be required to obtain that apoed?-A READER
[11688]-Cleaning Whito Sheepskins. - Can any of your subscribers inform me of the beat way of
cleaning a white sheopskin hearth rng at home? Professional cleaners chargo very high, about hall as mach as the rag cost at first.-A Housereseper.
[11099.]-Reel for Rotary Sowing MachineAllow me to ask for instrue tions how to make a reel for atarr shatle sewigg-ms
chine (the shattle of which 1 send yon a sketch), slson a winder for the same
I have a machine of thi ollags, minnus shattle reels and
winder. I can make them iinder. I can make them rongh. The machine is made by Drake, of Hudders
[11690.] - Anchovy and Bloater Paste.-Wil some kind subscriber inform me the way that these are
made, not in very largo quantities ?-HENB FBANKLIX.
[11691.]-Tidal Mil.- Wonld any render oblige mo by giving a description of the best furm of tidal mill, for pumping water or driving machinery? I am on the
banks of the river. and want to utilise the force of tho tides.-J. J. Knight.
[11692]-Defective Feed Pump. - 1 have oharge which sometimes fails to do its work, and when I take it to pieces I can find nothing under the valvos. Will some reader tell me the canse of its fnilling, snd the

[11693]-Ice Chest and Refrigerator- Will any one who has constructed or parchased a good ice chest to economise from 5lb. to 101 b . of ice per day, givo 1 or 2 pion of it? I want it to cool (gay) 3 or 4 coans time. Auart botles, and a plate of batter at the bame if required, and that the ier as it melts may trickle into a cistern, from which I can draw of a tambler of cold water. And all this with as little loss as possible. Thate blankets. Kindly state expense.-M. A. B.
[11694.] - Green Fly. - Can any of "our" correspondents inform me of the nost effective way of killing the green fly whioh is heginning to cause great damage
amongst my plants. My conservatory is too large and lofty to admit of their destruction by burning tobseco. I have tried syrincing with sospsads but without any effect. An army of spiders, large and amall, of overy shape and description, has made its appearance Fithin the last fer davs. How can I destroy the:u? Any information will oblige.- H . T. C.
[11695.]-Succession Duty. - Woald any corrospondent favour me with liformation on the following. or refer mo to a work on the sabject? I bave suc
ceeded to mome propertr loft by will irom my father coneats of two leasehold Linnses, worth $£ 1,100$, prodncir ± 90 per annum. What I wish to know is how the dit is calculated, whether clarged on the $£ 1,100$ or nas

[11696.]-Decaying Ivory Carving.-Scme ti ago I brought some ivery carvink home from China. is now tarning black, and reoms to bo rottiug swal
Will sole brother reader toll me if can bleach it or Will solle brother reader tell me if I and blrach it or stof
the decay ?-Journeyman Paintal
[11007.]-American Lathe Chucks.-I hare see a chuck to take in drills up to pin. It has got thry
grabs, which close eqnaly to the centre by turnind
 a groore straight along enciu sidy of tie drills. The hat

Fall, and are durable 9 alsò, 18 either of the above-shaped
drilis is adapled to bore into solld metall?-Jor.
[11698.)-Improving Memory.- Would one of Yoar oorrespondenta kindly state if there in any means
Of Improving a rather dul memory:-Grosar J. B. Hatter
[11699.]-Organ Cleaning.- Will any of our practianl organ builders kindly gny how much an organ of n boat 24 stops would cost for thoronghly cloanning, tuning, and re- wiring? Also, the extra charge for
[11700.]-Ginger-Beer Mraking.-Will any reader - Vo me a good recipe for the syrup used in ginger-beer rnaking-that put in the hottlea before

T11701.J-To 1Kr. Knott-Hes Mr. Knott obtained any measurement of the close companion of $\}$ Cancri I have seen it iwo or three times lately, and it beems

- ery close. By eatimation, its position anglo is between

[170..]-Curry and Rice.-Will any old Indian of onrs orive, in detail, the proceas of bow rice is bolled so as to fall into grains, not into a pasty masi? I have
tried geveral times the recipe quoted at p. 107 , No. 888 , ive the ingredienta, specifying quantitios (procurable bere), to makito a really good enery powder?-M. A. B.
Clites.]-Ink-Will any of "ours" who has the recipe for a reltable ink powder, which he has proved,
findly give it? 1 have need many ink powders, but most are bed, and, as sold, of course, abont son per cent. above actual cost. I want ${ }^{n}$ powdor mixed which will
not decomposo abroad, and which, by the addition of Water, will make a good black ink. What quantity of
gugar candy or lump gugar added to tho pint will make gagar candy or lump sugar adde
it good for oopying?
[11704.]-Rats.-Can any of "ours" tell mo what essentin oll ratoatchers use to ontice these vermin?
They shan my trap, but in have heard oil of rhodium eprinkled on the floor is attractive. It is, howover, very expensive-my drupgist asks 8s, per guid ounc
there any other, and is rhodiam good ?-M. A. B.
H1705.]-Small Yaohts.-Can any one give me in.
formation regarding the construction of small yachts Sormation regarding the construction of small yachts
(about fro tons), especially of iron? How are the ribs held in position during oonstruetion, and how oounter-
stern stiffened? What diatance apart aro ribs, and thick. ness of iron 9-L.
[11706]-Optician's Lacquer. - Will any of "our" readers inform me of a rood laoquer (one gimillar to that
[1120.]-Para-Would any sabseribers having any practical experience of Para give rome information
about it? 1 . What would be the cost of passage ont? about it ? 1 . What would be the cost of passage out?

2. The por: to etart from. 8. What to take in way of 2. The por: to start from. 8. What to take in way of
outat. 4 . The possibility of obtaining shelter and fond, While. loking round to see what one could do. 6. The rabalong. G. And would it not be possible to form a co-operative society, to colonise some portion of the
banks of the Amazon, where land is a drag and very little laboar required to make it very productive? I bellieve many indastrious nen would be happy to joln in such a movement, if it conld be started under safo
[11708.]-Gass Burnerss. WII any subscriber inform mo what nmonnt of gas different
burners will burn per hour ? -LoAch .
[11709.]-Smoking Cap-I have a moking cap action of perspiration, the blue and yellow have become ehanged into a shade of green. The braid has saffered the dyelng mont Can any reader of "our" Mrchanic
advise me of the meang of taking ont the dye, and regavising the propar colours ?-Hzoroz.
$[11710]$-Cleaning Oi Painting.-I have an old
ofl painting. Will some one ingtruct me how to clean it, E. Pakkring ont the colours whthout injaring them?

H171.1-Time at Our Antipoden. Will any reador hindy explain to me whether the time at our
andipodes is 12 hours eariler or 12 hoari later than our own? because, althongh we well know there is a differ ence al 12 hours, it appears to me that it can be demon.
urated with equal plansibility to be both. For example,
 east, and, therefore, 12 o'clock Tuesdey night, at a point
olose off New Zealand, 180° east-our sntipodes. But, also on the other hand, it it be Tuesday midday here, it must be Tuesday, ${ }^{6}$ occlook a.m., at New Orieana, 90° at the aforeanald point of Now Zealand, 180° west-oar antipodoa. The argument appears equally conclusive ellther ray, but the result somemhat perplexing, because as the same point, at the same moment, it can be proved mescoment of Tuesday morning.-T. B .
[1172]-Barlow Lens.-Win "F. R. A. S"" obllge Which will about donble the power of the eyepieces of 6in. objeet glass (focal leugth, sny, 15 diameters), and it proper distanco from the ejepleces, which are of the pobitive form 2-8. W. Buanhax.
[11788]-Compoaition for Moulding.-Win any mant of a componition mimilar to that used by gilders, collorr no object, to be used by pressure of fingers only,
lt ta requirad to dry hard but must be pliable to mould It ia requires to dry hard but must be pliable, to mould
before dryiog, and not to make moalds dirty used for boloredryiog, and not to make monds dirty nised for
moolding, as they are nused for another purpose. An
[11714.)-Tent for Sugar.-Will any of our eateemed chemical oorrespondonts bo kind enoagh to give me a
retisble test for adolteration of gugnr, whiteness belig celle obect for adalteration of sagnr. Whiteness beligg
the object? The sugar wo ase is the best that can bo sid, when roturned, ls somoumes rery goje and at and
others not so. When mixed with water (not dissolved) it has the appearance of being mired with gitarch, and
when diasolved in the mouth has a pasty feel, inctead of dissolving quickly, and cometimes has a chaiky appear-ance.-J. s .
[11716.] - Tenting Acetio Acid. - Would Goo Daris, S. Bottone, or some othet talonted chemical correspondent, hiddy describe a simple and easy method
of testing common commerolal coctio seld for the pre sence of mineral acids and other imparitiea likely to ocear? A eimple test might be of great ase to many
persans for testing vincgar, as it is ofton mixed with pulphario soid.-AOxticon.
[11716.]-a Draconie.-Will "F. R. A. S." or any supposing that the once pole star, now known as the otar

[11717.]-Remoring Gold from Plated Articles way to remove gold from old work thickly plated ? have tried nitrio acid snd salt, but it destroys the brass plates before the gold is hall romoved, with an eballition
and dreanfal fames ; also the battery process, but have and dreadfal fumes ;also the battery process, but have
failed. Can "Jack of All Trades" assist me, as I have a quantity to atrip, and want to use the gold again ?-
[11718.]-Cheap Water Filter.-In yours of Apri 12, p. 87, von describe this as being made of galvanised lead render the water dangerous for drinking purposes -A Scbscriber.
[11799.]-Gut Lines-Can any one inform me how to make tr
JACKson.
[1720.] - Extracting Zinc from Plumber's Solder.- What is the best way of extracting zinc from pipe, from tin. to 11 n ., without bulging ?-Inquisitive.
[11721.]-Assayers' Daties.-Will "Un Irlandais" kin lly give me the information that he promised to do
in No. $351, \mathrm{p}$. 395 on this sabject lating to copper, as I am in immediate want of the knowledge, which, wo
many others?
?
. T.
H.
[11r22.]-Eyebrows. Falling Off.-I shonld be thing that would prevent rapidy falling oft- $-\Delta$ SOB. PROX THE FIBET.
[11728.]-Contaot Breaker. - I have recently made an elecrio boil, but rm puzzied aboat be conlac hammer, which was placed about hall way thereod
 brase. Result: The strokes were vory alow bat con-
tinuous. tinuous. 2. The spring head was placed quarter dis
tance on bammer and fat tables as before. Resalt tance on hammer, end fiat tsilos as before. Result
Qaick loud strokes, bat the sction would stop itself and require an alteration in the pressare of the spring stop again. I now bent the spring head and found the result the same. Will electrical renders inform me What form is best for brenk of contact, whether
point, curved wire on flat surface, or t wo point, ourved wire on fiat surface, or two fat tables?
Imay remark that the tables wore perfectly clean, and may remark that the tables wre perfectly clean, and
astrong battery was nsed; the magnets also were strong a strong battery was u.
$-\mathrm{T} . \mathrm{H}$. Somervile
[11724.]-Discharge of Water Over Weirs.May I beg some readere to inform me what book or Water over weirs 9 An answer to the following question With a formula for prodacing the same, would alo greatly oblige. The water from a reservoir is convoyed by a valve into a large stone basin. In the middle of
one side of this basin there is placed a gange or weir one side of this basin there is placed a gange or meit
(beige a strong iron plate), 4t. 1 in length. What quantity of water will discharge itself over this fall in itwenty forr hours, supposing the depth of wator flowing over
[11725.]-Reversing Gear for Double-Action Osciliation yinderain wil be mach obiged for two donblo-action cylinders for model screw stesmer. A drawing would oblige.-Erin.
[11728.]-Toughening Cast Metal.-Gen any of sible to toughen cast motal? and if so, how n is done? -W. G. L.
[11727.]-Cork-Cutting Machine-A subsoriber goodnese to give some information regs would have the cork-catting machine, and price of same.-BLIMARnoio [11728.] - Adjusting Balances and Mainpogical sabscriber, kivdlytinform me ho to adjust pensation balances, and also ordinary balances? also are the bobs of an adjusting rod to be placed on a certain
part of rod when adjasting a mainapring ?-Aprex. TICR
[17799.]-Teeth of Spar Whools. - Will some reader inform me the correct method of setting ont the
teeth of spur wheels with the true epleyoloid curves ? cecth of spur wheels with the true epicyoloid curves?
What I wish to know is how to get the proper ourves and shape of teath of wheels and pinions for any number teeth, of course, would be alike in shape; and as the shapo of the teeth of a wheel and pinion to work together wonld be different in shape, I should like to wheel, 150 teeth, 1 in. pitch, and a pinion to work into thic above with 12 tecth). Any information respecting
the correct method of setting out the teeth of wheels the correct method of setting out
woald oblige.- \triangle PATTERN MAEER

THE ENGLISH MECHANIC LITRBOAT PUYD.

Amonat previnualy neknowlodged
G. H. Howd, Yramlinghan on
cene 1 ic
84 1

AHSWERS TO CORRESPONDENTS,

*. All communications should bo addresed to the Editor of the Enalisa Mboilanto, 81, Tavistoek-struct, Oovent Gardon, W.O.

The following aro the initinla, de., of lettern to hand ap to Tuesday moraing, Δ pril 23, and unacknowledged
Miller- - Brightonian.- Horos.- J. D. H.- Muse-W

 - New Subscriber.-R. A. Proctor.-B Bbo.-J. Roand.
 -Fred. Glbson.-Ralph Lowdon.-A Sabscriber.-Thetamu.-Hedera.-W. N. Oswad.-A. Brothers.Starley and Company.-E. G. Capon.-Webb and Son-
I. W. Matteson.-A. M. Festing.- W. H. Coffin.J. H. Brabazon--Kev. E. L. Berthon.-Philanthropist. -Sigma.-G. and Co.-W. H. M.-Archer.-Zets.-Amsteur.-J. J. Allinghsm.-Undergraduate.-John Nekng.-Edward Sutton-Elizaboth Davis--Robert reet.-Disc.-H. P. H.-J. H.Professionsl Adviser.-Guano.-Wood Snwyer.-G. H.
Howell-H. G. W.-W. Fox-H. D. W.- Senicio.-
Afost-H. O'B.-Goux.-J. Gathric.-A. C. and D.-Anoat.-H. O'B.-Goux.-J. Gathrio.-A. C. and D.Stone. - Champagno Charlie. - W. O. B.- Dane.W. B. Pughes. - Apiarian.-H. B.-J. L.- W. H. Cash.-- Ethyl.-A Subscriber.-A Mechanio's Wife.-H. B. J.
E. L. O.-A. P. Bower.-M. Paris.-P. H. Holland.E. Sutton. - Grapeshot.- Philo.- Duet.- Digby.-A Young Beginner. James Wilson.-F. R. S. A.-W. R. Birt.-J. B. Younguan.-No. 10.-Carboy.-Humphrey
Clinker. - Paul Gregor.- Alpha.- J. Bolton.- Ganl Clinker. - Paul Gregor-Alpha.- J. Bolton.- Sarl Subscriber.-J. L. Foster.-Bookworm.-A Suferer. n Emis.-F. B. A.-An English Engineer.-B. A-sior.-Capt. Maxse R N.-G. A. Edwards.-ExcelW. A. N.-B. R. Mills-Howard-Smith, Starley and
Co.-Sundial. The Drcimal Sistra.- We must bring this discussion to a close, not becanse it is uninteresting or unimportant, or becanse the subjcothas been exhausted, but because "E. L. G." has imported an unusual and an 10," in a letter full of eloquence and sarcasm, has answered "E. L. G.'s" letters on the subject at great length, but he adds no new argament to the discussion, and his letter, if inserted, would in all probability provoke a similar rejoinder from "E. L. G." Mr.
Bottone has also answered "E. L. G.," in an anusually long and nnusually able letter, which we cannot insert for pretty muoh the asme reason an that given for not inserting "No. 10 's " letter. We have,
also a letter from "E. L. G." in answer to " Sigma's", last letter. "E. I. G.," as uscal, is courageons and provocative. As "sigma" is not one who will quietly take a blow without returning it, and as we have no room for highly-spiced controversies, however oloquent, we must serve "E. I G.'s" letter in the same H. O'Brizk sends un her "personal thanks" for our article on the sicohor question, and asis whether find admittanco in our pages, as it is fairly a public question." With every desire to gratify correspondents, and fair ones in particular, we cannot well open our pages to the discussion of women's rights, as it is, to
all intents and parposes, a political question. If she all intonts and parposes, a political question. If she Will refer to our article on alcoluol, sho will see that we treated the question on its scientifio side, and it our correspondent or any one olse can show ns that the "women's sufrage question" has aiso essentian editor, however, believes with Mrs. O'Brien, that now we have a rating sut honse and pars ber rates and taxes, she ought to be
entitled to voto for parliamentary as well as for parochial ropresentation.
Henay Newman.-Space will be given you.
Charles Frane.-We cannot report on the merits of the lamp. As you want it, you had better get it and try it and then give us your experience of it.
42 inches."-In asking such a question, the least you could do whs to put your own name to it, so that the correspondents
W. B. E., writing from Burslem, asks what has become of the scheme for founding an English mechanlo colony. We onnnot say, and the scheme is not
suficiently interosting to a vast majority of our suticiently interesting to a vast msjorl
readers, to be rediscussed in our columns.
Autodidacr.-Pray read the motto ander "Letters to the Editor," and try and know gomothing about the
T. Sprague rays: "Inm preparing papers on olectro-
motallurgy, but pressing business matters on hand take up most of my time and attention.
P. T. D.-Ur. Denning has not sent any chess problom
yet.

Commnnications which can only nppear as advertisements to hand from Gymunst, A Novice, J. \& (first query, F.

C. J. K.-We could not promise till wo saw it.

Lrren.-Please send. The advertiser you mention is to be depended upon.
Nevinhe.-The firat question is one you should pat to a patent agent, and pry him to make n. search at the
Patent Offce in order to answer it. Your second appars to answer itself. The use of the instrament sppears to answer nasell.
is indioated by its mame.
Fantain-For hints on the extermingtion of mischievous Siray
287, Vol. XIII.
R. T.-The discassion on the anbject is now cloged. If Trades" on the sabject, you had better advertiso your address.
MO8A.-For informstion on whitening ivory, see p. 211, OL XIII, and previous vols.
R. J. H-Advertise it; but if you wish to sell it do not R. Jak a guinea an ounco fur it.

SULPBUR-The writer who gave the information has been sppesled to by other correspondents to xplain the
process. Ho his not done so, however, and we beliere process. Hisinformed.
Δx Old Subscriber-For recipo for making ice cream, see p. 98 , No. 316, Vol. XIII.
Mafchastar.-For information on means of cure of squinting, see replies 11894 , p. 49, No. 366 .
G. F. Glasoow.-8o many directions appear in back hardly be expectg chain belts, that we think we can have devised-and find will not act.
S. M. - Sketching in oils appeared in Nos. 822, 322,324 ,
325, 826,327 .

A Would-bz Tinker.- We should think you might acquire a knowledge of the art of soldering by carefully perusing our brek volumes, each of which contains a number of practical directions on the subject. At all events we know of no book that contains plainer or
more trustworthy directions. Read up the informamore trustworthy directions. Read up the informalion in our back volumes, and if you noeet with
diffenlty, send a query. lou will get an answer.
X. N.-A similar query to yours forms the sobject of a discuasion in rocent numbers. See pr. 596, 621, 644
W. H. Nial and W. G.-Many thanks, What can wo do

When dishonest advertisers adopt such tactics.
F. W. Robingon.-See pp. 461, 298, and 99, of Vol. XII., for information on diamonds, and thoir discovory in
Proven.- Your letter on personalitios would only add
fael to the fire. inel to the fire.
J. Barkick.-Plesse not seal your communications on which hallpenpy stamps are aficed.
E. F. Mitchell.-Consult back numbers for information on bicycle construction.
W. Quy.- Your answer to 11188 was not inserted, because it was wrong.
"A Thinker on Aeronatts."-Fantastical and fonlish. Beacon Locgh--Your long letter was prepared for the printer, and like ceveral others of a similar length be considerad at an end.
H. Wrison, Scraper, Hy. Axon, B. M., W. J. W., see
i Hints to Correspondents," No. 4.

A Scascriber.- Your pet question about the revolution of the earth being caused by a gas exuding from it was discnssed almost ad nauseam some months ngo. It has cropped np in varioua forms, and n!ways, wo think, directly or indirectly from the same hand. prace was
never a particle of proof adduced to prove your never 2
theory.
Primo sends an answer to the charge of "Khoda Bux." He says: "Il 'Khoda Bax' will refer back to my
letters he will find that I have been the attacked and not the attacking party. I never, as some of vour cornot the attacking party. Inever, as some of your cor-
respondents do, call those from whom I differ isnorant, or acease thern of misrepresenting. and do not like to be classed with those who are toolish enough to do so.
A. M. Festiva: - See our note on the Decimal System. The discusaion for the present, at all events, must be closed. We should, however, bo glad to hear from sou on other matters
Rayprilownon.-If commenced at all, the aiscussion would assaredly take a theologioal turn, which we
must try to avoid.
Jorn Jowrs.-A rernactable firm, we believe. Your
query was an advertisement. query Was an advertisement.
C. S. - We never beard of a barber's hair cutting machine, and if we did your query could not have been inserted, as it was to know the seller of sach machine and tho
price. price.

Stopping Pinholes in Lead Pipe.-A correspondent in an American journal writes:-"The supply water-pipe which extends from the strcet, along the top of our cellar to the sink in the kitchen, had a very small hole in one side, ao that a stream of wator spun out, not so large as a cambric needle. If I had known that the difflculty could have been remedied by placing the aquare end of a tenpenny nail on the hole and
hitting it two or three light blows with a hammer, the knowledge would have saved me much trouble and expense. But I did got know that a small hole in a lead pipe can be stoppod by battering the metal just cuough to close the oritice, therofore I went and called a plumber. Of couras he was employed by the day, and cost me a dollar and a half, when any one who can handle a hammar could have closed the issue in half a minute if ho had thought of bow to do it."

THE INVENTOR.

APPLIOATIONS FOR LETTERA PATENT DURING LTER WERE ENDING APRIL 16, 1879.
1048 Wr Williamson, Figh Holbors, for improvements in
wanhing and wingiog machines. 104 F F. A. Bonnevill. Piccantilv, for a now and improved 1047 W. P O W illigion stret Btand for tonnovemen 1047 Wr . R. Gcige. Wellingtinn-street, Atrand, for improvements
in feeding bottles. A communication. 1048 T. S. Derhem.
manufacturing bricks.
1040 W. R. Inke. Eonthampton-hrinatign, for improvements in ditching or trenching maclines. A commanication.

1nst J. F. Jnhnann, Lincoin's Inn.fielda. for tmprovaments in
the treatment of animal and vegetab.e sabstances. Δ communi. cation.
Jova
sewing
D. Brhing. A communicatinn. liss S. Danka, Rnnthamntnn.brildings, for an improved method
of lining rotary pradiling furnacea.
 siuro.
 105s
105B J. Grdonn. Pall Mall. for improvements in the manufacture
of tynes, 1 ozntypes, and phrasotypen.
 cars, and such ilke public velitcles.
10:8 A. V. Newton. Chancery-lane, for an improved apring
motion power. A cemmunicatlon. 1nxg W. Thorntin. Nottinehain. for imprnvernents in machinery
for the manufactare of loopad or knitted falrics. 1 (rn) A. Fraser, Edinbargh, for improvements in apparatus for
distribating types. 1 nof1 A. M. Clark. Chancerv-lana, Por an improved pontal or
correspondence card. A communicition.
 1 ans K . W. Zoncer, charingerner, for improvements in the
prification of irnn, copper, and zinc.
 the manufacture of siever. A commanication.
1060 L. A. Radin. New Ormnnd-strest, Middingex. for a nex or
 dons of agricultural purposos and to all localitics.

1100
anding and riding. 10ne G. Winram. Manchester, for improvoments in apring
mattresser and seatinga. 100 o
J. Winrall, Mancheator, and J. Kerehari, Wankworth, York1 Mo J. Warrall, Manchauter. and J. Karahaw. Wanemarth, York-
 1071 J. Feberlein. Sorthampton-boildinga, for improvements in
apparatas for wriking brakes in railway trains. apparatas for wothing brakes in railway trains.

8or grinding grain.
$1073 \mathrm{~J} . \mathrm{Be} \mathrm{ll}$. Jnn., and T. Pal. Wichnw. N.B.
in apparitua for discharging horizontal retorta.
1171 H. Aghworth. Waladan, Lancashire, for improvamants in
annerntnas for spinning and doablugg cotion and other nbreas subatances
ims A.

 1077 J . II. Jnhnann, Lineoln's Inn. Aelida, for improvementa in
rotstory steam engines. A commanication. 107 F H. A. Bonnevillo. Plecadilly, for imnrovamonts in marhiner
for aninninz wool, cotion, silk, and other Abrous materiale. A communication.
 imltatsnn of paintings wrill known
of Beanvais. A communication.
gown J. J. Roimor, Hammeramith, for improvements in the
manufacture of iron and atcel. 1092 J. P. Croskov. Portadown-raad. Maidn-hill, and G. Bomina.
ton, Mansfeld-road, Haverstoc'shill, for improvenients in rails for

detnching ships, life, and other bonts.
10eg D. Foxwell, Mancheator, for Imnroveme
in carting engines and other sicillar machinery.
ICR4 N. Llind and R. R. Greon. Manchaster. for improvementa
in Dreparing cioth or yarn for dyeing or printing.
in Drepartaz His
Inss T. Firken, Bedford, for an imprciod corn ahenfing and
binding machine. 1)ag, W. H. Maw. Dedford-atreat. Strand, fir the
fonting stations or docks for foating fire engines.
ling R. F. Fairlle. Weatminster, for an imporovil mpans of in-
orensing the ndinesion of rallway trains on ateep gradients. 10 W. R. Lake, for an imnroved process of converting cast
Iron'mnd articles made thereof into ateol. Imi J. Anderann. Nawhylflugs. Iroland, for imnrovemanta in
refing iron, in obtaining malleable iron and ateel,and in apparatas
therefor therefor.
1000 E. Manico. Rndford-atreat, Strand, enr an improved menna
 1o, F. Lamy, France. for improvementz in the proluction of n
nnce garnet colour of cqlours frum naphtylamine and its deriva

 hijers for more efer tually heiting wntint fors
and preventing chikng of the duas by ciaders.

 for blocking or preasing hata, part of anid imprivement being
applicalle for reguling the pressure of nulde and ifguide geno-
ralls. A communfation.
 pnrstus for instantaneonsly cemponizxting timtwe
1100 R. Clarka. Rineolnhire. for impmoments in the manafac1101 A. Lifly, Stockton-on-Teea, for improvements in lubricatore

1102 G. Lintirinqhane, Prasefe, for an improved lock for travelline baga, applicable also to other parposes.
1103 E. Tiernan, Liverpool, for an improvel manner of treating 1104 T . White, Mirroingham, for improvements in nuterackers and lobster crackera.
1105 W. Waltnn, Denton, Manchoster, for improvenents in the 1103 M . F. Jenkins, Extar, for a new shathi or protector for 1107 W. J. Porritt. Yancashire, for the manufactioning ne woollon
 then, nad also lubrication of the spiailes is socured in a superior
then, 1104 W. Spence. Qnelity court, Chancery-lane. for improvement a
in metallic coverings for roofe and walls of bulditugo. A commain metanic coverhgs
 1110 A. Browne, Grneocharch-street, CIty, for improvemente in
lampa. A commnication.
 of iry and steel, and in apparatus to be ased in comnection therewith.
1119 W. R. T.ake. Sonthampton-haltaingy, for improvements in
the feed meohanism of sewing machinee. A' commanication.
 emplyyed for prodncing the same.

 1116 J. Ineham. Blankbrin, Lanoashire, for improvemente in tooms for plaia woaring.
$1117 \begin{aligned} & \text { G. Rtavera, Murpeth, Northamberland. for improvemente in } \\ & \text { apparatuk for ateering sind mencenvring vessele. }\end{aligned}$ 111 ,
 1119 faciling the removal and cleanaing of tho parta theross. 1119 W. E. Genge, Wallington-street. 8trand, for improvements

 1123 P. Janoen, Chancerc-lane, for Improvements in the ennatruction of colke neena, in the nithisation of the waite heat thare
from far the mannfoctire of reflined salt, and in the appanates from for the manafnctire o
tharctor. A comanacation.

patente sealed.

9719 E. Batterworth and J. Heap, for improvements in bollers
 employed tharefor.
2735 A. C. Duncan and A. Dancan, for mprovements in madder 3744 J. Mactaron, for an improvement in the manulacture of 3744 J. Mret.ar
bocts and shoes.

 2703 w Cro
2763 W. Crootes. for an improved dssinfoctant and cieodortser. 273s
Sir A. Brivy,
ments in conplinge.
 2902 I. Shend fir impore
2902 J. Shand, fur improvements In fro-escapes.
2937 C. M., arl...., frir improvements in the manalacture of bowls moni T. B. at abi tor improvementa in the mannfactnpo of
antain digurd fubrics, und in the modes and means emploged therefor. s . Burrell and G. J. Fowell, for improvements in elactic

 rom of ral
45 F. Walker, for improvements in breach loading amall arms
 dyping, or ataining and changing tir
wonllen rags, and animal substances.

 process, also removing dark shade.
2754 G. Rydlll, for fmnrnvementa in the means of nnd apparatnz
and marbinery fur
 subatances, and removing dyod coloars.
g7Ts.
boxas. E. Davis, for improvements in the conatruction of axlo-

 2767 J . Hnld, uwnth, for an imprnered foed or sapply plpe for
snpplying Hlluminating gis to gas burners.
 dress. J. J. conoinv, por an improved apparatue for raising and
lowering window saehes.
2 iss J . Swan, for Rn Improvement in augers and bitn.
metal. F. A. Marshall, for improveboente in the manafacture of
ing am R. Fiswards. for improvemente in photamectantrot neins.
Ine and ia apiriatisa to ho need in ench printinge patt of whis
apparatas are also applienble to othor parposes.

Nifits avy il

©he Ctyglish chflechanic
 AND

WORLD OF SCIENCE AND ART.

FRIDAY, MAY 3, 1872.

ARTIOLES.

A NEW STEAM 'BUS

AN idea of the general arrangement and principal features of the design of the steam 'bus patented by Mr. Leonard J. Todd, engineer, Leith, will be easily gathered from the accompanying engravings. It will be seen that it is not unlike an ordinary horse 'bus of rather large dimensions, being painted and finished outside so as closely to resemblo one, for it has been found that by doing this the horses think it a familiar object, and provided that it can be made to run in perfect silence they in a very great measure cease to be afraid of it. This desirable end is also promoted by the apparent absence of any machinery or working parts-as boiler, evgines, funnel, \&c., and also by the fact that there never is the slightest appearance of either smoke or steam; in fact, the more ignorant among the general public fail to comprehend how or by what means the machine is propelled. It will, how. ever, at once be remarked that it is a very simple matter to make such statements on paper as that the 'bus will be silent, smokeless, \&c., but that it will not prove so easy or feasible to carry all this, not only into practice, but into a really successful and durable practice. This remark is no donbt fully justified by the many crude schemes for different mechanical arrangements which are continually brought forward by enthasiastic individuals who have little acquaintance with actual practice, and but the slightest knowledge of what is wanted to attain a desired end. It may be as well, therefore, in the first place to consider what is wanted in a self-contained steam 'bus, and then refer to the means employed to attain the desired results, taking note at the same time of what has actually been done in this line and of what is new. We shall also slightly examine into the commercial part of the matter, as to fares, working expenses, profits, \&c., so that the entire scheme in all its bearings may be clear to our readers. We need not add that the subject is one of much interest to many classes of society. In the first place we may state that the only selfcontained steam 'bus which has yet been made is the "Pioneer," proposed and designed by Mr. Todd, which ran between Edinburgh and Portobello last summer. Of course, many attempts were made in this direction some twenty or thirty years ago by Scott Russell, Hancock, and others, bat there is no necessity here to do more than mention the fact. The term "self-contained," as applied to a steam 'bus, refers to the plan of combining the boiler, engines, and carriage in one machine, as opposed to that of drawing a bus by means of a separate engine. The "Pioneer" was made as closely to resemble an ordinary horse 'bus as possible-indeed, on several occasions, persons got into it and rode to the end of their journey without knowing that they were in a steam 'bns. It was 22 ft .6 in . long over all, by 6 ft . 6 iri . wide, and the same height as an ordinary bus; the boiler was in front, with a horizontal funnel under the seats of the outside passengers. It ran on only three wheels, one leading and two drivers 40 in . diameter, to which were conpled direct three cylinders $7 \frac{1}{2} \mathrm{in}$. diameter by $10 \frac{3}{4} \mathrm{in}$. stroke. The working pressure was 180 lb . The total weight with fifty passengers on board was eleven tons. A great many defects in this arrangement speedily developed themselves in practice: with the horizontal funnel above, and the cylinders below, the floor, it was most uncomfortably warm inside; while the three wheels rendered it liable to upset, especially when turning. The horizontal fannel to enable the boiler to keep steam required a much heavier blast than is usual in any kind of locomotive, the three cylinders exhausted through a hole $\frac{15}{16}$ in. diameter, and we are afraid to tell our resders how mnch the back pressure was greater than 30lb. per square inch, in case they should not take it seriously. Enlarging the nozzle was found to be worse than useless, for the beiler then simply would not keep steam, unless the
'bus ran at a rate of about sixteen miles an honr It also proved an exceedingly dangerous arrangement to throw the greater part of the weight on to a cranked driving axle. In a six-wheeled rail locomotive, if the inside cranks should break, the engine cannot come down; while as it runs on a perfectly smooth road the crank axle will last a number of years; whereas, when running on a rough road - perhaps over new-laid metalits duration can only be reckoned at a very few months, especially if rigid wheel-tires are used. There were also many other minor objections to the "Pioneer," which need not be farther specified, such as the noise of the blast, \&c.
As far as can be discerned at present, it would seem that the best method of applying steam motive power to omnibuses for traffic in streets,
this arrangement the much sought after, but hitherto unattained, desideratum is found-viz., that the main axle can be hung on very sensitive bearing springs, yet gearing can be used, and the whole combined arrangement will work smoothly and silently even at the very highest speeds. The main axle aiso is straight, and so will not te sc liable to break. The next principal feature is the "blast suppressor," by means of which the 'bus can at all times, even on the steepest hills, run in perfect silence, and yet keep abundance of steam There have been only two plans hitherto proposed to avoid the puffing noise from the exhaust steam in road locomotives: one is the nse of an ordinary blowing fan, and the other is to fit the engine with a condenser into which the exhaust can be turned when passing horses. The ordinary blowing fan

LONGITUDIAGLL SECTION

or in the neighbourhood of towns, is some form of self-contained 'bus in preference to separate engines drawing 'busses. They occupy much less space, and canse less alarm to horses than the use of separate engines; at leaBt, as at present made. These remarks, it must be observed, are not intended to apply to the use of steam on tramway lines, a branch of the subject requiring separate consideration.

We may now more particularly refer to our engravings of the steam 'bus " Edinburgh." A space at the fore end is partitioned off, in which the boiler and engines are placed, the funnel going straight up and emerging at the top of the awning, so that it has thus a good natural draught. The cylinders, 7 in . by 10 in . stroke, drive a connter shaft by a gear of 4 to 1 , and side coupling-roas transmit the power to the driving wheels. By
has practically proved a failure, not only because the noise by it cannot be avoided, bat because by its use the steam cannot be kept up at a regular pressure. If the engine is going slowly up hill and steam is wanted, the fan also goes slowly and the pressure falls. On the contrary, if running fast down hill, requiring little steam, the fan then runs at a great speed and raises far too much steam, which must be blown off at the safety-valve. The condenser, again, is a more inferior contrivance than the common fan, and a great want of judgmest is shown in employing it. An engine fitted with it has entirely to rely upon the nsual llast-pipe for its power of making steam, and the condenstr only farnishes the means of doing away with the noise of the exhaus for a very short time together-say, a s minute on a bilt A moment's reflection
however, show that precisely the same object can be much hetter attained by asing an adjastable nozzle fitted with a hand lever, so chat it can be quickly opened and shat. But all these contrivances are not what is wanted, as is shown by the fact, that althongh they have all been before the pablic for many years, yet there is no sign of them coming into general nes; indeed, they have only been fitted to a very fow ngines.
What, however, is wanted, and what any engine intended to work regular passenger tiaffic in crowded streets must bave, is some contrivance by means of which it shall at all times run in perfeot silence, and yet always keep a uniform steam pressure, as is the case with the common blastpipe, so that it may go quietly up hill and yet have plenty of steam, or again go down hill without making too mach steam to blow off at the safety-valve and startle all horses within hearing.
Thiescound preat desideratum is obtained in the " Edinbargh ;" by placing a jet turbine-wheel fan in communication with a close ash-pan the ordinary adjustable blast-nomale is cansed to discharge the exhanst steam againet the turbine wheel so as torectate the fan. Fromathis arrangement it will be seen timathe speed of thesm, and conseqnently the draught, will be as perfectiy regalated as if the blast meoo in the shand in the uvanal maneer, for - moment's refleotion will show that the two actions alepead for their succese on precisely the tame Freiple-rie., ithat in any steam-engine the beok previrere of the exhment varips directly zooording to the power that the oylinder is giving out. With the fan, whenever the engine starts
the fun atarea; fif etops the san stope; when gofing up hill tho hook pressure inczeases and the san rous fact, when foing down hill it falls iawny, and the epped of the tan becomer in the most perfeot mesaure redred. It will thas be sesen that 60 int sis relates to thelecapebilitios of ragulating the intencity of the fre, the blast-pipe and the steam-zean etand just on the same footing; with the blast-pipa, bowever, the exhaust is projceind volently into the atmoerphere, while with the steam-fan it is still kept, being retained in a pipe, and may be condensed or otherwise disposed of, the best plan being to superheat it and then allow it to escape into the fannel through an opening so large that not the slighteat noine will be beard. The superhesting, of courw, makes it invisible. The absence of all smoke is avoided by the use of nothing but Brancepeth coke. It may finally be added that the four rosd wheels are each fitted with putent ralbur tires.
Hering thas ancribed the leading features of this stemm 'bua, we may shortiy refer to the finezolal part of the toheme. In the first place the
"Pioncar" ran fonrteen conserative wecks last summer between Fdinbergh Portobello, a distance of three miles. The total sum earned was $£ 280$, thas giving $£ 20$ a week, or 5 s . 101 . for each run that the 'bus made. The working expensem were $£ 12$ a week, thus leaving $£ 8$ a week clear proat, which is at the rate of $£ 400$ a year, thus paying 50 por cont. on an outlay of $\dot{£} 800$. But the "Pioneer" was not rem to nearly the greatost edvantage; it only made one ran each way every hour, or sixty-eight runs a week, whereas the horse "basses ran every half-hour, and thas made 144 rans a mreek If the pioneer had done this the earnings wonld have been about donbled, while the wages and interest oharges would have remainod constant. In the oase of the "Edinburgh," by allowing it to make 144 runs a week and only to draw 5 s. eachrun, insteed of 5a. 10d., as did the " Pioncer," which it ahould easity do on a good roate, me its carrying expacity is greater, tho receipts each week will then be $£ 36$. From this take $£ 14$ for working expensesand interest charges, and the clear profit remaining is $£ 22$ a week, or $\boldsymbol{£ 1}, 100$ a year, thas paying 110 per cent. on an outlay of $£ 1,000$. These figures are founded on act ana fact, for as far as the "Pioncer" is concerned they are simply what has actually been done, and can no doubt he repeated to as great adrantago as

The advantages to the general pablic by the ase of this patent steam 'bus may be summed up ss follow: -

1. It will be much softer to ride in than even trampay cars.
2. The fares will only be one half of what is manal.
3. The outside seats are covcred from the weather.
4. The inside can be warmed in winter.
5. It will ran mach faster than tramway oars.
path, and not in the middle of the street, as do tramweys.
6. No kind of weather or state of roads oan interfere with its ranning.
7. It will at all times ran in silence as regards noiso from steam, \&c.
8. The public oannot see any boiler, machinery, or means of propelling it.

MICROSCOPICAL NOTES.

Certain readers of the Enalisi Meoranic have freqnently complained of the uncertain results they obtain from the nse of semi-faid medis in mounting microscopic objects, and it ocours to me that a few stray hints may be of general service to them and others beyond the circle of my own immediate acquaintance. I therefore take this opportuvity of replying to the several queries on the matior ithat invo been addrasied to me privistely through .the poot.

Glycerine Janir.-This is a oause of constant vexation to some of my friends, especially to those who use it for mounting fish-scales. The complaint is that although the object may be perfectly clear and tranepparent when mounted, yet sooner or later "air-bahhles appear all over the slide, and or latar "air-bahbles appear all over the slide, and there are yot air-bubbles (nemally, at all events) bat vacolos, mandmereaused hy one of two things. The ohjeot perhaps is very elantic, or has too mach "spring" in it, and bence zmadually raises the oover away from the objeot, styaining the mediam, and producing vacuoles, which have to the inexperianced observer all the sppearance of airbubhles. In one slide which has been sent me this is evidently the onse,for a them of plane polarised light at nnce shows hioee of aneqnal tension lying moat heterngencombly throzghont the thin film of jelly. Orthe object maynot have been sufficiently soaked before being mounted (if soaked in too finidia medium, as water or spirits, the same effect will be produced), the object, conseqnently, absorbs fluid from the jelly, leading to the production of spaces. Lastly, the slide may be oovered with paper without the precaution of securely lating in the jelly with varnish having been taken. In this case. the paper absorbs moistare from the jelfy, and aither air speces or vazaoles at once apponr. Elides should never be ynpead if any of theme fluid or semi-flaid media be meide use of. Having thus pointed eat the oarses wition lead to our friends' disappointereat, it is eaeng to point them to the means of prevection, whioh they will, I thin', anmit is better then oure.

First. Objeots to be mounted in forevine jelly should be carefully propared by prolomped soaking in glycerine. Very delicate objects may bo brought (and shoald be) to this atage greatailly by adding et intervils a few drops of ghecenine to the water in which they are first immereed. When removed to the slide all simplas glycerine should be absorbed by blotting-paper, and the slide gently heated to the melting point of the medium, which should then be placed upon or near the object, and all air-bubbles removed with needles. The thin onver, slightly mamed thy being held in the stemm from boiling witer, many now be carefolly placed on the object and secapard by a very little pressure. Only just mameint pressure should be applied to secure the fatness of the object, and prevent the cover trom lipping. The whole should be set aside to sool, the jelly cleaned off from the edges, and a neat lating of dammar in benzole applied to make all eafe. When fishscales are moanted in this medimen it is always safest to ase a thin cell, unless a very tough and secure cement he applied immediatelv the jelly is set. It is hardly necessary to add that care must be taken not to overbeat the jelly in rendering it fluid. A hot-water bath shonld always be used. and it is advisable to warm only a small quantity more than is actually required, keeping the stock bottle cool and dry.

The freat value of Mr. Rimmington's jelly in preparing vegetable structares has caused me to have a tolerably extensive acquaintance with both its good and bad qualities, and I can unhesitatingly say that if proper care be used in the preliminary soaking of the object and subsequent luting, that few, if any, disappointments will arise, and that the objects will for all practical parposes be perfectly preserved.
There are some few substances, however, that require a somewhat less dense medium than jelly prepared acoording to Mr. Rimmington's plan. One of these is starch. After prolonged trials of every likely modium in which to pat up apecimens
of ataroh for purposes of measurement and com-
parison, I have hit upon the following:-Two parts of Bimmington's jelly to one part of glycerine, in which a piece of camphor hes been immersed for some days. This mediam must be Inted down, bat sets sulficiently to enable the lating to be done easily. To mount starches withont the inolusion of air-babbles is a matter of difficulty, as heat most only be applied in bare sufficiency to melt the mediam, and the objecte cannot be put through the course of preliminary sonking. Those who uill not have bubbles, from a coustitational abhorrence of them, had better lay in a Baker's mioroscopical sir-pamp, and try their lack with it. Pour moi, the babbles reat in peace.
Glycerniz and Guy Watrr.-For delicate sections of young tissnes, sexual organs of flowers, and some starches for exsct observation, I prefer a medinm prepared as follows:-Take of pioked gam arabic loz., and having washed it in cold water to remove dust, add as much oold water as is just sufficient to diasolve it to a
very viscid flaid; add an equal quantity of very viscid flaid; add an equal quantity of strong glycerine, and mix. Place a small lump of oamphor in the bottle, or add two grains of arsenions acid (white arsenic), and allow the whole to stand a fow days ; after which, if olear, it will be ready for use. If not olear, it mast be filtered. For excessively delicate tissnes, where it is desired to retain the form and position of the protoplasmic masses as much as possible, the above mediam, plus one part of oarcophor wator, is well adapted. The above medium is always flid and mnst be treated accordingly. Dammar in benzole is the best cement for it.

A mediam that I have lately 'used in the examination of pollen, and also in the stady of materia medica "vegetables" with good resalts, is one I should be thankfal to learn how to "keep in." I allude to an essential oil, such as thyme, anise, cassia, bergamot, \&c. Dammar answers pretty well for a few weeks, but, of course, a gradual escape goes on, and sooner or later the slide becomes nearly dry. If suy microscopist, given to experimenting, will light upon a oement which will resist these oils and yet be usable oold, lot him publish its formala and earn my hearty thanks.
H. P. H.

EFFECTS OF FAULTS IN VISION ON

 PAINTING.O
N Thursday evening last week Dr. R. Liebreioh delivered a lecture on this sabject st the London Institution. The following is an outline of it:-

On one occasion, when visiting the National Gallery, Dr. Liebreich was strack with the difierence between Turner's earliar and later paintiags. The cause of this did not olearly appear from Turner's life, though during the last five years of it the painter's vision and intellect were known to have saffered, for the ohanges had first appeared 15 years before that, Dr. Liebreich was therefore led to seek for the cause in a scientific stady of his paintings. The prominent feature in this ohange consists of a vertical streakiness; each luminous point is ohanged into a vertical line. In his earlier works the san, e.g., has a clearly defined diso, the light radiating equally to all parts ; in his later, s vertical yellow streak divides it into two distinct halves. So with less Inminous objects-honses standing near water, or figares in a boat, are made to blend with their refleotion, and all becomes a couglomeration of vertical lines, while all tracing of detail vanighes under such lines.

The first appearance of change is in 1831, consisting of an increased intensity of difused light from illuminated parts. From 1833 this diffasion begins to get vertical, and the tendency increases in the following years.

Now, it is oommonly supposed that Tarner adopted a pecaliar manner, and exaggeratod it more and more. The fact appeara to be that his change of manner arose from a change in his eycs, and that he reproduced scenes as he saw them.

As age advances, the orystalline lens of the eve (at no time perfectly tracsparent) gets dimmer, and disperses the light more strongly, throwing a haze over illaminated objects. In Turner's case, olearly-defined opsoity was formed in the dimness of the lens, and had the effect of dispersing the light vertically. This increased till not only the aspect of Nacture was altered, bat be conld not see his own piotures correctly.

While these later paintings have many merits, it is yet a mistaken notion which leads people to admire the defects referred to, and call them
Turner's style, from which they woald form a new sohnol.

Dr. Liebreich illastrated some of the above effeots by experiment. Projecting a picture of Fenice, distivct in its ontlines, on a screen, he then interposed a lens, whioh gave the picture the streaked appeurance of Turner's later paintings. A picture of a tree was also thus altered into oue of "Turner'a trees," which, the lecturer said, were entirely unlike
unknown to botaniste.
Turning to another clase of cases, we find irregnlarities of refraction in the eje affect an artist's work. To see an object distinctly, its image must fall on the retina. But to effect this, the eye must acoommodate itself to the different
distances of the objecte seen. It does so by distances of the objeots seen. It does so by
ohanging the form of the oryotalline lens. For the nearest point, the lens is at its greatest tension; for the farthest, in complete repose. This latter state of the eye oomstitates its refraotion. There are three different kinds of refraction.

1. That of the normal eye, in which rays parallel, or from an infinite distance, unite on the zetine 2. That of the short-sighted eye, in of the oversighted eye, in which they unite behind the retim. In the second osse, when looking at dictant objeots, eocesone glacses are ased to In the third case, conver glasses are used to make the rays converge.

Now, it may ocour that an eye is normal in one direotion and short-sightod in another. Concoive the eye as a globe with one pole in front,
and two smeridiane on the surface at right angles ts each other. If these meridians have different ourvatures, we have a difference of refractive entigmatibm. The effeots of this, in artiste, vary with the particularyind of it, and with the sabjoet painted. Thas Dr. Liebreich knew a landscape painter and a portrait painter who had the
hane hind of antigmatism, thair sight being normal for of antioal lines while they were slightly mbort-aighted for horisontal lines. In the landsoapes there whe no disturbing infaenoe in the distant parts, whese sburp othines were not requisite, The rather undefined and blematiog tones of oolour. moving waves, and Dr. Liebreich noticed some mhort horizontal strokes of different colours that did not seem to beleng to the water: Using a glase which gave him the asme kind of antigmatic Finion as the painter's, he asw the strokes indisthootly and mired together, and the effect beoame quite natural and good.
The portrait painter had at one time a high repatation, though some thought his portraits showed too great indistinctaess in details. This was due really to astigmatism. Latterly, his
portraits had become very much worse, the neck portraits had become very much worse, the neck
and oval of the face being elongated out of all proportion, and all the details distorted. The effects of aetigmatism were doabled in this way: the painter having become far-aighted for vertioal lines (for which be had normal vision before), sees a distant person at whom he looks elongated vertically. The picture being near, is seen enlarged horizontslly, and thus he paints the person even more elongated than as the latter is seen. Some illastrations of these results were given. Square figures were projacted on the soreen, and. s cylindrioal lens being interposed, these were elongated rertically or borizontally, socording to the position of the lens. This effeat was eleo shown on a portrait.
Wo come next to colour-blindness and its effects. The primary sensations of onlour are red, green, and violet. What we call colourbllindness occurs when one of these is absent, and an artist who has this defeot should confine himcolf to drawing otherwise his work will be marred. There are, however, slighter degrees of colour-blindness, thus the perception of red may not be quite manting-only diminithed. To a person thus alficted, strong bright red will appear red, while
less intense red will look green. SomA artists show this in their works, patuting, e.g., the roofs of houses red on the sunny side, green on the shady.
The orystalline lens often becomes yellow with adrancing age. What effect has this in the perception of colonrs? We may test it by lonking throngh jellow flase of the corresponding shade. At first evory thing looks yellow, but the eye gets dulled by degreea, and things begin by-and-hy to ap-
pear again in their true light and colour. It is found, however, that a pale blue, or a very small quantity of blue, fails to be perceptible after prolonged experiment. The yellow glass excludes it. Now, the colours of natural objects reflecting light are very mnch more intense than those in a painting. In looking through yellow glass at the former the amall quantity of bine excluded makes no sensible diffrence in a paintiug-on the contrary, there is, in some parts, just as much blue as is completely absorbed by the glass, and even in the parts of intensest blue, the quautity of blue excluded by the glass makes itself felt, for it bears a larger proportion to the entire quantity of blue than the blue excluded in the other case did.
Now, a painter whose lens bas become yellow will see natural ohjects almost correctly, bat in his pioture everything will appear yellowish, and so be will paint it too blue. He does not perceive his, and be will not believe it when told of it, as his own impressions have a stronger force of conviotion.
Incorrect perception of form may be demonstrated. A eqnare that appears oblong, e.a., may be measured with a compass. But faults in perception of oolour can only be recognised as such from the testimony of a number of persons of normal vision.
An artiat in the state referred to, and beginning to paint blte, is said to have ohanged hin atyle. He thinke he paints in his old style, and has improved the tone of his colonrs. His early works apperr to him too brown. Were his lens suddenly removed everything would appear too blae.

Mulready may be taken as an example. The peouliarity in his later works is produced ly an addition of blue. Looked at throngh a jellow glass thees paintings become natural-the violet colour of the face shows a natural red; blue shades become gray, the unnatural glaring blue of the drapery is softened. We may thas see these pictures ${ }^{20}$ he gaw them with the naked eye. One subjeot he has fortanately painted twice; fret when 50 years ola, and when his lene was in its normal state; agam, when he was 71, and pictures are both in Kensington Masenm; the first one called "Brother and Sister, or Pinohing the Ear;" the second, "The Yoang Brother." Thy differende in the coluaring is very striking, and it almost entirely disappears when the seoond picture is looked at through the yellow glase. If we look at the first pioture through the glass the tone appiars too weak; the shadows brown; the green dark and colourless. We thus unilerstand how he became dissatistied with his earlier works and changed his coloaring.

METALLURGY OF IRON AND STEEL." (Concluded from p. 135.)
IN his sixth and conoluding lecture Dr. Percy oommenoed by recapitulating the former referring, in passing, to the late application of mechanical means to this operation. In speaking of the estimation of the strength of iron, he pointed out the great difference between concrssive action and tha action of a slow force, and in the materials ased for guns, \&c., we mast calenlate from the former grounds. Sir Joseph Whitworth and others bar lately exparimented on this subject, using gunpowder as the agent to canse the concussive force, and it was thonght
that gunpowder was, as a rule, the most fiting for that purpose. The more immediate subject of the lecture, however, was

Steel.

What is steel? Steel is essentially nothing but iron, containing a certain proportion of carbon. There are a great variety of steels, theze varieties depending more or less upon the presence of certain foreign bodies in certain proportions. Taking into consideration the quantity of carbon contained, we may ask, when does wronght iron cease to be wrought iron and become steel? and when does steel cease to be steel and become cast iron? It is a difficalt thing to fix the precise lines. We may ray that iron containing 2 per cent. of carbon would be more ne less steely. it might be regarded as mild steel, appmximating to wrought iron, but capable of being hardened, which wrought iron is not. When we get to 1 per cent. of carbon we find a variety of steels; and at 1.4 per cent. we pues rapidly to cast iron.

An abstract report of a course of lecturos by Dr.

Steel is a valnable, marvellous metal. It differs as mnoh from wronght and cast iron as many metals differ from eaoh otber. It is capable of a hardening process; if steel be heated and then quenched in water, the metal is rendered much harder. The small amonat of carbon in the iron doce the whole thing, the hardering depending on the way in which the carbon is combined with the iron. The quality of the steel depends especially upon the mode in which the carbon occurs in the iron, and not entirely upor the quantity of oarbon. If, fifter the steel is heated, it he allowed to cool slowly, on acting on the product with an acid and disfolving the iron, a carbonaceons mass remains, bat if the metal be cooled rapidly (e.g., by plunging it into water) nove of this residue oocurs, but the whole of the steel is dissolved by the acid.
Steel is more fasible than wrought, but far less so than cast, iron. It is capable of being welded, is malleable, and can be hammered, rolled, and drawn out into wire and so forth.

Modes of Making steal.
In the paddling of iron the problem is the separation of carbon. The question arisesCannot you make steel by that procoses? Why can't you stop short when yon have soparated all the carbon except the proportion necessary for forming steal ? because in passing from cast ioto wrought tron and rice versa the mass has to pass throagh tine state of atoel. In the old method of making piff into malleable irom this ought to ocour, and it dooe.
There are sbout twenty different methods of making steel on the theory above stated. The most common method of making steal is by

Oementation.

If we take an iron bar and imbed it in chareoal, and then keep it at the temperature of melting copper for ten days or a fortnight, although the iron is never melted, the carbon, by simple contact, will find its way right into the interior of the mass of the bar, and we get "blintered steol." All good steol used in England has been for a long time made by this prooess. Some suppose the carbon enters the mass in the state of carbonic oxide, for there is always a quantity of air mixed with the fuel. The furnaces are built so as to exclude stmospheric air beyond that whioh originally exists in the maes of the charoosl. The furnace itself is like a long firegrate with twostoke holes at each end. About it are built two rectangular chests of brick work, and these are surrounded on all sides by flues, so as to make the temperature as uniform as possible. Around the whole is built a large cone, like a glass-house cone. When a fire is made the products of combustion pass through the openinge and surround the converting chests, and by this means a great the oonverting chests, and by this means as great gases then escape into arched ohimneys built above of firebrick; a hole being left at each end (which, bowever. is stopped during the working), through whioh a man can enter when necessary, the smoke, \&o., passing through the flues and by three openings into the outer cone.
At the bottom of the chests is placed a layer of charcoal, then bars of iron on that loyer, taking care that the bars are sufficiently short to allow of expansion; then another lever of charcoal then-iron, and no on till the obests are filled. Over the top of the whole is placed a layer of soms waterial which will exclude the atr; frequently a substanoe called "wherlswarf" is employed, being the dust formed by the wear of the grindstones used for gritiding steel instraments at Sheffiold, and consequently containing fine particles of steel.

The chests are kept heated for abnut a fortnight, the exact time depending on the kind of steel required ; the longer the iron is kept heated the more carbon it will take up. When the proper time has been given the fire iz allowed to go down, the chests are uncovered, and the bars are brought ont. On these bars will now be noticed strange large blisters, and bence the term " blistered steel." There aro diversitics of opinion as to the canse of the blisters, bat I think they are produced from the action of the carbon as it finds its way into the beated mase, upon the interposed sing, for all iron contains slag, and it is certain that if the carbnn comfs in contact with elag, some of the oxide of iron must be formed into gas, and this gas produces hablles or blisters. The steel in this atate is beated, worbe? and drawn out into bars:

The Bessemer Process.

- A great feature in this process is Siemers's gas furnace, by which we can obtain a very high temperature. By means of it we can obtain the metal in the form of cast steel-i.e., steel which has been perfectly fused, and, therefore, much freer from the impurities which exist in steel made by the ordinary process. In this process you may see about four tons of steel as fluid as water at one time. A somewhat similar method, as employed by Bessemer, Was known in 1722, but in the present process the application is new, and and therafore it possesses a high interest for us.

Bessemer took out his frst patent in October, 1855, and at first he had no idea of what he was subsequently going to achieve by it, but he seemed to look apon it as a preparatory prooess to the operation of puddling. It has, however, turned out to be one of the most remarkable inventions of modern times.
The problem is to eliminate a portion of tbe carbon from the iron and to convert it into ateel, and it is solved by melting the iron and then blowing through it atmospheric air. It appears to be a very simple thing, but it is a very difficult one to aocomplish.
The converter is ellipsoidal in shape, and made of wrought iron, in several pieces, screwed togother. It has a false bottom; underneath it is an empty space into whioh air is blown. The interior is lined with a mixture of crushed slag and fireclay, and the lining is dried very gradually. In the bottom is fixed a namber of conical pipes, eaoh containics namerous holes, and arranged so as to come flush with the bottom. The converter is suspeaded on trunnions, and there is a very ingenious contrivance for tilting it up-i.e., lowering the month, and erecting it again, the work being performed by hydraulic machinery, or other such power. The trannion on one side is hollow, and pipe leads from it into the empty space at the bottom of the converter, from which clay tubes pass into the converter, and through these are forced namerous jets of air. Two converters are usually placed near each other on opposite sides of a circular pit. In the centre of this pit is an arm which oan be moved up and down by hydranlic power, and at one end is a lever which can be turned about in several directions very gradually. By means of these converters cither wrought iron or steel can be produced at will from the cast iron put into them.
A charge of iron being already molten in a reverberatory furnace (say three tons, bat frequently five, and even ton tons, are operated on at one time) at the proper time the converter is tilted, and this metal ran into it by a spout of iron lined with clay. The quantity ran in is regulated so that it shall not rise up to the lowest twyer opening. While the converter is in this position the blast is powerfally put on-say aboat 15ib. to the square inch-a contrivance being adopted to sllow of this, otherwise the molten metal would run down the above pipes.

The converter is then tilted back again, and now we have streams of atmospheric air rising rigorously through the metal in the converter. The operation goes on pleasantly at first, bnt at the end of 10 or 12 minates there is a miniature volcano erruption, and a great roaring flame comes out of the month of the converter. In the first furnaces a shower of eparks and pieces of red hot slag and metal accompanied this eraption, but alterations in the form of the farnace have prevented this sinoe. At this period the metal undergoes a remarkable change, and if required the whole of the carbon can be taken out and wrought iron made. The usnal process now is to burn out the whole of the carbon in this way, and then at a given time to pour into the remsining mass a quantity of molten pig-iron containing just into steel. - Besides carbon, there is also a certain proportion of manganese, and this has a wonderfal effect.

The charge of pig-iron being ready, it is poured in in a molten state, and the reanalting mixed rasss-steel-is then transferred from the oonverter to large pans on the lever, Which is then
carried round, and the molten metal dropped into moulds undcrneath.
Only certain kinds of iron can be employed in thin procas and sulphar, and unfortunately these kinds are very limited in this country, only that obtained from hmomatite being applicable. The supply obtained from this source is insufficient to meet modern requirements, and we are consequently obliged to import a great deal from Spain.

There are no less than 30 or 40 vessels exclusively engaged in this trade.

A small amount of silicon in the ironis thonght to be advantageons, inasmuch ss by its combination with oxygen it developes a very high tem peratare, becoming converted into silicon as slag Sometimes the metal obtained by this process is not so homogeneous as it might be.

The lecturer concluded the course with a few remarks, regretting the short space of time he had been able to devote to a subject of such magnitude, which, to be properly dealt with would require something like sixty, instead of six, lectures.

WRITING MACHINE FOR THE BLIND.

\mathcal{A}^{T}a recent meeting of the Royal Scottish from Mr. Robert Meldram, teacher of was reai Alloa, desoribing an improved method of corre sponding between blind persons. The invention consists of two parts-the upper having the types, with keys and levers for moving them, and the lower containing the paper-moving apparatus. The base of the upper part is a metal disc, with a circular hole in the centre. Around the central opening are arranged twenty-aix little hammers, having on their striting surface copper types for ombossing the paper. The types are so arranged that they all strike at the same place--viz., on the opening in the disc, and each hammer, after striking, is pulled back to its original position by an indiarabber band. Each of the keys represents a letter, and when any particular key is pressed down the corresponding hammer strikes, and the type makes a mark on the paper, which is stretched on a revolving drum in a drawer below the disc. When one letter is impressed the dram is moved round by a handle in front of the machine, and a plain surface is presented for the next stroke. When a line is finished the drawer in which the paper moves is pulled out one line. The machine is constracted to print Moon's type, but its principle is equally applicable to most others, and especially to Braile's. After the paper had been read the machine was exhibit

CONTACT OF LIQUIDS.

I^{N}N a recent note to the Paris Academy of Sciences, M. Van der Mensbragghe enanciates the following principle: When a liquid of strong surface-tension, and holding gas in solntion, is brought into contact with a liquid of feeble tension, there is a disengagement, more or less pro nounced, of the gas in the former. This may be shown from a large namber of experiments-as e.g., the following :-1. If a drop of alcohol or ether be introluced into distilled water, contained in a small vessel three or four centimetres in diameter, and about half filling it, and if the liquid be then shaken, a lively effervescence takes place. This effervescence cannot be attribnted to air introduced by agitation, for alcohol or ether alone, and water alone, do not give any marked results in this respect. The same ex periment may be made with benzine, sulphare of carbon creosote, spirit of turpentine, olive oil linseed oil, colzs oil, \&c. Similar efiects will be produced if a glass rod with a greasy surface be plunged into distilled water, and the water then agitated. A disengagement of small babbles o gas takes place. If the vessel containing the water be not quite free of greasy matter, small gaseous bubbles form at those parts of the internal surface to which this matter attaches. 2. A drop of oil spreading itself on the sarface of distilled water produces a disengagemeat of small gaseons bubbles, which may easily be observer with a microscope. This seems to be the true canse of the colesion figures observed by Mr . Tomlinson ; which consist in the separation of the film that hes aproud ont on the liquid surface into a unmber parts, which form at first a sort of network, and this gradually breaks up into small dises, which continue to decrease in size, till the disengagement of gas ceases, when they remain unaltered for an indefinite time. The phases of this phenomenon may be watched with a microscope, and it seems to be explained by the liberation of innumerable small gaseous bubbles under the films.
When an oil is kept for a time in contact with water, the surface of separation of the two liquids oses its transparenoy. This is accoanted for by the liberation of small babbles of gas cansing the oil to resinify more or less, and thas become in capable of trangmitting light rays. 8. It has
been long known that water boils less rapidly the more free it is of gas held in solution. It will be seen from the above that when distilled water is mixed with alcohol, for example, a large quantity of the dissolved gas may be expelled. We bave in this, confirmation of an experiment made by M Kremen. Having added one part of spirits of wine to three parts of water, and applied strong heat, he found the boiling point raised to 109 degrees C., and even beyond it, in proportion as the volatile liquid evaporated.

NATURAL PHENOMENA AND PRODUCTIONS OF THE POLAR REGIONS."

THE polar year consists only of summer and Thering of the sea-ice. The breaking up the wiuter ice is sometimes acoele breaking up or $t=0$ or delayed an equal length of time by time by In angust 1838 , Dese and Simpson found known. In Aug in the sea aboul and could only progress on foot all whilst the following year a month earrer they ran past the same coast with a resh breeze, a thowing sail, and an open sea. The great mase of the seaice does not remain stationary through the winlas and melt away in summer, but is mentan slow motion, mostly in the direotion of the lowe latitudes, where it is finally broken up and dispersed. Captain Back, in the Terror, was helplessly borne along amidst the most frightiful commotion of the surrounding ice, from Repalse Bay through Hudson Strait, until liberated after many months in Davis Strait The wonderful drift of the Fox down Baffn's Bay from Angust, 1857, to April, 1858, by which Bay from Aagas, losed whole year in his searob for for the Frankin e

The immense floating masses called icebergs consist of fresh water ice formed on the coasts and broken off by the action of the waves. The rocks of ice from which they have been severed are huge glaciers advancing far into the sea. When the buoyant power of the ice overcomes the etraction of cohesion masses break off at the bor the sea and rise to the surface in the form of bergs. As they font with only a tenth of their balk above the water, the rate of movement of the glacier, the distance of its front from the sea, and the depth of the water near the shore, have been made the elements to determine the date at which the first berg will be floated off. If this be the true theory of icebergn, their estraordinary abandance ind in the south frigid will su
zone.
The Anrora stands pre-eminent amongst the ataospheric phenomena of the polar regions. Captain Hall allades to some pecaliarities respecting it not generally known. It was attended by the kind ol clonds named cirrocamuli, and the auroral beam illuminated the face of the cloud, proving that it was at play between the cloud and the observare This writer mentions as the mosiremarkebla of the he ever witnessed the pecuinar movemasing clouds overhead, which was by hitches, passing with the wind slowly and then stopping for a fow seconds. It seemed as it the cloads were batthing with an un seen enemy, but that the former had the greater power and forced their way by steps along the vanlt soove. The observer felt sure the aurora had something to do with it. Dr. Walker, naturalist to McClintock's expedition, also expresses his convio tion that on several occasions the aurora was only a fow feet above the vapour rising from the sea.
McClintock, Simpson, and Kane, all refer to the connection between the aurora and clonds, and think the former is never seen in a perfectly clear atmosphere. Most observers have negatived the ides of the accompaniment of sound, bat he sinsidered was convinced
good evidence
'The discovery of the position of the magnetio pole by Sir James Clark Ross claims some notice. Previous calculation had nearly determined its place and it was most interesting to find as the actua place was neared that the horizontal needle ceased to more and the dipping needle became more and more nearly perpendicular until it showed a dip of $89^{\circ} 59^{\prime}$, only one minute from the vertical. This was in latitude $70^{\circ} 5^{\prime} 17^{\prime \prime} \mathrm{N}$. and longitnile $96^{\circ} 45^{\circ}$ ${ }^{45} 5^{\prime \prime} \mathrm{W}$. Fifteen years later the same discoverer made the nearest approach ever effected to the place of the sorth magnetic pole, determining it to be in of the sorst 155° E. long. and 75° S. lat.
The phenomeua of cold and darkness daring the Arctic winter claim attention. The effect of a fall Arctic wiater to -50° or -60° Fahrenheit is shown in temperatare to sleep, and in its worst form exby the tendency to sleep, and Libits itsell palt Dr Kane narrates several every mental faculty. Dr. Kane narrates his men instnnces of this species or exsanity himself to sombe extent the subt of it. The influenoe of the long intense darkness is do-
scribed by the same writer as most depressing.

* Abstraot of a paper read by Mr. O. F. Ravis, bolore
the Bristol Waturalluto' Socioty.

Even the dogs were strangely affected by it, and McClintock says no instance is known to the many died, as he thinks, from the
The effects of refraction are partionlarly noticed by Arctic voyngers. The immense amount of evaporation constantly going on daring the summer from the melting of the ice, produces an unusually humid condition of the atmosphere on and near the surface, a state of things eminently favourable to intereatingenon of mirage, of which many very phenomenon are those on record. Akin and thi both very common in these recinns. Thesr, in combination with halos, are sometimes seen for many bours together, and are atributed to the presence in the atmosphere of innumerable spicnla of ice, forming so many minute points of reflection and refraction. They are most common in the winter months, alternating with dense fogs, Which for
days together conceal every distant object npon the days together conceal every distant object npon the
surface of the earth and sea, and quite shat out the glories of the heavens.
The question of an open polar sea has been much discussed during the last few years, and many circumstances have contributed to foster the opinion that such an open hasin exists in the vicinity of the orth pole. Drs. Kane and Hayes succeeded, the former by one of bis sledge parties and the perfectly free from ice in latitude 80° and $82 j^{\circ} \mathrm{re}$. periectively, whilst their ships were frozen ap 300 miles to the south. Subsequent exploration by
German expedition fally confrms this discovery.
Animal life in the Arctic regions is by no means so scarce as might be expected, except daring the the rivers and plains, teem with life. The birds are innammerable, swarming on the sea-cliffs and on the borders of the streams where they arrive in the early summer to batch and bring up their vonng. and whenco they migrate on the approach of winter to more congenial climes. The marine Mammalia crowd the bars and inlets of the Arctic consts, and the land qnadrapeds wander in immense nnmbers over tbe plains, now covered with verinre and
bright with sammer fowers. The most importnnt bright with summer fowers. The most important
members of this order were noticed and their habits briefly deacribed. Of the Whale kind the Balann nysticelus of the Greenland seas. the Physer mi crops or Sperm Whale of the Soothern Ocean. the White Whale (Delphinapterus Beluga) and the Razor-
Of all tha Cetacem, none is more carinns than the Narwhal (Nonodon monoceros), with its enormons nok or horn projecting from the snont in a straight line with the body, which has given to the animal its common name of Sea Unicorn. There ara, in fact, two tnaks, bat that on the right side is usually
radimentary. This appendage belongs to the male radimentary. This appenfage helongs to the male
animal only. It is from 5 ft . to 10 ft . long. tapering on a point, and with a spiral twist through its wholo length.
The Seal is the most valnable of all Arctic ani mals to the natives, as it supplips them thronghont sagacity of the seal-hnnter is taxed to the ntmost sagacity of the seal-hnnter in taxed to the nemost
in its capture, as its anses of heoring and smell are remarkably acnte. The animal is canght either by watching a seal-hole at which it comes up throngh
the ice to breathe, and by atriking it throngh the the ice to breathe, and by atriking it throngh the
head with a apear, or by following the chase npon the open water in tbe native "Gayak" or alkincanoe. The former process entails great privations lava and nights at a time in a temperature of - $5 n^{\circ}$ Fahr. The principal species of seal inhahitive the Arctic regions are the Common Seal ('hoca vitulina). the Rongli Seal (P. fretida) and the Great or Bearied Sell (P. barbata.) The seal is carnivoroas, feeding on fish, crustacem, and water-fowl.
The Walras or Morse far exceeds in size the largest seal, being sometimes 20 ft . in length. It is gregarious in its habits. large numbers heing fre-
quently seen lying in heaps upon floating ice. It quently seen lying in heaps upon floating ice. It
uses its tusks to aid its movements in climbing or dragging its unwieldy body from crag to crac. 1 lives on fish anil marine vegetation. The hide of the walrus supplies the Esquimsux with the best material for their sledge-liues, the flesh forms a large portion of their winter and spring food, and the blabber is used for their lamps. Both the seal and wairus are known to swallow large quantities
of gravel and stones, for what purpose is unknown.

Of quadrupeds the Polar Bear (Ursiss maritimus) for his great strength, nctivity, ennning, and ferocity.
is pre-eminent. This animal is the terror of all is pre-eminent. This animal is the terror of all emaller and lees powerfnl tribes, whether terrestrin
or aquatic, as ho is eqnally at bome on the land. in the water, and on the ice. Exploring parties suffer much from his attacks npon their carhes of proviand labour, generally fall an easy prey to these tigers of the ice. Captain Hall states. on the sathority of the natives, that the hear in his conflicts with the walras ascends the cliffs and harls enor-
mous stones npon the head of his prey, fracturing the akull. Most writers agree that he does not atteck man except when provoked or wounded, and

The Glatton or Wolverine (Gulo luscus) is allier to the bears, badgers, otters, and mastelidæ. OlN
anthors bave told wonderful tales of its climbing trees and pouncing upon the hacks of reindeer and elks as they passed beneath. It in no doubt ex tremely voracions, but modern travellers nssert that its attacks opon the larger animals are chiefly made apon them during their sleep. or apon weak and dying deer or young fawns. It is extremely mischievons, and a great pest to the bunters nnt trappers of the fur countries by destroying their raps for the sake of the bait. Its strength is pro wood ans. It has been known to disarrange piles o men to lift them
The Esquimaux Dog (Canisfainiliaris, var. borealis) is well known. His argacity in the chase, his pa tience and perseverance in the sledge-team, and his great speed, render him an invaluable possession to
the native inhabitant or the more civilised explorer of the northern regions. Though generally treate with harshness by their masfers, and often half atarven, they seldom rebel aganst human anthority. They will attank the bear and every other anima! except the wolf, to which they have a grea axtipathy
The Wolf is one of the tyrants of the northern parts of the world, and is found in both hemispberes Its great strength, rapidity of movement and wavag disposition, render it the terror of at animals in-
ferior to itself in these qualities. Its strength and courage even after being wounded are the subject o many interesting anecdotes by writers on northern research and adventure.
The resemblance between the wolf and the dog has been noticed by meny writers. Cases aro on record in which dogs have themselves mistaken woives for animals of their own species, and have "Then victims to the delnsion. Dr. Kane says :our Arctic dogs and wolves, that I am inclined to agree with Mr. Broderip, who, in the ' Zoological Recreations,' assigns to them a family origin. Both animals bowl in unison alike. Their footprint is the same, at least in Smith's Sound. Dr. Ricbardson's remark to the contrary made me observe the fac
that our nerthern dogs lenve the same 'spread track' that our nerthern dogs lenve the same 'spread track
of the toes when running, though not perhaps as of the toes when running,
well-marked as the woll's."
The Arotic Fox (Vulpes lagopus) is found in both hemispheres. It has a fine fur. blnish grny in summer, and pure white in winter. Its habits are gregarious, twenty or thirty burrowing to gether. It is easily taken in traps and tamed withont difficalty. It is said that this little animal hants with the bear, and "It is certain." says Dr. Kane, "that they are nften found the for belind garthering in on ahead with his pres
the for behind gathering in the crumbs as they fall.
Of the few strictly berbivorous animals that in
hnhit or frequent the Polar regions, the Keiudeer Corvus tarandus) takes the foremost place, from its size, its numbers, and its atility to man. The auimal itself as well as its habits are too wel go in large herds. Franklin states that in a short morning walk near Fort Enterprise in the month of October, he saw upwards of two thousand.
The Moose Deer or American Eik (Alces Amerianus) is the largest animal of the genus. It is bigher in the shoulders than the horse, the neck is short and rtrong, adapted to bear the large horns which weigh sometimes nearly fifty pounds.
The gait of the animal is a kind of shuffle, and be joints crack at each step with a lond noise. It is said to trip occasionnly and throw itself dow,
treading with its hind feet apon its fore boofs.
The Mnsk Ox (Bos moschatus) which ranges over the barren lauds of America north of the parallel of 60° is about the size of oue of our Highland cattle. Its horns are of a pecaliar form, and cover the brow nnd the whole crown of the head. These animuls on crass and lichens, the country being destizute ho larg, except some spruce trees on the banse hemisphere, nor in Greenland, Spitzbergen, or Lapland. They assemble in herds of twenty or thirty, nnd will
his life.
Notwithstanding what has been stated as to the sonual migration of the deer and other Arctic animals, it is nevertheless doubted by many Arctic
explorers whether they do migrate at all. It is certnin that several expeditions found even in the depth of winter large numbers of deer in varions parts of the frigid zone. and it was the opinion of Parry that nuly the darkness prevents their bring seeu all through the winter. What they live on is a mystery, and indeed the animals fonnd at that seasou are very lean. It scems probable that where migration
is easy, ns on the Continent of North America, it may be the babit of these animals to seek a more geninl climate, from the rigonrs of an Arctio winter. whilst in more isolated sitnations they may from the force of circamstances remain pernaanently on the

FLOORESCENCE

SOME ourious and interesting oxperiments in science of light cently exbibited at the American Institute by the President. Henry Morton. The sabject of the paper was-" Fluorescence," or that action by which rays of the higher parple, or even invisible light, such as produce most strongly photographic action, excite on certain bodies lower rates of vibration, resulting in the cmission of light, generally of a red, green, or clear blue colour. The paper was illustrated by a number of striking experiments. Thas, a flash of solution of chlorophyl (a green coloaring matter obtained from leaves), which is of an olive green colour, being held in a beam of blne light. appeared to be full of a blood-red liquid. Various solution colourless in crdinary light were then shown to oxhitit the brightest hues when illuminated by the violet rays of the lawtern, or those obtained from the electrical discharge of a large coil in rarefied gases. Professor Morton then announced that, in the course of the examination which he had been making of such substances, he had encountered one which he believed to be as yet nnknown, and which possessed the property of developing light by fluorescence in a pre-eminent degree. This body was obtained from petroleam, and he proposed to take for it the name " Viridine." The word viridin had been already applied us a synonym for chlorophyl but was now practicaly obsolete, and too appro-
priate to the present aubstance to be thrown away The material from which this new body was ex racted was given to him by Professor Horsford, of Cambridge, Mass. 4 large drawing of a flower with leaves painted seemingly in light umber tints, was then shown and illuminated by electric dis charges, when it appeared of the most vivid green. The pecnliar flaorescent spectram of this body, and and many other illustrations were exhibitod.

THE NERVE OF A TOOTH

MOST of our reailers are no doubt familiar with the plrase, the "nerve" of a tooth, bnt we imagine that very many of them have only a vague
idea as to what is meant by the expression, or rather to what is meant by the expression, or versed in Odontology. There is, wo think no more interesting field for the inquiring microsenpistcertainly none more replete with "entertaining" objects-then the animal frame. Whether his at tention is confined to the constraction of the tissaes of what are commonly termed domestic animals, or is devoted to acquining a thorough knowledge of this fascinatece of warded for all his trouble. Talee, for instance, the warded for this article and cunsider how necessary a portion of the buman ecounomy are those little a portion of the harnan ecouomy are those ittle prepared for digestion and assimilation by those organs whose especial husiuess it is. And yet how few there are who, if they think about it all, ima rine their teeth are worth more than the nsnal laily brush; how many there are who forget that they have teetb, until, freozied by a Bevere attack of tootiache, they rash to the dentist's to have the neglected servant discharged or its "nerve" de stroyed.
A paper by Mr. T. Charters White, the hon. sec. of the Quekett Microscopical Clab, affords an opportunity, and points out the way, of becoming better acquainted with our teeth, and we therefore reproduce a portion of it:-
If a tooth be divided longitudinally the main body of such a section would reveal three different sub stances sarrounding a cavity, which, to a certain extent. partakes of the external shape of the tooth mmediately surronnding the cavity, and constitat ing the principal balk of the tooth, we notice a Gibrous silky substance, called the dertine; capping that part of the dentine which appears above the nom, we see the crystalline, almost insensible cnamel, designed to protect the highly orgauised hall excedins sensitive dentine beneath we jav, and forming the root of the tooth, is clothed with a material of a different appearance to the other two substances-that is called the cementum. Of the enamel and cementum, it is not necessary on this occasion to speak, but the important relaion existing between the nerve qua the dentine explaining its microscupical appearance. In looking oxplaining its microscupical appearance. In looking at a section of dentine under the microscope in a
well-developed human tooth, one is reminded of hose vicws of the comparative sizes of the rivers of the world given in some atlases, only here our rivers are all the same diameter and ahont the samo length, and ron together in parallel waves. If, for the sake of illustration, we spenk of theis an rivers, we shonld say that they ariso benent the enamel by exceedingly fine tributaries, by confluence of which the maiu stream is graidn tooth it " "foriug on to wals to make nn walls of the central cavity, which is occupicd i .
living state by the so-called "nerve." A cloger
examination of our matnphoricn rivers ribl higher oxamination of our metnphorical rivers nith higher
magnify ing and unilulating taber, and existing so nbun dantly in the dentine as to impurt to it that filrons
ailky aspect which cannot fail to strike the moit silky aspect which cannot fail to strike the mot casal observer. These tabes, which, on the walls of
the catity measure abont the ten-thonsanith of an the carity, measure about the ten-thonsanith of an
inch in diameter, are occupied in a recent tonth by transparent strnctnreless fihres known as the dentinal fllurilee, the exact office of whict is hat obecurely defined, hat they may minister to the nntrition and vitality of the tooth. since, when from age or disense these tobee become consolinated. the horn, and, as a consequence, the tooth dies, becomes loose, and a source of painfal irritation. If a section of the dentive be made in a direction that shall cut across the oourse of. these tubes, each tube will present an irregalar aperture, and will be spen
separated from its fellows by an minost equal p, cportion of intertubular tiasuc. Wo need not now consider any farther the character of the dentine as I shall have to recur to it when spealking of its
relation to the nerve ; but what I have laid hefore relation to the nerve; but what I have laid before
you will enable you to understand the meaning of you will enable you to understand the meaning o
mach of the structure it is our especinl olject to If anane in the central or pulp carity of a tooth. If we take a recently extracted heanthy tooth oosapiod by a pinkish Heshy mass about gin. Iong and one-tenth of an inch wille at its upper and ehape of the tooth, being wiide in the npper part, and taporing towards the tooth: this, then, is what is popularly called the "nerve." In physiological parianoe it is termed the pulp. The basis of this pulp is oemposed of areolar tissne, who
are filled with a homogeneons plasma.
amieroscnpical examination of its exterior will reveal an innnite rumber of small points, giving to it an appearance not mach un'ike the cross section of the tabes of the dentine, both as regards size and distribution. Having noticed this much, reconrse must be hud to compression before we can readily make ont the arrangements of its internal structure. Before proceeding to flatten it by prossure it may
bo withdrawn from its cevity, aud hllowed to soniz bo withdrawn from its cevity, anid allowed to sonk in the ammoniacal solution of carmine; let it remnin faid, and transfor it to glycurine for a few bours; then pat it uuler gentle, gradual pressure for some few hours more, when it will be rendered suffioiently thin to be easily examined by a tin. objective or higher powers.
Commencing our examination at that part of the prlp nearest the apex of the root, we shall notize it outaring the foramen of the fang as a fine thread, which thoogh so fine nevertheless conveys the nerve and the artery into the pulp, and gives exit to the
returning vein; tracing this thread into the pnlp roturning vein; tracing this thread into the palp
wo ahall readily distinguish the nervo as a bnndle Wo ghall reanily distinguish the nervo an a bnnille
of parallel fibres whiclu. ruaning in tocether a short distance. divide into tivo. three. or four fasciculi, and dividing again still give off fibres to uvery part of the pulp; it is highly probable that these fibres end in loops, but the pressure necessary to reduce the palp sufficiently thin for observation ruptures the loops, and consequently they very frequently appear to terminate iu free extremitios; but one fuct may be easily demonstrated, namely, their course is always at right angles with the dentinal tubuli. pulp also conteins the branches of the artery and ts voin; theng are not so easily followed, but in an examination of the pulp of a tooth extracted for
severe inflacimation in it, t! ocragested vesse's were naturally injpcied. and conld bo seen as a complicated natwork without nny definite arrangement excepting a loop-like distribution towards the circumference ; in some cases the vessels of the pulp, becoming stainod by the cormine, will be readily
seen with their peculiar transverso nuclei and dis. seen with thrir peculiar transvarse nuclei and dis-
tingnisuatio from the areolar tissne, whose anclei are spindle-slaped. Thero is one fcature in the microscopical examination of this prepared pulp Which will not escape obsurvation-it is the curions arrangement of its cortical portion. In ruferring tho pulp, as it appears on firit splitting a tooth. I alluded to the comparative likeness presented by it to that of the deutive cut acriss the tuber, and if that comparison is borne in mind in the examina tion of this external portion of the pulp. under its preeent circumstances, we mey (acily interprot the
meaning of this arrangement. T':e cortical submeanceg of the pulp in its healtiy conditi,u consints stance of the pulp in its healthy conditi,n consints
of a namber of oral bodies placed si ie by side with of a number of oral bodies placed shesurate of that pulp on which they stand; they are le peply stained by the carnine. which proves that ther are endow.d
with active and growing powers. These oval bovli, are termed "Odontollasts." An exnmination of an odoutoblast, which has been ionlated hy prasure
from the ot ers. will show that it has 80 altoch. neut by a transearent stractareless appondnen to something within the buily of the f up while a cimilar appendage, procecding from its digtal oxcomes the dential fibril of 'l'omes.

The orlontoblastic laver of the pulp is so impor ant nil clement in the hife and histology of a tout
that its listory denerves a closer examination than the limits of a paper like this can afford ; but moy be iuteresting to show the part it plays in thi formation of the dentine.

About the sixth or seventh week of embryonic life a groove is formed in either jaw, at the bottom of which, after the lapse of a few wecks, papilla begin to rise, and shortly after transverse partitions winch thoove shat off and separate each papila temporary tooth. Ahont the seventh month of fottal lifo the ossification of the tooth commencer, and the dentine is represented by a cup-sbaped scale capping the crown, and ultimately extending down the sides and embracing the whole of the apper surface of the pulp. It is at this period of their rowth that the odontohlasts are most active, for they have the development of the dentine before them, and deriving a plentiful rupply of nutrition
from the plexns of bloodvessels beneath them, denrom the plexns of bloodvessels beneath them, den inwards, till the pulp being reiluced to the size at which we generally see it hy the gradual formation of the dentine, the odontollasts become dormant, but capalle of awaking to activity under the influence of certain circumstances of irritation; thus if caries nttacks a tooth at a particular spot the tubuli in the dentine, through the fibrilla in them, become consolidated at an equal distanco from the point of attack all roand it, aud a barrier seems to e thus thrown ap against the inroads of the advanoing enemy; but nuless anch a remedial measare as tooth and subseqnent plagging of the cavity be adopted, barrier after barrier may be thrown up bat to be overcome. Even then the odontohlasts of the pulp resist by forming new dentine in its very substance, and it is only when inflammation and sappuration destroy the odontoblasts that this reparative process is annihilated. In some cases of
general irritation of the pnlp, as where the crown ceneral irritation of the palp, as where the crown nit wear of marntication the whole of the palp may be converted into an irregular dentine. Sometimes nodules of ossific matter are found in the meshes of the arenlar tissue of the pnlp, bnt these do not partake of the character of the dentina, but are semi-trankparnt ami strictureless, testifying mogeneons plasma satnrating the bodr of the pnlp, mot which it is the legitimate ofice of the odontoblasts to buill up as dentine.
There are creat and, I fear, almost insmperable difficultirs in tho way of elearly sefing the termination of the nerve-fibres in the pulp; one can only
conjecture at the method in which they end. In anme sprecineng two fibres may he seen rinning side by sile for some distance, ant when yon axnect to
see n lonp the enila arn fonnd sopnrated: thia may see n lonp the enis arn fonnd separatell: this may
prohably arise by the pressare nsed to render the pnlp thin enongh for observation. Rome specimens, again, show a very arparent loping of the fibres, but the loops extend ronad tho crramfirence towards the end of the puld, they nre solarge ; but in to craposara met with ibrea that womld tead us the tubut that they do so. How, then, are we to acronut for the painfal sensation experinnced in entting into live dentine, unless we suppose that a and the iibres of the nerve? Tho only theory that cau be sucpestarl is that the dentinal fire couthinell in a tulue of the dentine passes out throngh its oderve, conveys the sensation to the brain, and we ner:e, conveys the sensation

I have not fonnd it possibie to see this ronnection between the odontollast and the nerve fibres, be-
canse the re-agents nsually emplored to render canse the re-agents nsually employed to render
nerese visii,
 mom fortunato. ne the proximal candul appondace of the odontolinst is ton transparent and too minute to admit of demonstration, except, prohans, of the pulp, tiat aftar at re-agents; in specimens been triaped nat with nendlas, the isolnted fibres have had, besidea their own coloured nnclei. colonred odontoblests. with this internal onndal appendare fnsed into thrir onter parts. Such may be the general mole of their conaection, hut I ananat clear on that point. Sich, then, are a fer of the principal elcments met with in a microscopical examinipal elcmeuts met wilh in a microscopican examia tooth, but in chat any one may feel inclined to rork out these ditails for himself, it may be ns well to append a few remarks relntive to the plans of
investiyation attemled hy the best results. The avestigation attemed hy the best results, Tha a healithy conilition, to mike room for the and. vancine permauent act, any others being nasuitnbla from disease. It is necessary to exerrise great care in extractivg the puip from them. as the bnne dnat cling most tenacionsly to the odontoblanta, and not ouly obsenre the view of the delioste details, bnt look onpleasant and sloveuly. The plan ibund to auswer best is to fity a longitudinal grocpo round
the tooth; then, having weohed away all the deftris in ippers, when it will come in two and expase the ualp for its wholo length, which may be withdrawn g seizing it at its smallest part and tearing it on of the cavity. This will draw out not only the dontoblasts bat some of the dentinal fibres at ached to them. Another very good plan for ob serving the relation of the polp to the dentine is to oosk the tonth for a few weeks in the carmine stain ing fluid, which is sucked up through the foramen of the fang, and being absorbed by the palp, coloars it enmpletely. The tooth may thrn be dealcified by immersion in ordinary bydrochloric acid, which removes the lime but does not hart the soft tissues. At the end of a fortnight the tooth mar be cat in thin slices, when the pulp will be cat with the decalcified osseous tissue, and the relation will be calcitid osseous tissue, and the relation will be well shown. I have thus, in these few brief re
marks, which fail to do justice to my subject, en deavonred to show you that that which is generally alled the nerve of a tonth is in reality a masa o reolar or counective tissae, throngh which ramify the nerve, vein, and artery destined for the life of a tooth, that its function originally was the forma tion and building up of the dentine, that its powers in adult life remain dormant, but capable of being aroused under the action of a stimulating infuence o develop dentine again, and that it performs an important part in ministering to the vitality of cate sensory organ.

THE STAR DEPTHS.

M^{1}RICHARD A. PROCTOR, Honorary Beoretary of the Royal Astronomical Bociety, three o'clock on Saturday last. This lecture, was specially deroted to the eonsideration of the law according to which the atars are distribated. The according to which the nars are distribated.
arrangeraent of the stars visible to the unaided eje
whs first considered. Then the lecturer discassed Whe frst considered. Then the lectarer discassed the atar-gaupes of the Herschels, in which 610,000
stars were connted, the researches of Wm. Strove stnrs were connted, the researches of Wm. Strave relating to 81,000 stars, and the pecaliarities of
stellar distribution exbibited in the lecturer's ohert of 324,000 stars. Next the motions of the stars were inquired into as bearine on the same question, and the evidences of star-drift-that is, of a motion of whole sets of stars in one direction-were considered and snalysed. Minler's thenry of a central sun in the Pleiades, around which the whole galaxy revolves, was shown to be based on insuffioient evidence, as Sir John Hersebel had already suspected. As bearing on the subjeot of stellar distribution tho fact was mentioned that in certain regions of the liesvens nearly all the stars are of one colour-es Lesavens neariy all sbe stars are of one colour-es
greenish white in Orion, yellowish in Cetne end greensh white in Orion, yellowish in Cetns and
Eridanus, and so on. The aggregation of veriable stars in certain regions was alao diacmsed, and the remarkable fact mentioned that with the single exception of the "Blaze Star," which shone out in 1866 in the constellation of the Northern Crown, all the temporary stars have appeareri within the Milky Way. The lectarer put forward a thoory in explanation of this circumstauce. Hur remarked, in conclusion, on the amazing vitality reogynisabla within the sidereal syytem. The lect nre was illas-
trated by mearly 30 photograplas illnminated by the electric light belonging to the institation.

DEATH OF AN INVENTOR.

M^{B}aUGUSTUS SIEBE, Srn., the meohanician and inventor, died at bis residence in Sonth London ou the 15th ult. at the ape of 84. He was borz early age to Berlin, where he was edncated rery was apprenticed to a fine caster, and early erinced great taste both in modelling and obasing. In 1812 he had to join the army, and fonght ns hieutenamt in the Artillery at the battle of Leipsic. Where he was wounded. On peace being sigued he went to Kiel, where he werked at watchmaking. In 1814, be came to Englysal, and obtained enployment as a watchmaker, afterwards as a chaser, and then sa nnu- nuker. In lyta, having become acqnainted with for entering into fires, ha sncrested to bien the practicability of morking under water with a similar apparitns, and erentually constructed an air-pamp and diviug dresa, now known as the open dreas Seeing the dangers to which the divers were exposed in using the opendreas he afterwards invented what is now known ns the close diving belmet dress, by Which all danger was removed, anal to this ho oonlet valva, the inlet valvo, and the regnlating valveIn 1818 Sir Cliarles Pasley, C.B. who was employed in remoring the wreck of the Royal George, re-
quested Mr. Sirbe to make a trial of his appasetas, Which wis dove rith the greatest success, and eventurlly it wro adopted by the Admiralty for the
ase of the uavy. In addition to this contripane Mr. Siebe way the inventor of a great number of nechunicul ypplisuees which kore found their way

THE PROGRESS OF GEOLOGY.-COAL MEASURES AND COAL-SUPPLY.*
 (Continued from p. 142.)

WHILE the presence of water has determined ence of coal has given rise to exceptional lecal growths of that pnpulation, quite irrespective of the original cause of settlement. The existence of coal has created new wanta, developed vast energies, enornous resources, and has established great industries dependent npon it for their maintenance and prosperity. Natural causes, anceasing and ever renewing in their action, maintain our supplies of water in a condition of constantand anfailiug ope ration. They are physical and geological agents, equally in force in the past as in the future of the
earth's history. Not 80 with coal, which is a store of earth's history. Not 80 with coal, which is a store of the past, and of which we can look for no renewal. Onr cosl-measures, great as they are, have defined limita, whereas our wants seem to have no bonnds. With the increasing magnitude of the latter our fears of the extent of the former have ncreased, and bave given rise to muoh speculation and mnch discnseion. At first the estimates of the Iaration of our coal-fields were little more than guesscs ; but the subjeot hes of late years been bearings, in the able works of Hall, Jevons, and Warington Smyth.

The area of the exposed cosl-measures of Eng To whese Mr. Hull had added 933 square miles coal-measures overspread by newer formations ; but the inveatigations of Prof. Ramsay lead him now to conclude that this latter total of nnproved conl measures may be increased to 2.988 , to which may e adied 153 miles of the Bristol coal feld, making total of 3,141 square miles of coal-measnres central and northern England, or of 301 equare miles more than the area of all our exposed coalquestions of variatinus in the mass of the coalnesmires, in the thickness of the strata, and in the namber anil persistence of the coal-seams. The oxtent and magnitude of the faults bounding 80 many of our conl-fiells is also a point of great demadations of pre-Permian and of pre-Triassic age; and in this intricate inquiry it mast be uperposition and faalting, but one also of removal nd replaccment, iavolving a number of important keological prohlems. EspeciaHy is it necessary to distinguish steep oli-sur
denadations from fanlts.
The other branch of the inquiry relating to the poesible range of the coal-measures under the Jurasic, Cretaceous, and Tertiary strata of the sonth east of England, involves questions of a mach more hyponformation, only be treated on purely ahstract geological reasoning. Still, it is one essentially within the range of inquiry, and the collateral geolngical data we possess are sufficient to guide and direct be determined:- First, how mnch of the are nnder investigntion remnined dry land during the Carcovered hy cosl-strata. Was, therefore, never coal-strata to have spreal over a portion of that grea. how mnch of thern escaper subscquent denndation? With regard to the first question it is comparatively easy, Where the Palreoznic rocks now form the snrface, to determine the antiqnity of
that surface, bnt where the old rocks are coverad hy reat mnases of other strata it hecomes very difficult determine the original conditions.
The great lines of distarbance traversing Central and morth-eastern England are subseqnent to the Carboniferons period, and the many detached coalbenins eeparated hy the Penine chain and the stone forming thinge ranges. are held to he portions of one great Carhoniferons formation, which, in its entirety. spreaf from the south of Scotiand to central England, and, probably still farther nouth. bounder on the north either by the was originally Scottish-border connties, or, possibly, by the Grampians; on the west by the high lands of Cumberiand and Wales ; while on the anth we and no old exposed land-surfaces of older Pzinozoic ake ontil we reach Brittany and Central France.
With mapect to the depnaits going on daring the Carboniferons perion in this mrea, Professm Phillips was the first to sbow that the lower Carlmonifernas more sedimentary omnditions-that the Mountain Imestone there hegins to show traces of the prox. imity to laud, which increase rapidly in proceeding ordinste bedm of cosl gradually satting in in the imestone series, and inoreasing in importance es bey approach the older border land. In the same

An cbutrant of the andual adareas of the Promident of the Gecological Socioty.
sonth and west is supposed by Profeseor Ramsay to be indicated in the overlying coal-measures by the increase in number and thickness of the beds of Randstone in the sonth of the Staffordshire and
Siropshire coal-field, and Mr. Hull connects that Shropshire coal-field, and Mr. Hull connects that
old land with the Cambrian and Silurian rocks of Leicestershiro.
If such were the case, the question arises, did this form a barrier which cut off the Carhoniferons deposits from extending over the South of England, or was it only a partial barrier which in no way prevented the extension sonthward of the Carboniferous rocks? It hapbeen supposed that during the Carboniferons periods spur from the Silurian district of Wales extended eastward from Herefordehire into central England, dividing the oonl-felds Glo Shrnpshire and Stafiordghire from thnse of Gloucestershire; and that against this old Silurian tract the conl-measures of Sonth Staffordshire die
out. If carried farther eastward it rould limit the soathern prolongation of the coal-measmres of Leicestershire, and then pass under the Oolites of Northamptonshire and the Cretacoous series of Norfolk; and so ereat an expansion has been given
it sonthward, that it would equally exelude the coalmeasures from the area of the south-east of England. We have, however, no snfficient evidence of the continnons extension of these old rocks castward of Staffordshire. Paleozoic rocks show, it is trae, in Leicestershire ; but there the coal-mensures wrap round them, and the older rocks seem merely to be an island in their uidst. At those spots in the soathern connties where they have been proved onderground, I imagine they were raised by distarbances of a later date than the coal-measures, and did not form part of the land sarface of the Carboniferons perind. As just mentioned, the older Carboniferous rocks show deeper rea conditious as ther trend from north to south. and the same deep sea conditions existing in Derbershire are found to prevail same time, similar slight indications of distant land, in the presence of intercalated shales and mperfect conl, reappear and increaso westward in their range into the district of the Bonlonnais, in France. There is nothing to show but that the spar of old land stretching eastward from Hereordshire was merely a promontory ending in Warwickshire, ronnd which the Carboniferons see parsed and extended southward uninterruptedly to Belginm and the north of France, and westward o Somersetshire and Sonth of Wales, sprendina over all this wide area first the sountnin Lime
tond then, in due order, the coal-measures. Of the existence of these formations over the sonth western and south eastern portions of this area we hnve proof in Wules, Somersetshire, and Belgium. The intermedinto area is covered by Jurassic, Cre taceons, and Tertiary formations, which hide from
ns the older rocks whose position it is our object us the older
Just as with the disturbance which at a later perind cansed the Mountain Limestone of the Penine chain to break through the great expanse of cosl-mensnres originaily sprend over the central and northern connties of England. nnd hrought ap to the surface the disturbed and disjointen coalstrata. of which, after subsequent denalion wo
hnve the isolated portions remaining in the existing cosl-fields. so was the area of Ronthern England raversed by the earlier axis of Palicozoic rocks of the Ardennes and Mendips, bringing up the conlthanks in separate basias and troagbs, some of which aro uncovered by newer strata, while other basins not exposed on the surface may sill possibly exiat beneath the newer strate of the pouth. enst of England. They have, in fact. been proved to exist under considerable portions of those uever
atrata of north-western France and of Belgium, and under some of the older Seconlary strata in the sonth-west of Eugland.
All geologiats are agreed opon the age of this great enst-and-west axis of disturhunce. It took place after the depnition of the coal-measnrep, and bafore the depasition of the Permian strata. Its effects, all through its range, are singnlarly alike. 8 orumbling up and contortion of the strata for a breadth of many miles, and along a length of above eight handred miles. The Silurian and Devonian rocks are thrown up by it into a number of narrow anticlinals, and the flanking coal-strata are tilted, tarned back on themselves, squeezad and contorted in the most remarkable manner-tbe same type of disturbance being apparent whether in Westphalia, Belgiam. France, Somerset, or Pem. broke. These great flexures have also resulted in throwing the coal-measures into deep narrow troughs, having a length of many miles and a width of bat very few.

In France, these distarbed old strata are covered by Jurassic, Cretaceous, and Tertiary strata, and in Somerset by Permian, Liassic, and Jnrassic strats ; they sink beneath the Oulites at Frome, and reappear in Belginm from beneath the Cretsmediste area? It is not to be suppoed that a lin of disturbance of such great magnitade could have
been followed from near Charleroi, where it passes naler the Cretaccous and Tertiary strata, to Mons, six miles. Along the whole of this line, the Chalk and overlving beds extend, with a thickness varying from biott. to goot. around Mons, decreasing to from 250ft. to 300 ft . near Valenciennes, and Cheabing again Lowards Bethunc. At Gaines the Chalk was found to be 670 ft. thick, and at Calais Somerset passes eastward under the older Secondary rocks. which in their turn pass under the Cretaceons and Tertiary strata of Wiltshire ; bat no attempt has been made to follow oosl-measures beyond a distance of six miles from their outcrop, where th overlying strata have been found to afluin a thickness of abont 450 feet
The original sapposition that the Secondary strata maintained, in the main, their regular seqnence, and, to a certaut extent, heir hicknass over larger areas, has long bean proved to be
erroncous ; but we were hardly prepared until erroncous; but we were hardly prepared until thickness is Mr i. hr. Hull has now shown that the ness of 792 ft in shire, and the Lias and Trias from $1,090 f$. to 400 ft . (?) ; while in like manner the Trias decreases from 5,6ioft. in Lancashire and Cheshire, to 2,00ft in stafordshire, and 600ft. in War dips, the Trins, Lias, and Oolites tail pff, althougb their dimensious in Gloucestershire are so considerable. It would appear that all the Secondary rocks, except those of the Cretaceous series, show a distinct thinning-ont in their range sonthward which is donbtless due to the existence of an old pre-Trisssic land on the soath-such as would have been formed by the prolongatiou of the Palaozoic rocks of the Ardennes and Mendips throagh the
sonth of England. It has been urged, on the other south of England. It has been urged, on the other band, that this thinning-out is a proof of the exist argnment is based on the ovidence of rocks of post-Carboniferons age, it is clear that, whether Devonian and Carboniferons age, the result, as affecting the Secondary rocls, would be the same.
This thinning ont of the Secondary strata has now been proved not to be merely hypotbetioal. At old undergronnd range, the Tertiary and Cretaoeous strata have bren traversed in well-mections, and Palroozoic rocks found to underlie them at once, withont the intervention of any Triassic presence of red and gray Sandstones, apparently of Pulenzoic age. has been proved nuder chall at a depth of $1,114 \mathrm{ft}$. Again, at Hurwich, and at Culais, strata of early carboniferous age have been Connd also immediately nuder the C inlk, at depths respectively of $1,026 \mathrm{ft}$. and $1,033 \mathrm{ft}$. There is thereof reason to believe that the andergroand ridge from Frome through North Wiltslire, Berkshire, Iid llesex, North-east Kent, and between Calais and Bonlogne, at a depth beneath the Secondary strata of not more than from 1,00fft. to $1,500 \mathrm{ft}$., while the conl-troughs, which may thank this range on the north would, judging from the analogy of with at depths very little, if at all, areater
T'o the north of this area it is probable that the hickness of the overlyiug rocks is greater; bat we have no means of knowing exactly. In Northamptonslire the Great and Inferior Oolites and the Lias have been found not to exceed together 880
feet, at which depth the New Red Sandstone was reached; but its thickness was not proved beyond 87 feet; while at Rugly the Lias was found to be about 905 fett thick, below which 136 feet of beds of New Red Sandstone were passed through. Looking
at the proved thiuning out from north to soath of at the proved thinuing out from north to eonth of reasou to suppose that they wonld be found of any very great thickness in the sonthern counties. Even immediately to the sonth of the known coalfields of the midland connties, the trials for coal have not jet proved any very great thickness of these rocks. It would seem, in fact, that the extensive tracts of Chalk, Oulites, and Trias, forming the substrata of our midland and sonthern counties, constitute but a comparatively shallow crust filling up the plains and valleys of Palsozoic rocks, the great framework of which stretches upparently at
but a moderate depth nuder our feet, and of which but a moderate depth noder our feet, and of which the highest ridges ouly, such as those of
Ardennes and Mfendips, now rise above gronnd.
It is clear, therefore, that in any search for conl, the relation of the Secoudary and the Palrozoic groups of rock to one another being parfectly independent, the latter must be considered eutirely on. beir own internal evidence, and apart from the hearing of the nower rooks covering them and forming the prosent surface, exoept pasibly in:a uw cases where uld lines of distarbance have proved points of tenst resistainoe, and yielded again, as sug estiod by Mr. God yin-Auston, to hater movements

It was in the north that the conditions fitted for the formation of coal frest eet in . The common Stigmaria ficnides and various coal-measure plants appear at the base of the Carboniferons series of Northnmberland, which there overlies conformably the Uppar Old Red Sandstone ; and productive beds of coal exist low down in the Mountain Limestone series. These disappear in proceeding southward, and the great productive coal-series becomes confined to bede overlying the Millstone Grit.
Of the prolongation of the axis of the Ardennes under the south of England there can be little doabt; nor can there be mach doubt that the same great contortions of the strata (which in Belgiam placed the crown of the anticlinal arch at a height of four or five miles above the level of the base of the accompanying synclinal trough, to the bottom of which the coal-measures descend, and was the canse of similar folds in the coal-measures of Somerset and Wales) were continupd along the whole line of disturbance, and that the preservation of detached portions of the same great supplementary troagh is to be looked for underground in the immediate ares. just as it oxists above ground in the proved area ; for the minor subordinate barriers dividing the coal-basins can, I conceive, in no way permamently affect the great master distarbance, by which the presence of the coal-measures is ruled. measures were originally present, they have been removed by eubsequent denudation, is another question.

(To be concluded next week.)

HINTS ON PAINTING.*-V.
(Continued from p. 88.)

Gilding.

THIS beantiful art requires our special attention, for it appears to many to bo a very troablesome operation to execute well. But it is easily done, as my remarks will show, and a little ex. perience prove. It is best when gilding on carriage or waggon work, where the gold will be protected
with varnish, to proeure "noll size "ready prepared with varnish, to procure " kolis size "ready prepared
-English gold size being the best. If not to be had, you can make a substitute by using English varnish and Japan in equal parts. If the gilding is for atriping, you should mix a little chrome yellow with it, to be able to see the lines better; but in lettering no colouring is required. Having yonr job rabbed down smoothly. tuke a piece of muslin and tie up in it a little whiting to form a "poance bag; " with this you pounce or dast over every part of the work Tiacre the gold leaf is to be put, to prevent the leaf from sticking to the sarface not covered by the size. Another method is to wash the job over with starch water: while atill another plan is-where dust or sterch is not applicable on account of newly varnished werk near by-to out a potato in half, and with the raw surface rnb the place desired, leaving the jrice of the potato on ; this soon dries and forms a thin film, to which the gold will not adhere. Any one of the above methods will be found to answer
the purpose, and the coating will wash off clean when the gilding is dry. The surface prepared, take the size and put on the stripes, ornaments, or what not, and allow it to dry jast enough to enable you to pass your finger over it without sticking: but if when the Anger is placed directly upon it, it is "tacky," it is ready to receive the gold.
For signs, or work which if not to be covered with varnish, we should use oil sise, which is made with cld hoiled oil. The best is that taken from a paint cup in which the paiat has settled and left the oil on top. Poar this off carefully and grind into it a little chrome yellow.

To Lay Gold Leap.
If for scrolls, letters, or large work, take the book of gold leaf in the left hand, and with the forefinger of the right hand lift the first paper leaf, leaving the gold on the opposite leaf smooth; then holding the wards towards the bottom of the letters or scroll and lightly touch it, rolling the book up and leaving the gold on the letters. Repeat this operation until all the size is covered. Tonch auy missed spot with the finger tipped with the superfuous gold, and wipe all off nicely with a bunch of cotton. For on a piece of board covered with cloth, and raising the paper, cut the leaf the desired size with a table knife, the edge of which is perfectly straight and smooth. Then draw the tip across your face or head, to slightly grease it, and lay it on the out gold; you can then lift and carry it to the size. Thus you can prooeed until the striping is completed. Some painters out the book of gola leal in sirips, with either method, and you will find it easy nnough. Gold may be shaded with transparent colours, such as asphaltum, altramarine, lake, carmine, verdigris Paris green, \&c., to suit the taste of the painter.

Broneing.

Gold bropese is used on oarriage parts for striping; and meny fine fancy jobs can be dona with this

From the "Oarriago Painter's Manual." By F B
Gampan Now York: B. R. Woile.
powder. The size used for bronze is the same as that desoribed for gold leaf. To pat on the bronze. take a piece of plash or velvet, and make a small "ponnce" bag, by tying ap a ball of cotton. This will take up the bronze, which is gently rubbed over the size. The best quality of bronze is but little inferior to gold leaf, and for striping is better, as it does not consume so much time, and at the same time it is oheaper than gold leaf. To make fancy work with bronze, cut out any desired pattern in paper, and laying it over a nearly dry varnished surface, rab the bronze on through the holes of the pattern. The fronts of the spokes and the ribs of express waggons may be nicely ornamented in this manner. Copper and silver bronze can also be used in this way, and when the three are mixed up in ornaments they look well.

To Remove Old Paint.
There are various methods employed for remov. ing old paint, and I will endeavour to describe them. First there is the hot-iron process. This is done by taking a heavy piece of iron and heating it in a stove or forge, and then holding it close to the work. The paint will blister or soften, and can be scraped for with a patty knife or chisel. A better plan is the farnace process. The furnace is made of sheet-iron

The triangular shape allows it to be held closely to the work on either side. Being filled with ignited charcoal, and a good fire kept up by holding it in a draft frequently, one can with this "burn off" a body very quickly and well.
There is also a pateut lamp need for the purpose (p. 124). I have ased it, and found it an excellent tool. It is designed to burn alcohol, and makes at the same time alcoholic ges, which is directed upon the flame by a pipe, while the flame is blown out in a long tongue of fire. This lamp is self-acting, and the workman merely holds the lamp in his left hand, dirccting the tongue of fiame apon the desired spot, scraping the paint off as he goes along with the right hand.
Still another process is the potash plan. Dissolve one pound of potash in three pints of water over the fire, then add yellow ochre or some common dry paint until it is as thick as rough staff. Smear this over the panel with an old brush, and in a little while you can sorape off the paint like old cheese.
After the paint is taken off by the potash process, wash the wood well with soap and water to remove any residual potash, dry off aud sandpaper, and then give a coat of clean raw oil. With the furnace or bot iron process, sandpaper smoothly and apply a coat of

Carriage parts muat be scrapeat pose I use a tool, of the shape shown in Fig. 2. It is made of steel (an old file, for instance), the square centre part being ground, and the four square edges are excellent to scrape the spokes, while the ends will be foand useful on the carriage part. It is only where an extra job is wanted that it will be necessary to scrape off the carriage part, for we can
generally fill them np with lead and get a good substantial surface.

Bo-Varnishing

Old jobs should be rubbed well with pamice-stone and water, the bare wood being covered with lead colour. All spots not bare can be touched up with dead colour; then put on a cost of rubbing varnish. It there be spots yet not coloured properly, they can be fixed for the next or finishing coat. It is generally the cheapest plan to colour the carriage part over and stripe anew, es it is a long, tedious job to touch it up, and never looks well.

To Bind a Brush

Brushes, when new, should be bound at least onethird the length of the hair, to preserve them and render them better for use. Some painters bind a strong cord round and roand to the proper distance and secare each end to the handle.
But a better way is, to take a piece of strong maslin and wrap one thickness around the hair then tie a cord firmly around the snmo as low as yon desire the binding to come: then fold the muslin back toward the handle, and fasten it by tacking the margin around the border of the original binding.
This method makes a vers neat binding, especialy for varnish brushes.

Bleaching Oll.
Pour about as much linseed oil into a shallow oarthen vessel as will stand one inch in depth;
then pour in six nches of water, cover with aflne
cloth, and let the whole stand in the sun for a few weeks until the liquid becomes thick, when it should be poured in a phial and submitted to a gentle heat after which the clear is to be poured of and strained through a flannel oloth.
The longer oil is kept, it is always the better both in regard to its drying and transparent qualities. To make good nut oil, the sidns of ripe wainate should be peeled off, as it contains an acid which turns it brown. Poppy oil is made from the ripe seed of poppies. It is the best drying oil. The oil of spike, or lavender, is obtainel by distilling spike with water; it is very volatile and fine for working with the pencil, or for enamelling. To make a fine drying oil for extra fine painting, take of poppy oil or nut oil one pint, of gum sandarac two ounces, of white vitriol and sugar of lead each one ounce. Boil the whole till the solid ingredients are diseolved, and the mixture is the colour of linseed oil. This oil will dry fast, and a portion of pare tarpentine added makes a fine oil for use where the parest white tint is required. It may be mixed with other oils as a dryer, where common drying oil would be injarions to the colour.

Raw linseed oil for carriage work is best, as boing more volatile than boiled oil, it strikes into the wood, and forms a hard, resinous filling.

To Transfor a Ploture.

Pictures are frequently transferred to painted surfaces or wood, and may be seen on stages, fancy boxes, do. To transfer a picture, prepare a white ground well rubbed down with pamice-stone and water. Then apply a thin coat of very light-coloured varnish. (English hard drying is good). When this is not quite dry-"tacky," like gold sizedamp the picture on the back with clean water, water thet lay it carefully on the rarnished surface pressing it down with on the varnished surfaco, pressing it down with a damp cloth, or the finger, antil there
are no babbles of air underneath. If there should be are no bubbles of air underneath. If there should be
bubbles not easily pressed out, prick them with a bubbles not easily pressed out, prick them with a
pin to let the air escape. Then stand the work aside pin to let the air escape. Then stand the work aside
to dry, and when hard, damp the paper, and it can to dry, and when bard, damp the paper, and it can
be rolled off by the inger in small rolls, until the picture is left quite perfect on the paint. Aftor this has dried well, a coat of clear light varnish will flisish the operation. The same procass is nsed to transfer pictures to glass, and when coloured on the back they look beantifnlly. Almost any one can do this kind of ornamentation nicely. Try it on a small scale.
Another method is to use Grecian varnishCanaik balsam and turpentine.-bat Copal varnish overter where you desire durability; aud, besides, hand.

SOME RECENT IMPROVEMENTS IN ENGLISH AND AMERICAN BOILERS.*

By W. Forsytr Black.

(Concluded from page 139.)

THE size of the boiler is regulated within oortain limits by the number of units employed in its construction. The units are always of one size, and more can be added at any time without disturbing those proviousily fixed. The usnal, and, indoed, the most advantageons size of the boiler consists of
six arched front units and twelve rear nuits-equal six arched front anits and twelve rear nuits-equal
to aboat 36 horso-power. The effectiva heating to aboat 36 horso-power. The effectiva heating
surface of one rear unit, from the top of the basesurface of one rear unit, from the top of the base-
piece to the centre of the upper ohamber, is 23 square piece to the centre of the upper chamber, is 23 squaro horse-power ; and the effective surface of each arched unit above the firegrate level, talking onls the inner half of the surface, is 7 square feet, which. from its position, is also considered equivalent to 2 horse-power.
Though larger boilers than this size have been made, they have not been found so easily manageablo on account of the firegrate being rather too deep for efflient and ready firing. Consequently, when more power is wanted, it has been found better to employ two smaller instead of one larger boiler.

The boilers were practically introduced in this country by the Isca Foundry Company, at Nowport. Monmonthshire, where the first was erected. It was employed to drive machinery which had been previously driven by a Lancashire boiler of 26 ft. in length and 6ft. in diameter, with two outer fues of 2 ft . diameter, the firegrate being 27 square feet, and the total heating surface 390 square feet. The castiron boiler used in its place has eight arohed anits and foarteen rear units, giving a heating surface of 378 square feet, and the firegrate area is 17 aquare feet.
The result of a carefal trial, extending over ten days, to test the relative consumption of the iwo boilers, including in each oase the fuel requisite to get ap steam, was, that the average total consumption of fuel per day was 16 cwt . with the oast-iron boiler, and 270 wt . With the Lancashire boiler, the day's work being prictically the same for oach boiler. The coal nsed was Monmouthehire small

[^5]steam coal, eosting 6s. per ton at the boilers, aud the difference of cost in working was consequently very considerable.
Trials made to ascertain the evaporative power antisfactory ; and, in onea boiler have proved very duty was obtained of 11 dlb. of water per pound of coal. In this case $625 \frac{1}{2}$ gallons of water at 53° Fahr. were evaporated in 3 hoars 54 minutes by 560 lb . of Ebbw per 1 b . of coal, smonnting to 11.17 lb . of water eveporated from 100° stenderd tempersture of feed the steam pressure wan from 551 b . to 601 b . per inch.

I have been able to obtain minute details of this trial, also of others. The first table gives the particulars of the experiments apon the evaporative duty of the cast-iron boilar to which I have
jugt referred. The geveral results were that the just referred. The general results were that the
evaporative duty ranged from $10 \cdot 15 \mathrm{lb}$. to 1167 lb . of water per pound of coal, calculated at the standard temperature of feed of $100^{\circ} \mathrm{Fahr}$, the mean eveporative daty being 10.931 b ., and the rate of evaporation per square foot of grate surfsce per hour ranged from 791b. to 1191b. of water, the maximam comperature in the chimney fine did not exceed 425', and the firabars had tin. spaces botween them. Iu a subsequent series of experiments made upon the same boiler by Mr. Joseph Tomlinson, with other kinds of South Wales coals, for the special prapose of testing the speed of evsporation and cie evaporative power of the boiler, the evaporaper ponnd of coal, the mean being 9.8 hlb. the wari per ponnd of coal, the mean being 9.82lb; the maxiFahr., and the firebars had in. spaces. The rate Fahr., and the firebars had tin. spaces. the rate of evaporation per square foot of grate par hour ranged from 136 lb . to 159 lb . of water.
Saw Mills, Worcester has been working at the City Saw Mills, Worcester, continuously for about ten months, and about five or six months ago it was opened, the iuterior was carefally examined, and the whole deposit raked ont. There was found a small quantity of loose scale and mad in the bottom horizontal tubes 10lb. in weight, and consisting of thin scale of less then one-sixteenth of an inch in thickness; and the interior surface of the cast-iron units was found to be quite clean. Their outcr surface, where exposed to the fire, was also fonnd to be quite sonnd, and the metal nninjured. This boiler, which is of the size shown in the engraving (p. 138), had been supplied with water from the water-works, and had been regularly blown off reflled again at the main ; in addition to being partially blown off twice a week to the extent of gin. of water.
The fracture at the centre of the length of one of the vertical tubes of a rear unit, to which I have referred, did no damage whatever, and in two other cases where fracture took piace it was where the last front arched unit is connected with tho first rear unit ; the result was simply the escape of water from the boiker through the fracture, without any other damage whatever ensaing. This second raoture occurred from a method of construction which was altered after the early boilers for this conntry had been made. The bottom flanges of the last front unit were at first bolted to the bottom tabe of the firgt rear unit, on each side of the fire, so that the legs were prevented expanding freely ideways; consequently, when the arched tabesexpanded ander the heat a strain was thrown on the Tro bottom connections, which caused one of them o give wry. On this account the connection of the rahed nnits to the first rear nnit is made on one side only of the fire, the legs being thus left free at the other aide to yield laterally to the expansion of he arch. Although, therefore, this boiler is not exempt from being injured through ignorance or in working to be safe, and to be free from any risk of 3 destractive explosion.
It has also the advantage of an easy and ready replecement of any portion of it being effected withont disturbing any other portions, by simply lisconnecting the joints at the bottom, and the steam-pipe at the top, of the unit to be removed. locess is obtained for this purpose by removing a portion of the brickwork at one side, opposite to the unit to be taken ont, which is then disconnected and drawn out sideways, and the whole process of removal and making good again may be completed in 24 hours. The brickwork setting of tho boiler is of very simple description, consisting only of side walls with low cross walls for the support of the separate units.
As the total quantity of water contained in this boiler is small to the extent of beating sarface-a boiler is small to the extent of beating surface-a
range of 9 . in the gange-glass giving only a caparange of 9 in . in the kange-glass giving only a capa-
city of 100 gallons, it is requisite in ordinary working that the water-level and the feed should be ing that the water-level and the feed should be
attended to regularly at intervals of not more than 20 minutes.
The fronts of the boilers are formed of cast iron. The lining of the door is perforated for the udmission above the fire of air supplied through a repister in the outer shell of the door. The advantage of meh an arrangement for securing thorough cembantion of the gases, and for preventing the escape of fuel in the shape of smoke, has long been known.

Dute of Experiment	L Deacription of Coal.					Water Evaporated.					
						Calculated from actual temperature of foel.			Calculated from 1000 Fahr standaril temperature.		
						$\left\|\begin{array}{c} \text { Por lb. } \\ \text { of } \\ \text { coal. } \end{array}\right\|$	Per hour.	$\left\|\begin{array}{c} \text { Per sq. } \\ \text { ft. of } \\ \text { grate } \\ \text { per hour } \end{array}\right\|$	$\begin{array}{\|c} \text { Per lb. } \\ \text { of } \\ \text { coal. } \end{array}$	$\begin{gathered} \text { Per } \\ \text { hour. } \end{gathered}$	$\left\lvert\, \begin{gathered}\text { Per nq. } \\ \text { f. of } \\ \text { grate } \\ \text { perhour }\end{gathered}\right.$
1870.- Nay		${ }_{\substack{16 \\ 15 \cdot 17}}$	c	Fuhr.		${ }_{\substack{16 \\ 9.27}}$	111.	${ }_{1+17.59}^{\text {li. }}$	${ }_{\text {lit }}^{\text {lifi7 }}$	1114	1b.
	S9Rt. veiu..	16.47	40	$500{ }^{\text {510 }}$	${ }_{56}$	${ }_{9} 927$	2594	1 ± 2503	${ }_{9} 9.60$	2\%13	109900
June 17	i ifft. vein.t	16.77	$4 \cdot 5$	${ }^{650}$	$6{ }^{\circ}$	$9 \cdot 119$	2592	152.47	9.37	2613	157.24
	Oincomutive cont..........	$\underset{14}{15.82}$	6.6 4.8	5:5 ${ }^{5} 5$	${ }_{69} 6$	9.35 9.85	${ }_{2314}^{2514}$	147.88 138.00	${ }_{10.15}^{9-62}$	${ }_{2419}^{2537}$	1592.2,
	: Ntam velu (light Aring)	${ }_{15}^{14.10}$	4.8 4.7	${ }_{5}^{525} 5$	${ }_{70}^{60}$	9.85 9.64 6.	-	138.09 149.35	${ }_{9.90}^{10.15}$	$\xrightarrow{2419} \mathbf{2}$	14232 51359
	${ }_{4}$ +ft. veln......................	$1 \cdot 19$	4.7	${ }_{5} 5: 10{ }^{\circ}$	700	9.8.5	${ }_{2013}$	1+9999	10.12	2615	153.83
December 13		13.53	4.4	5750	44°	$9 \cdot 53$	2:00	129-41	10.03	2320	13644
In these experiments the apace between the fre-bars was in., and the fre was not diaturbed with the pricker, the shovol only being used for tiring ; aree of tiregrate, 17 sq . ft.											

As, however, such admission of air is only requinite or a certain time after the application of frugh fuol to the Sire, a difficulty has been experienced in the burning out of the lining of the farnsce doors. This has been provided for by making the lower hinge hollow, and thas establishing through it an air passage between the ash-pit and the iaterior of the door. A register or valve is placed in'centre of door and by opening and closing this air is admitted es reçuisite. These doors have been proved to have no tendency to sag, or crack, or warp. By use of such an appliance combustion is improved the radiation of hest is prevented, and the engine room is kept cooler. A door for the ash-pit is also provided.
That there are many advantages oonseqnent on using these boilers is, I think undenisble; and most important of all of these is the immunity from destructive explosions. There follow economy of fael and consequently stesm at low cost facility of repair, both as regards the ready obtaining of any part, of rapidity of fixing the same ; and, not least, the special and obvions advantages of a number of small and comparatively light parts for easy and cheap transit, by sea or land.
Such are the leading charaotaristics and details of this novel species of boiler-novel alike from the material of which it is composed, and the manner in which this material is adepted to what at first sight would seem an improper object. As the old Latin saying holds true in things scientific, that "the end is the crown of the work," and when we see that end to a great extent attained, no precon ceived notions of unfitness as to the means employed should deter as from examining it in all its details, and determining for ourselves how far success has boen achieved.

SUBMARINE TELEGRAPH CABLES

T
HE constraction and submersion of submarine telegraph cables formed the subject of a paper Sociots the Edinburgh and Leith Engiaeers from by Professor Fleeming Jankin, in connection with a portent commercial onterprise:-All submarine cables hitherto laid have consisted of three parts:1. The conducting wire, generally, if not universally, oopper. 2. The insulator surrounding the conductor, generally guttapercha, or some prepara tion of indiarabber. 3. An outer covering intended to afford protection, and give longitadinal strength The simplest form of outer covering consists of iron wires laid helically over a jute or hemp serving.

Conductor.

Copper, being the metal which offers less resistance to the passage of the current than any other commercially available, is employed in all bat a few exceptonal case. The carliest cables had conduo tors formed of a solid wire, which has the advantage of occupying less bulk than any strand, and 80 re quiring less insulating material to give the same thickness of coating. This advantage was more than connterbslanced by the brittleness of the solid core, which breaks after being bent a few times, and frequently caused total interraption of tolegraphic commanication. A strand of three or seven wires is, therefore, now universally used. Messers. Clark and Bright introduced a strand made of wires of such section as to fit intu une another to combine wire. Many have been unable to carry this plan to any commercial advantage. The strength of coppar wire is given in some books as equal to $60,0001 \mathrm{~b}$ per square inch, but the one used in submarine cables is chosen rather for electrical than mechanical pro. perties, and will bear only from $35,000 \mathrm{lb}$. to $39,0001 \mathrm{l}$ per square inch. It elongates from 10 to 15 per cent., or even more, before breaking, so that it full strength cannot be made use of ; but this ex tensibility is a very valuable property, since it insures that the conductor shall not break before the full strength of the protecting cover has been made use of and overcome. A copper strand will bear
1tlb. per pound weight per kuot before breaking. It 1 thb. per pound weight per kuot before breaking. It
will stretch 1 per cent. with 1 lb ., and will not stretch sensibly with a weight of. 0.751 b . per pound per knot.
Thus a strand weighing 300lb. per knot, such as carry 4501 b , Ang will not stretch sensibly with gjulb.
Grest care is necessary in making the joint between two portions of the conductor. A ecurf joint is first made by soldering together two tapered and fitted ends. Fine copper wire is wrapped round this joint, which is somewhat inflexible, and solder ran round the wire. A second wrapping of fine wire is then given, and left without solder. The solder mnst be applied with rosin, and not with spirits of alalt.
'line joint is necessarily less extensible and more brittle than the rest of the conduotor, but if from
any canse the soldered joint is broken and stretched so as to open, the fine wire maintains perfeot electri cal connection, being simply palled out like a helical apring.

Ineciator

Even the best insulators, sach as glass and guttapercha, do conduct to some extent. Iniliarabber has a soracwhat higher resistance than guttapercha, and different preparations differ con-
siderably in that ir resistances. Indiarnhber has been applied in many ways to the conductor. Most commonly tapes of masticated or bottle rabber are wrapped round and round the conductor until the required thickness is ottained. These tapes nsed to be gummed together by solvents, bat this plan was found to cause decay. and hrs boen ababioned. found to cause decsy. and has boen ababsioned.
Simple heat has also been applied unsuccessfully ; Simple heat has also been applied unsuccessfally; the indiarobber so heated hecomes tacky. Mr.
Siemens applied the talies longitudinally, and fimply Siemens applied the talies longitudinally, and Thimply not make a safe joint. Some manufactarers vul-
canised the indinrubber, bat the materinl thus canised the indinrubber, but the matcrinl thus was subjeot to decay, and allowed free sulphar to reach the copper wire. Mr. Hooprr's method of applying indiarabber has beea the most successful; be covers the conductor with tapes of pure india. rubber next the copper, followed by a conting af oxide of zinc and irdiaralber, which he calls a separator. The separator is inclosed in a jucket of vaicanised indiarubber. In the process of baking passes the separator and slightly ralcanises the pure passes the separator and shightly valcanises the pure rubber, which is welded into a perfectly homoge-
neons mass; the core daring this process is leated neons mass; the core daring this process is leated
to 250° Fubr. and baked for four hours; it does not become tacky and is remarknbly compact and become tacky and is remarknoly compact and
durable. The joints betwen two lengths of the insulated core are made with the same materials, and are baked for two horirs in a stearu- jacket. This is the only application of indlarnbber which has been thoroughly sncoessfal for submarine cables.
Gattapercha is zore easily applied. and its use has been attended with almost invariable success;
it is pressed out while warm and plastic th ough a dis round the conductor; severnl successive contings or tabes are thne apilied till the desired thickness is attained. The first coating is attached to the strand by what is termed Cbatterton's componnd, being a-port of mastic composed of 1 part by weight of Stoctbolm tar, 1 part of resin, and 3 parts of guttapereha. Gnttapercha will bear about 3.5001 l . per equare incl of section, brtowing to its great ex-
tensibility it does not add more than about one third of its strength to the copper strand. It will stretch of its strength to the corper strand. It will stretch
50 or 60 per cemt before breaking, and will bear an astonishiug amount of ill usage-such as Linotiing, squeesing, or stretching. but is easily pierced liy a nail or similar sharp tool, or cut by a knife. It becomes soft at the temperature of about $10^{\circ} \circ^{\circ}$ Fahr., and after manufactore should never be suljected to a higher temperature than 90° Fahr. The joints
are made by heating the two ends of the covered conductor after the the two ends of thed, and ap. plying by hand successive coativgs of warmed aud plastic guttapercha, the separate layers of which ar, and extreme cleauliness are required in mating these joints. which were a frequent canse of failure iur early calins. If the guttaperclas be either overine early calus. permanent, the guttapercha at the joints becomes perinanent, the guttapercha at the joints becomes percha of the ure, leaving a very visible grp which
destroys the insulation. The process is now thodestroys the insulation. The process is now hoinspection, and sulijected to strict electricnl tests
after complition. When dry and exposed to light after conpletion. When dry and exposed to licht
guttapercha very rapidly decays, becomiug britule and porcons, but under water it appars to uudergo no change whatever. The electric and nochunical properties of the cores of calles luid down twenty years afo are as good as ever. Tho experiencet
with indiarnbler is totally opposed to this. All forms except Mr. Hooper's rupilly clange nndor water. Mr. Hooper's appears hardly so absolutely permanent as gntiapercha. but the change ol:served does not rppear to be material. Hooper's indin-
rubber will bear mach greater crposure to heat than rabber wink and mach grenter crposare to heat than places. Both guttapercha and Hooper's indiarubber absorb some watcr, but not to such an extent as to be mischierons. Some forms of indiarubber are rendered unfit for use by this absorption, whic ${ }^{1}$
in pare indiarulber is such that the material ab. in pure indiarubber is such that the material ab.
sorbs 25 per cent. of its own weight of fresh water.
The completed core hes comide rable strencth. The Anglo Ancrican cables have a core with 300lb. of copper and tholb. of guttapercha, and this bears
withont injury t ton quite nuassisted by the onter without injury f ton quite nuassisted by the outer weight, and may aft rwards be knotted andiquerzed withont any electrical injury being dona Before the application of Cbatterton's compound the coppir Tire used, after a strain had come on the core, to allself retarning to its to slip back over it without the copper to buckle, and in some cant This forced the copper to buckle, and in sorae casps brousht it The dimentions of the core are determined by the number of words per minute required to be transmitted, and by the total length of the cable. With guttapercha cones the ratio of copper to guttapercha
in pounde weight per knot varies from eqaality to
two-thirds. The small-ast core practically used has 731b. of copper and 119 mb . of guttapercha per knot, a more common size is 10 ihb. cupper and 1051, guttnpercha. The largest size yet nitupted is 4001 h .
oopper and 4001 b . guttapercha for the French oopper an
Atlantic.

The number of words whinh a core will transmit is inversely proportional to the equare of the length, and when a constant ratio is muintained between the weights of the insulator and condactor, it is simply proportional to the weight of the core per knot. Thus a core of 100lb. conper and 120lb. gattaperchn will transmit 204 words with the mirror and mother less than 14 word per mincte with a Morse instrument; if Hooper's naterial or Willoughby Sinith's improved core are used, the speeds woald be 4 words and 1.7 respectivily
The Murse is restricted to short lengths of cable, thas 250 miles of the niove core would trausmit by Morse 27 words per minute, or as much as a clerk can conveniently send by hand; the mirror cannot be read at much more than 30 words per minute but Sir William Morrivon's new recording instrament will receive as fast as the mirror, and leaves a permanent writing whioh cau bo read at leisure; with this instrument as much ah 120 word
minute may be read if the core will allow it.

Outer Covering.

Tha core is served with hemp or jate applied wet, and either tanned or satnrated with brine ; origi wally the hemp was tarred. but the tar tended to prevent the discovery of finlts. senling up any small noolera umporariy. Sonetimes for canles of luid op tonether so as to form with strands of hemp. enlied worming, a cirenlar rope, which was served like the single orre with hempor jute. These multiple cables of conrse trnnsmitted independent messages through each more. The served core is oommonly protecteri in rables intended for moderate dapthe by a sheathing of iron wires laid ronnd in a long helix, so as to give the cable the appearance of so laid on iron-wire rope. The tube which the wires so laid on forms cannot diminish in diameter, and hence stretches very little mome under a given strain
than an irou rod of the same weight per knot would do. The diminution of cliaruter is prevented by the abutment of each wire against its neighboar, so that the soft heart of the calle undergoes no com-
pression. If the wires are laill on with equal tenpression. If the wires are laid on with equal ten-
siou the strength of the complated cahle is equal siou the strength of the completed cahle is equal to the snm of the strunctis of the wires which as they are call the the wire is monnd on bolbins, which as they revolve round the nsis throash which the core passes remnin parallel to themselves, so as not to put a twist in the wire.
A cable so formed is not snongr, and has little liability to kink, that is, to throw itself into a loop when leaving the hold of the shis in which it is
coiled. The elonea'ion of an ordinary irou corered cable with lalf the breaking weight varits from about 0 o to 1 per cort, an nmous whin can never
injure the core. W'ite being laid the cable gene. rally untwists siphtir. hat the clongation from this canse also is inimificant. 'The iron wire is pro-
ticted from rust by lecing falvanised, and still further by buing covered with hemp or jnte, and componnd of asphatto aud silica. A cable covered with good irnn should bear 2 tons par pound of iron wire per fathom.
A arge size of wire is ased for share ends, to protect the cabe enainat anchors, attrition, and per knot are neai. The largest size is generaily galcanised ron wires. A calhle so mumbe is much mare arxilhe rad casi's hardhenthan one covered iron are hardly strong chan: h to resist the strains to which ther are exposed while being laid in
depths alove 1, ,ith fnthoms; ahove this, homogeneons iron wires (renlly n variety of stcel) are em-
ploged. This material will bear from 50 to 60 tons per square inch. The Malta and Alexandria cable is an exaniple, which differs in nothing from the shallow water cable exerpt in the substitution of homogencous irnn for ordinary iron.

Outer Protection.

For still greater dapths recourse is had to a more complex type of calle. Each strel wire is incloeed in a sersing of hemp or manilla, the strenuth of which may be added to that of the steel in calcnlating the etrength of the calle, while the serving ndds nothine to the weicht of the cable in water. The dinsticity of a straight hempen fibre is less than that of mont steel, but by choosing the lay of the hemp strands properiy. the hemp or steel may be made to stretch so evenly at to give way torether. and then the strength of the served wirc or
cable is found to be actually greater than the sum of the struni ucth of the componnd parts: each pam of the str-ugths of the componnd parts; each part never all oncur at the wime point in the compound nevar all oncur at the nime point in the compound
cable, so that we obtaiu for the strength of the ealide the sum of the average strengths of the parts, which is, of conrse, greater than the sum of the
wenkest perts. Thi Atluutic and most other doep weakest parts. Thr Atluutic and most other doep

The complated oable is coiled in the worke, and on board ship in large circular tanks, with eyes of
from 6 ft . to 8 ft . diameter. On board the Great rrom $6 t t$. to 8 ft. diameter. On board the Greas
Eastern the largest tauk was 75 ft . in diameter; and Eastern the largest tauk was 75 tt . in iameter; and
16 ft . Gin. deep, holding 1,100 knots of cable. The 16ft. Gin. deep, holding 1,100 knots of cable. The
diameter of the tank depends on the beam of the ship. One trist per turn is necessarily pat into the cable as it is coiled awry. This twist as necestank. In fact, the one operation is exactly the reverse of the other, and leares the cable ag it came from the spinning machine. The cable as it rans up from the tank is led to the centre, and confined ringe centre by large wronght-iron horiso an ander the inflaence of centrifugal fore
From the tank it rums in troughs to the brake drum, ronnd which it takes four or five turns. This dram is prevented from turning freely by a brake -strap, which thas- P
tarding gtrain on the cable.

It is essential that the restraining friction ghould be constant, a resalt obtained by the Appold brakeIn this arrangement both ends of the brake-strape are attached to one lever in such a manner that
when the brake begins to turn it tends to lift the when the brake begirs to turn it tends to lift the lover and weight hanging from it, and as the lever is lifted it slackens the brake-strap, until the diwerequal to the weight hanging on the lever. When this is the case, the lever is no longer lifted, but remains stationary with the strap, allowing the drum to turn, restrained iy a constant friction cqual to the weight on the lever (redaced to the point where the strap is attached). If the co-efficient more, and the strap slackened; if the co-efficient of more, and the strap slackened;
friction diminishes, the lever and weight will fall, tightening the strap; but in any case the retarding foree will be simply equal to the weight. After passing the brake-dram the cable dips under a
weighted pulley, which rides saspended on V of weighted pulley, which rides saspended os ${ }^{\text {an }}$ tant of straightens, and roises the pnlliny; if'the strain diminishes the weight and pulley fall. Thus the height of the prlley indicates the strain. This incahle passes over a pulley into the sea.
A cable paid ont in air hangs in a catenary curve. but a cable paid out in the tro cases are comshappd line; the strains in the two cases are completely different. In air the ropy meets with no
sensible obstacle to its motion, eituer logitudinally or in a direction perpendicalar to its own length; ir or in a direction perpendicalar to its own length; in
water on the contrary each foot of the cable meets with nater on tio contrary each oot of the cablar to its length. The rough Atlantic cable, when the ship was going at the speed of six knots par hour, was at an anglo
of 63°, so that the inclined plane was 17 miles long, and each foot of the cable tonk nearly 3 hours to reach the botton. Oables of light spicifin gravity have a small settling velocity, and lie at great length in the water; and if they are also rongh, the brake is relieved from most of the strain which would be necossary to lay a cable of eqnal reight, but smail bilk, nnd smoother surface with the same amount ilifference between the tension reqnired for cables of different oonstraction. but of eqnal weights in water. When much slack is laid all onbles will bo considerably less strained than if laid withont slack ; send. finills the faster the ship goes the less slack jo required to pmace any giren amount of relief.

The correctness of this has been amply proved in practice. If in seas 2 miles deep the cable lrong is a catenary 12$]$ miles long, the weight to be carried
would be 8 tons, and the strai.s on the cable 29 would be $8 \frac{1}{2}$ tons, and the strai.1 on the cable 29 tons; while if the cable linng in a catenary the inclination of which to the horiznn at the stern was $9^{\circ} 30^{\prime}$, the length would be 24 miles, the weight about 1.tewt the strain 102 tons, Atlantic cable when being paid out at the rate of 7 knots per hour, while the ship was going at 6 knotsThe motion of the ship even in heavy weather adiers the strain very little.

New Form of Galvanic Cell.-K. Kohlfurst hat devised an arrangemant of a coppor and zinc batiory,
which, he atates, will. if used for ringiug elactric bells, which, he athtes, will. if ased for ringiug elnctric bells,
give a suiflient corrent for a year, at the cost of 1 Mb. of ervitats of salphate of enpper. A truacated hollow cone is thoronghly rarnished inside, filled with orystaly
of sulphate of copper, and placed month domawards in a glase oylinder doepor than itsolf. notehos roand the rim, and has a amall bole in centre of the top.
zine sunpeaded
 side of the battery.
with water, when it is The glass opliader is then. fillad the sulphate depends on the feeility with which it is dis. the cone, snd this taking place-at a uniform rate, electric ourrent ar
copper and zino in copper and xine
be nniform aleo

LETTERS TO THE EDITOR

UWF do not hold ourceloes responcible for the optintome of our correspondenth. The Edilor respeoteully requesta ehat ant ec
 All communicationt should bo adirocoed to the Edator
 andon, W.O.

 to J. Panmorm Iidwardi.
"I woold havoevory one whto what meknown and ae
 only, but in all other subjeots: For sucth asperson many
tave mome perticular knowledge and experience of the Bave sorne particular knowlodge and expericace of that in and yet to toop a clatwor with vils littlo p perarce of hia, teo trom whance wrivent incoanvenioncoe derive thats

* - In orider to facilllate raforonoo, Corrmopondonto owhen ogeaiking of any Latter proviomily incortad, woill oblige by en \quad mont H appempo.

IRR LOWDON."AT BEA"-SOLAR LONGTTUDE, - - PHOTOGRAPEING THE SUN-SIDEREAL CLOOK-NEW ZEALAND TIME AGAIN 1-AND - DRACONIS AS THE POLE STAR.
[4047.]-Jopanse ifrom intornal erinemee, I ahoald eay that Mr. Ralph Iowdon (lotter 8006, p. 110 en an eortainly nover have been "at ses "-meve, of courne, in

- very obvious, if sigurative, sense-intiollis. I have twioe read his jetter through, to bo quitio uaso. that she whale atinair whe net an elaborato jute on his preta ort, having uittimatofy arrived at tho acmoluaion that boliof that wo have not had a funni mementurtertion in "our" oolumnse for many a long anif. In efeet, ft pould appear to-to an attompt on Mr. . Nowndy part longitude by "lunar distances," by the torrential one of Moon calminatora. It is, however, in the details of of suggested method of observation that he shown suoh a curious want of knowlodge of the poocibilitios of obeorving on board ship. I have no doubt that the Exolisis MECBANIO mustoirealato as larghy in the navy oxtent in civillife), and I really should be very plad if any Xarigating Lientenantation may read theee lines wonld give us an opinion of an arrangoment that involres the eramination of the direotion of plammets with a microcoope ((); the toeping the pedestal "e eractly even with thene plammets, and stereby opright or perpendicular hoar Jack's remathe, wide uroce, whilo ho is being shouted at by the obersrow the "keop that pedestal perpendicular:

by the sid of the "Foceasouther" stand (an arrangement on the principlo ofterinyroeope) ? and ank him mow it is that he doesmet endeavour to apply that his succoss in doing so, 'I fancy that the cextant will earvo mailors for a líniowhifo lquger.
In anawer to the strtiv, of qucetions put by "W. H." (in quory 11597, p. 231) (may toll him that (1) the masured on the oollpticic from the mean equinox. menion, as yoar correepentmentho mean equinox
 obliquity of the eoliptic on Janaary 1,1872 , was
on 20) 2 , its mean annual imination is 0.476 O1.theMoon ?

viath applat to bie next ano of kem.
With regard to his next query nirs4, same page),

 C., 1s orer the $1 ; 14$ over the 2. ic., arid so on ; and then to thortoi the pondilum until the .clook beats aidereal enconda.
If in allogolimernertbeortinaty to mo that peopie lite

 butteos and compra urication renmipg thronght the Arot luaptionanal time chocoeghly anguod in earlior onee.

-年

"E. L. G." \triangle ND CATACLYGMO.MYTHOLOGY. [1048.]-Drox forion maseali aconsed by "E. L. G." (letter 4011, page 140) of copying exactly "t the most cenational line or two from the hrat proface
of (T omit the gracefal and thoronghly arkumenof (I omit the pracofal and thoronghly arkumentalive adjectives) Bishop Coleneo,", I at once ob-
tained bis book on "The Pentatench " in order to see tained bis book on "The Pentatoach" in order to 800
whether really there was anything in it to jantily jour oorrespondont in making such a charge. Eaving read the praface carefolly through, the only paconae which oan gad which in the amallost degree wonld warrant "I. L. G.'s" suspicion is thin: "Volonnic hills of immenee extent exiat in Anvergne ead hapguedoc,
which mast have bean formed apes before the Noachinn which mant have been formed apes before the Nosechinn
dolage, and which are covered with light and hoose sub. colage, and which are covered with light and hooee sab. atanoes, pumice-stune, eo., that mast have boen swopl of having ever been so disturbed." Are theso the mords whiah I am accaed of "haring axactly oopied with whian I am accased of "having axactly copia wis Reading on, throagh, throagh this same proface of the note Which I cestainly shoont have copied, had I had
 greatast palmontolorist diving (if not the greatest who Young Men's Chriatian Association," at Exeter Hall. Young Men's Chrictian Associantion, at and antreationtion of plant and arimals, he went on to say: "And auch plantedge is incompatible with the notion of the diver. gonce of all existing, air.breathing. or drounable animal species from one Asiatic centre viithin a period of 4,000 vears."
I hope that the Geolosical Society will get over the epithet with which "E. L. G." has essayed to drscribe
them-"a little English coterie and matual admiration thom- "a little Engish coterie and matual admiration $s o$ porfoctly ontitled to ppeak ex costhedra, it mast be a menveriose divoonsmement to them; oven should it not analty extingaish them altogethor.
I am eorry to any.that I was rover in Auvergue in Tantil anntell, san, pepple of that eort, lor zuy mnowledge of than J, I ehould sthink, to satisfy "E. L." E ." as to the oxnot wheresbouts of the particilar conen which exhibit
 period. Ho cocmplains that "Lyell and the whole Geotogienl Bocioty " base igeored bimifor oight yeara pant; but I ona soarcoly comedeo that any English entleman would be discourteous enough not to answer letter asking civilly for information, even if the dent a fleld-night to himself, to show that they wero all nttorly wrong, and that his was the only original and infallible ayatem.
What the "widelf-cironlated paper" was in which oight years ago " E. L. G." offered to bot 120 that nobody would find any Pliooene pamioe duens in situ I on't know. I should have guessed sade life fas its from pooplo who wish "to back yheir ophaiess "") bat for the fact that I am in some domens to thenther that livoly serial "chieily circalates among the cleare." At sll overite, I men wootent to have surith a riode of forbear to inetrex my colioilors to 100 ", is. LL. G."
 Iter ainengibenier: seat.
I wait Yorimovelifit. the star an mo thave gue we lave had plopey of occiveran maserion, bat
 ensuod.
 bo a faint resemblumeo tousthin to whataremir to oall he fact that in probanda; " E . L G.' ${ }^{\prime}$ dicte walk by sight emathertitit.

THE THROBY QR TFOLON, \triangle ND SPECTRCII

 ANALYSIS.[4049.]-I really think that the difficulty of "E. J. D." (lottar 8974, p. 160) will disappear of black polished marble" woald be illaminated ryays of light coming from every cancoivable direction, and that they would certainly, as ho eays (quoting apparently from some book), "be detached
from overy physical point of it"-i.e., refleoted, I anprom overy physical point of it"一i.e., refleoted, I anp-pose-" in all directions." That "only those ray whiabrenter our ejes can render them (the points? Hisible to ar," seems too elamentary a principle to need discasbion here. It would be demanding a trifetoo mich of any theory to require it to explain how an object conld be sean by the ald of rays which did not enter the observerty ele. Of conrae, in the case of black marble Good deal of the light would be absorbed, some irregalarly and nome specalarly reflected; the kinh and amount of relection depending apon the contoar of the dnfferent. parts. That ohjectudo thas eend ofl light in all directions "E. J. D." may satixity himself by aurthenipg any foom by the sid of a shatser, and in. eerting
will ind that each lens will form its own image of a whurch, tree, or other ohject in the lardscapo apon. sereen held behind it. A lithle practionl standy of the phenomens of stereosenpio rision, tho, roald, I think, end to clear np your correspondent's ideas as to tho radirtion he does not froed reminding that a man viewiak his imngivary matae from the north would bave 2 sotally aileront image on his rotina trom one who
regarjed from the sorth: while thove among the ast maltitade of permons who wore silated to the east or west of it would see it in an entiroly difforent phese from ither. Evidentig the rays iont ap perpeunicalarly (or nearly bol from the top of the stabners the plain at all; albeit they wonld be thoge by which 2 man in a balloon would discern it.
It is certainly posaible for "R. M. F." (qnery 11671,
 a very small pocket apectrpscope. With such a one
the spectra of many of the metsis and metalloide may the spectra of many of the motals and metalloids may
be very beautifully seen ; and (if the instrument be farnished with a refectiug prism covering half the farnished with s refectilg prism covering hal! the
sit) compared immediately with the dark lines in eunsiit) compared immodistoly with the dark lines in sumthese colamas some little time ago, is the standard work on the aubject.
a Fillow of tab Royal abtronomicar Soomity.

HETGHT OF SEA WAVES.

[4050.]-Tmz only method of measuring the height 1168 , p. 158) is by eye eatimation. From the nqury of wave motien, the height above the mean sea loval would be one-hall of that from trough to crest-i.e., in wis own supposed case of a wave 20ft. high in all, its his own supposed case of a wave $201 t$.
summit would be $108 t$. abore the see level.

I have mysell, though, seen waves very considernbly higher than thin. I shall never forgot one avthl night ont in the Atlantic, when I made an effort to oetimate such height, and when standing -or rathor hanging on son height, and when standing-or rat one of hor Majesty'e ahips, with my eje 32ft. 6 in. above the water-line, I saw hage mountain after hage mountain of wator come ruehing to-
wards me at Lant 8it. above what was viible of the wards me at least 8tt. above what was viaible of these waven was at least $81 f t$. from troagh to creat; and but for the sublimity of the night, I woald exprom a hope that "A., Liverpool," may nover be compalled to ondare a similar experianoe.
\triangle Fhllow of ter Roznl Astromomian Bocisty.

COMMUNTCATENG ROTARY MOTTON TO BAFI

 FIRED FROM SMOOTH.BORED GON.[4051.]-"Prikantriopist" (liet. 8092, p. 198) will be glad to loern thet hia manalaughtering invention if not likely to prove a blot in his careor of, philanthropy.
Tho attompt to commanicato a rotary motion to projectiles jectiles Ared from emooth beres hat bean mand in rarious ways, bat (to quote irom a letter written to me
by the War Department, in 1884) it has been foand by the War Department, in 1864) it has been foand
impoasible to obtain "effeient rotation" by Euoh imposiible to obtain "effecient rotation" by Exoh means. My plan was to fire a long bolt, having 2
hollow screw through its centre, the breech end being, hollow screw through its centre, the breech end betng, on ining, closed hy as shee or thy anitsole projecion
in the breech. Mr. Oottam, the engineer, tod me my bols would fall, beenuse the projeotile meit bo rifted at

 defeet.
If "Pbilenthrophot" eoutd seocoed he wothid gein mpany sivantages. 1. The ace of amoon borse. 2.
 Oneapposs, ac. Bomionime arvor batl invented by the Kivr of Portagal, which appears to have been groeved Kipg of ontaide. I 'beliove it tarned oat also a mouse. "Phileathropidts "0 Arowork world hnpolessly fail, becanse he coald not arrange the dotation might be at any angle to the tine of flight, it being quilo poolibto for him with ereh a ball to theot round as corter ; pot to mention the nice atate his gun would be in from
 ing would be ruthetent.
'M. Pante.

THE ANCOHOL QUEETION.

[4052.]-Accencenated heart-beats mey be 'from rapid oxidation, demanded by too suddenly carbonisod and kydrogenised bloud, rathor than by (s8 Dr. Kichard retention requires all foul topers' expulsion 'to the ronds, on that the prodaction of CO_{2} sind $\mathrm{H}_{2} \mathrm{O}$, the quick formation of which is essertial to rheir mefety, may urone rapiddy proceed,
to the increase of timber.
Alcobol regairers peod ezome, and sheold work in the garden, or contemplate daty at South port, whero the Fernicy
rivalry.
Excess of C and HI, from inebibing G4H 0 , maphdy abeorbed and dispersed, paralywes indimity by orerwork, and may it not aconimulate molosmios obstraettre to womio recombinmtion in capillary metwonk, and to the btood's capillary otrcatation?
Ohlornform's effocts wro widy diforent; its chlei ehment Ol (in weitgit $100^{\circ} 5^{\prime}$ to C_{12} aed EL) beting in. orfenil, whilst all'aloohel'o three elementa are organic. reath from ohloroform, I mppose, is mainly from orer reduced circaimation, by alochal maniny from over raptd ; oxygen in both ances too out proportionia br the ofther dementa; the luoge ere overtmetcd, whind wod int boing orlthout it.
 lemonade beltor colttor stradr, for roumcil, tor e dang, and formork at the dat. Abosine may hy
P.8.- How lat ise beand.beats coant ur'dor i
P.8.-How dat ie beant.beats coant nirder 1
of chloroform? are they foreat daring inse
to main?

TERERETRIAL GRAVITATION.
[4058.]-" T. A.'s" last lotter (4008, p. 144) illustrates the difficulty of reasoning with one who has Laken up the discubeion al a subject in adrance of him present zoowledge. The atter is crowded with mistakes amd misapprehensions. Thas "T. integral calcalas is particularly ngeful in dealing with problems on nearly particularly nseful in dealing with problems on nenrly neatralised attractinns. It deals exceliontiy with the
case of s particle placed at the middle of one of the case of a particle placed at the middle of one of the circular suriaces of a fist aiso, though in this case the atcrootions are by nn means neurradised, bas larger then they wund be if the particle supposes, but larger than they wunld be if the particle aware of the fact that a flat disc is a crlinder, thongh wery cylinder is not a flat disc. Moreover in the case of cylinder whose axis is considerable compared with of a cylinder whose aris is considerable compared with of a typical orlinder) all the attractive force of the of a typical oylinder) wll the attractive force of the
moleonles cannot "act in one direction," as "T. A." molecnles cannot "act in one direction," as "T. A."
smpposes, " on a particle at either end," nor in anything like one direction. They act, in fact, one half of all he directions possible with respect to such a partiele. But the closing sentence of "T. $\mathrm{T} . \mathrm{A}$ " s lettor canses Bat the closing sentence of "T. A.'s" lettor canses mentioned, I have not done unwisely in discassing this mentioned, I hare not done anwisely in discussing this
matter at all with him. He refers your readers to the matter at all with him. He refers your readers to the (a subject, by the way, having absolately nothing what aver to do with "T. A.'s" tronbles), and then he adds "those who are desirous of discovering the trath con oerning this question are recommended to strads cerning this question are recommended to stndy Chapter 2 of this excellent work." The idea he wishe to engrest is obviously (I fear) that Ganot in on hit
sido. Now, the fact that Granot is not on "T. A.'s" aide is a circumstance which "T. A." might have overlonked is a oircumstance which "T. A." might have overlooked; by pointing to the aceepted (r rather known) facte by pointing to the aceepted (or rather known) facte glaring error" repeated in Ganot's book; while in the same letter he described Ganot's work as fairly describing "the present otate of phynical science as based npon the stomic theory, the material foroes of sttrection and repulaion beiag consequently entertained, and as consequantly leading to orror."
Before "T. A." andertakes to exhibit the plaring orrors of modern science, and his own superior insight into all trath, he ahould increase his store of knowledge, bat sbove all he shonld show a love of truth in his own person, and avoid the supgestio faler, as verging very clowly on deliberate nntrathfalness.

Richurd A. Paoctor.

SELPNOGRAPHICAT.

[4064.]-Lohrmann, decoribing his crator A, Seo. 1 (Halley), says that on the soath side are two clefta, and botweon them is a great monatain chain coming from mbategnius, with a amall carity in ite highest summit. I remark the opponito of this phenomonon where a lumpish protuberance rises frem the bottom of the doepent part of the principal cleft ms it ontera Halloy. It bae all the appearance of having fallon from the mountain, and is a feature, one would think, that might easily attract the attention of Lohrmann, who, however, doee not refer to it. The cleft, which is noticed by Beer and mädler, extende to Albategnias, the west wall of which it appeare to divide longitudinally, and it progrcenivaly deepans and videns from that arater to Halley.
A small rill, which I do not find in Sobmidt's list, conneots two oratere W. and SW. of Arzachel
Sohmidi's No. 852, decoribed as having been ditcovered by Lohrmann in 1824, and not fonnd afterwards, agrees wall in pooition, but not in direction, with this rill, which shows a remarkable parallelism with the above-mentioned cleft, and also with another, No. 858, that rans into Parrot.
Bohmidt says of his No. 98, that it was originally discovered in 1824 by Lohrmann, and not seer agein until 1865, Whon Schmidt observed it at Athers. It is situsted in four or five degrees of latitude north of the great rill valley of the Alps. I saw it on the 15 th of April, and believed I conld distinguish another parallel, and alose to $1 t$, bat they ware objects of extrome dif:calty, as they ran nearly along the line of illumination.
J. Bibitingifiy.

METHOD OF MAKING A LEFT BCREW WITH A RIGET BOREW PLATE.
[4055.]-I DO not know whether any of the readers of "ours "can perform the above foat without the aid of a lathe or not ; at any rato, as the modus operandi was shown me some time ago by a very intellizent journoyman watohmaker. I give it pro bono publico. if is as follows:-(1). With an ordinary plate tap a The two opposite sides of the part that has been tapped untilit aspomes the form of alfit bar having the thread on ite edges, and until it is abont one-third the original thictenem; (8) heat the tipped end, and, with the sid of a vice, a pair of strong pliern, and great eare, give it a twith or two to the left, bringing the right eige over to the left, and vice varad, then temper as unang; (4) with this traviformed tep a thread is cut in a plate which will produce a left screw of exactly the eame sice, pitoh, te., as the original right serev plate would tarn pitoh, ce., as the original right serev plate would tarn right and left sorow, with identical throad, to make on the same rod, the sbove method, with a little ordinary care and not moch tronble will effect the purpose. OI course, in giving the twiat alladed to, the wire must no be bent.
A. M. Esembe F.M.G.

THE SINGER NEW FAMILY MACHINE.

[1056.] - Fig. A representa the under side of the bed and the mechaniam for working the shattle and foed. The bed (80) is fitted with a pair of hinges (shown on the ower edge of engraving) for screving to the stand. The bed is ribbed near its edge for strength, and other ribs, with grooves cut, contain the working parts. The original Singer machines are made with an upper and lower horizontal shaft, with large gearing pheels to conneot them. The needle-bar and cam act the same in all the marlines, the shattle slides in its race samewhat like the Howe, but driven by a crank inatead of a cam. The shnttle is short and thick, but does not make so good atitch; it is fastar than the Howe, and is chiety nsed, for its speed, in the alop-clothing trade. chiedy need, for its speed, in the slop-clothing trade.
It has a wheel-feed resembling the Howe, but like the it has a wheel-feed resembling the Howe, bat like the
Howe has recently had a "stop-feed" introduced for tailors' work. This machine is driven direct from the treadle by a connecting rod, or "pitman" of wood, to treade orank on connecting.rod, or "pitman" of wood, to The Singer machine, nnlike the Howe and Thomes, which pall up a firm stitch by positive action, has which pall up a irm stitch by positive action, has a
spring which governs the stitch, being depressed to spring which governs the stitch, being depressed to
form the needlo-loop, and on leing released auddenly form the needlo-loop, and on being released auddenly unsightly in the original machines, bat the action is rotained in a neator form in the nev family machise herain described.
vears the shatties muoh fastor, and cortaialy makes an inforior stitch.

The Singer Fred.-A bracket, or feed-guide (72, Fig. A), is screwed to the bed ; between these, in a groove, the reed-dog (74) is worked in one direction by the spring 75 or retarning after the stitch is mado, the same rpring alao depressing the end of the feed containing the teoth the raining of the teeth ap against the fabric is effectec by the longitudinal travel of the feed-lever (61), which has an incline or wedge-shsped ond, in contact with corresponding incline in the plate, or raising-cam (62) adjusted on the bed by its serem. The same feed-Jover (81) has also a cross motion, which acts against the end fic foed-dog nearest the shuttle, and at the extread and of the lever (61). The other end of this feed-love has an oblong hole, and in this the upright shaft is passed through, and above the crane dinc (59) a cam is made to work in the alot, so as to give it the longiadinal and cross motion, not conatant, but with a panse to give the time required for the feed-action by meany of a nnivarsal joint (69). It is formed by piece heving a onivarsal joint of it iormed by and to allow a sliding motion longitadinally, by means of s stad passing throngh a hole in the plate on the end of the bar (65). This piece and stad in one has an nut on the etnd to retain it in place (as shown on the ond on bar 05) ; this bar is the atitoh regalator, the bed in

The arm of the machine (81) bas 2 side to it, covering the upper mechanism ; it contains the main shaft (84), which has a fy or balance-wheel (88) on its right hand ond, a atrap desconds from a kroove on a palley to the driving. wheel on the stand below. Motion is communicated to the works below the bed by means of a bevol-gear, or toothed wheel (86), f xed on the main or horizontal shaft, and gearing into a corresponding cog-Wheel (87) Axed on the top of an upright shaft (85), cog- Wheel (87) ixed on the top of an apright shaft (85), the ehattle. A steel crank-atud inserted in the crank fits into the connecting-rod (58, Fig. B), which ia kept in place by a wabher over the atrid, and a pin throngh the stad to retain it. A similar connection is throngh on the shattle-driver. Instead of the Howe mode of sliding the shotile, it is carried by its rownd back resting on two prongs, and ite face againat the shattlerace on the bed. At 67 (Fig. A) the carrier is shown in the shattlo-race, the shattle-race slides being partly open to edmit the light. The shattle-race is faced on its (apparent) apper aide, and contains the needle-groore (apparent) appor aide, and contains the needle-groove.
The oppoaite aide is facrd aleo, and a alot cot through The oppoaite nide is facrd aleo, and a nlot cat through by its beack throagh this nlot by two sorews, end can by is back hroagh this nlot by two sorews, and can necting-rod 53. While the Howo shattle only travele the netual distance necded to form the atitob, the Binger, and all ahottles worked hy a arank, trave greater distanco. This has no adyantage ; bnt, on the contrary, the higher velocity and extended friction
grooved to recoive it. A plate (67) with ite eerems, holds it in place, free only to traval longitadinally. A long atitoh is made by placing the univeral joint (60) near the cam or shaft, and the reverse, of oourth, for a short stitch. The atitch-regalator bar (65) is moved rom above the bed by ithamb-serew, fixed in ite right band end; when mored to obtain the stitoh $20-$ quired the thumb-screw in used to ix it. These parts must be fixed frmiy ; in addition to ret onews, tapar pins are driven bard in the arank, collar on shafts, and cog-gear wheels. If it gota dirty the worker should not attempt to take it to pieces. Tb parts are 30 complicated, and all requiring so much atting and workmanship to accomplinh what in other oredit to is very simple, that its invention would be a areaning a tradea' anioniat bent on the one idea of in creasing the demand for labour. The olosest inapec thon cannot diecover s new or better motion than in the Howe clase of machine, bat it is easy to perceire that the motion obtained by all this complication is linited in range, no panse whatever is given to the abuttle and carrying, instead of a
rom some
NEEDLE MOTION.-Fig. C ahow the faco-plato (88) the dotted lines, the heart-chaped oam (10), cam-rolker and atud (36), and arank dise (35). The arrow irmdi cates the direction of motion, which is torrard. the oporator when sitting at the atand. On tarnin the cart-roller (or crant), the obeerver may nolice thicr, the action of the heart-cam canses the needle-L/ as to
descend from the top steadily to the bottom; it is then raised about one-eighth of an inch, and remains nearly at rest while the shattle enters the loop of needlethread, but descends a little while the shatile passes
throsgh the needle-loop thrown off the needle-eye in throsgh the needle-loop thrown off the needle-eye in the act of rising of the needle-bar. When the shattle has passed nearly throngh, the cam lifts the
needle-bar quickly. The time of this action, compared meedle-bar quickly. The time of this action, compared with the Howe machine, is infenior for making a good stitch, but far superior for strength, speed, and wear. The defect of having a strong spring to pall up the thread-loop from off the shnttle, instead of the needlebar direct and positive, makes it requisite to stop often to regulate the tension from thick to thin, or hard to soft, fabrics. The check-lever (15), which pulls up the slack or loop of thread, can be regalated by the checkspring, coiled around a screw placed in the hole for the screv (17), which acts as a pivot for the check-lever, as well as to keep the spring in place. The end of the spring is placed in one of the holes nnder the screw (17), se as to be weak or strong, according to the work in hand; it looks neat, but is troublesome to adjust, and leaves the machine far behind others in simplicity of adjustment. Testing it, by pulling up a firm stitch in thick cloth, and then in thin paper, shows the thread entting the paper, and adjusting it to paper shows a
slack or loopy stitch on the cloth. This experiment slack or loopy stitch on the cloth. This experiment proves that the machine is made to depend too much
on the fabric in forming the stitch, an arrangement on the fabric in forming the stitch, an arrangement
which is sure to produce an nneven stitch, when the speed is sometimes necessarily too fast or too slow. There is a stop in the needle-bar to force up the spring at the end of the stroke; sometimes it acts properly, at others the spring acts in advance, according to speed and materisls. This ever-varying quality is very troahlesome, to new workers especially, and its want of simplieity is a drawback to all such machines as work
the shattle by a crank instead of a cam motion. This the shattle by a crank instea stoed by comparing it with a cam-shnttie-action ma-
chine, to be illnstrated shortly, and chosen as the easiest to explain the forma tion of the stitch, and all the actions of a sewing-machine. To Thread-up the Singer Machine for Work.-Place the cotton reel on the wire
pin (1), pass the thread throngh an eyelet-wire in top edge of face-plate, then down ander and between the ten ion-plates or discs (6), then p to the eye of the check lever (15), pass it throngh from the front backwards, then down to and throngh and passing into the needleoye from the front backwards, leaving the thread about three inches throngh 30 as to hold it between th fingers while pulling up the shattle-thread. The shuttl being properly threaded, and pat upon its carrier (57), and the shattle-race slide closed over, then one turn of the wheel passes the shuttl hrough the needle-thread oop; as the needle rises pull np the end of the the shattle-thread along hus made, by a little pre is titch, provided the operation is fully understo chain
Defects of the Singer New Family Machine.When the machine has been laid aside, and thus made tiff by dirt, the worker finds the great disadvantage of complicated machine. It will take a mechanic threequarters of an hour to take it to pieces, clean, and nires the parts, and to do the quired the 87) inside the arm and in 7) inside the arm, and in many ways this machine requires the help of a rechanic, where tome machines for similar parposes do not. Many other machines are geariy as complicated and tronblesome, and for some it the machine to pieces. Doing so involves sending it to the machine to pieces. Doing so involves sending thus incurring expense and delay. Users will know better in a few years.

Improved directing posts.

[4057.]-I mave a fellow feeling with "Canis Minor" let. 3991, p. 123). The fingers of most posts abont here haring been long ampoutated, and the letters as nndecipherabbe as Sinaitic Pililrim inscriptions, would it not be better for the plates to be perforuted ? There are fow nights when a post is not darker than the clonds and to fumble about the raised letters like a blind man, does not impress me with a desire to parsue knowledge nnder such difficalties. As to the clerk " kept" by the Postmaster-General to hunt newspapers to any one acquainted with the Civil Service such a notion is ridiculous. It is naore likely that some favourite of official fortune is paid $£ 800$ a year for seeing that a messenger or boy "chosen at once" at 250 stows them away carefully in a "depository" for-
gotten even by the ubiquitous spider. M. PdRIs.

A Practical Man.

screw, according to circumstances. If the weather be fine, open slightly, which gives the highest speed; if stormy head sea and wind, open more, which increase the power as it reduces the speed; if to stop her, close if regnire a parallel rale, which shuts all the blades vessel acquire a little sternway, and all the blades would instantly reverse; then up with the garards antil required to go ahead again, when on turning her head from the wind the blades would all go back into the original position for propelling ahead. By stopping o reversing one side the vessel may assist the helm to turn more quickly, and, if necessary, she could be steered altogether if any accident occurred to helm. am perfectly convinced that no steamer conld ontsail vessel of this construction in a heavy sea, although she would probably do so in light weather.

John Jambs Allingenam.

KING NUMBERS.

[4059.]-IF " E. L. G." (letter 3990) will refer back to my letter he will see that I did not say that it was sing numbers that everybody knew before, but some-
thing quite different. I never said a word about king thing quite different. I never said a word about king
nambers, good, bad, or indifferent, and willingly allow numbers, good, bad, or indifferent, and willingly allow not know. What I fail to perceive is the connection of the curious properties of numbers he has been explaining with the question whether the convenience of baving what is called the metric system in nse would or would not overbalance the cost and trouble of in troducing it. It seems to me that the best judges of that are those who have tried both the English and French systems sufficiently long to become familiar with both, and I believe that those who have are nearly unanimous in favour of the change. Is this
belief correct ?

PRACTICAL INSTRUCTIONS FOR MAKING THE PIANO ACTIONS IN No. 368.
[4060.] - Having contribated full-sized working drawings of these actions, and a pretty full description of their advantages, perhaps it may be as woll also of their advantages, perhaps it may be as woll also
to contribate some instructions which will, I trust, facilitate the operation of making them.
It may, at first sight, seem rather presumptnons for so unpractical a person as the "Blacksmith" mast for so unpractical a person as the "Bhacksmith mast be, to pretend to give practical instructions to smanl
work makers, whose general experience must so greatly exceed his, how they can most easily form the parts of exceed his, how they can most easily form the parts of
these actions, but it may be some excuse for his presumption that in the construction of them he has been enlightened by experience which they cannot yet enlightened by experience which they cannot yet
possess. So he subjoins a fer hints which, in his possess. So he subjoins a fer hints which, in well to bear in mind.
That it might resist the rebound of the hammer from the strings as little as possible I had the sticker rom the strings as hittle as possible 1 had the sticker o, Fig. 1. made as light as I considered consistent with
necessary rigidity. Its section is fin. from back to necessary rigidity. Its section is in. from back to
front, by tin. wide. It was made deeper than its width front, by in. Wide. It was made deeper than its wiath
to afford safficient depth for the oblique hole which receives the projecting piece. To make it wide enough receives the projecting piece. To make it wide enough
for that hole to be bored in it, the rpper 2 in. of its for that hole to be bored in it, the apper 2 in . of its length was reinforced by cheeks formed of two slips of good beech wood, one-tenth of an inch thick, one being glued on each side. For this parpose I know no better wood than beech, well-selected; no doubt good Spanish or Caba mahogany cheaper, and, I think, holter reason I prefer it to hornbeam, which I first employed, and I don't think any much gheaper method than this of forming the sticker will readily be devised. Should it be desired to make the sticker capable of being disconnected from the butt on the French system -which I greatly prefer-probably the most facile and cheapest plan will be to glue one cheek in its place then glue on the rectangular projecting piece required in lien of the cylinder P, and when quite dry to plane the sticler in a saitable matrix to its required thick ness, after which, the right-hand slip or check being glaed in its place, the projecting piece will bs well secured between the two cheeke, but it would greatly strengthen the connection of the parts if two (about streng then the connection of the parts if two (aboat
No. 24) soft copper wire rivets were inserted below and one throagh the rectangalar projecting piece, employed in liea of P , whose section may be tin. $\times \frac{\sin }{\mathrm{sin}}$.
in lien of P , whose section may be in. x in.
There is no necessity to make the lower end of the sticker into a cylinder. If tapered for a trifle more than half its length antil its end is but $\frac{1}{2} \mathrm{in}$. square, it may then have its edges planed off and thereby its end rendered octagonal, which answers quite as well, alwaye assuming it to be glaed is the centre of the cloth or felt disc at its bottom, and that it does not touch the hole in the rail in any of the positions into which the hammer carries it during performance.
Should it be determined to attach the damper to the butt in this sticker action, Fig. 1, which, as it saves fully foz. in the weight of the touch, is a thing I fally boz. in the weight of the touch, is a thing I
should certainly do myself were I able to conceive it possible I could ever become foolish enongh to be possible I could ever become foolish enongi to
tempted-(qy., by the evil one)-to have a piano with a sticker action finished for me. I much prefer, however light the sticker bo made, for the escapement, if aver escapement be allowed, to be at the hammer batt. It is obvious that the forked portion of the butt must not extend far below the hammer centre, at least the last half inch of its length-it should be made about in.longer below the centre-mnst be filled ia solid, and have a hole bored in it into whieh the damper wire can be screwed. Of course it would be possible to mortice the batt cheaply by suitable machinery, and leave its lower part solid for the insertion of the damper wire ; but, considering small work makers do not asually possess mortising machines whose scale is suitable for such small work as making the butts of pianoforte hammers (sooth to say, I greatly doubt if one sach machine exists); also considering that they seem to machine exists); also considering that they seem their mission to do everything they well can do (and sometimes something more) with the circular saw, I presame they will prefer making these forked butts with a circular saw (say) $\frac{1}{4}$ in. thick, which is the butts with a circular saw (say) $\frac{1}{4}$ in. thick, which is
space between their prongs, and to fill up the lower balf-inch of their length by glueing a piece of hard wood (say) hornbeam, beech, or Cuba mahogany, be tween them. It might be preferable for the grain of this piece to be at an angle of about 80° with that of he bott because the glued joint would be quite a strong, and it would hold the screwed portion of the amper wire better than any wood can whose grain is parallel to the hole which recerves it. It would be 8 urther improvement to leave that portion of the but which is more than ive sixteents of an inch below it upper portion, which receives the hammer shank, beapper portion, which receive the bammer shank, be canse this will not only afford larger surfaces to be glued together, but also room for a conple of soft No. hind the damper wire, thereby greatly increasing the trength of the butt at an inconsiderable cost
It will be observed I have designed the butts in both actions, Figs. 1 and 3, so that the holes which receive the hammer shanks are bored parallel to the backs of the butts. This, which is by no means essential, was intended to facilitate correct guidance while boring those holes. As merely glueing the joint between
arms C C, which carry the counter weights D the butts conld not be relied on for endurance shown, by dotted lines, glued wooden dowel through the butts from their backs inte t. for connecting the parts securely. The san apply with equal force to the joint between
and vertical portions of the hopper H in
noortiog this juint I have also thns shown two wnoden ter. These mast, of coarse, be inserted sufficiently ter. These mast, of course, be inserted and and left of the centre of the happer to allow room for the oheek wire descending betixeen without touching them.
As the only means provided in Fig. 8 of regniating parallelism of the damper to the atrings-is by bendparallelism of the damper to the strings-is by bendtate those regulations by employing a somequat brass or iron for the demper wire. I fonnd moderately hard drawn copper - well alretched piece of copper bell wire, for instavee-snd soft brass wire preferable for this prrpose, becance its form was very easily altered
by a tool with two nicks, one of them being at its end by a toon with two nicks, one of them being at its end
and the other at its cide. The regulation did not require mach time to effect with this tool, which is essily made.

As it is quite notorions that all pianoforte mazers lectnal) things (if not their worldly wealth) in com. mon, and no trade mecrets from each other, and mon, and mo trade mecrets from each other, and loetrally for their matual benobt, also, as the practical reader mast long ere this have become quite convinced the writer is totaliy ignorant of all practical
details, he " wory 'ambly " euggests that Mr. Schacht, and othors of your practical correspondents who must making than he posiibly can, would oblige by saggestmaking than he posaibly can, wonid obline by saggestof thean actions than his very limited experience has onsbled him to carry out.

Thz ㅍammomots Buackemiti.

HOW WE SEE A DISTANT OBJECT.

 [1061.]-"J. J. D." (letler 8974) infers that, beosuseonly the rays whioh enter our eyes render objeots only the rays which enter our eyes render objects
visible, " fwo diatinct sets of rays must proceed to each of the spectetors, that is, one for each eye." "E.J.D." ehoald roow that the oyes only catoh proportionstely
to their dise the rajs in contact with their surfsee, to their sise the rays in contact with their surface,
whioh impinge on them neither more ner leas than on which impinge on them neither more ner leas than on equally unintercepted. The illuming ether is evidently Chat elastic ms to need no atomic prisms for secondary
refleotion, It rebounds on all sidea as balls inflated with refleotion, it rebounds on all siden es balls inflated with
hydrogen so thrown might aid towards exemplifying, hydrogen so thrown might sid somards exemplifying, extending till increased crossing raps finally divert
them all. Aetronomers may know at wbat distance them all. Aetronomers may know at what distance combustion, or an unintereepted star, becomes invisihlo
by distanee; the law, or fact, may be learned. The great wonder is the enormens myriads of ultimate
ether atoms that by variely of impingence force ethar atoms that by variaty of impingence force
delineato with such nieety every distance, shape, tint, delinate with anch nieety overy

We eacily see the rate of reduction of light rays on secondary roflection, when we behold our face at the glace, with the light Arst falling on our face, and then compare it with the refleoted face when we tarn, so
that the direct rays turst impinge on the mercury, and then rebound to the face before they retarn, and rebound again from the meroury in the variedly madified impingementa that present to us the piotare of one't
eelf.
J. Barwick.
[4062.]-"E. J. D." (let. 3974, p. 120) sapposes a large statue of black, polished marble to be set ap upon a plain, and seen by a rast multitade of people. multitade receives a distinct image of that statue ?
"E. J. D." seems to think that he wonld not be able to see it inless rays of reflected light were proceedivg from every part of the statue in a direct line to his cye, bat I do not think that to be at all a necessary
condition. In the first place, how do we discern that the atatue is black? Is it not becanse 2 great portion doea not rellect any rays of light to the spectator's eye? convey to the eye the idea of blackness-pare black. ness is the absence of reflected light. Having peroaived that the object is black, how do we perceive that
it is a statue. I submit that it is becanoe we see the black non-refecting contour of the object standing between us and cortain objects in the bactgronnd which do refect light, such as distant hills, clonds, ds., and Te soe that this blaek oontonr is that of a statue. Bnt If no part of that viatne reflected any lipht to the ere of the apectator it would appear against the background as a iaf, black silhnnette, withont the appearunce of roandness or modelled form. How, then, du we per-
ceire this roandness and form? We discern this from the high lighte-those pointe on the statae whence the tmown law of the equality of the angles of incidence and retection, -and it is to be noted that this redected light is white light. The mind combines these two lacts ; the non-reflecting condition of a great portion faots; the non-retecting condition of a great portion high lighta, and a correct perception is obtained of a
black atatue. If "E.J. D." will take a black bend, and place ft on a sheot of white paper, he will perceive that the greater portion of the bead appears of an ineye. He will aloo perceive the high light, a smill oypeok of light which is refected to his eye in accord. anoe with the asual law mentioned above, and that tis o reflected he can easily test by moring to ene or the
ther aide of the head, when he will perceive that this eck of high light will appear to follow in the same
phntograph this besd lying on the paper he wonld find portion of the bead which noppears black, clearly pror ing that from thence proceed no rars of refected light but it would be acted on br the light from the paper
and by the high light of the bear, and if from this negative a positive were priuted it wonld givo a correct representation of the bead on the paper. Boso.
[4063.]-In reply to Mr. Barwick's letter (3973, p. 120), I beg to state that he has not tonched on the main point which I have pat formard, particularly in my last letter (3974, p. 120), 80 I whall not at present
allade to any of the statemunts in his letter. I wonld beg to any of the Btatements in his letter. I wonl now try and explain the point on which I want infor mation. I presnme he agrees in the theory of lipht which I have qnoted, as to our seeing distant ohjects by poncils of raye emanating from every part of the object to the eyes of the obyervers, no matter how
aumerons the observers may be, or where placed, so nucnerous the observers may be, or where placed, so ceired the difficalty, and he axcribes the reflecting power to the principle of repalsion, remarking thas what appears to our senses smonth and polished are fonnd, when viewed throunh a microscope, to abound with ineqnalities. If, therefore, the power which produces ing sarfece, these inequalities irom being refleoted with so moch regalarity ws we flud they ere. This theory seems to me to reduce all rays to a sort of general apecular refleotion, and cannot (as
far as I can perceive) explain the distinot pencils of rays on the present theory of light.
Again, I am at a lose to know how any object oan provide all those rays to meet the requirements of a great multitude observing any ohject at the same time, for it is calcalated that the best of mirrors reflect little more than half the light they receire. Thus we have the theory of repalsion upset, for hy that the mirror ought to reflect the whole of the light it receives. Now
to the point. From what csuse do those innumerable peucils of rays proceed from every physical part of an objeot to the oyes of the numarons apectatore fand at the theory states) in right lines, and onn waraing to points before they enter the ioyos 8 di Mr. Barwick the specalar reflection it would be likely to oanse? Why do those pencils of rays converge to points before they enter the ere, and what is the inherent power in any object cansing them to do so ? Sappose an observer sees an object at three feet distance, he does so by this pencil of rars. The object is stationary, bat the man retires from it, and we are to beliure that for the most trifling change of position a fresh pencil of rays mnst flash from the object before he can see it; and in the pencils a malitude constantiy moring, the number of woald be innumerable. Bat to make the matter more difficult, these rays mnst all converge in a point before they enter the eyes of tho apectators. Mr. Barwick will now, I hope, understand the natare of the information the above questions in detail. I mast have fill proo in every case.
E. J.D.

REVOLVING PUDDLING FURNACES.

[4064.]-In the last impression but one of the Englisi Mechanic, it is atated that " Mr. Danks's patent for the revolving puddling farnace is contested." While giving Mr. Danks all credit for the energy he has shown in this matter, beyond this he bas no enrthly took ont a patent for inven ion. In and most c - rtainly Mr. Welker's furnace requires more consideration thun it has yet received from the English ronmasters.
Next to Mr. Walker we have the revolving puddling farnaces of Mr. Tooth. This energetic genileman's patents were taken ont in $1859,1860,1861$ and
1864. On the other hand, the tirst patents taken ont br Mr. Danks are of very recent dute-viz. 1866^{3} and 1870. He has since taken out two other patents, dated 21 st December, 1871, and 9th April, 187. . His speciticaions, however, are not yet flad in the patent office. On comparing the inveutions of Messrs. Walker and Tooth with these of Mr. Danks, it is dithcalt in the extreme to discover what the latter olaims as new in
his patente. In my hamble opinion Mr. Danks is a his patente. In my humble opinion Mr. Danks is a mentlemen. Lot ns hope that Mr. Danks's claims on Eugland for this invention will not be classed among the other items in the "Alahame claims."
During the late grent Exhibition in Paris considerable agitation prepsiled in Huglaud in reference to the great progress unade tu the manafuctare of iron at Mr.
Schn-ider's works in Fisnce. Wuen this subject was Schn ider's works in Fiance. Wuen this subject was
investigated, all thege so-called Fruach "improvements in the mannfacture of iroa" were to be foand recorled in oar patent otfice, as the labonrs, of hard-working, bat sadly neglected scientific men in England, which foreign ironmasters bad niopted. In the present state of oar intriligenes it wonld aopear that the scientitic discoveries of the sons of England mast first be adopted abroad and re-putented here before sach discoveries
can be appreciated in this conatry. This is a sad otate of thinga, bat so it is. Wo have nnmerous rendering ang sid to the derflopment of scientiato disonverizs, or in any way agaisting the inventive genins than egotistic shams.
G. B. (Civil Engineer.)

EXTINCT VOLCANOES.-VIT
[4065.]-Breides the volamn of Jorallo detter 3883, p. 66), so recent in ity origia, Moxico contains
other Gve, Ortzaha, Toloce, Taxtla, pupacatepail, and Colima. What is rather remertable is that thene Ave, together with Jorallo, all lio nearly in a atraight line, ratining east and west. The trasts of oonntry which these volcanoes have derolatar with thrir lava are called by the Mexisans the Msipaya. The most remarkable of the moontains is P, pocatepell. Although it has long remained in comparative qnietnesa, it noder Cortes. Of the first approach of the Spaniards to this volcano, and of the attanupts made by anme of them to climb to the top, Mr. Presoott, in his "History of the Conquest of Mexico," gives the fullowing graphic occoant:-

We are now passing between two of the highert menntains on the North American continent, Popocatepeti, 'the hill that smokes,' and Izteocinuath, or, White woman; s name sagsested, I think, by the brifats robe of snow epread over its broad and brolicen regarded these celebrated matition of the Indien Iztaccihnati as the wifo of her more formidable neighbour. 4 tradition of a higher charactor do acribed the northern volcano as the abode of the departed spirits of wicked rulort, where tiory mgenies in their prison-house cansed the fserfal bollowinge and convalsions in times of eruptions. It was the classic table of antiquity. These superstitione logends had iavestod the moankain with a mystorions horro that made the natives shrink from aftempting it ascant, which, indeed, was Irom mataral casaces work of incredible difficuity. The great voloana ss Popocatepett, was called, rose to the emormons hoight of $17,852 \mathrm{ft}$. above the level of the 000an, move than 2,000ft. above the monarch of monntains, the highed elevation in Europe. Daring the prosent century it bas rarely given evidence of ith voloalicic origin, and the hill that mmozes ' has almost forieited its claim to frequently in a stato of antivity, and raged with un common tuy while the Epaniards wore at Thacoia In exil omen, itamen thought, for the natives of Anahnac. of sacecenive ernptions, worn the nsual form of volcanic moantains, when wot dintnrbed by the falling in of the crater. Soaring towards the skies, with its silver sheet of everiasting snnw, it was been far and wide over the broad plains of Mozion and Paebla. This scene is enough to stir the Fonng studeot ap to dithgence and duty, and to consider the omnipotent hand that formed such stnpendons ohjeot the the irst objeot the morning sun greeted in his rising; the last na which his evening rays were seen to linger, shedding a gtrikingly exalgence over its head that contrasted immediately below, and the drep fringe of fanereal pines that shroaded it+ base. The mvaterinas terror which harg over the spot and the wild love of adventure made some of the Spanish cavaliers deairnas to attempt the ascent, Which the natives deciared no man could accomplish and live. Cortes eno.nraged them in the enterprise, willing to show the Indinos that ne achievement was above the dauntless daring of his follnwers. One of the captains, nccordingly, Diego
Ordaz, with nine Spaniards and geveral Thascalans, Ordaz, with nine Spaniards and aeveral Thascalans, encoaraged by their example, nniartionk the asceat. It was attender with more diffionlty than had been dencipated. The lower region was clathed with dense forest, so thickly matterd that in some places is wowscarcely possible to penetra'e it; it grew thinder, a stragilig they adpancer, dwinding ho degrees into somewhat more ted vegntafion, til, at the heigether The Indiann, who had neld on thra fir, iutionidated by the strange subterraneons soands of the volesno, ovea then in a state of combastion, now left them. The rack opened on a black sariace of giazed rolacia sayd and of lave, the broken fiagenents of whiah, arro-tedin its boiling prngress in a t wnanad fantaske Amid, opposed continual imperinnent + to their nivance. conspl these, one hage rock, the Pi:s del Fraile, height of 50 object from below, rose th the p"rpendicanit They anon came to the limits of perpetinal snow, where new dificalities presented themgelves, as the treacheron ice gave an imperfect lootiox, and a fales atep might procipitate them into the fruzen chasms that vawnal aroand. To increase their fintress, respirstion in wes attended with sharp paios in the head and limbe still they pressed on, till, drawing nearer the crater such volumes of smoke, sparks, and ciuders were balched forth from its burning entraila, aud driven down the sides of the monntain, as nearly suflocated hardinded them. It was too mach eren for their hardy rames to endure, anil, however relactantly, they its complotion. They brought baik aume largo icicles -a carious sight in those trispical raginus-is in trophy of their achievement, which howerer imprrfoct, wal onfficient to strike the minds of the nutires with wonder, by ahowing that with the Spanisrdy the most appalling and mysterious perila were ouly ar pastimes. The nudertaking was oninently charartaristic of the bold apirit of the cavalier of that $\mathrm{H}_{2} \mathrm{~F}$, w!to. not content with the dangers that lay in his path, seamed to court them from the mere Q iisotic lire of adsantrire. A report of the affair was (I beligre) traosmitted to the Emperor Charles V., and the family of Ordaz ware barning to commemorate the explo:t by Rasaming a barning moantain on their escatchoon. The geveral.
not being satisfied with the resalt, two years afterwarde
sent ip enother party, nader Francisco Mnntafio, a cavalier of detormined resolation. The object was to army. The monntain wes quiot at the time, and the expedition was attonded with better enoccess. The Bpaniardn, ove in namber, climbed to the very edge of the arater, whioh presented an irregular ollipse at ite month, more than a leagas in nircumference. depth might be from 800 th. to $1,0001 \mathrm{t}$. A larid fame burnoi gloomily at the bottom, sending ap a salpharona stoam, which, oooling ac it rose, was precipitated on the sides of the crater. The party cact lote, and it foll on Montaffo (I believe) to doscend in a basket into thi, hideones abyen, into which bo was lowered by his companions to the depth of 400 tt. This was repeater areficiont quantity of oulphar for the want of the army."
times more tranquil state of the roloano in modern dimoule havg rendered the summit no longer so has been several times whiemed, trice in 1837, and again in 1889 and 1834. The crater is now a large oral banin. with procipitoun walls composed of beds of lava, of which some are black, others of a pale rose fiat, are coveral conical venta, whence are continually issning vapours of variable colours, red, vellow, or white. The heds of enlphar deposited in this orater are worked for economical parposes. Two snowy peake tower above its walls. Not less magnibcent io zearly of the same height as Popocatepetl. It was very antive about the middle of the sixteenth centary, having had sevoral great eraptions betwoen 1545 and 1560, bat since then it has sunk into comparative repose. This monntain was asocnded by Baron Miuller paseing a might in the grotto, aear the limitol perpetnai enow, he was able, on the following day, after a trilcome aseent, to reach the edge of the orater. A vellow crust of sulphar noate in several places the int,rnal Talla, and from the bottom rise soveral voloanio conet. The zoil of the crater, as far as I coald cee, was covered With snow. conseqnently was not at all warm. The from crevicea in the rocks. Although I oanld not verify their atatement, it necmed to me probable, for Thave often observad nimilar nhenomeua in Popocatepetl.
There are several nf tha West Indinn inlands of volcanic origin. and thres of them, St. Vincont, Martinique and Gnadalonpe, onntain active volcanoos. The minst remarkable is the volcano of Morne Garon, in 8t. Vincent, the ornptinns frome which have been particnlarly violent. In 1813. the ashes which it threw out Vero so great in quantity, and projected to no rast a handred miles in the teeth of the trade wind. From Monut Petles in ho weh of there was an ernntion i Angast 1851. Ln Lanfriere, the volcano in Gaiadalonpe is said to have heen cleft in twain daring sn earthquake. Ith activity has long been in a anbdued
but it in remarkable for its doposite of sulphur.

Relpe Lowdon.

PSYCHIC MANIFESTATIONS.

[4066.]-Pr.rmit me to point out the anspicinns resemblance hat mean the performancen of the "painting
mediam" (noticed at p. 58) and the "sleeping preacher" mediam" (noticed at p. 58) and the "sleeping preacher"
of James $\mathrm{I} . \mathrm{s}$ reign. In his sleep, so-callen, Dr. Har. of James in's reign. In his sleep. so-called, Dr. Hap.
dock proseherl goon sermons with a good voice, and quoted Hehraw: while, when he was awaka, as there
was gnod (9) arideron to show, he knew no Hebrew, and That Rnod (7) atidenco to show, he knew no Hebrew, and
sfattered badty. He aced to preach before nnmering syattered badts. He ased to preach before nimering
fellows of the Oxford enlleges, whom he eninpletely deoeired. He was noxt taken ap to Coart, and prache.l there befire the King: bnt Jameq forced him to
"ingenunalv pon'eas and acknowledge that this nase of
 my Doctarval disoourae. reeming to be in a deep and
aonad sloep whan indeed I was waking, was from the bekinning a rolnnturr thing," kc. This confessinn wat
made April 27 , 1605 . What a pity we have not mane artil 27 . 1005 . What a pity we hare not
another Jampa I . to mako Mr. D-make a little conleasion in 18721 Hedera. Dierseli's "Misellanias of Litaratnre" and a fuller one in Chambcrs's Journal for Feb. 17, 1872, p. 99.

DR. CARPENTER AND PERGPEGTIVE.

[4067.]-Or ennrse no one converanat with perspective wonld think of diappatiog "E. L. G. "s" axinm, bo projected vertionl, and no tower nnt tapering can bave ite pirtnre tapuring at all, whether its heizht he loot. or 100 miles. Thia in indinpntable. But a cnrinos question ariaee, and if it vill not be considered trifing with the anhjuct, let ns anppose that there abhnid be a
towor bnilt, anc, ten milon high. How onald M. Paria posibly represent it as it wonld be notined by his ege? In the frat nince, in order to nee the base of the
tower he monld hare to lonk straight belore him, level tower he wnild hare tn limk straight betore him, level
with the plain on which the tower tood; but in order to soe the top he woold have to look right ap orer his bead, pearly into the actual zenith, and as his ere roved orer the towor from sammit to base, and from base to anmmit, it wnild appoar to beni over him in n earre. I think it wonld be rather difflonth, not to sas peared. Of onarce I am sapposing that the towor is pot rory distant from the spectatori, say, a quarter of e milla.

ONE PROOF OF THE DELUGE.

[4068.]-" P. Santalinus " (let. 8068, p. 119)-if we pass over the mis-atatements of the former parts of that letter (whirh shpuld be enmpared with his last quers 9339, p. 489, and mr reply, p. 514)-aske in the last
sentence for some phenomenon anaccounted for, and sentence for some phenomenon anaccounted for, and
unaccountable, by canges mow in action, or without a unaconantable, by canses now in action, or withort a
cometfall. Now. in total ignorance what spot or
omntal
onntry on earth "P. Santalinns" may inhabit, I can ouly lay, perbaps, nine to one that he is within a walk of such evidence. It is most probsble that he cannot fir a mile, and very probably not atep oat of his door,
withnut standing on groand whose form detiea all withnut standing on groand whose form deties all "crellian theory to account for, being sach as the canses now in action," never orald form either in 60
million or 60 billion rears (to say nnthing of the 00 million or 60 billion rears. (to say nothing of the 60
thousand of "F.R.A.S." let. 8960).
Probably. 99 handredths of our habitable earth sarface brolongs to this category, bat as the remaining bundredth inclades he most fertile and therefore popalous lands, and in ome cases whole degrees in width of them, I muat bear in mind the possibility that P. Santalinat may dwell Where he might have to take whole davi' journevs to each the following eridence. This woald be sn if he wells, for instance, in Alexandris, Calcatta, Venice, Amstordam, or Now Orleans. From any of those ciliea, to reach the traces of cometfall, or facts inaxplicable withoat it, he mnst either go down a shaft or boring to some considerahlo depths (which, strange
to say, are recorded by Lyell, bat mo other anthor I to say, are recorded by Lyell, bat ho other anthor I
know of), or else he mast go, perhaps, some hnndred know of), or else he mast go, perhaps, some bnndred
miles aray ; in fact, leave the allavinm. Allavial land miles away; in fact, leavo the allaviam. Allavial land
is the work of "canses now in action," and so are is the work of "canses now in action," and so are
fore-shores and alscier moraines, and moreover, all ore-shores and glacier moraines, and moreover, all
precipices or cliff, and banks that are as steep (or precipices or cliff, and banks that are as steep (or
vearly so) as their material woald stand dorahly in an vearly so) as their material woald atnad darahly in an
emhankment. All theae kinds of surface the present emhankment. All theae kinds of surface the present
actions, volcanic and atmospheric, are adequate actions, volcanic and atmospheric, are adequate,
between them, to produce. Bat these alone arn ther between them, to prodnce. Bat these alone arn ther
tending to prodace anymhere, and had they onntinned, or were they to continue a very long time nainterrupted. perhaps even the " sixty thinasand years" of
"F.R.A.S.," they woald redace the whole of existing land to these forms. There would be no othar dry land than-

> Lava atreams.
> Cinder cones.
> Fmbankment-ateep hill-riden.
> Cliffs and pesks, or aigailles.
> Mown band-hills.

Of undulating and gontly aroeping hill and vale, mic. Bankings mas well kanm to conatitnte myjority of all present land snrface, there wonld, in a
certain amoant of time, remain not an acre. For the canses " nom in action,"" instead of, as the Lyolliste dream, anywhere making this kind of snrface, are everymbere unmaking it, and throngh all historin time anve heen diminishing its ammant! A few experiments with clay or dre mad, or a little observation either on soil, exposed to all kinds of weathor, an lice to prove this.
Bat coming to the globe's surface, regarded as a Whole, P. Santalinns will allow that all the land is spot a drop of rain mar fall and ran, it will reach the sea by one ordained path, so that every square foot belongs to some particular valley, and the division between valley aud valley is but a mathemutical line. Now vallers, in this hroadest sense, constitnting our whole world, ars divisible first into the foored and un. Aoored ones. The rallega of main strenms, of nearly at has maps, are, for m ist of their lengtb, floored with allarinm or flat gronnd, rising lengthasisa; indeed, parallel with the river's conrse, hat l-vel cecross at any rint, like the stage of a theatre from sido to side. Ting width of floor mav be not halt a mile, or many or else several run together, and firm whole allinvini oonntries, as Beug.ll, Lnmbariv, Holland, or the English tens. But the minor vales, all whone streams have no
 chulk) ramify for miles nud miles withont a ve.tige of atream, and which malco ap the majority of every conatry's ares that is not fon. These have,
for most of their length. no alluviam: they mar be called unflogred, as the Fleot or Holborn Valley, through the heart of London, and that of Marylehno (proparly Mary-hoarn) ernasing its Woat the major sort are; bnt I speak here of the unfloored valen, becanse it in nnly in them that the distinction beonmes glaring and impossible to ignore-into thnae Those crnss section is a wavelike curve, fine y ronanion on cither beyond or above the place of stoepest fall those whose section is a mere V a furrow or ravine, with banks of eqnal gradient frum bottom to top. Thase leat I will call furrow.valos, and the former sweep. valos, using the word "sweep" as short for "carre of oonCrary faxure," for whith there bardiy anoms añ other for the word "oree." naed in hailding, is so groes a perversion of og vo itaelf, alreats totally porvertod in rance (for in old French itn nole meaning was "groin arch'.), that it shorld be abandoned, as nom, in both langangen, a mere soarce of onnfation. Ohserve that the aniform slope of the farrow valler nowise renders it loes pietaresque or raried in oarvatare than the swoep valloy, for as the strenm or bottom in nevor atraight, the banks have no plane portione or any ro-
semblance to a railmay outang. Beob necoumarily forma in pronn a suocession of owoeps bevicul, aud every re . coss part of a hollow cone. The strsightneev, as oplongs only to the engineer's aromes seotion of each.

Now, it is simply imposaible to form sweop valleys by any length of exposare to caases now in action." A heap of fine clay, loam, mortar, exposed to a aingle shower, will be farrowed with miniatare gatters,
gorges, rallos, wat even, in the lower parta, model fioored the shore of a pond, you may oven see the process of itlta forming. In one hour of thene the procoss of may soe, by means of an apset wagion load of soil. the entire history of a continent acted in miniatare; and atudy it ae if the moand were the Abyesinian table-land, the ehief rill the Nile, and minatos were and alluvial deposit will be acara and alluvial depssit will be accarately reprodnoed; bat nothing like a soeep ralleylet, not
even of the above dimenaion even of the above dimension, an inch wide; nor aan any length of rain exposure begin the loast tondongy to sach bweeps and undulakiag sorms. On the contrary, the perpetana action is to deepen and lengthes each farrow once began, to lengthen them baok ward or
upward into the beart of the mond, and maltiply their apper branchleta; deepening and atecpening overy carrowle wherein thare is no depoait of allaviam going on, bat widening none, so that and the decaying (or non-allavial) arrface in grow ikg ordinary inse ordinary habiluble hill and vale. It may lose, as Shakespeare's Cliff has done; but loses also, and withoat recovery, all pentle gradients lohiok are pro withoar recovery, all , ente gradients, whior are pro
greesively steepened, by erosion from their feot, and redaced . ecending the ravise scending the gorgo bellw any an his walerfall. Jast not having had time to be weathered back by landslipa uto titir permanent form of banta. Thas, of the six milos of gorge made by Niagara, the apper mile, nox long farther down, beiuk older, has less and less clifr, long farther down, beico alipr, brows lobs and leas clif, belowt, till, et Ouenstinn, the cataract's orifinal pluce, where it began its work (not Lyells's " 30,000 leara," which plenty of his own observed facts contralict, bat, as any real ingairer will find, only five thonaand ago, there romains no cifi, bat banks as and such they mast remain (except for catting back of more tributary farrows) if "canses now in action" go on nointerrapted for ever-no andalation, no sweep-rale or there are no canses in action to smooth ofl into any noh form.
All this Niagare process we mar see rehearsed in one fresh, any ine dsy, on a shore of fine sand that a rill of lightly more inch or two-inch Niagaras, quictly eating their way back, from the ses or wet sand, scross the damp of drying to the dry or to high-ester mart Yoar inch Nisgre losves, at ang moment, its lant-cent yard r tro of channel between a pair of too-izoh preoipioes or vertical or overhangiug pair in two inch procipioes, nait anad can even stand overhanging) as those whereby Canada aod Now York Stato frown at each other across the last mile of roaring passese that their continents' outpour has hean itself. But fow jarde nearer the ses hese ourions send-steps, especiew yards shower has fallen, will have beoone slopes, and the rill's chanoal (if it has noollen and shrank again) be model of (eas) Upper Egypt, a floored valley between regular level-topped steept, boanding the deaerts on either hand; the shranken rill windiog soross ita wide Hut foor, alternatoly close to the foot of one steep, and anon across to the foot of the other, as if they played shattlooosk with it, but often having minor branohes, canals of Yaseaf, close to both. Now, when the tide has riven and wehed over all this, but not till then, it will make something like a gentle swoep-rale, like those of the Fleet, Mury-boarn, \&o., that the northorn half of Londen covers.
No canses now in motion, neither Platonic nor of Japiter Plavins (the only two aoting on land), have any tendency to make oweep-ralef, bat are unmating them. Hence Lyell has to bring in Neptame, bat aleo ir vain. ropeatedly shown in editions of his work on "Bain and Rivers," only he hes not shown that thees can account for the majority of the surface. He hae well explained what they can do, and exposed the ineonsiefnaty and maddlo wherewith Inyoll drags in ocatinato acoth Piato and Neplane un warrantahig and uacicacly work. Moreover, Mr. Berope has, by Lyell'e own edmifsion, exoluded from contral Franeo (a mostty pioal and inememely evidontial dilwoial region) any vioif of Neptane proper, any cea overflow, aweep, ar heriaentally actin delage, ainoe, at least, Zocane times' The Fre
gealoginta, at lount, havo long begun to see that
chief of the enormous denudation which has moulded submarine; the two between which Lyyell (with his shadows) and Greenweod, his stout and seemingly now sole opponent, may fight for ever, both being equally unable to account by continuous actions for what is the work and monument of an astronomical catastrophe.
Observe that the more any district has had of "subaërial denndation," the less hasit of undalating ground, common character of sweep vales is most developed, and most exquisitely carried out, upon deserts, or the districts having either least rain or no streams ; if we unay trust published surveys, in the waterless deserts Plain, on which it remains donbtfal whether the antumn review can be held, because it is by far our most waterleas district. Professor Smyth notes as unaccountable this nost elaborately valleyed monlding of the African rainless hills; but the rule applies nniversally, the fewer springs the more beantifally and dis-
tinctiy water-monded the surface. On the other hand no land historically of thorn age, allasial or volcanic, or npheaved in historic time from a sea, has anything but ravines or gulleys, no vale or approach to anything like nudnia'ing gronnd. And the districts most like making, are those exposed to the greatest yearly rainfall. I will only name, as a striking case, the eastern end of Jamaica, probably also the last of any mounconstant trade winds and condenses the brant of the this case of Jamaica, into two or three fathoms of rain. fall per season. Its name signified "Land of Springs." You will nowhere find, I believe, less nndulating ground. For the space of a moderate English county, scarce an acre inclined at between 2 and 30 , or, in whill stand, for these two kinds of ground constitute all to the exclusion of original (i.e., deluge-moulded) anrface. A view will have undulating lines or horizons, of face. A view will have these being the ridges or water-partings between valley and valley. But all these are as sharp as a honse-ridge ; too narrow even to make a foot-path, for
the slopes, universally of one angle, about 35°, simply ascend from every stream or allovial about 35°, simply height in the air where they will intersect the like slope from the next other stream or flat, so that if yon had a model of merely the alluvial flats and lines of stream you could proceed to bnila np in clay a perfect model of all the conntry, and find the exact beight of every equare yard without seeing it!
That is simply a bit of totally weathered country, or the state to which weather is tending to bring all the earth, and to which the present course of things left long enongh would infallibly bring every square milemuch of existing land is thas fally westhered? Probably not a hnndredth. Now, on the remaining ninety-nine of all habitable land (except alluvinm), there is literally not one acre whose form the Lyellian geology or
"canses now in action" can account for. Every acre in our five zones, that is not modern, that cannot be in our five zones, that is not modern, that cannot be centuries, has been plainly under a cataract, whioh is not a canse now in action.
E. L. G.

RADIUS OF SURFACE OF OBJECT-GLASS.

[4069.]-I feel I am much in Mr. Vivian's, "Orion's," and Mr. Oldifield's debt, but shonld like to inform them how matters are with the object-glass. I
took my own made eyepiece (power 130) down to a took my own made eyepiece (power 180) down to a
friend's 5in. equatorial, where it dellned about equal friend's 5in. equatorial, where it delned about equal
to his own. But with my own glass it does the followto his own. But with my own glass it does the fonlowblack board, a faint bluish ray is seen on two sides of the disc, perhaps more correctly it resembles a blaish white double secondary image. With a shorter focus colouris seen at quarters of the circle. It defines the moon well with the above power-only a slight doubleness on edgo. But it is with Jupiter that I have most to complain of, he darts out two elongated rays top and bottom; this destroys all belts, but his satellites are all seen onless they come too near this formidable ray. This intersesting phenomena turns round with the
object-glass, not with the eyepiece. I should like to object-glass, not with the eyepiece. I should like to
ask Mr. Oldfeld are any object-glasses made with one lens fast in its cell, the other slightly movable by screws across the path of its optical centre? I am
doing this with mine. I am also aware of an error of doing this with mine. I am also aware of an error of about a 200 th part of an inch on the edge of the flint
lens. We are told by Barlow, in his "Manufactures," lens. We are told by Barlow, in his "Manufactures,"
that this optical centre is the all-important matter; also that this optical centre is the all-important matter; also some reflection of candle flames, seen in and through
that, are impossible conditions. My own definition of a levs is a piece of glass or a dise of glass cat abso lutely true off a cylinder of small material; its edge would then be equal thickness, also its centres opposite. Would Mr. Oldfield be so kind as to give us the complete recipe and method of nsing a cement polisher, as
in bis reply (11090 , No. 364) it might be nse in his reply (11090, No. 364) it might be nseful to many?
$H e$ will see from this I am still lost in the blue rays.
W. H. Cash.

UNANSWERED QUERIES.
[4070.]-In the English Mechanio of 11th Febraary, 1870, I asked for some information as to the working of Mr. Taylor's apparatus for screw.catting-one of
which I had just procured-and the method of cotting medallions in the lathe. Our sheet anchor, the anthor of "The Lathe and its Uses," has been deaf to the call, and Mr. Thalor offers but small inducement
for parties at the antipodes to parchase the ap.
paratus, as he persistently declines to explain medallions, 1 find in your issue of 16 th September, 1870, that " J. L." has come to my assistance by pablishing a sketch of a machine for this parpose. He of some exquisite bits, of eccentric turning, inclading medallions, bat, unfortanately, his description is too meagre to be of any practical use. Bergeron, in the "Manuel da Tournear," gives drawings of a machine for tarning medallions-so arranged as to make the copies of the same size smaller or larger than the originals, with a description so full and minnte that he who rans may read. I should feel mach obliged to "J. L." if he would favour as with drawings and descriptions of his apparatus as minutely as Bergeron, or as fally and distinctly as Mr. Plant, described the geometric chuck in your pages, on 4th November, 1870. He should remember that a lathe with two mandrils is a rara avis with amsteurs, and reqaires some explana-
tion. I am inclined to think that a simpler method of tarning medallions might be adopted, but I shall reserve my views on the subject till "J. L." favours ns with a fuller description of his modus operandi. I thank him much for what he has done, but will thank him more for what he has still to accomplish. There are no secrets in art since the English Mechanic has amateurs in all quarters of the globe.

John Rae.
ECLIPSES OF THE SUN AS SEEN FROM JUPITER. [4071.]-As the eclipses of satellite 4 are of rare occurrence, I append a true sketch of the planet, and March 14 of satellite 4 at the beginning oi trafic, on The shad, 1872 , as seen with a good the most promi nent marking the satelite is gaid evening, for the sak of making futare observations with the same instrament. The general hues of the planet were brilliantly brought out, so as to render the observation somewhat interesting. Two large belts of ochreish colour, with a dark belt between them, were seen south of the equator, represented at R R; likewise at R, north of the equator. As the shadow was traversing the planet's disc, a some-

what remarkable occurrence took place: the large polar belt seemed to unite with the dark belt sonth of the bright belt at B, happening somewhat about
9.45 minutes after trnnsit. Atthe end of transit of shadow 9.45 minutes after transit. At the end of transit of shadow
of satellite 4, the bright belt (B) covered several degrees of satellite 4, the bright belt (B) covered several degrees
of the planet's disc, which, at the beginning of transit of of the planet's dise, which, at the beginning of transit of
shadow, was scarcely visible.
RALPH Lowdon.

THE LINK-MOTION.

[4072.]-THE dispate as to the originator of the link-motion is, I should think, finally laid at rest by the recent presentation of a testimonial to Mr. Howe, sob-
scribed by 200 persons who should be intimately acquainted with the facts. The testimonial, which wasisted of a gold watch and chain (the former of which tion of the link), a purse containing 200 sovereigns, and last, but not least, an illnminated address on vellam was presented to Mr. Howe at the Angel Inn, Chesterfid. After the dinner the chairman, Mr. Smith, of might be considered to beid:-That all invention idea and the method of carrying it into execution, the he did not believe that in any one patent that existed that the idea and the working it out were nat traceable to two brains. It was the case with the steam-engine; all watching well the pretty picture of Watt as a child engines were already at work-rude and clumsy no doubt, but the steam-engine was a fact befors W, n was born. Still, Watt took up the idea and made it a practical success. The real practical use of the linkmotion was to make use of the eccentrics of the engine Mr . Williams, but the way in which he attempted to carry it out would never have done, and if he had been left to it, it never would have been carried out. Here
the man of genins and execntion steps into the field. He says, "The idea is there, but it is of no nse ; the idea is a good one; can I make it of use?" He takes up the iden, bnt goes to the other end of it and works passed over so long that he did not expect to get any further recognition than he did when he received 20 son had come to his bench where he was Mr. Stephen
seemed to have some doubt Whether the link-motion be made him, and some time afterwards he received a cheque for 20 guineas, which he put in the bank, and which formed part of the money which brought him from Newcastle to Claycross. Mr. Howe then referred to the plans which had been previously tried to meet the object of the link-motion, and remarked that the original dranght he had made of his plan was on the table, ss also the wooden model he had made the day after drawing the dranght. He also read some letters written in 1843 npon the subject, and stated that the first accurate description of the link-motion appeared
in the Practical Mechanic in 1846 . In that year he made a design for applying the link-motion to winding engines, which he believed was the first time that was attempted, and in the latter end of that year he came to Claycross, and Mr. Binns set him to design some amall winding engines for iron-stone pits. He applied the link-motion to them, and found it so snccessfal that they had nsed nothing else, and he believed that there was no other gear that would meet the requirements. He then referred to the attempt of Mr. John Gray to claim the link-motion, and the trial which resulted in his defeat, and passed on to say that ho thanked them heartily for the testimonial
I think it may be said that the dispute is now astisoriginated the idea, but he was the man who turned it to account, and if the honours are to be divided he certainly deserves the lion's share. Crude ideas are which utilises them.
G. J. H.

ERRORS IN POPULAR WORKS PROFESSING TO DESCRIBE MUSICAL INSTRUMENTS.
[4073.]-I lately purchased Hiles' " Dictionary of 12,500 Masical Terms," which, certainly, is a very big shilling's-worth indeed, and would be very cheap, even
at a higher price, if more nearly complete and accuat a higher price, if more neariy complete and accu-
rate. Probably, so far as regards masical terms, accuracy is the rule of the work, and, after all, this is far more important to the musical student than any errors of commission or omission concerning instruments of "mvsick." Nevertheless, considering the Writer is far from boing the only person who feels an
interest in the said instroments, both ancient and interest in the said instroments,
modern-as the present callection at Sonth Kensing. ton Mnsenm, and that which is now being formed for extivition in the forthcoming internationsl disPlay, testifies-he feels justified in commenting on About forty years ago I had the pleasure of seeing and bearing what was then alleged to be a new instruand of the donble reed class, termed alto fagotto. This "faggot" of hollow stioks was shown to me by the late Mr. Bainbridge, the inventor of that pleasing instrament then so popular with the fair sex, the donble flageolet. The tonos of the alto fagotto, or tenor bassoon, whose compass extended, if I am not
mistaken, down to tenor C , wero mistaken, down to tenor C, wero remarkably firm and
full, is my opinion quite equal to any aounds of the full, is my opinion quite equal to any sounds of the same pitches which it has been my good fortune to
hear from its big brother even when the latter was blown by a Denman or a Baumann, and this is saying a good deal for their qnality. It was, indeed, a very effective solo instrument, and put the chalameau of the clarionet quite to shame; but I find Mr. Hiles has omitted the alto the titles of Cortal, after all, the alto fagotto may be only the iostrument formerly known by those appellations with a new name, which, for commercial purposes, at once converts it into a new instrament of "mvsick," jnst as the old harmonicon-one of the earliest of the free roed species blown by the month-has, by the addition of a pipe to enter our mouths, and finger keys like those of the musical angel, by the way, is also omitted from Mr. musical angel, by
Hiles' catalogue.
That one of the very first words in Mr. H.'s catalogne "The Harmonious Blacksmith" would look at should be harpsichord need not "very much surprise" those of his friends who remember he formerly possessed no ment, for which examples of that old-fashioned instra ment, for which he yet has an old man's old-fashioned cessor of the pianoforte is singalarly inaceurate. He says, "it had sometimes two rows of keys, the sonnd (qy. its sonnds) were prodnced by a plectrum (9 y ., by plectra), a statement about as accurate as saying the soande of the pianoforte are produced by hammers instead of by its strings and sound board when its hammers canse them to vibrate. He adds, "the keys were sensitive to the slightest touch, which is true enongh if waste touch is meant, and, what is not true, that however lightly the key was pat down, it-query the key-produced a sonnd whose intensity could be varied only by movingquery the sound on the performer's hands-from one set of keys to the other, or by moving certain "steps," Whatever the word stop may mean as applied to had tichord. Ir. M adss, the singlo harpsichor strings-and the donble harpsichord two unisons and an octave (string).
From what I have quoted, it may be inferred the very of the harpsichord was remarkably light, bat the very contrary is the fact. The only workman I ever chord finisher, sasured me he recustomed to regulate quill plectra until, for a drawing-room instrament with light touch, an old-fashioned copper penny piece weighing an ounce would just caane each pleetrum to pass the string. More powerfal instrúments pass the string. More powerfal instrúments
were regalated to what he called three "'arfpence
and trppenoe," the "tuppenny" touch being the limit bean-ideal of harpilichords for domentio use, but his that perished in the fre which oonsumed old CoventGarden Theatre, all the pleotra of which he regalaied to three original Goorge the Third penny pieces. Now, when it is considered that an ordinary harpaiohord, with two nuisons and an ootave string. bas ghree plectra which huve to be raisod simultannoasly, I think it probable Monsieur the conductor at old Covent Garden found three times three ounces-in other worde, nine ounoas' touch-tolerably, or rather intolerably, hoary, and it must have convinced him that hic ocon. pation was no ainecare. The heavieat touches in modern pianon vory raroly exceed three ounces (one third of this); and the tonches of many modern German granda, are only from two to troo and a quarter ounces. The latter exceeds the weight of mont planos made doring the last contury, so it is not rranch to be wondered at that the writer-when a good little boy, which, alas, is some fow years agooot to play a rather old.fashioned teacher he ought casily that it would cortainly apoil his touch for the harpaichord and organ. Cateris paribus, the loudness of - harpisobord or piano will be in proportion to its that Fanny Burney agreed with old Kirkman in think. ing the pianoforte of their time was but a very poor aliair, and not to be compared with the harpicohord for a co"cort instrament, althongh its weak soands were
rather pleasing for the parformance of mere chamber mavic. "I rayther gaeas "thingg have mere chamber conaiderable" uinoe lifely Fanny's time, both in mantic and literature. "Evelina" would be voted very slow inderd compared with Mins Braddon, not to mention "Oalds."
bot two anisonove stringhat a ringlo harpuichord had ome of the very oarlieat examples hed bat No doubt parbaps not much, if any, greater compass than four octaves. They were, indeed, little olse than double virginals or spinets ; but the compass was oxtended to nearly five octares aboat two oontraies ago. Not to examplion the prodactions of the Rucker family, a fine and was nsed hy him in his pospassion of Mir. Hallas, lectaren, reported in the Enalisa Mecrame about three years ago, I may remark tho only single harpsichord ever in my possession, dated 1774 - vis., the one formerly the property, of Madam Catalisin-had the super-octave string and fonr rows of jacke, inclading patented "a newly.invented harpsiohord which migh be performed on either one or two aninone, or two anisone and one octave together ; or the 'forts' and pianos, or lond and coft; and the contrary may bo executed quick as thought, and also donble basses by tonching single keys." My oolentina harpsiohord has the saper-octave atring; bat, like the han, of coarse chord, it han bat sixty keya. Probably our ancestors in their remarkable wisdom, considered it imposible to distingnish n semitone whose pitch was betroen FF and GG. My modern harpaichord, dated 1790 the mont modern I over sam, excepting that in the poseession of Mr. Chas. Ealaman, has the F sharp between those notes, and a beantifally mede Venotian bot had it woight of its toneh was at one time $\mathbf{1 0 0 z}$. octave I possensed another atring sonnding the sub until ita sippose ita tone would not have satisfied me 180z., when all had been incrensed to from 19oz. to ously. Capital par atrings were placked aimaltaneI bave plal practioe for atrengthesing the fingers. chord with ant bat Handel possessed a large harpaiand sab-octave to erven octaver. Probahlreby extending its compasa rised to his friend. The "Rneker" in South Kensing ton Mrasenm, eontributed by Mensra. Bromdwond, bas bat three stringe, consequently, if it ever was Handel' propertf, which seemn very doubtful, it can hardly be Probably this, like most of its eontemporaries, has periahed, and many remaining examples of ancient masical instraments will perish also anless conservatio prinoiples (in relation to them) become more prevalent.
teiz Habmoniove Blacesyith.

THE PIANO-QUATOR OR TETRACHORD. [4074.]-Has "The Harmonions Blacksmith" seen the piano-quator, and heard it properly played 2 if not
there is a treat in store for him. This inatrnment there is a treat in store for him. This instrument,
noder a new, bat to my mind an ugly name, tetrachord noder a nem, bat to my mind an ngly name, tetrachord,
ean be scenat Stead's, in Piccadilly; I forget the number Roferring to the harmonicon, the ineat instrament or inatruments of this kind 1 ever heard, were performed apon by the brothers (8) Richardsen, who were giving concerts here and in the provinces some years ainoe,
and termed by them the "Rock and Steol Band." and termed by them the "Rock and Steol Band." I I sttended their concerts. From memory, I consider the frame of this instramont was abont 25 ft . feet long,
on whioh wore laid roughly cut pieces of rook, similar on ahioh wore laid roughly cat pieces of rook, similar
in appearance to the atone nsed by mowera to sharpen their secthen with. These brothers performed at the same time (each occupying his proper portion in the acale of compass of the instrament), by means of small rooden mallete, one in each hand; in faot, the middle
cecapant had a dorblo-headed one. With astonishing occupsat had a doablo-hoadod ono. With astoniahing
fecility, expression, and point they rattiod out the gevility, expresion, and yoint they rattiod out the
overture to " Zampa," Sohalof's "Carnival of Venice,"
 when mill imitated. The steel portion of this initra.
ment was on the asme principle as the harmonicons now made, hat much longer, and wider in scalle. I should
Disc.
sIMPLE WAY OF FITTING BICYCLE HANDLE. [4075.]-As the time for bicycle-riding is again Enoming on, I wish to place before the readers of the Englisi Mrcravic a aimple, easy, and efficient method of ftting their bicycle handlos, which will Make, or get. mado prevent them making a noise. round boases at BB, through handle A. leaving two Procure a piece of good tin. round irill two in. holes. a tang on each ond on which to fix your timber ham out which you can best which to in your ambor hanalos, handie, and letting iron tang through it, and secure at

end with a thin brass or iron nut, which can be filed to shape of handle when inishing. Screw about an inch near oach end of in. iron rod, where it rans through the two bosses BB, with the gas thread for \ddagger in. iron pipe, and get a fin. iron pipe socket. Fix in lathe and turn two cones as in Fig. 2, cut them off, and having frst coned or rimod ont the holes BB, phoe in your in. rod, and sorow up the two cones on the outside so as to compress or spring in the handle alightly, and lot the oones fit rather tight on the spindle. Fix
on your handles and flaish ofr. You will find you will on your handles and finith off. You will find you will
have a tight, well-Etting handle, and one which will not annoy you with that shaking, rickety noise so common in biojole handles. Franors J. B.

GABSENDI.

[4076.]-In the Englise Mechanic for January 26 p. 487, you kindily inserted one of my aketohes o Gassendi, with a desoription of markings rituated ohiedy on the eastern portion of the floor, while the west was covered with shadow. I now send you another sketch of the same orater, with a description of details contained chiefly ou the western portion of the fioor, no that thene two sketohes will complote each other as far as thoy go. To provent crowding, and alao to lighten, as far as possible, the work of your engraver,
I have not lettered or numbertd those markings which I have not lettered or nombertd those markings which
have received a designation in my aketch of Janaary 26 have recoived a designation in my aretoh of Janaary 26. thero given for objeots not desaribed now.

I observed Gassendi on April 19, 1872, from 8h. to 12h. p.m. The air was rather good, eapecially abont midnight. At times-far too short, indeed-the whole of the floor soemed as if covered with gravel, 80 numerous wore the markings. Had this lasted, it woald have been inponsible te give a sketch or a description of them, on aocount of the superabandance of markings. It rominded me of that fine region sitaated S. W. of the wedge-shaped valley, only the markings were the miniatare of these. 16 is Soluröter's N. orator. 17 is January 26). It directs its coarse due S . short distance E. of crater 16. Juat S. of this crater, Where No. 17 atands, the aleft seems to be enlarged. This is the marking I spoke of in my letter of Jan. 26. The cleft 17 meets cleft 19 whore it ends. 18 is the 8 . crator of Sobröter. 19 is a cleft emerging from the shadow of the west rampart just now. Its general direotion is B.S.E., forming a very obtase angle near orater 18. It rans along the N.E. foot of mountain 22 and ridgo 21. From the point where cleft 17 meets cleft 19 to the ond I haro meen other branches on
Maroh 2, 1871, bat none of them March 2, 1871, bat none of them were visible on this ocoation. 20 is a cloft amerging from mound 29 jast
weat of digit a_{1} and, with a dircotion S.S.W., meots oleft 19 where it euds. 91 is a ridge between cleft 19
and the 8.W. rampart. 28, a mound N.W. of 21. 28, a monad near the janotion of clefts 19 and 28 . 24, a mnand near the emerging point of oleft 19. 25, a peak is alco 26 . round the foot of mound nituated on 8 high ground, branehing (I thint) from aloft 19 between the tro monnds 28 and 24. It tarns alightly towards the east then towards the north-east, antil it reaches a point west of 28 . Then it runs in a straight direotion to wards peai 29. 11 is anothor cleft omerging from nearly the same point as 28 (I think). Ite genora direction is N., with a gentio ourve, and ende in the ahadow of the W. rampart. Among other alofta Sohmidt gives 17, 19, 20, and 28; bat 41 does not seam to be the same as hie 7, which I did not see on this occasion, though, I believo, I satit on Sept. 20, 1870 and shown in that bed skotch of mine. 80 is a very small hillooz east of deft 41. 81, a mound alco east o cleft 41 . 32 to 89 are monnds of various forms and sizes. Among these, 85,88 , and 39 seem to form the weat and south rim of ring \mathbf{G}. Moand 89 has a minate hillock on ite south end. 40 is a minate peak rithtin ring G. 42. 48, 44, and 45 seem to be Phillip's four moands. If so, there are two othera in this neighboarhood (46 and 47), connected between them by a very low ridge, more risible as a atreak of light than for its heigbt. 48, within the opening of the "Spoon," a bright peak. 50 , the central peak, and 51 aphorit ridge in the "Spoon." 52 and 58 ahow a double ridge on the N.W. border of the "Spoon." Towarda the end of the 8.E. border of Gassendi 12 there is a bright peak; two others are foand at 14, and throe on the interior ridge near 18. b4 and 65, two moands.
Hes it been obwerved that digit b, or the midale one of the central monatain, is much brighter than the two others ? On one ocoasion, not very long ago, I found Midler, thongh smaller
Browning's Mounting, between Aristarchas and Herodotas. - This object is shown as a oratar in my sketchia the Enclise Mecranic of May 12, 1871, p. 180. I have again and again looked at this object, when opportanities have oriered, with the viem of correcting my skotoh in case I fonnd it to be wrong; but I have
never yet felt really convinced this objoct is not never y
orater.
Daring my present observation, aftor I had finiohed with Gassendi, I tarned my telescops on Aristarchus. The streak of light west of Horodotas wan, at that moment, the torminator here. Its shape was well
defined. It forms a portion of the S .W. border of defined. It formi a portion of the S.W. border of Herodotus, is thick on the top, and the west alope in searly perpendicular. Is it not possible that the angle hin surface present to the rays of the rising smn might account in part for its early brightness? The T-shaped valley shown in my bketch was geen slmost in porieotion. The right-hand side horizontal branoh was ranning right khroagh the rampart into Herodotas, Thile the opporite sice extended as far as the foot of the exterior castorn alope of Aristarchan. These objeots, Iowerer, arrontod ay ateation oniy for an instant, and Iarrany oxamined Browning 8 hountain. At ouce I asid: If this is a moantain it is donble. In fact, I an spece between phem. Whilo considering this, it came to my mina that cratoriet in vary early illamination; the west point of light answoring to the weatern outside slope, while onst lope, what the westera ridge beion then. I onded my obsorvation with iue impres. son to tof ins, over, to defend my sieloh, but rather to asi observars far onperior experionce of Mr. Wrom I think of the far superior experionce of Mr. Browning, and siso of all I have seen, I feel rather donbtial of the trathfolness of my aletch of May 12, 1871.

Jumet-Hainant, Belgiam,
Δ pril 24, 1872.
C. Gatdibiat.

COLLIERY EXPLOSIONS AND THEIR

 PREVENTION.[4077.]-I mavg jast notiood that "King Coal" (let. 8994, p. 124, No. 869 of the Enalisi Mrohamic) makes this remark: "II 'Arioy Mine' is zoquaintod can have the gas always removed and made anfe ho can have the gas always removed and made safe, ho
will be conferring a beneat to humanity by expleining wil beconverring a bencoat to humanity by explaining it, because (as isaid bofore) this has beun the problem bitherto ansoived by mining engincera,"
I beg to inform " King Coal," "Arley Mine," or Whomsoover it may concern, that I have reoommended the following plan for rendering "goaves" loss dangerous, in a prize-esany sent into Lancashire two or throo months back.
"Goaves," and all disased places whioh cannot be conveniently ventilated, should be firmly built ap with bricks and mortar; but there should be an opening at the top (or roof), connected by a wooden or metal tabe or condactor, open at each end, with the main or some other sumfient air-course, with the open ontlet pointing in the direotion of the "up-cast" shaft, and ontering sach air-course near the roof. In a favourable state of the atmosphere, it ia probable no gas would isane from this tabe ; it would be condensed and driven back by the atmospheric proseure; but when the barometric prengure in low, the gas would expand and deliver itsell quietly in the vary place where it shoald bo-vis., near the roof, and in the rapid air-courte, whence it woald be awept out of the workings. It this air had to pase

Would be adilasble to make a carity in the roof where
the gas is delivered, and at davgerons times sot a the gas is delivered, and at dangerons times set a
powerfal jet of water (this bas reference to a plan I powerfal jet of water (this bas reference to a plan I
proposed
more than thirty yeara ago, to bring down proposed more than thirty yeara ago, to bring down
the carburetted bydrogen in solation, by means of jots of pare water) from a tripod to play continually nopny
it. This woald absorb the greater part of the gam, and it. This woald absorb the greater part of the gun, and
take it to the "anmp" to be lifted harml ssly to the take it the

Brampton, Weat Malton, Rotherham.
[4078.]-Ters prevention of explosione is. I fear, imposible; a great diminution both in their frequency and in their fatality is quite within our reach if we render it maoh more costly for mine-owners to enforce than to neglect the precantions necessary for comparative safety. The proposed Mines Inspection Anendment Aot will, if paseed, do this in part by rendering all coal-owners and managers of mines liable to penalty When it is proved that certain precautions directed by the Act to be observed have been neglected, ninless such owners or managers prove that they have a dopted
all reasona. meads for onforcing their observance all reasona, meade for enforcing their observance. Ithink the law should go a step further, and render
the owners who have neglected, or allowed to be negleoted, any precantions directed by law to be obmerved, liable to pay limited compeneation to those Who may be injared, who conld not bave been injured if suoh precantions had not been neglected ; and I contond that such liahility woald be beneficial not only, though chiefly, to pitmen so injared and to their familien, bat also to all mine-owzers whs carefully observe the precaltions apon which their pitmen's safety depends.
ching Coal", (lettor 3994, p. 12t) very fairly amks
me if I know of cases in which iojaries done to the me if I know of cases in which injaries dnne to the 1 do not, and it is, I think. a grievous hardship that paid servants are not entitled to compensation; bat connected with it. There are atronger reasons why servanta iojared by the neglect of a apecific precaution their emploser is by apecial law directed to obsorve, and which is well known to be essential to safety (buch as the snffeient ventilation of a fory mine), shonld be
shelterod from destitntion than for securing compensa shelterod from destitntion than for secaring compensa-
tion to all servants for injury arieing from all canses, some wholly anexpected and anforeseen. I contend that whosoever hy his act or neglect injares another or allows him to be idjared, shoald, unless he can show he bas taken all reasonable precantion to prevent such injary, be lisble to pay conpenation to the person injared, whether he bo his paid aservant or not;
but that α fortiori should he be so lisble if the canse of injory be that which the employer alone can control (eg., the ventilation of ampine), and one which it is his express dnty to control.
If the coal propriptor mentioned by "King Coal" at
p. 124 had been liable to companaat p. 124 had been liable to compenaate men injnred in consequence of his mine beiug badly vent.
dare not have lot them ran the riak he did.

Pimio.

EARWIG IN EAR.

[4079.]-Two queries which I have answered relat ing to ativgs and needles in the budy bring to my recollection another annorance which possibly may have occurred to some oue of year namerous readers,
bat it is likely will bo oonsidered by many of them as mythic. I allode to an earwig pateriug the ear. I know of one instance, besidea, which drove the sufferer into a half-frantio state ; but having myaelf experienced a similar visit, mays say that it is a most napleasant situation, the sensation being that of iron clans
scratoliog your inmost nervea. Now, as it is likely scratohing your inmost nerves. Now, as it is likely
none of your readers would wish to await a reply on the subject while such a tenaut was in rectidence, I will answer the quary what to do in anticipation (i.e., it you will permit me to bring tobacco-smoking agnin into your pages). Charge a pipe with strong tobacoo
(never mind the nicotine), git ap a gnod light, then (never mind the nicotioe), pitt ap a good light, then apply the moathpiece to the ear, and blow thronizh the
bowl. There will, of conrse, be a geod smoker wantiug to as ist in this performance, who may be considered active, bat the passive will be transferred from yoursolf to the earaig. It may bo abked what became of
the earwig. I can only ear that he was dead in a the earvig. I can only ary that he was dead in a moment, and dropped out of the ear nnexpectedly soine
monthe after, enveloped in a shrond of wix. I felt monthe after, onveloped in a sh
nothing of him after hia decease.

Suffole amatever.

CO-OPERATIVE SOCIETIES.

[4080.]- Having qiven "F. C. S." a perfectly straightforward, defnite, and practical solution for the problem that he says bse baffled bim, and a solution Which, tried nr not, difers from him and his "societs," lot mo remind him, in haring never faikud, I shonld not be led anay into the paths (tried or nntried) of consemplaona, knowledg serorning, social nescience, and pride of ignorance, nor think another line called for,
atave to oorrect "Loach" (let. 4030, p. 149), who fears that, whether any societr pay a steward or secretsry iu
 of "Philo," the result will, "in a pecaniary point of view, be equally unsatisfactory." Now, ho might snrely,
iscard such fear if he had meraly read hown -ecretary" was to be paid-namely not at how mi ecretary" was to be paid-namely, not at all until
unleas their peconiary reanlts (or those of an! uber paying him) are satisfactory. His pay is nother contingent on such resalto-to follow (not
cede) them-and bo exactly proportional to them,
and this in each man's caso idividually, so that, for the very same year's or quarter's work, some members may owe him much and others nothing. A secretary paid anything before the store has "succeeded "-i.i.e. would not be " E . It have mede accertainable eavisg, term I prefer); so that "Loach's" fear involvesa contradiction in torms.
Being thns obliged to add thif. I may add that of course the storekeeper mast (as "Lnach" sars) make gond the "unknown quantity" or "lentage" of
"F. C. 8." (p. 148). It is simply ridiculons to talk of a keeper not andertaking the whole reaponsibility of thir, and cousidering it in his bargain whether paid by salary or fees. Who else can poiribly \&hare it ?
As for "E. L. G. s" "check-svstem, I
fersed to sngecst any "check-system," I never proplaints of the ordinary tin checks, hnt heard no comto them na well known. The absird perment of shopmen by mere time salaries must give way to uniform fees per parcel; bat I never propused it shonld do so at once. The best practical plan might prohably be th bargain with every sbopman on this ninderstanding: that his full salary lasts bat the first bale year. At the end thereof, competitive tenilers to be incited from him and otbers that have sinilurly served, to find the lowest foe per parcel that one will contract to take with three-fonrths of this salary. Then, a ftir a rana, anhalf the tenderimininal ealars. Six montho hilm, a simila fourth of the tho increased fee tary; and at lencth yon wonld stop thit, rnd begin to pay by foos alone, which is the nltimate goal.
The eleemospnary element, any help nnpaid for, is the fatal leprosy that will prison with its tonch, we mast fear, every English working.elas effort. The truly most nnlucky, and its momed this tsension is can only hape some or one of them may resd tha English Mechavic for himeelf, and if any anch will refor to "Philo's" letter (No. 31Gfi, Vol. XIV.), and jnat bear in it with whatever in their secretars's riow "chimerical and "pernicions"' (p. 149), and the other "an admirable letter," their main obstacle to eatisfactory results will not be diffcult to recognise.
E. L. G.

HONEYDEW.

[4081.]-Havivg in a previons number written npon this subject. I may, perhaps, be permitted to add a fow remarks. In the firat place I think it a great mistale to mix op what we call in this conntry honevdew with manna. In the congom, the sarame, and, above all. donhtless look out for hnoeydew, and I ventare to predict that whether on limes, beana, hopa, or roaes,
they will never find any on the apper surface of the lenves which are not overhang by others, and further, thut if they pavattention they will see the aphides
discharging little globales of viscid and transparent flaid for which the ants patiently wai', patting the backs of the aphides with their antennonne after the other, as if to feel the state of the aphides. When there are no anta this sweetetnff falls on the leaves or
ground below. Officinal manna is snppnced to be an exadation, not an animal mancretion, and the resnlt of a puncture. I do not say it is imposcible for it to exude natnralls, for ou my rine-huds I hare noticed large crystala of angar. The aphides do nit fered on
honevdew, if only for the reason that they protrade a honerdew, if only for the reason that they protrade a
sucking tabe into the parenchyma.
M. Paris.

PRESERVING AUSTRALTAN MEAT.
[4082.]-I have intended for some time pait to send on an accuant of tho whole process, hat caunot at present find it. In the frst place what is called a
41 b . tin weighs grons 5 h . 2nd mare, the nverweight depending more nynn the weight of tho tin than anything 6ike, so that a 4 lh. tin contains 41 b . and a 6 llb . tin crintains inh, and all sizes geverally a few ounces mare, of fat and a little jells. That is my experience, avd I have tarned ont sinie scores of tins. As regard; preparation: Fach tin has prit into it a certaila quantity of meat, thon the lid is soldered on, a bols being first made in the centre. The ting are then phined in a
bath of strong solation of chloride of encino ap to abnut two-thirds of their height. This bath is then hented to its boiliug point, which is many degreas higher than that of boiling water. When all the ateam and air have heen expelled from the tin through the hollo in the lid, a drop of melted aolder is dropped over the hole, which is thas hermeticalls atrip of tin soldered nader the lid catching any drop of polder which falls throngh the hole, and preventing from mixing with the ment. The only fanlt I find owing, I myself believe, to the heat inside the tion, daring the progress of cooking, being ton great. Impring the progress of cooking, being ton great. Emach are, however, being adopied. Each case, on being lanfled at the quay, ia opened, and any tin foand with conver ends is pnit on one side aq andit rexity or buiging out of the enतs of the tin shows that the meat. owing to some fanlt in the process, has decomposed, and formed a quantity of gaseonas matter in the tin.
P.S. -The oost of "tinning " the meat has bean sd. per pound on the 2 lb . tin3, aid oi course less on the
largor gizes.

VERDE ANTICO.

[4083.]-T Have wondered whether my apparently simple querios as to verde antico and working in gold and ailver would ever be answered. At length "Proven" ('pt. 3978) has noticed my commanice:!on, although not
affording any direct information as to the oxydiping of affording an
the bronzo.
I can only repeat that I have seen frescoes on the walls of Pompeii representing female fgures with bronehes and bracelets of a green onlour, and 1 recollect in one of the recently exoavated dining-halls in the pearing a enake bracelet, the colour of which is mosi
whe wearing a onake braceltt, the coloar of which is mosi
decided, and as fresh as when frat painted. It evidently decided, and as fresh as when Arst painted. It evidently
represents bronze, and, had the original not been coloured represents bronze, and, had the original not been coloured
with rerde antico, woald cortainly not have been peinted with rorde antico, woald oortainly not have been painted green. Besider this, many of the most exquisite bronzos
in the Mnseo Borbonico at Naples were found, not in the in the Maseo Borbonico at Naples were found, not in the earth, bat in arns, hermetically sealed by the Vesurian ashes and mund, bo that the only air that could hare acted apon

Wonld there be no way of so orrdising the macea of bronze before casting as to produce a green homogenecons metal whioh would tulco a fine polish?

Proven" wishes to know how I work. I geverally make my frat models of the antiqne objeete in load-wire asd plate, riveting when necessary-
so 2 to be pretty aure, by a comparison of the so 2 s to be pretty sure, by a comparison of the or gild I shall require to work op. My milver I have hitherto got from the Mint in ingots ready alloved, 3 ane, bnt wonld mach rather make it myself frim the fine metal. The gold I bny ane, of coarto, and indeed all the gold articles I have made ware copied from tine originals. Sume were so large and posiblarf reducea them in copying-bat it is im-pos-ible to prodace any very elaborate work in soft fine gold, and the antique are more remarkable for their wild and original design than for the beanty of their exection.

The twisted spake bracelet is an easy and satisfectory ornament, the tine gold wire-aboat No 8 or 7-being
drnwn from the middle through decreasing holes in the drawn from the middle through decreasing holes in tho plate so as to taper it away to nothing at each end. Three of these are then twisted into a cable, and a ruagh anake's head and tail beaten out of their ende on
the anvil. The bracelet shoald be about ten inches the anvil. The bracelet shoald be about ten inches
long at least, to go once and a half times round a ledy's long at least, to po once and a half times round a ledy's
wrist. It is perfectly pliable, and oan never break, and Wrist. It is perfectly pliable, and oan never break, sad I should very much like "Proven" to recommend me a tolerably exhaustive treatise on working the noblo metals, as I really know very little aboat the art, bat jast
try and imitate as well as I can what I see日 try and imitate as well as I can what I see-much, I
sapp:Be, in the roagh-and-ready way adopted by the supprse,
anciente
I would repeat the queries as to alloya and the com position of bronzes which I asked in my last (p .560 ,
Vol. XIV.). Vol. XIV.)
If " Proven" will try and work in a pair of old long white glovea, alreudy ased for balls avd parties, pre-
vionsly, bowerer, tiabtening the first batton on the vionsly, however, tightening the first batton on the wrist to make them tit close, she will not have to com-
plain of her hands. When working at a fornace, or plain of her hands. When working at a fornace, or
forging a large piece of metal, she will, of course, wear forging a large piece of mate
a thict pair of ganatlets.
Has "Proven" had any experience in the ase of the spirit blowpipe recommended by "H. B. E." in 8999 ? Ilearnt soldering at R, me, from one of the prinaipal goldurniths who excel in that branch, bat-it is most dilicentt to ase the blowflume like a pencil, as is done by those artists in flxing minute pieces to largo ones.
The solder used by the Roman jo wellers for their beet work is as follows: 2 parts silver, 1 part copper; 12 part of This solder suits 18 carat gold. To bulder fine gald use 18 carat gold and the same fux, but the heat ro quired is mush greater. Clean from borax by boiling a fow minutes in sulpharic acid and water, equal parta
"I do hope "Proven" will help me, as a sistor intoStockholm, April 23.

Etibi.

INFLUENCE OF COLD ON VEGETABLE

 grains.[4084.]-The explanations of "A. B. M.," for which I thatix him, do nut make this matler mach abarer, sions of M. Daclaux are erroneous. The facts ane merely these: Seeds of cortain plants are exposed to cold, and because these germinated when seeds of the same kind preserved from the influence of cold did not, M. Daclany thinks that exposnre to a low tomperatare has an influence on the germinating powars of
the eeeda. On the contrary, I contend that thers is the eeeds. On the contrary, I contend that there is
something radically wrong in the exporiments something radically wrong in the oxporiments.
Ripened and selected seeds certainly do not reanire Ripened and selected seeds certainly do not require
seventy seventy asix days to germinato when submitted to the
requisite temperature (as those nuder discoesion requisite temperature (as those ander discuasion perience in the matter, and the wonder really is that any of M. Daclaux's seeds germinated at all. I prerame the method of cowing was exactly similar in all respecta, so that all I can conclade is that they were caled, or some of tho soeds the surface monld bocane so failed to germinate. What Would be thought
gardener gardener who only raised eight out thnroughly good seeds in one case, and only two ont of thirty-bix in another? Certainly further exporimenta mass be made before anything rellable will be

I hepo "L. C. K." will epeodily make the amende honorable for his unfortunato letter, for he mast now coe that sciention experiments and researcher, even those from which erreneons conclasions are drawn, are,
iny their wory nature, of value ; for the faota remain, by their wory nature, of ralue ; for the feota remain, While the errors of one explorer are bat lighthonses tn diseot the stops of future dicooverers. No one has
said mnoh for the microsoope ; bat bnw "L. C. E." said mooh for the microsoope; bat hnw "L. C. E." con majence and hamanity pacses my comprohension
saul Rymea.

castinas.

[4085.]-In easting by the forma perduta method the zould is made of "due mittone, uno gesso," i.e., two grickdast, nue plastor of Paris, made into a thick cream, Which is allowed to dry, and tho wax is then melted ont. This composition will not, of course, bake into a brick. and when heated enough to melt the wax out it be. oomes eroeedingly friable, and mast be handied with the atmoest tendernees. My other occupations have provented me teating this mixturo peraonally, bat, as I mentioned bofore, it is nued in Italy, thongh the "Tripoli" ia doabiloespprafarable. Bat if "Fuber" is for himed to thin kind of thing, he can make mixturen for himealf, beariog in mind that orrocibles are made of eilther fire-alay and and, or plambago and clay and a little practice will soon obtain him a porfect nonporous monld. As to the wax, the red wax sold in Long-acre by artister colormman as " modelling wax" is, of conrse, the right kind to model with, but, no Inckily, it is mixed with thing which will not run ou cloan when the moold is heated, and though blowing Zhrough it and poaring quicksilver in and out are prac ticod, I And nothing but wax oomes thorongbly anay But it requires akill to model in boes wax alono, as it is too sticky, asd it mast, Indoed, be romembered that atril in modelling is specially called for in this mode of oasting. If you don't finish vory fine and get a eharp oast, you muat put it into the hands of a chaser, in Whioh case it is bottor to have your work cast in sand. Bat then your metal casting will be finished by seot, the objection.

Provin.

USEFUL AND SOTENTTIFTO NOTES.

The Metrical System in Austria.-The law rendering the metrical system compalaory in Anstria and Hangary has just been promulgated. The ntandard metreisa glass rod, which hana length of $999 \cdot 99761$ millimg, at the temperature of melting ice. The etandard kilogramme is a orystal alass cobo, the weight of which in vacro is equal to 9999978 milliprms. (both standards having been made according to the great platinum standards at Paris). The new syatem is to all ometal adhered to on and after Jan. 1 next.
Prehintorio Races.-The Ulited States exploring party in Colorado have disoovered many raine of the commanal hoanes once oocupied by the prebistoric peopie of the apon the elifis overhanging the canons, and many to the weat Slone implements poitery, basket-pare to the weak stione implements, poitery, basket-ware and ocher articles were fonnd baried in ome of the rains. A hribe of Utes ware found on the Kniba platoan who atill mate stone implementa, and M.jo tunity of vitnensing the mannfacture.
Dyes for Leather.-Accordiog to Herr Epringmabl pioric aojd rives a good yellow without any mordant ; bat it mast be ased in very dilato eolation and not marmer than bly rahr., so as not o penetrate green. In dyeing the lather, the temperatare of 85° green. In dyeing the inather, the temperatare of 85 adapted for dyeing leather, and its applioation is quite adapted for dyeing leather, and its spphosion is quite, ployed. The leather is brushed off with a solution of criphato of ammonin in water, and the dye solution ap. plted at 95° Fahr. Oare must be taken, however, by rapid manipalation, to prevent the dye from penetrating through the leather. By the addition of picric motd, the blaish shade of this dye atall is moditied to loal green, and it becomes faster; but the picric acid mut rot be added to the colour solution; mast be applited to the
The Volocity of Wheels and gharts.-Profomor A. E. Dolbear anggoste a nimple and effective method of determining the velocity of rotation of Theols and shafte. Upon the face or apot the pori phery of the rotatiog onjecte he rastens smorred puper, and his ho waches win the poini or rabher wich anering to one bra a baving a known rale of ibrallithe hala that the drection angles to the hine of molloa of the sbart. By connting the sumber of andulation man a given exkent o he moxed paper the peod od con lion once in reasied.
 papar in a apece sovering one bal! the eircumforonce the whicen or ratadion is afty revolations per seocund. By this alpaple and ecey motbod the ralocity of rolation of cyrosoope and of all kinde of shafts and wheole many be rendily suomataised.

REPLIES TO QUERIES.

- * In their answers, Correspondents are respoctfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS

1. Write on one side of the paper ouly, and put drawIngs for illastration on separate piecens of paper. 2. Put titles to querien, and when nopwering querios pat the numhers ns well as the titiee of the querios to which the
replics refer. 8 . No charge is made for insertin iletlers guerleg, or replies. 4. Ou:nmercial letters, or qiaties, or replifes, are not inserted. 5 . No question asking for
educstional or acientlio
fnformation is answared edncational or soientifo information is answorad haroagh the poet. \& Lettors sent to correspondents,
under cover to the Editor, are not forwarded and the names of correapondents are not given to inquirera.
[10414.]-Retrievers.-I am sorry to differ frcm "Hedera" in his advice apon training retrievers, bat as an old sporteman, and a very saccessfal breaker of dogs, I shonld say by no means let a young dog, that is intended for retrieving game, play with or carry stick. Teach him to fetch a soft ball or glove, and is hall with any disposition to bo hard moathed, cover the ball with a hedge simin, and again with the skin o a retriever, I had one that woald carry hens' oggs. MOUNTAINESE.
[10017.]-Watohmaking and Inoohroniam U.Q.).-The reply of "Auglo-America" on this natioc is meaningless nonseuse. Isochronism as applied to hrology, means unequal vibrations in equal times.West Corntall.
[10954.]-Circulation of the Blood.-I do not donbt that "F. R. C. 8." is a very good teacher of anatomy and physioling., for many high anthorities in

with me that the bammer woild not work with the cocontrio motion as shown-first, becnane the bammer rould not reach the anvil, beoanate the ecoentric hee too kreat a dirmetar ; and second. the hammer woald not drop sadien enongh. it woald follow the circamaronce of the ecoantric ell through the revolation, and onnsequentily fall as neally asil roea. Tharo are cevoral iods of motion hal migat bo ased, bat 1 shouid say the number of blowa your require of the hammer for ore revolation of the ahalt; mainge of tappets more this
otyle

-Govx.
[11081.]-Model of Charoh.-Herowith drawinga of mechanism to play wedding ohimee and two tane: on eight beili every ame a penny is dropped into the model. The bed of the machine is a brasy plate f, having another plate g axed perpendicalarly to one adge of it. This lather anpports the arbora of the wheels and barrel at one end, their other onde beling snpported by separate standarde h, eorowed on plate f. Plato g is drawn with datiod outline to show a, the barrel omtaining spring, on which driving whoel b is fixed. The ratchet and parl, k and i, and end of driving-whoel arbor, squaped for winding, are ontaide of plate g. The wheel o drivee tho barrel, a long brass orlinder, to one end of which is affixed the wheel c, driving- wheal and pinion d, and fly-wheel e_{0} by meand of an elopgated scrow on the ahalt. The wings, e e, of he ily are made to tarn atifly on their axes, so that the rate of apeed may be adjasted. The hammers and bells are fixed to a morable brasn blook m (shown eparataly below) whioh alides by means of the rod x whioh mast be carried oublas the model), oo as to bring the hammer-taile againat different row: of pins, nd change the tanea. The hammar-rode h, bearing hammora co are hinged in aits in the blook m, at ditances of one-third of an inch, haviog oprigg r to matice trikine , and a sop, u, to mako thean reboad altur trikiog. The hammor-haila mast bo 80 majasted as so be prossed down and liberated by the pins on the
roiving berrol. The bolls without touching ement ofther on a rod fixed to the bere - o, fired at each ond of the blook m. IT olook boils to drill the bell hendles, to drim the boll handloes, ard carry out bice arrangominentan arap pallo. The diagram of carlace of barrol pins, pias, which shoald not erinoh in leagth) for three different trines - vis. "Wedding Bells," "Minatrol Boy," sad Prayor from may be altored at will by ahilting the lock m onepins in barrel attach the diagram to the urface thoreof, and drill through the dots. The whole is rod, v, the inner end of which, beat inwards 00 as not to toroch wheole b or c, cot bent perpendicalarly downwards, slides slong the odge of barrel antil the dropa into a hole made it
called the suetion power in the chest favoars the retarn of blood to the heart ; bat some are of the contrary opinion, and it is a question rather of hydraalica than the obeat, air would be forced in opening wero made tmo spherio pressare, and sosiso worid bload, by the same xicess of prosenre bo foroed from the rest of the body into the chest, were it conveyed in rigid tabes ; bat the veíns ane very flexible, and become quite fiat when not divtanded with blood, just as the hose-pipe of a Areongine does when the m-n stop pamping. No pressare on a flexible hose-pipe oan poseibly increase, and if it be in excess of the pressure of the pamp it must diminish, the flow in the hose-pipe ; if there is to be ang snction whatever the pipe mast bo rigid enongh to reaixt the excese of external preseare, or the pipe will be fattened just ea veins ara whan the flow of plood into them is chocked from behind, an experiment which any oae may try by tring a bandage round his arm, when the apperficial veina below the bandage will become all, and those above it empty, just as a soft hose pipe when trod apon will become falier between tho pump and the firot, and empty beyond it.-PBilo.
[11008.1-THI Hammer (U.Q.).-Mr. Fennell has entirely misunderstood the aotion of the tilt hammer nsed in the manafactare of stoel, toc. In the machine angraved, the hammer would be lowered as gently $a 0$ it rose, and the eflcet would be little beyond that ane hammerd weight. The fulcram or bais is aised by the action of a wheel having two or more large keth which deprese the tail 8 they rorolye large permit the hammer to escape soddenly and fell by its pernureight as many times daring each revolation as there are teeth on the wheel-A BARBIsTzE.
[11008.]-Tilt Rammer (U. Q.),-It Mr. Fennell will look hie mikotah over on p. 128, I think he will agree
its track, and stops the motion. On the outar ond of this rod (which is kept ap by tho apring x) in as small tray, on which the penny dropped in, gaided by atin ohook, drops to blow which starts the machine, and then rire, w, which "Modellor" had better keep ander hit own eontrol, the bells may be atarted withort the denarial contributions. Finalis-by means of thooe sedactive, not to say, silvery, arte, Which "Modoller" probably knom how to aso, he may gut mach of this pear mooond-hand from a alock-maker. - Hexar Newhens.
[11196.]-Drowning (U. Q.).-The reason why haman being, when drowning, alteratoly rises to the arlace and sinks towards the botiom of the water is as ollows :- When he falls into the water, it it is not of great depth, he goes to the bottom; bat on account of the air in the lange rendering the apecitide gravity of the body lighter than the water, he immediately rines gain to the surfaco. The eflorts made by him to maintain himself at the sarfeoe dimiuish the quantity of air in the lange, and he again sinks, bnt coon risea again ; and this altormato rising and hinking may cooar several times. With overy expiration the specitio gravity of the body is inareased; the piwers of senation and volantary motion rapidy diuminiah, and the body settles at the bottom.-F. A. Edwards.
[11286.]-Blacking Gun Barrels.-There is no book on this sabject as a spocialty that I am a waro of. Soveral reoipos have appoared in beok numbass ; -E. M.
[11293.]-Colour Blindneme.-Thero in, I boliove no remedy for achromatopay or Daltonikm. The colour blind aro tanght to dietingniah the coloarn jas:'
the same an wo teach a child that the onlour he sees refected by grass is green, and so on. There are, of course, colour sencations they cannot reooive, and to course, cont tha escarney of their perception of coloar is defective, for they soon learn to distingaish bet ween the colour censations pecaliar to their abnormal vision. -8AOL RTGEL.
[11204.]-Dividing Metal Disc.-I send a demonstration as requested by Mr. Tonkes, on page 126 ,
of diagram given on page 78 :-Let $A B=\frac{12}{1 / 2}=$ unity of the quantity (to be divided). Pat $A C=a$, and $C B=b$. Then by the eqnation to the circlo nnd (Enclid I., 47) FB $=\sqrt{a b+b^{2}}=\sqrt{b(a+b)}=$ $\sqrt{b(1)}=\sqrt{(b)}$. Similarly
$G B=\sqrt{D B}$, $\triangle B=\frac{12}{18}$. Now, as circlos
are $2 s$ the squares of their radii, therefore the circles to desoribed from the eommon centre B, are as their squarea Cent, G B, H B, A B, respectively, that is as the fractions $\frac{8}{18}, \frac{6}{12}, \frac{9}{12}, \frac{12}{12}$, and by successive sabtractiens the remainder 8 in every case is found. N.B.In the reometry of fractions, the equares of fractions appear loss than the fractions themselves.-Testamu,
Horaham.
[11805.]-Bakers' Ovens.-There are nevgral patented ovens which, I believe, are better than the ordinary form; perhaps some one who has had experience will give the information. There is a
"pyrometer " specially conatructed for taking the "pyrometer" specially constructed for taking the tomperatora, beiug inserted through a plato by the
ride of the door. It has a dial on the outaide face, so that the heat is read at any time.-E. M.
[11812.]-Boiler.-The best boiler is undonbtedly one of those reaently patented, like Miller's in the last nambor. Bnt "One in Troable" saye that his boiler is to be $80 f \mathrm{t}$. long by 7 ft . in datmeter. If mo, it rale for calculating the gin. in diameter, and the (thicknese) $=P$ (pressare per sq. in. in lb.) $\times D$ (diam. in inches), divided oy $2 k$, k varying with the dosorip. tion of iron: thas for beat Yorkshire donble riveted it is 7,800, beat Staflord ditto, 6,200; ordinary, 8,700. The formale is $T=\frac{P D}{2 k}$. Whether two small boilers would be preferable will depend entirely on orking. -E. M.
F. [11818.]-Sotting Lathe.-Il I anderstand aright F. Hames's query-viz, an eant way to set the lathe mandril exactly in a line with the moring headstockthe readient method is to drive a piece of rood, which
is as long as the bed of lathe, into the hole in none of mandril, or into chook. On revolving this, see that the centre at its end agrees with your moving centre ; if so, the mandril must be truly in line with the moring contre.-A., Liverpool.
[11824.]-Salt Dpmp in Walls.-"Barbaron" kindly saggested to tost the cryatalline far that exndes itself rpon the wall-sarface for saltpetre rather than saik. I hare done mo, but have not succeeded in de-
tecting it. Nor can I discover any cause, such as the prozence of liquid manare abont or near the wall cea-shore, whence I know that sand is sometimes the for bailding with. It is nied becanase of its cheapness as compared with the onst of carting pitsand seven milee. I, therefore, think it not anlikely that this part oince. Perhaps "Barbaros" or some other of your cource. Porhaps "Barbaros" or some other nf your
talented correspondents wnild sagkest some application talented correspondents wonld angrest some application
that wonld chemically combine and form a barrier in the substance of the planter.-W. M.
[11824.]-Salt Damp in Walls.-Let "W. M." try astrong solution of alum in water pat on hot as wach for his salted walle.-SuFfole Ayatzur.
[11829.]-Electro Deposition of Iron.-I do not olearly nnderatand what "Puck in s Hollow"
wats to know. His query is headed ss sbove, bat he wante to know. His query is headed es sbo
[11859.]-Casting Brass Solid.-Don't ase the sand so wet.-Govx.
[11878.]-How to Kill Beetles.-Get a saitable vessel-a large monthed pickle bottle-and put into it a fow bruised lanrel-loenersand warm it before the Are or in the sun to bring out the atrength. Keep it corked when not in ase. Any animal living in that for fire minates
mnet have a conatitation like a steamboat.-W. mpat haver
Fremer
[11880.]-Band for Casting is a misnomer. The sobatance need is a species of loam called nandy or founder's loam. It posserses a certain amoant of adheaivenees, and is of very fine grain. It is used withoat
any preparation, sefrous any preparation.-Suffole $\Delta x a t z u$ e.
[11886.]-Oryatale in Gas Tar.-As Mr. Bottone mays, these were prohably zaphthaline; he is, how. over, wrong in stating that thin substaves is used in the
preparation of artincinl slizarine, which is prepsred from anthracene ($\mathrm{C}_{14} \mathrm{H}_{10}$). From vaphthaline a body termed chloroxy naphtha, ic acid is pric ared, which is snmewhat analogous to alizarine, rud is ased in dyeing giving ane shades of scarlot and orange.-EryYL.
[11890.]-Brown Hat.-Take aboat three onnoes each of fuatio and madder, tie in a maslin bag and pat in an earthen veasel (pipkin) contuining two quarts and water and vell Haring cleaned the hat with soca vessel and let all simmor for aboat two hoara. Drais the hat dry and gloss to tasto with hot gam arabic: after prescing another costing of gnm may be given atter preaning, another coating of gnm may be given
it. If the olour when dry is not anffiently dark, add more madder and reboil.-Rzdivivus.
[11898.]-Sting of Bees and sll venomous bites are best treatod with ammonia, or in its absence soda.
Hartshorn and oil is a good form of application.Supfole Amatedr.
[11423.]-Surgerg.-Without protending to any particalar surgical knowledge, it neems anlikely that the prosence of a ragment of a needie in the finger
shonld te of mach greater conseqnence than the fact Bhond he of much greater conseqnence than the fact
of its cancing some annorance, anlesa severe infamma. of its canaing some annorance, anless severe infiamma.
tion were present. Wben a boy I had a needle broken tion wore present. Wben a boy I had a needie broken
and abont half of it left in ma ; it entered aboat the and about half of it left in ma; it entered aboat the bottom of the breastbone and caused some annoyance
for about a fortnight, after which I felt nothing of it for about a fortnight, ster which I felt nothing of it
for some two or three years, when a hard lamp for some there or the kne, from which by pres
gathered inside the
srre the piece of neede was extracted. As in sure present iniece of neaeste the effect of the premence of the pieco of needie seems to show itself on the opposite side of the finger to that at whioh it entered; it will probably make ite exit hy that road, and Natur assiat by a small gatheri. g. The hard point of the a pointed pair of tweezers would do all that is wanted. a pointed pair of tiveez.
[11428.]-The Fiolin alluded to is prohably ceanine. Thomas Smith was a maker (papil of Peter Wamsley) of stringed instruments (his violing are sap. brownigh he rare) from 1766 to violins as Steiners. They are of no particular value. SUfFoly AIATEUR.
[11488.]-Lemon Marmalade can be made in the manner described for orange in No. 368, p. 107. For vegetable marrow preserve ont of the peel of the
vegetable marrows, and scoop ont the seers. Boil the fleshy part left with sugar as in ordinary jam making Some candied peel, cat in thin allicen, added daring boiling, will improve it considerably.-J. L.
[11442.]-Old Wives' Science.-I am anre my kind friends, "E. L. G."" "Weo Pet,", and "Science," will forgive me if I revort to this subjeot. In answer ing the question in the first instanco, I did not men tion that I had mado any experiments on the anbject becanse I alwayn profer quating a well-known man to requiring my renders to place
my own trials. It so happens, however, that I have my own triais. It so happens, however, that have made a series of rather exhaustive experiments, ander
a broiling Italian san, in order to satiofy myself on this subject. Mr mode of experimenting was donbtless rough; but the sverage result wat 00 unmistakable as to lead me to the conclation that the direct rays of the sun have no perceptible inflaence on combantion. My
method was this. Into an open brazier (basket) 1 inmethod was ihis. Into an open brazier (besket) initof wood, \&c., to insure ignition. Fire was then applied, and a amall oopper, containing three litros of water, Tha saspended ovor the brazier at a distance of abon lighted, and the water pat on, do., was carefolly noted. The time required to raise the temperature of the The time required
water to
100° Cent.
ras aise
also
noted. After repeation this experiment, first in the fall glare of the san, and then in the shade of a high house, on more than ind dirernnt occasions, win wha noticeable in the time requivite to caune the water to boil With regard to "E.L. \mathbf{G}.'s" experiment of cansing paper, \&c to inflame in the focua of a lona, I can only eay that I have never failed in cansing the paper to hurst out into flame, provided it did not rest on auy thing. An to the effect of the actinic and heating rays
(id cot. the extreme violet and red). I bavo alwayo guc(id eat, the oxtreme violet and red), I have alwayo guc
ceeded in igniting phorphoran with these, though I ceeded in igniting phophoran with these
failed thoagh
with the pris yellow. Indoed, if these have any effoct, so far from exercising a retarding influence, it is only consistent with renson to oxpeot "Shat tre" will consider for a moment, they will easily perceive that while the sun's rays are shining on the fire, the temperatare of the are is also rained in extolly the
proportion as that of the air on which the sun is likeproporioning ; bence the carrent of air is relatively the same in both caser. As to Dr. Brewer state ment that tho heating, and actinie raye are dotri-
mental to combuntion," I need only say that it is contrary to fact Many' cases of obemical combastion are known, which only take place ander the inflaence of actinio rars. I may mention as an example the detonation of a mixtore of hydrogen and ohlorine Whes exposed to the highly
nesiam light.-S. Botrons.
[11412.]-Old Wives' Science.-One fact is worth a bushal of argoment. I havo fairly tried the effect of the sun shining on a fire, and it does not pat it oat or caase it to barn low. The room in which and the dranght equal in both. The two fires were lighted at the same time, and by adjusting the blinds the sun was allowed to shine fall on the one fre, and the other Are was in a deep shade. The two fires were watched, and, contrary to tho expectations of severa parsons prosent, both the ares burnt up equally wall
and were loft antouched till they wore both nearly out from want of fuel.-8ic Fix.
[11450.]-Adjusting Equatorial.-Earatcx.kisu) permit me to corroct an error in my reply (p) 154). Instead of "north declinatioz at the instant of transit,", read "altitude ahove the north point of horizon. The other two lives may be cancolled as the co-deolionsenso. The N. P. D. Bhoala have boon the co-deolination of asar + refraction. The 8 . P.
$=90^{\circ}+$ decalination - ref. THOMAS BucHakAN.
[11455.]-Daisy Extractor.-I think this will do
 (mix) plaster of Paris properly, althongh it is so simple. If "C. B. B.'s" plaster had been good, satisfactory. This is the way to gange it. Pat into basin the quantity of clean water you require, and shake the plaster intoit with your hand, scattering it over the whole surface as fast, but no faster than it will sink and when the water will soak no more plaster, stir it up quickly with a brush whose size shonld be in proportion to the quantity of plaster. If you require to fill in a moul', or to make a monld of a medalion, dab it in paper.-W. Frencr.
[11475.]-Artiticial Butter.-The fat or oil is heated in a shallow reasel until it begins to fry, the action of whioh is owing to the violent evaporation of off, wher contained in the lat. After this is all driven off, the fat beoomes atill hotter, bat it is sbsolately decessary shat the heat shall be so regulated as not to be puised to the boiling point of the ist itself, bat fow degrees below it. a tomperature of sboat 200 Fahr. is required, and a litilo water shculd be cad tiousif aprinted from time to time upon the fat while at that temperatare, alter the water that it originall contained has frizzled away. The process is oontinned antil the parification is completed, and tho hot fat it then stranned, and if the procese has been properly condacted it is foand to be pare, colourless, sud taste less, besides becoming amooth like batter. Invented by M. Dabranfant a
siege of Paris.-J. L.
[11482.]-Algebra.-If "onr" correapondent "The tamu"imagines he has solved the equations in ques tion 11482, he is dreadfally mistaken. The equation contain four nnknown quantitios, to obtain the valae of which foar equations mast be nised. "Thetama" only uses the first three, and then instesd of the foarth the following: -That certain ansiliary amonnting to the following:-That certain anxiliary quantitios (n There is no has introdoced are whole nambert There is no warranty for this in the given equations orcept 50 far as it can be derived from the fourth equa thon, of which he makes no nse. Any one conld solve the equations in the way he has done (if that can be alled a solation), by simply observing that $12+9=1$ and $8+8=11$, and then trying whother the values o
$12,8,8$, and 2 , astinfy the jther equations. But that not solving the equations, but gaessing at them.-A NEw Subscribze.
[11498.] -Re-Scaping Old Verge WheelB. James wishes to know how to "ale up" a balance wheel i presume. Firgt oramine the teeth to soe tha put the wheel in the tarns, sud top the ends of the puthe wheith in the tin, and top the eads of the coth true with a slip of water Ayr stoue sloped off flat Porrule still on rest it Armly on of the tarns sud with while you are fling the backs of your cork in the teeth. This must while you are filing the backs of the teeth. This must be done with a ine balance wheal file. Let the fle rest
well on the tooth, but more on the ands than on the middle part, as in the latter case your file is likely to act just below the point, which gets so thin that the end of the tooth bends over instead of coming to a point and you fle on wondering why it is you mate no pro gress, anaware that the tooth is doabling orer until perhaps, you have gone so far that the tooth is apoilt perhaps, you have gone so far that the tooth is apoilt
This is a common error with young beginners. The tooth whoald be filed more obliquely than across, and as the back of the tooth is a curve jou may prevent the fle from pressing too mach on the middle part of the tooth by fling more or less in the direction of it length. The barrs left by the flle may be stoned of in the turns. Use oil on the stone both for topping and remoring the burrs.-Wegt Corwwath.
[11499.]-Zymotio Diseases.-I beg to thank did. C. S." lor his answer to my question on p. 130 ware. For my the diseagot, as he is, or conre, far preferable. Why Dr. Farr shonld have selectod some infections disenses for his zymotlo cless, ant have loft others quite re "leavening" out in the cold But is not all our modical nomenclature in a pitorn ?
atate? In an official medical report now on my table, Ind the same part of the colon called coscum, caput proper boing, moreover, the vermiform sppendix paesart. I would remark that it is very odd that from al the heaps of medical statistica published at great expense ose coankry, almnst for the sole benent of unpro han over, so far as I am aware, illnmined the fart maze of the etfology of diceases, or, I might add, their connection. I once attempted to show how we shonld prooeed by means of parallol ourves, and atumbled upon muoh agitation in the country had been mired up by pardonable errors in diagnoois with rery innocent dificulties. I assume that it is not dee to mere chance that people do not contract zymoid diseaces frequently again, and I also swallow dutifally the aacertion that overy particle of our bodies is, after the lapie of a fow cears, and although we grow viaibly wrinkled and worn, replaced by a brand new one. If this brand new particle bas to be leavened, the leaven must either be the discase (eay amall-pox), or elso the leaven of something left by the disease, which serves as an antidote. Now, it seems to mo, in the firat case a percon must be always having small-pox in some part of of infection. The ner particle, moreover, must underpo, on its arrival, inocnlation with the leaven -p. perhaps, a dozen other zymoid disesses, and although the old opinion that swo or more such diseases cannot exiat at the aame time in the body is now sbandoned, yot to have to suppose this miserable "new boy" to tndergo at once maselen, whooping-cough, soarlatina, rowall-poz, and, perhapa, yellow fover, is a "facer." In the second case, when the leaven is the leaven of the result of the disease, secondary leaven, it seoms obvions that then we should be able to inocnlate with it, and by transfusing the blood of the leavened into aperson who has not had the disease, wo shonld leaven his body 80 as to ward orr an attack far more effectually than we now do by vacoination. There is another remark I should like to mako. If a diseaso is onlikely to reenr from having effected some change In the body, it must heve added something to the body, have altered something, or have removed something, and that heing so, the health of the perton mast zndergo some alforation permsnently or for years aftor anl attack of these symoid or zymotio maladien, and there are strong gronnds for suppoaing such to be peanly the caso. The anhject is one of intense intoreas, and I do not think practising mediaal men are
the best to havdle it. They must speak with the valgar, although thinking, perhaps, with the wise.-M. Paris
[11516.]-Veneering.-" Joiner " nhould purohace No. 881, where he will find in lot of information on

[11516.] - Veneering. - Doubtless some cabinetmaker will answer the tirst part of "Joiner's "query, but as to the second part, he can fill in the grain by rabbing vell in plastar of Paris, mixed into s thick paste with water, aiter that rab down with midaling ine glase paper, then oil with linseed oil, rab that ofil dry, and
proceed to polish. Make a rabber of fiannel and wet it with polirh (which he ean bay readr to nse), and cover the rubber with a plece of soft linen rag, and rub in the wood by working it about in a oircalar directo touch the rubber ontside of the rag with linseed oil to make it work eesy. When he has got the grain well filled he can ada a little methylated spirita with the poliah for a little while. increasing the quantity of spirite each time. Finiah by using spirits alone in a clean robber, like the other Be sure and keep the work smooth all through the process with very fine glasi -F. J. GODDEX.
[11584.]-Pitch of Roof. The pitch of a roof in the height of the meeting point of the rafters above the level of the toe or foot of the rafter in proportion to the span-riz., supposing the apan or distance between
the rafter foet is 18 ft ., and the beight is 4 ft ., the pitch would be called a twn-ninthe pitch, if 4 ft . 6 in . it would be a quarter pitch.-Brares.
[11540.] - Preserving Tub Butter. - If the batier hop wood for sis to and pretre month saltod, oagh to reep good for six to twolve months, but should be tan kept filled np with brine. The beat time to bay batter for keeping is in the satumn. Batter made in bot weather never keeps well.-J. L.
[11584.]-Pedeatrian Tour.-1. Angust, Septomber, or even later, in the most popolar time; July in fore light clothing, and a waterproof to roll up and strap on the back, is the beat. The most important part of a pedestrian's outft is his boote-they should may not breat into holes. 8. Opinions difior widely on this point. Some people prefor to oarry all their
laggage sbout with them, on their shoulders. I think for two, the best plan is to have a portmantean to hold a pair or two of trousers, three flannel shirts, a couple
of night-shirta, three or four pair of nadarned woollon stockinge, do., each; this might be sent to nome "eeptre of operations," from which, or to which, the haod a light black ban to hold a nifht-shirt, a piece of moap, brash and comb, to. When the centre is to be changed, send the portmantean by oosch or train, and melk ap to it again, so ad infinitum, 1 and 5 . See 6d. "id. cuidet at any bookstall.-Espera.
[11568.]-Reruse Paint.-Paint skins, scraping of kegs, tc., can be worked up by melting (boiling) them over a slow fire. This is best done ont of doors, as the smell is very offensive. Let "W. T. M. D." pit his akins in an iron pot, adding half a pint of raw linseed oil to abont four or five ponnds of skins, scoording to their dryness. Boil them till all are dissolved, whioh he will ascertain by atirring frequently. When the sking are all dissolved. take then from the fre and thin down to aboat the consistoncy of milk (it will thicken sgain as it cools), and strain the dirt from it, and he will And he has some good material for common work, eapecially if mixed with a little freah painkCallesk.
[11530.]-Annealing Steel.-Heat it to reduess, and cover with alacked lime; let it atop till cold.Goux.
[11571.]- Virginia : Its Olimate and Soll.114, Cannon-street, Loudon, I think he may obtain the information required.-AxsRICUS.
[11686.]-Cement for Firing Glass Letters. -A thick solation of marine glue in wood nephthe will answer perfectly if colour is no object. Bat the glase muat be chemically cloan, and this is not alwayn easy. Tho least trace of soap or grease will apoil the adhesion of any cement. Try sods or ammonia, followed by whiting and water, alean cloths, and plenty of rubbing,
and let the cement dry on the letters till the curfece and let the coment dry on the letters till the eurface just begins to be "tacky" before you apply thom. aminsion of some minnte precantions trial from the has failed to minnte precantions which the sender has failed to mention for fear of taking too much
spaco. I hare fonnd this especially the case in the apaco. I have to querien in " our" coloman.-J. L.
[11589.]-Dry Steam.-The saperheated steam in this case. I should think, must be decomposed into oxygen and hydrogen.-J. L^{2}.
[11598.]-Lime-juice and Glycerine - Both " J. L." and "A. P. S." are quite ont ; neither of their oft soap or line the articie, which is realy a weak entiraly left ont the most important eloment of soap making, the altali. The only materials meceseary are glycerine, carbonate of potash, and lime-water, scented by essence of lemon.-MAYLAND.
[11595.]-Starlings.-I will describe to "Rara Avis" my cage. It is 28 in . long, 12 in . wide, 18 in . high, ouland in. Thick base is ot bay manogany in. thick, and 8in. deep. The wires are sot in. No. 6 wire gange; the npright and oross supports, of No. 14 wire gange, are at 4 in . and 9 in . up from the contre one Across the top are ive supports ; to neatly lashed to the frame or anpports by very fine tinned wire, and it mazes a vory smart cage. The side door is oight wires wide, and slides up as far as wires-i.e., the whole width, and slides up to same bar where it can be held with a hook. This is to gire cocess to the food box, whioh is movable and made of wire, and wood bottom also ; two tin cans it into it for ood and water. The shape is like lean-to ereen house ; so when you shift it to clean and renew, this end door is dropped until food is brought. For s bath I use a white crock dish (made to order), 5in. $x 8$ in. x 1 in. deep. Never let this go dry, the starling revels made of zinc makes it necessary to have the drawer jost plain all roand, and only two perches. I consider this the smallest cage allowable for starling, thrush, blackbird, cardinals, and Virgivian nightingales, if you Trish to keep thoir plamage from damage. A very proty rustic looking cage can be made by making the of wire, but still keeping them a sood fin. apart. Take them from the nest about the time you see them able o stand or approsich the old ones to receive food. The cloth ahould be pat over the cage at lesson time only; leave it on for hall an hour after drill. The first fow days thoy will want their food given them by hand; roll it like elongated pills, and not too dry ; be liberal with herd-boiled egg amongst your scalded pes flour. Pat a few bita on the edge of the cage, and give them their peck over these pieces, it's a good hint to help themselves. I omitted to include a few of the very mall garden anails in shell as part of food in my oom. munication, query 10917, page 645, No. 863, to which I refer "Rera Avin." The only hint that occurs to me in, that if "Rara Avis "intends to make his own cage, he ahould got a fow needle points from an ironmonger, uoh se are used to fix gilt slips apen drawing-room walls. Tate his compasees and mark off his contres on a strip of hard wood, eay bin. long and in. thick, drive the points through the marke ap to the head, then screw on a back, like a hair-brush; he can thus mark ofl quickly any amonnt of eage atuff for the insertion of his bradswl.-Jos.
[11599.]-Lint-is made from old linen by means of a rather heary knife, not too sharp, worked by the hand so an to partially cut through the linen, and then raise the cut part ap on the surface, so as to make it
very soft and velvely on the aide operated upon. -J . L.
[11600.]-Analysis of Water.-The best work ior your parpose is 8atton's "Handbook of Volametric aralysis" "a new edition of which had lutely been pub-
lished. To effect an analrsis of a water in the way there described requires sevoral titrated solations, congiderablo practico, and a good practional knowledge of chemical manipulation. In my opinion gravimetrion
estimation is far proferable, and though it occuptes more time the rosnlts obtained sre free from the anelynes. Oar chemical knowledge of the organio impurities in water is at present vory small, and the mothods employed for distinguishing the injurions and non-injurious bodies of this claen are not at all setiefactory. O:1e great point is to ascartain whether the wator is contaminated with sewage of any kind; and if nitrites or nitrates can be detected in any considerable proportions, it it in almont overy case an indiostion that noxions matter of this kind is pollnting the water Some watera, however, may contain nitrates withont haring received any mowage at all, and on the other hand, a water may be highly contaminated and yot not contain any nitric acid, becanse the oxidation of the nitrogenons matters has not reached its last stage. The prosence of ammonia, or of bodice vielding am monis, by treating with suitable reagents, is aleo to be regarded with mach suapicion when cocnrring in potable vater. On this point 860 Mr. Wanklyn's papers on the "Ammonia Procese." Dr. Amges Smith has shown that in many cases the amonnt of common ant in a Water may aflord usefal indica. tions as to whether sewage is passing into a stream or not. The une of permanganate of potassiam for determining the relative purity of water has been ofton rocommended. Its use, however, is open to many objeo. tions and fallscies, because the parple colour is deatroyed by many innocuous subetances.-ETRYL.
[11606.]-Organ Pipes.-The proper aize of hole 8-16ths of an fnch for apper F; if a wood pipe stopped foot having s sin, bore ought to be nead and graduate np: it is usasi to get the feet first, and bore holes to日t. The catting op is generally gaided by the presmouth the atopping at foot will accommodate lancy of operator.-Propessional AdViszr.
[11607.]-Tbonisiog Wood.-Firat procure an ordinary slate and hold it over the gae, lamp, or oandle, ancil if enf polish your srtiole in the ordinary way. If there are pois lampe gently rab them down with your finger, and apply another coat. -A EOBER
[11608.]-Bolling by Steam_-" A. W. B." might possibly take a hint from the following:-Sixteen yeart ago a faotory wai built in this country for the manato be boiled in their own liquor by eteam without contact with it. One of the machines ased for cooking he fish revolved twenty times a minate by means of a riving-strap. This machine oonsisted of two drams. one within the othor, renting horizontally apon two
beds. A flange ran from aide to side within, by which

the cooking mase in the inner drum was turned over and mixed at esoh revolation. The steam required for at the side ired between the two drums, and was applied with fish by means of a door which olosed hermenpplied When once hot this apparatue, with a preanere of solb. of stoam, would cook a ton of Ash in ton or fifteen minites. The fish thas cooked renembled thick gruel, overy bone baing quite alean and diajointed The same kind of machine placed apright instead of horizontally, and which what stationary during the pro cess of cooking, baked the fish instead of boiling them A dram, B dor, closed with teo ters, C stoem pipe from boiler to supply heat to dram, D oock to pipe steam on or off, E cock to turn ofl condensed steam, F pipe for escape of condensed steam, G driving strap, H beds supporting dram.-RoBt. A. Whitalooke.
[11608.]-Boiling by steam.-There must be an additional boiler to generate steam, which many would consider a mere waste of money and fuel with buch a small quantity as fifty gallons, though it may case. If he cannot allow the entry of the steam into the mixture boiled by an opening near the anrface of being formed bether opening for a condencing pipe being formed beaide it for the eseape of superitaous
shough eomewhat above the inlet pipe, by whioh the mixtare would be constantly pipe, by Without an attondsnt, "A. W. B." may send the nteam through a hollow jacket around the bailer in the eame was, the opening for the exharat pipe baigg formed at the bottom; but thin arrangement hea not 0 many advantagen as the other, and a mechanical contrivance, which will easily suggest itsell, may be boiler magy be placed inside the other, es in the pot for boiling gloe, with the fire nnderneath, which is ihe aimpleat arrangement.-RAT-TAT.
[11610.]-Defective Battery.-I beg heartily to thapk "Sigma " for his kind and prompt answer, and wish to add that the ribrating contact breaker does not a galvanometer I am namble to test the coil in the way he kindly angeste.-G. F. L.
[11614.]-Gums. - In reply to "Menelans' "query on p. 182 of your valnable paper, the Mrchanic, I beg to recommend him the following test of gam resing, they are all soluble in spirits of wine and trustworthy :-
Olibanum, ant, thus, or incense, known in Palestine as arbor thurifera; galbanum, the bubon gulbanum of Linneas; ; fammony, gamboge, gum asafoctida,
myrrb, enphorbia, aloes, ammoniacal gum, bevzoin myrrh, enphorbi
Jorn Le Bas.
[11615.] -Teeth. - Tinctare of iron and quinine does not tend to loosen the teeth, bat it certainly makes hem decay. Before taking the medicine, chew a piece
of gam arabic, and distribate it over the teeth with the ongoe, then take the medicine and ribse your mouth tongoe, then take the medicine and risse your mouth out with solntion of carbodate of soda. Thich you can preserve the teeth from snch way in which you can preserve the teeth, separate or medicined (diluted, of course), are capital things to tighten the teeth with.
[1J616.]-Engraving.-Nitric acid, one part acic to four of water is generally used.-JoHn Le Bas.
[11618.]-Deadening Sound:-Let "Wicklifi" set another partition of boards, a few inches, three or fonr from the present one, and fill the interval with sawdust paeked together a little, as each board is nailed on, of
course beginning at the bottom. This is effeotnal, it properly done.-H. O'B.
[11619.]-Eleotrioal. The following hints may be useful to "F. T. Z.":-(1) A Leyden jar should be wel warmed and freed from dust before attempting to charge
it. (2) \mathbf{A} good connection shonld exist between the outer coating and the earth, and between the inne coating and the brass knob projecting from the jar Let "F.T. Z." charge his jar with (say) ten sparks (which will be sufficient, if they are what he describes My frst trial with a Leyden jar terminated in a simila ailure, owing to there being no good connection be tween the outer coating and the earth. A Leyden jar should be made of as thin glass as possible.-T. Symrt
[11620.]-Capturing Moths.-The method of making sugar for captaring moths is thns : 1 pint of old ale, 11 b . of coaree sugar, and 11b. of treacle simmered together; it must not boil; when cold add three table poonfals of ram, and when the fruit-trees are in blossom, a inttle essence of almond may also be used. Take the mixture into the fields or woode just abont
dask, and with an ordinary paint-brush, lay it on in dask, and with an ordinary paint-brush, lay it on in patches on the trunks of trees, then return in about
twenty minutes with a lantern, and you will find the twenty minates with a lantern, and you will ind the
moths sucking the sagar. This is best nsed from May moths sucking the sugar. This is best used from Misy to September, bat for some species, snoh as piniperda, nnstabilis, \&o., you nasy begin as early aring, brigh moonlight ones being comparatively useless.-EDWAR Sutton.
[11620.]-Capturing Moths. - Apparatus required: A jur, a smail bottle, small paint can and brush, moderate size, a boll'g-eye lantern, a small above - Tu the jise get IIb. of the thickest treacle to be got; in the bottle get a quarter of a pint of best rum. the treaclesir the can, and the small bottle of rum in your pocket with the brash and lamp, take np your net and can and march to the happy huntinq-grounds. On your arrival light your lamp and poor one-taird o the rom into the can with the treacle, well mix with your brush, then paint the trees, railings, \&e., with the above compound (about one tree or rail in twelve yard don't pient in patehes about bin. or sin. square, Th results put ou too thick, or it will ran down the treo. wha takes place in gin palaces on "haman insects." They taste, ratber like it, get too much and can't get away and so fall an easy prey to designing humanity. When the victims are arrived, which won't be long, I can assure you, they may be easily taken ond antern, and hold your net nuder them with one hand and knock them into it with the other, and till in nsual way-viz., a sharp pinch onder the wings. The time to nse the above is at night, from the middle of May till the end of October, weather permitting. Th best places are woods, coppices, do.-W. In W.
[11621.]-Killing Roots of Trees.-Bore your holes and then till with a strong solation of sulphate of copper (blue vitriol).-EtHyI
[11621.]-Killing Roots of Trees.-With a 1 in anger bore a hole from outside to centre, inclining dowuwards, and fill fall with saltpetre, plagging with a short plag.-J. Wrinkle.
[11624.]-Bell Pianette.-This instrament con sists essentially of a number of ateel tongues, varyisa in length from 1 in. to 6 in ., one extremity of which is screwed on to the sousding board, while the free end is strack by a hammer actanted by ordinary pianoforte
setion. No dampers are required. Each tongne will require tuning by filing op to pitch.- S . Botrone.
[11626.] - Electric Bells. - If Thomas Whalley will examine the diagram, he will have some idea how electric bells are made. A A are coils containing abont bat sills is beat ; in the centre of each coil is a core of
soft iron, the dieo at the endi are composed of brass The wire shoald be wonnd on in one direction, that A of soft iron connected to F by mean of of an armatnre also a stiff spring which makes and breaks contact with B. Near to B and C are projection tipped with platinum. One end of the aire, from the coils, is connecte to F; the other end to the binding ecreq F, and eparate bit of wire joined to F and F. It will be seen

that, when the batteries are attached, B makes rapid oscillations, when the hammer, D, strikes the bell E If any defnite nnmber of rings are required, the ends screws, and the battery current tarned on and off by means of a commutator. The coils, \&c., are fixed on to vertical board, and may be inclosed in a box, except the bell and hammer.-J. Thompson
[11629.]-Skeletons.-If " Hedera" lives on the seu coast let him moor the animal seanrely where the rabs can have access to it and they will do the wor he requires. If not, let him place it in the vicinity of large ants' nest.-
[11682.] -Debility.-Before adopting homceopathy try the altera-tonic system, as advocated in the Anti ancet, to be had of any large chemist. I tried homoen pathy for indigestion (and its result, gout) for severa ears with no effect; but I was at once relieved under he altera-tonic treatment, and have had no gout since I adopted it, although I have had many warnings its approach, which a few pills quickly dissipated. know a patient under homeopathic treatment for tumorr who is obliged to take these pilla sub rosa for constipation, which the former medicine does not relieve Allopaths think they can cure by the administration of an unlimited number and quantity of drags and counter drags ; homoopathists by the finding of a medi cine suitable for each separate malady, and for tha only. This seems to me an absurdity, and there is also the awkward possibility of the patient dying while the experiment is being made. The Anti-Lancet is opposed to allopathy, homodnathy, hydropathy, se. many cures being recorded of the victims of each of he above systems. It gied to the root of the matter by proving that nervous debility is the one sole cause of all disease, and having logically demonstrated this the argurnents advanced in farour of the remedies ad vocated are equally conclasive.-AMATEUR.
[11686]-Desert of Sahara -Whilst attending coarse of lectures on "Paysical Geography," de I was given to understand that there are two large tracts of land whoze levels are considerably lower than that of the sen. The first of these lies to the sontheast of the Caspian Sea, and the second consista of considerable part of the Sahara Desert. Eaeh of these is about 400 t . below the sea-level; and each abonda in shells and chalky matter, which clearly proves that at one time or other they must have formed the bed of the oeean. In the latier also the learned Professo howed that extensive pools of salt water were to be found.-Undengraduate.
[11638.]-Silkworm Disease. - "Muscardine," the disease pecaliar to silkworms, and which a few years ago played such havoc among them thronghon Earope, is a fungus growth upon the body of the insect.
It is induced by overorowding and bad ventihation in the cells cr boxes in which they are kept. There is no cure when once the attiack has commenced, bnt a good preventive has beeu iouvd in sngar given aneshod. A
still better is plenty of fresh air and fresh food. H. G. W.
[11689.]-Rock Inscriptions - I do not think there bas been so mach neglect in reference to the imagine. Prof. Beer, of Leipsic, pablished, in 1840, a number of these inseriptions transcribed in Hebrew letters. The stgle and tenor of the inscriptions was
found to be almost universalls identical. They nniformly read thus: The salutation of so and so, son of " Bitish or p17). Since then p. 347). Since hen other collections have been made pud that they are of Nabatéan origin, and that the limits that they are of Nabatean origin, and that the limits either the two centaries before or two cextaries after Christ.-A. D. H
[11644.]-Mending Copper.-" M. B." does not state what kind of copper he wants to mend. If a copper farnace, rivet a patch on, and then close the seams ns close as posrible. Make a paste of red lead and the white of an egg, and rub well in the seams and on the rivets inside the farnace with a piece of white sandstone. If for a cooking eopper, you mast braze a piece in ; bnt
AmLarian.
[11645.]-Bees: Managing Old tocks.-I cannot understand why your old atocks should die, unless the queen is dend; then the bees mostly die when they have eaten all the honey. I geverally, in the sutnma, get the bees from the country peopie When they put them down, and ninte them to my stocks. This makes them stronger in the spring. If you do this you must secure one of the queens, or it will canase fighting, and your stock will be destroyed. Thave done everal, and only had one that fought. If all the hives you use are bar hives you can easily feed by taking a conb out and filling withr liquid food and put back Where most of the bees are. If queenless, get a pieco of comb with honey, eggs, and brood in. Fit it in your bar, and put it in the queenless hive (I should advise you not to do this until next month). The bees will soon form a queen out of one of the eggs. I have known bees to remain in a straw hive for six years. Yaree years is long enough for them to remain in before
putting them down, or the comb becomes very blackputing the
ApIARIAN.
[11647.]-Cabbage Plants. - Transplant into richer soil any which have not now "run ap;" feed them with weak liquid mannre twice or thrice a week If a plant has started it is too late to remedy. Poil
all such, and boil them for table.-AMATBUR GAnDENER
[11647.]-Cabbage Plants.-To pravent raming to seed slit the stalk through the centre under the Wriskis:
[11647.]-Cabbage Plants.-Whenever "Anon " notices the plants going to seed, let him pall them ap and put others in their places. The ransing to seed proceeds from a premature growth of the plant; they alao rnn to seed in dry weather if they are not properly attended and watered. Prants that will run to goed are very easily notioed when they are putin. If, at the part of the stalk where the leaves ought to sproat out
thiekly, there is a gap, "Anon" may at onoe liry meide thickly, there is a gap, "Anon " may at
that plant as useless.-
[11651.]-Analysing Ash of Cane Sugar.By treating the sugar with sulphuric acid you will onvert all the bases present in the ash into sulphates. The ash of sagar geverally contains chlorides, esrbomall quantities of other bodies. In all probability your ash woald also contain sulphides arising from the action of the carbon on the sulphates. As the ash varies in composition it wald not be possible to calculate the altered weight without knowing the exact quantite of each ingredient in the ash. Sugar is not very difficult to incinerate unless it is very impare. Have yon tried inclining the cracible till is a presume that jou are working in a platinum vessel; if you are using porcelain yoa will find more difficulty is getting sufficient heat.-ETHYL
[11653.]-Carving.-I do not know whether A. H. Cooke means fret-catting or really wond carving, but it he has not yettried the former he "indind very in-
teresting, and after a short time will find himself fally teresting, and ater a short time win ind himselr faly
repaid for his pains and expense. I bonght my tools repaid for his pains and expense. I bonght my tools
and learnt the art in Germany, where fret-work is and learnt the art in Germany, where fret-work is
much cultivated by the middle classes. I have since boaght a set of tools in England for a friend, but amm boaght a set of tools in Englaad or a iriend, bat am
not so satisfied with them. I fancy for a set of toolsviz., saw-frames, saws, drill, patterns, and wood (nat wood is the best to commence upon)-he would pay The drawing shows how the wood oan be the better sawn by placing it on the corner of a table, and

screwing the same on the table at A, by means of Fig. 2. The Fig. 1 can be easily made out of a piece of B is about $\frac{\mathrm{t}}{\mathrm{s}} \mathrm{in}$. thick. The object of the ronnd hole at B is when he comes to a tender part it ean be rested so an invention of my own, which I find very nsefal.-0. Colman
[11654]-Cleaning Violoncello-Use turpe tine to clean, but do not polish by the applicationd anytbing except a soft rag, and light but brisi rabbia It is probable you may experience a little diftieuli d
removing the accumalated rosin between the f holf
ce, earefolly spply apirits of wine, bat do not lot it romain on her instrument ing enongh to attank the (cominh) warm, and putt them through the foles and ehate the isotrument, at the same time tarning it in all direotions; whon inished, empty through the f holen-disc.
[11657.1-Thorough Base.-" L. M. F." should procure Hallah's "Grammar of Masical Harmony" (38.), with the accompanying couras of exercises, 1s. (Loogmans and Green). Ho should oommence with the frat ohapter, reading it through several times, then
woesk out on a mnsic slate the exeroises to that ctrapter, Wonk out on a music slate the exeroises to that othaptor, copviar them when cor
[11858.]-Power to Drive Crown Printing Machine.-A quarter horte-power engine is of no prootical ane, thev aro alwaya gotting ont of uso, and are only patronised by amatears. Any engine below one horse-power a workman woald ant necept at a girt to use in his own workninp. There is printar atroke and 2 fin. diameter, aboat one horse-power, and this printer sasn that ho coald not possibly do with a loes. He only drives one machine at a time. The boiler is a verticul one of 8 ft . by 2 n . This is the
size that I think mnla be suitable. Quarter horsepower is not to be thought of.-P. W. H. J.
[11860.]-Lead Pipea.-" Fisctem" can oonver the not last nc.", so long as iron thbes; besides, iron can
bo laid lera. - which is to be taken into account in bo haid lera. :- Which is to be taken into account in
laying gas tanea. Your gastitter will tell yon the size pipe necessary for the numher of lights you parpose having, and also ita price per foot.-Francis J. B.
(11660. -Lead Pipes (or "compo") are best for gas, and more so noder ground, if not likely to bo interfered with by digging, to. Cont from Sd. to 6d. per foot, wocording to size of pipe.-J. L.
[11661.] - Photography (Background). - A amplo and effloient barkground may be made in this
 quarter gray calico aboeting (anay, abont $2 t$ rds., make
a light frame of deal, exact size, well fautened at the corners, and opon it nail the calioo with stont tacks and plonty of ibem. Let the oloth then be oolonred orith a diatomper gray wahh, wich will neither rah efmient soreen. A dull lead is a convenient oolour, as It suits for any enmplexion or any shade of dress. Let your aitter be (8ay) 8ft. or oren more in front, so
that the screm be entirely out of focns, and then the that the sorem be entirely ont of focns, and then the
texture of your background will not bo apparent in tertare of your background will not be apparent in
the pioture. Insed soch a frame for years, and fonnd it to anower well, and, being light, I conld lift from $m v$ hall where it atond to two hooks in the jard. I bad no giace hoase, being only an amatear. The elnth
Ughtens on the frame after drying from the whitewach broch, so that there can bo no anaightly wrinkles. -Sexicio.
[11885.] - Brown Ink-1. A atrong decootion of oateohu. The tint may be altered by the eantions potalion. 9. Bepie prepared from the outtio fish. This may be obtalned at any artisto colourman. - A Bameratir.
[11667.]-Carbon Pointa.-Thees are generally rade of rraphite or plambaro, as being denser and bettor suited for the parpose tban oharcoal. I do not
think they aro dear; any philosophical ingtrament think they aro dear; any philosophical instrt
maker would know the prioe.- Prinantaropigt.
[11675.]-Solder for Britannia Metal.-10 th, 5 lead, and 1 to 3 bismath.-A. M. Festrig.
[11675.]-Solder for Britannia Metal.-I And no difmculty in onft ooldering any metal with the sid of Baker's sol
[11676.]-Lemonade Syrup.-To every poand of sugar add 12 fuid ounces nf lime.jnice, add a fow drops of exsence of lemon, and disoolve with the aid of heat; loz. of the rrrnp to a tumbler of aeirated water. This 1. - 1 ,
[11689.] - Height of Sea Waves.-The assumption daring all the experiments made many yeara ago by Dr. Scoreaby and Mr. Scott Russell was, that
the proper level of the gea was miduay between the the propar level of the cea was midway between the
higheat and lowest pointa of the waves, and, I beliere, higbeat and lowest points of the waven, and, I beliere,
that mare modern experiments on tidn lievele show very litle, if any, discrepancy.-A BARRISTER.
(11884.)-Pressure on Cork of Bottle -The prassure on the aork will be greator when the bottle is apside down, as the cork will, in addition to the gaseons pressare, have to bear a colnmn of (say) Bin. of water
($83 / \mathrm{ft}$ of water gives 151 b . to the inch, abont).—Pulas:trionter.
[11684.]-Pressure on Cork of Bottle.-The pressare on the cork of a moda-water bottle is a the olaetie pressure of the gas + the weight if lin. or 1 jlin . of gas proasure + the weight of (any) bin. of water ; if resting on ourk it wonld be $=$ to gas prescure + bin.
[118s6.1- Oement for Ftring Glass Letters.
A thiok colation of shollac, in methylated apirits, Waterproof. Haring used this I can recommend it.bin DPALINE.
anep., [11680.]-Coment for Fizding Glaes Letters. walk fib, aloohol 2ozs. Place the containing boule tha
warm place. Agitata frequentiv until all the lac in dissolred. Apply cold. This will resiat wet, and will rement bt
Bottone.
[11687.]-Bpeeding Mrachinery.-The number of rerelations of two pulleys or whuels are inversely as the diameters or circnmferences; in the case of pulieys in the thickness of the belt anded? (as the neatral axis, or part of the belt which is neither compressed nor extended, is in its middle). In the case of wheels the diameter or circnmerence of the pitoh circles are
taken, practically adding the depth of a toth to the taken, practically adding the depth of a tonth to the
diameter of the unent part of the wheel would give this pretty ntarly. The number of teeth in the wheel in driving shatt shonld bear to the namher of teath on wheel of machine the proportion of 135:50 or $27: 10$, and the diameter of the pitch circles be in this rati
Farther information if desired.-Philantiropist.
[11691.]-Tidal Mill.-I think Poncelet'n nudershot water-wheel (with carved buckets) would be the best; it is supcrior to the ordinary undersbot wheel, as the water loases almost all its velocity bofore leaving gear tronld be needed. (I deacribed a kind of вcrem on p. 403, Vol. XIV., which rotates in the same direction, whether the wator passes up or down through it ; I do not koow, however, if its modulus is eatisfactory, as compared with other wheels.) A sorew revolving anningt water prodaces good resnlta, bot doer it follow that water rushing apninat a screw woold do the aame ? I shonld like some information on this myself. I think that tide mills are not sufficientlyaced in this conntry. In Germany the rapld ourrent of the Rhine is ntilised to drive floating mills; why should strong tide not be no drive also ? As to the finy motor, I snw it in the Ex-
ase hibition, bat as a horse-power is 38,000 anits of work hibition, bat as a horse-power is 38,000 anite of work raised 11t. high in the minate, or upwards of 90,000 raised
cuhic feet of water to fall 1 ft . in threo hoars, as the cunichinet of water
machine does not act constantly, the size of the dammachine does not act constantly, the size of the dam-
and tise consequent expenee-feems an objection. and the enneque
[11693.]-Defective Feed Pump.-"An Engine Driver" cannot take "ours" regalarly or he would have noticed the same qnery answered one or two in hot sater from it being allowed to become hot.A., Liverpool.
[11694.]-Green FIy.-Dee Ginharst's eomponnd; to be obtained, with directions, from any respectable narsersman. It is extremely effectual.-S. Borrone.

H1694.]-Green F1y.-Why is the eonservatory too large to be amoked ? Mine is 27ft. by 14ft., by an average of 9 ft . high, and I find a pound of tobacco paper, price 8d., amply sufficient. Choose a calm
evening, close up the oonservatory tight, the plants evening, close up the oonservatory tight, the plants mast be thoroughly dry (I do not even water the roots on the sooking day), then set a lighted candle end on the floor, invert a Gin. or 7 in . flower pot orer it, on this sot anotber pot apright, taking care the drainage holes
correspoud, in the latter shred the damp tobacco correspond, in the latter thred the damp tobacco paper, and when ell is going on well loave it shat op till morning, when you matt ventilate well and syringe onpinanlv. The third or forrth evening after amoke
again, this will nniah of the insects balf killed by the again, this will nnish off the insects half killed by the
fres operation. The inverted pot maet he raised

[11694.]-Green Fly.-If " H. T. C.'s" oonservatory is really of snch dimennions that tobacoo fumes are uselesa, he most try syringing with tobacco-water. Under similar circumatances 1 shonld roteore every plant that
was remorsble, and clean off every aphis I conld find. If the conservatory had been cleaned properly lant If the conservatory had autama, he wonld not now be troabled with an "army of spiders of every ghape and description." He mast olean it down now, or else clear the plants ont and all the conservatory with chlorine, or sulphar fames.satu bygis.
[11695.]-Succession Duty.-"C. P." can make himaelf quite comportable aboat the legacy daty: the people at Surnerset Honse will not lot him go to sloep. not, thut will be fey, if the entire suin left by will does
not not excetd sl, sino. The legacy doty of 1 per cent. is calculated on the gross raioe of the property, which
"C. P." mont get valned for the parmoge, or ran the risk of m:aking a false declaration of value.-Shu Flr. [11701.]-To Mr. Knott.-In reply to M. Gandibert'r query (p. 150) I ber, to say tast i have mensared
 Feh. 2, $P=166$ fi? ; Feth. 2n, $P=16603^{\circ}$. On each
occanion the distance was ebtimated about 0.6 -s valne occaion the distance was étimated sbout $0 \cdot 6$-a valne
which may, perinaps, be a hitle too small.-George Which
Knotr.
[11:02]-Curry nnd Rice.-T am not an Indian, but during my reidenre at Milan, frmed for its
"Risotto alla Milanese". I learved that the only reqnisite to obtain rice grains firm and dry consists in having the water quite boiling, and after baving introdaced the rice, allowing it to boil only ten minntes, when it must be immediately atrained through a widemeshed sieve. Aft•r ressoning, if fonnd too hard, it is again placed in the sancepan (withont rater), and while on the fire constantly stirred. The following is a good recipe for carry:-Pale turmeric $\frac{1}{2} \mathrm{lb}$., powdered cumin $20 z .$, powdered corisuder $4 n z$., black pepper $20 z$. cayenne popper loz., Jamaioa gingor \&oz., oarraway
seeds \quad oz., ourdamome 2 drachms. All these mant be well ground and mixed.-S. Bottons.
[11703.]-Ink Powderm.-Aleppo galls 4oz., ealphate of iron 1toz. gam arabic loz., lamp sagar zoz.
all quite dry and in powder). Mix and divide into three packete. A pint af boiling water poared over one if nem produces in a low hours a pint of ex onllou enge. cay, fur. to the pint. - A Raraserman.
[11704.]-Rate.-Undonbtedly ofl of rhodium is the bost ; you can buy it wholesale at 6e. por ounco ; if too dear, nse oil of aniseed and oil of rorbena, of each equal
parta ; add a few drops of oil of rhodiam. -OpAn parta ; add a few drope of oil of rhodiam.-OPchonh. rata.-SAVL RyMEA.
[11708.]-Gran Burners.-Gas burnees are uarally marked round the top with a eerice of rings, each corrasponing to 1 ll . par hiour. A. Fs.
[11708.]-Gas Darmerm.-The burmers in orainary use consume from 8 ft. to bit. per hour. Those constructed for cannel gas aboat
those for common gas. $-A$ BARRISTRR.
[11710.]-Oleaning Oll Painting.- Teare ago I recollect being told that one of the moat offoctual ways
of frestiening an oil painting was with the finger and of freshening an oil painting was with the fingor and ment.-A. M. Febting.
[11714.]-Test for Sugar.-Into a cold aolution of the sogar add a fer drops of tinctare of iodine, if it contain starch a bue colour will be the resalt; for chalk add a fow drops of sulpharic or mariatio acid, eflarvescence will ensue.-Opanse.
[11715.]-Testing Acetic Aoda.-"Acotioum" will easily that the relative parity of commercial scetio acid, by ascertai, ing if it does or does not precipitato nitrato of ailrer (in the arst case it wonld donoco the
presence of hydrochlorio acid), or it it does or does presence of hydrocalorio acia), or in it does or does
not precipitate nitrate of bariam (in the arst of latter not precipitate nitrate of bariam (in the hatat of hatier
caues it moald denote the presence of salphario moid). cases it moald denote the prosence of anlphario moid).
Acetic scid may sometimes contain traces of sulpharous Acetic acia may somotimes contain traces of sulpharoas
acid In that case add a fer drops of pitrio acid to the liquor, and aee if, aftar having bailed for a fow minutea, it precipitates nitrate of bariam.-F.T.
[11715.]-Testing Acetio Acid.-The only scids with which it is usnal to adulterate this are the sulphric and salphoroza. The former is ased for the roaker acids and the latter for the so-analled "glacial." The presence of the former may be detected by means of a solution of bariam obloride, whieh, if sulpharic acid be present, gives a white precipitate, proportionato in amount to the quantity of sulphurio zoid prosent. If there is reason to susp eot that sulpharous or hydro-- sol acias be prosent, sbe addimmodiatoly aloar up the donbt, by affording a white precipitato, if meah be the case.-S. Botrons.
[11719.]-Gut IInea.-If for fiahing, are made trom the ailk receptacle of the silkworm, and casnot be obtained from sheep-gata, which are asea for the
mannfactare of lathe bauda, catgat for masioal inetrumannfactare of lathe maina,
[11724.]-Disoharse of Weter over Weirs. -1 think this is mentivnod in nome of Wealo'm Berien. In the case of a hole, the wollsknown phenomenon of the contracted vein occars, and the actual diecharge is considernhly less than the theoretional. The qormala $v=\sqrt{2 g h}$ may be mood, a harge doduction to be made Phmantiropist.

DNANSWERED QUERIES.

The muxbers and treles of gwortoe whoh remain wnanswered for tive weeks are insorted in thio hiet. We truss owr readors will look over the lief, and come what information they cam for the bomalt of their fallow contributore.

Since our last "West Cornwall" has answered 10817;

11275 Darkening Waloat, p. 24 112

$$
\begin{aligned}
& \text { Cuminn Srisa, } 24 \\
& \text { Travserring Fiuid, st } \\
& \text { Glasis Honce, } 24
\end{aligned}
$$

$$
\begin{aligned}
& \text { Glass Hon-e, } 24 \\
& \text { Dexi:n for Garde }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Deriin for Garden, } 24 \\
& C_{a r t}=w h e t l, 24
\end{aligned}
$$

Marking Lexthor for Ulaamental stiching by

11335

$$
\underset{\substack{\text { Machíue, } 24 \\ \text { Monded Carbon Filter, p. } 25}}{\substack{\text { Manning. } 25}}
$$

1340 Japanning, 25
Vacuam Gauge, 25
8mallpox,
Hy irunlic Jack,
25
Motive Power fir Amnteripa, 25
Eccentricity of Earth's Urbit, 15
Bread barrow, 25
Analyoing Cast Iron
Catecha, 25
Australinn Trees, 25
Cnmping Btoves and Necesmriog, 25
Velncitiea oticir and Bteam, 25
Henting Bar Iron, 25
Dairy Furming and Pig-keeping, 95
Homeopathic aiedicinez, 25

$$
\begin{aligned}
& \begin{array}{l}
\text { Phatio Leng Ir irn Plates, } 9 \\
\text { Flexible Oil Puinting }
\end{array} \\
& \text { Flexible Oll Painting, } 24
\end{aligned}
$$

QUERIES.

[11790.]-Artificial Grum.-Will any of the readers of "orars" kindly obllge mo with a good reolpe for
making a ohenp articial gum, snitable for sunpending making a ohenp artideial grom, Rnitable for sluspending
oolouring matter in , which will not precipitate ? © $\mathbf{\text { Welouring }}$
[11731.]-Hair Wash.-I have for nome time past boen tn the habit of using a solution of eamphor and borax at a soart wash. I do not, hnwover, find it to
anawor. The oamphor is nover wholly disgolved; may anawer. The camphor is nover wholty dissolven; may
this be faliry set down as the canse of its inefficacy? Can any reader reoommend anothor proparation 7-Ex: Cana any
crisiok
[11788]-Temperature of Ice and Water.-One kilogramme of ice and three kilogrammes of water at 79° O, are mixed in a closed veseel, the gides of which are supperatare of the water after the moltiog of the ice (latent别 W. N. O8wAD.
[11788.]-Cotton Spinning.-Could any of your pinaing in all its processes, with calculations for the apinging in all
[117s4.]-Engine Counter. - Mr. Willam Tonkes wion how I would work my engine counter (situate lisoft. trom engine) with electricity. (1) Will ho kindly give
 neetilons ? (2) Will No. 10 galvanised irnn wire do? (3)
Should I lasalate the wire ? (making an enith circuit, or would Mr. Tonkes prefer two wires? (5) Where siall I place the battery in con-
noction with the engine and the counter (the oscillation of the oonnter pendulnum is inn.)? (6) How shall 1 arrange the mechanism to work the conter in the
most effleient manner? (7) 8 hall I use two Bunsen most effloient manner
[11735.] - Griding on Glass. - Can any correeppondent ingtruct me how to perform the process of
forming the diamond pattern, and of writing and gilding on glass, unch as we see on the back of glass nameboandsries of the diamonds, and the stars at the intersections of the lines, look as if the gold were burnishod,
but the diamond shapes look like doad or frosted gold. but the diamond shapes look like doed or frostod gold. I fancy the lattor appoerance is prodnced by light
[11736]- Entraoting Todine from Soaweed Ashes.-I ghould be obliged to any resder who could
[11787.]-Fairbairn's Ventlating Bucketa. 1 should like information on Fairbairn's ventilating
buckets for water-wheels ther promoto the escape of buckets for water-whels (they promote the escape of
air and admit of the bockote boing readily filled with
Water) What modication in made in the hydraillo am Then intonded to raise watar to many times the fally What is the practical limit ?-PGinasthropist.
[117ss.]-Oyanide of Potassium.-Can any one tell me nnpthing aboat thie snbstance? 18 it as potsonons tainiog my gold bath has all round the oatside s quantity of brown rettlement of some kind, is this oyanide ? or what is it 9 Is it dangeroas to live in the room in
which oyanide baths are kept ?-Dzxistri.
[11789.]-EDoonomy of Fuel. - I am using two sure, for producing sicam, naed sotely for heating (by
 and nising steam at 451b. or 501 b . prossure, either with or withont a reducing valve? 1 know it io admitted that
ompething like 50 por cent. less coule would be ued, is ennething ilke so por cent. less conks would
[11740.]-Potash Salte. - Is there any ready means of estimating the quantity of nctanal potash in the coms poands sold to farmers as fertilisers, under the names
of kainit, potash aalts, and saltpetro refuse? actual ralao deponds on the potash they contain, not the soda (which wo can obtain cheaply in dirty salt). The manure dealers talk of sulphates, mariates, and nitrates of potash; but I see no way oo' checking their repre-
centations easily avallable to a farmer, through not knowing how to disentangle tho sode, though I can see my way to get both alkalios into a niftrato. How do the
to know how the and Shoe Making.-I should Mke to know how the permanent bluck shining and glossy of now shoes, for 1 find that when I apply the heel ball been worn a fow days in wet weather. should the soles ball is applied ? and how hot should the heel ball iron be 9 An answer to the above would be a favour, and some nseful information aboat boot and shoo making rould confer a favoar.-Jakse Loxsdale.
paint an iron bedatead white and gold. Would some
 paint? How mant I mix white paint chat will not turn at yollowinh shando? How mu
uning gold leal 9-SOMFIRE.
 growing some good bpecimens? Wouthey grow without
artiscial heat? What compont
[174.]-8horthand. -1 am in tho habit of taking notos of leotures and meetings. Could any render iell
mo of a ordinary writing ? 1 havo tried Pitmanear Taylor's, and other syetems, but ind the anglea and strilght snd I have litue leisare for atudying. I havelittle doab but that wimo of yoor readera nyea contracted form of
ordinary longhand.Wood SAFYRE
[11745.] - Watch Keys. - I am anxious tc know how
the neat square holes in watch keys aro made. Are the the neat gquare holes in watch keys aro made. Are the
sides of the koy bupported and the holos panched ?ETHIK.
[11745]-Coll Construction.-I have a coll of the Inlowing desoription:- Primary, \& 2 Inyers No. 16.
Secondry, 5 Inyers No. 30 cotton-covered wire. Primary insulated from secoudary by guttapercha tissae. Primary vibrates on core. Can I strengthen this coll withoat the use of more wire, and how ?-ZETL
[11747.]-Canoe $\begin{gathered}\text { Voyage. - I contemplate golng for }\end{gathered}$ so would be very gratefal to eny of your numeror resders who can the management or outtot, or where to go, In Kngland or
Ireland; but most likely I Bhall choose the latter. AFLOAT, Liverpool.
[11748]-Artificial Manures.- 1 should be plad of promoting the gruwth of plauts: more partioniarly rogards nitrogen, phosphorus, and sulphar compounde
Informntion upon this sabject wul, no doubt, be in Informntion upon this anbject wul, no doabt, be in
teresting to other of jour seaders an well as-GOANo.
[11749]-Cementing Iron in Wood.-Will any kind friend inform me how 1 can faston the scrows in
the knubs of dressing alasen? I have great bother with the knubs of dressing glass
them frequently.-F. J. G.
[11750.]-OHrcular Saw Driving.-Will any one lest tell mo how can in the mechanism of the sim plect, toll me mill about it. I havea amall wooden latho.F. J. Godden.
[11751.]-Bugs, Lice, and Parasites.-Cnn any of is prophylactic against fleas, buge, and picea, et on which is pre? Ihave frequently to be in contact with uaclonn
omore, and have becu fady plagued by carring home
people, people, and have hecu fadly plagued by carrying home
more than I bargained for. Ihave been told wormwood is usefni. Is it so, and are there any other prophy
it
[11753.]- Mreerschaum Pipe.-Can any brothor reader inform rie how to remove the black colvur froui a
meerschanum pipe (produced by a solution of canstic), meerschanum pipe (produced by ${ }^{2}$ solinti
[1175s]-Orucible for Quartz.-Can any oorre.
 wware What salts are used to reduce quarta. An answor will oblige - Jorn LE Bag.
[11754] - Polishing Dlamond.-I have a small diamond which has beou made too hot under the blowpipe, and got a coating on the surface which takes a way
its brillianey. I believe that there is a proeess by which his formation oan bo easily removed, withont the ronble or repolishing. I have tried varions chemica formed throngh your valamb e colamns what I am to do.
[11755]-Tempering Charcoal Iron-Wonld any ir your reade if so, how it is done? If it oannot be tom pered, is it possible to harden a \ddagger in. or ${ }^{\text {in }}$ in. rod throngh and throngh ? I do not menn to case hnrden the ontaide only. Can malleable cast metal be tompered or hardened throagh the eame sise of rod ?-W. G. L.
[11756]-Power of Wator-wheel-Wm any of crur numerous cor:espondents beve the kindness to diameter, and 221n. wide, the depth of buckete 9in. having an iron axle and rim, the othor parts of wood, sapphod by a reser coir 40 yards long. 7 yarda wide, and
2 yards in dopth; the water runs through a plpa 100 yards long, and tnkes wa seconds to run through, aud wator is allowed to ran 4 hours, 6 hours, or 8 hoars What is the horse-power of the wheel A Also what is the
best tap or a plag at the bottom of reservoir to prevent best tap or a plag at the bo
leakago ?-WATEa-wuERL
[11757.]-Boring for Coal.-Would any of your readers adrise me as to the bout an
method of boring for coal $? ~$
[11758]-English Mechanic Colony.-Is the Idoa
 " llexandra " or any one elso, please givo me any information about it ? -ayericus.
[11759.]-Oil Painting.-I have an old fower pleoe, apparently of the Ruglish sohool, signed "Gregory."
Can any subscriber say who he was, and at what time fourished $9-$ SHu $\mathbf{F t y}$.
[11760]-Soldering Jewrellery.-Will some praoti hal hand please say how the comunon gold jewellery is the artiole protected when applying the heat? I think the silver solder is too hard, as I ofien partially melt the job before I ann get it to run.-NEw Pivor.
[11761.]-Magnetism,-In the course of a series of lectures on "Mngnetism" dellivered here (Liverpool) on
the 22nd and $35 t h$ April, by Prol. Barrett, two experiments were tried, in order to thow the obsange caused by magnotisation in the capability of iron to condact IIght And heat. The Arat experiment proved conclissively that Leat is conducted by magnotised iron, quicker in a direotion transverse to the polar axis, than in one
parallol to it ; whilat the same iron fn ita ordinary gtate condnots hosit equally in all direotions. The second ex periment proved the increase of trangparency of iron A beam of limelight was cant on a screen, passing (the light) through a tube dilled with water, bolding in nagpeasion minute particles of oxide of fron. On an electrio current being passed round the tube, thue prodacing magnetisation, as great iacrease in the quanilty of light
transmitted was apparent. Now the beam of light was passed along the axis of this semi-transparent magnet; (which is similar to light in kind, though difering in transerse to the polar axia, than parallal to it What

I want to know is thif. Whald not the action of the hrangmiltted beamo of light be mach more apparent is it had boen sont across instend of along the polar axia of
the semit.transparent mannot PPorhaps some will feel sufficiently interested to try this experiment and report -sulta-Conatos.
[11762]-To take Honey from Bees by Using form me what quantity of chloroform is required to take form me what quanity of cbloroform is required
the honey from a hivo of becs ?-W. T. B., Belper.
[1176s]-Watohmating. - What kind of tool is penorally used for puttiog now eyliuders in amals
Geneva watehen? I think the Geneva tarns are tow Goneva Whichen? I think the Geneva tarns are tow
hoary. Woald the Engliah tarnbench do better?
[11764.] - Scrabber for Gasworks. - Could any reader inform me ho to make a sorabber for a paswork

- the size is to be 4 ft . \times 10tt.and how the pipes aro -the size is to be 4 lt .
[11765.]-Astronomioal.-A tyro in star gaxing wilk bo much obliged by the following query being roaponded to through the Enolise Mrchanio:- On What dave of igns of the zodiso cruss the meridian of Greenwich a mianight nearly?-0. A. 8 .
[11786.]-Plano in Canada.-I have (parchased in Cannda) a 7.octave cottage plano, by Holdernesse and milth," or other expert, tell me if there is any way of ittaching additional bracing to make it more capable of being kept in tune, as the great extremos of tempers-
tinre herre, with the dry stove heat fn winter, reader it diftoult to zeep a plano, especially of cottage style, in good playing order. Also the buss notes soana some I believe that there is a mode of "noeding " ap the face of the hammer to soften the tone. The cotion of the I may add that I can haudle toola and well as most Amnteura so could possibly add any bracloge necoseary
myself-H. E. K. Toronts
[11767.]-Horsehair.-Hortehair, after haviag laia In water for a oertain time (indefnite), twista and twirls diout in all diroouions, som times smmming seraigbt numerous knots arvand a plece of stick or straw, and as quiokly untwistling itsolf
[11788]]-Oheap Fllter.-I have made a cheap filter in the following way:- I have glled the hole in the oftom of fowor-pot with spongo, then placed a anjer
of charcoal, then a thick layer of gravel, and on patting he water in, it ran from the sponge in a stream, inatoad of dripping. Is that of any
can it be altered? -H . D. W.
[11769.]-Tricyole-Will some kidd reader finform of sorvice to and man tricyalo mado that would be walk? I have spent money on a four-whoel which is useless to me, as it is very heavy and olnusy. My iders throukh reading some ten volumes of "oura," are that maohine might be made very light (aay 601b.; aftor the tylo of one you akotched some three or four years aga: slonging to J . Hastingy, with dosoription. © propose
stronk wooden trame, very light, with two wooden lerers outside of frame to drive oranks attached to hind III. mall wooden tramo gog aown hill wind with long wooden lever to brake on groand. This brake power is ased about here to two-wheeled tracks haden with trait. A logg wooden lover is ntachoa ander tho truck, and aba weight of the lond on the lever behind I don't want to go ten milles an hour.-J. H.
[11770.]-Tragnetic.-I have a compass which I conidered did nut indicato with sufficient precision the position of north snd south. Supposing the magnetism It with a horseshoo magnet, but on replacing it I foand that it would not act at all, but stood anywhere, Joct Where placod. How in that? and how oan I remedy it:
[11771.]- Varnish.-How can I make a varnish that
[11772.]-Blaok Leoquer.-There is a black ueed pi palaters calloa black iacquer, for blacking ohimney pieces, ash-panse, co. Conld any ono inform mo how it is
[17778]-Cleaning Plain Blue silk.-Csn any contributor assist mo by kiving a rocipe to clonn phin
blue silk, that is not greasy but dirty My hasbsud blue Eilk, that is not greasy but dirty ? My hasban says the Enolise Mecranro is the only pablicalioa
from which I can get the information.-A MECEAnIcis Wirl.
[11774.]-Caulking Boata.-Can any reader kindly
inforpa me the beat matarial for oanking boata, and hor

[11775.]-Tugboat for the River Wye.-Can any reader tell me the best method of ancortaining tho velocity of a current over a weir, and of ouloulatung the horse-powor of an engine Which would be capable of
driving a Aleamer againat n given velooity of ourreat? Iriving a ateamor againat n given volooity of ourrear? Wish to bnild a tugboat for drawing empty barges ap

[11778.] - Commercial Geography.- Will some one, who is aoqualoted with the reyuirements of tho
Cambridge Looal Examinations name a text book, fo Which commercial geography rooeires full and reliathe reatment? The examinors complain in their las degree of acouracy a aimple question on oxports and importa."-Grinboore.
[11777.] - Postage Stamps. - Having colleoted a obllged to any one who cuald tell me of a use to pat
[11778.]-SWreoping Lachine. Will nome reader of the Macianio kindly toll me how I can make harp ourves? or is there any machine in use that would suit me? I also wish to know if thore is anything the
will prevent Portland stone from vegetating.-SwExp.
[11779.)-Photographic.-Will "Iodide" kindly send his farther proculsed communication on enlargement and resiniced paper
[11780]- TAohinery for Cutting Thnvelopen.Would any correspondent kindly describe the machine or machinery used in cutting and making envelopes of
verious sisee? Does it require a different cutter fox each different form and size? What gums are used and how prepared before being applied ?-TIP.
[11781.] - Tathe Query. - I beg to thank Mr. Vol. XIV. I have oarried it out, nnd they answer very
well. I ahould be still more judebted to him if he would deacribe the following:-1. A parting tool 2. A beading tool; there is a skotch of one on p. 557, Vol XIV., but I want to know how it is to be ground, what cort of cerrules oither iron or brase in the inthe, as I think it or fle. I have no doubt the answors will be useful to others as well as to-J. B. E.
[11788.]-Band.-I Fiah to form a band of English e the most suitable instruments along with concer inas? - DUET.
[11788]-Moltan Tenses.- Supposing I have arge plate of crown glass, and am acquainted with its optical propertios, and then melt it antil extremely mould whose inner surfaces are tarned true to the curves which would be required if the same plate of
glass was ground. The mould being overhead would all with glass, and its reapective portions being firmly held together would separate the inner glags irom the
onter. After also making a lens of fint glass on the above principle, and after carofally annealing the two, would they not act together jnst the same as if they had been ground ? If not, kindly show what would have artsen to prevent them.-ALpBa.
[11784]-Restoring the Colour of Marble Cantelpiece.-Can any oorreapendent inform mo how alab of which is stained, apparently by coal smoke? -
J. In
[11783.]- Tondon Bleokbeetles.-Can any of you: correspondents impart (from experiance, not from hear-
gaj) an effeotive plan for gettlag fid of the London Farlety of blackbeetles ? Past oxperiments prove tha they thrive and fatten on red lead wafers, phosrutite oontrivances as traps of stalo beer, treacle, \&o. A have taken to exploring the upper roome of my housebedrooma, batha, do., and bold nifithly maes meetings on the staircase. Aro the prosent resoarces of ecience dequate to repel anch an invasion 9-J. I.
[11786.]-To "J. K. P."-Will "J. K. P." be kind enongh to inform meis ho has sllowed in the distance from centre of lribe mendril to contre of serew for a
pinion on mandril and stad pinion to gear from ? pinion
[11787.]-FHectric Bignal Ball.-To Mn. Towrys. scribed by jou \& fow weeks baok, I find that whon the to the magnet ; and if I place it so far off that the spring will overcome it, the magnet has not sufficient power to attract it. If you would kindly tell mo how to remedy this I thould be greatly obliged.-H. G. N.
[11788.]-Bunions.-A friend of mine will be truly thankfol if any of your learned friends can give a per leot care for a bunion, not any appliance with a hole, bot anything that will disperse it or absorb it, as walk ing down Wolsh mo
[11789.] - Frieot of Temperature on Ala-I am brewar, and the ale I brew is very satisfactory in mila Weather, but when I send it out in very oold weather, 60*) it goes very dull, and if the heat is raised sgaln it comes bright. Can any of your kind oorreapondente give me the reason of thic 9 I think it is because my water It very hard. If it is so, I should like to know what to
do to it to prevent the above eifeot in cold weuther. do to it to
[11790.]-Photography. - Will some practical photographor help an amatour in a fix? I ind the
greater portion of my negative, after developing and fixing, marked across in diagonal lines oxactly in the direction the surplus collodion was ponred off the plate Whilat pouring the collodion from plate 1 koep it rook-
ing baokward and forwards. I thought, perhapa, colloing baokwarde and iorwarda, ithoughh, perhapa, colloWhabings I am told to throw in mome oommon malt, bat I cannof loarn about how mrah. The plan 1 thought of adoptiag is this : I have a cask oapable of holding about
four gallona, with a tap about half way up. I purpose four gallona, with a tap about hall way up. I purpose
slligg this with washinga of prints before toving (how much ralt shall 1 then add 7) and next day drawing of and throwiog away all the upper part. In what form solution at the bottom of calk? and how am I to know porilive ixing bath be used? If many times, bow am it to kuow when it ceases to act ? If only once, what quan
lity will be suitablo for (say) two dozen cartes 9 If a pegalive requires ten ecconds' exposure in the studio how long would the same require to be exposed in open

USEFOL AND SOIENTIFIO NOTES.

Deteoting Cider in Wine. The adulteration of wines with cider can easily be detected by filtoring aud mediately deposit crystals on the side of the teat tube Gonnine wine shods a palverulent deposit which does not adhere to the glass, and is devoid of a crystalline structure. Acetic acid will dissolve either of these pre-
cipitates. The deposit from the cider consists of tiat ryitas. The depnititrom the cider consibs of atar haped formations aides; trat from wine shows acia hown the presence of lime and phosphorio acid in bot cases, the quantity of lime in the wine being minute.
The Prizes of the Painters' Oompany:The edacational movement on the part of some of the London gailds is a good sign, and has not oome too son. tirely small way to offor medals and prompara works connected with ${ }^{1}$ the art and promiams for painting." The entject for which they offer rewards painting." The anhject for whioh they olfor rewards
to decorators, artinans, apprentices, and others, is described as "alto-reliovo and decorative painting," and the prizes, threo in nnmber, are-1. The Company's rilver medal and freedom of the Company; 2. The Company's silver medal; and 8. The Compan''s brouze Company's siver medal ; and 8. The Companys brouze
medal. Thene rewarda are open to any ander the age of thirty years, engaged in the trade, and residing within a radias of twelve miles from the Company's Hall. The specimens mnst be sent in between the 18 th and 25 th of May. It is to be hoped thut some good work will be elicited. The Company do not ank for de ingn, as the programmo nays the sobjects may be copied either from an antique bust, cast of ornamental groaping, decorative moalding, or otherwise.
The Royal Society Solree.-The irst, which will be the only soiree for the present year, was held on Satarday ovening last at Barlington Honse. The show of objecte was all that coald be desired, although there was no novelty of intense importance. In the philosophical groap there were many things photores-aoiably, in the arst place, Lord lad which photographs of the late solar eclipse, two of whic At the same tableoscopically with and important in struments by Mr. Browning, of which we may particularly mention telespectroscope for riewing solar prominences, in which a ray of light is sent foar times through compound prisms. The oryotals of gold, in er, ana owor metal ahown ander the zieroscop intarecting lormation, by Dr. Gladntona, wero very of water and was aiso the exporimental docompor conjunction and odide of ethyl raco-00mpotor more electro-zegative matal Galto deserves mention. It is applied at the Meteorological Office to obtaining from the curver of the dry and rot balb thermometers the rapoar tonsion of the atmosphere. By the cross wires of ${ }^{\text {two micro- }}$ pointer ing brag to rally on these carven on a carred tomplato as to canse the pricker of the in atrament to record perfectly the vaponr tension, which otherwise coald only be obtained by moans of complicatod tablea. A maximum thermometer of oxtram dalicacy, with index divided into tontas, so at to record to the one-hundredth of a degroe of Falarenheit, was con tribated by Mr. G. J. Bymona. Its range is from 65 o 85°, and is is calouiated to withatand in morrice a prossure of three tons to the square inch. simple hydrometor for obtaining the apecite graviHersohel, it wonsisto on, the index is atteched, and tho baring of mood, out to den nite lengthp, are simply immersed through the contre of the ridg, when the gravity can be read off at once on the scalo. Amongat the other interesting object in this groap were Mr. Napier's electro-magnetio ligh ooin rejector; tho Rov. A. Rigg's differeatimi nir-pres sure gage; the draving of a curve from actual analyces illastrating the accuracy attained in the standard Anenene of our Britich coinage, by the chemist Thomen's teating instrament for tolegraph cables, do.

CEIPS.

The very beat way to cloan a stained ateal knifo it to cut a solid potato in two, dip one of the pieces in briok dust (anoh as is nanally uned for knifo aleaning), and rab the blade with it.
Repeated spoctrosoopic measurements made last year by Protessor Zöllner and Vogol. in Germany, show that the velocity of rotation of the san on its own axis is at the rate of 660 miles an hoar.
According to the $\Delta b b e$ Moigno, in Les Kondes, violent thanderstorm at Rosano (Italy), bome woek ago, was acoompanied by a fall of pobbles, varging in
size from a small oob-nut to a large-sized pigeon'sogg.

Annealing 8teel.-Wm. Hamilion Hey (4018) will oxease my correcting his somewhat loose atate ment that heating stool to dull red in forgo and allow. ing it to ooul gradually in the ashea will make it soft exough for ail practical purposea, as when I hare liwibhod this note I shall place a piece of red hot ateal in onmmon samiust, and whon cool it will be tar soltar
than by the other mothod.-A., Liverpool.

ANSWERS TO CORRESPONDENTS.

-** All eommunications should be addreseed to the Editor of the Englisi Mrobanic, 81, Tavintoek-atroet, Covont Garden, W.O.

The following aro the initinls, ${ }^{\alpha c}$ c., of letters to hand ap to Tuesday morning, Δ pril 30, and unacknowledged J. B. Ward-Wm. Whiloman.-R. Pearson.-E. DeriaT. G. Nash.- Hev. G. 8 . Niohol.-Franols and Co.-Brown.-E. S. Hanter.-Juhn Datton.-R. F. Fairlia -Charlos Fletcher.-A Jovial Follow.-William Lea. Botion.-Haghes and Co.-C. A. Ball.-Rast-Tat.-Lancashire.- نharryeator.-F. N.-F. A. Buffham.-
Zete-P. W. H. J.-Bleachiog Powder. Zete-P. W. H. J.-Bleachiog Powder.-Ariel-Bed of Stone.-Paddy.-8. W. Burnhann.-Anglo-Celtic.-W.
E. Lee.-Rulph Lowdon.-C. H. B.-T. P. Barka. K. Glasgow.-No. 170-Amrotet.-M. A.-Go Ahead.-Adolescens.-Lancushire-J. N. Tuylor.-P. O. H.H. W. Ro-W. F. R.-Ethyl.-M. Paris-Alblereo.-Srd City.-A Novice-Philauthropiat.-Radex.-J. O.二 Senecio.-Fred. Harris.-T. O. H.-Kusticus.-G. J. C E. J. N.-Country Tinker.-V. -J. L.-Brake.-A Subscriber. - Musloal. - Excelalor. - Workman. Thetama -Not Prover.-W. H. B.-Samuel Kempling-Perry -Racmrdo.-R M. Hatch.-S.-Dexter Keen.-J. Star Ing. - Henry Page.-S. Bottone. - Wm. Tonkes.-
W. L. G.-H. T. N.-Rev. W. White. - Artillery Captain -Pattern Maker.-C. W. H.-F. A. Edwnrds,-S. H. I. Goyard.-K A. Proctor.-C. A. Bull.-John Rae.-C. H. American.-An Upholsterer.-0 8.-Clork of WorksJackion and Bhaw.-L. E. Redditt-H. S. J.-A. M. C. -V. B.-Americus.
Communications which onn ouly appear as advertisements to hend from J. In. A.. Bubscriber from the Firat, Bradfordian.
Firtle.-Have patience. If not anumered, it will appear In the list of unnnswered queries in due time Glaggow.-Consult indlces, and you will find in back numbera how to construct a telescope.
. B.-Consult indices, and you will and in back numbers the best way of cleaning old cola. We osnnot repeat questions for the benefit of occasional readera.
G. Choutre, W. Drew, E. Abmistrad, Pbo Rata, see Hinte to Correspondente, ${ }^{"}$ over Roplies to Queries. Astruch.-The article referred to was meraly a note bringing the subject before the medical profeasiun. The author has not publighed a book on Ib.
Ax Orficer.-Aunther correspondent has thin week pat a question ou the same subje
not satisfactory, write again.
E. I. G.-Yours, on "Ventilation" next weok, which E. L. G.-Yours on "Ventilation

DUPED.-If the maker of your Pulvermacher's chain will pot answer your letters or give you any information, we must a lso decline doing 80.
R. 8. 8-We have laid down a rule to which we shell adhere at all hazards, and that rule forbids ns to insort trading or commercial queries tave as advertiaemente.
Wegr Conkwall-A printer's orror
G. H. B.-We do not know of any work on bookbinding. Yon will tind plenty of information in rocent back numbers (espocially VoL XIII). Bookbinding is not an art. There are a row racts, termed the mod
W. H. M.-The inforrantion yon ask for about scientif W. H. M.-The inforrastion ynn ask for about scientific meetings for tho week fig given in the Athenaum, the
Society of Arts' Journal, the Daily News on Mondegs, and other papers.
B. C. Honigre.-The treatise has not been pablished in a separato form. For second query write Trübnar rnoster-row, hondun
Parszosy, 8. Masox \& Co, and R. W. E.- Your queries H. C.-Works on telescope have been mentioned in oar pages agalo and again.
W C.-The reason why the query was not inserted was that a similar one was inserted and ansmered a fow
W. M. Flindirg Petrr. - See our reasong in the last and precoding number
the metrio nyatem.
PRNEOs.- Inquire of a newagant
Partomian Schoondoy.-Answered by others.
PaUl Grin-II the controversy on the decimal system were nut terminated, your letter would certalily ap pear; but thero has been too much passion and pro Judice imported into the contruversy to justify its continuance at present. If, at any fatnro time, a
disonssion on the question be recommenoed, wo hope it will be considered on its merits, without linking it wh the vioes or the virtues of the Fronch Revolution Wo bellove the decinal system will ultimately prevai or the seme reason that we bellove in the "anrvival of the atrongeat."
Reader-Good food, and plenty of oxerolse for your
frst two reynirements. A course of gymastios will frst two reynirements. A course of gymnastios will aid in acquiriag your third, if you are nuturathy of a robust hadi
H. Axox and J. B.-Consult a modical man.
P. G., W. G. B., Edgar David, J. Gathrio, J. B. P. Dar lington, E. L. E., J. L., One in a Fix, Euigrant, aud Touchweight, nre roiorred to lasices ho back vols. was F. Welle.- The whole process of load
given in Vol. XIL., pp. 211,356 , and tioj.
T. CRawfond.-For cement for aquarinma, see p. ©ik3

 graphic derartment of tha nogtal service. Write to
the Saperintendent of Telegraphs, Telegraph-strect, E.U.
A. F.-A description of the T.eclanché cell will be found on p. 568 , Fol. XII, Na 310 ; sfe nlan p. 616, No. 31.3.
 Ec. Have Yon rend
H. B. E.-For information on water velocipedes, sac p. 75, Vol. IX. ; p. 121, Vol. X. ; And p. 69, Vol. XII. We do with the mechanicalinenentions at the Lnternational Rxhibition.
Barmes Richards (Penzancel-We know of no prbubhed gnide or handhook to gavertifing, but sinne
dally practisen hy canrassers nod othrrs. Advertisers have, however, th thank the wselves in a great measare
for it. They will follow each other like foeks of shopen jor it. They will follow each other like focks of shpap
mato journale that bave little or no circnlation, and mnto journale that bave little or no circnlation, and negleot journale of wide circulation. There is, for Which bas not one-twelfth of the circalation of the Erourge Mrchanic, hut it bas twice the number of advertiears. Some will abl, why is this? Becanse the madd journal paya men an enormons percentare to oanviss for advertisements, and those conviasaers, not boing very scrupulous in the statements they manke. manage to throw dust in the ejes of advertisers, and
so victimise them.

The "Buthonne Nowf," No. 203, April 26, Contatya

THE DTVENTOB.

APPLICLETOAE FOR LETTERS PATENT DURIGG THE WERE ENDING \triangle PRIL 23, 1872
 M14, H. Btephent. Bronea, and J. Harvey, Wendron, Corn wall, ormek and in mpparatas emplyyod for theve parposes. apparatas for raiding and lowaring oarriage stepp.
118 T. Y. Palmer, Dala' on. for an improved method of and 1277 F. A. Harrign and C. Prientiand. Birminghana,
1119 H. Olayehar, Nowport, Iolo of Wight, for trmprovements in
11100 e. Hepparn, Livarpool, for improvamonta in governars for

1181 D. MoC. Bmyth. Orange, ס.8., for Improvemente in mewing
uno 0. a. Vanables, seceox-rond, Youngton, for improvemonts in

disad for Door or other caoki, for improvements in eell-acting
Lhas Wip Lake, 8 oruthaspton.banditngy. for improvemente in
118. A. F. Nowron, Chancery lione, for an Improved mode of commaniteation.
1087
$A . R$. Dapean and J. Maenaughton, K 1 inharsh, for im.
 tin thoen and boote. Craven-ballalinga, Drurg-lana, for improvements 1139 E. EdTarial. Sonthamenton-bullaings, for improvemonta in

 inbrioe
 114 J. W. Farpor. Stownarket. for improvemonts in thi
 1146 J . Perif, Middlesborougb, for improvementa in reverbera. $11 / 7$ \& Burlow, Oldham, for Improvementa in apparatas for tho

 1151 J. I. Norton, La Latato aill, 'or traprovemeng in the minn

11s: C. Jacison, Birmingham, for improvements in sewing
 pumpe or svinges

 or nther admixt area.
 11 S. J. Brool. Weatborano.terrace, Middilosex, for tmprovemonts 115
1150 c. Callow, Lancashire, for improvements in tooms for
1100 S. Brooke, Yorkshifre, for Improvements in carding encinea.
 111 Ii. Warry. Parkstono, Donnotahire, for improvemoxta in
 Te. ts of wet or montsure. A compunication.
 prapeller.

 InTo S. Campholl. Fonnders ennt. Csty, tor improvements in the

1173 8. Kay and r. Kay, 8 torekport, for improvaments in foeding
 1174, R. Wilson, Sancheater, for Improvemente in hydraulic
 mutrinals. A comaunication.
 and
cation J. Hawkor. Chart, somerret thitre, int imprnvements in

 Rachitery. A commundiation
 11R0 Fr O. Firurry, Bonthwark, and A. Tylor. Nowrato-ntront. ontrollug snd arrestiag thy fow of liquid.
 Denornndum paper or air vertisement atheet theonmumicnulion.
 1188 C. E. Aaton. Brmmingham, for improvomenta in connec.
 aptole tery parpones.
Lat II. C. Brigze and D. R Yemeay. Soltburn-brthe Sea, apparatui to bo uved in connection with rolury or utiler paddliog
118s W. D. Scett, OLasgow, for Improvements in governors for $\underset{\substack{1783 \\ \text { motire- } \\ 1198}}{ }$

1 1ir 1 A. McGreqor, Lancashire. for tmprovements in the con
1188 R. Rhaw, Higher Wulton, Preaton. for Improvements In
druwing rames used in the preparation of cotion and othor blarona

 uit nud water encitios, atr and watar pumpa, aud other machines
white the sume sto in inotion.
 $1193 \mathrm{~W} . \mathrm{B}$. Thelwall, Opper Holloway. ifr improvemodta in the
 1199 F. J. Hill, Pitulle, and J. L. Clark, Weatminst or Chambers,
 partually pulvoried ares and sobetancol

 in livi G. R E. Pirithilme, Roxbargh, Bcotiand, for Improvemente
1124 R. Johnoso and A. Johnson, Letceutar, for an Improved
 1.00 J. F. M. Polltivk, Nemthwn. Leods, and J. Mitchell, Brad-

 1203 H. B. Betlow, Manchestor, for Improviomenten in apparatus
tor cooling wort and other hanids. A commanicatlon. press tor priuting and copyiug. altera. W. Ferry, Southamiton, for improvements in cistern

patents bealed.
 manm wian or nollaino
 2115 .1. Petrife. for improvementa in valves of athame ongtice.
2915 B. T Haghes, yor an improved uquid moter.
3918. J. Bellern nd E. Hopkininon. Ror an fmproved meehton or
 pana G. A. Firion and P. C. Fivian. fors a mevol obomicel nown2833 J. F. Wannope, for Improromanta in the ormamentthy of
و293 T. K. Maoe, for tmprovementa in hate.

 pa 28 is J. J. Tamer, for imninvomants in conatracting the wheal of railw 45 and tram wiy rouliag ntick.
294. W. T. Snke, for improvoments to apparatan for deteribationg 2367 E. T. Hagha
as, for improvemonta in hadro.motorn:
R. Lake, for improvements in aewing mashinea.

gres. W. Symons. thr impmovemants the the constraction of tho rramework or huil of atipa and vosieits.

387 H. C. Lawnon, for improvements in herreating mechinee.

seis P. P. W. Wobb, for improvements in lecomotro engtace and niwhy breake.

293i R. Whoder, for Improvementa in atoan ploughc

\$pin W. Waylog, for improvemente in rallor blase trexiture or
${ }^{3177}$ A. V. Nowton, for tmproved machisery for printitig trown
bsss E. Bntwitito, fer Improvementa in rallwny signale.
 60 ©. Lemin, for tmprovemenata in ploaghs
283 II. W. Ripley, for tmprovementa in colouring fabriter.

 way trina.

 parposes, eappecialis epplicabio to
 reon 9 O. Oroon. Ior improvementa in appastas for ceparatiag orea and otber matertials.
2933 J. H. L T. Portnor, for improvementa in sewring meahime. 29:9 J. Jnrin. for imurrorements in atomm balibers and ia accagge aid A. Mtw, for impravemonte in mechloary or apparaten so bo 301 i. A. P. Tronchon, for improvements in the conatraction of
counters ior cabo, curtuingo, or ot har robicles.

 8,79 J. H J.hnan, for improvements in artincial deatares and

 253 B. J. B. Mills, for Improveroents in seal locks.
sus W. R. Lako, for an improvod wood pavomant.

 apmaing buthee nut wher tite roseptacles.

s11 W. r. Lake, for Improvemente in breech-londing groerme.
 cos W. Weidon, for tmprovemente to troetheng and applyiag
 hectr appluc
to
same.
©so J. Sallivan. lor improremonte in ohamber vecele:
070 W. R. Lake, for timproremente in rallway nill.

The etulisht gittchanic
 WORLD OF SCIENCE AND ART.
 FRIDAT, MAY 10, 1872.

ARTIOLES.

THE ENTOMOLOGIST'S HOLIDAY.

WITH the increasing warmth of the now rapidly strengthening spring many of our numerons insects are putting on the holiday garb of their ephemeral existence, and beginning to quit their winter hannts for the scene of their short bat too often mischievous career. Their ardent admirers, the Entomologists, who may be considered as their devoted friends, though probsbly regarded by sundry species of batterflies and moths as their inveterate enemies, are also on the qui vire, and are diligently preparing their paraphernalia for the coming campaign. The Lepidopterists and the Coleopterists - the mothhanters and the beetle-catchers-are setting in order their nets and their hilling-bottles; examining their cabinets for vacant spaces and moting down the species wanting. As soon as the warmer nights set in they will be out on foraging expeditions, searohing for the beantiful ornaments of the woods, the coppices, and the fields as ardently as astronomers examine the markings on the moon or the rings of Saturn. Entomologists, however, have an advantage over the astronomers ; for while the principal objects of interest to the latter are only to be seen at night, the enthusiastic insect-collector may pursue his hobby at every hour of the twenty-four. We are not concerned to defend our friends from the charge of cruelty which may be brought against them by ultra-sensitive minds, so long as they capture moths and butterflies for a higher parpose than the mere pride of exhibiting their achievements ; for even Tennyson's sweet-hearted young lady "whose light-blue eyes were tender over drowning flies," would, we imagine, offer bat a feeble opposition to the atter destruction of every thing termed a " moth." As a matter of fact, however, the stady of Entomology in all its bearings is a subject of the first importance to the farmer and the practical horticulturist, if the traths which it teaches are rightly read, and the knowledge gained turned to account in a scientifio manner. This, it is trae, involves a knowledge of the life-history of the insects from the egg to the perfect state; but as this is not to be acquired in a day or in a year, but only by patient and unflagging observation, we have thought it probable that if a taste for collecting the more beantifal specimens of the insect world could be infused, the contemplation of them might lead to a desire to be better acquainted with the different phases of their lives, and so, step by step, to a knowledge of the humbler denizens of our caltivated fields, which though less attractive to the eye are often far more destructive in their operations. Science, we know, should be parsued for its own sake ; bat science, with too many, means flashy experiments and attractive sights, without which bat little attention can be obtained for even the most entertaining and instractive subjects. It is, therefore, with an alterior object that we lay before our readers a fow hints for the capture and preservation of moths and butterflies-viz., in the hope that at least a moiety of those who may endeavour to make a collection will pursue the subject further, and turn the knowledge so aoquired to scientific parposes.

The net forms the most important part of an entomologist's equipment, and there are as many designs for this implement as there are days in the week. The one most commonly used, however, and the most serviceable for beginners, consists of a light steel ring, jointed so as to fold up into small compass for convenience of carrying, and provided with a handle, which may be made to screw on when wanted for use. But a more easily made and just as serviceable form is the caue-net, which consists of a tubular Y or T ahaped piece made of sheet brass or tin plate, into the arms of which the ends of the cane are secured, while the leg forms a socket for the insertion of the handle. There are also the clapnet, the umbrella -net (a folling net patronised by
many), and a get with a handle about 20it. long,
supposed to be necessary for capturing some species. Possibly the best material for the "bag" of the net is grensdine, bat this is rather expensive; book muslin answers all the purposes of beginners, and is generally used. Some lepidopterists prefer a black-coloured net for night work, as the insects can be more readily distinguished; but white should always be preferred to green for day work. The bag should be made tapering, with the seams outside; about three-fourths the length of the colleotor's arm ; and if the ring is of steel it should be covered with thin lesther. A collecting-box is not absolutely necessary, but it is at all times convenient. It should preferably be made of zinc in order that the cork may be damped-a very requisite operation on a hot summer's day. With the box, a namber of pins should be carried (No. 10 is the most useful size) or pinning the captures to the cork, and a number of pill and ointment (chip) boxes, previously strengthened by pasting strips of thin calico around the joints, and with four or five small holes in the bottom. Some method of killing, or at least stupefying, the captives is essential, or on returning home after a long day, many will be found to have nearly knocked themselves to pieces and irretrievably damaged their beauty. For this parpose there is nothing better than the cyanide bottle, the mode of preparing which has been desoribed in these pages. It is merely a tolerably wide-monthed bottle, on the bottom of Which a layer of cyanide of potassium is spread and covered with a thin stratum of plaster of Paris. When the plaster has set, three or four pieces of blotting-paper are laid on it, and a good tight-fitting cork, sealing-wayed at the top and upper part of the sides, completes the killing apparatus, which will last nearly the whole season if kept cool and properly corked. If the collector is without a killing bottle, or wishes to stape!y a epecimen confined in one of the chip boxes, it is only necessary to dip a very small piecs of blotting-paper in a solution of the cyanide, and drop it into the box ; bat this will require a pair of pincers, or miniature tongs, in order to hold the paper. A bag or basket of some kind is slmost a sine-quâ-non if we would return with our treasures uninjured-a fisherman's basket, which can be instantly detached from the shoulder-strsps answers very well. These will about make up the complement of the necessary apparatus for an ordinary daylight excarsion when Lepidopters are caught on the wing or "settled;" but if the night-fliers are sought, which are generally captnred by " sugaring," one or two "weapons" of a different kind will be found requisito. The first is, of course, the sugar itself. Opinions vary as to the best compound, but the tyro will find the following probably as enticing as any :-Boil equal parts of treacle and "foots" with sufficient beer (stale will do) to make the mixture work well with a brush, peither too thin nor too thick. Place this in a bottle or the regulation sugaring tin, and just before starting to lay your traps mix with it a small quantity of rum-not too mach, or the moths will fall off and be lost in the grass or nnderwood. Begin to sugar as soon as "dusk" has fairly set in, choosing trees with rough bark at intervals of nine or ten yards, and putting on a narrow streak about a foot from the ground up to the height of the face. Where there are no
trees, bushes, thistles, and the flowers of ragwort and umbel-bearing plants may be tried, tufts of grass, and even good-sized stones. The sugaring performed, the woald-be collector must trim his lamp and see there is no scarcity of oil A lantern with a piece of plate-glass for a window is better than a ball's-eye for "sugaring," but there should be a cover for it and a strap so that it may be hang round the neck or carried in some way so as to leave both hands at liberty on an emergency. As a rule but little difficulty will be experienced in securing moths at "sugar." They may be boxed-off on the tree, tumbled into the cyanide bottle, or netted in the usual " sugaring' net. This latter is made Y-shaped or V-shaped, by securing steel wires into a socket of the requisite form, and connecting the ends by a picce of flexible wire or stont string, or, indeed, any material that will yield to the shape of the treetrunk when pressed against it. It shonld be of a size convenient for supporting it by pressing with the leg against the end, so that both hands can be used for boxing or bottling, while any insects that fall are received by the net. A catching and pinning box is used by many, which is
constructed as follows:-A wooden or very stout cardboard tabe, at least 2 in . in diameter and about
strong network (fine brass wires secured in holes at the sides and crossed would, perhaps, be an improvement), and about half an inch from the other end a slit is cut transversely for half the circumference, in which a circular piece of tin, zinc, or cardboard can be slipped so as to close the tube ; a piece of cork, of nearly the same diameter as the cylinder, to which a short rod is attached, completes the apparstus. The method of capturing with this consists in placing the end of the tube over the moth, which flies to the netted end ; the diso is then slipped through the slit, the cork piston inserted into the tabe, and, the disc being withdrawn, the cork is pashed towards the netted end, by which means the moth is easily pinned through one of the meshes and drawn out with the cork.

We think fe have now mentioned all the "weapons" necessary for a fally-atmed collector, and we have left ourselves but little space to speak of the modus operandi of the art. As to giving any description of the species to be sought after and prized, it would be useless here, as a great deal, of course, depends on the natare and general characteristics of the hanting-grounds within reach of the entomologist. In and near London, Epping Forest is probably the best spot, especially those parts which, some distance from the " line," are beyond the usual range of the army of collectors who visit that locality. All woods are likely places, particularly in parts where trees have been felled and clearings made ; so are parks, with their old trees and young plantations; hedge-rows, ponds where there is abundance of vegetation, chalk and gravel pits, and for some species of night-fliers the gas-lamps or the windows of an illuminated room. Just as in other parsuits of life, the collector who works with his head, and saves his legs and arms until their energetio ase will really assist him, is invariably the most successful; a knowledge of the habits of the varions species, the time and manner of their flight, the plants they frequeut, and the varions other minutime of the art, is of course of great assistance, but much of this can be aoquired from manuals specially devoted to the sabject, and a little practice teaches more than volumes. The enthasiastic tyro who has been rushing about all day, and, perhapa, succeeded in capturing half a dozen butterfies, which he has utterly spoilt by his rough treatment, is apt to be disappointed when he examines the "bag" of a more practised friend, who has merely pitched on a likely spot and waited his opportunity

There is, however, one method of capturing many species of Lepidoptera which requires but the minimum of time and patience. This is hanting the sallows in the spring and the ivy in the autumn; for when in bloom their visitors very rarely leave till they have recovered from the effects of the absorbed nectar, and so fall an easy prey to the collector. For this parpose a hooked stick, a shallow net, a ball's-eye lantern, and an umbrella or a gheet, are the principal require ments, with, of course, the usual boxes and kill-ing-bottle. Having ascertained the whereabonts of the bushes, choose an evening free from wind, and with the net carried a little below and in front of the lantern examine the bushes. The moths being intoxicated frequently fall into the net directly the light is brought near them; and, if not, a gentle tap with a stiok on the branch wil insure the capture of the victim. For branches out of reach the umbrells is held open underneath and the moths gently shaken off the bush; or a sheet may be placed around the roots where the ground is suitable. Warm dark nights, with a light steady wind in one quarter, will, however, rarely fail to yield a goodly number of moths a sugar, and even moonlight nights are not slways barren of game. Great care, is, of course, necessary in removing the captive from the net; but by the exercise of a little skill, without exaite ment, a very fow trials will make the tyro proficient. The net must be so held that the moth cannot fly out, and a lidless box being taken in one hand is passed into the net and over the moth and grasped by the other hand from the ontside. The free havd is then at liberty to take the lid and carefully slide it between the top of the box and the net, and so the insect is captured withont damage. Such are some of the radimente of the art. The names and oharacteristios of numerous species can, of course, only b rom voluminous works and catalogues, or collcetions; permission to view is genera by nearly all Entomologists, and noth calculated to infuse the spirit of emal good look at an exteneive and well-

In these columns we shonld not have space to mention even the names of all the British Insects, but we may at some future time give some hints on setting and arrangement. In the mean time, we hope those who may "collect" will not rest satisfied with mere admiration of the bearties of their captures, but will endeavour to acquire a knowledge of their life-history and of their purpose in creation.

NOMINAL HORSE-POWER.

I^{N}N an article on the rating of steam-boilers, which appeared on p. 28 of our last volnme, we drew attention to the desirableness, indeed, the necessity, of adopting a general and wellunderstood rule for estimating the horsc-power of stesm-boilers. A very large number of purchasers of steam-engines and boilers are uninitiated into the mysteries of calculating the power which those machines are capable of developing, and being utterly at a loss to comprehend the formula being atterly at a loss to comprehend the formula power are easily deluded by desirning manufacturers. We do not wish to insinnate that makers as a rule are in the habit of deceiving unwary purchasers, but, like most other businesges nowadays, there are manufacturers of engines and boilers who do not hesitate to represent their goods as being capable of accomplishing an amount of work which on trial it is found impossible to obtain with the sarronnding conditions. There is, it is true, some little excuse for this method of conducting business on the part of the makers, for so long as there is no recoznised rale for ascertaining and stating the powor, the seller may say that it is no part of his duty to inquire under what circumstances the buyer intends to employ the engine and boiler he parchases. They may be capable of indicating the power stated when worked at the requisite pressure and piston speed; but it frequently happens that this part of the calcalation never troubled the purchaser, and as the seller did not choose to enlighten him, he speedily finds himself disap. pointed and considers himself deceived.

Nominal horse-power is at the present time a mere name, possessing no definite value-being, in reality, rather more delusive than instractive. The rule lad down byWatt, calculated for a steampressure of 71 b . per sq. in. did very well for the parpose at the tine, before the steam-engine had reached its present development, but it is quite jusppropriate now that the average pressure is something like 491b. on the sq. in. Still, if Watt's rale were generally adhered to, the expression "nominal horse-power" might not be 80 unmeaning as it is, because it wothld be ensy to find out exactly what was intended, but the method of calculating the nominal power varies in different parts of the conntry and with different descriptions of engine. According to the Admiralty rule the square of the cylinder's diameter in inches is to be maltiplied by the piston-speed in feet per minate, and the product dirided by 6,000 ; but on the Clyde and in the North of England, where large numbers of engines are made, a nominal horse-power is reckoned for every 30 circular inches of piston area, counting both high and low pressure cylinders; while on the Thames 17 or 20 circular inches of piston are talsen to represent a nominal horse-power. Again, the Royal Agricaltaral Society, in order to guide the farmers, adopted 10 circular inches as the standard in estimating the power of portable engines -a rule generally accepted by the makers and engine. Besides these, there are numerous other rules, giving results which differ from one another, and affording anything bat an accurate idea of the power actually to be obtained.

Indications are not wanting that a remedy for this state of things will shortly bo proposed which will possibly receive the sanction of authority, and so settle a vexed question. Torrards this desirable solntion of an acknowledged difticulty, Mr. J. Macfarlane Grey, M.I.M.E. and N.A., contributes an able paper (to the Nautical Magazine), and though it is devoted to a consideration
of the question as it affects marine engines, there of the question as it affects marine engines, there
is also much in it which pertains to stcam-engines geucrally. After pointing out that the Board of Trade should insure reliable information as to the power of the machinery in emigrant ships, he proceeds to lay down the principles on which the power of the engines should be estimated.
The primary source of the power being the fuel, The primary source of the power being the fuel, first element of the sum. This Mr. Grey puts at one ton of steam coal a day per foot of furnace
width, irrespective of length of bar. After calculating the quantity and the power of the steam thas produced, he proposes that the nominal horse-power of the marine boiler should be taken as 20 horse-power for each foot of furnace front. Tarning to the engine, he proposes that 10 circular inches of piston ares should be taken as a nominal horse-power, connting only the lowpressure pistons in compound engines, whioh corresponds to 141b. effective pressure, and a piston-speed of $300 f t$. per minate. It will be
observed that Mr. Grey proposes to reckon only observed that Mr. Grey proposes to reckon only
the low-pressure pistons, a point on which he differs radically from the custom adopted in the North. His reasons for this we give in his own words :-"The high-pressure cylinders do not add to the power of the engine. A horse is no higher becanse yon have used a stepping-stone to get on his back; the stone is not added to the height of the horse. So with the compound engine; the high-pressure oylinder is only a stepping-stone dividing the work to be done, but not adding to it. To include all the cylinders may or may not be a convenience in the buying and selling of engines, but in a rule for horse-power it introduces confrasion, and I apprehend that, even commercially, the high-pressure cylinders have no more claim to be incladed than the surface condensers, or any other adjunot distinguishing a type of engine."
In order to ascertain the "nominal indicated horse-power" he proposes to add together the nominal horse-power of the boiler and that of the engine, and the formala comes out thas-

$$
\text { N.I. H. P. }=\frac{D^{2}}{10}+20 \mathrm{~F}
$$

where D^{2} is the sum of the squares of the diameters of the cylinders, divided by 10 ; to the product, 20 , maltiplied by the width of the furnaces in feet, is to be added, and the result is said to agree very closely with the average indicated power, when there is surface condensation. With the jet condenser $17 \pm F$ is to be substituted for 20 F . Mr. Grey also gives formula for ascertaining the power when the expansion and pres* sure form portions of the calculation.
So far as marine engines are concerned, therefore, the prospect is fairly satisfactory, for it ouly remains for some of the principal persons concerned to accept Mr. Grey's proposals or im. prove apon them to induce the Board of Trade to make regulations with which we imagine the majority of marine-engine builders would readily agree. This portion of the matter, however, is surrounded with difficulty in conncotion with landengines; for though one of the Engineering Societies might be induced to publish a rnle which would answer all requirements, it would not be able to enforce its observance, although, as a matter of fact, of course, obstinate makers would be in the hands of the buyers, who could refuse to purchase of those builders who deolined to adopt what would doubtless become an almost universal system of rating. It may be remembered that in the artiole previonsly mentioned it was stated that the Committee of the Franklin Institate regarded their report as a preliminary one, and solicited the results of investigations from all parts of the civilised world. There is, therefore, an excellent opportunity for one of the meohanical societies of this country to join with the Franklin Institute in establishing a rale which would be roougnised at least in all English-speaking conatries.

As a matter of fact, whatever formula may be adopted for this purpose, it cannot be accepted as the true messure of the capability of any engine-the power actualls indicated in working can alone be deemed satisfactory; nevertheless the advantages of a commercial unit of measurement are so self-evident that it is worth while inquiring whether there is not some way of stating the power developed noder certain circumstances which shall be accurate for the given circumstances and be readily caloolated for altered conditions. Thns, as suggested by Engincering, whose remarks on this subject we print on another page by way of corroboration, if an engine were rated and sold as "80 O. H. P. ($60 \cdot 5 \cdot 400$)" which would mean that it was "caloulated" as capable of exerting a power of
cighty horses nuder steam of 60 lb ., expanded fire times, with piston speed of 400 ft ., a definite idea of its capability would be farnished, and the purchaser would be enabled to ascertain what its power would be under the special oonditions of his own requirements. There will be little difficulty in framing simple tales by which to determine the "calculated indioated horse-power" with Mr. Grey an approximation to accuracy as those o

The "rating" difficulty is, however more easily solved with marine engines, for the simple reason that boilers and engines ann be reckoned, as one machine, the sole daty of the former being to supply the latter; but, as a rule, boilers employed in workshops have to supply steam for other parposes than driving the engine, such as heating, washing, steaming, \&c., and hence the necessity, if the rale depended partly on the size of the boiler, that the "rating" chould specify the elements on whish it is constructed. Some recognised unit of measurement is certainly Fanted, as much for the security of the bayer as the oredit of the seller.

THE SUN AND TERRESTRIAL MAGNETIBM.

TTHE nature of terrestrial magnetism is bat imperfectly understood; and the thoughts of physicists are much engaged upon it. In a recent rescarch by Professor Osborne Reymolds, a theory is ennnciated, according to which the earth's magnetism is produced by electrical influence from the sun. His reasoning, briefly stated, is as follows:-
If an electrified body be placed near a moring conductor (such as an endless metallic bsad), it will indace a charge in the latter. This charge will remain opposite the electrified body, and the effect will be the same as if a current were moring in the conductor in an opposite direction to that in which the conductor moves.
Suppose, instead of an endless band, we have a steel or iron top spinning opposite the electrified body, the electricity induced on tie top will hare the effect of a current passing once round the top of each revolution. And this effect will be a magnetisiag of the top, the position of the poles depending on the direotion of the top's motion, and the kind of electricity indaced. The production of such a carrent was proved experimentally. On a plass cylinder 12 in . long, and 4 in . acrose. were fixed strips of tinfoil parallel with the axis. These strips were 6 in . long and $\frac{1}{2} \mathrm{in}$. Wide, and were separated from each other by the two-handredth of an inch, except in one part, where there mas a wider interval, and the strips on each side of this were connected by a commatator with the wires of a galvanometer. The cylinder was then made to rotate rapidly before the oonductor of an electrioal machive. The galvanometer needle was deflected at times as much as 20^{2}; the direction of deflection depending on the direction of motion, and the nature of the electricity induced. This, then, may be taken as proof that a magnetising current wonld be produced in the steel top, in the case previously supposed.
Now, the direction of the earth's magnetism has a close relation to the earth's shape. But 28 we know it is not in any way the canse of this shape, we may suppose that the figare of the earth, and the rotation which causes the earth to keep this figure, has something to do with the production of magnetism. There mast be some influence at work, which, along with the earth's rotation, results in magnetism. What is this intuance?

Many things show that the sun has some connection with magnetism. If, then, we peek this influence in the sun, we cennot suppose it to be the result of the sun's heat, or light, or sttrsction. But, if the sun were charged with negative electricity, it would seem (reasoning analogically from experiment) to result that the earth woald become magnetic, the poles being as they are.
The only other way in which the sun conld magnetise the earth would be by magnetism of its own, the sun's poles being opposite to the earth's poles. Now, this maguetism in the san might be caused by rotation of the latter under inductive aotion from the earth and planets. The direction of rotation being the same, the elfoctricities opposite the magnetism woald also
be of the opposite kind. Thas the by boti causes. Connected with the foregoing re search are some interesting observations Professor Reyuolds bas made on the nature of the solar corona. From photographs of the eclipse of 1371 a very clear idea is obtained of the appearance of the corona. The distingaishing features of it are chiefly these four :-

1. Its rifte and general radiating appearance.
2. The crossing and bending of rays.
3. Its self-luminosity, as spectrosocpio obser4. Its have shown.
4. Its ohanging and fickering character.

Now Profegsor Reynolds was enabled to obtain
electrical action, and in the following manner :He cansed olectricity to be discharged from a brass ball placed in the centre of a partially exhausted receiver, and supported by a brass rod coated with indiarubber, this rod being in connection with the machine or coil. It was negative electricity that was discharged into the globe, and it probably discharges itself on the inside of the glass, inducing a corresponding charge on the ontside. Using a large coil and exhausting the receiver down to half an inch of mercury no corona was geem; the air was gradually let in and a rariety of appearances followed. At first it seemed as if a mass of bright serpents were twining and untwining round the ball, then these were transformed into the branches of an oak, and then a faint corona appeared among the branohes like a radiating envelope, while, as the pressure increased, the oak branches gradually faded awsy. The diameter of the envelope was about three or four times that of the ball, and it was atrikingly similar to the solar corona in those features of the latter above referred to. It was
best seen when the pressure was about 4 in . In one point this corona differed from the solar corons. The shading off of the light in the latter is much more rapid than in the former; but if it were posaible to make the pressure vary in the receiver this difference might be done away with. In this way, then, according to Professor Reynolds, the theory of an electrical influence in the sun receives further confirmation.

THE WAVE-MOTION OF THE SEA.

IN estimating the motion of particles in the mass which forms a ware, theire are two work on the sabject), which are not generally taken into account. One is, the motion of particles, which, being cooled at the surface through evaporation, descend, from increased specific gravity, giving place to others which are less dense. True. in the case of waves, there is a and the cooling is less than on a calm sea. Still, the phenomenon is not to be neglected, as the wave-surface is not always in a state of overturn, and the particle's motion in the wave is affected by this other. The second is, the extent to which the molecules are affected in a vertical direction by the action of a strong wind blowing continuously. It is known that such a wind will produce a horizontal current, varying with the depth and with the force of the wind, hat it is fonnd the wind produces an effect at depths considerably below the mass of water which is set moving horizontally. Thas it has been proved that waves break up the materinl at the bottom at a depth of 200 metres in the ocean, and of 80 metres in the Mediterranean.
Most of the writers who have treated of wares have taken for their example those circular waves which arise from the fall of a body into a liquid; but waves of this kind are hardly to be compared with the long parallel waves produced in the sea by wind which strikes the surface at an angle of about 18°. In the former case molecular forces and elasticity have a large influence, while the axternal action of wind has no place. In every case in which the wind strikes the waves, the arrest in development of the undulating mass must have important influence. The action of wind, therefore, and the reaction of the bottom of the sea, should be especially stadied by those Who would explain wave action satisfactorily,
and the results, from experiments made on a small cale, are operations of Nature. In the present case, a direct stady of these operations is more producive than the study of artificial phenomena.
The wave, in its normal state, may be regarded 88 consisting essentially of two planes equally
inelined. \AA flosting body, rising on one of these planes and descending on the other, is (by the lap of gravity) retarded and accelerated in such a way that if no other force were acting, it wonld remain at the same point, without partaking of the wave's motion of propagation. But, practioally, it is otherwise. The curved surface of a ship's hall receives a series of shocks from the rising motion of the waves, and (snpposing the molecules of the wave do not rise in circles) the horizontal components of these tend to push it forward in the direction of propagation. The
force resulting from these shocks is, however, far lorce resulting from these shocks is, however, far
from imparting to the ship the speed with which height or velocity, there must be a considerable
extent of surface and depth of water. It is on this acconnt that the wapes of the Mcditerranean are less high, voluminous, and rapid, than those of the ocean. In the open and deep sea, the dimensions and motion of the waves are generally in proportion to the velocits, inclination, and extent of action of the wind, and follow its direction; but when it becomes very furious, the height and volume of the waves diminishes sensibly. When, however, the wind is of long daration, of force not excessive, and acts on a large extent of surface, the size and specd of the waves continue increasing.
Near the coast, the progress of the waves is very mach retarded and altered by the obstacle which the bottom presents, and also by the materials with which they become more and more charged as they near the shore.
We may further notice that the undulation caused by tempest in a given place is not the effect of the immediate action of the wind in that place, but arises from rupture of the equilibrium in circumjacent columns of wator, and the transmission of shoeks from these. For this reason, sailors are often able to know of a storm in the neighbourheod some days before it comes, and so prcpare for it. In the same way the continuance of waves after the wind has fallen arises from the fact that the wind has not yet ceased to trouble the sea at a diatance. As a force loses its intensity in course of transmission, the horizontal propagation of sea waves diminishes in proportion to distance from the origin, 60 that the sea may be calm near at hand, while large waves agitate it a considerable distance off. The height of a wave should be measured. from the bottom of the hollow, not from the ordinary sarface. The diatance from summit to summit is the wave length.
Wilkes, in 1839, made a careful measurement of waves on one occasion when the sea appeared regular and the waves of a great height. This Was his method:-The schooner Scagull was sailing in the wake of the brig Porpoise, and distant from her by abont two waves. Their rela tive positions did not seem to vary, and they were sailing eight knots an hour. Casting the log from the Porpoise, Willseg observed that the clip, when the top of the nearest wave, was 380 ft . distant, or eno-gixbeenth of a mile, and the Siagull on the top of the next wave, twice as far, or one-aighth of a maile. The time taken by a wave to come from the Deamull to the Forpaise was, on an arecage, thirteen seconds. This pives 29 . miles por hour for their apparent progressive motion. For observing the height, Wilkes chose a moment when the Seagull was in a hollow, and the two crests were in a horizontal line with his eye, this line cutting the Scagull's mast at a certain height. His observation garo 3 2ft. as the wave height. Various observations havo been made of wave height. The captain and officers of the Inconstant on one occasion saw waves hat, as they showed, must have been more than 23.46 m . (77 ft .), and waves have been known to reach the top of Eddystone Lighthouse $32 \cdot 48 \mathrm{~m}$. (aboat 106 ft .). In estimating the motion of waves, it is to be remembered that the atmosphere exercises the pressure of an elastic force of about $2,000 \mathrm{lb}$. on each foot of the wave surface, and this must be added to the weight of water forming the wave. From a series of experiments made by Mr. Walker, at Plymouth. the following inferences are made :-1. The speed of waves is retarded in proportion as the water becomes shallow, and depth facilitates wave action. 2. The speed of waves does not depend on their height. 3. The experiments made on a large scale seemed to confirm the result obtained by Mr. Scott Russell in another way-viz., that when the depth of the water becomes equal to the height of the wave, the latter breaks and becomes a wave of translation.
Among the waves observed were some moving 46 ft . per second; these were wide apart and of short height. Their destructive effect on masonry was, nevertheless, very great, while certain other waves, which were higher and in closer succession, and moved $41 \cdot 8 \mathrm{ft}$ per second, were much less destructive. The effect being as the square of the velocity, we may calculate what should be the height of waves which, moring at the rate of $41 \cdot 3 \mathrm{ft}$. per second, would have an equal effect with waves 27 ft . in height, and moring 46 ft . per second (27 ft . having been the height of those observed to move 41.8 ft . per second). Thas $41 \cdot 8^{2} \times 27=46^{2} \times x$, whence $x=22$.
The height of waves in the Mediterranean has been estimated by W. Smith as in general from 4.27 m . to $5 \cdot 49 \mathrm{~m}$. (14 ft . to 18 ft .).

SECONDARY EATTERIES.

IF the mode of production of voltaic electricity has of late engaged moch attention, the means of accumulating and transforming such electricity are not of less interest; just as, in mechanics, the question of accumulating and transforming motive force gives abondant material for inventive skill.
M. Planté has studied the' sabject for many years, and after carefal researches on the polarisation of metals, he has constructed his secondary battery (recently described in Le Mondcs), the results obtained from which are truly surprising.
It is well known how the Leyden jar discharges, in one strong spark, the sum of electricity it re ceived from the electric machine. M. Plante conncots a somewhat analogons apparatus with the roltaic pile. Two plates of lead (20in. long by 8 in . wide), are rolled up in spiral, being separated from each other by a few strips of indis rubber. This spiral is placed in a jar containing acidulated water, and having a guttaporoha covor on which are fitted binding screws conneated with the plates. Twenty suoh elements are placed in two rows of ten each, and charged from the primary battery, which consists of two Bansen couples. By means of a commutator of peculiar constraction, these secondary elements may be connected either for quantity or for intensity When the elements are joined in series, an electromotire force equal to thirty Bunsens is obtained, giving a current by means of which platinum wire may be fused.
In the secondary conples, the ohemical action generating the current is the reaction of hydrogen an peroxide of lead, the current from the primary pile having cansed decomposition of the water, oxidising one of the plates and developing hydrogen on the other.
By the above arrangement, the quantity of elcetric work from the direct action of the primary pile is transformed by condensation. The case is somewhat similar to that of a hydraulic press or crane. In a pile driver, e.g., a heary body raised by degrees to a great height, by a series of enccessive cfforts, is then left to itself, and gives back at once the greater part of the work thus expended on it. So, when, after charging, the secondary circnit is closed, the sum of the accumulated cbemical actions cansed by the primary current is civen ont in the form of a very intense current of short daration. The effect, when the couples are joined for quantity, corresponds to the fall of a very heavy mass raised a small height ; when joized for intensity, to the fall of small mass raised to a great height. It is not difficalt to see how these secondary piles mas become of important use.

PRESERVING WOOD.

THE following are the conclusions arrived at by Herman Hanpt, C.E., after an elaborste investigntion as to the best means of preserving wood from decay, which we extract from Van Nostrand's Magazine:-

1. That so long as the cells of wood are oc cupied by air and moisture, no preservative solations can be introdnced, and the expulaion of air and water mast be the first atep in any effec tive process for preserving timber from decar.
2. That water can be expelled by a long continued application of heat, bat air only by expansion in a vacuum, and the combination of heat and vacuum will secure the must rapid expansion both of water and air.
3. The preservative laid mnst be introduced while the cells are empty, consequently the process must be carried on in vacuo.
4. That no pressure, however grent, applied externally to the surface of timber, can force any fluid into'the interior so long as air or water is contained in the cells. When air alone is present there may be penetration to a limited extent, superficially, but water is practically incompres sible. If, however, the pressure is applied at one end only of a log, as in the Boucherie process, a flnid may be forced through and exude from the other end.

An apparstus to fulfil the conditions which, from the preceding discussion, appear to be essential tosuccess, must be founded on a process similar to distillation in vacuo. It mast consist of at least two vessels-one a receiver corresponding to a retort, in which the material can be placed and subjected to the action of heat; the other a condenser, in which all ogcaping vapours cas be con
densed and the racuum maintained daring the process in both vessels.
The condenser may be of much smaller capacity than the receiver; they should commanicate by pipes furnished with stopcocks, and both be supplied with thermometers, vacuam ganges, and pumps.

As an illastration, sappose wood is to be impregnated with dead oil or any other fluid. The receiver mast be filled with the wood to be operated on, the door closed air-tight, and the air expelled from both the receiver and condenser.

The expulsion of the air may be effected in various ways.

1. Steam may be admitted at one end to drive out the air at the other end; the subsequent condensation of the steam should leave a vacuum, but, in the experiments of the writer, this plan has been only partially successfal.
2. The air may be exhausted by an sir-pump, but a perfect vacuum cannot in this way be secured.
3. The vessels may be filled with water and the water removed by a pump below the level of the bottom into which the water flows. This should remove all the air excepting that which escapes from the cellis.
4. As the atmosphere supports a column of water 33ft. high, pipes may lead to a tank at a level about 40ft. lower, where the location is favourable, and thas by flling the vessels with water and opening cooks to allow the water to flow by gravity into the tank, a very perfect vacuum could be produced. This arrangement would be particularly favourable for maintaining a vacunm in the condenser; a pipe in the condenser could throw jets of water in spray from numerous fine perforations, and the wrier would consequently flow into the tank 40ft. lower, maintaining a constant vacuam without the aid of pumps. This object can be accomplished in almost any locality by placing the condenser at the top of a building or on trestle work.

Asbuming that a racuum has been created and provision made for maintaining it daring the whole process, the next step will consist in the application of heat, which may be done most conveniently by steam-pipes introduced in the receiver. The length of time during which the timber must be subjected to the baking process will depend apon the dimensions of the logs, and can only be determined by experiment.
It is obvious, bowerer, that the ciroumstances are favourable to the most rapid evaporation possible; the temperature can be regulated at pleasure, and the removal of pressure by vacaum will give a very low boiling point. As the vapours pass over they will be immediately condensed.
Should the vacuam become vitiated by the escape of air from the cells, it may be improved by the use of an air-pump. The condition of the vacuum will be indicated by the ganges.
When sufficient time has been allowed for the wood to dry thoroaghly, cooks mast be opened connecting the bottom of the reoeiver with a tank of dead oil, at a lower level. As a vacuum exists in the receiver, the atmospheric pressure will force ap the oil and the timber will be immersed in the fluid. When the immersion has continued a sufficient length of time, which also must be determined by careful experiment, cocks may be opened at the top of the receiver to admit air. The oil not ahsorbed will immediately flow back to the tank from which it was taken, the air pressing upon the exterior of the cells, which are partially filled with oil while a vacuum exists in the interior, will force the oil before it, and thas coat in its progress the interior of the cells. It is probable that in this way a sufficient amount of dead oll may be introduced into the cells to prevent fermentation and decomposition, while still far below the point of saturation, and the process may prove rapid and economical.
Instead of admitting air in the manner proposed to expel the oil from the receiver, it is possible that better results may be obtained by allowing the oil to remain antil it becomes heated by the steam coils, and the vapour colleoting at the top expels the oil and penetrates the pores.
Too much oil might be introduced by this mode of treatment, and it -is probable that the introduction of air, followed, perhaps, by a second bath of oil to close the cells superficially and exclude moistare, would give the best resalts. All these and other questions that may arise oan be promptly settled by experiment, and in no otber way.

This process of drying in vacuo would be well adapted to the rapid desiccation of fraits, vegetables, fish, meats, \&c., with a visw to preservation. The writer does not claim that the has solved the important problem of preserving timber from decsy. Before he could satisfy himself or others, a series of continued experiments with suitable apparatus would be required; bat it will not be considered egotistical to assume that, in several months of experiment, something has been learned. He is satisfied, at least, that none of the ordinary processes will preserve wood economically, and there is, in his opinion, no surer avenue to success in any investigation than the stady of failures and their cause. He has witnessed too many failures to be sure of anything until it has been proven, but believes that in the processes indicated there are strong reasons to expect success.

A NEW WASHING MACHINE.

A^{N}N improved washing machine has been paof which the figure and description will be found safficiently explanatory.
The general contour of the tab, \mathbf{A}, is indicated in the cut, the bottom being of inverted arched form, and made of zinc or other suitable material. The ends of the tube are straight, and at one is a partition shatting off a small space, a, to permit the facile attachment of a wringer when deaired. The legs at one end of the tab extend above the top thereof, and have bearings in their upper extremities for a double-cranked shaft, B, carrying a balance-wheel, G, itself furnished with a crankpin or wrist, whereby the working parts of the apparatus are actusted. Each of the cranks

on the shaft, B, sctuates one of the rubbers, E , through the agency of a connecting-rod, D. The rabbers are each made wide enough to extend nearly one-half the width of the bottom of the tub, and are formed with longitudinal slits, and are notched or shouldered on their upper surfaces as clearly indicated in the engraving. They have rigidly attaohed to them the arms, b, pivoted, at F, to a oross-shaft in such manner that the rabbers, when in motion, swing in a path corresponding to the curvature of the bottom of the tab. It will be seen that the rotation of the crankshaft, B, gives a vibratory movement, alternately in opposite directions, to the rabbers, E. This works the cloths orfabrics to be cleaned repeatedly over and over, alternately expelling the water from them and allowing them to again absorb it, thereby securing the removal of the dirt.

THE STAR DEPTHS.

M^{1} R. RICHARD A. PROCTOR, Honorary Secretary of the Royal Astronomical Society, gave his fourth lecture on this subject at the Royal Institntion last Saturday afternoon at
$\mathbf{3}$ o'clock. After giving a sketch of the history of the discovery of nebalm, he discussed the researches of Sir W. Herschel into the great cluster in Perseus. He showed that Herschel's belief, that in examining this cluster with higher and higher telescopic powers he was passing farther and farther into the profundities of space, could not be correot. (He mentioned incidentally that Herschel was in his 79th year when he adopted the plan of estimating stellar profundities by the telescopic powers necessary to effect "revolution.') If Herschel was right then his observations indicated that the remotest parts of the cluster were nearly 30 times as far away as the
nearest (Herschel's own numbers are as 344 to
12); but in that case the true shape of the cluster is that of a long cone (a figure comparad by the lecturer to the pointer he made use of), whose axis is directed exactly towards the solar system. This is utterly incredible on \dot{i} priori considerations; but, moreover, a star-group of so remarkable a shape would have no dynamioal stability. Mr. Proctor said that he considered it as absolutely demonstrated that this wonderful double cluster is, in fact, "what it looks like," that is, a double systom in which stars of a grest many orders of magnitude are included. He added that he be lieved that as Herschel gave up in 1802 (notwithstanding the text-books) the principle of star gauging which he had adopted in 1785, so he would have given up the principle he adopted in 1817, had he lived to apply to his observations the test of careful analysis. But he was already exceedingly old, and it was well known that for several years before his death he was incapable of prolonged or profound study. The lecturer passed then in review the varions orders of nebule. quoting a aingularly apt paskage from Tannyson (in the first edition of the "Palace of Art"), where the poet laurcate speaks of

Regions of lacid matter telling formo-
Brashos of Are, haty gleamg

Brashos of are, hary glasmg,
 lasters and beds or worlda, and beelike swarms

He discussed the laws according to which the nebalm are spread over the heavens, showing that these laws suffice to demonstrate that the nebulm belong to the stellar spaces. Passing thence to the gaseons regions surveyed by the Hersohels, he propounded the unlooked-for theory that the more widely ranging regions of nebalons light could be better reoognised by the unaided eye than with the most powerful telescope, and described the method by which he was about to test this opinion. He described the observations by which Dr. Hnggins had shown many of the nebulm to be gaseous. Passing thence to the consideration of the Magellanic colouds, and of the varions orders of nebalm seen within these objects, the lecturer pointed out that the evidence addnced by Sir John Herschel sufficed to demonstrate that these nebulg at least were far within the limits of the sidereal system, being included in the came space with stars of the ninth and tenth order of magnitude. The lecture closed with remarks on the variability of certain nebalm.
Upwards of thirty photographic illaminations were exhibited by means of the electric lamp. The lecturer promised to exhibit among the illustrations next week a chart showing all the stars visible to the naked eye over the whole heavens, properly distribated thronghout as respects richness. In this, the closing lecture of the series, he will also present a synoptic view of all the theories of the stellar aniverse hitherto propounded, including the theory to which he has been led by his own researches.

RECURRENT VISION.

PROFESSOR YOUNG has adopted this nam
for the following optical phenomenon:-
In the course of some experiments with a nev doable-plate Holtz machine, belonging to the college, I have come upon a very carions phenomenon, which I do not remember ever to have seen noticed. The machine gives easily intense Leyden jar sparks, from 7 in . to 9 in . in length, and of most dazzling brilliance. When, in a darzened room, the eye is screened from the direct light of the epark, the il lumination produced is sufficient to render every thing in the apartment perfectly visible; and what is remarkable, every conspicuous object is seen twice at least, with an interval of a trifle less thas one quarter of a second-the first time vividy the second time faintly; often it is seen a thir and sometimes, but only with great dificulty, eren a fourth time. The appearance is precisely as it the object had been suddenly illuminated by a ligh at first bright. bat rapidly fading to extinction, and as if, while the illamination lasted, the observer were winking as fast as possible.
I see it best by setting up, in front of the machino at a distance of 8ft. or 10 ft., a white scrsen having apon it a black cross, with arms about 3 tt. long and 1ft. wide, made of strips of cambric. That the phenomenon is really subjective. and not due to a succession of sparks, is easily shown by swinging the screen from side to aide. The black cross, at all the periods of visibility, occupies the same place, and is periods of visibility, occupies the same place, and is
apparently stationary. The same is true of a stroapparently stationary. The samo is trae of a stro-
boscopio diso in rapid revolation; it is seen geveral boscopic diso in rapid revolation; it is seen eeveral
times by eaoh epart, bat each time in the same po-. times by esoh $\varepsilon p a r k$, but each time in the same po-.
sition There is no apparent multiplication of a moving object of any sorth

The interval between the succosgive instants of risibility was measured roughly as follows:- A tuning fork, making $92 \frac{1}{2}$ vibrations per second, was ading fork, making 92 vibrations per second, was ad-
justed so as to record its motion apon the smoked justed so as to record its motion apon the smoked
surface of a revolving cylinder, and an electrosurface of a revolving cylinder, and an electro-
magnet was so arranged as to record any motion of magnet was so arranged as to record any motion of
its armature npon the trace of the fork; a key conits armature upon the trace of the fork; a key con-
neoted with this magnet was in the hands of the neoted with this magnet was in the hands of the
observer. An assistant turned the machine slowly, observer. An assistant turned the machine slowly,
so as to produce a spark once in two or three se$s 0$ as to produce a spari once in two or three
conds, while the observer manipalated the key.

In my own case, the mean of a dozen experiments gave $0.22^{\prime \prime}$ as the interval batween the first and second seeing of the cross npon the screen, separates results varying from $0.17^{\prime \prime}$ to $0.39^{\prime \prime}$. Another observer found $0.24^{\prime \prime}$ as the result of a similar series.

Whatever the true explanation may turn out to o, the phenomenon at least suggests the ides of reflection of the nervons impulse at the nerve extremities, as if the intense impression upon the retina, after being the first time propagated to the brain, was there refiected, returned to the retina, and from the retina, travelling again to the brain, renewed the sensation. I have ventured to call the phenomenon " recurrent vision."

PHOTOGRAPHY FOR THE UNINITLATED.*
(Continued from p. 91.)

\mathbf{H}^{1}AVING led you through the various steps required in the production of the negative, we have at last reached that portion of onr operations known as printing-silver printing. The negative, as you know, is the reverse of the object in nature from which you made it; in other words. white is black, and black is white; this fact following in greater or lesser degree throughout the shadows
and feebly lighted portions of the view made. Just and feebly lighted portions of the view made. Just fine grading from absolutely clear glass in deep shadows to absolnte opscity in positive high lights, and have secured the intermediate grades of opacity, is your negative a good one. From a good negative a good print can easily be made by following any of the formule suggested by the many writers who practise our art; hut from a bad negative no yet discovered formula will make you a good print. You might as well attempt to build a chimney 100 ft . high upon a poor fonndation, and have it stand plamb, as to make n good print from a negative deficient in good qnalities; both are bad from a bad foundation. I shall not, in this part of the process foundation. I shail not, in this part of the process of picture-making. offer to you any new formalm,
but, as in those given you for negative work, simply but, as in those given you for negative work, simply
call to your notice to formula which, by practice, I call to your notice
know to be good.

Albumen Paper.
Of this there are very many brands: all are at times faulty, all are liable to vary. Whether such is due to the paper alone, to the albumen and saltunder which it is albumenised, or to its subsequent place of storage, or more or less to all, are questions not now important to consider. In purchasing, always require the paper to present, apon holding between you and the light, an even body, free from wave lines of uneven albamen; also, an evenness of gloss when viowed across the surface; also, a freedom from spots, small and black, in the body of the paper.
By reference to p. 561, Vol. XIII., you will find that I named one 8 by 10 deep glass dish for silvering paper. To suit this dish yon will have to cut you abamen paper 8 by 10, which wil give you two prints. No cut paper hasdily, I advise you to have a board made 2 ft square, upon which to lay the ern 8 by 10 of cardboard, and around it pass a sharp knife. If you lay half a dozen sheets upon a
board, one upon the other, and then turn the face board, one upon the other, and then turn the face pidity, and avoid touching the albumen face with the fingers, a point always well to guard against.

Silvering Solution.

For this I will give you several formulw:-
No. 1.-Water, 20 fluid ounces ; silver, 800 grains : nitrate mmonia, 40 grains; alcohol, $1 \ddagger$ flaid

No. 2.-Water, 32 fluid onnces; silver, 1,125 rains; mariatic acid, 40 drops.
Shale this well, and finally render it slightly alkaline with liquor ammonia. After naing three or four times, add a few drops of acid, and neatralise ith ammonia.
No. 3.-Water, 19 faid ounces; silver, 4 ounces : liq. ammon. conc., 12 drops.
This will render the solution of silver clondy, with a heary brown precipitate, which allow to sottle, and from off which decant the clear solntion, add-Water, 29 faid ounces.
Either of these formula work well. The first (No. 1) I have nsed for years ; it is aimple and effecit works to a charm. The third (No. 3) is Anthony'
alum bath, and is bettar than either 1 or 2 , in that it preserves the paper after silvering, and is in other respects equal to any bath within my knowledge. Neither of these baths will materially discolour with papers generally in use; the little they do can be easily removed by placing them in the sunlight for a fow hours, and filtering.

In making up your silver solntion. first determine how much you require by measuring the capacity of your dish when filled one inch deep. Always filter the bath before using, and have at least half an inch of solation in the dish. Some paper discolours the bath badly. Sach I should not bother with; there is plenty which does not.

stivering.

Pour carefully into a dish the silver solntion, avoiding air-bubbles; draw down the buff shades of your room, or light the gas, as bests suits you. This work may be done in a moderately lighted room, for the paper is not sensitive to such light while wet. At your left hand arrange a wooden rod, forty-two inches long and three-quarters of an inch square, upon which, nine inches apart, glue pieces of cork half an inch thick and square. Support this wooden rod sirteen inches above the table, so that under each freshly-silvered piece of paper you can place a small glass to catch the drops paper you can place a small glass to catch the drops
of silver. Immediately before you is the glass dish with the silver solution. At the right of it is placed with the silver solution. At the right of it is placed the paper you have cut, also a pin-cushion well
supplied with good quality of medium pins, the kind that do not doable and bend when stuck into anything harder than butter in hot weather

This sketch will serve to explain the arrangement of your table when silvering paper. A the frame, with corks glaed on the wooden rod 9in. apart, upon
which I have placed one piece of paper; under it a

glass to catch the drops of silver. B is a glass dish. C is paper cut and ready for silvering. D is a pin-cashion. Now let me try to explain just bow to silver a piece of paper. First, I will sketoh a sheet of paper as it lays before ns face down, and mark it with letters in each corner. Bend up mail corner at D at right angles to face, so as to and so that this little corner may be kept dry throngh which to stick the pin. Now take hold of paper with left hand at corner A, and with right hand at corver D; keep left very low and right very high as you place it on the silver, so that the bend in paper may be as close to corner A as possible let this rounding or bent part first toach the solu tion ; keep the finger holding the paper at A as near the solation as you can without touching, and hold well over to left side of dish, lowering slowly and steadily the right hand; thus the contact of the paper will be diagonally across the sheet, and will expell to right side of dish all bobbles that may incline to form. Babbles, if formed at all, will most ikely be at first point of contaot close to A. Carefully lift at A with a amall glass rod, and remove any that may appear, lifting the paper half its length from this end for examination, and imme diately do the same at D end
After the paper has lain for from one to one and one-half minate, lift it at corner D by the bent-ap portion with left hand, stick through it a pin, and
raise slowly and steadily from the solation to wooden rod, where you will festen it npon the first cork. albumen side out. After all four corks are filled, proceed to remove paper from cork one to arark room for drying.
You will observe that the paper as pinned to the cork has carled or twisted; corner B and C have soak of with a piece of blotting-paper any drop
whiah may be clinging thereto, and atiok on a small piece of same paper to absorb any more that may pass down while drying. Next remove the pin from corner D, and pat it into corner B ; carry it into the dark-room and hang it up to dry. The ob jeot in removing the pin is to stop the carling in the same direction as it started. After the paper has nearly dried, the pin should be removed from A and plaoed in C. This will prevent twisting to a great extent. After your paper has become boneiry, which, if the day is good, will be within an hour yon will require to treat it to a dose of ammonia
before printing. This operation I will leave until my next.

AERONAUTICS

THE resalt of the experiments with the appara. tus for obtaining the data of the fundamental principles of aëronaticics which we alluded to as in coarse of constraction in our article on this subject on p. 373 of Vol. XIII., were reported at the recen meeting of the A cronartical society. The experi ments were carried out at Messrs. Penn's Engineer ing Works by the Experimental Cemmittee appointed by the Council of the Aëronautical Society of Great Britain to determine the relation between the velocity of the atmosphere and its pressure upon plane surfaces of varying dimensions and dagrees of inclination. The instrument and experiments were made by Mr. Wenham and Mr. Browning. Mr. Wenham, in the absence of the latter, explained the nature of the instrument used. The experiments were considered to establinh a law that the lifting force of inclined planes, carried horizontally throngh air, was increased in the direct ratio that the sine bears to the length of the plane, or the height of the incline to the base. Thas, if, instead of stating the angles in degrees, they said "one in ton," or "one in three or four," as the case might be, this would at once express the proportion in which the lifting force exceeded the resistance. The average of all the results was very near to this. making a little allowance for the surface friction of the plane through the air. At 45 the two forces were equal; above that, the proportions were in inverse ratio, as the lifting force was less than the wedges or had heen stated that the resistance of directly in the ratio that the height or diameter of the base bore to the length of the cone. The exthe bats in not coffrm this, bat shomed the periments did not conarm this, but showed the resistance to be less in proportion as the angle became more acute. The Chairman, im. Broox, and a few others made some remarks, and a vote of thanks
was given to the Messrs. Penn for the assistance was given to the Messrs. Penn or
they had rendered in making the experiments. Mr. Head read a paper "On Flight," the object of Which was to show that it was possible for man to fly through the air if a proper machine were made for that purpose. Mr. Head seems to have come to thin conclusion from observations on the flight of birds.

THE WORTHLESSNESS OF BEEF-TEA.

TTHE experiments of Gustav Bunge lead him to conclude that the common opinion, that beeftea and extract of meat are as valuable articles of diet as tea, coffee, or alcohol, is totally unfounded; that the refreshment they give is only due to their warmth and pleasant taste; and that their ohief value is that they enable a person to take with appetite a larger amonnt of dry or tasteless food than he conld otherwise do. The statements of Liebig, that the addition of some meat-extract to regetable food increases its nutritive value, and that the extractive matters of meat, and especially creatine and creatinine, are the materials for muscular work, have been disproved by Voit and Meissner ; and the dea that beef-tea and meat-extract were beneficial on account of the salts they contain is an unlikely one, as these salts are already present in excess in ordinary food. It has been said, however, that they did good by acting as stimnlants, like coffee, tea, and alcohol; and this seemed to be confirmed by the experiments of Kemmerich. He found that small doses of meat-extract quickened the pulse, but large ones produced paralysis of the heart and death. This action on the circalation he attributed to the potash-salts contained in the extract, as the ash alone produced the same effecte as the quantity of extract from which it had been Cot. As Tranbe, Gultman, and Podkopaew, never quickened it, and as Kemmerich's experiments on man gere an indefinite resalt, and the
 gated anew, in Professor Schmiedoberg's laboratory, the action of mest-extract and of potash-salts on man, dogs, cats, and rabbits. On taking himself, or introducing into the stomach of a dog, a quantity of meat-extract mixad with flour, and containing 5 or 6 grains of potash-salts-a quantity sufficient to kill two rabbits-he found that no effect whatever was prodaced on the pulse or temperature. Large doses of meat-extract first quickened the pulse and then paralysed the heart. The quickening does n. seem to be due to the potash-salts, bat to their it
trodnetion and to the distension of the stomach: for the author fonnd that mazzling the animal. in troducing a tube into the cesophagns, and distending the stomach with water, all quickened the pulse When a solation of salt or sugar was used instead
of water, the quickening lasted longer, because the of water, the quickening lasted longer, because the
tinid was more slowly alsorbed and the distensien less quickly removed. Extract of meat, deprived of five-sixths of its potash-salts by meaus of tartaric acid, cansed death-not like the potash-salts by paralysing the heart, but probably by desiccating the tissnes. Sodium-phosphate has a similar action. This is diminished by injecting water subcutaneonsly after the solium-phosphate has been introduced into the stomach.
Yotash-salts injected subcataneously into rabbits quicken the pulse by cansing pain, but they do not alter either the number or forco of the heart-beats in dogs or cats, either when given snbcutaneously, in dogs or cats, either when given snbctaneously, when given in fatal doses, and then they lessen them when given in fatal doses, and then they lessen them
both in number and force. They have little action both in number and force. The have istle
The poisonous action of potash-salts has been mach exaggerated. When injected almost directly into the heart through the jugular, a very small dose will cause death by cardiac paralysis; but very large doses are required when administered snbcutaneously or by the mouth. Bnnge reckons the amount of
potain-salts taken daily in potatoes by many Irish labourers at 100 grains. It is probably impossible to produce cardiac paralysis in man by potash-salts introdaced into the stomach, as the large quantity Medical Jurrnal.

THE PROGRESS OF GEOLOGY.-COAL MEASURES AND COAL-SUPPLY.*

(Concluded from p. 168.)

Ihas been arged as a fatal objection to the disthe conl-measures become unproductive and thin ont under the Chalk, as they range from Valenciennes towards Calais, and, therefore, that the coal-trongh or basin ends there. It is perfectis Bethane and Calais, bat not in the sense of their dying out owing to their deposition near the edge of basin. In that case, each seam, each stratum wonld gradually become thinner and dissppear; but Belgian coal-fleld are. thick. The average does not exceed 24 ft . At Valenciennes it is the same whereas M. Burat states the mean thickness of the
beds actualy inoreases westward of Bethane to beds actually increases westward of Bethane to
more than 21 .t. With respect also to the extreme end of this basin, the lower beds there brought up correspond with the bottom beds of the Hainanlt basiu, where the lower 650 ft . consist of nnprodactire measures. The thinning-ont is, in fact, dne to denudation just as the Bristol coal-field thins out at Cromhall to resnme in the Forest of Dean, or the coal-field of Licge thins out at Nameche to resume
at Namnr in the preat field of Charleroi and Mons. The deterioration of the coal in the small coal Geld of Hardinghon, near Boulogne, has also been adduced againat the occurrence of workable coal in south-eastern England, but Mr. Goilwin-Austen has those small local developments of coal-bearing strata intercalated in the Mountuin Limestone, and is of older date than the great Belgiun coal-field. It has therefore, no bearing on this part of the question.
Aucther objection to which much weight has been
attached is that the coal-field of Bath and Bristol attached is that the coal-field of Bath and Bristol and on the west by rilges of Millstone Grit aud Ionntain Limestone, so that there is an end of the enstern extension of the coal-measures. This is f nite correct as far as regards the western edge, the edge of the the case on the eastern, althoneh as roeks, some uncertsinty still exists about the dispo sition of the Palranoic rocksunder them. Armitting however, the basin to le complete and isolnted, prevail exclusively to the east ; for the conal-monsures of the Somerset basin maintain their full develop ment to the edge of the basin, and are there cut off by denudation. and are not brought to an end by tuinhing out. They form really part of a more ex Whil, ou the west another portion exists in the small basiu of the Severn valley.
Tinis last basin is entirely covered by the Now
Red Sandistone : and as the Welsh basin is bounded on the cast and the Bristol basin on the west by hountain Limestoue, the same argument as the one above might have been used to show the impossibility of coal occurring in this intermediate ares.
ine of disturbance to have very nature of this rreat of the strita at. or nearly at. right angles to it, and
otherwise flank it withont interrnption; thus the Aix-la.Chapelle coal-held is separated by older rock ridge of Monntain Limestone from that of Hainant So in the case of sonth-western England, we have the several basins of South Wales, Severn Valley and Bristol, separated by tracts of Mountain Lime intone and Old Red Saudstoue. the extremes of the intervening belts of oldcr rocks being two miles at barriers are clearly only local, and the division of the coai-mensares into separate basins appears to be their ordimary condition along this great line of distarbance. The length of the two known portions Frome, and between Catween Pembrokesbire and miles, and in this distance we find eight separate and distinct coal-fields. The combined length of these eight conl-fields is ahont 350 miles, leaving abont $1 \geqslant 3$ miles occapied by intervening tracts of whole lengit is occapied by coal-strut I I consider Whol lego of disturbance can be traced above gronnd) is, in all probability, continued under groand in connection with the range of the same line of disturbance; and I see no reason why the coal-strata should not in the ander gronad and unknown as in the above gronnd and explored area.
With respect to the possibility of denudation havnormons es the intervening coal-measuos, been previous to the Anposition of the Permian strata, we cannot admitits exceptional action in this case. Denudation has removed from the crest of the Mendips a mass of strata possibly equal to two miles or more in height, and from that of the Ar dennesas much as three or four miles, and of has aiso fields, so that the power of such an agent cannot be fieds, s. But it is a power of planing down exposed surfaces rather than of excavatiug very decp troughs Notwithstanding its immense planing-down action on the Mendips and Ardemnes, deep tronghs of coal measures are left flanking their northern slopes.
We have allaned before to the great length and narrow with of the Belgian coal-fields. That of Liege is forty-five miles long. with a mann width of Cess than four miles, whist that of Hainant and
Valenciennes is 119 miles long, with a width acarcel reater. The presence of lower Carboniferons rock ander Harwich, and the wider range north and sonth of the Bristol coal-field, renders it possible that the trough in the intermediate area may have a greater expansion than in Belginm; but we have nothing else to guide ns, unless it be that the lateral pres ure in the intermediate cround was probably less than in the Ardennes and the Mendips, where it has exercised its maximum elevatory force. In that case the coal-trough in thisinter be less compressed and more exprnded; so wo
might conseguently here look to find larger coal basins than either those of Somersct or Mivige. The position of theso basins I ami disposed to place
farther north than Mr. Godwin-Austen, and should therefore look for them not in the valley of the Thames, or on the line of the North Downs, but ander South Essex, Middlesex or
Oxfordshire, and North Wiltshire
The strata on the south sile of the Li g_{g} coal-field rise abruptly against higlly ineliued aud faulted Devonian rocks. and on the north side they rise at A less angle beneath Cretaceons or Tertiary strata. In the Hainaut coal-field the overlying strata have a greater extension. Under these strata the coalmeasures are succeeded ly the Monntain Limestone and hidden by the newer strata which stretch uninterruptedly northward over the rest of Belgium. The Palrozoic strata have. however, been met with near Brussels, under T'ertiary strati, at a dapth of about
foroft. and at Ostrind at a depth of 9 anft. of which Ginoft. and at Ost and at a depth of 9 .ift. of which
682 consisted of Lower Tertiary strata, 210 oft. of Chalk, and 93 of colnared marls. It appears, therefore, not improbable that the Tertiary und Cretaceous strata of all B•前ium may repose directly on sippose that sill these rocks have a strike paralle with that of the Arilennes, folds in the strata may bring in some unler ground conl-hacin or basins in pratel lines to the north, in the same way that small trougha of coal-measures are brought in again in the Ardennes to the south of the great coal-

> ongh.

We may, I think, look for a proloneation of this and faulted rocks at no very great dipth under the sane Wealden, Chalk, and Trrtiary arca of the sonth of England. F'or, althongh the old Palanozoic surface descends rapidly from about 3aft. a!.ove
the sea-level in the Boulonnais to 1,031 ft. bulow it at Calais, it rises at Ostend 47 hi $\%$ her thar at Calais and crossing the Chanuel, it is fonud at Harwich frou which it is eighty miles distant in a northerls direction. Passing wostward from Calnis, we tha the Palmozoie rocks under Londuu (10. miles dis
bigher than at Harwich. Allowing forirregularities of thre old surface as evinced by the well at Crosedess, near Plummead, which was still in the gaul ta depth of 94kl. or some 1 . below the hevel of consider that in the area between these three points, and possibly throughout the soath-east of England, and possibly throughout the soath-east of England, the Palmozoic rocks will probalily be ionud not to be more

Projecting the line another 100 miles westward, wo reach the neighboarhood of Bath and Frome where the coal-measures are, as before mentioned, urat a depth of about 450ft., beueath Liassic and hat place and London no trial-pits and no wells have been carried to a depth of anything like 1,000 ft. beneath the sea-level. The deepest well with which I am acqnainted is one near Chobham, in Surrey, through Tertiary strata and Chalk to a depth of bont 800 ft , or of 550 ft . beneuth the sea-level
here are, however in all this area certain indications of the proximity of old land and of preCretaceons denudation, in the presence of quartz dary rock fossils in the Lower Greensands of Surrey and in the like old rock pebbles, with the addition of slate pebbles, in that formation in North Wiltshire; while the banks of shingle, Bryozom and ponges of tho same age at Farringaon, point to still and sheltered waters, probably of no great depth, and to adjacent dry land, again, on the north o London, we have in the Lower Greensand of Back inghamshire and Bedfordshire shingle beds consist ing almost entirely of fossils derived from Jarassic strata, with a remarkable collection of larger quartz quartzite, and other rock-pebblea, derived probably rom the old Pal:oozoic axis.
On the south niso of the great Mendip and Ardennes axis coal-strata may possibly be found just as they are found on both sides of the Pennine hain ; for in either case the measures are cat of and broken through by these chains of hills. In South Wales certain folds of the older strata seem
to reuder it probable that the coal-measares may to reuder it probnble that the coal-measares may
pass under the Bristol Chanel, forming a trough which prolonged eastward would pass along the outh side of the Mendips. Trials in the latter rea, have, however, shown that the Now Red Sand stone, Lias, and Oolitic series attain an infinitely greater thickness than on the north flank of that range, so that it is not likely that the cosi-measures Fould lie at a less depth than from 1,500 to 2,000 ft. In this country the newer strata, overlying the Paleozoic rocks on our presumed anticlinal line have been sank through, without result, in the owest beds of the Wealden at Hastings to 2 deptb of 486 ft . ; in the upper beds at Earlswood, near Reigate, to a depth of about 900 ft . ; and, on the premmed syuclinal line of Carboniferous rocks, through Chalk at Chichester, to a depth of 945 ft , and a Southampton. through Tertiary strata and Chait to
To the sonth of all the ares we have now described, there existed during the Carboniferoas perion, the ranges of the older Palæozoic strate of the Hunsdrnck and Vosges-of the old orystalline rocks of Central France, fringed on the east and north with small ontlving coal-basins of the old Paleozoic rocks of Brittany-sind of the Buarian rocks of Sonth Cornwall-forming the old land-bar. ace, fringed by the grant conl-growthe sablented nornssia, Belgium. anil England, to the Silarian Prassia, Belgitumi anit England, to the and those of the Welsh and Cambrian highlands on the west and possibly to those of the Scandinavian hills on the north-cast. After the formation and consolidaion of the coal strata, the southern aros of this grent Carboniferous basin was then subjected to that remarkable disturbance which, for a distance of above sion miles. exercised that excessive hataral squeezed and forced up into tho serins of sharp auticlinals forming the axis of the Mendipe and Ardennes. white portions only of the Carboniferous eries were preserved from the denudation which followed. in deep synclinal tronghs flanking the main axis. The central and northern portions of the great Carboniferous basin, which were not raised by this disturbance, wore then overspread by strata of the Permian series; after which the northern
section of the original coal area was traversed by section other great disturbance at nearly right angles to the former one, by which fresk portions of the to the former one, by which fresh portions of the
conl-measures were bronght up in our central mad conl-measures were hronght up in our central and portions to be afterwards corered by Triassic and Jurassic strata
At a mach later period the emerged southern arse of Paleozoic rocks, including the westward prolon-
cation of the great coal trough of Belgium, or porcation of the great coal trough of Belgium, or porons thereof, Was submerged and covered orer and Lower Tertiarien now forming the surface of the sonth-enst of Euplaud.
The trials to discover these possibly productive coal tasing mast neegssarily be attended with coniderable uncertaint? We shall have to feel our
given you the reasous. Nor could such trials near eren if it is probable that the Lower Greensaud woald at some spots be reached, so that the inestimable additional benefit of a larre and steady supply of pure water might also bo obtained, aud, with proper tained for all time.

ON EARTHQUAKES AND YOLCANOES.*

Bt Augustus Le Plongeon, M.D.

1. What is the Cause of Earthquakes?

Tportance, since it has occupied the minds of philosophers in all ages, in all countries. It is a question that has boen much debated in academios and other temples of learning. And still it remains a pazzle to the learned men of our modern times. The ancient philosophers seem to have been far ahead of us in this particular, as in many other branches of knowledgo; for while they were able to rence of our mother earth's convulsions, and warn their contemporaries of the impending danger, those possessed of the greatest scientitio attainments in our age, are unable to recognise the premonitory symptoms and announce to the world the time when, and the place where an earthquake is to take place-notwithstanding they can read in the atmosphere all the meteorologic pertarbances which occur, and prognosticace the storms and other phenomena which these changes foreshadow
Many are the theories, quite antagonistical some of them, that have been launchod on the vast ocean of apeculation. All of them, no doult, more or less plasaible, resting on some scientific fact or other, nated, proved inaccurate and favity. None has naveiled the hidden truth; and the mighty problem stands yet unsolved.
Facts are certainly not wanting to serve as milestones on the road of inquiry. And the lases that govern every phase of the phenomenon, well known to the wise men of our days, if properly applied, will cast their bright light, and illuminate the darl:bess that hangs over it.
Geology teaches us that, from epachs lost in the deap abyss of time, the earth has quaked; and natural philosophy, together with the discoveries of rigilant scrutinisers in the arcaus of uature, have festations of its wonderful vitality, and tanght us that motion is bife, and life is for ever and ever.
Why, then, it may be asked, are the canses of
Why, then, it may be asked, are the canses of
earthquakes yet a mystery? Simply because we have entered on the stady of these phenomena, sur rounded by the preconceived ideas, the prejudices, and bias, either scientific or religious, that had been incalcated in us by the teachings of our predecessors, instead of stepping into the sacred precincts of the great temple of nature, our minds free and unshackled frou all prepossessions, ready to receive
the revelations of the mighty arcana with candour and good faith.
I do not pretend to be wiser than any of the I am the last among the worshippers of scicuce Bat having studied the phenomena in the midst of the terrible convulsions that have shaken the American Continent to its very Unsis, of late, and applied the different facts that I have observed daring many years' residence in countries subject to earthquakes, to the touchstone of the uatural laws that govern their manifestation, free from all andue bias, either scientific or religious, I have tried, from my observations, to draw all possible reasonnble and soien tific conctusions
It is the rosult of patient and careful investimations that I humbly subnit to your criticism in this carsory article, with the hope that it will meet with your approbation.
I have said that:-"The Ancient Philosophers This might be considered a bold assertion on my part, if I had not their writings and those of the historians of antiquity to beck me np.
We all know that the wanton destruction, by flre, of the 700,000 volnmes of the library of the Temple of Serapis, has deprived us of the knowledge of the scientific traths discovered by the wise men of antiquity. The low works, however, that hnve es caped the fanatical wrath of the ignorant Mahome-
tan ohieftain, snd the deplorable hastiness of the tan ohieftain, sad the deplorable hastiness of the
Roman general, manifestly show that the philoeophers of old had indeed given their earuest attention to the study of the very question we are
about to elacidate; and that, owing to their diligent inquiries, and their knowlenge of the laws that govern the phenomena, thoy had discovered some
of the canses, if net all, of the earthquakes. We read in Philoatratus, that Auaxagoras, who was thoroughly instracted in the science of the Egyp. that there should be an of stoues iron heaven, and
of the mul which he perceived on the sarface of the wells. ${ }^{1}$
Harcellinus ${ }^{3}$ asserts the same thing, and so does Diogenes Laertius. Appellonius gave it as his opinion that the earth was composed interiorly of a mixtare of bitumen and sulphur in a constant
state of incaudescence, and when a curront of air penetrated the chinks and caverns, a fire was penetrated the chinks and caverns, a fire was
kinded, a flame was produced that burst out from the mountains, and streans of liquid tire; this being the cause of volcanoes and earthquakes ${ }^{3}$
Jamblicus" tells us in his "Life of Pythagoras," that Pherecides, merely by testing of or looking at the water drawn from a well, advised the inhabitants of Samos to put themselves in safety, for they were threatened with an earthquake, which, in reality occurred.
Pausanias, ${ }^{\text {b }}$ in his "Itinerary of Greece," whilst pretending that the earthquates are phenomena produced by the anger of the gods, enumerates, however, the signs by which they are preceded and foreshadowed. Among these he mentions the water in the wells becoming turbid and emitting fetidity.
Pliny the Elder, ${ }^{6}$ in his Natural Histery, after speaking at length npon the subject of earthquakes endeavours to imagine means to prevent the pae aomenon, and gives it as his opinion, that to some extent it might be hindered by boring very deep wells in the countries whare they are of frequent occurrence.
This same anthor, in another chapter7 of the same Work (and Cicero, ${ }^{s}$ in his "de Devinatio." told to the hm), says that Anaximunder fore but also the falling of the summit of the Taygetas, a mountain of Lacona The event conturmed his prediction.
In the thirteenth century, a monk, in order to oblige the Emperor Andronic to recall from exile the patriarch Athanasius, threatened him with The earthquake renlly oceurred in Constantinople The earthquake really oceurred in Constantinople within three days after the prediction. ${ }^{9}$
The illustrivus Bufion ${ }^{10}$ speaking of the proofs of the theory of the earth, relates that at Bologna, in Italy, in the year l6:15, everyboly saw with great surprise the waters beoowing turbid four hours cfore an earthquase.
Agathino Longo, ${ }^{11}$ in an historical and physical memoir on earthquakes, asserts that an identical phenomenon took place a few days previons to the earthquake that was felt in Sicily during the month of February, 1818.
Does not Mr. Cadet de Metz, ${ }^{19}$ in his Natural History of Corsega, tell us that, after having observed during the month of December, 178.3, very dense sulphurous vapours covering the plains of Calabria Citeriore, he came to the conclnsion that an earthquake was near at hand, and he predicted the catastrophe which took place at the beginning of 178% ?
And. lastly, did not Senor Vidanre, ${ }^{1 s}$ a learned Peruvian, ou Learing certain subterranean noises of a peculiurcharacter, predict, four months in advance, in 1818 ?
Aud I. myself. ${ }^{14}$ predicted six months in advance the terrible earthquase that on the 13th of August, 1863, laid to the ground the strongly built city of Arequipa, and
Will you reject the testimony of so many writers and historians? Will you sey with Cicero: The and historians? Will you say with Cicero: The
thing is impossible? No, 1 am sure-for as a scientific man you know that the arcana of nature become minfolded to onr gaze more and more every day; yon know also that every day some of the laws that govern its phenomens are discovered, and
that nothing is impossible to the human miad in the that nothing is impossible to the human mind in the
senpe of discoveries and scicutitic investigations. Impossibility is the by-word of ignorauce, un hown among us, the worshippers of ecience.
2. That the Centre of the Globe we Inhabit is not Liquid Fire
is generally admitted by most of the scientific men of our age. It does not enter within tho limits
${ }^{1}$ Pbilostratas-"Life of A polloning," Book I., chap. ii.
2 Ammionus Marcellinue, Book XXII., chap. xvi.
${ }^{3}$ Philostratus - "Life of Apollonius," Book V chap. xviL
Tamblicag-" Lifo of Pythagoras," Book L., clap.
${ }^{6}$ Pausanias-" Itinerary of Greece" (Achaic., clinp
6 Plinias-" Natural History," Lib. II., chap. lxxx. Ixxi.
7 Ibid., chap. lxxir.
8 Cicero-" De Devinatio," Lib. I., chap. 1
${ }^{9}$ Pachymer-Lib. X., chap xixiv.
${ }^{10}$ Buffon-Natural History, Art. XI. On the proofs of the theory of the earth.
11 Agathino Longo-Blbloteca Italiana, Settembro, 1818.
${ }^{12}$ Cadet do Metz-Natural History of Corsega, pr. 185
is Vidanre-Monitear Universel, 27 th of Augast, 1528 .
of a carsory article like this to enamerate all the facts that can be adduced to prove that it is most probaily a compact mass of mutals and minerals. with a rather thin crast of oxides to cover it. say thin, comparatively, of course. But to prove it will merely speak of the heat that has been observed to exist in the difurent strata where man
uns penetrated; I will try to show that this heat is simply superticial and intuenced altogether by diferent causes than central fires.
It is a fact demonstrated and proved that electromaguctism is the active agent that produces all the phenomena of life that takes place at every moment of timo before us, continually changing and producing new beincs and new species of being. I m 位er that electro-magnotism is the whe nil the in theoren in the humn body through electro-magnetism's agency. which causes the blood to flow rapidy, and circulate with force, throughout the entire system, producing thereby a continuons friction in each and every of its parts, engendering what is termed animal heat-this being greater wher there affluence of circula fing flaid, and therefore a greater friction-so also are the same electro-magnetic agents the sonrce of
the internal heat of the earth. How far this the internal hcat of the earth. How far this internal heat reaches towards the centre, is nn-
known, and will most probably ramain unknown for known, and

The laws of nature are as simple as they are mmatable. When studied, we find that they act alike in all things, advaining from the simple to the complex. We find nature very eoonomical of ce means employed by hor prodace her
Let us take her for our gaide and proceed from the simple to the complex.
The science of electro-magnetism is a comparaively new one, which will eventually lead to great discoveries, and give us the explanation of many phenomena that to the present day have remained anexplained.
The heat seems to angment progressively as we descend towards the centre of the earth. But the progression is not constant. At places the heat increases rapidy, at others very slowly. This diference has for a long time puzzled geologists. At last they have come, not to a definite, but an approximate conclusion, by admitting that the heat increases 1° for overy 2 metres ; Beudant pretending, however, that it aginents 1 for every 33 metres, on every point ofte perhaps, not tivo places, oven in the same locality where the heat is the same at the same depth.
However, for the sake of demonstration, let ns adnit it is so, and that the heat increases progres sively 1° for every 33 metres we approach nearer to the centre of the planet. What will then be the consequence? At 3,000 metres the heat will be sufficient to canse the water to enter into ebullition. At 20,000 metres, the supposed thickness of the crust of the earth, all silicates will melt. At
80,010 or 100,010 metres, all metals, even the most 80,000 or $100,0,10$ metres, all metals, even the most refractory,
As the semi-diameter of the earth is $6,366,000$ metres, the heat at the centre will then sum ap the prorimious amonnt of $250,000^{\circ}$ of heat. Thinis of -250, (h) Can you imagine sach heat and no be yourself volatilised instantaneously?

Can any man with common sense over believo such nonsense? Why, Beadant himself is surprised at the a his net frightens him, for in his "Conrse of Nataral History" he tells ns: "That if anything is capable of astonishing any one, it is that no more cata strophes should take place in our days on the surface of our planet, particularly when we consider the normous disproportion which exists between the diameter of the melted matter and the crust of the arth, which is onls 20,00 metres. This thickness is but very swall when compared to the terrcstria redius, which is more than 6,000 kilometres. On a glohe of 1 metre it wonld be represented by 3 nillimetres apyroximatively. That would not be the thickuess of a sheet of paper on one of our ordincry terrestrial globes."
These are, verbatim, the words of the sevant geologist. Yet there is another thing that a atonishes me more than that ; it is that a man of his acknow edged science, if he calls himself sane, cau possibly cherish and seriously advocate such an idea, now tua we are perfectly conversant with the laws which overn the expansion of cases, and those which regu te the march, attractions, and gravitation of celes tial bodies; and Mr. Beudant knuws, certainly, as well as onrselves, that only a temperature of 12,000 is reqnired to volatilise all and everythiug known to man on earth. If his theory was true, at 320,001 metres under our feet there would be nothing bn gases floating on an immense furnace of 230,0 on of heat to expaud them more and more, and a very thin shell of 20,000 metres to contain them
sud resist the immense pressure caused by their increasing expausion.
Who, in tou name of common sense, will admit of such an absurdity? Thereis no central fire; thers
cannot be. What does the science of the skies tell as on the particalar? Listen!
We all know that the astronomers, in order to calculate the course of the celestial bodies, are obliged to know exactly their weight and volame. They, of course, had to determine that of the earth, in order to compate its motions in space, and its relations with ite other companions and co-travellers. Their compatations hava been so accurate that they can determine the exset time of the apparition of comets. When eclipses, conjunctions, \&c., are to take place, by the astronomical observations, taken four or five thousand years ago by the Chaldean and Egyptian priests ; by those of the ancient Chinese astronomers, as that of the eclipse of the san, mentioned in the "Chou-King," which took place during the ninth month of the year 2159 B . C., all of which within the last centary have been proved perfectly correct. We have come to the knowledge that no correct. We have come to the knowledge that no
variation whatever has taken place, in the volume variation whatever has taken place, in the volume
of the earth at any rate, from those remote times to of the earth at any rate, from those remote times to
our days. If the planet had contracted, as some our daya. If the planet had contracted, as some
pretend, the rapidity of its rotation would have necessarily increased, and such is not the case.
(To be Continued.)

EXPEDITIONS TO THE NORTH POLE. A COBRESPONDENT of the Daily Nerrs writfollowing information on this interesting subject:-
According to advices from Stockholm the projected North Polar Expedition, under the control of Profegsor Nordenskiöld, is almost ready for sea, and Swedish geographers entertain great hopes of success for the new undertaking. The expedition will have on board, I am informed, besides Professor Nordenskiold, Lientenant Palander, of the Swedish navy, who has already had some experience in Polar exploration, having accompanied the Swedish Expedition of 1868 ; also a physician, a physicist, and several other savants, who will accompany the expedition for the summer, returning from Spitzbergen in the antamn; making in all, with the crew, dwen porsons. The principal object of the expesummer or autumn of 1873 , is to reach the Pele from summer or antamn of high latitudes by means of sleighs drawn by reindeer an enterprise in which the German geographer, Dr. Petermann, of Gotha, does not place much faith. The expedition will take with it from Gothenburg a portable house, of nine rooms and kitchen, which is to be pat ap on the Seven Islands, in $80^{\circ} 38^{\prime \prime}$ northern latitude - the most northern point, I am informed, at which an expedition has ever wintered in these regions. Great importance appears to be attached by Professor Nordenskiold to the cargo of fifty reindeer, which he will ship from Norway, togethor with the necessary fodder and a number of Lapps to attend them. The scientific mission of the expedition is as follows :-
During the autamn the expedition will take soundings eastward of Spitzbergen; the eastern part of Spitzbergen is to be thoroughly sarveyed; a series of continous meteorological and magnetio observations for the space of an ontire year are to
be made ; pendulum observations for determining be made; pend of the earth, refraction observations, besides a series of carefal observations of the abundant animal life found in the Polar Ocean in these bigh regions. The scientific gain, it is expected, will be exceedingly valuable. The chief object will, however, be to attempt in the spring of 1873, after pashing 28 far as possible northward by vessel, to proceed by aleighs drawn by the reindeer in the direction of the Pole, and if possible to reach that point. In this attempt Professor Nordenskiold casts overboard Dr. Petermann's idea of an open the new Austrian Expedition, has also expressed the view that Nordenskiold's idea of reaching the Soledes place great confilence in the leader of the Swedes place great confidence in the leader of the
expedition, who is undoubtedly an energetic and expedition, who is undoubtedly an energetic and
skilful man, well acquainted with the North Polar regions, whither he has already made noless than five royages. The Nordenskioild Expedition has the support of the Swedish Government. I think it is to be regretted that the Germans do not greet it more warmly, though the feeling is very comprehensible where national rivalry is at play.
Dr. Petermann and the great majority of the German geographical societies have given thair entire support to the new Austrian Expedition Which is to sail from Bremerhaven about the end of une, aud which Dr. Petermann greets as "the
greatest event in the history of modern Arctic exgreatest event in the history of modern Arctic ex-
plorations." The objoct of the Austrian Experition "ill be the farther navigation of the ice-free ocean which they met with last summer to the east and north, and the exploration of the Arctic Ocean to the north of Siberia. The plan of the voyage is as follows:-
The expedition being provisioned for a period of iree years, the 9rst winter is to be spent on Cape lsia; during the second summer the promontory of the Gentral Polar Ocean is to be continued, and an
effort made to reach the Pole; the second winter will be spent on the new Siberian Island, and the third summer will be employed in reaching Behring's Straits and an Asiatic or American haven. The Austrian expeditionary vessel is a three-masted
schooner, 118 ft . long, 25$\}$ broad, $13 \neq$ deep, provided schooner, 118 ft . long, 25$\}$ broad. $13 \neq$ deep, provided
with an effective engine of 95 horse-power, and with an effective on
coals for forty days.
There are several other North Polar Expeditions in preparation. A certain Count Wilczek, who has already given 30,000 florins to the Weyprecht-Payer Expedition, has cbartered a small vessel, and invends to accompany the Austrian expeditionary Zembla, thking most northern coast large Zembla, tnking with him provisions for the larger Norwegian stenmers of the seal fishing fleet Norwegian stenmers of the seal thishing fieet -
Captsin Jensen of Drammen, with the steamer Cap Captain Jensen of Drammen, with, the steamer Cap
Nor. and Captain Bvend Foyn, an enterprising Nor. aud Captain Bvend Foyn, an enterprising
whaling captain, with his steamer, will proceed, Whaling captain, with his steamer, will proceed,
after the fishing season is over. in the direction after the fishing season is over. in the direction explorations in the Siberian ice-sea (the Polynia), of course with an eje to fatare business. France, too, is bestirring herself, and a certain Gustave Ambert issues a circular, declaring his intention to take an expedition in the same direction as the Payer-Weyprecht one. This expedition was to sail from Havre in April. Ambert has in view not only scientific but "practical results, the acquisition of new lands, the discovery of new fishing grounds, \&c. Another French explorer proposes to get at the North Pole by way of balloon. He has not yet hit upon a plan of getting back again, however, with the news of his discovery, in case his gas gives out, it being very donbtfal how he will procure a fresh sapply so far north. The American Expedition,
under Messrs. Hall and Bessels, will proceed from the American side, after wintering, and attempt to reach the Pole in the course of the present snmmer. Thas the great internationsl race for reaching the North Pole has again commenced in earnest, thongh America has certainly got a good start. Captain Koldewey, the leader of the former German Expedition, has also a scientific voyage in view, which, however, creates little interest in Germany, whose sympathies and material support have been directed by Dr. Petermann in favoar of the successfal Austrian voyagers of last year, Messrs. Payer and Wesprecht.

FALSE HAIR.

F
TALSE hair appears as necessary in the United particulars extracted from the Commercial Bulletin (U. S.) will afford some little insight into the business done in thiscommodity :-
Formerly, as ladies grew in years and their hair became thin, a false "switch" was procuren, and combined with the growing hair to repair the ravages of time. Great care was taken to conceal the fact that false hair was worn, and it was only to her most intimate lady friends that the fact was
whispered even. But now all this is changed. Nineteen-twentieths of all the women in the country who make any pretence to dress wear false hair or some artificial equivalent, and the lady who, no matter how laxariant her tresses, should presame to sppear in society withoat sapplementing their natural growth with "rats," "mice," "switches," "bands," or some other specimen of the wigmaker's handiwork, would find herself so hopelessly in the minority, and so laughed at by all, from her dressminority, and so langhed at by all, from her dressing maid to her most intimate friend, that resistance imperative.

Where the Hair Comes From.

The hair which adorns the heads of our belles and matrons comes mainly from the heads of the peasant women of France, Germany, and Italy.
The hair buyer, sapplied with sundry stores best The hair buyer, supplied with sundry stores best
calculated to captivate the raral eye, travels from calculated to captivate the rural eye, travels from
village to village, seeking out those whose wealth of hair gives promise of a handsome price in the Paris market, the great-centre of the hair trade, and drives the best bargain he can in obtaining it. Sometimes the price is paid in money, but more generally in finery of varions kinds, such as ribbons, cheap laces, trinkets, \&c., a trade in which the buyer realises a handsome profit both ways, and the seller parts with the adornment which Nature has provided for almost worthless orn
will soon tire of and throw aside
Having completed his purchases, the buyer takes or sends the hair he has collected to the broker. who buys it at a price which pays the buyer well for his trouble. It next goes into the hands of the merchant, under whose snpervision it is clenned with meal, sorted as to length and colonr. and put up in pucknfes weighing from one to four
onnces, each consisting of hairs of nniform length onnces, each consisting of hairs of nniform length
and coloar, but not all the prodnct of any one head.

How Hair is Ruined.
Strange as it may seen, the hair which grows npon the heads of our fashionable ladies has no commercial value. Through much crimping, curling,
and dosing with various hair "invizorators," "restorers," pomades, \&c., it not only becomes varie-
gated in colour, but hard and brittle, rendering it gated in colour, but hard and brittle, rendering it
wholly unfit for use in the manafacture of hair wholly unfit for use in the manafacture of hair
work. Indeed, it is found that the more people work. Indeed, it is found that the more peoplo
"take care" of their hair, the more they injure it. while those Earopean peasants who let Nature take its course, and seldom even comb their hair, prodace the finest and most delicate article.

Its Value

In the shape in which the buyer brings it in from the country, this hair is worth about 30 dols. per ponnd, in gold. After it has been sorted, the different lots vary in value according to length and slade, from 1 dol. 50 c . to 100 dols. per ounce. Indeed, it is almost impossible to set a limit to the outside price of choice lots of long hair of desirable shades, for so difficult are they to obtain, and so urgent is the demand from parties with whom money is a aecondary consideration, that the fortunate holders can set their own price and be sure of a customer. "A switch of very light gray hair," said a dealer, "thirty-gix incles long,
and weighing five ounces, is worth 1,000 dols., and and weighing five ounces, is worth
can rarely be found at that price."

Subatitutes.

In a country like ours, where fashion is a law to the poor as well as to the rich, it has been necessary to provide some cheap substitute for haman hair in order that factory and shop girls, and others of slender means, may vie with their wealthier sisters in the adornment (?) of their heads.
For this parpose, several substances are in use. The first material applied to this purpose was jute, which, after passing through several processes, is reduced to a long sud glossy fibre which. in general effect, closely resembles hair, and which, owing to its comparative cheapness, rapidly came into general use. By means of dyeing, it was produced in all possible shades, and was eagerly bought in the shape of "switches," " waterfalls," \&c.

Ite Indury to the Syin

In the process of adapting jute to this use, nicotin. the essential principle of tobacco, and corrosive sublimate, a most deadly mercurial poison. are used. It is also rendered exceedingly brittle, and breaks as easily as apun glass. The small particles fiud their way through the air to the scalp, and, their edges being ragged from the combing process, act likg so many poisoned barbs, which, entering the pores and being held in place, introduce the poison beneath the skin, and cause irritation and ulceration. It is owing to this that the idea became corrent that the jnte contained animal parasites that bored into the skin and laid their egge beneath it. The most careful examination has failed to discover any restiges of animal life in jute, but the little barbs we have spoken of have been distinctly seen protrading from the pores of the scalp, and the sores they produce give every evidence of being the result of mercurial poison.

Linon and Cotton.

A more recent and harmless substitute for haman hair is found in five cotton and linen thread, dyed to the proper shade and sized to give it the requisite gloss, and then made up iato the various forms in which it can be used. Switches of this material are sold at retail for aboat one dollar each, a price at which a very handsome proft is probably realised by the dealer

Silk as a Substitute.

Probably the best substitute for haman hair yet introduced is silk fibre. Its fineness and strength render it peculiarly snitable, while its brilliant lustre adds to its resemblance to the real article. It is
used both alone and in connection with real hair, especially in those cases where a switch just sprinkled with gray is required. To prodace this effect, dark hair and gray silk fibre are taken in unequal proportions, varying according to the shade desired, aud woven together, the result being with difticalty distinguished froin a combination of real hair, yet costing, owing to the inmmense price of loug gray hair, a moderate sum comparatively. Eands and braids are also made of silk, the exposed portion only being of this material, and the filling of jute or "combings."

The Extent of the Trade.

Formerly hair work was sold only in a few of the leading hair-dressing establishments. Now large and expensive stores are devoted to its sale in the
large cities, nearly every dealer in fancy artioles large cities, nearly every dealer in fancy artieles
keeps some of the grades of so-called "hair keeps some of the grades of so-called "hair
goods," and in every conntry store neat cardboard goods," and in every conntry store neat cardboard
boxes, containing switches, chimons, and other head gear, are offered for sale. So long as fashion holds its present course, every woman in the land nearly is a customer, and thas an enorkious bulk of business is done, paying handsome protits to all
encaged in it. At first the percentage of profit was extremely large, bat competition has reduced this materially. Bnt the volume of basiness has incrassed in a like ratio, and the sale of hair and hair work a the ratio, and the saly of hair and

PERFORMANCE OF A LOCOMOTIVR.

THE following extract from a letter, detailing the performance of one of Baird \& Co.'
"Engine 422 has been taken into the shop for ropairs, and as her performance has been an extraordinary one, you will, I am sure, desire to know some of the particulars of her career thas far.
"She was placed on the road on the 17th day of Ootober, 1867, and ran until the 14th day of May, 1871. Daring the whole of this time she hauled fast and heavy passenger trains over Middle Division, and made the wonderful ran of 153.280 miles, losing only three trips, which was during Norember. 1869 , to have six new fines put in and to clean the mad out of the waist of the boiler.
She also lost six round urips in May, 1870 , getting She also lost six round urips in May, 1870 , getting
in a larger tank, to enable her to make the run from Altoona to Harrisbarg (112 miles) withont a stop.
should not be counted no fanit of the engine, and should not be counted against her.

As an offset againgt the nine trips lost, she barg.
${ }^{\text {bug }}$ The total cost for repairs up to the time she was lail ofir amonnted to $3,727.06$ dols., or $2 \cdot 44$ cents per mile. Our book account makes these amounts somewhat greatar, but I have deducted all items not actually running repairs, such as the new teader, cost of applying air brakes, etc., which, ceasarily oharged to repairs, actually do not belong there.

When Engine 422 was taken into the shop, she Was reported as run down in the working parts, bat uniformly so ; all the bearing sarfaces heing smooth
and good, and her general conditicn being better and good, and her general conditicn being better The cost of placing her in thorough repair is estimated at $1,262 \cdot 73$ dols.'

SAMELS' PATENT STANDARD LOCK.

TCERE are one or two features in the new "Standard" Look, recently patented by Messrs. Samels \& Co., well worthy of notice. The illustration given will readily conver anidea of the principle adopted. The working parts of the look are connined in a small case readily inserted in a door with. out weakening it by making the large mortice necessary for most of the loaks now used. a hole easily bored with a common anger, and may be of any length, allowing the handles to bo flxed as far as desired from the edge of the door. The constraction of the lock is very simple, but yet affords greater security from violence than that given by many other locks.
The principal edvantages derivable from its use are notably quired for fixing, the effectual quired for fixing, the effectual eocuring of the handiea from tion of any wearing away of the woodwork by the action of the square spindle, by means of the bearing,
which extends through the whole thickness of the which extends through the whole thickness of the door.

Fellow Solder.-The Prassian Society for the Promotion of Industrial Advancement at Berlin offera as a prize a silver maedal or its value, and the anm of 1,875 francs, to the inventor of a yellow soldar, possesstog the properties and qualities of ordinary tin solder, that the reams will not be visible.
Orseine, Gelatine, Ormazone.-M. E. Monier, in an easay in Les Mondes, expounds the divers nutritive and physiologioal properties of the three sabstances ast named, which are often confused together. volves, and similar as proved in the caso of dogs, vererets the inorgenio matter Gelatine bones and oxeroto the of meat), are not by themselves nutritive, but, eepecially the latter, sid the digestion as condiments.

Fruit Syrups.-It appears that a considerable trade is carried on in frait syraps, whicb, on the lucus a nou lucendo prineiple, conlain no frnit whatever, bat are artiflially prepared from solutions of sugar Gavoured with ether and coloured with aniline dyes. There are fortunately various tests for this disgracefal mponture-such as nitric acid, Which, when mixed in equal volume with reslifuit ayrap, oanses nochange, but of cods, the artificial remains anchanged, and the real becomes lilac or green, so that the proventives againat making our interior an ethereal djo-house are eanily

NOMFNAL HORSE.POWER. *

DTHAT is a nominal horse-power? This is a question often asked, but one which, under existing circumstances, it is impossible to answer. Under these circumstances " nominal horse-power " has long ceased to be a term possessing any def. nite value, and has gradually come to be considered as little better than a nuisance; and this being the case, it is not surprising that it should have been proposed to do awry with it altogether, and rate engines by their indicated power alone. We have ourselves advocated such a change on more than one occasion, and we have as yet met with no arguments which incline us to modify the opinion we have several times expressed, that the indicated power alone can be regarded as a satisfactory messnre of the capability of any given engine. But while this is the case, we are by no means blind to the com mercial edvantages to be derived from the employ ment of anit meserurement which can bloy plied to an engine before it is constracted, and, therefore, before it can be tested by the indicator in the usual way ; and it is the desirability of possessing an unit of this kind which brings us to the im. mediate object of the present article.

When a competent engineer is called upon to design an engine to do any specific amount of work isuch 85 to raise a given quantity of water, for instance-the term nominal horse-powor never the pressors of steam which is to be emplozed sind the ratio of expansion and piston speed at which the engine is to be worlsed it is perfectly esey to ascer tain the dismeter of cylinder ohich rill be reqnired tain the diameter of cyluder which will be required to develop the power which it is considered nocessary that the engine should indicate. Now, under
such circnmstances, this required power may be such circnmstances, this required power may
termed the "calculated indicated power," and it forms just such a unit of measurement as it is desirable to possess for commercial purposes. But if we reverse the operations, of which we have just been speaking, and attempt to rate any given engine by calculating approximately what indicated powar it would develop, we are met at once by important practical difficulties, which are by no means to be easily surmonnted. The first and most important of these arises from the fact that the indicated power of any given engine may vary within very

wide limits, according to the circumstances under which it is worked. Thus, a given engine may be equally capable of being Forked with steam at from 30lb. to 50lb. pressure, with a cut-oll varied from one-sixth to turee-fourths of the stroke, and with a piston speed of from 200ft. to 600ft. per minute, and the question would at once arise as to Which set of conditions should be assumed in determining the "calculated indicated power." In known, the approximate indicated power of the engine conld. of course, be readily calculated; but engine conld, of course, be readily calculated; but
it would scarcely be fair to assume that becanse under certain conditions an engine would develop, say, 80 indicated horse-power, that, therefore, it shonld be rated at that horse- power ander all conditions of working.
These considerations tend towards the conclusion that any commercial unit of measurement applied to steam-ringines mast not simply state the power which any given engine is capable of developing, but must aso indicate tue circumbtances yay of affording this would be developed. A ready way planned. Thus, if, for instance, it was generally understood that an engine rated at " 80 C.H.P. $c_{100}^{60 "}$ was calculated to devalop 80 indicated horse-power when worked with 60lb. steam, tivefold expausion, and at a piston speed of 400 ft . per minnte, the
rating would not only give a detinita ides of what rating would not only give a detinita idea of what
the engine was capable of performing under the cir-
cumstances stated, but would also enable an estimation to be made of the power which it would develop if worked under other known conditions.

An objection, which will perhaps be arged in some quarters against the adoption of any system of rating founded on the calculation of the approximate indicated horse-power, is that the use of such a system of measurement would involve calculations of a more complex character than it would be desirable should be requisite for obtaining the com mercial rating of any given engine. This, however is an objection to which we are not inclined to attach any great importance. Let it once be de termined to employ a system of rating similar to that we have suggested, and it will be a comparatively easy matter to irame simple rules, applioable to different classes of engines, which would onable the "calculated indicated horse-power" to be determined with the requisite degree of accuracy.

We may take the opportunity of directing attention to one important point of difierence between land and marine engines, which must be borne in mind in framing rules for the former, and this is that, whereas on shipboard the engines and boilers may be considered fogether, in dealing with land machinery they must be treated soparately. It thus happens that one of the best rules suggested by Mr Gray, namely, that which takes account, not merely of the proportions of the engines, bat of the steam generating power of the boilers in connection with which the engines are worked, woald not be applicable in general land practice. In factories, boilers frequently have to supply steam for other purposes besides driving the engines, while it is also not uncommon to find tero or more engines supplied with steam from one range of boilers ; so thet as ve hare steid, of the boilers can be employed in rating stationary engines, and hence the necessity-to which we have engines, and hence the necessity-" which we havcally the conditions under which the engine is worked.

Of the various obstacles in the way of introducing a satisfactory system of rating steam-engines there is, however, none so great as that of finding authority to enforce such a system, supposing it to be once determined upon. In the case of marine engines the Board of Trade may probably do much, and may, if they choose to take the troublo, intronot aniversally, adopted by marine engine builders, in the same way as the Royal Agricultural Society's in the same way as the Royal Agricultural Bociety's
rule is generally accepted ty the makers of portable rale is generaly accepted ty the masers of portable
engines. But the action of the Board of Trade in the matter, though it would undoubtedly do good service to a certain branch, would not affect the engine-building trade generally, and it remains for some body of recognised standing in the profession, such as the Institation of Civil Engineers, or, perhaps, more appropriately, the Institution of Mechanical Engineers, to take np the subject, and after investigating it theroughly, to issue rules for rating engines, which might be generally accepted the utter abolishment of the present nuisance of " nominal horto jower."

The "Patent Oat Exterminator." - The American "grand pig-aticking machine" mast yiold the palm to the latest novelty, "the Patent Oat Exterminator." This is truly a fearful and wonderfal invention. It is detoribed as a large aheet-iron cat, "With coen by clockwork, and a amall bellows inside canees the tail to swoll, and also "by a tremolo attechmont" causen the patent oat to ntter those wild cries so familiar to the aleopless. Being duly wound np, the familiar to the aleoploss. Being duly wound up, the bolical yells attract every cat within half a mile. Then the iron teeth and clawe go to work, and with lightning rapidity all the essailants are torn to shreds It is said that on some occasions as many ss 50 or 100 domestic pets are slanghtered in a single night.

Prizes for Art Workmen.-To encourage technical education in the deaign and erecution of works of art in the precious metals, the Goldsmiths' Company have resolved to give the following prizes, viz. :-An snnual prize of $£ 50$ for the best design for some article in gold or silver which, when manufactured, shall exceed 800z. in weight ; an annual prize of f 25 for the best model of some such article as aforeeaid ; and an annual prize of $\mathbf{2} 25$ for the best execution and workmanship of some such article as aforesaid. Also, three annual prizes of 225 each for (1) the best design, (2) the best model, (3) the best execation and workmanship of some artiole in gold or silver which, when mannfactured, shall be leas than 300z. in weight ; and amnual prizes of 525 each for the beat specimens of (1) chasing or repouseé work, (2) engraving, and (8) enamelling in the precions metals. Originality is necessary to obtain either of the prizes for design, and no copy shall bo the sabject of a prize. The prizes will be awarded in Novamber. It has also been decided to found a travelling scholarship of $£ 100$ s per annam, to be awarded by the wardons to a atadent who has shown exceptional talent, and who shall have obtained a prize for design for three successive jears in order to enable him to study art in the precion metals on the Coztinents.

IETTERS TO THE EDITOR,

[We do not hold ourseloces responsible for the opinions of our correspondents. The Editor reapectfully requets posible.]

All commmications ohould be addressed to the Editop of the Englise Mecranic, 31, Tavtatock-strect, Covent Garden, W.O.
I Peques and Post Office Orders to be made payable
"I would have every one write what he knowa, and as oniy, but in all other muhiects: For such a perann may only, but in all other kuhiects: For such s peran may
have some particular knowledge and experience of the
net have some particular knowledge and exprilench of the
nataro of suck a person or surh a funtain, that an to
other thinge, kno and yet to keep a clutter with this little pittance of his,
will undertake to write the wholo body of physicks: a

*** In order to facilitate reference, Correspondents iohen speaking of any Letter previously inserted, will oblige by on which it appears.

AN ASTRONOMICAL CATABTROPHE.
[4086.]-Dose " E. L. G." really ворровe that his argamants from the action of water upon a soft quiescent heap of clay or mand are at all applicable to the ffect of the varione apencies we now see modiffing the form of that surface? If we nesume the conditions we can always attain any result we please. Bat if. without can at waye attain any resart we please. Bat in, without to trace back in our imagination the various conditions of the earth and its original formation, then if one think is more absolately cortain than another, it is that the original condition of the earth was not that of a mass of ciav, mud, or nand, subjected to the abrasion of falling torrents of water; for is, again, anything in
geology has gained the rank of a fact, it is that clay, mad and eand are the products of the wearing amay, of old solid rocks, and that these destractive prodncts pass again into solid (so-called primary) rocks under the infuence of forces readily to be conceired and par-
tially to be observed. Furthermore, if the conditions of the earth had ever been anything like those emplored of the earth had ever been anything like those amployed
by "E. L. G." me the argumentative basis for his notions, the only possible resalt would have been the rednction of the oarth to a true spheroid of rotation, covered of the earth to a true spheroid of rotation, covered
with water over its whole surface. That is the
condition of thinga condition of things which one set of nataral
agencies, the disintegrating forces of smn, rain, and rivers, are ever tending to produce; they the depths of the sea. But the other set of forces the depths of the sea. But the other set of forces
(absent from "E. L. G's." heap of clay), very posisibly due mainly to the gradnal coniing and contraction of the earth, and to the meven thickness of its extcroal crast, proince an opposite effect; rnst tracts of and
are steadily rising, almost as if forced up by the are seradiv rising, almost as if the materials added to the sea bottom: in other parts an occasional apheaval occurn, of which we other parts an occasional andant evidences in the "fanalts", in our mines, Where whole series of strata are split, and one part
lifted bodily throngh hndreds of feet ; in otber cases the strata are simply tilted edgewars; in others, as at Vesnrian at this day, vart masees are raised io a flnid operating canses which prndace excresecnces, which, operating canses which pronace excresecnces, which, forces into that rounded snd andalating contour кn dear to "E. IL. G."? And are wo to accept his pure dictnm. and without one particle of evidence, assuma with him
that this contonr is the result of cataracta, and further, to assume that thesf cataracts are cansed by comets. as to which comets what knowledze we have may be deseribed as testifring that they do not contain or consist of water, and that their mass is far too small to prodnce any noiversal delnge by contact with one, even if they Every geological fact
eloge is just as readily explaich onald be attribnted to n foods which are constantly happening those locs would result from any great apbeaval; but that sany sach delnge ever corered the whole earth at oue time and mastroyed facts inconsiptent with ajch an occnirance having happened-at alle events, within very manr thonsands of years. Notubly is it ineoncistent with the fact that the native quadrupeds of New Holland, from the kancaroo to the rat (so-called) are marsapial, a The misfortane is that this which is parely matter of fact and of evidence is mixed op with religions opinions, and conseqnent passion and prejodice, and religion and science which does not really exist, but Fhich is due to the adrocates of each taking, np a partial and erroneous view and ignoring the link which I will tender to "E.L.G
nomical catastrophe," which may horm of "astro nomical catastrophe, which may help him to de-
noulish L ell and all (he geologiata, it he can only prove occurrence, thongh sach a trifle as that, perlunpis,
ad not be insisted apon. I orce met with a book hed, In be insisted apon. I oree met with a bool
widely-informed fooligh person, evidently saffering from intellectnal drspepsis and dreams, dne to ill-dipested incts. This book contained an immense amount of shrewd argnment mixed up (as is nsnal with nniverse
theorisers) with a gond desl of downight noneonse and no littlo of hasty and baseless assumption. The anthor nhowed that the carth was once whero Neptune now is (and that it was before that a comet), and is gradaslly ranning into the sun, hardening and condensing in ite
progress, the moon being now, from its amaller size procress, the moon being now, from its bmaller size nnd conseqnent more rapid progress, such a hardened
dead world as this mast by-and-by become when all ita liquids and gases have been condensed. He then made the very reasonable gness that when the earth was in the position of Jopitor, Raturn, and the othrr distan mnona, and the nearer of these approaching their primary one br one fell down, and their wreck formed the dps, the Himalayas, and great monntain ranges pary for "E. L. G." becanse the Alps and the Acdes dc., are actrally to be still seen, and manst have come Irnm somexhere, while as to "E. L. G.'s tale of a
comet-where is the water gone to ?
P.S. -The more this idea is considered the more it wonld seem to sait those who mngt find a reason for a delaze. In the last moon that may have fallen, it is qnite poosiblo there was a good deal of sea left, and this showered down would acconnt fur the inland salt laken and for the fish not having been killed as they wonld by fresh water; besides, the audiden shock woald have sent our seas up in a shower of spray to come down again in cataracts, besides accounting for a good many peological 'acts. It will certainly anower better than that very shaky comet's tail, for "E. L. G." nud all
those who want a theory, and are not too particalar aboat evidence.

"M.R.C.S." ON VENTILATING.

[4087.]-Tre jnke of Charles II. on the courtierly founders of the Royal Society has surely been ton recently called to our notice for "M.R.C.S." (let. 4049, already! Ho asks me to "kindly to explain how it is" thnt all warm-blooded animals are benefited (?) by drawing back " into their lungs a large proportion of the air that has just left their lunge " (bat not their body), "such being the nniversal arrangement for respiration," which "cannot be dispatad by any one Who remembers that a largo proportion of the air
expelled from the langs" remains in "air chanels mingle with and help to warm the air drawn into the lnngs;" a patent "respirator" in short, of mephitic air instead of platinum wires!
He then procceds to addace, apparently in support of this astounding physiological dogma (to me at least, knorn, that breath exhaled by a forcibly deep expira tion contains proportionally more carbonic anid than ordinary breath. I fail to soe the leant beariog of this on his doctrine. It meroly shows that conmonly mach of the air exhaled has either not entered the laners or mit been mephitised. It nowise proves any mephitised air, or even any that has been in the lang, might prove or disprove (and I woald be all attention to the evidenco for any snch novelty $a 8$ our "M.1.C.S:" has propnonded); whatever may be Natrre's arrango this possibly have to do with "ventilating"一-i.e., with a bnilder or ventilator of buildings?
Surely my bnsiness, and "Philo's," and "An Architect's," in building or ventilating, is with air that has left not only the lungs of people or animala but their
bodies. Does "M.R.C." mean to tell na Natare hes anywhere arran"ed for any breath which has once left a man's nostrils to be "drawn into" them or aunther mancrantin? Kemnst suppose him to hase been bornand hred in too warm a climate to have noted a phenomenon familiar in all places that have any winter. Coid air, andening the vapnar of oar exinaled breath, maike Arctic reaions-anm-closd from a sethe; or, in tho from a pistol, and visible half a milo off. All of us, afav from rabtropical latitndes, then, often have ocular demonstration nf how Natnre disposes of men's or animals' breath. We seo it shot from the notrils for ward a foot or two, and then monating ap Bkyward, Natnre has not arranged for one particle of it to be inhaled avain, or, rather, has arranged acainst any being re-inhased. Not so do onr brilders arrange (or ralons to ase of nineteenth-centary Englisih work any language implying personality above itself, it is a prodnct of derelopment, nowise of mind. All onr itself as (exactly contrary to the nbove, Nutnro's rin:hle development) to retain all the exhal-d breath possible, as long at possible, aud to be rebreathed as much and siration or iublow they and there existing. Of coarse, throngh your room will carry away exhaled breath withont permitting time for it to be re-inhaled more than onder the open sty. Bat my position is, that whatever bo the amonnt Rud natare of air-inlets, or of sap
posed ontlets (which latter, I believe, I have said, as well as "M.1.C.S.," most, in any place that has a chimner, go finally into the chimney; but that is far from all, or the of intake or ontlet openings there be whether two square inchts or two square yards to each cabic yard of
chamber, in any ease your architocture, through ignoring this (as it does nearly every othar worthy object of rational building) has come to retain and (with to yon your exhaled breath as inlly as poscible (with the said amount of openings), and make you resame condition). I savithat if this retention and to breathing were the main objects aimed at then tho breathing were the main objects aimed at, then thoy conld not be better insared (in the face, of course, of a by most of or newest dwellings and pablic buildisa Neither "Philo," nor "An Architect" has dispated this broad charce-rill "MRC.s"
What can I say, when he aeks me (p. 159) "to prove that the air at the very top of a room" (the rooms I ame complaining of) " is materially different except in emperature from" the rest ? That is precisely what that the top air in not materially diferent, compais oupht to be so, and is in any really ventilated plece, as a lantern. The highest pirt of air at any moment say, in a lighthonse, is not the warmest indeed, bat is the worst, the least reapirable in the baildinge, but in is just leaving. So it onght to be in every room, bat is not, and that is the gist of me complaint. In mat living or saseabling rooms, the air next the ceiting living or $868 e m b i n g$ roomb, the air next the ceiling
(owing to that ceiling's malformation) is not material (owing to that ceiling's maliormation) is not materialy
worse than any below. All is, as nearly an posible worsolly fonl; the structure being such as to oosibland send down ali that attempts to escape, and mix ap the Wholo as rapidly and thoroughly as possible. The top warmest ; which it ough not to be, for every breath cools in rising, just as the lighthonso lamp-rapoura do and are less hot at the ontlet than wher leaving the flames. To make the uppermost air in a lantern the hottest, or its top hottor than it now is (withoent into stop the right outiet, and instesd thereot mako wrong ones: in short, sasimilato it to a deelling roore, wrong or any English building। The top air fill then charch, os ange the hottest and cease to be "materieng different eacept in temperatare " from any other in the lantern. Bat no one dare thas treat a lighthoree ob lanve. For light costs oil or gen or aleatric force end oil or gas or force costs moncy. Where rou ure dealing with merely anch mboigh as human life and heelth mere architecta' rork, not engineers', blind chance and development may rule all. Bat not so when zotaal value has to be economized by the right ventilative form of atructure. None dare erect a lighthouse as bed and absurd pnenmatically ns a Queen's sitting-room, or (blandered in than Barry's last House ol Comeons perimets); for in the pars periments ; for in the lantern, right acration, the con-
triver well knows, involves more than buman life, eventriver well
sixpences !
The last question of "M.R.C.S.," whether upward "ratnafe is essential, as well as that which he says he He has only to ceart the chall Hen rup aty (pp. 5×9, 637, Yol YIV), and settlo both points by experinient. I defy him or any one to mate a place withont upard drainage stand the simple fire and bird test; and I enzage to satisfs it vith no more
[This letter mast conclude this attenuated discost-sion-hD.]

OUR SUMMER VISITORS OF THE FEATHERED TRIBES.
[4089.] - Tafsg are for the most part quite a different class of birda to onr winter visitors. They consisted principaliv of watar-fow/s, and canethrom ho milder land, bat our sumber visitors come from the sanny climes of the south to gojourn here for ambile, and enliven our woois and flelds with their jorons songs; and thongh the former species were more in number, and ailorded more sport for the gunner, yet namber, and aiforded more sport for the kanner, yet
the retnra of our summer friends is more welcome, and the retnra of our summer friends is more welcome, and
the birds themselves are better known, and certainly more loved, for who dors not rejoice to hear the cackoo's note, or who does not love the twittering of the martin note, or who does not top?
Avd wo cannot wonder at this: they come to ns in the spring, when the earth is clad with greon. and life, and jor, and hope appear on every side; neither onn wo hase excited the interest of man. The anerring instinct which at fixed periods of the year ininaces them to learo one clime for another, and leads them not only tr the same country, bat to the same apot, is trals astonishing. Liunnons males mention of a starting which bnilt in the same troe for eight yeara thougb it migrated erery antumn; and seifts and swallows is it migrated erery antuion; and 8 wits and 8 wallows is
our own country have begn marked and found to ro turn to the same apot for many years; and donbtless many other species wonld be foand to do the eame i the experiment were tried. Bird-fanciers also tell how uneasy and restless caged birds become when their fellows are leaving for otiuer lands, and ofton do not snrcive the triul vers long. But we mast hasten on to the birds themselves, leaving this interesting sabject of migration to some fatare time, or to abler hands.
Taking our visitors in systematicnl order, and not as
 well for it that it is aithat any truil name, bat long gone by the poor bird was accused of sucting the teats of goats, and from this absurd accasation re to this dey it hag never lost. It arrives in this country
towards the end of May, or boginning of June, and again leaves us aboat the middlo of Augrat, retarning,
it is said, to Afrion to spend its winter. In habits it it is said, to Atrion to spend its winter. In habits it is memi-nooturnal, molitary, and rather a eny bird. Next on oar list comes the white-bellied swift, or alpine swift (Cypsedus mellar); this bird belongs to the well. known group of H irumline, or awallow tribe, several
members of which are among our most familiar friende members of which are among our mont familiar friends ; this one, however, is not a common visitor to as, har-
ing bat rarely been foond in Britain. The common ing but rarely been fond in Britain. The common swift (C. apurs) arrives here early in May, and
leavos towards the middle of $\Delta u g a n t$ making a shorter stay than midey other of the manallow tribe. It black plamage and harah pieraing voice are not attraetive, but its powers of dight are traly wonderful, and deservedly claim our admiration. The common owallow (Hirundr monticr) is al ways a wolcome and a
favourite visitor: it builds a shallom cap-like neat, open farourite risitor; it builds a shallow cap-like neat, open
all round the top, generally under our eares, though all round the top, generally ander our eavee, though freqnently in the ohimney-top, from whence it is often called the chimney swallow. It nasally arrives in the beginning of April, and leares in September, winging
its way back to Atrias. The forked tail and the abits way back to Atrias. The forked thail, and the abeence of the white patch above the tail, easily dis-
tingaish it from the house martin. The purple awnallow tinguish it from the honse martin. The purple a wallow (Progne purpurea) has oecasionally, thoogh very
rurely, been found in this country; North Amerioa is its true home, where it is said to be maoh beloved and proteoted. The sand martin (Cotile riparia), like others of the tribe, puts in ita appearance in April, and leaves early in September ; it is the amallestof our Hirrudinides;
its nest is made in holes scooped out of sandy binks, its nest is mado in holes scooped out of candy banks, and often in ench great numbera that the banks are literally honeycombed. The common or window martin (Chelidon urbica) anainy arrives hore a little later
than the swallow, but it is so familiara bird that we than the owallow, brit it is so fami
need only mention its name here.
The bee-eator (Merops apiaster) in a very rare visitor, its true home is Africa, though it is oommon in many parts of Boathern Europe. The hoopoe (Unypa epops)
is aliso enother African bird which visits as ; in the southorn counties it is not ancommon, but it in in very raraly soen in the northern; its beantiful plame of feathers makes it a very conspicuous object, and like other rare birds it is sure to be persecaled instemd of
proteoted. It is said never to have been known to proteotod. It is
We are now come to a group of birds which are rightly called warblers, for they contain amongst their numbers nome of our sweetest song-birds. They are not much known in Scotland, but most of them are common with ne. The white-throat, nottlo-oreeper, or hay-chat (Sylvia undatan), is a lively and pleasing
congster; it comes to us about the middle of April, and lesres towards the end of September; low bushes, hedges, and underwood, are its favourito hannts. The garden white-throat or greater pettychaps (S. hortensis) is another snmmer bird, it is ever on the move, though seldom ooming in sight as it fits about the bushes,
thick hodges, and low underwood, warbling out its sweet and mellow tones, which are faller and richer than those of the last-mentionen bird. The chiff-chaff (S. rufa) is the smallogt of our warblerg, and the Arst to arrive, often making its appearance in the beginning of
Mareh, and stays with as till the middle of October; it has even been seen at Christmas, so that it seems tikery that some of its members may remein with us throughout the year. The willow wren (S. trochilus) is suother of our migratory warblers ; it arrives here September or boginning of Octrber. The wood warbler
(S. sibuluatrix) visits as in April and lester (S. sibiluatrix) visits as in April, and leaves again in Auguat ; like the two last species this bird builds a domed nest-that is, one shaped like a ball, with a
small hole at the side for an entrance, and it is placed small hole at the side for an entrance, and it is placed
on or very near to the ground. The lesser white on or very near to the ground. The lesser whitoApril. The song of this warbler is not so pleasing as most of the others, for thongh low, some of the notes are rather harsh. The blackeap, (S. atricapilla) -so
named from the black pateh of feathers on the top of named from the black patch of feathers on the top of
its head-is, with the exception of the nightingale, the its head-is, with the exception of the nightingale, the indeed, some of its notes are thought even to enrpas that bird. It is generally heard abont the end of Δ pril, seldom before, and though they leave in September a fow birds are somotimes soen in the winter. It frequents woods, orchards, and groves, particnlarly those which are thick and bushy. Next on our list comes the mach colebrated nightingale (Luscinia philonuchr), or sweet
philomal. Very little need he said about this wellnown bird; it generally comes to us about the middle of April, and Leaves again in Augnst. In the southern and midland connties it is a common bird; bnt in
Yorkshire and the North of England it is rarely, if Yarkshire and the North of England it is rarely, if
erer, seen. Its song, though heard sometimes during the day, is londer and sweeter at night; indeed, it is daring the twilight and evening hours that it loves Wo poar forth its warbling melodies. In some parts
of England the grasshopper warbler (Salicaria locustella) to not an ancommon bird, in others it is very rare.
Boing of shy and retiring habits it lives in localities which are overgrown with long grase, sedges, and such tike, amongst which it dives it distarbed. It is called granghopper warbler from its pecaliar kind of note,
Which greatiy resomhles that of the field oricket or granshopper. It arrives hero in April and leaves in Eeptember. The sedge warbler (S. phagraitio) is a mont indefatgable songster, and arrives in this country sboost the beginning or middle of April, and loares
towards the middle of September. It frequents reeds, medges, and osier beds, seldom appearing far above their sops, and in these quiet retreats its song may be heard throaghoat the livelong day, and often daring the aight. The last of oar true warblors, the reed warblor,
r reed wren (s. aruulinacia), is nearly as great a
songster as the sedge warbler. Its hannts, too, are the waterside, amongst the willows and reeds, and where place. Like that bird, too, it sings during the night as well as the day. Its nest is ingonionaly tastened to the reeds, and remarkable for ite great depth. The bird
arrives in England aboat the beginning of April and arrives in England
leaves in September.

The wheatear (Saricola amanthei), nsually arrives towards the middle of March, and leaves about the end of September or beginning of October. This is a very highly-prized bird, bat not on account of its boag, but for the delioste flavoar of its tesh, so that the bird
gets uadly parsecated thronghout its sojourn with gets uadly persecated thronghout its sojourn with us, particularly in the antamn, when thay become very fat, and many thousands are canght and
sold ${ }^{\text {m }}$ the market. The stonechat (Pratinuola rubicola) and the whinchat (P. ruleetra) are two pretty birds, and not uncommon in farzy districts, or
where the broom trees abound. The former bird Whore tho broom troes abolh a visitor and a residen as namberso of the called both with us all the year roand, but very The two birds are often confounded with the vinter. bue the birds are often confonnded with each other, head and neck thich in the whinchat is speckly, with white band over the eyes. This latter bird comes to as in April and leavos towards the end of Soptember The pied wagtail (Motacilla Yarrellii) and the gray wagtail (M. campestris) are only migratory birds in the North of England, remaining all the yoar throagh in the sonthern counties, bat the yellow wagtail (BM. sulphurea) or, an it is sometimes called, Ray's Wagtail (in honour of that distinguished nataralist) leaves na treo pinit september, and retarns in the apring. The oar anmp (Ahar arboreus), or froe tars, departs in September. The mode in which this bird asconds and descends the trees is remarkable; settling on some outside twig it ascends by little tights from twig to twig, singing out its not altogether unpleasan song, till it reaches the topmost branch, where it will sing for awhile, and again descend by similar successive the ring it reaches the gronnd. In some district visitor; in habits it is a wild and sho bird, loving the wild moorland, hilly districts, and rooky glens, far removed from human haunts; it oomes to us in Δ pril, and leares by the end of September. The song notes of thin bird are fow, and though lond and wild, are not mannaical. The beantifal golden oriole (Oriolus gal. aman) is an extremely rare bird with na, bat having boen hore. Two opecies of flyeatchers are found in England the spotted flycatoher (Mfilscioapa grisola) and the mapposed, are summer visitore; the formar is common, appoiady in the soathorn countrios, bat docreasing a making its appearennoo till the ead of May; it is found
 localities, though nevar found in any great numbers; it errives hero in April and loares in Septernber. The whole of the under part of this bird is white, while in the cormer the front of the neck and breast are speckled. The rod-beazed ahrite (Laniug collurio) or lesser
buod thor bird, in not ancommon in many places; its animals, reptiles, and unfledged birds, which it im. pales upon thorns, after the manner of the rest of it kind, before devoaring them. The time given for its The wordte bat generally spesking is very scarce.
The pretty wrynect (Yuux torquilla) now claims our notice. It belongs to the order of Scansores, or climbers, birda which have their toes placed two in front and two behind, which arrangement enables them to climb up The ruaks and branches of trees with great facility The wryneck heralds in the cuckoo, appearing just be enckoo's footman. Its food consists principally of ante and their eagg, using the tongue to pick them up with instead of the beak; and wonderfally is it adapted for this parpose, the bird being able to extend it some little distance beyond the beask; and it is horny at the tip, and oovered with a glatinoas anbetance, and so ants dind unerring doos. Thet in and out bird is not rery masical, but when once heard is not easily again mistaken. That welcome messenger of spring the cuckoo (Cuculus canorus), is a visitor more often heard than seen. It arrives in April and leaves in vest or hatches its own eggs, but caikoo never boillas tant daty to some other bird, generally to the hedgesparrow, the pied wagtail, or the meadow pipit, thongh sometimes this basiness is forced apon the lark ohatinuch, or blackbird. But perhaps it is not so well known that the young cuckoo is not at all merciful to the young birds that are hatched in the nest with it bat throws them all oat, remaining sole occupant; and not only is this inetinct instilled into the cuckoo at a very early stage of its existence, bat it is also pecaliarly houlders being very broad, with a slight depression down the back, in which the yoang birds arolodged, while the little cackoo shaftles to the odge of the nest and tosses its barden over
Next on our list comes the passenger pigeon Ectopistes mioratorius). This is, rightly speaking, an numbers ; bat with as it can scarcels in in prodigions it having been so very few times fond here. The
cially the male, and the smalleat of our wild pigeons Its entire length is a little ovor eloren inches, and weighs not more than six onnces. It arrives here September.
The quail (Coturnix communis) is another regalar summer visitor, thoagh never foand in any grea abundanoe ; in many placos on the Continent, as wel as in Asia and Africa, it is fonnd in prodiyious nam-
bers, flocks of many thonsands being seen in the bers, flocks of many thonsands being seen in the
coarse of the day. In general appearance and mancourse of the day. In keneral appearance and man nors it strongly resembles the common partridge; bat
differs from that bird in being a polygamist, and the differs from that bird in being a polygamist, and the
care of bringing up the family is lett to the female care of bringing up the family is left to the fem日
bird. It comes to us in May and leavos in October. The great plover ((EXidiencmus crepitans) comes to an in April, and leaves in September; it is not an uncom mon bird in marshy places and open downs, bat is nearly oonfined to sach districts; its call strongly re sembles a very shrill whistle; it aeeks its food prin
cipally during the night. The dotterel (Charadrius cipally during the night. The dotterel (Charatiritu morimellus), or foolish dotterel, was in former times a
much commoner bird than now; on its frest arrival it frequents hoathe and open grounds, but these it boo leares, and batakes itself to high hilla and mourtains particalarly those bordering on lakes; like the last named bird it is a noctarnal feeder. The raff (Philo mar hus pucmax) and the reero are the same species of bird, the former being the male, and the latter th female; the male is mo namod from having a mos capacious raff of feathers round the neak; which can be raised or lowered at the will of tho bird; this raff however, is only found daring the broeding season stricts, bat are now fast decreasing, owing to the drain age and cultivation of thome localition. When fat the birds are mach prized for the table. They arrive in April, and leave by the end of September. The oornorake Ortyyonetra erex) in a regalar visitor to moas parta of Britain, thongh rarely found in any numbers; it arrives about the aame time as the quail, When its cry of "crake 1 crake 1 orake !" may be henrd at almont a hours of the day and night, partioularly during the evening, but to toll whereaboats the bird may be is a ditflealt, if not impossible, matter. We are now come to the last bird on our list of sumamer viaitora, the epot tod corncrake (O. porzana.) This bird is by no meana so common as the last; but atill it is known to Fisi some of our marshy lande, and to broed thero. And now having iniahed these brie? notes on our hamuar birds, I mast oonolude without any farther remart apon them, $m y$ lotter haring already ran to suon.
length.

GRAVITATION AND REPULSION.
[4089.]-Wrti reference to Mr. Proctor's socusation in letter 1053, p. 173, that I endeavorred to conrey the impression of Ganot being on my gide reasoning in Bool III., Chapter 2, of his "Elementary reasoning in Book III.", Chapter 2, of his thismentary
Treatise on Physios," 1 have to remark to Troatise on Physios, 1 have to remark from the fact that the very first statement in Book IV. Chapter 1, is opposed to my ideas concerning the phy ical forces of matter-namely, "Guses are bodies hose moleoulos are in a constant gtate of reptara, and I deny the existance of a repalsive force in natare, and invite
action.
T.A.

"T. A." AND GRAVITATION.

[4090.]-It seems the corrected "proof" of letter 058, page 173, did not reach yon (as usual) in time. n in moditied the remark at the close of hae letter, oxplain what looked to mo like a suggestio falsi. Shonld his appear to be the case, "T. A." will oblige mo by onsidering my apology as made harewith. Richaid A. Proctor.
[The corrected proof did not reach as in time.-ED.]

COAL-CUTTING MACHINERY.

[4091.]-Tre introduction of sach maohinary as alluded to on p. 140 is not a question of economy only, or even chielly. If such machines are to be rorked, as the most promising now are, by compressed air, old, their nse will introduce large quantities of fresh and cool air in the very places whare the men are working, adding greatly to thoir comlort, and something to their safety. One I sam working reduood the temperatare of the gallery abont ten degrees in an hour, which would have been considerably raised by a dozen lamps and a dozen pair of lungs, had not cold air been introducod. A still more important advantage will be that the pitmen will be saved from the most dangerous and injarious part of their toil-that of holeing-i.e., andermining the seems of cosl. On the averago, 1 pitmon are kulled a year by angs of coal or rolat and ant to me anknown, proportion of which accidents occur by coal nnerpectedly falling apon the mon when ander mining it. To this danger, those who work the machines will be very much less exposed, as they neod When holeing. I beve no clear eridence that holein is injarions work, bat cannot doabt that working in so constrained a position-with the month and nose fall of conl dast, which has to be conghed ap as black spit mast be hartful, and I know that metal miners cou the borer as rery trying and exhansting, and it is the sort of work one woahd wiah to have done by chiners, if it can be. monh wian to h. H. Hollas

VENOMOUS SERPENTS.
[4092.]-In the discassion on this sabject printed in the last volume, I ventared to donbt (p. 868) whether any warm-blooded animal is proof againat the poieon has also been frequently asserted, sometimes in wellinformed quarters, that the mongoose is able to throw off the effeots of the cobra-bite, by partaking of a oertain herb, whioh it immediately soeks when bitten. I have recently come across some further information on this point whioh I beg to sabmit to your readers. It is from an assiatant of Dr. Fayrer, and will be found in the Transections of the Boaton Natural History
Society for March, 1871 . I lourn froun this that the mongoose, when attacling the cobra, seizes it by the neck or throat, and usually retains its hold for a fow seconds, at the same time sucking the bood from the large vensela in its neck. Sometimes the suake and mongoose roll over together several times, and there are some so ignorant of the habits and powers of these animals, as to suppose that during this time the weak jaws of the cobra are holding the mongoose, and on seaing the blood about its head and mouth think that it comes from wounds on its own bedy, reooived from the langs of the oobra.

Another mistane is often made in supposing that the blood frequently seen on the cobra's nose comes from a wound inflicted there by the mongoose. And assuming this to be the case, the question was often asked how the mongoone bit the cobra's nose without receiving in return wounds from the cobra's fangs. On carefully obcerving the movements of the cobra when anakea and other animale ware put into its cage, Mr. Seeva found that it would strike at them with its nose without opening its mouth, and in many instancea the cobra, by atriking past them, would braise its nose on the side of the box, or against the wire-netting in front, cansing it to
bleed. This ocourred in every case he witnessed of cobra enconnters with the mongoose.
Dr. Fayrer made the mistake in one of his first experiments of thinking the mongoose bitten when it was struck by the noce of the cobra, and as the mongoose did not die, his report, published in the Indian Medical Gasette, stating that the snimal was "bitten," wes re garded by some as conolusive evidence that the poison must have entered the blood, but could produce no bad ofleot on it. Dr. Fayrer, however, soon discovered hat when animals wore put into a boz with a cobre it was very diffenlt to tell-merely by watching the make's movements-whether they were bitten or not ; and in nearly all the experiments made afterwards be had the animal secured, and the fangs of the snake applied to any part of the body required, or the poison aken from the snake and injected under the skin with hypodermic ayringe. Several experiments were made on the mongoose by both methods, caraing its death in overy case.
Mr. Sceva believes that hoga attack and kill poison ous Bnakes in almost every part of the world. He has never seen a hog at the commencement of his attack upon a poiconous snate, but on one occasion he saw one with both fors feet on the anake's head and neck while he was tearing open the body with his teeth. He has met with many people in North and Soath America, and in India, who thought that the renom o suakes conld not affect the hog, bat this supposition has been proved by carefal experiments to be incorrect. In India he had eoen a hog bitten on the ear and on the inside of the fore leg; the action of the poison and the time of the hog's death were shown to be about the "ame as in the oase of dogs.
"E. L. G." will thas see that, in the opinion of one Who has experimented with the living animals, hoge are not proof againat cobra-poison. Whether in the event of a bittem hog not dying, there was no poison injected, or its " fat" coat protected it, we cannot easily decide ; but the venom of these tarrible reptiles once in
hlood, no human power seems able to prevent death.

Gatl bymea.

CO-OPERATIVE SOCIETIES.

[4098.]-THE aystem of duplicate cheques I described would, of course, be imperfect anless the cheques are given in all cases; nor, indeed, nnless there be a money-taker as well as a meller, and unless collunion required to gire a cheque in all cases for the money he recoives, if the omission to do so be trested as a serious fanit, or oven as presumption of dishonest intention, and if all customers be requested to see the chennes and if all customers be requested to see the cheques money paid, the system, thongh not perfect, would be money pala, the nytem, though not perfect, would be or the suspicion of it.
The plan desoribed by "Loach," besides being mnch more troublesome than the cheque system-which is much less costly than he seems to suppose-is open to the very serious objection that it affords no protection to the bayer against short weight or inferior quanity of shan againat direot embezzlement.
I think the cheque aystem the better plan of the two, but there is no objection, except the tronble involved, to the adoption of both. The advice of "F. C. 8." that those intoreated should read the report of the discussion at the co-operative Congress, is very wise. In
many stores it is cuatomary to allow to oustomers not many stores it is customary to allow to oustomers not profts-more properly, saviags of cost in retailing. The prouts-more properiy, sariags of cost in retailing. The imperfeot, but even without it the efect is useful, ss is and by some omnibas proprietors, e.g., those of lymonth, who require their oondactors to give every assenger a cheque, and who, I believe, generally do so.
[4094.]-Ix reply to "Linum" (let. 4039, p. 151), the small wheel below F (see p. 57) is a ratchet. Wheel. The crank E has a spring fitting this wheel. The
orank is worked backwards and forwards on the wheel like any ratohet-brace.
C. Churchinl.

RAISING WATER BY TIDAL POWER.

[4095.] - I THINE the power of the tides might be used to supersede manual labour for raiaing water to baths. Suppose, for example, that the rise of the tide is 10fk, a reservoir might be bailt, or embanked from the shore, and Atted with a slaice, the water passing in and out to work a hydraulic ram. In a rising tide, when it was half tide, the slaice wonld be opened so as to admit the water gradually into the dam or reservoir, maintaining a fall of bft. for nearly three honrs, and working the ram for three hoars ; the slaice wonld then be closed and the ram stopped, the dam being fall; when the tide had hall ebbed, the water would be allowed to fow The ram the sinice and actuate the ram until low water. tide, or would need to be turned half round at each to fall into the sea or into the dam, as was required by the falling or rising of the tide. For example, if the dam had an area of 400ft., 2,000 oubic feet of water would pass through the ram during each tide, and a quantity of this, dopending on the height of the baths, would be raised to the bath-rooms (eay 250 cubic feet each tide, to a height of 20ft. or 25ft. above high water), or a tloat attached to a lover might be used to work a foroing-pump. If the float displaced 5001b. Weight of witer, and was raised a foot high by the waves six times in the minate, it would give 8,000 unite of work in the minate, or rather more than a man's power at pum

Pholanthropibt.

PLATO.
[4096.]-I inclose a drawing of Plato as I saw it with an excellent 8 fin. clear aperture on April 16 had not so good definition as the exterior ones. Know-

ig that Mr. Birt and other oberovers are readers of
 I ask Mr. Birt if the floor is supposed to be conver, as I noticed that the longest shadow rapidly shortened, and that the edge of the thoor was not no bright as the
centre?
J. W. D.
[This drawing of Plato is the carliest that I remomber to have seen in which the shadows are depicted as having fully taken shape. As a companion to Mr Elgar's sketch (English MBCEANIC, December 15 1871, No. 851, p. 882 the floor, with ite characteristic truncated termination just within the east border. Mr. Elger's sletch exhibits the eame shadow mach shortoned, illustrating " J. W. D.'s" remark "that the is by no means level; as seen under oblique light it dips to the east and west borders, occasioning the phe nomenon witnessed by "J. W. D." of the edge of the floor not boing so bright as the centre. As regards the detinition of the interior shadows not being so good as that of the exterior, Mr. Neison noticed on the 17 th and 19th of April the interior objects, eapecially the streaks, to be less distinct than objects on the exterior slopes, which were sharp and well defined. The gaps in the soath, west, and north portions of the wall are woll shown in "J. W. D.'s" sketch. Instrument, 8 fin. aperture.-W. R. Birt.]

THE DELUGE.

[4097.]-MAY I be permitted to express my hearty thanks to "E. I. G." for his letter (4068), "One Proof of the Deluge," which I think of so great ralue that, formy two years' subscription to tho ENGLibi ME: chanic, I consider myself well repaid by this letter alone? It will bean additional favonr if, in his nest communication, he will kindly mention the pablisher
and the date (of latest edition) of the work of which and the date (of latest edition) of the work of which
be apesks highly: Colonel Greenwood, "On Rain and be apesk
Rivers."
P. H. Gossi, F.R.S.

THE ALCOHOL QUESTION.

[4098.]-In differing from Dr. Richardson as to the canse of the accolerated aotion of the hoart while andar the influence of alcohol, Mr. Barwick has, more suo, (lot. 4052, p. 171) taken a "leap in the dark." Mr.
Barwick assmes that after the adminitration of Barwick assames that after the adminiatration of
alohol the blood is too "saddenly carbonised and aloohol the blood is too "sudden) carbonised and hydrogenised " (for there is no prool that it is so), nnd on this assumption be proponds the theory that "accelerated heart-bents may be from rapid oxidation," leaving your readers to muppose that he has discovered a point overlooked by Dr. Richardson. Now, I have read the article on P. 109 somewhat more carefully than is my woat-for it happens to be written in a stylo -hiok I gionid like to nee mapted by the teetotallert and 1 fail to perceive whence urr. Barwick obtained hi idea of "rapid oxidation." True, is the blood had more than its proper proportion of carbon, it would require more rapid oxidation; bat the heart has no not pamp the blood to the langa in a mequeniry raw and larger stroam anlesa it recinga in a more rapid anm source which governs its action. This would make alcohol a atimulant of the heart's action, and this Dr. Richardmon is convinced is an erroneons idea. Again, accelerated hoart-beats must precede accelorated oxidation, and there ia no proof that, even if the blood is "carbonised and hydrogenised," it can be nocomplished " too suddenly "-whaterer value Mr. Barwick may attech to that expression. There is also no proos that aloohol is split ap into carbon, hydrogen, and oxygen in the aystom; and if there were, his arado hypothenis fails, becarae rapid oxidation means increase of temperature, which should be sustained while there is any excess of carbon to be barnt. This is contrary to observed facts, for, according to the artiale on p. 109 , there is a steady decline of the bodily temperatore after the elight increaseexhibited on the surface hes radiated, and dram-drinkers know that "drops" ro-
quire to bo indulged in with increasing freqnency to quire to be indulged in with increasing freqnency to reep the cold oat.
Bat sappose wo say the acooleratod heart-besks are cansed by rapid oxidation (rhich reade very like the cart before the horse), if Mr. Barwick had consulted a friend it is very likely that "two heads" woald have come to the conclusion that after all Dr. Richardson might be right ; for what would be the canse of acoelerated heat-beats in the following case:-Given "Sand rymea" in a narrow lane with impaseable hedges, and a mad bull rushing at him, what is it that makes his heart go about throo times as quick as it onght to ? It
can't be "too suddenly carbonised and hydrogenised" can't be "too suddenly carbonised and hydrogenised to blood; is it not rather cansed by the conveyance to his brain, through the optic nerve, of an alarming fact, which so acts upon the sensorium as to canse paralysis of the "organic nervous supply of the vessels which offer resistance to the heart '? Other cases will snggest themesives to Mr. B., showing that the action of the heart is regulated by the brain and not by
the smonnt of carbon in the blood. Aloohol is really a the amount of carbon in the blood. Aloohol is reany a rue narcotic: it frat nnhinges those parts of the brain Which govern the nervons supply of the rascalas
ystem, and so on, step by step, till the nervous centrea which govern volition and speech are involved, the last 0 go off daty being the "seat of life"-the cantre which actantes the heart. Now, if Mr. B. can show how aicohol so effects the brain, he will be doinge service to science; but he need not bring up ideas that sre utterly incapable of holding water, or hypothese hat have been examined and laid on one side as unistisfactory.
I do not pretend to reconcile the statement in the article that the effects of aloohol and chloroform are "very similur " with Mr. Barwiak's dictam that "chloroform's effects are widely different," bat the P.S.
sh'ms how well able he is to speak on the point. I shins how well able he is to speak on the point. I
cannot uny either whether there is an accumnlation of cannot uny either whether there is an accumalation of
"molecules obstructive to atomic reoombination" becanse I do not know what he means, or to what the "it "refors. Perhaps some of those better rersed it physiology then Mr. B. or mysell will explain.

Baul Eriane
ORNAMENTAL TURNING.
[4099]- Yoos illastration (p. 146) of a tool for turning short roan iode calculatod to mishoad any one seeking aselal woor with a tool set in radial the rotating be set at be of sny nse in cutting, and the same cutter-frame will only serve for one diameter of rod

Sythtrrasexs.
COMMUNICATING ROTARY MOTION TO BALL FIRED FROM SMOOTH-BORED GUN.
[4100.]-Thz object of rifing is to present to equalities in the form of the ball in difierent direction puccersively, $t 0$ that they may not act as ruddera to divert the ball from its coarse: also, as the centre o gravity of the ball does not quite coiucide with the, direction of the line of propalsion, the rotation of the ball avoids also this source of deviation. A rifte ball leaving the mazzle at a velocity of (say) 1,000ft. per second makes about 150 turns a minute, but it loses itt rotary force more repidly than its projectile force, amd thas at long ranges shoots indiferently. (See "The Story of the Gans," by Tenuent). By my plan, the force of rotation, blow at first, would increase. Of course it is on the principle of Barker's Mill. I had not seen a description of Bozer's recket when I wrote it ; I fear, however, the motion in my ball would be too slow. The holes might point beckwards so an to ifgite the composition by the fire of the gan.

CONCRETE MULTIPLICATION.

[4101.]-I beg to thank "Sigma" and "E. L. G." for their replies to my letter (3965), bat woald like to ask the former wherein lies the extraordinary oversight which he says I have made. I quite agree with him that maltiplying pounds by pints or yards is a proposition savouring somewhat of lanacy, but multiplying pounds by pounds or shillings is rather different, and seems to me no more absurd than multiplying feet by feet or inches, as in the example given in my last letter. I may here quote "E. L. G." to the effect that "fee multiplied by feet do not make square feet. Not at and. So say I. Neither do pounds multiplied by pound sion pounds maltiplied by pounds, like that of fee multiplied by feet, is merely a "compendious way of expressing an arithmetical dodge.
Since writing the foregoing, it has ocearred to me that, perhaps, " Sigma " may think that arithmetics do not give rules for the multiplication of moneys, weights, \&cc., in the way referred to. If so, I beg to snbmit to his notice the following rale, culled from a book now before me (not by Hind) :-" Problem: To maltiply pounds, shillings, and pence by pounds, shillings, and pence, a pound being taken 2s the integer." This is
the rule : "Pounds mnltiplied by pounds prodnce pounds; pounds maltiplied by shillings-every 20 is a ponnd, the rest shillings; ponnds multiplied by pence every 12 is a shilling, the rest pence; shillings mul-
tiplied by shillings-every 20 is a shilling, every 5 is faree pence, and each things, is two farthings, and four-tenths of a farthing; shillings maltiplied by each 1 two-tenths of a farthing pence multiplied by pence-every one-tenth of a farthing." The anthor then proceeds to giv everal examples, all of which I mit for the sake of brevity, and adds the following note:-"The ovequestion (referring to one ormer edition of was given in a former edition of this work, but brought to anderstand it, the till stumas entered into it more fully. To those who to the first and second books, he begs to refer them

My objectin writing on this matter, is to drawattention to the fact that the opinions of the leading anthorities in books pabliabed ar the ince with the rules laid down in books pabishel the the instruction and guidance of students. Surely these rules should be omitted or altere, nalined to jadge, as every slep taken in a wrong direc ion has or retraced by the beginner, and the ground gone over again, win more or less of labonr and pain. such calculations, and consider it the easiest and best. No. 170.
[4102.]-I BEG to remark that the explanation of "Sigma" (let. 4009) as to concrete maltiplication is not satisfactory. It is equally absurd to talk of mul-
tiplying feet by feet as it is to speak of multiplying pounds by pounds. A foot maltiplied by a foot has no meaning, nor can the process produce a superficiesthing of perfectly different nature. The arithmetical process of multiplication has no such creative power nor is it "because there is such a thing as a square" that "linear" foet can be multiplied together, but because we introduce the important step or hypothesis of giving a new and arbitrary meaning to the unit of which the "product" represents the multiple-i.e. that instead of the linear unit, of which the abstract number in the maltiplier and moltiplicand are the moltiples, the nnit shall in the product be a superficial foot-i.e., that one foot maltiplied by one foot shall be taken to represent a superficial square foot, an hypothesis perfestly arbitrary, as with equal reason and correctness we might assume it to be a rhomboidal foot, the notions of squareness and obliquity being both alike foreign to the idea of multiplication Another step will be necessary-viz., on this assamption to show that the result holds good for all nambers, or the process may be reversed.
The simplest explanation, as far as arithmetic is concerned, is to suppose the unit changed prior to, and not sabsequently or in consequence of, multiplication cally, it can only have the arbitrary meaning of the number of square feet in a surface of these dimensions. The best way to ascertain this number is to take a strip along one side a foot wide, say 12ft. long This will be 12 square feet, for taking a square foot as the unit, and multiplying by the abstract number 12, we get 12 square feet. There will ovidently be 10 such strips, and again multiplying by the abstract number strips, and again 120 square feet; and there is no mystery in 10, we got 120 square feet; and there is no mystery in sonal liberty for having endeavoured to maltiply together concrete quantities !
M. A.

FASTENING LOOSE WINDOW SASHES

[4103.]-The plan described at p. 152 seems a convenient one for preventing loose window sashes rattling, bat it is a pity they should be pressed quite closely together, so as to prevent the entrance of air into a
room at one of the places where it is best it should room at one of the places where it is best it sion
enter, for enter it must somewhere if an open fire be
barning, and if it enter between the sashes so as to displace air previously cooled by contact with the cold glass, more air can be admitted with less loss o heat than anywhere elae, except at the top of the
window. It is easy to intercept dast and to check too strong a draft, without stopping the entrance of air altogether.

Philo.
IMPROVED MEANS OF MANUFACTURING CONFECTIONERY.
[4104.]-The manafactare of confectionery has lately received attention in your columns, so possibly the following may interest some of your readers :-

Monsieur A. E. C. Landry, cook to the Tarkish Em bassy, has recently patented in England and France, throagh our agency, an invention for improvements in the mannfacture of saltanes and other similar article of confectionery, and in the apparatus employed thereor, whereby the said articles are made in a much more rapid, perfect, and economical manner than at present. To make the cylindrical parts of the snltane, or other similar article of confectionery, which has hitherto been attended with mach dificalty and laboar, Mr Landry employs a flat monld a, b, c, d, similar to that shown in illustration; this monld is made of a suitable metal or alloy of metal, and is cast, or otherwis formed, with a raised lozenge pattern or design, the sides of the raised lozenge-shaped parts being slightly

a

 America, and it is anreasonable to expect that menaccustomed to look at facts scientifically will be in flaenced br such a modo of teaching. In such matters correspondents will be credited and respected in pro portion as they are precise as to persons, places, and dates.-ED.]

A GUN-COTTON ENGINE.

[4106.]-Tre invention of a controllable gan-cotton has possibly provided such a material as I have considered necessary for the fuel of an engine, which shonid be at once comparatively light, somewhat powerfal, and, above all, consume a sabstance in which great mechanical force is resident, without occupying considerable space. A machine of such a character is ob vionsly of the greatest importance. It wonld probably have considerable influence on the stndy of aëronanties,
while it wonld certainly be invalaable on tramways in while it woald certainly be invalaable on tramways in
the event of proving safe and uniform in its action. the event of proving safe and uniform in its action.
The cov ditions above mentioned seem to me to po
The covditions above mentioned seem to me to point in the direction of explosives, but as they are so violent in their action, formidable obstacles to their employ-
ment in this direction are presented. Bat by the inment in this direction are presented. Bat by the in-
vention of the controllable gan-cotton, which is said to vention of the controllable gun-cotton, which is said to
be moderated in its explosive properties by the applibe moderated in its explosive proper flaments, it doe
cation of saccharine matter to the seem to me that, if no considerable loss of force is subtained by the aditen of the moaeratiog element ment as a source of mechanical force is at hand. May ment as a source of mechanical force is at hand. Methe
I , therefore, ask some of your practical readers whether I, therefore, ask some of your practical readers whe such an engine with a oylinder inte which a cord of
prepared gun-cotton is driven, and portions exploded prepared gua-cotton is driven, ard portions explteen
by being cut off at the orifice, permitted to fall between by poing cat of a battery inclosed therein, and so to the poles of a bastery the agency of the evolved gases, presenk any oblousiy insurmountable defects It wonld be necessary to realise the condition that bu a small quantity of cotton would be consumed at each charge, and not to confonnd the violence of the con
cussion resulting from the firing of a piece of artillery cussion resulting from the firing of a piece of artillery,
which has to do immense work at a considerable diswhich has to do immense work at a considerable dis
tance from the seat of the development of force, with tance from the seat of the development of Yorce, wit
the working of an engine sabject to a somewhat nuithe working of an engine sabject to a somewhat aol
form pressure upon its motion, and for which some form pressare npon its motion, and for which some
means might be devised of approximating the producmeans might be devised of approximating to be over
tion of fore t to the amount of resistance to come ; in which case I apprehend the concassion would be reduced to an inconsequential minimam, and th evenness with which the quality of gun-cotton may be prepared would go far to falfil the conditiens.
E. J. N.

THE FAIRLIE LOCOMOTIVE.

[4107.]-Will you kindly find room for the following few lines in reply to Mr. Amos Appleyard (let 3966), also to Mr. G. A. Boyd (let. 4041)

Tr's clear from tho style or rensoning in Mr. Appleyard's letter that he does nöt nuderstand the principle of the Fairlie engine. It wonld appear that weight of rails, their maintenance, weight on wheels, wear of tires, equal loaded wheels, absence of oscillation, perect articulation, absence of friction, have no meaning (if he could) as powerfal as the Fairlie tried not long (if he could) as po
ago in Yorkshire
Mr. Boyd could have easily supplied himself with the information he seeks, as it has been frequently published, and, I believe also, in your very excellen journal. However, to save Mr. Boyd the labour of search ing, I now give him shortly the information he seeks. Why Mr. Allan did not do so I am unable to say; bat as the letter was addressed to me, I gave it for the
benetit of your readers, just as it is. "Welsh Pony benetit of your readers, just as it is. "Welsh Pony""
and "Giant" cylinders, sin. diameter; stroke, 12in.;
young. - Mr statement that I had been told by a frequently who was well known to me that she had spark from her finger, the electricity being apparently excited by friction of the soles of her slippers upon the carpet, but that she conld not do this in England, because, as she supposed, of the air being less dry, was p. 62, whil an impossibility by one correspondent a that in no part of America was the air likely to be very dry, because in other parts ague is often prevaanother lady (wely received contrmatory evidence som picion) that in certain seasous the phenomenon is quite common in the neighbourhood of New York, as the correspondent quoted by "G. J. H.," at p. 148, states that it is at Boston. I learn from my informant that some persons only seem able to perform the experiment, but why 1 have not learned; that it needs for i.e. i.e., a great difference between the dew point and the peaterature-and that the feet often have to be repeatedy rubsed apon the carpet to excite the elecwere worn, not these with guttapercha soles.
In the theory of those who would pass as anthorities onthectrical science does not correspond with welltheorists may possibly no mistalken. It would become them in fatare to be less positive and more polite.

Philo.
[When a correspondent makes an extraordinary statement, as "Philo" did, which was discredited, he shonld, when offering confirmatory evidence, as Philo professes to do, aunendicato his facts. It is "r enough for an anonymas bservations commanicated by an "informant" in

inclined; or the monld may be formed with any other desired design or pattern.
To make a sultave the prepared sugar in a liquid untila sufficient thickness is obtaing but so as not to run over or cover the raised parts of the monld. When sufficiently cool, but while yet in a plastic state, the sugar is rolled over a tin or copper cylinder, and the two ends By this means M. Landry obtains, in a short time, and with bat little laboar, a hollow cylinder of sugar formed with openings, of the sizs and shape of the mental parts of the sultane, such as the borders, \&c. may also be formed by monlds.
The second illustration shows a view of M. Landry apparatus for forming hair sugar. It consists of a box oliding ver made of copper or tin, and provided wina atus; the ends of the box are fixed to the sides by screws as shown, so that the box may be easily taken to pieces for cleaning; in front of the strips or pro jections at the bottom of the box are slits filled with sagar in a semi-liquid state, and the apparatus being held in the position shown, the sugar wil pass throngh the slits in the bottom of the box, and along projecting pieces in thin streams or hair sugar which may be gaided according to the effect desired.
L. de Fontainemoreau \& Co.

Whecls, 24 in . diameter; representing at the periphery of the whoels, with 11b. pressare, 32, or 64 88 -16in. diametor; stroke, 18 in . ; wheels, 2 2sin. dia, meter; representing at the periphery of the wheels,
 191 tons on 8 wheels, load equally distributed over each. The "Pony " and "Giant" weigh 10 tons eack "Pony", and "Giant" are four-wheeted coupled tank "pongines. It is quite trae that mome one ont of a lot of engines. It is quite trae that some one ont of a lot of
identical engines may turn out more economical or identical engines may turn out more economical or
more extravagant in fuel thau others, bat I never yet more extravagant in fael thau others, but I never yet
heard of a difference of 25 per cant.-Mr. Spooner an to be ovar this-on the work done.
I think Mr. Boyd is in error in saying Fairlie bogies were ever ased before the first engine on this principle It shoul
It should be understood that the Fairlie engine is proposed for economy pare and simple, the yature and extent of the trafic haring nothing to do with the question. It only happens that Fairlie engines have performed by the ordinary engine-necessity has here driven the parchasers to this type of engiue; but begreat economy would not rosult by emplowing the engine on the ordinary duty. I assert most confidently this woald be the case, and I am in hopes of seeing the engines employed for every duty which can possibly be required ior a locomotive.
find the great economy for a moment he wonld at its ranning withont of a Fairlie engine arises out weight on the wheels, and yet giving out as mach the as the ordinary engine. You can remove a bogie rom a Fairlie engine and snustitate another withon aropping the steam in the boiler. If Mr. Boyd will ake the tronble to obtain my specification of my radial carriage sud wagzon couphings he will be beller able "Encyeloprodia " to which he refers. Not knowing Encycloprodia" to which he refers. Not knowing
what is in the later, I cannot enlighten him; perhaps ome one of your numerons readers would do so.
I have built and am building engines on 2 ft .6 in . gange to work gradients of 4 per cont: and carves of
leoth. radiag.
B. F. FALBLIE.

Weight of the earth at creation and

 NOW.[4108.]-T have to thank "E. L. G." for his letter ($4068, \mathrm{p}$. 175) in your last number, in which at last he gives ns fomething tringible to go upon. As he appears to rest his case entirely apon phrsical appearances, I
will not trouble you with ans palcontolosical eridence will not trouble you with ans palicontolngical eridence to the contrary ; bat will content myself with pointing out one or two canses at present in actinn which reem capable of producing the sweep rales and undulations Fhich he attribntes to the action of a flood; one o these canses is the solubility of lime in rain-water this acts precisely in those parts of the country where thare are few streams-that is to sap, where the ground is so porons that the water percolates through instead of forming surface rivers; each drop of rain carries ofta particle of limestone, and so in time ronnds nff the edges. This action is well marked in the chalk
downs ; in fact, in all countries where soft limestone downs; in fact, in all conntries where soft limestone
forms tha saperficial stratam; but in those places forms the saperficial stratam; but in those places
sach as Wales, where the hard palmozoic rocks pre sach as Wales, where the hard palmozoic rocks pre-
dominate, we get the ravine formations, so graphidominate, we get the ravine formations, so graphi-
cally described by "E. L. G.," becamse all the rain collects in sarface streams, not being able to permeate the strata. The other canse to which I have alladed acts universally in this and higher latitndes, and rounds or the edges, more or less, of both hard and sof rocks. I mean the action of alternate freezing and thawing. It seems to me that these two actions are capable, either separately or combined, of explaining of comets, or any other extraneons acencies in the and of comets, or any other extraneons agencies whatever.
P. Santalinus.

THE ATOMICITIES, VALENCIES, \&C., OF MODERN CHEMIGTRY.
[4109.]-IT in amnsing, were it not to some extent pitifal, to observe the page upon page of conflict and dipgnisition on the varied napecta of useless hypothesis; but it is encouraging that Mr. Bottone "is beginning
to dobt the existence of valency ;" and G. F. Davis to da "many other chemista have for some time past denied it in toto."
Qaite on a par with this is the intensely hypothetic character of molecnles, as apart from ntoms. If I anderstand rightly, Wurtz and some others regard the combines or P as forming a molecule PCl_{3}, which
conther molecnle, Cl_{2}. "Bat," says G. E. Davis, "this harmnnious reasoning is destroyed
when we units PCl replace the 2 Cl with one aton of 0 , molecnle of O , or oule of oxygen. Snrely there is no molecnlar force Where there is no (whole) molecale. molecniar force believe in molecnlar comhination." Bat, in reply to bewilderment, and the voltaic circoit consists of an interchange, not of atoms, but of molecales. "' Eclecticus' is qnite right about the relative weights of
patatinam. ©c., deposited, with referevec to one H in the circnit, or atomically; but for every diatomic Pt there are two H liherated molecularly." Be it so; but. like all shifts and dodges, this is incomplete. Trath is simple, and cannot encily be circnmrented ; and the greatest point with "Eclocticns" was that one atom of
Pt, Ca, or K repiaced one XI in the type ammonia, \&o.

I have long wondered at the iden of molecules, and half considered them as aseless or anmeaning; I shan henceforth, or until see sone evidence of conforing tence, consider them as mischievous and confasing. Why is not an equivalent of cranogen, of ethyl, or ammonium, as essentially atnnic as any metallic or ammoniam, as essentially atnnic as any metalic or
other element ? They all erince chernical fanctions other element? They all erince clienical fanction perfectly identical, and replace each other, atom for atom. "But," sars an ohjector, "one is an element,
the other is a compound." Granted ; but what is an element beyond the expression of haman ignorance? Berzelius thonght his vanadinm was an element; we now know it is a compound. All unnecessary assnmption is wealkness, and the sreat fact to lay hold of is, that clements (or radicals) combine with or replace elements, and the atomicities, the valencies, \&c.-Or, as I should put it, the ratio or type of combination-is mainly dependent on thoir difference of olectrocharacters
By the aame law, and in the same rolative way, compounds anite with or replace compounds, whence result double oxides, donble chlorides, and donble sulphides. G. E. Davis says, "The chlorides of the heavy metal anite with the chlorides of the light metals." There have been many riddles propnnnded in the name of atomic weights, but none of these things will stand a close investigation, not even the beantiful fair and close investigation, not even the beantifal
and very nsefal law of vaponr densitios. It wonld and very nsefal lew of vapour densitios. It would where relative chomical force means evervthing. The alleged diatomic oxygen nnites with alkaline motals in the ratio of 1 to 1 , with some others 2 to 1 , ascending to bismath and gold 3 to 1 , while with its upper or
nearer congeners, acids are formed with 5 and 7 to 1 . nearer congeners, acida are formed with δ and 7 to 1. per se? and a closer examination will show tendencies to all the intermediate ratios of $1 \frac{1}{4}, 2 \frac{1}{2}, 3 \frac{1}{4}, \& a_{0}$

These plain facts of old chemistry, with the $\frac{1}{2}$ vol. 0 , are strictly paralleled with the 1 vol. monad chlorine, and the same law equally applies to the iodidea, bro-
mides, sulphides, \&c. G. E. Daris takes up the ahalmides, sulphides, sc. G. E. Davis takes up the ohatreplaces 2 H , and gold 8 atoms. We remark, Arot, that the proof aims at too mach, hecaras it is the diatomic Pt which ought to replece 2 H , as it undoubtodly doen, being 2 atoms; whereas, if Mr. Davis be correot, this Pt mast replace 4 atoms of H . This, therefore, leads to my second remark-viz., the attempted proof is
atterly irrelevant and invalid, for by it we can prove atterly irreleva
either 2 or 4.

Modern chemistry is becoming exceedingly rich in acts of substitntional displacement, but all cases prove that these metals, whether diatomic or triatomic, only replace 1 H , as in the varied chloride of ammo-
ninm, $\mathrm{H}_{3} \mathrm{H} \mathrm{NCl}$; chloride of anro-ammonium, $\mathrm{H}_{3} \mathrm{AnNC}^{2}$; chloride of plat-anmoninm, $\mathrm{H}_{3} \mathrm{PLNCl}$. How, then foes G. E. Davis prove the contrary? He says, re lerring to the old notation :-

Trebly condensed molecale of water
$\left\{\begin{array}{l}\left(\begin{array}{l}\mathrm{H} \\ \mathrm{H} \\ \mathrm{H})\end{array}\right)\end{array}\right.$
Auric oxide $\left\{\mathrm{Ar}^{\prime \prime \prime}\right\} \mathbf{O}_{3}$.
Doably condensed molecale of H chloride $\left(\begin{array}{l}(\mathrm{H}) \\ \mathrm{H}) \\ \text {) } \\ \mathrm{Cl}_{2}\end{array}\right.$. Platinum bichloride $\left\{\mathrm{Pt}^{\prime \prime}\right\} \mathrm{Cl}_{9}$.
Hoffman similarls notates 14 condensed molecules of water. sc.; but, in the name of common eense. wha And with snch license, what may we not prove? Wo thns prove that platinum replaces 4 atoms of H ; the modern Pt is notated thans, $\mathrm{PtCl}_{\text {. Ther }}$. Therefore-

Quadruply condensed molecale of H chloride
$\left.\begin{array}{l}\mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H}\end{array}\right\} \mathrm{Cl}_{4}$.
Platinum totrachloride $\left\{\mathrm{Pt}^{\prime \prime}\right\} \mathrm{Ol}_{4}$.
Farther remark is quite unnecessary.
Eclectices.

A STUDENTS COMPLAINT.

[4110.]-Mar I be permitted to pour out my complaints to your readers? perhaps some are similarly Then, sir, I sent in mr name for examination to the Local Committee of Science in the town wherein I reaide. In dne course I presented myself for examination, other students also being there. The time ap. pointed for giving out papers came and went, axd so ponfor half an honr. Abont twenty minates to cight (instead of at seven) I commenced my paper. It was well within my grasp. I exulted, and scribbled amay as hard as I conld. One or two catch questions cansed some trouble; time went by, and write as fast as I conld, by ten oclock I had answered six questions. I qentlemen condncting the examination asked for my papers. We did not commence till late, I said. Time is not up. "I can't help that," was the answer, and I bad to deliver up my paper. According to Government inetractions, the gentlemen who attended daring the first part of the examination, and who were not panctual, bad been relieved by othors who were panctual, and probahly had other ongagements requiring
panctuality. Now, sir, I have to suffer for this. I had no time to look over my answers again, or to finish the reqnired number. The examiner, of course, has nothing to do with this, and I fail, not because I can't answer the questions, bnt becange inexorable fate compels me to scrawl on without regard for " method "or
any thing, and to do three hoars' work in something a.oy thing, and to do thr
like two and a hall hours.

A Desperate Character.

DR. CARPENTER AND PERSPECTIVE.
[4111.]-IT is extromely disheartening to discass any mallor w. Lapatan. I am only astonished has an mas thematical attainments and parallel perspective. Yam quit pichos, trath, no such parallel. 11 porg to go by, beoause we all know "E. L. G." that when we arranged. Let me remind m . Gere spot, we mat, look at any object bigger thas a mero spot, we must, to see it all, move the eyes, which is equiralent to
altering the direction of the camera. Let us, instead of the exceeding high tower, take a long wall perfectly equal in height. Now we know that the very first ariom in perspective is that all objecta diminish as the dirtance increases. We also know that a straight line can touch a circle but in one place. Lot "E. L. G." atation himself in front of this wall and he will see at onee that the height diminishes oven within the 45°, which he may, perhaps, inclade in his view. If the wall were infinitely prolonged, would it be the same height as fur as visible ? "Oh : bat," "E. L. G." wonld say, " you mast not move your eye or your camera." Then yon will see, not a wail, but a small portion of a stone or brick Therefore, the top of a high tower being farther from the eye than its base must, although really of the samo breadth, appear to an uncorrecting eso narowar wich was to be demonstrated.
M. Plaib.
[4112.]-The difficulty raised by "Bobo" (let. 4067) p. 175), and which has more than once, I beliere, been
 artists have never to represent a tower ton miles high, or any earthly straight object with one part forty times as distant as another part, this is really required in representing some phenomena of scientific interest, as anroral beams. I know not whether these besms are nsually perpendicular to the earth's surface, or so direoted that all their feet prolonged downarda mould meet in her centre; bat this certainly was the case in the only two displays I have been lacky onongh to witnese of decided " merry lancers," or separate beama, or "streamers." Though the forms of the carrea, or rere very differat (after making all allowano for perspective), yet all the lances, it seemed obrions to me would meet in the zenith, to which some indeed nearly extended, and must thns have been all vertical, while mnch longer than "Bobo's" ideal tower, their feet being cortainly some scores of miles and tops mome hundreds from the ground. And this parallelism conaredictra all peintings and diagrams paralleilism oontradicted all paintings and diagrams I had aeen which (being assumed, as we habitually assume al the beams by paralleled linee, bat either diverging ap. ward or (much less oommonaly) oouverging apward. The latter would bo right if we suppoee the painter, for the sake of embracing more sky, to have assumed an overhanging plane of projection, in dalineating the auroras I \&aw.
This has occasionally been done, even in represent ing (or at least photographing) some remarkable acenes, and instrnative caso is a sereogram, that 1 rocommended to the notice of P pris is, one of his por. spective puzzles, that was publisLied some years ago, of Salisbory apire, viewed from the groand, within, I think, less than 100 ft . (or a quarter of its height) from its base. To view that sterengram intelligibly, soo back to place it in a Gin. stereoscope, stand with in the ceiling two yards inside the window, when the effect will be marvellous; the architectore towering ap all solid, square, and plumb, though in the viems regarded solia, square, and plamb, thouzh in the views regard tur apart it is a confused, tnmbling mass of distorlike tors rets and pinnacles, as if thrown in a heap, jued jice rectangularly or intelligibly formed in itself!
E. I. G.
[4113.]-Ts perspective, I beliere, the rule for limit ing the amount of view represented in a pictare in tha either 60 . This applies vertically as well as horizontalls. height rale, in order to sketch a tower of the sappoen or eig. one mast be at the distance of abont sere hbor ing, one must, at a distance of a quarter of a mile, look in two separate directions in order to see the whole o at least two which, of coarse, makes it necessary it. It is rather hard to expect to see shown in one drawing that which cannot be seen in one view.

FAITH, SIGHT, AND MYTHOLOGY. [4114.]-When I remarked (p. 146, let. 4011) that our valued F.R.A.S., instead or sapportiog 61 by any single bit of either or even what goes for geologr in England nowadargeven a bit of Lyell or Scrope-had "only given even a bit of Lyell or scrope-had "only given as
most notorious or sensational line or two from a writer so oxtremely angeological and professedly an. learned in physical science as Bishop Colenso any one conied with all its blonders, Of conree any one who referred to the bishop's prefac wonld see that "F.R.A.S." lad not copied its words and, as he tells us he has this week made his a
acquaintance therewith, of course ho had not diretl

learnt the mattor therefrom. Bat nevertheless it had

 reached him from that source, and he had inncittingly aroum arith all the Chinese exnctness I have said The保 the book, this partioniar bit of blandering (either it words or its matter) he conld rearce avoid having seen, with all edacated England; berause there was no newspaper or periodical in Eugland seven years ago that could let Colenso alone, and probably not a single notice of his book, long or khort, which did not either quote or paraphrase this very rentence : Thereproduetion by "F.R.A.S.," therefore, is very reproated though he may as little thorefore, is whence be pot it as he knows what farm grew the corn of his this morning's breakfast roll.

Bat the astoonding marvel of this matter, which

 will some day yot oxcite groat attention, in this : that not merely your correspondent, not meresy many critics, and the bisbop's handred anowerers, nowspaper ten yeart; bat the bishop \dot{i} imsel f, in edition after edition, wea, and remained, and remains, so very far from facts as the hypothetical ones that he mernt to argue from, -so very far from this, as never evon to have taken the amail care to anderstand his own argameat ! never even once to have made it go on all foars, by ao mecesary to hare mide it pap argmo hot all necessary to have made it any argument at all ! Just (p .171 , let. 4048 , line 11), which is as the bishop, observe, has repablished it about twelve times-and suppose overy word verifiable (as probably it is), and have been formed " (of what ? say "adamantine", lava, as our correspondent, "Manas," forms those in India) ages before the Noachian delnge" (sav, with"F.RA.S." 60,000 vears ago), "and which are covered with light and leose substances, that must have been swopt away by a flood, bat do not exhibit the slightest sign of haring over been so distarbed." Marvellous 1 Probably some are "covered," too, with grass or bashes "that mast have been swept away by flood, bat do not exhibit the slighteat " distarbance I
Yoz see, the episcopal wavderer into geology, and equally our astronomical one atter him (who reproduced this precions featnre with Chinese exactness
(let. $3960, \mathrm{p} .117$, par. 2), each of them is in too farious (let. 3960, p. 117, par. 3), each of them is in too farions
a hurry even once to see (the bishop once in ten years!) a harry eren once to see the bishop oace inl have told that to make any argument at all, he ghonld have told Noah were undistarbed! or that the very staff he says is undistarbed, the stme stuff is older than Noah! This identity neither of them wice implies! 8ays Colenso, Hills which must hare bect formed ages before "with light and loose mintorials." \&c. Says our "F.R.A.S." (p. 117), "Mr. Scrope and every one who has examined. . the ulcamoes . are agreed in reforring them to a poriod 1 . ©c. . . . Pliocene." And stan, "on the steep sides of these cones tie nnaistarbed, scoria, distarbed, ergo there has been no flood! Well, by the disturbed, ergo there has been no hood tell years ago same rale, how conld there a a aishop ten years ago made
"Oh, of coarse, he meant to write that the covering was completed those ages ago, as well as the bill; or else that a flood would bave swept away hill as well as
covering." Of conrse, we tnow he mrant to write some covering. Of conrse, we hnow he munt to write some nothing. Bat here is the point : thoogh he mectut, he nothing. crote it : Yonr anthority for tarning history and oracles upsido down, patting out your eyes and "waikivg by faith," is a man so far from ascertaining whether facts or figments are his foundation, as not eren to Well, our "F.R.A.S." finding he has got bimself into a job here, and not being able this woek to farnish as with the pumice-stone evidences, that yon may not be kept waiting quite in the darls, proceeds to faronr his new episcopal instructer, from Professor Owen, who is aoalitless all that he saye. Bat this italicised passage (p. 17) realls strikes me as rather stale news
either to a Christian or Unchristian "Young Men's Associntion." Why, supposinz any one so $a r y$
 hardly have been news that a " nurirm of the ditery ne" of all ixisting air-breqthinys or "rineuable animal specie.
from one Atiatic centrc" (und the present geography was antenable; supnnsing so anile a notion", to exist. Lot us see (Gen. ix., 10, "And I, behold, I after yon ; and with every living, creature that is with you, of the forl, of tho rattle, and of every beast of the earth with you, from all that go out of the ark, to any ench "notion." What could the " knowledge" be that the Christian yonag men needed a professor to tell them was "incompatible" with it? Were thoy igDorant whether Aastralia joined Asia ? whether there
were any ornithorhnichns or kangaroo ? Were any ornithorbynchns or kangaroo? Whethor pamas
and jazuars corld get to South America through the Dorthern ice
Where did I complain that the Geological Society Honored anyhody? or that any of them refned infor-
mation civilly neked for? Onir one was erer asked by me for any, and was very courteons, and gave informs. "P.R.A.S." produce in due time. Meanwhile, as it is promico-stone gtatements, I cano gave your readers the chy of us have writing for information oxcept from or
larough him. Does he mean to retract them as mis.
takenly supposed to be known, or to show ns home they which I offered not a our "bettors," and the paper in expense of settling this bat a sabscription toward th Life, as be conjectnres, bat the High. Charch Giverdian wherein Colenso (then in England) and sundry oppo nents (all clerical, and all nssnming his science abso ders (as the late Professor Danbeny, and Profeano Ansted, F.G.S.) were writing all at once, and of what they wrote I can assure him the end is not yet.
E. L. G.

TERRESTRIAL GRAVITATION.

[1115.]-I thank Mr. Prictor for his reply to my letter, bat I am still of opinion that the proot given by Thomson and Tait. of the attraction of a aphere on an even with hris extended meanirg of the cernal calcalas, thea with min extended meanirg of the calcalus, and I that he would consider ${ }^{\text {an }}$ A simple proof of the probles sach a would eonsider "a fimple proof no the problem, for the atraction exerted ho pr arion particle within it." The proof I refer to is jast sach a from centre of at is as follows:-A line being drawn ticle (P), a point (V) is taken in that line, so that $C P$: being rading of aphere, it is shown tha if any doable cone of very small vertical angle be drawn, $\mathrm{H} \mathrm{H}^{\prime}$, rertex in V, the elementary apherical areas ide the resaltant conseqnently bisects the angle $\mathrm{H}_{\mathrm{P}} \mathrm{H}$; bat the line P C also bisects this angle.
The expression for the attractivo forc opposite elementary areas, H H. $2 \rho a \frac{\mathrm{r}^{2}}{\mathrm{CP}^{2}}{ }^{2}$ being the solid vertical angle of the cone. Consequently the total force of the whole apherical shell must be equal to $\frac{4 \pi \rho r^{9}}{} ; 4 \pi$ being the sum of all the solid angles that can be described aboat a given point. The namerator of this expression represents the whole mass of the spherical shell, and the denominator the square of the distance of tha attracted point from the centre of the sphere.-O.E.D.
Now. in order to undurstand the complete demanstration of the above, no farther knowledge is wanted than elementary geometry and the radiments of trigonometry. I shonld be happy to send a more detailod demonstration if any of your readers not accunainted
with the calculus should like it.

NEW DOUBLE STAR IN VIRgO.

[4116.]-Tre following fine double atar was foand last night:-
Virgints $=$ P XIT., 104, 12h. 23m. 23s., 8. $12^{\circ} 40^{\circ}$ $6 \frac{1}{2}, 12: 8561^{\circ}: 3^{\prime \prime}$.-This interesting doable is p, and nearly eqnidistant from two 6 m . stars about 1 apart,
 lauder. The position angle given above is the mean of two or three micrametrical mensures, bnt as the telescope was moved only with the tangent acrew, thal
resnlt is perhaps bat litte better than a carefal resnit is perhaps bat lithe better than a carefal
estimate. No attempt was made to measare the distance. The companion, however, was seen periectly with the strongest possiblo illnmination. Having aen this pair but once, 1 cannot speak very, positively
of its dificalty with a bin. apertare, but judging from of its difficalty with a
this occasion. thongh the companion is a delicate ohject, it conld hardly be called a severe test. I mar be mistaken, as the night was a very good one. This star is B. A.C. 4013. Anong other pairs picked up and which is given br Otto Strave as U.'. Kint and Mr. Bird particnlarly to this ne'v pair, and also to the new Rird particnlarly to this ne pair, and also to the new
doable ap: Crateris mentinued in a letter formarded a donble np: Crateris mentinued in a citer orwarded a in Sextans, the place of which had not been carefally determined is Weisse $X 242,10 \mathrm{i} .15 \mathrm{~m} .15 \mathrm{~s}$., $\mathrm{S}^{\circ} .9^{\prime} 7^{\prime}$.
Is there not some mistake in the macuitude of the companion to $\left.\begin{array}{l}\text { Crateriy, given in Loomis's "Practical } \\ \text { dstronomy" as 14? It would seen to be nearer } 10\end{array}\right]$ or $10 \ddagger$ now, and is a rery easy object
Chicago, April 12.
S. W. Bernialy.

NEW DOUBLE STAR IN HIDR.A.

[4117.]-TuE following donble star, fonnd hast night, is not in any of the catalugues of doablostars that I HYDRE $=$ L. 17596 , 8 h .47 m . 55s., S. $8^{\circ} 16^{\prime}$: 7t, 98 : $170^{\circ}: 1 \cdot 5^{\prime \prime}$-about turee-fonrths of a degree s. of 17 Hydre (21347), and easily fund. The magnitude this pair bat once, and then with a bright moon, the estimates of position and distance, aud particalarly the magnitude of the companion, may need rovision.
Chicago, April 20.
S. W. Bernhay.

viewing the sun.

[4118.]-Mr. Berthon has found hisingenions plan very successful, but does not the single concare lons introduce a little coloar - also a litlle spherioal aborplan agor high pnwer (or Herschel) plane? Witb a concave lens silvered there mast be a hot focus somewhere not far from the plane; mould not a convex of
long focas be better still ?
T.

ANTS, \&c.
[4119.]- Ir the Mlustrated London Neve for November 30th, 1861 , thore is a notice to the effect that, according to the statement of a gentleman in Texan, "An earth around it; ontside it lays the earth smooth, and deatroying all the outside il lays the earth smooth, nad the seeds of which, when ripe, it gathers and of grass, How much trath there is in this tale I cannot sar. bot I have seen a statement to the effect that an ant (dtto providens) at Poonah, has been observed by Colonel Sykes to make store of the seeds of a kind of millot. But I believe that all the Britigh auts are animal foeders, excepting their love for aweet things, in search their curnivorons propensities by the noe made of well knnwn. I was rery much amneed some time sinco in watching several ants conveging a oaterpillar, the size of which mast have required great comparative vears an on the part of its diminative captors. Some appearance ; it chiefly infosted a marm ronm marie its drying purposes, though it mas also fornd in ased Ror places on the promises ; it was evidently a foraigr warm it conld not stand the cold, and there a foreigner, for hability of its introdaction with ore wa of pro Before this the blackbeetle and black cockroach had been far too plentifal abuat the plioos, bat these romarkably decreaved in numbers; whether this was really the resalt of the introduction of the ante I will not pretend to say; but I actnally caaght them in the act of feeding on a blackbeetle, it was lying on its back not quite dead, and covered with the little red nnt : a little brown cockronch, aboat lin. long, ilso a foreigner, was in high favour with it ; and empty aking were to bo seen in plenty. It was interesting to eeo theso little insects following each other in regular paths, in different directions, apparently with some dor Grite object in view, but which I coald never discover. They were very fond of yells of egg. We oanght great noald cras over the odge of the basin, and when once they got into the water they had no powar to get out again. It has been said that ants will not pase orar ebalk; I took the opportunity of testing this by draving a circle of chalk around them, but their escape was evidently no diticulty to them. From when these ants first made their appearance their nnmbers apnesred to increase ontil we were swarmed with them. Though I have kept no dates I can bay with salety that they ware almost certainly more. I never observed any with Fings; if the eexes aro invariably winged in the ants, for snch arstor of time? I think 1 must have noticed them if any winged ones had made thoir appearance. The conditions of existence were evidently onfavourable, and their extinction progressed as statod acarcer until it is ultimately lost; not one has been seen for some time now, and the small brown cockroach has disappeared with it. The Blatta orientalis is fonnd catch the ant, along with a fresh arrival, a large brown cockroach;about 2 in . long.

BRIDGE CONNECTING ENGLAND AND FRANCE. [4120.]-I Have read with interest " S. D.'s" letter (9979, p. 62), on the proposed bridge connecting England and France. Althongh I cannot pronounce a decided opinion hofore farther experiments are made
on the many valnable saggentions proposed by him. I may state at once that I was so much interested with the novelts and importance of the plan given for bailding the bottom towers that I immediately set aboat testing the veracity of the principle.
Tue shrond employed by me was simply a straight tnbe 9 ft . long, Ift.2in. in diameter, closed at the top end and open at the bottom. The open end was sank weights applicd at the top, when the pamp and vacunm ganye wore attached, the depth of water being 1ft. 3in. When the promp was npplied it was a few minntes before any indication of a vacuam conld be
observed, bnt the monent the gange iudicated the fact of a vacunm heing formed, each stroke of the pamp of a vacunm heing formed, each stroke of the pamp
speedily increased it up to 71 b . per sq . in., when a speedily increased it up to 7 lb . per 8 sq . in., when a
further siukiug of the tube took place, the vacuan at the same time decreasing 1lb. per in., bat by conthe same time decreasing 1lb. per in., bat by con-
tinning the pump it soon rose to 91 l . gud, after stand-. tinniag the pump it soon rose to sib. and, after sta
ing for npwards of six hours, it still indicated 811 b . ing for npwards of six hours, it still indicated sib.
If Mr. Donglas, or any reader of the EvGLish Mechanc, can explain why the pamp required to be bept in motion for at least three minntes before any indication of a vacanm conli be perceived, it wonla oblige me, as otherwise I am inclined to think that his plan of bailding the bottoan towers, tce., will be found practical. A Friend of Progress.

WATERCRESS.

[4121.]-I SEND you the following paragraph, takem from a local puper. I think it may not be aninteresting to aome of your readers :-"C Caution to Eaters of rary urites:- - On suturday last a man passed my house crying fine fresh watercresses. One of my boys ran after him and bought a pennyworth. Fortnnataly, before bein's placed on the table, my attention wha called to them, and I found that three-foarths of the lot were composed of water cowbene (Cucuta virosa), one of the most virnlent of Einglish vegetable poisons.'

IMPROVED SCALE FOR THE LENGTHS OF

 pIANO STRINGS.[4122.]-Soms years ago a pianoforto-maker of my acquaintance, who had then not been established many yeara, whose business was then less extensive than it almost Blarishly, the productions of Mesars. Collard, Wha nevertheless maoh too intelligent not to porceive the imperfections of all the scales then in use, asid he would willingly give me a $£ 5$ note if I would design for him a really good scale which, while being safe, inasmach as that it should canse bat little or no dangor of broken atringa, should considerably improve the power and quality of his trobles. Probably, althongh things are nome that better now, the tonor and baes have also been to greatly improved in power since then that modern trobles are yot relativoly as weak as the trebles of ten years ago were to their oontemporary basces, conseguently the need of improvements in the trebles is little, if any, leas now than then, so, without any intention of competing for the above prize I-now my experiences having beocme considerably more varied my exporiences having beocme considerably more varied aupplying what I have good cause to believe yet to be a practical want.
The aubjoined diagram reprecents the fall lengths of the atrings for two octares and fonr semitones only. For saining room the oontros of ench of the notes are drawn less than half the distance from the note next above or bolew it that they ordinarily oocapy, it boing asual, when all the notes are equally spaced at the hammer line, Which is far preferable when practic-
able, to make the distances from the centres of onoh of
 the notes eq
Probably most practical pianoforte makera will convider this scale objeotionably long, and until I had experience of the enormons tenacity of the steel masic wire, made by Messrs. Smith and Honghton (notwithatanding all that rashness which is the too commen characteristic of amatour denigns), I really should have "fanked" the consequences of sabjecting strings to as severe a atrain as these lengths necessitate; but after the experiments of Mr. Chew, I consider this geale quite a safe one, provided proper care he taken of the instrumert, and its strings never snffered to become rasty, which evil thing ia rather apt to make the writer ditto.
Mr. Chew, who has unlimited faith in his extraordinarily long middle \mathbf{C}, once said to me "the powor of a plann is aimply a questinn of the amoant of tension mitting this assertion to its fall extent, for, practically, the power of that instrument is also greatly dependent on the rigidity of its goundboard, the forco with which its atringe are struck, and the character of the material with which its hampers are covered;-probably, next to the jadicions constraction of ite soundboard, the suitable covering of its hammers, the form of their striking sarfaces, the distance from the bridge of their places of impact, thair weight, and the velocity with which they are impelled;-there is nothing which so greatly influences the power and timbre of its sounds as the longthe and thicknesses of the atringe employed to canse it to produce soands of any given pitchs

As a rule, the longor and thicker, within reasonable limits, the atrings of a piano are, the more powerful and the clearer thre soands it produces-at least, in the reble, and, probably, the proportions of no portion oi its atrings. In the earliest example of a square piano I evor ant, made in England about 1768 or 1770 by I evor an, made in England aboat 1768 or 1770 , by long, of No. 7 miron wire. Instead of half a yard, Mr. long, of No. 7 iron wire. Instead of half a yard, Mr. of incrensing the length of piano atringa further than any of bis predecessors, mankes bis middle C just any of his predecessors, makes his midale C jant he assured methat after more than two yeara the No. 21 wire, vith which that noto was strung, had beeome bat little stretched, and its pitch not mach lowered, batich is not sarprising, when we not mach low that wire sfter being stretched pretty nearly es mach as it can bear without breaking, can hardly be oxpected to bocome strotched much farther; and It think whan the pitch of the F strings-ordinarily 3 ft. long-is raised to C, the afth above F, this operation although somerhat within the limit of the breating strain, and therofore, quite a possible truth, may fairly be termed "as stretcher."
From 18ia. of No. 7 to 36in. of No. 21 wire for the same note, or, perhaps, for a sound fally a semitone, if not a whole tone higher (for our concort pitch has risen considerably), is a long stretch, and I opine it will be some time belore we generally agree to atretch it far ther. Increase of thickness has, however, already beon carried out to a much larger extent. On middle 1 have hried No. 32, but found jittle benefit. When the size of the wire was increased beyond No. 26, so long as their vibra. tions were cansed by the blows of hammers, and not by he action of a hardly possible to ase stringe too thick. I also tried No 24 on C, 8din. long, and the tone was simply abominable. No. 20, the same length of wire, produced a telerable sound, and No. 18 one of yet better quality. preferred No. 17, which is as thick as it seoms desirable to use for that note, but I found both the quality and power improved when it was made fin. longer. Middie
C 8 sin. long, with No. 23 wire, I found to bo of very Cisin. long, with No. 23 wire, I found to bo of very
dieagreeable quality, both short and harsh, perhape disagreeable quality, both short and harsh, perhape
because the instrument was not suitably belliod, alao because the hammer strak too near the bridge-via. at one-rixth of the string'a length.

Experience has contincod me that all eocealliod equal tonsion scales are vory objectionablo. If we make the troble maringa or a piano long enough to prodaco soand of great power and fine quallt, those of the middle and base parts ons the are neconazrily too tight to vibrato long. The tone becomes "short," especially if their thickness be in areaced in anything like the proportions needful to indace breadth or falneas of quality. On the oon trary, if we copy J. J. Hawkins or Robert Wornam by omploying wire of the same thioknoust throaghou and compatb, we are compellod to sacriaco both powar and quality in the tenor and base for the saite of the higa troble Which Wr. Wornam carried up to O, and strang with No. 15. This afiorded a very good trebie, but a very poor tonor and bace. Mesers. Broad wood in their pamphiet, pabilioed $10 r$ private circulation A.D. beliers Mr. Cher proarl thequal tonsion soale, and rbeliove Mr. Chew prefert the same. No doabl equal consion soales aro the very eaniest or all to constraet, beanse khe lengths of tas atrings for own noto maj be oblained mochanioall without the trouble of caloulation, by means of the diagram ongraved in Mosers. Brosdwood's pamphlet on grand pianofortes above relerred to
In the acoompanying design and the apecitoation of the lengths and thicknesses of the strings below \mathbf{C}

Should my very prootion friende the pianolortomakers fear to suffor from broken atringa they can in aure, at the cont of some power and quality, by taking the longth of my D string for their top C. My C' wiul then all become B rats, and my A mals bocome hharpe. This change, howrover, being only one of engita, and not a change of apeoics, naither they no their oustomers need foar boing "bitton" by thnse domestic peate which aro the namosake
 to $2 \mathrm{in} ., 8$ 8in. 7 in., 183 in , $231 \mathrm{in} .$, and 45tin., which ongtha, with the oxcollent and tonacious wire in orai nary une, need not frighten the most tmoroas ol pianolorto-makora, bociano the plowor troble uriag pithore langths migat bo rear aboub mithoat breakng if inforary conh gonom in the diearem if inferior
 Bin. pid in loby benidon 6in. and 3la. loag. Besidos allorang more powertal sounds ol diearer qualy, and sand 8 ha tuto is bat little longer than that of a modern draving-room grand piano biob I lately mav, cunetracted (I boliove within two yearr) by Menurs. Collard. Now that Arm, of all othersi, is noted for eafe scales, to we may assume

above the lines, I have ondeavoured to make the best compensation betwoen the theoretically best lengths and practical requirements which I felt able to do. I am far from expecting pianpforto-makers will for some time to come-anless the tenacity of stoel music wire be generally increased until it equall Mesars. Smith and Honghton's hard-drawn wiro-be willing to adopt my lengths for their notes. All pianoiorto-makere braten etring which coste bot little to replece in the factory, costag. them, after the inatrament is sold and deli irered, not only the pecuniary sacritice entailed by sending the taner to tho parobaser's residence, but also a losa of repntation, for mont purchasers of pianos assume a broken string to be a proof of either bad workmanship or inferior denign. Pianoforte-makers ike all othor manafactarers who obtain their livelihood by sapplying the requirements of the naenlightened pablio-" Those who live to please mast plense to live" -cannot afford to make what they believe to be the very best, becanse, as a rale, the very best don't sel beat. Juat as Solon, when asked "Are these the best laws you can make?" replied, "No! They are the beat you unenlightened Athenians can bear," so piano orte-mekers make the best instraments Juhn Ball, hi wifo and danghters, can bear, or are willing to parchace.
that any pianoforte-maker who adopts my suggestion to make his C strings the same lengths of those of the D 's in the diagram and specitication, will be in no danger of being "bitten" either by the blacksmith or by the musical, not insective, F sharps and B flats be may himsoll construct
I did not carry the subjoined specification of the length of the atrings below \mathbf{C} above the lines of the treble stafl below tenor C , because very few uncovered atrings longer than about 4 ft . are reqnired for the tallest cottage pinnos, or oven the popular 61t. grands. Sooth to say, the latter, when the action is below the stringh, cannot well be made to admit stringn anless they be oblique, exoeeding 4ft. 8in. long, provided the bridge oo the soandboard be not objeotionably near its end. 46 th. grand piano, with its hammors above its strings, bat posited beneath ita keys, may have strings aboat 7 in or 8in. longer, bat a really satiofactory down-striking action it has not yet been my good fortane to beoome ace quainted with; probably the very best of that eril family is the German action, introdaced, 1 believe, by 1 Ir. F. Greiner, and nsed in those exoellent, if no! very powar fuctinatruments the "compaot" square pianos, mans The chief defect of these instraments was that the The chiel defect of these instraments was that the quickls onough for rapid repotilion; bat it is obvious
ioOOl
this might easily have boen romedied, either by asing lighter hammers, the key balance romaining unaltered, or, at leaut, but alightly altered (this would have enabled the same proponderance of the key to have
lifted the lightar bammers more quickly without inlifted the lightar hammers more quickly withont in-
creasing the weight of the toach) ; or, if doing so creasing the weight of the toach); or, if doing so
could be allowed, by increasing the load of laad inserted in the kejs, which woald have canced thom to certed in the keys, which would have caused thom to ny of my fellow-readers be tompted to construct s all cabinet or long grand piano, thoy will find toler bly good lengths for uncorored strings below tenor C in No 285 of the grand apright cottage piano agared No. 285t ol very great sceuraoy in setting out the longths of trings for notes below tenor C is neconsary ; a fow inchen heir ann le heir sounds. Along with the subjoined specification avo also stated the lor ood s long scale grand, and of Mr. Chew's, ansoming o, lite thom, omployo what is tormed an equal toasion cals. worth cogitation I need hardingth are altars worth ooglation. I need haraly add the and sim of nearly at aimply a matcor for judgment baced on experience trom
Speoifcation of the lengthas of the strings in the mproved scale, below C above the lines; alao length the C's of samo, of Mr. Chew's, and of Broadwood' longest soalo, copied from their pamphlet on grand pianos

All the notes of new scale	The Cis only
from C above the lines	of
to tenor C inclusive.	new scale.

MICROSCOPICAL

[4123.]-" H. P. H.," in his microscopical noter of last week, wishes for a cement which will keep in ssontial oils. I cannot help him in that, but I can make suggestion whioh I am surprised has not superfinous oil with blotting-psper, to withdraw the Canada balsam dissolred in bensole, hen he ill have preparation that does not reqnire cement This plan ras reoommended by Prof. Luderg 8tieds in "Max Sohnltz's Archiv.," bat he prefers creosote. For the beneft of those who use glycerine I will quote from the same anthor a recipe for a cement which I rather think is to be procrred in England. It is as follows: Rab ip some oxide of zino with turpentine to a paste, then add to each drachm (gr. 60) one ounce of a solation of gum dammar in tarpentine of the consistance of syrup.

CLIMAXODUS AND A NEW REPTILE TOOTH.

[1124.]-I HAVE recently had a considerable accossion to my collection of Northamberland coal-measure foasils, and among those addod are two of very great interest to palmontologiate-riz., minate tooth of Climaxodus, and a fine and peculiar tooth of a large new labyrinthodont or reptile. The smallest teeth of Climaxodus, proviously described-and they have not the true Climaxodi form, but are somewhat Petalodontoid in appearance-are three-eighths of an inch in length, while that now before me is one-oighth of an inch long, and one-tenth of an inch broad; it is crossed by two well. developed footh of Climarodus, snd is withont doubt the smalleat specimen of Climaxodus that has yot been described as belongi R to our northern coal strata, and is probably the amallest Climarodue tooth that has yat been discovered in any locality. The annexed sketch, Fig. 1, represents the tooth of twice the nataral size, and its resemblance to the larger Climaxodi, will at once be apparent to those who are acquainted with this peculiar form of dental armature. Figs. 2 and 8 represent a front and side view of a reptile tooth, which is new to the Northomberland coal-mensures, and Which is, I believe, now to science. The length of the tooth is Ive-ighthe of an inch, its wiath at the base is threo-eighths of an inch, apdite thickness at the base is ove-forrth of an inch. Fig. 2 illustrates a front view of the tooth, which is ourred forward, as reprocented by the side viow, Fig. 8. The tooth near the apex is tolorably amooth, but from the base up
two-thirds of the body of the tooth there are a number of widely separated dolicate grooves, and between the grooves there are broad but not bold convex ridges. The ooth, as aeon in its side aspect, is represented by Fig. 8 ; it is considerang ourvod, and rom the aper to sooat by by a peculiar form of cutting edge, the lancealate nancelletion of 0 J ther and lanceolation of any other teeth of Northemberiand which are known. Anthracosourue, Loxomma, Strepto

$$
F 1
$$

dontosaurus, and Orthosawrus, have lanceolate teeth but none of them resemble that just described Ptoroplas, the tooth assigued to whioh are pro-eminently donbtfal, are lanceolate, bat unlike that figared Amphicauruk, Leptognathosaurus, Batrach arpeton, and Labyrinthodontosaurun, the tooth of whion are circala and Macrooaurus, Mesosaurus, Megalocephalus, and Amphicalosaurus, the teeth of which are unknown, are the only large labyrinthodonts and reptiles yet found in our Northamberiand coal-measures. None of the all resemble that which has for the Arst time been described and Agured in this communication.
T. P. BARKAB, F.G.S.

A NEW PROOF OF PYTHAGORAS THEOREM.
[4125.]-This theorem (Enclid I., 47) is justly conaidered as the most important theorem in geometry. The following figure renders its truth so palpable that it may be worthy of a place in the Enalise Mectanic:-

$\triangle B C D$ is a square, and equal lengths, $\triangle E, B F$, OG, D H, being cat of from its sides, the flpare is completed. Now, it is easily seen that EFGH and K L M N are squares ; and that the eight triangles, $A E H, E N H, B F E, F K E, C G F, G F L, D H G$, HGM, are equal. Moreover, the figure A HMLFBA is made np of the two squares, $\triangle M$ and $L B$, and also of the equare $K M$, and the four triangles forming the two rectangles, $A N$ and $K B$. Again, the square $E G$ is made up of the square K M, and the four triangles, KFE, L GF, M H G, NE H; therefore the squaree ΔM and L B are, together, equal to the square E G; or, in the right-angled triangle A H E, the squares on A H and $A E$ E

The proofs of several other less important propositions, some of which form part of Euclid IL., conld be aasily dedaced from the same figure.
C. J. Recordon.

THE ECONOMY OF SMALL BIRDS.
[4126.]-Wirt a slight hope to induce those individuals callous to overything but their own selfish amusements or paltry gains to forbear acting the part oarth by and capturing the young of those beantiful and most usefal creatures wisely appointed to keep in check deatructive vermin, I wish to say a few common-sense words of expostulation. Those birds which are more especially insectivorous would at first sight seem to have a more particular claim to haman kindness and protection, though it will be found that some of those which live on a mixed diet, sach as the finch tribes, consuming as they do large quantities of the seeds of noxions weeds, likewise contribute in their special province to the farmer's beneft, and also deserve justice and fair play, as anch feed their young chiefy on grabs and caterpillars. Even the common sparrow, achongh generally protty omnivorons, has been a maltitude of grubs as to constitate a heary balance in its farour, being a circomstance which those who seek its destruction would do well to consider. The well-known devourers of the soeds of noxions weeds.
birds of the goldanoh and linnet olass, likewise eat greedily those blights of vegetation, the aphides or
plant lice, which they mearoh for with great assiduity. plant lice, which they searoh for with great assiduity.
Our hedges are depupulated of these beantiful and Oar hedges are depipulated oi these beantifal and
useful little areataren, either to supply the ahops or for the heartless amusement of ohildren. Those that are of the unquestionably beneficial clases, being chiety insectivoroun, do not escape the anare or the gan directed by the thoughtless or the utterly heedlees. Now, among those tribes of birds may be menthe atarling, and often both are wantonly and foolishly the atarling, and often both are wantonly and foolishly The latter may be said to be in partionlar a mont valuable asoistant to the agrioultarist, owing to its peonliar habits. I fully concur in the forcibly exprensed opinion of Joo that it thould be provocied from injury. This bird has an eapecial preallookon for fly maggots and oiver larv. They may bo moen in tocks daring the hot months buaily ongaced among sheep and catile, Who-donbtiess better appreoiating their good omcos than the ratheas bira mararer siner thom to ran over their bacia and ides whilst laying down or grazing, whilat their little friends hindly relieve their odics from the stinging gadiy, and the sheop from ticks and the horible nag8, which, but or mon aandeance, would burrow deop festering holes in their skin. I have myself seen such holes exten ont of the wreiohed creataro's hides as large as a walnut, full of maggots, Which the farmer woul knows to his cont are a noaroe of trouble, dolriment, and oxpenso. Now, itis the eapecial province of all birds of the etaring ganas (and thero with many varietios of them in ouer coankrion, all With the same habite) to irequent hooks and herds in ordor to dovour their parablion and othor stinging pests. It lollows plainy, herolore, that every one or arm that in the iarmer, who must then need, had a subatitate for thin natural and wise intention of thinge by the free appication to the animal's hide of tiok and meggot ointments, many of which, if powerful and corroaive enough to destroy the vermin, would very likely, by absorption, do eome mischief to the creature's health Who that to escape the rloodggirantically over the felde trying to escape the bloodsacking gadiy, and who has also, as I hare, in liment at toir hered and indignant at thor whin and of the, atle fy destruction? How the proboscis of the catale fly with its obtase spongy suctorial end obtains an ontrance into the eq 1 and oxplain, but it cortain is gradually insinalf alo fith inod lite the and the ty then uns isole the operition occapjing mor, cell if common wence and hindly fealing were waitiont well if common sense and kiody feeling were sumcient guarantee againgt bird murder, but, as unhappily such in Protection Bill" is a thing very mroh to be degired brde Protection Bup io athe very mal to bo dosirod providential arrangement of things neither distarbed per disorganised.

DR. LIEBREICH AND TURNER.

[4127.]-Has not Dr. Liebreioh jumped to a conclasion rather too hastily, as regards Turner at least? Mr. W. Mathien Williams has pablished a lotter in a contemporary bearing upon thisquestion of streakiness in Turner's piotures, and as I have noticed similar effects from whtery eyes mysell, I have made an extract for the purpose of obtaining opinions from neme of "our" contribators. Let them try to look at a landscape under the conditions mentioned, and I am muoh mistaken or they will 200 it as Turner painted it. Mr. Williams says :-
"On p. 67 of 'Through Norway with a Knapsack,' published in 1859, speaking of some of tho pecrliar midnight sanset ouleots of the North, I asid that - Tarner, like an earle, has dared to face the mun in hif full glare, and to place him in the middle of his pictares, howing nis how we see a landscape with suntarea, howing nis how we see s landscape with san-
dazzled oyes, when overything is motiod into a
laminous chaos, and all the dethils blotted out with miaty brightneen.'
In all these peculiar pictures that I have seen the san is thas placed in the middle of the piotare and juat sufficiently above the horison (from about 100^{C} to 80°, or at most 25°) to pour his rays abont perpendicu. larly to the curvature of the eyeball, when the face is in position to contemplate a landscape. I have froquently repeated the experiment of contemplating a landscape nnder such circamstances, and on every occacion of submitting to such tortare have seen all the effects of even the most extravagant of Tarner's lster pictures, which are so well desoribed by Dr. Liebreioh. I have seon the 'vortical streakiness, which is cansed by overy illuminated point having been ohanglly speaking incal line, with an 'olongation, goner the iight,' and that 'thero procoeds from the sun, in the centre of the picture, vertical yellow streak.' These appearances may arise from an afloction of the crystal. Inne lens of my eye similar to that attributed by Dr. Liebreioh to Turner, or it may be due to somothing else mach simpler, and whioh is more or less common upon normal conditions corers the facts, it certainly mnst be the more scceptable.
My explanation of the vertical streaks is this: When we thus look fall-faoed at the sun, the dazzle pro daces alight indammation or irritation, and a flow of tear. The liquid mocumniates, and rests apon the
lower eyelid, forming a little pool, the surface of which has a considerable vertical carvatare-i.e., the lower part of the retained tear curves apwards from the surface of its bnse at the root of the lower erelashes to its sammit contact with the conjanctiva. Thas in a vertical direction it must act as a lens of very short focas, it must refract and converge the rays of light in a vertical plane, and thus produce a vertical magnifying effect, the definition of which will, of course, be very confased and ebscare, on accoant of the irregular carvature, and the fact that the ere is focussed to the distant objects. This want of directive focussing will limit the distortion to the bright objects whose vertically magnitied images will be forced upon the attention.
To teet this explanation, let any one seleot a bright afternoon, and at abont 6 p.m. or a little later, at this season, gaze sunwazd upon any landscape free from London smoke or other mediam of bolar obscuration. At frat, if his eyes are not very sensitive, he will see a circular san, but presontly, as the tears accamnlate, the vertical olongation of the snn and general 'vertical streakiness ' will appear. When I tried the experiment rertical conical tail, the point of which rested on the horizon. But I was then slightly tronbled with what is called 'a cold in the head,' and my eyes watered very vigorously, and thas the conditions for producing ine Tarneresque offects were highly favourßble. On carefully drying my eyes these
I have adopted another mothod of testing this explanation. Having caused the eyes to become somewhat suffused, I bring the apper and lower eyelids so near together that the liquid shall occupy a sencible depthi.e., from the conjunctiva to the base of both upper and lower eyelgshes, and by compression be bulged or curved outwerds, in the vertical direotion. On looking through this tear-flled chink at a gaslight the vertical elongation is remarkably displayed, and it extends apwards or downwards or both, according to the position of the liquid. When looking at the sun and landscape with the eyes fully opened (whioh is very painfal), the elongation is chiefly downwards, and obvionsly connecbe nearly closed to diminish the intensity of the light, an npward elongation is also commonly visible."
The other pecaliarities of Turner aro necessarily contingent on this "Wateriness" of ese, and are, no doubt, faithful reproductions of what appeared to him. f this is the trne explanation, however, it will spoil ${ }^{8}$ good anecdote I remember reading of the painter, to piece to the Academy was very mach L, "jed at findng foses of in close proximity to pietnres containing masses of brilliant colour, and actually put in it a large spot of vermilion, which he afterwards tarned
into the morning sun just above the horizon, and altered the whole character of the piece. P.B.M.

SILVERING THE SURFACES OF FIELD

 LENSES.[4128.]-I AM receiving applications from some of rour correspondents to silver them the convex surfaces of the field lenses of their Hayghenian eycpieces. Will you kindly allow me throagh your colnmns to explain to them that these lenses cannot be silvered while in the brass cells, and that, generally spenking, the cells will have to be sacrificed in any attempt to take them out, as there would not be brass enough left
to berel them in again? A cell reqnires to be made to berel them in again? A cell reqnires to be mado for the parpose when the lens has to be silvered, and mast contain a connter call, so that the leus can be removed and replaced at pleasare. It is rather a nice matter to silver a surface lens with a film of a parti-
cular thickness, and this thickness should vary accordcular thickness, and this thickness should vary according to the apertare snd focal length of the telescope
it i is required for. This is jnst one of those experimental jobs that shonld be done by the observer himself, as if a fair charge wero made for the time consumed in doing snch a matter by an optician it wonld oertainly cance disatisfaction.
Those of your corrcspondents who are fond of experimenting will find the following simple contrivance answer their parpose tolerably. Take a film of
thin microscopic glass, or fine mica, and silver it on thin microscopic glass, or fine mica, and silver it on
both sides thinly (this is easier than silvering it on both sides thinly (this is easier than silvering it on
one, and it answers better), leave it anpolich mount it at an augle of 45° in the eve-tabe in front of the field lens, or second-glass. Make a hole of lin. diameter at the side of the tabe for the reffected heat to pass out throngh. This contrivance conl/h be made for
one shilling.
Jowr Browning.

PIANOFORTE CONSTRUCTION.

[4129.]-"Thi Harmonious Blachamiti"" (letter 8034, p. 95) is trying to show the posibility of imparting to the hammer in the treble of a piano a greater power than that which we nanally can get. Now, he must either fail to show it, or he has actrally discovered perpetaal motion. Bat I differ from him. so that when the first wheel or lever moves five-sisso that when the frst wheel or lever mores five-sis-
teenths of an inch, the last wheel or lever mast move two inches. Now that lever or wheel which moves five-sixteenths of an inch is the teen, and that which moves two inchos at the same time is the hammer in a piano. Sapposing we take two such machines, one
for the treble and one for the bass of a piano, where then is the possibility to gain more power in one than in the other machine? Certainly we can arrange one machine so that the last lever or wheel moves quicker in the beginning of its path, then it requires more
power ; and the other slower, which reqnires lezs power in the beginning of its path, or vice versi-more power ve cannot get. And besides this we cannot make this
difference, for it wonld be a tonvh on one side of the difference, for it wonld be a tonch on one side of the piano, and a " poke" on the other. This will be quite clear to any one: if we suppose the lever for the bass end moves quicker in the beginging, then it requires more power; and the lever for the treble moves slower in the beginning, then it requires less power; bat then the tonch in the bass must be light at the end, while that in the troble mast be heary-in fact, wo should have to poke the key right down before the lever or
hammer wonld reach the strings, hecanse it would hammer wonld reach the etrings, hecanse it would move bnt little in the beginning. "The Marmonions Blacksmith " has pat the damper below the centre of
the hammer, bome four or five inches belor the striking. the hammer, some four or five inches below the striking. point on the stings; that will certaiuly not do ; we want the dampers jast where the hammer strikes the strings, or as near as possible; if we put them mach lower they will create a sonnd something like mean, and if the hammer rebonads once more, which it certainly will before it comes to rest, it will sonnd mee-an-an. Then the "Harmonious Blackamith" will, to avoid thie, reqnire a dawper-rail, lifters, socket, and J. II. Schuciet.

COMPRESSIBILITY OF THE ATMOSPHERE.
[4130.]-Without laging claim to the sitle of a learned corresposident, I don't think that it is established as a fact
tuat if a traly bored gan be nimed and that if a truly bored gan be aimed and
fired horizontally that the ball will rise, fired horizontally that the ball will rise,
as the difference in the density at apper and under side woald be too minute to inflaenoe it. The theory of the top spinning is decidedly wrong, as a top spins because, When motion is commanicated to any bods, such body will endeavour to travel in a
straight line thronzh the angle of least straight line throngh the anglo of least
resistance, bat being restrained from doing resistance, bat being restrained from doing
so by the circnlar form it is constantly so by the circnlar form it is constantly ondeavonring to tiv off at a tangent; and as the body has an equal tendency to tly awsy in all dirrctions, and the effect of gravitasimply spin mach longer in vacuo. Has J. M. Taylor witnessed the following experiment? Let A represent a piece of cord with one ond attached to ceiling, on the
other a loop; B, a heavy wheel and axie other a loop; B, a heavy whel and axle
cansed to spin quickly, and then one axis cansed to spin quichly, and then one axis
placed in loop, tine wheel will continue in same position as in drawing, and the cord remain plumb austil the velocity falls.
Liverpool.
[4181.]-Wrth reference to the top part of letter 40.40, psoge 151, it has been found that a top will spin much longer in a vacunm, the friction of the air not
retarding its rotation. The top is sapported by the recretarding its rotation. The top is sapportcd hy the rec-
tilinear tendency of its particles being snfficient to tilinear tendency of its particles being pnfficient to
overcome the force of gravily. Each particle ondeavours to move in a straight line in one plane; the attraction of cohesion converts the motion into a cir-
cular one. The plave of rotation remains as in the cular one. The plane of rotation remains as in the
gyroscope parallel to itself nntil other forces preponderate. The steadiness of the earth's axis is insnred in the same manuer.
M. Paris.
[4182.]-Tere fact of the lowor strata of air boing more dense than the higher woald not acconnt for a npwar hred apparently horizontally boing safacted water for it in it be rellected fom a surs above and jast below the bnllet is almost intinitely small, not as that of water is to that of air-ahoat 800 to 1.
It is impossible that a bullet really fired horizontally It is impossible that a bullet really fired horizontally
shonld rise, bot the fact is sa frequentls asserted that shonld rise, bat the fact is so frequentls asserted that I presume it must often apprar to do, nand that this canuot be accounted for by slight irregularities of the gun, as those wonld canse deviations in various directions with different gans, not more freqnently npwards than otherwise. I suspect the reason of the apparont deflection being, as is commonly ataten, most
frequently apwards, is that the gan is nnconscionsly frequently upwards, is that the gun is nnconscionsly raised slightly, at the instant after the trigger is
palled, by the shooter's loft hand, which has to hold palled, by the shooter's loft hand, which has to hold
the gan against the pull on the trigger by his right, the gun against the pull on the trigger by his right,
for it is scarcoly possible to hold anything steady when for it is scarcoly possible to hold anything steady when
the balance of resistance to force is snddenly chavged. If the gan were fixed in a frame, it would be thrown upwards at the same instant when the pull on the
trigger ceased, anlesa, inded, the frame were perfectly rigid and inelastic, as it maj, practically speaking, be ${ }_{\text {mr. }}^{\text {mad }}$
Mr. Taylor is mistaken in supposing that a top woald not spin in a racuam; it wonld spin longer if its motion were nnresisted by sir, and it wonld very
spinning in water. The difference in the density of spinning in water. The difference in the density of
the air at the surface of the earth and very near it is the air at the surface of tho earth and very near it in
quite inappreciable, and can produce no such effect quite inappreci
as he saggesta.

Рнго.
RADIUS OF SURFACE OF OBJECT-GLASS.
[4138.]-Mr. Cass (letter 4069, page 176) will see, rom What I have before said on the sabject, that if the qualities of his glass are what he has shated he cannot will also easily anderstand that it is very diffenlt to
make out wherein he may have failed in workmanekip simply from a description of the appearanoses he may
observe in his telescope. The sign of want of spheriea observe in his telescope. The sign of want of spherieal
correction is a sort of fog or atmosphere at the circle as described by Mr. Cash, and the mant of correction for colonr canges it. to shom ap on pashing in or drawing out the eye-tube, but it the object-glasa is placed sqnare on the trbe those appearances moald surround the image and not spart oat from ik. A want of homogencity in the glass canses wings, bat not, I should say, such as described by Mr. Cash, and I shonld think it probable that in mome way or other he has
pinched one or other of the lenses in the eoll, which pinched one or othar of the lenses in the oell, which
he ought to be very careful not to do; in fact, with a large objoct elass, it is almost necessary to give the leuses a spriny bearing to allow of the requisite amome of tightness in all temperatores without any pinching. I should atrongly advise Mr. Cash not to complicate the thing by adjunting screws, but to place the lenses in a carefully tarned cell, and screw them down by means of a ring in the ordinary way, with juat suffeient tightness to prevent their falling away from their bearing on the fore part of the cell and no more, and possibly three pieces of millboard placed inside the brase work of the oell might prevent any ahitting finally and keep all tight in that direction. Before round bcrewing the lenses down he should turn them ronnd on each other until he gets the best effect, as
generally it makes considerable difference which porn tion of their edges are in conteot.
As to Mr. Cash's definition, I think the leas he nay" about it the better, and he really needn't trouble him. will nor in suoceeds in making a decent telescope it what a lens is or not.

Hentr T. Vifux.

REPLIES TO QUERIES.

-* In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and put dramings for illustration on spparate picces of paper. 2 Pat tither ${ }^{\text {numbers as well as the titles of the queries to which the }}$ replies refer. 3. No charge is mado for inserting lettera, queries, or replies. 4. Commercial letters, or queries, or replies, aro not inserted. 5 . No question asking for edacational or scientifio infornation is answered through tho post. 6. Letters sent to correspondents,
ander cover to the Editor, aro not formarded, and the nader cover to the Editor, aro not forwrided; and
names of correspondents are not given to inquirera.
[8615.]-Whitworth Lathe.-To J. K. England. - I have drawn out a table of factors for you, which you can bare with the letter 1 wrote to accompany it to the Editor of the English Mechanc; bat it is too long to expect him to print it, 80 von had better write to me nt Pitcairn's Library, King's' College
road, N.W., and I will forward it to yon-J. K. P.
[10640.]-A Reason Wanted. - Mr. Jerard Smilth (p. 152) will ind, I think, that it is rather infiation of the langs thas expiration to which the advantago is due in lifting heary weights. This, at any rate, is Sir David Brewter's view of the matter. Mr. Smith is not alone in giving a reason for this fact, which he ha often verified, and at the same time heading his information with "A Reason Wanted." sir Darid Brewster gives the same reason-viz., the bracing of the cords, de., aboat the joints or falcrums round which they act, and then calls the experiment "inexplicabie. Thus, important as his explasation is, he was not fally satisáed with it. He looked for nomething more, br missed it in this way. The four men liftiog and the fifth man lifted, conld not, he says, be lighter for the air they have inhaled, but the heavier. Very true, bot there is an increase of the balk of each body in greaster proportion than that of the weight. There is A dias placement of the tlaid atmosphere by each expandod body withont proportionate increase of gravitation ; for the air inhaled is heated and expanded. The aikting sphere, therefore, becomes to this extont a hinis plest illasin the case of the fire balloon. The she swimmur. with air. In toating he rises by intating his las ex pelled itarin Hore deeply immersed when he has e inhales, and according of course, the heavier for the air ing should rathording to the quasi-philosopher's reacos the air he inhaler sink than rise. He does not, becalk water which it has digater than its equivalent bich the lifter inhales is, by expunsion by 80 the air which the equal bulk of atmospheric tluid which it has displaced. That stont men float so much more easily than otheri is due, no doabt, in part to the greater heat deve loped within. This is not put formard as the principal, bat as an additional, reason for the fact se
verified.-J. M. Taycor, Seer Green Vicarage.
[10664.]-Angle of Reflection and Inoidemoe troable he has taten to to "F. N."(p. 152) for the interesting experiments of m. Athanase Dapré. am sorry to confess I know less of mechanics than I of billiards, but have frequently endeavoured to cocosta for the effeote of side and strength. The following is the effect of strength and myy view of the "tollowing rationale and if I err, and I fear I do, I shall feel greatly indebted
right:- Place the red ball on the apot, and place the witn. from the fide cashion, measaring from the face of the cushions; play at the red a ball bell with gentle itrongth, so that the red retarns from the top oushion orner pyraid place the od enin tan the the top place the thite tan in asition 40 tho fot and place oushion and 19 tin from the side anchion. From the as before from the . ball ball bat ithe ace of the cashions ; agnin play a band the wit with a quick stroke with great strength, larence in the singles formed by the path of the white ball in these two stra Cor as followa:-Let A, travelling in the direction $\triangle B$, the point Dit rest; at components A into it $A F$, draw the parallelo gram A E B F, the afrected by contact, but redroed to one hali firs reduced to one half, and velecity equal to E C at tuis moment the tro balls have equal velocities the lighter blow the volocity $\mathrm{A} C$ is forther redured to ΔG, and the ball C receives a corresponding inerease
 being the resultant of the forees $G A$ and $A F$. Now With the harder blow the velocity A C is redrood to the resaltant of the forces $A J$ and $A F$.-Bilurimpret.
[10702.]-Terreatrial Gravitation.-"T. A. acks for proof that the attraction of a sphere is equal to what it wonld be if all its partioles were at its centre but you could hardly spare space for What oocupies
four pages of Maclanrin's account of Bir Iface Nowton's discoveries (Srd edition, 1775, pp. 297 to 800 which, besides being too long for quotation, is not needed to ahow that the attraction of a spheroid to a body on its arface must be greatest at the points nearest to
its centro, as those pointe must evidently be at a less moan distance then any others from all the other point of the eppheroid, and therefore that bodigs there situated muat be more atrongly drawn by the joint attraction o all the particles contained in the spheroid. I think Mr Proctor would consider Maolaurin's so-called geometric demonstration to be one of integration digguised.-
Pailo. Pailo.
[10781.]-Fastening Esoapo. Wheel in Lever Watoh. The remarks by "A Yorkshire Pivot" (p. 152) fail to convince me that a soldering iron should form any portion of a watohmaker's tools, or that there was any necessity for the nse of soft solder in the oass of " S . H. L." "' "escape-vbeel. If "Y. P." man to tarn a collet on the esospe-wheel arbor than on a plain arbor suitabio for the parpose, why could it not be done without solder in the one case as it woald be in the other? I fear his "simple method" wonld prove more embarrassing to the inquirer, and more injurious to the wateh, than the right and proper method of going to work. It is a remarkable fact that watehos saffer more at the hands of incompetont rorkmea than from wear and tear, though even for a bnndred years. Again, onr northern friend, in his frat commanication on the sutject, says he uses a copper bit for soldering the job, yet in his recond commonnication he informs na he woald have done the job withoat solder. He also original manstances of the use of sofl sold balanceatsifis, and fusee caps. It is entirely incorrect that Englinh vorges are soft foldered in the collet, neither re balance stafis treated in that Fay. And with regard to fasee caps, they are certainly soft soldered in rerge watches and in some lever watches, but in Genera therefore there is yes a large proportion of watches in which there is not a partiole of soft solder in the original compositton. "Y. P.," in concolder, yet congratniatea himpolif that after trenty years' experience he can give watch queriats a "few practioal wrinkles." Oh, these "few practical wrinkles " $!$
How frequently are ther brandished before the eyes of "our" readers, vet hoy seldom do their possessors make them arailable for the general good!-West Corawall.
[10964.]-Circulation of the Blood.-I may be wrong, and shall be rery happy to be corrected if I of carbonic errid is an extent, by the absence of (anoombined) oxyren, may not we infor that denth from reapiration resuits from orygen starvation alove? If M. Paris moans the effect of carbonic acid, exclanive of the absence of oxygen, respiration, wonld, therefore, be the resnilt of so many anases.-C. W. H.
[11057.]-Watohmalcing.-Tf the pallets, stones, and acting parts of wheel are polished, oil does more harm than good, bat in the absence of good workman-
ahip, oil is the best friend you car find. If I had been asked aboat oiling stafi holes of a good English lever or poaket chronomoter. I should hare gaid no. I have
long since done avay with the practioe, having axperienced this in trials Ithave made with the clave of watohes mentioned. What I told "J. O." I practise myself, and also what I hare atated here. I have
been angaged on new work nearly twenty jears, and I
may any what I mond to "our" Mrchantio in answer to qneries is what I have experienced and
more.-INDEPENDRNT CHRONOMETER.
[11101.]-Mortices in Hard Woode.-I forward a section of the former, hoping "Leander" will be able to anderstand the whole arrangement. The alfair for ontting the angular hole is not to rovolve, bat is to be bolted upon the hoadstock by its foot; this aketch is a section through the centre of chuck mortice E E E, chack drill or bit C A being the met-screw for mortioingtool, and $M M$ the morticing-tool, it being in soction at D doable dovetailed (see D 1 and D 2), that it may be

inserted in the chuck more readily, and held firmily. p 5 a section of the tool, or rather more front or end of M; the dotted line seotong of it through the line below M; the dotted line along M is the boring bit, whioh
runs in close prozimity to M, bat still clesrer of it. G is the lathe spindle, and the chack for holding the bits ecreved spindie, and the chuck for holding the pose of tightoning the set-serew to hald the bitg. The tool M is nothing more nor less than a double basz which the wheelwrights use, with this difference, the memi circting section in the step, and the moath having two right anglee.-Jace of ALI Trades.
[11120.]-A Question of Sight.-The solar rays are almont parallel, and by ascribing too mach diver gency to them, I admit I may have looked at the san too mach as a point. Shadow, howover, is the epace surrounded by direct rays, but itsell unreached by ony one direct ray, whilst the direct rays reach the shadow's bonndary all aronnd, imparting to it its modified shapo of the intercepting object. Interceptod rays, by re peated refiection, soften a shadow somewhat, as angularity distorts ahape-hence "penumbra," a partial bot when E. L. G." seems "woll np" in his subjoct meters farther in Jof shadows in January, we shoald state not only the honr of the day, but whether we mea shadows parallel to objects or else at what angle; for ourtainly thought he meant the shadow of apright ob jects as cast on the earth's surface, which he may atiribat to my stupidity. "E. L. G."is quite right as to the ratio between apeed of soand and speod of light. My 170 should be $170 \times$ bis0 \times, to convert miles into feet, so that speed of sonnd through sir is to speed of light through interstellar ether as 1 is to abont 881,000, being $1,180 \mathrm{ft}$. Fer second for sound, and 180,000 miles per se cond for light. As for Reqnanlt's experimenta at Paris E. L. G." says: "At different degrees of heat, thong with the very same number of atoms in the same pipe the speed differs." Why, it is impossible for equal nam ber of ancompressed acrial atome to occupy equal spac at different temperatures. Fill a bladder with air, and inareasing heat extends the amplitude of the atomi vibrations till the bladder barsts; bat these atemic vi brations are not more those of nitrogen or oxygen than those of the ether uncaptured by chemistry, and which we may call " ultramicroscopic." Bat " E . L. G." says tance of atoms as about 19 to 11, the velocity of sound was just the same at a given temperature. Now, air varies in density only by degree of temperature or me. chavical compression; under compression atoms would be closer and temporatare higher simultaneonsly. He says " heat or cold alters the rate, though the atoms be at one analtered distance ; but distance of atoms alters it not at a given temperature." I any, except nnder apecial mechanical pressure, varying temperature alters the distance between atoms as exhibited by expansion and condensation; so that the experiments may but show that effects of exterual temperature are connteracted by applying mechanical force, which alone can maintain equal atomic distance nndor difforent degrees of hest. I never said air was "a number of things kicking one another;" but I know if the pulsations of solar combustinn were communicated by a needle from the sun to "E. L. G.'s" eye, the pulsations would reach him instantly, instead of occupying a second to pass over 180,000 miles. I continue to believe that rate of speed of sonnd shows, or is a key to, the Facuity or distance between atorss of air, and that the rate of speed of light and heat is a key to the distance betwoen the atoms of the altramicroscopic ether of interstollar and all space. In reply to "Saal Rymea," I say I quoted from Gatoh's "Register' for 1859, that 11,0901t. Was sound's speed throngh cast iron; it gives steel 17,000 , water 4,900 , and wood as varying from 4,686 to 17,000 . If heat iucreases atomio velocity as it
increases amplitude of swing in vibration, it may suffice increases amplitude of swing in vibration, it may suffice perature of $80^{\circ} \mathrm{C}$. My object has not been to ahow ratps peratare of
tances betreen atoms, or rather the total vacumm length in the line of transit.-J. Barwicy.
[11128.]-Tantern Pinions.-Since I wrote my rejoinder on this subject to "Tabal-Kain," or p. 185, I hare obtaimed a copy of "Camus on the Teeth of Wheols," published by J. Taylor, 59, High Holborn,
2. The editor states that Csmus in the original 1806. The editor states that Camue in the original French does not give "the generation of the opiogcloid curve, nor its application, so as to render it familiar to practical mechenios." (Soo p. vii., prefaco.) Afterwards (p. 5) in the body of the work, ho aays that "in pinions whioh hase fow leares or spindlos, as $5,6,7,8$, and oven 9 , the true radios ought always to be greator than the primitive radias. Now, I must confesa, that on first reading this eontence I was a bit staggered; bat when I came to eramine it, I found that the signification of it is this-riz., that pinions of greater numbers than the abore may have their true radius (which is What he calls the ontside measure over all) reduced by fling avay the topa of the teeth down to the end of the primitive radius, which is what we call the radius of the pitch circle; but that these small pinions must not be treated so on account of the vary large angle cach succossive tooth passes over during the revolution of the pinion, which makes the toeth go out of oontact too 800n, unleas they are loft with long points. This fling away of the points of the teoth of a wheal is mentioned when ariven, but not when (fonrth) edition of "Radimentary Treatise on Clooks and Watchea" (p. 207), and I adopted it in the dial work of my regather into "Camas," let us read "Advertisemont," as it is somewhat oddly translated, on p. 70, nocond paragraph :-" As they cannot hope to form the teeth " may prove, in order to prevent shockiting the primitive diameter of the wheel a little larger than it ought to be in regard to that of the lantern or pinion." In the third paragraph (p. 71) he explaing that though the motion obtained this why is somewhat smoother than that of badly-shaped teeth which are not so fidded or cooked, yet the rolative velocitios of the wheel and pinion are rendered very uneven as every tooth passes, or in other words the uniformity of the velocity is dostroyed. In the fourth paragraph he eays that cimilarly when the pinion is to drive the wheel (and never to be driven), the primitive cirele of the pinion may be enlarged to prevent abooks, but he at the aame time wheol hit all and pinion is unsuitablo lor driving a must be nsed instead, so we mey pat the onlargement of the iantern pinion recommended by "Tabal-Kain" on one side as unpraction. I do not think "Oamus" a suitable work for students to read, as his tomohing is now behind the march of improvements in mechinery. for he does not give a single illustration of a tooth with a hypocycloidal flank, whioh should be adopted in all cases where wheels of more than two different diameters have to gear with each other. Any single pair of wheels can be made to ran together with radial Hanks to their teeth, bat no third wheel of another size, and also with straight flanks, will work with both of them, for this reason: the tops or points of the teeth of one wheel, and the flavks of that which is to work With it, have to be struck with the same generating circle. Now, in order that the flents of the toeth may be radial, the generating oircle need for either Theel must be half the diameter of the opposite one, and it is clear that if a third wheel of another size is introduced, those generating circles must be either greater or less than haif of its diameter, and therefore unsuitable for making its flanks radia, and if macb greater would make the teeth impossible. The whol affair is to be foand properly explained in Willis's "Prineiples of Mechanisın," of which. I am glad to say there is a new edition ont, and in Binns's " Second Courss " of Orthogrsphic Projection, which proposes modification of Willis's sabeme, though withort de parting from his principle of constraction, and result ing in a smperior proportion of tooth. I need hardly say that Willis's "Odontograph," or tooth drawer (not extractor), renderi the setting ont of wheel teeth matter of the greatest simplicity, and any one can con atruct one for himself out of piece of cardboard from the directions given in Willis's work. There is, however, a mistake in the last column, fourth line o table of places of centres, opposite "No. of Teeth $16, "$ where 191 is printed for either 131, or more pro bably for 119, in the old edition, and a similar mistake in the amme place in the new edition, bat I thiuk the figares are not the same in that. In conclasion, I will only say that when I made my regnlator clock I did not nse a depthing tool, bat calculated all the diameters of the wheels, and set ont the pivot holes with dividers from a scale of hundredths of an inch, and that the olock goes, which I am nbsolutely certain it woald not if I had used enlarged pinions.-J. K. P.
[11168.] - Wood Rods.-Redree the strip of hard wood nearly to the required size with an ordinary smoothing plane. And having a lathe with a hollow mandril screw on a chuck holding arown saw o required diameter, the rethrough sill lome parsed romad as if tarned. In the absence of a hollow mandril the strip may be placed in
an ordinary lathe, and the crown baw (made in the form of a common sarew mut, with projecting sam, to be made acoording to Fig., which represents a section, the sew to be fled out of the
edge S S), held in hand and prashed along the revolving strip.-SUrfolk Axatzus.
[11196.]-Drowning.-Speaking from my own experience I would say that there is no truth in the
supposition that drowning persona invariably rise to the surfesition that drowning perwo time nor less, before death In one case I mat a drowning perton rise forr times before he finally disappeared, and on another only twice. An exhansted swimmer will sink and rise many times before nature finally gives out. The namber Jf times a drowning person rises to the surface depends upon his muscular energy, and the tenacity with which he clings to lifo.-J. Hoptriss.
[11223.]-Stereotyping.-If "Banl Rymea" or any other obliging correapondent will kindly give details, it will, I think, be welcomed by many. To aroid giving inrther trouble in this matter may I here anks fow ques-
tions? 1. May not the metal be poured over the cast tions ? 1. May not the metal be poured over the cast
instead of immersion? 2. Does the process of msking instead of immersion ${ }^{\text {P }}$ 2. Does the process of making meast injare the type by flling it ap or in any other use ?-AfCountry Penisti.
[11272.]-Diastase (U.Q.).-May be parified by repeated solution in alcohol and precipitation in water; but it cannot be obtained perfectly pure. -
W. L. G. W. L. G.
[11275.]-Darkening Walnut(U.Q.).-Egyptian asphalte discolved in benzole and tripentine makes a fine transparent stain for dartening walnut, and makes a good imitation of that wood if applied to poplar, or wood of similar grain.-A Bagrister.
[11282.]-Preserving Plates (U.Q.).- Years ago I made many experiments in this subject. I aucceeded in getting honey and sugar plates to act as quicky as upon for more than half an hour or so. I ebsendoned the process in favour of the oollodio-albamen, which gere me far better resulte.-A BARRIRTER.
[11283.]-Photo. Lens (U.Q.).-I should recommend "Aremac" to obtain what is called a half-plate portrait lens of a good maker. This will be saitable for portraits, cartes de visite, and small landscapes or groupa. I commenced with a quarter-plate, and pro-
greased until I have a whole-plate pertrait and a large greased antil I have a whole-plate pertrait and a large
landscape lens, but fonnd them so cambersome that if I had to begin now, I nhould choose the above. I prefor landecapes taken with a portrait lens to those prefor landecapes taken with a portrait
[11338 and 11457.]-Motive Power for Ama-teure.-Are we never to be free from the perpetoal motion incubra ? I thought this snbject was tabooed in the pages of the ENGLIsH MECHANIC, but it seems to be perpetaally cropping ap in one diagaise or another. "Zoo Andra" fancies he can multiply his power by means of a huge pendulum, the only effect of which would be to waste a portion of it, from
whatever source derived. "Novi" proposes to nse whatever soarce derived. "Novi" proposes to nse
coiled eprings as a motive power, forgetting that only a fraction of the force employed in ooiling the eprings is atilised, and he makes $n o$ provision for the latter operation : how is this to be done? Even the practical Bamuel Smither apeake of producing powor by the use of a fly-wheel; a $t y$-wheel only stores the surplus power, it does not produce it. Take, for instance, the fil. Wheel of a foot-lathe; the foot presses the treadle
only during the time the wheel describes the third part only during the time the wheel describes the third part of a revolution, if it wore not for the reserve of power
in the wheel the lathe would then atop dead, but this reserve carries the crank during its ascent, and past the dead point, with elightly reduced relocity. If "Zoo Andra," or any other reader of the Fnolisi
Mecranic wishes to nse a circular sam single-handed, MECEANIC wishes to nse a circular saw single-handed,
the best plan is to fit a heary fly-wheel on the ast spindle, which should run on friction rollers, and be cranked outaide the bearinga; the crank arm may be adjustable so as to alter the throw of the crank. Leas inwer will be wasted in this manner than in any other. I believe that wherever the constant high pressure water anpply can be obtained, a water-engine will prove amatears and mechanics.-A Barristra.
[11872.]-Oval Ohnck.-The following aketoh is an near as can be, about a quarter-scale, and I think will conveg all "L. B." requires. It is-well, I may say, the lorg
section, asit is throagh the length of slide. lathe or mendril nose; B is the steel bash; \mathbf{H} the head atock; $\mathbf{R} \mathbf{R}$ which gives the org motion givea the oval the original seed as dispensing with bat long arme, worewa, and branches apon the headstocks, which are in the way and unaightly. This you
can clear may at a moment's notice, and it oan be applied to any lathe of ordinary type, and the ordinary face-plate naed for the foundation of chack. J is a jamb-bolt which
olds it fast againgt
the old sketoh and K

projection and
nut for the adjusting sorew as well as jamb-bolt; D D are rubbing pieces that aot upon the ring, and give motion to the long slide E E, to which they are bolted with a tail bolt or tag, the holes into which they are inserted being made long to compensate for ordinary face-plate with four slots in as right angles, which is the fondation plate upon which the other is bailt or monnted; G is the micromete sorew which works in the edge of wheel; the hesd is left long for a fer ringe to be put upon it and divided, and instead of haring a square end on for a key to fit on is made with a square hole drifted in, that you may nembers in find a key to turn it. Th given. T is the dividing plate which is fixed in ite place by the roond-headed screm which serres for screw nose for chncks, \&c.; a spare one or two are very useful, one being farnished with a tsper screw for wood. work. They are scremed in from behind with e fork scremdriver, and serve for a smivel for the diriding plate to turn npon. $\mathbf{S} 1$ is the screw in the old sketch; the serew is represented as a left-handed one, which is a mistake. Jack of All Tradrs.
[11893.] - Metallic Elarmonicon.-If "Taba" (page 154) will read well "Zoo Andra's" excellen description of the masical glasses in his possession (page 103, No. 11898), and look at Fig. 1 in accom panying diagram, I think he will see at once what "Zoo Andra" means by " inimilar to an inverted aquarinm." Shoald "Trbs" fail to see the meaning, let him get a tumbler with a stalk and break off the round fat stand at the bottom, so that the tumbler has a tang. and he will then have a model of a moderate-sized musical glass. But if he tries to produce a musica sound out of it in the manner described by "Zoo Andra," he will be diaappointed. "Zoo Andra"
(page 103, No. 11898) asks if pressed glasses would do as well as blown ones. I beg to inform him, no. In the Exgalise Mrchanic for April 19th. I advertised a set of musical glasses in the "Exchange Column." I was, in consequence, inandated with letters, npwarde of twenty asking for information as to structare, \&e I answered every one, giving as mach information as I conld apare time for. One gentleman at Sleaford said he was in communication with a glaes manufacturer on the subject ; perhaps he or some of the others net, and agked ention or endearouring to constract "Tabs" and asked my adrice, will, for the beneat of a like intention, state throngh "our" journal their success.-Sayúsl Krmpling.
[11398.]-Stings of Bees, Hornets, and regard to the stings of these insects. The fact with the sting of a wasp is more sharply and more namerongly barbed than that of either the bee or the hornet.-R. H. H.
[11423.1-Surgery.-To " Jack of All Trades" (p. 154).-Some jears ago, whon it was my business to peruse the offcial reports of our naval surgeons, whom
it appears to be the fashion now to ran down, bat in my hamble opinion very anjustly, considering their top my hamble opinion very unjustly, considering their top hamper, I read an account of a saccessfal search for a broken needle by a cunning sea-leech. A tar had brozen a needie in the paim of his hand, sud the place the bit of needle took to walking in its sleep or wether to get out I do not know, but Jack finding that he to get out I do not know, but Jack finding that he
could not use his hand, told his sad tale to the doctor. The doctor magnetised a sewing-needle, and, suspend ing it "de more," with this dirining-rod fonnd the oxact apot, and cutting down, duly unfleshed the offen ing stoel. I may add ing the needle might be drawn out by means of a magnet, as recomme
argeon.-M. Paris.
[11448.]-Warming Greenhouses.-I could not answor "Anxions" Booner, as I only take the monthly parts, bat if he only wants to keep his plante and no no means a bad one. My greenhouse is not a smal place, but aloag the front I pat some hooks, and have an old asil, which in cold weather I hang ap over the whole front. Sapposing the weather is frosty bat fine I leave the sail down till between two and three o'clock; and daring part of the time I open the windows. Damp is the great enemy, and daring frosty weather, and have, I might say, no mater, or next to none. Well I said 1 shat all up a little before three, and in the course of an hour or two more, according to the cold, or I light the lamp and all is safe for the night. Of course "Anxions" knows that the size of the lampa difier, bat one with an inch wick gives a great deal of heat. It requires no pipe, and does no harm. All that is plants, as mach fresh air as possible when it don't freeze, and it is quite sofficient if the frost is just kept out. The lamp should have one of the globular glasses : it is best.-E. T. Scotr.
[11448.]-Chronometer Balance Spring.-The watch you speat of, I think, must be a lever with a common compensation balance. My opinion is, these balances are only pat to watches to improve the
eppearance. I have many times removed them, and put gold ones in their place. You ought to have a good good prost. If you heve a gold balance pat got a good proat. If you have a gold balance pat to the watch, and the spring properly adjnsted, it ought to keep good time. Indafendent Chronometer.
[11524.]-Pitoh of Roof. - Supposing the span or
distance between the walls the same way you went the
principal, say, 18ft., that would be 6 yards, and I al weye rockon 10 in . to the yard, that is 5 ft. high at the ridge. Some reckon 9in. to the yard. My father before me would not make them more than 9 in . to the yard, and the reason was that the alates held enough to the slate laths, while there is more atress on them with the 10 in ard, but the roof is better. For an ealing roof reckon double or 20 in . to the yard.-Birstall.
[11525.]-Fresh-Water Aquarium.-I nae a bell-glass aquariom 33iu. dimmeter at the top; beight of Walor, 8 in. ; plant, Anacharis. The great mistake The rans roepors are these ver the aquariam, and let the light in on one side only. ver the aquariam, and let the linhtin on one side only . re the, threo rach roach. Have a lin cover made to al tho aquar um ; the apper part ast or perf I cannot maks ont what "Auon." (page 156) means by a I cannot maks
[11531.] - Water-Wheel.-In reply to "P.W.H.J." p. 150), I have coce reason to believe that he is not really practically acquainted with motive-power ongines, for he says no really practical man will now drocate a rotary engine. "Would it surprise him to learn" that I have in my possession a rutary (water) ongine that will beat any reciprocsting engine, in spite of all he may say to the contrary? It is fittod up with overy appliance required to test its power, and after overcoming its own friction it is found that 95 per cent. of what is due to the power of the water expended is obtained. I know that this statement will be con idored an exeggeration, but when it is uaderstood that my engive of 10 horse-power is got ap oxprossiy to test principle in the motion and pressare of liquida it can be imagincd that I haro no interest in over-atating its merits.-D. S .
[11551.]-Cement.-Seeing the conclnsion " Jack f Au Trades" comes to in reforence to cementing neorecasam, I recommend the inquirer to try the ollowing, es king given by M.R.C.V. From practical experience I find it firgt-class.-W. K. DONALDBON.
[11553.] - Meersohaum. - "A., LiverpooL" says that he has never known a composition pipe to
float lightly in water. I can sell him pipes by the gross which are daily sold as mearschanm pipes and are only composition. They will flast in wator, bat he mast remember that they ar
meerschamm.-C., Glasgow.
[11566.]-Equisetum.-I am very much obliged to M. D." for his kind offer, bat I asked the question on cconnt of observing the pollen gathered by myself, being desirous of calling the attention of our miarocopists to a partioularly ourious objact. I do not abble mach in mioroscopic Wort, being obliged to sare lad to learn from "M D" nch motion as I hape tried arest meny withor offect.-M. Pabis. have tried agrest many withorit
[11569.]-Telegraph Posts.-The reason, I believe, the lower 8ft. is left nopainted or untarred, is not from economical motives, bat to prevent the rotting from taking place so soon as it would do if painted or
tarred. Wooden posts should never be costed with tarred. Wooden posts should never be coated with any waterproot materis, buch as paint, tar, or varnish, for at least 6in. above the ground, in order that
the moisture from the groand may have free vent. If he moisture from the ground may have free vent. If confined fermentakion will aways be sot up, snd what is called dry rot is produced, dry 'rot being nothing
[11571.]-Virginia, Its Climate and SoilE. ... E. A. Would get all information at the Free London. Ask for the "Virginia Bettler."-Carpentel
[11601.]-Oracked Oren.-Make a oement of steel alings and common yeast, and fll the crevice tightly while the oven is cool.-T. A. Bradlef.
[11610.]-Defective Battery.-As "G. F. L." now says that the vibrating contact breaker itself does not act, it seems pretty olear that the defoct mast lie things phich it is impossible to prononnce hase ithgs which it is impossible to pronounce apon Whithout frst seeing and testing the apparatas,
becanse failure may be due oither to fanlt in the epperatus or to As a rough test it may be well to screm the contact breater do he other to coarse sle and ith ary ther If the circait is right there will be a shower of sparks. -Sigma.
[11618.]-Deadening Sound.-The following simple method answered well in my office some years ago. Cover the joints of the boarded partition om le of the partition with coarse brown paper, and then with room paper to suit tasto. -Thos. A. Bradley.
[11619.]-Flectrical-If the glass of the jar is sonnd and good, and atted as described, it onght to rork well. Perhaps it has been stauding on some dry woollen material while being charged, such as a the surface of the jar was damp. If there is a moist heated atmosphere in the room, it will reep the gian damp, and conduot away the oleotricity as fast a it is generated. A number of people in tho room will
cause this state of things, and even a few may do harm by atanding aboat the table, their breath falling on the apparatns. I have been, on several occasions, makiog electrical experiments in crowded school-rooms, and fonnd it almost impossible to charge the jars; but as soon as the doors were opened and the crowa dispersed, so that the damp, heated air was driven out, the indicator on the jars would at once rise to
usanal height. The room should be kept as well ventilated as possible.-Occssronal Proto.
[11624.]-Photography.-I, likewise, live in the country, and have used nothing but rain water for photography for a good many years, and find it all I conld the rair carefally canght without splashing on the ground or anything else that would pollate it, there is very little of either organic or mineral matter in it. As a precantion, however, it is well, after filtering, to add a few drops of silver solution. Shake well, and stand the bottle in the sunshine for a day; this will throw down all the impurities in it, which can then be filtered out, and the water is much purer than a great deal of the distilled water used by photographers. Instead of placing it in the sun try a weals solution of pink tint remains, then filter.-Occasional Photo.
[11626.]-Electric Bells.-If Thomas Whalley will refer to p, 564, Vol. XIV., he will find a descrip
tion of an eleotric bell by Mr Tonkes, but instead of tion of an electric bell by Mr Tonkes, but instead of
a rigid bracket marked D, I would recommend a spring a rigid bracket marked D, I would recommend a spring
bracket reaching up to the magnet, with a back nut to bracket reaching up to t.
the serew.-W. BoLTon.
[11639.]-Debility.-I have often wondered what class of people they are who patronise Solidway's pills and other marvelions panaceas. Bat that wonder is p. 182. There is no necessity to defend either allopaths or homceopaths against the char'ges of "Amaeur," which carry their own refutation broadly written in those very words he uses to stigmatise the medical occult erndition the author of the altern-tonic system has convinced your correspondent that the "one sole canse of all di sease " is nervous debility. Only fancy, cholera, which sometimes strikes and kills in twelve czzems, produced by nervous debility Typhoid, exhibiting the most opposite characters, are all occasioned by nervous debility! Even our children, those we regard as strong and healthy, are soffering from nervons debil ity, for do they not take measles, whoop-ing-cough, Ecarlatina, and smallpox much more readily than the "lean and slippered" shadow of a roan with scarce a sound nerve in his body, whose prising how readily even readers of the ENGLISH Mrechinic swallow the theories of the quacks, and hesitate not to fling hard words at scientific men. liar idea of the system of the allopaths?-SAUL RyMEA.
[11663.]-Steam Power.-" T. W. J. M." has not stated whether the firebox communicates by several small tubes or a sinple fluc. This wonld make a considerable difference in the heating power. This boiler might make steam for half horse-power; but it seems
improbable, because small boilers seldom approach to improbable, because small boilers seldom approach to
their theoretical efficiency. H He has not mentioned their theoretical efficiency. He has not mentioned
either the pressare of steam or the resistance that the either the pressure of steam or the resistanoe that the
engine would encounter. The engine might run all engine would encounter. The engine might run all
right when empty, and yet stop when the work is thrown right when empty, and yet stop when the work is thrown
on. The area of the bottom end of firebox is 19.635 sq. in., of whieh probably 19 sq . in. will be effective area. This makes out the evaporative power of the ing in everyday work; it may reach to one-sixth if the ing in everyday work; it maty reach to one-sixth if the atall with an adequate amount of resistance proportioned atali withanadequate amount of resistance proportioned work at a very low pressure. I will work ont the pres. work that the boiler would sustain. Let P be the pres. sure, that the boiler $1 \times \frac{11}{14} \times \frac{400 \times 2}{1728} \times \frac{\mathrm{P}}{1} \times 2=\frac{1}{6}$ by supposition $; \subset \mathrm{P}=\frac{1}{2} \mathrm{lb}$. This is, of corrse ridiculonsly low for a high-pressure engine, and it can only be remedied (withont a larger boiler) by lowering the speed. Next, for the weight of fly-wheel. The rules given in the books are of no use for so small an engine ; engines working of about that size with 1 I have seen engines working of about that size with 18 in. diameter iy-wheel. The size that I should recommend would be 18 in . diameter to centre of rim, thickness of rim
2 in ., breadth 1 in . The wheel to have five spokes tin. thick. The rim will weigh about 2016 , and the boss and thick. The rim will weigh aboat 201 b , , and the boss and
arms about 15 lb . to 201 b . more, total 85 lb . This may arms about 15ib. to 201 l . more, total 35 lb . This may
seem rather heary, but I have found it advantageous to seem rather heary, but 1 haye found it advanta
err in excess with small engines,-P. W. H. J.
[1664.]-Polishing Bullook's Horns.-Well sorape with glass or steel scraper, afterwards with finest
glass elotb then with powdered bath-brick and oil and glass clotb, then with powdered bath-brick and oil, and felt ha yith rotten stone and flannel, or old clotia or
[11664.]-Polishing Bullock's Horns.-First serape with glass to take off any roughness, then grind wetted and dipped in the powder, rub them till of cloth a smooth face. Next polish with rotten stone and linseed oil, and finish with dry flour and a piece of clean seed oil, and finish with dry flour and a piece of elean
lines rag. The more rubbing with the stone and oil the better the polish.-A. E. F. F., Clapham.
[11686.]-Qualitative Analysis.-The ohief im.
cinm and magnesium. (1) Carbonate of calcium may be detected by boiling, being deposited as "fur" (it is always precipitated when a solntion of an alkaline carbonate is added to a solution of that base). (2) Chloride of calcium is detected by aidding a solution of silver nitrate, a white precipitate of silver chloride falls, in-
solable in nitric acid, but soluble in ammonia. (8) Cal solable in nitric acid, but soluble in ammonia. (8) Cal.
cium snlphate: 1°. Test for calcium. Add a solution of cium sulphate: 1°. Test for calcium. Add a solation of ammonium oxalate, which forms with a lime-salt a
white precipitate insoluble in acetic acid: 2°. Test for White precipitate insoluble in acetic acid : 2°. Test for sulphoric acid. A solation of barium nitrate gives with sulphuric acid a precipitate of barinm sulphate inso-
luble in all acids. A drop of pure water evaporated on a slip of glass leaves no mark.-W. L. G.
[11667.]-Carbon Points.-The best carbon points you can procure can be got from the gas-works. I purchased a piece of carbon for 8d., broke it into pieces with a hammer, filed up the bits inte points with a roagh file, and became possessed of as many as I shall of gas retorts, and is exceedingly hard.-J. HopEINs.
[11669] - Trunk Engine.-This engine would drive a boat of 4 ft . or 5 ft . long, but 8 ft . is too small. The practice of the leading model-makers is to pat a single cylinder trunk engine of 1in. stroke to a 3 ft . boat. I inclose directions and drawing for making foree-pump. Take a piece of rod brass, turned down to in. diameter, bore a hole sin. diameter through it for seven-sixteenths of an inch long, and the rerasinder drill with a hole a shade larger than five-sixteenths
of an inch in diameter. At fin. from the end with the larger hole, tarn down to pin., to the length the larger hole, turn down to din., to the length
of fin., you will then have something like the section A S in the drawing. This pipe is then to be fastened into the brass block, having a section like
XX. This may be an oblong piece having a ring

turned in its centre to fit the end of the tube. It may be soldered on with common soft solder over a spirit lamp, and then finished off in the lathe. The holes R S holes N N plagged up. They may come in useful afterwards when the valves want cleaning. The planger is easiest made out of a piece of brass tubing, plagged np with melted lead at one end. The plunger to be five-six teenths of an inch in diameter, and $1 \frac{1}{\mathrm{i} n \text {. long. The stuff }}$ ilke A in the drawing, and tapped to fit HD. The eccentric band will be difficalt to make without a casting, though with a deal of trouble it may be cut out of a piece of sin. brass plate. Another plan, which is easier, but does not look so well, wonld be to turn a brass ring out of gin. brass plate, and tap three brass rods into it, meeting in a small brass ring, for E to work in. The dis tance from F to E he must find out by trial. The metal employed must never be less than one-sixteenth of an glady afford.--P. W. H. J.
[11678.]-Hydraulic Rams.-There is only one kind of hydraulic ram, and with this you can theore tically lift to any height, but when it has a high lift
there is a great amount of waste water, and but a smal there is a great amount of waste water, and but a small times to require a small river to supply a honse that is situated on the top of a hill; besides that, the valves do not last long. I should only think it suitable for moderate lifts.-P. W. H. J.
[11675.]-Solder for Britannia Metal.-Use tinman's fine solder, two parts tin, one part lead use chloride of zinc, otherwise spirits of salts killed by
adding as much zinc as it will dissolve.-W, BoLTov.
[11675.]-Solder for Britannia Metal-See indices. Where several have boen given.-Jack of
[11676.]-Lemonade Syrup.-Take 31b, of good loaf sugar and one pint of water ; boil, skim, and cool, citric acid dissolved f then add 600 grains of tincture of lemon - stir orange peel, and 30 drops of essetle for twenty-four hours, then pour off from the sediment, if any.-J. L.
[11677.]-Rendering Wood Incombustible. A very excellent way to render wood incombustible is of soak it in a strong solation of alum and the sulphate sulphater. About one pound of alum and one of suiphate of copper shoald be suffeient for 100 galions
of water. These substances are dissolved in a small quantity of hot water, then mixed with the water in the vessel in which the wood is to be steeped. The timber to be rendered fireproof can be kept onder the liquor by stones or any other mode of sinking it. All that is required is a watertight vessel of sufficient dimensions to hold onough of the liquor to cover the timber, which should be allowed to steep for about four or five days. After this it is taken ont and snffered to dry thoronghly before being used. A plan of rendering the wood partially fireproof would be to whitewash it two or three times. You will probably require a glue to hold against fire, here is the recipe :-Mix a handfal of quicklime in four ounces of linseed oil, boil them to a good thickness ; then spread it on tin plates in the shade and it will become exceedingly hard, bat may be easily dissolved over the fire, and used as ordinary glie.-P. W. H. J.
[11680]]-Mildew in Boat Sails.- You will not find anything better than dilate carbolic acid for this purpose. Sprinkle them well over with a solution o one part of commercial acid in fifty parts of water.-
ETHYL. Ethyl.
[11680.]-Mildew in Boat Sails.-" Kirkway's" safest plan is to dry the sails thoroughly, in the open sir if practicable, and to sweep them well on both sides with a strong hair-brash, having sprinkled it before hand with water, in which a little ammonia has been dissolved. Do not roll the sails up while wet, as it is damp which has produced the mildew. If "Kirkway" wants to disinfect the sails, or prevent infection, carbolic acid is a good thing for the purpose. It might also prevent the depredations of moths and small in sects ; but I cannot say what effect the acid might have on the sails.-Rat-Tat.
[11681.] - Water Glass. - This sabstance, being soluble in water, would not answer for the purpose men tioned by your correspondent.-J. L.
[11685.]-Canary's Song.-Has "Exon" ever tried hard-boiled eggs and maw seed? I have found i an infallible cure whenever I have tried it, and would strongly recommend "Exon" to try it also. Many
birds do not sing abont this time. birds do not sing aboat this time. I have three that
do not; the only way I can account for this is that it is do not; the only way I can account for this is that it is the breeding season. Sparrows very often destroy the song of the canary by their chirping. I should advise "Exon" to keep the bird in a room where he will not hear them. Sometimes birds lose their voice alto-
gether for some considerable time after monlting, esgether for some considerable time after moniling, es-
pecially if they do not monlt freely, but when warm pecially if they do not monlt freely, but when warm
weather comes in they get it back again. When bird weather comes in they get it back again. When birds are moulting, there is nothing better for bringing them
through than a rusty nail in their water, which may be kept in all through the winter, as it strengthens them kept in all throngh the winter
very much.-Bed or StoNe.
[11687.]-Speeding Machinery.-Maltiply the diameter of the driving-palley on the shaft into the number of revolutions of the driving-pulley, and divide the prodact by the required number of revolutions of the machine-pulley-thus : Driving-shaft ranning 50 revolntions per minute, diameter of driving-wheel 3ft., speed required on machine 185 revolations per minate. Then $\frac{3 \times 50}{185}$ is required diameter of machine-pulley $=\frac{150}{135}=1 \mathrm{ft} .1 \frac{1}{\mathrm{i}} \mathrm{n}$. Similarly for number of teeth. Multiply the number of teelh on the driving-wheel by the number of revolutions por minute of the driving wheel, and divide the product by the required numbe of revolutions of the maohine. Thus, if the number of teeth on driving. Wheel be $54 \frac{54 \times 50}{135}$ is the number of teeth on machine \cdot wheel $=\frac{2700}{135}=20 .-$ W. L. G.
[11687.]-Speeding Machinery.-Divide 135 by $50=2 \frac{7}{10}$ to 1 , that is palleys 27 in . and 10in. Now for wheels maltiply by $3 \cdot 1416$, or 3 , and adding 1 to
overy 20 or 21 , and either divide by the aumber of teeth every 30 or 21 , and either divide by the sumber of teeth
you require, will give you the pitch, or by the pitch you require, will give you the pitch, or by the pitch
will give you the number of teeth, and the above will Will give you the number of teeth, and the above will
be the pitch line or any other in proportion got by be the pitch line or any other in proportion got by
mnltiplying both by the same number.- JACK of ALL Trades.
[11687.]-Speeding Machinery.-The diameters of the wheels are to be in inverse proportion to the palley, and D' the diameter of the other; and let S be the speed that the first palley is working at, and S^{\prime} the speed of the other $\therefore \mathrm{D}: \mathrm{D}^{\prime}:: \mathrm{S}^{\prime}: \mathrm{S}$ (always let the letters with the dashes represent the greates! number) $; \therefore \mathrm{D} \times \mathrm{g}^{\prime}=\mathrm{D}^{\prime} \times \mathrm{S}$; and sabstitating the \therefore the dismeter of the driver is 185in., and the meter of the other is 50 in . The teeth of wheels can managed in just the same manner, wheels having te of the proportion of $50: 185$, or any maltiple of th By the formule that I have given, the number of
can be got for any qpeed. I will give an exampie:--
Sappose a shalt revolves at 800 revolutions, and anSappose a shaft revolves at 800 revolutions, and an-
other at 400 per or each cogwheel. Sabstitating in the formals $D \times \mathbf{S}^{\prime}$
$=D^{\prime} \times S^{\prime} \times 400=D^{\prime} \times 300 ;$ number of $=D^{\prime} \times \mathcal{S}_{;} \therefore \mathrm{D} \times 400=\mathrm{D}^{\prime} \times 300 ; \therefore$ number of
teeth in driver $=3 \theta \theta$, and number in follower $=4 \theta \theta$. Numbers can be cancelled or maltiplied on each side of the eqnation. to make the wheels convenient for
mannfature. -P . W. H.J. malion. F. W. H. J.
[11687.]-Speeding Machinery.-Sappose your driving-shaft rans 20 revolations per mintite, to be a wheel be keyed on the shaft 5 times as large. Let a wheel be keyed on the shaft 5 times as large as the
secondary wheel, as 100 is 5 times 20 . In the case given the shaft is sapposed to ran 50 revolutions, and he wants to drive a machine 135 revolations for every 50 , putting a wheel $185 i n$. in circumference on the driving ahaft, and connecting it by bands or otherwise
with a seconuary wheal of bin., would obtain the desired end, or if "A Reader" wishes to ase emmaller wheeld, dividing the numbers of revolutions by 5 , which gives 10 and 27 ; then wheel $27 \mathrm{in}$. in revolations for every 50,27 for every 1θ, or nearly three times as fant. The diameter to the circermforence is as 8: 1 or n nearly, or for greater 2osaracy multiply by
8.1416 for the diameter from the circumference; the 8.1416 for the diametor from the circumference; the
number of toeth in each whool depende on the size
[11688.]-Cleaning White Sheepsking.-Let Hoasekeoper" hold the akin over the steam of boiling mater, wool side up. Throw back the tleece, and as the atin becomes softened by the steam, brush it briakly with a hair-bruah, acing powdered ohalk, whiting, or pipe-clay. Rinse it in cold water, using soap if neces-
sary, and apply the brush in bringing bert gary, and apply the brush in bringing back the fleece
to its former position. Dry in the open air.-Rat-Tat.
[11694.] - Green Fly.-Try syringing them with a solntion of the concentratod tobacoo-juice, which is now sold at a cheap rate for this purpose, duty free. A
florist informa mo that thin is the beat remedy he has tried.-Etiys.
[11895.]-Suocession Duty.-It depende apon whether the leaseholds are held for a long or a short term. If the value of the lease is evidently greater
than the value of "C. P.'s" life, interest duty will be than the ralue of "C. P.'s" life, interest daty will be
payable as upon an annuity equal to the net annual value of the property during his life. But if "C. P." is a young man, and the leace has only a fow years to ran, duty may be paid on the asleable value as on a
capital sum. In the former case the datr is parable capital sam. In the former case the daty is payable in eight half-yearly instalments, and in the latter in one sum. "O. P." may prepare and pass the accounts
himeelf, bat I woald not adrise him to do so. himbelf, but
Stylock.
[11696.]-Decaying Ivory Carving.-The following extract from Layard's "Nineveh" may encourage your correspondent o seek for farther inforcompletely decomposed that they conld not be removed. Those preserved, and now in the British Musenm, were restored in England by an ingenious process, which replacing the gelatinous matter, and thus reuniting the decaying particles into one solid body, gave them the appoarance and consistency of recant ivory. -x. 2.
[11696.]-Decaying Ivory Carving.-Some corrosive acid mast have got near it. Try heating it in an oven, and paint with shellac or some colourless varnish,
to keep it from the effects of a damp atmosphere.to keep it
Rat-Tat.
[11608.]-Improving Memory.-I have found the best thing for inpproving the memory to be learning books of "Enclid," I will guarantee that he will have aooks of "Enclia," I wil guarantee that he will have tive powor, which is of immense use in learning any-thing-nay, everything else. When at school I had the morst memory in my class, but by perseverance in for learning other things that I conld never otherwiso have hoped for. This method I consider better than the plan of learning poetry, becanase it engages the mind more fally, and when the memory is at fault the mind assists it.-P. W. H. J.
[11701.]-To Mr. Knott. - My friend Mr. Knott will, I know. pardon my replying to a question addressed to him by C. Gandibert. In May, 1868, I observed this star (ζ Cancri) with great care, and nuder pecaliarly favourable circumstancer, on two saccessive nights, the 7th and 8th, with my 1 sin. equatorial relector, when A and B were much closer than they are at present.
Not Not having a micrometer at that time, I had no means
of ancertaining the distance; but an idea may bo formed of ancertaining the distance; bnt anidea may be formed
from the following diagrams of the discs ag seen with

$$
\begin{aligned}
& 1 \\
&
\end{aligned} \omega^{2} \quad \begin{array}{ccccc}
3 & 4 & 6 & 6 \\
& \infty & \infty & \infty & \infty
\end{array}
$$

different apertares. No. 1 being with sin., No. 6 with 18in., and the others with $10 \mathrm{in} ., 12 \mathrm{in}$., 14 in ., and 16 in . respectively. With 8in. the disc was very nearly roand, with 18in. the two stars were jost separated, and no
more. They may now be divided with sin. On more. They may now be divided with bin. On
April 30 and May at 8 p.m., I was fortanate enough to seenre a satisfnctory set of distance nueasures, the
menn of which in $0 ; 53$; Ithink I may eafly say the menn of which is 0 iss i I think I may eafcly say the
distanco is not reater than this. The mean of the measares of position is 162.9°; powers onect, 500 and 752. The small star has thas retrograded 30° in eight
years; Mr. Dawes' last measares, in 1865, beingposition $=248^{\circ}$, distance $=0.6^{\prime \prime}$; the stars having
been closing H. C. Ksy.
[11703.]-Tnk.-Take foz. of augar candy and 2oz. gum arabio, and just cover with sufticient water to dis same height as the gum, and well shake; now brash it over a plate ef glass, or pour it into a dish and evaporate, over aphen dry porder it and put up in a bottle for ase, or a tin canister will do. Now take the best galls, very finely powdered, and if you place toz. of this in hot water and pour off, using from doz. to Aoz. of the above, sou will find you will have a pint of good ink If not strong enongh you can add more; it will keep for years, and stand any climate. You must keep these both will become or one will destroy the other, and way 1 mentione aselens, they are bent prepnid in the if you want a clear free ink decant the clear. Acetate of iron is made by digesting some iron filings in rinegar, having gubject
Jack or All Trades.
[11704.]-Rats.-A aingle drop of oil of linseed on the tongue of a common steel trap will be a firat-class bait. Oil of rhodium is equally as good; bat the cheapest and most convenient bait is as follows :-O good oatmeal take two parts and roast meat dripping one part, mix them together, and roast them just before going to bed ; bait the traps with this mixtaro hot, half your morning yon may be sure of having, ar least times occupied in one afternoon in broad daylight.Bed of Stone.
[11704.]-Rats.-"M. A. B." desires to be inormed or a method to destroy rata; for his satis faction and the pablic good generally, please to accept powder by the apothecary, one onnce, or less, ns you have occasion, mix with batter or hog's lard into a paste, and put pieces of about the size of a hazel nut into pieces of thin writing paper, and pat them into pisoning ; trthing else. amonld a the danger o poisoning anything else; ibould a oat or dog meel
with one of theose doses, it will make them very sick, but a spoonfal of oil will care them.-RALPH LowDon
[11706.]-Optician's Lacquer.-The following recipes I have heard spoken highly of:-8oz. of ahellac 2oz. of aandarac, 2oz. of anatto, foz. of dragon's blood resin, 1 gallon of spirits of wine ; or 8oz. Bhellac and 1 gallon of spirits of wine. The article, it it is not a choold, shoald be heatod slightiy, and the lacqner should Io applied by means of a soft camel's-hair little more tronble to tris ont a creditable article. It is to be dipped in nitric acid, but before that it is to be well cleaned from sand and dirt. It is then washed and placed in clean water nntil ready to be lacquered. It is then to be taken out and placed in the hot oven for a few minutes, and then taken ont when quite hot and either of the Iacquers applied to the parts re quired.-P. W. H. J.
[11706.]-Optician's Lacquer.-One drachm of gum benzoin dissolred in one ounce of spirita of wine at proof strengtu.
cleaned, and warmed as hot as the hand will bear, and the lacquer applied with a soft brush, and immediately placed under cover to avoid atmospherio dust whilst drying.-J. L.
[11708.]-Gae Burners.-Perhaps the following table will be of use to "Loach." It is the result o the experiments of Dr. Fyfe:

Barner.			
Jet, 5in high	c. f.	$1 \cdot 0$	10
Small fightail........	1.98	2.80	$1 \cdot 15$
Large fishtail........	2.60	$4 \cdot 0$	1.53
Small bat'swing.....	8.0	$4 \cdot 40$	$1 \cdot 46$
Large bat'swing.....	$4 \cdot 60$	$8 \cdot 40$	1.87
Argand of 40 holes	$4 \cdot 50$	7.84	1.74

-P. W. H. J.

[11711.]-Time at our Antipodes.-This will depond on whether the Antipodes are inhabited by py the time arring there from the east or from the west have left a giren meridian at the same time by directly opposite conrses, meet again on anothor meridian, one will have gained an hour for every ifteen degrees of ingitude he has passed, and the otuer will have lost in the bame proportion. Consequently, one will be sidering the day of the weck (say) Tuesina, while the other considers it Monday. The same effect woald be ohaerved by a traveller arriving after a toar of tho lig retarn occarred on a Mom which he started. course had been easterly, have gaiued a day, and would consiler it Taesday. If, on the other hand, ho had lost a dar, and wornld consider the dar of his retar Sanday (Herscbel's "Oatlines," section 257). Practically, as regards Δ ustralia and New Zealand, I imamine (spensing under correction) that, since the course of Good Hope, to eay nothing of the orerland tratio vid

Galle, timo is reckoned in the seme direction-that is to bap, the Australasians are in ad vance of ua. Moreover, arenituae of Ner Zealand is within 1 lat time Greenwich, and it in, thertfore, more nataral that tme our time reckoned by the shorter distaval, snd hour lower than Anstralasian time instead of fourteen or thirteon hours fastor.-V. B.
[11718.]-Composition for Moulding.-The ollow is used by gidders :-1ix 14ib. of glue. 71b rosin, or lese according to the gaantity pins of wate mo the whol ohiting as will rover it of hard consitencr s mach it is hea prith No . can we need before it beeomes sengibly hard, as it till require steaming before it can be psed agein, Another require st this : Mare a very clear plno with. of Flandors gine and one part of isingless by digsolp ing the two linde eeparately in a large poantitg of g the raind throvgh piece of Bne linen to separate the frith end hough piece of no ilval The quatity of patar cannot be Axed becanes all kinda of reqnire mo the The proper etrength ma oquirnd by suffering the plat to become parfectls mald it mast then barely form a jelly. The plag is then to it mast barrly then mixed with through a fine siove. The moalds are then to be oiled rith aut oil, and the glae pressed into the monld corered with weighted board, and then set to dry mear Δ stove. When the casting is dry it is to be trimmed. -P . W. H.J.
[11715.]-Testing Acetio Acid.-Evraporate about an ounce to dryneas, it should leare little or no residue. If any remains, dissolve in watar and add a low drops of solation of bariam ohloride and hydro chloric acid, if a precipitate forms it ghowa the pre ence either of a salphate or of free salpharic acid. To distingaish the lattor from the former add a fev graius of pare cane sugar to an onnce of the acid, and evaporate to dryness at a heat of abont $1: 0$
residue will be blackened when free sulpharic acid in any quantity is present. It may also contain hrdro chloric acid, which could be easily known by difating the acid with wator, and adding siiver nitrate. If white cardy precipitate falls it is due to the prescace of chlorine. Dilate another portion of the acid with water, and pass a current of snlphydric acid through it. A blackeaing denotes the preaence of lead or cop per. These are the asnal impurities in Vineqar. Sometimes capaicum or red pepper is used to mako it pan-- Етнуi.
[11715.]-Testing Acetic Acid.-Solpharic acid is added in small quantity to vinegar to cheok the decomposition or mothering when the acidification is completa. Sulpharic acid is best deteoted by barizm chloride, or barinm nitrate dissolved in water: apon addition of salpharic acid in any solable state of combination a white precipinte is formed insolnble in nitric acid. Nitric acid, when boiled with a solntion of indigo in salphnric acid, bleaches the indigo sulation. Hydrochloric acid may be detected easily by solntion of nitrate of silver ; upon adding the former or any solable chloride to the latter, a white curdy precipitate of chloride of silver falls, insolable in nitric acid, bat reely solable in ammonia of cyanide of potassiam. W.L. G.
[11722.]-Eyebrows Falling Off.-Has not Sabscriber from the First" some other symptoms denoting ill-health, of which this is only a minor manifestation? Plambam (lead) in poisonons doses will occasion the hair on the eyebrows to fall ofi, and wo homoropaths say it will consequently stop it. Is subscriber in any way engaged in a trade where he ibhales the fames of lead? It bo, that is the canso, and conarms the homcespathic proving of lead. If the falling off is not cansed by lead be might try it. From some homoeopathic chemist procure a sixpenny bould of plambam, No. 8 trituration, and take a grain (s much as will ie on a threopenny piece, not pied apf
morning and evening, in a little water on an empts stomach.一 WATts.
[11722.]-Eyebrows Falling Off.-Rab with : [11723.]-Defective Contact Breaker.-I hare been in the samie bother, bat got over it. I have not had au clectric bell at work, witio one piut Daniells. for nearly five montha; but being in a warm place made it add some acia solntion to poroas call which, I thiok ${ }^{2}$ coil (I ased bottling wire for the call wire), made a machine covered my owu wire, acc., from instractions given in "onrs" to others by Mr. Tonkes and other kind correspondents. If fond the fault of my contact breaker was nwing to the screw being fred to a rigid arm, the ribrations gradnally unserewing tho screw. I have now monnted the sorem on a spriag arm similar to the apring the armature is moantod oc, and ald a nat to the screw to tiguten it whan in is proper position. The springs must be of a propor
strength, which a few trials will determine.- \mathbf{W}. Bolton.
[11724.]-Discharge of Water Over Weirs - extract the following from Templeton's rule for the seconds. Maltiply together the nnmber of seconde the width of the weir in feet, and the co-owrient aken from the table. the prodnct will be the namt of cubic leet discherged in the

Given that gives the value of k for different depthe.)
The value of k in the case mentioned is 29171 .
$\therefore 88.400 \times 4 \times 29171=100,597 \cdot 876$ of cubic feet. $\therefore 86.400 \times 4 \times 29171=100.597 .876$ of cubic feet, wanting, it enald be fruad, with the help of the othere, by sabstitution.-P. W. H. J.
[11738.]-Adjusting Balances and Main. springs.-The information respecting balances will Be foand on Pp. 102 and 279, Vol. XIV. of the Enalisi to alide up or down until they nearly bolance the used of the mainspring for the Arant revolution after the of the mainspring for the Arat revolution after the other revolations is compared.-WEET ConNWALL.
[11720.]-Teeth of Spur Wheels.-If a " Pattern Maker", gets an odontograph, an instrument (price 5 s . and in it correct information for Catting out forms of noth, bo that any two wheels of a set may work trol coeth, oo that any two wheels of a aot may work truly
togetber. The une of the instrament is very easily earmed-Go-Ahead.
C17730.]-Artiliotal Gume:-Dertrine, also called British gum, wonld probsbly rait "Wrinkle." It wonld be mach cheaper to bay than make, as it in prepared scale:-Malt (crashed mall), thb. recipe on a smal gallons ; mix, heat the whole to 145° Farm water, potato staroh 51b., raise the heat, to 160° Fahr. and mash for about twenty-five minutas, or antil the liqnid becomes inin and clear; it mast then be instantly ormation of sugar; atter boiling for three or foar miraten the whole must be filtered and evaporatsd to
dryness by a steam hest.-A dryness by a steam heat.-A Barbister.
[11731.]-Hair Waah.-Is "Excelsior" consnlts ours," p. 140, he will find an excellent recine for the hair and many other parposes. I have nsed ammonin
for years. My head is entirely free from scarf, the for years. Ny head is ontirely free from scarf, the
hair smooth and glosgy, and I seldom require pomatum. Pour a few drops of ammonia isto a basin of tepid wator, and wash the head thoroughly, at the same time using a little soap. Wall ringe in warm water.-M. ope.
[11732.]-Temperature of Ice and Water.Let x be the temperatire of the water after the melting of the ice. 8 kilogrammes of water on passing from
$79^{\circ} \mathrm{C}$. to x° will lose $3(79-x)$ nnits of het. 79° C. to x° will lose $8(79-x)$ nnits of heat ; whilst 1
kilogramme of ice will abeorb on passing from 0° to x^{0} kilogramme of ice will abmorb on passing from 0° to a quantity of heat representiod by $79+x$.
quently we have the equation 8 (79
trom
from which we conclude $x=39 \cdot 5^{\circ} \mathrm{C} .-\mathrm{F}$. T.
[11736.]-Intracting Iodine from Seaweed Ashes.- " J. R.". will easily extract iodine frum sea-
weed ashes by mixing them with dioxide of manganese weed ashes by mixing them with dioxide of manganese and snpharic acid, heating moderately, when iodine
will evolve in fine violet vapoars. Whiah will condense
it received in and if recoived in a cool reoipiant.-F. T.
H1738.]-Extraoting Todine from Seaweed Aches.-Kelp (the hall ritrefied aghes of seaweed) is exhausted with water and the solntion filtered; the to a very small volume, the chloride of sodinm, carbonate of soda, chloride of potassiam, and other salts beng remored as they successively assume the orystal residual dark brown "mother" lignor (iodine lye), and the erolred gasen are either lindlod or allowed to es-
cape by a fue; the liquid, after standing some time cape by a fue; the liquid, after standing some time, is
filtered, heated to about 140° Fahrenheit, and mix of with as much binoxide of manganeese as there was oil of vitrinl employed; the whole is then introdaced into a oglindrical leaden still, farniahod with a very head, and connected with two or three large globalar
glass receivers, and heat is appliod, when funes of glass receivers, and heat is appliod, when funes of iodine
are evolved and condense in the receivers. Doring the distilletion very great care is taken to watch thb procoss, ald prevent the neok of the still becoming choked
with condensed iodine. For this purpose the head of with oondensed iodine. For this purpose the head of by which the process may be watched, and additions of manganese or salphnric acid made, if reqnirod. To
render the prodact pure, it should be passed between render the prodact pure, it shoald be passed between
blotting paper, and thea resublimed in glass or stoneblotting paper, and th
ware.-A Baraister.
[17798.]-Oyanide of Potagsium.-It is really accident for asing, with so little precantion, cyanide of potassiom. This substance ir one of the most deadly poisons known, snd second only in that respect to quite harmless. Its best antidote is a mixtrre of tho following sabstances :-Sodiam carbonste, ferrous salphate, ferric sulphate.-F. T.
[11738.]-Cyanide of Potansium.-This is one of the most powerful and dangeroas poisons known; it
is, in fact, solid prassic actd. The onlv available treatis, in fact, solid prossic acid. The only arailable treat-
ment is iustantly to place the hend and face of anr nue ment is instantly to place the hend and face of any nue
poisoned vith this drag (or with prassic acid) ander a powerfal stream of water from a tap or pump, brt a
delay of a very few painutes would be certainly fatal drlay of a very few painateos would be certainly fat.a
It is impossible to say what the precipitate in "I $h e$. liste's" bath is unless we know what it is composed of ; gold has boen precipitated. Cyanide baths give off gold has boen precipitated. Cyanide baths giv
lumes which are very unhealthy.-A BARristrar.
[11747.]-Canoe Voyage.-Having boen user] to the sea for eomo years past, and haring a skiff of
my own in which I take long trips, I ghall be glad to give "Asont" any information I I can out
In

coast, as going far from land in a small boat i boing canght in a brecze, " Δ Aloat" might find a suit able place to run his canoo on ahore, and hanl ap Whereas if in the midedle of the Irish Channel he may shorld think the best trip "Afloat"" could take would be
she to the south of Wales and up the Severn; he would, no and find able to reach some phee of interest ench day the fitting "Afloat" before starting mhonild be well itted ont and at one end of canoe have a water-tight cupboard or locker, whare he might leep the following artioles which would prove asefal:-A small compass and binnecle, which he woald require in case of Sog, or not reaching the intended placo till after dark; also some hand charts of the ooast be inteade to go. I have always found them most usefal things in going along a yon reqnire, are not very large, and ench one takes in aboat sixty miles of the coast, they cost abnat 1s. 6d each. A Nautical Almanac wonld also be a very nsefol thing to havo. "Afloat", wonld have the time of high rom place to place, de. or for a for ohillinge, coarsea a book in connection., or for a thew shillings may get could be oltained at any marine shop. 8. I ahould cance, that he mas no hare a lag aail fitted to his one to my boat which answers well, and sares a great many miles palling. All the kear is made very light, and the sail, made of unbleached calico, is hoisten by a halliard which is attached to a traveller which runs on the mast, and the gaft hooked to the traveller. The sail is a large one that I might take adrantage of light winds, but will reef down to half its size when wanted ; it is very conplict, can be hoisted or taken down without haring to move, and when down does not take np mnch room. I shall be most happy to give "Afloat" any information I can throngh jour valuable paper
[17748.]-Artificial Manures.-If "Guano" safficiently acquainted with the French langage 1
should advise him to should advise him to read the following book,
"Recherches Chimiques sar la Vérétation," par M. "Recherches Chimiques sar la Verétation," par M.
George Will. Professear au Maseum d'Histoire Naturelle de Parin, as it is the best book, in my opinion,
pablished abont sach matters pablished about sach matters.-F. T
[11748.]-Artificial Mranuree.-The information requested wonld donhtless be exceedingly interesting. however, pecuni rily interested) has tanght mor that a good noil should originally contain silex, alumina, rae, and magnesia; the two latter, however, can be riapoed if absent for little more than the cost of car and poat anis former earths are alisent, as on chal carting marl on it, if he can get it ; bat silex alono viz., prre sapd is not warth even carling. Nus for and soda, these can be given cheaply to it in gypsum and refase ealt; then all we want more are potash, phozphoraf, and the raluable stimulant nitrogen; how to obtain these cheaply is the farmer's problem. Coprolites and bones will give ns the phosphorous with the less valuable lime and magnesia. Saperphosphate gives us the same ingredicnts with malphar: the bones give a but nitrogen. Peravian grano gives as mach more, hence their failure one manares are doficient of potash, ood crops of potatos. notasaiferous soil to raise requisitionists; so we mnst mapply this slkali in sea. weed or kainit. Saltpetre wonld be a glorious fertiliser bat it is too dear. Nitrogen I have called a stimalant for its preselicg grently excites growth, and if used loge will rapidly exhnast the soil. Hence the land. ords' prohibition of the nse of soot and gas liquor, and the old furmers' prejndice against gaano, whioh is aboat as sensiblo as a merchant having a prejndico gainst his cheque-book bocause its ase diminished his balance at the banker's. It wonld be an interesting experiment to crop snccessively a patch of land
mannred with nitrate of nmmonia alone mannred with nitrate of ammonia alone, and note the resalts both on land and the prodiace. What salts plants and orops of varions kinds really require, and how far ther possess power of substitntion of one ingredient for another, e.g. soda for potash, lime for magnesia, can
ouly bo decided br a series of carafal experimots, ont of the power of an indiridual farexpermont far Fhonld be made br n Government department, and the renlitg pablished for the benefit of the commanity at
large.- Mamyer.
[11756.]-Power of Water-Wheel.-In you issne of this day (May s), I see a query from "Water-
Wheel" requiriag the power of a water-wheal under three distiuct times of supply-viz., 4 h ., Gh ., and gh . All who are in auy way acquainted with hydranlics mast
bo amero that nrless the head or fall of or given, no priner can be arrived at. of water is known always ready to answer such queries; but nnless the most essential part is piven, I mast decline oven at
tempting a reply. In this case there most importaut ciata missing. Let rour coveral of the give the followiog, and no mare is rear corresponden or head in feet or decimal parts, the principl-The fall to be adopted, the size of pipe to be used and distance the mean contests of each bnoket, or, if he cance, arrive at such, pire a sletch of the shape, giving prindedaced, alse whether bnekets are iron or wood, and, it velocity may be arrived at rom the reol, so that the velocity may be arrived at rom the revclations given.
-J . Gilladid.
[11761.]-Magnetism. - The second experiment has nothing to do vith "increased transparency o order with their longest axis his, of conrse, diminishos the obstruction offered to the passage of light when the particles are floating about in all directions. If tho beam of light were sent acroas the tube, probably the light would be
diminished, owing to the concentration of the diminished, owing to the concentration of the particles
[11770.] - Magnetic. - I am of opinion that alone. He has probably nealtralised it by uadiag the wrong end of his horve-shoe magnet in his maxipalations, or he has rubbed in the wrong direction. If he wint examine his horse-shoe magoet he will and the stroke the neade from north to sonth, pol the needle, repeating the process antil it again beoomes magnetic.-J. Hopinss.
[11770.] -Magnetic.-In answor to "H. G. Wr" I beg to say I think he muet have rabbed the needle with the maguet in an improper manner. The proper way
would be as follows :-Apply the magnet directly in the would bo as follows:-Apply the mangnet directly in the pole would beente, in such a manneer that its north pole wonld be near the sonth pole of the needle, and its sonth pnie would be near the north pole of the needie. Then drawt the magnet from end to end of the noedle with a little friction (keeping both poles of magnet apon it). Aiter a few saon rabs, retarn the magnet to the centre of the needle, and withdraw it, when I have no doubt he will find the needlo magnetised. If their rospective poles in the netic rospective poles in the same direction, the mag netic htate of the needle wonld be destroyed, owing to the repulsive tendency of like polarities. I ahoald montion, that if a needle is magnetised at all, it mus point in the proper direction, provided no magnetic
substance is present to interfere with its direotive power.-Do FER.
[11774.]-Cauliding Boate.-An excellont material now very minch nsed for this purpose is cotton balls like lamp wicks. It may generally be purchased at a cheap rate at any sea-side town.-A BARBIBTER
[11785.]-London Blackbeotles.-Introdrce hidgehog to your cellara or kitchen and it will soom de-
[11786.]-To "J. K. P."-This quary should have been headed "Screw Catting," as it rofers to a query
(No. 11426), under that title, on p. 51 , to which 1 gave an answer on p. 104. I have in consequence hed to search the back numbers, at nome troable, having for "Ditten in the meanwhile all abont the name of Digby" and his requirements. "Digby" has only to joint of the thecl- plate gives not all in a line, as the joint of the whecl-plate gives great choice of position, not too coarse in their teeth, he will have room to put not to coarse in their teeth, he will have roo
on any reasonable variety of traine. J. K. P.
[11788.]-Bunions.-It the case "Der Mend" rerers to is a hardening of the skin or corn on the joint ing, and naing, it may be relieved by frequent bath turned away from the straight line of the inner side of the foot, wearing boots large and wide at the toes, and fastened frm round the iastep to prevent the boot slipping, will be a great assistance, and will allow the toe to grow back to its old line; bat if it is an exlargeis no help tor it joint (exootosia), I am airaia there Iodine ointmen, as the many crses daily beem prove raoommended, but they have no more effect than to destroy the ontiale of the skin.-R. T.
[11790.]-Photography.- Try another asmple of collodion; it is impossible to say what is the matte the oid collodion. When necessary it shon and state o with sulpharic ether, and not with alcohol, as it is the former which has evaporated, and most collodions have as mach spirit added to them as they will bear before ealt is added consumer. It does not signily how mach quantity is in excess of the silver, which is precipitsted in the form of gray mad, being, in fact, in a metallic orm finally divided. A positive fixing bath, if suff quantits late may be ased for months; if only a smal think, from mployed it quickly deteriorates. I should exposure required in a glass-house wonld be foar or five times as mach as in the open air.-A Barrister.

A Remarkable Locust.-In a lecture on spontaneons generation recently delivered by Dr. J. C. Datton, the well-known Professor of Phyeiology at New York, he remarks that there is no point connected with
the habits of animals surronnded by so many obstectes the habits of animals surronnded by so many obstacles The deposit of eggs in onas that of their reprodaction. antil the parents are dead, or have disappeared, for xample, Professor Dalton illustrates by the case of an Amerrean locast (Cicada septendecem). A period of arra and the clapses between the hatching of the arra all the appearance of the perfoct insect, whil, the life of the insect in its partect state dron whil, the life of the insect in its perfect atate d
latorer six weeks. Δ brood of these locuste 2 in te city of New Yort in 1843, and again in 1 hy retarn, the Professor remarke, with th in tumed regalarits, theif next appearanc

UNARSWERED QUERIES.

The numbers and titles of quories whioh remain unanswered for five woeeks are inserted in this list. We trust our readers will look over the list, and send wow inforbutore.

Since our last "W. L. G." has answered 11272; " A Since our lagt "W. L. G."
Barrister," $11275,11282,11283$.
$\begin{array}{ll}11859 & \text { Fox Skip, p. } 49 \\ 11355 & \text { Model Stenmboat, } 49 \\ 11856 & \text { Candied Peel, } 49\end{array}$
$\begin{array}{ll}11355 & \text { Nodel Steamboat, } \\ 11356 & \text { Candied Peel, 49 } \\ 11366 & \text { Blankets, } 49\end{array}$
$\begin{array}{ll}11856 & \text { Blankets, } 49 \\ 11858 & \text { Precious Stones, } 4\end{array}$
Precious Stones, 49
Brickmaking in Canada, p. 50
Wardian Case, 50
Wardian Case, 50
Sulphar Soap, 50
Sulphar
Salt 50
On Fortifcations, 50
Foreign Wood, 50
Ivory Handles for Whips, 50
Sting-proof Gloves, 50
Analysis of Albite, 50
Analysis of
Painting, 50
Crossbow, 50
Sewing Machine Extrag, 50
Botany, p. 51 Lapidaries' Tools, 51
Porous Charcoal. 51

QUERIES.

[11791.]-Col. Stuart Wortley's Rmulsion Process.- Will any photorraphic reader kindly give servative and the developer, the time of exposure, \&c.-

[11792]-Compound Engine.-Conld any of " our"
 the size nf steam receiver for a given size of ongine ?falstitr.
[17793.]-Area of Chimney.-Can any of "our"
 ohimney, from a piven area d Arearate surfacer 11 have
a mmall henting furnace to make the area of flregrate is

ח1794.]-Clutch for Driving-Wheel of Veloce. -1 should be glad if any readers would indily describe
 Veloce. Essentials: 1. An instant, certain, and arm
hold of the driving-wheel, at the commencement of the
 8. Noiecolessnoess during the interral between the strokes. i. Bimplicity. - J. W. Tasion.
[11795]-Rough Pitch, ©o.-To HEMRY W. Freid. Mecranio, of December 22, 1871. Would you again favour me with eome information on rough pitch, and
how to ascertain the breadth of tool for outting screws? how to ascertain the br
[11796,]-Ooloured Printing Inks.-An "Amatour Printer" would be greatly indebted to any person who mey he kind enough to inform him the method of mixing violet, \&c.-H. ${ }^{\text {W }}$.
[11797.]-Preserving Moths and Butterfies,easient way of preserving small moths' and butterfice bodies from decay ? I have tried oamphor, and th
[11798.]-Unooiling Now Wire Rope. - I shall be obliged if any readers will inform me the proper way to uncoll a new wire rope. Not having had muoh practice, I am sometimes troubled by the rope twisting difficult to handle, and damaging the rope, besides loss of time.-BorLER-MINDER.
[11799.]-Botany in Cornwall.-Would any reader kindly inform me whither there exists a list of the atating places where they may be found-also the best book, with plates, for naming the specimens?-T. A. D.
[11800.]-Fhectrical. - I should be glad to know the Far by which (1) the electromotive forces of two
different kinds of battery are compared; (2) the means of estimating the resistaiace, both internal and external, of a battery, in terms of a given length of wire, using the T galvanometer, both for 1 and 2. I know that this is nossible, but don't seo my way quite clearly. Perhaps "Sigma," or some
help me.-T. A. D.
[11801.]-Question in Trigonometry.-Perhaps how the following question in trigonnmetry oonld be
 be a point within the triangle, at which the sides snb-
tend earh an angle of 120 , find the values of $A P, B P$, C P-NUMA.
[11802.]-Date of Patent.-Can any one please inform me of the date of the patent described in the
Fnolish Mrchanic, No. 324 , June 9,1871 , called "An such an iden, for a emelting furnace, for some 3 or 4
 [1180)]-Euplectella spinosa.-Can any of yonr correspondents kindly give me a degcrip.ion
Euplectells spinosa?-A Constant Subscriber.
cbiled if your correspondent, - i should be much cbiced if your correspondent, a "Thirteen Yoars'
Agent," who so kindly answered my query on the obne
me further information on the following particalsrs:(1) Which are the countries in which a beginner is most likely to succeed 7 (2) Would that beginner experience
any difficulty in finding a gentleman who wonld be
willing to take him as a papil? (3) What are the nsual terms for such education? (4) At what age ought it to commence? (5) How long is it gencrally continued ? individual following this profession?-L.
[11805.]-Fxtracting Gelatine Erom Bones.-
 farther information? I have tried 4lb. and up to 12 lb . withont succoss, and hare steamed thom till quite soft. The French and Germnns obtain it from this method with great success, so please inform me the rength of
may failure and what bones you nsed, and the leng time they require to steam. Do the bones require to be subjected to an
[11806.]-Power Loom Weaving.-I should be muoh obliged to any one who could inform mo of any Fork on power loom weaving, as I want to get gome in in wesping plain calico, and the best sort of healds, reeds, and ficking and tappit motions ?-Lasocasirar Lad.
[11807.]-Preserving Heat and Boiler.-Will any of our readers kindly qive advice as to the following:-
We have a vertical boiler, half of which and a quantity of steam-pipe is exposed. What is tho best covering to keep in the heat and pievent the plates scaling away
with rugt? Also a fow hints how to arrange a sieve to work by power fould be deemed a great favour byIMPLEX
[11808.] - Photographing theSun.-Will some one of "our" many astronomical correspondents give mo information in reference to photographing the suu? I have
tried a flash exposure (slit tin. Wide) on Bin. achromatic, bat all the negatives are solarised, or burned un; also ried with aperture capped down to lifin. Any suggestions would be acceptable to-PAssycnic.
[11809]-Cool Air in Hot Climates.-I am living and am told that the sammer heat is great and trying the nights being nearly as hot as the days. Now, if ice can be manufactured cheaply, I see no reason why
large houses should not be supplicd with a steady flow of cool pare air at a very moderate expense, bat this is a matter for landlords to take action in. My object in
writing is to see whether, by the kind assistance of some of your practical and ingenious subscribers, an nnfortunate tenant, liahle to sudden changes of quarters, may not be sble to adopt some plan for securing cool and fresh air whilst asleep or quite quiet. I believe a patent
has been taken ont for making ice by the alternate compression and expminsion of air, und, if this answers it is erident that about 1,000 cubic feet of air conld be reduced 15° in temperature, instead of converting llb. of
water into ice. Accoriling to a late number of "ours" water into ice. Accuriling to a late number of "ours,
cars have been actually propelled by monns of cases of compressed air, then, why should not a box bed or miniature sitting room be construoted of some nonconducting material, and be farnished with one of these cases, so arranged that the rir in escaping from it ahould draw in a current of external air, cooling it to 60°, exactly as it cools the water in the ice-making uaschine, and at the same time driving cut the hot re-
apired air? What a boon some such srrangement wonl prove in India. I ghall be mach obliged for informetion as to gature and cost of machinery for compressing air, and of cases to contain the air, nad to whom I might apply to try and get this idea curried ont. Also for any suggestions of some more feasible plan.-C. H. B.
[11810.]-Colds in the Head, ecc.-Will some one kindly acquaint me with a remedy for continual colds in the head, acoompanied by a constant stuffing of the
nostrils, and consequently producing a most annoying nostrils, and consequently producing a most a.
and disiguring enlargement of the nose 2-X. Y.
[and" (reply 11593) kindly say the quantities esch of land" (reply 11593) kindly say the quantities each of $\underset{\substack{\text { Rlycerine } \\ \text { Barbrb }}}{\substack{ \\\hline}}$
[11812]-Aerated Waters.-Will a brother reader kindly inform me whether I can make the above in small quantities, and if so, give particulars of same, to be
used for lemon and other syrups?-Country Babber. [11818.]-Oatcake Makingand Baking Machine. -hother guch a machis mais for making or baking oatcakes? I know in some parts of Lascrshire oatcakes are sold wholesale very much, and I have been told
there are machines in existence for this purpose. Are there are manc
there ?-T. E .
[11814]-Lathe Queries.-Would "J. K. P." inform me if there is any other way of fitting a double coned mandril than the (to all appearance) complicated one of way are the lighter lathes of the ornamental makers atted ? Are theirs different, or is Whitworth's oonsi-
dered the best method ?-ANGLo-Cextic.
[1s15.]-Fishing Rods.-Can" Jack of All Trades" tell me if the first-cliss Euglish rod makers nio any par-
ticular kind of plane for rounding or finishing their ticular kind of plane for rounding or finishing their
rods ? as I was informed by an Irish maker that the superiority of English rods resulted from some secret of the kiad. Also could he give me the secret of the
brown stain used for the ashon butts?-Anclo-Centic.
[11816.]-Fixing Balance-Wheel on Verge.Cornwall" if they wonld tell me the best method to fix the balance-wheel on the vergo. I have had to put a
new vergo in; the brass was too high to hanmer down, and pirots too long, which was very difficult, uot having
the proper tool-. I am obliged to both of them for their recent information. I hope they will ont quarrel about which pives the best information. I did ure solder to
fasten the escape-wheel in lever watch.-S. H. L
[11817.]-Portland Cement-Could any of your namerous correspondents give tho best plan of kiln for
burning Portland cement, and bow long it requires to barn the same, and what proportion of fuel to cement burnt? Alvo what kinit of machine uaed for crushing
before entering the mill, to he pround dae? Any prac
tical advice on the above will ubli,ge- Relwor (Hugars)
[11818.]- Hoase Heating.-Faol being extremely dear on the Continent, could any of your numerous correspondents give a practica pian on floor, and forming a square S Say from the cooking stove, it bel
[11819.]-Roof of International Exhibition Bullding.-On what pri
[11820.]-Gas Bags.-I shall feal very gratefal if ome kind reader will oblige mo by auswering the iol lowing questions, to eneble me to construct a gas bag
and pressure boards for oxygen gas:-1. What kind of and pressure boards or oxygen gas where obtaionbie? 2. How are the seams made in the twill, and how is the labing connected? 8. Is there any difference in cunstruction of the bags ased for oxygen and hydrogen?
4. How are the pressare boards mais?
4. How are the pressare boards made ?-J. Hughes
[118:1.]- Holly.-Can some one tell me how holly onght to be treated in order to preserve the extrem whiteness of the wood? That which I have out dasin
and seasoned in a dry room, though good and sound, is and seasoned in a dry room, thougt good and sound, is [11822.]-Slide Rest-Would "J. K. P.," or some other reader, kiudly bive me the aizos for a 8jin. eilis
 machine, I shall have to tit them by havd. A fow hiuta ns to the best way of doing the baine would greally oblige-Aarateur Engineer
[11823.]-Holtz's Electrical Machine.-Till some am ondervonting to make R Hultz's cluctrical michine, like the one figured on p. 90. I cannot sucteed in cat-
ling ting the windows and central hole. If any noe will tell
me the proper method, I shall be very mach obliged. me the proper
[11824.]-Punching Tachines.-Csn any reader tell me the best kind of stcel to make panches to panch through tin. bars, and the b
-a Conytant Subscriber
[11825.]-Testing Bleaching Powder.-Wuald sonue of onr readers give me the means of testing chloride or lime or bleaohing pow it would be of uat service to me and perhaps a fow more of our readers, as I hare to men the answered-Bleachino Powder.
[11826.]-Tinning and Soldering.-Seldom a week passered in the Enolish Mechanic, but I do not recollect auy reason given way tho articles are tinned. Darian the articles on the "Amsteur Workshop, Which appeared in an early volume, it was alated that rosin wa employed, and sometimes tallow, to prevent osidation of tae surfaces to be tianed, and rosiu vould unly be re quired for tinning iron, \& ; but as we repuire chloride quired for tinning iroa, \&o., to tia iron, \&c, I suppoid there mast be some other reason for these sabstance being used, besides the preventing oxilation on the sar face of the metal, particularly as these things arem more likely to favour than retardsach oxidation. Can any of our talented correspondents give us any informs tion on this subject? I have set up theory of my uma requisite chemiol manipalations to prove its correct ne is or otherwiee I shall be thenkful for the informsion from those who may know better than mysell. Ny roason for asking this question is, that as the solder ang mated, then if the conditions requisite for this amalguna tion were thorugghly understood and could be applied to the whole of the particies of the metal whon in a molten state, it may be a step in the direction of slloys of meta not at preselin tin, which, while pasily to the fle or faralag tool-A. B.
[11827.]-Sight.- I want the opinions of some of our oculist an on objects at all distinctiy, things appesring dof in the Meceanic appears most distinct at the distance of dis. from my eyes, and when writin I often fud my cheet touching the (6in.) penholder. I ennnot rend the naine
over the shop window across the street, and the letters over the shop window across the street, and the lecters composing it are oin. high. At experimental lectured I lose haif the plensure and benefit from not being
(from the middlo of the lectare-room) to see what is dise (from the middle of the lectare-ryom)
by the lecturer at the table. When out for a walk wil others, a distant object, say a hoaso or ohurch, pointed out, but I cannot see it, can, by lookiug thru a pinhole, held cluse to my eye, resd the uarne opy
connt the windows in a distant huase, and read le connt the windows in a datant which, otherwise, sppear only a lot of strokes? Is mine a case of myopia, or is it weak I do not fanoy it is the latter, as I can see well When objects are brought sufficiently near. of concavity ?", or what other roinery can
What are the "invisible" spectacles?-W. P.
[11828.]-Duration of Boiler. - A corumon salde houses rather more than eleven years. Is there say
reason to conclude, merely from its aye, that it is becur reason to conclude, merely from its ayo, that it is b ing ungafe? By what tokens m
curity in a boiler, from wearius
mine he replaced, which is considered the best forio boiler?
$-\mathrm{H} . \mathrm{G}$
[11829.]-Tackle Poles.-Will some corresponden kindly tell me the best wity to fasten two poles at: top for a block tackle, with
bluck and fixing guys?-A. B.
[11830.]-Indicating Tablets for Electric Bells Priends would explain the construction of the ladicat tnblets
Bolton.
[11831.]-Thermomster.-Can anf of "onr" pondents intorn ing ur the reas it registers oundit

 Letely built a house, and woald like to know which is the ther or is the paper best prit on the baro walls jurt as the plastering before the paper may be put on? The stone jambs of freplaces I want to paint phould they be isized,
and how many coate of palnt should thay have?-J. T. nd how many coats of paint ahould thay have i-J. I.
[11883.]-Smoky Ohimney. I have a Arephace in a back kitchen, the fino of which runs ap the eares ait the back of the bouse. The chimney-pots' tops are 7ft. shove the eares, while the ridge is 9ft. The consequence mokes As it mould on account of the difficalty of scaffolding, could any form of chimney-pot be used that would prevent the amoko ?-J. F. R.
[11884]-Bprings. - Will "Jack of All Trades" kindly give the proceas adopted to temper gun.lock springe, as thoso aro rasde in Birmingbam. I can make
them after a fashion, but not satiofactorily. I harden by immersion in water when at a red heat, and then fry them in tallow until the tallow is burnt ap, allowing anem to cool in the pan. If a load and tin bath is used, OLD GUMNRR
[118s5.]-Arsenio in Wall Papers.-Can any o ascertaining whether any preparation of arsenic has been used in colouring wall papers? 1 believe the very bright and vivid shade of green called "Scheele's groen" is a chemical compound of arsenic and copper, and the application of a drop of liquid ammonia to the paper will indicato the presecce of the later metal, by turning the green to a bright bloe; but I have heard
that some of the less brillinnt ghades of green paper that some of the less brillinat shados of green paper
really contain arsenic, and in these its presence is not no readily detected.-G. O. C.
[11836]- Voicing Organ Pipes.-I am nom far advanced in the construction of a small organ, having poor mau, and could not see my way to purohase metal pipes, so 1 made 2 row of zinc ones, but try 28 I will, and 1 am pereuaded that this is owing to the voicing. Why enonla I fill 1 am not acquainted with any organ-bailding frlend, and know nothing of the subjoct can I find a clear oxplanation of the volcing. Woald come kind friend assist me out of the difflcalty? I have mouth insido, and a, row of zinc pipes ; they all want voicing; how must I proceed? I have, still room for roles the editor has laid down to ask where I ahould get them chea pest, and what would bo the cost ?--Alexph.
[11837.]-Organ Bellows.-Will "J. D." or asy bollows required to supply eficionty an organ contalin-

Great Orgar CC to G, 56 Notzs.

1 Open Diapason, large scale.
2 Open Dispason or Gamba, smail scalo, ton $\mathbf{~}$ 4 Dulciana, ton.

${ }_{7}{ }_{7}$ Friate, ten.
8 Principal
9 Sesqualtra, $\begin{aligned} & \text { a ranks } \\ & \\ & 9\end{aligned}$
11 Boardon
Psdal CCO to E, 29 Notzs.
11 Bo
$-\mathrm{Y} . \mathrm{z}$.
[18838.]-Olock Pallet.-Would "Yorkghire Pivot" or "Weat Cornwall", give the best method of making an
anahor-shaped pallet for an etght-day cased clock, or any other ahape i-LAxcabuire Amatzur.
[11899.]-Platee Chemically Clean.-I hear that Dr. Anthony says, in a paper road to the Photographio
Bociety, that he finds cleaning his phates in Bociety, that he finde cleaning his piater in a math
cyanide of potassima to be the best means of making
them chemicall clean. It seems to me that the sengl tising bath would be spolled by introduoing plates cloaned with cyanide, and it the plates be washed under the tap after using cyanide I fancy that they might be-
come greasy or otherwise unolean. I should feel greatly indebted to any fellow reader for a fem saggesilions ro garding this or any other expeditions modo of making
[11840.]-Whooping Cough, \&e.- Will a subbroud and auiseed ? also an effectual remedy for whooping congh ?-T.C.H.
(118ti.]-Human Relics. - Will any correspondent oblige me with a little good information regarding the
oldest hnman rello in the world i I belleve it is to be seen in the Etruscan Vase Room at the Britigh Museam. If I mistake dot, it is the skeleton of Pharoah Mykerinus. -RapH Lowdox.
[11842.]-Indiarubber Gig Apron. - Will any reader of the Mecyanic kindly inform me how to pre-
vent the above bticking together when ait apon?-z.
[11843.]-Iron Castings-Wil some fellow reader give me some iufurmation respecting the method ot
obtaining a solid casting when a wrought-iron bar is put in? I have tried by putting the bar in red-hot, bat this does not answer.-PErik.
[1184.]-Rabbit Sking-The "Hampahire Farmer" bas not reapmuded to my inquiry about the red weed.
I fancy it is the porsicaria, which has a piuk or reddish hue over the whole plant, and is a great weed Wherever
it gota a chance of seediag snd growling. My rabbits them to account, but is we mern tu eat, not moll them, I want a hint as to preserving tho aking. Uanany of our
friends say how they ahould be dressed in a simplo Iriends say how they
ready way?-8exscio.
uf. Berthon (let. andif) Exave the goodnesg to explain how
the film of silver is deposited? He says the process is extremely easy, and may be done by any one in a few
minutes." I suppose an ordinary concave lens answers zinates. 1 suppose an ordinary concave lens a.
the purpose-it need not be a Barlow ?-ALBrabo.
[11846]-Gold Beating.-Can any reader explain
[1847.]-Curry.-Will some contributor kindly give 2 recipe for making curry ${ }^{\text {? Captiain White's is gene- }}$ Petry Cuty.
[11848.]-Conic Sections.-How must a cone be cut to prodace the differont conic sections-riz. the ollipse,
the parabola, and the hyperbola, especially the two latier?-RObTicus.
[11849.]-Printing in Canada.-Would some sabacribor having oorrect information kindly say what
would be the prospects of a printer in Canada w ith a vonall capital (Bay \& L 50)? and would it be advisable to
smand take the cash or matorial?-A Country Painter
[11850.]-Pitches of Screws.-I shall feel obliged to nny of your readers, practical shipbuilders, why well give me the following information. A known vessel of
ine lines, whose displacement is 3.500 tons, is propelled by an 18it. screw. of 28ft., pitch, st the rate of 14 knots per hoar, the screw making 55 revolutions per minute. Tte disc srea is 254 sq . ft . Is it probable that another
vessel of liko displacement. but drawing only 10 t. of
 water, could be propelled by three or foar screws of
sbout 1614 . pitoh and $9 f$ diameter, making 100 revoln-
ind tions perr minnte st the sane rate, assaming the poal-
tion of the scrows lines of vessel, midship section, sion resistance, \&c., to be equally farourghle for speed in both cases ? or would power so applied he wasted, and
result only in churning the water? I Ahould be giad to result onlr in chnrning the water? I fhould be glad to
know, also, whether pitches of from 15tt. to 20if. have
 10ft. diameter. I amo nder the improssion that Rennio, sbout the yoar 1 fub, main some experiments, givigg
farourable results, with small serews driven at high velocitios, and read a paper on the sabject at a meeting of the Britich Association.-T. C. H.
[11851.]-Supercargo.-Will some obliging reader a merchant ship, what qualicications shonid on board have to fill such a situation, and what salary would he receive for going to Australia? dre such jobs easy to [11852]
[11852]-Pallet Springs. - Will "Jack of All Trades "tell me of what size and number the wire mo
suitable for making the sbove should be ? [11858.]-Pedal Harmonium.-Will any brothe reader five me the dimensions for a set of any brother a pedal harmonium, the reeds to be 16 ft . tone, and how blower for the bellows, which is a single foeder, 10 in. fall.-G.J. \mathbf{C}.
[11854.]-Raining Salt Water.-How is salt water oxcent by manual labour? How many feet obover way water is usually necessary for many feet above highenter the bath or bath cistern ?-PHILANTHROPIst.
[11855.]-Hygrometer Motive-Power.-What is the substance that tarns the index of the hygrometer that is generally on the top of the wheel barometer or weather-glasg? I have tried catgat, bat withont suocess.
[11856.]- Military Examination-Woald some one advise me on this subject? The requireniente for grages, and bistory ancient and modern, with geography. Does this include all the different branches of mathomatics? if nut, how many? How many modern languages are required ? I would be thankfal for a fow hints on this examination relating to the age of the can-
didate. Perhaps "Sword and Pencil" or "Artillery didate. Perhaps "Sword and Pencil
Captain " would answer this.-ARIEL.

USEFUL AND SOIENTIFIO NOTES.

Caution about Potatoes.-The ase of potatoes is a preventative against bcarv, if not an zotaal care lor in. Potatoes that have been exposed to the air, and have bocome green, are unwholesome; and dew pota-
toen-i.e., unripe ones-have much to do with the prevalence of cholera, and such like diseases, daring prevalence of cholera, and such nit.
Fruit and Grape Wine.-The main point of interest in distiogaishing between the wines is, says Dr. F. Vorwerk, that the phosphoric acid present in genuine grape mine is combiued with magnesia, While in frait wines it is present in combination with lime. The simple addition, therofore, of anumonia (1 part to 9 parts of wine) will produce in genuine wine a ater
twelve hours' standing, the well-known precipitate of ammonia-phosphate of magnesia.
Flexible Karble.-There has been exhibited in America a flexible marble slab, which is procured from the Portland quarries, Vermont. Professor Har, of to constatation as-carbonate of lime, 97. Trace magaesia, a position and its crystalline character together proclaim it to be a true marble, and, at the same time, a pretty pare specimen of that mineral. The indabitable fiexitates the slab is its most remarkable fakure. Dale lexible in thin pieces then trit taken out." The slab in the possession of Mr. Holliday is about 2 in . thick, and is nearly as tiexi
canised indiarabber.

New works will soon be erocted on a large ecale at Cambuslang, Scotland, for the manufactare of steel st Reay Ciomens-Marin process.
bematito ore of a superior quality has been found, and iatisfactory reporte are made dy the sarveyors.

the megitsh mechamo mitrboat yund.

Cabeariptiose to bo forwarded to the Editor, kt tbo 0moc, 31,
 \qquad
8s 1810

ANSWERS TO CORRESPONDENTS.

** All communications should be addrensed to the EDITOR of the EnGLIBR MECHANIC, 31, Tavistook-dtrest, Oovent Garden, W.C.

The following are the Inltials, dc, of letters to hand ap to Tuesday morniug, Hiay 7, and namoknowledged Wm. Whiteman-A. G. F. F.-J. B. Ward.-Eppsand Co. H. Hicks.-Wm. Bacennuud Broderip.-S. A. A. Sholl.H. Hicks.-Wm. Bacin.- Fied. Harrison.-E. A. Fiy.-A. Pamphrey.-G. G. Eussev.-C. H. Scott.-A Three Years' sabscriber.-Jolin Dutton--Smmuol Kempling.
-R. Rogerson. - A. B. Macdu wali-T. T. Greg.-The -R. Rogerbon.-A. B. Manclowall-T. T. Greg.-The Angustus Avamc.- R. A. Pructor.-N. R. B. -One at 2 - Wm. TOnkes.-T. T. Barkas.-Cantab, M. B.-H. B. E.

- Robert Morton.-J. W. Fenzell. - E. W. B.-W. and -Robert Morton.-J. W. Fonnell.-E.'W. S.-W. Rnd
 Gaines.-L. T.-J. H. Hiud -C. C. H. Wingtield-B.-
E. L. D. - Jooph Barwick-Emily. An Od Prectical Miner.-J. H. Bavage.-David Willianme.-Alfred.-J.
W. Fennell- E. Elinar. - Woodman. -W. B. N.-Arilhmer.-J. Rassell. - Youngster. - Valoan. -Dravidgon:-A Render.-Joln Waring.-Amatern.-
Dichard Lenton.-J. B. R.-J. H. Wikins.-Aspiring Prohessor.-Thetsmu.- A. Crippie.-Un Irlandais.-Phalanthropist.-Catolic.-J. B. Whitehead. Aspirant.
 Privis.-S. W. Burnhum.-American Mechanic.-F. Pi-Mathew Annig.-J. K. P.-Sanl Rymea.-A New Reador.-M. P. M. I. S.-Prentice- - M. Morgons.-R. S . James Largue. G. W. P.- Bed of Stona-Nicotine.-
M. R. B. Arle. Mine.-C. S. W. W. K. L-Improver. T. F. S. M. R. Fred. Harris. Thos. Tremayue. James King.-S. H. L - Kichard Holden.-An Euylish Mechanic.-A. C. Lowe.-S. H. Canl.-Sarah.-F.E.T. of All Trades.-A Well Wisher.-Anxious.-Osa.--Furniture Maker.-Lender of Brasg Band - Musical. -s. Taylor.-Thos. Sandeman.-F. E. -W. Bull.-A Joiner.-J. B. Forbes -J. H. Valo-EE. E. W.-J. T. Litul.
Commanications which can only appear as advertiso-
ments to hand from D. 1 ves, Adver, Workman, F. G. W., ments to hand from D.lles, Advar, Workman,
J. H. Bavage, A Joiner, W. Ball, Calcalator.
Axatrot Gildie, E. J. R., W. L. Clarke, and \& W., are respootfully request ted to consult indioes of three last
J. A. G.- Your querr involves the Whole history of the
American Contiuent. How conalderato ${ }^{\text {There }}$ There are a American Contiuent. How conalderate There are a fow poople who appear to think that the Enalish
MxCrANIC was made exclusivaly for their espocial benett, and you are one of them.
Moscovado thanks "Cocoa-Nat" for the kind and courteous manner in which he gavoured him with informa. A Subscribre (Lewisham) and 3bd City are referred to R. M. Harci. - You appear to require all the minate details of Col. Stanart Wortley's dry-plate prooess. As We do not recollect them we have inserted your quory. rightly carbonato of ammonia, and the preservative is a gum and tannin formula.
Ong apficted.-Consult a modical man.
D. Y. Z., and Go-Ahead.-Write Lockwood and Co., Stationera' Hall-court, fur a catalogie.
W. F. R.-We know of nothing bat hair powder.

Ambote. - You cannot expect as to prive space for the
unimportant
details unimportant details youl want. Write Millikiu and
Lawley for their pauphlet, "Model Steam Engines and How to yako thou.
Ralpe Lowdon.- Wo searcely think your conjectares
concerning the Roman nume of the Trent deserve the apace they would occupy.
P. W. H. J.-Dra wing to accompnny reply 11656 (Boiler
for Smail Stea nboat) is misladd, or was not seat. Whil for Small stea nbo
RODRZ.-Inoxpensivo; adrantage nominal; mast be H. C.-The illness of your birds is doubtleas due to the cause mentionod, und no remedy will bo thoruaghly
effectach sh rt of substituting tinned wire for the corroded copper wiros at presout in the cage.
Paddington. - We believo it has been decided that a person muy not allur his nucient lights without onbe an eulargemont or it crjase. In such case tho owner af tho djaceut property may ontirely obstrnot
ownem antil they are reduced to the oribiaal form and them natil they are reduce to the origiaal orm gud
number, but no longer. Ancient lights cannot, howevtr, be obstructed merely because the owner has
opened new oues, but unly where in obstructing new liskhts, he unavoidithy obstructs the ancient oues nsiso. a book on the sublect Las ben pablished by Mr.
Homersham Cox, but furget thj name of the pablisher. H. Bract.-What do you want to know? Tho idea of the caliper compass referred to is, of oourse, foun t.
on the fact that tho circumference of a circle is 3 I! times that of its diameter.

Tribaraphist.-Culley's " Handbook of Practical Telegraphy,' 14a., Longmans and čo.
P. K. T.-Zine tubing woald be better and much oherper. L. R. L-Write to the Commissionera for the Reduction of the National Debt, Old Jurry, or procare proepeotues from half a dozen of the best insuranoe companies, Your distilling apparatus is identical in
principle eand form with eeveral that have appesred principle and fo
M. O.-We Will finatrate the contrivance if you will send a fuller description. A sketch showing the action of the maohinery in the central pedestal would be desirablo.
C. J. Smath-Glass-making was fally described in the Englise Mechanic about two years and a hell since T. N. B., Boiler Freder, and M. A. send queries which can only appear in the advertisement columns.
t. G. Cunexa.-Please send drawing.
J.H. Hownss, of Cambridge, sayg, in answer to our note a week or two since, he has invented a successfal haircutting machine.
B. - You don't attompt to answer "E.L.G.", but criticise his involved sentences in still more involved sentences. If "R. I. G." is diffrase, he says something worth usteaing to; you are diffuse and say nothing.
J. Raz-You are not the first who has complained that our print is ton small for most of our readers. We may posibly make a slight modification at the commenoement of a new volume.
J. Ricbardeos.-Consalt last few numbers.
A. Hilderbampt, Hon. Sec. of the Manchester English Mecbanics' Society, has sent us a report of the lay year's proceediogs of the society, inclading a list of censed, Locluding "Heating Sarfaces and Firegrate Area of Steam Boilers," "The Lever," "The Pen-
dulum," "Balanoing of Locnmotives," "Railway Wheels anlum, "Balancing of Locnmotives," Railway Wheels and
tua," "Incrastation of Steam Boilers," \&oc. But what practical good can be realisod by our readers by merely recording the names of the subjects discussed? Oar readers would, no doubt, be glad to know the salient points of the discusston, which might lead to a still deoper and wider discussion is onr columns. The ormation of English Mechanic Socielies in Edin arvantage to looal mambers, bat what they have gained in some infances our readers have lost, as the prominent members, or some of them. who used to pive the scores of thousands of EnGLIBE MBCHANIC renders the benefit of their experience now contine their teachings to local limited societies. So a morement which was at one time hailed with satisfaction bas nut proved an unmixed blessing. We are in favour of the largest amount of knowledge to the largest namber of per. Bons. Though we oannot ind room for a ary rocord
of names and sabjects of papers read, we should be clad at all times to give the essence of anch papers and discussions.

THE DNVENTOR

apphonalians for latters patent dunina the

 WREIX EHDIXG APRIL 80, 1872.1909 L. T. Orousast, Paris, for tmprovements to infants' cradies
 apon.

191 W. H. Davey, Ialington, for improvements in wab
1312 N. Thomas. Glangow, for improvemonts in beatlog feed
water anppliod to steam boilers.
${ }^{12123}$ W. . A. Lettle. The Grove, Hammeramith, for Improvements un puler for colographic and othor parposes.
1214 J. Kito, Fanxhall, tor a now or improved apparatas for
 \triangle commanication.
 anthroetic, and other selences anich as eberiastry and anatomy) 1217 J . B . Oatridico. Lowisham, Kent, for im rovements in oquillbriam allde valves.
 1919 A. Pangot, Letcester, for formorovinonta in apparatuas for
 bottom plates and bearers for puddling and balung furnaceas.
1291
W . Bronghton, Derby , or fommuntenting between rall way of ruilway truins
 nd other simillar kinds of seeds.
he manfact Ollbee, Soath-street. Fingbary, for tmprovements in
122 E. Slmcor and W. Banke, Blrmingham, for tor
en box Irons.
 133s G. Wesinghouso, Jun., southampton-butlining, for im.
 brukes worked by other meens.
1207 T. Miliniton, Strattord, for an tmprnved method of necuring greater ailhesion in rallway locomotivo enginos.
1228 R. Maymard, Whittlestord, Cambridge, for an improvement

1281 W. Cnningham. Dnodee. Ror improvements in anipptng, in the machinery or apparatus cuploject the feter.

1283 I. Pochet and L. Lemoine, Paris, for an fmprovad ayatom
 Strand, Hor improvenents in root lacopa for ruilway carrianes.
 1235 W. C. Holmes, Gracecharch-street, City, and W. Hollins. gas, and in the appuratus employed therein.
192s J. K. Coulft. Cartin. ©
1887 M. Cendie, GLasgow, lot lmprovemaots in zowing machine
1988 F. Darham and H. E. Hupton, Lowestoft, saffolk, far an tmproved lodicationg or checking apparatuis.
1249 B. Naylor and T. Gelderd, Leodi, for jmprovementa in
machinery or apparatag for tilting barrela, caske, or other recop
1240 H Gabn swoden, tor tmprovamente in ocemetces carlid
"123n H. Gaina, 8weden, zor improvemants in coamotice callod
1841 J. Batn, Liverpool, for improvements in secrow-drivect. A

 1243 S. W. Rith, Chenies.atreot. Totionhan
provemunts in tho munufucture of sulphates.
1344 W. R. Lake, quathampton-bululings, for improsemants in team enginos and narts connected therewtith, flicfly denignod for
tho propulion of street velicles. A communication.
1254, A. M. Clark, Cluncery lane, Yor improvemonts in Arying
tre same. A c tive engine . Ond carriages and permanemat way for the anue. communication.

 ture of packing materinl.
1294 E. Gardner, West Strans, for improvouents in lamps to 1250 C. P. Whateley, Blrminghum, tor improvements in rallway. 1281. M. Mnyer and A. V. D. Deshayes, Paris, for improvemonts in
embrotdering muchines. 1ns3 G. Cazes. Puriq, for improved machinery for serewing boot

 .electric muchiner. A coumunication.
1255 W. E. Gedge. Wallington. streot. Strnnd, for an tmprovad ${ }^{1256}$ C. Powis, Grachecharch-street. City, for improvemente in 1257 W. R. Lako, Southnmpton bullding for Improved procense
 comununication.
1258 M. Benoon. Sonthamnton-bulldingn, for Improvements in
elatic hoso btockinga for horsea. \triangle coumuinication.
 Hona in the length of metalut wires cmployed in working aignala
on rallwayb, dc., whon canaed by atmonpheric tempurature.
 $12 n 1$ 8. Chandiar. sen., S. Chandifr, Jun. and J. Chandier,
southwark, tor improvenionts in apparatuis ior cleaning water:

 and which thalso applicable to seneral domestic ane. \triangle conurnuni
enation.

 provemente in the procest of contertins wood
matoriuls into pulp, ald in apparatus therefore.
 merged parts of ships or vessols. A coummaniostion.
 12%. J. Yonnz, Kelly, Renfrewshire, for improvements in the
120.9 Re Cle wo. Dundne, for improvements in wearing the end
borders of rugs and mats. in 1870 W. M. Brown, Southampiton-builidings, for improvements 1271 J. S. Richard, Southampton bnilding, for finprovemente

cases. AL conmunitioation. for an improved constraction of paoking

 ronds.

 197n T. B Fenhy Blaminghan, for fimprvoments to apparatus 1277, S. G. Soame. Naruhnm. Vortolk, for Improvements in
olevators for raising and stucking huy, corn, atraw, and other 1278 B. McVes. Jarrow-on-Tsno, for improvemente in etcan 1979 H. Hightnn. Patnes. for fmprovemanta in submarine or
other cailes for the con resunce of clectricity. 1250 E. S. Lonos. Now York. U.S. For improved means of con
centruting Light and

 12 A C Wonliev, Mark-lune, ior improvements in the conatro

 paterts bealed.
23 sis E. P. Barille, for improvemonta in tool holderr:

 saof J. Roberts, for improvementa in the construotlon of doastin therowith
 therelar. drrculntion of hot witer for heating hot-houmon und other dimliar aracturen.
2923 A. P. Vaenurd, for improraments in treating liquid cewage
 bippt by atoom power, partily applitabito to the ulide ralvos and
${ }^{2271}$ 2brice. T. Brigga, for improvements in watorprool and ochec 2980 J. C. R. Okes, for Improvements in workng rteam-enginee 3051 R. Wolatenholmo, H. Bucking. and R W. Drectios, for tmMo9 C D. Abol, iot tmproramente in rotary oe oentriug

8ง29)

workfur and Tylor, for improvements in apparatus for rogulating the

 convoctod therowith
sssio G. Ireland, for mprovements in the manalacture of huitves nd fork.
s4s F. Clinch. for improvements applicablo to the feet af herree
19 W. Halen. for tmprovementa in motallic hedstesds. cote
 mente are also applianble to the manufacture of metallic raibing for

保 4 an regulators for machinery.
492 E. T. Truman, for improvements in envering wire or other
mitable condinctors with insuating materials, and in machinery mpluyed in the covering procoss. Roa W. Lanenstor and J. Bolloigh, for improvemanta in 710 G. T. Bouzfold, for improvemonts in eewing machirce. 717 W. R. Lake, for jmprovements in machines tor cleaniay 789 W. R. Iakco, for improvoments in governors for staam 782 A. Johneon, for fomprovements in maohines for rolling metal 733 S. H. Hodgen. for improvements in machinory for trimmiog
or burnidhing the soles or both soles und heels of buots or thoes. ${ }^{\text {2"5n E. E. Neale, for Improved mothode of governing and }}$ arresting the motions of sliding and of hinged or aninging
windows, doars, and objects, and of rotating shaftes, sods, band
objects. 2063. J. Robinson and J. smith, for Improvements in extting
wood into whavings or shrealif for the manufacture of paper, and in 2944 conuests therewith. gote n. Townsind and A. Rollasme, for Improvements in the rentment of mat riulan nilifibries, rendorin: gush matorials an gencral and surgical purposes. 2001 \&. Oshnrn, for improvements
polishing reaper and mower knives.
3003 E. W. Barnsley and T. Barnules. for improvements in
gutters and down pipes for oonducting watar from the roots of e purposes. 8981 J. 8. Crabber rnd W. Mellor, for improvemonts in machinery
or apparatas for rigking or doubling, andehing, and cuftling textilo
fubricg. gocs A. Mackillan, for improvements in britona, and in faster
 so71 J. Mitchatl and J. H. Mitcholl, for a now or improved ap
parat for uthlying tho waste hect crom tenm boilar and other urnuces, thareby economiting fuat.
sios J. Birt. Jun. and A. W. Birt. for improvementa in He-pre
erving mattre sis3
J. H. Johnson, for inipprovements in combined apperatas m?es
slans.
J. Crousley, for improvements in kilas lor annealing plate gias A. Yall, far improvementa in invalld beda and coaches, ans
in fitin :a here or. 892 d C. Toluailhn, for a new ar improved process for preventing
incrustation in sin
837* A. Barrett, fir improvementa in ernqriet ytands, applieable Bsoy J. H. Johnson, for improvements in the faws of machtaery
or apuaratus for breaking stones and ot her hard substances.

 therewith. Carter, for improvements in what are known ω^{-}dry eurth" closets.
500
J. Rice, for
, in improvements in the construction af aregrates.

 foundations of buildings nud in appuratas emplayed therein.
711 F. Cooper, for funprovomenta in unwhing velvoia and

\square
The "Butherng News," No. 904, May 8, Contarss :-

Ohte efnglish thterhanit
 A8D

WORLD OF SCIENCE AND ART.

FRIDAY, MAY 17, 1872.

ABTIOLES.

DORMOY'S REVOLVING RABBLE FOR

 PUDDLING.\mathbf{A}^{N}NYTHING whioh in the smallest degree affects the production or the manipulation of commercial iron must necessarily be of interest to large numbers of our countrymen, and especially to English Mechanics. The cheap and rapid extraction of that invaluable metal from its ore, if not of the first, is at least of very
is Dormoy's revolving rabble, a brief account of which, by Mr. F. A. Paget, C.E., will be found in the Englise Mechasic, p. 35, No. 366. It will be seen from the accompanying illustration that the principle of M. Dormoy's invention consists in the application of steam-power for operating the rabble while the paddler simply guides it amongst the molten metal. The assistance which this simple contrivance affords to the puddler, and its value from an economical point of view to the ironmaster, formed the subject of a paper read before the Society of Arts last week by Mr. Paget. From this we learn that there are more than 7,700 puddling furnaces in Great Britain, representing an invested capital of more than $£ 1,000,000$. I wf take 6,500 of these as actually in work, each making about 700 tons in the course of the year, the value of the iron produced would amount in round numbers to about $£ 34,000,000$. These furnaces require no fewer than 26,000 men, the majority of whom die before reaching 50, whilst the remainder are incapable of the requisite severe labour on attaining that age. For each ton of puddled bar produced by what may yet be termed the present
the time thas occupied is taken up by the first stage, the ordinary reverberatory furnace not being a very rapid or economical melting apparatus; and the question will doabtless be asked why the metal is not run into the puddling bed direct from the blast farnace. Methods of doing this have been patented and tried more than once; but hitherto they have resulted in failare, owing to the insbility of unaided muscular power to puddle out the largely increased quantity of oarbon. But as a matter of fact the melting of the pig in the reverberatory furnace, though costly as regards fuel, is a boon to the paddler, for during the thirty or more minutes occupied by this part of the process his work is comparatively of a light nature, and an opportunity is afforded for recovery from the exhausting exertion required during the latter stages of the previous "heat." Bat with M. Dormoy's rabble, a saving of fuel could doubtless be effected by melting the cast iron in a cupola, for acoording to a calculation made by Mr. Paget a charge capable of yielding 4001b. of puddled bar requires about 177 lb . of coal merely to melt it in the reverberatory furnace, while 501b. of coke would

COMMON STAFFORDSHIRE FURNACE
great importance to the prosperity of this country : hence any method of facilitating and consequently cheapening its production is now listened to with attention, and readily adopted if it withstands the test of practice. As evidence of this we can point to the way in which the Iron and Steel Institute investigated the merit of Danks's mechanical puddler, which we described on p. 579 of our last volume, and to the efforts of other inventors to accomplish equally economical resalts without rendering it necessary to make so radieal a change as the use of Mr. Danks's ingenious apparatus implies. We have already illustrated the result of one of these efforts, which, following in the traok of Mr. Danks, seeks to utilise a portion of the ordinary frarnace, while adopting the rotary principle of the mechanical puddler (see p. 83 antc), and we are now sbout to deecribe an applianoe which oan be used with the ordinary furnaco, and whioh, it is maid, whilst increasing the yiold of puddled bar and reducing the expenditure of fuel, relieves the workman almost entiraly of the heavier portion of his arduous and exhausting labour. This applianco
process, at least one ton of cools is required; and if one-fourth of this quantity oan be saved by the employment of the revolving rabble an important economy will be effected. The paduling process consists of four stages-viz., melting, boiling, "coming to nature," and balling. In the first, the pig iron, together with a sufficient quantity of oxide of iron, is placed on the previously fettled farnace bed, and as it softens is broken ap by the puddler and mixed with the oinder. After about forty minutes the metal reaches the boiling stage, when it has to be violently agitated by the rabble of the puddler, which requires a great exertion of strength, and is, of course, carried on in a "warm" atmosphere, and with the intense glare of the furnace burning the face and eyes. The iron now thickens and becomes of a stiff pasty consistence, "comes to nature." It is worked in this state from side to side of the furnace, and is separated into pieces, after which it is collected into balls and removed to the hammer or the squeezer-one hest, as it is oslled, being thus completed. The whole operation lasts for about an hour and a half. It will be observed that nearly one-half of
achieve a similar result in the capola To Mr. E. Hatchinion, of the Skerne Iron-works, belongs the honour of being the first to successfully experiment with a revolving rabble ; but as the results were never pablished, and the use of his apparatus was discontinued within a few months, the idea of a revolving rabble and its successful adaptation to the ordinary furnace may fairly be considered as originated by M. Dormoy. It is a sine-quâ-non that any machinery for the purpose of puddling must be not only simple but free from any tendency to get ont of order when subjected to the roughest and most careless treatment. The annexed figure will show how far the inventor has succeeded in meeting these requirements. The rabble is a bar 2 tin. in diametar and weighing about 80 lb . ; one end is loosely jointed to a sheave turning on a pin held in the hand of the paddler. This pin is gencrally covered with gasketting secured in a leather or rabber aheath to prevent any jarring action to the hand of the workman. An ordinary belt, driven by a broad palley on shafting about six feet above the furnace, rotates the rabble at any deaired apeed, and while
supporting part of the weight acts as a nuiversal joint and a friction brake. The belt, of course, readily adapts itself to the variety of positions tuken by the rabble in different parts of the furs:ace and to the progressive changes in the metal, dimination of speed being obtained by permitting "slip" through lifting the weight of the rabble off the strap. while any nnusual resistance is ovarcome by keeping the belt tight and so atilising all the power it gives. The tool is ran at the high speed of from 300 to 800 revolations per minate for white pig, and from 800 to 1,000 for gray, which is found to yield the requisite meohanical energy, the end of one form of rabble, which is $4 \frac{1}{2}$. in diameter, having a surface speed of 600 ft . a minate when revolving at the rate of 500 revolations. The tool when too hot is removed by means of a light chain and hook and laid on low trestles, the substitution of a fresh rabble occupying altogether bat thirty seconds. The power required has been indicated at from a quarter to a half-horse per hour for each farnace, the draught being greatest towards the end of the heat. This revolving rabble has been used in France, Hungary, aud Styria, and the experience of its durability thus gained has shown that the
 wich, homeree, if properis cared foe, labte abont four months, mbilit, in the event of its breaking, the puddler can; of course, continne his operations in the ordinary menner. This difficulty is generally met in praptice by providing an extra belt, which our be adjusted ima-vory shert time: Itro dependently of the relief this revolving rabblo affords the puddler, there are other advantages attached to its use worthy of notice. Thas from the greater command over the melting metal there is less liability of burning, while by means of the power of steam the iron can be worked after it has come to nature, the rabble working like a drill through the tough pasty mass, and facilitating the after operation of kneading under the hammer. The saring in time, and consequently of fael, is put at 25 per cent., for charges of 800 lb . to $1,000 \mathrm{lb}$. of gray iron are worked by the rabble in twenty to thirty minutes, while white pig requires only from ten to fifteen. No pia, how. ever much carbaretted, has, it is said, being able to withstand its action, and soft, fibrous iron, finegrained iron, or steel, caan be produced at the will of the paddler.
It is well known that we have vast quantities of pig iron which remains in that state from the want of puddlers to work it; in fact, the production of malleable iron conld be increased by more than one-fourth if the requisite number of hands were forthcoming to do the work. It is claimed that by naing this rabble the amount of iron now produced in a year woald ocoupy but nine months, while the remaining three conti be utilised as a reliaf for the men, or in produsing more iron, as might be found advisable. . But it is also claimed that independently of thase advantages the employment of the revolving relble would give a better quality of iron andu aseless number of rainous "cobbles" or "wastere" while it would also facilitate the wontiog up of very grsy and inferior kinds: of. pig without any "fined metal," and woutd diminish the lose by "mill scale" at the rolls All these advantages would follow itia applioation: to the ordinary
furnace, but the properspothod of nsing the tool furnsce, bat the propermathod of nsing the tool
to obtain the greatest renaits would be to melt the metal in a cupela, to enlarge the furnece, increase the charge, and to have two doors; but this would, of course, cause alteration, which it is the principal purpose of this invention to avoid. The adoption of the revolving rabble involves no alteration whatever in the present furnaces, and it can be fixed in a couple of hours. During the discasaion which followed the reading of Mr . Paget's paper, the chairman, Mr. Jones, of Middlesbrough, spoke very favourably of the invention, and pointed out its atility to those ironmasters whose trade did not require the metal in masses so large as those turned out by the Danks furnace. Mr. Jeavons, of the Millwall Ironworke, said that he had practically tested the invention, and would be pleased to show it to any person interested. It is in constant use at his works, and has given great satisfaction. As an instance of the facility with which the puddling process can be carried out by means of M. Dormoy's rabhle, we may mention that at a recent trial at Mr. Jeavons's works an elderly ntloman in overceat and spectacles bronght a avy charge to "natnre" in about a quarter of hoar, working the rabble for most of the time La one hand. It may be hoped, therefore, with
the filip thus given to invention of late years in this direction, that while our iron manofacture is improved the paddlers will find some relief from their arduous and killing labour.

Lessons on Chemistry.*

By Selno R. Bottore.

(Late of the Istituto Bellino, Novara, Italy.) (Continued from p. 112)

Section 7b.-Compounds of Solpher with

 Oxraxn.SULPHUR anites with oxygen in eight different proportions : of the resulting compounds only two have as yet been obtained in the free, or ancombined, state; the remainder being kuown only in the state of combination with the elements of water.
A. Selpeur Monoxide. ${ }^{1}$ Symbol : $\mathrm{S}^{\prime \prime} \mathrm{O}^{\prime \prime}$ (?). Molecular weight : 48 (?).
157.-This bedy has not been isolsted. It may be considered as the anhydride of the following compound:-
A2. Morotmovocs Acid. ${ }^{2}$ Symbol: $\mathrm{H}_{2}{ }^{\prime} \mathrm{B}^{\prime \prime} \mathrm{O}_{9}{ }^{\prime \prime}$. Molecular weight : 66.
158.- Propprties.-This acid exists as a lemonyellow flnid, haring a peculiar smell, somewhat resembling that of slightly-tainted beef. Its bleaching properties are very marked, and it might bo used to great adveatagofor the whitening of wool, which: is se tenacious of its colouring matter. Uuliks most: of the members of the "thionic" grono of sulphar acids, it does not appesr to dissolvo the so-called insoluble silver componnds, bat is instantly decomposed, with the formation of silver sulphide. It is extremely prone to decomposition at temperatures above 32° Fahr., sulphuric acid being formed, and the liquid becoming tarbid owing to the deposition of sulphar in a state of extreme division. The results of a few experiments conducted by the author tend to show that besides sulpharic acid and sulphur, water, sulpharetted hydrogen, and oxygen are also evolved during its decomposition. The annexed equation will give an idea of the probable mode in which these ohanges take place :-

$\mathrm{H}_{12} \mathrm{~S}_{6} \mathrm{O}_{12} \quad \mathrm{H}_{12} \mathrm{~S}_{6} \mathrm{O}_{18}$
The above represents the resalts of the deooms position when air is excluded, but if air be admitted no hydrocen monosulphide appeavelto be formed. In all probability oxygen is absonved from the atmosphere, and saiphurio acid formed instead. Sulphar, however; is invarinhy ddt posited.
159.-Preparation.-By the metion of (ggamem lated zinc on a concentrated salation of sulphtor dioxide, as the following equation illustratea:-
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}=\mathrm{ZnSO}_{8}+\mathrm{H}_{2} \mathrm{SO}_{4}$
B. Sulifici Dioxine. Synomym: Sulphanous $a n l$
64.
64.
160.-Properties.-Pare salphnr dioxide is' a transparent colourlcss gas, possessed of a most paugent and suffocating smell, well known as that of burning sulpiur. Its specific gravity is 2.2464 (air 1.000) ; or, in other words, it is 32 times heavier than an equal volume of hydrogen. It is incombustible, and instantly extinguishes a lighted taper immersed in it. Sulphar dioxide is one of the most easily condensible gases; a temperature of abont $+14^{\circ}$ Fabr. being safflecient to reduce it to the form of a colourless liquid, at ordinary pressure; the satne resalt may be obtained by subjecting the gas to a pressure of abont two atmospheres. ${ }^{4}$ The enecitic gravity of the liquid is $1 \cdot 45$. When this liqnid is exposed to a temperatare of - 105° Fahr. it freezes to an ice-like mass. - The right of tronslation and reproduction is reserved.

1 Mnunthtonnas anhydride. Aa sulphar forms so many oxygen compmanie, it is found convenient to designate
some by tho Greek name of sulphar-viz., Guioo, theion. 2 Hydropulpharsus noid.
8 Sulpharous acid. Sulpharyl.

- The pressure of oneatmosphere is ronghly estimated at 15ll. to the square inch, henco imo atmospheres equad
3olb. to the inch.
with such rapidity as to reduce the temperature of bodies in vioinity, to -76° Fahr. (Soe paragraph 151.) When perfectly free from water, sulphar dioxide neither bleaches nor reddens blee litmus paper; but the presence of water immediately determines the production of both these effects. For this reason salphar dioxide is largely used in the arts as a blewhing agent for straw, silk, wool, and other bodies which would be injured by chlorine. It is worthy of remark, homever, that the colours bleeahed by sulphrious anhydride are not destroyed, but only masked; and may, in most cases, be cansed to resppear, by immersing the bleached substance either in hoiling water or in a dilute solution of potash or soda Litmas paper, which has been bleached by salphurous anhydride, is roddened by immersion in dilnte sulpharic acid. Sulphurous anhydride possesses very marked antiseptic properties, and may be used for the preservation of mast, se. It has been proved, by several well-conduoted experiments, that beef, \&c., which has been exposed for a few days to the action of this gas may be kept for several months without deterioration or loss of flavour. Salphar dioxide is also much used as a powerfal disinfectant.
Sutphus dioxide is very solable in water: the amount-sbsorbed variss with the temperature. ${ }^{6}$ Thus at 38° Fahy. 1 vol of water absorbs $68 \cdot 861$ rols. of this gas ; at 50^{2} the amount absorbed is only 51.38 vols. ; while at 68° only 36.22 vols. are retained. If the water be boiling the gas is not absorbed at all.
161.-Besides its practical importance, sulphar dioxide possesses many points of theoretic interest, for it may be regarded as the basis of most of the oxy-sulphar compounds. It is usaal, when speaking of it in this theoretic aspect, to designate it by the name of sulphuryl. We will retarn to this view when treating of the constitution of the oxy-acids of sulphur. According to whethar we consider sulphur divalent, quadrivalent, or hexavalent, so may we represent the molecular constitution of this body as being either :-

Divalent Quadrivalent or Hexavalent.
162.-Preparation.-Sulphar dioxide may be formed by the direct usion of its constituents, aided by heat: hence, when we brin sulphar in air or oxygen, this body is produced. ${ }^{6}$

The methods by which it is prepared for the uses of the arts vary according to the parposes to which it is destined.

Whes: sulphas dioride is nsed for bleaching purposes it is genomily obtained by malting a quantity iof isalphtre iman,eartheaware reoipient. The sulphar is then ignited, and the oontaining vessel placed in a large wooden chest, in which the stratif son to be bleaphed, is suspended. The ohestis. comed wich sacking to prevent the

Font the preppentinnc of toalph hurio acid, salphur dioxide is oftan produticed by burning iron prrites in a carrent ofiair. The sulphive contained in the iron pyrites uoombines with the onygen of the air, producing thereby the body in quantion.
Sulphar dibide may also be prepamed by acting on carbon with strong salphuric said, aided by heat. Sawduath may be substituted for carbon; but in either case the product is contaminated by the presence of carbon dioxide, which is also formed. The following equation serves to illustrate the mode in which the changes take place :-

$$
\mathrm{C}^{\prime \prime \prime \prime}+2 \mathrm{H}_{2}^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}=2 \mathrm{H}_{2}^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{C}^{\prime \prime \prime} \mathrm{O}_{2}^{\prime \prime}+2 \mathrm{~S}^{\prime \prime} \mathrm{O}_{2}^{\prime \prime} \mathrm{I}
$$

Should the sulphur dioxide thas produced be required for parposes in whioh the presence of carbon dioxide wonld be injnrions, this body may be removed by passing the mixed gases throngh ioe-cold water, which dissolves sulphar dioxide freely, while it absorbs very little of the carbon dioxide. By placing the solution thus prodaced in a retort, and applying heat, the gas is again evolved, and may be collected over warm water in the usual mode.

8 This is the case with most gases.
6 It would appear from the resosrches of Williamson, that when the temperature at which combustion taikes
place is hich. eulphar trioxida is formed. It is the opinion of the anthor that sulphar dioxide is nrodnced in tho first instance, and that thig hodr at the higb temperature absorbs another atom of osygen to form the trioxide.
7 As anwdust acts by virtue of the carbon it containg, no note is taken of the other constituents.

Where perfeot parity is a desideratum it is found better to decompose the sulphario acid by means of eopper or mercary. The reaction may be expressed by the following equation:-
$\mathrm{Cu}^{\prime \prime}+2 \mathrm{H}_{3}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}=\mathrm{Ca}^{\prime \prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}+2 \mathrm{H}_{3}{ }^{\prime} \mathrm{O}^{\prime \prime}+\mathrm{S}^{\prime \prime} \mathrm{O}_{2}{ }^{\prime \prime}$.
The gas evolved, after being passed through some desiccating body to free it from moistare, may be collected in the usual mude, over mercury; as water dissolves it too freely to admit of its use. 82. Sciphozovs Acid. Synonym: Hydragen sulphite. ${ }^{\mathrm{B}}$ Symbol: $\mathrm{H}_{3}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{8}^{\prime \prime}$. Combining weight: 82.
163. - It is presumed that this body is formed When sulphur dioxide is ghsorbed by water; for although it has not been found possible to eliminate the excess of water, yet the resulting solution is found to possess all the essential properties of a true aoid. The concentrated solution of sulphur dioxide may be, therefore, considered as a solution of sudphurous acid in water; and the mode in which salphar diocide sots on water to produce sulpharous acid may be represented as follows:-

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}=\mathrm{H}_{2} \mathrm{SO}_{8}
$$

Sulphurons soid possosses mont of the properties of aulphar diaxide, with the addition of the power of combining with several metals with the alimination of its hydrogen, thas:-

$$
\mathrm{H}_{9} \mathrm{SO}_{3}+\mathrm{M}_{2}=\mathrm{M}_{2} \mathrm{SO}_{8}+\mathrm{H}_{2}
$$

It is an a ctive bleaching agent, and absorbs oxygen greedily. Hence it easily reduces (or deoxidises) many metallic oxides, in the following mode :-

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{3}=\mathrm{M}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} .
$$

Here the oxide is reduced to the metallio state while the sulphurous acid absorbs oxygen, and is converted into sulpharic acid. The same absorption of oxygen takes place when the aqueous solation is exposed to the action of the atmosphere, thns:-

$$
\mathrm{O}_{2}+2 \mathrm{H}_{2} 8 \mathrm{O}_{8}=2 \mathrm{H}_{2} 8 \mathrm{O}_{4}
$$

Exposed to a temperature of about $+40^{\circ}$ Fivr the solution of sulpheares acid yialds tamapacent crystals of a hyleateo contrining a definite
quantity of prater. The comperition of these crystals in :-

$\mathrm{H}_{2} \mathrm{SO}_{8}+14 \mathrm{H}_{9} \mathrm{O}$.

As mipharvas aoid coantains two stoms of. repleceabio hydrogen it is divelent-that is to may, that to saturate it it requives either two premonem atoms or one divalent drme.
For this reason the compounds which it is capable of forming with metals may be ranged under three heads-viz. : (1) Those in which both atoms of the hydrogen are replaced by two atoms of a monovalent metal, as illustrated by the annexed formula :-

$M_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}$.

(2) Those in which both atoms of hydrogen are replaced by one atom of a bivalent metal:-

$$
\mathrm{M}^{\prime \prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}
$$

(3) Those in which ouly one of the two replaceable atoms of hydrogen are replaced by one atom of a mozovalent metal, thas :-

$$
\begin{aligned}
& \left.\mathbf{H}^{\prime}\right\} S^{\prime \prime} \mathrm{O}_{3^{\prime \prime}} .
\end{aligned}
$$

Componnds belonging to the two firat classes are designated sulphites; those belonging to the last division are called hydrogen sulphites. When acted on by stronger acids all three groups give ap their sulpharous acid. In solation the salphites absorb oxygen readily, being thereby converted into sulphates.
c. Sulpior Trioxide. Synonym : Sulphuric anhydride. ${ }^{10}$ Symbol: $\mathrm{S}^{\prime \prime} \mathrm{O}_{\mathrm{s}}{ }^{\prime \prime}$. Molecular weight: 80.
164.-Properties.-Sulphar trioxide is a white solid, crystallising in fine filamentons prismatic crystals of a silky lustre, mach resembling asbestos in appearance. The specifio gravity of the crystals is $1 \cdot 9546$. These filamentous crystals are very tough and difficult to cut. At a temperature of about 66° Fahr. they melt, and on increasing the heat, boil, when the temperature reaches 114° Fahr., giving off colourless transparent vapours if no moisture be present. In the presence of damp air dense white suffocating fumes arise. An allotropic modification of sulphar trioxide exista, Whiah differs principally from the one just

[^6]desoribed, insomuch as the orystals are acicular and the melting point considerably higher-viz., 122° Fahr. Sulphur trioxide does not redden litmus paper, and (unless moisture be present) may be handled with impunity. In the presence of water it aets as a most powerfal carrosive agent. Thrown into water sulphuric anhydride combines with it with guch violenee as to produce great heat, and sometimes light, accompanied by a hissing soand, similar to that produced on quasching red-hot iron. Exposed to the atmosphere, sulphurio anhydride rapilly absorbs maistare, and beoomes liquid, or deliquesces. The produet of the combination of sulphario anhydride with water is sulphuric acid.

Sulphur trioxide is docomposed when its vapour is passed through a red-hot porcelain or platinum tabe, being resolved into two volumes of sulphur dioxide, and one volume of oxygen. Hence sulphar trioxide may be oonveniently viewed as an oxide of smiphuryl (see 161), and we aen expeess this decomposition in the following mode: $2 \mathrm{~S}^{\circ} \mathrm{O}_{2}{ }^{\prime \prime} \mathrm{O}^{\prime \prime}=2 \mathrm{~S}^{\prime \prime} \mathrm{O}_{2}{ }^{\prime \prime},+\mathrm{O}_{2}{ }^{\prime \prime}$.
165.-Preppabation.-According to Williamson, culphar trioxide may be formed by the direct vaion of its elements, aided by a high temperature. It would appear that by borning sulphour in oxjgen at very high temperatures the sulphur dioxide first formed combines with a third atom of oxygen, thas :-

$$
\mathrm{SO}_{2}+\mathrm{O}=\mathrm{SO}_{8}
$$

Bat this method is not the one usually followed. Salpharic anhydride may be easily prepared by distilling, at a gentle heat, Nordhausen salpharic acid-a brown liquid which consists essentially of sulpharic anhydride mixed with sulphuric acid ; when the sulphuric anhydride passes over, and may be collected in a dry, well-oooled receiver while the sulphuric acid remains in the retort as the adjoined equation illastrates:-

$$
\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}, \mathrm{B}^{\prime \prime} \mathrm{O}_{3}^{\prime \prime}=\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}+\mathrm{S}^{\prime \prime} \mathrm{O}_{3}^{\prime \prime} .
$$

Or common sulphuric acid may be distilled along vith phosphoric anhydride when this latter body coises mpon the elements of water contained in the endphurio acid, liberating the sulphar triorils, which may be oollected as beforc. The

$$
\mathrm{P}_{2} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{HPO}_{2}+8 O_{5}
$$

Anether mode of propering this body is by beating a bedy aclled hydrogen sodium sutphete in a glaes retort. The composition of this hydragen sodiam sulphate is :-

$$
\left.\begin{array}{l}
\mathbf{N a}^{\prime} \\
\mathrm{H}^{\prime}
\end{array}\right\} \stackrel{"}{\mathbf{S O}_{4}}
$$

On being heated, it loses hydrogen and oxygen in the proportions to form water; and a body, resembling in composition Nordhansen sulphario acid (in which the hydrogen is replaced by sodium), remains behind, as may be gathered from the following equation :-

$$
\left.2\left(\begin{array}{l}
\mathrm{Na}^{\prime} \\
\mathrm{H}^{\prime}
\end{array}\right\} \stackrel{\prime \prime}{\mathrm{SO}_{4}}\right)=\mathrm{Na}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime} \cdot \mathrm{Sn}_{3}^{\prime \prime}+\mathrm{H}_{2} \mathrm{O}
$$

If this body be further heated, it breaks up into sodiam sulphate and sulphur trioxide, thas :-

$$
\mathrm{Na}_{2}^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{1} \prime \mathrm{~S}^{\prime \prime} \mathrm{O}_{3}^{\prime \prime}=\mathrm{N} \mathrm{a}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{6}^{\prime \prime}+\mathrm{S}^{\prime \prime} \mathrm{O}_{3}^{\prime \prime}
$$

A NEW PHOTOMETER.

$\mathrm{H}^{\mathrm{O}} \mathrm{OR}$ making risible to a large audience small variations in temperature, a thermometer containing a saturated solntion of iodine in bisulphide of carbon is well suited, on acoount of the high oo-efticient of expanaion of that liquid. Comparing the co-efficient of this solution with that of bisulphide of carbon, M. Provenzali found that under the action of light the former exceeded the latter by $0 \cdot 20$, and sometimes even 0.25 ; Whereas, in darkness, the two co-efficients were almost equal ; and a thermometer, having a solution of iodine in bisulphide of carbon, rose or fell on passing from darkness to light, or vice versa, while a mercury thermometer was stationary.

This phenomenon, he says, is not so extraordinary as it would seem at first sight. The saturated solution referred to is a body with very feeble reflective power, perfectly opaque, and andergoing no ohemical change from the achion of light. the mercary, are absorbed by the solution, and transformed into heat, which incressen the temperature and volume. Hence thermometers with a solation of iodise in bisnlphide of carbon, may be utilised for photometry. The following is be utilised for photometry. The following is
the mode adopted: "Two thermometers, one
meroury, and the other oontaining the solation, are placed near each other on a table. The graduation of the mercury thermometer is as usual, except that the soale is divided into fifths of a degree. The graduation of the thermometer with iodine solution is such that the two thermometers agree in thair indications in the dark. Under the infuence of light, on the other hand, the thermo meter with iodine solution rises above the other in proportion to the intensity of the light.
After the beautifal experiments in which Tyndall separated obscure heat from light by means of opaque solutions of iodine in bisulphide of oarbon, there is no reason to think that the obsoure rays will have a marked infinence on the relative indications of the two thermometers forming the photometer. Nevertheless, in order to know better the diathermancy of the opsque iodine solation, I inclosed two good mercary thermometers in two equal glass taben; the bulb of one remained nooovered while that of the other was plunged in a saturated solation of iodine in bissulphide of cerbon. So long an both ware in darkness, and exposed to radiation from obscure sources, they gave the mame indications; bat when brought into a somowhat strong light, the thermometer with its balb in the salution rose a little higher than the other, and the difference increased to a degree when the sunlight was sdmitted into the room. We may, then, believe that the diathermancy of the solation referred to axtends to all the obsoure rays, and therefore that the obecure rays cannot materially alter the indications of my photometer.
It is nccessary here to remark that the two thermometers should be made of the same kind of glass; for I found that a difference in the quality of this altered the relative indications of the thermometer.
Having exposed to the same scaree of obscure heat three thermometers of the iodine solution, and having bulbs of the same diameter, bat made from three differeant kinds of glam, the apparent variation in the liquid volumes as the numbers, 1, 1.9, 1.5. These differences are probably due to differences of diathermency in the glasa. Molloni observed that different kinds of glasa, theagh equally transpareat, did not absorb and tramarit ebocere heat in the same degrees. Moce reoenthy Tyalall, having made a plate of platinum incapiosceat by stamgly concentrating obscure rays with a lent, oheerved that a piece of window glass pleoed between the source of heat and the platioum eandibly enfeebled the incandescence, while with glass of a different quality, it was very littio anfeebled, and glass that was quite opaque hal less enfeebling effect than the window glass. It seems to me that even in meteorological ebecrvations, made with the aid of mercury thermemetars, the effect of diathermancy in the glase is not to be neglected.

I will now give the results of experiments made with this photementer on solar light, diffuse and direct, in the month of May. In the morning, before sunrise, the two thermometers showed nearly the same degree of temperature; they also did so about half an hour after sanset. At 8 o'clock in the morning, and in a room of the laboratory with open windowa, the mean difference of the two thermometers was $0 \cdot 2^{\circ}$; the greatest difference having been $0 \cdot 4^{\circ}$, when the sky was perfectly serene, and the smallest $0 \cdot 1^{\circ}$, when it was entirely covered with clouds. At 11 o'clock the mean difference was 0.3°, the greatest having been 0.5° when the sky was slightly nebaious, and the smullest $0 \cdot 1^{\circ}$, when it rained heavily. In open air, as was to be expected, I found the differences greater and more variable ; thus at 8 o'clock they had varied from 0.3° to 0.7°; and at 11 o'clook from 0.5° to 1°. At the time of the greatest difference the sky showed a number of cumuli strongly illominated, and at the time of the smallest it was very mach darkened by a thick cloud. The mean at 8 o'olook in the open air was 0.5 ; and at 11 o'alock 0.7°. On carrying the photometer into the open air I observed several times a somewhat curious phenomenon. The two liquids moved in opposite directions, the mercary falling, and the iodine solution rising. The reason of this was, that in the open air the temperature was somewhat lower, while the intensity of the light was greater than within doors.
As regards direct radiation from the san in open air, the mean difference of the thermometers, when exposed to the sun on sereno days, ras $5 \cdot 1^{\circ}$ at 8 o'clock and 7.7° at 110° cluck. This gives us the proportion of 1 to 1.5 ; and we get nearly the aame proportion on comparing the differences 0.5 and 0.7 , obtained at the same hours fram diffused light in be open air, und the othe
differences, 0.2 and 0.3 , obtained from diffused light in the laboratory. Thus the intensity of light indicated by the photometer increased from 8 o'clock to 11 o'clock in the proportion of 1 to 1.5 , equally within doors and in the open air (the light being diffuse); and in the direct sunlight I have also experimented with phosphorescent light and that of electric discharges, which were only visible in the dark, and on lunar radiation; only visible in the dark, and on lunar radiation;
the photometer shows itself sensitive to all of the ph
For lunar rays I experimented in a room which had been made for optical purposes. I placed a bi-convex lens, 247 millimetres in diameter, behind the glass of the window (which faced sonth), and, at the focus of the lens, the bulb of a thermometer of the iodine solution, with a scale on which it was easy to distinguish the one-hundredth of a degree. It was the 16 th day of the lunar month, and between 10 and 12 o'clock in the evening, and many clouds covered the sky, some of them very dense. On the passing of a cloud before the moon the liquid in the thermometer fell, and it rose again when the clond had passed. The variation of the liquid column under these circumstances reached one-third of a millimetre, corresponding in this thermometer to one-seventyeighth of a degree C."

BORING AND MORTISING MACHINE.

T
1HE past decade has witnessed the introduction of numerous machines for the rapid working of wood used in the arts of construction and in the various articles of our domestic furniture. What
being adjusted to any required length of mortice. At opposite sides of the machine a table is situated, upon which a leg or other part of a chair or other piece of furniture is placed, and secured thereto by a cramp; the part wherein it is desired to make the mortice being brought in front of the bits, and being pressed against them by means of a screw, an accurately placed mortice is speedily formed, corresponding in width to the diameter of the boring bit and in length to the distance through which it moves. The part of the machine by which the dowel holes are bored consists of revolving bits, carried in brackets situated upon compound slides arranged npon the upper part of the framework, by means of which the bits can be brought into any position to suit the dimensions and nature of the piece of work or to the width of holes required to be bored, the bits being forced or drawn against the wocd to be operated upon by hand levers, actuated by the attendant. The patentees prefer to make the machine duplex, so that two similar pieces of work may be operated upon simultaneously. In order to finish the joints of the work after it has been mortised and the dowel holes cut, the back legs and rail are put together by the tenons of the latter being entered into the mortices of the former, and cramped together in a machine for cutting the back joint ; this consists of two saws situated upon a transverse hollow shaft, through which a right and left hand screw passes, whereby the saws can be adjusted to any distance apart corresponding to the length of the back rail of the chair, sofa, or other similar piece of work. The back is brought against the saws by a guide plate
in dotted lines the front and back leg of a chair about to be operated upon by the mortising bits B, are carried by brackets bolted to the framing of the machine, and are adjusted to the required height by means of screws and hand wheels, shown in Fig. 1, the screws being kept in position when adjusted by pinching screws. The tables I are situated apon horizontal slides, and by means of the screws and nuts placed under the tables are caused to travel to or from the mortising bits \mathbf{B} by the operator turning handles affixed to the rods L (omitted here for want of room), in a right or left hand direction, similar to the manner of operating the slide-rest of a self-acting lathe. The legs or other parts of a chair or other piece of furniture, when placed upon the tables I, are secured thereto by the cramp K , which consists of a horizontal shaft furnished with a feather fitting into a corresponding groove in the eye at the head of the bracket O to allow of the position of the shaft being altered. At the end of each shaft a vertical screw is carried, furnished with a hand wheel, and upon tightening this the piece of furniture placed upon the table under it is firmly held in position, so that the parts wherein it is desired to cat the mortices being brought in front of the bits B, and being pressed against them by means of the screws worked by the handles on the rods L, accurately-situated mortices are speedily formed, corresponding in width to the diameter of the mortising bits B, and in length to the distance through which the bits travel in the race C. The portion of the machine by which the dowel holes are bored consists of revolving bits driven at a high velocity by

FIG.J
F/G. 2

was formerly manufactured with a great expenditure of labour is now cheaply produced in large numbers by the employment of machines, and although the apparatus has not yet been designed capable of turning out a finished chair or table from the rough log, the various parts are now shaped by machinery, leaving only the fitting together and finishing to the skill of the workman. We this week illustrate one of the most recent of these introductions-a machine for cutting mortices and boring holes in the different parts of chairs, tables, sofas, \&c., which is supplemented and accompanied by another of similar construction for shaping the tenons and pins for the counterparts produced by the mortising and dowelling machine. These contrivances form the subject of a patent recently granted to Matthew and John Pollock, of Beith, Ayrshire, and will, we think, be readily understood from the following description, with its accompanying illustrations. By way of introduction, however, the principle of the machine may be described as follows:-The part by which the mortice is cut consists of a revolving shaft fitted with bits, the diameter of which is equal to the width of the mortices desired. This shaft is carried in bearing blocks situated in a race, in which it is caused to reciprocate through a distance equivalent to the length of mortice required by means of a connectingrod attached to a crank upon a revolving shaft near ne end of the machine. This crank is preferably rranged with an adjustable throw, so that the ange of the reciprocating spindle, and conse uently that of the mortising bits, is capable of
or slide set at right angles to the plane of action of the saws. This latter machine is also applicable to cutting and boring the dowel holes in back stays for chairs, having a compound boring apparatus attached thereto, the action of which is similar to that used for boring the dowel holes in the legs of furniture, the bits being placed at the same distance apart, so that the dowel holes in both legs and back stay correspond; the same saws which cut the joints for the back also cut the ends of the back stay to bring them to the required length.
In the engraving, Fig. 1 represents a front elevation of the mortising and dowel-hole boring machine, and Fig. 2 is a plan. As shown in Fig. 2 the part of the machine used for mortice-cutting is constructed with a revolving shaft A, the extremities of which are fitted with bits B, whose diameter is equal to the width of the mortice desired. This revolving shaft A is rotsted at a high velocity by means of pulleys, and it is carried in bearing blocks situated in a race C. The shaft A and bits B are caused to reciprocate in the race C through the required distance by means of a connecting-rod D, attached to a crank on a revolving shaft carried in bearings supported by a bracket bolted to the framing of the machine. The crank is preferably constructed with an adjustable throw, so that the range of the reciprocating shaft A, and the mortising bits B, is capable of being set to any required lengti of mortice. The revolving shaft to which the orank is attached is driven by a belt passing over the pulley H. The tables I, upon which are shown
means of the pulleys R, the bits being geared together in pairs or other num irs by means of spur pinions T, carried in bracki pon the horizontal compound slides M, whic) carried and adjusted, as regards theirheight (by means of vertical screws passing throus ib bolted to the framing of the machine, a on position by pinching serews. The attnides M are acted upon in one directio. this ins the square heads of which are \& as a cur direction at right angles thereto by as acer po so that the boring bits can be b:

Getber po position to suit the dimensions ar ones, the piece of work about to be borer pressed or drawn against the wooc actuating the hand levers.

The sawing machine which forms the complement to the one illustrated is constructed on the same principle, and with as little difference in the arrangement of details as the nature of its work will permit. It will be observed that all the parts, whether those for carrying the work or those bearing the tools, are adjustable one to the other to suit the difference in size of the varions articles to be operated upon.

ELECTRO-DEPOSITION OF NICKEL.

THE value of nickel as a preservative coating for metals lisble to corrosion or oxidisation is now well known, but, so far as we are aware, little use has hitherto been made of it for the purposes of ornamentation. This arises principally,
we believe, from the fact that the colour of electrodeposited nickel does not harmonise with that of gold,-a defect which Mr. Thomas Fearn, of Aston, claims to have removed by employing a deposit formed of iron and nickel, by which the colour is greatly improved, and some useful effects obtained. The process invented and patented by Mr. Fearn consists in the employment of a solution of nickel and iron, by means of which an alloy of these metals is deposited on articles suitably prepared in the usual manner. For this purpose he dissolves twenty-four parts by weight of muriate of ammonia (chloride of ammoniam), in 160 parts by weight of water, and saturates the solution with protoxide of nickel, at a temperature of about 120° Fahr. From this solution a good deposit of nickel may be obtained, if desired, with a moderately intense battery power. When the first solution is saturated with nickel the same quantity of a like solution of muriate of ammonia is added; but in order to deposit from this solution the alloy of nickel and iron it is necessary to charge it with iron in addition to the nickel which it contains. This the patentee prefers to do by electricity. He employs an anode of iron, by which an electrical current from a voltaic battery, or other source of electricity, is passed through the solution until the required alloy of nickel and iron is deposited at the cathode. This is ascertained by observing the colour of the deposit. As soon as the required deposit is obtained the solution is ready for use. A film of peroxide of iron forms upon the surface of the solution, but this, it appears, does not interfere with the working of the process. In using the said solution for obtaining a deposit of nickel and iron two anodes are necessary, one of nickel, and the other of iron; so that if the deposited alloy gives any indication of either metal being in excess the anode of that metal is raised either wholly or partially from the solution, and work continned with the other anode mntil the required deposit is produced. The battery which the inventor prefers is that known as Wollaston's-that is plates of amalgamated zinc and copper, two or more pairs being employed, but other batteries or sources of electricity may be used. For obtaining quickly thin deposits of the alloy an intense electrical current may be employed, even causing copions evolution of gas from the deposited surface without detriment to the appearance of the deposit, but for giving a strong coating a weaker current is necessary. In depositing an alloy of nickel and iron upon articles of iron or steel it is, of course, necessary to previously coat them with copper or by preference with brass. The coating of alloy upon "parcel" gilt work-that is, articles coated only in parts-is said to be an excellent substitate for the tarnished effect produced in silver-plated articles, commonly called oxydising. For stopping off "parcel" gilt work any suitable varnish mixed with a colouring powder may be used; rouge or Prussian blue answers very well for the purpose, the colour enabling the workman to see better how to apply the varnish. The varnish may be removed from the work after it has been coated with the alloy by means of a hot solution of potash or by oil of turpentine.

Although the above method of preparing the solution of nickel and iron works satisfactorily, and is the best with which the patentee is aequainted, its preparation may be modified in various ways. For example, the solution may be charged with nickel by the use of an anode of nickel instead of dissolving oxide of nickel therein. Or the solution of nickel and iron may be made separately, and afterwards mixed in the required proportions. By thus combining iron with the deposit of nickel a clearer and more agreeable tone of colour in the deposit is obtained, and the nickel contrasts agreeably with gold in ornamental work.

SAFETY-LAMP FOR MINERS.

T^{E} HE principal feature of the safety-lamp patented by Mr. Plimsoll consists in permitting the ingress of a sufficient quantity of the dangerous gas to cause an explosion which at once puts out the light and warns the miner of his danger, thus preventing all risk of the main body of gas in the mine being fired. The accompanying figure will give an idea of the arrangement of the lamp, and the following is a description of the principles on which it is constructed: -The body of the lamp is made with an internal chamber or passage through which air is supplied to support the flame. This air-chamber com-
municates with the external atmosphere through wire gauze or a perforated metal plate, such as is usually employed in safety-lamps, and the air chamber surrounds the wick, so that the incoming current of air converges on the flame. Thus, whenever the atmosphere becomes explosive the air current will be ignited by the flame and will explode within the air-chamber or passage, causing the instant extinction of the light. The explosion is prevented by the wire gauze or perforated metal from communicating flame to the external atmosphere. In the figure, \mathbf{A} is the oil receptacle, which is wholly or partly received in a cavity B in the lower part of the casing of the safety-lamp; C is the air-chamber surrounding the lamp. The walls of this chamber are made of plates of sheet brass fitted together concentiically in the manner shown, so as to leave an annular space of abont one-ninth of an inch between them in a lamp of the size drawn, and less for a lamp of larger diameter (as the capacity of the chamber or passage must not be increased beyond certain limits), the said plates being soldered at bottom to a flange or ring on the inner plate. The outer plate E is made with a

number of minute perforations through which the entire supply of air required for the combustion of the flame passes. The thickness of this plate depends somewhat upon the size of the perforations, bat it must be of such thickness as to prevent the passage of flame through the perforations when the ignition of explosive gases takes place in the chamber C. Perforations one-fortieth of an inch in diameter in a plate one-fifteenth of an inch in thickness will answer the purpose, the object being to prevent the passage of flame without obstructing the admission of air to the lamp. The perforations should be disposed at equal distances apart, and not too close together, so as to leave sufficient metal to cool and destroy so as to leave sumfient metal to cool and destroy
the flame resulting from the ignition of explosive gases in chamber C, nor should the perforations be more numerous than is required to admit an adequate supply of air to feed the flame of the lamp. The top of the chamber C is bent into a conical form at the centre around an opening through which the wick tube rises, the opening being of suficicient size to permit the air to pass
freely to the flame, and allow for its free escape freely to the flame, and allow for its free escape or expansion when the ignition of explosive gases takes place in chamber C. The top of the
conical form at the centre, and has a central aperture for the passage of the wick tube. The upper plate is provided with a gallery to carry the glass chimney D and wire gauze covering, as usually employed in some kinds of saf9ty-lamps, and to this plate the ordinary rods of the framework are also attached, as shown. The glass chimney D is carried up to the top of the lamp, which is previded with the nsual protecting top of wire gauze and perforated sheet metal for the exit of the products of combustion. The chimney D is cemented air-tight in its gallery, so that the whole of the air supply must pass through the chamber C to the flame, thereby preventing any accumulation of explosive gases in the upper part of the lamp.

SENSITIVE FLAMES.

GOME experiments on sensitive flames are detailed by Dr. Isaac Norris in the Journal of the Franklin Institute for April. The arrangement of Barry for rendering a flame sensitive is well known, and offers the great advantage of using the gas at the ordinary pressure, so that the experiment is arranged in a moment. The size of the pin-bole aperture determines the height of the flame burned above the wire gauze. I have found after many experiments that it is rendered mach more sensitive by using a chimney : an ordinary glass one, such as employed with the argand burner, answering perfectly and rendering the flame at the same time much more steady. It may rest on the ganze, which must be placed at the proper height above the barner. The gas should be burned on until it begins to flare, and then lowered a little antil it becomes steady. The nearer it is to this point the more delicate the result. Tyndall's caution with regard to obstructions from stop-cocks, \&c., is also very important. Wishing to measure the height, I attached a small scale to the chimney, and found, as recorded, that the flame is much more sensitive to recordea, that than others. Any sound in which the letter s enters seems to affect it particnlarly. Atletter s enters seems to affect it particularly. Aike the arrangement in a cathetometer, I found that the arrangement in a cathetometer, I eye perfectly even when the flame appears to the eye perfecty
steady, it was continually varying in height-sounds that were quite inaudible to any one near it, evidently producing a marked result. A tall flame, 6 in . or 8 in . in height, is not as sensitive as one of only 2 in . or 3 in ., and placing the gas in a bag at the same pressure as it issues from the pipe did not alter the result. The whole subject is a very curions one, and I am inclined to think this flame is the most delicate yet produced, despite the accounts of the wonderful steatite burner of which Tyndall speaks. A description of Barry's sensitive flame will be found on p. 244, Vol. XIV., and it is to be hoped the present little article may lead to other experiments in the same direction.

PHOTO.-ENGRAVING ON METALS.

W ILLLAM A. McGILL and Rovert G. Pine, of Memphis, Tenn., have invented a new process for photographing engraving on metals and other substances, Which they describe as follows. -We take, as a base of operation, a pare silver surface or an alloy; and, after finely polishing or and a film of the iodide of silver is formed on the and a film of the iodide of siver is formed on the
plate. We then expose the plate to the action of plate. We then expose the plate to the action of
light in the camera obscura, or under a photographic light in the camera obscura, or under a photograpmed
negative, until a faint image of the object is formed. negative, unitil a faint image of to objection of an electrotype battery (copper solution), when a welldefined image of the object in copper is formed, the cupreous deposit attaching itself only to those parts of the plate which were rendered conductors of electricity by the action of light, while the unexposed parts will remain non-conductors of electricity. The plate is now dried and etching solution poured on it, composed of sulphuric acid saturated with nitrate of potash, or their equivalents. This solution immediately attacks the shadows or exposed portions of silver surface, while the cupreous deposit from the electrotype bath is not affected. After etching the required depth the copper deposit on the plate may be readily removed by aqua regia, which will not act on the silver plate, leaving a finely-etched inange in the silver plate.

To engrave or etch on steel, gold, coppor, and other substances, the surfaces are tirst coated with pare silver. We then proceed substantially as above explained, with the exception that fifferent acids or combinations of acids are usely on the various metals or other substances after tho silver plating or surface is etched through, according to the nature of the base to be operated $u p$ on ; foo instance, in etching on gold, after the etched through with the saturated solfotion ossulphuric acid and nitrate of potash, we of use cried regia, or nitro-muriatic acid, which actor on ty whys but leaves the silver intact. The specianly applicable to the ornamenta

MTOROSCOPICAL CABINETS.

THE principles to be kept in viow in construeting and arranging oabinets for microseopical objects are thus stated by Dr. Mrarie, in a paper read to the Royal Microscopieal Society, which is
replete with information of value to local societics as to the arrangement of their collections, and will be found saggestive by the advanced histologist. We can only extract a portion :-
As to a choice of the cabinet, so much depends on the intention and tnstes of the indiridual. and the nature of the collection iseer, that no rale or recommendation on my part can be given which woald meet the concoptions and wishes of every amatour
microscopist or professed histologist. I shall dismicroscopist or professed histore ionist. I shan sher aspect; cass the subject, nevertheless, in its broader aspect;
that is to say, on snch grounds as may be of general that is to say, on snch grounds as may be of general
iuterest, or lead others to make naggestions on what at present there is no very definite standard or agrecmeut upon. The dimensions of a cabinet is a nastter concerning economy, convenience of space,
nad the conception the collertor intends to foliil. nad the conception the collertor intends to folfil. If the numbers of slides are likely to be or already
are very extensive, then large-sized cabinets are in some rospects most advantageons. At the same time they are not free frou serions drawbacks. Smaller-sized cabinets, while deficient in solidity, roominess, \&c., have geveral points of recommendation, net the least of whioh is that if made to a piled up oue alove the other, and so built together as to command all the advantages and none of the drawbacks of an immense single cabinet. I cannot offer a better instance, forcing conviction of the ast-mentioned proposition, than by refereuce to the Botanical Department and Insect Room of the British Museam. There (besides old wall cabinets) they have a set of cabes identical in measurements, each devoted to a gronp or subsidiary division,
numbered and labelled accordingly, and so arranged that to all intents and purposes they represent but one vast cabinet. For study and reference they are uncommonly handy, as they can be brought down to the table, and, in fact, shifted about at pleasure without the alightest injary to contents.
Such is my bean ideal of a microscopic cabinet, compound,yet harmoniously single; adapted to meet the wants of a limited, a moderate, or a numerons series; expansion being in the ratio of increment
of elides. But furthermore, as I shall presently mention, the same principle is applicable to very modest microscopical collections; such, indeed, as oven the amateur or those of limited means may aspire to. As a closing sentence to this clanse, I may even make bold to say that, like other fashions a handsome piece of farniture is attractive. Would a handsome piece of farniture is attractive. Would that the zest as powerful a stimulant.
I do not j jopose giving a lengthened dissertation aud criticism upon every sort of cabinet, but. by allusion to a few, indicate in passing the more desiralle fentures pertaining to economy, easy access, and desirability for classific parposes.

1. As regards space and cheapness, the common
loxes with racks, sold by all microscopic object mnkers, are undoubtedly very handy. They are subject, however, to three great faults. ap cinens, particalarly those in fluid, are liable to spoil in them. 2. Reference to individanal slides is awkward, from thair being tilted in position. 3. Nnmbers and names caunot easily be read, unless by picking up one and then another, in guess-like tion kept in the ordinary rack-boxes, I may mention Dr. Groville's specimens of Distomaceeb in the Dr. Grith Mnseum. of which there are 3.637 in all. His methord of numbering and cataloguing, to which Mr. Carruthers kiudly called my attention, I shall Mr. Carruthers kinaly call
again make referenco to.
again make reference to.
2. Dr. Muller, assistant
of Heidelberg, n fow years ago kuadly forfmeister, with a sight of their Histologico-Edacational Col. lection. They were then adding a series of sections illnstrative of medicinal wrods. In liou of an ar-
pensive cabinet, they had a.lopted the following pensive cabinet, they had adopted the following
economical arrangenent, wherehy the slides lay economical arrangement, wherehy the slides lay
flat and were ensily got at. A pieco of stout millhonrd 7 fin. x atin., nad oovered with coloured mper, had fortf-two holes punched ont. The holes, apart. Throngh these an elnstic cord wns passed. down one hole and up the next ; continuing along
one lius of holes and retarning the nert. Haring reached the farther one from the point of starting, the corit is reversed and brought back hole hy hole to the laster, where a knot joins the extremitios of the cord
corls, which retain them in place. Each corner of the millifrard, ubove and belpw, has a wedge-shaped jutroduced in the middle. Tho trass filled nbove and low "Lin slides are then piled oue over the other
a shif or, or in boxes, opes in front, with labels ench consecutive proup. I I mention oive raode of forming a cabinet rather
thnn to recommend it. Thero is oue oncirsit ${ }^{2}$ thnn to recommend it. There is one
arraint a lan to bo borne in mind-viz., the rangelios
aliortor than the Englisis
3. Dr. Carpenter warmly commends a form o bool-box as excellently adapted in lien of an ordinary microscopical cabinet. As he says, a large histological collection can be stowed away in the library shelves, among the othor hooks, and consulted with the greatest ease. My friend. Mr. David from Dr. Carpenter's plan, so as to sait the diffe rent shape of slide used by himself. The constraction otherwise is similar, so that one description may sunice for both. Each case is about $10+$ in.
high, $8 \ddagger$ in. long, and 4 in . thick in oatside measurements. It opens only from behind, and has a fixed shelf across its midde. Trays of light card board, to tho rmmber of eighteen above and as many below, are piled on the top of each other. A small tack serves as a handle to eacla tray or quasidrawer. Mr. Forbes nses slides euch 1 tin. square or nem eight of these oocnpy a drawer ; the number the kno, according to circumstances, berig' slides are generally those in common nse, 3in. x lin., and these to the same namber, eight. lie athwart. Doubtless these book-boxes are neat, and in many instances a very excellent substitnte for a large readily dassifed, and the titlo objects are mes apportioned to the contents. The great fanlt, however, lies in the one tray being so placed above the other that to consult those which happen to be below, all the trays above mast be taken ont. The
depth of each tray, besides does not well admit of labelling, so that, like the rack-boxes, it is a case of tronble in searching far an object. It wonld be an improvement if eegh tran slid in on fillets, so that one might be tacens out withont distarbing the
others, and by deepenina the face labels conld be placed ontside. To do this would, however, spoi intended ntility
4. Piper's original Portable Forimental Slide Cabinet, as described hy himelf, * is aomposed of any number of flac cardboard trays. divided into six or more compartments ench holding a single slide in a borizontal position. The trays are inclosed in a strong millboand bex, tha tront of which
is made to fall down, so se to parnit, the trays to is made to fall down, 80 na to pariat dhe trays to
be readily withdrawn. Whean closed, an elastic band renders the whole firm and secure. "It may be made of any desired capacity. Specimens are placed on the table capable of receiving from six to 250 slides. The smallest is weth rdapted to contain
a 'half-dozon series' of anabomiond or other suba 'half-dozon series' of anabomiond or other sab-
jects; and its great strength, combinad with lightness, and its great strength, combian +in mission throagh the post Among the arntages which may be derived from the cabinets, I will mention the convenience of displaying, at one view, the entire collection of slides, and the facility thas afforded for the selection of ally requirell specimen, withont the tronblesome search and difficalty of removal frequently experienced with the nid form of box. in perpendicular grooves. It also prevents the possiperpendicular covers becoming detached by shaking about in transit, whicin is important whan it is to convey a rare or valuable colleotioms The trays,
being all of uniform size, may be tranaferred from being all of unitorm size, may be transferred firom
one calinet to another of larizer or smaller dimensions, withont necessitating the disturbance of the slides. In addition to its portability, it possessen the merit of oheapneass, durability and neakness of
appearanoss." The advantage of Piper's horizontal cases is macrod. by the travs resting on each other and henco is only anplicahle to a very limited series of objoots. The Euleusteint collection of the British Masemm, oontaining 100 types of diatoms. larger, and for this purpose it answers very well. 5. Mr. Henry George bronght before the notice of this society a few years ago an inexpensive compract form of store-box, wherein consideramuin gennity was isplayeis. The marit of his plan of
store-box, or, indeell, small portable cabinet. lies in its being compneed entirely of tin (japanned or otherwise), therefors of small compass, light, and not liablo to wrery; in the sides lying fiat; and in a simple arrangenant wherehy the slides are kopt in place without chance of ovorriding each other.
Each box is made to hold three or six dozen slides, Each box is made to hold three or six dozen slides,
or by increase of capacity to hold proportionally more. In that which contaius seventy-two the onter casing is of oblong figrare, 64 in . lona, 34 in .
wide, and abont 2 tin. deep. The lid is unhingel, and of ordiunry form. The four sides of the bor are each inciand by a wide. demp semilune, so that simple sheet of tin, out of which a Each tray is a pieco has bern cut, to insure facility in taking up is turned on edge, and forms a rest to the tray which hirs aborn it. The onnosite sides of the tray hare thrir edges enrvilineary bent in, so that the slides
sliphing bennath nre leld firmly in place, aloneside versely to the long diameter of the box or trana

Ser. "Trnns. Mieros. Suc. and Joarn.," 1867, Vol. xv., 2ad p. 16
"Dlat

in a row ; and when one or nore is wanted, by a titing motion of the finger below the glass through defects in this otherwise capital little case apphy equally to those of Mr. Piper and the book-bosesviz. if a specimen is wanted from the bottom row, the labelling of each slide is readily seen on being raised, yet unless the entire contents are known, very tray has to be cone over before the thing wanted is ta be found.
6. I may refer en passant to Mr. Farze's zinc cages, the chief recommendation of which is their being of metal. Thas there is no liability to warp. Feorge. wood, which, nnless mahogany, and that well seasoned, is so liable to warp, and render drawers stis and troublesome to open.
7. As a modification of the rack principle, Mr. Sorby (according to my friend Mr. David Forbes) uses a small form of box wherein the slides aro ranged in rack, bat instead of their lying tilted, each is placed horizontally. A farther extension of the same principle, and what are really most excellent capacious store-boxes (or to those who are satisfied with a moderate thing. a compact cabiet),
cheap, portable, and oach specimen of easy aceess, cheap, portable, snd oach specimen of easy 200888 ,
will be found in Mr. Norman's adaptation. In $\&$ will be found in Mr. Norman's adaptation. In a
mahogany box, 7 in. high, and 4 in. bread, 150 slides
lay in racks horizontaly, and by a margingi number ay in racks horizontany, and easily got at and referred to. There is a diaphragm across the middle of the box, and another ranning up the centre lnngways. This gives four compartments, so many in each. A folding door at each end provides easy access, and, with a handle on the top, the box can be carried about anywhere. 8. Mr. James Smith has described and figured What he terms a microscopical cabinet, wheren the logical eollections. Shaped like a back-hinged bookbox, on its being opened back the contained slides ave all seen at a glance, being each retained in place py a double elastic band. If I am correctly informed, Professor Hughes Bennett, of Edinburgh, uses a Other objections micht be offered, hat that the olides all rest. vertically is against its frequent adoption.
9. Lasth, as everything depends upon individual requirements, some wishing a small, others a larger case, it is hard to recommond one form of oabiset that will do for all. Piper's, George's, and Norman's, are each good in their way for mmall series, but a larger-sized cabinet of square form, with trays coming out separately, is the most preferable artiole. deal beck sells a cheap plain kind, made of polished this, as in more expensive sorts, every specimen is of easy access. The latter lie flat, the numbers and name facing the observer; and labelling is provided for ontside the drawer. A number of such boxes can be piled above one another, and by degrees an extensive cabinet altimstely attained.
It is now miversally edmitted that objeots preserved in a moist medinm are retained in a sound state longer and bettar when laid down flat. This is easil understoon, for the finest and firmest cement is not always a safe protection when the
slide is tilted edge upwards. In the case of a cabinet
. with drawers, these are hetter not too deen; although some drawers of sufficient depth to admit easily the large-sized deep-colled slides are an essential desideratum. Unless in collections devoted to speaial subjects, deep drawers for the reception of larger objects need not be distribated throughous the cabinet ; it is sufficient if they are confinod to the lowermost tiers. In this way heavy specimens can be kept together, ospecially if excoeding in priate position of such objects in the general series can be replaced by a dummy, or blank slide, numcan be replaced by a dummy, or blank slide, num-
bered seriatim, and with a reference whore its real connterpart is to be found. The latter, meanwhile, also bears its consecutive number in the series. Entire sets of deep drawers having an additional shelf let in from the top I consider objoctionable.
These may, indeed, come in hanly where a cabinet These may, indeed, come in handy where a cabinet with a set of deep drawers, originally intended for another purpose, is converted into a microscopic
receptacle. The microsconic cabinet of our Roval Microscopical Societs bns been altered in this fashion, and the available area of the double tiers conseqnently can contain twice the number of specimens they orikinally did in the deep drawers. It doep ones be retained.

The compartments of the drawers shonld ndmit of the slides lying with the narrow ends, or loug diameter, fore and aft. In this way there is no
chance of the slides overriding and. when the chance of the slides overriding and. when the
drawer is suddenly drawn out, injuring each other. In the event of a specimen, not too deep for the drawer, occupying a grenter surface than the ubtind 3in. by lin., proviled it is not over 3iu. square, it may readily be placed trangversely to the tray or diameter the transverse bar partition can be cut in such e manner that the slide shall occupva double interspace. The end of the divided bar will prevent

Abstract

it moving sidewards. This simple plan, and sach like trifling mechanical contrivances, are very useina in preserving unanimity in a series. They keep in preserving nnanimity in a series. They keep of being scattered to a distance.

AGRICULTUPAL MANURES.

FROM an interesting papar on the important subject of manares or agricnutural purposes, the Wigton Farmers' Club, we extract the following particulars obtained from practical trials. In commencing his remarks Mr. Hanter drew especial cultural chemistry to the farmer who desires to learn his business thoroughly, and then went on to give an account of his experiments, beginning with give an account of his experiments, be
On seeds, nitrate of soda applied alone in 1868-71, gave, as the average of four years, 54 stones of hay
for every owt. of manare applied; when nsed along with saperphosphate and muriate of potash it gave 58 stones of hay per cwt. Salphate of ammonia
used alone gave 50 stones of hay per owt., aud in conjunction with mineral manure 48 stones. Peruvian grano, again, used alone for three years, gave about 8 stones less than sulphate of ammonin mixture it gave equal to 30 atones. Nitrate of soda. it will be seen, proved the best nitrogenous manure for hay, and also went farthest when nsed with a mineral manare. On a clay soil Mr. Hunter had ony one experiment. Tho land was in very poor comant 10 ewt. per acre. On this poor clay, sulphate
of ammonia proved superior, of ammonia proved superior, giving, When applied
alome, a return of 6 sitones per crit. of manare, and
with saperphosphate and muriate of potash 95 stones.

Nitrate of soda gave, alone, $\mathbf{3 9}$ stopes of hay, and in mixture 66 per cWt . The experiments on onts one soil and under the umnsual conditions of three years on the snme land, they must not be regarded as entirely applicable to ordinary farming. From a want of reliable no-manure and mineral manare plots for comparison, the figures given mny be, as a whole, a little too high or too low; but the com-
parisons between the three memares are qnite exact. Applied alone, sulphate of ammonia proved snperior for oats; and, taking its return per crit. of mannre
at 12 stones of corn, Peravian gnano gave 11, and at 12 stones of corn, Peravian gnano gave 11, and
nitrate of soda nearly 7 stones. Applied in conjnnction with mineral manare, nitrate of soda proved saperior ; nnd. taking its return per cwt. as 20 stones,
sulphate of ammonia gave 18 , and Peravian puano 17 stones. It is rather carions to find nitrate of soda last when used alone, and first when in mixture; farther experiments may bat contirm this conld not undertake to say which was the beat menare for oata. One point seems, however, pretty well established, viz., that sulphaie of ammonia and Poth cases. The guano nsed was the Chincha Island of best quality, the supplies of which are now exhansted ; but any good gaano containing over 6 orbansted: but any good gaino containing over 6 manure. Earley was also experimented with for three years npon the same soil; the same remark appies to this as to onts, viz. that the weight, as a that the comparisons are just encmgh. Nitrate of soda here takes a decided lead all through, and. taking its return par cart. of manure at 20 stouss of of ammonia was not tried alone, bnt in mixture proved saperior to Peruvian gaano; thns, nitrate of soda, used with mineral manare, rave about 14 stones of corn, sniphate of ammonia 11 L , and Perusian puano about 7 stones per cwt. of nitrogenons manure. This shows nitrate of scda twice slightly superior to sulphate of ammonia. On potafrom over four handred trials, a number of very valuable facts bearing upon the seed caltiration and manaring for this crop. An average of six very reliable piots gives 161 stones of potatoes as the pronace per ewt. of sulphate of ammonin. nsed in potash; l'eruvian superphosphate or nitrate of
gnano, in the three years' trial against this gave equal to $\mathbf{9 9}$ stones, and nitrate of soda 39 stones. Some other experiments place nitrate of coda stil lower, and two trials with
Poravian guano, vsed alone, give st atones per cwt. of manare, bat these are not strictly comparable with the others, being on different soil each vear. From the foregoing experiments on nitrogenous
manares, it is evident that the value of a manure is affected by the source of its nitrogen as well as by its amount, end that a statement of the raw materials ased in making the manure is essential to a correct estimate of its value. An aualysis protion may protect him from misapplication ; thns IS these results bold good on the cencrality of light lipht
manure containing nitrate of soda is mach inferior to one containing salphate of ammonia, thongh both may analyse the saine pereentage of nitrogen ; of sulphate of ammonia, or by 26 of nitrate of soda.

Phosphates: Potash.

The phosphates next demand our attention, as being, after nitrogen, the most important of our manurial substances. Bones. gonno, and the mineral phosphates are the principal fonrces of ampply. In
the raw state the former are, of conrse, almost valueless ; but in the dissolved state, as bine or mineral superphosphate, their valne in the fleld is the same -and coluble phosphates from bone are of no more valne than those from coprolites. Snperphosphate of any kind applied alone, is, as a rule, wastefully nsed. Three experiments give it a vnlice of 64 stopes
of hay per cwt. of manare so applicd, and as the of hay per cwt. of manare so apric d, and as the
superphosphate costs about 5s. Gd.. nal the hay is only valued at 3s. 3d., it is erident tllat this will uot pay. Used in conjanction with muriate of potash and nitrogenons mauures it did much better, three experiments giving a value of 17 stones per cwt. of superphospbate. It is noteworthy that in the same series of experiments it was applifd to 2 plots aloug with nitrngenons manure, but without muriate of potash, and its value here at once fell to 10 stones of hay. This shows how ont mannre helps another. and that on soils deficient in potash a good manare vanting in this element is used at a great disadvantage. Plants require many elements for complete makth, and the superabandance of nine can never make up for the absence of a tenth. For all crops, but more especially the root crops, phosphntes are
invaluable. Potash, from the prominent ficure it invaluable. Potash, from the prominent figure it
makes in the ash analyses of nll plants, has alwavs makes in the ash analyses of nil plants, has alwavs
held a high place in agricnltural science ; but till quite recently its price forbade its nse in apricnltural practice. The discovery of potash deposits in Germany was the first circamstance that brought potash manures into gentral use. In 1867, When at $£ 10$ s. per ton the same arlicle for which I must now pay $£ 12$ or $£ 13$. Mariate of potosih, suiphate of potash, kainit, and crude potash salts are the chief sources of this manure. In 1868.70. Itried the first two on potatoes and clover sceds. Potash salts should not be nsed alone. Three years trial of
mariate of potash at the rate of 4 cwt . per acre gave mariate of potash at the rate of 4 cwt . per acre gave
it a value of nearly 6 stones of hav per cwt. of manure; two of these jears gave it. however, a value of about $8+$ atones. Sulphate of potash gave 15 stones; probably its smperiority to the muriate is due to the net that sniphuric acid is more essen-
tial to plant life than the mariate. On potatoes its superiority is more doabtfnl, and probably. when used with superphosphate, sulphate of ammonia, and other manures containing much sulpharic acid, its saperiority would be less ovident; further experiments are, however, required to decide this pointthe greater abndance and less cost of the muriate also make it more desirablo as a manare. Used nuriate of potash showed much better results, giving per cwt. of manure 14 stones of hay; this, though not immediately profitalle, is so nearly so that in all probability the after effects more than reight land a good grass manare should contain from 10 to 20 per cent. of marinte of potash, equal to rim 5 to 10 per cent. of potash. I prefer mariate of potash to kainit or inferior potash selts, because, as
1870 , I tested kainit againgt mnriate of potash for potatoes, and from the results on four plots of eaeh, the mnriate proved itself abont five times more valnable. For potatoes potash bas shown itself indispensable. In two experiments whers it was
mixed with lime and salt and applied both aloneand mixed with lime and salt and applied both alone and
with farm-yard manare, it cave the fir t year per cwt. of muriate, 45 stones of potatoes : the second year, 64: and the third year, 104 stones. With farm-yard manure 1$\}$ cwt. was used, mixed with an pearly double these anantities cwere of hed. Applied in conjanction with superphosplate and sulphate of ammonia it gave over two years an nverage retarn in four axperiments of over 250 stones of potatoes per cwt. of muriate; this was, bowever. the second nanally high. It was tried with superphosphate ggainst soperphosphate and salt-4 cwt. of eachfor three years in three different fields, and gave 5 n stones of potatoes per owt. of mnriate: when adiled alone to superphosphate it gave only 12 stones, and In ono experiment, used alone, it gnve 43 stones. From these experiments it is evident that neither
for hay nor potatoes should potash be ased alone. Plant life is in some respects not anlike animal life. and you might as well expect kood health in an animal fed on water alone, or on struw alone, as in a plant fed on bat ono manure. A good pntato
manare should alupays contain from 15 to 25 per manare should always contain from 15 to 25 per of potash. On oarrots, after the failure of $18(\mathrm{is}, \mathrm{I}$ did not again find time to experiment till last season, when the addition of 2 owt. of muriate of potash to a mixed manare of superphospinate rud sulphate of

On.turnipf, I have bat fow relisble experiments, bnt these go to show that a gool turnip manare should contain some potash, though less is required than
for potatoes. For grain crops I cannot recommend potash; in special cases it may be useful, bat for general purposes its presence is annecessary.

Magnesia is usually present in the ash of plants to a considerable extent, and has often been recom-
mended for hay and potatoes. In repeated trials I mended for hay and potatoes. In repeated trials I have not found its application attended with maeh benefit. Eight experiments on potatoes give it the of ralue of olb. of potatoes from 1 owt. or salphanto 2 d . worth of potatoes. In these experiments it was used in conjunction with superphosphate, potasb and salt, withont any nitrogenous manare; further experiments with nitrogenong mannres did not show any better result. On clover seeds, the balance of six experiments with 2 owt. per acre of aulpbnte of magnesia, give it a value, per ewt. of 1 stone of hay; it gave the best result - 12 stones-when used in conjunction with mariate of potash, common salt and a little sulphate of ammonia, neither of the first two containing any sulpharic acid; and the poorest result was when added to sulphate of soda and sul phate of ammonia, a mixture contrining an abandant supply of sulpharic acid. These faots point to the sulpharic acid of the sulphate of magnesia as the active portion of this manare in these experinents but neither upon seeds nor potatoes did it pay one fourth of its cost.

The Application of Salt to the Soll.
Salt is the last manure I shall touch apon. It has been strongly recommended by interested parties, and has doubtless its uses, bat as a rale it is more serriceable as a destroyer than as a plant food. Against grub, wireworm, \&o., and as a prolonger of vegetation in dry seasons, it is of value, but as a direct manare it more frequently does harm than good. On hay, 4 cwt . per acre applied alone reduced the crop in twa experiments, and increusedit in two, This seems a common resalt throughont all England, as thirteen experiments reportgd by Dr. Voelcker show only 47 lb . of hay for 4 cwt . of salt per acre. The addition of about 2 cwt . of salt to a mixed manare for seeds reduced the produce in seven experiments by more than 24 cwt . of hay per acre. The balance of testimony is thas against its use as a direct mamure for hay. On potatoes, used alone, it seems to have been of service, giving nearly 17 stones of potatoes per cwt. of salt, but when added to a really profitable manure like superphosphate, it almost invariably reduced the crop. It is
rather an interesting fact that, tiough often found rather an interesting fact that, though often sount and for some plants its presence is not necessary to a healthy growth. These are the most salient features of our four years of field experimenting on manures at Blennerhasset. The details of many of the experiments are very interesting, and to put them in a practical form, I will give the composition of several
results:-

Crop.					$\begin{aligned} & \text { Total } \\ & \text { per } \\ & \text { ncre. } \end{aligned}$
	Crit.	Cwt.	Cwt.	Cwt.	Cswt.
Hay..............	$1 \frac{1}{2}$	-	31	1	${ }_{6}^{6}$
Oats	$1 \frac{1}{2}$	11	3	-	
Barley	$1 \frac{1}{1}$	-	9	-	12
Potatoes........	-	$2{ }^{2}+$	${ }_{3}^{6!}$	3 1	12
Turnips	-	1	3	1	5

In the discussion which followed, Mr. Hanter was asked whether, in his opinion, the ralae of salt in
agrienture did not much depend on the proximity of the land to the sea. Probably the salt would bo of greater value away from the const than near to it. SIr. Hanter said holsad heard it said that salt was not quite so useful near the sea coast as inland; but rou the thirteen experiments made by br. for 4 cwit. of salt. So that these experiments, in thirtecn different parts of England, showed no hetter results than his experimeuts wat it was not of mach value. Many plants, indeed, eould grow Fithout any soda nt all. He had himeelf never experimented with salt on mangolds, but it was a comperimented with sait ong "paing that mangold "well" with salt.
Mr. Horusby asked if Mr. Hunter had ever tried snperphosplates alone, or in addition to farra-vard manaru? He had tried nitrate of soda to snme extent, with the best results on grass hand, his being ratier strong land, with a cold bottom.
Mr. Huater said he had never tried superpliosphates aloug with farm-yard manare. He hait tried it alone on grass land and with potatocs. It aiways gave a hearier orop, bat he uever found it pay when uned alose; be had tried bonos and bone dary on
arass land, but hone dust did nut puy. For ll ree years the tried both, and, corious to say, leos is at
the resulte of the whole period, he found that bone dust and guano, and dissolved bones and guano, pro duced exactly the same result, viz., each something like 151 tons of potetoes per acre in three years, or abont alone. Dissolved bones, indeed, were .a bones alone. Dissolved bones, indeed, Were a
lasting manare, but there was no difference between soluble phosphates of bone and coprolites. It was the insolable phosphates which were much superior
He had tried kainit on potatoes, and also muriate He had tried kajnit on potatoes, and also mariate of
potash-four plots of each. What they bought for potash-four plots of each. What they bought for
dissolved bones were not dissolved bones, because the makers would not make them, as their reputation would suffer if they sent out the nasty, dirtylooking thing which dissolved bones were. Instead they sent ont a nice preparation, consisting of, perhaps, one-third of bone and two-thirds of coprolites. If they wauted dissolved bones they must make them is, commercial dissolved bones-against superphosphates on tarnips, and he got 13 cwt . more from the dissolved coprolites than from the dissolved bones. He did not mean to asy that every experiment would be found against them, but this experiment was decidedly against dissolved bones. They were mixed with sulphate of ammonia, muriate of potash salt, and gypsam, and everything that conld give
them strength, so that it was a fair trial with the them strengt, so
dissolved coprolites.

REMOVING PHOSPHORUS FROM IRON ORES.

ACCORDING to one of the foreign scientific publications, Mr. Jalius Jacobi, director of the smelting works at Kladno, Bohemia, has invented a process of effecting the removal (and subsequent
utilisation) of the traablesome phosphorns compounds from iron ores; its efficiency in practice remains still to be tested. The process consists in changing the insoluble basic phosphates, as they exist in the ores, into solable acid phosplates, and the sabsequent removal of the latter by leaching. The ores to be operated on are placed in an appro-
priate vessel, after being reduced to convenient priate vessel, after being reduced to convenient
lumps of moderate size, and a stream of water lumps of moderate size, and a stream of water
charged with sulpharous acid is allowed to run upon charged with sulpharous acid is allowed to run apon
then, or a stream of the gaseous acid is forced through the mass, and cold water is at the same time turned upon it. After the greater part of the phosphates have passed into the solation, the liquid is drawn off, and fresh water is passed through the mass to wash it thoroughly-this operation being continued as long as phosphoric acid can be detected in the wash water. If much phosphoras exists in
the ores, the operation with sulpharons acid mast be repeated, until a sufficient degree of parity is reached. The liquid coataining the acid phosphates is heated to drive off the sulphurous acid, aud the phosphates are again separated, partially by conpuosphates are gain separated, partially thy cona valuable fertiliser, is relied upon to cover a large portion of the expense of the operation.

THE DURABILITY OF TEXTILE FABRICS. OOL and silk are the most endaring of textile fabrics. The first-named fabrio gives evidence of its smperiority as an article of clothing, from the fact that it is almost indestructible, and when from long service it is apparently worn out, its durability is once more seen in a new form, as it comes from the mills under the name of shoddy. Nor is this name of reproach entircly just ; for are not carpets, druggets, mats, cloths, blankets, and many other articles of domestic use mado from it, and does not its continued use attest the fact that for many parposes it can be employed to answer well the place of more expeusive goods? The best wools for service are very strong, elastic, and soft
to the touch. A variety of low grade wools similar to the touch. A variety of low grade wools similar
to the Scotch oheviot, when of the right quality, to the Scotch oheviot, when of the right quality,
will wear constantly and look well for many months, and in some cases have been known to look almost as well as new at the end of the second year. One peculiarity of this wool is that it takes the dye antil it is worn out. Cotton and flax are liable to a more speedy destraction than other textile prolucts, and may ultimately be reduced to a mere wood fibre. Both of these materials, when made into fabrics, are frequently greatly injured by the process of bleaching, and will atand a very little use, even if their destruction is not greatly accelerated by the further abuse of the Washerwomen. Unbleached cotton
goods of all descriptions will outwear the bleached, and after a few times washing will look q ite as and after a few times washing will look q ute as
well. Sill fabrics are very enduring, particularly velvet and plush, which often are in use for years, and retain their excellence and beanty until almost worn thread-bare. The mannfacturers of France and Germany have beaten their English rivals in the production of cheap and showy silk goods for some years, but it is well known that English silk koods are far more durable than foreign. A textile product is obtained from several ruminating animals in the mountain ranges, kuown as the Llama, the
I'nco, the Guanaco, and the Vicugaa. The uleces sre very fline, lustrous, and long, and are remark
ably free from the attack of moths. The fibre is peculiar, closely resembling the down of the Cashmere goat, and appears to hold an ina it is nearls as fine as silk, besides being very durable.

APPARATUS FOR DETERMINING SPECIFIC GBAVITY.

D^{R}

 R. G. E. MOORE suggests, in the Journal für Prakitische Chemic, a very ingenious dovice for determining specific gravity, which, as it may be serviceable to others in similar cases to the one which rendered it necessary, is here produced. The substance operated upon was the black precipitated sulphide of mercury, and as it possesses the unpleasant peculiarity of retaining with great tenacity a coating of air, a complete mixture with water was found to be impossible. The use of the air-pnmp was also attended with difficalty from the foaming which ensued. To meet the difficalty, the device shown in the accompanying figure was contrived This consists of the ordinary specific gravity flask a which is connected with the Bunsen pump by means
of the bulbed tube b, whose middle part had been widened out into a bulb of equal capacity with the flask, the conmunications between the balb tabe which is filled to abont three-fourths with water and the tlask being made air-tight by a moist rabbe collar. As soon as the manometer of the air-pump indicates the maximam of rarefaction, the appars tus is inclined, whereby the water rans gently from the bulb into the flask, penetrating every pore of the mass without forming a particle of sc:m.

ON EARTHQUAKES AND VOLCANOES.*
By Augurtus le Plongeon, m.d.

(Continued from p. 194.)

3. Whence the Heat Experienced on the Sur face and in the Interior of the Globe?

IWILL answer. I told you that I consider the earth as animated, a living being, living out its immonsity, just as any one of na among our fellowbeiugs. That, as we have our soul, which gives life, activity, and warmth to our bodies, so has the earth its soul, that gives it life, activity, and warmth, that animates all things existing in it or on its surface. I told you that this soul is electro-mannetism.
I do not suppose that any scientific man will dispate me. that electro-magnetism is the agent of the attraction that celestial bodies exert upon each other; and this is the cause of their motions through space. Nor will any one deny that motion canses friction ; that in its turn engenders heat and light; that electro-magnetism canses the cohesion of all the molecules whose aggregate composes the universe is a well admitted faot. It is, therefore, the verse is a well admitted fact. It is, therefore, the
life-sustainer, the soul of the whole creation, of which our reduced planet is bat one of the smallest atoms.
I have said that electro-magnetism was the agent that produced the heat of the earth. Let us see if my assertion is sustained by facts ; for only through the observation of facts, and a clear unprejadiced mind, can we compare them together and arrive at the knowledge of their canses, and to the causes of these cyuses that form the catenation of the natural laws, whose understanding and interpretation is 8 sience.

The earth swims in a medium-a universal fluid that fills all space. Call it by whatever name yon pleas:-ether, cosmic flaid, imponderable fluid. This something is obriously matter under a certain form. It has been asserted to be composed of 64 elements that Graham has classified into six series or classes. This something, being matter, offers resistance, and opposes the forward motions of
the bodies that pass through it. Of coarse it the bodies that pass the forward motion of the earth in its movement round the snn, and throngh the immensity where it follows this body in its rotary motion around an unknown centre. This resistance not only causes the diarnal rotation of our planrt ; its conical movement, which it accomplishes in 95,868 years; its vibratory motion that produces the phenomenon known as tides; but also as the carth forces its way throngh the universal fluid at the stupendous rate of 30,550 metres per secorna rotary motion, a large amount of continuous friction is produced throughout its whole surface, but par-
ticularly at the equator, where the globe is larger. Friction, anywhere and everywhere, creptes heat. It is, therefore, impossible to doubt that this is one of the causes that produces heat at the surface of the earth. That heat so generated darfag countless ages has progressively and steadily permeated its saperficial strata, and is preserved in the inferior ones, not exposed to the external canses of refrige-
ration, like those above, is obvious, and men find it ration, like those above, is obvious, a
there when they penetrate into them.
I might illustrate my proposition by the example of the cannon ball, that when discharged from the cannon's mouth, is cold, but after having traversed the air at the rate of 500 or 600 metres a minute, is very hot at the time it reaches its destination; but the process of refrigeration begins from the surface toward the centre; and if we split it we find that the interior is yet hot while the external parts are quite cool. What is our reduced planet but a very suall cannon ball, that has become heated traverg-
ing the cosmic matter, since centuries, at the frightful rate I have just mentioned ?
2. The rays of the sun are another cause of the heat of the earth. These rays are not hot, certainly not ; the snows that eternally cap the highest mountains prove it. How then can they impart heat if they are cold? Oh 1 electro-magnetism again is at work there. It is true that the rays of the sun do not convey heat, but they carry light. Light pats in motion the molecules that compose the atmo-
sphere. They rub one against the other: there is friction; friction engendershest-the atmosphere in its lower strata being more dense, the friction is greater, consequently more heat is evolved and commanicated directly to the surface of the earth. It penetrates its lower strata. and there is preserved, as already stated, increasin
ducad by the first canse.
It is not relevant to prove how the rays of the sun carry light throngh electro magnetic anency. The olectric lamp of Servin is a good illustration of how electro-maguetism engenders light. The san, immense reservoir of electro-magnetism, we may con sider as the positive coal of Servin's lamp-the earth enother reservoir but smaller, the negative coal; the light produced is in proportion to the distance of the two poles.

All bodies," says Mr. Jacobi, of S. Petersburg, " are magnetic in a larger or smaller degree. The
earth is a vast magnet, and so are, without a donbt, the other planets, their satellites, and the sun itself."
roduce rays of the sun, acting throngh, or rather of terrestrial heat.
3. The internal heat of the earth is also due to the immense chemical operations constantly going on ander the agency of electro-magnetism, at no greap posed crast of the planet.
This, as far as we know, is a vast conglomeration of metallic and mineral matters, which, in order to combine, only need the action of the agent. This agent is electro-magnetism. For, as says the translator of Lyell's Geology: "It would be a great error to believe that the action of electricity is powerfal only when noisy and sudden. Its tacit and quiet action throughont nature is far more important. It extends its influence in nearly all combinations. The chemical affinity itself does not seem to be but a variety of electrical attraction. And since the constant reunion and the quasi-identity of the elec. trical and magnetic fluils has been demonstrated; since the phenomena of the magnetic nee lle, those of the thunder, of the electric fluid in the air, and its dispersion, ind an explanation in the action of electro-magnetism, well may we presame that electro-magnetic currents circulate in the interior on the electro-magnetic properties of metalliferons veins have led to the discovery of marks and vestige
carth.'

We all know that chemical combinations, fecompositions, and recombinations take place iucessantly in the vast laboratories of the earth. These nperstions are nothing else but the result of the action of electro-magnetism on the molecules of matter.
These are in continual motion. During their travel These are in continual motion. During their travel
they evolve heat, in consequence of the perpetual friction they are subjected to. Hence the chemical operations going on in the interior of the planet are another and third canse of its heat; an
sustainer, electro-maguetism, the agent.
4. The oxilation of metals is another cause of the heat of the earth.
It is a trnth known and demonstrated that currents of electro-magnetism traversing metallic bodies produce oxidation.

The carth, or at any rate that portion explored by man, is a conglomeration of mineral and metallio bodies. These are constantly traversed by electromagnetic currents. Oxidation then takes place incessantly and produces an auginentation of tumperature. Slow, it is trae, bat constant

Leaviug aside all imaginings, which should never be invocated in the elucidation of scientitic questions, as it has unhappily too often beon the case in the very one under cousideration, I will try to co-
ordinate the truths enunciated, and direct their
light into the darkness that surrounds the mystery of the earth's convalsions, and try to discover the part they play in

4. The Productions of Erarthquakes and Voloances.

What are volcances? Are they the safety-valves which prevent our poor little planet from bursting like a bomb and seading us flying towards the skies, as some pretend?
This question I will answer by another. Who woudd ever imagine to inquire if the boils, that sometimes, under the infuence of certain patholo. gical conditions, appear on the homan body, are the parety vaives, intended

If there are no central fires : if it is mathematically, scientifically, nay, materially impossible there should be any, what is the use of vents or valves? If the planet is a
run of exploding?

Bat let as sappose, for an instance, with Buffon Zimmermann, Humboldt, Cavier, La Place, Beadant, and many other illustrious defenders of the existence of an internal ocean of fire, whose burning waves sweep, ebb, and flow against the walls of the thin shell on which we live in imminent danger, and examine if the vo

Oar first step will be to ascertain the number of Volcanoes and the size of their craters.

Geographers tell us that there are 163 , the posicions of which are perfectly known: 67 are on con tinents, 96 on islands; adding this most singular fact, that none of these situated on continents are
at a distance exceeding from the sea more than at a distance exceeding from the sea more than
75 miles in an air line-a peculiarity that I com mend to your attention.
Humboldt asserts that they number in all 223all active: Keith Johnston declares that there are $270-190$ on islands, 80 on continents.
Never mind what these anthors say sbout the number of volcances; I will grant that there are many more they knew nothing about. Let as be generons and double the number, so as not to be accused of trying to crawl though small hole if, by-and-by, volcanoes prove to be such.
Our next step will be to ascertain the size of the chimney or crater of these vents.

Geogra phers, again, tell us that the crater of Vesu vins, one of the largest known, is 2.000 metres in circumference. Let as continus to be generons, and sar that the average opening of all the craters is
3.000 me tres in circumference. One thousand in 3.000 me tres in circumference. One thousand in
diameter, the 20,000 th part of the supposed thickdiameter the 20.000 th part of the supposed thick-
ness of the terrestrial crust. That is, admitting that the chimney is of the same size all the way down.

What is a hole of $1,000 f t$. in diameter compared to the whole surface of the globe? It is not even as much as a hole made on one of the terrestrial cambric needle.

Now, by way of illustration, and in order to keep all due proportion, let us suppose one of these globes to be one metre in diameter, hollow, made of the most refractory metal-say platinum-the thickness of which, in order to correspond to the thickness assigned to the supposed crust of the earth, would
be three millimetres. We shall proceed to bore on be three millimetres. We shall proceed to bore on
the surfacs 550 small boles with a fine needle. These will represent the volcanoes or safety-valves. After these we shall introduce into it-throngh an opening left for the parpose, to be afterwards closed and the covering solidly consolidated, so as to present the same amount of resistance as the balance of the surface-two parts of filings, one and a half part of pulverised sulphar, and a sufficient quantity of salted water to make a soft paste. When the chemical decomposition will take place, and the heat so intense as to melt the whole mass into sulphuret of peroxide of iron, the water will have been converted into steam, this again into gases: do you imagine that the $\begin{aligned} & \text { permit a sufficient quantity of steam or gases }\end{aligned}$ to escape, and prevent the apparatus from bursting? Will even any steam or gas escape through these iittle openings
can the 550 volcanoes that will say, no. Then how Can the 550 volcanoes that we have supposed to exist on the surface of the earth be considered any
longer as the safety-valves of the great liquid heart longer as the safety-valves of the great liquid heart
anid by some geologists to occupy the centre of the planet?
Their assertion cannot stand the tonchstone of science. And the truth of our denial is the more obviong. if we take into consideration that not onetenth of the known volcanoes are in activity; and that those which are active do not continually throw out lava; which they would if connected with the central farnace.
From all that I have just said I think I may safely dednce that the volcanoes are not the safety. valves of the caith, but mere local accidents on it surface, just as boils are on the human body.
There is another remarkable fact connected with volcanoes, without an exception bave. That all and are situated on, primary formations; sbowing
that the combination of porphyric or granite rooks with the metallic veins found in them is the only one capable of giving birth to volcanoes, through the agency of the electro-magnetic currents that traverse
them. It is ont of the limits of this article to enter into a nomenclatre of all the sabstances found in the superficial strata of the planet, whose nuclens seems to be formed of granite, syenite, protogine, diorite, pegmatite, and porp
direction by metallic reins.
It is woll metalic veins. these mineralogic and matanever two or more of these mineralogic and metallic substances are pat
in contact, and thoroughly wetted with salt water, a chenical decomposition takes place evolving heat, the more extensire the decomposition the greater the amount of heat

It may even reach incandescence ander certain circumstances; sach, for instance, as the influence of the san or other celestisl bodies, that, acting one on the uther as powerful magnets, engender
immense voltaic arches, scattering throaghout the immense voltaic arches, scattering throughout the
boundless fields of creation light sind heat boundless fields of creation light and heat.
Then, Wherever a large quantity of these sabamount of heat developed, which ander proper con. ditions will give birth to a volcano. This is also one of the causes of the multitudinous variations that are observed in the temperature of the divers parts of the earth, even at the same depth.
It is a fact very evident, that if that heat had its source in a central fire that would emit an inconceivable quantity of caloric, the thin crust would be qually heated, even to the top of the highest
mountains; seeing that the Gaarisconkar, in the mountains; seeing that the Guarisconkar, in the
Himalभya, said to be with the Illimani and Sorata in Bolivia, the highest peaks of the globe, is only 9,000 metres in height, that is to say, the 1400 th part of the earth's diameter.

-Are There any Means of Detecting the

Places where such Accumulations Exist P
Seems to be the next very natural query that presents itself to the mind.
If you read carefnlly the history of all the volcanic eruptions; of all the great earthquakes that have bried the inhabitants under their rains, you will find that premonitions have passed anheeded, becanse there were no inquiring, no scratinising minds to take note of them, and draw from them the proper inferences. In many instances sulpharons vapours have been seen arising from the ground; strange and mysterious undergronad noises are heard, inspiring awe and terror alike in men and beasts; mineral waters are seen to be altered; soft waters are seen to become turbid in wells; the level of these waters is changed. Sometimes even the wells In caves. cellars, excavations any apparent reason. In caves, cellars, excavations, carbonic acid gas is
noticed to emauate from the soil: magnets lose noticed to emauate from the soil; magnets lose
their power according to the force of the impending convalsion.
Experience has taught men to recognise in these phenomena the symptoms of a mighty noderground work-the signs of some terrible cataclysm near at hand, and the same are observed in the artificial volcano of Emery. Pliny the Junior, in a letter to Tacitas describing the death of his uncle, ascribed it to snffocation, cansed by the sulphurous vapours emanating from the ground, and calls them the
forerunners of the catastrophe. It is well known that the sulphar mines are invariably found in close proximity to volcanoes-nay, in their very crater.
I have said that on the continents none of the volcanoes are at a distance from the sea exceeding 75 miles in an air line. By some means or other the waters of the sea penetrate into the inthe lava and the smoke coming out of the fring from the lava and the smoke coming out of the craters
are the same as would result from the decomposition are the same as would result from the decomposition
of salt water, and deposes large quantities of chloride of sodium. It is then that the salt water, coming in contact with the primary materials, canses the chemical decompositions and the generation of sulpharated hydrogen gas.
The sulpharets of potassinm or sodiam possess the property of decomposing the water at the mean I will try to
I will try to explain.
(To be Continued.)

CEIPS

The United States have about 5,000 telegraph statinns, 75,000 miles of line, and over 7,000 employes, and
transmit over $11,500,000$ messages annasly It may be leid doon meseages namaily
larger may bo haid down as a general principle that a larger proportion of white flowers are fragrant than and lastly blue ; alter which, and in the then red, and labily bine; aiter which, and in the same ordor,
may be reckoned violet, groen, orange, brown, and black.
A Berlin lithographer has, it is said, after years of stady, suoceeded in inventing inimitable paper money.
The colour of the paper is the only secret on which the invention resta. The inventor says the colours candot bo chemically analysed; 01 appiring the mag. coloars, and in their quality as coloars they cannot be

SOIENTIFIO SOOIETIES.

ROYAL SOCIETY.

The Conneotion Between Colliery Explonions and the Weather.

A T a recent meeting of the Royal Society a paper Scott, F.R.S., and Mr. W. Gralloway, from which it Scote, F.R.S., and Mr. W. Gralloway, from which it
appears the authors conclude that they have estabappears the anthors conclude that they have estab-
lished a connection between meteorological changes and explosions in mines. After briefly detailing the and explosions in mines. After briefy detailing the various instances of late years which directed cheir attention to a stady of the subject, from which we
gather that out of 525 explosions recorded is 1868 1869, and 1870, 49 per cent. may be reasonably connected with disturbance of the barometer, 22 per cent. with abnormally high temperature, while 29 per cent. are not traceable to atmospherical agency, the authors go on to say :-It may not be out of place to discuss briefly the manner in which an increased supply of gas or a diminished sapply of air, brought about by any of the causes alluded to, leads to a fouling of the ventilating current in its passage parity or fonlness of the ventilating carrent affects the condition of the air in places adjoining its course. The gas flows from the fissures of the coal and tone either into a ventilating current by which it is carried out of the mine, as when it escapes at the face of a long-wall working or bratticed bond,
or from the sides of an air.course ; or, or from the sides of an airsconrse; or, that in goaves and cavities in the roof whence stone has fallen in unbratticed bonds, or in recesses between pack-walls in long. Wall workings. In any of these latter cases it diffuses itself into the surrounding air, and an accumulation of a more or less explosive character is generated. As long as the average quantity of air is circulating in the mine, and the quantity of gas which escapes into the workings is not suddenly increased, we may take it for granted that little danger exists, for the districts of the mine in which explosive mixtares are to be met with are clearly detined and well known, so that precautions can be taken to prevent ignition. As soon as these conditions are in any way changed (i.e., if the supply of air be diminished in quantity
or deteriorated in quality by an increased escape of gas) explosive mixtures may make their appearance gas) explosive mixtures may make their appearan.
in places where no danger had previously existed.
It may be assumed that a ventilating current consists of pure air when it starts from the end of the in-take air-course on its passage through the workings, and that for every equal space it travels between the in-take and return air-course it receives an equal quantity of gas. Thus, when it arrives at the return air-course it consists of a mixture of air and fire-damp, whose constitution depends on the quantity of air passing through the workings, on the rate at which the gas escapes into it, and on the distance between the in-take and return air-course. It is, therefore, evident that if either the supply of air be diminished or the supply of gas increased, the resulting mixture will be ren dered more explosive, not only in the return air course, but also at every point of the passege between the in-take and retarn air-course. If then, from any causes the mixture shall have reached the firing-point when it enters the return
air-course, any aggravation of these causes would air-coarse, any aggravation of these causes would
make the firing point to travel backwards through make the firing point to travel backwards throagh this manner the ventilating current may itself be come explosive in some parts of its course. Again although the ventilating current itself may never become explosive, its gradual fouling may cause explosive mixtures to be generated in certain places, such as unbratticed bonds, recesses between pack-walls, and cavities in the roof in the following directly referred to these.
Figs. 1 and 2 represent sections of the workings. R is the roof F the floor, C is a point where the ventilating current passes in a direction normal to the plane of the paper. In Fig. 1, abc is a cavity in the roof which is flled down to the level $d c$ with a mixture of air and gas. Ges may flow into such a cavity from a fissure in the sides, or from any lower part of the seam along the roof and under the edge at a. In Fig. 2d $c b$ is an unbratticed bond, receiving gas from the face $b c$, filled with a similar mixture down to $d c$. The space occupied by the foul air is which is cach case, and e far alane bounds the lowest part of the accumulation, is level, and here the mixture containg the least proportion of fire-damp; the impurity of the air increases with the height, and the foulest atmosphere is found at b, the highest point of the cavity. If any gas how
into the cavity a corresponding volume of the contents of the carity is displaced and escapes into the ventilating current. Difiasion is also constantly ventilating current. Difiusion is also constantly going on; and as the result of this process is to
produce below the plane $c d$ a mixture lighter than produce below the plane $c d$ a mixture lighter than
the ventilating current, this mixture rises along the roof and is carried away at C (Fig. 1) d (Fig. シ)
Cas is therefore constantly being removed from th.
caritr, partly by displacement, partly by diffnsion, and it: quantity is exactly equal to that entering folled in any of the ways we have described, the fouced in any of the ways we have described, the
space below the plane $c \boldsymbol{d}$ will be filled with the space below the plane $c d_{\text {will be filled with the }}^{\text {same mixture as that in the ventilating current }}$ same ruixture as that in the ventilating current carity up to a certain level ef be less foul, and thercfore heavier than that which now forms the ventiluting current, the volume of air, \&c., in the space d of c will be displaced, and no further escape oi cas can take place from either accumulation antil the whole of the contents above the line $c d$ are more foul than the mixture below c d. As soon ment will go on. In order, however, that thorate of diflusion may be the same as before, the specific gravity of the whole mass must be reduced, for the squary roots of the specinc gravities of the mix-
tures above and below the plane $c d$ mast bear the tures above and belorv the plane c a must bear the
same ratio to each other that they did before the same ratio to each other that they did before the
carrent became foaled. This reduction of the specatic gravity is, in other words, increased foulness of the air. If, then, the mixture in the space $c b$, was previously near the firing point, it is obvious that any impurity in the ventilating carrent will canse it to approach nearer to that point, and so
eventually an explosive mixture may be generated eventually au explosive mixture may be geuerated
in a cavity while the ventilating current itself is aon-explosive.
It will be seen that by the above process a quantity of fire-damp may be stored up in sach a cavity, which can only escape yery gradually, after
the ventilating current has become purer. It follows. then. that if au explosive mixture has been formed in places and under conditions similar to those described, some time, possibly several days, mast elapse after the canses which have led to its formation have disappeared before the contents of such a cavity ahall have been rendered innocuous again.
A few words on the subject of the dependence of ventilntion on temperatnre above ground may not
be andesirable. When the temperature of the air at the surface is less than that in the mine the phenomenon called ustaral ventilation ansues. The colder air which descends the downcast shaft is heated nearly to the temperature of the workings on its passage through the air courses and along the working faces, and when it reaches the upcast shaft it has a temperature which is nearly constant if the workings are extensive. The temperature of the workings increases with their depth from the sarface; thns, speaking generally, it is 50 deg . at
50 fathoms, 60 deg. at 100 , 65 des. at 150,70 deg. at 200, and so on. Now, natural ventilation ceases when the temperature at the surface is the same as that in the workings, and, moreover. as the tem perature at the surface rises above that point there The amount of the force which produces natural ventilation is still forther modified by the chnoges in the hycrometric state of the almosplere. For instance, if the tension of aqueous vapour in the air is less than that due to the temperiture, water will be evaporated in a wet downcast suaft, and the
air will ngt be able to rise in t (mperature as it air will ngt be able to rise in temperature as it
descends, and may be actually much colder at the bottom than at the top of the shaft. These considerations will show why shallow
mines are much less easily ventilatod, and also mines are much less easily ventilatod, and also
much more affected by sarface temporator , than deep ones. Whatever be the artiticial means sdopted for producing ventilation at any mine, the quantity of air passing through the workings must vary with every variation of the natural force, anless the artificial power be changed at the same means for ascertaining what is the actual quantity of air supplied to the workiags at every ingtant, a of air supplied to the workiugs at every instant, a
slight decrease, sufficient to bring the colliery into a slight decreane, safficient to
dangerons state, may take place without being noticed. The first intimation in such a case is the Couling of the carrents; the artiticial power may then be incruased and tho crisis passed without accident, but if an explosion takes place there is no trace of its cause discoverable.
Under ordinary circuusstances, in the lower parts of small accumulations of explosive mixtares there is a stratum of air containing less gas than is requisite to make it explosivo ; and when the miner raises his candle into this blt he is warned by the increasing size of the "cap,' the blue fame of the gas seen on the top of the candle flame, that there is an explosive mixture above. When the air in the mine lecomes very pure this stratum disappears in many cases; there is no longer a space between the pare air, in which fire-damp cannot be distinguished, and the explosive
mixture above. aud the gas is then called "sharp," mixture above, aud the gas is then called " sharp,"
becanse it ignites without warning when a caudie because it ignit
is raised into it.
The authors take exception to Mr. Dobson argument, in which he concladed that the march of the explosion carve coincides with the march of temperature, wihi a relative maximum occarring in serious storms at that time of the year. In order to test this question of periodicity, the anthors have collected fro
all the rocorded explosions for the last twentr Fears. The explosions are only the fatal ones, anil include a few accidents due to suffocation by choke-damp," or carbonic acid gas. They con-choke-damp," or carbonic acid gas. Tbey con-
ider that they may fairiy count such accidents as sider that they may fairiy count such accidents as
due to causes closely related to those which produce due to causes closely related to those which produce
explosious of "fire-damp." They plotted the whole explosious of "fre-camp." They plotted the whole seveuty-three intervals of five days each, and fornd that the curves hardly showed any agreement with cach other, so that no confirmation was obtained for Mr. Dobson's alleged periodicity. The curve for the entire period of twenty years, inclading 1369 accilents, was also constracted, and all that is worth notice about it is that the number of accideuts is somewhat grenter in October than in other months. The absolate maximnm falls at the end of January, anil the absolute minimum in the midule of September.
The gas commonly called " fire-dsmp," to the mixture of which with atmospleric air the formation of the explosive mixture in coal mines is due, exudes from the coal at a certain pressure, so that the rate of its escape must, to some extent, depend on the pressure of the atmosphere, especially in the shallower mines, where the tension of tie cas is not great and the fissures are open. On the other hand, the effect of a given quautity of gas in rendering the air of a mine explosive must depend on the sapply of pare air to the workings. It has long been observed that when the barometer, after having stood at a high level for a time, begins to fall more gas in the goaves and fissures of a mine emit part of their contents into the ventilating carrents which flow past them. It is also well known that as the very existence of these carrents depends, in almost every case, on tha difference of temperature between two columns of air, those in the downcast and upcast

shaft respectively, any increase in the temperature of the external air, from which the downcast shaft receives its supply, mnst necessarily render the circulation andergronnd more slaggish. It is, therecore, obvious that the tendenoy to explosion will be increased when the ordinary causes which lead increased When the ordinary canses which lead
to the foaling of the air in a mine, such as falls of roofs and leakages in the air-courses, are assisted from without by the meteorological phenomena jast mentioned; and several investigators have compiled lists of explosions, in order to compare them with the meteorological observations which bave been recorded prior to aud at the time of the accidents. One serious disturbing canse however, interferes with the valne of the curves of pressure and temperature plotted from the records of the observatories, arising from the weekly suspension of work in the collieries, and in many instances of ventilation, too, on Sundays. There can be no doubt of the coincidence of certain serions explosions with severe storms ; a notable instance oxplosions with severe storms ; a notable instance but? the explosions do not happen only at the commencement of a barometrical depression, bat occur also two or three days after the barometer has reached its lowest point, and is again rising. The canse of this prolongation of the tlangerous period is that when fire-dump issues in greater quantity
than naual from oavities and fissures into the than asual from oavities and fissures into the workings, and more especially into places where the air is stagnant and alresdy more or less foul by admixture of gas, the volume of the explosive porof the increased rapidity of diffusion, or, in other words, the explssive bonndary will extend itself. This extension of the explosive bondary is gradual, and in some cases a considerable time may
elopse beforo the houndary has roached its extreme limits and begins again to recede. Daring all this period the mine will be in an abnormally danerous state. Meanwhile, althoagh the pressare of the atmosphere rises, and a current sets in backwards into the carities, whence the pare gas has just issued. yet if the entrance to such a cavity be at a lower level than the highest portion of the space occupied by such escaped gas, which rises, owing to its less low density, it is evident that what is driven back into the cavity will be a mixture of gas and air, and that no portion of the gas which lies above the level of the aperture to the cavity can be driven back into it. Accordingly a certain volume of this pure gas remains, diffusing itself frecly andfouling the surrounding air.
It is evident from these considerations that in the case of continued unsteadiuess of pressare, and repeated violent oscillations of the barometer, we nced not expect that each of these reductions of pressure will cause the eflux of a quantity of gas proportionate to the extent of such reduction. If the successive falls of the mercury are of less mugnitude than the first. or than any previous one in the series, the quantity of ges given off cannot
possibly be as great on each oceasion as if that fall possibly been preceded by a period of high pressure. If. however, any of the latter oscillations be more serious than their predeoessors, a certain fresh supply of pare gas will be given off. Hence we see that, as a general rale, we do not find a succossion of explosions at a time when the barometer is in a state of continued violent oscillation.
Reourring to what has already boen said aboat temperature, it seems that in cold weather the ventilation of the pits is exceedingly active, many collieries being ventilated easily by natural means height of summer, however, it is dififerent; for then height of summer, however, it is diverent; for then higher, and the ventilation can oaly be kopt op by higher, and the ventilation ean oamy be kopt the by
the help of the farnace. In some cases, then. a sudden rise of temperature may catoh the miner unprepared, and where an aotive current would have remrined safe, asloggisb owo may become fon, and possibly an explosion may occur. Whether, therefore, the barometer falls or the temparature rises, it is absolutely necessary to keep a most careful watch over the amount of ar pasaing through the workings, in order to prevent the formation of dangerous accumalations of explosive mixtures of air and fre-damp in all mines in Which the margin between danger and safety is very smal. The one cry, whether we look to secarity against explosion, or to affording to miners an atmosphere
which is respirable without injury to health-is more air.

USEFUL AND SOIENTHFIO NOTBS.

Granulated Gold.-Since 1862 Signor Castallani has made experiments in order to recover the lost art of forming pattorns in grannlated wort in gold-that is, patteras composed of globales of gold almos miscroscopic in minuteness, eaoh soldered separately Hitherto thig art had baffled all modern ekill. Sarfaces conld be corered with the delicate granulated or powdered work, bat patterns such 8 g Greeks and Etrascans conld execate ere still a dosiderstam. No the difficalty has been surmounted, and it is to illostrate this reoovery of the ancient process that Signor workmanahip at this joear's International Exhilition.
The Gyro Pigeon-A novel application of the principle of the aierial top has lately boen effected by Mr. Bassay, of the Masenm of Firearms at Peckham. This is the gyro pigeon, which is a plate of thin steel cat into the shape of a pair of elongated oval disce, connected in the centre, and bent at an angle like the blades of a screw propeller. This is span from spindle which is rapidly rotated by the aetion of a coiled spring inclosed in a metallic box, and releace by a oord: The gyro pigeon is sprung into the air and is then fired at. It is good practice for the aportaman as its flight is rather quicker and sometimes more erratio than that of the real bird. Wo are afraid, however, that it is too mach to hope that the "gyro" wil take the place of the birds so unmeraifally slaughtere at Harlingham and elsewhere.
American Paper Car Wheols.- In thegho wheels, Which have lately come into nse in the Unithed Statos, the tire is of ateel, and when tarned ap ready lor the filling it is made taper inside, so that the invide dia meter on the fiange is q in. smallor than on the old boand oat into circles 30 in . in diameter, pasted togetyr with ordinery pas 30 . ind diamelor, pasted ngety whdrandic pressure of about 300 tans. This bloci after being Alowly dried for nearly two weeks in a Hry honse, is curned and fitted in a common pattern lathe The tarning tool is like that used for iron, bat the speed is about the same as is nsed for brass. Thi block thas tarned to at the tire is, of courso, some hydrablic pressare of about 400 tons is then at. hoarauice presgare of abont 400 tons is then ased
force the block into its place. The tire is heatc lorce the block into its place. The tire is haat perfect bearing when cool.

LETTERS TO THE RDITOR.

[We do not hold ourceloes responeitile for the opintonn of owr correspondents. The Editor reppectfully roquents that all a
pewible.]
All cominminteattone sithould be addrbssed to the Elditor of the Enotrsi Misorianic, 81, Troptotoob-stret, Oovent Gerden, W.C.
AII Gheques ant Post: Optice Ordier to be made payabl to J. Pxssyont Rowards.
"I would have overy one write' what he kotw, and we much es he krows, but no mors; and that not in this only, but in all other subjects: For such a person may
 and yet to keep a clatter with this lititie plittance of his,
will undertake to write the whole body of phyoichs: a

- * In orior to facilitiale regorence, Correopondento whick speaking of axy Iettor provioualy incortol, wolll oblige by on whiald aspeceres

AFTER "E. I G G."-THE DBLDGE:
[4i84.]-Bryors addrosing mytelf to the main objeot of thiy lother I mast remove min ertotroous impreacion whech miy own defootive mode of exprouion "rould prper to have produced. in the mind of the earty purt of the book) of the Binhop of Natal; when it firti approured; but that I had, as ho surmives, atteriy forgotion that it oontalued the oxpreasinat whion on pige 17 .
I think, howover, thet if "E. L. G." will read Mr. Sorope's bools, and the varione phepere scatiored through the Journal of the Geological Society on this subject, he will find that there are rarions indiontions which go to prove thats certain of tire voldneoer of Clentral France
hare, at all eventa, not been active aince a date in hare, at all eventa, not bean active aince a date in
comparison with which, that of his-imaginarycomparicon with which, that of his-imaginary-
universal delage is but as jestordey. "Grasa or bushes" may have aprung np last year ; but ashes, tnff, scorie, and lara are the product of a moantain itsolf; snd if we can fix, even approximataly, the epoch at which that mountain became quiescent, we most
diatinctly are entitled to consider all undisturbed diatinctly are entitled to consider all andistarbed
rolcanic ejections superposed on-or forming-it as voloanic ejections superpos
coevil with thimt quienconce.
I fail'to follow."E. I. G." in his orjection to the vellatyy of Piofeesor Owen's argument as vegativing the poseibility' of stiniversal Delinge. Il "all the high hills that were nader the whole heaven were covered" it is merty ircelentint to talk abous "the present goo what has become of the water 9 Dotubiest; there hive been deloges at divern times and in sundry pleces, and ome of thee probably gare rise to the moth among she semi-bioberous Heorewh, of the whote worid boing may gain muoh instruction from it. Byenciate it as a
 of the inflel and the sooter. I alwill not oontirme thits dicoasion, se it is absolatoly painful to me to ind and extensive informathon of ${ }^{\omega} \mathrm{E}$. L. G.,"'argaing in a why which he wouli'necot, were not (what he imagines to bo) theologleal internets involved in the ruattor in (p. 170. for proof that this is not an anwarmarited neouLation; and ask any impartial trathesoeker to romd Of his visits to Niagara (both alone and is company caraful mequaroments and calculations; and his per feotly candid summing up of the data on wirioh hie con "E. L. G.'s" sentence. "Not Lyell's ' 80,000 years,' whioh pleaty of his own observed facts contradict, but, 3 any real inquirer will ind, only five thousand ago." Will he favour us with his reacons, formed on the opot, for difrering with our great English geologiat
That is his defonition of a " real ingnirer"?
beginning to the end. If Mr. Gogee (leter 4097 from the beginning to the end. If Mr. Goase (letter 4097, p. 198) realy does value it es highly as he intimates, I can
only eay thet, like the Scotohman, he is "thentin' for only eay that, like the Scotohman, he is "thenkfn' for ama' maircies." Does he regard it as a mupplement to
that valable addition'to our Narel defunces, his own "Onphalos," long since in the hands of the butterman? A Pellow of thin Botali Aermonoindal Bociety.

TRANEIT OE THER ZODLACAL CONETELTIATIONS.

 -THE BARFOW LENB.[1135.]-Ir the object of your correppordent "C. A. B." (query 11766, p. 184) be to obtain a reply which shall fcoditate his "star gacing." he puld hardly have prita nore recless question than that winch to this reamon : that the "ongs of the Zndiac"
and (owing to the preceraion of the equinores) do not now, in any Way, correspond with the constellations whence thoy origioally derired their nsmes. For exmmple, the
co-callod "Arst point of Aries " is now in the Constel.
lation Pisces ; the first point of Tauran in that of Aries, and so on. Assaming, however, "C. A. 8." to be
familiar with this, and to require the information he facmiliar with this, and to require the information he arrat point of the sign Leo was on the meridian, within minute or two of midnight, on Jannary 2lat; the firat point of Virgn at the same time on Fehruery 21 ot; the point of point of Libra on March 28nd; the frat point of Scorpio on April 89nd ; the first point of Sapittarins will be dne south sbont thet hour on Mar 2nnd ; the first point of Oapricorntes on June 21st; the frst point of Aquarius on July 21 st ; the frot point of Pisces on Augnst 2lat ; the first point of Aries on September 20 th ; the first point of Taaras on October 81st'; the first poivt of Gemini on November 80th; and the flrst point of Cancer on Deoember 20th. Insiti though, after all, "O. A. B." shoald have put the question whioh he did to obtein information which might enable him to more remdily identify the Zodisoal constellations, I further append the deys in 1872 apon which the luotde or brightest star of eech of throse constellation fas or will he, on the meridian at the time which heppecifies: -a Geminoram (Cestor), then on the merialim abous midnight on Jannary 12th; a Cancri on Feb ruary 2nd; Leonis on Febrnary 20th; Virginis on ruary 2nd ; a Leonis on Fobrnary 20th; a Varginis on
April 10th; and a Libra on May 2nd ; while a Scorpi April 10th; and a Libre on May 2nd; while a Bcorpii July 10th; © Capricorni on Jnly 24th; Bagittaril on July 10th; © Capricorni on Jnly 24th; a Aquaril on Angust $20: \mathrm{h}$; a Piscinm on October 19th ; a Arietis on
October 20 th ; and, Anally, a Tand (Aldabaran) on October 20th;

I really mast spologise to Mr. \&. W. Barnham (query 11712, p. 159) for having overlooked his question last week, until it was too late to reply to it. I may now toll him that a simple concare lens would destroy the achromatism of his telescope, and that the Barlow lens, which he will be compelled to employ, consists of a concare crown and a conver flint lens of focal lengths proportionate to their dispersive powers, the combinstion obriously aoting as a concaro. By a very simple formula, which it in unnecessary to repeat here, it may be shown that to dotible the magnifying power of any telescope with aliven eyepiece, if the distayce of the lens from (i.e., within) the foens of the object-glass be called d, then its focat loogth mint be 2 d. Mr. Burnham will thas see that he will attain his desired result by placing a negative metromatic lons of sin. focal length, Ain. Within the focas of his object-giass (or 861 in from it), his eyepieces fitting into the other or distal
end of the adapting-tube.
A FILLOW OP THI Royal Astromouncal Sociryt.

A. ChtinCOTHON ENGINE:

[4188.]-Ty "B.J. N." (4106, p. 199), is itheliffed to try and work out the ides be han, he may be qutto sure that thert is notiting impractioable atiout it: 'It' would be quite easy to make sach an engine; whether it is worth doing is quite another question, the arioner to which depends quon at present unknown facts. I hsve often said that the construction of a Gying machine is dependent, not apon occult problems as to the fight of bitas, ec., but eimply upon the possession of a powerul engine of light weight (to which aluminiam bronze would greatly contribute), and a source of concentrated power or fuel, also of light weight. In fact, we know hat if we can press an inclined plane against the air with a certain velocity it will rise and sustain itself, and its progress forwards would then deporl apon the
angle of inclination. All that is neededis' the engine angle of inclination. All that is neederin' the e
capable of maintaining this preamure practicelly.
Engines have been devised to be drivon by gatipowder and gan cotton, having greater energy and bethg more controllable, would probably be better. The quantity might be adjasted to the work readily enoaghy just at in some inatances the governor adjusts the atemin valres and quantity of steam admitted for essh strokt.

Sioma.
 ALIAS QUERR FIDDLES AND PIPES.
[4187.]-I sHoULD be greally obliged' by any assistance in an intended paper on the above asbject, which my fellow readers can afford by contributing descriptions-or references to sach-of the antjoined wind and stringed instrimerts of muric, stating the means by which their sonnds are produced, the quality or timbre and relative power
Corno de Basseto : (Italian, I believo) A apeotes of alarionette.
Melo DI Cow: Said to have been invented by Riffel, probably a kind of harmonicor with metal bars. Octo Eass: Possibly a kind of bombardon, or perhaps a very big fiddle.
Harmoricioome: Said to have been invented by Kanfmann, probably a species of mechanical keyed fiddle.
Cromse: Probably a kind of baysoon or bass diarionetto.
ADIA Pronon: Inverted by gehneter, of Viemas
abot 1890 ; I boliopa a STMPEONION: SAld to have been invented by Kanfmann.
Cravacin de Amode: Probably a variety of the herpalehord-its poctiliarities and why so called. Anmo Crorda: Probably a variety of the Eolina harp.
clacs
$\xrightarrow[\text { Al. }]{\substack{\text { clase. }}}$

CONOBPTE MOLITPTICAMION.

[1188.]-Ir is never worth while to dispate about words, and therefore, in roply to "No. 170," and "M. A." p. 199). I will readily concede that the form in which did. A." (and beforo him "E. L. G.") expresses the des is better than mine. The ides itself, however, is precisely the same; we may maltiply feet by feet (or any other measures of length and we do thus obtain result which has an actual existence-l.e., a measure of area exprossed in a square unit, whether we say that this is "becsuse there is snch a thing as a square loot " with me, or rith " E. L. G.," that it in an arith metical dodge, and with "M. A." that we give a new and arbitrary meaning to the nnit, of which the prodicot represents the mnitiple. Bo, having thas mnitiplied loet by feet, and obtained a measare of ares in square feet, we again can multiply by feet and obtain a result Which has an actual existenoe-riz., crbe feet, a measure of contents. Here we stop, we cannot for a third time
multiply by feet, beeause there is no really existing multiply by feet, beesuse there is no really $e x$
fact or thing which the prodict woald reprosent.
What we hare, therefore, to consider is not Fords, but things and facts. We maltiply 10 ft . by 5 ft., and we hare a true rennit, sn area equal to 50 square areas o 1ft. ; we multiply this by 9 ft., and we exprest in our result an actual fact-viz., our ares of 50 square feet
with a depth of 2 ft,-i.e., 100 cabes of 1 th . Now, this with a depth 6 2ft,-i.e., 100 cabes of itt. Now, this is not eoncrete multiplication, it is not a true maltipli
cation of feet by feet ; it only uhows the meaning of cation of feet by feet; it on
the rules in the arithmetics. the mathematicians lining, were to assert that we could maltiply 10 pounds by 5 ponnds, either weight or money, their assertion would be eimply a monstrot fallacy ; for what existing fact, or what conceivable ides, is represerited by the figures : 10 pounds maltiplied by the number 5 means 10 pounds taken 5 times, and all added together producing 50 poands ? But how are you roing to titre 10 pounds- 5 pounds times, and add them?

A schoolboy boys (wo will say) 10 marbles for a penny, and having 5 pence, ho expends his capital in marbles and maltiplies his stook to 50; but let him have 10 marbles in one pocket, and five in the other, and what possible multiplication can he effect, other shan the ordinary prosess of winning those of his schoolfellows'? He may, if he plearigi, 80 to any of the arithmetics whioh profens to toll him how to do it, and atudy the first and second bootse of Fraclid for a month, whin the advantage of "No. $170^{\prime \prime}$ " " acrintanco, and if at the and of the month he succoedi it doing anything with his marbles oxcept shifting both into one pooket, and bringing out a total or produot of 15, than, and not till
then, vill the possibility of conorete maltiplication be then, vil
proved.
proved.
Further, if concrete multiplication wore a ponability as "an arithmetioal dodge," Why shonld there be any more diffenlty in multiplying poande by yards thar by ponnde. The real explanntion is, that concrete numbers are only susoeptible of addition and subtraction, and then only as compared with the name concrete objeot. You carnot add, for instance, a pint of water to a pound of flour, and produce anything which a nomber compoanded of them will

Srama.

SOMETHING WRONG WITH JUPITER.

[4189.]-HAD Mr. R. A. Prootor doferred his artiale, written for 8t. Poult Magazine about a year ago, on "Something Wrong with Jupiter," he would hare had ome strong additioned evidence to support the title after reading Mr. Ralph Lowdon's letter (4071, p. 176), and might have reasoned on the probsbility giant planet " becoming one day transparent. As I heve paid sttertion to the phemomena of
Jupitor's satellites for some time past, I regrot I was Jupiter's satellites for some time past, I regrot I was prevented by cloady weather from winessing the oxSraordinary "transit of the shadow of satellite 4 " on Jupiter's face on 14th Msroh, 1872, deseribed by Mr.
Lowdon with \& woodout, while the satellite itsoll was Lowdon with \& woodeut, while the satellite itgol wan at the back of the planet as Fiewed from ns; or, in other words, it was under ocoultation from 6.46 until 10.6 on that evening, as given in
for March " by "F.M.A.S."
We had lately some correspondence about the "re trogression " of the shadow of satellite 4, and we have now received evidence of it with a vengeance. From the woedcut of the belts of Jupiter, I prenume à dia gonal prism was nsed with inverting eyepiect, as the spot (whatever it was) appears on the northern hemiophtere. In the desaription We are carried rapidy to
Jopiter and back again. Altogether, the communicaJupiter and back again. Altogether, the commonication is very obscare, and is certainly amasing, if not
instractive. I donbt not your contribator "F.R.A.S." instractive. I doabt not your contribator little expected when he expressed his beinef (let. 4047,
p. 171) that we have not had a funnier commanication p. 171) that we have not had a funnier commanication Lowdon's letter (8366, p. 119) on a novel mode of taking
 rasible faculties again excited.

THE IMPROVED BCALE FOR TEE LEENGTHS OF PIANO STRINGS IN No. 872.
[4140.]-Tuis was drawn showing every stitig its full longth, so that a workman should only have to copy those lengtha when making working ganges. Consideratione of space induced the reduction of those lengths one-third. Ot course, when making his ganges he mast add one-laslf to the lengths shown in the diagram both above the hammer line and below it, which, with a pair of fine spring dividers he can do rithout
difmealty. THE Haramonious Buacrasith.

WHERE IS THE WATER GONE TO? [4157.]- VERY often havo I speocilated whether thare
 approach to a probable estimate of this important
qnantity in geologj-an approximate
Agnre to, I will not say the depth, whethor in feet or furlongs, of the general cometary minfall on the day and hoar of our
planet's leat actronomical catastrophe, I will not anr approximating to the number expressing the depth of this added layor of witer, bat to the logarithm of that number,-how maay digits the namhor of feet or Yards rather call the addition one of fathoms, or of poles, or chains, or farlongl, of frosh watar. We seem quite without data, eithor from present traces, or frnm the gueseing whether farlongs or only a fow fathoms would be the nearer meacare to assume.
Apart from the work obriously done in sooving the deposite the nemest "bond बweelaping or rether "dritt-gravel"-effectss affording no deenité measure of the quantity of water anless wo knew the exact force, tinet, me hoar by hoon, or minuto by minato, the height of anfallen stomem atmosphere above diminisbed; ferred from the strats is, that there was weight enough of newly-avived atmosphese to so far equalise the preceare over the whole globe's ilm (ralaely called aruat)-as far appronch equalising it on highlands
and seabede (which beds, observe, novo berr scores or
 bearr)-weight enongh no to modify thin diference
townrde equality, an to disturb the whole flm's equilibrium, and canse it to take a new form, zea-beds to rive mind highlande to sink, by a simaltaneons nutversal eandhquite and platonic movement, or as records
(traditional or not) call it, breating up, of "all the [flery] tountains of the abyus"-mhothar "fountains of some translators bay, be the right rendering. Just as now, over thin or tonder regions of the film, suoh as the Caribbean Islands are upon, the mere removal of a barometric inches of the unan prestare, suy or 2 , is difference onough to distarb the crast's equilibriam; so that in scores of cases since Colnmbar' time, a
hurricane has been instantli' followed by, or has began, hurricane has been inatantliy followed by, or has begnn,
earthquake shocke, and the last cyolone over St. Thomas set that island rooking for months, aftor yoars
of quiescence ; jast ao the arrival of the last new atmosphere (one evidently of steam) muat bave instantly done (all that the traditions or records relate it to have done)-initiated months at least of continental
and genoral platonic disturbance ; but at frrt of a kind just opposite to the usual partial ones, whereby, as Herschel insisted (and as even "Sigma" has heard), platonic aetion koeps oar lands above water. Instend
of weight taken from the land to the sea-bed, and of weight taken from the land to the sea-bed, and
added thns to the depressed scale of the balance, givin: added thns to the depressed acale of the balance, givin:
the raised scale from time to time a further litt, here the first action (whatever might follow) was a contrary one. equalising pressure, and so tending for a time toward goneral levelling of form and general inandation.
Now, if wo ask what weight of steam sufficed for this? 34ft. of water? or to ten (9ar) to the air -that is, to handred? in short, to fathoms of water or furloncs? - I see no conceivable data for an estimate. Even if we knew, or assumed (which I qee no snfficient grounds for
doing), that the bighest antedilarian peak were at doing), that the highest antedilavian peaks were at some moment covered, so that not only was every on-
drowned organism afoat (which, It think, was probably the case for a short time), but even no rock left nnsabmerged, even then, what know we of the height of such antedilavian summits, eithor abovo the antedilnvian or the present sea level? Our present highest ones, all the Himalayas, Andes, Alps, Elio-de-Beanmont, has proved to be the inewest, and to date from this last distarbance. The Pyrenees are the highest (now) of all that are known to have had any considerable height before it : and what height ? We know not, whether
double or half their present. Wo know not, of any two hills 100 miles apart (asy Snowdon and Malvern), which was the higher, the day before that "six handredth year
of Noah, the second month, the seventeenth day of the month ;" though we can be sure both were hills, and so higher than the Andes, which then were not hille. Bnt oven if it were asked, what addition of water would suffice novo, in a now delage, to snbmerge onr flve-millo Himalaya peaks ? wo know not whether it wonld take one mile, or half a mile. For aught that ant of us
knows, even that "Sigma". knows, a furlong night do knows, even that "Sigma" knows, a furlong might do
it; might have weight onough so to derange and reverse the relations of sea-bed and continent as to bring Dawalagiri's snows noder its wave! They and we alike are on a flnid (not solid) plobe, a ball of liqnid lava with a film (not a crust) over it, and, even if we knew all abont this, its thickness and structare every.
Where, what possible means of ascertaining this weight Where, what possible means of ascertaining this woight out a corot at command, where will he get the one or tro trillion tons weight required for the experiment?
That "comots" have "a mass too small ($p .196$, That " comots" have "a mass too small" " (p. 198, the Evalise Mscuanic, bat of all myths in any mythology, the boldest ventare, the most purely gronndless, I ever hesrd of ! "Comets i" Why, of the three or fonr handred on record, I eballenge him to
prove a aingle one too small ! Lat "Sigme "bring us prool of any single comet yet seon baring woighed 28
little as (say) a mile layer of water over the earth, 160 little as (say) a mile layer of water over the earth, 160
atmospheres, or a trillion tons. And comets,!remember,
have differed in their balk, the largest and least of this rentury alone alk inll a million to onol
This rariety in balk, but in appoarance as much This rariety in balk, but in appoarance ms much
variety as in any son things of one name-say a variety as im any 300 things of one name-say a
oabinet of 300 minerals! Jnst too very minor ones the spectroscope has been mado long ennugh to examine. And on the strength of this "Sigms" tells you, "they (comets) do not contain or consist of water "I Who
arid they did? Any comet "Sizma " chooses to name, I will grant bim, if he likes, to hare been of rabidinm vapour. For anght Iknow, Encke's is so; or thalliam, rapour. For anght kanw, Enckes is so or thalinam,
if he prefers it. Bat, mind, we cannot allow many to be of like materinl. Their looks ara too varions. be of like materinl. Their hooks are too rarions.
Morenver, if he likes, there shall never have been more ilorenver, if he likes, there shall never have been more
than one of steam-none before the last that fell on earth, nor since. What I bay geologr shows ir, that one earth, nor since. What I bay geologr shows ir, that one
fell 50 centaries ago (or betweon 45 and 55), enveloped the earth before falling, and that its material was steam; that one,-I know and say nothing of any other's materials.
Now, as "Sigma " aska, "Where is the water gone to 9 " he might ask the same of any other rainfall. Let 2 me snggest the same respecting some mill tail-water, of which Prof. Ansted writes in his "Visit to the
Ionian Isleg," 1863 , cap. XI., p. 322 :-" Δ carions natural phenomenon occurs, and is taken advantage of, in the neighboarhnod of Argostoli. At four points on the coast the ses, at its ordinary level, onters a very
narrow creek, or broken rocky ohannel; and after narrow creek, or broken rocky ohannel; and after
ranging somewhat rapidly throngh this channel and among broken fragments of rock for a short distanco it gradually beoomes sucked into the earth and dig. appeara. By conducting the water throngh an artificial caual for ar for yards, and so regalating its course, and forcing all the water that enters to pass in a single stream boneath an nudershot wheel. power enongh is
obtained in two cases to drive a mili. Mills havo, in obtained in two cases to drive a mill. Mills havo, in
fact, been placed there by an enterprising Englishman, ract, been placed there by an entarprising Englishman, and are constantly at work. The stream, altor being
atilised, is allowed to take its natural channel, and is atilised, is allowed to take its natural channel, and is lost among the recks. It is common enongh to drive a Wheel by a current of water gning from the land
towards the sea; brt it is certainly rare, and, as far as I towards the sea; bnt it is certainly rare, and, as far as I
am aware, pecnliar to this locality, to find mills driven by a carrent of sea water, acting quite independently of the tide, the wator constantly and steadily rashing in over the earth's surface, and finally disappearing. Apart from the facts that the water sacked into the earth is sea rater, and that it enters below the sea
level, there is nothing extraordinary or unnsual (1); for level, thero is nothing extraordinary or annsual (1); for
namerous instances occar in every limestone countey namerons instances occar in every limestones courtery
of streams, often of considerable dimenolong entering of streams, often of considerable dimensolosk, enterinf
into open fissnres and disappeaitug: . . But it is into oppa issares and disappearing. io Batiofy ousseives of the empty gtate of the limestone caverns close
to the sea and below the sea level, as ve oan at to the sea and below the sea level, as we oan at
Argostoli [catiofy ourselven of their ' empty state' by their Argostoll [satiefy ourselven of their 'empty state' by their
perpetual receipto 1], and for this reason, if for no perpetual recipth, and for this resson, if for no The general condition of the surface is as follows :The small harbonr of Argostoli is inclosed on both sides by the hard broken limestone rook, so common in
the islands. On the east side it rices immediately the inlands. On the east side it rices immeriately
into hills of moderate eleration; and on the west aino, noto hills of moderate eleration; and on the wert alio, the nasual level of the water, rising, aboat two or three handred yards from the shore, into a low
rdge, which, in faot, by its projection into the galf, ridge, which, in faot, by its projection into the gulf,
makes the harbour." According to his map of the island, p. 878, this " platesan " or peninsula is the only quare mile that he represents flat (with no hill shaded), and its area is under a square mile-leas than two
miles by half a mile-that of the whole island being miles by half a mile-that of the whole island being
possibly 300 square miles. "Betwcen the shore line and this low ridge, there is an evident depreskion of the surface in all that pa.t over which the
sen, when it enters, is ancted in. . . Bnt What, it will be asked, becomes of the wators of the ses thas poaring in continally to fill the cavern?" Let me commend this question to "Sigma." Instead of thensotical "comet's tail " water once, here is very
practical mill tail-water every day, that has ground the practical mill tail-water every day, that has groun
Profassor Ansted continues (p. 327): "The infux of water, howevor, is not small. It amonnts, as far as I per diam." for the two mills together." When ider, perhass, where the cometary wator has pone to. ... "It will be evident that if ses water finds its way into any large natural oarity, from which it is afterwards evaporated, a deposit of salt mast be taking place in this cavity, or in the rocks adjacent and connected with it. Absuming the inflax to be at the rate already mentioned, this may be ronghly estimated as oquivalent to an area of ten or twelve acres of solid interesting question to consider where this deposit of salt in coing on, and whether saline springs may not be Caphalonia that present any large quantity of saline Cephalo
matter."
Remember it is not I, but "Sigma," that finds any difficnity abont where the comet water of Noab's time has "gone to"? I simply hold it to have obeyed all not satiofy ""s as yesterday's shower. Bat as this dons consider and solve for us frat this Cephalonian quostion, as it is not theoretical. The mills being acertainably at work for years past (if not to this
day), and the corn ground and eaten from them, I retnrn his question as to these millions of tons of sea, "Where in the water (and the sall) gone to 9 "
E. I. G.

BELL PIANETTEE.

[4159.]-Mr. 8. Bottone (reply 11833) asye "a paten was thken ont or this ingtrument towards the lecter en of the last centary." I have oarefally lonked over yhe
list of masical patents before A.D. 1800, and omnot find Qnery, what was the name of the patentiee?
Dr. Cloggat, A.D. 1788, patented-or rather proposed in his patent of that date to make tuning-forks with familiar method was afterwards emploved by Loescbman in the terpodian, patented A.D. 1830 ; although I of Van Decimen of that instrument bearing the name in his Den Bargh and dato 1817; and M. Hiles states, mann misical dictionary, it was invented by Baschconstr, of Hambarg. Dr. Cleggat also proposed to uumber n new instrnment (of music) of a proper rods of metnis inning- forks, or of single prongs of times of old, I believe all the sounds of stringed muaicat instraments wore "boxed up," or at loast sapposed to be, aud the performer, is in Pandora, let the
often but too evil sounds out without, like that merciful young (female) persion, leaving the hearers any hope of better things. Ercepting that the proposod instroment had a sounding-board, I see no difference in principle between it and the terpodian. It can hardly be termed a bell pianette or a rod harpsiehord, for Dr. Clegrat does not suggest the employment of either plectra or hammers for vibrating his forks or rods, but that "a celentina stop, made by an endloes allet, may be applied, producing the sounds on (sic) thos barb inior with on atrings." No donbt Dr. Cleggatwe, patented A.D. 1773 , alico with the application of ita mechanism to the harpsichord-viz., the celebrated celestina stop of that instrament, not to mention the lyrichora of Prenius, A.D. 1741 . I append a verbatim copy of intoansheel or handbill containing statements very ateresting to all who desire to obtain continuors ing 1 s rom the strings of keyed iastraments, conoorning which may remark that, excepting in the inpianoforto Hamking's olaviol, R. Mott's sostinents piano manical we do not seem to have gone much ahead of the inverical capabilities of the prodactions of that clever the tror, always assaming the said handbin to atate must th ; but, alas I all statements in mavertisements being talysen cum grano salis, the said grain of ball ng laly anderstood to be as big as a bushel.
fela. As early clavicin Hol ; and Kirchor, in his "Masurgia Universelle," mentions the possibility of construeting such anin instrument. In A.D. 1664 Evolyn relates he gaw one with gut stringsen voritable lyricsoci-at a meeting of the Royal Society, the bow of whion was formod of parchment; and in 1717 Marias constarbter a model of a similar instrament (alias mechanicul Addle), wrich
model is, or at least was, in the meserme of the ccademie des soient
The only thing I can find whict neems to resemble the bell pianette was patented by Groll (1813), who proposed to construat a masical instrument of metal board at one or both enda. Hemmers applied to this instrum one or both ends. Hammers applied to this bat the inventor does not anggest their nese in fact, he only claims improvements on the class of masical inetruments whioh "afford their tones by friction applied to metallic enbstavees." The said friction he proposes to outain hy the violin bow, the endese web or riband of horsehair or other fibrons materiad, or by a rosined wheel, a la hardy-gardy. He, however, also proposes a very important practical improvament -riz., " applying the said friotion to a small atom, bars."
The earlient musioal instrument 1 remember in Which metal bars are struck by hammers is the design
of Mr. Goldsworthy Garney (A.D. 1833), and it is also one of the very Several patento himiest. cheapent, and best I hare even. tions of the bell, or rather bar pianoforte, of which that of Crawford (1882) is one of the most modern. Mr. Orawford, befides hammers, proposed to employ plectra similar to those of the barpsichord forvibrating his elastic bars or springs, probably in imitation of those very pleasing instruments the masical-boxes, which are rendered considerably londer by and all of on a resonant sarface. I find the sonndboard of a piano befcre the strince. I find the sonnaboard of a thin belly of an unglrang harpsichord yet better, the parpose admirably. It may be a wrinkle well worth knowing-ospecially to dealors in masical-boxes-that a sonndboard (aboat 30in. long by 20in. Wide, only $\frac{1}{t i n . ~}$ thick, strengthered by three bars \ddagger in. thick, aboat \ddagger in. deep at the midale, tapered to one-sixteenth of aninch at their ends) encrmonsly angments the loudness of their sounds. A late friend of inine, who dealt rather
largely in those mado by Niool Frere, had a boundboard of the abovo dimensions constracted to my design, which, being atained mabogany oolonr and ralsed on short pillars, had the appearance to his simple enstomers of a simple show-board standing on
his connter. He thld me this simple contrivanee sold him many mnsicall-boxes; and when I antred him if it was not troe that it also " sold" their buyers, he only answered "caveat emptor," which, at he wos an
Erangelical Charchman who swore by Lord Shaftesbry, ras, i sappose, the Christian (practical) rule for "doing your neighboars as they would do you" (is hey conld)
Should "
8hoald "Valre," or any fellow reador, desire to try
is prentico hand on the amatear oongtraction of a bell,
or rather a bar. pianoforte-which is far easier and cheaner to make than one with atrings, for in the provision of means for retnning required, as it nevor
gets ont of tmae-I think it would be no more than common pradence to purchase the following patents: Groll (No. 8531), prioe, with drawing, 4d. ; Gurne (No. 1543, A.D. 1869), price, with drawing ${ }^{\text {, }} 8 \mathrm{~d}$. The wonld render him familiar with most of the more im nortant things which bave been done in this direction. Hniner snifered "prettry considerable" from the folly oi things uysolf. I cau appreciate the advantages of starti: g from the 'rantage ground of the experiences of on tho many helped (as the Freach mit porement and discovery by falling into them, althongh I fear they Rest that the intending constractor purchase-I ne the word in its strict legal sonse of obtaiuing by any meanz, and not merely as baying-one of Mesbrs. very small cost. He can then see, or rather hear how he likes it on further acquaintanoe, and may-if larer, copy all that seems worthy of imitation. I ma add if a good treblo be desired I wonld advise him to employ vory light hammers, and to drive them with articles on "Pisunforte Actions," printed in Nos. 867 3 fr, and 870 of the English Mechanic
ar. Bottone says "no dampers are required." I am the eteel springs or bars ghich generate its sound mast be eddicted to that great evil-laziness, or at least retiring early to reat. The delects of most piano fortes are manirala, among them the woo early ces one, and this is what renders their tones "short;" but I never jot heard any piano with stringe whose tones necessary in the old harpsichord even when "baff stop" is on. Shortness of tone is to me an atter ased exclion, end, ir not a very greak evill ars the in atrament quite nnfit to render properly Mendelssohn's you cannot make such a piano "sing "anyhot.
Virbatim Cop!! of Broadside (Hambill) in the Chitham By his Majesty's Royal Letters Patont, granted to Rntgerns Plenias. Harpsichord Maker, for the sole Making, Uao, and Benefft of a new invented Musical Inatrument called a Lvriohord, which imitates
Violin, Violoncello, and Donble Bess ; bat. When play'd Violin, Violoncello, and Duable Bees; bat. When play'd Toner altho', by catzat strings only, withoat Pipes. It admits of playing Forte and Piano; an also of swelling any Single Note (or many noten, ad
Key, by yo simple Pressure of ye Fingera : 'Bat what is Key, by yo simple Pressure of ye Fingers : Bat what is
most surprising, and indeed incredible, if not seen (yet most surprising, and indeed vorrene), its atriugs never go ont of Tane, as long as ye constituent Instramen remain entire; a Thing which has been so long wisht doem'd impossible to find ont. This, therefore, is to inform ye Nobility, Gentry, and others, That yo afore said Rotgerns Plenius has now (aftor Ten years' painfal atady and Labonr, accompany'd with no small Expence) brought ye above-mentioued Instrument to Perfection. And ho hambly presames, that all the Gentlemen and Ladias, who will do themselves ye pleasure, and him
yo Honour of seeing and hearing it, will be fully con50 Hononr of geeing and hearing it, will be fally con-
vinced of yo Trath of jo foregoing Δ ssertions ; and at yo same Time be agreeably diverted by ye Harmony of yo Inatrument, it being esteem'd and approv'd by all
that have yet seen it; particularly by yo most eminent that have yet seen it; particularly by yo monst eminent
Mactors of Masick in England. Who allow it to be ye most curions Pisee of Workmanship, and most wonderful Instrament they have ever seen or heard of. The Price of seeing and hearing it performed on a
any Time between ye Hours of Twelve and Four oclock, ia Half a Crown eaoh Persoh, at yo Inventor's Hoase (ve King.s Arms being over ye Door) in sonth
Andley Street, Grosvenor Square ; where a good hand Andley Street, Grosvenor Square ; where a good
is protided for ye Entertainment of yo Andience.

The Hankomiods byackantite.
COMMONICATING ROTARY MOTION TO BALL FIRED FROM SMOOTH-BORED GUN.
[4159.]-I ndsains that had the first inventors of rifles taten a piece of gas-pipe aboat the size and length of a gan barrel, and made it red hot for about a loot at one end, then placed an inob or two of that and in water, ana looked down the inside of the pipe, smooth-bore; for they wonld have seen the ateam thus generated winding its way ont spirally, which I take to be the courss the gas orolved by the combustion of the
powder in a gun does take. It wonld, thorefore, bepowder in a gan does take. It wonld, thorefore, become apparent to them that all that they had to do to
obtain the spin for their projectile would be to provide a surface by which the rotary motion in the gas woald be receirod by the projectile.
That surface would be obtained by learing a projeotion extending a short way from the oircumference to the centre at the batt of the projectile, or, perhaps, theory of mine projoction. I should hare toatod working man I hare not the power. Perhapt Artillery Captain,"" or some other friend, eonld say
how far I am right.
Pancs Wado.

HOW WE SEE A DISTANT OBJECT
[4160.]-IN reply to "E. J. D." (let. 4063, p. 174), I would ask what be means by a pencil of rays. Rays from onmbngtion irsae and extend in every direction.
The Rev. Drvid Blair tanght that a pencil of rays is The Rev. David Blair tavght that a pencil of rays is
a parcel of them proceeding from a point; but no partiole of matter leaves the point and passes to the eye a mere impalse is given to the ethereal millions on
atoms which, from eloseness of jaxtaposition, almos andems which, from ceosaners of jaxtaposition, almos
inatiy communicate with every eve in tho line of radiation or in any line of reflection thereof; the ras then, is bat tranamitted palsation, and rays from every point of an ohject actink in every direction oompel
our acknowledgment that the altra-microscopic diminativeness of the ethereal atoma amaze un more with the infinity or smallness than we can be with infinity
of extonsion in stellar space. On the diameter o what we call a "point," it were bat gaesawory to estimefor anmber othereal atnma that might rapase Rehoetion of light bat repalaion or rebounding o of raso" thonall of rayb talling or alriking on the eye is bal a arcces convex surface, from whence the dirention of the impalsea canverge towards a focus which they reach on continnoas as hong the nerve: the impnises are continnons as honk as the combastion that they pro ceed from continues. Solar combasticn is the powe which imparts impetas to the etiereal pulaztion, and no the distanos of the sua is tho dialance of the power Whioh pronaces rellection. Glass is porous to the ther-atoms, but mercary soems to refleet neariy them all when palasiing in periods in soonrd with the inter change of atoms in the gaseons molecnles of the san.
We read of three sorts of pencils, cylindrical, divergent, and oonvergent, and, as Blair has it. they pro soed from points. The eylindrical from a flat aurface the divergent from a canvax, snd the coavergent from concave, jast as with the refocted chemica) atoms
of sonnd. We read, also (as in Ohambers's "Educaof sonnd. We read, aiso (as in Chambers's Edaca rays proceeding to (as), that a pencil is a parcel of concave mirror will oonverge reflected rays to a very brilliant point, but so immense is the sun that its ray are deemed parallel, the divergency being impercep the. But the number of palsations of ether-atomi that isil each seonad on a square inch of surfice are ori dently countless miliona, and we do not see any object colour, of shape so mach because thoy retiect rays ai because ther do not refleot inem. Where every ray is refiected, the coloar in shadeless white, and we only perceive degrees of diranoe and shadee of colour by or smaller amplitude being cat off by the, to them, non repalsive (or absorbent) natore of the impinged sar race. We see objecta, therefore, solely by their non reflection of rave, a red object being one that reflect none of the other rays of the spectram bat the red ones. Pencils of raps, if solar, nre parallel, and do not converge inl after thoy atrike the convex bariace
of the oye, and pencils from a point (so far from of the oye, and pencils from a point (so far from
coming to a focis) must be divergent when they strike he eve, the ether-atoms retaining theimpulse trans mitted at the surface of the sun, and unlens reflected from concave surface, suah rays cansot oonverge bofore when he talks of fresh pencils apringing up to sait When he talks of fresh pencils npringing up to sait dasige of position; the undalstory voint that catches direct sun ravs, and it is most absard to suppose that rars mast converge to a point before they enter speo tators eyps. A single pulsation will bestow light lasting ths one-eighth of a second on the retins, so that eight othor-waves por second maintain constant light. I see paper, bat whother with red or black ink is hardly plain. I cannot read a word till I put on my concar glasses, and then I make out indistinotly the large letters in the word "Bazaar." Now. Whr cannot I
read every line and letter in the placard ? Simply becanse I am too far off ; the ether-atom vibration-rays aro too fow to roseh me unless the diametar of my conver eye were mach greater, ro ss to catch more of
the direct pulsations from the placard. I see the shape size, distance, and colour of the placard: the pnlas tions from its oxterior and intorior are adequate for hat ; but the other pulaations from its interior are too ow sud ton mnch erossed for me to gain more than a hazy, indistinct pietare of the worde it boars. No obsere a very powerfal lime or eloetric light thrown on our placard, I might be able with mv concenes to read it all, it would so multiply the ethereal puisations from
We hear a band of musical instrumenta, and each of hundreds of hearers can perceive not only the tone of each note from each of all the instrnments, bnt perhending in hars, second, and third overtones, all overtones, as note sueceeds note to anit a well.balanced order of completeness. There paleations on the drem of the ear are to each note from each instrument and o each of its ovortones more or less ranid, or of rarying amplitade nnd number, in accomiance with the acuteness (or shrilnness), or with the flatness (or base ness) of the sonnd convered. It ene note give 256 pulmations in a seoond. noother gives swice, and another hree times as many, and so on (see Tyndall On are converid by ribrations of the coarser atoms that the chemical laboratory can approciate, wo must coase to consider it impossible that every degree of distance and surface-quality of object in contact with can raye in shown to ns by the intervention and non-intorvons
tion of paleatione of what I rentare to call the " altra.
microscopic" ethereal atoms (though the recognised chemical atoms may fall ander the same neme). Rates of apeed in the transit of soznd, varying to the diffaren ribrators, I doant not, offer 18 Aa first clue to the sise distance apart, and number of atoms or molecnles in : ine of speciffe length, certainly as to the total amount of interspace that separates them; and the same rale will apply to the otherwise wholly inappreciable at mos illoming ether. Whose closenees brings light to a Hersehal. If, however, different notes of the eng rrma travel like different notes of sonnd, at very dif lerent speeds and amplitadies of oseillation, we need aot wonder at epoeds of light or of sonnd rarging ome apecifio note.
We should look upon the light-giving vibrations of ther-atoms as moving in mases, rather tharr only arging lives, from each point of refoction, they conver impulse forward about 800,000 miles. pe second, whilst particles of air convey moand's impale bat aboat 1,000 feet, and those of glass bat 18,000 feet we ehonld estimate the extreme aloseness of the ether atoms, which carry sarrounding atoms wave-like along with them till such are divertod by crona-vibrations and the cuntion is so rapid, and the atoms so suff ciently nnatiached, that crossing does not divert. the page 180 I find "Blisek hae small stoms, and absorb ight; white large, and refiects it. Reds are of oxyge character, acoording to Ellis; greens, nitrogen; an violet, hydrogen." An oxygen body combines wit ats off the nd oft rea, sc., vibrations, and rotects the biae and indigo ones, and a nitrogen air cuts off red ani iolet, and reflecta green or white, orange or blue. A ays of arulight or other light it cots ofr in too impor tant to be orerlooked.
J. BABWICK.
P.8.-Direet man rass pemotrate throagh porcelain as well as through papar; indirect or reflooted raye coption of rays, bnt no bright tint is menn, refeoted pencils seeming to lack adoquato force to penotrate through paper or porcelain.
[4181.]-Ir repty to the hind letter of "F. B. A. S." (4049, p. 171), I am pleased to get a reply from ane who does understand ite zheory of light, snd the beat proof that he does 80 is, that bo caretaly refrains from ouching on the point that I want deared ap. He has
 can be so numerous, and so conveniently arranged, that they flash in right lines from every physical point In statne bo the evee or the apectatorb, ac. I said in that lotier, "and that in front ol them (the muititade) some conspicaons objeet is elevated." Thie wae oshow that a front vior was only proviacengr. men my experiment of the lensen only cerves to esrengthen my 1. will nom leared ap. The reys by which vision tales plece mast leare all parts of the object at different angles, conrenging to the oje; but if a mirror be placed where the eye was, the rays to it oassing refection proceed rom the object to ine mirror in right lines parallel to in converging rays (es they procead to the oye), the in converging ravs (as thoy procosed to the बye), tho remall imabes ; and I onfasod inage or eny power poscessed by the mirror, or the eve, to ahange (as it were, at will) the ordor in whioh the rays ahall be rotloetod. Thas, a man atanding in front of a mirror reeting on the groond, and a llute highor than himby direct rays II prosame, and all his body will be by direct rays, I prosame, and all his body will be
reflected by direct paraliol mays; bat if he atill conreflected by direct parallol mye ; bat it ho mill
tinnes erect, bnt vishos to see his feet in the mirror, he tarns the eyeball downards, and of course can only see his feet by pencils of rays converging to the eyes.
Here, then, wo have direct raya for one parpose, and Here, then, we have direct raya for one parpose, and
oonverging rays for the other. The latter, it would oonverging rays for the other. The later, it woulh
seem, mast prooed from the phantom image in the mirror, or thay mast proceed from the observer to the mirror, and be thence reflected to his eyes.
"F. R. A. S." please to account for this seeming paradix ? and if he refers to my lettor to Mr. Barwiek d063, p. 174), he will fully understand that I challenge a portion of the theory of light. I hope, therefore, in
his next, that he will try and explain the varions points I have raised. I feel that we should not tate any thave raised. I feel that ore shoald nery
Mr. Barwick says, in his letter (3973, p. 120), "A mirror's frame is visible, as 'Bobo' shows, by its shading off or not refleeting all thg recoived rays; it reflects bat those that denote its colour." I was under
the impression that the prism oould analyee light into the three primitive eolours and eecondary compounds (by tome believed to be primitives also); or, in other words, the colours of the rainbow ; bat I was not aware that the prism or anything olse could show the cortiary mast be added to the liat. I am at a lons to nnderstand the ather mieations on the eye: I thought that belonged to the oxploded old theory, which atated something about the eye having the power to relect or direot some subtile ether "The mant ng of visibility that moans see it. He asya, "The feding of visibility
of distant objoots, I take it, is conued by inoreace of of distant objoota, I take it, sivaly as distance inareases." Well, I should sappose

WHERE IS THE WATER GONE TO? [4157.]-Vrny oftan havo I spocolated whether there may ever be found meanas of erebsing or matrin; snme
 not asy the depth, whether in feet or furlongs, of the
generai cometary. ninfall on the day and hour of our
 approximating to the number expressing the depth of this added lever of mator, bat to the logarithm of that
number, -how many digits the number of feet or yards would probably require-whether, in thorh wo should rather call the addition one of fathoms, or of poles, or chaing, or farlonge, of frosh watar. We seem quite
without dats, aither from present tracos, or frnm the Bible, Vedas, or any other tradition or reenw, for
gaessing whother farlonge or only a few fathoms would be the nearer mensure to assume.
Apart from the wort obviously done in scouring the
hilly surface into sweop vales, and sweeping into its prosent deposits the newest "boulder-clar," or rether "dritt-gravil"-effects affording no defnite meanare ot impleat of the first dach, and rate of decrease with
time, mhour by hoar, or minute by minato, the height of anfallem stoam atmosphere above diminished;
apant from thin, the ohiof fact knowable or to bo inforred from the strata is, that there was weight enough of newly-andved atmosphare to so far equaline the
preasure over the whole globe's film (falsely called cruat)- 30 far epproach equalising it on highlands
and soabeds (which beds, observe, nowo benre soores or inch that the backs of Andea or Mar Bquare
bemp)-voight encugh so to modify this difference towards equality, se to dinturb the whole film's equilibriam, and cause it to take nh new form, sea-beds to
 the abyes," or "foundate the of the deep," i.c., sea, ns
some translators asy, be the right rendering. Just as now, over thin or lender regions of the film, such as the Caribbean Islands are npon, the mere removal of a barometric inches, over the space covered by a crclone, is difference enough to disturb the crast's equilibriom;
so that in scores of canes since Colambas' time, a hurricane has boen inetantly followed by, or has began, earthquake shocks, and the last oyclone over St.
Thomas set that island rocking for monthe, aftor years of quiescenco ; just so the arrival of the last new atmesphere (one ovidently of steam) must bave instantly
done (all that the traditions or records relate it to have done)-initiated months at least of continental and general platonic distarbance ; bat at first of a
kind juat opposite to the usaal partial ones, whereby, as Herschel insisted (and as even "Sigma" has heard). platonio action keeps our lands above water. Instend of weight taken from the land to the sea.bed, and
added thas to the depressed scale of the balance, giving the raised scale from time to time a farther lift, here the frrt action (whatever might follow) was a contrary one. equalising pressure, and so tending for a time toward goneral levelling of form and general inundation.
Now, if wa ask what weight of steam sumficed for this? 34ft. of water? or to ten present atmospheres, or a handred? in short, to fathoms of water or furlongs ? -I see no conceivable data for an estimate. Even if wo knew, or assumed (which I soe no snfficient grounds for
doing), that the highest antedilavian peak $\begin{aligned} & \text { were at }\end{aligned}$ doing), that the highest antedilavian peaky were at
sjme momont covered, so that not only was every nin. some momont covered, so that not only was every nnthe case for s short time), but even no rock left unsabmerged, erven then, what know we of the height of snch antedilavian summits, eithor above the antediluvian or the present ses level ? Orr present highest ones, all the Himalayes, Andes, Alpg, Elie-de-Beanmont, has proved to be the inewest, and to date from this last disturbance. The Pyrences are the highest (now) of all that are known to have had any considerable height
before it : and what height? We know not, whether before it : and what height ? We know not, whether doubt or half their present. Wo know not of any two
hills 100 miles apart (say Snowdon and Malvern), which hills 100 miles apart (say Snowdon and Malvern), which
was the higher, the day before that "six handredth vear of Noah, the second month, the seventeenth day of the month ;" thongh wo can be sure both were hills, and so higher than the Andes, which then were not hills. Bat eren if it were asked, what addition of water would suffice now, in a new deluge, to submerge our flve-mile
Himalaya peaks? we know not whether it wonld take Himalara peaks? we know not whether it wonld take
one mile, or half a mile. For aught that anv of us knows, eren that "Sligma" knows, a farlong might do it; might have weight enough so to derange and reverse the relations of sea-bed and continent as to bring
Dawalagiri's snows under its wave! They and we
 lara with a fim (not a cruat) over it, and, even if we
knew all aboat this, its thickness and stracture everyknew all aboat this, its thickness and stracture every.
where, what possible meana of ascertaining this weight can "Sigma" conceive bat by experiment 7 And without a corot at command, where will be get the one or two trillion tons weight required for the experiment, That "comots" have "a mass too small" "(p. 195,
let. 4096) is not only of all thinge I evor saw alleged in let. 4036) is not only of all things I eror saw alleged in
the Evolise Mrecuavic, bat of all mythe in any the Evalise Maciavic, bat of all myths in any
mgthologr, the boldest venturo, the most parely groundless, I ever beard of! "Comets!" Why, of the three or fonr hundrod on reoord, I challenge him to
prove a aingle one too small ! Let "Sigma "bring ai prove a single one too small: Lot "Sigma "bring an
proof of any single comet yet seen baring weighed as proof of any single comet yet seen baring weighed as
little as (say) a mile layer of water over the earth, 160 atmospheros, or a trillion tons. And comets, (remember,
have differed in their balk, the largest and least of this century alone, as fall a million to ono
This variety in balk, but in appearance as mach This variety in balk, bat in appearance as mach
rariety as ir awy 300 thinga of one name-asy a rariety as ir any 300 thinga of one name-aty
cabinet of 300 minernals! Jnst two very minor ones the spectroscope has been made long ennugh to eramine. And on the strength of this "Sigma" tells you, "they And on the strength of this "8igma toling yoa, they
(comets) do not contain or consigt of wator"! Who asid they did? Any comet "Sizma" chooses to nsme I will grant bim, if he likes, to have been of rabidinm aponr. For sught I knnw. Enckes is so; or thalium,
if he prefera it. Bnt, mind, we cannot allow many to be of lite materinl. Their looka are too varions. thoreover, if he likes, there shall never have been more
than one of steam-none before the last that fell on earth, nor since. What I sary geology shown is, that one fell 50 centaries ago (or betweon 45 and 55), eareloped the earth before folling and that its material wa steam; that one,-I know and say nothing of any other's materisls.
Now, as " Sigma " aska, "Where is the water gone to ${ }^{2 "}$ he might ask the same of any other rainfall. Let me surgest the same respecting some mill tail-water,
of which Prot. Ansted writes in his "Visit to the Ionian Isles," 1863, cap. XI., p. 322 :-- A curious nafaral phenomenon occurs, and is taken advantage of,
in the neighboarhood of Argostoll. At four points on in the neigbbourhond of Argostoll. At four points on
the coast the sea, at its ordinary. lovel, enters a very the coast the 8Ga, at its ordinary lovel, enters a very
narrow creek, or broken rocky channel; and after ranning somembat rapidly throngh this channol and among broken fragments of rock for a short distanco,
it aradually beoomes sucked into the earth and dis. it aradually beoomes sucked into the earth and dis-
appears. By conducting the water through an artificial caval for a. fow yards, and so regulating its course and forcing all the water that enters to pass in a single stream beneath an anderghot wheel, power enongh is
obtained in two cases to drive a mill. Mills have, in obtained in two cases to drive a mill. Mills have, in
fact, been placed there by an enterprising Englighman, iact, been placed there by an enterprising Englishman,
and are constantly at work. The stream, after being atilised, is allowed to take its nataral channel, and is lost among the reeks. It is common enongh to drive a wheel by a currant of water poing from the land
towards the ses ; bnt it in certainly rare, and, as far as am aware, pecaliar to this locnlity, to find mills driven by a current of sea water, acting quite independently of the tide, the water constantly and steadily rashing in over the earth's sariace, and finally disappearing. Apart from the facts that the water sucked inte level, thers is mater, sud that it onters below the sea level, there is nothing extraordinary or anusual (1); for of streame, often of considerable dimenclome, entering into open fissares and disappearing.

Bat it is cortainly very seldom that we are abie to ratiofy ourselves of the empty stato the sea level, as wo oan at to the sea and below the sea level, as ve, oan at
Argostoli [satiofy ourselven of their 'empty stato' by their perpetual receifte 11 , and for this reason, if for no other, the phenomena are worthy of partionlar notice The general condition of the surface is as follows:The small harvoar of Argostoli is inclored on both
sides by the hard broken limestone rook, so common in sides by the hard broken limestone rook, so common in
the islands. On the east side it rises immedistely the inlands. On the east side it rises immedistely
into hills of moderate eloration; snd on the weet aide, into hils of moderate eloration; and on the woet aino,
behind the town, thero is a platean, acarcely above behind the town, there is a platean, acarcely above
the usual level of the water, rising, about two the asual. level of the water, rising, aboat or tho ridge, which, in fact, by its projection into the galf makes the harboar." Acoording to his map of the
island, p. 879 , this " platean " or peninsula is the only sqnare mile that he represents flat (with no hill shaded) and its area is under a sqnare mile-leas than two miles by half a mile-that of the whole island being
possibly 300 square miles. "Between the shore line and this low ridge, there is an orident depression o the surface in all that pait orer which the son, When it enters, is sncked in.
What, it will be asked, becomes of then the ese thas pouring in continnally to fill the cavern ? Let me commend this question to "Sigma." Instead of theorotical "comet's tail " water once, here is very practical mill tail. water every day, that has ground the
Cephalonian's bread corn to the following tane Oephalonian's bread corn to the following tane.
Professor Ansted continnes (p. 827): "The infux of wanld however, is not smail. hamoants, as far as per diem., for the two mills together.". When
" Sigma" has answered that, we rill proced to con. sidor, perhaps anered that, we wiltor has pone to. It will be ovident that if sea wator finds its way into nny large uatural oavity, from which it is afterplace in porated, a deposit of salt mand and con nocterl with it. Assaming the inflax to be at the rate already mentioned, this may be ronghly estimated as matter one foot thick, accumnlated each vear. It is an interesting question to consider where this deposit of salt is coing on, and whether saline spring ${ }^{3}$ may not be thag fel. There are no known aprings in the ioland of
Cephalonia that present any large quantity of saline matter."
Remember it is not I , but "Sigma," that Ands any dificalty abont where the comet water of Noah's time has "gone to"? I gimply hold it to have obeved all not satisly "Sigma," probably it will assist him to consider and solve for us first this Cephalonian question, $2 s$ it is not thooretical. The nills being acertainably at work for years past (if not to this retars his question as to theso milliona of tons of sea "Whore is the water (and the sall) gone to ?"

BELL PIANETTE

[4158.] - Mr. S. Botrone (reply 11893) sapy "a paton whs taken out for this instrument towards the latier on Iist of last contary." I have carefolly looked ovar the it. Query, what was the name of the patentee?
Dr. Cloggat, A.D. 1788 , patented - r rather propoeed in his patent of that date to make taning-forks with morable weights for altering their pitchen, Which mamiliar method was afterwards emplosed by Hoesch have a the terpodian, patentod A.D. 1830; although of Van Den Bargh and date 1817; and JT. Hiles statey in his mnsical dictionary, it was invonted by Basch mann, of Hambarg. Dr. Clegrat also proposed to constract a new instrument (of masic) of a proper number of those tning. forks, or of single prongs or rods of metal fixed on a sonndinz. board or boy. In
times of old, I beliere all the sounds of stringed muricai ine old, iber posed to be, and the performer, it la Pandora, let the often but tno evil sonnds ont withont, like that merolfal young (female) person, leaving the hearera any hope of better things. Ercepting that the proposed instrament had n soundlag-board, I see no difference in
principle between it and the terpodian. It can'hardly principle between it and the terpodian. It can haraly Clegrat doen ne plectra or hammers for vibrating his forks or rods, but that "a celestina stop, made by an ondloess allet, may be apphed, producing the sounds on (sic) thene bars silia with AdamWalker's instrument, the celestina, patented A.D. 1772, aleo with the application of its meehanism to the barpsichord-riz., the celebrated celestins stop of that instrameut, not to mention the lyrichord of Plenias, a.d. 1741. I append a verbatim copy of a broadsheet or handbill containing statements very interesting to all who desire to obtain continuoas soands from the stringa of keyed ingtraments, concorning which I may remark that, excepting in the instances of Hawking's olaviol, R. Mott's sostinente pianolorte, and perhaps the modern cotraokordon musical capabilities of the prodactions of that clever inventor, almays assuming the said handbill to state the trnth; bat, alas 1 all statements in advertisoments mast be taken cum orano salis, the said grain of sall being fally understood to be as big as a bashel
Ratergius Plonius was by no means the first in the laricin viol: and Kirchor, in his "Maenrgis Oniver selle," mentions the possibility of constracting sach an ingtrument In A.D. 1684 Evelyn relates he asw one with gat stringem veritable lyriocand-at a meeting of the Royal Bociety, the bow of whioh wha formod of a similer ; ; and in model is, or at least was, in the muserm of the Académio des Sciences.
The only thing I can find whioh seems to revemble the bell pianette was patented by Groll (1818), who proposed to construat a masical instrament of metal bars (ball metal by prefereuce) atteched to a soanding bosrd at one or both ends. Hnmmers applied to this bat the inventor does not magest their use; in fach, he only claims improvements on the clasn of manioal instruments whioh "afford their tones by friction applied to metallic anbstances." The said friction bo proposes to obtain hy the riolin bow, the ondless, wob
or riband of horsehair or other fibroas material, or by a rosined wheol, a la hurdy-gardy. He, however, also proposes a very important praction improvencen \rightarrow viz., "applying the said friction to a small atom. bars.
The earliest masical inatrament I remember in Which metal bars are strack by hammers is the design
of Mr. Goldsworthy Gurnoy (A.D. 1833), and it is also one of thasworthy Gurnoy (A.D. 1833), and it is abso Soveral tions patents have since boen obtainod for modioes that of Crawford (1862) is one of the most modern. Mis Crawford, berides hammers, proposed to empley plectre similar to those of the harpsichord for ribratiag his elastie bars or springs, probably in imitation of those very pleasing instruments the masical-boxes, some of which yield really powerfal sonnds, and all of Which are rendered considerably londer by being inid
on a resonant surface. I find the soundboard of a piano befcre the strings are pat on-or, yet better, the thin belly of an anstrang harpsichord-answers thit parpone admirably. It may be a wrinkle well worth ynowing-especially to dealors in masical-boxes-thal
a soundboard (abont 30 in . long by 20 in . wide, onlr tin. thick, strengthered by three bars \}in. thick, aboat tin deep at the midale, tapered to one-qixteenth of aninch at their ends) enarmously angments the londness of their sonnda. A late friend of mine, who dealt rather
largely in those made by Nicol Frire, had somedlargely in those made by Nicol Frire, had a soundboard of the above dimensions constracted to my design, which, being stained mahogany oolour abd simple caatowere of simple show-board standiug on his counter. He told me this simple oontrivance sold him many mnsical-bnyes; and when I asked him if it was not true that it also "sold" their buyers, he ooly answered "caveat emptor," which, as he wes at
Brangelical Charchman who swore by Lord Shafisbnry, was, I suppose, the Christian (prnetical) rule for "doing your neighbours mes they woald do you" (if they conld).
Shoald "
Shoald "Valve," or sny fellow reader, desire to try
his prentice hand on tho amatour constraction of a boll
or ratber a bar, pianoforte-which is far easier and cheancr to makk than one with strings, for in the
forme: no framiug to resist tension is needed, and no pravision of meaus for retuning required, as it never gets ont of tnue-I think it woold be no more than common prodence to parchane the following patents :
Groll (No. S531), price, with drawing, 4d.; Gurney No. 64.4.), price, with drawinge, Ga.; and Crawford (No. 1548 . A.D. 1882), price, with drawings, 8d. The
cotal stina (1s. бd.) is, not rery Jarge, and their perusal would render him familiar with most of the more im portant things which have been done in this direction Musependent investigation and the re-inventivg of old things mysolf. I can appreciate the advantages of those who have helped (as the Frenel wit put it) to fil op the have helped (as the Freneh wit pat it) to fil diacovery by falling into them, although I fear they unt too often perished on the was. I wonld also aug. gest that the intending constractor parchase-I ase meaye, and not merely as buying-one of Mesors, Cramer's instraments, which he may obtain on hire at a very swall cost. He can then see, or rather hear, his consoience does not rebuks him-like a manafac taror, copy all that seems worthy of imitation. I may
add if a good treble be deaired I wonld advise him to employ vory light hammers, and to drive them with great velocity. for the ressons atated in $m \mathrm{~m}$ recent scis, and 370 of the Exglish Mechanic.
Mr. Bottore вass "no dampera are required." I am rery sorry to bear this, for, if true, the vibrations of mast be addicted to that great evil-laziness, or at leas "retiring early to rest." The defects of most pianolortes are manifold, among them the too early cesastion of the ribration of their strings is a common I never jet heard any piano with strings whose tones vere so short as not to require dampers, which are ecep is on. Shortness of tone is to when baif bomination, and, if not a very groat evil in a piano ased exclanively for quadrille plaring, renders the in"Liement quite nnfit to render properly Mendelssohn's "oueder oline vannot make such a piano "sing "anyhow.
Vroatim CSomy of Broadside (Hanabill) in the Chetham
Lidrary IClating to the Lyriclurd of Plenius, A.D. $17+1$.
By his Majesty's Royal Letters Patont, granted to Rutgeras Elenins, Harpsichord Maker, for the sole Moxing, Ono, ad Benen of an Instrument ealled a Liriohord. Whiah imitatas a' toll, it rese mbles a perfect Organ of a mont delightín Tone altho', by catzat atrings only, withoat Pipos. It admits of plaving Forte and Piano; an also of swelling any Single Note (or many notas, ad libitum), on yo same
Key, by yo aimple Pressare of so Fingara: Bat what is hoy, by ye aimple Pressare of yeredibers if not seen (yet plainly demonstrable to everyone), its strivgs never oo out of Tane, as long as yo constitaent Instrumen remain ontire; s Thing which has been so long wish or and desir'd, and in all Ages, 'till now, by everyone, inform yo Nobility, Gentry, and others, That ye afore said Rntgerna Plenius has now (after 'Ten years' painfal tudy and Laboar, accompany d with no вma Expence) And be hombly presames, that all the Genllemen and Ladies, who will do themselves yo pleasure, and him ye Honour of seeing and hearing it, will be fally conrinced of yo Trath of ye foregoing Assertions ; and at yo ame Time be agreeably diverted by yo Harmony of yo Instrument, it being esteem'd and approv'd by all that have ret seen it ; particularly by ye most eminent Hestors of Masick in England, Who allow it to be yo most carions Piece of Workmanship, and most Tonderful Instrament they have ever seen or heard of The Price of seeing and hearing it performed on at oclock, is Hall a Crown each Person, at yo Inventor's
Hoase (yo King'a Arms being over yo Door) in south Hoase (ve King's Arms being over ye Door) in soath
andley Street, Grosvenor Square ; where a good hand Andley Street, Grosvenor square ; where a good
is provided for yo Entertainment of yo Audience

The Hanionious Bbackanite
COMMUNICATING ROTARY MOTION TO BALL FLRED FROM SMOOTH-BORED GUN.
[4159.]-I macine that bad the first inventors of rifes tation a piece of gas-pipe abont the size and lergth of a gau barrel, and made it red hot for about a lont at one eud, then placed an ingh or tro of that
and in water, and lookcd down the inside of the pipe, we should never have departed from the nse of the mooth-bore; for they would have seen the steam thus generated winding its way ont spirally, which I take to be the course the gas evolved by the combnstion of the powder in a Ran does take. It would, therefore, be-
cone apparent to them that all that they hed to do to cone apparent to them that all that they hed to do to obtain the spin for their projectile wonld be to provide a surface by whioh the rotary
be received by the projectile.
That surface would be obtained by learlag a projeco tion oxtending a short way from the circumforence to the centre at the batt of the projectile, or, porhape,
more than one projeotion. I should have tosted thit more than one projection. I should have tested thit
theory of mine come two years since, but being a Wotking man I have not the power. Perhape "Artillery Captain," or some other friend, eould say how tar I am right.

HOW WE SEE A DISTANT OBJECT.
[4160.]-Is reply to "E. J. D." (let. 4063, p. 174), would ast what be means by a percil of rars. Rays from onmbustion isbae and extend in every dircetion
The Rer. David Blair taught that a peacil of rays is a paroel of them proceeding from a point; but no paridele of matter leaves the point and pases to the eye mere impulse is given to the ethereal millicns of antome which, from closenors of jaxtaposition, almos radiation or in any line of refection thereof; the ray, then, is bat transmitted palsation, and rays from every point of an object acting in every direction compel our scknowledpment that the altra-microscopio diminotiveners of the ethereal atoma amaze na moro with the infinity or smallness than ve aan be with infinity of extonsion in stellar space. On the diameter o what we call a "point," it were bat gnesswork to estimate the nomber of ethereal atoms that might repose Reflection of light is bot repulsion or reboanding o ha infinitenimally amnll et her-atoms. Now a "panci of rays' falling or striking on the eye is bat a succes conver surface, from whence the direction of the impalses cenverge towards a focus which they reach on the retina or on the optic nerve: the impnlises are continunas as long as the combustion that they pro ceed from continues. Solar combustian is the power which imparts impetas to the ethereal palsation, and कo the distance of the san is the distance of the power Which prodices rellection. Glass is porous to the other-atoms, but mercary seems to reflect pearly them all when palasting in periods in socord with the inter all when palaating in periods in 2000 rd with the inter We read of three sorts of pencila, cylindrical, diver gont, and oonvergent and, as Bhair has it ther pro coed from points. The eylindrical from a flat snrface, the divergent from \& convax, and the convergent from concave, jast as with the refleoted chemical atom of sonnd. We read, also (as in Chambers's "Ednca Optics), that a pencil is a parcel of rays proceeding to (as well as from) point ; thus a
concave mirror will oonverge reflected rays to a very brilliant point, but so immense is the sun that its rays are deemed parallel, the divergency being impercep tible. Bat the namber of pulsations of ether-atomi that fall each second on square inch of surface are eri dently countless millions, and wo do not see any object colonr, or shape so mach becarse ther reflect raye ae becanke thay do not reflect them. Where every ray perceive degrees of distance and shades of colour by non-reflection, some of the ethereal pulaations of larger or smallor amplitade being cat off by the, to them, non opalsive (or absorbent) natore of the impinged face. Wo see objecta, therefore, solely by their non eflection of rars, a red object being one that reflect none of the othor rays of the spectram but the red nes. Pencils of rays. if solar, are parallel, and do of the eve, and pencils from a point (so far from coming to a focns) mnst be divercent when they atrike toming to a (ocus) mnst be divergent when they strike mitted at the surface of the sun, and unlens reflected from concave surface, such rsys cannot convere befor they reach the eje. I cannot nnderstand "E.J. D." when he talks of frosh pencils springine up to anit change of position; the prdolatory ribrations are in every direction to and from every point thatentohes direct sun rars, and it is most absard to auppose that rars must converge to a point before they enter spec fators' eyes. A single prisation will bestow light lasting the one-eighth of a second on the retins, an that eigh from where I sit, a placard: it ia printed on "whito" papor, bat whether with red or black ink is hardly plain. I cannot read a word till I pat on my concav lasses, and then I make out indistinotly the large letters in the word "Bazaar." Now, why cannot I
read every line and lotior in tbe placard? Simply becanse I am too far oft; the ether-aiom vibration-rays are too fow to reach me unless the tiametor of my
conves eye were mach preater, so as to catch more of the direct pulsations from the placard. I nee the shape, ize, distance, and colour of the placard; the pnlashons from its exterior and interior are adequate for hoat; bat the other phisations from its interior are too fow and too mnech crossed for mee to pain more than a
hazy, indiatinct pietrere of the words it bears. No obeet prorides any rays but solar and other fre, and were a very powerfal lime or electric light thrown on
onr plecard, I might be able with my concestes to read our plecard, I migat be alle with my on oncares to read each point.
We hear a band of masical instramonta, and each of hundreds of hearers can perceive not only the tone of each note from each of all the instraments, bnt perhaps, also, its first, second, and third overtones, all
blending in harmony as one note with namberless bending in harmony as one note with namberiess Vertones, as note sneceeds note to gnit a woll-halanced order of completeness. Those palsations on the drum of the ear are to each note from each instrument and onch of its overtones more or lens rapid, or of rapying amplitade and number, in accordance with the cuteness (or shrillnens), or with the flatness (or baseness) of the sound conveyed. If ene note give 958 palcations in a seoond, another givos twice, and another
three times as many, and so on (see Tyndall "On hree times as many, and so on (see Tynall "On
Sonnd "); and if all the heart-moving tunce wo hear are converped by ribrations of the coarser atoms that the chemical laboratory can appreciate, wo mant coase to consider it imposaible that every degree of distance and surface-quality of object in contact with sun rays tion of paleation of thetreanion and aon-iolervor. tion of paleatione of what I venture to call the "ultra-
microscopic ethereal atoms (though the reeognised ohemical atoms may fall under the same name). Rates notes of masic and the varsing lengths of masial vibrators, I doabt not, offer as a firat cine to the ciso istave apart, and number of alome or molecales in ine of specitic length, ceriainly an to the total amount Internpace that separates them; and the same rale will npply to the otherwise wholly inappreciable at vome o illuming ether, whose olosenese bringe light to as rom the san in 192,500 geoomas of time Herschel. If, however, difierent notes of the eppetrnm travol like different notes of sound, at very difcerent apeeds and amplituces of oscillation, we need not wonder at epeeds of light or of sonnd varying
anless it be with refesence to some epecific tint or to ome specifo note
We should look upon the light-giving ribrations of in diverging as moving in macoes, nather tharr anly
 econd, whilkt particles of air convey moand's impalee bat about 1,000 feet, and those of glass bat 18,000 feet we ahould estimate the extreme alosenoss of the ethertoms, which carry sarroanding alom, wave-ike alang with them till such are divertod by cross-vibrationg, and the motion is so repia, and the atoms so suffciently nnatitached, that crossing does not divert the traight hue of motion. In Gatch's "Rogister," 1859 page 160, I ind black hat amall atoms, and absorb ight; white large, and reflectsit Reds are of oxyge charaeter, scoording to Elisa ; greens, nitrogen; an violet, hydrogen." An oxygen body combines wit號 and off the red, ac., vibrations, and reflects tho biae iol inaigo ones, and a nitrogen air cats oif red and clue to the nature of any molecalar constitation, the rays of azmight or other light it cats off is too impor
tant to be overlooked.
P.8.-Direot man rajs peantrate through porcelain ss well as throsigh papar; indirect or refleoted rays do pencils meeming to lack adequato ferco to penotrate through paper or porcolain.
 proof that ho does so the the tho toaching on the point that I mant oleared ap. Ho has omittod to ansear the tolloving part of my lettor (3974, p. 120): "I aemnot conceive how the reiletions can be so numerons, and so conveniently arranged, of the statne to the eyea of the spectatora," ec. I eaid in that letter, "and that in front of them (the maititade) some conspicaous objeet is elevated." This was experiment of the lenses only eerves to strangthen my position as to the namber of rays to be accounted lor. I. will now add some mone points that require to be cleared gip. The rays by Which vision takes piece must verging to the eye; bat if a mirror be placed where enas the rays to it oausing reflection proceed from the object to the mirror in right lines parallel to in converging ravs (es they proceed to the eye), the remalt moald be either a confused image or a number of small images; and I an not aware of any power possessed by the mirror, or the eye, to change (as it refleated. Thas, a man standing in front of a mirror resting on the ground, and a little higher than himself (the mirror being perpendioniar), will mee his eyes reflected by direct parallal mays; bat if he atill conrenected by direct parallal rays; but if he still oon.
tinnes areot, but wishes to see his feet in the mirror, be tarns the eyeball downwards, and of course can only see his feet by pencils of rays converging to the eyes. Here, then, we have direct rays for one purpose, and scem, must proceed from the phantom image in the mirror, or they mast proceed from the observer to the "F. R. A. S." please to secount for this seeming "F. R. A. S." please to account for this aeeming
paradox 7 and if he refers to my letter to Mr. Barwiek paradax $\%$ and if he refers to my letter to Mr. Barwies
$(4063$, p. 174), he will fully understand that I challenge a portion of the theory of light. I hope, therefore, in his next, that he will try and explain the various points I have raised. I feel that we should not take any theory for granted, bat carefully analyse it
Mr. Barwiok says, in his letter (3073, p. 120), "A mirror's frame is visible, as 'Bobo' shows, by its shading off or not reflecting all the roceived rays; it reflects but those that denote its colour." I Was under the impression that the prism could analyse light into the three primitive colours and secondary compounds (by come believed to the priminbor ; but I was not awaro that the prism or anything else could ahow the tortiary compounds.
 stand the ether pulaations on the eye: I thought that belonged to the exploded old theory, whioh atated or direct some subtile ether on a distant object, and by that mean see He says, "The feding of visibility of distant objoats, I taze it, is cansed by increace of sively as distance increases." Well, I should sappose
that the confarion woold be more likely to ocear near the objeet, where the multiplicity of rays would be more condensed, and could hardly allow a ray at all to escape outwards; but, with due respect for this theory, I am at a loes to seconnt for the fact that when objects begin to appear indistinot to unaided rision, the use of the tolescope again renders them distinct. He farther adde, "Bat alen rays diverging," dc. I underntood from the theory of light that the rays would converge; but perhape there in some law I am not acquainted with canaing them to diverge; bat in this ease the telesoope, I sappose, has the power of bringing back the wanderers to the proper path. In his eecond letter (4081, p. 174) he eays, "'E. J. D.' should know that the oyes only catoh, proportionately to their sise, the rays in oontact with their sarface, which impinge on them, neither more nor leas than on every other object in space at an equal distance and equally uninterrapted." Does he mean that a man with a manal pair of eyes can see less of the surrounding objoets than a man with larger oyes? or does he mean that the rays are refeoted in parallel lines, of which the oye oan only take in ita own brendth? If so, I cannot imágine how we could see more than an inch of an object at a time. I heard that recent compatations in Germany, about the retardation of Encke's comet, had sottled the question of the ridiculons theory of ether existing in space; and that, in fact, there is no sych thing, the retardation of the comot being found due to planetary influence. The remarks aboat ancertalning the diatance of combastion, ace., are too deep
for me, and can only be appreciatod by antronomers.
In reply to "Bobo's" letter (4062, p. 174), I ber to In reply to state that hib remarks abont contrast, ignarist, I fully are admirable; and boing an amaterr at if the black appreciate them ; bat he forgets that ing the and the statne was placed in a room hank with blaci, and
sunlight admitted, the atatue would be qnite distinct sunlight admitted, the atatae would be qnite distinct in all its detaile, without a light background to contrast urore indistinct, owing to the great preponderance of and "Bobo" would find that he could not obtain a photographio pietaro by light tranemitted through it. photographic pictaro by light transmitted through it. Blackened glass (with goot, for instance) will also stop the heat rays; but, as
E. J. D.
"T. A." AND REPULSION.
[4103.]-T must decline to aceept "T. A.'s" invitation (letter 4089) "to give asingle instance of the action of a repaleive force in natare." My instance would not convinoe him, and hie objections (judging from formor inatances) would not weigh with me. We should argue fraillosaly,-one of the most repuisive
thinga in natare.

A STUDENT'S COMPLAINT.

[4163.]-I THisk that "A Desperate Character" has not a sufficient cause to make him desperate. If he had two hours and a hall for his paper he had ample time to enable him to pass first-class, if he only knen how to nse it, and if he fail it will not be for want of time, bnt for want of knowledge. The Elementary Chemistry paper (subject X.) contained twelve questiona, eight of which only were to be attempted. An ordinary intelligent atudent who had attended twentyfive times a properly-taught class, of who had gone through a similar course privatoly, conld have answered the requisite nomber in one hoar and a hall. If six questions were properly answered a candidate woald
pass easily. "A Desperate Charactor" should rail at pass easily. "A Desperate Charactor" should rail at
the local committeo in the town in which he was the local committoo in the town in which he was examined, or rathor at the loong secretary. Ior ho is
 It is simply a local question. If the Government rules were obeyed a handred candidates might begin their papers at ive minutes after seven 0 'clock. As a science
tosecher of several years standing, I think that two hours and a half is ample time for most of the Soath Kensington papern.
Bradford, Yorks. J. Harrigon.
[4164.]-"A Degperate Charactra" (let. 4110) ahould have noted the facts on the examination paper courteonaly drawn up protest to the Department of Science and Art, if sent before the resalts of the examination are known, would meet with eareful ationtion,
and probably lead to satiofactory reanlts. H. P. H.

TERRESTRIAL GRAVITATION.
[4165.]-ThIRR is only one word to deearibe the proof sketohed by "F. N." (lot. 4115). It is charming. the integral calcalus. Looking over $m y$ papers on the subject, I And that in my soarroh for a simplo proos I have over and over again beon close on this one. Worse luck that I failed to noe it. Yet In need not be ackamed at my failare, ainoe for nearly imo conturies the proof was looked for and minced.
The prool involves the theorem that if the attracted particte in the rertex of a cone tangentially inclosing an attraoting thin apherical shell, the part of the shell on the particle's side of the circlo of tangency exerts the same amonnt of atiraction as the remainder of the wo take the particle as the rertex of a series of cones of minate rertical angle, as in the prool for case of a
particle within a apherical or apheroidal shell. I think it must have been this oircumstance-the fact, namely that the method of taking cones with minate vertica angle had already been once applied (in dealing with an external particle), which cansed me to
overlook the possibility that by applying it a seoond overlook the possibility that by applying it a seond
time the problem coald be solved. At least, I find that in my papers I try more than a dozen waya of that in my papers I try more than a dozen wiye
dividing the two parts of the spherical shell into dividing the tro parts of the spherical shell into
clements, without once noticing that the centre of the elements, witiout once noticing that the cen
circular section is the proper point to look to.
I do not mention this circamstance by way of excasing my failore, a failure which a host of eminent mathematicians from Maclaurin downwards have equally undergone; but to show That an mdvantago the integral calculas possesses over the most ingenionsi devised geometrical considerations. I mould ventura to say that the mental effort given to deviso a Bimple prool of this problem, after the intogral calculus (or than than a thougandiola that requisico to supply the intogral prool. Yet, becange there is no cortain rale to ${ }^{2} 110$ in on ond.

RIGHIRD A. PRoctor
[4166.]-I An very sorry that my recommendation of the reasoning in Chap. 2, Book III. of Ganot' "Physics " should oazase Mr. Proctor to suspect me of a desire to produce the impression of its anthor being on my side aboot the attraction of oblate sphoroids, as nothing was farther from my intention. It was simply becanse my ides of obtaining resaltants and abcertain ing their magnitude neemed followed out in that chapter; not that I imagined myself correct, for here I fear the glaring error is on my side, and not Ganot's or Mr. Proctor's. This, however, all our readers can judge for themselves, as the suspicion has stimulated invention into solving this quastion by what may be
callod a method of geometrical integration, easily called a method of geometrical integration, easily underatood by any intolligent mechanic.

house was warmed by hot-air stoves, as they generally are at the North. I found that a sliding step gave the best rosults, two or three of such steps being sufficien to prodace a apark three-nixteonths of an inch long, and
quito sufliciont to light the gas at any burner instantly
Ladies genarally could perform these oxperiment with more succoses than men; but this was aimply from the fact that they had romainod longer at home, and consequently their slippers were perfoctly dry. In my own cace I lound that by puting on a perioctiy dry pair of alippers, or even boota, I eonld produce folly a good eparks at the lidies. Ordinary alippara, hoverer always gave the best effeot, a larger rubbing surface being then exposed to friction upon the carpet.
Sparks could be easily given from one person to another, and I have been "ghocked" by some youne lady with "malice prepense," sliding ap to mo, anc tonching my forehead. I have charged a Leyden ju by this moans, and, in fact, all statio electrical experiments could be produced where the spark of one-eighth to a quarter of an inch sufficed. These results can be Whained daring winter in any of the Northern of England and thro have tried to roproazo -ithoo England and throughoat in tonninent, bat wink succose-in Rassia during the winter of 1804, powers of the atmosphere. I did not, howevor, zuoceed in lighting the gas, but I found great difficality in comb ing my hair with an ordinary indiarabber comb, the hair all raising on an and with congtant comb, tho hair all raiuing on an end. with constant shower of much more disagreeable in the United States than in Rassia, as daring many winters I had to wot my hai bofore combing elge imposaible to get it to ley etraigh or even. Without this remedy, or by neing oil o pomade on the hair, my hair, which is very thick pomade on the hair, my hair, which is very thisk could got the "porcupine" appearance to disappear.

I have never in England eeen these offects, though Profesior Wheatstone has already observed them, an read a paper before the Royal Society (two years nince) upon experiments, as be had found many orrors, for which he courd not at first account, had boen produced simply by the friction of his feet upon the floor. He also obserred that in the United States he had been informed by the best scientific authorities that by simply walking acrose the floor electricity of gufficient tension to light the ge at a barner conld be produced. Therefore "Philo's" at a barnor coarlectly proda, and I inclose my oard, no for publication, but at a guarantee of the good faith of yours

Trapalles.
[This lettar is well anthenticated.-ED.]
[1169.]-Firignds of mine, on whose trathfalnese I feol oomplete relianoe, aseare me that they have wit nessed eleotrical phenomena substantially the same a those described (let. 1104, p. 199) as witnessed by friends of "Philo." I am not yet at liberty to pablinh their names; bat if any one is desirous of more pro aise information I think I could procure it privataly.
13, Great George-street.
P. H. Holland.
[4170.]-Ir is neither right nor wise of "Philo (let. 4105, p. 199) to force his own mieapprehencions and deductions therefrom apon other readers. Why should he persist in asserting that a certain suppose bility hy be correses ia treatod as an 69 I pressed the "trrast that ' Philo' is able to distingaish betweon the two mental states of not denying yet no believing." It appears I gave credit to "Philo" for more perception than he possesses. I said, "I do not deny the possibility of gas boing lighted by a spar from the finger, the electricity being unintentionally excited." If that is treating it as an impossibility, a "Philo" is pleased to say, it is time some of un wemt to sehool again. I do not believa the event has hap pened-that is, I wait for evidence; I am accustomed to test facts, even when I witness them myself, and often find that my firat improsaion was miataken; and does "Philo" sappose I am going to aocept the secondhand testimony of one or twenty or old, preth or pr. Home has toasted ont of vindor round the face of a house, and in again, and I sotanll do not believe that. To speak plainly, I ahonld requir any teetimony ooming from America to be very thoroughly sapported. Whethor the air there facilitates the production of electricity of high tension I do not know; but that something faclitatos the devolop ment of enormons falsehoods, intentional or otherwise, onsists in the givin of some vraisemblance to outrageous exaggerations and that is sure to react apon national character for trathfalness. Wo olectricians of the Enacisg Mz chanic have not yet forgotten Paine's electro-motor ongine.
"Philo" may farther be assured that our electrioal theories do not fail to correspond with woll-authenti oated facts ; bat hir facte do not come onder that de scription in the first place, and in the second, no theory that I am acquainted with is opposed to them. W well know that sach aparks could be generatod ande certain conditions: what is doabtfal is whether such conditions are ever attained. As to his last word and rocommendation, does it not occar to bim that mit representation of others is not the likeliest mode of draving out "polite" replies?
"E. L. G." AND PHYSICAL GEOLOGY:
[4171.]-I canvor help contrasting "E. Z. G.'s" style of argument with the words of Marchison (Who
mis both the friend and opponent of Lyell), that the queotion between the uniformitarians and the
cutantrophists was only ono of degree, and that by means of fair dicensaion the truth woald at length be means of fair Whimy should not " E . L . G." be more eclectic, and eelect the good grains of uniformitarianism at the name will deny that there is trath in uniformitarianiem as well as in the theory of the oatactrophista. Lot ne neither bo too "prodigal of vilence," nor too tarian admita the necesaity of occacionst catastrophes (not connootod with cometa, though), while, on his part, the anbiaced oatastrophiot will aphold the necossity of enormoualy long undisturbed perioda to nocoont for the formation of thick and alowly depositod formations like the ohalk.
Tarning to letter 4088 (p. 175), I And that "E. L. G." there makes three assertions, with none of which I can zgree, riz.:-11 That canases " now in setion" can ouly scconnt for the prosert condition af one-handredth
part of the alobe (pntting aside all allavial and recont part of the globe (patting aside all allarial and recent
deposits); ((2) that the form of the remaining part of Rlobe has been determined by delages ; and (8) that the delages were the resuit of comet-falis. Now, ndalating
country has been formed by cances now in action, and country has been formed by cances now in action, and
it is jut the kind of phenomenon that a deluge does not produco. Catastrophal delnges can only account for the condition of s small part of the earth's crast.
To prove the above assertions, lot as first consider
the beantifally-moulded waterless coombes of the chalk, the beantifally-moulded waterless coombes of the chalk,
to which "E. L . G." specially refora. These are due, to which "E. L. G." apecially refors. These are due,
in the opinion of Murchison, Iyell, and a hout of other in the opinion of Marchison, Iyell, and a hoot of other
geologists, to the loag continued erosive action of atmospheric infaences-such as wind, rain, and frost,
which would denude asoft material like chalk, or eren Which would denude a soft material like chalk, or even
colite, in time, ehort in comparison to that required to oolite, in time, ehort in comparison to that required to
reduce come of the granite moantains of Wales and 8cotland to their present weathered condition. These coombes conld not have been formed by a deluge which
would mako a clean sweep, and leave a lonk trough would make a clean sweep, and leave a long trongh with sweep sides just as it has done in the Weald and
at Woolhope, which are known ts valleys of eleration, and are reforable to this canse. In these cases the acperior strata have boen elovated, and shattered by a
series of seismological convalsions, and the debris then meries of soismological convalsions, and the débris then
bruahed off by a torrent of water. Thon, again, small brached off by it torrent of water. Thon, again, smatl
watered "sweep" ralleys which are now unfloored mostly began with a floor, the river eating ita way down, not all at once, so an to form a canon with ateep sides, but gradially, and leaving a series of raised beaches on
either side, shas forming a terraced rallay. Atmoeither side, thas forming a torraced ralley. Atmo spheric ation in many canes has
tarraces, and formed a gentle slope.
Now for "E. L. G.'s" experimente with mud, tine clay, and sand. These go for nothing, becsnse the materials om ployed do not resemble those of whioh the majority of atrate aro composed. All geologic rocks are more or less consolidatod. Try the effect of continual droppinge on a piees of soft and nanequal
sandstone or chalk. The resalt will be a series of miniatare coombes and rounded hills. Now, take inother pioco of the same material, and chip up a portion of it with a chisol. This represents, thongh imperfectly, the effect of elevation and oearthqnakes pplitting ap the rocka. Now poar on it quickly a jugfol nf water. The orushed and rent débris is awop
clean away, and we have a model Weald left behind.
Lastly, as to the canse of these deluges. They were in all prohahility partial, and of short turatinn, doing their work by mere velncity and impetas. Deep seas sad other ktill waters are Well known to have no erosive
action. The late Sir R. Morchison considered that these delunes were the offecte of the sudden nphearal of large tracts of land in mid ocean. Sach elerations must have dieplaced large masses of water which would poar over the then existing continents.

REVOLVING PUDDLING FURNACES.
[4173.]-TN let. 4064 " G. S.,"I regret to see, brands Mr. Danke "as a mere copier of the inventions of Mr. Walker and Mr. Tooth." This mist have been written
withont due consideration, for Mr. Dankg's farnace Without due consideration, for Mir. Danke's farnace and the almont nanaimous verdict of the trade is that is a complete success. Surely, then, it mast be
formething wore than a mere copy of nnsuccossful inromithing zoore than a mere copy of nnsnccessfal in-
ventions ; if, howeror, it is not it will share their fate ventions ; if, howerof, it is not it will share their fate,
whatever that may bo. If the inventions were alike to Whativer that many be. If the inventions were alike so Mr. Danks has prodaced a farnace which, in my Mr. Danks has prodacod a farnace whiok, in my hnmble opinion, is deatined to supersede all others; sials wised in fottling, to the mode of applying those materials, to the arrangement of metal platos which materials, to the arrangement of metal plates which
secure the fetting in ite pooition, to the contrivances for facilitating the extraction of the paddled ball, to Por facilitating the extraction of the paddled ball, to
improvements in the oonatruction of the farnace, or to improvements in the oonstruction of the farnace, or to
all these points combined, I hope he will orn long reap the reward which all honest mon mast admit is his due. And lot all praise be given to Mr. Walker, Mr.
Tooth, and other gentlemeu who have endearoared to Tooth, and other rentlemen who have
ameliorate the ecridition of the pradder.

I pass over the strictures upon "scientifio institations in England" with the romark that the earneat manner in which the inventigetions of the precont atato of mechanical puddling and of the merite of the Danke
farnece hare been conducted by the Iron and Stoel farnace here been oonducted by the Iron and Stoel
Institate proves that this society, at any rate. is not as "egotictlo aham."
[1178.]-In the articles on "Photography for the Uanitincal taree solations are given for sensitising jection, but the addition of mariatic acid to any silver solation, as given in No. 2, must be to convert so mach of the silver into a ahloride, rendering it uselose for the parpose for which it was intended. In No. 8 it is mentioned there is a heary precipitato. What is precipitated ? If the anthor of the articles thinks the aninitiatod will and pleasare and proftyin purchasing silver to see it procipitated in that manner, I think he will be mistaken. I for one will prefor a plain 60 grain solation, allowing the albamenised paper to convert what is required into a precipitate on the face of it where it is required. I would recommend black onamalled pins for papar
If "R. M. H.," query 11791, will look at page 137 of present Vol. he will find what ho maks for. If he succeeds, perhaps he will let his success be known. Several profescionald I know have got the length of shadow. If he wonld like a chesp dry proceas, which a friend of mine gote on so well with that he can callondelighted to give him the detaile.
Edinbargh.
[Please send it.-ED.]
A. C.

MAGNETISM.

[4174.]-I beg to say a few words in answer to "Conatas " (query 11761, p. 184). Your correspondont, referring to somo lectares on "Magnetism" I have recently been delivaring to saiance stadents in Liverpool, by the invitation of the Town Coancil of that cown, aske a queetion relating to some of my experimente. In one of the lectares referred to I showed that the magnetisation of iron or stoel canses a molecalar change in those bodies, Whereby, among other wifter in a direction across than along its magnetic axis. Around a central hot rod, wax spread over the ron will be molted in a circle if the iron be unmagnetised (A), bat in an allipse il magnetised (B).

Further, it wan ohown that if a oylinder with glaen onds be alled with water containing magnetic oxide of iron in saspension, such ${ }^{2}$ mediam becomes more transparent along its axis whon magnetised by an eleotric corrent. These experimente are woll known. Your correspondeat asks whether the magnetic oxide of lron should not get more transparent across than along its axis. This is not the case, for in magnetisa probably place themaelves end to ond lengthwise, arranging thomselves somewhat like soldiers when a scathored field forms its ranks, and closes in. Iron, therefore, slightly lengthens when magnetised, bat its total balk does not alter, as it diminishee proporionally in its cross section.
I hope shortly to And time to pablish, in one of the scientifo journals, a lecture on the "Moleonlar Struoture of a Magnet," which I delivered last week bofore the Dablin Royal Society, and where your correapondent will probably find the faller information he need. He farther apeaks of "the conduction of light and hoat." I need hardly tell him that thero is no such as we know is a waro-like motion of the ether. Heat is chiefly trass-
mitted in two ways-by ethereal nndulation lite mitted in two ways-by ethereal undulation life light, and by molecalar vibrations like electricity. In the former it ia radiant heat, in the latter it is conducted heat. And, farther, heat may be ourried or conreeted by canaing lightor carrents in a liquid or gas. Inae. much, therefore, as the conduction of heat is totally differont from the transmission of light, your corro spondent must not expeot to diccover any phenomenon in every instance a most perfect analogy to light.
Woodland Grove, Illeworth. W. F. Bareett.
INCUBATORS.-To "M. O." AND OTHBRS Intereated.
[4175.]-I was glad to 800 another letter from I M. O." on the above anbject, being oue in whiah I take an interest; for I do not soe why eggs should not be hatohed with cortainty and aucoess
artiticielly. In reply to his query, "Whether I have hatched any with the machine I made?" Yes. Bat if asked whether it is a success-No, ${ }^{28}$ about 90 por cont. of the eggs bet are lost on the nineteenth or
twentieth dey. I hare no difficalty in prodacing full. grown and remarkably fine ohickens; cortainly remarkable for their size, and fine, atrong, and well
developed limbe-quite perfeot ; bat when the time developed limbe-quite perfeot ; bat when the aime
comes for the yelk to be drawn ap, and, in fact, at the last hour or too before hatching, in my opinion, the ohickens die in the shells-frequently after having brokon throagh anflloiently to protrude their billa. The anme remarke apply to dackg' eggs. My machine oan
be eet at any temperature, and will remain steady, by be set at any temperature, and will remain steady, by
the thermometer, and will hateh and bring forth some the thermometer, and will hatch and bring forth some
chickens, which, contrary to tho prophesies of the
croakers, are strong, healthy, and lively, and oat well. I have beon thinking over the matrar, sad it occars to
mo that the drying and oraporating action of the mo that the drying and oraporating action of the machine heat, lecios the yolk in too inck or glatinous a atate for the ohicken to draw up into the abomencen.
suggeet this for the consideration of others interested,
 upon the sabject. Should I be right in my oonclasions a question will arise as to the beat method of sapplying the moistare nocesoary to afreot the boat result. It machine, but rainer incaned in the any moisture supplied by her ta supplied in a and that any moistare supplied by her is supplied in a moat subie manner. I amm aboat making some further alterations in my mechine, and shall be very glad to intorectod, and working. I think artificial hatohing is intoreatod, and working. Ithink artitcial hatohing especially applicable anacks eggs, the young rom whioh require no care, and may be turned ount nast food and thestion to warrant a little trouble, espocially when quoation to warrant ald are melling for 2 ar . each in the market of the town in which I live. Hatcrer.

THE DELUGE.

[4176.]-TEE book of Colonal Greenwood, abont which Mr. Gosse inquires in his vary flattering but encouraging note (4097, p. 198) was published by Longmans, Green, and Co., the irrtedition in 1857, hio second in 1866, with 237 pp. and some rory good eolourea maps of the Weald and some Froneh distriots. What I intended to praise in the book is independence or
thought and fitness to stir up thought in the reader. I must bog to disclaim, if any of my words conveyed such an ides, any acceptance of the Colonel's ohief doctrines. In fact, he in a thorough Lyellist in principle, wacting himself in futile attompta on the insoluble problem of accounting for all we see by "canses now in setion," though all the while exposing the delasiveness of Lyell's similar attempts. His atteok through. out is on Lyell personally, and not at all on what I oall "Iyollology." The above falve dogma that Lyoll (I am told) invented-that, at any rate, made its appearance here in England some thirty to twenty-five years ago-has hardly yet deluded any foreignors, becaase they generally seo that it is atiorly disproved by all known facta in the heavens or earth (as baseless and
as multifariously disproved as over the Ptolemaic astronomy has been); and yet here-in the very birthplace of geology, the very land whose villages and distriots have suppliod nearly every name accepted
for the world-wide formations throughout the for the world-wide formations throughout the
world's schools of scienco, here it has driven out the world's schools of seionco, here it has driven out the
trie science (except as regards the older strats, deep trne science (except as regaros inty banished to France and lese sophisticated lands all science of the later tertiary and haman periods, to sapersede it by shear
faith in the miracle stories of a new priesthood that, faith in the miracle atories of a new priesthood list,
instead of reacons or arguments, write instesd of reacons or arguments, write (like Profensor
Tyndall in one of his Alpine books) whon something is Tyndall in one of his Alpine books) whon somothing is to be swall owed againgt eridenco, or What ail, or rathor
to believe" Exaotly as any Popish Coannil provincial or heretio synod of the dark ages, or of Brahmins, laid down their oreods; this now dogmatio faith (for rach it is, and no soience), being jast at antiscientific, ronson-scorning. eacordotal, myth-and miracle-swallowing, and superatitioua,
Popery or Brahminism ever was ! Now, of all accepPopery or Brahminism ever was Now, of all accop-
tora of this bacolass faith, Colonal Greenwood seems, to judgo from his book, the most freethinking, and therefore leat likely to swallow it permanently. But his tomper towards the perfoctly proved fact (as I consider it) of a cometary delage, in this his last edition, Mr . Goste. may see from this quotation 1 min maie
from Chap. III. "Mantoll telle us that at Hastings 'a diluvial palley interrenes betwean the white chalk and the west cliff, where the ruins of the oastle are iltuated.' Diluvial Beantifal! A valley made by Nonh's flood doubtlese !" This will show you that if I commend the Colonel's book, it is not for dilarialism, bat because its general frankness and breadth of
admission of easy and difficult facts alike (vers like admission of ensy and difficult facts alike (vers like
Darvin's methed) enables the reader to see where and Darwin's methed) enables the reader to see where and Whorein its reasoning breaks down, and how oompletolts
and sololy throagh this error. In the table of contents all the positions are tervely pat, including, with scores of excollent and novel maxima, such plain fallacios es these :-" Rivers may out deep ohannels, rain makes wide valloys " $!$ "Aqneons denandation in nuiversal, and is not condncu to the lines of torrents and rivers" "Absurdity of the doctrine of the original incandescent
fluidity of the globe "t Readers far inferior to Mr. Anidity of the globe 'I Readers far inferior to Mr. Gosce masy be trusted to see how entirely the book
to make out the two former, or that there is anything abeard in the latter. As for the seoond, I maintain, with Do Luc (Lettors V.) that moat vegetation, espe-
oiall the lowar, as mons, grass, heath, buahes, jangles, otall the lowar, as mons, grass, heath, baahes,
totally protects the ground below from anfering any totally protects the gronnd below from suffering any balance of loss, and, in act, wherever velatate (if any)
tinues from age to age, it shows the balance to be on the side of gain, that at least as much new soil is added as is carried down and away into gattera,
rills, and finally rivers by the rain ; all of which rills, and inally rivers by gronend at first, boonane bse to mink into such ground inches above, have the drops, faling only from a the surfacoe Denndetion, therefore, by any present known rain, is "conflned to lines," to the beas of rillo and rivara, which it can only lengthen and deepen, never woilen boyond a ined small ita bed from time to time). Furoving is all the effect ite bed from time to time). Murroving is all the eifect ground or bare rock, by any modern rain, or any concoived even 100 times heavier, say, instesd of the
charee inches por hour that it, perhaps, about the
maximum of tropical storm fall, a deposit of a foot per minute (or an inch in five seconds). It is donbtial if even that would snfice to dernde more then the lines, into which it wonld (on any considerable of gutter, into which it wonld (on any considerabie
slopa) have time to colleot without flowing as a sheet slopa) have time to collect withont llowing as a sheet "denude universally." No mere atmospheric rain oan or over coald approach anght like general sur/ace denudation; and yet every acre (not of nuodern
gronnd) testifies that such denudation it has had. gronnd) Moreser, it is easily reokoned that not only the above
rate of stormfall, bat one ten times greater, say, depositing ten feot per minate (sapposing ron hay, depositing ten feot per minate (sapposing you have store acquire in the air velocity enou'sh for the drops to hart or kill animale, nor diaplace enoogh of the air to affect their breathing in the least. Of course, the rock, all hills, and highlands ; the first minate woald aproot, all timber, ine in the and root an timbor, oven in valeers and iats, woald swoep Matthew rxiv. 39, Lake xvi. 27), and before the sea level had been raised a yard (anpposing the land and could not), before, I soy a yard of water had foller they could nol), bel (Which it might in one minate, every foatable thing on sea, or appreaching it with mevenfold railway speed, all sea, of appreaching it with sereniold railway speed, all
ice of both poles, and of all Alpine glaciers, and thonsands of square leagnes of matted forest timber, rathor flosting continouts than the "floating islands" that navigators now bee issning irom the there would be nothing to kill necessarily every animal clinging to a troe. Individuals of many species might thus both float and Ind food on some of these millions of natural rafte of uprooted but still living forest for days or even weeks, aprooted bat still living Lorest for days or even weeks,
till the driftwood landed on nome of the newly rising hills that-the general platonic movement would certainly begin to aphearo into air before many days from thing begin to aphearo into air before many days from higheot, and lowlands, and vast portions of our continanta might not emerge or reappear for mach longer $\overrightarrow{M e}$ have no means of gaessing how long. And as Magaheen was the most inland-studded part of the Pacific, sithons onee secing land. so at the pime of the Deloge aban once seeing land so at has of Delage, aban dance of han migh and beand many of its former animal apccies, and get a and many of its former animal apecies, and yet a to find, like Magalhaen, "all hills that were nuder the whole heaven covered; "and oven, if happening to gronnd and atick fast on a new.y risiug cone as nolitary
other land Till his vessel
was ho, or Ararat, might sce no othether land his vassol was hoislailabove he clonds, whears. If preventod descending, or alraid to d θ so, all nalure of the condensed steamithen centaries npon tentaries of the condensortoam) hana cenlarior apon coalaries animal kingdome be in foll swing before the generality animal kingdoms be in fall swing before the generality of the rocking crust would bo settied onongh, or the lowland air healthy enough, tomake it gaie for such the cool peak above the clonds (sapposing them these provided for).
Colonel Greenwood has, before the above first quoted position, a true one strangely contradicting it. "If ralleys," he well says, "were widened by erosion of river banks, their sides would not slope, bat mus: be clifft with intervening table-land." Quite so, and such is the case on any known modern, that is, undiluviated
land. But then he distingaishes between rain and rivers, which elsewhere he insists are all one action, and for once oppoues them, thas-" Rivers may cot deep channels, rain makes wide valleys." It does no
such thing. Some rain did so once, but no modern such thing. Some rain did so onee, but no modern
rain is capable of this. On the contrary, it collects rain is capable of this. On the contrars, it collects
into hills and rivers, and onlr acts by them, on their into hills and rivers, and only acts by them, on their beds. It furrores more and more, an effect the
very reverie of that of the dilavial smoothvery reverie of that of the dilavial smooth-
ing rain. The widening and sweep-rate-making effect requires rain too great and rapid to farrow or form torrents. Instead of our turrential rain, it reqnires diluvial rain, such as to form a nooving
sheet over the whole of a steep hillside at once. Tho sheet over the whole of a rteep hillside at once. Tho
Colonel evidently Colonel evidently met with objectors, perceiving this
differenoe, for at the end of Chapter H ., he says, "In difference, for at the end of Chapter Al., he says, "In
general the philosophio and the nnphilosophic are tergeneral the philosophio and the anphilogophio are ter-
ribly put out by tho powers here claimed for the ribly put out by the powers here claimed for the
'roah of rain.' Yit when the word 'tlood' is ased, they will allow you to wach away articles of any size or deseription, nataral or artilicial." A thood, however,
is simply the effect of rain, as "the , is simply the efiect of rain, as the fuod was the
mame. A flood means rain oollected in quantity enough to wash, bat to do this any modern rain must be collected and concentrated greatly. By washing a thing
we always imply oxposure of the whole surface to we always imply exposare of the whole snrfsce to
water moving with regard to it at once. Modern rain washes the chnnnels it flows in, when collected, but not the mere collecting surface it drops apon. I mast,
therefore, agree with "the philosophio and phic,", againgt the Colonel, that "wnsh of rain," as he till the phrise, as surface wash apart from wash of been or torrents, 18 a thing now unknown. Thero has boen no risal Washing (Whole-sarface-washing) rain ence wat mas hancolio "diluvial ralley" that so mains might do so in loss then a day. The motio on his millo.page is

Multa renascentur qum jam oocidere, cadentque
Quan nunc sunt in honore.

He evidently reckons not Mantell's dilarial valleys among things that " rensscentur." Men choose mottoes that 0.
waya.
E. L. G.

VERDE ANTICO.-WORKING IN METALS, \&c.
[4177.]-"ETHEL" (let. 4088) is mistalen in thinking mo one of the gentler bex. Her mistuke was, perhaps, cansed by my making moan over the state into which suppose and prejudice: the remaing ascribed oeartion whic made Lord Chesterfield and Lord Byron say, "Show mea man's hands and I will tell you whether he is s gentleman or not -a miecrable mistake. Show me his heart, say I, or his head, or both, before I can decide. As to the colour of antiqne bronzes, I did not mean to say there was no green colour given to bronzes artificially in anciont times. I only meant that it probably was, thongh verde, not verde antico when froshly manipulated. "Ethel's" own things may be in existence 2,000 or 10,000 years hence, and the verde moderno, which she now laments, be tarned into the castina would be destroyed by the heat required to melt bronze -unless, indeed, some of the colours uned by enamellers, which become green by a hest as intense Perhaps some of our chemioal brethren will tell as Enamelling, bs-the-by, is a thing which "Ethel" migh easily add to her metalic parsaits. I nsed, in o very far-off land, often to see a jeweller friend of mine enamelling pins and things with month blowpine and enamel in powder, or rather paste. I helieve that enamel powder adheres, when fused, to copper withon any preparation, except brightening the copper sarface. If "Ethel" has gas where she is the best blow pipe she can une is the one made of two balls of val canised rabber. The first ball, when pressed br the foot fills the second, and, keeping it foll, canies a continnoas blast. It costs 15s., and is, I believe, a French contrivanee, though I bought mine in London. I have melted with it on charcoal a piece of brass as big as a not. I don't believe there is any book-in England at least-on working in gold and silver, bat there is Goulomiths Magazine published monthly, I think of "oanght to be useful to "Etbel." Porhapg som oneo tried sone of the spirit blowpipes, sand after lighting it the whole insido canght fre and blazed fariously. I pat it oat at once with the rag, and on spirit lamp the the man he showed me a moio bo having gas and the valcanised rubber blower I did no arnin try it. In Ure's "Dictionary" there is a very elaborate table of the varions alloys, bnt I havo left mine in London, and shall not get back for months Will some brother who has access to it kindly answer Proven.

NEW DOUBLE ETAR IN VIRGO.

[4178.]-I would call attention to the following doable star found two nights since, which appeara to bo new, so far as 1 cos
Virating mil 23106. 12h. 18m. 29s., N $14^{\circ}: 5^{\prime}: 7,11 \frac{1}{2}$: 110° : 4.-About 11°.f. 6 Comm, and ensily fonnd from that star. At the time of the discovery of this delicate and rathor difficult object; but as it was in with a full moon, and the seeing osly moderately good, it may, under more favoarsble circumstances, be quite eary. This is Weisse XII., 197. The spiral nebala, Ni 99, should,
from its place in "Colestial Objects," be aboat $z^{\circ} n$. of this pair
A few dave since I forwarded a note in reference to a new doable near 17 Hydre, giving its distance at $1 \cdot 5$ less, if ervations indicate that the distance is raine I hope to hear from Mr. Knott and Mr. Bird in reference to these matters, and if any of these sapposed new pairs have been observed bofore, I shall be glad to have it stated.
I may repeat, for the encoaragement of others having small telescopes, that all the now dortble stars commanicated to the Englisi Mscriamo and many others, have been discovered in every inatance, and within only with a Gin. aperture, so that they are all many reach of an instrament of that bize, and for while with an ain ach inaler mirror, all of them, I should oxpech, would be quite easy objects.
Chicago, April 24.
S. W. Bermiay.

BRIDGE CONNECTING ENGLAND AND FRANCE.
[4179.]-IT appoars to me very simple as to the beason why the pamp had work or chree minutes the ahrond, by weights to a depth of tit 7 in. of and and gravel es well as 1 tt Bin of ater, there vonld be a very conas well as 1 ll . $i n$. . ohator, here would bo a very conuntil the pump had exhansted all this pressure it would antil the prump had exhansted all this pressare it would inagine that it would be preferable to have an aportare at top, mo as to let the air ont and water in, nutil it reached a suitable dopth in bottom to conmmence the reached a suitable dopth in botiom to conmmence the
the exhanstion. By this menns there wond not require to be such a quantity of weights to sink it at arst.

atomicities and ELECTROLYOIS.

[4180.]-Tae question which "Eelecticas" (let. 4100 p. $\mathrm{S}^{(0)}$) tas once or twice belore raised as to tho old enships of the phenomena of electrolysig to the ance bo decided by odher nataral prom that point of view. It gare me a great deal of trouble at one time whed passing from the old to the new notation, bat for m that difficalty has long since vanished. I will 20 attempt to go into the matter now, as I lave it preparer emecessary papers on "Electrolysis," bat tos As I pointed ont in my appears to support the old equivalent notation; it doe so partly because our knowledge of it grew np ninder bat systom, and mote experiments are on record in it aut the true explanation is that wo cannot escape frocs That are diatomic elements, such as zinc, copper, sui pctic acid, \&c., sad, therefore, we are boand to get an ore, appear (bat only appears) to best matoh the facts.
The principle which clears the difficalty will be foand in Section 240 of my papers. "Energy equivalent to 4,678 foot punuds exerted apon a chain, each link of which is a chemical equivalent of matter, weighed is grains, converts that chain into an electric circait nnder a tension of one volt at the source of the force
has a forther meaning-for applied to the atomic notation it expresses the force trausmitted through the centres of attraction or of 'atomicity' by which the molecales are constituted.
We may find here the explanation of eeveral curious lacts which havo pazzled electricians, and led to the setting ap of some imaginary laws of electrolysis Copper furnishes an exsmple of several anch anomelies It can be deposited either at the anode or cathode, and it can be deposited in the same circnit, in one and 5 wo equiralents, a lact I have never had explained by an electrioisn who held to the equivatent aystem.
We may form a circuit of three cells-1 containing dilute acid, for what is called the electrolysis of water 2, cupric chloride ; 8, fused cupreous chloride-form ing a biuary chain of attractions starting from the ziso his suiphuric acid in the battery; the lines below show .- 1, the circuit; 2, the equivalent expression of th or the same sctual quantity the equivalent nembers woald be doabled throughoat-

Now, all this is quite clear when we adopt its atomic ing ion, and tho ides of the atoms or ranioats possemb the basic, bibasic, \&o.
Of conarso, I quite agree with "Ecleotlous" in regard ing radicals-such as cyanogen, ethyl, de.-as exnctly corresponding to elemantary atoms; in faet, thi doctrine is a pure "radioal" theory. According to my diagrams above, and the atomio notation, one atom o copper exorts its bibasic powers as a radical apon two atoms of chlorine in capric chloride, while it is capable of uniting with a second atom of corpper, so as to form not a molecale but a still unsatisfied radical still aniting to two atoms of chlorine to form capresa chloride, from which, therefore, the same carren deposits two equivalents. Now, antil "Eelecticas" ca explain this he really mast not quarrel with Mr. Dasi becanse platinnm is capable of claining either two or forces to which it is sabjected.

OBSERVING ASTRONOMICAL SOCIETY.-OBSER VATIONS MADE BY THE MEMBERS.
[4181.]-Jupiter-Mr. H. W. Hollis, of Nemcartle Staffordshire, reports that on Jninary 14, 9 h ., the die of the plavet appeared very sharp, and be connted
twenty-two different bands of colour. "Those vivide in the equatorial parts of a beautifnl delicate mial brown. Inm certain that the belts are visible up to the very edges of the dise, bat there is an appares increase of brightness for a considerable distance roan which of the planel-probnaly an elfect of contrastcarafnlly looked for. Several well-marked and beautifnlls detined irregolarities in the bolts shomed the rotalico most clearly, even in half an hour's watching. Jsy $23,8 \mathrm{~h}$. 15 m ., satellite 1 just entereci ou dise of Jupiter and appears as on intensely white spot; Oh. Ula shadow of 1 on centre of disc black rad sharplit
circular; the satellito itself cannot be seen." Ai: T. W. Backhouse, of Annderland, observed the trang of satellite 1 on Janarry 14. At 13 h . 54 m . it "appeare as a faint white spot." On February s, oh. Im., b The satellite itself was at the time menti ned The satellite ilself was, at the timo menti uned, near darker than the darkest part of the planet."
7 h .80 m . it was "still very plain, but anty the sam shan its sbadors as part of papitar. It was samalle han its shadow, which was very black."
T. Corone Borralis.-Mr. T. W. Brothonse says:A change has taken place in this star. On its fatiac the seoond time it becsme stationary in brightnee about the middle of the year 1867, since which tirat
up to the beginning of this year it continuad the same.
bat with frequent slight flactuationf, which, however, ceased, so far as I could jadge, at the ond of 1869. I have suspected finotnations aince 1869, bat they ware doabtial. On Jon. 14, this year, I looked at the star, little fainter, but certainly not fainter than it had been st times previously. I did not look at it again till March 5, when I found it mach fainter than I ever saw it bofore, perhaps half a magnitade less than reasl, and it was the same on the following day.
Nebuta in Trie Plewaps.-Mr. H. W. Hollis hee looked for this mebnls with hie Bin. achromatic, bat canyot find it He says:-ل"There is something neculiar about all the brighter stass of this group which for months past have appeared, to mee if surrounded with nebalous light. Can
Metrors.-The Rev. G. J. Johngon, of Orediton, witnessed the appearance of "a mplendid meteor at 7h. $87 \mathrm{~m} . \mathrm{H}$. April 6. Its conrse was in a atraight line downwards from about 15° above the N.W. horizon to about 5°. Colowr, white with a greenish tinge. Duraronld have equelled, if not eroeeded, the brightnese of Venus or Jupiter. I was looking for Mercury at the time." On April 19, $11 \mathrm{~h} .10 \mathrm{~m} ., \mathrm{Mr}$. William F. Denning, of Bristol, saw a brilliant metoor. It passed downrards in the NN.E. aky. It wee starilke in appearanoe, and left no train of light.
ME ECUBY. - The Rev. B. J. Jahnsenobserved Meroary both with the naked eye and tolecoope on the erenings of March 25 and April 5. A po
tolescope brought out the phace.
W. F. Demmina, Eion. Bea.

GARWIG IN EASR.

[4188.]-AFFY taneot in immediataly killed if its piracles berly distreoted by a fles that mine was once so deeply in the dog's ear that neither he nor I conld reach it. I gave him immediate relial by dropping a ittle oil into his ear, which killod the flea. What ill is more easy to use than tobecer smoke, and
M. R. C. S.

Erbatidx.-In let. 4068, p. 176, line 80, for "probably also the last," read "probably also the cast
any monntainous tropical island," ta.-E. I. G.

EXTRAOTS FROM OORRESPONDENOE.

Commanicating Rotary RFotion to Ball Fired from Smooth-Bored Gan.-In reply to M. Paris' witty and clever letter (4051) my idea, I fear, seems more likely to canse man's langhter than manronud a corner," I must take ont a patent and sell it ronud a corner," I must take ont a patent and sell it
to the Fenians. However, it has done more. "Philanthropist's firework" has recoiled on himself like a thropist's firework has recolled on horang, not to use the stronger languge of the poct. However, joking aside, I am obliged to M. rotation might be at any mangle to the line of fight" "I rotation might be at any angle to the line of flight." I extent in rifles of high trajectories at long ranges, as the rotation ceases to be identical with the curvilinear path of the ball.-Philanthiopist.

Experimental Borings for Coal.-An experimental boriug in search of coal has been commenced in the ceutre of the Weald of Kent, bnt is now post-
poned till after the meeting of the British Association poned till after the mecting of the British Association
at Brighton. A desire has been geuerally expreased thet a boring should be made in the Thames Valley to thet a boring shoald be made in the Tharees Valley to
test the hypothesis of Ur. Godwin-Anstin and Mr.
 Prestrich; a considerable sum hans already been sub-
scribed for this parpore, and suficient will probably be prorided at the Brighton meetivg.
Harbour Scheme for Calais. - Another new scheme for making Calais Harbour available for steambrats of 3 evo or 4,000 tons at all times of the tide has been broaght before the anthorities. The engineers
are Messrs. Liddell and Richardson. Their proposition are Mebsrs. Liddell and Richardson. Their proposition
is to constrnct a landing and embarking pier aboat is to constrnct a landing and embarking pier aboat
three-quarters of a milo into the water from Calais, and to connrect this pier by a subway from the railway station. By going so far out into the Channel they wail
arcind " siltiug ap," and by making a basin for the stramers at tue extreme distance they will be able to land in shelter at any time of tide, wind, or weather It is estimuted that the cost will amount only to about \&400,040.
Durability of Framed Timbers.-The dura ides of the ramed timbers of balluings is rory con Basilica of S. Paal, at Rome, wore framed in 316, and we:e sonnd and good in 1814, a space of nearly a thonsand years. These trusbes are of fir. The timber work of the tyternal domes of the Charch of S. DLark, at ∇ cuice, is more than 840 years old, and is still in a to the Cunch of S. Puter, at Rome, to he whole and gomnd after being ap nearly 600 years. The inner rood of the Cla yol of S. Nicholas, King's Ljun, Nortork, is Daviller statos, as an instance of the dnrability of Ar, that the large dormitory of the Jacobir:s' Conrent, jear.

BEPLIES TO QUERIES.

${ }^{\circ}$. In their answers, Correspondents are rerpectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.
1 Write on one side of the paper only, and pat draw. Ings for illastration on separnte pleces of papor. 2. Pat titles to queries, and when answering querios put the
numbers as well as the titles of the querles to which the numbers as well as the titles of the querles to whifch the
roplies refer. 8 . No ocharge is made for insortin 1 letters repies refer. 8. No charge is made for insorting letters,
querles, or replies. 4. Commercial letters, or queries, or queries, or replies. 4. Commercial lettars, or qneries, or
replies, are not finserted.
5. No question anking for reducational or soiontive information is ans answered
eduction throngh the post. 6. Lotters sent to correspondents,
under cover to the Editor, are not forwarded; and the under cover to the Editor, are not forwarded; and
names of correapondenta are not given to tnguirera.
[10478] - Pork Dlet.-I am a believer in the profonud wiedom which dictated the old Jewish laws and rales; one of these is the disase of pig meat. The same regnlation provails in Mahommedan conntries, lands the disead the assertion that in non-pork-eating known! Many medical men object to ita nes in common; some say that well-crired bacon tonsted hanging before the fire may be eaten by delicate poople, bat not any other descrintion of the animal' fiesh. If all pigs were well fed snd heaithy there woald bo but little objection, perbaps, to our naing them for food, but there is nn animal more liable to disease, and no meat in which such state of disease oan bo so easily disguised and concoaled from the consumer.-A Motrer.
[10664.]-Angle of Reflection and Inoldence. The line $A H$ shonla pass the diagram on page 205. The line Δ I shonld pass through a point in $B F$, the same distance from F as G is from A, and the line A K through a point the same distanoe from F as J is
from A. - BrLundist. from A.-BLLLIARDIBT
[11108.] - Till Hammer. - I have been very oarefally examining the drawing of tilt hammer sent
 It mes. (See page 12s.) and may be made free ube of by any of your
numerons readers. Two numerous readers. Two
further diagrams will oxplain all that is
needed. No. 1 , the eocentric drawn sopaaotion, so that it will be easily perceived. My drawing is correot, and ono be made adjnstable to any weight or parpose.-Joazph Willium Fennell.
[11130.]-A: Question of Sight.-J. Barwiok must really go to the rudiments of the anbjects he is attacking, which are to be learnt from school primers. And why does he not try the experiments on shadow and penambra? He has no right whatever to occapy ment, ard which hecalatuses to learn either from natare or books. The shadow of a globe in sunshine extends just as far at all bours of the same day, he might readily find. What does he mean by air "except under special mechapical pressure"? Who has ever experimented on air not under some special pressare? Where can he get uncompressed sir? or what is its density? If he could have a steel " needle" reaching to the sun, any palsation would be commanioated in not less bat far longer time than light; in fact, and would take abont.two years and a half !-E. L. G.
[11907.]-Siphon Bottle Oapa (U.Q.).-A greater pressare by making your runner longor, or rather higher, will stop the "drawing into holes;
not Al al make the runner bigger. I oan't tall about the not Ao, make the ranner bigger.
ind of metal.-ANOLO-AMERTCA.
[11209.] - Making Gold Mralleable (U.Q.). Perhaps lead was melted in the crucible, which would canse it. A clean cracible is required for gold; melt again.-Anglo-Amerioa.
[11223.]-Stereotyping.-" 4 Country Printer" will find the pupar process far more eoonomical and convenient than the plaster. Hy will fnd all the information hereqnires on $p .231$ of Vol. XIII., and diagrams and description of casting-box on pp. 16 and 36 (Nos. 813, 814, and 322). In answer to his questions the metul may be nand is generally "poured over" the monld in the "paper "process ; that is, it is poared incost with plaster moalde, bat I think they require rather more pressure than the weight of the amall quantity of metal thas nsed noald give. Tho paper prooess the forme oomparatively clean, whereas the plaster method always entails a large amount of labour in clearing out the small pieces left in the spaces between the words, noless "bigh apaces" are employed. At himes, too, if every orovico is not properly oiled, lettor: least) in picking them clean. The cheapest and best metal to use is old type-motul. "A Conntry Printer" should read the lettera I have mentioned, and if he intends to do his orn stereotrring adjpt the "paper" or papier-micte process. the is cheaper, eanier, and
quicker than the pinster ; the apparatas is not so ex. pensiro, and does not occupy so much room; while, with the exception of woodents, the casts are as berriceable for mot parposes as those obtained by the plaster mothod.-SAEL RYasa.
[11275.]-Davinentig Walnut (0. Q.).-I have fonnd Stephen's wood etains very ameful for darkening oak, mahogany, sc., and I have no doabt that B. Paine will find Stophen's walmat stain maswer his purpose. Mix the powder (whioh can be ment by post), with at least double the quantity of warm water resommended for staining deal. When the stain is dry the work can easily be varnishod, Frenoh or wax polished in the umul way.-Sacristan.
[11275.]-Darkening Walnut ($0 . Q$).-Lime water will darken oak or walant aboat $1 / w i n$. in depth. The application of steame might drive it in farther, bat this is only conjectare.-F. G. T.
Woald not thardening Iron Plates (U.Q.)supply this want?-F. G. T.
[11289.]-Flexible Oil Painting (J.Q.).-To make a calico waterproof coat lexible, if the same re cipe would answer requirementa of this quorist, paint the calico or canvas in hot weather in the sun. With overy brashfal of paint take a rab on a good-sized piece nt brown soap, not too dry, so as to take up a moderate quantity of soap each time. It will take a long time to dry, \quad ome weeks, and should have free acoess to sun and wind; bat it will turn oat perfectly waterproof, and quite flexible.-F. G. T.
[11294.]-Dipiaing neotal Diso.-Errapur.Sixteenth line read: C

- Thetamo, Haraham.
[11990.]-Mariding Leather for Ornamental stitching by Machine.-How will blacklead from a soft dark pencil rubbed well into the back of your parposes.-G.W.C. H.
[11850.]-Clasting Prase Solid.-Pat a good tall head on it, and skin clean; if too muah coppor is uned to the spelter, that may aocount for it; there mast nevar be less than 4oz. to
thing.-Anglo-Awraicu.
[11388.] - Orystais in Gas Tar. - In attempting to correct mo "Ethryl"" has himesil fallom into error. If he will kindly refor to my reply he will see that I stated that naphthatine is usod in the preparation of artificial (not real) atizarine. Real alizarine was first prepared synthetically by Messrs.
Graebe and Liebermann. From an examination of Graebe and Liebermann. From an examination of the substances obtained during the decomposition of
alizarine it had been conjectured that it was conneoted alizarine it had been conjectured that it was conneoved chemists antrally, obtained enthrecone from alizartue by heating it with zino-duat. The reverse operation was then attempted; and by aoting on mathracene with nitric acid, so as to convert it into anthraquinono $\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{O}_{2}$, treating the anthraquinone thus produced with concentrated sulphnric acid, Which Rives rise to disulphoanthraquinic acid, and, leotly, by fasing this with casastic potash, they sacooeded in building np the
malecnle of alizarine, the formala of wich is molecnle of alizarine, the formula of wish is
$\mathrm{C}_{1}\binom{\mathrm{H}_{n}}{\mathrm{H}_{3} \mathrm{O}_{3}} \mathrm{O}_{2}$. It is also worthy of note that Anderson has prepared alizarine from opianyle; but it in atill doabtial whether, when thas prepared, it is exaotly similar to that obtained from madder and anthracene. But the astiticial alizarine wo waiou 1 rolarred in my letter is a body of entirety different composition; its properties are somowhat similar to roal alizarine, hence its common name. Schuitzenberger, who has studied it mach, calls it naphthazarine to indicate at once its derivation and its similitude to alizarine He gives its composition as $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{4}$. Several other fine colouring matters have been obtained from naphthaline; I need only mention naphthylamine violet, dinitronaphthol, naphthamèine, sc. The reader, who may be desirons of following out this interesting branch of
applied organic chemistry, cannot do better than conapplied organic chemistry, cannot do better than con-
salt "Conlears a l'Aniline," in Roret's "Enciolopédie." salt "Conlears à
[11808.]-Stinging of Bees, Rornets, and Waeps.-The pain of these poisoned monnds is relieved by eithar ammonis or tobacco juice, bat a writer in to Buffed from the otings of two bees in his ear was he enffered from tho instanal rolution of carbolio acid 1 to 100 by menns drop of a eolntion of carbolio acia to 100, by means reliere instantls, instead of beizg dropped on to the wound. It woald instead of beisg dropped on tho to well for say ive effect of each of these romedios used in the sane ary 1 hypodermic syringe is one used in the same way. A hypodermic ayringe is one
with a very fine pipe for injectiag medicaments with a very fine pipe for injectisg mediament beneaih the Bkin ; a tine pointed blowpipe might be
ased if no better instroment be at hand, bat it must ased if no better instrument be at hand, bait wound, be a very hne point to inject in common casos.M. R. C. S .
[11438.]-Vegetable Marrow Preaerve.-Does soar correspondent, "A Young ho a recipe for preserving marrow in imilation or gitar cannot sapply one, bnt for the former, the following, taken from Francatelli's "Coobery," will no doubt answer. Peol a vegetable marrow and out into ehapes in imitation of preserved green ginger, simmer fery to ly for a few minatos in syrap proparenfal of Sayory and Moore's essence of cinger, the juice of a lemon and half a pint of water; boil thren minates. The syrup shonld be bolled up twice, adding each time a teatspoonfal of essence of singer.-E. O. J.
[11440.]-Double Base and Vioun Stain.Mr. Davidson will probably furnish Benson with the dimensions of a good doable bass, and here is a recipe
for " stain." Boil a poand of Brazil wood in two quarts of water for abont an honr; strain, snd add quarts of water for aboat an honr; strain, sad ada giving a crimbon-tinted stain. It a darker colour is preferred, wash with saffron water previonsily. If a
purple is desired, boil a pound of logwood in three purpre is desired,
quarts of wail a in powder.-E. M.
[11442.]-Old Wives' Science.-The reference by two of your correspondents to Dr. Brewer's "Gaide to Science" Por a solution of a scientific question must
have amased any of your readers who are acquainted have amased any of your readers who are acquainted
with that work. The specimen quoted from it was with that work. The specimen quoted from it was
characteristic. "Why do the sun's rays shining on a characteristio. "Why do the sun's rajs shining on a
fire tend to quench it or retard its barning ?" (Or something to that effect.) Hear the learned reply, so
instractive and convincing to the papils of the yoang inntractive and convincing to the papils of the young
ladies' academios in which the book is ased as a ladies' academies in which the book is ased as a
Bcientific "cram." "Becnuse the heating and actinic scientific "cram." "Becnuse the heating and actinic
rays are detrimental to combustion" ! That is to sas, the sun'g rays have such and such an effect becanse-
because they have! What could be more logical and becanse they have! What could be more logical and
conclasive? The only misfortune is that the fact so conclusire? The only misfortane is that the fact so
ably explained is not a fact at all; as your corresponably explained is not a fact at all; as your correspon-
dents, S. Bottone, and "Shn Fly," have clearly demondents, S. Bottone, and "Sha Fly," have clearly demon-
strated. Pray don't let us have ang more of "Brewer's strated. Pray don't let ns have ang more o
Gnide " in "our" columans.-G. W. K. L.
[11448.]-Warming Greenhouses.-My method with my conservatory is to hang a long tarpanalin all along the front and sides of greennonse in very oor little sun. Valuable plants I remove to my honse, and I have a emall stove at the end to light in day time, purpose, suspended from rool for night time.-H. B. E.
[11461.1-Reviving Black Oloth Coats, dec.If "A. Despoire" wishes to make a good job in im. proving an old coat he mast first give it a good beating
till he has got the dast ont. Then he mast get the greare out with ammonis, or soap and water and turpentine, and wash the places alean. Fuller's earth is
the best for grease. Having got the coat clean, he the best for grease. Having got the coas clesa, he
must or spongo it over with a solution, not too strong, of salphate of iron, till it is well soaked in.
Then take a decootion of logwood and galls, and while then take a decootion of logwood and galls, and while hot, aponge or brash the coat over with that. Hang it
out to dry, and give it a good brushing the right way of the eloth. He must mind the solntion or
not too strong for the logwood, do.-E.T.
[11482.]-Algebra.-Let "A New Snbscriber," Who finds fanlt with my solntion on p. 180, consider the number' 24929 , whose internal evidence is, that the foar biquadrates which compose it are not frac--
tinnal, for bad any of them been fractinnal the total tional, for had any of them been fractinas the total
wonld have had a decimal, which mast have been even. for it manst have torminated in 2, 4, or 0 , which is not the fact here; therefore neither of the roots $(x, y, z$, , t) is anything bat an integer; morecwer, only one of
the terms of the analogy can be odd, which can be provid; therefore (n) mast be an even number, and (d) mnat be odd, and both of them integers, and thus 5 and 5 are shown to be the only integral divisors of
25 , and thus $(n+1)$ and $(2 a+d)$ are determined. It may be added the theorist taking advantare of this principle may often avoid a press of calcalation. In working equations, where diminntion or angment of gress) is a vital mattor. -Taetanc, Horsham.
[11554.]-Pedestrian Tour.-The advice given by "Hedera," at p. 181, is gnod, but not, Ithink, quite provided with pockets, will enablo a pedestrian to dispence with a knapsack, which to one unused to it is a burden, as is also anything to carre in the hand, oxcept an umbreila to serve 28 a waiking-stick when
not needed as a protection from rain, or, as I chielly not needed as a protection from rain, or, as I I chietly
ase it, from sun. I have s very convenient garment ase it, from sun. I have s very convenient garment made of an oblong piece of cat in the midde, like that of a poncho; it hangs a slit cat in the midde, like that of a poncho; in front,
down to my knees behind and just below them in and protects me well from a shower. When folded up it is easily carried by a strap over the shonider, and gerres as a cushion to sit on it ites grass be damp, as
it often is. The shoos I live beat are made of No. 8 canvas, with stont but not very thick soles, well supplied with nails, to give secure footing on grass or slipperyground, which is essential to safety and comfort on
the monntains. I take care that the shoe soles are cat the moantains. I take care that the shoe soles are cat raiher wider than my 1oot, so that I may walk on the
sole and not on the welt. Shoemakers, like other mere practical men, are always wronk, aud will make the sole too narrow if wo let them. They think the foot shonld be forced to fit the shoe, not the shoe made to fit the foot. I prefer having too day shirts, one on and if damp, this saves the necessity of carrying a nightshirt; I need besides only a spare pair of stockings, knitted worsted, soft slippers, pocket-coonb, hair and
tooth brashes, and a piece of yellow boap. Note, if the stockings are well soaped to keep them pliable, the pieoe of soap may be left in the portmantean. All of Which can be carried in the pockets of the jacket. A Rood map, with a telescope, a compass, n parse
with mome money it, and an amusing bonk to read When resting, completes the walker's ontet. As
"Hedera" advises, the portmantean should be sent on to where it can be met when wanted. I strongly orror of trying to do too much; do not make a toil o a pleasure; you take a tour for heallh and enjoyment,
do not over-tax your strength, or try to walk so far
that you cannot properly see and daly appreciate the sceuery yon pass, simply that you may boast how far you have walked in a day. I find aboat fitteen miles rom the start to the end of the day's walk aboa more, bat to allow time and atrength withont exhans tion, to make diversions by the way, or to push on to anather inn if that first reached prove fall. It is no
grent hardship to add, say, five miles to a walk 0 fifteen, hat it is no joke to add it when already dog tired.-Philo
[11566.]-Equisetum.-I fancy M. Paris mnst mean the seeds, not pollen, of the eqnisetam. They
make an interesting object with a low power. Each has make an interesting object with a four kinds of threasi or elaters. They appear be pat
right time as a kind of powder. They shold boll on a piece of glass, and while looking though the microscope, gently breathed on for a moment; the threads will then be seen contracting and expanding as
ther get first damp and then dry. It is carions to ratch them and their movements-E. T. 8
[11572.]-Compressing Water.-I will admit that there are leaky joints, bat not to the great exten of leaking gallons; if so, it would be impossible to get the pressare reqnired. After a certain strnin it woald be pamping in and forcing ont again, thereforo the "C. s." remain motionless. 1 shou the pressare is pumped up, the indicator showing three or four thou sand tons pressare with what we term weeping jointsi.e., jnst spotting-the pressare being allowed to remain on for a quarter of an hoar-that the indicator never alters? That proven to me it is the compre日sion of water. Ia reply to "Tabal-Kaio's suggestion, apon it, the cast iron has much elasticitr, ana, or it would ellosticity of the cylinder was inapprecter and the cylinder, also the columas and nats being so massive, the elasticity wonld be a mere nothing. amerefore, I think the water dues not go in that why, greater derree, bat I think there is as alight difference between a hall of gold and a crlinder of well hammered steel 8in. thick.-J. Webtwood.
[11580.]-Soda Ash in Boilers.-No definite quantity can be fixed, as it varies according to the quality of the water. Therefore try a moderate dose
frat for your 8 horse-power boiler: sar llb. per day of rat for your 8 horse-power boiler; sar fib. per day
24 hours, of strenath from 48° to 52°. It is a good plan 24 hours, of strength rom 48 to dissolvo it in the feed-tank, and it is pampod into to dissolvo it in the feed-tank, end it in pa.
the boiler withoat any tronble.-Bosy Bee.
[11589.]-Dry Steam-"A, Liverpool,"p. 157, makes an attempt to answer 2 question which he evi-
dently does not qnite comprehend. Snperbeated or dry dently does not quite comprehend. Saperbeated or dry
steam is not necessarily high pressure steam, althongh steam is not necessarily high preasure steam, althongh
he seems to assame sach to be the case. I have seen steam generated in a boiler under a pressure of only 31 h . on the inch, passed throngh a coil of pipes bent over s farnace, and when issaing into the open air shnw
no appearance whatever of visible or condensed steam. no appearsnce whatever of visible or condensed steana.
" J. L.," p. 181, thinks that the steam is decomposed into its elements of oxvgen and hydrogen; bat, wero such the case, it wonld then have become an explosive
mixtare, which it certainly is, otherwise the flame of paper, timber, do., which it Bo readily kindles, wonld inevitably canse an explosion. I should feel greatly favoured if some one of the talented chamical corre-
spondents of "ours" would give a trae solation of this spondents of "ours" would give a true solution
query, which I doabt not they can.-CALoric.
[11602.]-Ligurian Bees.-" G. M.'s" question, p. 181, not having been replied to. I ventrare to assert that p. Aarian bees are in every respect far superior to black
bees, and that in neighbonrhods where the former are kept ia large numbers, the latter cannot get a living. In early spring, when provision is scarce, the ligurians move, and when the latter do try their lack, they find that all the sweets have been taken from the few flowars that yield any, and they literally starve. The deeper into the nectaries of flowers than it is possible for the black bee to reach, so in gearce times the poor native deserves to be pitied. The long tongue also flowers that the native never visits, for instance, the red and alsike clover, and enables it to store vory mach more largely for its master. The queens are ery much more prolific, and breed eariler and treatment than any others, bat they are awfally fierce in defending themselves against robber bees, and a little marsuders. As to the breeding puwer of the ligarian, Elisha Gallap, one of the first and most practical of American apiarians, finds 4.000 cabic inches of space not enough for the breeding apartmen
igarian queen. My own experience is in that direction, firat natomal hire containing 2,24in. of apace, my returned, and on the following Monday came forth again and were rafely hived. The same hive sent ont was used to take them, although thonsands were lost in the storm of bail and rain which came on before they had alighted. The black bees in my aeighbourhood have nearls all perished, in fact, I may say have
quite departed, for none exist but those in which their qucenshave met Italiandrones, as may be proved by their morker progeny, hat, alas ! their drones are all rascally blacks. The mode of introdncing Italian queens was 1871, and ss it occupies nearly a page, I mast refer "G. M." to that nomber, and am sure he will find the
information desired. Now, as to "why Italian swarms
are so expensive" I can only give a goneral anower that the supplr is not quite eqqal to the demand, and
point to the difficnlto of breeding pare queens, and the point to the difficulty of breeding pare queens, and the necessity for importing them, and my concern, that pare tested queens cost 10 francs each in the Gricons. Italian Switzerland, during the past and present months, perhaps he and thoy will not think the prices he quotes rareasonable. Italian queens and swarman,
too, would be cheap enongh and common enough if too, woald be cheap enongh and common enough bee-keepers would tat ane is the fict that although the the black element, but there is the Italian drones improve the worker black, and blacken the drones of those stocks remasi diatances of fire or six miles from their homes. My answer to. One Interested," referred to abovo, pointa oat how with one qneen 2 whole apiary may be ied and a little care black drones may bo exterminato, and liberality on the part of large bee-masters seeing that the beed or the raising of parequeens easy Italianised would readar the ra:sing of parequo become wherk, and consequent the beat time to insert a ligarian queen is now, before the bees awarm, as the young queens, which will be reared in the hive, will then be all Titians, end the chances are that the drones also wion more formard than blacks usually are this yoar. The process of driving is verv simple, and is correotly described by
"E.D."" p . 158 , No. 970 , and a very little practice will "E. D.," p. 158, No. s70, and a very lituo practice will
insure success, and the finding of a queen atter driving is only coess, sta the andisg of a por thor a queen from a quorntion of patienoo in bee-proof head-gear Another way in which ligarianising may be performed thronghout a whole apiary in one sammer is ac follows: Snppose the apiary to conaist of twenty stock in straw skips, and one of them (which I will callino. 1 contains a pare Italisa queen, and the made himself, by practice, an adept at bees he can from the from the ligarian stock and famigato the low rom the stup perform in the same manner with the bleck atock he intends to ligarianise, gay No. 10, and will take care to catch and remove the black queen. He will then
change places with the hives Nos. 1 and 10 , but will change places with the hives Nos. 1 and 0 , Tat wil always retarn the bees to their own stance. Thas the
Italian brood will be on No. 10 stance for the bees of No. 10 to raise a queez from, whioh, being of pare breed, will insure a sapply of pare drones in fatare, even enpposing she is wicked enongh to marry benenth her; and the Italian queen will be at the head of the hive of black brood, and if very ordinary osre has been used scarco a bee need have bean killed, and the valned Italinn quean not eren endangered. Aftor the Inpee of fire or six days the black brood in No.
(formerly No. 10 will have become too old to raise into queens, bnt the Italian aueen will have deposited any number of egys in the hive, and on the seventh day it will be quite rafo to go again throngh the performsace, driving ont the Italian queen and her motloge erew (for her beantiful progeny will havea strong mixture o yonng niggers), and again exchanging bives wing another hlack atnck (8ny No. 11), aftar deatroting tok
black quean tharein. Then No. 11 will have the stock in which the Talian queen has deposited eggs while on No. 1 stance to raise their queen from. and the Italism queen will in a few days have deporited exgs in no.
while on No. 1 stance, and so the whole apiary mar be While on No. 1 stance, and so the whole apiary mar be ligarianisen, the whole
thecret of the thing lying in this, that each black stnck is snecessively sappued most raiso higarian eqge from which the black no living black bees are left in the hives into whioh the Italian queen, with her gradually blackened follo xers, is saccessively introduced. The only disadvantage attend ing this syatem lies in the fact that each storik has raike a new qneen for itself instead of simply having
to hatch ont a sealed queen cell ; but I greatls question to hatch out a sealed queen cell; but I greatly question
if this is not compensated for by the fact that almost every stock having raised queens' cells will casta fir awarm with a ronng Italian queen at its head as it it had swarmed before; bat, of conrse, the seacna wil have its inflnence on that matter, and as it will taks
twenty weeks to operate on the twentr atncks, the time twenty weeks t, operate on the twentr stncks, the time
of swarming will be past with anme of them. Hっwerap, by selecting the strongest black stocks saccessively tie swarms will all be headed by young Italian queens and althnngh some of them mas bo lost in seek: fertilisation, the majority will do well, aud amplr res
par their nwner for his cost, time, and trouble.-C. par their nwner for his
ABbotr, Han well, W.
[11604.]-A Task for Chemists.-I mnst apo been absent from for not repiving earrier. Etrit Referring to my reply to quers 10510, I find a misprin which altopether alters the sense. I boep press coni
of my lotters, and find the words I need were " 2 simpl one would be," \&c., instead of which it appears "some simple ones wonld be," dc., so that my remurt referred to oue process including three or more oper tions. instend of three distinct operations, as it appeare in print. There still remains one omission on my part Which I must now correct, that is that the boiling shouc be conducted under a pressure of 1501b. per square inch. I note that "Deronsbire" says point there is a difference of opinion. I think Mr. Davis gives thin pieces of wood this boiling, tha thoronghly washes out all the resinous and siliceoci matters that may still be adhering to the wood, aud the wood pliable as desired. This subject is well illas. trated in the Exhibition now opened, the rarious pry
ceeses adopted for the conversion of wood into pary
being shown, and, as I noderatand (for I have not yet secn it), the machinery used also appears in the Exhib tion. I may take this opportanity of saggesting to Mr Daris that there is here and field for original re search; and I cannot help thinking that a chemiat o such abilities migbt discover some more oxpeditious and cheaper process of remeving reainous and silicions
matters from vegetable flbres. At present it is alkali matters from regetable ibres, At present it is alkal and steam pressure, and nothing else. Hydrofinoric acid hes, I believe, been experimented with, but I have not heard of any usefal results.-Busy Bee.
[11615.]-Teeth.-A very simple way of taking tinctare of iron and quinine is to suat it through end to tit the month. I believe they are to be obtained trom any respeotable obemist.-H. C.
[11627.]-Gilding Strips of Wood.-W. H. Hey's ineffectual plan (page 146) is not the "golden" rule,
which I subjoin as plainly as possible. Alter the wood which I subjoin as plainly as possible. Artor the wood has been planed give three or four conts of whiting and
size, mixed together to the consistency of paste size, mixed together
rubbing down alter each coat while wet with pumicestone, till you have a smooth and sharp surface, then apply the give a " clooring cel win co give a " clearing coat." consisting of thick common size ; it is then ready, when dry, for the oil gold size
which, after applying, gild when anficiently dry, and aize again after gilding. "Ironsides" mast get the oecessary tools, which can be bought for a more triffe,
consibting of knife, cushion tip, \&c., fiay for gilding Common and gold size can be bought ready for use a any compo. shop.-H. B. E.
[11628.]-Violin. -In reply to T. R. Willis, the meen any of higingtruments. of no particular value, I should sary, bat it would be impossible to prouonnce upon a sum nnless one sat I am acquainted with was a Samnel Collier, who lived in London about 175s, of no particular repate.-P.
[11632.]-Debility.-The answer of "Amatear" on p. 182 is an inpopsition on your good nature. Ita statements abont allapathy and homenpathy are on nn-
true as to show that the ${ }^{\text {a }}$ Amatear" is either entirely ignorant of both systems, or worse. Where did he
learn that "allopathists thint they can cure by the adlearn that "allopathists think they can cure by the ad
ministration of an nulimited number and quantity of drugs and counter drnge" "? Or "honicoopathists by the finding of a medicine suitable for each separate malady, and for that only", Traly each of these
theories is "an absardity;" but they are his own, or he gets them second-hand from some such source as the Anti-Lancet. And as to homoonpathy having no medicine to relieve constipation, this is also grossly
untrue, and a weat invention of the enemy. What is natrae, and a west invention of the enemy. What is the "altera-tonic system" in praise of which he
writes? He does not choose to may, hat refers again to the Anti-Lancct. If you will get a onpy of that work (which is acattered broadcast through the land grail know as mach of the mattor as yon did before. All you will learn is, that every system of treatment is wrong and bartfal except that practised by a certain octor at Scarborough-which, of coarse, he "ooes not ful cares" he has effected upon "the victims of each of the above systems-that is, of "allopathy, homosopathy, hydropathy, etcestera." "(Don't omit
"Amatear's " iweoping "etcentera.")-G. W. K. L.
[11689.]-Debllity.-Before bringing a eharge of quackers, "Sanl Rymea" shoald read the Anti-Lancet himself. Perhaps he "would the sarprised to learn" how many eminent physicians hare agreed with the anthor's views. I once was as sceprical as he is, but calm impartial invertigation, and was convinced of the trath of its argaments, the practical result of which I sec in every day's experience. I wonld also onmmend to his notice the following, from the Athenaum,
November 28,1846 . It is a review of a work of Liebig: "Frum bim will be dated those investigntinns which promise to make medicine a more certain science, is soience that can be called which has not ret doterarodition" by which I was convinced may be fonnd in the Anti-Lancet, the work of an eminent $M D$. nnd anthor, Whom even the readers of the English
Mechanc need not be sahamed to own. Bat I will give a few extracts: "The artiflicial arrangement of
diseases and their intinito maltiplicution is mach to be deplored, and leads to the administration of conntless remedie, with conntess intentions. To me sach fancifal systems have always appeared ntterly repagnant the body as a distinct disease resembles the Indian or Arrican native, who r"gards dew, ice, frost, aud snow, different modificationsof water, derived simply from the sbsence of heat." Surely "Banl Rymes" has seen wate of the of phials and boxes which following Whence I bave derived my pecaliar iden of their bystem. But our anthor shall again speak: "Seeing power, and behclding, moreorer, the inatility and davger of the popular practice of medicine, which, not being experimental and conjectaral, consiating in administor. times ten thate af different drags, and with as many direraitod intontions, and, conse quently of Larring maltitudes to nrematare grapes, I
hent my stadies anremittingly for some years towarde the attainment of a nitty of parpose, or general plan of treating diseases; and the resuit is the discovery of lwo most noble medicines, which have aiready establishod their power and efficacy in the cure of diseasea,
bejond all others which have yet been discovered in beyond all others. which have
any age or nation."-AMATEUR
[11639.]-Rook Inscriptions.-T enunot, with A. D. H.," regard the remarks of "H. E. H." as the least exaggerating the extraordinary neglect of these Sidaritic relics. The fow ketchos (of 100) by various 1840 , milars under dimcalior, coll to make oat mere names of Christian pilgrims, or oven, as another Leipzig professor, Trach, maintained, of pre-Cbristian bat Nabathean ones ! We might almost greess, withoul any learning, that so famous a diors of ages and noumerabie such scribolings by vinitart of all ages and in Biblical Hebrem, Samaritan, the Egyptian popular (of the Rosetta atone and later), Nabathean, and down to modern Arabic. Δ fem are Greek, including (as Forster thonght he made ont) that in which poor Cosmas "Indicopleustes" (or the "Wanderer to Ind") asks to be prayed for. He lived about 500 A.D., and left the first extant description of then at any length (according to Dean Stanley), thongh by no means the arat anthor to name them. As early as a c. 10, the geographer, Diodoras Sicnlng, coald mention sach numernas, "extremely ancient," and "in unknown characters"- Which certainly neither Nabathean nor any kind of Hebrew were in his day-the former was a living diafect. Cosmas was told by Jewish grides thnt those he sam were Hebre干, and stated merely "the departare of such a man, of snch a tribe, in such a especially of the short anes thronehnat the conntry,
var those most easy to aketch, and likely to be bronght arav, are no more than this. Probably, also, Dean with no others Bat mild he transil' "A. W. Hee parallel them at all with inscriptions, one of sixty-fve lines, another of forty-two, and its firnt line in characters a foot high ? And these moreover, which mnst necesaarily be on rock walls too high to be appliances pecnliar to a numerons popalation in a howling wilderness," nud "back side of the desert," most remarkable in nll historic time for its nonprodnction of haman food-mnch pastare indeed, and
even shittim woon, gams, and incense, bat so little for even shittim woon, goms, and inconse, but so little for
man, beyond dato-grores few and far between, that man,
even the few herdsmen pastnring there have to oarry all their own food. Moreover, these great inseriptions (wherenf bat one line has been sketched br the Comte Sinaitic anes, and all the long ones, or those in the ters" are, br all acconnts, both mnch larger than the letters of Nabathean, Grenk, and other known alpha. bets, and in a totally distinct and qnite pecnliar style of execution. Instead of incised letters, that in sandstone would necessarily be chiefl or wholly of straight lines (as even our Romar. B, C, D, $\mathbf{0}, \mathrm{S}$ were mate on letters, and wholl what we should call dotted ontline first marked them with a brash of paint or anitewal (n the red gandstone) and then workmen had drilled little deep holes all round the ontline, and in some fea casee filling the sarface of the letter as well, this espe cially (acoording to Forster) when particular lettera pase, as they nften do in a most singular way, into illastrative motlines of the camel, goat, horse, wild ass, ihis, and ostrich, all very correctly and carefnlly drawn. These evidently are part nf. or added foroe and meaning to the words, whereas the sketches of these same animals accompanying (as they often do) the shor and mere idle rerails, no petter than bors no chalk on our walle Agein all the hales thas drilled chalk told, are quite indistingaishable in colour from the weathered rock, whereas incisions now made remain glariagly bright for years, and all the lesser inscripand Nabathean scale arg as that extraurdinary climate, than the natnral para, in It seems thint in 1753 an Irish bichop (Clayton) having heard of these inseriptions, from monks at Cairo, oflered larga remarda for their tranacription-or, as our riend "F.R.A.S." monld cay (p. 171, let. 4048, par. 4), offered to bet," in the Bell's Life of that day that no
one vonld transcribe any. This seems to have elicited a fer of the skatches repablished by Beer. Bat in these photngraphic days, when no sketching is needed, and the oarth might traly more than ever be lightened by have no Bishop Claytons, nor so mnch as a word of attempts even to re-find either the 42 line or 65 . line in scriptions, bat, as "H. E. H." says, mach otherwise.E. L. G.
[11061.]-Photography (Background).-Wet the canvas yon intend for backgroand and wring on welt, hea tak 7t. 6in. by sit. When dry, pa nt over with the follow ing: white lead, 1lb.; driers, 2oz.; Wack paint, saftiMix thoroughly and allow to stand a day, when the lead will settle down. Pour of tarps carefnlly, which Whl rid it of the oil; bring to proper oonaistency by adding fresh tarps. Thom and loz. soraped yellow soap, strain through calloo and it is ready for nase. The quicker it is brnshed over the canvas the bettor. If done over again it will be improved. -aAmba.
[11677.]-Rendering Wood Inoombusthule-
making difficnlty combnatible timber (as well as rotpronf), by inclosing it in large vessols of boiler-plate,
making ancanm therein, so as to exhanat the sap, and then admitting metallio solations more Areprootiog than alum (as tangstate of soda) to replace the sap. A company had a patent many years ago, and imbued timber thus with suiphate of iron and come lime salt (that decomposed one another and made gypram within the tibres), in a recoiver 40 ft. long and $4 \mathrm{ft}$. . in diamater,
wherein a vacuam was made by condensing steam. E. L. \mathbf{G}.
[11687.]-Speeding Machinery.-"A Reador" thanks "Pbilanthropitt," and as he kindly offera to give further information, will be mach obliged if he will illastrate by a fer examples the ralea by which tho dimensions of wheels and palleys are determined for correotly apeeding mechines.- - Readre.
[11694.]-Green Fly.-" H. S. C.'s" oonservatory must certainly be of extraordinary dimensions for tobacco smoke not to be of any good in exterminating the above and other such-like pests. I have some very
large glass-honses, bat always smoke with success. large glass-honses, bat always smoke with success.
"Sant Rymea's" plan for syringing with tobacco water would only answer to certain extent, not so well, I fear, as the smoke. I imagine sulphar fames would do better followed by a general clean and paint; bulphar. Bat autama in my time for cleaning, not sulphar. Bat an.
spring.-H. B. E.
[11695.]-Suocession Duty.-The duty is calcuIated on the value, according to Government tables, of an annuity equivalent to the net annaal income of the property for the life of the successor, thas:-Supposing the net income, after allowing for repairs, ingarance, yeas ground rent, is 270 , and the successor to be thirty years of age, the value of the annaity would be
f1151 1s. 3d. ; if aged forty, £1041 5s.; and if aged filty, $£ 8701 \mathrm{~s} .7 \mathrm{~d}$; and the succession duty in this case will be 1 per cent. on such value. I have given the estimate within a for duty.-E. C. J.
[11699.] - Organ Oleaning. - The rewiring, cleaning, and taning of the 24 stopped organ would
cost $£ 25$, and to alter to equal temperament would cost cost $£ 25$, and to alter to
£ $\overline{5}$ extra. - . Taylor.
[11704.] -Rats. Melt hog's lard in a bottle, planged in water, heated to aboat 150° Fahrenheit; introdace into it $\frac{1}{d}$ oz. of phosphoras for overy ponad of lard, its content takivg it at the same time out of the water till the phosphoras becomes aniformly diffased, forming a will afford a liqnid. This liquid bespg cooled, lard, from which the spirit spontaneonsly separates and may be poured off to be used again, for none of it enters into the combination, for'it merely in very fine particles thro photphorais, This comp anand on being warmed very gently may be poared out iuto a mixtare of wheat flour and sugar, inoorporated thare with, and then thavoared with oil of rhodinm. This its luminonsnoss in the darts, it attracts the rats, and being agreeable to their noses and palates, it is readily oaten, and proves certaing fatal. This remedy
benn tried seores of times, and found to be perfectly effectaal.-H. B. E.
[11710.]-Cleaning Oil Paintings-Rab the
 too mach oil on, nor nse too mach elbow grease.H. C.
[11711.]-Time at our Antipodes.-I have reof the to yoar Vol. XIII. as recommended by "a Fellow by accident missed any of the letters, I find they chiefly consist of queries and saggestions rathor than of satisfactory explanation. I do not want to know that a day is lost or gained by sailing round the world from east to west, or vice versd, bat what the existing difurence of lime really is. Sapposing two telegraphic cables by the west orr antipudes, one by the east, the other together, bat would they arrive 12 hours earlier or later than the time of dispatch? It a message sent from London on Taesday 12 o'clock (zoon) oould be dropped and talcatta, it wonld find the time there to be 6 p.m. arrive at the Antipodes $12 \mathrm{p} . \mathrm{m}$. On the other hand, the western message, if dropped at New Orleans, wonld ind the time $6 \mathrm{a} . \mathrm{m}$., and so forther westward at the Aatipodes still 6 hoars earlier, or break of day Tuesday inorning. This question hns, I have no donbt, been very simple matter to "A Fellow of the Royal Astronomical Society;" bat if he would kindly let me know whero I can Gid the matter cloarly elacidatod, I should feel extremely obliged to him.-T. B.

[^7]Weat of the same meridian, having commencod Wednesday morning at the time of trangit. The following diagrama will show thats mianpprehension may arice rom an orronoous concoption of the time westward of the apper solar maridian :-
London 0° aotr. timo. 1. Monday, May 6, 18 houra.
 Na. 2
London 0° astr. time, Tuesday, May 7, 0 boars. Antapcdes ... 1800 agtr. "" Tqeaday, May 7, 12 hours. Commenomement of Wedresday. 12 night.

Produce of ore per cent.

Lobs in Pr units.

The silver in the ore is calculated at 58. per ounce, and dedaction of (say) 2oz. 10dwts. made for loes in derilverisation. The following example will make the
method of Falaation cloar:-An ore, atter mating the

No. 8.
London 0° astr. time, Treades, May 7, 6 hours. Antipodes ... 180 ciril ast. " Tresday, May 7, 6 even. dvil "" Wed. May \& 0 morn. No. 4.
London 0° astr. time, Tuesday, May 7, 12 hours. civil In Taeeday, May 7, 12 night. Antipodes ... 180° astril time, Wed May 8, 0 hours. No. 5 recommences the morian.
-W. R. Birt.
Dl718.]-Composttion for Moulding.-Compo. in made of whiting, size, and glae, which has boen grecrists search back vols. 2-H. B. F.
[11715.]-Tenting Acetic Aoid.-Though a procipitate from vinegar by barium chloride is almost cortain proof of the presence in it of salpharic acid, it is no proof or even presumption that that acid hat been ared for adoltoration, for it may, and very probebly doee, exiot in the forme of a ealphate, natorally exinting in the water uned in making the vinegar, or, if it bo wood vinegar, for silating proligneous acid.
To dirtingaish whether the sulphario scid, if present at all, acists as free aeid, or pombined rith lime or other baec, there should be boiled with allitle of the sarpeotod rinogar a fem grains more of pure carbonate of lead than it will dissolve, adding a little more rinegar nntil the acid is in excess ; mont of the carbonate of lead will be convertod into acetate, but if free sulphurio acid be present, sulphate of lead, which is insoluble in acetic acid, will remain. To prove that the white insoluble powder is sulphate, wash it well and suapend it in wator, decompose it with a slow strenm Of eulphuretiod hydrogen, filtor end test the cloar liquid for sulpharic acid with chloride of barium. If a White procipitato falla, Which Whea deeompomed with charcoal and a blowpipe fiame gives off solpharetted paper, there can be no doabt thet raiphario aoid was present.-PBILO.
[11721.]-Assayers Duties.-"G. T. H." must oxouse my long delay in giving him the information promised. All ores Bold under "private treaty" are standard; bence it is not an easy matter to pivo any general ralee applicable to particular cases. However, Mining Journal copper ore sales, pablished in the to ascertain the value of any eopper ore offered one sale by pablic ticketing. Given the produce and price por ton we can easily find the standard for ore of that produce by the simple proportion sum :-As the propor ton the price : : 100 : the standard. The price produco in ay similer manner:- As 100 atandard and duce : : standard : prico per ton. The produco may, of courne, be determined from the standard and the price. I As the atandard : the price: : 100 : the produce. As I have had bat little practical experience in valuing oros of coppar, I ahall not attempt to go further into maxim), bat content myself with hoping that " G. T. H." may find something useful in the for hinta I have bean onabled to give. Lead Ores, and Lead Ores containing "iluer.-The aesay raluo for load is detormined by and fromay," with or withont Aaxes, in an iron cracible, in made for loas in the lowneas of the produce. In detormining the proper reduction:- to be made, the following table will be found
defluotion for lons in amalting, gives 75 per cant. of load by acsay in an iron oracible, the price of common pig lead bing (say) 820 per ton. The ore aloc containa 100 s
per ounce troy

Lead in a ton of the ore, 15 cwt . (208.) per ton 215
Silver in ditto, minus 21 oz., $=8$ oz. at 562
Deduct retarning charges.
17

Value of ore per ton.. .215
"G. T. H." muat, of course, be aware that, as these ores are sold by "public ticketing," the bids must necessarily vary, althongh they do so only within narrow limits. Silver Ores. -These ores ars valued on cosles deviaed by buyers and sellers on the basis of the price of standard silver per ounce, and as the other metals (such as gold, copper, and load) have also to be paid for when existing in notable quantity, valuing conaider is a rather intricate matter, and when we by an cor the amount of money which might be inrolved by an error, one on which I would not care to advise the raluing of a rich anriferous ailver ore, "G. T. H." might perchance find to his cost that more knowledge in required than could be easily imparted through the colamns of the English Mecieanic by-Un Irlandare
[11724.]-Discharge of Water Over Welrw.The quantity of water falling over a woir is proportional trom the top of the weir to the of the depth meacured them the top as the woir to the lovel of atim water in the pond sbove it. The extant quantity depende somewhand in lorm on the woir think theoniruction irom the question pat, I ahould chink the number 5 would be very nearly the proper that nomber and in any caso it will not be far from in number either way. If Q represent the quantity in cubio feet per minute, the length of the weir in leet, $=4$ in this case, d the depth of waber (measured for the particular construction of co-emcient proper $\mathbf{Q}=c \sqrt{d^{3}} \times$ 2. The depth being, as stated, 2 stin., the quantity in cubic feet per minute is $5 \times 4 \cdot 55 \times 4=91$, and that is 819,000 gallons in 24 hours.-0. B.
[11781.]-Eair Wash.-Nothing better have I found, or more refreshing to the head, than equal smounts of glyoerine, honey water, and spirit of rosemary. Add soft water to your mind, begin with 10 or 15 times the quantity of water, or even 20 , and make a in the bottleful at a time. I have used this for yeara like morning after washing, and still continue to dryer than ofhers, I then ase a little so-called lime and glyoerine after the other, when required.-F.G.T.
[11731.]-Fiair Wash.- Yoar hair wash is generally conaidered to be exeellent. Porhaps you do not prepare it rightly. Reduce half an onnce of camphor and one onnce of borax to fine powder, and dissolve solution is ready for of boiling water. When cool, the solution is ready for nse. The camphor will form into lumpa after being diseolved, bat the water will be euff
cianty impregnatod. diantly impregnated.-H. O.
[11781.]-Flair Wash.-A aimple and effeotual remedy. Into a pint of water drop a lump of fresh quicklime, about size of a Fralnat, lot it stand all night, of a pint of best vinegar, and vash head, ad a quartor fectly harmless; you need only wet roots of hair. H. B. E.
[11731.]-Biair Wash.-A small tooth comb, taken once through the hair every day, and persevered in, will
than any hair wash known, whether prepared by binirdresser or " ald wives' seiance." I aan recommel? It thoroughly, having tried it. It is a good plang. Wet bruahing the hair, to lightly dip the bruak into aitd prater, 80 as to carry a little mointure to the recha of the hair withont wetting the head completaly. This Saraf.
[11731.]-Hair Wash.-Let "Excelaior "t tive the Chile or Chili hair wash. Take a large fresh ega zeat up well the white and yelk, rub well into the reots of hair and whinkers (don't langh), wash with three arfoor very clean, and hair beentifally coft mand closey, mot very clean, and hair beantifally eoft and closes.
oily or greasy as one would suppome-Czurcens.
[11738.]-Cotton Epinning.-TYy and proeure IA Bystem of Prackical Arithmatio: cosmining the fandamoital rules and their application to meraantile cotton epinging, to.."'by Samael Yowng, 1893, pohlinhed by W. and W. Clarho price 4s. 6d, koy Ea. This book gires all the competations in cotton spinning. Idon't rnow of any boot containizg the praptical theory. Got E.me fri
[11736.]-Fxtmacting Iodine from seaveed Ashes.-The aches of burnt sesweed (reip) contain iodine in the state of iodide of sodinm. This (iodide of sodium) is mivod with porozide of mageanes and tillated suiphuric acid, and pot in a retart and dis tilled; the lodine passes in the form of a rapour into the receiver, and oonderses into lead-coloured erystelline spargles of solid iodine.-T. T. Gara
[11787.]-Fairbairn's Ventliating Buaret. -"Philanthropist " will find a psper by Mr. Fairbaten npon this subject, at page 232 of Part 148, Vol. EII. August, 1849, of the Civil Engineer and Arcistacis lished.-ED. 1
[11788.]-Cyanide of Potasedum.-Potassinm heated in cyanogen ges (a componid of carbon and nitroged) takes bre and burns in a very beantifu manner, forming cyanide of poiassiam(KCN). The mame onbstance may be prepared by fusing potassinm terro delignescont polan deliquescent ha air, and exceedingly solable in meler its solnhion sirars has an alkalino reaction, sind when exposed the the air exhalos the odour of hydrocyanic
acid (prassic aoid). At high temperatures oyanide of
potassiam combines with oxygen, forming potaetiom potassiam combines with oxygen, forming potacitum
cyanate. It is decomposed by the feeblent soida, even by the carbonic acid of the air, hydrocysnic noid being liberated. It is a violent poison, and is said by some to be as poisonous as prussio acid. For mo sy stidote an emetic should be taken, and cold water and ice applied to the spine. The other questions I am nuable to answer.-E. A. K.
[11789.]-Eoonomy of Fuel.-"X. Y. Z." woald effeot $n 0$ saving of fual by inoreasing the prescure of of cte used tor teving parposes., as the temperatrire weigh risea, ilt latent heat diminisber, so that eqra same steam in ong eleow, although the tomperature of in another. This, I beliove, in known as Watts' lam. 8aynocx.
[11741.]-Boot and Bhoe Making.- Fint melse the sole smooth by scraping; then ran the iron roand cold. Next, get some ink, and make the coles black, then dry them; now got your heel ball, rab reand heel bell, and not too hot to burn the leather; four that rab round with a bit of old clothos. H. In
[11744.]- Bhorthand.-I am an aldish praci. tioner of "Pitman" (getting on for a quartor of a century now since I first used the system as a newb papor reporter), and have also for a number of years ased an abbreviated longhand for reporting mecting. trials, de., to save time and the troable of trenseriting from shorthand notes. With steady praction and lithe ingers it is posaible to write very fall reports in this way, which are so logible that they oan be handed at once to the compositors of a newspaper office to set rom. Of course, they must learn the system of abbreviation, bat it takes no time to apeak of to do this; and the compositorif who have done my work wece the aneducated (and often stupid) boy tho are 00 pland inl in conntry newspaper offices. The method is an extension of one which is rery commonly in wes bI reportars-its main foature being to abbreviate to the utmost, and sometimes omit altogether, the frequedty recurring particles, prefixes and affixes, whioh foem ally one-third, or more, of ordinary apoken languen very practical and beliecteal system of shorthand. I have herd, porters who ever existed knew nothing of shorthend. ont used only abbreviatod longhand. I would willingty give a specimen or two, bat fear it would entall the expense of a little engraving.-G. W. K. I.
[1174.]-Shorthand.-It is generally admitted that Pitman's ayatom is preferable to all othera. Those more escily learned are easily forgotton, wharess other Pitmanite ten years after as the day it any written; and there is no living public dayy it what evar I heard of whose deliverv is so rapid as to befins writer in that mothod.-Ax kix-Practiase.
[117M.]-Bhorthand.-"Wood Banyer" might writo his notes in the ordinary Englich oheracter, but would very considerably chorten the time by setting
down the consonants only, and rejecting the rowels The articles, coujanctions, se., that are of suoh roquont recurrence might be omitted also, as they could be filled in after wardf, or ss me quiekly-writton symbol
might easily be devised to represent. Words of that class.-SWAN.
[11749.] - Cementing Iron in Wrood.- Let
"F. 8. G. n try white lead; I have seean it usod for the amme parpose.-T. T. GREG.
[11749.]-Cementing Iron in Wood.-Make a strong solation of sal-anmonotiac in water. Introdace a fow drops of this into the hnle before putting in your screw. The iron will pperdily rust in, and you
will find it almocit impossible to extract it without will find it almoct imponsible to
breaking the wood.-8. Borto
[11751.]-Bngs, Lice, and Parasites-Oil of rosemary, or sprigg of ditto, are said to be prophylactio. I. mow they
[11751.]-Bugs, Lice, and Parasites. - It is a carious fact that there is a sort of elective antinnty affect certnin persone, in spith of scrapnloas cleanliness on the part of the latter, and victimise them fearfally; whilst they either atterly neglect or are
innocnnns to other persons-ither clean or dirty. My duties take me mach into public places, and the members of my familyare pratty attentive to their charch.going; and rarely does eithor of as come home without a tien-not in the ear, but on the clothes. The way to the "neckbole" or wrist of myself or my yangeat boy, and panishes us horribly. The stings rapidly repested on erory accessible portion of the caticle that the tortare in intolerable; and it soon becomes necessary to rash to a private apartment, strip, and hunt out the persecutor, who has left as a mements of his vinit a neries of hard white sweilings, sarronnded by infamed patches that do not sabside
for an honr. At the same time, my sponse, eldect son, lor an honr. At the same timo, my sponse, eldest son,
and danghter. never know when they liave one of these and danghter. never know when they have ona of these parasites abont them, oness hey soe it or feel a slight
titillation. But, whilat the F sharps persecute me so fearfally, the B Bats and gnats nover tronble me at fearfilly, the B flats and gnats never tronble me at
all, although I am occasionally in piaces where I am all, although I am occasionally in piaces where I am
sare they abound. Yet, passing by me harmlessly, sare they aboand. Yet, passion by me harmlessly, are esempt from annyyance br the F eharpa aforesnid. are exempt from saniva explain what good and wise
Will some learned friend
priose the tortares I hare so often nudergone (from parjose the tortares I hare so often andergone (from
na fant of mpself or my connections) serve in the order of providence or eennomy of natnre? Why the very persons who from their dirty habits originato aud extend tho nuisance irequentry escape the penaity:
which falls so heavily on those who are wholly innocent? As to "prophylatics" the revelation of one would indned be a podsend. There is a plant called "Hleabane," from its supposed rirtnes-bat whether preventive or oarative, and where it is to be gotten,
 anless he nses bomarepathic medicines for any par satidote to all the medicines except itwolf.
[11756.]-Power of Water Wheel-You do not state the fall. The modulns of the breast wheel is 0 , that is, it ntiliges three-fifthe ot the power applied to
it. Your dan contains $40 \times 7 \times 2=560$ cabio yards The power is mnre at the beginning when the dam is The power is mnria at the beginning when the dam is is a breast wheel, or, as I suppose probeble, an andershot wheel; and if 90 , whether the buckets aro atraigh fall, and I will send a calcnlation. If the water ran fall, and 1 will send a calculation. If the water ran
4,6 , or 8 houra, the theoretical power wnald be $\frac{1}{2, h, ~ o r ~} \frac{1}{2}$ f, 6 , or 8 hoors, monld be greater, as the buckets of a wheel, if filled fall, lose a considerable amonnt of power by the ppill ing ont of the water before the levol of the tail race is ached.-B. A
[11761.]-Magnetism.- For answer to "Conatas" see Professor Barrett's letter.
[11761]-Magnetism.-I fear that rour correof the expeonatas, has not understood the rationale of the experiment he has described. The noo of a increase of transparcner of iron when magnetised, bnt to illastrate by analogy the probable molecalar change which a solid bar of iron nudergoes when a carreat of creaso in the amnomit of transmittod light was, that particles of oxide arran med themselves longitudinallythat is, parallel to the axis of the tabe-and consequently the transverse apaces between the particles nately mixed together. The arrangement of the particles in precisely analogons to tho strnctare of the ao
called Derbrahire eag, which is made of tbrons calpenterns in mach more transparent throngh its longer than through ita nhorter axis, because its itbres are parallel to tho former.-Pi.
[11764.]-Borubber for Gasworks.-The serabber
 2tt. Bin. long, socksted tngeti)"r, stnind upright, and cherged whicharge stones (bat. I thank coke is hest,
between which the pas pasegs. I do not think there are any pipes inside except when the scrabbor is chargoil mith drain-pipes.-A GAsyar.
[11767.] - Horsehair. - Nothing to do with galvanism; simply consequence of onequal absorption and evaporation of the water. A piece of paper will
do the same much more rapidly, but not for so long a do the same much m.
thene. S . Botrons.
[11768.]-Cheap Filter.-Procure the sponge mach oloser in textare, and about four times as largo an the hole now cocopied by the small piece; this will make the water ooze throngh instead of pouring.-H. $O^{\prime} B$.
[11777.]-Postage Stampa.-Sell them for remanufacture into paper. They ought to be warth a
penny per ponnd.-Bugy penny per pound.-Busy Bee.
[11777.]-Postage Etamps.-I feel due thankrulness and profonnd gratitute for boing the chosen and nmble instrament permitted to repiy to this important question, and have great pleasure in invery onpromising material, mary be appliod to use, providod they resemble the writer and most other blacksmiths in being "werry dry." With great care and attention, the great assistance afforded by a pair
of hand bellows and sundry fragments of ligneous materials, I feel quite confident " F. A. E." will be onabled to light his fire with his pootage atamps, provided he proceeds reeundum artem, bat (a word to the wise) I may just remark the noplearant adhesive matter on their backe is a very serions obstaole to reany consexperience in the art) that he will find a large handfal of wood shavings, which may be often obtained with facility, for a coasideration, at a neighbouring carpenter's shop, far more efficient, and in ovary way referable for thab important parpos, cona "Oar Mary Hann."-Tie Harmoriovs Blacesmite. [11784.] - Restoring Colour to Marble Mantelpiece.-Clean with dilnted muriatic acid, or farm soap and vinegar; aftermards, if you choose,
heat a gallon of water, in which dissolve one pound heat a pallon of water, in which dissolve one pound and a half of poterh; add a pound of virgin wax,
boiling the wbole for half an hour, then anffer it to conl, when the wax will flat on the surface. Pat the wax into a mortar and triturate it with a marble pestle, sdding goft water to it antil it forms a soft paste
which, laid neatly on yonr marble mantolpiece, and which, laid neatly on yonr marble mantolpiece, and
rubbed, when dry, with a woollen rag, gives a good rabbed, when dry, with a woollen rag, gives a good
polish. This, too, is a capital farniture polish. -H. \mathbf{O}
[11784.]-Restoring the Colour of Marble Mantelpiece.-Mix up a quantity of the strongest and lay it on the stone for twenty fonr hoars, cloan it afterwards with soap and water.-G. W. C. H.
[11785.]-London Blaokbeetles. - Take a common washing-stand jug woll plazed, etrew the bottom of it with cacnmber rind peolings, snd place it against the wall: toaching it, in fact, so an to enable
the beetliss to reach the und of the jog, which, if well the beetiss to reach the und of the jog, which, if well
glazed and cleaned, afford i rery treacherons footing, glazed and cleaned, afifordz a very treacherons footing, and onco in no beetle can get ont. They can be destroved with boiling water at leisnre, I
strosed nambers in this manner.-G. W. C. H .
[11785.]-London Blackbeetles.-Let " J. 工." try a pot of white phosphorus pasto. We tried, when a pesta this beties, a few pota riding as erienoe, but that of several friends, whe found it as effeotasl as wo did. The paste was bought lin threepenny pots,
not remember the maker's nam9.-Evily.
[11788.]-Bunions.-Cold cream applied on a linen rag and bandaged on is often very effectaal.-G. W. C. H.
[11789.] - Bunionss. - TLe following is recom-mended:-Bianons mar be checkent in their early plastor, and keeping it on as long as any aneasiness is felt. The bandaging shonld be perfect, and it mightbe Fell to extend it ronnd the foot. An inflamed banion hould be ponlticed, and larger shoes be worn. Iodine grains, lard or spermaceti ointment half an onnce,
matea a capital ointment for banions. It ahould be maker a capital ointment for banions. It ah
rabbed on gently twice or thrice a day.-H. C.
[11789.]-Effect of Temperature upon Ale."A. N." is evideutly anacquainted with the commonest laws of physics, and I would suggest the following
answer to him:-The effect of a decreasing temperature on a beer is to render it of a greater spocifo gravitr, and if the cold is sufficient to render the beer
of the same dencity as nny of the insolnble mattor tbat of the same dencity as nny of the insolnble matter tbat
was near the bottom of the casik, a portion of this will Was near the bottom of the casi, a portion of this will remain snaponded in the beer if it in shalen, or will
even rise in the heer of its own will. The water is not eren rise in the her nits own will. The water is not
the canse of the thickness. It he were to nse some of Beane's patent material, this suspended matter wonld not he there, as the material prevents its being dis.
solved ont into the mash.-AUGUstos Avass. solved ont into the mash.-Augustus Avasse.
[11791.]-Photography.-If your markings are dificulty myself. After running the surplas collodion of sour pinto, hold the plate np by one corner in a vertinal position, and rock it slowly from side to side, lonking throngh it at the anme time, and thene wary markings will gradually disappear, giving a smooth and nearly transparent sarfaco.-PHilantribopiat.
[11790.]-Photography.-If "Camera" will, after coating his plate with collodion, poar off the sneplus
and immediatoly rock the plata to the left (keeping it quite perpendicular), aud hold it in that position for a second, and then to the rizit or the same time, repeat.
ing the motion antil the collodion is suticiently set, he
will be rid of the lines ho apeaks α. The reacon be has not suceoeded in, I think, beoanse he rooks the
plate too quickly. With respoct to the washings, I find the followisg plan a vory good one : Got two stone jars bolding abont two gallons each, into which pour the washings alternately day by day: after pouring in throw in abont a tablespoonful of salt; every other day poar off the clear liquid from the jar that has been undistarbed the longest. When the jars are aboat half foll of precipitate I begin the evaporation, and sare the residne, which finally finds its way into the arucible. I generally use a "positive fxing-bath" twice, and then atrengthen by adding a little more hypo. It will keep
good in summer about four dayn, and longer in vinter: good in summer about four day, and longer in winter: when bad it will have an unpleacant smoll. After the print has laid in the fixing-bath (say) five minates, hold it up botweon the eye and noar a gas or-olthe light,
andait it looks clear the bath is active, butif il oloody it requires strengthening, and the print is not flxed. With roopoct to the time for exposure in the stadio and opporiric it all depends apon the aspect and the amomat
of light "Oamera" has in his stadio. I hare takisen views out of 'doors in less than a second, wherithanit to expoeefrom tive to eight seconds in the alacior Agato, stedio ir three seconds, and with tho maneooblecionds, bat a few minutes later have had to give the game time ont of doors ; this 1 attribute to the continual change taking place in the light.-C. S. W.
[11797.]- Preserving LINoths and Butterflies. -Camphor will cortainly effect this if the cases be inject tobsocoo amoke by blowing throagh the boill of a clay pipe, the stem to be inserted into the case coovtaining thinsecta Olose the gleee and allow the smoke to be well absorbed. This is an offeetral remedy.-S. Botroxis.
[11800.]-Electrical. The processes required by "T. A. D.," are given in No. 859, p. 523 of last vol., ; internal resistance. To obtsin the resalt in terms of certain length of wire of course the measnres needed Ior ase in these processes would be simply lengths of that wire.-Sigima.
[11806.]-Power Loom Weaving.-'"Lancashire nad" will find a work written by George Whita, and Thompson and Son, Market-street, Manohoster, whioh will sapply the desired information.-Wrulux Asy-
[11809.]-Cool Airin Hot Olimates.-The pian proposed by "C. H. (B." of cooling apartmente by the sadden expansion of compressed air in perfectly possible. Bat I_{1} for one, should never ndvise any
ordinarily constitated mortal to sabject himself to the ordinarily constituted mortal to sabject himself to the sudden changes of temperstare as such cool rooms
wonld involve. I remember that when I first went to reside in Italy sixteen years ago, I thought I was going to be very clever, and carried myimpediments into a fine large airy dry and cool collar, where the daily temperature was about 60°, while in the rooms and out of doars it ranged from 100° to 120°. My peasants warned me that I should have a fever, but wiee in my
own conceit, I pooh-poohed them. Before the first own conceit, I pooh-poohed them. Before the first week was out their prediction was verifed, and since then I have taken great oare, when in a warm chmate,
to avoid remaining in cool rooms, and to eschew the to avoid romaining in cold water.-S. Botronz.
[11810.]-Colds in the Head, ©eo.-I have much pleasnre in reoommending " X . Y." the following, as an effectaal and speedy remedy for inliaenza :-Take it in an ordinary fine bottle full of water. I have known a wise glass of this misture taken three times [11810.]-Colds in the Hesd sco.-These are
[11810.]-Colds in the Head, eco.-These are not simple colds. Consult a medical man, as there
appears to he some organio lesion which might in appears to ho some o
crease.-S. Botrons.
[11814.]-Lathe Gnerles. This is exclusively addressed to "J. K. P."' but having manufactured lathes at a former period, and given the subject some consideration, I would observe that the donble cone is very troublesome to make, and only necessary for side The method which I adopted was to bore the bole for cone in front of headstock slightly taper, and a hole in the back of headstock, say $\frac{1}{\frac{1}{2}} \mathrm{in}$. diameter, and perfectly cylindrical, at the one operation. When von have turned the steel collar inside and outside a shade larger than hole, heat the headstock in forge until nearly red hot, slip tho hardened collar in quickly, lay a piece of possible. I think Whitworth and cos composition metal for his cones. Into the tin. hole in back fit a piece of tarned steel, one end with hole in to hold it steady whist adjasting, the other with taper point snd
pinching-nat at each side of headatock. - Ane Lirerpool.
[11825.]-Testing Bleaching Powder.-The quantity of araikable chlorine in chloride of lime, may be easily ascertained as follows:-Weigh up a
given weight of chloride of lime, and place it in a gas given weight of chloride of lime, and place it in a gas
bottle. (See Fig. A.) Connect this with a second bottle. (See Fig. A.) Connect this with a second Tine quantity of nitrate of silver in this solation mast
Tination Tine quantity of nitrate of silver in this solation mast be eqnal to the amount of chloride of lime to be tested.) Now add graduslly dilate sulpharic acid, throagh the thistle fannel C. as long as gas is given off. At the
end of the operation, a heary white precipitate will be fond in the bottle B, consisting of ohloride of silver. Filter off the liquid, dry, and weigh the powder. On compariag different samples of ohloride, you will find
that rou win get different weights of this precipitate; and the richer the chloride of lime in available chlorine, the more chloride of silver will yon get. Should
you desire to know the exact quantity of arailable

chlorine your bleaching powder contains, you need only make a calculation, remembering that every $148 \cdot 5$ parts of chloride of silver represent $35^{\circ} 5$ of chlorine. -s. Betrone.
[11826.]-TMnning end Soldering.-Having considerable experience in the art of soldering, I have arrived at the following conclusion, which is, as far as I ame aware, novel-riz., that if two metals are brought to a certain heat and then a sabitance applied whioh
will free their surfaces from oxidation, that anion will take place, through the partial vacuum produced by the take place, through the partial vaccum produced by the
expanaion of the air contained amongst the particles of the metale. Now, in order that the joint ahall be sucoesafolly made, it is necenceary that wo ase a body Which will not burn before the metal is hot enough to
produce this condition. Therefore, if it is lead or proauce this condition. Therefore, if it is lead or scrapulounly clean and free from grease, and une poanded resin, bat, as lead is ruch a good conductor of heat, many fail from not uaing a large enough coppor
bit. To solder atcel, iron, brase, copper, tin, or any of bit. TO Boldor atcel, iron, brasa, copper, tin, or any of
their alloys, spirits of malta, with as mach zinc as it will dissolve, is all that is required, bat, of course, the part to be soldered must be proviously flled to a clean anrface. How " A. B." proposes to unite by melting wrought iron, which takes anch a high degree of heat,
with tin, which takes so much leas, I don't know, but if with tin, which tarees so much leas, I don't know, bat if perts-riz., that of being roadily wolded. He surely does not suppose that the surface of the steel or iron
itmelf is partially melted in the act of soldering iteell is partially melted in the act of soldering. I ceanod to act upon the oxcoses of zinc I add zearly onehalf of wator to it to render it it for use, and I
would feel obliged if some of "our" chemists whether there in anything of the natare of resin in whether there in anything of the natare of resin in
chloride of zinc, as, after a day's ase of it I and that choride of zinc, as, aitar a day's use of it I tond that my hands are ar dimin
resin.-A., Liverpool.
[11827.]-Bight.-"W. P." had better go to nome oculist at once. If he'cannot afford the foe, I should recommend him to go to the Eye Infirmary, Blom-
field-atreet, near Broad-street Station of the North London Railway, between 8 and 10 atm., where he will, withont a lettor of recommendation, get the beat of adrice free of cost, sa to the number and
kind of spectacles be requires. Inviaible spectacles are ordinary convex or concave glasses, with very thin ordinary convex or concave glaseen, wit.
gold, or other wire rima, de.- SACRIETAN.
[11897.]-Bight.-This is a cace of myopia. The pin-hole in the card actas as the "stop" in a lens, and enables "W. P." to focas distant objects. Invieible speotacles are "bosh." Go to any respectable optician,
state yonr case, and he will give you a pair of conoave btate yoar case, and he will give you a pair of conoave
glasses that will unit jou. Do not begin with glasces glasses that will suit jou. Do not b
which are too concaro.-S. Botrons.
[11838.]-Daration of Boiler. -The life of a
boiler depends on the treatment to which it has been boiler depends on the treatment to which it has been plied. A saddle boiler of good material ought to last more than in years, but only a practised hand can armany iden of its condition without nnsetting it for a thorough overhan. There is no "insecarity" aboat anloss the pipes are blocked up. The "saddre" is the best boilor for all moderato lengths of piping, the "tabular" for anything more. The " donble L ", "a it is called, is so far an improvement on the saddle that it gives a largar heating surface; bat the economy in
fael thus obthined would not, I think, be appreciable except in long lengths of pipe, and in this case nothing except in long lengthss of pipe, and in this case nothing has yet beaton the tabuar. I am not odagalar in this
opinion; but poncribly the ooming trials at Birming. ham may throw a little light on the gnbjeot, if proham may throw a little light on
perly carriod out. - SAUL RyMR.
[11881.]-Thermometer.-Most likely the air was similar case happened once to me , and I got my thermometer in good working order by applying a gentlo heat to the balb.-F. T.
[11835.]-Arsenio in Wall Papers.-Scheele's green is a coppor arsenite. The prosence of arrenio will be oady detectod by the Marsh apparatus. Let
for colouring the paper, and mix these particles with the materinis requized to propare hydrogen gas- that is,
with pure granniated zinc, and pare diluted sulphario wih pure granniated zinc, and pare dilnted sulpharis
acideniatetted hydrogen will evolve on barning the gas, and on patting before the flame a piece of cold porcolain, a kind of gray metallic ring will be deposited.-F. T.
[11889.]-Plates Chemically Olean.-You were plates ander the tap woald grease thom. It is fancy. If you wash your plates carefully, either with nitric acid, sulphuric acid, or cyanide of potassium, ac., and rinse them afterwards in abundance of water, drsing carofully with a clean diaper washed with soda (not soap), you will have your glassea "chemically clean."-8. Bottone.
[11839.] - Plate: Chemically Olean. - Well rabbing the plates with a piece of felt carpet dipped in a mixture of nitric acid and rotten stone (taking care that it does not get on the clothes or fingers), and then thoroughly washing them ander the tap, is mach bettor than a bath of cyanide of potassium. Varnished plates require to be conked for a short time in a hot
solution of common washing soda, to remore the film solution of common washing soda, to remove the film
before using the acic.-WuLux. bere
[11840.]-Whooping Cough,
T. C. H. "T. O. H." how to make balsam of horehound, but I can toll him that change of air is the very best remedy for whooping-congh. I have found with my own children that even a run down the river to Greenwioh
and a blow round the Observatory has had a wonderfal and a blow round the Observatory has had a wonderial the conntry has effocted a care. The only medicine adrable (oxcept under competent sdrice) is some one
of those domeetic remedies which do no harm if they fail to do good. -SAUL RyKEA.
[11841.]-Euman Relics.-In the Etrasean Vace Room in the British Musoara the oldest haman relic Mykerinus. It is decently encaced in burial alothes milerinus.
also surroanded by pieces of the comm. On one of these fragments is the name of the occapant, which can be deciphered by Egyptologists, affording concla. ive evidence that it once contained the body of an Egyptian monarch, who reigned mose than a contury prior to Abraham's time. From the Gentleman's Magasine, April, 1866, we find that Herr Dumichen an explorer of the Egyptian monuments, discovered on the barred walls of the thmple of Oairis, Abydos, a Pharoshs from the time of Mizraim, grandson of Noah, to that of Pharom Seti I., the father of the well-known Rameses the Great. This tablot shows that Pharoah Mykerinus, whose remains are to be seen in the British Mrsoum, succoeded the brilder of the Great Prramid MATTEEFS.
[11818.]-Conic Sections.-I beg to refer "Rustican" to any olemontary book about conic sections, troated goometrically. He will oasily find then the following propositions :-(1) Every section of a cono, by a plane meeting the conic earface on every sidethat is, noithor a parallel nor a subcontrary sectionis an ollipse. (8) It a cone be cat by a plane parallal parabole, (B) Ergry other section of acone is a hyperbola. For the demonstration of the above propoitions, ho will get it an oomplote and short an possi--F. T.

UNANSWERED QUERIES.

The numbers and titles of queries which remain wn. anowered for five weeks are inserted in thit list. Wa trust our readers will look over the bist, and send what information thoy ean for the bemaft of their fallow contributore.

Since our last "Angla-Americs" has answored 11907, 1209 ; " Sacristan," 11275 ; "F. G. T.," 11275, 11288, 11289.
11499 Cost of Chamber Sulphuric Acid, p. 80
11411 Dyeing Cotton Thread Jet Black for Polishing, 80
11447 Blandered Coin, 80
Angolet, 80
Rasmater Tanks, 80
Oarmine Staining, 80
Working Engines, 80
Lamploagh' ${ }^{\text {Ltiling }}$ Protic Saline, 80
Lotion of Hydro. Sulphate of Soda, 81
Exhanations and Connamption,
Wollaston's Difrerential Barometor, 81
11508
11509
Wollaston's Dirferential Barometor,
Adapting Barrel to Pianoforte, 81

Refined nickel is worth three dols a poand. The ore is found in Pennsylvania and Missoari. The Pennrylvania mines fornish the principal supply at present, and are mald to be very prodtable.
The beat Areproof safe is a hole in the ground, properly lined with brick and cement. If it must oo sbove ground, it must be a double one, with the
interval alled with Are-clay and sand; plaster of Paris interval flled with fire-clay an
is mach ased for this parpose.

QUERIES.

[11857.]-Gelatine Moulds for Plaster Ornaments. - Can any of "our" readers inform me how wo

[11858]-Nickel Spoons. - Will some brother reader kindly give me the mixtare of the above, to koep their olour.-Areskal Workitax.
[11859.]-Dyeing Raw Cotton.- Coald any of my brother readers intorm me the oheapost and quiciest wisping i-F. E.
[11860.]-Magnetic Machine.-I beg to inquire further abo on pat 49 or this present volume called at Mr. Browning's, No. 111 , Minories, and was told there is no anch mechine. Wo make our oxygen from
the asual mixture of chlorate of potass and black oxide the nasual mixture of chlorate of potass and black oxide of manganese, and then purify it; then the price is aboat is. per cnbic 100 . andertake to devise the required maohine, and pabiah
it in detail in the Enoursm yichavic. I have no donbt that many would feel thankfal for such information.A POOR M MOHRXIST.
[11881.]-Glove Cleaning. - I have a pair of ralaabie American bucksin gloves, in a vary dirty greasy kind peader oblife by informing me how I can bet cloan them, without injury to the ieather ?-C'oxaraxr Render [11862.- Charooal.- How much charooal should 1 get from a ton of tops and edging of ouk and elm? and, if I convert it in a retort, shoald I get any gas or oil worth saving? Inge it for cleaning nowrage water, and re-heat it occassionally. Of what use are the gaceas
Idrive off? Prexrior. drive off?-Prextion.
[11889]-Barrow-In-Furness. - No doubt some of "our" readors are residents of Barrow-in. Farnees, Lancsibire. Having heard some good reports concerff ing the place, and also having e deaire with 2 companam 11 ko to know from some brother mechanio a resident there, what sort of plece it is, and if he thought that there, would be a ohanoe of getting employment. Should we make our way there? Such a degoription Wonld perhaps intorest other readers beades-Ax ExGlibi Mrchamic.
[118sf]-Rabbit Disease.-Could one of your correspondents inform me the bett way of curing tame rabbits of a disease in the nock? It is something similar to the mange. All the hair comes ofl from the top part of the neoz and back.-Jakes knc.
[11865.]-Fish.-Can any of "ours" inform mo is there be any fonndation for the opinion held by tome anglers that hish, such ai roach, daco, bream, ea, ar and honey, when mixed with the bait uedi I kave beee told by enthasiastic amateurs that suoh in the case, brs I never belioved in it, trasting rather to fine trickio, clean baite, and my own ukill.-Prscaros.
[11866.]-Splitting Wood, -Wiu some of your
correspondents inform mo how I oan tplit straight deal in the most expeditious way the following dizet-Sin long, fin. Wide, and tin. thick? I have been told that matches are stamped out in a pecaliar way. Woald that process answer, or is there anything better? An enor
mous quantity wanted, so mant be done quick. Perhapa some of your correspondents oan inform me where noch a maohine can be obtalned, and the price.-Deal ticarr.
[11887.]-Soparating Tar from Wool.-Wim ary subsoriber Lindly inform me the cheapest metho
dissolving tar or pitch, and paint, from wool ?-Z.
[11808]-Ash Tymber.-I have lately parchnod some young ath timber, felled thic last mintor. Hoe
must 1 prooed to keop it in the beot condition? Lat it be in the open with the bark on, expowed to the weathec. and for how long? or saw it into plank? or plece it in : shed secaro from wot, withoat sawing it P I mar not rotuaire to aso it for a yenr or two. What is roand asb timber worth per foot (good ash)? How is ash
sold ? have heard it is sold by the tuoh.-Aeg.
[11609.]-Zinc V. Coal.-In Dr. Ferguson's volume on "Eleotricity." p. 234, it is stated zinc oannot com peth with coal as a source of mechanion sectionparison. Can any reader inform me (1) what data hat been obtained on this polnt? (2) Might the woight con sumed per hour of zinc be assumed proportionate, as ol ooal, to the mechanical action developed ?-s. I. C^{2}.
Would Mr. Proctor kindly give his reasons for Would Mr. Proctor kindly give his reasons for his
opinion expressed come time back in the Exowni opinion expressed come time back in the Exaciar
Mactavic, that the sun is not part of the milky way MxCBANIC,
L. J.V.G.
[11871.]-Deluges.-Mr. Darwin, in a foot-note in ths "Origin of spocioa," rojeots the Adhémar theory oa perlodical delages. Woald a subscriber, or Mr. Darvia give the anthor's reasons $7-L$. J. v. G.
[11872]-Carbonic Acid Gas and the Atno does the atmosphere contain? 2 Ho merbonic nil does the atmosphere contain? 2. How many miliun taining without the animal kingdom being eorioadt affected by it P-WILLIAM Thoirson.
[11878.]-Magio Lanterns.-Win any corresponecin Inform me how to japan tin bodios for magric lanternas to atand the heat withont soltoning or aging ofi, whs sort of japan to use, and where to get it $9-A$. B.
[11874.]-Bryant and May's Matohes.-Brgus and May's matches are sold with the warranty that they,
"igaite only when rubbod on the side of the bus." "Ignite only when rubbod on the side of the bos", resdily on linoleam. Will any kind reador explaio to me the chemitetry of this ?-Hipparcios.
[11875.]-8peotrum Colours. - I wish to patint upan a dise of card 18 in. diaraeter, the colourt of the apec hrum, so that when caused to revolve rapidy it wil
show pare white. What pigmente must inco to pare ooloure 9 or could I obtsin paper of those coloared Any adrice on the subject will oblige-UTILE Doick.
[11875.] - Hydraulic Press - Will some kind press. Any information would be thankfully received by Tresseardo.
[11877.]-Slide Valve Question. - Will any reader of "ours" kindly explain how the to-and-fro motion is commanicated
steam-puaping edgines, manulactured by Tangye Bros.) withont the aid of ecoentric cranks, cce. ? Aliagram chowing the steam pasages in the cylinder, and how [11878]-Photography.-Will some kind reader tell me how to retonch negatires, what colours to use,
 riew the moment the developer ls applied, and afterwards go dall and opsque- when indoor portraits, taken
with same cainera, come gradunlly and get more and with same cannera, come
[11879.]-Thermopile.-How can I make the bars of antimnny and bismuth and put them togetber for a thermmpile, to ase with radisnt heat, so.? I cannot
succeed in doing this because of the brituloness of the Caxton Lowe.
[11880.] - Armaturé - How may I construct a Siemeu's armature for a magneto machine? Smiths how to make one cheaply for a small machine?-ARTHOR Caston Lowe.
[11881.]-Velocipede to be Driven by the ing of a velocipede to be driven by the hands instead of the foet. I have ceen several excellent plang, but they
will nut snit me, AB I cannot usc my legs. I want one which could be driven up a moderate incline with toler able ease. Speed is not so much an object as easo; say
four miles an hoar. I doz't mind whether it is a foar miles sn hoar. I dos't min
[118s2]-Webs of Cranks for Model Engines. numerous correspondents, be kind enough to inform nnmerous correspondents, be kind enough to inform
me how to forge the webs of cranks for modol steam. engines? The size I want to make is this: Diameter
[11888]] - Suentaining Weight of Cast-iron the following dimensions suatain :-Length 8it., diametar (outaide) at base 7tin., at top 7tin-Vincosk. [11884]-Power of Water-wheel. - Will any one
 which the diameter is 24 ft.
8 fL sin.; and fall 19 th . $\mathrm{i}-\mathrm{R}$. S
[11885.]-Power of Boiler.- What boller power would it take to koep at nearly bolling po
of rater, measuring $15 \times 6 \times 4 \mathrm{ft}$. $7-\mathrm{R}$. S.
[11886.]-A. Thick Soled Shoo.-I am abont to make a boot for a person whose log is oo contracted
that the foot is considerably risen from the ground, and, in consequence, will want a very thick sole. I wish to know what is the best material for the soles, and also [11887.]-Hair Dye.-Nitrate of silver is uned in somio form of golution as a hair dye. Will any reader inform me how the solution is prepared, the quantity
of nitrate and of solvent, and if any other ingredient is included ?-Gray Beard.
[11888.]-Astronomical. - I wish to call the attention of ny fellow readers to an articlo in this month', the theory is propounded that Jupiter is at the prosent tine about as hot as red hot iron. The name of the
writer is not given. 1 should like to hear what our writer is not given. 1 should like to hear what our
valued friend reader inform me if Sirins is pronounced " Sirins, or
"Sirius"? Also is thero a planet Vulcan, between "Sirius"? Also is there a plane
Mercury and the Sun? -Whitaker.
[11889.]-Hedgehog.-Will Mr. Pope, who recommenda a bedgebox as a destreyer of kitchen oeetles, give
me a hint about the management? Will he take to a box or basket ? and does he require mill $9-\mathrm{F}$. S.
[11890.]-The Lathe-How oan I mount a centre knife edge at perfect right angles to the plane of the
linnu of a delicate briance, the beam of which geta thiuner as it approaches townrde the ends, that is, the thickness is a gradual slope from centre to ends, so that
a square laid on besm will not give the right angle, a square laid on besm will not give the right angle,
π lich it is necessary for the knife edge to have.-C.

Sxivh.
t11e91.] - Contents of Oistern.- I should feel obliged by some of the readers of the Mrozaric inform-
ing me of gome accurate method of escertainiug the ing me of some accurate method of ascortaining the
number of gallons of water contained in a stone cistern of a shape something like a D.-J. K.
[11892.]-Steel Combs.-WIM any brother reader hivaly inform me how to make steel combs sach as those
used by weavers? Also what kind of metal the tops of

[11e83.]-B 8c. of London.- Will any of "our" readers tell me what is a good book from which to go
up the botany for thla examination, especially as re Fards the examples required from
Lindley's books do not seem to meet this quite. Also what is a bood book for the zoology, with hints as to the [11894.]-工amp for Incubator.- Will any of your readers be kind enough to tell me what sort of lamp is hiest for an incubator? I want one that will keep alight
it hours withoat toaching. Will a doablo-wick colza lamp do this ${ }^{2}-\mathrm{Ovo}$.
[11895.]-Making Templates or Moulds.-Will cowe fillow subscriber give me some instractions how
is make the templates or moulds for marking out planks tor chairs and ocher furnitare in a practical manner ?Axxious Lithos - Taking Copy of an Engraving or Lithograph, or print ? $-A \times x \times 100 \mathrm{E}$.
M1p97.]- Fastening Fret Saw.-Will some fellow
render iell ma how

[11898.]-Tempering Cast Steel Chisels.-Could made of our rasps and files, ned for catting cold iron ? U. V. U.
[11899.]-Etching on Glass.- Woald some of " our" readers kindly inform me how to propare the bydrofuoric acid in solation Yor the purpose of writing on glass?
I often praduate my ordiamery flask to holid measured quantities, such as 900 o. c., 400 c c. c. \&c., by exposing he fask to the vapours of hydro-fluorio acid, bui scid in eat solation and am anxious to learn the detaila of the process.-UN IRLANDAIs.
[11900.]-Electro-Plating.-Woald "sigma" be so purpo ential pieces of apparatus roquired? I would also es obliged by his recummending the some cheap manaal on the subject.-Un Iblandas.
[11901.]-Grip Ohuck.-I want to make a grip chack orthi to manage the left-hand screm? I bave whit Can I get set our richt-handed screwe, 3in. largest size left handed? or had I bettor got the jaw and sorew made by a rognlar machiuist? I had rather do it my
[11902.)-Chlorine.-Is chlorine (when evolved from ohloride of lime) lujurious in a sloeping room?-WM
[11903.]-Quinine.-(1) What is nged to adulterate
uinine? (2) How may it be easily detected ? (3) Does quinine? (2) How mavit bo eacily dotected? (3) Does
quinine cauee salivation? (4) How is amorphous

[11908.]-Suitable Spectacles.-I nsually derote the evening to writing, and tind that my eight-natarally
long-bighted-is rapidy failing, and would be obliged lor any information as to the most auitable spectaoles to procare.-A., Liverpool
[1905.]-Miniature Tarbine.-The following appeared in the Societly of Arts Journal lor March 8, 1871 :mall turbine, the diameter of which ia only Bin. There are 24 pasiages of the water, each of which has an area on one-tenth of a square inch. It is driven by a fall of 85it. the water being led by a small pipe, haring a
sectional area of half of a squaro inch. This tarbine is ased for driving a lathe, in whioh an iron ehatt of tin. diameter can be turned. The turbine, when not loaded, makes 2,288 rovolutions per minute. Can any of oar rosdors farnish fuller partioulars, as I think it might
prove very useful to many of as? prove very useful to many of us?-H. H. MAson.
[11906.1-Spectroscope.-WIll " F. R.A. S." or Mr. Proctor kindy give me some advice rbout parohasing a spectroscope? What price one would be most sitable
for a beginner? Would it be best to have it fitted to a for a beginnor? Would it be best to have it fitted to a
microscope or not? I shall feol greatly obiliged for any nformation on the
[11907.]-Hebrew Musio.-Can any ope pive me any information about Hebrew sacred masic. How is it
written? Does it at all resemble Gregorian?-KAPPL
[11908]-Drilling Boiler Plates. - Will some practhat bind of tools or maohinos are used for drilling That mind of tools or maohinos are used for arilling tho
rivet holes in boiler plates, nad state whether it is done belore the plates are bent, or after they are fitted or lapped over each other? and whether the holes in each plate are drilled at once, or the ooe plate drillod frat, and the second one from the holos in the first ? In this conntry Loilor plates are never drilled, bat alwaya
punched; and any dotalls about the best praotice in England in boiler construction would be of service here, and, perhaps, help to prevent some of the sad acoidents tic.-AMERICAN Mechanic.
[11909.]-Loud Whistie. - Wanted, to know the way splitter," to be heard at a distance. Any information thankfally received-ANGLO-AMERICA
[11910]-The London Enoyclopsedia.-Wanted, It was bas evor comand ras to be finished in 84 years, in 40 parts. I have np to $G, 20$ parts.-ANGLo-AMERICL.
[11911.]-Lathe Head Mandril.-Will "J. K. P." kincly give his opinion
 with bearings the shape of the sketch, for an occentrio chack, or any-
thing else, so as not to hare the least shake, the back bearing being a brase bugh screwing into head with gas thread,
Americ.
[11912]-Chemical-Can any contribator inform me of the best book to use in order to acquire a thorongh
knowledge of the chernical theory in its present compli. cated form?-ONE Who is PCZzLid by the Late alterations.
[11913.]-Fixing Pins in Barrel. - Will Heary Newman iniorm me how to fix pins in barrel, for the
parpose of plaving uny tune that may be desired ? Also how are the pins tightened ?-RICBABD Linton.
[11914.]-Expansion Joints in Steam Pipes.What is the best kind of expansion joint for 10in. steam pipe, also for 4in. ateam pipe? Steam usailly bolb. per
square inch, but occasionully lot down and shat offBesy Bex.
[11915.]-Corn Screen. - I wns greatly disappointed to see the corrospondence that was carried on by millers a shor time agy had been allowed to come to a stand-
still. I should take it as a great favour if some of $m y$ more experienced dasty brothers would give me thetr opinion as to what they think is the best sort of corn brushes and what kind, and any other useful information will be thankfully accepted by-A Yousg Tykr.
[11916.]-Octave Oonpler.-Will any contribator cindy farniah a drawiug or description of ootave

[11917.1-Organ Construction-Aro there any will any reader please give the name of a oheap and good one ?-GAMBA.
[11918.]-Fumes from Gasworks.-WII "sigma" dady tell me of what the fames, or "pertumes," which any, they undergo in traversing a quarter-mille of air during raing and dry weather ?-SAOL RymzL.
[11910.]-Trigonometrical.-The ollowing theorem occurs in ": "The seonat of an arc is is equal to the sum aomery": The seonat of an arc is equal to the sum
of its tangent and the tangent of half its oomplement." A geometrical folution is given. Will some one give a
trigonometrical solution? It will be proponnded thut,

Sec. $\mathbf{A}=\tan . \Delta+\tan . \frac{90^{\circ}}{\boldsymbol{x}}=\mathbf{A}$.

-Thetanc, Horbham.

[11920.]-From "Jack of All Trades"-Having had a vory protracted boat of ague from which I was were a cause of great anxioty to me. I canght a violent cold, which onded in a violent attack of erysipelas in the head, and for a fortnight the question was "to bo or not with a tenderness of the interior of the nostrils, apper part of throat, and the inner ears. One of my eyes secms as if it was seared with a hot iron, which will ultimately end in the loss of sight, there is not the least doabt; and my brain is so affected that if Itry to collect my ideas, read, write, or put ing considering cap on, I receive a rith in the to vanish from my sight; in fact, total darkness seemer. venes for a minute or two. At one time if I partoot of a cup of hot tea or coffee after my daily labour I felt invigorated and equal to a good evening's work, butnow if I partake of a cup of any thing hot, it debllitates mo by
producing a huskiness in the throat, and ferer, and if producing a huskiness in the throat, and fever, and if cold it produces all the symptoms of a violent oold in the about,troubled with a species of fever in my feet. They ing that there are medioal subscribers to "oure" that are capable of answering my query, I hope they wilf answer this candidly, and state whether this is likely to be a permanent affection or wear off in time. It at
present leaves mealmost a porfect drone, as atudy or the least oxcitement or exertion produces the abovementioned shock to the head, and for the life of me I
cannot see or think of what am seeking-JACE or ALL Trades.
[11981.]-Curing Sprate-Oan any of your readers losm a a good mothod of ouring sprats in oil, so as to MTLETE
[11922.]-Bewage Pipes.-Are tron pipes fit for
sowers? and if nged as eewers, are they serviceable, or sewers ? and if used as sewers, are they serviceable, or
do they quickly corrode when in contact with ordinary do they quiokly corrode when in contact with ordinary
town sewage? What difference in price (about) is there town sewage? What difference in price (about) is there
betwcen earthenware and iron pipes of equal dismeter? -SugaEstor.
[11923.]-Potatoes.-May I ask "Inquiring Mind" (let. 3888, p. 66) how be can manage to koep the disease irom lute potatoes by mowing the tops off, seeing that Augond when late potatoes are not ripe, neithor are th grown they get soft, and are not really good? He is quite righf about wide setting and whole potatoes, but he is wrong in wanting to insare large pofatoes. They are never so good, or convenient, or nice looking for a insures a hollow to them. The very best potatoes are always the very small ones, which most people throw to Beod nothing-E. T. B.
[11924.] - To Mallers.- Will some of our miller Iriends answer the ollowing:-Which in the beat sive
 miller friends answering this or any other items con nocted between the two sizes of French burr millstones. H.
[11925.]-Beef Fat.-Can any of your numerous readers inform mo how marrow fat for cooking can be to batter? I have tried aunatto, bat I think something chorper for quantities conld be got. diso what proces will make it soft and seedy like the original marrow? Compune Bonum.
[11936.] - Malleable Iron Castings.-Wil any one . ings are obinined, reforri
iron ased.-J. T. Litrin.
[11927.]-Ants. - In my hitchen, about the ohimney, somewhere, there is a nest of very emall brown troublesome. I should feel very much obliged if an of your numerous readers would inform me how to de
stroy them. I have tried several things, bat have not stroy them. I have tried several things,
sacoeeded in destroying them. -A. N. T.
[11928]-Microscope.-"A Canadian Sabscriber" fow hiuts upon purchasing a fraters to give him The strength or powers and merits and demerits full specitied, and the names of the different kinds, and, is
[11029.]-Ohemical-Will any one inform me of
what iron retorts are lined with for distilling nitric or What iron retorts are lined with for distilling nitric or other acids ?-C. M. J.

TEE ENGLISH MECHANIO LIPRBOAT POXD.

to be farwardod to the Editor, at
Taristock-atroet, Corent-garlon, W.Q.
mourt proviously acknowlodso
2354 1810
2358810

answers to correspondents:

*. 4 Al oommumioastions should be addreas od to the EDrToR of the Eing

The following are the inftials. \&c., of lettors to hand ap to Truend
Robert Tnngue--Epps and Co.-Thos Pvans.-O. H Stntt.-Wm. Pearson and Co. John Murphy.- Wm: Trred.- T. Barnard. John Abrahams.
Wilgon-T. B. W.-J. H. Heywood.-Col. Staces.-
 Maker.-F.C. S-R Roland.-T. J. Ridge-Whitkirk--
 -A Philanthropiat.-J. Barwick -A Country Tinker.
 Stone.-An Apprentice. Weather-S. J. D.-Teach-ablo-Ashtonian.-J. E. Hale.-Waller.- Boongate.-Gnines-J. Stariing.-R. Singleton-T. P. Barkas. J. M. Elder-W. W. H. Lookwood.-R. A. Proctor.-A
 - Artillary Captaln.-Optical Briokinyer. J. W. H. Barbaros.-W. P. Clarke.-Soper.-Clanrlie Brown.
W.
H. - Nil Smith.-E. H.-A Sufferer.-W. R-J. H. 8.-Piano.James Hinghes - B. D. T. ZZoo Andra-OId Cheese-man.-A Cambridge Gradante-Spider Wheel-T.
Greenway-A Welshman.- Mechanician. - Paper Maker.-W. T.-J. H. T.-Screw Catser.-W. D. Evans Arts.-Growing Wiser.-W. H. Hibbert.-The H. B.-

 Sabscriber.-F. Greenway.-Learner.- J. T. Manrock. -W. W. Jobn Henning.-Fiddler.-J. Swift.-Capt. Crozier. -A. W. Brewtallh - Nathaniel Waterall.-Whitles Partnera.
Communications which ean onis appoar as advertise Robinson, Hamlet 0 . A A Draughtsman, John Reader, E. L. J., An Oid Subseriber, Achilles, J. H. E., W. Copeland.

Gaxph, Bed of Stone, Screw-ontter, W. B. V., Aspirant, Amabear, A Saffrerer, F. S. B., Gloator, W. W.i. B.,
Experto Crede, T. H. F.; Alfred, Bnd David Williams axe referred to indices to baek vols.
Vertination.-"E.L. G." was mistaken in letter 4087, in saying "Phillo" ran away from his challenge. His letter in reply to it was not ingerted for want of room and other rensons. "Philo" shows no foar of a fight N. J. G. C.-Write Mr. Browning, 111, Minories.

Moanrric.-Because your query was an advertisement.
QuI Quenrr-It meant that we do not receive answers o ad vertisements and forwand tham to advertisers. trrise-Quert 11454 wes ansmer in tre coursies
SUTFTRE,-Query 11454 was answered in due course
Shaper Stide of Fypry hopes wo shall adopt the sug-
gestion of J. Ree, and ase a little larger type. gestion of J. Rae, and use a little larger type.
C. E-See a little book on Dilapidations, by Mr. B.

Fletcher; pubilished by E. and F. N. Spon.
Votcan. You ask a quostion and send a drawing
that would cover hall a page, and would cost about that would cover hall a page, and would cost about c3 to engrave Did it occur to you that yon were and put your question withoat the drawing, or with a small one, and wo will insert it.
S. J. Stafrord.-If a "rogalar subscriber" you are an irregular roader, as we have sald dozens and dozens Of times that we do not answer querists by post,
neither do we ingert querios that only minister to individual benefit.
W. Roberts (Stonehouse).-You begin your rather long query thus: "Will ruy of our competent mochnnical readers give so opinion on the accompanying stoter
which I presame is so simple," \&c., \&o. We do not insert illostrated queries on specalative notions to elicit the "opinions of roader. Why not try the expariment yoarself, and then, if you hink well, qive the Wex Pet.-Consult in such a case a shoemaker. It will save yoa trouble and expense.
BED or Stowe. Query abont "lame hen," too trivial. S. BA E. EWN.Wee "Hints to Corregpondonts," No. B. H. B. E. -We hope to say something sonn nboat the meohanical inventionsat the International Exhibition. adesign for a steam trioycle or an illmstration of a iso H. C. Jongs.-It was not "Zoo Andra" who inserted the advertiscment you refer to.
AbTHEB Boort.
Tribner and
Oo., Paternoster-row.
ABTHUB BOES.
A.H. L. Send.
T. F. S. M. R. - Send description for the benefit of oth
T. F. S. M. R-Send description for the benefit of others
besides "Modeller." If you want to oommunicate with him privatoly, you mast advertiso.
are Whling to LbabN.- Pianoforto-tuning is a trade, and oan scarcely be taught by a fow hints, eveu to
"one possessing a little knowled Riciard holden.-Have the tootí properly stopped by a dontiat.
Angelo.-You can harn nny hack nambers sont to you at the rate of Sd. each, inclidime poctage.
Cricaigo- The namber of the curroit volume is denotod
in the left-hand bottom corer In the left-hand bottom corner of the tirst page. Seo Meply to "Angelo"
yertor. -The proposed monthly record would take too
much of onr spuce An OLD Practical Mriner. - We think you hardly tocch
 fra, the sciontitios moans arailable for the prevention
of explusions.

THE INVENTOR:

 WEAE EMDINE MAY 7, 1071.
198s F. Myoms, Luverpool, for a solution for foining ralcentsed 1297. G. Edswards, Park.r.pad. rillas, Battersea, tor Improvements

 apmratna for
1290 H. A. Bonneville, Plecs 1 illy, for a new or improved medieal injecting or irrigating apparatas. i communiontion.
19n J. smith, Manchester, for improromeate in mahinery or
1202 D. Hebson, Liverpool, tor improvements in stoertin gora 1298 C. Daff. Wandamorth-rond. for improvemente it the tramt.
ment of itrons sabstances to be ined in the manatacture of pulp br 1274 T. H. Binmires, HuAdersfield
1995 B. A. L. Hnutriv. Shremshary, tor an Improved apparatat 1338 R. Boylo, claggow, far improvements in ventuators atd smoke extrationt. Str c. F. Firth. and E. Firth, Heckmondwike, 1999 Sir J. Whltworth, Manchestor, for improvoments in gan carriagen.
 1300 J. T. Orifn. Upper Thames street. T. nitno. for improved rrancements of renping maclines to facivitste their transport by

 1809 W. S. Fith, Glaszow, for 1mprovemants in looking nnts on he bolts raed in the finb joints of rails nind nil:
in means employed therelor. A comananicatiou.
 A cornmonication.

 1307 L. Bradiey, Park-place, Regeat's.park, for timprovements in 13so C. H. Sonthail, Leeats, for 1 Improvements in mnechincry fn of tho soles and lieels.

 An recde, mifss, or combs asod in the manatactury of textile tabrios. 1311 W. Jackson, Caroline-strect. Pimition. Por tmprovements in
 mis
139 F. Gatty. Accrington. Laciacashire, for improvemonta in 1818 C. A. do Laskarzewsill, Corontry, \&treot, Mladiesax, and are of pianofortos
1314 G. B. Bmith, Kenaiggton, for improvementa in manger loge

 $1: 17$ I. IIodkininsma anil T. Thornler, Bolton, for tuprovementa
 ubruus materials for spianing. 1318 w. H. Peraivah, Alderibot, for improvements in ommp 1319 R. Colddington, Chancory-lann, for imnrorvments in print.
ink presses, partiy applicado to otuer machinos. A commanica Ing presses, partiy applicable to otuer machinos. A commanica-
tion. 1839 W. A. Lyttle, The Grove, Hammaramith. fir fmprovements

11221 W. A. L.titie, The Grove, Anmmerumith, for improvements
in tho construction of sh.ps and bata 193 A Clark, Rathbinaplase, Onford-stroet, for improvemente

 or solutinn in order to oblain usoful producti thervirom. A com-
manicuiton. 1922 H. A. Dufrens, Bonth-street, Fiasbury, for improvemente in
watches. A. communciation. 1829 J. H. Johnson, Lincoln's Inn.felds, irr improvements in
apparatas for disengaging stips' boats. A cominunication. 1330 F. Finhay. Canden-rrorg, Peckham, for improvementa in
 and tutuer pllea fabrice.
1293 W. R. Lake, Sonthampton-hallinngs. int improvements in

 13: N. Aper. Grosveant robd. 'IMlifen, for improved namethnerg 1333 as. Henry. Fieo
1337 . J. Janes. Prinies-atrost. Lambeth. for improvements in
part
 19 mo W. E. Kochs, Manchoster, for an improved boller for gene-
 18 m A. P. Stephens, Brooklyn, U.S., for improvements in risel

 making and other machines.

 1830 E. T. Hugbes, Chancorr-lane, for roprovements in the manufacture of pianalortes. A communiostion.
1250 W . M. Brown, sonthampton-haildings, for impeoveraenta in 1951 A Mart Chancers laze, lor
1951 A. M. Clart, Chancory-lana, for Improvemants in rokary 1352 H. E. Newton, Chancery-lane, for an impraved eompanition
to be ased for the manafacture of drain pipea and other artictea ade a subatitute for artífilal stone. A commenication.
 ion for citter and towna, and in the atructares and apparating em. ployed tharefor.
1884 J. Imray, soathampton-bnildingy, for improvements is
intoriocking apparatus of railway pointa and signala 1855 W Rpparutus of rallway polian kiqnala
1355 W . Brookes, Chancery-lane, for improvements in magns
for communiesting motion and pressnre to parti of preasee, cocks
 nble in commanicating motion and pressuro to paris of ithes 1ase R. M. Marchant, Kirly.atreet, Hatton-garden, and B.
Angell, Lubenham, Leicoster, for improvemento in horwo-sbonk. 1857 R. W. Marhall, Owlerton, sheflleld, for improvements in the manutacture of bearings.

 nd purposes.
 able to machinery or apy,
hapa, pattern, or design.
1861 W. R. Lake. Bonthampton-buildings, for improvements in
the manufacture of knitted fabrics, and in machinery ouryinird herefor, A commanication
1562 R. Fikh. Horneoy. for faprovementa in the method of ani
apparatas for ievivifing matarials used in the parification of gaa 13ns W. Mitchell, Whterford, Manchestor, for improvementa is lie mannfacture of falt carpieti.
1564 E. Slanghter and A. L. Sacre. Rristol, for improversents in
ule conatruction and conpling of lecomotivo ongines. 139s J. E. Walken. Sanderland, nnd J. W. Cole, Nowenctie-apon 1366 J. Parks, Northwich. Cheyhir., for Improvements in Dxing 1387 F. J. Sweeting, Rothorhithe, for improvements in apparatus
for lowering hoats from vessels. 1378 J. P. Flson, Cambriste, for an improved ulting and eteming ear for double and tareo rarrow plongha
1359 P. Conper, Edinburgh, for improvements in motive-power
 1871 T. Torton, Idverpooh, for improvements in spring midety 1372 W. D. Player, Blimingham, for improvementa in machiseng or the manu
1938 T. J. Denne and A. Hentsehel, Cambridge-road, Milerent,
for preserving meat. 1874 W. It Wise, Chandos-chambers, AdAlphi, for improvements

 decomposing them or rasolving thom into their componoats.

1378 W. R. Leke. Sonthanpton-haildinga, for improvements is ectric torobea I
1579 R. J. Edwardo, ghoreditch, for improrementa tn the mams.
facture of sand, emery, and elase papurs and cloths, snd is che

 pparatus employed therein. A communicativu.
18983 J. H. Johnonon. Lincoln's Iun-Held 4, for imn oremeats to commanication.
 nid for other purposes. A communicution.

patents bealed.

205s W. H. Tooth, for improvements in breect-loenitig email
 2:78 J. Blasey, for improzemente in hrakoa
2a31 H. Dent n. for insprovemonts in artuating and conatroctae

©hy Etyplish Gftechanit

WORLD OF SCIENCE AND ART.

ERIDAY, MAY 24, 1872.

ARTIOLES.

AIR AND RAIN.*

UNDER this title Dr. Angus Smith has gathered together and published the results of his investigations into air and rain, and of the experiments made to determine their relative parity or impurity in various parts of the British Isles and on the Continent. As a first step towards establishing a chemical climatology the book will undoubtedly be extensively read; and although a tentative effort to place the analysis of air and rain as affecting the health of the community on a more scientific basis, it must be regarded as the standard text-book of the present time, and in all probability for a long period in the future. Dalton, it is said, considered that chemical experiment could not distingaish the air of Manchester from that of Helvellyn, but the progress made in scientific knowledge since that time has shown that he was mistaken, and that it is not only possible to exhibit a distinction between the air of our manufactaring towns and that of Ben Nevis, but also between the different parts of those towns themselves, and, further, to draw important conclusions from the resalts thas exhibited. Chemistry, says Dr. Angns, has not hitherto done enongh in sanitary inquiries, though it ought to be able to relieve medical men of much of their heary responsibility, and it is chiefly with this view that he has gathered together the papers and reports written by him, the latter being furnished to the Government in his capacity of Inspector-General of Alkali Works. Besides the two principal gases found in atmospheric air we know that there are others which, though small in quantity, are nevertheless powerful for evil, and in the neighbourhood of towns, and particularly of those which are the seats of specinl manufactares, ocular demonstration is afforded of the deleterions nature of some of the vaponrs and gases thrown into the air in unknown quantities and numbers, while others, probably not the least hartful, escape detection both by the eye and nose. We know also that there are innumerable solid particles, consisting of common salt, sulphate of soda, nitrate of ammonia, and sometimes limesalts and iron, as well as phosphates, iodides, and, in fact, probably a little of nearly everything at times. Besides all these we have organio sabstances given off from animals and vegetables, and, finally, living things themselves, capable of propagation wherever they may find suitable conditions aud food. It may possibly be true that some of these latter are useful, many inert, but it cannot be doubted that a very large proportion are positively hurtful-conveyers of disease, if not actually the producers.

Nnmerons observers have experimented on the air and calculated the amount of oxygen it containe, and although formerly results differed, owing probably to defects in the modus operandi, latterly the analyses have come much nearer agreement and to minate accuracy. Gay-Lassac and Humboldt gave the mean as 21.0 volumes per cent. of oxygen; De Sanssure, after numeroas experiments at Chambeisy, found a mean of 21.0 ; and Daltoo found the air at Manchester to contain from $20 \cdot 1$ to $21 \cdot 5$ per cent. Bunsen, at Heidelberg, however, found an average of several trials to give 20.924 ; and Regnault, whose results are probably most reliable, from the namber of experiments he made in different parts of the Forld, obtained a mean of 20.949 , while 100 specimens of Paris air gave 20.96. Priestley, when oxygen was first recognised, imagined that the amount varied to the extent of 6 per cent., and Scheele is said to have obtained és mach as
30 per cent.; but Cavendish by making a series 30 per cent.; but Cavendish, by making a series
of 500 enalyses, srrived at the conclasion that 20.833 was the mean amount, and later experiments have shown that he was not far out,

[^8]Graham and Liebig both giving 20.9. Dr. Angus Smith foand, from repeated analyses, the following percentage, which we extract from his table as characteristic situations:-

$\begin{array}{r} 20-999 \\ 20.947 \\ \hline \end{array}$
207
18

The cursory reader who does not stop to examine what these figures really mean will probably exclaim, What difference capable of affecting health can there be in the air of London and that of Scotland - 20.999 against 20.950 per cent. of oxygen ! It is quite true that a mere deficiency of oxygen to the extent of $49 \cdot 10,000$ ths may affect ns bat little, but that deficiency means something more than a mere absence to that extent of oxygen; it involves a question as to what has taken its place. Even so slight a difference as that between 20.999 and 20.980 is equal to 190 in a million, and if we put imparity into water at this rate it amounts to $13 \cdot 3$ grains in a gallon. This amonnt, says Dr. Smith, would be considered enormons if it consisted of putrefying matter, or any organic matter usually found in waters. But we drink only a comparatively small quantity of water, and the whole 13 grains would not be swallowed in a day, whereas we take into our lungs from 1,000 to 2,000 gallons of air daily. We must remember, too, that the blood receives the air and such impurities as are not filtered out in its passage, whereas the stomaci has powers of disinfection and destruction which render harmless many orgenic impurities contained in water. But if we talle the air found tained in water. Bat if we talite the air found
in the pit of the theatre we find that the difference amounts to 2,590 in a million, and the importance of the minute analysis becomes evident. It is rather curious that in the atmosphere of towns more oxygen is found after rain has washed out the carbonic acid than before, some analyses giving more then 21 per cent., the experiment being frequently repeated to guard against what at first was supposed to be an error.

The experiments carried on at Dr. Smith's laboratory in Manchester furnish in a conclusive manner, the proof of the statement enunciated above; for, from a number of trials on air taken from the front of the laboratory and from the back near an ash-pit-in which the means were respectively 20.943 and 20.70 -it was found that not only was there a diminution of oxygen in the less p ure spot, but that the carbonic acid was not in sutmciently increased proportion to make np for the loss of oxygen. Dr. Smith thinks, therefore, that wherever there is a diminution of oxygen from the standard that is a proof of impurity. "We see putrid matter laid on the ground, and find it disappearing rapidly, and yet we are told that it is not accompanied by loss of oxygen : it is not credible, and the resalts given show it to be incorrect." Those of our readers who are curions to know the percentage of oxygen found in different parts of London and in various parts of the kingdom and the Continent, must refer to the book; but we may mention that the average of six samples taken on the Metropolitan Railway give, as might be expected, a result as low as that found "about backs of houses and closets"-viz., 20.70-one specimen taken at the open window at 10 a.m. only giving 20.60 . We may also mention that the amonnt of carbonic acid from air at the top of the Monument was considerably in excess of that found at the Dake of York's Colamn, or at Small Alley, Smithfield.
Not the least interesting of Dr. Smitb's experiments were those undertaken to ascertain the amount of impurity in metalliferous mines, the air of which is contaminated by the candles and the breath of the miners, as well as by the gases given off in the explosion of ganpowder. Besides the imparities proceeding from these sources, there are, of course, small quantities of
organic substances derived from tallow, organic substances derived from tallow, tobacoo, found impossible to separate these, and in order to obtain a reliable idea of the separate effect of the principal agents, a lead chamber was constructed in which the experimenter could shat himself up from the external air. This ohamber
contained 170 cubic feet of air when furnisbell with a table and chair, and occupied iy
person. On a day when the temperature person. On a day when the temperature
$45^{\circ} \mathrm{F}$. no difference in the peroeptible for 25 minates, bat when drawn lse the top by moving an umbrella up and down it seemed like a soft wind capable of producing a sli,ghtly pleasant feeling, being, however, uthesh withont the property of producing that cheering and exhilarating effect to which we are accustomed in a gentle breeze. The air was moist, and a specimen of it deposited water. After se hour the well-known organic smell noticed in a crowded school-room was perceptible on moving about rapidly; and at the end of the experiments, Which lasted 100 minates, had a very anplessent ilsvour and smell, and persons who entered ionmediately the door was opened, pronounced it very bad. Still, Dr. Smith says he did not feel un comfortable, althoagh the percentage of oxygen must have been reduced below the average joman in the ordinary circumstances of daily life, showing the seductive and insidions character of breathed air. After a stay of 2 honrs minutes in the chamber, however, long inspintions became more frequent, and the air anal fonnd much less agreeable when breathed at the upper part by standing on a chair; at the end of three hours the amount of oxygen was reducell to 19.61 . In an experiment with barning cavdles it was found that the amount of lighs was sensibly diminished, and when the candles wext out the percentage of oxygen was fonad to k. 18.80", and of carbonic acid 2.28 . On entering the chamber with candles and a spirit lamp then lights were speedily extinguished, and it weat found impossible to re-kindle them with maternas, the ordinary wooden ones refusing to jpxile Still, it was possible to breathe without difficulky, although a feeling of discomfort was soon exprivienced. Afterwards gas was lit and burnt brillientidy. but on entering with candles after the gas hed gono out they were instantly extinguished. Neverthe less, it was still possible to breathe, althueng when Dr. Smith stood on a ohair he experienced a feeling similar to incipient faintness; " but the senses werenot annoyed by anything beyond a fosh ing of closeness, by no means so anpleasanti, us a school-room." This is an important feot, an Dr. Smith eays, showing almost conclusivety that organic matter is the cause of the as pleasantness to the senses on entering a schoch room ; for there was comparatively little organic matter in the chamber, and the school-room moald have more oxygen than the chamber, the percentage found in the latter, after allowing the door to open for three persons to enter, beias found to be only 17.15. The conclusion to bo drawn from these experiments, therefore, is thax the senses are bad and inefficient guide to tho wholesomeness of air as regards the amouns of oxygen and carbonic aoid, save when the farsaer is reduced and the latter increased to suck extent that the langs seem to refuse to expand and the whole vital action is threatensd witu paralysis. This was clearly proved in an expriment, in which a young lady ontered the chanber 28 the candles were giving indications of raing out, so that there could not be over 19 per cent of oxygen nor less than $2 \cdot 1$ of carbonie acid. A no one had been breathing in the chamber themo was no organic matter from the haman bedy in the air, and for five minutes the young led foand no difficalty in breathing, and experinneet no unpleasant sensation, but at the expiration that period she became suddenly pale, aud bad te be assisted ont of the chamber. It will thas seen within what very narrow limits the arouecta of oxygen necessary for healthy life is comised and the importance of the figares given is the table above is clearly shown. Rooms beally ventilated which contain less than 20.7 per of oxygen are very nnwholesome, and the neterssity of taking into consideration the proporatia of oxygen and carbonic acid in the sanitery inspection of factories and workshops is abondantisy evident from theresults obtained by Dr. 8 mith. Wie must postpong our remarks on the portion of the work devoted to analyses of rain to a luture
time; but meanwhile we may say that thwo. "beginnings of a chemical climatology" shesian be stadied by all sanitarians, and their teachinm thoroughly grasped by those whose daty it wail be to direct legislation on the subject.

[^9]
ELECTRICITY-WHAT IS IT?

By B. Thoypson.

I.-Electricity a Form of Motion.

IKNOW, to those tolcrably well acquainted with the science of electricity, few arguments would be required to make them believe that electricity is a form of motion as much as heat or light; but since the object of this communication is more especially to show the difference between the motion of clectricity and that of heat, light, or sound, I think it advisable to go throngh the principal arguments for supposing electricity to be motion, as they all bear directly opon the eubject which is as follows.
Electicity is a forco which reaists all direct analysis on account of the difficalty which is experienced in retaining it, and the great restrictious one is under when dealing with it, which are greater and more numerons, I think, than those required in the examination of any of the other physical forces; we can, thercfore, only juige of its natnre by noting the laws which govern its development and phenomena; these, again, are very numerous and complicated, many of them, however, are identical with the laws governing other branches of physical science, and I think we shall be able to obtain clearer conceptions of the nature of electricity by studying this connection, together with the excentions, than it appears we are enabled to by direct experimant. We will first consider in what respects
specially it differs from the ordinary physical forces of sound, heat, and light, as the coincidences of the laiss regulating these and electricity are vers aignificant, and point to an intimate connection, if not common origin.
Sound, we know, is propagated and made sensible to us by the undulations a vibrating body bas impaited to the scrrounding air ; the molecule of air in immediate contact with the sounding body delirer the pulse they receive to otber contiguous molecules, and so the motion is carried on nitil expenled. And, so faras can beascertained heat and light are propagated by the same wavelike motinn, which, however, does not use the air as a medinm, but a (hypothetical) ethereal anbstance called ether. Tbis is supposed to pervade all space and sarround the atoms of all bodies, preventing the atoms themselves tonching each othor. The rate of vibration in the case of light and heat is, however, immensely greater than that prodncing sound, as the substance which conducts them is immensely rarer than that waich conducts sound.

Apparently, eloctricity bears most resemblance to the former of these forces in requiring a substaice $m \cdots$ ponderable than ether to conduct it -as wo shall see by after experiment-yet it is more iutinately connected with heat than sound; ns is shown by the ready and reciprocal transmntation of the one into the other, so that a full explanation mast be one funaded on a property common to both sound and heat. The most evident common property, and, I think, the one upon which all the other resemblances depend, is, that thes are both modes of motion. Therefore, wo may with some reason infer that electricity also, is a modo of motion, and this will appear more civilentas we proceed
I: is now generaily admittod by philosophers that the dynamical theory of heat is most in necordance with the present stato of scientific kuowldige; especially since the exhaustive investigations of Professor Tyndall; and the belief, tus, is gr wing fust that all the phrsical soinces are coancoted, aud requira a dynamisal theory to aceount for their behaviour; therefore, it cannot to pouve that electricity is a mode of motion, in opibsition to the conventional finid theories, espe-
ciblly whun we sea the v ry iatimate connectioa with heat, whin we know is a mode of motion.
Wo will lirst invostigrate the phenomena which called forth tho rum ork at the commenoemant, hat electricity apprently requires a substince wore pinlerable than other to condact it. It is mupossible for us to conceive of force apart from
matter, as it is only manifest to us by its effects in uituro, and we are compelled to recognise the axistence of a something pervaling all space, by viilu the maves of ligit from distant stars reach us, and this assamption receires veriticntion from he observed retardation of some planetary bodies from resistance. So electricity reqnires matter (1) act upon, otherwiso it is not manifest to us, (iately into its rolation to the substano whiab conducts it ; the inquiry is attended with diffculty, cul we are apt to be misled, for we find that a
solid conductor, auch as copper, enables electricity to pass freely through it; bat we also find that a comparative vacuam, such as that in the vacunm tubes (so called) of Geissler, \&o., seems to facilitate the conduction of electricity; in the latter case, we are led to attribate the conduction of electricity to the ether contained in the tabes (sbsence of air, if you please) ; but to suppose that the conduction in the case of oopper is due to the ether surrounding its atoms is untenable for as Faraday remarks, "ether exists alike in conducting and non-conducting bodies; it would therefore, in the case of a oonductor, be oonducting, and in the case of a non-condpctor, nonconducting." So we have every reason to believe that it is the substance of the conductor itself which a ffocts its conducting power for electricity and not the ether. The following experiments I have seleated to still farther prove this point

If a tube-fitted with two platinum wires in its ends, so as to be a very short distanoe from each other in the tube-be connected with a good airprmp, so that it oan be exhanstod whilst olectri city is passing between the two electrodes; then heated to a dull redness, and the exbaustion oontinned; in a short time the sparks will coase to pass; the tuhe nay now be sealed, and althongh there is a very slight distance between the platinum points, the passage of electricity is completely stonped. Indeed, a vacuum sufficient to effuct this is not at all difficalt to obtain, for i three tabes of the kind described above be filled with chlocine, and the gases of bromine and iodine respectively (three simple substancea), and a enrrent of electricity allowed to piss throngh them, the gases, will combine with the platinnm electrodes, from the negative pole of the battery, and in a blont time so completely exhanst the tuba that electricity will oease to be conducted. Also, if canstic potash can get at the gas in carbunic acid vacnum tubes, it absorbs the carhonic aoid (CO.) by degreea, until eleotricity will not pass, secming to show that a substance of a ponderable untare was necessary for the conduction of elentrisity, for the quantity of ether would ceriniuly bo increased by the removal of the air.
Roasoning fmm the above experiments does it not appear sinselar that a comparative vacuum shonld onnduct electricity well, when one mone perfeat will not onduat it at all? but the fact may be we are mistaken in supposing that an attenuated of conduction) better than a solid conductor, and it will be my next daty to prove that it does not, both by experiment and reason, bat that the effect we seo is diae to the incandeacence of the particles of ponderable matter between the electrodes, which, if it be so. implies increased resistance rather than oonduotion, for we know the greater the resistance in a conduotor, so long as it will allow a current to pass at all, tho gre.. cer will be the heat developed in it.
For the dotermination of this point the sid of the spectroscopa is very valuable. If the spectrum of a luminons body is examined by a spectroscope it is found to contain oertain bright bands across it, oharacteristic of and peculiar to the substance or substances which are incandescont. If we allow the ap ctrum to pass through the incandescent vapour of any of the elements barning the rays of lite reirangibility are absorbed by it, and on now examining the spectram the lines charac teristio of the absorbing vaponr are there, but are now dark instaad of light. This explanation is, I think, suthiticnt to onable any one to underatand the reasoniny founded on it.
Nıw, if ou examining the spectram of the light wa observe in a panaum tabo when a current o olectricity passes, wo discover the bands are such as would resalt from the inoandescence of the cases or ripours in the tube, and that the lines are bricht oncs, can we resist the evidence forced upon us that the contents of the tabe have been rader incandescent by the electrio carront the deductions drawn therefrom justifiable, will I thiul, be cvilent from the following quotations of exp rimenta.
Professor T.acna, in one of his lectures at the Apothecari s' Hall, gave some experiments with G issler thbis with which to demonstrate the various churacteriotio lights emitted by incanlescent hyl:ogea, carbonic acid gas, nitrogen, \&e The nitrinn lines ars seen in the spectroscops when the emtris apark passes throngh air to the presence of aqueous vapoar

From the lattor experiment, I think, we may
orm a reazonable and inportant hypothesis-
namely, that whan eleetricity manifests itsalf to us as light by spark, or otherwise, it is due to incandescent matter, whether it takes place in a
vacunm tube or not. This ides is also supported vacunm tube or not. This ides is also supported gradually converts some of the oxygen into ozone, an allotropio form of oxygen. Sulphar, seleniam, phosphorns, ohlorine, bromine, and all the carbon compounds, \&c., also give different and characteristic spectra when the electric carrent passes through them. If the opark takes place throagh a compound gas or vapour the spectra are those of the elementary constituents of the gas. It seems as if at very intense temperatures chemical combination was impossible, and oxygon, hydrogen, chlorine, and the metals, \&o., coald exiat in a separato state, although meohanically mixod togetber.
It has also been shown that when the electrodes of a battery are composed of metals, coloured sparks are obtained characteristic of the motals, and by which their presence can always be detected, if not directly from the oolour, by means of the spectroscope.
All these facts, I think, give great additional support to the hypothesis before expressed, that it was not the electricity we sow in a vacuam tube or as a spark, bat that there had been a transmatation of electricity into light, by its rendering the intermediate substances incan desaent.

And it is important for us to notice that the light and heat (the light being a consequence of the heat) produced are directly due to the electric current, and not to ordinary combustion, for they are produced in gases and vapours which will not support combastion in the least, or it might be supposed that the current's only function was to heighten the affinities of the elements.
In the above experiments we have the foros which mast be the resalt of some firm of motion accompanying the carrent of electricity, and inseparable from it. We will, however, continne the pronf of this motion further, and in another direction.
When electricity is invariably sent thraugh the same pole of an induction apparatas, through the wire of a telegraph, in a very short time the wire is torn or divilod into small sections, which destroy its continuity; but when the carrent is sent alternately through each pole, the conductins wire remains uninjured. As each atom of the wire has its own electricity the same as each atom of the wire has its own heat (motion), it seems tn indicate that daring the passage of the same kind of electricity the pole of each atom is forced more and more in the same direction. till at last they are not able to return to their normal condition ; the coercive force is completely overcome, and a rupture takes place, the more readily if there be any imperfection in the wire.

Faraday was led to believe that the condaction of clectricity might be only a consequence of decomposition, for he found that ice wonld not conduct electricity at all (friction, would, however overome the resistance), whatever the power of the battery. Water, however, was readily decomposed by a powerful battery, and this behs vinur he found almost universal-that bodies which do not conduct electricity when soli. acquire that property when fluid, and are generally decomposed as soon as condaction becins. He also informs us, I think, that there are bat two exceptions to this rule-sulphnret of silver and fluoride of lead, and his belief was that elec tricity was conducted in the same manner in the metals, in lacks, or in gases, but in differen degrees.

Looking at the preceding experimonte, we shal find that the dednotions drawn from them aro of universal application in the science of electrioity Thus, when a person completes the circuit of: powerfal battery he feels a shock, but only on making and breaking oontact, beosuse when the current is circulating continually in one direction the onndnoting atoms or moleonles lying between the electrodes do not return to their origins state, hut continue in a polarised one, becans the successive polarisations aro too rapid to permit
of it. So long as there is quiesence no shook is of it. So long as there is quiesence no shook is felt ; when, however, the ourrent is stopped th. return of the polarised moleonles to their original state causes a shock equal to that felt when they became polarised, and if the current were io circulate continually in one direction in a haman body, analogous results to those noticed in a con ductor of metal would occur-i.e., the interme diate matter would suffor slow deoomposition Indeed, induction or medical coils hare completr
superseded the battery alone as curative agents, becaase of the evil resalts from electricity when applied direot from the battery alone. These coils have contaot breakers to continually make and break the connection, and as often reverse the current.
I have not been particalarly careful is the use of molecule or atom, but may say at this point that it is pretty evident it is the moleoales which take the polarised state, as this assumption will enable us the better to anderstand the aotion of decomposition when the conduotor is a compound, but at present it is a very difficult mattor to doal with, as there is no striot electrical distinction of conduction which can be drawn between olementary and compound conductors when solid although fluidity is not slways essontial to decomposition.
Tarning, however, to the more immediate object of this communication, perhaps the greatest proof of motion in a conductor when a current o electricity is circulating in it is contained in the following: -

When a current of electricity is traversing a wire, so long as it is readily conveyed, there is
little heat caused by it, but if the current be increased, the heat is likewise increased, and, therefore, we bave the actual and direot transference of one kind of force into another, which certaiely cannot be admitted without recognising a great similarity of nature. So, I think, we are bound almost to regard eleotricity as a modification of the force of heat, and, therefore, a mode of motion, mheat is.
(To be continued.)

OLMENT FROM DEWAOE.

Tin mon mothod of dimpoing of armecs by practicaily aud successfully tonted during the last London, formed the sabjeot of a paper mind at a recart mating of the Suciuty of A rts hy Majop-
process. From this we gather, although the details have not yot been publishod, nor the proeess carriad ont in the most economical manner, that a cement equal to the best Portland or an excellent bydraulic lime can be made from the ordinary water-borne serage at a cost which does not exceed that of Portland cement prepared in the usual manner, while the offensive nature of the fecal matter is completely destroyed. The principle of the process consists in mixing with the sewage quantities of lime and olay, tho former ingredient combining with the aarbonio actid of the fecal matters to lorm aarbonate of lime, which is precipitated with the other solid dagredients in the form of an impalpable powder. The lime and clay are preforably thrown into the main sewer some little diptanee before remoheng the ontlet, so as to insure a mace complete incorparation of the ing the slimy glutinous olvarmeter of the sewage "sludge," and kooping the drais slean and free from the festering and paivelying deposit which otherwise tends to ohoke it. The olay and the lime do not merely faellitate the deposition of solid matter, bat, as is well known, they tend to parify the supernatant water. Now, lime snd clay are the ohief constituents of those limestones, Which on alcination yield the best hydraulic limes and caments, and it is olaimed for this process chat there is a sufficient gain of cementmaking material abatracted from the eowage to make the operation profitable, independently of the advantages gained by thas deodorising and dofecating the exerementitious matters of topyns, which must otherwise be disposed of in a menner more or less mohealithy, and very often at great expense. Hitherto it has boen found impossible to clarify liquid cewago at once satisfactorily and profitably. The grosser partioles, it is true, are deposited, When it is eimply allowed to stand in
tanky, bat the supernatant water still holds in suspension a very large amount of solid raatter which renders it unfit to be turned into any river from which a anpply of potable water is drawn. There are ohemicals ospable of purifying the liquor and precipitating all the solid matter, bat the expense attendant on their employment is too great to permit of their use. Of all the chemicals bitherto employed for this parpose ime and clay are the least costly, and now that it is shown that a useful material can be made from the resalting deposit the problem of sewage dispossl meems in n fair way to be solved.

The success of the new process depends in no small degree on the fact that the procipitated mattar supplies to a considerable extent the fucl necessary for the burning operation. The sewage being allowed to settle in tanks, and the supernatant water drawn off, it is found to be thoronghly deodorised, and may be expcsed to the drying action of the sir for an indefinite period, withons giving rise to any offensive or deleterious vapours. It is then dried on tiles, beneath whioh tho herated gases of the furnace are made to pass, and is then calcined in the ordinary manner. The fecal matters which subside in the settling tanks are found to consist to a large extent of organic compounds, which whendiied and distilled, yield large quantities of inflammable gases; and although the proportion of carbon may be small, the hy drogen gives a most intense heat, the sewage thus supplying the greater portion of fucl required to tarn it into coment. The experimental kiln at present used by Major-General Scott, is only aboat 4 ft . Gin. in diumeter, and 12 ft . high, and the working of the process on this small seale requires from three to tive baabels of coal per ton of material, yielding a heat sutticient to keep the drying floor red hot, as well as burning the mixture to oement. It cannot well be doubted, therefore, that on a larger scale wore cconomical resalts would be obtained ; but even as at present carried ont. a useful article is manufactured and the sewage is disposed of in the least offensive manner yet devised. General Scott does not snppose that his process will entirely relieve the inhabitants of a small place like Eeling from a sewerrate, but it will redues the expense lower than any system yet proposed, save the plan of atilising it apon land, whioh is not always that suminum honum whioh its advocates would have us believe. It was arged in the disounaion that followed the reailing of the paper, that aemont inight become a drug in the market, if the gewage of towne man extenaivoly utilisad in chis mauner ; but uvea eapposing this to the the reanlt, the expeuse of caryigg on the proeace would not cexeaod that of cowage world bo diaposad of in a far mone atiofautory munuer than that at prosent in use for getting fid of the refuse of the metropolis. As a matter of fact, howover, the value of Portland cement bas been considerably anymented of late years. Experiments have proved that it is a most serviceable material when empioyed as conorete for building purposes, and wo lonk for a much more extended utilisation of its valuable proper ties in time to come. Anything, therefore, that will oheapen its production, oren if that result is attained by making it a drug in the market at the expense of the nutes, must be hallud with satis faction, for from the evidenoe of Mr. Hawbeley, Dr. Odling, Dr. Frankland, Dr. Voeleker, and Professor Abel, the sewago is most effectnally deodorised, and while the solid insredients-thoee most diticult to deal with-are utilised, the liquid
portion can still te employed for imrigation. The portion can still be omployed for irrigation. The general opinion of those beat cepreble of judgivg was in favony of the new procers, as a means o getting rid of an intolorable nuisance, the only objection being the largo quantity of ooment pro-
dnced-estiautad by Dr. Lertheby ata tora per day duced-esticautad by Dr. Lethecy at a wa per uay
for every 10.000 permona. The plau iw, of course only applicable to towns where a syatwin of sewer age is in existence or in course of eonstraction.

KEROSENE AS A CURE FOR RHEUMATISM.

A^{L}LL the way from New Zealand comes the intelligence that the sduinistration of kerotene has had a most decidod and marked efect in the cure of chronic rhenmatism. Mr. W.G.
K mp, L.R.C.P. and M.R.C.S., of Wellington, N.Z., sends to the British Jledical Journal an reconnt of six cases of rhenomatism, in which kerosene appears to have acted almost as a speoific. The dose is a teaspoonfal in a winehlassful of water erory other night. It produces no anpleasant sywptoms, no loss of appetite, aud has no effect apon the bowels or kiducys. Mr. Kemp says :-"Although karosene cannot be calkd a specifio for rhenmatism, I think that the cases cited are quite sufficient to induce medical men to give it a fair trial. I am unable to find any unpleasant symptom cansed by taking kerosene. The ereat objections with many people to taking it, are the unpleasant taste and smell. Some hare taken it in water or milk; but I have lately heard a patient say he could take it best rith ealt: a pinch of salt being
pat into the mouth and allowed to uissolre, and
the oil then swallowed, mixed with sbont its bulk of water. I am not aware of the rempily having ever been used internally; bat I trust soms medical men will bo found who will give it a trial and record the resulte of their cases. Exterually, it is of great use in cases of harus, whether severe or sli, ht ; it secms to relieve pain more than any other applicution, espacially if resorted to as sons. as the injury is received. I have kuown cases of serure burn to henl ap rapidly ander its use alone

LESSONS ON CHEMISTRY." By Selimo R. Bottone.
(Late of the Ietituto Bellino, Naiara, Italy.) (Coutinued from p. 215.)

c2. Sulphoric Acid. Sunonym: Mydrnmen Sulphata. \dagger^{+}Symbol: $\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{C}_{1}^{\prime \prime}$. Combining weight: 98.

16G.-PROPERTIES.-Pare sulphuris acil of a specific gravity of 1.854 at 32° Fahr. It is extremely corrosive, owing to its powerful attraction for water. For this reason it chars and decomposes most animal and vegetable substances (which may be looked nunn as compounds of carbon and water), by abstracting their water and leaviug their carboo. Such is its action upon sugar, mood, papor, \&ic. Taking the case of sugar as an illustration, the followisg equation will give an idea of the reaction:-

Sagnr. $\begin{gathered}\text { Conncentrafed } \\ \text { sulphic anid. smphuric acie. Carbin. }\end{gathered}$
$\overbrace{\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{11}}+\overbrace{11 \mathrm{H}_{2} \mathrm{SO}_{4}}=\overbrace{11 \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{H}_{2} \mathrm{O}}+\mathrm{C}_{13}$
In praotioe the elimination of water from the orgaric subuiance is seldom fond to be so complate ad that represeated by the above equatio: ; and awing to the hoat generated during tho action, part of the natitered sulphuric acid is deounppused by the carbon prodaced, aud a quantiny of salphar dioxide is consequeltiy orulved.
Sulphario aoid boils at about 638° Fohr. When builed, a amall quantity of salphur triovide is evolved, and a liquid rewains beliiud which contains only 98.5 per cont. of the pare acid. At this strongth the aoid may be boiled without being farther decompozed, its builing point being then constant at 620° Fabr., and its specific gravity 1-846. A temperature of $15^{\circ} \mathrm{Fahr}$ causis sulphuric acid to frecze to an icr-like mass. When mixed with water sulphuric acid yives riso to the evolation of great heat, the derree depending on the relative quantities of acid and watcr employed. For instance, with 4 parts of sulphuric acid to 1 of water, the tomperature prodiced is 300° Fnhr. N.B.-We woald impress of the reader that on mixing sulpharic acid with water it is prudent to pour the acid into the water, for if the opposite mode of procedure be adopted, the contents of the vessel are some times ejeoted, suoh is the violence with which combination take phaco.

Grest eold is produced on mixing one part of sulphurio acid with fouse parte of snow, aud this apparent paradox is owing to the fuot that as sulphuric aoid on mixing with soow roduces it to the liquid form, so the heat mocesesary to transform snow into water is abstracted from the sur rounding bodies, id est, cold is the result.
167.-Sulpharic acid possesses in the highest degree the typical properties of the class of bodies known under the name of acids, hence it may not be amiss here to enamerate them.

Sulphuric acid is endowed with an extremely sour taste, so sonr that 1 part of acid will give a distinct taste to 1,000 parts of water, hence it is often used to adulterate vinegar. It redden litmus papar strongly, and can combine witi nearly all metals and metallic oxides, with the production of a series of bodies ealled sulphates. When it acts on metals these pensrally replace and expel the hydrogen contained in the acid, thns :-

$$
\mathrm{M}^{\prime \prime}+\mathrm{H}_{\mathrm{a}} \mathrm{~S}^{\prime \prime \prime} \mathrm{O}_{4}^{\prime \prime}=\mathrm{M}^{\prime \prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}+\mathrm{H}_{2}^{\prime}
$$

If a metallio oxide be used, a similar expalaion and replacement of hydrogen takes place, but the oxygen of the metallic oxide combines with this bydrogen to form water, as may be secn by the fullowing equation:-
$\mathrm{Mr}^{\prime \prime} \mathrm{O}^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}=\mathrm{M}^{\prime \prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$.
The right of translation and reproduction is rezersca + Mydrlc aulphate.
168.-The generic name for compounds resultIng from the combinations of metals with acids is salts. A salt may therefore be defined as being ${ }^{2} \mathrm{an}$ and in which part or all the replaceable bydrogen has been substituted by a metal or bedy playing the part of a metal."
Galts may be divided into two grand classesviz., 1. Those in which all the replaceable Wydrogen of the acid has been replaced by the metal : these are said to be "neutral" or "normal " salts. Potassium sulphate, $\mathrm{K}_{2}{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}{ }^{\prime \prime}$, will serve for an example of this class. 2. Those in which only part of the replaceable Diydrogen is removed and substituted by a metal : sache are called "acid salts," and hydrogen \left. zotassium sulphate, ${\underset{\mathrm{K}}{ }}_{\mathbf{H}}{ }^{\prime}\right\} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}$ may be taken as the type-
169.-Bodies which are thus capable of uniting with acids, whether they be metallic oxides or the oxides of bodies resembling metals, go by, tiee general name of bases. The terms "acid," "base," and "salt," are by no means very seasrate, or capable of very exact definition; but they are very convenient to point out the general Froperties of three large classes of bodies, hence they are often emplnyed by the chemist.
of commercial importance, the preparation of sulphuric acid is of the highest interest and inport to the scientific and practical chemist. We shall, therefore, enter somewhat into details, beginning by the experimental mode of preparing it, and after having traced the causes on which its production depends, terminate by noticing the several appliances employed in its manufacture on the large scale to bring these various causes into operation.
173.-We have seen (165) that when sulphur

F/G. 18

This nitric oxide absorbs oxygen readily from the atmosphere, being thereby converted into a higher oxide of nitrogen, known as nitrogen tetroxide. The mode in which this takes place is illustrated by the following equation :-

$$
\mathrm{N}_{2}^{\prime \prime \prime \mathrm{O}_{2}^{\prime \prime}+\mathrm{O}_{2}^{\prime \prime}=\mathrm{N}_{2}^{\prime \prime \prime} \mathrm{O}_{4}^{\prime \prime} .}
$$

The sulphur dioxide issuing from the generator F meets with the nitrogen tetroxide formed by the action of the nitric oxide evolved from the bottle G on the atmospheric air in the flask. Though not able to absorb oxygen directly from the air, sulphar dioxide, by virtue of its deoxidising power, is able to take half the oxygen from the nitrogen tetroxide, thus :-

$$
\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{SO}_{2}=\mathrm{N}_{2} \mathrm{O}_{2}+2 \mathrm{SO}_{3}
$$

But the nitric oxide thus reproduced cannot exist as such in the presence of atmospheric air ; it immediately absorbs oxygen from the air, and is reconverted into the tetroxide. Thus it acts as a carrier of oxygen between the atmosphere and the sulphur dioxide, which is therefore rapidly converted into sulphuric anhydride, and this body in contact with water gives rise to sulphuric acid.

Though other bodies, which part readily with their oxygen, might certainly be substituted for

170.-Sulphuric acid is one of the most usefal chemical products employed in the manufactures and arts. Owing to its superior affinity for Dases it is in daily use for the liberation of other weaker acids from their salts, hence its employment in the preparation of hydrochloric, nitric, acetic acids, \&c. In dyeing, bleaching, and the mannfacture, of soda, sulphuric acid plays an important part, and a very useful application has hean made of its effects on paper (when slightly dilated), in the preparation of parchment paper. Oi the multifarious manufactures to which Great Britain owes her commercial prosperity, few eonld exist without the employment of sulpharic seid, hence enormous quantities are annually produced here, and very considerable imports of the Nordhansen acid (from the Harz Mountains, Germany) are also made.
171.-State in Nature.-Sulphuric acid is
ometimes met with in certain volcanic springs. zometimes met with in certain volcanic springs. In the mineral kingdom it is largely found, in sombination with various metals, in the form of sulphates. Sulphates are also found in the anizal and vegetable kingdoms.
172.-Preparation.-Whether we regard it from a theoretical point of view, or from a point

is burned at high temperatures, in air or oxygen, sulphur trioxide is produced; we also have learnt that sulphur trioxide in presence of water gives rise to sulphuric acid (see 164). It might, therefore, appear that this would be a good method of preparing this body, but in practice the heat required is found to be so great, and the product so small, as to render it impracticable. But though we cannot conveniently cause sulphur to unite with the required amount of oxygen at one operation, yet by taking advantage of the attraction which sulphur dioxide has for oxygen, and its power of a,bstracting it from bodies containing it, we can do so in two operations, which may be made to take place simultaneously.
Let A, Fig. 18, be a glass flask, closed with a cork carrying four glass tubes, B, C, D, E. A small quantity of water is to be placed in this flask. The tube B is made to communicate with an apparatus from which sulphar dioxide is being evolved, while the tube E is connected with a bottle G, from whence a compound of nitrogen and oxygen, called nitric oxide, is issaing.
Nitric oxide may be considered as consisting of two atoms of nitrogen united to two atoms oxygen, as the following formula indicates :$\mathrm{N}_{\mathbf{2}}{ }^{\prime \prime} \mathrm{O}_{\mathbf{2}}{ }^{\prime \prime}$.
nitric oxide as oxidising agents, none have as yet been found which possess at once the power of successively absorbing and parting with the absorbed oxygen in the manner above described.
This property enables a relatively small amount of nitric oxide to convert a large quantity of sulphur dioxide into sulphuric acid. The presence of water is absolutely necessary for the conversion of the sulphur trioxide produced into sulphuric acid, and should the supply be limited, sulphuric acid, and should the supply be himited, elements of water contained in sulphuric acid are replaced by nitrogen tetroxide, is produced. This body, however, is immediately converted into sulphuric acid and nitrous anhydride when placed in contact with water. The water contained in the flask A becomes therefore gradually charged with sulphurio acid. The use of the two tubes, C and D, is to admit atmospheric air withoul incurring loss of the gases evolved from the two generators, F and G.
174.-In the above experiment, nitric acid, consisting of HNO_{3}, may be substituted for nitrio oxide, for it is speedily reduced by successive steps to that state, as may be seen by the following equations:-

$\overbrace{2 \mathrm{HNO}_{3}}^{\text {Nitric acid. }}+\overbrace{\mathrm{BO}_{2}}^{$| Sulphur |
| :---: |
| dioxldo. |$}=\overbrace{\mathrm{H}_{2} \mathrm{SO}_{4}}^{$| Sulphoric |
| :---: |
| aocld. |$}+\overbrace{\mathrm{N}_{2} \mathrm{O}_{4}}^{$| Nitrogen |
| :---: |
| titroxide. |$}$

But on meeting with a fresh supply of gulphar dioxide, nitrogen tetroxide is immediately con verted into nitric oxide, thas:-

$$
\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{SO}_{2}=2 \mathrm{SO}_{3}+\mathrm{N}_{2} \mathrm{O}_{2}
$$

Consequently, whether we inject nitric acid or nitric oxide, the contents of the flagk A are soon the same-viz., sulphur dioxide, nitrogen dioxide (nitrio oxide), and atmospheric air. The round of interchanges is continuous, for as fast as the nitric oxide absorbs oxygen from the air to become tetroxide, it yields it to the sulpharous anhydride constantly supplied, which is thereby converted into sulphar trioxide, and dissolved by the water with the production of sulpharic acid.
175.-Figs. 19, 20, and 21, may serve to elucidate the means employed on the large scale to bring abont these various results. A, Fig. 19, represents a large leaden chamber, divided into several commanicating compartments by means of the partitions, p, p, p, p. Sulphar dioxide is produced in the furnace \mathbf{B}, either by burning iron pyrites or sulphar. Directly over the space in which this barning is going on is placed a stone box or cast-iron orucible, containing materials for the production of nitric acid. Sulpharous anhydride, along with nitric acid vapour, passes from the farnace into the leaden chamber, through the short wide conduit C. Steam, from a boiler at D , is also thrown into the ohamber, the floor of which is covered to the depth of a few inches with water.
A moderate current in the direotion of the arrows is insured by the chimney E, which also serves to carry off the spent gases, \&c. During its passage through the chamber this mixture of nitric acid, steam, sad sulphur dioxide, is con verted into sulphuric acid, as explained in para graphs 173 and 174, and collects in the water on the floor of the ohamber. When this hes attained certain atrength, with a specific gravity of sbont $1 \cdot 6$, it is drawn off by means of the leaden pipe F. This dilute sulpharic acid is placed in large shallow leaden tanks, seen in section at Fig. 20, where it is evaporated to get rid of the excess of water. It cannot be concentrated in these tanks beyond a specific gravity of $1 \cdot 72$, as at that point it begins to act on and corrode the lead. At this point it is known in commerce ander the name of " brown oil of vitriol." It is further concentrated by being eantiously evaporated in glass or platinum ressels (see Fig. 21) ill it acquires a specific gravity of 1.854 . It is then allowed to cool, and when cold drawn off by means of siphons, and stored in carboys. This is known as "donble oil of vitriol."
Whatever be the exaot composition of the nitrogen oxide employed to effect the oxidation of the salphar dioxide, whether it be injected into the leaden ohamber as nitric acid HNO_{3}, as nitrogen trioxide $\mathrm{N}_{2} \mathrm{O}_{3}$, or finally as nitrogen tetroxide $\mathrm{N}_{2} \mathrm{O}_{4}$, it is speedily deoxidised to the state of nitric oxide $\left(\mathrm{N}_{2} \mathrm{O}_{2}\right)$, when the " oarrying" offect begins, and the operation can proceed con tinuously without requiring any farther sapply of nitrous compounds than that which is needed to make good the waste which takes place through the chimney E . The formation of the white crystalline body mentioned at 173 is a sign that the supply of aqueous vapour is insufficient Binitro sulpharic anhydride, or De La Prevostaye's orystals, as this body is called, is composed of salphar, oxygen, and nitrogen, linked tngether probably, as expressed by the following formala :-

$$
\mathrm{N}_{2} \mathrm{O}_{2} \cdot \mathrm{SO}_{4} \cdot \mathrm{SO}_{8} \cdot{ }^{*}
$$

176.-As thas produced, anlphuric acid or oil of vitriol is a heavy, oily, slightly brownish liquid. This colouration is owing to the presence of charred organic matter. This commercial acid

[^10]\[

\left\{$$
\begin{array}{ll}
\mathrm{SO}_{2}\left(\mathrm{NO}_{2}\right. \\
0 \\
\mathrm{SO}_{2} & \left(\mathrm{NO}_{2}\right)
\end{array}
$$\right\}
\]

thould appear, however, that the constitution of thi body varier, ecoording to whether water is present in small quanitity or totaly absent. In the latter case the composition given above is probably the correst one;
bat if water be preaent, an inti rmediate body is formed, the composition of whioh in SC. $\left\{\begin{array}{l}\mathrm{NO}_{2}, \text { nI what amounta } \\ \mathrm{HO}^{2}\end{array}\right.$ to the rame, $\mathbf{H}\} 804$.
contains many imparities, which mast be removed if the acid be required for analytio or other delicate processes. The usal imparities are lead, arsenic, iron, \&e., and these may be removed by diluting the acid with its own weight of water, passing a current of hydrogen sulphide through it, and after repose decanting the clear liquid. This trestment removes the metals under the form of sulphides. By cantione evaporation in a platinum or glass vessel the acid may be once more brought to its highest strength, while any volatile imparities, suoh as nitric acid, \&o. are simaltaneoualy got rid of.
177.-Sulpharic acid unites with water to form two definite hydrates. One, having the composi tion of $\mathrm{H}_{2} \mathrm{SO}_{6}+\mathrm{H}_{2} \mathrm{O}$, may be obtained in rhombic orystals by cooling a mixture os 86 part pare acid and 24 of water down to 44° Fahr Another hydrate, $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$, has also been obtained.
178.-When sulpharic scid is exposed to very high tomperatures it is resolved into water, oxygen, and salphur dioxide, thas :-
$\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{H}_{2} \mathrm{O}+\mathrm{O}+\mathrm{SO}_{\mathbf{2}}$.
(See paragraph 86.)
178.-Whes certain metallic sulphates are well dried, to expel their water of crystallisation, and then placed in an earthen retort, the application of a bright red heat causes the ovolntion of a mixture of sulpharic acid and sulpharic anhy dride, known in commerce as Nordharsen sul phuric acid. The composition of this acid may be represented as being-

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{SO}_{3}=\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}
$$

ADJUSTABLE SPANNERS.ANB WRENCHEG.

$\lceil H E$ improvements in the oonstraction of ad justable spanners, wrenches, \&c.-, reeeathy patented by Mr. James Hosking, of Stratford which we illastrate in the annexed engraviag, are worthy of a short notice, as spanners constructice on this plan may probably be found handy by many amateur mechanios. Fig. 1 illustrates the application of the improvement to an ordinaty spanner, with a sectional view of the same. In this case a fixed head on a shank of the nsend length has a reatangule mouth pimilar to the ordinary tool, bat deeper n proportion to its wideh between the jaws. Thi aperture is mado sufuciently wide to take in the largest sized nit 6 other body the spanne is intended to operate apon, and is filled with a number of plater or tongues T of any re quired thiokness, sich hickness beingregaletal o as to agree with tho different sizes of nuts fo which the spanner is to be used. These tongues are centred on a pin, en that they may all be nrned baok or out of that part of the morth ant into the recess

The process followed in the Harz Mountains for the production of this body is the following :Dried iron sulphate, having the composition of $\mathrm{Fe}^{\prime \prime} \mathrm{S}^{\prime \prime} \mathrm{O}_{4}^{\prime \prime}+\mathrm{H}_{2}{ }^{\prime} \mathrm{O}^{\prime \prime}$, is placed in a series of earthen vessels of the form represented in Fig. 22 (a, a, a, a, a, a), which are ranged in three tiers in a pecaliarly-conatructed furnace B. Wood is the fuel employed. When sufficient heat has been applied dense white fumes of the body in question begin to appear. This is the signal for attaching the receivers (c, c, c, c, c, c), made of the same material and shape as the retorts, only a trifle smaller. The acid condenses in these receivers, and is found in commerce under the name of "faming" or "Nordhansen" acid. It is a viscid light brown liquid, having a specific gravity of 1.896 . At 0° it solidifies, forming colourless transparent orystals. It fumes strongly in the air. Its principal ases are in the preparation of salphar trioxide and the solation of mindigo for dyeing parposes. The effect of heat on iron sulphate may be understood by the aid of the following diagram :-

2 molecules of iron sulphate $=\begin{array}{llll}\mathrm{H}_{\mathbf{4}} & \mathrm{F}_{\mathbf{2}} & \mathrm{S}_{\mathbf{2}} & \mathrm{O}_{\mathbf{1 0}}\end{array}$
Yield by hoat :-

$\begin{array}{llll}H_{6} & F_{2} & S_{2} & \mathbf{O}_{10}\end{array}$
179.-The following table, compiled by Dr Ure, gives the amount of real acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, contained in vil of vitriols of different specific gravitaines :-
180.-Table showing the amount of sulpharia gravities, at 60° Fahr. ;

Speoific gravity of tuid.	$\left\|\begin{array}{c} \mathrm{Amount}^{\text {of }} \\ \text { of }^{2} \\ \mathrm{H}_{2} \mathrm{SO}_{4} \end{array}\right\|$	$\begin{aligned} & \text { Speoific } \\ & \text { gravity of } \\ & \text { fluid } \end{aligned}$	$\left\|\begin{array}{c} A_{m o u n t} \\ \text { of } \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { per cont } \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{c} \text { Speaino } \\ \text { gravity of } \\ \text { ifluid. } \end{array}\right.\right\}$	$\left\{\begin{array}{l} \text { Amet } \\ \text { Hefsos }_{2} \\ \text { peree } \end{array}\right.$
18485	100	1.5503	68	1-2884	89
18180	98	1.5290	64	1.2184	30
1.8410	96	1.5066	68	1-2038	88
$1 \cdot 8838$	94	1.4860	60	1-1876	35
1.8288	92	1.4680	58	I-1706	4
1.8115	90	$1 \cdot 4460$	68	172540	4
1.7988	88	$1 \cdot 4265$	54	1.1410	18
1.7774	88	$1 \cdot 4078$	52	11246 1.1090	18
1.7570	84	1.3884	50	1.1090	16
1.7360	82	1.8697	48	1.0953 1.0809	14
1.7120 1.6870	80	1.8530 1.8345	4	1.089 1.0688	${ }^{10}$
1.6836	78	1.8165	42	1.0544	8
1.6415	74	1.2999	40	1.0405	. 6
1.6204	78	1.2826	${ }_{88}$	1.0368	4
1.5975	70	1.2854	88	1:0140	2
15760	68	12490	84		

Fig. 2 shows a modified form, in which it with be observed that the mouth of the spanner is sot wholly filled ap with the tongues, bat it is ss arranged that when the whole of the tongues are turned into the month it will be of a size to tate in aud aot apon the smallest sised nut it is intended for, other sized nats being operated apon by turning one or more of the tongues back or out of the moath. It will also be observed that in this design the pin on which the said tongues tura terminates in a sorew which takes into a nat a let into a recess in one of the sides of the reservo recess F. Thas, by turning the pin by means at the thamb-stud, the nat G will be drawn agaimet the tongaes, tightening them together, and agaivat the side of the reserve recess, and preventing them falling out, even if the spanner be turnel over, thas enabling it to be used either sida appermost. The washer H is inserted to reduce friction.

Fig. 3 is a wrench, specially desigaed for grasping round surfaces, such as those of pipes, bark or studs; it will also grasp oval, reotangular, or other surfaces. The action of this wronoh is ne follows :-I is a pipe that it is required to tara io the direction indicated by the arrow. After the
tongues have been timened back into the reserve rezess, F, the mouth of the mrench is placed upon or over the pipe, allowing the smoath inclined savface to rest upon it, and then after tarning as many of tho tongues into the month as there is riom for, the pipe will be jammed by drawing
b. ok the wrench, and can be tarned as desired.

REPORT OF THE COMMTTTEE ON THE Patent Laws.
r
IIE Report of the Select Committec appointed to inquire into the laws aud practice, and the effect, of grants of letters patent for inventions,
was issned on Wednesduy week. The cominittee contond that the law and its administration are difective, and they recommend the following alteratinus of the laws:-
That protection be not granted to any invention. except on the report of a enmpetent person that
cortain conditions are fulfilled, those conditions bring that protection for a limited period, and dating back to the time at which it is applied for, should only be granted for an invention on ita nature, and particular points of noveltr, being
clearly descriced in a provivional specifintion, and upon the report of a competent anthority that such invention, so far as can be ascortained by snch
authoritr, is ner, aud is a manufucture within the authority, is new, aud is a manufucture within the meaning of the law.
That no warrarts for sealing letters patent be That letters patent ought not to be granted for any invention so protected antil the provisional specitioation has been opra to inspection, nor untal a complete specification has bien deposited, fally describaug the means of carrying it into effect, and such complete speciticatiou has been found by the same the description of the invention in the provisional 2pecification.
That in the case of several concurrent applications for a patent of the same invention, the patent be grantict to the first applicant, unless it be ehown that he is not the first inventar.
That all trials of patent caases should be before a judge, with the as istance of thilled advisers (Fho may be Commissioners of Patents), and, as a rule. without a jury but with power for the court tn
order a jnry for the ascertainment of facts in exceptional cases requiring the same.
That the commissioners be reinforoed by the appointment of competeut persons of legal, scisntific. aud teohnical experience, whose time is not occupied with other engagements to such an extent as to prevent
tration.

That the commiscioners should make rales, relogating to some of th: ir boly, thgother wihi eom. prtent assistants, amongst other daties, that of
ascertaiviug as to every invention for which a ascertaining as to every invention for which a perly the subject matter of a patent ; whether its nature, and the priticular points of novelty, have
been clearly described in a provisional specification: been clearly descsibed in a provisional specification;
and whether, so far as can be ascertained by them, it is a new invention; and, as to the complete specification. Whether it fully describes the means of carrying the invention into effect, and accords in all ensential particula s with the description thereof in the provisional spacification
That all letters patent shonld contain the following condi, ions no hitherto ucually inserted thereiu, viz.:- That the mannafacture be carricd iuto
effective opergtion within a reagnable time within thective operetion within a reasonable time within
the United Kingrom by the patentee or bis licensees mo as to supply the demand therefor on reasonalle terms, and that licenses be granted by him to com-
petent persons on fair conditions, such conditions. petent persons on fair conditions, such conditions,
as well as the fact of competency, to be determined as well as the fact of conpetency, to be determined
in the event of disegreement by the commissioners, due reanrd hoing lind in such determination to the exipencips of fureipn competition.
That lirsides the assistance afforded to intending patenteres by the examination of their appcifications, aud by the reference library of the Patent Otfice, more satisfactory indices and abriderements of specithe practice of accepting, withont control or revision, the alringements prepared by the patentees themThat the court or judgeshavingdiscretion in patent litiontim shonld? avail themselves of the assistance of the commisiouers for the better definition and
limitation of the patters in dispute in reapect of limitation of the patters in dispute in reapect of
pariculars of breaches and of objections respectivijy.
That in all futare appointments of oficers concrued in the aduinistration of the patent law, re-
numeration hy fecs should . (us it has been in the recent appointment of her Majesty's Sulicitor(G. neral) be discontinued.

The committec are of opinion that there shonld hr an ascimilation in the law and practice in regaril to invintions amnnest the variour civilised countries
ni the worli, aul that hur Maj sty's Government
 Goveruments boiv hir they are really to concur in international arrangements in relation thereto.

A GIdNT PLANET.

[From the Cornhill Magaxize.]

$T^{\text {II }}$HE planet Jnpiter has been selected even by ness, a sort of paradise among the planet-worlds. There exists, we are told, in that distant world, a purennial spring-" A striking displey of the bene-
ficence of the Creator," says Admiral Smyth; "for ficence of the Creator," says Admiral Smyth; "for
the Jovian year contains twelve muntane ycars; and if there were a proportionate length of winter, that cold season would le three of the earthly years
in levoth and tend to the destruction of vectable life."
Even those who have devied that Jupiter can be the aborle of life, and lave formed altogether nuhim, nere this of his condition, have mitured thongh the calm is, accorling to their view, the calm of glonm and desolation. They recognies in Jupitar an eternal winter rather than a perpetnal spung. Whewell, for example, in that once fumous viug creatures exist at all in Jupiter, they must be Wretched gelatinous monsters, languidly Honting
uhont in icy seas. According to abont in icy seas. According to him Jupiter is but
a great globe of ice and water, with periuaps a cindery nuclens- \boldsymbol{R} glacial planet, with no more vitality in it than an iceberg.
But when we begin to examine the recorls of observers, and to consider them with due reference to the vast proportions of the planct, we reconnise
the fact that whatever may be Jupiter's onfituess to he the ahode of life, it is not of an excess of stillness that his inhabitants (if he have any) can juatly make complaint. Setting aside the enormons a.tivity of which the mere existence of the belts alfords evidence, and even regarding such phenomena as the formation of a disappearance of a new
belt in two or three hours as merely indicativo of heavy rainfalls or of the condensation of large misses of invisible aqueons vapour into cloudsthere have been signs on more occasions than one of Jovian hurricanes blowing persistently for several
weeks together at a rate compared with which the weeks together at 2 rate compared with which the
velocity of our fiercest tornadoes seanas atterly insignificant. Daring the year 1860, a rift in one of the Jovian clond belts behaved in suchis wray as to demonstrate the startling fact that a harricane was racing over an extent of Jovian territory equalling
the mhole surfuce of our earth at a rate of fully 150 the rhole surfise of our earth, istin rate of fully 150 miles per hour. It is not too umialh to say that a every brildiug in the territory oven which it raged, would uproot the michtiest forest trees, and would osase, in faot, universal desolation. At sea no ship that men evar maite conld withstand the fary of such a storm for a single miante. And yet this tremendous Jovian harricme continued to rage with unabated fury for at least six weaks, or for fully But davina tove days.
But dariare abe last two or three rears a ehange of so remarkable a nature has passed over Japiter
as to imply the existence of forces even mora as to imply the existence of forces even more epheric changes.
In the antumn of $1870, \mathrm{Mr}$. Browning (the eminent optician and observer) called the attention of astronomers to the fact that the great equatorial
zonc, usually. as we have said, of a creamy white zone, usually. as we have said, of a creamy white
colour, had assumed a decidedly orange tint. At the sasuc time it had become much less uniform in ontline, and sundry pocnliarities in its appearance conld be reconuis.i, which have theen severally compared to port-hohes, pipa-bowls and stelus, oval mouldinge. and other objects of an uncelestinl nature. Withont entering into descriptions which coald only bo renderad intellipible loy rnerus of a scrics of elatorate illustrations, let it suffice to say that the bripit edges of the belts boridering on this ruddy cquatorina zove seemed to be frayed and torn
like the edjes of stornm clunds. and that the lnots like the edpers of storm clunds, and that the linots
nad projections thins formed often extended so far npon the great orange zone, from both sides, as alingst to break it up into scparate parts.

Now, withont inquiring into the particular form of action to which these remarkialle changes were dae, we can see at once that they inplied processes of extreme energy. For, every one of the projections
and knots, the seeming frayed edges of narrow cloud-streaks, had, in reality, an extent exceeding the largest of our terrestrial countries. Yet their aspect-and, indeed, the whole aspect of the raddy heit, whase extent far exceeded the whole sarigce
of our earth-clangei obrionsly from night to night.
*In a leading article (Snturday. May 4) the Sprctator remarks that randera of Mr. Pructor's "Other Worlds"
will entertain little question that the abnve easny on Jupiter is from his pen. Tho arkunents in the essay
are, indeed, for the wost part new reluting as they do are, indeed, for the wost part new. relating as they do
to recent observations; but the theory in support of to rceent observations; but the theiry in support of
which they are ndvanced, Ig that whith Mr. Proctor ad-
voented in the first edition of "other W. ride." It may veerted in the first edition of edition of that work, other arguments not mentioned in thy frot, or in the whove
nticle, are ndiuced in support of Mr. Proctor's theure. In paticular, rem rialte phenomenan oliserved simnil.

menced, fllid an explanation if we accept the theory

Strangely enongh, these interesting obaervations, thongh they were presently confirmed by severa well-known students of the hea vens, did not attract that fall attention from the to asit. Cors of the day which they appeared to merit. Soveral,
indeed, of our leading astronomers were disposed to deny that anything unusual was in progress. though none asserted defiuitely that they based planet's face. But quite recently one oi the most eminent of our modern observers-Mr. Lassell, lately president of the Royal Astronomical Society - (having been lod to observe the planet by the fact that certain phenomena of interest in connection his attenselle system as the colonrs presented by Jupiter's belts. After describing the appearances he had inteniled to observe in the first instance, he proceeds. "But this was not the phenomenon which strack me most in this rare and exquisite view of Japiter. I must acknow ledge that have hitherto been inclinad to think coloured views I have lately seen of the planet; but this property of tine dige, in the view I sm describing, was so numistakable that my scepticism is at last beginning te yield." Nor will this statement be thonght to express more than the trath, when We add that in the picture accompanying his paper, Mr. Lassell presented the equatorial zone as brownorange, and three neighbonring dark zanes as purple; one of the intermediate light behs being pictured as of a light olive-grean.
Let as compare theas observations made in our brnonous latitudes with those effected by Father Secchi with the fine equatorial of the Roman Observatory. "Daring the fine eveoings of this month," he wrote last Febraary, "Jupiter has presented a wenderful aspect. large number of yellowish cloads. Aboveand below this bind, there were many very fine zomes, with others strongly marked and narrasy, whichreecmabled
stretched threads. The blue and yellow colorers stretched threads.
formed a remarsable contrast with the red goma, a The surface of the planet is actually so different from that which I bave formerly seen, that there is room for the stady of the planet's meteorology. It appears to us that when these remarkalle cirennatance that on à primi groands we should condition san to have very litule introace sm the conaition of the planets almosphara tie ides this energy resides in the planet itsoll. The idea may seem startling at a tirst view, bat when once entertaiued, many argaments will be found to present themselves in its favour.
For iustance, it does not seem to have been noticed heretofore, as a very remarkable circum-
stance, if the Jovian belts are sun-raised, that they pass round to the nocturnal half of Jnpiter and reappear again, with the same general features as
before. and this often for weeks at a stretch. Even that remarkable feature whose changes bed to the conclusion that mighty harricanes were in progress, vet changed continuously and regulariy daring the Jovian nights as well as during the Jovian days. for one handred such days in succession. This is the pecty intelligible if the seat of distarbance it seems to us) if the sun nccasions all these meteorologisal ohanges in Jupiter, as be oceasions atmosphere The alternation of day ard night Which is one of the most potent of all the circam stances affecting the carth's meteorological condition, appears to have no affect whatever on the can dition of Jupiter's atmosphere
Now, as respets
Now, as respects the alternation of summer and winter, we can form no satisfactory opinion in
Jupiter's case, because he has no seasons worts mentioning. For instance, in latitudes on Jupiter corresponding to onr own, the difference betweea extreme winter and extreme summer corverponds to the difference between the warmth on Maren
and 15 and on September 31. Yet we are not without evidence as to sensonal metporological effects in the case of the son's outer family of planets. Satum, a belfed plnnet like Jupiter, and in all other reapects resembling him so far as telisoopic study can be trusted, has seasons even more markedly contrasted than those on our own errth. We see now ope pole zone is curred now downwards now appards zone is carred now
seasons), which, tnken together, woald make an ellipse about half as broad as it is long. As no less than fourteen years and a half separate the Satarnian cammer and winter, we might fairly expeot that the sun's action would have time to exert itself. In particular, we might fairly arpect the great equatorial zone to be displaced; for our terrestrial zone of calms or "dolidrums" travels north and soath of the equabr as the sua shato accomplishing in this way a range of no less then 3,000 miles. But the Satarnian equatorial zone is
not displaced at all during the long Saturnian year. It remains always persistently equatorial ! Nothing could be more easy than the detection of its change
of place if it followed the sun ; yet no observer has of place if it followed the sun; yet no observer has
ever suspected the slightest degree of systematic ever suspected the alightest degree of systematic
change corresponding with the changes of the Saturchange corresponding with the changes of the Satur-
nian seasons. Or, rather, it is absolutely certain that no bnch change takes place.

It appears, theu, that night and day, and summer and winter, are alike without influence on the Jovian and Baturnian clond zones. Can it reasonably bo questioned that, this being the case, we must look for the origin of the clond zones in these planets themselves, and not in the solar orb, whose action
mast needs he largely influenced by the alternation of night and day and of the seasons?
But. further, we fad that a circomstance which had seemed perplexing when we compared the Jovian belts with terrestrial trade-wind zones, finds an explanation at once when we regard the belts ass
due to some form of action exerted by the planet itself. For let ns suppose that streams of vapour are poured upwards to vast heights and with great
velocity from the true surface of the planet. Then velocity from the true surface of the planet. Then
such streams starting from the surface with the rotational movement there prevailing, woald be carried to regions where (owing to increase of distance from the centre) the movement due to the planet's rotation woutd be greater. They would thras be canght by the more swiftly-moving upper
air and carried forwards, the modus operandi being the roverne of that observed when an ongine leaves a trail of condensed steam behird it; or, rather, it may be compared to what wonld take piace if a theam.engtine were moving in the same direotion as the whand bat less swiftly, so shat steam
Fow, heat is the only form of force which could 20conant for the formation of the enormors masses of clond suspended in the atmosphere of Jupiter.
And it seems difficalt to conceive that the clouds And it seems difficalt to conceive that the clouds
could be maintained at a great haight above the real surface of the planet unless that sarfice were intensely hot-ss hot, perhaps, as red-het iron. If
we sapposed this to be the case we should find at we sapposed this to be the caso we should find at
once an explanation of the ruddy appeot of the dark belts. Nor would the change of the great equatorial belt from white to red impily more than formed during the last two years over the planct's equatorial zone, or, having formed, had been dispersed in some way. We need not even imagine a complete dispersion, since the best telesoopes-and notably Mr. Buckingham's fine 21 lin. refanctor-have
shown always a multitude of minete cloud-like shown always a maltitude of minet.
objects over the ruiddy equatorial mome.
objects over the rad dy equatorial some.
But the idee of 2 rad-hot planet, of of a planot partially rod bot, will appear at a Ara viow too
bizerre to be entertained even for a moment. We
have been so mecontomed to ragerd. Jupitur and
 heated sato bo uttionty anat to be the nivoin of livisg creatures.
This unwillingness to socept sterthing illeas is not mind from forming rash and beweloes specahtions. Yet we must not suffer this mental bebeitado, exoellent though it may be ia ite guoper pleee, to interfeco on trustworthy on hether the startling hypothesis to which we have been led by the stady of observed facts may not be foend to be in agreement with other facts not yet It win be
It win be obvions that if the real globe of Jupiter is thas intensely heated, a portion of the phanet's light mast be inherent. Therefore, we might expect that the planet would shine some what more brighthy
than a gtobe of equal size and similarly placed, than a gtobe of equal size and similariy paced,
shining merely by reflecting the sunns light. Now; two series of good observations have been made upon the lurninosity of Jupiter. One was made hy the late Professor Bond, of America, the other by
Dr. ZoDner, of Germany. According to the Pormer Dr. Zillmer, of Germany. According to the former,
Jupitar shives more brightly than he would if he reflected the whole of the light falling opon him ! Aceording to the latter, and more truatworthy series, Profeseor Bond supposed, bat the planet yet shines three times as brightly as a globe of equal size would ahine, if similarly placed, but constituted like Mars.
and four times as brightly as suoh a globe would and four times as brightly as suoh a globe would
shine if constitated like our moon. Jupiter shines, in foot, very nearily as brizhtly as though he were congtifuted like one of our terrestrial clouds
Thie result is highd significant. If Japiter
ahowed no belts, and shone with a pure white colour, ahowed no belts, and shone with a pure white colour, Jupiter as wholly cloud-covered or smow-covered (for soow mad clond shine with nearly equad lastre
when giminaly illaminated). But the great dark when emilarly illaminaled). But the great dark phanet's disc alugether negatire this supposition. the pontion of the planet's lustre is inherent.
havo to ingaire first how fer Zarlocer's results We We trustod, and secondiy, whether the y are corroborated
fally eatimated the weight of his observations,-we may say he jealously estimated their weight, for it must be remembered that he was in no way inte. rested in securing a greater or less result, white he
was greatly interested in so statiug the vilue of his results that those who might sacesed him in the inquiry should not deteot any serious error in his estimate. But his opinion of the probable degree of orror in his observations was such as scarcely to affect to an apprecinhle oxtont the statements we of Jupiter's brightness, that statement remains appreciably correct.
And next as to corroborative evidence.
It happens that we have a very delicate means of measuring the degree of Jupiter's luminosity, as compared with that of other orbs similarly placed,
for his satellites paes across his face, and nothing for his satellites pass across his face, and nothing
can be easier than to observe whether they appear darker or brighter than his sarface.
It was an observation such 28 this which Mr. Lassell had made on the night when he noticed the ruíngular chance Father Secchimedial belt. By 2 vation daring his researches, and the uar obser. gee, when we have qnoted the narratives of both theso observers, that the comparative darkness of all four satellites will have been established. "Tho fourth satellite," says $L_{18 s e l l, " ~ " h a s ~ b e g u n ~ a g a i n ~ f o r ~}^{\text {a }}$ a season to cross tho planet's dise, and I have looked out for opportunities of observing its passages, and was favoured on the night of the 30th Ducember last by witnessing a part of its passage under circumstances more than usually propitious. On its first entrance it was scarcely to be distinguished from the edge, not eppearing at all as the others do, as a round bright spot. As it advanced it grew gradually manifestly darker than the surface of the planet, and by the tim? it had advanced a fourth of the way across it had become a very dark, if not a black, spot-so dark, indeed, that if I had looked at Jupiter withont knowing anything of the positions of his satellites, I should have said that a shadow (of a satellite) was passing. I remember having seen pression is themenon many yeare ago; but my im. pression is that I had never seen the dise of the course, it is only by contrast'that it oum possibly so appear; and we have in this fact a striking proof of the exceeding brilliancy of the surface of the planet. In the same way the solar spots, if not snrrounded
by the marvellous splendour of the wan's surface, would doubtless appear as beilliant objects."
Next let us hear Secabi's account. "On the evening of Februany 3rd," he says, "I observed the
transit of the third satellite aud that of its shedow transit of the third satellite aud that of its shodow. the ziddle of the planet's diee, and metably smaitior thase ite elvedow, which Wes visibje at the same In approsehing the ed and repppeared soon after, close by the edge, bat as a hright paint. This fuct is not a new one for sa a hright point. This fact is not a new one for This result shows also the great difference of lumi nosity at the centre and near the edge of the planet, nosily at tbe centre and near the edge of the pla
a difference already confirmed by photography."
It is hardly necesisary to point out how strikingly theee facte illaetrate and confirm Dr. Zülner's
observations. But they also supply fresh evidence observations. But they also supply fresh evidence of a very interesting nature.
Although a part of the difference dwelt on in Secchi's closing words may be ascribed to the oblique incidence of the light near the planet's odice, yet it does not appear to us that the whole difference can be thus explained. A difierence $\boldsymbol{\text { of }}$ great that a satelite appears as a brigbt point olose middle of the disc, surgests that the light near the midge is not reinforcen hy the inhereut lumidosity of onr theory, that luminosity adding only to the brightness of the central parts of the disc. We wowd not instst too strongly on this inference,
becanse the darkening dae to obligue inoidence is becanse the darkening dae to oblique inoidence is, under certioin circumstanees, very obvions to direct the difference should be refarred to the inherent lomanosity of the central parts of the disc. This boing admitted, it would follow that the real solial globe of the planet is much smaller than the globe measured by astronomers; and that, thorefore, so perplesing a featuro of the plauet's physical cendition, Jupiter's globe may haro
equaling or exeeching that of the earth
And after all, let us remeraber that the theory that Joptter is an intensely heated globe-a theory to which we have been led by the consideration of mavy observed facts, and which in its tarn suggests very satisfactory explanntions of other observed Saturn hold an intermediate position between the sun and the rinar phanets in respect of size, so reppect of inhereat heat. houghly speaking, the eurth is 8,000 miles, the sun 8 w.u0ionihes, in diametar, and Juviter, with his dianceter of 82.000 sun is at a white heat, and the earth gives out ouly

What is called obscure heat ; and if Japiter's globe is at a rell heat, he again comes midway between the un aud the earth
We should be led by the theory here maintained to regard the major plancts which travel outside. the zone of asteroids as in a sense secondary suns. So viewed, they could not be regarded as orbs ft
for the smpport of living creatures. Pet, as cach of them is the centre of a sohowe of dependent vorlis, of dimensions large enoagh to supply room for mauy millions of living oreatares, we shonld not merely find a raison d'etro for the outer planety, bat we should be far better able to explain their purpose in the acheme of oreation than on any Jupity hitherto pat forward respecting them. and perplexity, and his sutellites seem scarcely to serve any naeful purpose. He appears as a bleak and desolate dwelling place, and they togetter supply him with scarcely a twentieth part of the ingt whioh we receive irrom our mona at fult. Bdat
regarding Jupitor as a miniature sun, not indeed possessing any large degree of inherent lustre, bat emitting a oousiderable quantity of heat, wo recognise in him the fitting raler of a scheme of subordinate orbs, whose inhabitants would require the heat which he affords to eke out the s:nall supply which they reccive directly from the san. The Saturnian system, again, is no longer myspresented by the rings, which aotually conoesl the gun from immense regions of the planet for years together in the very heart of the winter of these regious, is satisfactorily solved when the Satarnian satellites are regarded as the abodes of life, and Saturn himsolf as the source of a considerable proportion of their heat-supply. We do not say shat, in a manner which accords with our ideas respect. ing the laws of life in the universe, we have given irrefragable testimony in favour of our theory. That theory must stand or fall according to the evidence in its favour or against it. But so long as mem believe that there is dethen in the scheme of the aniverse, they will be rwodior to acsept conolasions which oxhibit at the major planets and their satellites as ocectuoing an intelligible position in that scheme, than nows which loave the plamets themgolves as vory questiomable abodes for any known orters of living ocvatures.

THE PREPARATION OF THELERAPH POLES. $\mathrm{W}^{\text {HEN }}$ the Government, syme transforred to with various conthactors for providing the trees necessary for supplying the demand of the prospective increaze al alagraph abinan In the north of Irelend the preparative of the trees which aro to serve as telegraph polte is under the superin-
teudence of a Government offcial, and a larga staff of workmen are engaged in the process. The mannfactory, as it may be termed, is situated in the middle of an extepsive field, and consists, in the first place, of a quadrangalar struotare ; four strong poles, some 60ft. in height, forming the angular points. Within 6ft. of the top is a platform, on taining two or three vats, each capable of containing 200 gallons. In the bottom portion of ticis llanid, chemically prepared, into the vessels alovere. The principnl ingredient, besides weter, is sulphate The principnl ingredient, besides water, is silphate of copper. From these vessels two systems of tuhing along the eurface forward to a distance of a couple of hundred yards, in a direction at right angles to the front of the rectangular stracture alrealy men-
tioned. Raised at a slight elevation from the gronnd, and placed at right angles to these tnbes. Lie the trees to be operated upon, with their thicker en ls
inwards; at iatervals of 12in. or 15in. in this horiinwards; at iatervals of 12 in . or 15 jin . in this hori
zontal tubing is placed a series of taps, each connected by a short indiarabber tube to the end of a tree, to whichr it is secured by means of cramps and screws, and rendered-Fater.tight by a sort of nozzle. By means of co at the upper eud of the horizuntal piping the sokecion in the vats is permittel to descend. The pressurecxerted from above forcis it into the pipes through the indiarubber tubing of their fbre. In a short time the sap and a porthon of the chemical solution are seen to ooze slowly from tive smaller end of tho tree, when it falls into a sort of wooden gutter, inclined at sach an angle
as canses it to ran baok to a oistern pear to where as canses it to ran back to a oistern near to whers
it had been originalis prepared. After undergoing ome filtration here it is placed along with the yet uartsed liquid, and again performs the circuit of the rats above and trees below. The time necessary for the complete saturation of the trees vaizes nndity and are In this way an application of the principies of hydrodynamics, combined with what is little more tian a mechanical chemical lnowledge, enables the manufacturer to peovilo poles for telograplic p irposes which will sesist the action of the tolograph poles formedy in

SAND-PAPERING MACHINE.

Wthis week illnstrate a msohine designed for facilitating the sand-papering of flat marices, which has been recently patented by F. Joseph Barker, of Chicago. It consists in micciple of a horizontal wheel, formed with a cories of blooks on which the glass-paper is meared, these blocks being supported on the arms cspokes and rim of a wheel in such a manner Eat the onderside or working face of the wheel - fornished with what the inventor terms "tan aest furrows," the object of which is to remove the dust by permitting a carrent of air to Fass through the furrows. The arrangement will be readily nuderstood from the illustration, i. Thich Fig. 1 is a plan and Fig. 2 a longitudinal metion. The upper surface of the wheel is shown in Fig. 1, and consists of a centre, through which the air-holes \mathbf{P} are formed, of a series of arms espokes g connected to the rim K . It is also Norided with bars or levers L, the inner ends of which are attached to the centre, and the outer els are secured to the rim K by set sorews. The hrocks N, on which the sand-paper is secured, sae made to fit between the spokes g, the centre, nad the sim K, and are clamped in position by Ate herers L, by means of the set screws at their coler ends. The rim K and the spokes g are meriiad with bevelled flanges corresponding to the slape of the under side of the blocks, by wich means the lower surface of the blocks is Wept Delow the under surface of the rim, the cokes, and the centre of the wheel, as shown in Ege 2, 3; and 4, the latter, also, showing the
purpose the table is connected by a rod to a block working on the screw c. A hopper is provided underneath at \mathbf{E} to receive the dust. A in Figs. 1 and 2 shows the position of standards for supporting cross-beams through which the vertical shaft of the wheel passes to the driving pulley, as shown in Fig. 2. The machine appears to be an improvement on the ordinary disos nased for sand-papering, and the principle on which it is constructed mas possibly be found available for other purposes.

PHOTOGRAPEY FOR THE UNINITIATED'.

> (Continued from p. 191.)

THE albumen paper, having fully dried after - silvering, has now to be fumed with ammonia. This operation should be conducted in a room distant from that in which you may be performing the negative-making process, otherwise, the fumes may raise " old scratch" with that part of your operations. In handling the liq. ammon. conc., care should be exercised, as its great strength will, if too freely inhaled, give you much physical inconvenience and suffering, even should it not dangeronsly affect you. The bottle should always be kept very tightly stoppered, and in a cool place. The stopper, when removed should be pointed away from you, as the force gained by the confined gas often ejects it with great violence ; a disregard of this precantion has led to most serious injaries. So mach for my lecture. Now let's fume the paper.
Provide a box, some old case, or large old trunk the last stand on end so that the lid or cover may be easily opened and closed; on each side, a few
with many other of the washings of your various processes, can be treated with salt, and the reanalting chloride of siver atilised. While our prints are washing, the toning-bath can he made.
I do not intend to give you but one formala; it is a good one, in my hands quite good enough:Water, 32 fluid ounces; chloride of gold, i grain to Water, 32 tuid ounces; chloride of gold, is grain to
ounce; acetate of soda, 64 grains; sal. soda soleounce; acetate of soda, 64 grains; sal. soda
tion, enough to make the bath just alkaline.
If you use the ordinary gold, which you will find with you use the ordinary gold, which you will find quired than f of a grain to each ounce of water. It is often very poor, as photographers are not unlike other people: they too often buy that which is lowest in first cost, not considering that the highest priced is most often the best and most carefully manufactured. The bottles of gold roferred to are supposed to contain, I believe, 15 grains, which is, probably, somewhere about half gold and half salt. Procure a bottle, in which measure 60 fluid drachms of waier (7t flaid onnces), remove the cork from a 15 .grain bottle of gold, and put gold, bottle, and all into the water; you now hera, solation of gold of t of a grain of gold to each tluid drachm. Eight fuid drachms (1 oz .) of this would drachm. the be proportion to add to your 32oz. of water then be the proportion to add
One grain of gold is enough for each sheet of papar to be toned, so that if you know how many sheets of paper you have printed, you can alwaya estimate how much toning solation you should make up. It is important that the amount of gold should be in proportions given; if more is used, the prints tone faster; if too mach is used, the action is likely to be irregular; if much less, the operation is tedions; if too little, the prints lack richness, and lose rapidly in the subsequent fixing operation. The sal. sode solution can be made and lapt for use

最rmation of the farrows for the removal of the duat. Sand-paper (f, Figs. 3 and 4) of the pequisite shape being laid on the blocks N covering the face and the bevelled edges, the Weoks are then placed in the wheel and clamped down by the levers or bars L, which are secured Iy the set sorews to the rim K, the sand-paper Leing thus firmly held between the bevelled Anges of the spokes g and the rim K and the corresponding edges of the blocks. The surface of the sand-paper thas projects below the framework of the wheel, leaving the farrows formed 7. the epokes g in connection with the air-holes B in the centre, so that when the wheel is in motion a current of passes through and carries away the dnst, while the glass-paper, not leing fastened to the blocks, is readily removed when worn out, though it is claimed that it lasts zuech longer than is usual under the arrangements in ase al present.

The method of carrying the wood to be finished mader the wheel will be understood on referesce to Fig. 2, where B is a table provided with rollers R, $X J$ being two rollers supported above the two and jowar ones. The work W to be sandpapered is fed in as shown, and is supported on the rollers, R, which have bearings in blocks so mounted on rubber as to yield to a slight differcoes in thickness of the stuff to be finished. To sceommodate greater differences the table B is mode to slide on inclined planes a a, so that Then either of the hand wheels T is turned, the catance betweon the rollers R and the sandemper wheel can be regalated to suit the thiokaess of the artioles to be operated on. For this
inches from top, nail a narrow strip of wood, so that apon such yon can easily lay other strips of wood, stretching across the trank or box, to which the dried sensitised albumen paper can be fastened by a pin in one corner. When you have so fixed these strips of wood, with papar fastened thereto, pour into a saucer or flat dish an ounce or two of the ammonia, and close the door. The dish should be placed upon the bottom of the trunk or box, and at least 6 in . (better twelve) below the lower corners of the paper. The paper must be allowed to hang in the fames of aminonia for about ten minates, and mast be well opened to allow free contact with all portions of the silvered sarface. Upon opening the door, first remove the dish, being carefal not to inhale the fames too freely.
The paper is now ready for printing, which operation, as you know, simply consists in placing its silvered side next to the film side of the negative and exposing, while so held, to the action of light No general rule can be given as to how long to allow this action of light to continue. This is alone to be governed by the quality of the light and the character of the negative. Most generally the best prints are those made from what are known as thin or weak negatives, foll of detail, and which are printed either in diffased light, or shielded (i) printed in the sun) by tissue paper. After all your paper has been printed, you have the various opera tions of toning, fixing, washing, \&c., to which we will now procoed.
Before toning, you will need to wash the priatsfor about half an hoar in. at least three changes of water, or until the milkiness produced by the free nitrate of silver is no longer noticeable. This water should be aaved by throwing into a tub, where it,
of about 5 grains of sal. soda to an ounce of water This must be added to the bath cantionaly, and carefally tested with litmus paper upon each addition; if too much is added, the prints are fiat, dall wanting in vigear ; if too little, the action of the bath is irregalar and slow. This bath solation should stand fally half an hour before use, and should be of aboat 80° to 90° Fahrenheit. Bat few prints shoald be placed in it at one time, so hat you can closely watch the changes, and from r, when toned to your liking, at once remove them to a dish of clean water.
No rale for toning can be given, for each prin depends much for its tone apon the quality of the negative; some may be pushed to a rich parple red; others never would reach that point, bat would become lat, and be over-toned; therefore will not attempt to direct in a matter in which oxperience alone cau teach. I willi only say the it is better to be on the side of under-toning than to push so far as to over-tone.
After carefal washing in several changes of Water, proceed to fx in a bath of soda as follows :Water, 8oz.; hyposnlphite of soda, 10z. In this be carefal not to place so many that they beoome matted together, and keep them moving, so tha the solvent action of the soda may have an opportunity to perform its part. Ten to fifteen minatee will be required to properis "fix" your printe, after which place them in water, which should be changed at least a dozen times, and in which they should all night, and be treated with two or three more changes in the morning before you hang them ap to dry. If possible, a stream of water should pass through them; with this the washing can be well done in three or four hours.
In either of the operations of toning. fixing. \boldsymbol{q}^{\prime} washing, care mast be taken to prevent the mattio
together of the prints, otherwise the chemical changes of toning and fixing will be irregularly conducted, the resalts of which will be miserable work. The final washing is also of the greatest importance, for upon it largely depends the permaimportance, of your prints.
With a few general remarks I will close this letter. In the summer, reduce strength of silvering solation, or float a shorter time. A freshly albumenised tion, or float a shorter time. A fresing albamenised hard dried paper, and is, conseçuently, more liable
to render the solntion cloudy. Paper a long time to render the solntion cloudy. Paper a long time slbamenised is often repellent to the solation of
silver, such as standing out apon it when hang up silver, such as standing out apon it when hang up
to drain like the moistars on a window-pane. This can be remedied by rubbing over the face of the paper with a pad of cotton, to absorb the oily surface, before silvering.
A print, before "fixing" in hypo., presents, when held to a strong light, a mottled appearance in its and examined as before, this mottling has gone, and only the oven grains of the paper is seen. I have thought at times that the addition of abont
 it is of any material value.

We have now passed hastily over the whole subject of negative making by the "wet " process, and the production of prints from the same. I have simed to write plainly, and have tried to avoid con-
fasion by giving but few formale. If I have been at all succesaful in making a somewhat intricate science more plain than it was before, or in giving any bints of value, my purpose has been sccomplished.
In practiaing our beautiful art, allow me to advise you never to be too hasty in making changes in generally less to blame for any poor work yon may make than you are. Brains, patience, cleanliness, and system, with almost any of the tbousands of formale pablished, will give good work. In formule there is but hittle practical difference. In than any words of mine can express.

AN TMPROVED BLOWPIPE.

THE following description of a simple method of constructing a nsefal form of blowpipe is given by Messrs. Arnim. Junge, and Mitzopalos, of
Freiburg :-All workers with the blowpipe are well Freiburg:-All workers with the blowpipe are well blowing apparatus. In qualitative operations it can be dispeused with, but there are certain assays, such as coucentrating cupelations for poor silver ores, Which cannot be carried un without a blower, save with great exertion. For this reason, nearly, every one who has quantitative assars to male provides himbelf witt a b blowing apparatus. The ordinary
blowing apparatus consists of three parts, the blowing apparatus consists of three parts, the
caontchoac bellows, the regulator, and the stand for the nozzle. The part which most easily gets out of repair is the caontchonc regulator, for the operator. looking at his assay, often does not perceive that the regulator is too much stretched by the blast ; When we recollect that such regulators are not to be had every where, and that a reserve stock is often useless, from the caontchouc petting hard, it becomes important to find a substitute which will give as regnlar a blast, and can be made of a more lasting
material. The regulator designed by the inventors material. The regulator designed by the inventors
gives a perfectly constant blast, which can be ased either for the oxidising or the redrcing flame, and after numerous trials it is found to be in no way inferior to the caontchouc regulator; at the same time it is so simple that it can be constructed with great ease and in a very short time. The arrangement is as follows :-A common wide-monthed bottle it carefally fitted with a caontchono cork bored with
two boles, into each of which passes a piece of glass tube bent at a right angle. On to one of these tabes is slipped the caoutchouc tube coming from an ordinary caontchouc bellows, whilst the other is put in commanication with the blowpipe nozzle by means of four pieces of caoutchouc tabing joined by three pieces of glass tabe, drawn to a fine point at each
end. This forms the main peculiarity of the arrangeend. This forms the main peculiarity of the arrange-
ment. When air is forced into the bottle by the blower in jerks, it finds a difficulty in escaping as fast as it comes in, on account of the six fine open-
ings in the glass tabes that it has to pass throngh on iugs in the glass tabes that it has to pass throngh on acquires a certain pressure in the bottle and flows out towards the nozzle as a regular blast. The
bottle may be about 6 in. high by 3 inin. wide, with bottle may be about 6 in . high by 3 in. Wide, with a
neck 1 ifin. diameter; but of course the dimensions are of no great importance. On the whole, a somewhat large bottle is better than a small one. The pieces of glass tubing we use are 2 in . long by tin. in
ciameter. The apparatus will be stronger if instead of a glass bottle a tin cylinder is used, about 4 in. into its top. 8 mall metal cylinders with opening at each end. may be used instead of the little glass at each end. may be used instead of the litule glass
tubes. $\quad \Delta$ blowing apparatus constructed in this manner will deliver apparatus constructed in this
will be of practical interest to those who are thinking to repair the ordinary instraments.

ON CERTAIN PHENOMENA ASSOCIATED WITH A HYDROGEN FLAME.*

PHENOMENA of mach interest, and possibly of future usefalness, are as

1. To stady these phenomena free from distarb-
2. ing causes three things should be attended to. although the effects to be described can be obtained without any special precantion. (1) The gas must be stored and parified in the ordinary way-namely, by passing into a gas-holder through a solation of potash, and then through a solution of perchloride of mercury or nitrate of silver. (2) From the holder the gas mast be led through red or black indiarabber tubing to a platinum, or better, a steatite jet. (3) And then the gas should be barnt in a perfectly dark room, and amid calm and dustless air.
3. In this way the flame gives a faint reddish brown colour, invisible in bright daylight. Issaing from a narrow jet in a dara room, a atroam of lumiirom a narrow jet in a dars rom, a stroam of lumi-
nosity, more than six times the length of the flame, nosity, more than six times the length of the flame,
is seen to stretch npward from the burning hydrois seen to stretch apward from the burning hydro-
gen. This weird appearance is probably cansed by the swifter flow of the particles of gas in the centre of the tube. The central particles as they shoot upward are protected awhile by their neighbours; metaphorically, they are hindered from entering the fiery ordeal which dooms them finally to a watery grave. Dr. Tyndall bas shown that the radiation from burning hydrogen is hagely ultra-red, and moreover, that it has not the quality of the radiation from an elementary body like hydrogen, but practically is found to be the radiation from molecoles of incandescent steam. So that, except at its base, a hydrogen flame is a hollow stream of glowing water raised to a prodigions heat.
4. Bringing the flame into contact with solid bodies, in many cases phosphorescent effects are prodnced. Thas, allowing the flame to play for a moment on sand-paper and then promptly extinguishing the gas, a vivid green phosphorescence
remains for some seconds. The appearance is a remains for some seconds. The appearance is a the hollow flame is depicted. Similar phosphorescence is prodnced by the flame on white writing paper, or on marble, or chalk, or granite, or kypsum,
$\&$ c. But no such effect is prodaced by coal gas. or olefiant or marsh gas. It is evidently a question of temperature, as oxygen driven through coal gas shows the phosphorescence well.
5. Far exceeding in generality the effect just noticed is a really magnificent blue image of the flame that starts up on almost every substance with which the flame is brought into contact. I have already drawn attention to this effect in the Philosophical Wagazine for November, 1865, and the same effect has inore recently formed the subject of a memoir, presented throngh M. Wurtz, of the Paris Academy of Sciences, the author of that paper
evidently being unaware that the subject had already evidently being unaware thelf.
been investigated by myself
The appearance is as follows :- When the hydrogen flame is bronght either vertically or sideways, say, upon a white plate or a block of marble, there instantly appears a deep blne and glowing impres sion of the exact size and shape of the hollow flame. The moment the gas is extinguished, or the flame removed to the slightest distance from the solid, the effect as instantly ceases. If the flame solid, the effect grows fainter and finally vanishes, bat instantly reappears upon an adjoining portion. Other combustible gases, such as carbonic oxide or marsh gas, or olefiant, or coal gas, do not yiela otherwise; nor is it obtained in the oxidising flame of an ordinary blow-pipe ; bat it is imperfectly produced in the reducing flame when coal-gas is nsed; it is not seen when oxygen is driven through coal gas, anless the latter be in excess; and it is poorer and vanishes more quickly with the oxyhydrogen
flame than with hydrogen alone. This blue laminosity is, therefore, not a question of heat, bu some property depending either on (a) the chemical nature of hydrogen, or on (b) the physical effect of its radiation. At first I thought it was the latter, and did it was a new form of fuorescence, so closely week's resemble those phenoing, the true cause was hanted down and found to be dependent on the former effect (a), and in every case ultimately due to or a freshly- of suiphar. A chemicaly-clean hody coloration; but after exposure for a short time to the air of London, the substance invariably yielded whe blueness ; this, however, was not the case exposed to the air of the open conatry. The combustion of coal-gas and conl fires yields sulphate of ammonia, a body often deposited in acicular crystals
in the glass tubes in a laboratory. Salphate of

- By W. F. Barrett, F.C.S., Head Science Master at
ammonia is decomposed by a hydrogen flame, and whep that salt is brought into contact with barning hydrogen, it permanently yields the blae colores
cence. Hence this body is probsbly the main source of the blueness seen whenever a hydrogen fame comes into contact with glass tubes or a dirty surface. This effect mast repeatedly have been seen by every one who has experimented on been seen by er
singing flames.

When the blueness, as is 30 often the case, is seen tinging the flame itself, without contact with any body, the sulphur is derived either from the valcanised tabing, the dust of which is taken up
by. the passing gas; or, if the hydrogen be burnt by. the passing gas; or, if the hydrogen be burnt from the bottle generating it, the blueness is due to
the decomposition of the sulphuric acid spray, as the decomposition of the sulphuric acid spray, as will be shown further on.
As a chemical re-agent for detecting sulphar, the delicacy of a hydrogen flame is extraordinary. This fact was estimated as follows:-Pare precipitated fact was estimated as
silica yields no blueness with sthe flame; 500 grains of silica were intimately mingled with one grain of of silica were int. Lesy mingled with one grain of
milk of sulphur. Less than a one-hundredth of a milk of sulphur. Less than a one-hundredth of a
grain of this mixtare was thrown on the surface of grain of this mixture was chrown on taced apon chemically olean platinum pare water or placed apon chemically olean platinum
foil. The water is best, but in either case the blue colour (absent before) now shot forth on bringing the hydrogen flame down. Tried again and again with fresh portions, the effect was very evident, but quickly vanished. The sulphur in a similar portion of the mixtare conld not be detected chemically by nitro-prusside of sodiam. The wonderfal sensitiveness of the flame may be still better seen in another way. Immediately after washing, the ingers show no colour when broaght for a moment into the flame, bat if a white indiarubber tabe be touched ever so lightly, the fingers not only show a vivid blueness, but for some time any clean object touched by them, such as platinum foil, shows traces of sulphar by the appearance of the blue coloration with the flame. A block of melting ice continually weeps itself free from dust, and thas presents an exoellent surface apon which to try the foregoing experiment. Or a plate of platinum, after heating to redness, may be written over with a stick of sulphar. If kept covered, the invisible etters may long aiter be
traced out by sweeping the hydrogen flame over the sarface of the platinum.
Examined through a prism, the blueness derived from any source shows blue and grees bands, similar to the spectrum of sulphur, but I have noticed also a rectron. This mode of obtaining a sulphar smeared over with a bit of salphar, or with valcanised rabber tabing, is a convenient source for obtaining the effeot at pleasure.
Some salphates and sulphides show the blueness with the flame, and are evidently decomposed by the hydrogen. Thus sulphate of soda gives no blae
appearance, whilst sulphate of ammonia, or alam appea
does.
Various liquids were tried in contact with the flame. Sulphuric acid was very notable. Here a magnificent blue effect was observed. For perment leaves nothing to be desired; the spectrum is very fine. If the liquid is in a glass dish when the flame is brought vertically down, the blueness lights up the glass in a lovely manner.
6. But the presence of sulphur is by no means the only body that a hydrogeu flame reveals. The least trace of phosphoras is detected by the pro duction of a vivid green light. It is striking to notice the wonderful sub-division of matter in these
experiments, and bow an immeasurable trace of an experiments, and how an immeasurable trace of an
element can evoke pronounced and apparently diselement can evoke pro
Might not this ready detection of minute quantities of sulphar and phosphorus be of use in the manafacture of iron $?$ and might not hydrogen in troduced into the molten wetal be employed for the removal of these great enemies of the iron worker? I speak ignorantly.
7. Among the range of substances I have tried, tin was found to yield the most conspicuous effect after the bodies named. A tine scarlet coloar is
almost instantly preduced when the hydrogen.fiame is brought into contact with tin or any alloy of tin. Tin is somewhat volatile, and its spectram is rich in red rays. The tin mast be clean ; or the sulphur blue, which is much brighter, will mask the effect. A charming experiment may be made by partially scraping a soiled surface of tin; the blae and the scarlet colours mingle, and a lovoly purple is the result. When a trace of phosphorus is present there may be obtained a green bolt encircling a rich blue, then a parple zone, and finally a glowing scarlet at the root of the flame. These colnurs, mast be remembered, are not imparted to the flame, bat reside on the surface of the body which the tame ouches. And where the combastion of the hydro gen is complete, as in the upper part of the fiame, or in the laminous stream reierred to (2), these efects are not produced
root of the flame.

- With all liquids, but best with mercary, a Ane masi-
eal noto ane be obsainod by oausing the jet to dip jast cal noto oan be obtainod by oauc
below the surface of the liquid.

8. Passing from liqnids and solids, I next tried gases in contact with the flame of bydrogen. Many
gases imparted a colour to the flame, bat gases imparted a colour to the flame, but
here the effect was different to that previously noticed. The whole flame was tinged with the colour imparted to it. A mere trace of bydrochloric
acid gas imparts a reddish brown to the flame; acid gas imparts a reddish brown to the flame;
ammonia gas gives a yellow, and burns freely. It ammonia gas gives a yellow, and burns freely. It is striking to note the combustion of ammonia gas rising from an nnstopped bottlc that contains the usual solution and which is placed below the flame.
But carbonic acid gas yields the mer striking result in coutact with the flame. A pale lilac tinge is instantly produced by a stream of this gas. This, I imagine, is due to the decomposition of the car-
bonic acid by the hydrogen, and the production and bonic acid by the hydrogen, and the production and
combustion of carbonic oxide. For it is at the lower part of the flame that the effect is most marked. One per cent. of pare carbonic acid adinitted to a jar of air can be detected on holding the jar over the
flame. The breath, of course, shows the effect flame. The breath, of course, shows the effect 9. Here then is an eminently practical method of noting the presence of vitiated air in rooms or pablic
buildingr. A continuous hydrogen apparatus might buildingr. A continuous hydrogen apparatus might me employed whit be burnt from a brass burner or lava jet, placed within a blackened tin cylinder. Opposite the flame a hole-might be pierced in the crlinder,
and closed by a lens for better viewing the flame and closed by a lens for better viewing the flame
within. As soon as the atmosphere in a room bewithin. As soon as the atmosphere in a room be-
comes unpleasantly vitiated the llane would indicate the fact by its changed colour. A similar apparatus might likewise be employed by miners: in metal mines as a warning agaiust impure air, and in coal the ends of the cylinder coald be covered with wire gauze. To this practical aspect of the question I am now giving suah little leisure as I possess.
The results thus briefly described demonstrate-
9. That a hydrogen flame exhibits some physical peculiarities, and prodaces phosphorescence on
many substanees with which it comes in contact.
10. That the blueness so often seen in a hydrogen fame is due to the presence of sulpbur, derived either from the ralcanised rabber tabing, or from atmospheric dust, or from the decomposition of the sulpharic acid spray from the generator.
11. That a flame of hydrogen forms an exceedingly phospborus, and possibly also of tin.
12. That many suiphates, and also carbonic acid are apparently decomposed by a hydrogen flame.
13. That a hydrogen flame is further a test for the presence of some gases, notably carbonic acid.
14. That these resalts are cepable of practical application.

THE STAR DEPTHS.

M^{p}R. RICHARD A. PROCTOR, Honorary Secretary of the Royal Astronomical Society, gave the fifth and last of his course of lectnres on
the above subject on Saturday. May 11. That day being the anniversary of Sir John Herschel's death, Mr . Proctor paid a tribute to the memory of the great astronomer before entering on the subject of
his lecture. He passed then in review the varions his lecture. He passed then in review the varions theories which have been advanced in explanation of the phenomena of the sidereal nniverse by the
ancients, by Corpernicne, Kepler, Wright, Kant, ancients, by Corpernicne, Kepler, Wright, Kant, discussing the work of Sir W. Herschel, the lecturer pointed out that that astronomer's observations extended over a verv long period, and that in the conrse of that periol Horschel's ideas respecting well-marked changes. The theory which be had adrocated in 1785 , a travestie of which appears in abandoned in 1803, and the principle on which it had been based was as clcarly abandoned in 1811. The views which Herschel had entertained respecting the nebulæ were in like manner moditied, it being impossible that any terms could be clearer
than those in which he annotuced bis chauge of than those in which he annotuced his change of
opinion. Yet again, in 1817, he adonted a totally opinion. Xet ngain, in 1817, he adonted a totally
new principle for ganging the profuntities of space. Notwithstanding thes, circumstances, the vie ws belonging to the different periods of Herschel's
observing career are as carelessly intermixed in our books of astronomy as though they had all been expressed in one and the same paper. The lectnrer proceeded to sketch his own vie ws, and the principle on which his reserches had proceened, which was whether referring to the distribation of the stars or of the nebala, to the stellar proper motions, or to Thatever else they related-ialpalle to the eye by picturing them. Hot annoanced in of chassing his firm or conviction that his theory of star.drift would be placed beyoud dispute hy the apectroscopic labours
of Dr. Hugging. The leoture closed with a summary of the wooders presented to our contemplation by the star depths.

HINTS ON PAINTING.*-VI.

(Continued from p. 16x.)

Scralle.

Tr
IIIS work rennires the good tnste and perfect this art may be gained by copying the work of others, ly processes described in these papers. When a cony has becn made ou the copying paper, take a piece of tout wrapping paper, and laying it on a smooth the board with a few tacks or pins; then with a pin prick the outlines with emall holes through the copy prick wrapping opaper. Having done this, lift nll from and wrapping-paper. Having done this, hift nil from on the panel, and dastigg on frape whiting with a ponace bag, you will trausfer the copy to the panel. Next proceed to fill in the outlines with gold size;
lay on the gold, and then clean all off niccly for slading. This is done with asphaltum, but a very tine efict can le made by glazing some parts with carmine or blue. Cupy the shading of the original as near as possible ; put in the lircts or white fine lines, and with a little practice and the use of pattern, you will soon gain a knowledge of scrolling Scrolling to enable you to perform or(imary work hut it is a more dificult net, as it requires govil taste in the application of colnurs-harmony of colours being the greatest desideratam ia good colours baing the greatest de
scrolling.
Stenciling

Stenciling
Stenciling is an art by which the painter can execute ornnmental work quickly, and when thoronghly understood it will often be called into requisition in the waggon paint sbop. The articles required in making a steucil are a shect of wellsized writing paper, a lead pencil. and a sharip penknife. Fold the papar, allowing the edge of the fold to form the centre of the pattern; then draw any design you wish, leavine bars to hold the parts ogether, then lay the paper upon a piece of glass used for this work is a camel's-hair brush or pencil. with air not over $\frac{1}{2}$ in. long, bound with quill and wire on a round wroden haudle. The smill sizes are proferable. The colour may be mixed in $\mathrm{J}_{\mathrm{p}} \mathrm{pan}$ and turpentine, as may be mixed in colour mixed with vinegar nad sugar will be ound best. The paint must be quito thick, and 2 smadl quantity only must be tuken on the brush, and then well rubled out on a dry place before applying it to the work. Lasing the stencil on the panel as desired, hold it down firmly, aud rab over with the brush carefully until the cat portions of he figure are well conted. Then lif: off the stencil and the work is completed.

To Transfer Ornaments for Carriages,

This beautiful art is now practised by many painters, who are either in a harry with thrir work, or for economy's sake. Pictures expressly designoid for carriages are now sold at the leading perindical stores, and the amateur painter is cnabled therety to finish a job of carriage painting in fine style. These pictares may be stuck on, and the dimpene 1 upon the panel, requiring no tonching with the pencil. The proper way to put on decolcomainio pictures is to varnish the picture carcfull) with the prepared varnish (which cau be obtaiued with the pictures), with an ornamenting pencil, being sure not to get the varnish on the white paper. In a
fer minutes the picture will be realy to lay on the panel, and the paper cau bo removed los wetting it, as alrcady descrived ; and wl!en thoroughls dry it should be varnished like an oil paintiur. Be paricular to purchase none of these transfer pictrures, except those covered with gold leaf on the back. for
they will show plainly ou any colowred sirince, they will show plainly ou nyy enloured sarince,
while the plain pictures aro nsed ouly on white or light groauds.
The following items will be found of interest.
To keep striping pencils in good shapes ani ever ready for use, grease them with thllow from a candle, and spread the hair straight on a piece of
class, koeping the same in a box made for the plass, beeping the same in a box made for the Why do striping pencils curl up or "crinkio" wien ased in white (keg-lead) colour? Because the acid with which the lead is mace acts on the hair, heating and contracting the fibre. To straizhten them when thus crooked, I draw the pencil across lcad mixed in varnish and turpentiue is preferable for striping, but tube colonrs are best.
When it is desirable to glaze a job with cermine, why do you advise the workman to get up a colouring varnish snrface, while some painters are in the habit of putting on glazing the same as it it were
colouring varnibh? Because I have they a chauce to rab the job amooth, which I could yot do an well over the glazing. Pesides, the glazing bring mixed with flowing varnish, will how level and frec from clonds, if pat on a smonth surface.
*From the "Carriace Painter's Manual." By F. B.
GARDNer. New York: 8. R. Wells.

Paper Cups for Striping Colours

Althouch I do not recommend the use of paper cups for holding striping colours, I am aware that many prefer them, as they are easily disposed of when no longer desired for use. The economieal paiuter would luave small tin caps to use for striping colours, as the paper caps canse a waste of sandpaper.

Bronze Paint for Iron.

Ivory black one ounce, chrome yellow one onnce. chrome green two nounds; mix with raw linseed oil, adding a little Japan to dry it, and you heve a very nice bronze green. If desired, gold bronze may le put ou the prominont parts. as on the tipe or eiges of an iron railing. when the paint is not
quite dry, using a piece of velvet or plush with
which to rub on the bronze. which to rab on the bronze.

To Paint Magic-Lantern Elides.

Transparent colonrs only are used for this wark, such as lakes, sap-green, ultramarine, verdigris, gamboge, asphaltura, \&c. mixed in oil and tempered with light-coloured varnish (white Damar). Draw on paper the design desired, and stick it to the glass with water or gum; then with a fine pencii put the ontlines on the opposite side of the glass with black or Vandyke brown, as yon find best.

Lettering on Glass.

Sign printing on glass is one of the bearaiful branches of our art, and as there are but fow who can make a good job, I will endeavorr to explain the method which has always been found to answor the purpose admirably. The glass ehoald frrst to thoroughly cleaned and dried, then lay out the haes soap being the best. then proceed to paint the sosp being the best. then procese to paint mixed with oil; this is to form a guide for the work; then, on the inside, lay on a thin cont of siae-made with the white of an egg and water, or isinglase covering over the whole line of letters. Then lay on the gold leaf with a tip, until every part of the letters is covered well. Allow the leaf to romeio nntil the sizo is dry, and you will find that the letters on the front side can be easily seen and
traced. This is done with quick drying black, to which is added a little varnish. Paint over every part of the letter directly on the gold and allow it to dry; then wipe off with soap and water the lempblack letters from the front side, and with clean gold leaf and size from the back, and you will have a perfect gold letter on the glass.
Proceed now to shade the letters, which may be done in colours te suit the taste of the painter. Always shade to the edge of the gold, for by thast means you have only one edge to make straight. Tue shade may be left rough on its extreme edge, and when dry a neat straight edgo can be obtained by merely scraping with a knife.

Ornamental Designs on Glass.

In makiug scrolls, eagles, \&c, on glass, some painters put on the outlines and shades first, and then lay the gold leaf over all. Another good way is to scrateb the shailes into the gold leaf after it is dry, and pat
the colours on the back of the gold. Silver leaf may be used in the same mannor as gold, bat it will not wear as well. A very pretty letter may be made by incorporating silver with gold. Take paper and cut any fancy design to fit the parts of the letter, stick it on to the size before laying the leaf, and then lay the lenf, allowing it to dry, and wash oft as before; then with a penknife raise the paper figare, and the exact shape or form of the
figure will be found cut out of the gold letter. Clean off nicely, apply more siza. and lay silver leaf to cover the vacant spots. Wash off when dry, and a very handsome ornamented letter will be the result. Colonrs may be nsed instead of silver, if desired, or a iilver letter, edged or "cat up" with gold, will look well.

The Metal Industry.-The following, according to Mr. Hint, are some of the quantilies and ralues of metala obtained from the ores raised in the united
Kingdom during $1870:-\mathrm{Pig}$ iron, $6,963,515$ tons, of the Kingom diring $1870:-$ Pig iron, $6,983,515$ tons, of the
valne of $\$ 14.900,787$; tin, $10,200,21,290,505$; copper,
 74.036 ; silver, $784.562,195,1+0$; gohi, $19102 ., 8750$; other metals estimated, $£ 3,500$.
Granite Glass.-The Raltic Journal reporta that there exists near several eitios ohich the composition is thin:-Gilica, it per cent.; feldspar, 13 ; oxide of iron, 8 ; lime, 1 ; alkulies, with traces of magnesia, 9. This bing cridently a good componnd to make glaga,
the first ex periment was onnequently made by melting 500 parts granite, and 200 limentone, and a white glam granite, 150 lime, and $7 \overline{5}$ of soda. This glass me wore fasible, and at the sawe timo harder. Both
kinds were blown without diffealt at a bright red heat, while a dark glass was made by the addition of
70 parts of aulphate of lime or potash, and 7 parta of

8OIENTIPIO SOOLETIES.

ROYAL ASTRONOMICAL SDCTETY

A^{T}The monthly meeting of this Society, held Cayley, in the ohair, several interesting papens were real, ove of the most important of papens, were Colonel Tennant, was on

The late Solar Eclipse.

In introdacing the paper, the Colonel remarked that of the six photographs obtained duriug totality, the ${ }^{\text {arat }}$ three were very kood, and from the appear-
ances depicted, he felt quite satistied thint the corona ances depicted, he felt quite sativitied that the corona pevsistenc! of the rifte daring the progress of the
dark moon over the bright snn, which, by the shatdark moon over the bright snn, which, by the shat--
ting out of the solar light, enablea us so to riew the ting out of the solar light, enables us so to view the coronal appendage ns to determine if its essential
features preserre their relative positions, now that we are becoming acquainted with them. This the Colonel succeeded in doing: Le found that as the moon passed onwards the coroua appeared to be nnaltered; each rift, as seen last December, was cor
tainly connected with a visible prominence. A a general result of the observations, it was stated that a connection between the corons and ite rifts with the solar prominences was well made out; sua from the surfece.
Anothar very important result of the observations made in connection with the Iudian Government, Wessebel-i.e., the ordinary danes seen by Captain Herschel-i.c., the ordinary dark lines in the solar
opecham were at the moment of totality seen as bright lines, and not only so, but these bright lines enioted in enormous quantities; the impression, if we anderstood Colonel Tennant correctly, made by them on Captain Herschel's mind, was that thoy were saecessive in their appearance, bat with snch
rapidity did they present themselves that it was rapidity did they present themselves that it was
next to fmpossible to note their sequence. The con clusion Arawn from their number and brightness appears to have been that the lowest stratum of the corona in contact with the san consisted of a mass of vapoar in which the bright lines eriginated. The Which and seen by several observers on the corcena,
of the ecilipse of 1870, was not seen by Colonel Tenpans in 1871 .
Mr. Brett stated, in refarence to the narrow bright rim next the sum which he saw in 1870, that it did not extend more than two minutes' of ar from the dark lineb of the moon.
Dr. De Ina Rine bore testimmy
Dr. De La Rue bore testimony to the excellence
and value of Colonel Tennant's photngraples and and value of Colonel Tennant's photngraphs, and that the corona is a true appendage of the sun. As in 18*0 his own photograpls had decided the quesTion of the promineuces, so in 1871 Colonel corons by showing that daring the pasisage of the moon over the sun no chasge in the coronal eatures had occurred.
Fellows Noble, in allnding to the thanks that the Colonel Teunant for the very valuable information comnermicatod in his pappor, took occasion to remar tanat the Colonel had ambraced the earliest oppor-
tamiter his arrival in England to dispel the ignacravoe of the details of the eclipse which intervened between its occurrence and the present. Having stated that he joined heartily in thanking
Colonel Tonnant, he wished to direct particular attention to the fact that on the occasion of the eclipse of 1870 the coronal matter extended out wards over each prominence. the rifts appearing in those portions of the corona in the wwer stratum of are deseribed as occupyivg precisely the localiti in which in 1870 the premter extension of the coronal matter was found.
Dr. De La Ruesuggesled that the appearance of the rifte in the late eclipse might he explained on the supposition that the ligit of the photosphere
being se much more intense than that of the prominenoes the
Mr. Bangard called attention to certain features in Colonel Tennant's photographs, the positions of which were symmetrically related to the sun's polos.
In reply to a question by Dr. Hugcint, Colonel Temnant stated that the corona exhibited strong radind polarisation.
Mr .
stereoscope as applied to the examination of the photographs, in which he pointed out of eclipse appoarance of relief depended upon the direction in which the light fell on the photograph, as well as on the objects, and exhibited photographs of a cat tumbler taken with the open part downwards,
and also with the same part uppermost. In the plotegraphs the relief was reversed, the appeararce of the tumbler in its ordmary position being
te erandy seen, while in the photograph with the santh downwards the raised porticns appeared as
I depressed. He alno called attention to the fuct
that drawings viewed through a lens presented the appearance of relice. From these circamstances he argued that in judging of the appearances of
objects in three dimensious care shonld be exercised object.s in three dimenyious care should be exercised asto the prespnce of light and shade in the originals,
otherwise an erroneous estimate might result from otherwise an erroneous estimate might resalt from the combination of photuraphs in the stereoscope,
and enegested that for tho determination of the and enegester that for the determination of the
positions of important features micrometric mensaremorts shoald be emploged.
Dr. De La Riue, as we nuderstood him to say, was not aware with whom the notion of three dimensions, as shown in the stereoscope, originated, but he was quite clear as to the stereoscopic combination of plotographs in furnisting information relutive to the disposition of objects in a picturo.

An Improved Altazimuth.
Mr. Brett exhibiterl and explaised the constraction of an altazimuth mounting for a retlector possessing portability combined with facility of mampalation, the essential principle being that of
a tripod with a moveble apex. The instrument, when not in use, presents the appearance of a neat mahogany box, which forms one leg of the tripod the other two, folding within the box, can be so arrauged externally that the boxitself, oarrying the redector, eyepi.ces, \&e., may take any positiou as
to altitude. The two legs, constructed npon the principle of steadying rods, are furnished with adjusting screws haviug a play of about eighteen inches. By the aid of these serews a slow motion either in altitade or aximuth is effected. The instramnnt, having been coustracted with a view to portability, was statod to weigh about 40lb., and could easily be carried from place to place. For temporary purposes it was described as fairly very strikiug compactness of the arrangements was

Vlacq's Tables of Logarithms.

Mr. Lee Glaisher read a paper on the errors in Vlacq's tables of logarithms, in which hedrew attention to the circumstance that Vlacq's are the only tables that extend throughout the series of numbers to ten figures. The anthor entered somewhat ex tensively into the history of these tables as con taining the completion of the seventy chiliads left ancompletnd by Briggs; thnt in many instances the errors of Vlace had heen transmitted through later editions ; that the English and Continental editions were printed from the same types, and contained the same identical errore, of which about 700 had been ascertained and published. Mr. Glaisher referred to a copy of Vlacq in the library of the Royal Observatore, Green wich, in which the errors detected at the time of Maskelyne are corrected. Abont one-balf of these errors are considered as animportant.

Satellstes of Jupiter and Saturn

Mr. Proctor read a papar on the densities of the satellites of Jupiter, waich he considered to be prenter than given in our text-books, and urged apon the Friwws of the Society the importance of examining for theraselves the statements they met with in print. Ho also commanicated a note on reckoning from the primary by Sir reckoning from the primary, by Sir William Her
schel, with the tuft. telescope. The object of the schel, with tie 40ft. telescope. The object of the ment which Mr. Proctor had met with.
A few farther papers having been read, an others announced, the society adjourned at a lato hour.

INSTITUTION OF CIVIL ENGINEERS.

Explosive Agents applied to Industrial

Purposes.

A The last orlinary meeting of the gession, 8

The nature and properties of ganpowder, and its special advantages and defects ay an explosive riewed Thastrial parposes, were first briefly re The proluction of mixtures chlorate of potash to the prolnction of mixtures more violent than gnnpowder was discussed, their general sasceptitility
to explosion by friction or blows was poiuted ont, and some comparatively safe compounds of this class, sucl as Horsley's powder aud a substanc called tutonite, were specially noticed. The salts of an organic acid, called picric acid, now produced in large quantities by tho action of nitric acid on the well-known autiseptic carbolic acid, were as farnithing very powerful agents when mixed with chlorate of potash or maltpetre. Of these the "poudre picrate," or mixture of picrate of potash and chlorato of potash, was the most violent, but was far too dangerons, on account of the readiness was which it exploded by friction, to permit of its with which it exploded by friction, to permit of its ammenia and saltpetre, designated "picric porter" ammonia and zalupetra, designated pieric pownar dangerons to mannfacture and to ase than mutipowder; considerable quantities had been proftrced with the ordinary appliances of ganpowler-works,
employment 28 a violently explosive oharge for hells.
Numerous other products of the action of nitric acid npon organic substances, endowed with explo sive properties, were stated to exist, but only two
of them-nitro-glycerine and gun-cotton-had hitherto received practical appliogtion, gun-coton-had two constitnted, at the present time. the and these of genpowder in many of its most important uses. Attempts were made to apply pan-ootton immediately after its digeovery in 1846, and long before its properties were understood ; but nitro-glycerine, which was discovered in 1847, had continned a chemical euriosity for sixteen years, its manafactar and application having been developed during the last nime years.
The early history of gan-cotton was briefly rePerred to, and it was shown that, even in the firs days of its production and application, important
resnlts were arrived at, thongh the too hasty attempts to utilise it led to its speedy abandonment, as a bighly davgerous materisl, by all but the Austrians. The improvenents effected by Baron von Lenk in the application, as well as in the manufacture, of gan-cotton, which first became pablic in 1863. led to a resumption of the employment of this agent in England, and to its carefal study by a advant Goverument Committee ando, as a mining qnarrying, and engineering agent were pointed out, as also the considerable improvements in point of power, economy, safety, and convenience in uso, in facility and uniformity of production, which had to a effected by the redaction of gan-ootton ibre version into highly compressed homogeneous messes. The rigidity of the charges of gun-cotton, and their consequent occasional toniency to becomo jammed in irregulariy-shaped blast holos were, howover, shown to be occasiona lsources of aecident; and the necessity for str ongly confining gan-cotton, in order to develop its full explosive forco, was a defect rendered the material decidedly inferior to nitroglycerine.
An account was next given of the successful manner in which Mr. Alfred Nobol had doveloped the practical application of nitro gifcerine. His discovery that the explosion of this liquid could be brought abont through the agency of a detonation, and its successful manufacture, combined to farnish the industrial world with the most powerfal explosive agent hitherto sueceptible of application, and which agent, from its high specifte gravity and insolubility in water, presented the special adrantage that could be nsed in positions whence water could not be excladed. The poisonous nature of the substance constitated an objectionable quality, and some uncertainty occasionally attended its employment, but its principal defects arose from the fact of its being a liquid, and from the comparatively high temperature at which it froze. The majority of during the transport and landing of nitro glycerine appeared to be cansed by the accidental leakage of the liquid from receptacles in which it was contined. The liability of sach leaknges to escape observation. and to lead to accidental ex plosions which woald be transmitted to the confi nednitro-glycerine, and the reckless manner in which the frozen nitro-glycerine had been frequently dealt with, in consequence of its apparently inert condition, had been fruitful sources of disaster, which had re ndered the linuid, in its pure conaition, a very unsabat Matrian Nobel has encceeded in applying nitro-glycerine in a simple manner, by which its defecto, arising ont of
the liguiA nature of the material, were remedied. the liquid nature of the materiad, were remedied. divided silicions earth, and thas obtained a solid but plastic preparation, which conld be conveniently handled and converted into charges of suitable dimensions, susceptible of application like any other solid explosivo agent, and capable o detonation quite as readily as the pure nitro-glycerine. This mixture, called dynamite, and of which one or two varieties were prepare most convenient, aud most powerfol blasting and miniug agents. As now manafactured, in the form of compressed cbarges, it retaiued as mach as seventy-fire per cent. o
nitro-glycerine, without exhibiting any tendency to a separation of the liquid during transport and storage.
Several other nitro-glycerine preparations of more recent production were referred to, all of which bo regariled as moditacations of morstey mining powder, dualine and glyoxiline, solid explosive compounds or mixtares were employed instead of porons silioa, as the absorbents of nitro-glycerine; in nitro- c coarine cont ained in dynamite reare in part replaced by ami-explosive anbstances-for example, by gnnpowder constitnents. None of these newer preparations contaiued so bigh a proportion of nitro-glyccrine as drnamite, and although nome of them, such as lithofractear, might vie with it in
regard to safety, it was scarcely possible that the substitation of other explosive substances for a pro-
portion of nitro-glycerine in the mixtare conld resalt in the production of an equally powerful explosive agent.

When it was found, by recent experiments, that gron-cotton, in the compressed form, could be exploded by detonation like nitro-glycerine and analogous to them in its behaviour, though the pure snalogons to them in its behaviour, though the pure
nitro-glycerine still remained somewhat the nitro-glycerine still remained somewhat the
strongest explosive agent. The suddenness of the strongest explosive agent. The suddenness of the
explosion developed by detonation permitted of the application of compressed gan-cotton and nitroglycerine preparations to purposes of destruction withont any confinement, and thus operations could be expeditionsly and effectually carried out with comparatively small quantities of these materials, which could only be accomplished by exorbitantly large charges of gunpowder. The rapid demolition of military works, bridges, \&c., the breaking-ap of boulders, large masses of rock, guns, or castiogs or forgings, were quoted as operations of this class.
The author pointed out some of the canses of the great difficulty experienced in arriving at anything approaching a precise estimate of the relative power and effect of different explosive agents. Taking dynamite as the type of the practically useful nitrogyoerine preparations, and as certainly one of the
strongest, experience had ahown it and compressed strongest, experience had shown it and compressed
guncotton to be about on an equality in point of guncotton to be abont on an equality in point of
power, and to exhibit, in their most advantageons applications, a strength which was estimated at six times that of powder. The plastic nature of dynamite and its power of resisting penetration by moisture, gave it advantages over compressed gun-
cotton, as it could be used in wet blast-holes, and cotton, as it could be used in wet blast-holes, and
as very irregular holes, or holes terminating in as very irregular holes, or holes terminating in
fissures, could be more oonveniently and heavily charged with it than with gan-cotton. On the other hand, the readiness with which dynamite froze and its inertness unless thawed, or fired by special arrangements, and the unpleasant effects experienced occasionally by those using it, were incon. veniences not shared by gun-ootton. The advantages presented by these materials, in their general application as blasting agents, were shown to consis chiefly in saviog of time and labour, especially in also susceptible of adrantageous ecm. They were also susceptible of advantageous employment as
anxiliaries to gunpowder, in the rapid removal of suxiliaries to gunpowder, in the rapid removal of
large masses of rock, or of submerged wrecks ; the violent explosive agent being first used to produce extentive rending and shattering effecte, and the superior displacing effect of powder being afterwards brought to bear. It was pointed out that gunpowder could not be satisfactorily replaced by these violent explosive agents in some kinds of work, where its comparatively gradual action was a specially valuable featare.
In conclasion, after referring to some recent interesting experiments of Dr. Sprengel, on the application of readily oxidisable and other porverfully oxidising liquids in the prodaction of violently detonating mixtures, the author showed that, even in the application of gunpowder to industrial pur poses, some decided advance had lately been made that of all int explosion could be developed, like throngh the agency of a detonation, whereby its action might be considerably intensified, and its spplication to some important classes of wo
submarine operations, greatly facilitated.

Koumies.-Dr. Townsend, of Cork, writen to the Britith Modicat Journal that koamise was ased by his The following is the menner in thich he propared it and it answored woll:-Take one quart of new milk one noggin of good thick milk or freah batter-mill, and three or four lampa of white sugar. Mix all together rom jug to jug till the sagar is quite discolved. Pat it quite thick. mooth. Bottle it in soda-water bottles; let it remain in a warm plaoe for thirty-six hours (twenty-four in summer). Use the best relvet corks; tie them down; opened. nse. It is to be made every day, and takon in quantities. Its fermentation is the test of its excellence.
Ashworth's Fine Pointed Flattened. Wire Cards.-Mesars. Ashworth Bros., of Manohester, have introduced some improvements in wire cards for carding cotton, wool, worstod, silk, se., consisting in the manufactare of the teeth or staples out of a wire
which has been fattened by passing through hardened Which has been fattened by passing through hardened
steel rollers. The wire thas prodnced is similar in shape to an ordinary comb tooth, having two broad at siden, and two narrow roand aides. The breadth gives more than the strength gained by the nse of roand wire, and thus renders possible the preduction of cards equal to their work, with a less weight of meta', chough with the same number of points as ronad
cards. The cards have new bean at work for twelve months in a number of mills, and are very well spoken 1. A special steel" card ased extenaively in covering lickerin rollers should be separately noticed.
It is cot, pointed, and does not require grindiog. It It is cat, pointed, and does not require grinding. It
works quite olean, and therefore needs no stripping or works quite olean, and therefore needs no stripping or
oren brubhing. The adrantage of an esen and regaler od is thas insured.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our correspondents. The Editor respectfully requests poestible.]
All communications should be addressed to the Fditor Gardon, W.O.

All Oheques and Post Ofhee Ordere to be made payable to J. Pagemoris Edifazds.
"I would have every one write what he know, and ae mach 28 ho knowa but no more; and that not in this only, but in all other subjects: For such 2 person may
have some particular knowled ese and experience of oature of auch a person or auel a fountalin, that as to and yet to keep a clutser with this what everybody doe Fill nudertake to write the whole body of phyticks: Fice from whence great inconveniencea derive their orisinel"- Montaigne's Essays.
** In order to facilitate reference, Oorrespondento whon apoaking of any Letter previously incerted, will oblige by mondioning the number of the Lotter, as well as tho page on which if appsearc.

"T. A." AND GRAVITATION.

[4188.]-"T. A.'s" method (let. 4166) is altogether unsound. It is based on two assumptions (tacitly made attriz., first, that the length of a line drawn from the representa the attraction exerted by the portion of the spheroid lying in that direction; and, secondly, that the lines thas drawn diverge (in "T. A.'s" construotion) nniformly from the attracted particle-that is to say,
that an equal number of them would fell on equal porthat an equal number of them would fall on equal por-
tions of any apherical surface having the particle at ita centro. The second assumption is undonbtedly erreneors ; as to the first, "T. A." shonld have substantiated it bofore proceeding with his prool.
It is impossible that there can be any simple proof for the attraction of a spheroid on an external particle, simply becanse the integral calcalas has demonstrated that the expression for that attraction is not simple.
"T. A.'a" explanation of his reference to Ganot it
Michard A. Proctor.
Rapolegy maf calle

THE SUN.

[4184.]-IT wonld not be easy for me to answar the question of "L. J. V. G." (query 11870) within compass the conclasion that the san does not belong to the the conclasion that the sun does not belong to the
stream of atars forming the Milky Way are based on researches which have ocoupied me daring the last sesen or eight sears. I am compelled, in this instance to refer to my pablished workp, "Other Worlds " (2nd to refer to my published works, "Other Worids "(2nd
editios, p. 256, et seq.), "The San" (2nd edition, p. 464, et seq.); and, for an account of the researcheg themselves, the "Essays on Astronomy" (p. 240, et seq.), and appendix. It will, I fear, seem unsatisfactory thas to refer to books of my own ; yet it mast actory thus to refer to books of moown; yet it must
be rememberd that if my views coald be fully or properly exhibited in a letter I shonld probably not hare cared to write book concerning them.

Richad A. Pboctor.

piano construction-To Mr. Bchucht amd

 Отневв.[4185.]-"The Habmonious Blacksmith," with that modenty which is his normal characteristic, reapectfally declines the honoar (?) of being an inventor (7) of perpetual motion; also of being the designer of mechaniem which-in the meohanical senso-gains
power. Sooth to say, both are simply mochanical power. Sooth to say, both aro simply moohanical
imposibilities, and their conceptions only exist in the mpossibilities, and their conceptions only exiat in the absence of knowledge of mechanical lawn. All ma
being bat transmitters, not generators, of force.
Mr. Sohacht sajs "The Harmonions Blacksmith ' is trying to show the possibility of imparting to the hammer-in the treble of a piano-a greater power than we usually can get." Now this may be quite trae, or "the thing whiah in not," for it all depends on oar
definition of the word power. If power and velocity definition of the word power. If power and velocity be identical, yes; bat if they don't mean exactly the
same thing (and I hare yet to learn they do), Why then, no.
If I ever said anything from which it can fairly be inferred I expected my own, or any other man's, mechanick" conld give out a greater mechanical Force than that Which impelled it. I can onlv say,
with the parrot (wiser than any "Harmonions Blact with the parrot (wiser than any "Harmonious Black:
smith," who had experience of the evil consequence of smith," who had experience of the evil consequences of
garralitr, "The Hermonious Blacksmith's" gresteat garraitt, "Sorry I spoke" to so little purpose; bat I
fander guess I am rather "too old in the tooth " to have been
gailty of uttering any such nonsense. What I did say guilty of attering any such nonsense. What I did san
(or intended to say) was, that from the ahange of itg (or intended to say) was, that from the change of ita position, the hammer of a piano with an apright action contro as it and more of its weight anpportod on its and lens force becomes needed to continue ita motion (supposing the velocity of that motion to be aniform), as it appronches the string. This notorions fact may be ascertained experimentally by taking out the
dampers, and finding the diferent weights required to
balance the hammer of a common cottago action in various positions between the lowent and highest. istance to the finger during the diminiahing resistance to the finger during the rey's descent is neither deairabie nor pleasant, bat that, on the contrary, resistance produces the most pleasant touch-a faet well known to most makers of grand pianofortea who purposaly delay the contact of the key jith the damper lever until the former has dencended abo half its path, for the parpose of diminishing renistance to the finger at the commencement of the rey's motion. In imitation of their practice I designed the metions figured in No. 868 , in both of which the resisterce to the finger will be found alightly to increase as the key deecende.
I might have effected this by other means ; for when it by a spring which, as its resistance increnkes also becomes greater as the toy descend I mish also contrivance employed in cortain ancient machines for weighing bread to. Which I remember in the elec long past-dass of mine youth. In these machines the weight reoedes from ita support as its rises, so, of course, it requires a greator force to balance it the farther it rises. Something like this in connection rith the key would have compensated for the diminich ing resistance oanced by more and more of the during its rise, but I thonght it far prod on ite centre the same reanalt by imparting greater velocity to the
 hammer, and I did thia by positing the sticker hinge arm of the lever which lifte the hamemer-in otter words, the distance from the vortical plane of that shoulder, or of the sticker hinge, to the vertical plane of the hammer centre-bocame loss as the hammer rose. (See Fig. 2 and the description thereof in No. velocity I reaboon
I prosame neit
rill dony theither Mr. Schacht nor any other man will deny that ceteris paribus the loudness of the is in proportion to the force of the blow. Also that that orce will, caterio paribus, be in proportion to the hammertsode of improving the tonch the ham or he former methodis of improving the tonch, the hammer's volocity -and consequentiy the force of the blow struck by itwapting the method I did, which increased the hammor's velocity from three to six. moris velocity from three to six-Rold, at the instant it drucz the strings (N.B.-So far as regards the proof its path is quite uninfinentiang any other portion of the blow was increased in proportion add the farce of the hammer's velocity $?$ and although I am far from asserting the sonnd became six times londer, its power was very considerably angmented. That the sound hould not respectively have become three or nix times ouder-so far as I am able to estimate the relative or the proportions between the force of the blow as. the mass of material-strings and belly -by and the mass of material-strings and belly-by which word, ceteris paribus was not maintained, and to restore, or rather to a ${ }_{2}$-proximate to, those original proportions, it became needfal to increaso either the length, the thickness, or the number of anisonout strings the hammer struck. All these methods were gried, as I before stated, and from the experienco gained daring those trinals 1 opine the very beat thing
to do-supposing our object to be the production of pianoforte capable of yielding the nost powerfal sounde pof the best possible quality, without regard to i its original cost or the expense of occasionally, but not very frequently, retazing it-would bo to employ all three of these methods ; but as regards increasing the longths of the strings I foar we can hardly do so with asfoty. in No. 372, until the employment of and apecification tenacity than can now be obtained, unless it be drawn extra hard to special order becomes general.
With regard to the positions of the dampers I may just remark that, ceteris paribur, they act quickest whem convenient, although far from impossiblo, to places them there ; doing so would not be worth its cost, for if mado pretty long (say, from one-twentioth to one-fifteonth the string's leugth) and eoft, they act effeiently when properly pressed against the string at any convenient portion of its length, especially if their soft faces be fifths of ite circumference. If you dor about two "werry dead" indeed, doable dampers are the ripp thing. By donble dampers I don't mean what the ript Mr. Mott called by that title, but dampera before and behind the strings, which wher opened allow them to vibrate, bat when shat clip the strings like a pair of hollow.bitted forge tongs clip round rod iron, which the "Harmonions Blacksmith" avers is a very nfflient clip indeed, bat it is unnecessary ; again, as their Frenck hosts-who ato now mercifally permitted to have the privilege (9) of feoding and entertaining a good many of pas la chandelle.

The Fhamomiovs Bliacegertic.

MUCH EXPERIENCE IN FEW WORDS.

[4186.]-A corrgbponarnt, who is a competent observer, has sent mo the following pithy lettor:-"A than an obliquo silvered glass; bat your first sarfice prism for evar!"
J. \mathbf{B}

AN DMPROVED BEEHIVE

[4187.]-Being a codifant reader of the Evalise Mecranio, and of late having eeen sevoral articlea on "Bees and Beekeeping." I thought a few words and sketch of an improved bive might interest a few of interesting laboorers in considersble numbers for want of a well-constructed hive, both in workmanship and principle, and after many trials with plain straw hives, principle, and ailer may on the Noighbour system, as well as those on the Woodbury principle, both with bars and frames; but this last winter has convinced me that a hive constracted after the inclosed sketch is more practica, simple, and better than any of them
The hive consists of a long box, most representing a apboard. The extreme dimensions inside are: Height, 29$\}$ in. ; width, 9 in. ; depth 11 łin. The body s of lin. thick pine, with fin. thick croasing the grain again inside, and fastened by means of nails opery hree or lour inches of the whole seriace, that making the sides and door $1 \frac{1}{2}$ in. thick. The bottom, or floor, is formed of two pieces, lin. thick, with a apace of lin. between, which is staffed with hay or other open mateial, as shown, and closed by a piece fitting in between formed by a lin. thick os rable an legable-roof boards, which alled in with bey, as ahom led in with bey, as shown The kable rool is made eainted canras, the reat he hive is painted dar ho re panled dark ished. The door is formed te seme as the sides, arm as the hrom tn to botta the hive in one piece, recesees and completes the exterior of the hive.
It will be observed that the interior is divided, as it were, in three compert ments ; in reality, Nos. 2 and 8 are one compart ment, so high that two
frames oan hang one above frames oan hang one above teenthe of an inch aper beenthe of an inch apace otreen them for the bee travelthrough. The top room is separsted super room, is separated from the stock-room by means of board in. thick formed of threo breadths, to front of the to front of the bive in the recesses (b) at each side the total breadth of these sixee boards shonld be five than the total depth of the hive inside drom the of the front. In one of these ront. In one of these hole 1 in in dismeter to hole 1 in. in diameter to to be placed over it attle to be placed over it, as bottle being supported ons botlo being sapported on s shown. The game hole a be used for same hole can over in summer for honey taking. st other times prop or corts can be in sarted throngh bich in vire or need whas been passed sereral times; the prop then corvosase, the rentiletor servesasagent gained by haring this par tition board in three piece are that the position of the one with the hole in it can bo ohanged to suit the requirements of the inmates at the different seasons for feeding; also, that when it is wished to take honey in the frames the one board is pushed in arst close to the front, the other two are then pat in, but kept close up to the door at the back; thas there will be left an opening of five-sixteenths of an inch between the second and third board, which will allow the bees to pass through and fill the frames, the queon never venturing to pase through such a manall quening, thus we secure clear honey in these frames. When wishing to take one or all the frames ont I merely pross the two front boards gently and slowly back against the other, thas closing all commanication between the soper and stook-room; then, by removing the window (c) of the auper-room, the confined bees can escape, and we can take the frames out with reedom. All the frames are of equal size, and can be the following dimensions: gin. high, 8 gin. wide, and fifteen-sixteenths of an inch broad, ontside meanne They are made of deal strips, ftteen-sixteenthe of an inch bread by three-sixteenths of an inch thict, boing joined at each corner by means of tine sprige driven into tin. square distance pieces. Each of them dis. tance pieces project fin. pleces. erve to hold the frames at a regular distance from
each other-that in, tin., so that the bees have clear access orer the whole combs at each oide. The top access orer the whole combs at each side. The top
pieces of frames project din. over the gides that pieces of frames project oin. over the sides that that are worked out of the din. lining at the sides of the hive. The recesses or grooves are made in the form shown, so that the bees can at all times have access to destroy moths or other intrudera that may have ontered tho hive, as it is of the highest importance to avoid having any opening Where the moths the bees carnot purpose there is left a ppace of tin. at each side of the
pithe purpose trere is ertan ppace of tin. at each side of the
hive between the outaide of the frames and side of the hivo
hiro.

From the aketch it will be seen that there are sixteen framen in the stock-room; this is the fall number in tonded, and in the super there can be eight frames. It will sloo be observed that there are two windows (c)one for the super and the other for the stock-room These windows fit nicely, and slide from back to front space for the this means we can alwaya limit the space for the bees requiremonts. For instance, on room anmarm, six irames can be pat in the stock slid in close up to these frames. (On our next exami.

window at the top, the ventilator being a plate, pierced with small holes, inside the frame. The doar can then boft cafe and warm for their winter's rest little colony day in the earls spring ellows of their being era warm day in the early spring allows of their being examined,
and they give a healthy buzz as sign of thanksgiving for their garo hal peservation siga of thankggiving I mes bere tate that on opening the cold wim the ming the pecting material will be fornd in the spring the pacting matial will bo found quit we or amp, and cor with a dow, thus ahowipg the stock-room, to the little colony's danger and discomfort.
The advantages of this hive are: Always being able to see all going on inside; able to take any frame out in a few minates; able to feed at all times withou onticing robbers from other hives ; being able to obtain honey easily by turee modes-viz., in a glace or in a beanaical square piece of comb, by merely passing a knife all round inside a frame, when the squarecomb-i left on the plate as easily as a brick from a mould ; or, is wished, by means of machine the frames containing the combs full of boney can be taken out, and in a tew minates the empty combe can be retarned to the super to be again illed, thas saving the bees time and troable of building fresh combs, as by ase of machine half dozen frames can be beantifully emptied, and the empty combs retarned to the super to be alled again of time.
In hives of this description there are no screws to take out or set in, and the bees are not annojed by the roof of their dwelling being taken off every time one winhes to examine or see to their welfare. I reserve until another time a short description of a honey takiag machine, should any of your readers wish to make and try one, as I assure them they work admi. rubly. I may add that such a hive costs me, complete money, \&1 2 s .

Refirences to Drawing.-Fig. 1, side elevation ín section; Fig. 2, back viow with door removed. a_{5} frames for combs; b, recesses for frames to slide in; c windows to blide in and out; d, entrance; 1 , super bottle (Cronse and Blackwell pickle bottle); 2 and 8 stock-rooms ; x, distance pieces.
Myborg, Donmark.
BeExREPER.

CURTOUS CASE OF DOUBLE REFBACTION.

[4188.] -MANY yeare ago, observing to a philosopher how curious it was that Iceland spar should possess the property of giving a dopble image, he replied that the I had lately an illastration of this doablr-refracting I had lately an illastration of this doably-refracting power in the ordinary glass of a wiadow. About bort outside of my window em small iron ball is altached to an iron rod. When the buckground of the sky is no too bright, I clearly discern throngh the window glass
a shadowy ball, jike a photographic ghost, which I a shadowy ball, like a photographic gosh, whition prove to be a secondary irnage and angle of visual perception. The shadowy image moves, as it would do if a prism of Iceland spa were slowly rotated. I cannot see this secondary branch of a tres at frat I referred it to polariention Prach of at Perhaps both have something to do with the phenome
nom.
THomas Bucranar. DO.

DR. CARPENTER AND PERSPECTIVE.

[4189.]-THERE is such a conventional rolo as "Cervas" mentions (let. 4118, p. 200), for limiting the horizontal angalar range of piotares containing architoc ture; but it need not apply to their vertical exteut, whioh noed not be nearly 60 limitod, as willsppear the moment the reason of the rule is underatood. No pictare can possibly represent a scene with real accuraoy When riewed from any othor point than one, the be placed for vieming it as a "peep-show"" or what be placed ly to hang on dignilied as cosmor ornament as the vast picturea to hang on walle for ornament (as the vast majority startly moved away from their trie "point of gight" buall more or less; and it the angalar range of scene repze sented do not exceed 60, the eje can so allow, by habit, for the error of the foreshortened plane pictare beyond 60° this correction is hardly in the ese's power beyond 60 shis correction is hardly in the ese power so that, When minch remcved from the point of sight, it
will find the picture distorted in the perspective of will find the picture distorted in the perspective of
its corners or extreme parts; though at the point of its corners or extreme parts; though at the point of
sight (let me remind "Cervus" and M. Paris), parsight (let me remind "Cervus" and M. Paris), per-
rpective is perspective, and absolutely true, howevar epective is perspective, and absolutely qrue,
far extended, so that a picture to be viewed only rar extended, so that a picture to be viewed only
cosmoramicalls, or from the right point, has no limit, but may be 100 times as wide or high as it is distant, but may be 100 himes as wide or high as it is distant 170° ar 179° ith andion. No ss the eye, in 170° or 1 , wis room or gallery, moves away from the point of sigh horizontally, but hardly at all vertically, only somuch as arises from oar anequal stalares, "Cerras wil in why mach closer mizontal range then it oberved The letter m a bove and below the horizon, while the former siould above and below the hray from the centro.
M. Paris says "all objects diminish as their distance from the eye increares," but forgeta that the mark irom the efe increares, but on his picture are no exception to this! If the top and boltom of his mpres nictos ol a bottom of the real tower are at distances in the same
ratio, must not the top and bottom widths, if equal in one, the tower, be equal also in the representation?
He sticke, like the Chineso before they had photographs to measure, to the metaphysical heresy anainst perCo measure, to the metaphysical heresy arainst per-
spective, that the representation of outlines is to be
 thing subjective, physiological or psychic, instrad of
objective; but with more than Chiveso obstivans, he oticks to this after photographs linve giren tavgible eticks to this after photographs liare giren tapgible
proof that the mathematical perspective (which is what Pronf that the mathematical perspective (which is what
$\mathrm{F}_{\text {suppose }}$ he means Dy "Laputan") was always the sole right one!
If by " moving" the ere or the camera he menns Loommotion of them, of coarse there minst be none, bnt
it by "moving" he only means turking, the ere mas. almays tarn to any exteut, in viewing the same pictare (or panorama). The camera, howerer, if forming its
images on a piane (as it numally Noes) may not torn at images on a phane (as it tumally Noes) may not tarn at plane of projection is altered. If it threw the picture on a apherical watch-ginss (as the eye on its epterichl
eretima), then it might tara to any extent on the centre of sphericity, just as the eye does. The picture. thaggh falling on
alanays be identical. E. L. G.
[4190.]-Ip Mr. Paris had read mr letter (3944, p. 89, 80 as to underatand it, before he wrote his replies
(let. 3911, p. 110, and let. 4111, p. 200) he might have seen that his question abonta, long wall mig ant hasered; azd that if he wanta to delineate his wall of influite he has anderatood mys letter and thinks lhat my defnition of the reason for parallel perspective is wrong, he zuat as well explain where the error is. A sketrh,
also, of some simple snlject, such as a row of honses, also, of some simple sniject, such as a row of honses,
necording to his ideas of perspective, Fould be I mom sa sure mis M. Paris is to the contrary that parallel perspective is the cnly true one; that pictures tionally arranged, bat aredrawn as they are metually soen; that moviog the eyea is not the same an moving plane of delineation ia moved also; and that ""E. L. G." plill mot say anything so foolish as M. Paris sapposes. gested in my metter (p. 39), would teach M. Paria more of the true principles of perspective than reading or Wrould also aee that he hass totally misanderstood the matter which was to be demonstrated. No one says that the rammit of a tower, viewed from the gronnd, which Dr. Carpenter gives one answer and I another in, why a tower with parallel sider, which appears to the oye tapering, shonld (or should not, if M. Pari
likes) be dramn parallel?
B. D. T.

SPINNING-TOP.-PERSPECTIVE.

[4191.]-Tarke letters (4130, 4181, 4132, page 204)
teve frawn my attention to an earlier one (4040, treve frawn my attention to an earlier one (4040,
page 151). "Philo" is right. A top has keen known to pago
opin longor in a partial vaonum than in the
utmosphere. An to wimosphere. As to "A." and M. Paris, they revive old
tinacies about the griosenpe, of which the common trinacies about the gyroscepe, of which the common
aptaing ${ }^{-10 p}$ io bot a variety; but may console them. selves that they are in good company, since the
Astronomer Royal for Scotiand said that in the case of Astronomer Royal
the gyroscope
we muat look to the action of case ot acting horizontally, or words to that effect. It is
strange how often mistakes reappear, although corstrange how often mistakes reappear, although cor-
ceated. At page 4111 of your issue for January 7,1870 , your correspondents will find a figare and description
of apparatus which demonstrates that "the effect of or apparatus which demonstrates that "the effect of
gravity is not nullifed"-that the "lorce of gravity is
not overcome" not overcome.
twenty late Arthar Parsey published a book aboat twenty years ago, to endeavour to establish a system of perspective in accordance with Dr. Carpenter's an-
fortanate blunder, and a very curious book it was. The
difincalty some people have abont diffcalty some people have about the point in quastion arises from their erraneonsly mpposing that in a
picture or draning objects mast be as the eye sees Them. Now, the image in the eye is not identical with
the objects, for it makes the more distant oues smaller The objects, for it makes the more distant oues smaller than the nearer ones: it also corresponds to a spheroidal
section of the rays from the objects. A drawing or picture is a contrivance (generally, although not neces
sarily, on a vertical plane) for pridncing in the eye the sarily, on a vertical plane) for pridncing in the eye the
same image that the actual objects monld do, which it conld not do were it precisely the same as that image. It is geometrically demonstrable that parallel vertical Hines in the object must be represented by parallel rertical lines in the picture, when the plane of the
latter is vertical. But for all that, the picture will iatter is vertical. Bat for all that, the picture will
oppear quite right to the ere, for the widths between
ote lines of the actual the lines of the actual ohjects will aypear to vary in a
manner depending on the angles between the vertical smanner depending on the angles between the rertical
Hnes and inagingry lines from the several points to the eye, and the widths between the lines of the draw-
fog will appear to vary in precisely the same way. Thas mg will appear to vary in precisely the same way. Thus
the top of a tower in the pictore mast appear as much further from the eje than the bottom as the top of the actual tower seems further than the bottom.
Glaggow.
E. H.

ECONOMY OF SMALL BIRDE.

[\$192.]-I bug to thank "Animals' Friend" (let.
126, p. 208) for his defence of small birds. I am a 4126. p. 208) for his defence of small birds. I am a
gardeper in a small was, and do all I can to prevent birds being driven eway, being convinced that thongh
chey do some mischief, they prevent far more being

None. Some years ngo, when visiting a large establighwent for the growth of grapes for sale, I noticed many hirds Aring about the honses, and was told by the owner that he had quite satished himself thal thongh
the birds did eat a good many grapen, they took no more than they were fairly entitled to, for they pre-
ventcd a great many more being eaten and spoiled; he vented a great many more heing eaten and apniled; he
wonld not on any account bave them excloded, even during the frnit eeason. While daring the greater part
of the year, their services as insect eaters are of nuof the year, their services as insect eaters are of nu-
mixed bgneft, and as to a few grapes they were welcome. Tho labourer is worthy of his hire. Purlo.

"E. L. G.'s" COMET.

[4199]-ONE thing is certain. Whether there was a nniversal delage 5,000 yeara ago or no, there is a
delnge of words now. Four colnmps of "E.L. G." Helnge of words now. Fur congmes of whent among the large amnont of chaff, and I hope our friend will bot object if othrers add n little chaff also
Lest we shonld get altogether swept amay from any
 not singly, but united, and it is the nnion of the two which cansed this diacussion; at all events that bas lironght me into it. These propositions are :1. That some 5,000 yoars ago there was n nniversal
delnge which covered the whole then existing earth, delnge which covered the whole then existing earth
necessarily dentroying all its ichabitants except those pecially preserved.
3. That this delage was carased by contact, with a comet.
The frst of these propositions is difficult to debate withont getting into a morass of theological squabbles,
apnn which I slonld firmly rofune to enter if "our" Editor were foolinh enough to let me. Bnt I heartily indnrse the troly wise sentiment of "F.R.A. S.," p. 223 ; it is "playing deliberately into the hands of the infidel and the scoffer," when those who consider themeelves the advocates of religion insist upon coupling which aro not facts, and which can be disproved That the early fathers of mankind were sabjected to a great destruction by a deluge or flood is a fact
teatified to by most of our early records. That this teatified to by most of our early records. Thale earth is delage was a nniveral one cover the acconnt given in the apparent verbal manuing of the aconnt given in
our sacred records. But those records are the history o family and nation; ther give a cosmogony and early history, but they de not give them on their own account They are the grandest poem in the world, bnt they are tut an episode; they are simply a ioci dental introduction to the history of the Jowish family and race, and all the rest of hee work, and to that special history; even when towehed upon in conseqnence of this, it is alwave dealt with in perfect accordance, not with lato acientitic diseoveries, bu
with the ideas of the people to whom the zarrative was with the ideas of the people to whom the zarrative wa addressed, and who regarded the earth as con a plane sarface, the centro and abject of the aniverse, to which be sun and moon were snbordinato, and in relation to which the stars were utterly inaignificant, ranging these bodies parely in the order of their apparen
ntility. To people with these ideas, a flood which atility. To people with fertile river district) monld be fitly described as coper ing the whole earth. Bat if because anch words are
used we mast be bound to extend that idea to the whole used we mast be boand to extend that idea to the whole accept literally the similarly connected ideas of the snn and moon stauding etill, and the creation in six literal days, as to both of which, explan ations similar
to that which I have given are nov nuiveranally admitted.
Turning now to "E. L. G.'s" remarks (for it woald be a great stretch of conrtesy to call them arguments) they are fonnd to consist of such phrases as these: - Very often have I speculated whether there may ever be fonnd means of gnessing;" "The arriral of the last atmosphere (eridently one of steam) mast have;" II we ast what weight of steam sufficed, I nee no con
ceivable dala for an estimate;" de., da capo, we the masicinhs pat it.
Happily "E. L. G." in his letter (4178, p. 229) has farnished a few excellent words which, reversing their application, convey admirably the sentiments his doc trines excite: "Ther generally see that it is utterly
disproved by all krown facts in the heaven and the disproved by all known facts in the heaven and the earth (as baseless and as multifarionsly disproved as
ever the Ptolemaic astronomy has been);" "A now priesthnod that instead of reavon or argument, write when something is to be swallowed ngainst evidence, of what ure ought to bellure;" "Exactly as any Popiah
Conncil, sc., laid down their creeds, this dogmatic faith (for such it is, and no scievoe) being justas anti-scientific myth and miracle-swallowing," \&o. It is not necessary o give in full the nanal string of epithets in which
Now, as to the first point, was there a universal delnge ? Any single fact inconsiatent with such an occurrence disprores it, despite of any qnantity of facts
or argnments which may be congistent with it. Sach fact is that distribution of life to which I referred (p. 196), for it is impossible that in the short space of 5,000 years, the whole of the marsapial races ehnold
have found their way to the great ikland of New H, l land, and disappeared from all the rest of the earth ergo, New Hullaud was not hooded, its inhatitante
were not destroyed, and, corollary therefrom, the deluge were not destroyed,
was nol aniversal.

It may be "obvions" to "E. L. G." that all surface andalations were caused by a tood, bat to other mind
other cansen. Dat the secont paractroph of letter 4157, p. 226, is one nf the richest things I haveseen for mome lime past. We are to accept on "E. L. G.'s" pore
dictam that the earth is covered with a flem (falbely called crust). Of coarse:" E. L. G." has measured ita thickness, and is prepared to show the error of those mathematicians who show that this crast or film is nome 800 miles thick at leact. The nue evidence he appears to present is a connection between cyolones and earthquakes at St. Thomus's, "E. L. G ." to dogmatice is ret known for any one bat "E. L. G." to dogmetiag
about. But the fan of the matter is, that if "E.L. G."B" facts and doctrines are true, they diyprove his theory of the deluge. Δ masa of water falling over the whole arface woald certainly do exactly the reverse of what he states; all that fell on the ses wonld increase the
liqnid pressure on its bed; all that fell on the land vould ran off into the sea, and increase that preesure; so that the result, on his own theory, wald be such a the land ap higher and hinher, instead of raising the sea bed. This would be farther aided by that rapid denndation, and, therefore, diminiahed laud pressare depicted p. 230, becanse althongh "E. L. G." speaks of the action occurring before the water contl ron off that conld ouly maintain a temporary equilibriamnot increased pressure on the land, na the " 10 feet per sininte " on the area of the land woald be balanced by the same 10ft. per minnte on the sea; bat as soon as it began to run off it wonld add to the sea prossure,
not its own weight only, but that of the land it swept not its own
away also.
But how is it possible to argue seriously with a man who coolly obliterates the Andes and the Himaleyna at his pleasure ?
Now, as to the mocond proposition, the comet as carase of the oupposed delnge. I hare nevcr yet weighed a
comet for two reasons. 1. My balanee, being for chemical analysis, will weigh only small masses up to 1,000 grains. 2. I do not know how to get a oomet
into the pas. But astronomers suppose they kave into the pas. But astronomers suppose they arve reply to "E. L. G.'s" challenge to prove a single one too mall, I quote from Rosene's Bpectrum Anakyia "The mans of the comet, I believe, is, astronomically apeaking, inappreciable. We do not know woild fll chere is as muct matter in this comer as woud this this room, or as mineh as woald an ane enormons space This may not be proof; but assertion agrinat asserand "E. L. G.," I have no hesitation as to where the proference is due.
Now, as to the great question, where is the wher gone to ? Probably, "E. L. G." thinks that by puzzling others with a small problem of this sort ho
may evade the great difficalty. Brt, unfortanately for him, the difficalty he proposes is a very Elight one know nothing of the matter beyond the extract he arnishet, bhowing the disappearauce of a quartity o water from the ses into a limestine carera. Fro bahly a visit to the spot and a carefol sorvey weald
explain the matter at once. I will, however, suggest a ery likely explanation. We know that in many sea and particularly wo ynow it of the Mearterrancenn there are very strong nndercarrents. Sith an opering aweeping along a shore perforated with an oppaige eading to the particular cavern in qoestion wouai pro dnce a strong edaotion carrent, or saction suffaieat raw out the water entering the cavera, probabay the other side of the island. The acconnt shows, appa rently, that the fall of the weter is very slight, for to mills are stated to be driven by an nadershot wheel. I coald farnish

bat it is needless.

"E. L. G." holds that the water of the deluge obeyed the same laws as yesterday's shower, but thia
is abard. Tegterday's shower fell, and returns to the is absurd. Resterday s shower fen, here is circulation of a fixed quantity. Oar problem is to dispose of a sadden and vastly excessive quantity, taken, at the least, wery much in excess of the power of the eir to absorb as it does jesterdaj' s shower; for wo know the he whole weight of the atmosphere is only equal and the water contained in that atmosphere is only a small fraction of the total weight.
"E. L. G." has undertuken anpelest task: a believer in the nniversal deluge, by faith in the record of it, has a perfect right to assume a mirecalons produotion and a miraculuas removal of the wnter: that ne who treats it as a acientific lact, to be acooumh lor by natural cansea, whether providontially coa rolled for the parpose or no, is bound to show that the canses he relies on explain his doctrine. It be invents a comet to bring the water, he mast triven ome way of getting rid of the water when its wori was man who can order in a ready-made stesm comet then be requires !it. This is all "E.L. G." has dorre, for he most cortainly has not given one particle of evi dence that "geology shows that one fell 50 centurici matorial was stoam.

SIGEL

INLAND NAVIGATION.

[4194.]-I Δx mach obliged to "Jack Tar * for his great concern on $m y$ behalf, bat very mnch surprioe that he should gather from my simple letter that I was going to be fool enough as to ventare to words I usei were simply that I was deairona for infer mantion aboat the waters in England or in Ireland ; D lest any one else may go wrong, I want particulare
the waters, rivers, canals, \&c., of the counties of Armagh, Monaghan, and Fermauagh (more especially in the proviuce of
I may say I have carefully read all Mre. Macgregor's books relatiog to his varions royages. In intend to confine myell to river and labe or canal narigationWhan askiug for particnlars of ontat. I had hoped some of our readers would hare described the shapo, material, and namber of their sails; the sizes and material, and namber of their varions spars; the nathe of painter; whether they used an anchor or boat-hook, or carricd wheels to make portages, or trasted solely to the over land. Such particalars as these will be gratefully received by
[If "Alloat", had referred to the number of the ting the information $4 e$ is in searoh of.一Ev.]

GOVERNMENT AND AMATEUR GCIENCE.-I

[4195.]-AT a late meeting of the Rnyal Astronomical Sociotr, Colonel Strunge adrocated very strongly the importance of establishing physical observatories for prosecating original research, more particalarly With regard to what he termed the physics of of individuals to carry on those long.continned obserrations that are necessary to elncidate questions which have been raised in the present advanced state of science, national establishments should be foo
for the purpose of condncting such obserrations.
In the present age of amatear activity it may not be animportant thoroughly to canvass this proporition, and if, Mr. Editor, you will grant me the neeessary space I shell be happy to ley before the readers of the ExGLish Mschanio my views of science, as it exiats under Government patronage and sapport, an
sued by enthnaiastic and energetic amateura.
boed by enthnaiastic and energetic amateurs.
With the remarks of the Astronomer Rojal relativo to the connection of an object of secular interest with a Government establithment I most filly concar. We are all, more or less, taxpayers, and we have an in.
terest in the diaboruement of pnblic money for scientiterest in the diabortement of public money for scienti-
Bc parposes. This disturgement may at present be De parposes. Ter the t two heads of "Astronomy" and
considered and"" and "Meteorology." Daring the existence of the Roval
Obem Observatory, from its fonndation to the present time,
I think we mast all acree with Colonel Strange that in I think we mast nll agree with Colonel Strange that in
conuection with navigation it has done its work nobly conuection with narigation it has done its work, nevertheless, not be out of place to and well if ing this interval it has fally execoted all the
asi
work derolving upon it if mistake not, the dis. work devolving upon it ? If I mistake not, the dis.
tingrighed astronomer who at preaent presides over thn tingrighed astronomer who at present presides over tho
extablishment fonnd in the archives of the observa. tory certain unreducet observations of the moon, which in that state were anfit for nae. These by the aid of a
arant of money, have since been reduced, and rendered capable of being emplored in one of the most import-
char ant astronomical investigatione, "The Lanar Theory." This allnsion to the lanar theory leads me to notioe the five principal divisions of this part of astronomy.

1. The raw material, consisting of the observations as made with the necessary instraments, and recorded in the books of the observatory. 2. Of the prepared
 to its present state by the laboars of gifted minds, sided by matheryatics of a high order. 4. The con-
straction of tables in accordnnce with the theory. 5 . straction of tables in accordnnce with the theory.
The application of these tables in the compatation of our national ephemeris, the Nautical Almanac. In looking at these five divisions we find three that are the work of the Government, and conld not be accom-
pli-hed withont its aid. The unbroken series of lanar observations made at the Roral Observatory is one of the scientitic glories of Eaylaud. Nowhare in the connection with the monan than the Royal Observatory at Greenwich. Althongh the aecnmalation of nnre-
daced observations during an anterior period of the hintory of the observatory has been referred to, inch is not the case ander the present able management. Al
observations are now reduced aud daly pablighicd. observations are now reduced and dedy pubialica
The two acpartmeutr, observing aud reducinf, are mos etticiently oarried ou, and represent astrunomy an snpported by the Government.
The work of building np and perfeeting the lanar theory is altopether separate trom that above described and may be regarded as a high order of amatear effint.
While Goveruments have coutributed to foruish theorists with materials, it is nuly hy such minds as
those of Nowton, Clairanlt, Enler, Mayer, Lalande, those of Nowton, Clairant, Eny, Cayey, and others that a theory so important in its hearings on the well-being of markind cinld be brought into its present state. It
was said by the Astronomer Ruyal, at the meeting of the Royal Astronowical Society, that the observation: of the moon 80 seduloualy pursned at the Rosal Obser-
antory mere not nudertaken for the elacidation of the ratory were not nudertaken for the elucidation of the
lanar theors, hat for the determinatinn of the longi lanar theorr, hat for the determinatinn of the longi-
todo. Now thesd two oljects are indiscolably boand ap in one great enterpri-e, an enterpriso in which a
anccession of master minds have engaged; an enter priso that has had a two ffild effect opon bociety, for has developed and diaciplined minds of the highe, order, and it has contribuled in an accelerating rutio
to the spread of conumerce nind civiliaation. Withont the thoory the deterniuntiou of the lnngitade would etill be an ancolved problem, and withoat the imtheory might not hare been developed to the extent to which it in at present.

Of all the branches of astronomp, the lunar theory bas been the most extenaively employed, but to render it an efficient as possible it mast be cast in a monld, it manst assume shape by virtue of Which its resaits word, tables mast be compated which can be ased in determining the position of the moon for auy given time; accordiuxly, several of the astronowers who have engaged in investigations of the lunar theors have constructed lonar tallea. It is at this stage thut Government aid is aguin indispensable. For the mariner to compate from the lnuar tables the posiou of the moon before le could from his "Inar" and his longitnde, would be a work which few, if any, cond accouplish, bat by supplemeuting the obeer an. of computations embodied iu the Nauticul Alinanac, as suggested by Nevil Maskelyne and continued ince his time, the mariner gies to sea with the requiaite menus for tinding his longitade furnished him by science.
I have in thia letter endearoured to direct attention to the important assistance which oar Government has randered to a portion of astronomy that has been of inealcalable benetit to navigati on in the departments of observing and reducing observations, and in the compatation of data by which the mariner determines his longitude. The bigher branch of this valuable work appears to have been beyond the reach of a Government establishment. Theimprovement of the lunar theory has not been worked out within the walls of the Royal Observatory, nor hare the tables been constracted therein. Men noconnected with it have accomplished the highor objects-that of prodncing tables of the moon as accurate as existing data will permit. In my next letter I propose to notice mor
W. R. Birt.

LUNAR OBJECTS FOR OBSERVATION IN JUNE, 1872.
[4196.]-June 8, Brom. Agarnm, Hahn, Barnans, Potaving (i). Jane 9, Petavias on the east, Snellias Stevinus. Jnne 10, Mare
Nectaris, the ridges on the western part. June ll, Mare Sorenitatis, the ridges on the wostern purt (1). June 12, Linne and craters wost of it. Jave 1s, Pis Azopbi, Agrippa, Godin. June 15, Tenerifie Menantain's (.), Archimedes, Nepcton (f), (Schr.). Jane 16, Delisle, Diophantus. June 17, Lat Place, Manpertius, Conda(a) There 18, Hesiodus (9). Cichas, Wurzelhauer. S. and SS.W. of Condorcet. They were well seen on March 29, 1871.
(l) With longitude of terminator at $60^{\circ} \mathrm{north}$ latitude, varying from 20° to 12° west, and from 24° to 12° Serenitatio may be stndi. d to adrantuge
(i) Piazzi Sinyth and Ramker are two small bat onspicuous craters between Archimedes and Piato. (d) A group of ine formations exists on the north of and Pimeas. The tha lozenge-shaped formation beand Timans and Barrow has been namell "Bnad," in enmmemormation of the discoverer of the obscare ring of Satarn.
(f) The pronp of mountains on the Mare Inting fonth of Plato has been named "The Tcneriffic Monntains," to commemorate "An Δ stronomer's Experiments."
(f) The ancient crater ahout as large as, and sonth best Mato, described as "
(y) Tho oleft from Hesiodas to Capannas is a fine btudy. It has lat Knobel.
Possessors of the first wheet of my catalogue of
"Lnnar Objects," including Ares I A β, are requested to add the fullowing, which were observed on May 15, IA 338 An ienlated monutain hetween A.ripps and A ${ }^{\prime} 9$, shown by Schroter in T LXII., Fig. 3. and by Lohrmann in both Map and Section I.
IA 33 A peak on the S.E. border of Agrippa, IA $\beta 40$ A cleft extending from I A $\beta 41$ to I A $\beta 31$. It terminates at the northern part of the monutain A β 31, is a bright conspicuuas olject, and forks Luhrmann, bat is wall giren by Beer and Madler in the now edition of the large map as a uknustain ridye, forking as above duscribed. It- character mas wo bellor lotormined under an earlier illamination wilth of the Is geinns cleft, and brixhtnr. It is peroeptible on De La Rne's photogram of Fub. 22, 1858 .
IA 441 small monntrin N.E. of IAs 5 . It is shown in Fig. 2 of my Notes and Illustrations to the
W. R. BIRT

HOW THE TONES OF A VIOLIN MAY BE

 increased.[4197.-To state anything new enneerning the violin is usnally a ditficalt matter, and I snppnse noe may experiment for years before arriving abors of "oars" the conatraction of the viulin has been freely handled, and the relation of string to bridge, and thence to the bresst, commented upon. Savart went farther, and compared breast with enck, ehowiog (I think) that they unust be diseitoilar in We may infer, then, that to make the parts of
first (and do nom in part believo) that the pressure of the strinus on the bridje iuterfered with the vibrations of the breati. for by raisiug the strizg. on a piece of wood 1 fin. light, pricionuly removing the nat, sensibly nsed near tho hriilge, bat ouly near the nut and again, the tone was nut the trne riolin tone. It will almays bo difficult to maintain the present tone and ineremse its jower withont a rnanhness or recdiness as sequence. S.) I have oome to the conclasion that wo may not change the rules already eatablished, but must eudeavour to carry them oat further, if possible, and I beg to place before oar readers the following fact for their consideration. It is known that the back of a violiu is hard, aud forms the suand retiector; now. if a piece of hard wood-mahogany, for iastance-is placed ngainat a violin, the tone is very much enlarged. on hert way is to lay the instrument down on its back. hroad, and lin. thick, the grain of the wood aoross. The inforence is this: can not a second back bo made to fit the violin? Verveasy, is it? Bat no pressure muat be used in the fixing, or the tone is bost, a simple contact is only allowable. A piece may be out the violin io the nocal position, and that
well if rou could keep it there.
will not aot; I wish it wonld, for
may see their way through this diffionity
he glad to know. Probably if the backs of rioling enere made thicker it misht improve the toue, bat not muoh, asd it might act just the other way. I hare commonnicated this rery sman piecevily made, some of our friends will report on the same. . Fiodige.

COMMUNICATING ROTARY MOTION TO BALL
FIRED FROM SMOOTH-BORED GUN.
[4198.] - "Philanthropiat" is quite correct in what he states is the object of rifling a gun (let. 4100, p. 198); wards, bo as to be ignited by the fire of the gun, he shows a want of practical acguaintance with artillery work. In shells for smooth-bore gans, the projectile is atted into a wooden bothnm. and the fnze points formard, towarti
the innzle, and ia ignited by the fish lapping all ronud. Alt mazzle-loading shells have their finces innited in this way. Breech-loading shells have their fnees ignited by a fulminating ounplosition, which is
fired by the thock of the explosion, owing to there being fired by the el
no windage.

I have seen many contrivancea for rotating projeotilios fred from smouth-bores, but however plansible in theory, they have all atterly failod in practice.
If "Philanthropiat's" gan had to be ased to fire over the heads of infantry, I should very mach objeot to
being the "infantry."
ARTLLLBRY CAPTADR.

HOW TO UBE A BOOK WITHOUT HANDS.

4199.]-Trat your readors may mee how gratefally tho connideration of your correspondents, nud the special kindness and ingenuity of "M. O." have beos apprecisted by the railway men, I inclose extract from the Afanchavir Cowrier, and shall be glad if yon can incert it, and accept our best thanks.
"How to Read a Book without Hands.-Thil question was opened a fow woeks brok in the Enalisa Mrchanic, on behalf of an engine-driver who lost both arms on the Lancashire and liorkshire lime about a rear ago, and who was so successfally treated in the Manchester Intirmary. After many ingenioas sngkestions, the question has at last been solved by Mr.
Morehen, of 18 , Banner-street, St. Lake's, London. Morehen, of ls, Banner-street, St. Lake's, London.
This gentleman has taken a most kindly intereat in the This gentleman has taken a most kindly interest in the case, and last wecis sent his invention to aur. Inspector
Davie, Victoria Station, free of all chargos. After the asaal porters' charch service last Sanday, this neat little desk was examined and tested by the unfortunate engineer, John Shar, and his symp,athicing comrades. The table is filted with wire fulders attached to pedals which torn up twelve pages in savcession, the sloping book-reat being ersily adupted to the thickness of the volume or magazine used, held in its place by elastio bands. The mechanizin is compactly ouvered in between the kuees, aul not liable to get ont of order. It is altugether a very creditable and efflcient contrivance, aud cana f fail to preve a valuable relief where such an aftiction to a man of healthy mental power
renders it necessary."

ELECTRICAL BELLS ANTICIPATED.

[43n0]-Gibbon, in his "History of the Declino and Fall of the fumin Empire," relat3s that "below the citadel atood a palece. The atatued of all the prosuspeuded from its nect, and such was the onntrivance of art or rangic, that if the province rebelled ag the hearens. tho bell raug, the prophet of the capital reported the proingy, and the Senate was admonished of the imponding dauger." It this account is not e fancifal exugigeration, no modern city is so woll provided with telegraphic apparatns as was the Rome post-olibed by Gibbon. It was not, it is hrue, hacoordivg to tariti; bat then the warning signal was of imperial impartance, and nas at oace reported to the proper but recovered sominiscemces of the forgotten past.

NEW FORM OF VIOLIN-VIOLA AND VIOLONCELLO COMBINED.
[2001]-I seovid be greatly obliged by the frank exprescion of the opinions of "F.R.A.S.," "Soffolk Amatear," and my friend "Fiddler" (who is not only what his aignatare imports, bat also an experienced amateur constroctor of fiddles large and small) on the above design for a flddle which-anless they think it mere Eddle-de-dee-woald, I think, be a very offective instrament for solo performance, especia
treme rapidity of execation be not attempted.
Its compass extends from CC to \mathbf{E}, which inclndes that of the cello, the tenor, and the ordinary violin. The four shortest strings are of the same lengtbs as those on the lattor instrament; bat I would suggest length, that it be made tas I I have shown it in the length,
drawing- $9 f t .10$ drawing-2ft. lat, and the strivg which aoands C Clongth, both being covered strings, and the latter loaded jretty heavily, no that ite tension may equal that of the pretty heavily, no that ite tonsion may equal that of the came string on the cello. Of coarse, if preferred, the tenor C string might be the same length af it in nn the found to be more powerfal and of finer quality. A soand to be more powerial and of iner quality. farther adrantage being that when the performer has loarned to "stop" in tane one $2 f t$ string (that of the
cello), he has only to "mind his stops " that are along. cello), he has only to "mind hic stopa" that are along.
side on the tenor C string, and he will be correct to a "comma." I mean a manical comma, not a printer's.
Possibly, some Addler may be inclined to inquire "Cai bono?" and say we are able th produce all the counds this "fanny addle" can by plasing on the tenor and bass. Quite trae; and, let me add, it is not intended to supersede thoseinstraments in the orchestra, bat for solo performance, especially ef chamber mnic.
No doubt, it is considerably larger than an ordinary Addle, and therefore less portable, bnt its case -not necessarily a poor case- woald not be nearly $s o l$ large as that of a base viol, if the stick on which it
resta during performance be taken out of its socket. I rehts daring performance be taien out of its societ. the lowest note in the base voice to above the highest eoprano, would be especially enitsble for performing, in the absence of the singer, the vocal parts of any composition, if accompanied by the piano or harpsiehord, even when those parta are for two voices, 1 or the
enops lio woll together. Of course, duets wholly in harmoniced la Paganini are not to be thought of on the two long Catrings ; bat-excepting that the four
fidde strings are a trife farther from the hand, and therefore, somewhat more difficult to reach-there is nothing to prevent the young aepirant from attempting, not to say ancceeding in, Paganini's favourite feat.
In the ordinary violin ite strings are connected with Its soundboard or breant only by prescing on its bridge and canaing the latier to press on the soandboard with exactly the seme force the stringa press it. This is, no doubt, rery objectionable, bat a necesaity, so long as no other means for forming their connection can be
employed. The dewn-bearing of the bridge mast employed. The down-bearing of the bridge mast
necossarily impede the vibrations of the soundboard, necossarily impede the vibrations of the soundboard, Which can hardly rise so far, while supporting and conneoted with ite stringe in a similar manner to that in which the connection of those parts is efleeted in the pianoforte or harpaichord. Probably no one seen this evil more olearly than the writer does, and this ia by no means the firnt time he has pointed it out; bat, bad as it is in the fiddle, it mast needs be worse in the harp, whose soundboard has to sustain not merely, perhaps, ten per cent., but the whole tenuile force of the atrings. Now, admitting these facta, it mast seem rather incondistent that he should propose to make a addle whose strings are to be connected with its sonndboard exactly like those of a harp; but "circumstances eltor cases," yes, evor the cace of a fiddle.
Had I denigned to employ only one soandboard I chould have been open to the reproach of choosing the very worst known method of exciting its Fibrations ; but experience has tanght me that a load, intolerable for one, becomese eacy when divided into ceven parta, and placed on seren backs, or even on reven bellies. On reforring to the drawing, it will be seen the aid bellies-or rather soandboards (there can be no need to belly them, so wo will belay all that)-might asy with Mr. Richard Δ ttenborough and the rest of the "Uncles" of that family, "We are Seven; "by the way, somebody said the same thing before thal elavor be otrained with a force equal to 21 lb ., it matt, to a considerable extent, mute any soundboard to which one ond of it is atteched d la harp; but whan attaohed to ceven ouch sonndbourds, it is obrious it can only pull each one of them with a force equal to one-serenth of cannot ., with a force equal to to any very injurions oxtent; 80 in practice we may reasonably expect our ceven soundboards to be a sort of Ajar' servenfold shiald to defend as from thone agly black melancholy men er things yclept "mates."
I here acsamed it woald not be necensary, nor even deairable, to arch the geven soundboarda, butil preferred in may be done, in which caco it would seem prefarable their concave surfaces should be towards the strings, so Arching a sound board seoms only necessary to renint a force whioh tende to render it concave or conver. Downbearing has the former tendency, so wo make our pianofor to noundboards convex towarde their gtrings; but ase the strings in this fanny fiddle mast, like those
 concare, so that when the strain comen on it, it may
beoome-I fear my friend "Fiddler" will say, like the writer-quite a fat.
I think it will be found needful to glue a piece of hard wood, aboat fin. thick, (say) 4łin. long, by 11 n . Whic, on the under face of the frat soandbona wpliting. I have drawn a series of soandposts or spirata, which, in practice, shonld juat at the spaces between each soundboard, but not be long onongh to between esch soundboard, but not be long enoagh to
force them asunder. A screw bolt made of about No. 20 ateel wire (screwed and nutted at both eads), pacsing through all these soundposts, will effectaally clamp their ends, and the surfaces of all the sonndboardis together, so that they must ribrate similtaneously. There is no neceesity to take the troable to bore a hole in each sound post for the bolt; a groove descending to the centre of each, formed by a eam, is easier to make and proferable, because it affords the means of ex one bur on the or all the soandpostc. I hars bart may be glived on every one if preferred; bat thie is a mer mattor of detail ohich I do not thinkla necosaity althongh I prefer it to be done.
It would obvionsly be impossible for any man, whos dimensions did not equal those of Goliath or the provided sochin sach a fdaio as this, so I have supportod during perlormance. I shonld mach prefer being able to chin it, but can't, and after all, it may not be necessary for good performance. I have hoard

very tolerable violin playing by execatante who held their inddles upright; and that very clover ifdder, plays on his fiddle behind hin back or above his head. Nay, I once saw him take one end of his bow between his teeth, resting its other end on the floor, and rab his fidde ap and down the bow; by no means the eariest method of performanoe, yet his tone was frm and fall. Doubtiess it would have been yet better had he hol really good riolin playing, are, what our Yankee coacins call "pretty considerable," I cannot conscientiously recommend the youthfal aspirant to follom Mecknoy's example, anleen, indoed, like him, they are well paid for doing the trick, for that which gets money mast be the corroot thing; bat to ohouldor their arms, I mean their iddien, manfally, and sorape away to their hoarts induatrious praction is not necescarily incladed in this indagtrious P.
programme.)
I have not attempted to draw the head or acroll of thin fiddle, becanse thowe perts are so very familiar that it vould bea maste of labour to engravo them; beides, I did not like to truat mysell dolineate heads oither of lions or humana. I fear my attempta at the caricature, in which so serious a person as "The Harmonions Blacksmith," of coarre, nerer indulges. I did indeed make the attempt, bat instend of the head of Apoll, Belvedere, only pro luced what resembled an agly apecimon of one of those grotesque grianing
gargoyles we sometimes see in charches (pisced there, the original mas to cerious devotion, ith the sforeasic gargoyle-a very fungy iddle indeed. I might, indeed have drawn a simple scroll, but I am not so good a corolls as at icrawle, as you, Mr. Editor, must well know to your sorrow.
A friend to whom I showed this design said it must ribrecanse you cannot make several soundboards to nibrate synchrononsily. If i cannot, of course it muat done it ins the piano, nay, it is done daily in the violin itself, for are not the vibrations of its breast and back -connected, as they practically are, to a very great extent, by its soundpont-aynohronous ? When you couple them jast as man and wife are, who invariably do "move together," or as a policeman is coupled with the thiel by handcaifs, or the carriages of a train on the railway by chains and earewt, or the dises of ohain pamp by ite chain on which they are afficed Not only do the latter, like the bobby and the man eupposed to have "prigged wot isent hisen," and haring ogether bet they more-n taten to prisen -move fnid between each of them together, the seven bucket lifting seven times as much as one can. May I not therefore, conclude that having encceeded in making my meny sound boards move together in both direotions. they will move the elenic flaid (air) between them slternataly to and fro, and thereby canse those acial waves we perceive as sonnd; also that, as the megnitude of those waver must be in proportion to the aree of the surfaces which areate them, seven soundboerds, each having a superficies of 600 in ., will more cerem times as much air as one can do. It is saven air pumps to one, long odde in tavour of the brethren tho can eay, with Mr. Atten boroagh, "We are seven."
Δ hint to would-be constructors-poscibly the timbre might be finer if the firat soandboard be mada s trite thicker than the othern-but we must be careial not to make the combination too rigid, or the strioge will not move it far enough to produce rery load sounde. As the best degree of rigidity can only be ascertained experimentally, it might be preferable to pat one or two light belly-bars on each sonndboard, becsuse the depth, and consequent rigidity of each, coald be accarately adjusted by a fine rasp nutil the beat effects are rately adjuat
obtained.

The Habmonious Buacesygyt.

ON THE FLY-WHEEL.

[4202.]-Tris formala $V{ }^{2}=2 g h$ gives the velocity of a falling body in terms of the height ; hence, if wo know the weight of a moving body, we can detarmine the quantity of work in it by considering the height from which it would have to fall to acquire its present velocity-thus, $h=\frac{V^{2}}{2 g}$; but $g=32 \cdot 1$ nearig, so we may write $h=\frac{V}{64}$. Let ∇_{1} be the greateat veloctity α the fic-wheel, and ∇_{2} ite velocity in leet per second; on passing the dead-points we have (h_{1} and h_{2} being

 $\mathrm{W}=\mathbf{M} g$. The work given out towards passing the dead-points is $W\left(h_{1}-h_{3}\right)=W \frac{V_{1}^{2}-V^{2}}{64}=W \frac{\left(\nabla_{1}-\nabla_{2}\right.}{6!}$ $\left(\nabla_{1}+\nabla_{2}\right)$. We see, thas, that for as given waight α swiftly-moving engine, $V_{1}+V_{3}$ is large, and therafore $\mathbf{V}_{1}-\nabla_{3}$ amali-that is, the motion is pretty aniform. In a alowly-moring engine of the same power, the ralue of $V_{1}+\nabla_{2}$ is smaller, and therefore $\nabla_{1}-V_{2}$ is
greater, or the speed is not so aniform, since W ($\left.h_{1}-h_{2}\right)$ $\stackrel{\text { grealor, }}{=}$ work given out towards pacaing the dead-point $=\frac{W}{64}\left(\nabla_{1}+\nabla_{2}\right)\left(\nabla_{1}-V_{2}\right), h_{1}$ and h_{2} of course ∇_{1} in value with ∇_{1} and ∇_{2}. It has occarred to met that, it the fif-Wheol conld bo to constracted to to become smallor in diameter at the dead-pointa, or by weights the motion would be more aniform. In the formar can the circamforence would require to be in eegmentin I know the iden is rather crade, but perhaps it might to improved on.

Phinantizerviz.
"E. L. G." AND THE GEOLOGICAL QUESTIOK.
[4208.]-Tus following letter appeared in Niatem this weok, singularly apropos of tho geological dircuasion now going on in the Evolise Mectamic. It bearing on the geological question will, no doabt, so0e voloanoes of or disproved:-" Geologists atate that the historie timee (see Lsell, Jakes, and Geikie). I And howevor, that the Rogation days were appointed by Mamercas, Bishop of Vienne, abonf A.D., 460 , for the propose of chantiog litanies to atay the rolcaric erap Robertang was then devantating his diocose (ow Proctor on ' Book of Common Prajer.'- Sigion vp . J. Gress." I And that it was Mamertua, Arahbishof of Vienne, who restored cortain faste, which had falles into disase in his diocose: he held a Byned for thin parpose in 474. However, I can and no mention of volcanic eraptions ; vide Gregor. Taron, lib. 2; 2do in Chron. Baron. Annal. These referances may poeniby throw some light on the matter, bat I have not she booka at hand.
Thoagb not propared to go with " E. L. G." gatireds. suggestívo lothort.

GOSSE'S " OMPHALOS."

[4204.] - IT is reluctantly that I condescend to notice the gratuitous ungentlemanliness of the last sentence of letter 4134 (p. 223). It requires no abnormal talent or learning to be impertinently saacy, especially nuder the hiding of a pseadonym; but will "A Fellow of the thoyal Astronomical Society" essay to anower my "Omphalos"? It assumes to be severely logical. Many have sneered at it (an easy process!); but I have postalates, has convicted me of a non sequitur. If "F. R.A.S." likes to bend himself to the effort, he will find that the work has not "long since been in the wands of the butterman," bat is still on sale at Mr. Van Voorst's.

THIS YEAR'S INTERNATIONAL EXHIBITION. [4205.]-I FULLy believe that you will favour me with a little corner of your journal, in reference to the present International Exhibition. In the first place, it is a matter of surprise to me how it is that the Exhithat the long days have commenced, I think it would be doing the public a good service to allow it to be open nutil eight o'clock during the height of the summer, if not later even, to give many persons an opportunity of visitiag it who are unable to do so in that the charge for admission on sll Saturdays during the season should be reduced to sixpence-at any rate (say) after two o'clock-thus enabling many of the working classes, to whom a shilling would be an object, to visit the palace of wonders on their Saturday halfholiday.

Nathaniel Waterall.

YORKSHIRE STEAM TRICYCLE.

[4206.]-Is answer to letter 2900, p. 171. Vol. XIV., Therewith send you drawings of a steam tricycle, for family ase, pleasure, or hire; for traction, sawing,

Ehrashing, grinding, pumping, or forcing water; as a drawn by horses very readily when steam is can be When wanted to saw, thrash, when steam is not up. steering wheels will only require chocking, and the hind part raising a little from the ground, for the driving belt to be put on the driving.wheel, which is covered with indiarubber tire of a suitable thickness and breadth for weigbt and power required. The steering wheels have only one-fourth of the radins of those on the old system, when moved from centre of axie; consequently lock, and not so lisble to ar move into or ont of old system are one foot further to move back and forward, to be put in the sams lock as the others, and the bearings on the ground are Sin., or more, nearer to the centre line of carriage, which is a mreat nearer vantage. There is not that tendency to slip with ons driving wheel as there is when two are fixed on each end of crank shaft, with a great deal of unnecessary friction, wear, and tear, when moving out of a direct line. The exhanst steam to be conveyed betwixt the boiler and the jacket that surrounds the whole of the boiler, whereby the steam will be greatly expanded before it comes in contact with the smoke, de., just above the steam dome. The chimney is in one piece, with the jacket, and I think it will have a tendency to decrease the noise of the exhanst steam, which is a great intimidation to horses on the road.

James Waddington.

ORNAMENTAL TURNING.-XI.

[4207.]-The sabjoined sketch of an ornamental table pillar will show by what meaus one portion of the whole would be unwieldy. The top the pillar on the at each exd, tapped or screwed with the ordinary wood screw-box, as heretofore described. The the ordinary size for this class of work is 1 inin. tap and box. To size for this class of work is 1 in. tap and box. To
those who have ne tap or box a plain pin can be turned, and when ready to be fixed, glaed. The bottom, pin is tarned about 9 y in. in length, for the purpose of
passing through the bale A into the blook B, a hole is bored previously and tapped. The advantage of a into a small compass, C the pitre cut in the block
 for fixing the claw. A great quantity of the London farnitare is manufactared in this manner for the parpose of shipment. Some manufactarers use iron screws, in some respects same as
the common bed screw, with the excep. the common bed screw, with the exception of the ends, which are jagged and driven into the end of the wood, a small hole having previoasly been bored. A nut is fixed in the other part of the wood, a hole a trifle larger than the screw bored, and bath parts sorewed
together, and afterwards turned in the lathe. The general term applied to such is portable furniture. In all operations with a screw box, care should be nsed, as an inexperienced person can very easily spoil a box or a tap in a moment. Hard wood, sach as ebony or
rosewood, or even boxwood, should not be used; but if an article of the above woods are required, a hole shonld be bored in the article, and a beech pin inserted. Care should be also taken that the pin to be tapped should fit the lid of the box. The amatenr will size of the centre-bit required to bore a hole for the parpose of tapping a female thread. The tap should be entered carefully, at the same time pressing somewhat hard upon the handle, and turning the tap gently round to the right. When entered about one-third, unscrew, and re-enter the tap again nntil the head of the tap enters the hole. The prices of taps and boxes will be about the following:- $i n$. ., proportion. It is a tool no amaterar torner should be without.

Samuel Smither.
[4208.]-A correspondent (let. 4099, p. 198), signing himself "Smithereens," pens a sentence tha almost takes away my breath-" No one can cut soft
wood with a tool set in a radial line." I do not remember ever stating that it conld. Had he taken the tronble to look carefully at the sketch, he would have perceived a thamb-screw for the doable purpose of tightening the cutter, and fixing at what anglo was required. It is a well-known fact that according to the nature of the weod to be turned so the angle of the iron. It is not a fact (i.e., practical) that the iren mast be set at a tangent to the circumference of the wood to
be operated upon, or to the circumference of the rod. be operated upon, or to the circumference of the rod. If very soft wood, the iron may be fixed at an angle of
30°, or even 35°; if very hard wood, such as ebony, box, or lignum vita, the rod may be cat, and cut cleaner with the iron perfectly vertical. The circumferesce has nothing at all to do with it, it is the nature of the wood
to be operated upon. Regarding the assertion that one to be operated upon. Regarding the assertion that one cotter will only cut a certain sized rod, our friend is in tool. The only alteration is the made with the same tool. The only alteration is the insertion of a loose
collar with a slot for the cotter. I made several collars collar with a slot for the catter. I made several collars
of cast iron, tarned smooth, and fixed in with two of cast iron, tarned smooth, and fixed in with two
screws in the face. If a quantity is reqnired, of course screws in the face. If a quantity is required, of conrse a superior iron chuck is preferable; but as the question
was asked how to make the rod, I deemed it was not was asked how to make the rod,
required for a permanent affair.

Samuel Smither.

GOLAIL OR INDIAN PELLET-BOW.

[4209.]-This bow is in very common use among residents in East India, many of whom attain to great dexterity in its nse. It forms a capital weapon against and such small game, and perhaps some to know something of its construction. It is generally formed of a good piece of split bamboo, but can, of course, be made as any instead of one. At a short distance from the op fastenings the strings are separated by a short stick about two inches long, notched at the ends, placed between them as in the drawing, and in the middle, between the two strings, is fastened a piece of cloth or soft leather, in which to place the pellet. The marble of hard burnt clay, between two fingers of the right hand. The bow is then fired a pecaliar twist of the left hand being given at the same time to prevent the pellet striving the thumb of the left hand-which ising often the case until "practice makes pery fect." The pecaliar twist is hard to explain hitting one's fingers will soon few attempts to avoid tryer. The bow is generally about 5 ft. high the the two strings; B, piece of wood separating strings; C, eloth holder for pellets.
G. W. C. H.

CLAVICLE, HUMERUS, AND NEW CRANIUM. [4210.]-The fossil figured No. 1 has long been somewbat enigmatical among our coal-measure specimens, and it is ouly recently that the balance of evidence seems to point in favour of its being a clavicle of a tolerably abandant coal-measure fish, the generic name of which is Ctenodus. Of the Ctenodi there are
several ppecies, and the fishes vary in length from a fem
inches to four or five feet, some of the bones, resembling that figured, are upwards of four inches long, and that now represented, which is of natural size, is consider. ably below the average dimensions of those found.
Fig. 2 represents a humeras or femur of nataral dimensions; it differs considerably from those that were illastrated in your iseue No. 296, Nov. 25, 1870, p. 224, letter 816, and probably belongs to one of the ambalatory reptilia or labyrinthodontia, the remains of which are so comparatively abundant in our northern coal shales. The specimen was found isolated, and it is impossible, therefore, to identify it as belonging to any special reptilian form with which we are at present acquainted.
Fig. 3 is an outline sketch of an inner or lower aspect of a craninum of what appears to be a new batrachoid form of coal-measare vertebrate. The coalmeasare Batrachian it most nearly jesembles is that known as Batrachiderpeton lineatum, but it differs from that Batrachian in so many particulars that it cannot for an instant be referred to it.
According to the illastration of the inner aspect of the cranium of Batrachiderpoton, given in the Transactions of the Tyneside Nataralists' Field Club, Vol. IV., part 1, plate iv., Fig. 1, the head of Batrachiderpeton resembles that of the new reptile head in outline ; that is to say, its length and breadth are about equal, bat in that respect only does it resemble, our new fossil craninm. The premaxilla of Batrachiderpeton is crowded with small conical teeth, white the premaxilla of the new specimen has not any small conical teeth, bat their position is occupied by a small ridged pecten-like plate, which differs from any dental apparatas I have yet discovered or examined. The vomer of Batrachiderpeton is covered with small ronaded elevations or tecth, and each side of the vomer is flanked with a row of eight teeth nearly as large as are those on the premaxilla. The vomer of the new Bratachian is toothle is, and with the exception of the maxilla there are no indications of conical teeth on the under surface of the cranium. The maxilla of Batrachiderpeton, so far as the fgure of it gives any information, is adontoid, and in that respect it differs from that of

our new Batrachian, inasmuch as between the points marked a and a, a distance of 1 in. ., there are distinctly visible 34 maxillary teeth. The teeth are arranged at nearly equidistant intervals; they are small, glistening,
and slightly striated. Those that are broken transand slightly striated. Those that are broken transversely show in their transverse sections large palp
cavities which are filled with the white lime. like cavities which are filled with the white lime like
material which is fond in the teeth and bone cavities material which is found in the teeth and bone cavities
of larger reptiles and fishes. The cranium is fractured of larger reptiles and fishes. The oraniam is fractured
diagonally, as represented by the figure and the diagonally, as represented by the figure, and the posterior portion of the specimen is entirely removed. A small portion of the outer sarface of the oraninm is exposed, and it presents the reticulated appearance Which usoally characterises the surfaces of the bones of the labyrinthodonts and reptiles of the coal period. I am indebted to Messrs. Simm and Taylor for the
opportunity of examining and describing these inteopportanity of examining and describing these inte-

Newcastle on-Tyn
T. P. Barkas, F.G.S.

ONE PROOF OF THE DELUGE,

[4211.]-IT is a trite remark that the amasements of men of great mestal power are generally, whether by contrast or otherwise, childish. I am, therefore, not surprised to find that our instructive and parenamnsin correspondent "E. L. G." shonld be found and beas himself with endeavouring to get gith birds his Noah's Ark. I am afraid, however, that he has not in all his long defence of that tide which led to so mnch misfortune enabled ns to answer these questions. Granting the water, whither did it go to when no longer required to correct mankind? in what manner did it being nniversal, rush along so as to "round" our hills and also our ancient earthworks, our barrows and railway cuttings? and, 'lastly, 'supposing the water from the comet to be distilled, or at least fresh, how is it that we still enjoy oysters, ard that sharks enjoy ns? For, as to the last question, I would remind "E. L. G.,", who knows all things, that the monsoon rains in India destroy millions of sea-fish at the river months. We might also ask how it was that the force capable of
roanding the nils Cott vegetation nuharmed, unless
"E. L. G." believes oar coal-felds to be "Dilavii
Teiten," whioh belief he beems perfectly capable of Teston," which beliel he seems perfertly capable of
holdiug. It is soothing in this scie.tilic age to find one man not aneducated who elings to the romantic tales of our young days.
м. Pailis.

THE DELUGE.

[1912.]-"E. L. G." is, no donht, one of our cloverest contributors, and one from whom we have all, at gnme time or other, derived considerable henefit;
but what on earth has posseseed him lately to becume grech a regular Don Qaixote, at one time breaking a snce against decimals, at another, acconuting for a mythindelnge by a mythic comet? It strikes me that "E. L. G." is one of thoye people who firat dexire a theory; and thrn look for facts to aupprit it, and to theory, "trifeo lightasa air are eonfirmation strong na prof from Holy Writ." I had intended to ask 408() has in some degree anticipated me. Like "Sigmn." I want to know what has become of the water, and am desirous also to learn what proof is there that oomets are composed of water at all, or that they contain any considerable quantity of that fluid? Loose reasoning is a waste of the editor's time; it is slan a raste of the readiers, and on rabit of so, to say, not "taking the ball by the horng," that all three are often wasted. In order that I may not so offend, I
 to prove to me that a comet could canse ihe delare.

Un Iblandaib.

ELECTRIC SPARKS.

[4218.]-LstTers 4168 and 4169 farnish some rearonable grounds for believing that the phenomena under debate do oecur in some places and conditious of air ; they also show how information is drawn ont by discassions, aod oven by erroneons statements. Bat they do not at all affect the onmmenoement of the disonssion itself, becanse the generation of these sparks was in some way developed into the main point. The coal question was not whether quarter-inch aparks conld be genernted of tension enongh to light gas (it being, of conrse, well known that friction of the feet on carpeta will always produce some clectric tension), bat whether elcctric sparks were generated having a tension of some miles, whether such sparks were
transmitted through the air, so cansiug the spread of extencive itres, rather thay that sach spread was due to mere fiery spurks mechanically carried by the air.
[4214.]-"Sigma" has been perfectly right in not accepting a acientific fact without its being daly anthentiamericans. He says "We electricians of the Americans. He says
Englise Mechavic have no sect forgatten Paine's eleotro-motor engine." To this I can only reply that eleotro-motor engine.
I hope " Sizma
does not ontirely
ignore all American scienticic anthorities, nor that as an electriciau ho does
not forget that at present Professor Morse's telegraph not instrament is almost anivorsally used in England.
The que -tion of electrical sparks being easily prodacol in the United States is now too old and too well anthenticated t, bear a fresh discaesina. I innolse a page from the tich if you will bindly pablish will convince many of yoar readers, sud perhaps, even "Sigma" of the truth or "Philo's' assertion:-
There has been read to the American Association a Bnltimore, a paper "On some Electrical Phenomena witnessed in houses in the cities of New York and
Cleveland, Ohio," hy Professor St. Nohn. (Aee also the paper read to the British A Anociation in 18.57, by Prof. Lonnsis, "Year-Bow of Fucte", 185M, p. 147.)
By the inritation of Profesior Loctuis of the Nem York Uuiversity (says Profeseor St. Johu), I acoom panied him on the evening of tha 12th of February,
1858 , to witness sone experinents on electricit, 1858, to witness some experinents on electricity,
exhibited in a lynge in Fonteenth-street, in the city of Nem York. The ronms in which the experinente were performed had apon the floors thick velvet carpets, and the nanal furniture of olegant honates they are warmed by fornaris, and are kept at a nearls nniform temperature of 70° Fabr. The experiments
were perforned by the acnteman and lady of the were performed by the fontleman and lady of the
house, and Profegor Loom:, who had pat on dry slippers. After walkiog rapidy throngh the parlours with a shnoting motion, very bright electrical sparks were exhibited when the hand was presentsd to the chandeliers or othor gond ondachers comunuicating with the grinnd. Gas was ignited at one of hive borutrs balphuric ether iuthamed by the spark passiug foum her fingor to the lignid whieh I held in a metallic onp in eleotrical connection wita the earth. The spirk was made to pasy bet eeen two amall insmiated brass balls,
with a view t_{0} measnre ity leagth. The
 pearance in : darkened room whor the fing.rs weth, bronght noar to the wall-paper, di-persiug its, le ornauente of the paper. Oa the evening of the
Sth at March, the coldest day of the season, the exp ri, nenty were repeat...d in the pamo rooms, when a sen ,ible iuand ther werry intamed by Profe-aor Loomis holdiak a brase brilio his hand, and tha length of ths spark attained was a little more than tin.

Tbese phonomena were similar to anch as I often Witnessed daring the winters of 18.54 .5 at tho the stories of Cleveland, Ohio. The building is threc is warmed by three farnaces sanplied with the ording bituminons conl of sonth-eastern Ohio, the fires deelining, but not becoming extinet dnring the night. The times risiny aloves so', bat rarely falling below imes rising aloove so but rarely falling below
G0 even daring the night. Tise ronms in which the electrical manifestations rere conspicuons were the parlours on the tirst floor ablive the witi substantial Brusela carpets. The seayona when they attracted eapecial attention were perioda of severely cold weather-the thermometer on one occament diminished in mild weather, the elertrical oxcm when it rained. The enrpets on tho halis and nthor rooma ware thinner fulprigs than Briasials narpeting, or oomposed partly of citton or linen, and npon theee the eloctrical phenomena were barcly disormilile. In the parlours, electricity was manifosted during dry cold weather at all hoors of the doy, but minch mnre strikingly in the erening, af:er the yon:ag ladies hald spent an honr in recreation and dancing. On ancl occasions the intensity of the spark was snch as readily inlaned ether and pulverised resin, and meanared repeatedis one-half inch, passing between insnlated balls to the furnace register, which was in good electrical commanication with the earth. All persons sparks to condnclors, bat were onablod to communicate by two bors of the eges of nine and eleven years, after ranning and sliding apon the carpots; this wo attriranning and alining apon the carpots; tuis wo
buted to the friction evolved by thir nneonatraned freedom of motion. These bovs wore iry slippera, were olad in woollen, one of them wearing tiannel next to his olad in wonlen, nne of them wearing fannel next onis
person, and the other cotton ; the latter, who was of person, sad the other conden; ten more vivid spark. A difference of electrical accomonlation was nlao diacernible among the yonng ladies, which we were inclined to ascribe to diversities in their dress, silk, woollen, cotton-the silis and roollen appearine more faviarable to snccess. In one instance the different degrees of moistnre npon the skin eeemed to affect the amonnt of clectricity communicater. These phenomena attracted the attention of all the inmates aud risitors of the seminary; many persons exprosing as they entered the room and took the band presented to welcome them, preceded by a vivid sparls. The pasenge of the apark over glasa by bits of tinfoil disposed in letters, and in the " spiral tnbe, wrin

COMPETITIVE EXAMINATIONS.

[4215.]-To raise the discnseion (see letters 4110 4163, and 4164) ont of localism altogether and place it or two facta from the report of a depatation to Mr Forster on thig "Science Qnestion": -
"There has," said Mr. Bnsliridge, " heen a marked and solid pemetry, and in baildiug oouatruction. sabject 1 . in-

1869	1870	1871
1,908 passed	690 massed	76.3
1,217 failed	2,679 failed	1,010
525	3,359 to	1,773 tota

Above 50 por cent. abure 2.) per cont. Dacreasco of aboat In Bailding Constraction-

974 pasaed	395 pasied	518 pamad
1,02.: failed	2,235 iailud	$3: 33$ fuited
2,000 total	2,6\%) total	909 to

About 50 percent. Abont 15 per cout. Decreased to rabont
Fi 29 the ahnve nogght to do with no mecitanins? Who wira these gcience claz*es and examinations ugtablishod for if not for na who have not had the
adrantare of a good school education? Is this an advantaze of a grod school education? Is this an
incentive fir us to pashonirards? I know the ausrer R-rrard should not be your aim, but the gainiug of poor, bard-workiug men-men who do their daty wollwho not only give asa miuimnm of trentr-fivo lessong but tiftr, or sixtr, or more, and thon we fuil. Oar cenchar"s fante. How is it that he is so successful with
annther class of schulars? Farther, Mr. Rus.enl said, " The one print he risbed to direct. Mr. Furster's attention to was the eandard of examinations, it Teuchers mado no complaint of anecrainty Thachers mado no complaint of a hixh standard, bat they considered themselves anfiarly treated when quesantwery were judzed bs a mneh higher ctandird thau that wbich the official ayllabas indicated as essential
I a pisq."
I have before me certain examination papera set this sear, aud I kuow that in the majority of cases a stadeut chuut pass the elewentary stage with tweuty-tive or
thity lossiona, nubess he cones with somo prorion
 matics. Given twenty papils who know the firrt fant
arithme tical rales and no wore ; drum fractions, arithm tical rules and no wore; drum fractions,
and enbe root, the metric syatem, ano., algebre ap to quadratics, and "Enclid," Book I., into their heads in thirty lusinng, and I'll honanr ynn.: Similarly, take a class in "Theoretical Mechanics," assaming again they know little or nothing of mathematics, and after trenty-ive lemons what do they know? I fanoy "ranm "is eavibr. Aguin, takio tho "Prartical Plane I might go on, bat the aliore is snfficient. Little is said about the above statistics. I leave yonr reader to pinder well orer them, and jadge whethar the
 us beliore.-Fur the last time
a Degperate Charactbr.

THE ALCOHOL QUESTION.

[4216.]-"Satl Rivel." (10t. 4099, p. 198) aceater me of a "leap in the dark" in diftering from Dr. mach as to adance anotiser ressin. As for hasuming that alcohol tom sadualy carmoniqes and hydrogenises the blond, I did not expect any scientifio person conld donbt it $\mathrm{C}_{2} \mathrm{H} \mathrm{H} \mathrm{O}$ is ethrl alcohol (epirits of vine),
 auy action so sudden on the nerves and brain and heart as the ranid carbenisine and hydrogenising of the bood ? Mis "S Sanl Irmen" read Odings "Lectures on Animal Chemistry"? I suppose the precise formnla of unnscle and lirsin remains unknown; but Dr. Odling kives the ratio of carbon atoms to nitrogen atoms as very noar 4 to 1 . "In the most niunte framongt of macele, then, for every singlo atormic proportion of nitrozen tiero are 1.,nratomic proartions of carbon" (4 carbon to 1 nitrogen). Sar there are 8 carbon to 2 nitrogen. All muscular exertion depends are carbana nitrogen. An musculare exertion deponds supply of thoroughig oxygenated arterial blood is essential for complete well-developed mancalar action

The volume of oxrren which has oircalated throngh a contracting mnscle is less than one-foorth of that contained in blood which has traversed the same mascle at rest; wuite there is a corresponding (not eqnal) iucrense in tho volamo of its carbouic acid

The irritability of miscular abre out of the b)dy is arrested by ite removal from oxygen, and ageis ranuigented on its re-oxposare thereto ;" and. athe excreted ing eqnal, "the amnant of area, $\mathrm{CN}_{2} \mathrm{H}$ (EO excreted by the lungs, is proport inate to the activitr of the individual." Thas mascalar action depends on muscular oxidation. "If we take the two proportious of nitrogen existing in mascole, and add to them the one propoltion of carbon necoseary to forn urea, we shall have soven proporticus of aurbon

$$
7 \text { carbon to }\left\{\begin{array}{l}
1 \text { carhon, } \\
2 \text { nitrogen. }
\end{array}\right.
$$

Thus the complote oxidation of masele resalts in aud apearance of one-eighth of its carbon as urea coven-gighths of its carbon as onb to replaoe th nitroyen oxidiveil into urea carbon and hirdmenen which prasa of by oxidation at the lunga, demanding the palation of the heart. I think the rapid affect-quickened cirenlation, de.-produod by alcoh $川$ is suthmient prof of rapid alisorpti.,n of it into the grstem, and as it lacks nitrogon if is inglequate to replroe mascular tissue or anf nther part of the haman framo but fat: it may oontribnte to fat and to the derelopment of heat or rapid vibration of atoug and molecnles. At the blood vessels in the langs, oxygen at the ontsiles drams throngh thom carbon and the place in the blond vecuted by the carhon aud hydeogen, and What is it that canses this interchange bat nesrennugh presonce of the interch angeable and adequsio heat (the hammering by atoms) to vibrate the atomat to re-cunlesconcd? Solar hant rapmarises the wader of
the Atlantic, and transmits it in clour and rain to all parts of the earth; so does heat e:iect t unyfer of atnons from molecule to molecule to maintain the eqnilibriam And, I ast, may not the action of the hicert he hasteried by a mure rupid absorption of carbon sud hydrogen in
 be the pamp, bat heat is the pumer that worts it. Is not, then, aliohol a stimnlant of the heart's action?
Oxidnti,n thing or refines the blood and canses it to Oxidntiva thing or
alow mere brikisly.
The iurces that maintain the nirculation are (1), the propui-ive action (vis a tergo): (2) the ountraction and elastin renction of the costs aull arteries; (3) the activity of the natritive and hecrethry processen atirnch
ing bliod to the capillarios (eis a fronts); and (t) in the case of the returning or tenovas arrant-zerrral case of tue returning or renning rarrant-2ene the
muscular coutraction (combived with the valres in the muscular coutraction (combuived with the valves in to racaum in the chest formed by its expsulion dariag inspirution. Cow the beat by its expsinoution; it has a force in front and a fored in rear. On an average, we may sappose the whole qaantity of and the pulsutions are 75 a that in the ventricles 202. blood pasies throngh the heart everv minnte, und the whote thes. passes through in less tian 3 minnter. quote these ararages from Gatclis "Rowister, carhou to oxidi.e, and in 24 hourg one person prodnces 10 dicic eabic feet of $\mathrm{CH}_{2} \mathrm{O}_{3}$ by raspiration (remoring a abont 125lb. of carbon annually towards inecoasa of regetation by absor,tion throwc, foliace whe anige
having no sense, is it not sufficienfly connected by merves with the brain and other centres? I deem blond is carbonised anil bydrogenised too rapidly or suddenly when it is too largely swallowed in a liqnid state mithont any admixture of nitrogen which is aeedfal to replace the tistanes decomposed and carried needinal to replace the tistans decomposed and carried
of duriag all mnecalar if not other action; the temperatare and proximity of carbon and oxrgen in the langs, mangt, I think, before all the displaced eferment oxygen, pomp the blood forward by rarefaction fram two canses, the one the departare of carbon, the other the wavj motion for rard propelled by the newly motion. Does "Sanl Pirmen" sappose that alcohol rang throngh a pergnn withont change, or that it all passes off through the Innge as aqnenns vapnar? Does he wish proot that alecrfol in the stomach, or blood, is split Thaterbon, hydragen, and oxygen? har heat, store op, it mar have been for ages, in the coaled timber of a pre-historic age; but eolar combnstion arranzed tho atoms where they aro. The plant hydrogen, and oxrgen; the animal disperses oola euargy by recombining the oxrgen and carbo-hrdrate in the palling apart of which that energy had bee absorbed or rendered latent; the san's force is hoarded by the plant; it is dissipated by the animal, though in a more ponetrative sense force, like matter, is indestructible. Nature mar employ every practicable oatlet to throw of a smotbering over supply of alcohol, but all the energy from it is derived by the conversion of it into some portion of tissue, and, at least altimately, into $\mathrm{CH}_{2} \mathrm{O}_{3}$ in the langs.
But the force derived from hydrogen is greater than that from carbon, and there is three times the volumer quantity of it in alcolool, bat the $i_{s} \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ and sabtractiog all the oxygen an nitrogen with the necessary hydrogen, in forms of water and ammonia, so as leave a resinge of $\mathrm{C}_{12} \mathrm{H}_{2} \times \mathrm{O}_{\text {, then }} 269 \mathrm{grum} \mathrm{tan}^{2}$ of misele monld leave 144 grammes of carbon and 2 grammes of hydrogen for axidation, which should farnish 517,280 tilogrammotres of motion, thus:-

Grammes. Kilogrammetres. Kilogrammetres. $\begin{array}{llll}\text { Carbon } & 144 & \times & 8,392 \\ \text { Hydrogen } & = & \mathbf{2} & \mathbf{1 4 , 4 1 6}\end{array}=\begin{array}{r}488,448 \\ 28,382\end{array}$

517.280

Hence, 1 gramme of muecle ehould farmish $517,290-269=1923$ kilogrammetres of motion force snficient to lift 1929 kiloprammetres to the height of 1 metre, but imperfect data renders this but approximative. Have we not in alcohol, then, an adequate spur to circulation without the praplrentinn of ans chrck-nerve to the heart? Deficient nitrogen must arrest molecular change in a mory short time, soas
to mach lower the temperatnre of the frame, niless to mach lower the temperatnre of the frame, nnless
extra oxidntiou at tho ln"ga snflice to maintain it. As extra oxidntiou at the ln"ga snffice to maintain it. As
to "Sanal Rymea's" heart beatiog on sering, a mad ball rush at hin, I am not prepared to prove, and have not attempted it, that that
 tion, seems an adequato and likelier canse, and that is a spasmodic effirt of natare demanding Work in the shortest possible period, and to be more a sparthan any raralysis ; nevertbeless, may they not po togetherand maximamise resaltant energy ?
It is ensy to say the brain regnlates the heart's action, bnt what regniabees the aotion of the brain ? Ara physical agent it reqnires more than carbon and bydrogen tolong maintain its operation; and like every other part of the frame would soon collapse into cold rizidity did not the vibratory impulse of ombastinn, of atnmic clashing or interchange, pronate or maintain its elazticity. I afk, may not, cannot, or are not, obstrnctive molecules formed, when no nitrogen is presented when required, that may in capillary veesele obstruot the true vital order of atomic recombinations, which comlinations I beve faintly hoon in the mangele eransformation athencing on al vital activity? Some one well versed in phyaiologs
may explain.
. J. BARwick.

TIDAL POHER.
[4917.]-1 tumen that tidnl power might be employed ond dredging, a vessel bring moored at the hnws, and sted with an onderahnt-whecl., preferably of Podcelet's mattern, with corved floats. The adrantage of having the ressel moored at one end is that reversing-gear woild not be needed. Sime bappose that the nuder-ehot-whe el dnes the moat work when moving at very marrly one-third the velocity of the stream; others
thinit that a velocity of a anont one.half that of the thinit that a velocity of ahont one. half that of the
itrenam gives the greatest eflicienoy. Chambers, in his shenen gives the rreatcest efficienog. Chambers, in his
"Nutaral Philogophr," takes the former view of the Nataral Philosphr." takes the former view of the
ense. Suppose the tide forrs with a velocity of bit. per second, and that the velocity of the wheels is 2 ft . per second, therefore the relative velocity of the tide oompared to the wheels is 4 ft . per gecond. From the fermula $V^{2}=g h$, or $h=\frac{V_{3}}{2}=\frac{V_{2}}{64}=\frac{(4)^{2}}{64}=k$, since a enbic font of wator weighs 6241 l ., we get a pressure of aloat $16 i b$. on eack equare loot of the inmeried Arat; bat the wheels, moving at 2 ft . per second, or
120ft. per minate, gives $16 \times 120=1920$ units of work done pcr minute for each square foot of the immersed

Anat. If earh flont menoured 10ft. broan hy 4ft. deep, the work done on the two whots $=10 \times 4 \times 2 \times$ $1920=80 \times 1920=153200$ unita per minnte, or parir ive hornc-power. Alowing for the medalas of effertive. The practical difficalts, however, in dealing with tidal and ware power is first to get hold of the power, Which, in the latter case, is not easy; and, pecondly, to ntilise it. It shnnld he remembered that abonr, most inatances, than mranal power. Thus it will be readily seen that in endeavorring to ntilise tidal power for any particnlar pripose wo must not forget the class of power it is intenced to sapersede. We seem to want a good methad of nerumalating power. I should like some practical calcalations as to the nnits of work corresiated by oompressing air. Would some of your indiarubberts kindy oblige me in this? biretehiak asefol in accumalating force. Probably more work cinaly inpy raising a fouating body, as in the former case a in the lantity of whier successivety moves the whe i raised ten feet or monss of epveral hide, or t rice in 24 hours (say). Aud, since a borse-power is $33,000 \times 60$, 900 to miced a foot rork in an borr, or powe obtaived by lifting vesials is not so mach as might a lirst sight be snoposed; besiden, in atilising slow motion, the machivery reqnires to be very strong. Six feat per eseond is a wory strong tide, being apwards of
fonr miles per hour. The power to be obtained by the tides varias as the cabe of their velocities.

Philantiropist.

TO THE BANJOISTS

[4218.]-I SBND a aketch of a banjo, withan acoompeniment of my own invertion, whioh I have had in roice, or with n "nigutr" tronpe. Fig 6 is banjo, with botinm npwnris; l, spiral spring with knocker joised to the stem of banjo that goes throngh the hoop; $\boldsymbol{q}_{\text {, a }}$ loop that the oetgat goos through for pulling the

striker; 3. a bell fastenod in inaide of hoop to strike on (a clock bell will do). Remember, the bell
mnst be fastened freely to make it sound well. Fig. 5 . bunjo with face unwards, ahnwing the end of the catgut with loop for patting on the finger 4 . Remember, the lonp of catent mast go on the third inver, and th
catgat muat be sleck to ase it and stop it at will.
a music Ptiafer.
PYTHAGORAS' THEOREM.
[4219.]-Reperitng to C. J. Recordon's Fig. (4125, p. 203), as a new proof of Theor. Euclid I., 47, being in a sqnare, while Pythagoras' is on a riyht-anoled trisangle of three nnequal sides, I send a diagram illactrative o the ratios of aqunres on ding nals, and of the semi eqnare and qnarter-square triangles on the same line, hall the line, avd quarter of the line : it may not be familiar to all your young readers. I have not me with it in any class book, and I therefore suppose it
 submit it for your inser tinn it thonght worthy EFGH is the square of diagonal of the square
$\triangle B C D$, and is divided for showing triangular praportions of diagonala and squares. The inner Eqnare is half the sqnare in the diagonal-thefor triangles in the inner sqnare equal halt the
eight triangles in the
outer square. The square on half of a diagonal of a square is equal to one.fonth the square on the whole diagonal (B) Bo, of the of a a side of any square. The ciagona of another square (ABCD) of which the fide of the former square (F Q HE) is the diagonal, and so on.
J. Barwick.

MUSICAL INSTRUTENTS.
[4220.]-I AM sorry that I cannot inform my
ieud
The
Harmoniong Blacksmith" of more frieud "The Harmonions Blacksmith" of more
than one of the eleven cariungly-named instra ments he has kindly placed before our attention Perhaps I am selfieh, but I wifh re had more masical correspoudents ine him; there must be some, as evi'-
denced by the intercest shown at the sale of the Gillott's
collection lately. I extreat the following out of an old book:-"Basset-Horn, the richest of all wind instra ments (called also cornet, by reason of its carvatnre), is believed to have been invented at Pasian, in 1770 . It warg witerwards perfected by Theodore Lutz, in Pres and notwithstanding the differance of its form, it resembles that, not only in its qualities and tone, bnt also es regards its intomation, the mode of holding it, and tingering it, so that every clarionet-player can perform on it withont practice. Besides the mouth piese, by wisch the intonation is given, it in formed of five pieoes -the head-piece, called the barrel, twe midale picces, the trank, and the bell, which is naually of brass. It has fifteen ventages, of which four are provided with open, foar with closed keys. Its compass is three-end a-half octares, from lower F in the bass to doable \mathbf{C} of the treble. It is seldom nsed in the orchestra; however it is fond in Mozart's Requiem, aud bune oller pieces. The Basset-hora may be also aged as a bass instru ment.'

Fiddler.

NOTEL TELESCOPE.

[42:1.]-Sone pears ago I found that a chink ia the slater of an anesiled schoolroonn admitted an image of ing the . This was foand to be invertea, anan a moassixpenee, the image oas magnified five or six times. What most attracted my attention, was the pasgage acrose the diac of amall cirrons clonds, whose transit I endeavonred to time by the beats of a ohronometer watch. In the outside heaven, no clond was risible, yet there, on the solar image, the hairlike wisp3 were seen passing rapidty. It is ovidont that it we coald ascerlnin the height of these otrri, wo might refard it as the perpendioular of an invorted triangle, whowo base is tho sun's diameter, and apex the papil of the eye. Hence, by an easy proportion, the aotnal length of the base in milee, and the velocity of the wind which carried the cirrus across the sun. I camot now recover the data and conjectural computation, bat I ramomber and I halved it; atill, 400 miles seemed to philosophtical quidrrues an impossible absiurdity, and I was well laughed at. IFoteorological investigations in the United States, i\& miles higb, conducted on Moant Washington, have proved the velocity of the wind at an elevation far shapt of that reached by oirri, to be
150 miles per hour. Now, Gay-Insanc, having ascended in a balloon to a height of four mitee end three-tenths, when he looked at them from the ground. Ascuming them to have been eight milos and six-tenths high, this is more than six times the height of Monnt Washingtin; sod the mesaured velocity of the wind there, mal tiplied by six, wontd give 900 miles for the proportional thoated. Ttre objection that aqneoas vaponr conld not arcend so high is nagatory, since the cirri are certainly of olectrival origio.
thomab Bughanak.

SPECULUM WORKING, Ac.

[4222.]-I shall be glad if yon will insert in an early namber of the Englisa Meceanic the following accoant of the performance of a home-made apeculam, as I think it will be encouraging to those readers who are desirous of constructing their own telescopes:-The mirror is 5% in. aperture, $51 \frac{1}{2}$ in. focal lensth, worked from a pisce of rongh plate-glass solely by hand, no machive whatever being emplored in its prodaction. It has bcen silvered by a modincation of the Rochelle salt process, which gives good resnits, and which I will have monnted it in the Newtonian form with a "perfect plane" by Browning, and Harghenimn eyepieces with plane" by Browning, and Hayghenisn eyepieces with highest power is the one I generally use. It shows the atars as perfectly ronad diecs, with one or two diffrac tion rings, bat very fow and short ravs even with firstmaguitude otars such as Vega, none at all with amaller ones. I can readily see two faint comites to Vrga and the Debiliesima pair between at and is Lyrre. The ollowing lars are well divided नith ronud disce, and \approx Aquilas. n Corone is junt divided, and ζ Boütis is seen as two discs in contact
I shall feel obliged to any of your correspondents who will give me the most recent meanures of the last two pairs, as they seem about my limit at present.
I shall also feel obliged to the Rev. H. Cooper Key if he will tell $0 s$ what he inds to be the best proportion of dismeter to focal length. My specnlom is almost precisely 9 diameters. His large specalam, 18in. dia7 diane, short a focus for the best resalts.
A. Foolsey Blackloce, M.D.

High-street, Godalming, Surrey, May 20.
P.S.-With reference to silvered glass san-screens, has anybody tried silvering the frat sarface of the would be the best plan of all.

Erratum.-In my letter (4100) "On Commanicating Rotary Motion to Ball Fired from Sinooth bored Gan," ninth line from top, for " 150 tarna a minate please read 150 tarns a second," the rifing of the Enfleld being at the rate of about a complete tarn in 6\$ft.

May 24, 1872.

REPLIES TO QUERIES.

** In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat drawIngs for illustration on separate pieces of paper. 2 Put
utlea to queries, and when answering queries put the utlee to queries, and when answering queries put the numbers as well as the tities is the queries
repilies refer. 8 . No charge is mado for ingerting lettera, replies refer. 8. No charge or repliez. 4. Commercialletters, or queries, or queries, are not inserted. S. No question asking for
reducational or scientifio information is answered educational or scientific information is answered through the post. 6. Letters eent to correspondents, nnder corer to the Editor, are not forwarded; trd
names of correspondents are not given to inquirein.
[10185.] - Wallaroo Copper ($\mathbf{D} . Q$).-In reply to "C. W." I beg to state that this copper comes to
Englasd eithor refined or in bars, imilar to what is received from Chili. It is used for the same parposes an English copper; the reason of ita commanding a higher price than Englich or Chili copper is on acconnt
of its being generally of a auperior quality. -J. of its be
Roskele.
[10844.]-Chemical (U.Q.)-In reply to "Cnpram," Mrapratt, in his article on "Copper"' (p. 528), and Mitchell, in his "c Practical Assaying" (p. 385), give
the equation as follows $-2 \mathrm{CaO}+2 \mathrm{Ca}=2 \mathrm{Ca}, \mathrm{O}$. J. Roskral.
[11198.] - Turning Perpendicular Shaft."Trbal. Kain" states that the sketch I sent on tarning perpendicular shaft would not drive if oarried out as per elzetch. I beg to differ. I have tried the same upon an ordinary drill shaft, and I found that, unless the centre of the palley on the perpendicalar ahaft was off. Theory and practice oftentimes differ. Regarding my stating spar wheels for bevel, I stand corrected ; it my an overaight on my part. I am well aware that the greater the distunoe betwixt vertical and porclose, they woald not drive at all. I certainly in my

[11228.]-8tereotyping.-No practical man would think of aning any other than that which is known as the "paper" process, a description of which le given in
a letter on" Stereotyping," page 231, Vol. XIII., of this a letter on "Stereotyping." page 231, Vol. XIII., of this
pnblicatico. The process, however, is really much publication. The process, however, is really muoh
simpler than would appear from the description there given. 8bonld " A Conntry Printer" require a cheap casting-bos, I would call his attention to a letter on the sabject on page 887, Vol. V. Δ complete apparatus for small sizes can be purchased for aboat e5; the one 1
have is of this description, and works well. In reply have is of this description, and works well. In reply. cient to poar metal upon the moald, as the metal will (2) Have nothing to do with plaster. (3) Old type metal is the best and cheapest material.-A Cambridge Gradiate.
[11268.]-Tempering Knives and Trowele.Woald "Homer" kindly try a little water from the Wash-basin, or soap-suds, say about a teacupfal to a gallon of clear cold water, in which to immerse his hot steel blades; afterwards blaze ofl with oil to what hardness he requires, and let us know what progress he makes? Any buckle can easily be talea ont by hammering on the anvil while still in a hot state with
the barning oil, when once he has practised it a little. -Lincia.
[11824.]-Salt Damp in Walls.-Salt is very hygrometrie. I think that it will be difflcult to give a roliable remedy, bat I would try the following:-Take off the paper, and after a fer days of very dry neather apply hot irons to the affected spota to tale ont the damp to a certain depth in the plaster, and whilst the wall is still hot, give it a quick and liberal coat of some light-coloured oil paint; when drr, apply another coat, without heating it previounly, and paper in due time. barbaros.
[11388.]-Motive Power for Amateurs.-If "A Barrister" (p. 306) thinks I had any idea of prodacing perpetaal motion he is mistaken. I took the MECHANIC some years sinco. "A Barrister" proposes to have a fy-wheel fixed to the sam apindle, driven with a crank at one end. Where does he mean to get his power from-by treadle or hand? I think he forgeta the speed a circular sav requires to ran.Zoo Andra.
[11849.]-Heating Bar Iron (ס.Q.)-An ordinary smith's forge, blown by a fan, instead of the ordinary bellows.-W. H. HEY.
[11855.]-Model Steam Boat ((U.Q.). -Not long
nce I constructed a boiler similar to what "N. G. H."

wanta. It was made as No. 1 of copper, the thickness
would get more stoam out of No. 2, bat I do not think the pressare you w.
301b.-T. W. M. J.
[11383.]-Metallio Earmonioon.-I am afraid that neither "Zoo Andra" not Samuel Kempling kuow the meaning of "inverted," for if they did they wonld not try to maintain that "invertot aquariam to
11393 , page 108) is correct ; is this aquariam is to be "inverted," where is the "solation of alam" to go? On the ground certainly. I think "Zoo Andra" has made another rreat mistare in his possession ;" he says that the great expense of making these harmonicons is getting the glasses all blown to the right notes; if the glasees are to have water in them that woald materially alter the piteh, so sll the bother of getting the glasses the right pitch woald be nseless, as they woald (as it appears to me) have to be taned by the quantity of water pat into them.-Tuba Mirabilis.
[11395.]-Foreign Wood (U.Q.).-In answer to C. O.," I believe the fibre comes from India in bales, weighing 2 tcwt., andof different colours, esch boing worth aboat $£ 7$; it is also delivered in another Iorm, termed a
"dole", dole," which consists of a ooil of the yarn closely tied up and boand with piecos of palm wood from rin. manufactare ard many interesting details concerning manafactare ard many interesting details coacerning [Please send.-ED.]
[11397.]-Sting-proof Gloves (U.Q.)-Try A pair of Hawesling gloves with long ganatlets.-H. B. E. [11420]-Sewing Machine Extras (U.Q).movine partn, are made of white metal, others of iron. moving parta,
-T. W. J.
[11458.]-Carmine staining ($\mathbf{O} . Q_{0}$).-I cannot, anfortunately, lay my handa apon the namber contain ing this query; bat, so far as I remomber, the querist wishes to know the proper time to commence the staining process. The answer is:-Ymmediately the section is cat, and whilst the specimon is living, or as near it as possible. In asiog magent hor sation stained, perhaps the older the better.-H. P. H.
[11519.]-Horve power of Compound Marine Steam Engine.-This is "calcalated" in the ordinary way, bat taking into acoonnt the expansion of the steam. See the method of Mr. Gray on p. 188. G. Lamb says calculated, but does he mean for an ongine actually at work? if so, that is done from the indicator diagram.-M. E.
[11538.]-Silicate of Soda. - For cementing object-glasses I shonld not recommend the above. Yon cannot be sure that the silicate will remsin perfectly transparent; dry with two pieces of common fiat glass and you will see the elfect.-The Welsh Shepherd.
[11531.]-Water Wheel.-I have not the namber by mein which my anser appeared, but the assertion mentioned has ar is parly mentioned andin is minerly anderstood to term rolary ong an it gen in that sense I onderstoo a steam-enging, and is nanally called a turbine distingnished by the name of the inventor. I comdistinguished by the name of the inventor. I com-
mend to the notice of "D. S." the following extract, from the Engineer of 1871. In n critioism apon a trial of water motors that had jnat taken place in Massachnsetts, the editor says, "Massachusette is blessed with a great deal of water power ; as a result it is a very paradise for makers of tarbines of all kinds. The tarbine gentlemen are strong in the matter of circulars. For a long time past there has been a rivalry, not only as to who is the best maker of tarbines, batias to who can write the best circular. Under the pressure thas breaght to bear, the daty of the turbine has been gradually angmenting in Masgachnsetts, it has risen steadily from 75 to 98 per cent. ; it stncis there for some time, until a neø manafactarer came upon the feld. He looked with seorn on a daty of 92 per cent., and boldly produced a turbine which gave ont 185 per cent. of the gross power prodnced by the fall." This may be the anse of our friend exaggerated. At the trial referred to, there was not one (and there was almost every variety of tarbine tested) that produced 90 per cent. of the power promised. This was at trial and every powe knows that in general every-day work falls below the trial percentage. In oonclasion, I would ask D. S." how he knows what percentage he obtains from the wheel shaft, if be employs a dynarmometer, and What construction is it? as I think that there most bo some mistake in the enormons percentage named. It correct, if this invention were patented, the inventor wonld obtain a fortane as startling as the percentage. P. W. H. J.
[11597.]- Mean Longitude of the Sun, \&cc.Mach obliged to "A Fellow of the Royal Astronomical Society" for his notice (p. 171) of my query. What I want is really a rosume of the motions of the sun and moon snch as is given hy Francis Baily in his "Astronomical Formula" (1827), only as adapted to the latest monern tables, which will ho Leverrier for ho
ann, and Hansen for the moon. Delambre adopted for san, and
1801 :-

[11572.]-Compressing Water.-J. Westwood seema to ignore the explanation which I gave him on
page 157 -riz, that there is a known compressibility in water which is due to the air contained in it, which in water whioh is bue to the by placing water ander the reciver of may be proved by placing water ander the recoiver of an air-pamp, and, apon exhaution, appear to be in an the air learing it.-A., Liverpool.
[11589.]-Dry Steam.-I trust that I am as willing to be corrected if I state anything which is contrary to known facts, as to give others the beneat of what little knowledge and experience 1 may bo posseased of. It appears to me that it is Caloric is no nocessity to go to the ohemist's to answer this query, as the reply on page 157 is , in my opinion, correct, and I will take his own experiment to prove my position. Does he wish me to anderata ad that il steam at 3ib. per inch be passed through pipes in a will believe that when I see it, bat not before. It appears patent to me, irrespective of what the pressare might be in the boiler, that the steam exposed to a higher heat in the farnace will booome, to all intento and purposes, high pressure; and, therefore, my of water in a given volume of it, is correct.-A., Liverpool.
[11594.]-Fioretgn Calculation of Engine Power.-A French horse-power is equal to
kilogrammetres per minute, equal to 83,549 footkilogrammetres per mioue Do vou want the formalio for calcolating? The English rales are generally used in the United States. - M. E.
[11632.]-Debility.-I did not sey (p. 182) that hcmosopathista had no cure for constipation, but that the patient ander treatment for tamour was oblized to seek relief under another system for it, as the modicino given for tamoar had no effect on the bowels. I may farther add that the homceopathist on being pressed for opening medicine refased, stating the tamour mast bo cared frst, recommending that fruit should be entou instead. Thas the natural channel for removal of effete and noxions matter would have been closed had his directinns been followed. Many common artices of food and drink of every-day use are forbiddea to homaebpathista, as they connteract the medicines. Now, can the votaries of this system bay-not merely ascertbat say with scientific certainty that they havo diszovered all the sabstances which produce this effect? Agsin, even perfnmes will destroy the effects of the medicines; how, then, aboat the garden flowers, the hawthorn, the hay fieldg, and the sea breeze, which the happy dwellers in the country cannot avoid if they wonld ? and should there be in any article of common wso some nndiscovered sabstance, some unknomn quantity. that vitiates their prescriptions, then the followers of bomoonathy are, despite all their precantions," Walking in a vain shadow, and disquieting themsel res in vain." As to whether the "Altera-Tonic" system is true or not I only ask investization. For myself I am satisfied of benefits not only in my own case and that of my frienतs, hut also with domestic pota. The misser the the Enalish Mechanic, as Itake il, is to answer not question of one of old-" What is bralt the answer is given.-Axateur.
[11632]-Debility.-I wonder if "Amatoar" (page 182) was joking when he wrote of the above. I cannot imagine any obe speaking serioualy in that manner against one of the "learned professions." If Amalar has obtained a benent from the nas in the lallaciong iet him shl disense originates in in nervoas debility. don't say that the elirir in reoless, becanse it has never don't say to th it O the andenists of the Anti-Luicet I cannot so apent; still, it woold be oat of Ani-Laicel 1 cam the way for 10 to 10 pro which are far stronger than any words.-OLd CesessMax.
[11654.]-Cleaning Violoncello.-I bought a violonoello so enmpletely encrusted with dirt that fow woald have taken the trouble to attempt to clecn it In the Arst place, I dusted it well. toor down bridge (there was only one string to hold it ap), and removed the tailpiece, and then I washed it thoronghly with soap, water, and finnnel, using tnrpentine to remove tre
rosin. After drving I rubbed the instrament all over with the naked hand slighty moistened with olive oil. The resalta were most eatiafactory, and it hat now a Trilliant polish.-R. E.
[11655.]-Making Gold and Silver Loap Adhere to Fabrio. - Dissolve gam arabic rather thick, and add aboat ono-third of brown sngar, lay now breathe opnn it, and apply your gold or silver leaf, let dry again before you rub off the edges; or a atill choapor material is dissolved glue and aboot onethird treacle, applied warm to the fabric, and in aboat substance is too thilk, thin it with water, if too stieky take less aggar or treacle.-Tri Wslbe Sheperzd.
[11656.]-Boller for Small steamboat."L. M. F." has not stated how he intends to at his
boat ap. I do not know whether he intends to at ap at paddle or acrew. It in almost a general practice now he should hare a short vertical boiler with one cylinder down the side, coupling direct apon the scrow shaft; down the side, coupling direct npon the scrow shaft;
this is, I am congient, the best arrangement for a boat
of that size. I send a drawing of the kind of boiler. I have seen a good illustration of that class of boiler in Shand and Mason's steam fire-engine. This boiler
ought not to weigh more than four or five handred. ought not to weigh more than four or five handred-
weight with fitings, the shell to be of mild
steel, three-eighths or five-sixteenths of an inch steel, three-eighths or five-sixteenths of an inch
thick; the tube plate fin. best Lowmoor wrought thick; the tube plate tin. best Lowmoor wrought
iron, the tubes of hard soldered brass fin. thick, and lin. internal diameter; number of tabes, 8 ;
length, $16 i \mathrm{in}$; diameter of boiler, 2 ft , height, 80 , and 1 in . internal diameter; number of tabes,
lengt, 16 in , diameter of boiler, 2 ft, height, $30 \mathrm{in}$. ;
diameter of firegrate, 9 in ; $;$ height of frebox, 1 ft ; diameter of firegrate, 9 in ; ; height of firebox, $1 \mathrm{ft} . ;$
fire-door, oval, 6 in . by 9 in ; chimney, 6 in. interval diameter, and tin. thick sheet iron ; height of chimney, oft from stalk, with or withont a hinge joint at the bot from stalk, with or withont a hinge joint at the
bottom, acoording to the height of the bridges. For
such a small engine I would not recommend a Giffard's such a small engine I would not recommend a Giffard's
injcotor, being what Mr. J. Bourne wonld call a battle trap, With muddy water they are failures.

The engine to be 7 in . by 9 itin. stroke, connested with a clutch to the screw shaft to throw ont of gear when pumping water; this secures the advantages of a donkey pamp. Space occapied by engine and boilers, $2 \frac{1}{1}$ cubic feet. The space around the engine and boiler
could be filled up by coal bunkers. This is a design could be filled up by coal bunkers. This is a design
for a river steamer. I would not recommend a small sfosmer for the sea; better make it a sailing vessel at once. There will be constant trouble on account of of
the tabes being encrusted with salt. If he intends the the tabes being encrasted with salt. If he intends the
steamer for the sea, at the bottom of the boiler might be placed a cast-iron tank, to contain fresh water for
the boiler. It will be of no earthly use trying to make the boiler. It will be of no earthly nse trying to make
so small an engine into a condensor. This engine will so small an engine into a condensor. This engine will
be 2 horse-power nominal. If " L . M. F." intends to make it a paddle steamer I will send a different design.
Tieferences: $-\Lambda$, shell of boiler ; B, fire-box; C , tubes ; References:-A, shell of boiler ; B, fire-box; C, tabes ;
D, opening for fire door ; E, fire-bars ; F, ashpit; with the hinge shown on the left hand; J, exhanst pipe; K, steam supply pipe.-P. W. H. J.
[11663.]-Steam Power.-I thank "P. W. H. J." for his answer (p. 207), but I find it is not quite what I want. Will he kindly say, if I make the flue of tabes,
what size they should be, how many, and what distance they must be carried above the fire-box before emerging
into the chimney? The steam pressare I conld not etate, not knowing what T could obtain in so small boiler. The resistance would not be very great, as
intended my model to represent a steam crane. Could he tell me how to ascertain the pressure in model
boilers ? I want a small pressure gange, but cannot afford to get one. Coald I construct one simple and
small? If so, how?-T. W. J.
[11664.]-Polishing Bullook's Horns.-Polish with oil an
W. H. HEY.
[11677.]-Rendering Wood Incombustible.over with a dilated solution of waterglass (silicate of soda). The waterglass is usually sold as a thick haid
like honey. This may be thinned about six or seren times its own bulls. The water must
be solf water ; boiled water will do. Use a clean brush and apply the solntion warm. In about twenty-four wood almost incombustible. Use a new brush. Wash it in clean water after using it, or it will get too soft. Avoid grease or fat on the boards before you paint roofing felt, which I would not recommend in your case, as it soon becomes brittle, and is only preserved with to me that slatea are the only material for your roof. The Welsh Shepherd,
[11681.]-Waterglass. - Waterglans will not do for the bottoms of boots nsed in salt wator, nor for wood, mortar, cement, and stone, bat not for leather. -Thi Wilah Bexpiskd.
[11004.]-Green Fly.-It is clear "H. S. C." has never tried aigar ends. These rank bita of "bacoo" are regular aettlers for all inseat life, and beat shag tobacco and negrohead and tobacoo paper hollow. Modus operandi : Place a small flower-pot, bottom up, on three bite of broken pot. Stand another pot upon handeeping the holes one over the other. Pat cigar onds two (acoording to sizo of greenhonse) of the the tobaceo gill barn ont giosidily and thoroughly Thase aigar onde are not eacy to get, bnt et come the largo oigar divans can be bonght of the caroful attendant at 2o. por lb. -Jankirard.
[11700.]-Optician's Leoquer.-See p. 515 of last volumo (query 10ı68),-W. H. Hzy.
[11710]-Cleaning Oil Painting.-The cleaning of oil paintinge is in many oases a very dimicalt operation, which ought not to be nndertaken by an amstour if the painting is a raluable one. There are many paintinga spoiled by cleaning, because almost every painting requires a diferent troatment. Most of the early paintinge npon wood are not oil paintings at or aize oolours propared and paincod with bandarac or mastio varnish. Atterwards the artists used a dis. temper groand, and painted their pictares partly in size and oil colonra. Then canrace pictares were painted entirely in oil, jet even many of those oil paintings hare in some places tonches of body or of his oun and fay ono nondertaring to clean a painting onght to ree at once by what technical means the painting was produced, because what might be used with perfect safety to clean one picture would be paintings will show to E. Parker that it requires more apace to meet every case. However, I will give him one method which is sale in every case, but it may not always have the desired effect:-Firat, dast your paint. ing with a dry brash or rag, then take some water which has been boiled for somo time ; when quite cold dip a soft sponge or a wash-leather in the water, and squeeze the sponge or leather bo that it only remaina sponge out again until the water comes clean out of the sponge. When all the dirt is removed from the painting, a dry wash-leather or a very soft cotton rag will entiroly dry tho surface of the painting. The water shonld be used very sparingls, becanse water is a great enemy to oil paintings. Now, pat your painting in a bright light (bat not in the sun) and leave it there for a day. If the colours have become kenerally dajs will be suthcient; it not, take a piece of cotton wool and dip it in clean spirit of tarpentine (not too lall). Commence on the top of your painting, going but do not it and so downwards; foach time. When rour cotton wool is empty, fill again antil your pictare is all gone over; in aboat half an hour you may go und fresh piter the second time. than it wauts another treatment.-The Welsi Sheprerd.
[11711.]-Time at Our Antipodes.-I fear the liagrams in reply to this query on p. 234 will not be snficiently inteligibitto to pive the correaponding of my having omittod to pive the correaponding and partly from "T. S." conclading that E message nd partly from 1. . conclading tha rould be dropped at Now Orleans at $6 \mathrm{am} . \mathrm{m}$. on the same day. Now, as Wednesday succeeds Tuesday, it ame day. Now, as Wednesday succeeds Tuesay, it nust have an absorute conmencoment somowhif he oarth's sariace. Tha! Weanesday, reckoid oivilly ommences at any place at the moment when it is noon the Ahpose how the the den teancay oomme theor al Lonaon Then the san pabses the moridian on the almo day a he AntipodesAntipodes. Applying this to Caleatta and Now Antipodes. Applying this to Caleatta and Now
Orleans the times for diagram No. 3 will atand thus:-
0° astronomical time, Tresday, May 7, 6 hours.

civil

90° antronomical ". Taesday, May 7. 12 hours. civil " Teesday, May 7, 12 night. 180° astronomical io Taesday, May 7, 18 hours. Wedneralay commenoing.
 oivil " Wed. May 8, 12 noon.
From these we find that when it is 12 at night at Calcatta, Wednesiay commencing, the ann is passing the meridian at Now Orleans 12 hoars later
90° astronomical time, Tuesday, May 7, 6 p.m.
${ }^{\circ}$ aivil
0° astronomical " Tuesday, M4y 7, 0 houra.
270° astronomioal
Tuesday, May 7, 12 noon.
Tuesday, May 7, 18 hours.
Wed. May 8, 6 a.m.
As, therefore, the difference of time between 12 at ight and 12 at noon is twoivo hours botwean any place and its antipodes, 80 in the case of London and Ner Orleans, the difference of time, reckoned according o the earth's rotation, is 18 hours, and the measage is dropped at Now Orleans 18 honrs in time later than
its despatch, or at 0 a.m. on Wredneoday morniog, not
on Taesday morning. I beg to apologise for having
given this oxtra troable to "T. B." und your readors.given this ox
W. B. Birt.
[11721.] -Assayer's Duties.-I have been maiting for "Un Irlandais" to answer this query, as it was addressed to him. I am eorry to have to disoourage sidered atrado tho knowlodgo Which ho With the rade secret by all Cornish asach andorutand it themselves; if this had not been the case I monld hare beon heppy to have givon him all the information that $10 y$ in my poper givon him all porson that this ves kept s ocret I once rete recogrised acesyer in Corn will, and offered to pars him for instractiog me in the meth, His rely pay him the following orde: "Theinformation for thioh por ank is if I may :- it capital I shomay at like the ides of mating asional for instructiona. The example given by "G. T. H." would, if worted out by the method given by "O. Irlaniaie," give the price to be paid for gnoh by mat R1 16 s . per ton theres it ie pally rort per ton, pocording to the right method of calculating. Perant "G. T. H."' will not think me disooartoous in thus replying to hin query.-J. Roserell.
[11781.]-Eairwanh.-If "Excolaior" will try a mixtura of pare glycerine 1 part, and rusewater 4 parte, he will, I think, find that it keeps the skin of the head clean and soft, and prevents the formation of scart. It he finds the wash too sticky he oan add more rosewater. The above are the proporilions ased constantly by myaol! and many friends with parfect satisfaction.Bspoz, St. Petoribarg.
[11787.]- Fairbairn's

Tontilating Bucket. -
The pecallarity abont these brokets is that they are mado rith one aniform carvo, so as not to reotive the water with such a shock; but they allow the wator to transmitite iorod aniformly, and as a nataral oonsequence it has more effect I inclose drawing. Δ B are the backets, and the ventilating spaces are $\Delta \mathbf{8}$. These spaces sllow the
buckets to empty themselves, buckets to empty themselves, bat their groatest use is to permit the air in the backets to oscape ensily. These backets also empty themsolros sooner than any other cort.-P. W. H. J. Iron in - Cementing Iron in Wood. - Take equal parts of powdered resin and duat of Bith brick. Mix, All partially the hole in the and, heat will bed firmily.JANHTPRED.
[11750.]-Circular Baw-Driving. - The most simple way of driving a sAm in the lathe is as follows: Drive a piece of beech, say seren iaches long, into the ohnck (hollow), tarn to the shape in sketch, bore a hole three inches doep with a half-inoh bit; tarn another piece of wood for samp with a hole in the centre, tarn down a portion of tho wood to fit sem, fix amall serem for pin, Ax on the sam and tighton up with a fin. oonch sorew. I have cat quantities of wood in a lathe with a ohnok of the abovo descriptiou, buts by foot and by

ateam power. Description of aketch: A. groove for the saw; B, the wood for the ohack; C, the osp ; D, the conoh screw partly screwed up. Do not ase a 12 in . saw
if a 9 in . or even 6 in . will do the work. Ma'te a tible if a 9 in. or even 6 in. will do the ซork. Ma'te a table same as an ordinary atool, fastened to the latite with a
ecrem-bolt, or a table Axed in the socket of the rest.-ecrean-bolt, or a table
BAYOEL SMITEBE.
[11756.]-Power of Water Wheel.-I commence answering this query in ignorance whether the Wheel is overshot, undershot, or breast. I also am not supplied with one of the dimensions of the bucketa; these dimenaions I shall have to spppose. If I am wrong, lot "Water-Wheal" substitate the dimencions that he has omitted for mine, and if anable to work it out write again. I shall sappose the whoel to be a high-breast one. The water takes 90 goconds to travarce (100×3) feet, \therefore it rans $\frac{100 \times 3}{90}$ feet, or 20ft. in one second. The contents of the roservoir are 15,120ft (cabic). The probable numbar of baokets on the wheel is 88 , and the contonts of each is (saly) $\& 0$. It By tables in Molenworth's "Pocket-Book," I and that ference to be 18.9 At . per second ; nd from that I deduce the anmer of peranion to be short 15 par minate Let T be the time that it Found tate to entirely empty the reservoir, then $15 \times 80 \times 10$.ft $\times T=18190$, the reservoir, then $15 \times 80 \times \pm 0.14 \times T=15120$,
$\therefore T=\frac{15180}{15 \times 80 \times 7}=2 \frac{7}{80}$, or $2 f$ hours nearly. There is a formala aloo given in Molesworth that, to be underatood, I mast gire in estenso. Let Q be the
quantity of water discharged in oubic feet per minuto,

plying it
$881 P$

$\frac{675}{881}$; bat would peaction
$80 \times 15=$ $\frac{881 \mathrm{P}}{6}$; practically be about 1 horse-power. Then 1 horso-power acts continuously for 2 hours, and it would be equal to 1 horse-power acting for 4 hours, or $\$$ horse-power for 8 hours, or
\& horse-power for 8 houra. I don't exacty see the meaning of the latter portion of your query. Thore are threo thinga that it may mean-riz., a aloice to let the water on the mhool, a tap or alaice to lot the waste
water out, or there may be a leak in the boitom, and wator ont, or there may be a leak in the bottom, and you may, want to stop it up. If you require a alaice,
the beat plan universally ailopted is a sliding-door or the beat plan univerially allopted in a sliding-door or
shatter. The same remedy is beat for the seeond supposition, and for the third part a leak can always be puddled up with clay.-P. W. H. J.
M1770.1-Magnetic. - Place the manked end (the north pole) of your magnet on the centre of compass needte, and dram it along to the end marked 8 on the needle. Repeat this operation sboat twenty times. Now place the other pole of magnet ot oentre of needie,
and draw along to the end of needie mexted N . This and draw along to the end of neadie marted N. This
[11777.]-Postage Stamps.-Paper a room 1 The blue and variegated stamps arranged to form diamonds or other patterns, with the penny stamps as groanding, have a good effect. Paate on to what paperhangers sell as lining paper. The best atructure to adorn will ba, as lining paper. The best atrncture to adorn will be,
perhap, that which George Colman, the younger, 20 neatly introduces

He 'spidd in the garden's doep recess
More for man's visits than bis fix'd abode. -JANXIFRED.
[11781.] - Lathe Guery.-1. I send sketch of a tool called in the trade V aconver; can be parchased at many tool ehops; if far away from such procare an old file, coften the same, grind it to the shape, and cut a V groove with a amall file on one side only; when dall sharpen or grind the reverse side. 2. A treading tool mast be ground apon a aharp edge of the atone, moving it aboat 50 as not to fatten the samo, then use a piece of
Turgey atone, fled ap to fot the groove, do not grind the Turky etone, filod ap to fit the groove, do not grind the
fiat side on the stone, but when aharpening the same

juet tozch it gently, the fiat side on the stone; or a bead tool oan be sharpenod with a round file, but that is a makeshift way. I cat a groove tin. deep in a small stone fin. from the edgo. the rounded projection to at the tool ; this in the beat way that I know of. 3 .
When I wanted any ferrales I booght a piece of brass When I wanted any ferrales I boaght a piece of brass
tube and cut them ofir with a small circular sam; the saw tube and cut them off with a sman circular caw; the saw I nsed wat only 9in. in diameter. Mronied in go doing was so long that I found it pas better to use brass.samull Smither.
[11785.]-London Blackbeetien.-A oertain remedy is to procare some bracken, Pteris aquilina, or common fern, plentifal on commons, and pat it down abont the house at night. The blackbeotios will eat it ravenonsly and soon die, and their rest in the North
pick thoir bonee. It commonly used of England.- $\mathrm{F} \boldsymbol{\text { pitrg}}$.
[11785.]-Iondon Blaokbeetien.-I kmow that a hoase terribly infeated with this inseoth a racrimble pest wherever foand, or ander whatevar mame known,
blackbeotles, cockroechen, or (Hibernicol alocks- mas clearedin a couple of reoks by a froe nse of ahlorito of lime. They were "apetaire and downtairs, nod in my lady's ohamber ;" the chloride of lime was dusted and sprinkled plentifally, evening aftor evening, in the basement rooms, and on the cracks of the plabter of
the walle, and corners of ceilings, turns of the staircacol, dc., and in about a fortnight the whole colony had politely "skedaddled," and did not retarn. When once away they must be kept away by starration-that scattered abont and allowed to remain on the floors, tables or shelves where the peste can reach them. In using obloride of lime be carcioll to seeure evorything in steet or polished iron from its famen. The knives,
door-koya, Are-irone, grates, do., ahonld bo well olled, and lept so while nat in sectanl aco, so long ase the pan. gent ehlorine prevailo in the honee; eleo rust vill com. pletely spoil them. Botore I heard of the chloride, I once oleared an infested house by a daily and nighily crosade against the beetles, 50 to 100 being the number of our victime every twenty-four hours daring one whole season; we managed to inveigle them into all sorts of traps-unmahhed jamerocks, with a little cold water in the bottom, paper baga which had held sogar, dant panan and shovele with oucumber parings on themset about the kitohon foor, a large pan of water left in
the centre, the gae down, and all loft quiet for fifteen to tweaty minatea, when by a little quiet dexterity, one person going to each trap while one tarned on the gas, we eflen deatroyed twenty at a time, and could repeat this Ave or six times of a night. - H . 0^{\prime} ' B .
[11788.]-Bunions.- "Der Mond" must paint the bunion with Veratram Tiride, which generally gives of any homosopathio chemint.-OLD Caresamur.
[11791.]-Colonel Stuart Wortley's Emulsion Process. - Cblodion.-Plain collodion loz., dried bromide of cadmiam 7gr., nitrate of uraniam 30gr., nitrate 60 gr progalic acid 8 60gr., pyrogabic acid 3ar., water doz. (this is the latest
pablished, but the Colonel says he has discorored a pablished, but betor one). Deweror.-A, carb. ampronia 04 gr ., water 10 z . ; B, bromide of potash 24gr., water 102. ; P, pyro pallio acid 98gr., aleohol 10z; ; M, methylated spirit
gat Ka , water. The solations are mized in the following proportiong, and used in the following way:-Mix proporticas, and ased in the following way :-Mix
together 5 dr . of W and ddr. of M, and pour the mixtare cagefally on the exposed plate ; ponr it back into a developing glase, exd add trenty drope of P, and pour on and of tor aboat a minute ; then add from twenty to thirty drope of A and Ave drops of B, and poar on again. The image ahould appear in about thirty seocnds, and gradeally acquire saffloient intenaity to give good prints. If it comes too alowly, add more A byeno many tendency to 0 g, add mora B; x with woa wet collodion. If "R. M. H." is inexperienced in dry lato 1 plate work' he shonla let Colonel Wortuey's proces beer, and prackice with tannin, collodio-albumen, may be obtained. If, however, he is thoronghly up to it, he may give it a trial; he must stick elosely to the formolm, see that his chemicals are perfectly pure, and be prepared to give angradgingly both rime and parience; and, aler al, in ais success io 20 bollor ham mine,
 Reykir.
[11792.]-Compound Engine.-There is not a axad proportion, becanese it deponds in some measure apoa the pressare at which the steam enters and leavea the high-pressore oylinder. In an engine of 80 harsepower at the hoyal Areenal Gan Factary, at wlinder is 31in., by 6 tt. stroke; diameter of small or high-pressure oylinder is 15 in., by $4 f t .6 \mathrm{in}$. stroke. Then, again, the dimensions of a 80 harse-pomer engine, the length of atroke of high-pressure oslinder 2ft. 9in., diameter 14 in. The length of stroke of low-pressare cylinder rule , amoder 28fin. I beliove that it is a general rule to have the steam-recoivar of abnat the same
capacity as the high-premsare oslinder.-
[11793.]-Area of Chimneg.-The area will depend upon the haight. because a tall narrow chimney will do the work of a broad-based one, within certain limits, not so tall. There appeare, however, to be mor adrantage in increasing the height than the width, for a given quantity of bricks. The diameter at the base should not be less than $\frac{1}{10}$ height, as it so there would be danger of a atrong wind giving it a "tara." Thare is a rule for steana-angine farnaces that might be
applicable. Let F be the quantity of ooal consumed per hoor in porads he quantity of oomi coasu ef H $P=$ indicated horse-power of engine ; $\Delta=$ aren of chimney
150 H

As a general rule applicable to almost avy

sort of farnace, the chimney area should be from
$\frac{1}{16}$ to $\frac{1}{20}$ of the firegrate arrface. It might probebly
be $\frac{1}{255}$ with advantage in the pudding furnaoenP. W. H. J.
[11703.]-Area of Chimney.-There is no fixed area proper for a chimney in proportion to its fire.grate, for it depende apon, not the size of the grate but the quantity of nir that must pass up the flue, and the rato farnaces used for the which vary greatly, even for ongine used for the same purpose. Some steamangion furnaces, for example, barn coal at the rate ol many our ponnds a squaro foot of grate per hour; than ten tiour or fre times as mach, and some more air then limes as mach, requiring, of course, far more all the the arst. Again, some furnaces burn nearly most do nggen of the air that passes throngh them propartiot barn hall of it ; and in many a still larger aselcgs by that for the unburnt air carries away heat produced paid thich is barut. Far less attention has been What is the great importance deserves to decidiog Whate the best propartion of air to barning fael. 1 corabnation, especially of ite carbonio oxide and other gases, and the formation of soot; if too mach, hest is carried away nsejessly, while if it be not anffliently divided, and 30 ehills the fire or fiame, both forms of vaste are caraed. I beliove "Falstall's" safent plan vill be to make his chimney five a good deal largor than is ntriotly neoessary (bow large 1 oannot guese without more data), and to have some ready means (by damper or otherwise) of diminishing the width of the opening for smoke into the fue, which he can regulate by trial. 4s a general rule, a largo rather slow barning, but not dull ore, gives more usefal heat in propartion to the fael it barns, than one barning fiercelf.-Perio.
[11796.]-Coloured Printing Inks.-"An Ama tear Printer " mast first obtain the following articles Three cane of varnieh, strong, middle, and thin (it will ky p any length of time) ; a marble blab, aboat $24 i n$ beginning to mix any colour be sure that the Before bepinniog to wix any colour of sure hal une slab, red ink is maller are perfectly clean. Sappose a nice quantity of the best pale rermilion and spread it on the slab. Break it of with the maller, then add some
of the middle strength varnisb, and with the knife mis it np , adding very little varnieh daring the niaing; serape it all ow minules rong grisdiag, atior waico small portion at a timo and grind antil perfoetils smonth. This is the whole process of grinding; rarying slightly with coloured bilt inke. A great doal deponit upon the rolter ased in working with oolourcel inke Which, if possible, shoakd never have been nuthl for black. A roller cast hard, and quite iny on the face will work the above rod ink perfoolly alean an little ; there Where it is required orint with antios oonving and orapo pad thinner, quired, Pose late rimeon lake, and Indian rea re qued to poso ine, erimson lake, and laisar rea me ased to produce the various tints of red. For a dert green, mix a bright lae, mixed bof quancilos, propared and chrome yellow. For alight green, the yellow in ars mixed an the lue adad Prd ait bluo aro dad coloar. In misiog those blees it is bost Art to sin colour. In mixig the dins them in wator beloro adar the rarnish, placing the rarnich in the rentihnd emall qam renc ahades of brow min mo mans by mirigg red and grinding oith the gix arar wila a gmadity e waiar,
 on until the int is of the praper conainteren. Thi ingredient is erame load, edding a semall geminity of common is eriago
varnish can be abuined
factarers.-Zoo Avara
[11797.]-Premertincr 3 roans and Iranalies. fies alcohol by meane af a soft osmol'a-hair brath. The spirit will dry off withoat injarg to them.-W. J. RII.
[11708.] - Urocilling Now Wire Rapen-"Boiler-Mindar "aboald place the coil of wire rage ea the axle made fasit by medgiag it in tho gromid; the pat your coil on the teble, lisase the oaticico ead. an you have taten the mende of the coil, then merent baving some one to inctently olop the tation when win stop palling the rope down.-An OLD Bosm Karmin
[11801.]-Quention in Trisonomatry-Cles struct the krianglo ABO, apen ceoh aide decortho an equilatoral triangle, from the centres of each equilateral triangle describe circles intersecting each other in P white will make an angle of $120^{\circ} \mathrm{m}$ required. To and $\triangle P$, frat find the angle BAC, whioh will be fornd $=582^{\prime} 37^{\prime}$; aleo the angles B $\triangle O$ and $0 \triangle 0^{\prime}$, anoh equal to 80°, which, edded to BAC, make tieangio 0 AO $=130^{2} 37$; sise $A O^{\prime}=A C \times 800.30^{\circ}=820 \times$ $\Delta 0=050.674, \Delta O^{\prime}=6(4)+44$, and angle $0 A O^{\prime}=$ $112^{\circ} 2^{\prime} 87^{\prime \prime}$. Find the angles $0 O^{\prime} \triangle$ and $A O O^{\prime}$, vhinh

will be found $=85^{\circ} 81^{\prime} 41^{\prime \prime}$, and $82^{\circ} 25^{\prime} 42^{\prime \prime}$ repeotively. Then $0 A^{\circ} \times$ sin. $00^{\prime} \Delta=32^{\circ} 25^{\circ} 42^{2}=$
 or w $\triangle B P$

 Then sin. 120 $0^{\circ}:$ ain. $24^{\circ} 28^{\prime} 18^{\prime \prime}:: 1040: B P=497.848$. Δ demonstration and detail might be given, bat is
woald take tov much of your valaable space.-HL
[11801.]-Question in Trigonomotiry.-I prasume " Numa " is quito as compotont to answer an to ask this question; bat as there may be, among the Who are not so, but who may noterthelese be intereated in it. I will stat for their information that they man learn how to solve it from Korigun's "Mathemetima and General Navigation Tablea," Vol. I., pago 928 , and from verions hook inon arifonomatry, fot from and better, that I know of, than Kerigan. It is one of ilx
eases or varieties of a general problem asid to have
been origivally proposed hy Richard Townley, Esq.
and solved hy Mr. J "han C. lling, in tho "Philosophical Transactions," No. 69, A D. 1671 . See pages 78 and
79 of "Elements of P!une and Spherical Trigo nometry," by Dr. Gregory. The general problem is a very usefal one in trigenometrical anrveying, particu-
 $500 .-$ THEODOLITE.
[11808.]-Photographing the Sun.-I cannot alaim to be one of "our" astronomical correspondentz, bet I think I can give "Passyunk" a reason for his
want of succoss in photographing the sun. I believe want of succoss in photorraphing the sun. I believe
he has ased too long exposare. We have antil recently photograplued the san at this Observatory on every arailable occasion, and have fonnd a mach smaller elit necessary than the one named br your inquirer a anployed by him. Dar shis the degree of apertare (say) 0.8 in to 0.10 in . ; onls on tery raths, dic between (say) 0 oin. to 10 na .; only on very rare occa nocessary to have a pretty strong spring to pall the frame containing the slit duwn rary rapidjy. In som of the instrnmenta more recently constracted than the Kew heliograph, variation in the time of exposure is
obtained by jaterchanging a aeries of diaparagma, obtained by jnterchanging a asias of diaplaragme,
having slits from one.lotieth of an inch to one-tenth of an inch, and by alteris: the strength of the spring, mit I think such a complication is naty Wer
[11809.]-Cool Air in Hot Climates.- I fear C. H. B." will not tind the machine for prodncing cold by first compressing air and then alloping it t expand, availatle as a cheap mode of cooling a honse, chough it is the oheapest plan I know for prodacing cold artificially on the large seale. This machiue it
used for condoneing Yonug's paraffir, and is found used for condonaing Young's paraffir, and is found cheaper than the one worked form of machine in u a and do not suppose that it attempts to serure a comopay of the employment of condensed and expanding air for obtaining cold. It is very possible that the manufactnre of ice by such methods would be a might be cheaper to import fatl to work an ice-making machine than to import ice from Etna or elsewhere ;
but it mast. I think, be cheaper for "C. H. B." to bray but it mast. I think, be cheaper for " C. H. B." to bry ice to cool air than to work a machine to cool it. Mr.
Julius Jefferies, F.R.S., the very ingenions inventor of the respirator (which has saved maltitndes from death and suffering, ouce proposed to obtain cool air for the hospitals and barracks in parts of India by drawing
from or driving throngh a number of dry wells the air needed for their supply. As the earth a little below the surfnce ia at aboat the mean temperature of the locality, the air from wells dug in it is cooler in snmmer and warmer in winter than the outer air. There are several evident ohjections to the plan, and it has in pluces ove, been tried, thoagh it seems worthicial maintained that the inturest of the cost for making the wells would be far lose than the annual cost of ather modes of obtaining onolness. The plan is described in detail at p. 177-8 of
Report on the Sanitary State of the Arms in India L803."-Philo.
[11810.]-Dolds in the ERead. \&co.-" X. Y." may care a cold in the hread, Sc., by patting his feet into drink a tumbler of cold water when in bed, and well cover himself with bedclothes.-Oid Cheesemar.
[11811.] Barber" Lume-juice and Glycerine."Conntry Barber" suin!d pay no nttention to about the sibject. If carbonate of pntass be adided to lime-water, the lime will be thrown out of solntion, and the resulting mixtare will bn a mess. The following formala is that of one of the largest wholesale honses in the trade:-Olive il (bleacbed, if the cream- be wanted white), 20uz. ; lime-water. 20oz.; glycerine, 2oz.;
essence of lemon, 100 dropa. Of course, this is simply essence of lemon, 100 drops. Of course, this is simply
a labricating prepuration. If "Conntry Barber" wants something that will entitls him to print on his label, "One of the best preparations ever iutrodnecd fur prerenting the huir falling off, or becoming prematurely
gray," be shonla add to the oil a quarter of an ounce of cantharides, shake it rell occasiona!!, and a!ter it has stood for 94 honrs, filter throngh paper before adding it to the lime-water. - Achd Reekie.
[11812.]-Aerated Waters.-If "Conntry Barber" Wants acrated water in rory small quantities, his
simpleat plan would be to cot one or more of the simpleat plan would be to get one or more of the
ordinary gasogenes, pethop; the five-pint size vonld be the best. It they are requirea on a larger scale, but not large enongh to kenp a machiue wirking, a coppar-
smith could eavily construct a largo enongh appirntag on the gasogene priaciple. If the water is to be aided to syraps, it dues not need to be highly charged, as the ragar causes mach frothing np.-Auld Rrifitie.
[11818.] - House Heating. - "Relwot" misht adapt to his parpore the plan to be carried ont for
heating the hall and pascases of my honse, where flaes heating the hall and pasoanes of my honse, where flaes
caunot be constracted for stoves. The tireplaces in the caunot be constracted for btoves. The treplaces in the sheet-iron (cast) backs: a hot-air chamber is bailt
behind; pipes commanicate with the outer air on one gide, and with the hall on the other; the air enters the hot-air chamber, becomes heated, and passes into the hall. At the back of the kitchen range is a similar
arrangement, though thene a second iron plate is used, which is open to the scullery at the back, giving a hot
surface for drying washed cluthes in vet weather; the
hot-air chamber between commanicates with the room thev, which is heated by this means. The name of wonld be a snfficient guarantee for the plan answering -a Cambridge Gradeatr.
[11821.]-Elly -I think "X. X." must have barked me retaius its whiteness by
conditian to work ap. -W. K.
[11824.]-Punching Esohines.-Uso oest steal avoid upsetting the point of punch, temper down to a dark straw colour by heating thick ead of paneh. Kyrle.
[11825.]-Testing Blesohing Powder. - The chlorive in bleaching powder (chlorinated lime : cal cinm chloro-hypochlorite) is easily estimated volu metrically by meane ol a standard solation of sodiam byposulphite. The hyposalphite colation is prepared of such a strength that a litre of it will exactly de colourise one-tenth of the atomic weight of iodine taken in grms. To propare it, dissolve 25 grms. of the crystallised hyposulphite in a hitre of distilled Water hill at 100 c . c. barette with this solution, and drop i into an aquenns solation of $1 \cdot 27$ grins. of pure iodine dissolrod with the aid of aboat a couple of grme. O potassium iodide) antil the colour of the iodine dis apperrs. The exact point at which the reaction is completo is more readily determined is a little macilage of starch is previously added to the iodine solution the dark blae colour prodaced is not discharged as long as a trace of free iodine remsins. Nute the number (a) of c. c. of hyposulphite solation nsed, put $800 \mathrm{c} . \mathrm{c}$.
of the solution into $\&$ gradnated jar, and add distilled of the solution into a grainated jar, and add distilled
wnter ontil it measures 800×100 cabic centimetres.

If, for example, 92 c. c. Wire ured in the experiment then $(93: 100=800: 869$ 5) add water to the $800 \mathrm{c} . \mathrm{c}$ until it mersures $869 \cdot 5 \mathrm{c}$. c. This forms the ntandard solation. To test the bleaching powder, Weigh a grm. of it accurately, mix it with about a tifth of a litre of Water containing exceas of potassinm iodide (say iquid no end acidulate with hydrochloric acid; the colonr if a little mancilage of starch be added. Iuto thi carefully drop the staudard solation from a burette antil the colour is discharged. Probably aboat 85 o. o will be required if the sample is of an average good qua!ity. If the quantity is exactly 85 c . c. it represents leaching cent. of arailable chlorine in the sample of follows : On adding the blenchiog powder to acidulated water, chlorine is liberated
$\mathrm{Ca}(\mathrm{ClO}) \mathrm{Cl}+2 \mathrm{HCl}=\mathrm{CaCl}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
which inmediately displaces iodine from the potassiam iodide

$\mathbf{2 K I}+\mathrm{Cl}_{\mathbf{2}}=2 \mathrm{KCl}+\mathrm{I}_{\mathbf{2}}$

and when the sodium hyposal phite reacts on the solu tion containing free iodine, a colourless solation is
formed containing sodium iodide and sodiam totra thionate

$$
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{0}
$$

As the two atoms of chlorive in the first equation liberate two atoms of iodine in the second. Which require two molecnles of hyposalphite for discoluration $\times 2=71 \mathrm{grms}$.-reqnire two molecules of the hypo sulphite, which are containod in 20 litres $(=20,000$ c.c. of the standard solution; therefore
grm. chlorize in 1 grm
$\begin{gathered}\text { c. }=2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\ 20,000\end{gathered}: \begin{gathered}\text { c. } \text { c. } \mathrm{nsed} \\ 85\end{gathered} \mathrm{Cl}_{2}$ of bleaching powder
(30.175 per cent.-Nil Sine Labore.
[11825.]-Testing Bleaching Powder.-Obtain an alkalimeter tube, graduated to 100 parts, from the operative chemist. Take 50 grains of the sample to
be tested, pound up in a mortar with a little cold water, let it settle, and poar the clear liquid into the alkulimeter. Add more water to the bleach gronts, and proceed in the same manuer again until the alkalime-
ter is full to the graduation No. O. If the operation is properly conducted all the chlorine in the sample will then be in yolntion, aud transferred to the graduated tabe. Next take 78 grains of protosulphate of iron reduced to a line powder, and dried between
blottiug-paper, and dissolve in about 2 oz . of warm water acidulated with a drop of vitriol. Then add the chlorino solution to the iron solution, until a drop of
the latter censes to produce Prassian blae when brought the latter censes to produce Prassian blae when brought in contact with a drop of a strong solution of red pras-
siate of potass. The most convenient plan is to drop toe potass solution on a white purcelain plate with a glass atirrer before commenciug, in (say) 20 places. If a deli-
cate test is required, the chlorine water should be cate test is regaired, the chlorine water should be
added to the irou, drop by drop, as ron approach the aupposed degree of sirenyth, and a drop of tho mixture tested after each addition of chlorine. When the potass solution oerses to produce Prassian blae on
contact with the ir \cdot n degress of your chlorine solntion used, and divide 2,000 by the number. Add 1 fur loss, and you have the answer. Thas, e. g., if you have nsed 66-hnndredths of the solution in the alkalimeter ($20000 \div 66$) $+1=$
$31 f$, which is the strength of the sample or the percentage of clulorinu it oontains. -F. C. 8.
[11828.]-THnning and Soldering.-Is not "A., Liverpool," duing wrong in recommending resin as a gezerally aned. The acid, or chloride of zinc either, gezeraly ased.
may be removed from the hands by washing them in may be remored from the hands by washing them
clear water before applying the sosp. -W. T. M. D.
[11826.]-Timening andiSolderins.-Theohloride of zinc causes the solder to adhere to the iron. The resin or tallow merely acts as a floz lot the solder, and to tin brig and clenn surface on it it is posuble bat is both treablesome and dificult.-H. RuLE.
[11827.]-Bight.- Yours is a case of myopia, whic h may be correoted by the nao of suitable spectacles. From what you say, I do not think any other remedy is needed. The "invisible spectacles" are those whose
metallic frames are so fine as to be invisible at a short metallic irames are so ine as to be invisible at a short Tistance-at Loast, mine were sold me under thst Dame. The namber of focus of the glasses mey be ascertained irom an optician or ocaliat.-OLd Cheessyan.
[11827.]-Sight.-I have in my eyes a disease called It is the cornea; " the right eye is worse than the left. minent oormes or papirof ave grown too prothe way of vision. The right eye being more conical than the other, censes me to see things donble The elape of the corne being so, it admita too mooh light. I ซear concsire spectacles, with brass plates blacked next to my evee, the bress plates having vertical slots in them which limit the amount of light lot into the eres bat this improved the right eye bat very little, the cornea in that ere being extreme conical. My right eye has been onerated apon; it has had the point of the cornea taken off. As the eje is not yet recovered from the operation, I cannot tell you the reealt, bat from present appearances I think it will be better. You ask if yours is a case of myopia, or weak sight. I should thiok, from what you state, it is the former, if it is not the same case as my own, as what you say about looking throngh a pin-holo resembles my looking through onless nearly close to you, and the same with the letters across the streot. Have you tried your eyes to see if they are both alike? as that is very likels the cause of your seeing things double, \&c. By louking in a glass you live in or near Laydon, I shonid adrice pon to to some resuectable optician, or to Gay's Hos ital to see Dr. Bader, who treated me. Should yon like any further information, I shall be most happy to give you any, if you will send your private address through the Mechanic.-T. Bnown, Shoreham, Kont.
[11831.]-Thermometer.-The division of the generally cansed by the of air in the tube which has been insnfficiently boiled before sealing off, and the thermometer having been sbaken the morcury and air have beoome mixed. II may G's.' instrument has stolerably wide bore he repeatedly in getting his colamn whole again by the air to theg the bain if, howerer, it is a line tube he must immeres the balb in a freezing mistare ontil all the meroory has contracted into it; on removing it vertically the air will ascend to the top of the tabe, nad his thermometer will be all right.-G. Mathus Whipple, Kow Observatory.
[11832.] - Paper-hanging, Sizing, \&c. Better let the walls get dry; after rub down with conrse glass-paper, on cork or small block of wood; nse no ataber, bat well size the walis (dilute with hot water)
when dry proceed to paper. Do not sizo the stomer when dry proceed to paper. Du not sizo the stone
jambs, which is the canse of the paint chipping off. I jambs, which is the canse of the paint chipping off. I
should give two coats all tarps paiut. Regalar should give two coats all tarps paiut. Regular
mixing quantity. Extra bailed oil, which will give the mixing quantity. Extra
required gloss.-W. K .
[11833.]-Smoky Chimney.-Try a galvanised
[11839.] - Smoky Chimney. - The smoke of wind passing over the higher roof ridge to the wind ward, and may ba beat gaarded against. by one of what aned to be called Day's wind
guards, the patent for which must have expired long ngo. I oonsists of four pheots of iron set upright in a square, but not meeting at the corners, with square, each opposite to corner of the inner square, the an octagonal plate to stop any downward carrent. Whichever way the wind blows it is stopped from blowing iuto the chimney, while that which blows between the plates tends to rarefy the air in the chimney and lelp its draught.- Prilo.
[1183.4.]-Springs.-I have been a grn-lock fler all my life. If yoar steel is of a sharp natare do not heat it too hot; if of a soft natare, to a good heat.
Cool it in water. Warm your spring over the tire just to dry the water, and then rab a candle over it. Pat t over the fire, the strong part first, and the b!aze sill gradually ran off. Allow it to cool of itsolf. You will find this all gou will require.-Halivax.
[11835.]-Arsenic in Wall Papers - Metallic zinc and dilute sulphnric acid are mixed in a bottle
titted with a glass tabe dramn to a fine point at one end so as to so cork. Hydrogen will esoape from the mixture, and a cter this has continued for a minate or so, the substance suspected to contain arsenic is to be added, and the cork and tube fitted tizhtly into the bottle. The Has is then lighted (it is necessary to ellow the gas to escape,
as, if there is any air mired with it, an explesion would occur on lighting it), and a piece of white china held close over the fame, when, if arsenic is present, a bright bleok spot will condenio on the china, like smoke. This is metallic arsenic. Thin tont is based on the fact that nascent hydrogen in the procence of arsenic is converted into arseniaretted hydrogen, the barning of which consumes only the hydrogen, thereby settibg the arnenic free. The ordinary commercial zinc and sulphrio acid both oontain arsenio, so "G. C. C."
had better procure them from some chemich.-F. Greently.
[11885.] - Arsenio in Wall Papers. - The presence of arsenio the following methods :-Ta be teat tabe farnished with a cork, into which a glans tube is inserted. Sorape from the wall a little of the green powder, and place this with some clonn granalated zine in the teat tabe, add a solation of one part sulphurio acid to eight of water, when, if arsenic be present, arseniaretted hydrogen, will be given off. On barning the gas arsenic is depositied in the metallio state upon a piece of oold poreelain hold in the fame. Many blompipe fiame give a garlic odour of arsenicf-E. B. H.
[11836.]-Voicing Organ Pipes.-It is imposible to give a clear explanation of voicing. It it he most intricate departmont of organ bailding. There are a few rules to be followed out, but the observance
of these goes but a little way to producing fine quality of of these goes bat a little way to prodacing fine quanity ot
tone. To be a good voicer, one mast have gening, tone. To be a good voicer, one mast have gening,
coapled with experience. Zinc is the wrong metal for canpled with experience. Ane ; fine quality of tone cannot be got oot of pipes pipes; a ine quality of tone cannot be got out of pipes
made of it, althongh some builders nse this metal for marge pipes, as it ia cheaper than organ metal. If "Aleph" wishes to hare a nioe toned organ, he mast have his pipes made of brgan metal, block tin and
lead. Il "Aleph" can aford it, he should buy some metal pipes ready roioed from sn organ builder. It ronld be beller to have one good slop han three with a bad tone. If "Aleph" will pablish his address I shall be pleas
[11839.]-Plates Chemically Clean.-In solar photography freedom from photographic defeots in the nogatives is a sine qua non, spotting by hand and toaching np being, of course, ont of the question. Wo have, therofore, had considerable experience in varions plate cleaning processea, and I can apeak as to the efficacy of potastic cyanide as a oleansing agent. We have alwaysemployed it as a solation made into a thin paste
with Tripoli, and having well washed the plates after with Tripoli, and having well washed the platea after
rubbing with it, have not lound our bath detoriorated rubbing with it, have not found our bath detoriorated by its ase. Thero is one drawback to this process-
the time required for cleaning a plate is aboat eight the time required for cleaning a plate is abont eight
to ten minntes, and so it woald bardly do for quick to ten minnter, and so it woald bardly do for
work.-G. Matrus Whipple, Kew Observatory.
[11840]-Whooping Cough, \&o.-This complaint in classed amongst the zymotic order of disenses by the Regiatrar-Genera!, and, like its congeners, small-pos, typhoid sever, cte. mast run its course, for there is no known successful method of cure adopted br medical possibly with some adrantage ennsalt a fow remarka in Vol. XIII., p. 418 , lettor 2250. Tho treatment there prescribed is based apon what are believed to be rational riews; has never failed, within my experience, in zymotic complaints in general in proventing them, and has eren cured a few casos of whooping congh; althongh this latter part is beyond my proviace as an
sanitarian, and encroaches apon the duties of the physician.-W. R.
[11840.]-Whooptng Oough, too.-There is no ncoertained spocinc that wil ouro whooping cough, and the medical profession is divided as to what canses it. will give great relie?. Proved. W Wrrs.
[11840.]-Whooping Cough, to.-If "T. C. H." lives in an town where there are some gas-worki, and will take the person who is eufering from whooping cough into the pariffing room connected with the
gas-works during the time the men are omployed gas. Works during the time the men are omployed
taking out the lime, with which the gas has been paritaking out the lime, with which the gas has been pari-
fied, the person will derive an immense amount of fied, the person will derive an immense amount of
beneatt from doing so even for once. The time genebeneat from doing so even for once. The time gene-
rally taken to effect a cure is aboat three times, though some have to go four times. In its pare state, the lime is alaked, and apromd in layers aboat 2 in . or 8 in . thick on iron grates, and the gas allowed to force its passage through them for a certain time. When the covers of the purifers are taken off, the lime is found to be caked; the impurities which are contained in the gas turn it to a green cast; it aleo gives off a very peonliar, and to those who are not ased to it, a very sickening smell, which appears to have a very beneficial eflect opon those who are suffering from whooping congh. At the irst it irritates the patienta very much, bat after a time it seems to soothe them instead. I a child, its head mast be held over the lime, so as to inhale some of the gas, as long as it can bear it. It "T. C. H." takes something rith him to hold some lime, be can take some home for the petient to smell
at occasionally daring the day; he will find it will at occasionally daring the day
repay all his troable.-Tworp.
[11846.]-Gold Beating.-The gold is prcpared by melting in a plambago crucible, and then caat into ingots, forged, and passed between rullers nutil it
assames the shape of a long ribbon, and as thin as assumes the shape of a long ribbon, and as thin as
ordinary writing paper ; each of these ribbons is cut ordinary writing paper; anch of thece ribbons is cut
into n number of swall pieces, and forged apon the anvil. These mall square piecos weigh aboot gix graing and three-tenthe each, and are sboat the 760 th part of an inch thick; they are next annealed, and interleaved
with vellum aboat \sin. square; aboat twenty vellam lenver are placed on the outside; the whole in then plaoed in a case of parchment, ovar which is drawn noother similar case, so as to keep the packet tight and close on all sides. It is next laid on a amooth blook of
marble or metal, and the workman beging beatiog with a round-faced hammer woighing 161b.; the packet is turned over occasionally, and the beating coninued until the gold is extended to nearly the size of the rellam leares. The packet is thon tazen to pieces, and each piece of gold is divided into four, with a stoel knife having a smooth bat not very acate odge. These pieces are mext interlaid with pieces of animal membrane, from the intestines of the ox, of the same dimencions and in the same manner as the vollam. The beating is continued, but with a hammer weighing only 121b, till the gold is brought to the digain divided in to forr, by means of a piece of cane brought to a fine edge, the leaves being by this time so thin that any accidental moisture condensing on an iron blade woald canse them to adhere to it. The leaves are nest divided into three equal portions, and interleaved with membrane as before, and beaten With the inishing hammer, weighing only 101b. cane instrnment and the breath, sre laid flat on leather cushion, and cat into squares one by one, by a small square frame of cane made the exact size; and are lastly laid in books of twenty-ive leares each, the paper of which is first smoothed and rubbed with rod chalk to provent the leaves adhering. By the weight and measure of the best leal gold it is oonnd and from the specific gravity of the metal, together with this admeasurement, it follows that the lonf itself is 282,000 th part of an inch thick. This, however, is not the extensibility of the metal, for by compating the surface covered in silver gilt wiro, and the quality of gold ased, it is foand to be only one-tweltth that of gold leas. or 3,884,000th part of an inch in thickness; when riesed ande the perfect as to sanke Hebert' Mechanioal Enoycloparedia."一W. H. HEY.
[11846.]-Gold Beating.-The gold-beator frst obivins a quantity of gold rrom to roaners, then alloy will, however, completoly epoil the colour. Ho then proceeds to melt it up in a small cracible by jecting it to a very intense heat. When melled it poared into a monld, and prodaces an ingot of 1 tin. by in. broad by $\frac{3 i n}{}$ in. long. It is now rolled throagh collors, gradually decreasing in aize until it is a ribbon of more than six yards long, and three quarters of a and heated to a low planed in the annealing faruace cat into 1 in. squares, weighing between six and seren grains. Each square is now placed between sheots of vellum, and the whole pat into a sort of loather bag. They are not handied by the hands, bat with tong hammer weighing about 161 b . It is hammered until the little gold-leaves of 1 in. square become 1 in. square. Thene leares are again cat ap. At this stage of the procesa the gold is what is called dentist's gold. The 640 pieces into which the 160 had been beaten are now in another bag placed between loaves of gold-beater's skin, and again are equal to 10340 pieces of the asme size as the original 160. The leaves will now be so thin as to be porfectly transparent. They are now taken out of the tool and out into lenves 3 igin. square, in which state they are pat into the books. These books have the leaves rubbed with red ochre to prevent adhesion Without great care in the ase of the tools, which vary acoording to the atate of the weather, the procose α gold-beating conld not be carried on except at great保. In fact, the gold-beater's skill lies mainly in the sheets of gold, when abont to be hammered. P. W. H. J.
[11848.]-Conio Sootions.-Let the accompany ing agare represent a cone, then a section paralial to the aris proonces a circle, as Cis a section parallel to angle to the base forms an ellipse, as E . A section parallel to the alope of the cone, as G. H forms parabola, and a section on J K, cutting the aide at an

angle leas than the parabola, forms a hyperbole. Some ections of the cone are considered in olementary single straight pisuc meeis a cone in a poing, straigh linee, or in a circle. Bat the cruves bhich are and the hyperbola-P. W. H. J.
[11850.]-Pitohes of Screwn.-The pitah of © scrow should be sboat ite diameter; 28tt. is a rery oorso pitch for an 18 ft . screw; howerer, the practich high velocity as compared with rather coarsoly-pitched corews ruaning at a lower volooity have not beon vory different. I think 20ft. quito too mach for a 10ft. screv; Where two amall screva are used instoad of a large one their combined area should not be 20 great, as they work at a greater depth in the wator, and the water in escaping in the line of least resistance to the surface has a greater weight of superincumbent water to distarb. Boarne thinka well of twin-screws (his work on the screw. propeller io rather expensive- 8 gaineas, but if a reading of it can be obtained it gives a great deal of information). You do not say how mach water the arat ship draws. I think 10 tt. too shallow a draaght for the second. The resistance of well-bailt reesels, according to Boarne, depends mainly on fluid friction, principally the rubbing of the bottom against the water, and vessels of very shallow draught for their tonnage having so large a surface do not do well ; also, if your first rescol has 18ft. dranght of water, and (eay) 9 fl. over the screw shaft, your second would have only 5 ft . of water over the shafts, and the water would be more likely to be charned. I am not a practical ahipbullder, however, bat I shoald not recommend the plan. I give my opinion for what it is worth.-PBilantaropist.
[11858.] - Pedal Harmonium. - What does G. J. C. mean by putting reeds on to pipes ? Is he ringing ? If so, the reeda with tabes noed in bome harmonium. The ordinary harmonium reed of 1616 wants a plan of the pedals, action, and soundboard, I

shall be glad to give him one. The nimpleat way of applying a foot blower to the feeder is as ander. This action should be made of hard nood for strength. The lever marked Δ mast be placed to come to the proper position for the foot. It mast also be centred so at to got the desired length of stroke. The faloram marked armis to the cane.-PNROMATIC LEVER.
[1856.]-Military Examination.-Both pare and applied matheraatice are required, brt the paper is not a very still one, except for the Royal Engineers and Artillery. In modern langoages either French or Gor cer tainly in one of them. It is neoestary to serve as a sub-lieatenant for at least twelvo months with one of the Queen's regiments, and then to pase a military oxamination, before being eligible for a abbaltern' oommicion.-ABTILLERY CAPTAIN.
[11880].-Magnotio Machine.-I really cannot taks on myself the construction or device of such a apparatas, For generation of oxygen on a large acalo,
the manganito of soda process woald probably be mucb the manganito of aoda process woula probabiy be mach oheaper, and for at mall scale even the chiorate of potage. A magnetio muchine for the purpose would
require nteam power to dive, and be costly.-SIGMa.

- [11875.]-speotrum Colours.-There are no pure pigments. It is impossible to obtain a pare white by the ane of the colour top.-H. P. H.
[11898.]-Tempering Cast Steel Chisels.Bripg them do
[11898.]-Tempering Cast steel ChiselsA word of advice as respeote making tools ont of filen. Unless all the teoth marks be well gronnd oil before hammering ha all, any chisel mad will be worthlesi Once more, as to tempering, do not heat during any part of the manipalation above blood red. Dip in parter with the chill off, brighten on stone, and dip again when blue appears.- A., Liverpool.
[11900.]-Electro Plating.-One or two 8 mee cells will suit best, and ull farther apparatas would be a jar or two of the required aizes. I think Watts"
"Electro-Metallargy." pablishod in Woale's seriea aboat the best smali manail. I hope shorth to be able to commence my own papers on the subject.Sigua.
[11918.]-Frames from Gasworks.-These are mainly impare gas iteelf encaping and lot off in open ing parifiers, rotorts, cte., also from the oxide of iron parifying material. They contain, therefore, exceess of salphar compounde, and also many hydrocarbona, mach of which will be wabhed out in rainy weather while traversing a quarter of a mile of air. It would be a puzzior to give names to all the ingredients of
these "perfames," bnt it is the sulphar and ammonie compounds which ε° et! $\frac{1}{}$ their principal pungeney. Sioxa.

May 24, 1872. ENGLISH MECHANIC AND WORLD OF SCIENCE.-No. 374.
[11919.]-Trigonometrical.-The following is the solation "Thetama" requires :-

$=\frac{1+\tan ^{2} A}{1-\tan \mathrm{A}^{2} \mathrm{~A}^{\prime}}$
$=\frac{2 \tan . \Delta+1-2 \tan . \Delta+\tan .8 \Delta}{1-\tan .2}$

$=\frac{2 \tan .}{1-\tan . A_{A}}+\frac{1-\tan . A}{1+\tan . \Delta}$
$=\tan .2 \Delta+\tan .\left(45^{\circ}-\Delta\right)$.
$\underset{90-\mathrm{A}}{\text { For } \mathrm{A}}$ stitate $\frac{\Delta}{\mathbf{2}}$. Then sec. $\mathrm{A}=\tan . \Delta+\tan$. $\frac{90-A}{2}$. Q. E. D. - F. B.
[11919.]-Trigonometrical.-Required to prove that sec. $\Delta=\tan . \Delta+\tan . \frac{90^{\circ}-\Delta}{2}$.
2nd side $=\frac{\sin . \Lambda}{\cos . \Delta}+\frac{1-\tan \frac{A}{3}}{1+\sin . \frac{\Lambda}{2}}$,
$=\frac{\sin \cdot A}{\cos \cdot \Delta}+\frac{\cos \cdot \frac{A}{2}-\sin \cdot \frac{A}{2}}{\cos \cdot \frac{A}{3}+\sin \cdot \frac{A}{2}}$,
$=\frac{\sin . \Delta}{\cos \cdot \Delta}$
$+\frac{\cos \cdot 2 \frac{A}{2}+\sin \cdot \frac{A}{2}-2 \sin \cdot \frac{A}{2} \cdot \cos \cdot \frac{A}{2}}{\cos \cdot 2 \frac{A}{2}-\sin .^{2} \frac{A}{4}}$
$=\frac{\sin . A}{\cos . A}+\frac{1-\sin . \Delta}{\cos . \Delta}$,
$=\frac{1}{\text { ous. } \Delta}=$ eec. A. Q. E. D.-R. G. G.
[11919.]-Trigonometrioal.-W. R. B., W. Busk,
Coriolanns, W. P. Wedgewood, and J. H. T. have also Coriolanns, W. P. Wedgewood, and J. H. T. have alao answered this query.
[11920.]-To "Jack of All Trades."-I apologise for answering this question, but hare a fellow-feeling
with our suffering friend, and sincerely hope he will get better. It is a case of over-taxed brain, and nothing but time will cure it, and a proper attention to the state of the blood. Plenty of cold water applied to the
head, and rabbing with coarse towels. Drink a glass of cold water the first thing on rising; it is often better than an aperient taken the night before. Always walk four miles a day in pleasant places, or in pleasant com-
pany. Either find some new thing to occapy the mind, pany. Either find some new thing to occupy the mind,
or rout np some old game of youthful experience, such or roat np some old game of youthful experience, such as dranghts, sc., with a chatty friend; in short try and
be soung again, and let the troables alone, it's the best way, for they are very wilful, and don't care a batton for ns. Please retarn their compliment; get out of the doctor's hands as soon as possible. Never give way
to extremes, and you will gradually get better. I had to extremes, and you will gradually get better. I had
four years of it, and found the spring and antamn the worst times.-Fiddlek
[11938.]-Mioroscope.-The later volumes of the English Mschanic contain several articles onthe choice and ase of the microscope, but as "A Canadian Subscriber may not be able propare, beso vollowed to repeat in brief what I have elsemhere said at considerable length. The ensentials of microscope in its mechanical arrangements are ateadiness, ireedom from
oomplexity, perfection of workmanship, and consequent complexity, perfection of workmanship, and consequent
smoothneas of action of the moving portions. The smoothness of antion requirements are clearness of defoition, and freedom from colonr. The powers will vary rom 10 or
 good working series with 840 With the The price will vary from 25 5s. to sto. With the objectives named, a no oo monocalar stand atter sam. The price of a really pood and nsefal monocular atand only would be $£ 10$ or $£ 12$; tho stage haring concentric rotation,
but not mechanical arrangements for moving the bobject. I should not myself adrise the parchase of a object. Iarger stand than this, which, with a series of good larger stand than this, Which, with a series of goand Would cost frnm $£ 20$ to $£ 25$, and serve the parchaser
for the reat of bis life. What is known as the Jackson Lister otand is the best. It is not an easy task to give maker's names; to give all would occopy too mach space; his ow fancy and leaning towards a particular class of instrument, and is favourably disposed towards the optician from whom he has parchased it, or from whom he has received aesistance in carryi"g oat his orotcheta.
Messrs. Beck, Powell and Lealand, Ross, are of worldmide fame; Messra Swift, Crouch, Wheeler, Ladd, are well-known firms; bat these by no means represent the quarter of our good and truatmorthy opticians. My old, bat very osly, fried. Beck" "frst-clase" one is by J. E. Wingpear, of HaH, an optician whom it is my ploasarable daty to mention, on acconnt of his great courtesy and assistance in rarions optical matters.
4 Canada $"$ might sacely trnat himself to Mr. Winapear, Conada might 5 Coly trust himself to Mr. Winspear, creiptions of particatar instrumpats could only appear is an aduartisemeas-H. P. H.

UNANSWERED QUEBIES.

Tho numbers and titles of quorios whioh romain wn-
anncoerod for five woeke are ineorted th this bith. We trwat
owr readers will look over the list, and sond what information they can for the beneft of their fellow eontributors.
 11895, 11997 ; " " \boldsymbol{H} ' P. H.," ${ }^{11458 . " ~}$
11515 Wood-Planing Machine, p. 108
11520 Small Photographs, 106
11521 Dirty Flangel, 106
11521
${ }_{1}$ Dirty Flannel, 106
Rolla's System of
${ }^{11526}$ Rarmonium Stop, 106
$115: 88$ sillicate of Sod 108
1159 Vermestes, 106
$\begin{array}{ll}11538 & \text { Dry Soldor, } 108 \\ 11541 & \text { Dissolving Bones, } 108\end{array}$
$\begin{array}{ll}11541 & \text { Dis8olving Bones, } 108 \\ 11542 & \text { Bmall Intensity Coil, } 108\end{array}$
11544 Feed Pamp, 106
11546 Electric Sigual Bell, 108
$\begin{array}{ll}11555 & \text { Soap-root, } 106 \\ 11556 \\ \text { Po.ca-de Wood, } \\ & 106\end{array}$
11561 Electric Light, 1
$\begin{array}{ll}11562 & \text { The Zither, } 106 \\ 11564 & \text { Blackberry and Strawberry, } 106\end{array}$
$\begin{array}{ll}11565 \\ & \text { Carrot. } 110\end{array}$
Cis Small Bont, p. 107
11577 Haldraulic Lifth, 107
11581
Wood Polishing, 107
$\begin{array}{ll}11586 \\ 11588 & \text { Culoride of Nitrogen, } 107\end{array}$
$\begin{array}{ll}11588 & \text { Eniery Cloth, } 107 \\ 11590 & \text { Carbolic Acid for Cages, } 107\end{array}$ 11591

$$
\begin{aligned}
& \text { Carbolic Acid for Cages, } 107 \\
& \text { Lighthouse日, } 107
\end{aligned}
$$

QUERIES.

[11930.]-Shape of Pitch Polisher, Figure of the pitch poligher is nird. Parkis3 kinaly say if, when uses it with the marginal facets cirvular, or does he cat off the oircular portion in order that each fooet may be square? Likewise, in grinding, does he allow the plass
disc slighty to exceed the size of the iron tool? I ank disc slightly to oxceed the size of the iron tool ? I Ank
these questions because I experience some diffoulty in figuring the marrinal inch of nyy mirrors, oonsequently,
I have re-read his instructions in Vol. X., and fud that he there recommends, first, to prepare the glass disc then the wooden model of the iron tool, and this model is to be exactly the panse size as the glass disc. Now,
an iron disc cast from this model, would be, when cold somewhat smaller than the model. What I wish to know is, does Mr. Purkiss use it so? ${ }^{\text {Pgain, will Mr. }}$ Purkisg, "F. R. A. S.," or any other of "our" readers well
versed in such matters as the following, say what figure versed in such matiers as the following, say what fraure
muat a mirror be that shows an artitcial star with a round disc, surroanded with two or three rings in their proper order, and then outside of this again, with a ring
consisting of something like a score of wings of light? conaisting of something like a score of wings of
Is it marginal fatnoss? -OPTICAL BeICKLAYKR.
[11931.]-Hydraulic Indicator.-Wu some corre spondent give me information respecting this instru ment, how attached to a press, and what the action ? -SEPOB (St. Petersbarg).
[11932.]-Organ Bellows.- I have a small organ of soven stope, with two manuals and pedal. Each of the manuals has a beparate bellows and reservoir, the two Will some of our or ${ }^{\text {pan }}$ building friends tell me if it wonld be advisable to join the two reservolrs by a wind rrunk, and so do a way with one of the blowing asendes One bellows is considerably larger than the other. and
would, I think, easily supply both reservorra.-W. M. \mathbf{B}.
[11933.]-Botanical Query. - Will any one tell me of a book by which I could atudy botany in the Bengal Presidency 9 -Lindsar.
[11934]-Case for Violonoello.-Will some kind reader give me some wrinkies for making a case for a besides the instrumeng for ravelling, and to conld want, at a distance from home? I know how nicely and completely violin cases are made now, bat those for violoncellos are different. I do not know how to make or
arrange the pockets, and to make the most of the apace arrange the pockets, and to make the most of the space.
Give some hiuts as to this, the thickness of the wood. the best material for lining, how padded, the proper place for bows, and such other information as will be insefol. II a woodcat of the interior could be farnished
it it would be of much value. A paper by a competeat
hand, on cases for musical instruments, wind and gtring, now, to cases for musical instruments, wind snd grring, now that amateur musicia
of service to many.-R.
[11985]-Lacquer for Brasswork of Electrical Machines. - With all the letters on electricity, and on the manufacture of plate and other machinos, think there is any mention of a lacquer or varnigh for one, a large plate machiue, but after finishing up the brasswork it soon gets dull and ansightly. Would it be
as good a conductor is covered with a thin coat of as good o bondactor is covered with athin cont on
lacquer?-G. H.
[11933.]-Bachhoffner's Lamp.-Can any of our numerous correspondents give partioulars respecting
Bachhotrar's "Domestio Safety Parafin Lamp," its Bachhofroer's "Domestio Safety Parafna Lam
pecullarities and construction ?-ULTaAMABIME
[11937.]-Filtering Water.-Having the water supply or a manaion derived from the surfaco drainage from a clay soil it is much oolcurod. Can I by any fitering process discharge or precipitate the yellow
colouring matter? The water cones from pond in earthenware pipo to cenenented tank lott. equare ; thence by lin. lead pipe to house, where a small charoonl tilter in connection with cistern has hardly produced any effect on colour.-Jannifaed.
[11988]-Carpenter's Bench and Tool Chest.Wil some reader tell me what are the proper adjuncts of fiting up a carpenter's or cabinet-maker's chest, so $n s$ ocontain all the tools required for general work and so as to economise space us much as posilio? Ibelieve
these quegtions were neked two or three years ago, but hhese questions were anked two or three years ago, but
no replies were forthcomiug -R
E
[11939.]-Pantograph-Wood Engraving.-Will
any reader be good enough to tell me how to make pantograph for copying and roducing drawingsi Also
what booka are best and most ngelul to learn drawing What books are best and most ngeful to learn drawing as appliod to wood engraving? Any hints npon woot
engraving, both as a pastime and profession, would ongraving, both a
oblige-Zoo ANDRL
Natural - Wistory Subjeots.-Will some one kindy of Natural kiatory subjects.- Win some one kindily natural history subjects, and if they have tried it? I think, of a method of applying the waierglass in spray to moths and butteraies. Woald there not bo great waste of the glass by this means? Aso, where can
It get the waterglags, as I know nothing whatover about
it thanamer will greally oblige-G. W. C. H.
[11911.]- Chemical Experiments. - Would any of
your chemical students who hare successfally performed yoar chemical studenis who have saccessialy performed
the following experiments, give me the necessary dotails inclading weights of materials employed. (1) Pre paration of bydrugen by the action of zinc on caustio potash. (2) Preparatios of ozono by acting on potassio
permanganate by strong sulphuric acid. (3) Preparation of a solution of ammonic molybdate (for testing tho presence of phosphnric acid). I have triod various methods proposed ly varions ant
ful.-NiL Dezrerandux.
[11912.]-Steam Velocipede.-Having a wish to construct a steam velucipede to carry iwo pertons,
wouid "Jack of all Trades" or some kind sabrcriber give me the following information? The length of
strote and ditmeter of a pair of oscillating cylinders, stroke and dirmeter of a pair of oscillating cylinders, with size of boiler; rlso the simplest mode of adnit-
ting and exhaustiug the steam, whether three or four ting and exhausting the steam, whether three or four
wheels is best. Nnd, It on three wheols, can it be Bteered with the third wheel behind? A sketch would greatly oblige-a Scbgcriber.
[11949]- Worms for Fishing.- I remember that
once there was given in the EngLrsi Mschanic on once there whs given la spite of hours of carofal senrehing. Wonld nny kind
 [11944.]-Fishing Rod. - Woald some one kindly into a walking-stick, what material to be used, and how to manuge the joints? Length about luft. to 12 tt. -Barbaros.
[11915.]-Leaky Tap. - Is there any method of stopping a large brass water tap from leaking, beside grindng ? This process has been tried twice, and cured for
a while, but the too frequent repetition of it will lower a while, but the too frequent repetition n it will lower
the plug until it becomes aseless. What is the best stuff to ase for grinding taps ?-W. T. M. D.
[11946.]-Imitation Bronze. - Will any of "oar' readers inform me how to make an imitatiou bronze, the anme as used by ga3-ating manufacturers
heard the coat the brasswork with corrusive sablimate dissolved in bydrochloric aoid. If this is the case, is it put on with a brush, or how?-A. R. F.
[11947.]-Power of Water Wheel.-Required, the horse-power of an overshot water-wheel, 3th. bin. in diameter, and 6ft. wide. The woir to be close to the buckets, and its stresm to be lin. deep and blt. wide.
Also, what must be the diameter of two pipes to supply Also, what must be the diameter of two pipes to supply the weir with that quantity of water T-N. K. R
[11943.]-A Bad Sleeper.-After sleeping two or
three hours at nignt I am woke ap by an excessively dry three hours at nignt I am woke np by an excessively dry
mouth and tougue, and an ext:eedingly bitter taste. mouth and tonke, and an ex:eedingly bitter taste.
I eat but very light suppera. Age 56 . Can any one toil me of a remedy ?-y. K. R
[11940.] - Doctors' Commons.- Will any subacriber kindly iuform me the chenpest and best plan of oxpense of a journey from Scotland to London or oan any other than legal kentlomen obtain a copy by a visit
to Doctors Comunon? Any advice on this subject will greatly oblige-Avipicious.
[11950.]-Sewing Machine Difficulty.-A few day ago itook to picces a "Definnce" sewiug-machine by Judidins, and, nufortunately, failed to notice the re-
ative position of the shuttle to the nedie-bar. Will "ative position of the shuttle to the neodit-bar. Will Jack of All Trades," or any one ablo, kind ty tell me
where the shuttle should be when the eye of the needle is nore a level with the cloth plate e Needle bar and spindin has a small toothed wheel at one end, both beios worked by a larger wheel placed between them. It is the removal of this large wheel that has occasioned my diflicuily.-Lovatr.
[11951.] - Photography. - Will some practical photograpleer kindly infurm an amateur as to the beas and must ethiclent way of washing printa, say a dozen or
more at a tina, size 6$\}$ in. $\times 4$ in. ? I have no wator more at a tiino, size 63 in. $\times 4$ in. ? I have no wator
laid on in the house, but have a pamp handy. State length of time uecessary to coumplete the operation. amera.
[11952]-Nettle and IVy Leares.-Can asy of nour cuemucal contributurs of the Englisi Mechanic hes of tho coumon nettle-also of ivy leaves-and inaciber.
[11953.]-Chemistry.-Among your corrospondents mast be many chemists, and amung yoar readers thero ago, $\frac{2}{}$ more or leas fair acquaintance with chomistry and the old systom of notation. Will any one of the
former do na the favour to give a short explanation of former do na the favour to give a short explanation of
the changes that have taken place, so that in reading a the changes that have thken place, oo that in reading a
cheurical paper, all our previous knowled 50 may not be cheusical paper, all our previous knowledyo may not bo
lost? At present Ifind it very ditticult to recognise even old famillar friends.-PAtEBF anining.
[11954.]-Harmonium Stops.-I am a new sabscriber to your magazine, and beg to pat nyyself anong
the list of inquirers. I have a small harmonium without any atops, and only one row of vibraturs, und kuowing ithat the expression stop in largor harmoniams is merely a mechanitenl alf.ir, I would like if any of yoar aumerous readers could intorm me, how to apply it to
my small instrumeut, or any means wheroby I caus my small instrumeut, or any means whereby I cav
make some variation in the tone, louder or softer at will, or if such a thing has been explained in any foriner be attaclied to sucia an in trument.-B SBARP.
[01055.]-Traverse Gear for Figines.-Would give me an idea of the nevest nnd most improved atyle
of traverise cear for heetling engines - Am In [21956.]-Pill Maldng for the Million. - Will any conld bo made in large quantities, the ugual pethds being anything bat satisfactory, considering the high price of the machines! The conifectioners, I maderstand are able to prodnce small globular sweets, in form re-
combling pulls, in considerable yunntities ; therefore Iombling pillo, in considerable yunntities; therefore, I think a modification of their process might be what
I require. Perhaps some of your readers can assist me. -
[11957.]-Straightening Band Saws.-Can any of
our' practical friends inform me of a good method of our praotical friends inform me of a good methed of
straightening band saws? In my business, nsing as many as thirty saws in a week, or at les it having them coless, onless broken and rebrat twisted, and, therefore, mored. Regarding the setting of bond saws, wheuld the ollowing be a practical system of setting saws? First gaing an ordinary saw set, and afterwards drnwing a enired, drawing the game completely roind the reThe asual mode of setting saws with the hammer oftentiyes cracks the
S.
UEL SMITHER.
[11958.]-Level of Railway Curve.-A locnmetive encine woikhing 10 toun, passes round a curve 560 yards redins, at the rate of 40 miles per hour. What thould be the difference of level between the inner and ontor
rail to prevent accident? Space between rails, ftt. 9in. PUPIL
[11959.]-Vandyke Brown.-Of what is this pigment made, a
[11980.]-A Brewer's Query.-Will mome of your ohemical friends kindly answer me the following
question?
I ama a matater and bremer, and have question? I arn a maltster and brewer, and have my
braving copper very clesn and bright. I fon that in
boiling brawing coper very clenn and bright. I find that in
boiling with some hops it turng the copper very black nt the top, and with other hors it dons not. I sliould like
to know the resen why resson why ?-Brewer.
[11981.]-The Leclanche Cell-I wish to ask a had them in nae for ringing bells, \&ce for manl. I linve and like tham better than any other. form of cell I bave
tried for this purpe tried for this purpose; when, howover, there has been a continuous use of the curront for (say) two montis,
I often fiud the zince and porons pots covered with an almost insoluhle white substance, aud shull be greatly bes had considerable or exme other hrother ader who mes and considerable experience, will kindl., enlighten
me and others an the causo of this phenonicnon, and
the net the nature of the incrusting sohstance. Accordine to my experience, the Lelanchc cell is the iesist subject to locsl action or wasto of materifl doring the incompletion of the circuit of any other form. Will "sigma, " say if
he knows on any other eqnal to the Leclanclic in this important respect, nlso whether the zincs are amalgamated
Will yon, Telegraph; in the United States. fevour me with the names of the princinal telegraph cowour me with the names of the princinal telegraph
companies of the United States, and their reqpective
hend-uarters? companies of the United States, and their reqpective
hendquarters? Information as to their relative com-
mercial success will also be osteomen [11963.]-Brass Springs.-I am constructing a com. mutator for a telecraph, in which I require brass how am I to get over this diffloulty? Can the brass bo tempered like ateel ?-GLatron.
Cli96A.1-To Prevent Paper Stioking to Silk after being Printed with Metal Leaf.-Would sticking to silk after being printed or stannped with metal lea:? In printing or stamping silk for felt hats, we are otliged to pat pieces of paper nnder overy noe,
med the silk helng so fine, the mixture of powdored
resin and shellecting resin and shellac runs throngh and makes the parpor bad; and if we use stift paper, when we pall it ofr it
hreess the stamp. We have rubled the paper with hreaks the stamp. We have rabled the paper with
Fresch chalk, but withont any effect. The mixture moald not do to be made any weaker. The above is [11965.]-To Blacken Brass - Could ang
onrrespondents tell men how to biacken brass like the
tubes of French opera-glase T1090 Dand
[11966.]-Dandelion Roots.-Will some of "our" Prionds kindly inform me when the dradelion root has its
beat propertics, and the proper time to get them an beat propertics, and the proper time to get them an. so
has to mane wine of them? also, which has the advautiage in its virtues, the flower or root?-Lercester.
[11997.]-Emigration to San Franoisco.-If ans brother reader can answer the followiug I should be
most grateful. (1) Can a mechanic do better as regards
saving money
 I suppose the neccsaries of life are eo too (3) Would What is its distance from Now York by rail, and how
long does it take to travel it? (5) How dn maseligers manage, as regards provitions, ce. (8 (Where can
 considered healthy? (8) Is here ary other town pre-
fernhle to it in the above Sta
 taken on nuy terms." Is this the caso with all com-
panien (10) What is the rate of income-tax iut the
United

 anyy one tell won remedy \%-LimRA. [11999.]-Cochineal.-Can the ooc
this country? Wx. Hismiton Hex.
Milani] - Water Regulator - Will pomo oue give
 strong at pre, cut for taking shocks, piving (1-2 of an inch
spark in air. How loug shond the plass tube be to pive
n movderate shock? Any information will oblise

[11971.]-Caloined Iranstone-Will any of "our" kivd readers give a description of the calciniug of iron-
stone in kilno, and if it is more proftable to calcine in
kilns than in the ope
[1072] ET
[11972]-EOt Eoldering Iron-I want a small oldering iron for soldaring small articles about the aize of matcu-boxes; I have no grg. Can I keep it hot by
using benzoline oil in any way [11973.]- Magnetic Engine-Will ary onegive me nformation (aith sketch) for making a aimple electromagnetic machine?-Glattox.
[11974]-Arsenic in Sulpharic Acid-WH1 some ofor readers inform me in what form arsenio exists in sulphasic acid made from pyrites, and what per cont. $? ~$
Is it not as an arseniate -In DIricen
[11975.]-Silver Plating.-I saw the other day a Inrge niaster cast covered with a gne silver surfaco,
which I was told was laid on with g brash, as the article
was was too large to opernte on in a bath with as oty. No eontributors will be able to describe the process for me, and confer a favour upon-Un Iblandaib.
[11976.]-Curve of Tensions.-It is well known that if the base of a right-angled triangle be taken to represent the resistance of a telograph line through
which a current Which
teis current is of the pasing, the allitudo to represent tho nuse will represent the tensions wit the different potheof the wire-that is, supposing the insulation resistance
 tion resistance is small, then the line of tenaions will no longer be a straight line, but will dip. I want to know the exact natnre of this curve, supposing the insulation resistance to be perfectiy the same througinat the whole
lencth of the line. Perlians some of your tale length of the line. Perhaps bome of your talented elec trichl contributors can enlightea me.-0.
C1977.1--Whistles-I have tarned several Ivory and nther whistles, but find those of smaller bore are often loader and a hetter note than inrger. What is the proper proportion of depth to size of brre, and what should he
the relative sizes of the blow hole and tha in proportion to the depth and diameter of the bore? mast be some rile. Is there any limit to size and power of a common whistle beyend that of the strength [1978]-
[11978]-Dyeing Mohair Dress.- Will some nne
more learoed than myself inform mobair dress brown colour, the present colour being blue, with black stripes?-Blacking.
[11979-Tinning Iron.-Can any reader tell me the process by whichiron is tinned by dipniag in a anlution paring the iron by immersing in til usual way by preand dipring in molten tin, but if the other couric acid complished without heat it would answer much better As it is for manufacturing purposes, none but a prac of recipe would answer-sucb, plainly pat, would be -H Ruie to one who has often helped other readers.
[11990.]-Coal in Worcestershire.-A relative of mine, owning a large estate in Worcenterghire, knowing t is likely found to the county, wisbes to know whether been math interoal exists on his estate, and as 1 have sures and Conl-Supply" in your paper, I venture to ask what strata usually inion on the sabjoct, especially as to the presence of coal on the estate could and whether by buring without much expense. could be ascertained the estate is very red in colour, but it varies considerahly. The estate lies about four miles weat of the city Held
[11081.]-Science Examination.-Will nome of oor" science teachers tell me whon will the result of it, generalls, after the examination takes place ?-J. R. [11382.]-Thrush.-Can any one tell me the proper nes?-A. C L.
[11988.]-To Gloss Ribbon.-Will some one kindly nform tue how to gloss and stiffen old silk ribbon that
has been re-dyed when being ironed, in the same way has been re-dyed when being ironed, in the same way
whioh ribbondyers do it? hioh ribbon dyers do it ?-GLARE.

THE ENGLISH mECHANIC LIPEBOAT FUND Sabseriptions to be forwarded to the Kditor, at the Offee, 81 ,
Taviatock-atrect, Covent-garden, W.0.

ANSWERS TO CORRESPONDENTS

Edroi All communieations should be addressed to the Editor of the Enolish Meceninic, 81, Tavistoek-strect Dovent Garden, W.O.
The following are the initials, ac., of letters to hand ap to Tuesday morning, 3lay 21, and maknnowledged J. nnd A. Pamuhrey.-W. J. Nasb.-Henry Canning.-
J. Belam.-Alex. Ross.-Flrid.e Fedd.-Joha Colbr
 minuham.-J. Bailey and Co.-E. A. Pittis.-Joseph T. Tuylor.-B. Thocopson.-P. J. Smith and Soans.-

 F. Gresinam Young.-E. K. Thomas. - James Welsh.
A. Bexinner-J. W. Rickford.-W. A. Rall-F. T-
J. R.-J. Cohen.-J. M. Ta glor.-Dredulus-W. W.

 Rovert.-Gerard Bmith.-The Roling Btone.-T. P. ©.
-F. J. Godden.-A Norice-Ixion.-T. L. Watson.
$\overline{\mathrm{J}}$. and A. Williameon,-Kclecticus-Inquirer--C. Jannilred.-Jos. Barwick. -d. H. Ctaling.-T. T. Greß-
 Th. Hargravee-C. H. W. Biggo-C. Lindley.-T. Stunt-E. MacCarthy.-Jaok of all Trados-Bafled. throplist. - A Dead Bhot.-A Subsoriber.-Geo. BealG. E. N.-Inquiring Mind.-Leon Jourd'hui-E. C. 二 Woodman.-Elijah E.Dunn-J. M. Rodweil-A.W.D.
S. H. Cash-Zet. J. K. P.John Hopkins.-A. -O. Glargow-Cobbler.-Artillery Captaid.-Ignora--E. W. D.-Gea. Fox. J. B. Gili.-Waveriley.-J. P. R. That
Bnatchblociz bays "It will be a great boon to mysell and others to see the Englise Mectasic printed in Iarger type."
Inquirer.-First query inserted. A Cornish bashel is J. J. Allins.
J. J. Allinghav.- Please send as the reanalts of your experiments. We oan get bushels of illastrated
patented inventions at the Patent Office, but, alas: patented inventions at the Patent Of
how few of them are worth anything.
Linvm.- Your letter on the "Creation of Man," and
Adams duties and bebaviour in the Garden of wonld take us a littlo besond our in our pages.
Communications which can only appear as advertisements to hand frnnu J. J. P. Charlio Brown, Speculato: f. Browk.-What do you mean by colouring eggs in the ${ }^{\text {sun }}$?
J. B., G. F. B., R. B., H. A. K., H. J. H., A. C. L., Mard as Stone, Ashtonian, Economy, W. B. N., J. Renworthy, A Young Woclefor Beginner.- Yon can volg.
information yon want by writing the publighers the An Old Scescrinra. - The scanty particulars aft
render it impossiblo to tell whom your picture repre sents. Consult a dealer. We doubt its being by Sir
Joshus Rernld Joshur Reynolds.
W. H.-Use n little vinlet powder.
 indices and prayed that you might not find it. Son p. 546, Vol. XII, for soldering without fire or cold brazing.
ourntic lever must leave the queation of epece to
. MonRAT-You mnst search for yourself at the Patent Office. You can hardly expect us to find space for the
deacriptions of prior inventiona bearing on a certnic indnstry, that yon may see whether yours is like them ind ntry. that you may see whether yours is like them.
s. W. - We do not know what you inean ; you cannot magnetise indiarabber,
Y. Z.-He can only enter the merchnat service, anless you wait till he reacles the prescribed standard.
 on the subject, in No. 379, Mr. W. J. Hay writes that
it may interest some of our readers to know that it may interest some of orr readere to know that
specimens of flexible martle can be ceen in the mecimenn of fexible marble oan be reen in the
Hartley Musenm, at Southampton, whioh is open to the pablio daily.
GILBERT.-We do not remember your commanicatinns. We do not insert all replies that rencb ussometimes because we think a query has already received sufficient nttention.
M. R.C.S.-The discussion is
M. R.C.S. -The discussion is closed.
will find yon are rnther behind timelumes, nod you Will find yon are rnther behind time in endearvaring to initiate a diacuasion on the respective maerita of the Roland.-We fear none of our
tell yon "what induced sir Walter 8oott" bo able to pessige yon quote. namber
Teachable.- You must repoat jour query, and gire more distinctly the di
not urienstand them.
Aprent ce.
noster cer - Order through Triibner and Co., Pator
Scionce and Art Dopartment, Soath Keretary of the Erito - accaptable.
Nobinty.-The covors can be had. You mar bind S. Spivers.-We cannot pallith your address so that "Anglo-America" can write privately. Bend what WPATGER-Ruy the baok the beneft if aul.

解
Silvesmer Firti. - See reply 11656 in this namber.
Ons in a Fri.-In the case of a peroou dying intestate.
lenving a wile and children, one-third of his personai property goes to his wife and the reat to his child or children. A mothar-in-law takes nothing. We wish correapondentes would adopt less conmon siguatures
Another writes giving the same num de plume as yourself, and nelther of ou add anv nlace of addreess of auything else whereby we may distinunith yon.
Strackibra. -We do not charge for tho ingertion of
queries, nnd have devoted vour atarop to the Lifebo Fund. For information about lualago, seo pp. 3 lit

The Ctulish Gftechanir

will the night of the 21 st at 10h. 46 m . σ Sagittarii her dark one at 11 h .57 m . Daring the early morning of the 27 th , at 3 h .29 m ., 30 Pisciam will be uccalted by the bright limb, and reappear from behind the dark one at 3 h .52 m . Lastly, at 3h. 9m. 8.m. on the 30th, BAC 755 will disappear at the Moon's bright limb, and emerge from behind her dark limb at $\mathbf{3 h} .52 \mathrm{~m}$. also.

The remarks which we made last month (p. 136 with reference to the unfavourable position of the planets for observation, apply with even increased force to the condition of things obtaining daring Jane. Mercury is a morning star, and rises at the beginning of the month, abont thres-quarters of an hour before the sun (of course, in strong twilight), sonthing and setting in full sunshine. Every day, however, finds him closer and closer to the San, with which he will be in superior conjunction at 9 h .46 m . on the night of the 24th. Meroury will be in conjunction with Mars at 4 h . 14 m . during the early morning of the 18 th , and with Venus at 5 h .38 m . in the afternoon of the same day. His conjunction wita the Moon at 7h. 21m. a.m. On the 4th has been mentioned above.
Venus is also a morning star, and equally badly placed for the observer. Her diameter is only about $10^{\prime \prime}$, and she is very nearly round ; so that, even if she be caught in the field of the telescope, she is about as uninteresting an object as can well be imagined. She rises, sonths, and sets in full daylight during the whole of June, and is rapidly approaching the San. We have referred previonsly to her conjunction with the Moon at $3 \mathrm{~h} .16 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. on the 5th; and to that with Mercury at 5 h .38 m. p.m. on the 18 th . We may add that she will be in conjunction with Mars at 5 h .49 m . in the early morning of the 17th.
Mars is mach too olose to the Sun to be visible ; moreover, his apparent diameter only subtends an angle of some $4^{\prime \prime}$. His conjunction with the Moon at 4 h .46 m . in the afternoon of the 5 th ; with Venus at 5 h .49 m . a.m. on the 17th; and with Mercury at 4 h . 14 m . a.m. on the 18th have been before spoken of.
Jupiter now, owing to the protraoted daylight, and his steady approach to the west, is visible only during a comparatively short period of the early night. He rises, of course, in bright sunlight during the whole of Jane, is on the meridian on the 1 st at 3 h .19 .4 m . in the afternoon, and sets sbout 20 minutes past 11 at night. On the 30th he will sonth at 1 h .49 .2 m . p.m., and set sbout 9 b .42 m . He is travelling slowly through Cancer this month; and starting on the 1st from a point sonth of μ^{2} in that constellation, will, by the 30th, be found forming an obtuse-angled triangle with η and θ. At 6 h .11 m . in the afternoon of the 5 th, he will be in conjanction with Uranus. It will, of course, be far too light for the smaller planet of the two to be discerned at the instant of conjunction with the amonnt of optical power at the command of those for whom thees Notes are chiefly written; but, as Jupiter and Uranus will approach each other within a single minate of arc, they may be seen later on in the evening in the same field of view, even with a high power. At 6 h .24 m . p.m. on the 9 th , as indicated in a previous peragraph, the thin crescent Moon will be some 3° (and a few minutes) north of Jupiter.

The visible phenomena of Japiter's satellites this month are few indeed. Satellite 1 will be occulted at 9 h .31 m . on the evening of the 1 st . If it be not too light on that of the 2nd, the egress of satellite 2 at 8 h .40 m ., and the egress of satellite 1 at 9 h .6 m ., may possibly be perceived. The shadow of satellite 1 will pass off at 10 h .2 m .; as will that of satellite 2 at 10 h .30 m ., but Jupiter will be very low down at the time of the occurrence of the latter phenomenon. It is barely possible that satellite 4 may be seen to reappear from occaltation at 8 h .12 m . in the evening of the 6 th ; and further that the ingress of satellite 2 at 8 h .32 m ., and that of satellite 1 at $8 \mathrm{~h} .46 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. on the 9th, may be detected. The shadow of satellite 1 will enter on to Jupiter's limb at 9 b .36 m . on the same evening (the 9th), as will the shadow of satellite 2 (Jupiter being close to the horizon) at 10 h .11 m . afterwards. On the evening of the 10 th satellite 1 will reappear from eclipse (nnder anfavourable circumatances for detection) at 9 h .9 m .28 s . On the next night, the 11th, it is just possible that the egress of the shatiow of satellite 3 may be perceptible at 10 h .5 m .; While the same may be said of the egress of the shadow of satellite 1 at 8 b .19 m . ; and the reappearance of satellite 2 from eclipse at
10 h .14 m .9 s . on the $18: h$; of the occultation of
the same satellite (2) at 8 h .43 m . ; and the egress of satellite 1 from Jupiter's disc at 9 h .37 m . on the evening of the 25th.

Saturn is now above the horizon at a rather more convenient time for observation, but is so extremely low down that telescopio scrutiny of him is almost futile labour. He rises on the 1st about 20 minates to 11 at night, and is on the meridian at a quarter to 3 o'clock the next morning. On the night of the 30th he rises at $8 \mathrm{~h} .42 \mathrm{~m} .$, and souths 43 minates after midnight. He travels during Jane from east to west, through - perfectly barren region in Sagittarius. We have already adverted to his conjunction with the Moon 29 minutes after noon on the 22nd.

Uranus continues to oconpy a position somewhat to the sonth and east of μ^{2} Cancri, and travels in an easterly direction through a small aro daring the present month. As we remarked in our May notes, his proximity to Jupiter renders all our observations with reference to the visibility of that planet equally applicable to him. Their conjunction at 6 h .11 m . in the evening of the 5 th ; and that of Uranus with the Moon at 5 h .18 m . p.m. on the 9th heve been spoken of under their proper headings.

Neptane rising in twilight, and southing and setting in bright sunlight, is still, for all practical parposes, invisible.
June, from some cause unknown, is a month conspionous for the absence of shooting stars from its night skies.

THE ARRANGEMENT AND PRESERVATION OF INSECTS.
$\mathbf{W}^{\text {E promised in a recent article (p. 187) to }}$ preservation of specimens of the Lepidoptera, and presuming that some few of our readers are anxious to have everything in readiness for the captures they hope to make, if they have not already mede a goodly number, we proceed to give a few instractions which may serve to guide the entomological tyro in obtaining a practical knowledge, and preserve him from disappointment at the outset of his career. Probably the first thing which will trouble the would-be collector will be the cabinet or case in which he can preserve and exhibit his trophies, and it is a difficulty not easily overcome where funds are limited. There are numerous designs for cases and cabinets, all of which are excellent in their way, and serviceable articles for the purpose intended, but they are, unfortunately, also rather too costly for the means of many of our readers, while many others woald not feel justified in spending so mach money on " mere batterflies," as they are sometimes contemptuously termed. Nevertheless, it is quite possible to make cases at a moderate outlay, which, while answering all the parposes of the more finished reoeptacles, with their contents will still be not noornamental when seen in a parlour or drawing-room. It would be well for the embryo entomologist to settle at starting to what extent he is likely to be successful in his efforts at collecting, which will largely depend, of conrse, on the time at his disposal and the enthusiasm which he throws into the work. Where a complete collection of the Lepidopters or Coleoptera of the British Islands is aimed at, a cabinet is certainly to be desired, as it admits of a more systematic arrangement of the apecimens, and while keeping them al together facilitates reference. Where, however the collector is contented with the wore beantifal individuals of the family, or merely seeks to obtain specimens found in his immediate neighbourhood, a few of the ordinary glass-topped cases wil answer his purpose, and these may stand on side boards, tables, or shelves, or in any position where they can be shaded from the fiercer light of the sun. When we state that a good collection of the British Lepidoptera would require about 40 drawers, and that the price charged by the best makers for their cabinets (the cheapest, too, in the long run) is something like $£ 1$ a drawer we have furnished a few data to guide wur readers as to how far towards a complete collection they are prepared to go. There is another plan, however, whioh is preferred by many of onr best entomologists, who aver that it is superior to a calinet, and that is a series of store-boxes made to imitate books, kept like them in a book-case, and lettered or labelled for easy reference. Under this aystem of arrangement there is, of course, no limit to the extent of the collection, save its completeness and the amount of shelf-room
readers, excoept those who are very, silifal With tools, to attempt the onstruction of
a cobinet, whioh is a difioult piece of work
 mention, however, for the beneft ;of those who may be determined to try, that a very wnitable Hise can be beally found from the follow. ing dimensionas. Tbe number of dramera obould be not lees than 40 , 1 Bin. aquare (i.e., the same width and longth), and 2 in doep oxtornaly. They shonld be made to fit acourately and be interchangeable; and when arranged in two oolumns in a handaome oneo. with 1 labels at the
sides or on the front of the dravers, will be found sides or on the front of the drawers, will be fonna
all that can be required. The ordinary gless oase, however, is not beyond the still of the average amatoar joiner or osbinet-maker, and beeides being the least expensive, will be found to answer the purpooes contemplated in thase arliales. The best rood of which to make theoe9 or any other roceptacales for preserring speceimen of in insects is undoubtealy mathogng sither Spanish or Honduras. It this is procured Irom the yard care aboolld be taken to ascertain that it it rell.eeasoned; but the obeapest and best way of obtaining snitable material is to
purohase some seond-hand fragmenter soch as purohase some Becond-hand fragmente, anoh as
the broken flap of a table, often to be pioked ap at the broker's shop or old-material dealer's. The size of the cases will depend on the taste of the maker and the poritions they are intended to oconpy, but like the drawers they should not be less thas 2 in . in external depth, and would be better $2 \frac{1}{2}$ in., as there shon d be rather more than an inch left between the cork and the glass. They may be made of the same depth baok and front, or constructed so that the glass may slope, at the taste of the collector, but if made only 2 in .
in depth the glasses must almost necessarily be in depth the glasses must almost necessarily be
fitted into frames to lift on and off. The ensier way, however, is to construot the upper edge all round with a rabbet lined at bottorm and side with chenille or velvet, into which the glass is droyped. The glass should be perfectly colonrless, the kind used for pictures. "flatted sheet," as it is oalled, and shonld have a piece of ribbon fixed at one and or edge, by which to lift it up, an operation that must always be performed slowly and with care. The bottom of the case is to be entirely covered with a piece of cork of the best quality, about a quarter of an inch thiok; bat as it is rather diffioult to obtain cork of the requisite quality and suitable dimensions, two thinner pieces are often glaed together, or the lining may be filled in in gections of the size of the good material obtainable. Generally speaking, for cases of ordinary dimensions, a sound bottom can be secured by glueing two pieces, each nearly an eighth of an inch thick, together, for if there is a hole in one it will most likely be covered with sound cork in the other. The cork bottom being prepared and finishod by emoothing it with glass paper, is firmly and evenly glued into the case, and kept in position by a piece of wood and a weight, till the glae is set and dry. The next operation is papering, i.e., oovering the bottom, and the sides if desired, with "tea" paper-the technical term for the sort used, but any paper possessing an even surface, perfect whiteness, and apnnginess of nature, will answer the parpose. This should be carefully pasted in with thin psste, to whioh a few drops of carbolio asid or a small quantity of corrosive sublimate uas been added to prevent mildew, as well as alum to insure hardness in drying. The case is now complete, with the exception of marking off the bottom into spaces, and before this is procoeded with, it will be well to obtain the dimonsions of the principal specimens from a friend's collection or wait till the specimens themselves are caught. In the arrangement of a collection of Lepidoptera, those of the same family shoald be placed together, being divided into genera. A label with oapital letters should run eoross the spsce so ocoupied above the first row, and above the first insect in the row should be placed a label with capital letters the initial of whioh is the largest; and under each species its distingaishing name in small letters, e.g., VANESSIDE, the name of the family ; VANassa that of one of the genera; and Antiopa, that of 2 species. Lists of the names are, however, sold at the naturalists' shops, which can be cut up and pasted in, and of oonrse look neater as rale than when the pen is used.
Having thas prepared the oase, and presumably obtained some of the insects whose beanties we wish to retain as "joys for ever," the next
will be setting, and here we have a
thods-the saddle or coundod, the
high, the low, and the flat. Neither of these plans reprosent the insect as found in nature, and as gaddle-setting is the system generally parsued in this country, we shall content our selves with giving a description of its principal points, leaving the refinements of manipulation adopted by some lepidopterists to be discovered by esch oolleotor for himself. For saddleselting, then, cork saddles will be required, of the shape ahown in plan and section in the fgure; these are fixed to thin pieces of wood, and vary in size from fin. to 5in. in breadth, and about a foot in length, depending as regards the latter measurement on the dimensions of the set-ting-house, where that useful adjanct is employed. These pieces, of cork are best obtained from the oork-outter, who can make the groove much cleaner and better than an unpractieed hand, but if it is impossible to obtain his assistance the saddles may be made in two pieces, and glued side by side to the boards, leaving aufficient width between them to aocommodate the body of the insect, or a V-shaped groove may be cut out with a penknife, bat the cork must be finished off by smoothing with glass-paper all over. A setting needle and a setting bristle will also be required, which are fixed into corks or small pieces of wood as handles. The braces employed to keep the wings in position are wedge-shaped pieces of. stout writing-paper, or card for large specimens, and are plaoed as shown in the engraving. The saddles being ready, one of the captures is pinned to a saddle of a suitable size -that is, rather wider than the insect with fully-expanded wings-the pin being inserted at the part marked by a dot, with its head slanting forwards a little. The legs are then arranged and the wings on one side laid out carefully with
away from the damp and allowing a free acceas of dry air around it; bat all the specimens should have the anderside of the abdomen anointed with a dilate spirituous solation of phenol, carbolic acid, or corrosive sublimate. The strength of the solations may be tented by trying them on black paper, on which they should become speedily invisible. Care shonld be taken that the glams of the case fits air-tight, and fresh specimens should be kept in a separate and smaller case till evidence is afforded that they are free from parasites. Various eseantial oils, camphor, marcury, and numerous insecticides are recommended to be placed in the case, but phenol properly used will be found as satisfactory as anything
There is oue other little point worth mentioning, and that is when it is found desirable to reset an insect, it may be relaxed either in a jar containing damp sand or in an ordinary flower-pot sunk a few inches in the ground and covered with a tile or a piece of alate, and the earth drawn over. When sufficiently limp the insect should be reset as soon as possible, and when dry, as far as Lepidoptera are concerned, the parts of the wings where they join the body should be slightly touched with a solation of pale leo. We have now, however, so far exoeeded our limits that wo have only space to wish all intending collectors the sucoeds they may merit:

THE SCIENCE DEPARTMENT AND SCIENTIFIC EDUCATION.

By C. H. W. Bigas

TT is unfortunate, perhaps, that our daily and weekly proes is mainly employod in critioising what is to be, instead of devoting some part of its labours to the diseusaion of what is. No doubt it is desirable to educate the publio mind in regard to every important Bill before Parlisment. The pablic mind educated, the pablio voice approving. the measure sooner or later beoomes law, and then to a great extent passes out of men's minds Witnees the Lrish Ohurch question, how much peper and time was wasted before the Bill beosme law, yet how little has it been disouseed since. Witness, again, the New Army Regulations; or, better still, the Reform Bill. Differing from any of these, and, perhaps, from every other topic of pablic discussion, the Edacation Bill is not relegated to obsourity ; but there is a good reason for this, inssmuch as we have not yet settled our system of education. At present wase trying an experiment, a costly one it in trae, and that is a very good reason why we should hope for the best. Still, I am sorry to ssy, it seems to me to be a failure. I am not thinking of the politicoreligious part of the question, simply beceuse I don't believe in it. There is a political question, but no religions one. So long as our primery schools are anconnected with the secondary and higher aohools, so long shall we have to bewail an incomplete system of educstion; so long as oompalsion is left to the liberty of the sabool boards so long shall we complain; so long as the school master himself ocoupies his present position in the social seale so long will there be strife and bickering. Who on earth would think of examining lawyers, or dootors, or architeots, as examiniag lawyers, of doctors, or architeots, as of man who know nothing of law, or physia, or building, except just so muoh as they had picked up during a univeraity career? Yet, formooth, sohools are examined by men who know literally nothing of sohool wark-men who have obtained their appointment beoause of a distinguished career at their Alma Mater, or from intorest. Lewyers have the woolssok before them; doctors are honoured by knighthood ; architeots, literary men, oivil engineers, and other profesaional men (if they are at all distinguished) mske money, become landownors, get into Parliament, ay, and even into the House of Lords ; hat whoever heard of a schoolmester, no matter how talented, how distinguished among his fellows, obtaining anything more than a sohool? Further, our eristing primary schools are literally starved for want of funds. Ten times the teaching power is required for the sohools to be brought up to and degree of excellence, and this teaching power can only be had by increasing the funds at the disposal of school managers. Again, what teaohing power we have is to a grest extent lost, becease so widely diffased. In many towns thers are a dozen little fiddling schools, where two good large ones would amply suffice, and then all the firat divisions, thrown into two divisions, would require bat two masters instend of twelve ; the other masters coald take the othar divisions. In other words, by amalgamation, a
class of about forty boys would be obtained of abont the said attainments, and these a master could easily manage, instesd of there being a little coulool of forty boys of different attainments, and,
therefore, in different standards, and thas out therefore, in different standards, and thas out
of one man's power. But what has all this to of one man's power. Department? More, mach more, than my readers may at first imagine. However, these allusions have been thrown out more as hints than as consecative, hardly-conmeoted, I might say, argaments, in order that many more minds may give attontion to the subject. Were I to attempt to argue the question fally, I shoald require not a colamn or two

Now, the ranks of the working olasses, whether mechanics or farm labourers, are, for the most part, reoruited from the boys of our day-schools. The Science Deptritment was instituted for the penefit of these working men : for our engineers, our baildars, our carpenters, our wheelwrights, these people aro beneated or not is another question. I know that many people who can and Who ought to pay for their sons' eduoation in
various branches of science, send their boys to the science school, where for from 2s. 6d. to 4 s . they receive certain instraction; these pupils are presented for examination, pass, and the country present the master $£ 1$ or $£ 2$ per head, as the case may be. These stadents are sons of "foremen," "master-men," and so on ; people who know-who means of their own technical knowledge have raised themselves above the majority of their shopmates. They are determined their children shall further improve upon their position, and thus constrain them to take advantage of the opportunities offered. They know that as a rule best that can be obtained; the men who give them know their basiness too well to do their work in an unworkmanlike manner. Why do the children of the rank and file of our workmen neglect to embrace these advantages ? Is it because they know not the value of them? Is it because they are stabborn, clumsy, thickheaded clodhoppers? Oh! no. But there mast be a reason. What is that reason? Is it not because the knowndge imparted to them in our primary schools is inseficient to allow them to usaerstand, short course of lessons in the seience class understand safficiently well to be able to pass the required examination of the department? Surely, "To him that hath is given, and to him that hath not nothing is offered." Take the majority of cases: the boy leaves school at eleven or twelve
years of age, he can read and write tolerably, knows the first four simple and compound rales, and probably a little of fractions. What can the science master do in one course of lessons? What does he do? Just enough for some 70 per cent. of his papils to fail. Now if, on the contrary, there was a sufficient number of masters in our elementary schools the rudiments of science could easily be tanght in these sohools, and the pupils having received an elcmentary knowledge would when in the workshop see the necessity of extending that knowledge; thas our science schools would be filled by the very people for whom they were intended. Instead of being the mere cadres of classes the classes would have their full complements. With improved knowledge we get improved workmen, in every sense of the word, less publichonseism, more attention to home and home comforts, and, above all, an increased desire to see their children better educated. The Science Department must recast its system of examination. The papers now set are similar
to those given to some of the higher forms in our large schools. Where the pupils have the best masters, the best apparatus, and a great deal of time for the stady of the subject, it may suit some people to say these examinations are easy, so they are, in one sense, but they are very diffioult for the people for whoun they are intended;
in fact, jutut difficult enough to keep the money necessery for the extension of the classes in the Government coffers, instead of being utilised by paying teachers, or rather, I shoald say, the money voted by Parliament is most unaccountably swallowed ap by the department. If a statement in the Schoolmaster of May 18 is to be believed, no less than $£ 90,000$ was required to pay a staff
of olerks, \&e., to oarry on the basiness of the dopartment, whilat $£ 20,000$ found its way into the hands of the toachers. I wonder how many ramas. workmen; for this is about the proportion
required by the science department. Further, although not agreeing with all the Saturday Review says, I can beartily acquiesce in its statements every now and then relating to this particular department. Over and over again has this paper required some alteration in the work given or undertaken by the head of the department. It argues, and with some reason, that a man cannot well do two things at once-cannot look after the science and art of the United Kingdom, and also devote atteation to the annasl international bazaars, not to mention other things. A depatation of science masters recently had an interview with Mr. Forster, and one ground of com plaint was that they did not agree with the system of payment by results. Now, it would be well that all science masters-and, indeed, all masters-should understand that public opinion will not allow public money to be paid away without in some measure knowing what it goes for If $£ 90$ goes to clerks, and $£ 20$ to masters, the country knows that the masters have passed a cortain number of papils, and that the clerks have written a certain number of letters, the examiners looked over a certain number of papers, and so forth. If, on the contrary, $£ 50$ is paid to masters because a certain number of lessons are given, then any one may give the worst lessons, do the least work, bat get real pay. It can't be. Let us have fair examinations, and be paid fairly for our work. Local subscription fees, \&e., one moiety, Government grant the other moiety. It is not about the payment by results that I find fault, it is that the examiuations are not adapted for the working classes; the examinations are not conducted properly. The minimum number of lessons shoutd ccnsist of at least forty instead of twenty-five-that is, they should be given through the ordinary achool terms-not during the winter months only, bat throughoat the year. It should be compulsory apon our elementary schools to teach the elementary branches of science. That this is not impossible I know, but the one great requisite "teaching power" muat be obtained. A boy atten years of age ought to-ay, and under able tuition wonld-be able to read well enough to dispmoss with "reading lessons," write well enough to dispense with writing lessons. The time previously devoted to these subjects might be given to others, more particalarly to seience. Boys read with avidity the penny-dreadful literatare, give them someting to intereet them, and Ill warrant they will rad. Their exercises will give them sufficient writing. By twelve years of age a boy should be ablo to minipulate fraetions and proportion pretty thoroaghly, and then his scientific edacation would adrance a step. By fourteen years of age, or the time I would have fixed as the earliest for leaving school, he would be an interesting subject to be moulded and formed licked into his true shape by the science master. Now all ye Euglish mechanics who read this, give a small portion of your time to the thonght of what is, and what ought to be; don't be led away by the counse!s of anybody; if you are educated enough, that will suffice-if not, it is your daty to look around you for better means wherewith to accomplish the ends you have in view.

VEGETABLE PALEONTOLOGY.

[Fnom odr Own Reporter.]

DTRING his present course of Swiney Lectures, delivered at the Geological Musenm, Dr Cobbold gare a bricf eketch of the science of fossil botany, of which we give the following abstract :-
This science has not had that time and attention bestowed upon it which it ought to have had, the troth being that other departments of palæontolucical science were not attractive. The geological record, too. is very fragmentary, as compared with that of zoology. A few eminent men, however, have worked at the subject and given it its present standing. Looking back, there are three names which stand out preeminently in this respect, Lindley, Brongniart, and Unger. In later times a number of workert have been engaged on this subject, and progress is daily being made. Hooker has desoribed the subject as one of extreme difficulty, and the conficting opinions held abont varions objects confirm this statement.
We may take as a starting point the following eneral proposition :-Throughout the entire series of fossiliferuns strata which happen to entain fussil platita, there is no evidence of the sistance of any typr of plant life which cannot be reficred to one or other of existing orders of
plants apon the globe. In other words, there is no fossil plant known which is so distinct ss to deserve being placed in a group of ordinal valne by itself. Exception might be taken as follows : Some botanists place the Calamites in a separate family, and call it Calamita, or Calamitacere ; but do they present characters of such extreme markedness or distinction as entitle them to be separated into an ordinal groap by themselves? He (Dr. Cobbold) had looked very carefully into the matter, and he thought that although they present some features which distinguish them from all existing species of Equisetaceæ, they merge so imperceptibly into that group that they could not fairly be separated from them.

In this respeot there is a great contrast betwees the palæontolcgy of plants and animals, for of the latter 8 or 9 -or some say 10-groaps of ordinal value have flourished and become extinct.
The vegetable kingdom may be divided (ac cording to Lindley) into seven great classes, as follows :-

1. Thallogens, as algæ, fangi, lichens, \&o. they are the lowest form of stemless plants, and are little better than mere masses of cellalar tissue. The oldest representative of this chass is Oldhamia in Cambrian times. It is one of those fossils about which there has been a great deal of discussion and a great variety of opinion, some placing it in the animal and some in the vegetable saries.
2. Acrogens, a low class of plants. with stems of a pecaliarstructure, flowerless-as ferus, mosses, \&c. The earliest representative is Psilophyton, \& gigantic lycopodiaceous plant, described by Dr. Dawson. This class was well represented in Devonian and Carboniferous times by ferns, oslamites, lycopods, \&c.
3. Rhizogens, or rhizanths, a small order. comprising the pecaliar plants Raftesia and Balanophons.
4. Endogens, comprising two divisions: (a) those with complete flowers, as palms, orchids, lilies, sco. ; (b) thoss with incomplete flowers, as grasses, sedges, screw pines, \&c. According to Professor Tournell, of Sweden, the earliest record of this class is Eophyton in Cambrian times, which he, at the Norwich meeting of the British Association, pat forward as a mouocotyledouous plant. The members of that Association, however, were divided in opinion as to its vegetable character, and the samo uncertainty still exists. Mr. Carruthers, of the British Mnseum, belieres in it. Mr. Etheridge does not. The lecturer said he himself had looked carcfu!ly into it, and as far as he was able to judge, ho couclu?ed that the evidence as to its vegetable character is entirely unsatisfuctory
5. Dictyogens. A small class, containing only four ordcrs, and not represented as fussils. As examples may be mentioned yams and sarsaparillas.
6. Giymnogens, as pines, firs, yews, and cycads. As the name implies, they are naked seeded plantey and as a group have played a not inconspicuous part in the history of organic life on the globe. Their first appearance is in Devonian times, as Conifera, and they flourished in enormons nambers in the Carboniferous priod.
7. Esogens, floweriag plants having two or more seed lobes. This is the highest class of vegetable life, and is divided by Lindley into three divisions: (a) apetaluns (willows); (b) monope talous (laviates); (c) polypeialous (crucifere, rosacer, sc.). The earliest fumm is Esogeria in Jurassic rocks: the first trace of arborescent Esogens is derived from the Cretaceous beds.
In oue respect there is a paralieligm between the record of animal and of veretable life, viz., that in ascending the geologic scries, higher and higher forms successively appear, and the highest development of each kingdom was the last to ap pear. Certain of the older rock : give us a more or less fair and adequate notion of the extraordinary prevalence of plant life, and of the furms of that life in ancient periocis of the earth's history. They show clearly that these forms were of a lower type than those which existel in more recent
periods, and all discovicics tond to confirm periods, and all disiovirics thad to confirm
the great trath above stated. Wih respect to the cronp which has pluyed the n:- imewtant part in ancient times we must say iLe foris a.d their allies-acrogens-ware most promint.
A sketch of a portion of a D.azilian furest of the present day will serve to give some ided of the extremely lusariant growth of vece? :tion in sncient times. The largo treo feras which cxist in nambers in that connter were more num.

Carboniferons times, and nearly so in Devonian times. Nine-tenths of the flors of the Carboniferous period consisted of ferns, equisetums, and lycopods. The record which we have is only an imperfect record, and when we consider the whole mass of coal formed from these ancient forests, and containing myriads and myriads of these forms, we may, in some measure, realise the extraordinary state of things which obtained in that period. These productions, which imply a warpe and moist climate, were not oonfined to tropiosl regions of the earth. At the present time as you go from the tropics towards the poles, the ferns dwindle in size from stately trees to mere shrub-like plants. There is one exoeption to this -viz., in New Zealand, which is an extra tropical country, and there we get tree ferns, bat in no other part of the world in such a high latitude. But the most striking fact in this conneotion is But the most striking fact in this conneotion is
this, that travellers who have investigated Arctic and Antarctic regions have found remains of ferns and diontyledonons trees in lstitudes as high as Bear Ialand and Melville Island. This implies that there was a time when the condition of our planet was such that a tropical, or, at all events, a sab-tropical olimate, existed as far as $75^{\circ} \mathrm{N}$. They found ferns and calamites in abundance in Carboniferous rooks. Dr. Hooker says the views of astronomers on this subject are merely teohnical, they cannot at present explain how it could have been that so high a degree of temperature should have occurred at such latitudes.
With regard to the first indication of vegetable life it is not positively ascertained. The earliest recognised form occurs in Silarisn beds, bat certain geologists carry the series farther bsok. Dr. Dawson and otbers have found in Laarentian rocks, in America, masses of graphite 25ft. in thickness. It is believed by every one who has chemically examined graphite that it results from the disintegration and decomposition of vegetable masses. All traces of structure have been lost, but the ohemical constitation is such as to indicate that there must have been in those early times vegetable life of some kind or other-most likely of lowly organised stemless thallogens. If so we have a still further parallelism botween the animal and vegetable series.
In Cambrian rocksoccurs the dispated Eophyton, the vegetable character of which is not yet established.
The Silurian rooks chiefly contain fucoids, and these are the first andoubted vegetable remains. The following may be taken as type forms ; one in the Llandovery beds, discovered by Mr. Lees, named by the lecturer on that account Leesis. In the next set of beds-Wenlock Limestone-occar Chondrites, and in the following Ladlow beds Aotinophyllum; in the same set of beds and the ancoeeding passage beds are found Spongarium and Pachytheca. All the above are fucoidg.

Devonian beds show an advanoe in structure from thallogens to acrogens and gymnogens. As type forms we may take Psilephyton, allied to Lycopodium ; Dadoxylon, allied to the Arancariss of Australia and adjacent parts ; Lepidodendrons, sllied to ferns; Calamites, allied to Equisetums; Sigillaria, allied to ferns; and two fruits, possibly of flowering plants, Cardiocarpon cornutum (palmlike, monocotyledonous), and Antholites Devonicus (perhaps phenogamous, and allied to Liliscem).
The Arancariss, found in the Devonian and Carboniferous rocks in great numbers, are now confined to the southern hemisphere. They occar in Australia and the adjacent islands (Noriolk Island pine), and are large trees, 200ft. high and 20 ft. in circumference. They existod in our conntry and in Scotland in Carboniferous times. The lecturer had seen the trank of one of them, 30ft. long, dug out of a quarry in Scotland. The lepidodendrons form a group Which some botanists think ought to rank as a separate family. They have very marked affinities with lycopods, ferns, and coniferm, and may be regarded as an osculant, or rather, maltiplo type branching ont in these directions.
In the Carboniferous period nearly all the Devonian types were repeated in far greater abandance. Besides those were MIEgaphyton magnificum (a cree fern), and Palmacites (monocotyledons), \&c.
Permian beds contain no sigillaris, but ferns and calamites are abundant. Other type forms are Walchia (a conifer), and Podocarpon (palmlike trees).
In Triassic rocks ferns and equisetums are still abundant. Perhaps the most typical form
is Pecoptcris Fhitbyensis, a fern. is Pecoptcris. Whitbyensis, a fern. Pecopteris is
also found in Carboniferons rocks. also found in Carboniferous rocks.

Jurassic rocks have as type Podocarya (in the inferior Oülite), comparable to the sorew pines (Pandanacea) found in Australia at the present day.
In the Cretaceons period distoms are found, but it is not intended to say that this is the first time of their appearing; they also occur in great numbers subsequently in Tertiary times. Also Myrtaces and Proteaces (Banksia and Gryphyllia), and dicotyledonous trees, representing oalss, figs, and walnuts.
In Eocene beds the types may be taken as Chara, Comptonia, Nipadites ellipticus, and palms. The most interesting are the fossil fruits found in Sheppy (Nipadites, palms, \&c.). Dr. Hooker says some of the palm fruits from Sheppy, which must have flourished on the banks of a river in Eocene times, cannot really be distinguished from palms which are living on the borders of the Ganges at the present day.
The Miocene floras ara but feebly represented in Britain by the lignites of Muil and Bovey Tracey; the Pliocene floras still more feebly; while, as examples of vegetation in the Quaternary period, we have peat bogs and forest beds, with dicotyledonons trees in grest numbers.
The above type forms must not be understood to be a complete catalogue of the flora of each distinot epoch, nor in all cases the most important parts of it, bat are merely features seleoted from the varions epoohs which will serve as starting points for further research.
W. H.

WIRE-COVERING MACHINE.

A. MACHINE for covering wire with rubber for tor guttspercha, or other insulating material par telegraphic and other parposes, has been
patented in this country by Mr. A. G. De Wolfe, of Connecticat, U.S., the principle of which will
in the cylinder through an aperture near the beck end of the screw, and is, of course, csrried forward by the action of the thread of the screw; a section of the cylinder at this point is shown in Fig. 2. Tubing can also, it is said, be made by mesns of this apparatus, when the gaide-piece D is removed and a suitable die sabstituted for the wire-covering die shown at C.

FRESH VEGETABLES AND SWEET SALADB. THOSE who value fresh vegetables and sweet salads will heve none washed in the garden. Neithor the one nor the other ahould be wahed, says the Gardeners' Chronicle, until they are just about to be cooked or eaten. Even potatoes loee fisvour quickly after being washed, so do carrotu and turnips; while water will speedily become tainted in summer in contact with canliflowers and cabbages, and thus destroy their freshness and flavour. The cese is still worse with salads. If washed at all, it should be only just before they are dressed, and they should be dried and dressed immediately. Nothing raing the favoar of vegetables, and renders good saladine uneatable sooner than water hanging about them. Il lettruces are quite clean, they make the beat salad unwashed; but if washed the operation should be done quickly and the water instantly shaken oat, and the leares dried with a clean cloth. Bat, alas! how often are they cut and washed in the garden in the morning, and pitched into water in the scallery sink until wanted. Then we are gravely assured French! Bart ours cannot grow salading like the French I Bat what French "artiste" would be mad enough to rinse out his salad juice, and then recharge his lettuces and his endives with semipatrid water?
The best practice is simply to remove all saperfluous earth by scraping or rubbing, and all rough
tops or leaves by cutting. Enough tender lenves tops or leaves by catting. Enough tender leaves
may still be left on canlifowers and broceli to may still be left on califlowers and brocoli to overlap the flowers. Salad should be sent in from
the garden with most of the outside leaves and

be understood from our illustration, which represents the most important part of the apparatus. The principle of the invention consists in forcing the insulating material by means of a screw oovered is made to pass at right angles to the axis of the screw. In Fig. 1, which is a horizontal section through the centre of the portion containing the essential features of the machine A is a cylinder, containing a sorew of nearly the same diameter as the bore of the cylfoder. This screv is constructed upon a shaft carried in suitable bearings, and receives motion from a pinion gearing into a toothed wheel fixed on the shaft, the end of which works against a thrustpin in order to sustain it against the back-pressure produced by the action of the screw on the contents of the cylinder. B is a short extension piece sorewed on to the end of the cylinder, and stopped by a screw plag, as shown, thus leaving an internal space of about 2 in . between the end of the screw shaft and the stopper, which space, when in work, will be filled with the insulating material. In this extension piece on one side is screwed the die C at right angles to the axis of the sorew shaft, and on the other side a guide piece D is inserted in a similar manner so as to be in line with the die. Around the extension-piece B, and part of the oylinder A, steam is circulated in the annular chambers S for the parpose of keeping the rubber or guttaperchs at the required consistency. The cylinder A is, of course, fixed and mounted on a suitable frame, and the shaft being rotated any plastio material will be forced by the sotion of the sorew into the space left in the extension piece B, and the wire being passed through the gnide-piece \mathbf{D} and die C is coated with the insulating material, the thickness of the coat being regulated by the bore of the die. The rabber, guttapercha, or compound used for covering the wire, is placed
main root on. The tender leaves are easily tainted and injured by erposure, and if the chief root is out off sharp much of the juice oozes out at the wound. Where vegetables and salading have to be bought from town greengrocer the conditions are altogether different. Not only washing, but soaking often becomes requisite to restore something like pristine
orispness. orispuess.

THE PREVENTION OF FIREDAMP.

A. FEW years since a very ingenious apparatus fredamp in mines. It is known, says the Paris correspondent of Engincering, that when two different gases are inclosed and separated from each other by a light membrane, an exchange of the gasee takes place through the diaphragm, and the pressure increases in the space into which the lightest gas flows. The inventor, founding his invention on this natural principle, known as endosmose, devised a box, the sides of which were formed of membrane a box, the sides of which were formed of membrame: mercurial gange. When a rush of firedamp took mercurial gange. When a rash of firedamp took
place in a mine gallery where this apparatus was place in a mine galery where this apparatus was
placed, the gas penetrated the sides of the box, and the pressure rose, sending op the mercary, which acted on a bell, or other indicator, and gave warn ing of the imminent danger. This invention is worthy of notice, but the many practical difficalities that attended its introduction into mines prerented its successful application, and now another apparatus having the same object has been introduced by M. Tarquan. This apparatus consists of a bell actuated by clookwork, the striking motion being checked by an anevenly balanced arm, the lighter end of which is held by a cotton thread impregnated with saltpetre. The apparatus is placed in a wire gauze cage.
The firedamp, when it ocours, penetrates with the with a lamp that barns therein, and from contaot consequence barus the thread, and sets free the balanced rod that checks the boll, which then givee the alarm.

COMBINED KNITTING AND SEWING MACHINE.

THE sewing-machine has now become almost a sine-quá-non in all well-appointed households, and a steadily-increasing number of machines are manufactured yearly, for the saving in the labour of the needlework necessary where there is a large family has made a very suocessful appeal to the thrifty housewife, who apprecistes at its full value the advantages offered by the machine over the hand-driven needle. Another kind of useful domestio machine is also finding its way into pablic favour-viz., the knittingmachine, several descriptions of which we have illustrated from time to time. We have now to bring before the notice of our readers a method of combining a knitting and sewing machine in one piece of forniture, so that both can be worked simultaneously or either separately. In order to accomplish this Mr. A. Pilbesm, who has recently patented the combination, takes a knittingmachine of that class which has a single needile and a reciprocating comb, such as that desoribed in the Specification of an Invention, No. 2639, 1869, which is commonly known as the "Hinckley" knitting-maohine. In this machine the reciprocating comb is arranged to slide to and fro in front of the machine, and is operated through a raok by a pecaliarly constructed switch wheel. This wheel oarries on its shaft a friotional
arranged to enter within the rim of a small whee fixed on the driving-wheel, thereby loaking the two wheels together, so that the required motion is imparted to the sewing mechanism, the same being stopped by simply sliding the adjastable wheel ont of the other wheel.
In the figare, which is a plan of the machine, showing the knitter turned up and in gear with the driving-wheel, A is the bed or base of the sewing mechanism, the table on which it is generally mounted being removed; B B are the joints or hinges which connect it to the bed C of the knitting mechanism. When the knitting mechanism is turned up it is supported on a board or slab placed over the recess which receives it when turned down. F is the driving-wheel, fitted loosely on the shaft G of sewing machine; H is the clatah whereby the wheel is connected to the shaft; when it is desired to release the wheel, one part of the olutch is withdrawn from the other part; I is the frictional pinion on the shaft of theknitting mechanism, which is made to gear with the wheel F when it is desired to operate the knitter; J is the belt wheel or palley, whereby the machine is operated from a suitably-arranged treadle. When the sewing mechanism is arranged like that of the machine known as the "Willcox and Gibbs," and others of the same class having an under shaft extending below the cloth plate, the paten tee prafers to provide for throwing the sewing

pinion, and thereby receives motion from a grooved driving-wheel. The machine is provided with an eye-pointed needle, operating with a reciprocating motion across the comb. The frame or bed of the knitting mechanism is attaoked by hinges or other saitable connections to the base or bed of the sewing-machine, in such a manner that the said knitting mechanism can beswung down in front of the machine away from the driving-wheel. The latter is preferably placed on theshaft of the sewing meohasism. There is also a counting or indicating wheel which may be removed from its usual position, and placed at one end of the machine, so that it shall not interfere with the desired adjustment of the parts. In some cases, instead of making the entire knitting mechsnism adjustable, the driving-wheel may be sapported in eccentric bearinge, which may be turned on their ares to move the said wheel into or out of gear with the pinion. The sewing mechanism employed may be that of any ordinary sewingmachine which has a horizontal shaft for operating the needle bar. On the driving-wheel there is a smaller wheel to receive a belt or cord for operating the machine by a treadle. The driving-wheel is fitted to turn loosely on its shait, bat is provided with a olutch or other contrivance, whereby it may be connected to the shaft or released therefrom, so that the driving wheel may be made to drive the sewing meohaniom, or may be tarned without driving the same as desired. Dometimes an adjustable wheel is fitted to slide on a key or feather on the shaft, and
mechanism into and out of gear by making the pinion which drives the ander shaft slide into and out of gear with the wheal on the driving shaft.

DRYING BY CHEMICAL ACTION.

TAT wonderful property, says the Scientific American, called by chemists affinity, which exists between different substances, exerts a force
so much greater than any which is practicable to so much greater than any which is practicable to
the resources of mechanics that it may be made the resources of mechanics that it may be made
one of the most effective means known whereby the one of the most effective means known whereby the
desiccation of substances can be accomplished. desiccation of substances can be accomplished.
Sometimes it may be employed singly. In other Sometimes it may be employed singly. In other instances, it may be used in connection with heat together. There are few substances that have no aftinity for water, but there are some which seize apon it and hold it with such intense force as almost to defy separation. The strongest chemical reagents, such as salphuric acid and the other strong acids, the alkaline bases, potassa, soda, lime, sc., owe much of their usefulness in the arts to their affinity for water. There are few substances that have so strong an attraction for water that some one of the alkaline bases will not seize upon it and hold the whole of it.
Of course, when water is an essential ingredient of a componand, and not an extraneous substance, its removal effects docomposition; and in all such remeres the of chemuas water, but injures what remains-is of conrse, inapplicable. Une of the most important processes in which chemical drying
is employed, and one of the best illastrations of the principles apon which it is based, is that of separa tion, as it is called, in the soap manufacture. The fats or oils used for soda soaps are flrst baponified by an excess of the solation of caustic soda, technically called "ley." The soap thus formed contains glycerine, excess of water, and soda, which it is degiycerine, excess of water, and soda, which it is de
sired to remove. Now, although the soap has a sired to remove. Now, although the soap has a
strong affinity for water, it conld be dried sufficiently strong aminity for water, it conld be dried sumiciently
by the slow and caroful application of heat, but to by the slow and careful application of hest, but to
do this would require a long time, and, besides being very tedious, would be a very expensive process. Soda, or chloride of sodium (common salt), has a much stronger attraction for water than soap. If either of these substances in strong solation should be added to the soap in sufficient quantity, and heat be applied, the following actions are set ap:-The soap Hoats upon a strong solation. "" ley," of soda or salt (sometimes both are used). The heat applied to the bottom of the kettle drives off a portion of the water in the solution, which is replaced by water attracted to the salt or soda from the soap; this is in turn converted into steam by the heat, and so on the sode or salt taking water constantly from the sosp, which the heat expels until the soap has been sufficiently froed from water. Meanwhile the soda ley has dissolved out all of the glycerine, and the water in departing from the soap has carried with it ther in departing from the soap has carried wath adding it to the solation at the the excess of alkai, adding it to the solation at the in hard grains or lomps npon the ley. The soap being then drained is rGady for the subsequent operations, which fit it for sale and use.
This is a fine example of chemioal action combined with heat to eliminate water. Another illustration is the production of absolute alcohol by distilling it in contact with quicklime, the latter seizing and holding all the water contained in the selzing and holding all the water contained in the
alcohol, which then passes over and is condensed in the recaiver.
Chemists pass gases through quicklime, chloride of calcium, calcined potash, or soda, to rid them ol watery vapour. Polished metallic articles, liable to tarmish through the action of watery vapoar, may be protected by placing them in s case in which is also placed a little quicklime. Whenever the lime falls into fine powder, it is an indication that it has absorbed all the water it can hold, and that a new sapply of quicklime is required.
Very rapid drying withont heat can be accomplished by the use of quicklime and a fan blower, using the same air over and over, first passing over or through the substance to be dried, and then over quicklime in lumps. The process can be accolerated greatly by heating the air on its passage from the lime to the substance to be dried (the heating greatly increasing the absorbing power of the air) and keeping the lime cold by means of tubes through which cold water passes. By regulating the heat properly, very delicate substances may be thoronghly desiccated without injory. The writer has applied this process in certain operations with great succesf. Where an operation of this kind is conducted on a large scale, the lime can be renewed over and over again by calcination, which drives off the moisture (and, perhaps, carbonic acid) it has absorbed.
The hints thas thrown out may serve as a gaide to inventors who are devising means for the desic cation of iraits, vegetables, meats, \&c., and for the concentration of milk, \&c. Processes of this kind are being extended rapidly at the present time, and the preparation of articles of food, in a palatable form, and in a condition to keep a long time, is daily becoming of greater industrial and commercial impertance.

TEA DRUNKARDS.

DR. ARLIDGE, one of the Pottery Inspectors in Staffordshire, has put forth a very sensible protest, says the Lancet, against a very pernicious custom which rarely receives sufficient attention, either from the medical profession or the public. He says that the women of the working classes make tea a principal article of diet instead of an occasional beverage; they drink it several times a day, and the result is a lamentable amonnt of sickness. This is no doubt the case, and, as Dr. Arlidge remarks, a portion of the reforming zeal which keeps up such a flerce and bitter agitation against intoxicating drinks mightadvantageously be diverted to the repression of this very serious evil of teatippling among the poorer classes. Tea, in anything bejond moderate quantities, is as distinctly a barcotic poison as is opium or alcohol. It is capable of ruining the digestion, of enfeebling and disorderof ruining the digestion, of onfeebling and disordering the heart's action, and of generally shatering
the nerves. And it must be remembered that not the nerves. And it must be remembered that not
merely is it a question of narcotic excess, but the merely is it a question of narcoric excess, $\begin{aligned} & \text { enormous quantity of hot water which tea-bibers }\end{aligned}$ necessarily take is excoedingly prejudicial both to digestion and nutrition. In short, without pretending to place this kind of evil on a level, as to general effoct, with those caused by alcoholic drinks, one may well insist that our teetotal reformers have overlooked, and even to no small extent encoaraged. a form of animal indulgence which is as distinctly s insual, extravagent, and pernicious, as any beerswilling or gin-drinking in the world.

REVIEWS.

Natural Plitosoi,hy for Cicneral Readers and Young I'rions. By E. Atkinson, Ph.D., F.C.S. Loudon : Longmans.

TPhilosoph elrmeutary and papmiar Natura Atkinson from Ginnot's elementary work. It has its origin in a suagestion frequently made to its Eiitor, that he shonald compile an abridgment from liis larerer work, well-known by the title of Ganot's "Physice," which should be saited for elementary instruction and in which mathematical formule conld be dispensed with. Finding that to produce an abridement of the larger book would be a work of difficulty, nni, if it was to be anything more than a mere collection of extracts, wonld involve the re-writing of the greater part of the matter, Dr. Atkinena resolved to translate the book which Ganot had written with a siailar object, and whioh, we need scarcely say, is as well suited to its parpese as the larger work. The present volume is not a mere oopy of the more elaborate one, although, as a matter of course, the facts, and in many places the phraseology, may be the same. Neither is it a strict reproduction of the French original, nor a mere radimentary exposition of the subjects with which it deals ; for Dr. Atkinson has made snch alterations and adiitions as fit the work for use as a text book for the midule and upper classes of schools, while sufficient information is given to enable the recipient to pass tho matriculation examination at the London Uliversity. The bookis abundantly illustrated with explanatory and piotorial cuts, and is really the best work of the kind for jnnior stadents and drawing-room readers. There is a slight error in one of the illastrations, which it might be well to correct in a seoond edition. In Fig. 260 the letters v and j will hardly convey the idea that they are meant to indicate the positions of the green and yellow in the spectrum to those anacquainted with French, thongh a mistake could hardly be perpetnated when reference is made to the wellexecuted colonred frontispiece which represents the solar spectrum with Fauenhofer's lines, and the spectra of potassiam, sodiam, cxsium, and rubidium.

The Sun: Ruler, Fire, Light, and Life of the Planctary System. By R A. Proctor, B.A. Hod. Sec. R.A.S. Lalidon : Longmans.
We have silready spotsen in a favourable manner of thia book. and need not now occupy mach space in noticing the second edition, the appearance of which we hail with great, gntisfaction, not alone becanse it afiords some evidence that its anthor is in a pecuniary sense reaping the reward of his indefatigable and painstaking labours, but becanse it is also a proof that the public are inclined to pay more attention than was formerly their wont to scientific subjects. This edition has been thoroughly revieed, and contains much new matter, such as an account and an auslysis of the observa: ions made during the celipse of December, 1870. Althnugh Mr. Proctor did not wait for the observations male during the recent eclinge, his chapters on the circamsolar region are noue the less c mplete, thenzh the facts on which they are based are less striking than the overwhelming evidence obtained in December, 1871. Several new illnstrations sapplied by Mr. Brothers, Professor Yrung, and others, serve to make the volume the completest as well as the most popular treatise on the nature and phenomena of the sun hitherto published.

Geometrical Conic Sertions. By J. Stuant Jacksts, M.A. Sulid Germetry and Conic
Sections. By J. M. Wilsoa, M.A. London: Sections. By J.
Macmillan d Co.
These are two little books whioh will be found useful and sucgestive by students of the subjects on which thes treat. The first has been written with the ohject of giving the stodent the benetit of the method of projections as applied to the Ellipse and Mrpobola, a method calculated to prodnce a simbiitention in the treatment of those carves, and to make their properties more ensily onderstnod and remembrred. Mr. Jackson points out in his prefice that hy this method it is a considera'ion of impritance that we can sce at once from the form of the cone the general form of the carver out from it, hy a plane in different positions; and by turning the piane about a certain line we see how the curves pass from one form into
another.-The little work by Mr. Wilson is written with the view of introducing into schonls some portions of Solid Geometry now very litile studied in this conntry. Short appendices on Transversals and on Harmonic division are added, and the chapters on Conic rections are condensed to suit the wants of schoolboys by defining these carves as sections of a cone, and immediately deducing their fundamental properties, and hy taking the ellipse and hyperbola together where possible.

Treatise on the Metallurgy of Iron. By H. Bauerman, F.G.S. Londou: Lockwood \& Co. This is the third edition, revised and enlarged, of an account of the production of inon, which is tolerably well known, and is generally favourably received. It is a concise treatise on the manufacture of iron, giving a short bat ample history of iron working, the metbods of assay, with analyses of iron ores, and the various proceses employed in the prodnction of iron and steel. The author has availed himself of the namerous and valuable works published on the sulject in Germany and France, as well as the elaborate and expensive volumes issued in this country. The additions to the present edition have been introdnced in their proper positions, and include a notice of the Siemens-Martin steel process and the methods proposed by Heaton, Ellerhausen, and others; but we miss a description of the Danks' mechanical puddler, although previous attempts in this direction are recorded. This will be considered a fault in a work which is otherwise well suited to convey accurate knowledge on the most imp riant metal industry of this country. The book appears to have been in the press in the antamn of last year, which would probably acconnt for the omission-an omission to be regretted, bat which by no meansinvalidates the book from being one of the best treatises on the subject in a small compass extant.

Electrical Tables and Formulce. By Latmer Clabk and Robert Babiak. Loudon: E. and F. N. Spon.

Meseas. Churk and Subinz have here bronght together a mnss of information of great value to telegraph inspectors and eperators, which is, moreover, we beliave, pcrfectly relinible. It would be impossible within the limits of a shert notioe to enumerate the various sabjects on which information is given, suffice it to way that everything neosesary for designing, working, and laying out telegraph lines, whether land or submarine, together with many us. ful tables founded upon actual practice, tind a place in this book, and althongh the sathors say that in bringing together so heterogencous a mass of materials it was coned difticalt, if not iopossible, to follow consistentiy any systematic plan of arramgement, the volume is none the less valualie on that account, while a copious index snpplies an eticiont remedy for a defect which was uuavoidable. Many of the first electricians have furnished contributions, and the writings of others have been utilised in making the book a perfect vade-mecum for the constructors and manipulators of tho telegraph.

Elements of Chemistry : Theoretical and Practical. By W.A. Mhler, M.D., \&e. Revised by
Herbeht McLeod, F.C.S. Part I. Chemical Herbeat McLeod, F.C.S. Part I. Chemical Physics. London: Longmans.
Tins is the fifth edition of Dr. Niller's wellknown "Elements of Chemistry," which has been revised thronghont, but without being altered unnecassarily. The rapid progress mado hy recent research in some branches of physical science, however, necespitated additions to the text as left by Dr. Miller in the fourth editionthe most important of these being, of course, those relating to solar chemistry and the theory of atomicity. Noting these facts is all that is necessary in recommending to students this new edition of a work of established reputation.

Cieological Survey of Ohio. Report of Progress in 1870. By J. S. Newbetir. Columbus, Ohio: Nevine and Myers.
Turs is one of the yearly reports of those exhaustive surveys carried out in the different States of the great Kepublic of Am-ica, forming a volume of noarly 600 perges, wich eeveral maps and geological ohints, showing the formation of the surface and the positions of the varions
strats as fonnd in the State of Ohin. These geological surveys are prosecnted in America under Stute patronage, and by means of S:ate fonds, and result, as a rule, in the collection of information of importance, directly or indirectly, to every citizen of the State; thas the ohject of the survey is, first, a general view of the relations of agricultare to geology; a classification of soils according to their chemical and physical characters; an inquiry into their sonrces of fertility, their adap. tability to different systems of agriculture, their deterioration, renovation, \&c.; second, a descriptinn of the nataral soils of the State classigied by districts and properties; an inquiry into the sources whence they are derived, their arlapta. tious, their changes ander cultivation, mithods and materials for the restoration and maintenance of their fertility, with an investigation into the properties and distribution of sach fertilisers as are found within the district. Besides all this, chomical analyses of the minerals found are made; their uses and the best methods of working them are pointed out; in fact, this geological sarver, of which these yearly volumes are bat portions, embraces the physical featares of the country, its climatology, and an account of its productions; the natural history of the principal animals inhabiting it, and elaborate troatises and catalogues of the botany, zoology, and palæontology of the region. It mast be acknowledged that this is good work, work which will not fail to make a handsome return in the future for the maney and time expended on it.

Pocket-book of Mechanics and Engineering. By Join W. Nystrom, C.E. Philadelphis : Lippincott and Co . ; London: Trubner.
Turs is a really valuable pocket-book for the mechanic and engineer, containing as it does the first principles of every soience with whioh they have to deal, and of others with which they have no eonoern in their cocupation. Thas, it includes
the promiment fats of the promizent feets of anthematies, , with the sarveying sooustios, iypamics, chemistry, indrostatics, optics, \&o. It is replete with reaful and reliable tables, and bristles with formula. The calcula-
tions bapeall been mende with Nyatrom's Calculations haverall beearmade with Nyabroa's Calcula-
tor, which reoeived the frat premiam at the Franklin Institate Erhibition. Thene is en ample supply of explenatory moodonts and pletes, and altogether this is ane of the bast "ipathet-books" we have ever seea.

Catalogue of Model Steam-Engines and Castings. London : John Bateman.
We have received from Mr. Bateman a copy of his catalogue of model engines and castings, and the useful tools which he also supplies. Those of our readers who are intent on making monel engines, steam-hammers, pumpa, and sundry other machines, will do well to procure a copr. The idea of supplying the rough castinge of the various parts, on which the amatear could exercise his ingenaity as fitter and finisher, originated, we believe, with Mr. Bateman, and a very good idea it is. There are handreds of amatent -mechanics who would oceupy their spsre time is a nseful and instructive manuer, if suitable materials for them to work apon were provided. The diffionlty and cost of obtaining the requisite castings, which it is almost impossible the amstcur shonld make for himself, bas hitherto atool in the way of the more nuiversal development of things has been put an end to by Mr. Bateman. from whom the castings of parts of looomotives. engines for model bosts, and various othe: mechanical contrivances, are now to be obtained at certainly a moderate erpense, and with a very
little expenditure of time and trouble. Those of our juvenile readers, too, who have a little epare time on their hands, cannot occupy it in a more pleasing or profitable manner than in oonstrocting a model engine, and a pernsal of Mr. Bateman' catalogue will show them how to set about it.

We have received numerous books whiek wo cannot spare space to notice at presed:. and many others to which we ean only tricetr refer. Among these is a paopplet On io Curability of Cancer, hy Dr. G. von Bohmir:
(Wyman and Sons), in which the author eesu: that cancer is curable by medical treatment wilu out sargical operation. Dr. Sohmitt empler plaisters and ointments as remedies for oancerror
tumours, and says he has had fair success. He gives an account of the medieaments he employs and prints some of the "testimonials" he has received. Of his system we can only say that as condurango has been thonght worthy of trial at several public institations, the same plan should be adopted with Dr. von Schmitt's method-that is, if he is willing. - Science Lectures (John Heywood, Manchester) is a book of 140 pages oontsining the discourses delivered in the Hulme Town Hall, last year, by such men as Professors Huxley, Roscoe, Odling, and Wilkins, and Dr. Carpenter. The lectures appear to have been well reported, and the book is simply "dirt cheap."-The French Student's Pocket Yade-Mccum, by B. E. le Bret (John Heywood), is a concise list of verbs, \&c., for handy reference.-A Bird's-eye View of the Metric
System, by George Hogg (J. Heywood), is a sheet containing the metric measures, weights; and money, with the British equivalents, but omit ting the metric equivalents for the varions English weights and messures.-Messrs. Griffin send an excellent series of School Board Readers, adapted to the requirements of the new code. The series comprises two parts of the elementary reading book, and books for the six standards, "containing no distinotive denominational teaching." The series has been edited by a former
"Her Majesty's Inspector of Schools." bat we should think he would hardly award a prize for grammar to the boy who said "The sow is bad for the boy did hit him" (Lesson 15). -The Yearbook of Facts for 1872 (Lookwood and Co.), is similar to the volumes issued in previons years. Independently of the faot that the "outtings" are
not always taken from the beat sources, a fow editorisl notes would be of great assistance to uninitiated readers, numbers of whom may retain the impression, for instance, that Mr. Payne's magnetic engine is the wonderfal discovery which the account given on page 143 makes it.

THUNDERBOLTS AND LIGHTNING

WE are indebted to an American correspondent for a copy of the Philadelphia Public ${ }^{2}$ (cord

 containing an account of a lecture delivered by Pro"essor John Wise, at the Wagner Institute, on "Thunderbolts and lightning." Tho lectarer commenced by saying that he had no specalative theories to subscrve, bat would simply relate the facts as observed in his investigations of the phe-nomena of lightning. and would then show by these nomens of lightning. and would then show by these
facts that the lightning rod too often played the part of an incendiary. After reviewing twenty nine cases of lightning stroke that occurred in Philadelphia last summer, and showing that the greatest loss of property took place under the sapposed pro
tection of the lightning rod, he noted a large nam. tection of the lightning rod, he noted a large nam.
ber of cases that occurred in other places. The destruction of the extensive pattern shop of Morris and Co., and the Pekin woollen mills of Mana. yunk, caused a loss of over 100, (c) 00 dollars, and ning rods. Ho stated that small bonies of iron when strack by a thanderbolt, will scintillate vivil sparks, aud thus ignito any adjacent inflam
mable matter. He also reviewed three lightning stroke as they occurred in Iowa City Terre Hante and Indianapolis, where the lightning was commonicated from the rod to the gaspip's in the buildings, set fire to the gas, and then
passed oat to the gas mains in the street, where, in one case, it burst the lead packed joints here and there for a distance of 1,000 ft, and in the other two it totally burned out the lead packing, leaving
notling but a little dross in its place. The lecturer arrived at the following condlusions derived from an exsmination of many cases daring
the last three years:-That lightning is ans necuma. the last three years:- That lightning is ant necuran-
lation of force in the cloud. That when the clond peomes surcharged it explodes with a discharge arrags toward the earth. That it generally comes
from the west and soath-west. That its main force In in its axial line of projection. That it strikes is in its axial mohtnity roa, a be the same. That when it strikes
force appears to a bar of iron, as a spike or clamp, or even a shingl nail. it burns the sarface and scintillates bright
sparks, which are capable of igniting adjacent insparis. Which are capable of igniting adjacent in-
danmable material. That a thanderbolt is neatraLived the instant it meets its correlative eqnivalent of metal surface. That when it strikes the light-
aing rod, that being only a fractional quantity of ts ueutralising eqnitalent, and the earth or water it the rod's terminal point being bat a poor con-
lactor (forr hundred millions of times slower than son), it meets a cul de sac. recoils and heats the rod sufticiently to melt its point and to scintillate sparks rom ita surface which set fire to the building.
Chat in a honse with a metal roof there is no That in a honse with a metnl roof there is no
langer of harm from a thanderbolt, either to persons I property. That whanever the lightning rod is
strnck by a thnnderbolt it proves its own in efficiency, since Franklin's theory was that it woul provent thunderbolts, not entch them. That there and that the recoil of a thunderbolt upou the rod is what leads to that notion.

VOLCANOES AND EARTHQUAKES.

THE following paper, liy Mr. W. H. Corfield, which bears upon a sulject of interest at the present time, and also upon the discnssion which has been carried on for the last month in our pages, extracted from Nature:-
The remerkable scries of volcanic phenomena Which have latcly been exhibited at varions parts of the earth's surface within so short a period of
time, gives mich matter for consideration, and must in due gives misch matter for consideration, and must
in in due time afford us a rich harvest of fnets with
which to test the numerons theories which have which to test the numerong theories which have
been started to account for the occarrence of volcanic ernptions and of earthquakes. Even from our at present scanty information we have, I think, something to learn.
First in the scries, so far as I am aware, was the very severe earthquake at Independence, Inyo March 26, commencing at 2 a.m., and lasting tili 7 a.m., durinz which time "the carth was never for a moment perfectly quiet, and every few minutes a moment perfectly quiet, and every fow minutes
heavy shocks, of a fer seconds' duration heavy shocks, of a fev seconds' duration, were
occurring; in all there were more than fifty very occurring; in all there were more than ifty very
heavy shocks." This place is only fourteen miles heavy shocks." This place is only fourteen miles
from the Black Rock, a volcano in the Sierra Nevada mountains, "the sides of which are covered with lava, and which is supposed to be anextinct volcano." It is stated that "during the time the shocks were most severe, flashes of light were seen to issue from the top of this mountain, and streams of fire ran down its sides.

The result of this earthqnake is summed up in a few words as "the whole country turned topsyturvy" (Virginia City (Nevada) Enterprise)
Then a few days afterwarls came the terrific earthquake in Antioch, which commenced on April 3, and continued with greater or less severity, "in Aleppo, and as far east as Orfa, beyond the Euphrates," for more than a week, becoming very severe on April 10; here there appears to have been no actual volcanic phenomenon; but it appearsfrom the letters of the Rev. W. Brown in the Times, that there exists in the immediate ncighbourhood a mountain, "the peculiar conical form of which is The latest Africa
The latest African news tells us that "several violent shocks of earthquake had occurred at Accra, on the Gold Coast, on April 14 and 15, caasing considerable damage to the place." And as unwonted atmospheric disturbances have often been connected with volcanic phenomens, it may not be out of place to mention here the fearful harricane which Wrecked every vessel
Aud then on April 24 began the recent eraption of Vesuvius, which will be for ever memorable, not only on account of its magnitude and grandeur, but also, and still most so, by reason of the amazing
intrepidity of the man, who, from a pare love of science, remained at his post, like the catekeeper of Ponpeii, throughout the whole of that terrible time, put happily was not, like that heroic soldier, baried in a shower of ashes; the world was spared the

Now, is there any conncction between these phe nomena exhibited in so distant parts of the earth's surface? One thing is certain-namely, that within one can hardly help thinkin's that somelow or other one can haraly help thinkin! that somohow or other
these volcanic countries must be connected underground; it has loug been thought that Etua and Vesavius are points on a volcanic area which passe horth-west to the Eifel, Anvergue, and Iceland; has the neighbourhood of Autioch, with its unenviable notoriety for earthquakes, or the West African coast, anything to do with this area? But if so, what ehall we say of the Sierra Nevade? Why should its volcanoes be active at the same time? Why should the country there be "tarned topsy-tarvy" by earthquakes?
While pointing ont these coincidences, we mnst not jump tos hastily to conclasions from them ; for on the ole hand wo are told that although the Antioch earthquakc extended so far east, yet, to
the north and south, even at a few miles' distance, nothing whatever was ohserved; and, on the other hand, that the Califoruian earthquake was of so saperficial a charactur that "at Hot Spriugs, while severt shoiks were felt on the sorface. the men in the mines, 2 ouft. deep, felt nothing of them." Now, the evidence goes to show that the latter earth. quake was directly connected with the eraption of a volcano in the neighbourhood, so that, although the origin of the distarbance may be naderground, possibly at a very cousiderable dep:h, the shocks are at a certain distance quite superficial, and, tions.

Taking all these facts together, they would rather seem to favorr the conclasions that at any rate a
great many, if not all, of the volc.anic regions of the world are connected, and that they are not merely parts of the earth's surface which happen to be over isolated subterranesu furnaces, but places Where access to the exterior is more easy for the perhaps all, of the earth's cruet. I must not be naderstood to be upholding the (shall I say exploded? theory of tho interual tividity of the earth ; I merely mean to point ont that such coincidences in poin of time ought to mako one hesitate before rushing o the other extreme, and looking upon volcanoes

But it will be seid is the
But tion nuder even the volcanic area of Europe, why
do not the extinct volcanoes of Auvergne break ont ngain? Hore is a difficulty which is not at all solved by the suggestion that at first occurs to one, that as the raising of the country has drained the enormons lakes, on the borders of which these volcanoes stood, there is no longer a supply of water to rouse them into action, for aro there not lakes still in the Eifel, nay, are not those lovely lases actually in the craters of extinct volcanoes?
Again, who has seen the wonderful natural harbour of Messina from the high gronnd above the town without believing it to be an extinct submerged crater? If there be still liqnid rock below these craters, it may be that they are no longer the points of least resistanee. And this is the probable explanation of their inactivity; for it mast not be imagined tbat an eraption of Bina or of Vesurius, or of any other volcano, necs rily means an ejection of ashes, lava, \&c., from 1 . crater, or from any crater; not at all, the weakest point in the vicinity gives way, and thus we have the numerous cones formed which surround every considerable voleano for some distance.
The mention of Auvergne leads me to make a fow remarks on the disputed point, as to whether or not the volcanoes in that country have been in eruption within historic times, especially as I see that a correspondent (see also let. 4203, p. 254 , from the Rev. H. by "ey) has come to the concla entiquary, Sir Francie Palgrave," as long ago as 1844, and adopted by theological writers ever since, that becanse a Bishop of Vienne established Rogation days on accuant of some alarming terrestrial phenomena which happened in his diocese, therefore the volcanoes of Auvergue in action at the time. We have two docu which refer to this matter-a letter written by Sidonius Apollinaris (who lived in the very centre o the Chaine des Puys, and on the border of a lak which was actually formed by the damming up of stream by one of the most recent of the lavu-currents to Mamertus, Bishop of Vienne, in which he speak of the earthquakes that had occurred in the neigh bourhood of Vienne; of fire issuing from the earth and wild beasts taking refuge in cities; and the Rogation Homily of Alcimus Avitus, the successor to Mamertus, which mentions the same catastrophes. Now, in the first place, Vienne is more than acventy miles in a direct line from the more recent Auvergne volcanoes; in the next, Sidonius himselt makes no mention in his writiugs of any eruptions having taken place in his neighbourhood, altiough he wrote poems deycribing the beauts of the scenery ; and oven Anvergne is not mentioned by any ancient writer, except by Cesar. who en camped there and laid si.ge to a city sitnated on a table-land, with craters close at hand in almost every direction; nor by Pliny, who gives a list of all the then known volcanic countries, iuclading some very out-of-the-way ones; nor by Strabo, nor by any of the poets, as a country whero volcanoes were ever known to have been ill action.
For these reasons, and because no volcano could have burst out near Vienne without leaving bome traces of its existence, Dr. Daubeny concluded that the Bishops of Ganl alladed to eartlequakes; espe cially as "the anderground thander, the opening of fissures in the ground, the bursting out of tiames and gases, the prijection of water and of stones, the $\mathrm{sm} \cdot l l \mathrm{ll}$ of sulphnr. the alarm evinced by the animals of the spot and neighbourhood, the elevation or depression of the land, noticed by Sidonias and y Avitus in the pnssages referred to by Sir Francis Palgrave, are all reported as concomitants of the great enrthqnaker which have occurred in more
recent tines." (reologists have since nccepted this conclusion as the correct one, in oppositive to what I may call the theological position.
There was, however, a volcauic region which had not been visited by any English geolugist, and which had not been described-viz., the basin of Montlirison, through which the Loire flows. Of this Mr. Scrope says in his work (2ud Ed., p. 28), "a further oxamination of this basin seems very desirable;" now, as this district lies about half way in a direct line between the "Puys," abont Clermont Ferrand and Vienne, it ocenrred to Dr. Danbeny that the Nistrarbances spoken of as in the neigbbourbood of Vienne, mirht lave taken place aroand Montbrison, and accoritiugly. in the autumn of 1866, he viaibed that localitr, and I had the hononr of accompanying dim on the occasion. We examined carffnlly the
volcanic hills of the neighbourhood, and could fand
no trace of recent voleanic eraptions ; in his own description of this expedition published in the
Ouarterly Journal of Srience for January, 1867, and Quarterly Journal of "Srience for January, 1867, and
republished in his "Miscellanies" (Vol. I., p. 74), just bofore bis death, he says:-
"I am now prepared to say that, without pretending to have surveyed the entire district, I prevenough to onnvince me that no volcanio distarbance which had occurred within this ares at so late a period as that alluded to conld have escaped our notice, and that every indication of igneous action
which presents itself throughout the country bears which presents itself throaghont th.
marks of a much greater antiquity.
"Thus mnch, at least. I can venture to affirmnamely, that neither craters, streams of lava, scorim, nor even cellalar trap, are to be met with answhere within the limits of this district. On the
contrary. the only igneons rocks which came nnder our obscrvation consisted of a compact basalt. containing nests of olivine a material which conld only have been elahorated by the aid of great pressure, have been elahorated oy the ander a different conflguration of the surface from thet now existing.'
The Doctor therefore reiterated his statement that "the lively picture drawn by Sidonius" should not "be regarded in any other light than as the offspring of a lively imagination. dwelling upon reports which had reached the author with respect
to some fearful earthquake which may have occurred in the neigkbourhood of Vienne."
I will conclude by advising those who wish to study volcanic phenomene to go to Auvergne : they can do so at almost any time of the year, mid-winter, when it is far too cold for comfort, being the exception;
they will there see results of volcanic action far they will there see results of volcanic action far even at Etna, and they will also be able to stndy the effects of denadation on a gigantic scale. Few geologists seem to appreciste the fact that within
24 hours of London is one of the largest, richest 24 hours of London is one of the largest, richest, and mos

HINTS ON COLOURING PHOTOGRAPHS.
1 either as cartes-de-visite, stereoscopic en. largements, or slides for the magic lantern, opens a suitable field of labour, says Mr. J. Martin, in the Phintographic Neins, for the edncated of either sex ;
in fact. they are the only fit persons to undertake in fact. they are the only fit persons to nndertake
it, as it requires a lightness of touch not generally it, as it requires a lightness of touch not generally
possessed by those accustomed to labour. But none can hope to succeed without some degree of talent, and who have had a snfficient practice in the
nus of colours to enable them to paint a tolerable use of colours to enable them to paint a tolerable
picture without a cop., not a vile travestie of some chromo-lithograph, which is often the only practice afforded to school papils. No particular box of colours, however prepared, will bridge over the want of experience.
The greasiness of the surface of slbnmenised paper offers some obstacle to the uninitiated, but this is easily overcome by anding a little prepared ox-gall to the colours used, or even by passing the
tongue over the surface. The greatest drawback I tongue over the surface. The greatest drawback I
have found has been the difficulty of obtaining parity of tints in the half-shades and reflections of the flesh, owing to the maddy-brown colour to which the print has been toned, a sort of smadge which no transparent colour can remedy. This, and the tendency of silver prints to become yellow by age, has often caused me to consider whether it might not be better, when they are especially pre-
pared for colouring, to nse some other process, which wonld give 2 more favourahle tint for working upon. As I believe any variety of tint can be given in carbon pristing, this, with its permanence, wonld point it out as the most preferable, bat would, probsbly,
When oil colours are to be used, two or three coatings of weak size, made of gelatine, should be civen to the print beforehaud, and allowed to dry. As in water, transparent colours can be used, and the effect muchimp.
In portraiture, should the painter be sufficiently master of his art to paint a good picture in the usnal way, he will find it much better to use the photograph as a copy than as a substratum.
Transparencies on glass must always receive a
weak coat of varnish before colouring, otherwise weak coat of varnish before colouring, otherwise
debbing in the skies will do injury to the impression.

It should be understood that there is a great difference between colouring-that is, tinting -a photographic print and painting apon one ; the the latter the skill of a well-trained artist.
Retouching negatives also offers suitable emplosment, especially for female artists, as it requiries light, and delicate handling. I should think that an
artist capable of retouching from the life-that is artist capable of retouching from the life-that is,
taking sittings from customers - would be considered a desideratum in many photographic sidered a desideratum in many photograpurand
establishments, and be liberally remanerated.

ACTION OF A MAGNET ON THE ELECTRIC LIGHT.
THE following acconnt of the action of a magnet on the electric light is contribnted hy Pro-
Pessor E. J. Houston to the Journal of the Franklin Institute:-
Having occasion recently to set rp a large hattery for experimental illustration of the properties of the light of the voltaic arch, I noticed a fact which i bclieve has hitherto escnped observation. The fifty-five were Browning's modification of the nitric arty-ive were Browning
acid battery of Grove. The negative element consists of sawed strips of very dense coke, the positive sists of sawed strips of very dense coke, the positive
element of zinc. so arranged as to nse both surfaces element of zinc. so arranged as to nse both sarfaces
of the coke. The remaining cells were of the iron battery. When first set ap, the arch between the carbon electrones messured fally 2 in., while the fame frequently reached an equal distance above the apper carbon. The quantity of the current was very good, much better, in fact. than the size of the plates would have led me to expect.
The phonomenon to which I woald call attention is as follows:-Wishing to show the well-known experiment of the rotation of the light by a macnet. I approached a compound bar magnet to the light, arch, in a with one end ponidistant between the carbon electrodes. When the nearest end of the magnet was 4in. from the electrones, the light was instantly extingaished. The regulator of the light which was employed is a form recently patented by Browning of London. The carbon points are kept at a constant distance from each other ly the action of a small magnet worked by the battery current. Thongh inapplicable to small batteries, for the current I employed it gave a light admirable for its steadiness.
Thinking that the extinguishing of the Thinking that the extinguishing of the light was prodnced by some cause other than the approach
of the magnet, the experiment was repeatedly tried of the magnet, the experiment was repeatedly tried
in a number of ways, nntil it was clearly shown in a number of ways, nntil it was cleariy shown but to the approach of the magnet. Thongh I have failed to find any published notice of this phenomenon, it seems probable that it may already have been observed, as the conditions of the experiment would be almost exactly reproduced whene the magnet was of the light of the voltaic arch by the magnet was
tried. Still, it may be conceived that though the necessary conditions for success in this experiment have often been nearly reprodaced, they have seldom, if over, been exactly reprodnced; for it was noticed that in no case was the light extinguished, unless the length of the arch was nearty as great
as the tension of the electricity ndmitted ; that is, unless the electrodes were separnted by nearly their maximum distnnce, consistent with the passange of the carrent. Were this condition not observed in all cases, the approach of the magnet produced no assumed a position in a vertical plane 90° from a similar plane passing through the magnetic axis of the bar. Then, again, another necessary condition carrent be of a strength greater than that of the current on which the experiment of rotation is generally tried. I have experimented with flames When these latter conditions Were absent, and ing of the ligotation was observen, tho excinguishcompound bar magnet employed is formed of three bars. held together by brass screws. It is 1 ft . long, bin. broad, and zin. thick, and is not at all remarkable for the strength of its magnetism.

As to the cange of the phenomenon.
may be attribnted to the tendency of 1 think it rotate on the approach of the mngnet Thisme to canse the extingiahing of the lignt. This might either by the irregularities on the sarfaces of the carbon electrodes offering greater resistance to the passage of the current from some points than from others, or by the current being nnable to pass through the greater distance of the arched path, which is always assumed by the light on the ap. proach of a magnet. Annther assumption, which, though perhaps not as simple as those already menof the is at least as probable. is tbat on the approach conducting power of the medinm between the eleotrodes, produced hy their polarisation. and which thongh alwaysacting, can only manifest itself in a striking manner when the distance between the electrodes is near a maximam, and the tension of the carrent is exerter to its utmost in passiug throng the non-conducting medium. This assump-
tion of the polarisation of the medium between the electrodes, and its consequently diminished power of conducting the current. seems to be somewha sustained by the fact, that a powerful electromagnet, in the form of a horse shoe, whin ap.
proached, did not extinguish the light, although it produced rotation of the current, for we may conceive that the two poles, acting simnltaneonsly on the medium, would nentralise each other's effects.
I noticed, on several occasions. that the sonth pole of the magnet would not extinguish the light nntil it was approached lin. nearer than the north nole, namely, to within $3 i n . ~ o f ~ t h e ~ e l ~$
This, however, may have been accidental.

THE RECENT ERUPTION OF VESUVIUS.
THE following is the substance of a lecture delivared at the University, Naplos, by Professor Palmieri, on May
Times correspondent :-
Great interest was excited by it. Several thonsands agsembled, and on Professor Palmieri entering the hall he was received with a round of applause. The terrible conflagration of the 26th of April, said the Professor, may be regarded as the finale of tho eraption which began on the 1st of January, 1871. time. It generally aiternations, up to the prosont which are small and gentle st thair come erpptions. terminate with great violence, carrying destruction to human dwellings and devastation to the conntry. Among the most fearfal eraptions which history records was that of 1631 . It is related that on that occasion 4,000 haman beings were killed, and 6,000 animals, cattle and sheep. Three centaries had elapsed since the mountain had given signs of activity ; grass grew in the very crater, and shephapnened that taken noexpectedly many were swallcwed up in the abyss which was opened; many were drowned or buried in the fiery flood, and others were destroyed hy the pumice and barning stones which were vomited out of the summit and from other mouths. In strong centrical eraptions-by which is to be understood those which come from the upper cone of Vesuvius-great fissures are asnally produced, which eject matter from as many dangerons. Such was the case with the recent eraption; for on the night of the 26th of April a moath was opened in the Atrio del Cavallo, , the long fissure which had been made previously. Th opening of this mouth formed, as it wera, a hill in the Atrio del Cavallo resembling a chain of small mountains, and from nuderneath the lava issued calmly and rapidy, like a river of fire, whilo from the principal cone was ejected a continuous and violent shower of lava, smoke, ashes, and other fiery projectiles. which rose to the height of 1,500 metres (betwern 5,000ft. and 6 , 000 ft .), while the mountain and evening to see the lave, several of whom the Professor had endesvoured to disanade from entering the Atrio del Cavnllo. Those who arrived later and remained until after midnight became the viotims of their curiosity. Between 2 and 3 o'clock in the morning the Atrio opened with a fearfal roar. and from the new mouth issued he lava with ing " smoke, ashes, and red-hot stones. Those wretched persons who were there were scalded by the smoke and wonnded by the projectiles; some of them died immediately, others later. Of the others who remained on the farther sido no traces remained, they having been swallowed up and baried by the barning stream. Those tremendous disasters may be foreseen and prevented, but a the Observatory should be well arranged, well organised, and good employés appointed to remain on the monatain daring the araption to give the slamm. On the night of the 26th of Δ pril the lava precipitated itself into the Fosso della Vetrana, and. doscending on the incline of the mountain ores former beds of lava, invaded S. Sebastiano, Masse di Somma, and Coreola in the Capa Giorvano, so called becanse, as it is said, that famous painter had a villa there. From 1852 to the present time the lava has filled up the Fosso della Vetrana to the height of 200 metres; it further additions be made
hereafter, the Observatory must be destroyed, as the hast lava is only a few metres nuder its level. The lava here has the breadth of a kilometre, and on the phenomenon-small cratery have been formed by the lava, which thundered like the principal erater, and ejected smoke, ashes, and stones to the height of 70 or 80 metres. These observations are of great assistunce to science, as they show the course of the Professor, that the lava will not make me pas dear for this good service by invading the Observatory. The velocity of the lava varies from 180 metres a minute to a few millimetres, depending mach on the condition of the land, being quicker on the incline, less 80 on the plain and where there are obstacles. 1ssuing in a liquid form from the moaths
it rans with great velocity, but slackens its pace as it advances, cooling gradually, and forming. as it were a skin on the surface. This increases in solidity Whd so the progress of the stream is diminishai When the lava ceased. Vesuvins centinued to eject ashes and paraice, and still thandered; then the roaring ceased, and the rain of ashes decreased in quantity. Afterwards came heary storms, whicb are commonly dangerous, as they are the occasion of great floods which, carrying down the ashee ans pumice which cover the moantain, complete the rai of the lands which have been spared by the lave After the ernption of 1631, the flonds were so atrons that the damage done by them was not less thay that occasioned by the lava, and the lavils of than yeara, like those which were damaged by fre.

There are some who think-and the opinion is general among the agriculturists of the Vesuvian
district-that the ashes sre benefioial to the land as manare, bat that theyinjure and sterilize it if water be addod. The analysis of these ashes shows that a portion is soluble in water, another part not. This has the same properties as the contemporaneous lava, and is a species of silicate whioh may be aseful an extroordinarily abundant harreat in the Puglias, and it was attributed to the ashes of Veanvins, which had been carried there by the wind. The asher soluble in water, howerer, containing chloric acid, sulphurio acid, salmarina, burn land and wither vegetation. The beautifol country near Vesmitias which had been exposed to the recent conflagration is now a scene of squalid desolation. The harvest of this year is absonately loah, and of that of noxt
year we cannot indulge any cheerfal hope. During year we cannot indalge any cheerfal hope. Dharitg
the late eruption a report was spread in the city, giving rise to great alarm, that the crater of Vesuvins had become an eleotrio pile, and that at a cartain hour a strong earthquake would
shake Naples to its foundations. That report was oxapgerated, bat the ourrents of electricity developed in the voloano were very strong. These phenomena do not accompany all erraptions. In quantity of lightning which flached in the great pile of smoke and ashes whioh rose from the varied sccording to the length of ite daration. speak; when it was longer it produced a sound which when dry and hissing like that of soand paper. The lightming is goneratod by the violent ejeotion of smoke and ashes, by means of which the electric current is established. The lave is now firm; is spent and yet smokes-not to be wondered
at after so recent an eruption. We have seen the lava of 1858 stin smoking in saveral places. These jets of smoke are called "fumaroli." These smoke. holes are communications between the upper crust mass still incandescent. Around these holes are formed sablimates of oxide of copper, of obloric acid, of sal ammonis, of sulphur, \&cc., which invest the lava, with forms and colours at times the most beartiful. The Professor said he had analgsed the smoke which rose from the lava, and had discovered hat the dissolves in salt wetor. From haid by those terrible convulsions, and are mingled with the fire at the conclnsion of his lecture, Palmieri said that on the evening of the eruption Vesurius appeared to sweat fire through every pore, which by nigbt appeared like so many specks of flame attrched to
the back of the dark cone; by day those flames the back of the dark cone; by day those fiames athorities and all others who had manifested so lively a aympathy for him, wrich had well repaid bim for the labour and anxiety he had undergone for the benefit of science. What Inow send is, says the correspondent, of course, only the digest of a lecture which will, nodoubt, be published. It is, however, a faithfal report, as I have been permitted to transMany addresses from pablio bodies have been forwarded to Palmiexi expressive of admiration, and his Majesty has sent him a diatiogriahed decorationthe Grand Cross of St. Marrice and Lazarus.

THE ANTI-MILDEW GRAIN PROTECTOR.

 A MECEANICAL method of preventing corn dew has recently been shown in London by Messrs. Adatt and Co., of Mark-lane. It is an invention by Mr. Jonnnides, and consists of an arrangement of perforated and solid tubes, on the principle of the siphon, whereby the air is passed through the mass of the corn as stored in the hold of a ship. in granaries, or in warehouses. It is well known that the commercial value of cargoes is frequently roduced by a portion becoming damaged, and then as the samples taken from each hold are mixed by the brokers for disposal in the markets with a view to insure a fuir average, the whole cargo thus really illustrations which might be given would show that the prevention of mildew is not only of high importance intrinsically, tut considerable expense might be well incurred to avoid the deterioration of large quantities on the voyage. For hay ricks, too,a good system of internal ventilation wonld go a good system of internal ventilation wonld go ${ }^{2}$
long way towards preventing heating or in facililong way towards preventing heating or in facili-
tating drying. The apparatus consists mainly of a tating drying. The apparains consists mainly of a all over, the other internal and only perforated at the end of each branch. The arrangement is as follows:-Thereis firsta vertical perforated cyliniler from which fore and aft and port and starboard perforated arms extend in single or in two or more tiers. The cold air taken in at the bell mouth of
the vertical tube descends, and finds escape party through its own perforations and partly through those ouf the branches, and thas intermingles with the gratin through overy interspaca When heated
or undear pressure in the closed hold, A portion of
this air escapes by the internal tubes, and thas a constant circulation is maintained, as may be shown
in the models by means of smoke. A fall-sized machine ordered for Wallachia may be now seen a Mearrs. Rotherall and Bastin's, Blackfriars. In length its tabes are 32ft., across the ship 19ft., the vertical tabe being 13ft., or, in other words, the tabes extend nearly across the hold in both direc tions; above the hatches the tubing to the bellmonth will rise some 7 ft . For granaries and other magazines, where a strong current cannot be insured as on board ship, an Archimedian screw arrangement has been made for forcing down the air into the store amongst the corn. Experience will no doubt ahnw other advantages and applications. The plan has the merit of simplicity and of working without need of any continuous attention.

OHEMTOAL NOTES.

Potanh from Maize.-The American Journal of Pharmacy gives the results of some researches into the ohemical constituents of the cobs of Indian corn. In a series of analyses it was found that the cobs contain on an average, in 1,000 parts, 7.62 parts of carbonate of potash, ur nearly twice as much as the best specimens of wood. Statistical data are given showing that, taking the average production of corn in the United States alone, there might be extracted from the ash of the cobs, quantities of which are used as fuel for steam-boilers, no fewer than 51,612 tons of pare carbonate of potassium may be simaltaneonsly obtained: 100 parts of the cobs, dried at $100^{\circ} \mathrm{C}$., contain on an average $1 \cdot 171 \mathrm{ssh}$, consisting of $0.899 \mathrm{KCl}, 0.836$ $\mathrm{K}_{2} \mathrm{CO}_{3}, 0 \cdot 230$ silica, lime, iron, and charcoal, and ${ }^{2} 105$ loss.

The Frormation of Grycogen in the Liver.Some years ago Dähnhardt removed the glycogen from numerous livers, and then found that, by the action of gently oxidising substances, glycogen could be obtained, whicb, by the action of saliva, was again convertible into sagar. In other worde he maintained that there was or might be a post-
mortem formation of glycogen. Dr. Luehsinger mortem formation of glycogen. Dr. Luehsinger
has lately repeated these experiments in Kühne's Laboratory, with a different result. He thinks that Dahnhardt did not entirely remove the glycogan oripinally present, and that if this were thoroughly and completely extracted by rapid division of the organ after death, and boiling the pulp in snccessive quantities of water till all opalescence had ceased would occar.

Detection of Vitriol in Vinegar.-The following process will, says tho American Journal of Pharmacy, detect the 500 th part of free sulphuric acid, and is accurate for all practical purposes. An ounce o tion on a water-bath to about half a drachm, or the consistency of a thin extract ; when quite cold, half a fluid ounce of strong alcohol is added, and thoroughly incorporated; the free sulpharic acid will be taken np by the alcohol, to the exclusion of ny sulphates; the alcoholic solntion should stand or several hours, and then be filtered; add to the filtrate 1 flind onnce of pure distilled water, and
evaporate the alcohol off by the application of a gentle heat; the remaining liquid is then left for several hours, and again filtered; to the filtrate, previously acidulated with a few drops of pare hydrochloric acid, a solution of chloride of barium
is added, which, if sulpharic acid be present, will is added, which, if sulpharic acid be present, will field a white precipitate.
A New Method of Obtaining Potasaium. Professor Dolbear gives the following as a new
method by which he obtained potassium :-White method by which he obtained potassium :-White stick canstic potash of commerce was dissolved in water and then treated with sulphuretted hydrogen in the way commonly described for making potassium sulphide, $\mathrm{K}_{2} \mathrm{~S}$. The solution was evaporated until it was solid when cool, when the yellowish mass was mixed with more than its bulk of iron filings and chips, and the whole pat into an slembic for distillation. The heat of a farnace was applied till the alembic was of a bright red heat, and the products of distillation were received in common coal potassiam vapour decomposed the heated vessel ; evertheless, the potassium showed itself, when the oil was poured off and the residanm turned upon
water, by its characteristic ignition and flame. The water, by its characteristic ignition and flame. The
reaction is simple, and may be thus represented : $\begin{aligned} & \text { reaction is simple, and may be thas represented } \\ & \mathrm{KS}\end{aligned} \mathrm{Fe}=\mathrm{FeS}+\mathrm{K}_{2}$. He says that he has not conveniences for experimenting apon this on a scale arge enough to test its comparative value; it needs some special arrangement of protected vessels, as it violently attacks common crucibles, porcelain, and glass. The materiuls used for thus obtaining it are of the required cheapness, and the iron salphide product oan again be used to farnish sulpharetted sodium can be obtained by an analogoas process.

LETTERS TO THE EDITOR.
[WF do not hold owrestues reeponsible for she optuions of our corrreapondente. The Editor respectfully requests peenible.]
All communieations ohould be eddressed to the Editor of the Evglisi Mscranio, 81, Taptotock-otrect, Covent Garden, w.o.
1ut Oneques and Post Ophee Orders to be made payable to J. Passmore kidiads.
"I would have every one write what he knows, and as muoh an ho knows but no more; and that not in this havg bor in artcular subjects: and en person may oature of sucha person or such a fountain, that as to other thingy, knows no more than What overybody doen,
and jot to keep E clutter with thit litile pittance of his, Will undertake to write the whole body of phyricka:
Hoo from whence great inconvonionces dorive thelr original:"-Montaigne's Emaya.

* In ordop to faoilliate roforonec, Oorregyondonte whon opocibing of any Letter proviously incorted, with oblige by mentioning the mumher of the Letter, as well at the page on which it appears.

GLASS BUN-8CREENS-TEEORY OF VISIORPAINTING THE SPECTRUM-PURORABE OF A SPECTROSCOPE - AND SECONDARY BE FLECTIONS.
[4228.]-Did Mr. E. L. Berthon (let. 4148, p. 224) over try smoking the fold-lens of an eyepieoc for salar obsorvation ? it is only a rather rongh way of doing solid particles. In the one case they are of oarbon, in the other of silver; bat the prinolple is the same. It is no novalty.
I begin to see that " E. J. D." (let: 4161, P. 297), is writing, not for his ostensible parpose of obtaining in formation, but in reality for the sake of arguing Commencing on p. 510 of Vol. XIV. (lot. 8498) with an acconnt of an experiment whioh, faicerely belave, alloged effects were produced? Since then he has kept ip a desaltory fire of questions, overy one of which he might have answered for himsolf by refarence to any decent work on optics ; and now, in his lagt commanicstion, he makes a varioty of vegue shots and random sssertions, and demands an explanation not of chat really occurs, but of his own imporfect and confused idess of it. What, I shonld like to know, does he imagine to be (so to speak) the dimenaions of a ray of light $?$ becanse he talks of one as though it were a cylinder of the size of an arerage walking-stick. Has he no meang of access to any work doaling with the smplitude of the vibrations of the differently colonred rays? And can he not thence form some notion of the unconntable millions of rays which would be thrown ofl his hypothetical statue? As for what he says abont mirrors and their action. I confess that his argument might be enanciated in provin on earth can "direct parallel rays" proceed from any part of a man'e body to a mirror? Rays diverge from a point, though, of coarse, the more diatant such point is the noarer they approach to parallelism. Burely, "E. J. D.'" does not wish me to reproduce the time-honoured diagram of the gentleman of easy manners in knee breeches and s bag wig, admiring himsalt in a as an illustration of refection since a period long anterior to that at which any reader of these linem ontered this world? I really shonld be ahamed, sir, to ask yon to engrave it. Bosides, "E. J. D." oan easily make s simple sketch for himself. For example, if he will draw his own profle facing a mirror, surmoant his head with a tall conical cap, and from the apex of this cap draw lines to represent rays radiating nevery possible direction, he will ind that a cortit now, al every point of contact of these rays, he will arect a perpcndicnlar, and make the angle of reflection of each ray equal to its angle of incidonce, he will see immediately what rays will reach his eye, and will hence be able to determine at once in what direction the reflected image will appear. Again, his notionr rather Sir David Brewster's-of "three primary Sir J.inn Horachel, and Maxwell, all having shown ast priamatio yellow and blne can, axder no circamtances ohaterer bs made to produce green, while a mixtare of prismatic green and red does produce rellow. Moreover, the spectroscopo demonstrates rrefragably the definite character of the refrangibility of the various colours of the spectrum. Who, too, if he not rude question, has been cramming poor E. J. D." abont Encke's Comet, "and the sotilement "the ridiculous theory of ether existing in space "? and, sapposing that it were proved to-morrow that
Eucke's Comet was retarded by (say) Meroury, how could, or would, that affect the theory of the could, or wonld, that affect the theory of the
luminiferons ether ? The real fact, however, is that "E. J. D." bas all this time (while apparently sitting in statu pupillari), been engaged in ingtracting don't see it.
"Utile Dnlci " (query 11875, p. 236) may paint the spectral colours upon his disc by employing the (not moist) watercolour paints, and rub them np with

Water to the connintence of cream-carmine, Mars orange, cadmiam, lemon jellow, emorald green, nltramarine, Prnssian blne, and rose madder. Imny add, as
possibly being of some nse to your correspmndent, that possiblr being of some nse to your correspnndent, that if he divides the circmmerence of his cardmard circle into 960°, violet will fill a sector of 109°. indigo one of
47°, blue one of 48°, green one of 46°, jellow one of 27^{\prime}, 47, blue one of 40°, green one of 46°
orage one of 27°, and red nue of ${ }^{\circ}$.
"W. H. H." (query 11006, p. 237) will scarcely got a spectroscope of any nse to him nider five gaineas, at Which price what is called the student's spectroscope it
sold. By the aid of soch an instrument, and a Buasen's barner, he will soon learn to identify the spectra of many of the metals and metalloids, and to map them ; as also to comparo them with the dark absorption lines in the spectram of sunlight. I do not think that a micro-spectroscope is a good thing to begin with. It shows the absorption bands in various vegetable infasions, in blood and other fnite, sc., beartifully; but
although all this is curions and interesting enongh, it is although all this is ourions and interesting enongh, it is of very limited and apecial nse, and teaches the stndent very much less as to the great fandamental principlos Which anderlie spectrum analysis than dnes the form
of instrument which I have advised "W. H. H." to of instrument which I have advised "W. H. H." to
procure. Having mastered this, he may have a spectroscope fitted either to his microscope or trelescnpe, and will be in oondition to employ it to alvantage. I have montioned five gnineas as the smallest price at
which an effloient instrnment is procurable, but if my which an efflajent instrnmentis frocarahle, bat if my qnerist can affird ten grineas he will get
Bnperior one. Beyond this price, however, I world certainly counsel him, as a bepinner, on no acconnt to, go. I woald, in conclosion, recommend "W. H. H." and nasty" spectroscope is an ancommonly poor investment
Is Mr. B
Is Mr. Bachanán (let. 4188, p. 251) parfectly certain that the sppearanco which he attribates to dnublo refraction has not its origin in doable reflection instead? I mean to a second reflection from the inner snrface
of the window pane. This is a phenomenon of tho of the window pane. This
very cammonest occurrence.
A Fellow of the Royal Abtronoyical Society.

LONGITUDE - JUPITER'S TEMPERATURE AND DOUBLE STARS
[4224.]-In its existing form the letter (4143) of "L. T. Y." on p. 224 adnuits of no answer. All that your correrpondent says, in effect, is that, bs observing
the transit of a star, or stars, ho fond his clock to be 49sec. Wrong. Bnt then he goes on to add the wholly inexplicable assertion that be "fonnd the average correction to be $49 \cdot 23$ sec.," and that he has " since ascertained, from official suivey map, the exact correction to
be 49.87 sec." The exact correction with reference to be 49.87 sec." The exact correction with reference to What ? - the difference of longitnde between his observatory and his office-the Philadelphia Observatory. or
where? becanse not a solitary scrap of information Where? becanse not a solitary scrap of information
does he give with regard to this, the very gist of his does he give with regard to this, the very gist of his
question. The whole onmmnication is a puzzle: question. The whole onmmnnication is a puzzle:
because Philadelphia (the Hizh Sclanol Observatory) is m .84 a . eact, or N , of Wabhington, the American nitial Meridisn. Nor does the mivodaction of the English Nautical Almanac mend matters, inasmuch as Philadelphia is 5 honrs and 38 seconds west, or slow or the meridian of Greenmich, for which our Britih1
Ephemeris is compnted. Besides, it is of no enrthls Ephemeris is compnted. Besides, it is of no enrthly
ufe for a man to determine his local time (even with the most refined acearacy), for the purpose of ascertaining his longitnde from some other station, onless o knows he preciso time al such shation al the exw instant of his orn observation. How any possible means can exist of "deternining correction for longitude withont the aid of ot
The question (11883, p. 237) of Mr. Whitaker directed my attention to the article io the Cornhill Magazine with a great deal of interest. After my own expression with a great deal of ioterest. Aftor my own expression
of opinion, repcated more than once in these columns. as otinion, repcated more than once in those columas, as torist will readily imagine that I have somowhat carefully considered ererything that has been advaneed to acconnt for the manked changes which eves moderate telescopic power enables ns to detect in it. I do not author of the paper referred to seems to me to have proponaded the ouly theory that gives even a plansible explanstion of the appearances which we winness. If we assame, as we hare every right to do, that the origin, and have cooled down from a stateof incandescent gas, then, obrioncls, the largest bodies, and notahly ret in their heat by the densest atmosphoreq, wonld in tl:e conception that Japiter mar, even yet, retain \mathfrak{a} temperatare such as that postulate el by the author of the essar in the Cornhill. I I do not gay that this theory will acconnt for all the phesomena recorded becaube other canses havo probably operated in pro-
ducing them. If, for example, there be any truth in the recently advanced idea that the coloaring o change, this certainly would seem todesmand soinethin more than the minly woult seem to dewnal soinethin hige suljacent temperatare, and of the planet's rap i, rotation, to explain it ; but this world scarcely inralidate the theory advanced by the cornhill evayist, i exhibited by the "Gisution of the lending phenomen " "The name of the Writer is not given," as Mr. Whitaker remarks, hat 1 really shonid tronble myself exceedingly little as to the
authorahip of such a paper as the one we have teen
discnssing. Personally, I shonld enteavoar to ascertain in the first plage, whether the writer's nasertions were
made converning facts; and in the next, whether bi made coucerning facts; and in the next, whether bis
infernnces from such facts wore legitimate onea. Ono satistied on these points, it wonld matter nothing to mo whether sach an es:ay proceeded from the pen of the Astronomer Rosal or from that of Orton "the Claimant."
In answer to the second part of Mr. Whitaker's quers, I mas tell him that Sirins is prononnced with
the frst i as in sit; and with reference to the third, the frst i as in sit; and with reterence to the third, express my beliof that the planct varan has no esis
tence. I by no means intend to ssarrt that a planct or planeta, may, and do, not exist hetween Mercniry an the Sun; hnt as to Lescarbanlt's planet, to which th name of Vulcan "rss given and an orbit assigned, 1 reems morally certain that it must have been picked op long before this had it been an objective entity,
I cannot find anv very recent mrasures of ζ Boïtis ncked for in let. 4222, p. 257), althnngh I have a strong mpressinn that some were made and pnblished not ong since. The latest that I am cognisant of, of n Coron:s, are those by Mr. Knott, whin gives position angle $45 \cdot 85^{\circ}$, distance $1 \cdot 003^{\prime \prime}$, epoch $1871^{\circ} 54$. Whr does not Dr. Blacklock try ξ Ursm Majoris, of which the compments are now, as nearly as may he, 105 apart ? power of his apertare, but is a very good test notwithstanding.
A Fellof of ter Royal Abtronomical Socibty.

Mr. GOSSE'S "OMPHALOS."

[429. $]$-Mr. Gosse (let. 420t, p. 255) invitos me to anerce his " Omphalos." I mont disfinctly decline th
do anything of the sort. There is sinply nothing in it to ansprer. At the risk of being again acensed of "gratnitons ungentlemaniitiess," I sar, quito derabbish in my life as the book in question; and Iassert with the ntmost confidence that this opinion will be fonnd to be jastified by every single review of the work which appeared in the soientinc journals at the time of its pablicatinu. I feel, howeyer. that an apology is
due to Mr. Gogse for my ascnmption that his perfor. due to Mr. Gosge for my ascnmption that his perfor-
manco had pased into the butterman's hands ; an it manen had paseed into the bitterman's hands; ant
wonld seem to be still cambering the shelves of Mr. Van Voorst. Requiencat in pace.
I protest arainst tho implied notion that an anonymona witar is bound to say smooth things. If there is one thing that I hatentterls, it is quackery, be it religione, scientiac, iterary, or poinical ; and if any man, even
my aearest and dearest friend, pata forth a miachievona or (ns in this caso), merely a hopelessly foolidh book, neither fear nor favour sball prevent me from piving an honest opinion of it in the very plaiuest English at my command

Accepting mr postalates," says Mr. Goase. Exactly: Accept the postnlate that $5-3=19$, and see whether
I will not deduco resnlta before which "The Glorions will not deduco resnlts before which "The Glorions
Metri: System" shall pale and dwart into utter insigniticance.

And now, lest, as is probahle, a verr large proportion of yonr raders shonld wondar what this precions book
is all alont. and imagine that there may really be something in it. tet ns herr its percading idea, as Tersely expressed by the great American essavist, Oliver Wendell H-lnacs:-" Mr. Goese can beliere that a fossil skeletnn, with the remains of food in its interior, was
vever part of a living creatnce, bat was made jnat an vever port of a living creatne, bat was made jnat an
wo find it-a kind of stnge-promprts, a cleper cheat ant up br the great Munazar nf the orixinal Globe Thentro." Thisis "rernanciliatinn"-with a vengennce
a Fellow of the Royal Astronomical Society.

A NEW FORM OF COMBINED VIOLTN, \&c.
[4206.] - I have before tricd to deprecate any appeal o me by "The Harnonons Biacksmith" (let. 4201, p. 2515 on sphijen of which he is a most thorongh ing it; nlphalet. If I wanted an opinion, or informaion, recondite or elementary, with regard to any form convee) the firmt man whose aid I shonld inroke; and here ho is cleiming minc! Nush an inversion of tho

Tlie head paituer a asking forgivearsa of Co., fh? There ranst be something wrong in Le firm whin that happens. I must have the bo
Mnt, having gnarded myself from any possibleimpuation of a clain on my part to spacak ex cathelra, I "The Harmonions Blacksmith" seems to possess con ijernine capatilifies for the prormance on it of (or whaterer answers to it, for this is uat iudicated in his sketch) ซonld have to be very mnch arched and this wonld necessitate ${ }^{\wedge}$ pecnline style of
owing. Fingering, too, wonlo, I fancr, be a bit of a pozzle. Theac, however, are matiers of detail, aud in shonld not anticipato the dillionlt allezed a a a probable are by "The Harmonions Black mith's" friend-riz. hoards. tied together as ther won! be; but it is almus impssible to reason a priori with ref.renco to so per tice" wonld most peculiarly in this case be "worth a phond of thenry
Shonld "The Harmonions Blacksmith" go to the be intcrecting to learn tho resalt of his first tiddia.
a Fellow of the Ropil Astromosical gidie.

OBSERVATIONS ON "THE HARYONIOUS BLACKSM[TH'S " NEW FIDDLE.
[1227.]-Since reading the interesting lettor of on masical friend, I feel sereral inches taller, and it will never grow less. But I mast again drev" readera' grow less. tones by percassion and bowing. I mas beat adrag more and more, and till it bursts it will sound loude
 but I cannot bop s tring incestiog thrwent bary time bo prodice mion ing preas ahould have a series of torrible noises or shariaks. Therefore, it seems to me imposaible for one string (bowed) to move more than one soundboard, mede ol string to each sonndbosrd, and I would ask could one misein of ennecled with a misaion of a soundpost? I do not mean to go through ment of bridges, bringing them ander some arragge may be remombered that I noticed lately the ourion fact, that if a volin string is bowed directly on it side, hals the power is gone (to be bowed near the nat bat etill more carious, the tone when plased in this
mode is revived when the sonndpast mode is renived when the sonndpost is removed. I
think from this that the soundposts in the ner fidde wonld act as dampers to the tone, becanse the string for ha be played on their sides. I say on thetr sides, for haring no bridge there would be no distiuction be-
tween one side or other of the stringe. I wish all instrumentalisth, eapacially violoncello players, to
notice the hint I gere eboat sound refiectors for the baok of fiddles. I tried the tone of a violopoello with a pieoe of mahogany placed against its back, and it this is treating the flddio, an a mary macal box; it cocuade boter on a cable than when held in the air. Howeres,
don't ran away with the idea that a bor made of hard thick wood would be better. it wonld aot the contrur thinuld a box of soft rood. Yet I am inolined to thickn the reflector should not be of anilora thicknean, butr am ignorant on this point. Tropieces makilina sin. howeror closaly piaced rogether min. a in. is very good. Does not this seesn to point to the idea of 80 many stoms or centres being required to each tone, these grains together forming columne of
reaonant matior? If the said columng ware not required, metal sonndboards or refiectors would io bettor than wood. The grain of the wood, I neel hardly bay, yorms the colamis I allade to. Wo may dow made in two pieces or halves. The bridgo has two feet, one on each piece, and they aot and roact on each more centres, atoms, and colnmps for the sonad, bat the bridge would have more feet to connect them. if sympathies of Mr. Schacht in this matter of violin breasts and refiectors (both distinct things), especially after readiag his observations on soandboard consira. tion, on p. 71, let. 2i34, vol. Ait. There is a lav hintod at and a promiso to describe it. Mar I respeetfully ask him to ravour ns with the description, as 18 hiait might apply to the present sabject? Ho itates, Fthirt, that in a soandboard constructed of narrom lenghs hard and soft wood siternately joined together, rniction
was caused between the two opposites. How abont was caused botween the two opposites. Thich, the other making the breast of two pieces, one thick, the old might ho might do withoat the baek, and making another
so as to bring the different kinds of mood under each so as to bring the diferent kivas of wood und of each other, connected by sound posts alternating on tanem
side of the bridge (it will never do to hare them whe op side of the strings, and thus get the full benefit this combination.

STRANGE AND RARE MUSICAL INSTRUMENTS [4238.] - "The Harmoniove Blacesmite" (lot 4137) will find a good description of the corno di bas Bass or kramm-horn, in Albrechtsberger's "Thorory Bass and Harruony," three volnmes in one, p. st Extract therefrom :-" It is distinguished from haq the laryost compass all ind instrmenta : containa four whold ootases in regalar order. The clarionet is to the corno di basetto Engligh horn, and both mar be termed branches of tb gtem. The scalo is the aame as clarionet, bult contains foar lowor notes.
[4229.]-Cobxo di Bassettro (not de), Basget Hora, specion Ity chione bang anth lower than in is bent abont the middle, forming an obtace angle, and has at the lower end a small metal bell. By the sid pecial keys it produces two notes which are mantio in tho clarionet-riz., small \mathbf{C} and \mathbf{D} (really large and G). Its scale is written in the G cleff extediang from small E to three-lined D (really largo F to two-lined G). Mozart nees it in his opers號 sented by two basset horns and two bassoons. Its tone is soft, elegiac, and rather lagabrious; it is verf. rarely ased, having given place to the more powern. clarionet. The Gerinens call it "krumm-horn" i.e., crooked horn, a corraption of which term, the ntop which closely imitates its to Strathburys, Glasgon.
W. B. Mazghall.

PRIMITIVE PIANOFORTES, ALIAB DULOLMERE, WITH AND WITHOUT BTRINGS.
[4230.] It may be held to be eridence of an uncul. tivated mnsical taste, bat ${ }^{\circ}$ I can't quite get over my sfiection tor one of my early loven, to wit, the dalcimer. Doabless, this is a cot like most old things ghich bere not beoome quite but, like most old things, Which have not booome quite of goodness, for it is capable of yielding sonnds whose londness and timbro may be raried at the will of a Einled player to a much greater extent than those of any pianoforte wit
cortane 5 et to hear.
about forty years ago a man, then considerably past middle age, used to obtain his rather precarious liveli. hood by tinging in the streets and in pablic-honses, especially at old Bagnigge Wells tavern, then one of the fow existing predecessors of the modern music-hall. This not very refined vocslist, who, like Mr. Sims Roeres, was troabled with a chronic hoarseness, accompanied his not remarkably swoet voice on a large converted," as my religions friends term it, and having vire sabstitated for its original catgat atrings. His instrument was far longer than any other dulcimer I have seen, being about 7 ft . long by, perhaps, 2 ft . 6 in . wide in the middle. In form it was a truncated triangle, and its compans was, if I remember correctly, four and a hall octaves from F F to C in alt. It was a trichord (although it bad not what the piano advertisors term a bout two octares, bichord to abont C C. and below that note nnichord. It had no covered strings, but F F. hich Tas about 6ft. long, was atrung with copper iametor. This instrament was taned in the inchle of P major, withont any semitodes not in that key, 80 but ary bitile modulation was possible on it.
an this primitive pianoforte, held in his hands two riple-headed hammers, whose three hesds, each abont 1 in. long, were covered with lesther, differing mnch in thickness and hardness, one pair being extromely , and used-excepting fnr the higher treble notes pair, which were of medinm hardness vere those he penerally employed. The third pair of hammers being, like the writer, extremely "soft," made the instrament do what he has been doing for a long time-viz., ere disposed radially at 120°, and their stioks had three fiats-I don't mean \mathbf{E} flat major, but three flat sariaces, whose positions correaponded with theirghe parformer conld change his hammers instantaseously by cansing their sticks to perform one-third of a revolution between his ingers and thambs, by to "get down to the firts," which was more than the laiment said was possible on or with the French horn. fear he, however familiar with "flate," was not quite up to the Attorney-General or Mr. Hawkins, probshly becaus
lets.

This threeheaded cerberns-I mean hammerensbled the performer to Fary the loudness and timbre of the sounds to a greater extent than any pianist oan
do (for few pianofortes are provided with two sets of o (for few pianofortes are provided with two sets of that exoolient thing the celeste; consequently, the powers of expression of the dalaimer player excoeded trusting percnta fondly who has learned (or Whose "rusting parents fondly suppose to have learned) the need hardly add this was a very powerfal instrament, indeed this is a necessity when yon have to perform cart-wheel sccompsind are assisted (7) by a continuons any grand piano then made; both its bridges were fixed on its sonucing board, which mast, I think, have bass; besides which, as the performer held his rather ong-handled hammers in his hends, he was enabled to can do who has to perform on an instrament provided with as mechanical action, be that action Der Englisch Mechanick," the German action, invented by Stein, or even Erard's French mechanisck (said to be the most powerfal of sll, which I greatly
doabt), Mata's, adias Honkinson's, action, whioh I know doabt), Mata's, alias Honkinson's, action, whioh I know even my own borizontal grand action, which far surpasces them all in the force with which its hammers atrike the strings. This very primitive pianoforte, for accompanying the voice, sud effective instrument for accompanging the voice, and was, in my opinion,
far superior to small bells for instrumental perrmance
Some quarter of a century later, when the performer on the above instrument must, in the ordinary course Of Nature, have "gone over to the majority", as the French people express the termination of mandane
life, I beoame acquainted with an old journeyman pianotorte-maker, who was often seen (and heard) in he City performing on a very powerfal dulcimer, whioh fenhionabucted somothing lize one of the modern fahionable six-feet grands. It was a trichord instra-
ment throaghoot its compass, sir octaves from \mathbf{C} to \mathbf{C} with the semitones complete, sevents-fhree notes, exeepting about an octave and a half of bichord. corered strings in the bass. Although, perhaps, two feet帾 excegting, perhaps, in the lower past of its bass ; at this

We need not be very much aurprised. When I relate it trichord C's vere struog with No. 16, 17, 18, and 2: wires. Power, in the sense of louduess, was, indeed almost a necessity for accompanying the remarkabl lond bass rrice of its constructor, who, if surpassing Stentor had been the clief qualification for that office, might, like E. J. Reed, have been "Chiel Constractor th the Navy," for his voice rivalled Lablache's in power it not in parity and sweetness-sooth to sar, there was bu little "sweetness or lightness" in it, and the very,
smallest conceivable "melos" in his melody. Genen. smallest conceivable "melos in his melody. Genea
Ingies are nometimes rather dificult to trace, but Ingies are fometimes rather difficnit to trace, bnt
think my "horsey " friends wonld, had they but heard think my "horsey" friends wonld, had they but heard
him, have bad not the least dificalty in determining him, have had not the least difficalty in determining its parentage, and that, in sporting paraseology, ithad
certainly been " got hr Mr. Black Smyth's Big Rabber oertainly been "got hy Mr. Black Smyth's Big Rabber ort of Mr. Ftrench Roll Balier's Rongh Rasp." The
"Harmonious Blecksmith" is axtremely sorry to add that "Harmonions Blecksmith" is axtremely sorry to add that
that regard for trath which distingnishes him compels that regard for trath which distingnishes him compels
him to teatify that he often harare many voices, both him to testify that he often hnars many voices, both
masculine and feminine, which sound to him very mascoline and feminine, which sonnd to him very and sire.
Wo owe something to the dnlcimer, donbtlegs it was the father of the pisnoforte, and is a very old friend indeed, not to mentinn that it formed part of the colleotion of mnsical instraments which belonged to our amativo and harmonions sovereign, Harry the Eighth, who, poor man, mnst needs have required all the masical instraments ho coald purchase to preserve him in harmony with his many wives. It has not set quite gone out of ase even "nutil this very day," in those con "rrative-Mr. John Stast Mill wonld have written benighted"-localities yclept conntry places. Well can I remember, when a young man (alas ! like the
days when we went giparing, "a long time ago") the days when we went gipasing, "a long time ago") the
dulcimer was in frequeat nse, not only for accompany. dulcimer was in frequeat nse, not only fur accimpany. ing the voice, bat even as a solo instrament. of some
pretensions. It has long been known to the Wise Men -also to cortaynge and sundrie other not wise-men of the East, nnder its criental names, Santir and Sar Madal. In Poland and Hnagary it is known by the names Cymbaly and Cimbalon, but the old olavi-
cembalo, or keyed cembalo, seems almost certainly to cembalo, or keyed cembalo, seems almost certainly to
huve been a virginal, spinett, or harpsichord, whose have been a virginal, spinett, or harpsichord, whcse
strings were placked, not struck by hamwers. SpeciBtrings were placked, not struck by hammers. Speci-
mens of the Oriental santir, also of Euglish and Italian dulcimers, are in South Kensington Manenm some of which have four, or even five, unisonous strings to each note, enongh to frighten, if not to
horrify, a modern pianoforte-maker, who fears to horrity, a modern pianoforte-maker, who fears to
employ more than two or three strings at most for one note.
Althongh I see by an editorial announcement that "the pianoforte alliance" is likely to be what fellow corre any bsistance "or miving plan" (most cordially do I wish the said nlliance erery anccess, and that it mar prove to its memhers"La Belle Alliance"). I fear it has been my misfortnne (by incidentally mentinning the opinion of the late
W. F. on the possible cost of producing good, plain, W. F. on the possible cost of producing good, plain, cheap, pianos) tos cxcite hopes which seem fnr from tate of civilisation, in which prory far advanced individnals and not in common, if a piano costs $£ 10$ to make its maker mast possess an amonnt of self-
abnegation-or imprudence-not very often to be met annegation-or imprudence-not very often to be mot other commodities, if he were habitally to sell it for prime cost. "Needs mast when the thingaminy drives," and, there is no "thingammy" like poverty, so ho may occasionally be compelled even to do this Which enables his Christian brothcr to take arlvantage of his misfortnue, and pra-ticalls illustrate the wise precent "do as you are doue by," by bayinga bargain; but sach bargains, although advertised duily, are no always to be purchased, aud, I fear-or rather
hope-the members of the piano alliauce will have hope-the members.ofthe piano aliauce will have the maker suflicient profit to live on antil all hey, at least, have their tnrns served-after which, of conrse, the maker may go to the "thinguminy" if
an cannot do better. So much for the bargain hanters, with whom I have but small aympathy, bat as many fellow readers resemble the writer in thinkiag thes conld spend considerably more moneyr tha adranage if they had it, and, pussedsing more brains then money-in which refpect, by the way, they do not brains indeed-woald be quite willing to parchase a piano if they could (bat cannot) afford to do so, I wonld cially it ouly required for accompanying the voice-is a really good dulcimer, say such an one as that last described. It might be au iuprovement to extend its compase to F in the treble, and, where room is not importing might be abont 6 ft. Jong between ita bridges. I should also recommend making all its covered strings he same length as the longest ancorered ones, which No. 30 steel wire the frat fonr bichord notes below it o. 0 shet wire, her being cosered on No. 28, the eight notes below them, anchora, odd ord plain piuno stande its maker iu, for like the ansucplain piuno standa its maker in," Ior bope, Mr. Editor, none of my fillow renders will not consider it their daty to "abase its solicitor."
Before I conclude-which by this time the reader will probably be quite willing I shoald do-I may remark that strings with a sound board are not the only hammers held in the hands, or impelled by some kind
of " mechanick." Bars of wood, glass or metal, platee dered conosia (nhen materials, whether fit or ren. dered coneavo (whea laey become gongs or belis, in proportion to the degree ol concavity impsrted to them) , aded, als may be substitnted for strings, often to great advan tage; bat the generic name of all these instramente it barmonicon, or harmonica, net latimer. According to he they suller a change, not invariably into "something rariond strang, for monicon which a fellow correspondent lately asserted was invented (2) by a German organ bailder. So I sup was invented (?) by a German organ builder. So I sup to the origin of the Tentonic race are now anite golved and the Germans now proved to be veritable niggers, which most needs be s very great consolation to the French. The modern zylophone is another example. Frencli. The modern zylophone is another example. straw fiddle, of the French ?) the Greek name of जhich braw hade, of he Frenol the Greek name of Which ligneone, for it is notorious that a good Greek word goes a long way in the misical as well as in the com mercial world. Allied to these are the rock harmonicon and other harmonicons of elass and metal, of whioh the Javanese Gender is one of the very best, becanse its sonnds are angmented by the re nation of dalcimer, in the sense of producer of dalcet soands, would be verr appropriate
the Harmonious Blacesictie.

BELL PIANETTE.

[4931.]-I muve not at presont the name of the patentee, but I will search and send it as soon as I smith," m very intoresting deacriptions of similar instramente in Dr. Brewster's "Natural Magic" (Family Library)
S. Bottone.

PIANO QUATOR, ALIAS TETRAGHORDION.
4292.]-Althovar not directed to me, I take the liberty of answering the query pat in lotter 4155, p. $225, \mathrm{as}$ my relations with the inventor, M. Bandet, of Paria, and my ba iness transactions with Messrs. H. Stead and Co., the purchasers of the patent, enable me
to speak with confidence. The tetrachordion was frst exhibited under the name of "Piano Quator" at the exhibited nnder the name ot "Piano $\begin{aligned} & \text { Paris Erhibition, 1867. The English patent was }\end{aligned}$ bonght last year br Messrs. H. Stead daring the course of the London International Exhibition of 1871 Mesers. Slead thag. would be more palatable to the English poble thas that propriety I shall not attempt to determine.
S. Bottons.

HIMMER'S GALVANIC BATTERY.
[4233.]-This arrangement of cell, described by you in No. 859, p. 113 , has had a oarefal testing at my hauds. Yoa express a desire that any of your resders the result. The following is my experience :-Tro cells were constructed, the details precisely as you gave them, and then left andisturbed. In the coarse of a few thirds foll of the expected, to a level with the cork inserted in the flask. The corront of these two cells, although feeble, was snfficient to work my electric clock, which it continued to do for a fem daya, but with gradually diminishing energ.. I now loand that although he copper alol diffasion took place thronghont the whole of the saline solution in the outer vessol, giving it a faint blue tinge, and, of conre, precipitating on the zinc, thus the combination. I am contident that no arrangemen could be adopted where an ontire separation of the finids could be obtained for any length of time-we know that not even porons cells will effect it. The battery, tharefore, in my hands is a failure. I trast, howeve given in your pages, and that it may prove more satisfactory.

Geo. Fox.

SAFETY LAMP FOR MINERS

[4294.] - In your issue of May 17th, you have given a prominent place to an acoonnt of Mr. Plimeollia
Salety Lamp for Miners, as if it werea novelty. Lest he or your readers shonld suppose that the idea of making a lamp to go ont when tiredamp enters it is new in itself, or its application, I beg to draw yonr at.
tention to the fact that the first lamps made by Sir tention to the fact that the first lamps made by Sir Hamphry Davy had the same objection (1) and were abandoned by him on account of the inconvenience
which the extinction of the light causes. Others have Which the extinction of the light causes.
made lamps on the same principle. I have in my made lamps on the same principle. I have in my pozession one of Eloin's lamps, which is almost
cal with Mr. Plimsoll's, and which iveritably goes ont is an cxplosive mixtore, and for that reason is not nsed or approved of. If the viewer of a mine, in searching for firednmp, had to grope his way in the dark back to a safe place every time he enconntered a small collec-
tion of gab, in order to re-light his lamp in safety, his tion of gas, in order to re-light his lamp in asfets, his
operations would be blow and laborious. The fact that operations woun os stom place, in any degree, within an explosion of gas takes place, in any degree,
a lamp whose openings are so limited in number and extent, raises a dont as to itg safety. See Sir H. Dary'
remarks and experiments on this point. A. K. J.

ENTOMOLOGICAL.-ON EGGS.

[2295.$]-$ Ega hanting is difficalt from the small-[1235.]-EGG hunting is dimeall irom the objects; however, many eggs may be
ness of leares, and aloo the stems of the food plants of the larres shonld be looked upon; the bark of trees, when fough, is often a favourite place to fand eggs on. A few kinds lay their eggs on aquatic plants. One great Recret in egg hanting is to know the appearance of the decrer erst kind of eggs, of which, I fear, only a very
difereare ever tolerably well known; and an examination of the anal gegment of the female often will show likely positions for the eggs, according as the ovipositor is long or short. Of oourse, any unusual protaberance on plants shonld be well looked at. Another, perhaps easier, method of procaring egRs is that of inducing fomalos to lay in captinity. Sotme
kinds lay rery easily, whist others, on the contrary, kinds lay rery easily, whist others, on the contrary, plant.
Most of the butterfies require space and the presence of the food plant, though I have found some (such as 4 . Galatea, C. Pamphilus, and others) lay with. out these incentives. Some of the mothe require to be fed on sugar and water from a small piece of eponge, and many of them require suitable surfaces, whilst other mothi cannot be indaced to lay at all. I do not think that it is a good plan to put eggs on the food plant While boing hatched, bat they should be placed in the Finally, eggs should never be handled more than is absolatoly necossary, and I recommend all collectors to make notes on all eggs they have anything to do with.

COLLIERY EXPLOSIONS AND THE WEATHER. [4286.]-Ar ingenions plan for diminishing the riok of explosion from incresse of fire-damp with diminnfion of atmospheric pressaro wan anggosted many jears ago, but has never, 20 far an I know, been fairly tried; Eome of your roeders may, however, be better in. pressure artilliallly in the mine when the men and pressuro artincialy in the mine whon the men and thatit would be an much dimininhed naturally when they are present. if this were done at ehort intervals (fay are precent 18 this were done at ohort intervals (ray
once a day), it would mort frequently prevent nueyonce a day), it woald mont frequently prevent nues-
pected evolations of ges frem goals, or other carities, pected evolations of gas frem goafs, or other cavities, in excess of the ordinary ventiasing power, and thereby diminish one of the great risks of mining. Tho mode proposed m mas by stopping the downcast shaft, while the mire is pasmped out of the npcast by a ventilating engine or fan. It was expected that rarefaction, equal to a fall of an inch or two of the barometer. might be got, and as mach of the gas of koafs, de., forced out
harmlessly as woald be forced out by an equal fall of the baroneter. I am sorry I cannot call to mind the name of the ingenious proposer of this plan.
P. H. HoLLaND.

AMERICAN SCIENCE.

[4237.]-"Travbller" (let. 4214, p. 256) may be assared I do not "ignore all American Scientific Anthorities," nor does he quite traly charecterise my remarks (p. 228) as "sneering at the tostimony of Δ mericans." Science is of no nationality, except that, as far as Δ merica is concerncd, the conditions of life, and the tarn of the national mind, aro unfarourable to that devotion to abstract research which constitntes science as distinguished from the practical application of the toachings of science. Therefore, of cearse, I should accept the teachings or ovidence of an American scientinc man as on a par with those of English, German, or French anthorities. But it is very different with the mere loose goanipry which comwonly passes for science, and very different when we are considering
mere extracts from newspapers, or statements made in mere extracte from
"popalar" lectares.
popalar lectares. The face are constantly pat forth in America statements which are atterly fallacions, often mere jokea, which pass from paper to paper till they ansume the form or received trathe. One inatance is that to which I referred-vix., Paino's olectro-motor, which was supported by the most determined assertions, and pablished as an ostablished fact, despite of
the ridicule and opposition of the really scienticic men the ridicale and op
of America itself.
Another instance I will give, which touches also upon the anthority of the "Year-Book of Facts," which, nsefal an it in, being a mere compilation, is not neces. sarily to be taken as an anthority to be relied on. Some years ago (I do not now remember the time, bat 1 think over twenty) there was a great American rcientific discovery which was to supersede the "Morse's
telegraph." One of those gentlemen who telegraph." One of those gentlemen who atudy Natare (2) discovered (or said so) that snails posseas a power of aympathy closely allied to that claimed by haman clairvogants; two snaile thas in sympathy would answer to each other's motions, though the whole body
of the earth was interposed. The discoverer made up of the earth was interposed. The discoverer made up
sets of neats corresponding to the letters and other sets of nests corresponding to the letters and other
signe needed, and in the corresponding nests placod sigus needed, and in the correspouding nests placed
snails thas i" en rapport;" when the snail in (say) B snails thas "en rapport;" When the snail in (say) n B box, at London, moved its horns, and thas it was easy to transmit messagee across the world. N.B.-I
read the account of this in the " Year-Book of Facta,", read the acconnt of this in the year-Book of Facti, given with perfect calmness as one of the discoveries
of the jear, made in America, and quoted from Ameriof the year, made in America, and quoted from Ameri
can papers. No donbt it origiuated in a joke, one of hose pecaliarly American jukes. Bat such jokes are the gronnd of my remark that I should require anything rather out of the way, and given on American
anthorfis, to bo well sapported.
Sicish.

ON MANCE'S METHOD OF MEASURING THE INTERNAL RESISTANCE OF A VOLTAIC CELL. [4238.]- "SigMA." in his excellent papers on electricity in the Englisa Mechanic (whioh, it is to suggeatio, will be pabished separatoly, the metho sbout to be doscribed), did not allude to the mode of measuring the internal resistance of a cell, which Mr. Mance laid before the Royal Society in January of last year; and, as I have seen no notice of it in your colamns, I am disposed to think it is not so widely known as it deserves to be : since, for simplicity rapidity, accuracy, and elegance it has not, I believe been surpassed.
Let X (Fig. 1) represent the cell whose internal resistance is to be ascertained, G a galvanometar A and B two resistancep, whose ratio is known, R a sol of resiatance coils, and K a key.
 snfier a bifarcation: one portion will pase taroaga part vill
 K is depressed, a portion of the carront which hat passed throngh A will proceed wouco w the conl X_{1} withoat going throagh B or . wifh the arrangemen an hero generally, if wo depross the key K, ho de in R in one
 direction, and with a large resistanco in ${ }^{\text {in }}$ ine opp can can bo used in R, such lhat ou deprasing the Hho the defection of the kalvanomerition holds good:Where X, A, B, and R represeat the sereral resiftances of the parts of the apparatus so lettered respectivaly-

$X: R=A: B \quad$ (1)
or $X=\frac{A}{B} \cdot R$.
And, as we know the ratio $\frac{\mathbf{A}}{\mathbf{B}}$, we shall get at onee the value of X . For example, suppose $\mathrm{B}=100 \mathrm{~A}$, or $\frac{\mathrm{A}}{\mathrm{B}}=\frac{1}{100}$, and that we wiah to ascertain the internal resistance of (say) a Léclanchic cell, and we find that on resistance of (asy) a Léclanche cell, and we find that on
patting in R 654 Ohma , the defection of G is unaflected when we depress the key K. Then $X=\frac{1}{100} .654=6.54$ Ohms, the amount required.
Wo see that in this process we are quite independent of the resistance of the galvanometer (which, by the employment of a shant, may possess any degree of the cell, snd it can be pna of the electro-mo There is a corollary from this process broaght before the Royal Society by Sir William Thomano, at the same time that Mr. Manco's papar was read, and which, I think, may likewiso be interesting was read, and which, think, may likewiso be intoresting arrangement before dccecribed (everything else remaining the same), which will then become that shown in Fig. 2. It is evident that as a portion of the carrent most pass through G. it will be always defected. Add sach a resistance at R that on depressing the ker K , the deflection of G remaing analtered; and let G be the internal resistance of the galranometer. Then-
$G: R=A: B$
$G=\frac{A}{B} . R$.
In other worde, we can ascertain the resistance of a galranometer from the deflection of its own needle. PI.

"UN IRLANDATS" AND THE DELUGE.

 [4299.]-IF it were not that three several querints "F.R.A.S." (let 4184, p. 228), M. Paris (let. 4211. p. 255), Tould seem, and, besides, the original jocular propounder (let. 4086, p. 196, let. 4193, p. 252), repeat, in apparentl sober earnest, his amasing question of "Where is the water gone to ?" I shoald not think of answering it seriously. In the whole of this Delage matter, obeerre 1 am aghting alone (unless Mr. Gosse or some other physicist likes to help mo), on behall, not of any ancient document, bat Bolely of Natural Law versu Miracles; the constancy or continaity of the knownparts of the course of nature, against L yyell and parts of the course of nalure, against Lyell and other miracle-mongero-i.e., resortors every momen to the unknown, to parely hypothetical interraption or reversals of what is known. Aocardingly, I though it enough to toll the arst questioner that the watar o the Dalage, whether little or much, "obeyed all the same lawa as yestorday's shower " (p. 236, bottom). It in impossible to do moro with a man who replies that "this is sbsurd " (p. 252, bottom), and acoording, at the top of the same column, invents nome unknown law Whoroby wator that foll on land would not remain theroon long onough to prese it O Oe who oan thu catch gravity anleep (a problem to which I have beea taught that oven catohing the weasel so vas a trite) it as mach above phyaios as the emperor that doclared himsolf "soper grammaticam," and is traly concistent when, having thas got his water ofl the hills in suct dcable-quick time as never even to exert prescare, he geta it back again in time, two paragrapha hator, to re peat the "groat question," whore is it gone to ? Who ever means to aniver him (for I shall not) mast at losen be told drit how he gets if back again from the men to which, juat above, he has sont it all
Now for the sober quarists. Their quoation in, being on a glote, with a cortain quantity of wator, equivions to a layer of fixed bat unknown dopth, so littlo known whether linge hitherto hat probaily 10 man can miles than 4 , or nearer 4 than
between these limite, they ank what is become of a still less known addition bolioved to have been mede of this same sabutance; for I have observed (p. 826 , col. 1) that while the cometary fall is cortain (E I amo bound to show by many more eridences yet un mentioned) its amount may, for sught I can soo, have been oither neveral farlongs, or not a quarter of a farlong. If the prosent stock is oully equivalent to ${ }^{2}$ milen, and the dilovial fall was 5 farlongs, then the antedilurian stock was bat 11 farlongs. If the presen is as mach as 4 miles, and the addition was bat hall a farlong, then the previous stock was $31 \frac{1}{2}$. Bat what ever the ratio of the antedilavian stock and the addition, whether 2 to 1 , or 50 to 1 , the addition is querist's inktand, and part into his reins, and some into the 8 or 10 inches that the atmosphere holde in circulation (as it dia provionsly), and some more, in their several proportions, to the Caspian, and Lake Tchad, and the ocean.
Some may need to be reminded, by the way, that for long alter our fathers' descont from Arerat, that monnConitral Asian ses, then covering most of Tartary a bich took centaries to evaporate down to the lom lerel of ite now ehranken romeing the Caspian See and Late Aral and doring all thone ages mast have made the Araiatic climatos far moister than now. II mioch of the Sahara be belopes lerel of corree that also tooks long time (bat less) to evaporate.
As my last questioner, "Un Irlandais" (p. 256), couples this with tro other questions, in moemingly: more decent temper than most, I may here reply to him. His second is, "What proof in there that comets aro composed of Walor ah au, or hat they conkin Answor: No proin whav, ana, hoagh none can tell what to-morrow may prova, I 10 not the antiolpate any such proo, becauso I thint it moo any. This, at least, has boen my beliof hitherto. Bat the question has no more connection with the Datige, or my theory thereoi, that 1 can seo, than the quastina whimat hod animais havo tread mom one thousand. 171 sproadig rom lets. 4049, p. 171, 4184, \boldsymbol{p}. 228) is simply an absardity, and or of any book or serious writiog, that assumed saoh is
thing. If he has rightly quoted Profeasor 0 wren, is thing. If he has rightly quoted Profossor 0 wean, it broached, and it might bo interesting to bo told where; but I have nothing to do with it till "F. R.A. 8." ar some one explains what bearing it has on any delage. As for Noah'p, according to the profoasedly contempo
rary journal, the oracles predicting it (Gen. vi.) deched rary journal, the oraclos predicting it (Gen. Vi.) dechared
that every living aubstance was to bo destroyed from of (r. 18, marg.) the earth, land, or groand ; and sarvivors accordingly held (for nobody conld hare seen) that Whatever was "on the dry land" died (rii., 23). In other words, evory living anbatance, animal or plant, was either drowned or of the ground. whatever wh
not alloat was to die, and whatover did not die, to bo nilost; and donbtless plenty of organisma woald be anost ; and doabtless plenty of organisma woald be
both one and the other ; bat before " F. R. A. 8.," or any one, can add that whatever diod aloo floated, or whatever foated also died, ho must writo a now Biblo of his own, with which I have no more to do than with any of those quoted hy (Colenso; to
divine, for ingtance, who (the door or Noah's Art was in in ollom shos -a an oetwor of any soberneas, alwaya prosupposed in the se now, of any soberneas, alwayi prosupposed in the
reador, whother in relating divine or haman workity not
only thorough inquiry into their language, bat also some little common rense
For the third question, " Un Irlendais" "uill content himealf by asking mo to prore to him "that a comet
coold canco the Doluge." Well, to any one who may could canase the Doluge." Well, to any one who may show that he mowe the ehiet points yet discorored
(and by "dicoovered," observe, I moan accertained) re.
 -t loast water and elastic faidm, and their relations to heat-if any one decently acquainted with thees things anks for sach proof I will give it Bat as no one so
seogasinted would, I concoive, ask for proof of any thing aoguninted would, I conocive, atk for proof of anything
no obrious, the moat natural
infterence
is
that "Ob Irrandais" has never cared to learn more of them than his leler thows, ir the or even ori joker of p. 252 (against whone difrase chafi I must proteot, as eovering too manch paper), Who ignorea (p. 196, ©ol. 1) any difference betreen ondalating strata and undulating ground 1-oridently assumes tho obalk
downa, as the last review ground at Lewee, to be platonically crampled up, strota and all, into their knolla and coombe i- imagines "mathematicians can show" the earth to have a "cratt some 800 miles thick," (Wherroif oarthquakes are continnally shaking bits
without being felt 50 milos of $1-$ bailding shaten Withoat being felt 50 miloe of i- bailding shaken
down the other day in Farness peninsular withont down the other day in Farnoens peningalar withont Manohestor knowing of the ahook, - and dialocating
cracks confined to ${ }_{2}$ fem miles long, not only ancient aracks oonfinod to 2 for miles long, not only ancient
onee by countloes thourands, bat five modern, cracked in colonined coontrios within living memory, nono 100 milea long; and the two in Catoh not 10 miloa apart,
thrating ap a wedge of all the atrata bat 10 milos wide,

 calibro of this chemical joker, who, when challengod to prove a comat reighing leas than a trillion tona,
quotes triamphantly one (p. 252, col. 8) quotea triamphanatly one (p. 252 , ool. 8$)$ whono maes is do-: lared to be, "astronomically gpoaking, inapprociable." place, a trilion tona moild bo a masa nutronomically
 appreciabbel "Un Irlandis" may bo as propoandly
ignorant of all the sciences he is medaling with as oren this joker, and in that case I entiroly deny any such right in ho moald roem to ciaim to toll me I show notking till have targht him the racte of actronomy, geology, general mechanios, and pneamatiics, that he has not cared to stady, and nemppapars do not happen
to thrast on bim. I will toach them, it any fairly inquisitive readers desire ite, bat this has not vet appeared. Fairly inquisitive ones sonld know the enidences that all cometa are globes of aiciiform faid, mach rarer even at their ceentres than our air; in short, atmospheres withoat a planet (as ora moon seems a plauet withoot atmosphere), and simply rhat our faiiss, one
or more, would be if isolated
n
 revolve about the snn, woald be merely a comet of stcam, aud a very large one, but qairare even at tho tho
centre, and of a masi as astron amically speaking
 inappreciahle," za syy of the soo, large or small, on
record. II Roscoe or Hagging, or any F.R.A.S., ever wrote or said (which I do not beliere jet), that "we do not know whether there is as an meh matter in this
comet (whatever one be meant) as woald fill this
mis
 room, "that is logically a fact, perhapg. Posibily weare
not oertain there is more, bat it Roscoo or Hagging not certain there is more, bat if Roscoe or Hagging
ever said so be wha merely playing the boffoon, as mach as his quoter (p. 252). Ho mast have known it Wat jnat as unproved, whether in "this comet $"$ or ans,
other, there was ${ }_{\text {as }}^{\text {at }}$ itte matter as a trillion tons,", and it is eqaally unproveable, as jet, whether a tonth of a trillion, or a twentieth, or a handredth of that mase, of any seriliorm iaid (therofore, of any comet) monad be ittle enough to fall on the oarth withont dalogiag her. Any weight approaching the tirst-named would hallaty or any ary uncondeneablo gas, becase, in oither case alike, ho vast equal addition of pressure on highlands and cess would $s 0$ tend toward equalisation of their loade, at Arst, ts to level them. But with dry air only added, this levelling (and therefore inundation) would bo far more permanent than with steam precipitated as rain, the latter making only a short temporary levelling, followed by apheavals into still more inequality than before, as well described by our joker at end of his paragreph (top of col. 3, p. 252), and there is abundant evidence of such effects, and all others of a steam cometfall 50 centuries ago, but not of one of gas for at least many thousands. I can but conclude by challenging, us before, any soientifically informed reader to dispate coberly any single position in any line I have yet
written on the subject (pp. $01,146,175,200,226,229$). written on the subject (pp. 91, 146, 175, 200, 226, 229).
E. L. G.

E. L. G." AND HIS PET DELUGE.

[4240]]-"E. L. G." (in let. 4176) has given about the most delightful piece of romance I have soen for a long time; it is a Ane opecimen of Dr. Tyndall's acientido nae of the imagination. It pats me in miad of a pamphlet I had the ploasure of reading some
cime ago, written by (I think) Dean Cockburn who, on time ago, written by (Ithink) Dean Cockbarn, Who, on
the strength of having walked through the Bux the strength of having walked through the Bux
Tunnel, thought himsolf compotent to annihilate and Tannel, thanght sp the goologiste. Does "E. L. G." really expect us to swallow all hia poetical dercriptions
with the all-digesting faith he ascribes to the Lsellists? Unfortonately, facts are dead against his theory, which has onily a comet specially mannfactured for the occanion from the recceses of his innor conscionsnass, fow facta which are, to all onprojadiced minde, atterly sow facta which are, to all onprcjadiced minde, atterly anbrer ive of E. L. G.
the himh Alpa have a fora very mach resemhling (and identical in some specioe with) that of the Aretic regions.
If the Apt only arowe four of Ive thouand years ago,
how did this flora get there? On the other hand, if the Alpe exiated before that time, the hot water and
atoam would have destrosed all these Aretic plants. atoam would have dostroyed all these Aretic plants.
Again, Xr. Wallace has shown that in passing from one Again, Mr. Wallace has shown that in passing from one
ialand to another in the East Indian Archipelago aland to another in the East Indian Archipelago
over a deep strait of only fiteon miles in width, he over a deep strait of only ifteen miles in wiath, he leaves one fanne, and arrives at another perfecty dis-
tinct. If animals were floating aboat on islande of tinct. If animala were floating aboat on islands of
matted timber would they not have become mixed? matied timber would they not have become mixed ?
How does "E. L. G." account for that pheamemon ? How does "E. L. G." account for that phenomenon ?
Then there are the reef-building corals, which "E. L. G." so carefully avoids mentioning; these "E. L. G." so careinly avoids mentioning; these animals, as Mr. Gosee can tell him, cannot live in fresh
water, nor at a greater depth than thirty fathoms, yet water, nor at a greater dopth than thirty fathomg, yot
Prof. Agassiz, no Lyellist, mind you, but a catalyemist Prof. Agassiz, no Lyelinst, mind you, bat a catalysmiat
of the deepest die, reports, from personal knowledge, of the deepest dio, reports, from personal knowledge,
that they must have been growing without a broak for that they most have been growing without a break for
at least thirty thousand years. Yet "E. L. G." woald at leats hirty thousand years. Yat "E. L. Co. wonid have as believe that these animals oxisted comiortabiy
ander the pressare of a mile more or less of fresh under the pressare of a mile more or less of fresh
water, to say nothing of the temperature. After all, waiter, to say nothing of the tomperaturc. Arter all, Neah's flood misht oasily have been partial if one Noahs hood might oasily have been pariai, if one
mast have it. How could Shem, when he left his mast have it. How could shem, when he lert his
antouched journal for the perueal of that accarate untouched journal for the perasal of that accarate
Hebrow scribe, Bamuel, the firat of his race, how could he, I repeat, know that the whole wator?
P. Santalinde.

SELENOGRAPHICAL.-GASSENDI.
[4241.]-I send a sketch of Gascendi to show the foatares a and bas they appearod to me on May 18, at 9h. 80m., Dublin mean time, omitting several minor objects which I anW on the same occakion. Striking
differences will be observed botween M. Gaudibert's sketohes (lata. 8462 and 4076) and mine in the way they represent the above formations-difierences that doubt.

less show the effect of different atates of illamination when the several obearvations were made. J. Bibmingiay.

CONCRETE.

[4342.]-Shont hours of labour-high vages-tradeonions, and the suicidal policy of putting the best workman on a levol with the worst, are patting the
ordinary mode of bailding with stone, brick, or timber ordinary mode ol buiding with stone, brick, or timber quite out of the power of thoce who cannot command wish either to construct cottages for the labouring classes at a fair rotarn cí proft, or who aro compelled to erect farm baildings to keep pace with tho modern improvements in farming. There is one solace, however, to those Who, lite myseli, are afficted with a brilding
mania. The complaint brings about its own cure oither in diminished work or the application of scientifio processes almost entirely indopendent of what is called, or rather miscalled, skilled laboar. High prices and inferior work in the building trade have set the brain of the mechanician to work to design apparatas, and
that of the chemist to discover compoands by which the matorial may be made, and the house constructed at one and the same hime by labour that coes not arrogate to itself the torm skilled, but which is content o earn a far wage in exchange hor a fair amonnt oi
labeur. An far as the mechanio is concerned, there is lackily not mach soope for ingennity. The alloged invontors of framing, notwithatanding their claims to protection onder the magic word "patent," with the exception of a larger use of iron in hee place of wood have advanced but litho beyond the appliances naed Lombards in Italy longer. For my part, had I not laid out a heary sam in frames, bolta, and ironwork, I shoula, at ail evente in walle of a thickness ol 1 k . an apmara, ane the old plan of wodan patioge, mortized top by a rope, twistod in the same manner as a frame sam is lept tight. The task for the ohemist, howovar is one of infnite difficulty and perpetaal oxperimont, diथferences so slight as to escape the eye or hean of an one, eave that of the nevor-wearied chemiat. Latterly, one, attontion of the chemiat has boen drawn to the
loasibility of doing articiallly what has been done by natare on a large zoale in the formation of stone, by
means of heat and pressure asd a due admistare of silex, means of heat and proseare asd a due admixtare of silex,
alomiag, lime, and the oxides of iron. Until vory lately the expense of the cementing medium has been a great bar to the gabatitation of artiticial material as a mubsitute for the brick or the stone taken from the earth
and worked by man for the required parpose. Tho and worked by man for the required purpose. The
prejudices of architecta and bailders, and a foar of disprojaines of arcintecta and builers, and a oar of distrarbing vosted intervesta, have aleo had their erfecte in
prevonting the more general application of artificial proventing the more general application of artificial otone. The ongineering neocanitios of the prosent day
have necessitated the anes of artilicial stone in enbmarine conutrnctions and other worke, where there was oither a diffeculty in procaring stone of snfiacient sizo, or a difficulty of placing stones of a large sizo in proper pouition. These neoesitios creatod a demand for comont, and this demand in ite torn has cansed a
aupply of a good article formed from lime, clay, and silex, at a oost which puts it within the reach of those who foel inclined to construct. To bring cement, how ever, into general consamption, it mant be produced at a still lowor rate than at present. The chomioal discurarise ol alo yeark, howerer, coom to indicale that, the Portland comen invented in 1821 Barker, and Whe Portiand cement invented in 1824 by Aspdin, of Wakefield, are, there are other matorials that afford a strong, nay, atrongor cheat has ho carbonato or hmo burni whe by his ingenious procass, has formed a stone by means of alicano of soas (mado heating hints and soda undor a pressare of several atmospheres), mized in cortain proportions with clean sand, in which ho can cat sho moat oxquiait moaldiaga with an masons can lorm on Bath or Portland stone, and then by a still more ingenious process ho converts his sillcate of zoda stone into a hard and durable gilionte of lime by a bath of chieride of lime: the chlorine leaving tho imo to go wo the oola snd form common salt, and the silex and lime combining and lorming a very hard stone. Whethar thic otone is lasting or not time alone can prove; but I boliove the stone hat impanity impanity. Carionity led me aboat two years ago to
rend out eome of the Ransome's grindstones to India to some works with which I am connected, and aleo to buy three or four for home use. One of the latter has been in ato incessantly aince then, ana if it has worn a
little, at all eventa it has worn evenly, and oomplotely put to the bluah the old Noweastle grindstone. It is a pat to the buak the old Nowesatle grindstonc. and all great favoarite with my carpenters, in ing ine aest they ever sam. Again, General Scott, R.E. the conatractor of the Albert Hall, has invented a cement which I see adrertised in your colamns as melenitic mortar, in which, as far as I can make out, by the application of salphato of lime with the decarbonised carbonate or hme, he produces a cement at a very moderals ook, and the advortied resals are borne out in actual wori, a cement of wondorial powors has been made.
selenitic mortar in a late namber of the Evariss Mecinavic, led mo to call at the wharl in the Belvederemoad Lambeth, where I was thown ammples of concrete road, Lambeth, where I was ohown samples of concrete
of different morte, all apparently good. Among the rest a piece of conorete was shown to me said to be formod of melenitic mortar 1 part, solenitio clay from the neighboarhood of Leioestar 5 parts, anad and gravel 40 parta. As far an I could judge, tho concreto seemed
suffiecienty good for any thickness of wall. Its value will depena apon it power to resist compresaion; if and of the selevitic elay at 16a. por ton, will redree the cost of concrete made with the relonitic mortar as compared with Porthand coment vory matarially. It appears now that General scott is oonverting the sedi.
ment of town eowage into solenitio mortar. I have ordared a truck-loed of five tons of selonitio lime ; the remalt shall in due courso be commanicated to you. Jate years in the production of an artifeen mace of sate jears in the produotion of an artificial atone of
arpasiog hardnens, and capable of a beantifal polish surpassing hardnens, and capable of a beantiful polish by the mixtare of onustic magnesia elacked ovith
chloride of magnesium. This is an invention of \mathbf{M}. Sorell, which he commanicated to the Froneh Acedemy an far back an 1867. So great are ite agglatinative powers raid to be that one part of the chloride of magnesia is aumblent twor of ablomeralos in the shape of aand, graval, atone, ec. I ama araid, hom ever, ue conl of thatern woall of 1 expensive a coment. Tho experiments of M . 8 . Clair Dovill, ho war, wom to poll out ando by which the magaesia masy be aralled ol at a leas oont, and by an apparenay oay process, by the barning das dalo decarbonise the carbonate of ma excie entiraly and decarbonise the oarbonate of magnecia ensiroly, and commented on in a listo number of this journal.
If Deville'a proceses can be carried out on a large scale in the factory successfally, we have the mean within our reach of forming a cement of agglatinativ powers, vabily superior to the Portiand coments, by of the axpenire drying rate and farneces nocescary for the ine pdmixtur and anseqnent calcination of the clay and lime of the Portiand coment. For Deville' process all that seems necossary is the proper calliarion of the maknedia thestove. Thir can bo done affectively at a moderalo cost, natare having pheoed the limesione and the conl close togothor, as ine coal delas of Englana, irom Darham down to Notangham, neem to bo skirta on their eachora kiab by the dalo mitic formation. Genoral Pakey, in hia experimente thirty years ago, tried magneais and lime for an hydranilic cement, and he seeme rery nearly to have
hit on Dovillo's diecorery, bat he did not go far eanought

I am not a chemist (would that I were); it strikes me. however, that the result of M. Deville's experiments in
the calcination of the dolomite is another example of the calcination of the dolomite is another example of
the necessity in ehemical experiments of examiniog the necessity in chemical experiments of examiniog
closely the state of things, not only after entire disin. closely the state of things, not only after entire diain.
fegration has taken place, bnt also during the intertegration has taken place, bat also during the inter-
mediary process. Alter all that has been gaid br mediary process. Arter all that has been said br
Vicat, Pasley, Anstin, Totton, and a host of other Writars, on cementa and mortar, on the necessity of thorongbly decarbonising the lime, one wonld scarcely have expected to find that in the mixtnre of carbonate
of lime and carbonate of magnesin, the cementing powers depended entirely on a partial decarbonisation powers depended entirely on a partial decarbonisation
of the lime. The magnesian limestone, whioh snpplies of the lime. The magnesian limestone, which snpplies
the lime for the grester part of the West Riding of Yorkshire, burnt as it is in the neighboarhood of Pontefract, forms bat an indifferent mortar; burnt, however nuder the eye of the far-secing chemist, it sppears to make a enperlatively good cement. If this Dolnmitic coment can be made at a cost exceeding but a little the cont of ardinary lime, its use will resnit in concrete for ever farowell to bricks, brickmakers, brinklayers nd stonemasong, and all their wicked dovices o siver, picketing, rattening, and intimidation, which are rapidly converting good mechanics into worthless workmen, and driving capital nway from the kingdom. The applicability of concrete in a monolith to large and high boildings, in the shaps of warehonses, has Gnild ford ben the erection of the warehouses in Great the old bricthets he conld get together into as strong a set of bnildings as he conld get together into as strnig a set of buildings as
conld be contrived. My belief is, provided a cement can be formed of strong agplatinative powers, like that can be formed of strong apglatinative powers, like that
of M. Sorell or St. Clair Deville, at a lesa orst than the prosent cost of good Portland cement, that in twenty years monolithio conorete buildings will supersede rioks and mortar, just as mnch as iron has superseded chemist, however, to discover the means of making a good cheap cement, and itis my beliof that brains and pointed ont by Deville find an aming oat the track mannfacture of dolomitic coment. I trast that this etter will elicit some remarks from some of yoar able correspondents on questions of chemistry

Khod Bux.

HOW WE SEE A DISTANT OBJECT.

 [4248.]-"E. J.D." (letter 4170) saya that I forget With black, and the sunclipht admitted, that the hang would be quite distinct in all its details;" bat "E. J. D." forgets to state what the texture of the hangings is to o, whether black calico, or black silt, or black cloth.et ns suppose it to be cloth. No donbt the statue woold be distinctly visible, for the simple reason ronat the so-called black oloth, is not black. "t E. J. D."
that is an amatour artist; let him paint a portrait of a friend in an black cloth coat, if ho hain not done so before, and be will be sarprised to find how great a quantity of White he has to mix with his black pigment in order to far to seak. If we examine the cloth under a microt
scone, we ind ite surface to onnist of innmerable little, blaok flaments, each with its own appropriate glitteriag high light, diapersing small glints of light in appear distinet against mach a backgronnd. The trata sppear distinet againet such a backgronnd. The trin of which were eqnally as black and polished as the ight background woald render the atatae more in listinct." Sarely, "E. J. D." does not contend that a black gtatue againat a white wall is not more visible than if againat a black one. These are very simple madners, bnch questions to axioms before we can arrive at a olear qolation of the question " How we see distant object." It is much more necessary to settle a little question such as this than to specnlate on the physical constitation of light; deeply interesting ay those specalations are, they fhould be eliminated from the pre-
gent discngsion ; rays, vibrations, andalations, palsations of ether, \&c., are no donbt gnod, working hypotheses, bat at the same time they are only 60 many ways of saying that we dont exactly know what light is ; but we do equality of the angles of incidence and reflection, and we know that any theory that oontravenes or ignores
that law must be wrong. "E.J. D." seams to think that the well-known laws of the action of licht do not adequately acooant for the fact that an ohject is dis. tinctly visible to nnmerous spectators in varions posi-
tions; bat if we consider that in ordinary davlight light pours down upon an olject from all directions, the poars down apon an object from all directions, the Which is a reflecting mediam, and from anrrnanding objecte, and then oqusider that almost everr oliject we
see is either fibrons, or granalar, or atriated, it is not onderfal that reflections of that lizht (according to the law of incidenee and refection) should be found to suit the requirements of any number of spectatore. The speaking, the more polished an ohject is the lees vixible are its detaile at a distance. The ancients nere a $; n$ are of this, and in statnes destined to be placed at areat heights were in the habit of granulating the sarface artificially by pitting it orer with a sman panch, so as teflector of light, is not very visible; but if we grind renector or sight, is not very viaible; bat if we grind
the glagn, so semminate the refection, it
beoomes more visible.

What does J. Barwick mean by the remark that re Thected light will not penetrate papar or porcelain? This is surely oontrary to our every.day experience. 1
write this in a room with a north aspect; no light enters the window bnt reflected light from the clonds and the honses opposite but that light shines bright enong throngh paper or a china sancer.

Вово.
[4944.]-IN let. 4160, p. 227, ocenrred the gross error "Brings light to us from the san in 192.500 secouds of time;" of course, it shonld be, brings it at the speed of
192500 miles per second (i.e., Recording to Herachel) ; 193500 miles per second (i.e., accorning to Herschen) the san at that rate, or, rnondle, eight minntes. And in the next sentence oecars, "If, howerer, different
notes of the spectram travellike distant notes of gonnd;" aotes of the spectram travellike distant notes of annnd;
"notes of the spectram" shonld be colours, or tints. or waves of the spectram, for light has wares within waves more than any intricate machinery has wheela within wheels. Thas ret right myself, I gn on to
"E. J. D.;" he mast place his meaning of "bat if a mirror be placed where the eve was, the rars to it mirror be placed where the eye was, the rays to it canaing reflection proceed from the ohject to the
mirror in right lines parallel to each other "in more and langnage if be wants satiqfactory elucidation o ract. He mnst look, too, at light as radiating by afluid whose pnlantinns of condensation in front, and rare-
faction behind, extend (with varying force, it may be) actarondind, extend (with varying force, it may be) Angles of incidence and reflection are not those by which ohjects are directly seen, bat as snen hy reflec-
tion, as from a surface of mercary; se that it is wrong tion, as from a surface of mercary; fo that it is wrong
to ppeak of light as passing from objects only in one to speak of light as passing from objects only in one
angle. As to the rays which reach the ejes of the spectator of his own reflection on the mirror when he lonks at the feet, he sees those rays (nr receives those
palsations) which, abaped and tinted by his shoes and tockings, strike the mercury ; and his eves receive corresponding rays from thousands of so arranged atoms (8ay) of the cosmic flnid, as well as do the eres,
and every portion of all the objects intercepting (bnt themselves anintercepted) all around.
The telescope renders distant objects more distinct by enncentrating rars to a focus ; parallal, if not divergent rars atriking the lens are all converged by it to than the ravaided ere conld adjast for. The man's eyes aboae cryatalline lenses are smaller than his
neighbonr:s sees less of surrounding clijects than his he numing ether atomano impinge thereon. Not long agn, Inged to
write mave atrongly than "E. J.D." about the "ridiwrite mane atrongly than EE. J. D. about she ridi he writea, more thas presnmptivnly, he certsinhy, as I have done ahonld closely stndy Tyndall's twownorks on Heat and sound, and then have a aparring match the "E. J. D." suds the stady of -the position and the size of the orb in compnastion, Whnee agitation of the cosmic fuid or ether forms the sight-xiving waven, too
deep, he may as well drop the sight eabject altogether.
J.:Barwick.
bridge connecting england and france
[4245.]-I Thank " A Friend of Progress" (p. 201) fer the interest he has taken in exporimenting on the practicability of my plan of building the bottom piers or abulments required in the construction of briages, wnrmeane opth of water has hitherto proved an inbarrier barrier heing now removed. I have no donbt bat that of has been fally able to convince himself that my plan also for ring is not onjy buitable for deep sea water but That rivers of moderate depth, such as the Severn, Thames, Humber, Tay, and others, whare the trade have bridmerce of the conntry reuders it desirable to formerly ges constructed much nearor the sea coast than formerly, to ne in all snch rivers where the hottom is on the onrface of the water will be fonnd decidedls pre ferable and inexpensive compared with any other plan that has as yet been adopled.
I was saarcely prepared to admit that a vacnum conld be formed with any shrond sank only to a depth of 4 ft . evident that compact the beds may bare beon, as it is placed and forced aside by the shroad in the act of sinking, which, I should imacine mar explain the reason Why the pamp had to be kept in motion three minntes before any indication of a vacumm conld be perceived, as it would require some time before the action of the water conld arrange or carry down sntificient deposit to plished an dinplacements, and nutil this was accomwater wonld enter the shrond. I observe by "A.'s" letter (p. 230), that he conaidors comprossed nir as the reason, commonication with obaction wer places to cat off th not occnr, as I bave shown in my former letter (\mathbf{p}. 83), where I any "and when thes (the shroads) are correctly set (or sank) ine pomps shoald be prt in motion, no
sooner as the inclosed water ander thotimbers B and escapes through the pamp valves, keeping them open po long as any ainking takes place." I am vory well pleased with the experiments made by "A Friend of Progress and if my plans are as eagerly entered into
bailwny companies and others, we may sonn expect to see oar rivers spanned with what may be termed our treble combined railway bridges.

Sholto Dovglas.

THE ALCOHOL QUESTION.

[4246.]-What I complain of in Mr. Barwick's treatment of this subject (ree lets. 4052, 42161 is not so mach that he should tako a "leap in the dark" as tha them agninst the well thonght-ont theorieq of scientific men. Since writing my previons commanication end an extract bearing on the point in dispnte in rder that Mr. Barwick may see the doctor's estimate of the theors, against which, but withool offering a single particle of evidence tending to prove its insuddenly" carbonised and hydrogeuised hlood producing an acceleration of heari. hents. Dr. Richardson sags: " Recently some new phyaiological inguiries have heart at first beats so quickly and why the palses rise. At one time it was imagined that the alcohol acted mmediately upon the hicart, stimnlating it to increased oction, and from thio of alconol many erroneong conclusions have been drawn. We have now learned that there exist many chemical bodies which aot directly by producing a paralysis of the organic nervons rapply ircait These which constitnte the minnte vascer nefficient resistance to the stroke of the heart," ofe. It will be seen from this that Mr. Barwick has faken up With a portion of an old theory which was "af one time sapposed "to be correct, aud he hat spoilt erem cised the word first. to draw Mr. Barwick'e attention to a point I mentioned before, that granting his assumption of "rapid oxidation," how are we to account for the diminution of temperature as the stages of alcoholism progrens, for the blood on his bypothesie ne more alcohol one drinks, and must necesmaril require more "rapld oxidation" still? Mr. Barwiol now writes, with all gravity I presume: "As for
assuming that alcohol too suddenly carbonifes and hydrogenises the blood, I did not oxpeot any soiention person could doubt it." I do not know that I ame rcientific person, bat I beg to inquire of Mr. Barvick, first, how he imagines the blood becomes carbonised and hydrogenised ; second, how that effect is accom plished saddenly ; and, third, how " Coo" saddenly? wiserted that the blood was carbonised and hydrogenised br the imlibition of alcohol. It appears to me that Mr. Barwick should not throw aside so readily the oxypen contained in alcohol, for it would at all events go a little way towards preventing the necessity for "rapid oxidation." Is it possible, however, for alcohol to carbonise and bydropenise the hlood withoat being split up into its censtitneuts? If Mr. Barwick sajs yes, will he kindly say, also, whether it acts upon the red corpascles or apon the sernm, or on both. for at least one "scientific persn"" has some littio doab ledge that Dr. Richardion has just one or tro claima to be considered a "scientific person,", and I fond hirs saying, "When I sat down to write this essay, I noted many points of pecaliar scientifo interest as deserring my attention, and amongst these one specially important-the question how alcohol, after it has been taken into the organism, is disposed of, whether by conversion into a new prodact, by which it ceases entered it, an anbeoken chemical compound." Thie quas tion he does not answer, becanse he is merely giving an acconnt of the effect of alcohol on the body, but I will ventare to predict that when he does answer it, that alcohol leaves the body as $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, an anbroken chemical compound. Mr. Barwicts seems especially fond of quoting ssmbols and formnle, bat may I ant and why he spenks of nicohol as boiling at 78.4 is trae, but such alcohol as no nine ever drant and lived to tell the tale ! Sarely, Mr. Barwick knowa that the alcohol spoken of by Dr. Richardson is the ordinary gpirit sapplied by the wine merchant and the pablicen (and the grocer), which, when of a strength
known as proof, fortunately rarely sold rarely consumed, contains 50 per cent. of water. Idon't think I shall be far wrong, indeed, if I assume that every 100 gallons of commercial "spirits" dispensed for drinking parposes coutains 70 gallons of water; and this pioportion is often still farther increased by the dram-drinker. ${ }^{2}$ a trite wick ill see that the prop tion of carbon (supposing the alcohol is really split up and assists in forming blood) is very different from what he puts it, being considerably reduced by the hydrogen and oxygen of the water.
Why Mr. Barwick should have written auch a rigmarole as that on p. 256 passes my comprehension. do with this question directly I do not see; for a man may get drank almost withnat moring a mascle. Neither can I accopt the phrase from the scientifc
achoolboy's cops-book-" All heat, from schoiboys copps but sular heat"-as an answer to the qnestion. What becomes of alcohol in the system? becanse it appears to me to be a trite too ragae, and becanse nlso I can ennceire that there may be and yre other bnys possesaing their own "potential fire.L" from it (alcohol) is derived by the conversion of it into some portion of tissue." This is, nofortanatelsp,
statement with a double menaing statement with a double moaring. All the energy tyany
mean none, even as the worda aro written; bat it mean none, even as ine words are written; but it haleo
means none, because in the opinion of more than at ane
" scientific person" alcohol is never converted into
Ifanuld also cartion Mr. Barwick against his favourite Gatch (no donlit a remarkibly in scientitio peraon "), heranse if Mr. Burwick really believes that
the whole 281b. of blood in his body pavses through his heart every throe minntes he is a most remarkable example of a "scientitio person." Why, at what rate
doos he think the blond travels in the capillaries, where the "atnunic clashing or interchange" is presvented by "obstractive molecales," Whioln apeet the "trae vital order of atomic recombinations"? Would slowly, in order that those very "atomic recomhina. tions" of which he so glibly speaks may be effected What manner of "scientitic person" is he who assertg
that the qnantity of blond in an average man's body that the qnantitry of blood in an average man's body
weighe 2 Nlb ., and tha! it all pasees through the heart in three minates? (Don't tell me Gatch, if yon please. What I mean by the beart having no sense is simply this: It cannot possibly know that the blond is car.
bonised, for it has no nervons system: it is ntterly bonisea, for it has no nernins system: it is ntterly
devoid of sense and feeling, is incapable of experioncing pain; and, when we consider the work it performs, on which, too, our very existence depends, we
must acknowledge the wisdom which so mado it. it is mast acknowledge the wisdom which so mado it. It is a wonderfal piece of mechaniom, bat phraiologically it may be likened to a hag of muscle with telegraph wires
to the battery governiag its motions. Thercfore, I still to the battery governing its motions. Thernfore, I still hold it true that alcohol is not food: it is eliminated or excreted as it came in, unaltered save that it may bo
robbed of its flavouring essence. Even so small quantity as a apoonful in a pail of water would not be split op by the digestive organs. But alcohol is probably vaporised in the stomach and partially dis-
persed over the system. We know that it jives off vapour persed over the system. We know that it gives off vapour or a subtle ether-witncss the powerfal odour of ram, Which has often been detected in the brain cavitios of those dying of alcohol-apoplexp when the head has boen
opened-no slight proof that Mr. Barwick's hypothesis opened- $\mathbf{n o}$ slight proof that Mr. Barwick's hypothesis split ap, their pecaliar odours woald bo in doabt Whether to accompany the carbon or the hydrogen, or
the orygen which Mr. Barwick has unaccountably lost, aithough he acknowledges that its proportion by weight is $8\left(\mathrm{C}_{12} \mathrm{H}_{\mathrm{s}} \mathrm{O}_{\mathrm{s}}\right)$. Mr. Barwick also seems to be
nnaware that althong the action of the heart is naware that althongh the action of the heart is
accelerated, the quantity of bloo propelled into the arteries is not thereby uccessarily inereased.
saul Ryarsa.
[4247.] - "Busy BRE" (lat. 4156) wants to know if I can fornish any reason for my remark as to alcohol, tea, and lemonade. I can. $\mathrm{H}_{2} \mathrm{O}$, water, is common to them $\mathrm{C}_{\mathrm{R}} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{9}$. in the active principle of tea and coffee ; and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}$ is citric arid, which, along with a little malic acid, gnm, de., characterisos lemon-juice. The grand distinction is the very small quantity of O in alcobol, the large quantity in lemonade, the large
quantity of \mathbb{N} in theine or tee, and its total absence in quantity ond inticacid. Pure tea has amost moothing and invigorating effict on the nerves and braic, is a and incigorating effict on the nerves and brain, is a
most wholesome stimalant (with sugar and cream), aiding the latter procerser of digestion, and aronsing the organic elemente; but if "Bagy Bee"" is hardworked, tired, and hangry, bread and batter and egzs will supply elements needed by the brains, and which neithor
and regard of the and baste of the wors sonwsivat its iwbibers carry aronnd them the mos ofinension atmosphere, which migh of the sun, bat is certainly very damaging to the air of rooms, offices, or shops; alcohol much promotes heat, but fires and oloseness of houses promote it

Ther.

The large proportion of 0 in aitric acid, and still

 oxygen beyond the air at the laugs, which their
enilivening properties indicate, whilit alcolal attor enlisening propertios indicate, whilst alcohel after
Bhort petiod nf sitimulation torpinies and atupefies.
I agree with "Busy Bee" that we need a bettr knowledge of the constitaents of all our food substances, and 1 smile at the alacrity dixplayed about the
weights of bread and the measures of barley being tested by accredited inspectors, whilst a callons in differcnco is manilested on all sides abnat the testing
or ascertaining the preciso composition, in its chemical or ascertaining the precisn composition, in its chemical
formala, of evorrarticl. of. red in onrmartets for food. Socicty is snrely in its infancr; and chemistry in its relation to the laws of life and health lamentably too
little recognised. If the people, instead of bat striking for Wages, would crimbine to suppirt accredited testors in every town and village through the land, they wonld imp:ess nltimately on society a respect and admiration Which they certainly cannot by agitation about wages,
which they do not know how to spend most economieally. Δ_{8} for distingaishing foods from stimnlants I cannot, onlens we say mere stimulants, as certainly a few noud cmpfols of tea with nice etceteras is at
highly stimulating, strengthening, and natritive.
J. Barwick.

SPECULUM WORKING.

[4248.)-In reply to Dr. B1acklock's question (let. 42:23). I beg to sar that I consider 12 diameters of the specalom to be the best fur the focal length. Beyond
that there is no advantago, either in ease of vision or facillty in Agoring. A focas of 9 or 10 diameters gives admirable resultes with care; but he who attompte 8 or

7, even thongh he be a perfect master of the procass, magt be prenared to bestow a considerable amonnt of
patience and time on the work. I do not believe it it poarihlo to prodace as good a speculam of 8 diameter The of 12.
The
The focal length of my own 18in. speculnm is 7 diameters, and it is not a had one. I ara inclined to
think that the great facility in asing so large an in think that the great facility in asing so large an inbalances the slight disadvantages. Still, were I to do the wor's aguin, I roald haro worked to 13 ft . focus. heartily congratalate Dr. Blacklock apon his success.
H. С. Kbr.
[4249. [-Ir answer to "Optical Bricklayer" (query nond its. 203 hine edge of pitch tool shonld be circalar as apeculam, bat to iusare the edie facets giving the same pressnre as the rest, I find it better to have the iron tool a little larger (as Mr. Key recommends), say not less than ha it is of great importance that the thaters should excrt as much pressare as the central ones. As far as my own practice goos, I have worked several good mirrors on an iron tool no larger, and in one case aren smaller than the mirror, bat the fignring was ver tronblesome, and led me to prefer a larger tool, which adnits of greater accaracy with much less trouble. It the size of the tool the polishing surface should exactly correspond to the sizn of mirror.
I could not give "Optical Bricklayer" much idea of the figure of his mirror unless he states the appearance of the enlarged star disc, either within or withoat the focal point, as the focal point itself is of no use what over as a test. I shonld imagine the appearance he describes indicates hollomness at the edgo of mirror ; to prove it let him pash in the eyepiece, and if the wings which surround the star disc oontract the edge edge is too flat.
W. Puekiss.

ATMOSPRERIC ELASTIC FORCE.-SUPPORT OF SPINNING-TOP.-UPWARD DEFLECTION OF BULLET.
[4250]-Thanks to "Philo," to "A.," and to M Paris for their obliging replies. The attempt to balance a top (without rotation) in that position which it
assames in spinning being quite fatile, we become aware that the npsetting force of gravitation has to be encoantered from frrst to last in order to its support
while spinning. This apsetting force is thas anderwhile spinning. This apsetting orce is thas ander-
stood to be constant in its action, and is clearly defined in direction. If certain forces, therefore, are named by the replicants as andliffing or overcoowing that of gravitation, it becomes them (especially if their argament is advanced in the form of positive statement) to show that the forces to which they attribnte the sapport gravitation, or that ont of the condict of them a resul tant force is prodnced opposite in direction to that of gravitation, and in power equal or saperior to it.
Now, eupposing that the word "tendencies," which almitted in mathematical demonstration when a defiued and active force is required, yet the vers tendencies or forces forbids the conclasion at which they errive-viz., that they nullify or overcome gravitation For if (let. 4130) nnder their action "t the body has an eqnal tendency to tly a way in all directions," this eqnality
of forces or tendencies can only operate to the nollification of each other, and the independent force, gravity is left as free to act ns thongh the others had no exist. ence. And if liet. 4181) the aturaction of cohesion
fully explains why a body should rotate rather than scatter its component particles in tangential lines, it fiers no explanation why the axis of such a rotating when should assume and maintain a certain direction
wheo to take any other. But supposing that these When free to take any other. But supposing that these pnlling the top from various points as by maltitadinous lines, so as to hold it in a certain position, they minat be all eqnal, or the preponderating force of some
of the monld drag the body ont of that position of of the in would drag the body ont of that position of
repose which a top assames and maintains while repose Which a top sasames and maintains while
spinning with fall power. But if thes are all eqral and opposite, and all in one plane or system of parallel planes of revolution, then they nentralise each other,
and leave no resaltant to oppose to the upsetting action and leave
Bat let us eappose a top to bo set on its point, and from three points in the circamference of anv plane of rotation equidistant from each other threo lines pass
over three pnlieys with equal weights to act on them, then the suppriting effect of thers rectilinear teadencies will be fairly represented. Then, in what position of the axis will the top be sapported? Only in that wherein its eqnilibrium is perfect independently of
these three forces; for the slightest declination of the axis from that position woald canse one or more of those eqnal rectilinear forces to preponderate over the rest, and npset the top. In short, in all hach explana-
tions as thuse aforded by "d.," or by MI. Paris, the tions as thuse afforded by as., or or equilibrium of the top seem3 to havo been unwittingle asanmed, and the subseqnent rearnoing arranged to sntiefr it. Thas
it is only the maintenance of the position which enters into the qnestion, and "equal tendencies" seem to satisfy it. But the real natare of the phenomena are such ns require
scarcely
ever falls from differeat solation.
gcarcely over falle from the hand of the epiuner with
its axig in a vertical line. It (1) assumes that poaition ;
(2) maintains it ; (8) can recover it again and again if distarbed; ; (4) it can prolong resistance (more or less acoording to shapel after it haf finally lost the verlica position, to the final result of gravitation. "Eynal with gravitation, from frat to last I readers that however adrantageous a vacnam may bo lor the revolation of as body whon the axis in duly provided with bearings, an experiment will go far to prove If the support of the spinning-top is not rather due to an elastic cushion of compressed air called into action by the resistance of the vis inertive of the atmo sphere to the velocity of the rotation, and by the supe rior density of each lower stratam. Sach a theory accounts, I thme, for every phase of the phenomena The proot, at any rate, is very simple, afforded by the air-pump. By withdrawiog the atmospherio support it mast at once beoome evident how far that sapport ie though, I think three replicante all give specioas bettor in vacuo : and it mond reacone Way think, that M Paris's information "it is found " to do so has come to him from a theorehical rather than a practical sourco. I shall be much sarprised to hear that a spinning. to will stand erect in racao for a mement, and I should destros tha 10 sitroces of the air-pamp would alonce portion to the fin and ertionthness of its point the top shows less and leas disposition to travel aboat It reqnires only vertical sapport at that point ap to the last moment of ite straggle with pravitation. W seo, therefore, that " Δ." of Liverpool, in his akotoh o only a saspended top. The string remains plamb, think, because the point only requires vortical support. In this suspended position the sapport of an eir ons hion to tho body of
more probable.
A fow more words on the atmospherte theory next week in my reply to "Philo" on the apward defection of the bullet. I have satisted mysell, by experinuent that this upward deflection, more particularly in the case of the smooth-bore, is no imaginary thing. Finally, I would suggent, by way of showing that the atmospheric theory may prove of praotical value, that same elastic force wher excited by mafficient volocity of motion.
Seer Green Vicarage, Besconstield.

ELECTRICITY-WHAT IS IT?

[4251.]-Under this title, in your last impression Mr: B. Thomson rofera, in a desaltory manner, to the coneiderations which led some elootricians to the crude d priori notion that sinoe soand, heat, sud ligat have possibly be placed in the same category, and its effecte explained analogically. He makes, however, no pro whi whe he commences his gecond paragraph, and ends the present portion of his paper, mast appear somewha adicrous to those who are acqnainted with the pronent that I claim to have proved, by experiment, as well as by reference to verifed and aocepted principles, first, that el cetricity cannot, in aocordance with our present knowledge, be regarded as a "force" or as a form of motion; and secondiy, that in no case car it be abown that electricily is converted into heat or work (oide the
Engineer, Jaly 18, Angust 14, September 4, 1868, \&c.).
I shonld, perbaps, have abstained from offering any remark npou Mr. Thomson's papers antil after their
conclnsion ; hat I imagino that there is no probability conclnsion; hat I imagino that there is no probability
of his strengthening his position by a fair consideraof his strengthening his position
tion of the question as it atand.

Dessond G. FitzGerald, M. S. Tel. Eng.
6, Loughborough-road, North Brixton.

mamertus and french volcanoes

[4252]-Tue statement that the "Rogations" (now called the Litany) and "Rogation-days" originated with prayers against the volcanic eraptions in Langnedoo durilug three years (458.400) is quite correct and Mr. Cooper $\mathrm{K} \cdot \mathrm{y}$ will find the two coatemporary
anthenticationa thereof in (1) tho Epistles of Sid nina anthenticatiung thereof in (1) the Epistles of Sidinias
Apolliuaris, Book VII., Epistle 1 (to Archbishop Apolliuaris, ${ }^{\text {Book }}$ Manert); and (2) the Homily of Alcimas Avitus Mamert); and (2) the Homily of Alcimas Avitas
(snccessor of Mamert) on the Rogations. Both are in (gnccessor of Mamert on the Rogations. Bo 59, are in Ingue's Patrolopia, tom. 57, p. 563, and tom. 59, p. 283, I do not see that these eraptions have any particular
bearing on noy current geolugicul question, and they did not proceud from the Anvergee craters (as the oor respondent of Nature and Mr. Key in "ours," p. 25t,
seon to imply), bat from somis of those in the two seom to imply, but from som" of those in the two
more sonth easterly provinces of Velay and Vivarais, more the ashes repeatedly reached the capital of $i^{\text {the }}$ Burgandian monarchy, Vienne, then the most ${ }^{\circ} \mathrm{m}$ portant place in the country, and Mamerts See. As
no writinks of St. Mauert himsell are extant (anle ss his Litan!), nor of any Gallic contemporary bat those his Litany), nor of any Gallic contemporary bat those
tro, the phenomena stand in the singatar position of bro, the phenomenn stand in the singakar positiou of and yet, strange to say, passed into sach oblivion that no chroi icler of the next age, not even Gregory of Toars, mentions them, as Mr . Key foand. It is a most
instractive cantion, sud geologers instractive cantion, sud geologers would do well to read
pp. 293,277 , of the late Sir F. Paigravo'e osssy Quarterly heview of Octobor, 1844 . E. I. G.

RETOLVING PUDDLING FURNACES.

[425s.]-"R. 8." (let. 4172) has not sucoeeded in xplaining away the facts already sdduced in reference to Mr. Danks' claim to the invention of the rovolvine paidling tarnace. Mr. Walker's oxperiments failed for the want of a proper chimney for his farnace-this
was not his fault, but his misfortane; while even with was not his fanlt, bat his misforiane; While even with reported to be a " bad meltor.". As a manager of iron ropks and a practical meohanio, I consider Mr. Danks' farnace to be neither more nor less than a combination of the inventions of Messrs. Walker and Tooth; and, until Mr. Danks has otherwise proved his claims to this invention, "R. S." has no right to pri forth his bumble opinions as to the maperiority oigoon.holes in furnace. $A n$ invention lying in athing to be pirated with impanity; neithor can a mere improver in any sense of the word be considered an original inventor. The Danks' furnace appears to me 2 second edition of not the year, an English mechanic invented as reaping machine ; it was tested and did ita work well. On the Arat pablic trial the machine was smashed to piecos
and the inventor polted with etones by an enraged mob of farm laboarers. This invention lay dormant nntil the Great Exbibition of 1851, when the reaping machine again appeared as a new lavention from Amerioa, and, of courso, patonted. The trick whe exposed, and
" R. S.'s" landations of the Iron and Steel Inatitnte are rather out of place. It cannot be admitted tha that soientific body has moted fairly by rabhing with an iron-melting-temperatare zeal at Mr. Danks' farnace bofore the original invention at home had been practically tested. In the absence of this fair play on the part of this institution the pleasant trips acrosa the Atlantic, the convirial dinners and speaches, the gushing votes of thanke from the lordy lipa, the fullsiced portralt of the noble President, certainly have that smack of egotism alrealy described. The old proverb informs us that things dear bonght and far fetched are greatly admired by fantastical ladies; even so, apparently, with the Iron and Steel Institate. "Haid
the Iron and Steel Institute acted on the motto, "Fiat justitia, raat coolam," justice would have been done to Mesgrs. Walker and Tooth, without injory to Mr.
G. S. (Civil Engineer).

A NEW MODE OF CONVERTING MECHANICA FORCE INTO ITS HEAT EQUIVALENT.
[4254.]-IT has struck me that the following experiment, which, howover, I have not tried, wonld be n fitting addition to those for the determination and illustration of the mechanical equiralent of heat. Then a dise is made to boing turned in a plane perpenit oners resistanco to being turned in a plane perpendicalar to the plane of ite revolation. Thise the gyro. principlo of the inatontation of the seard so much of in the

 rapidly in one plane its axis is made to revolve in another rapidy in one piane the armer, an amount of force will be absorbed independent of the friction of its parts. absorbed indepencent of
From the Arat principles of nataral philosophy I think From the irat principies of nataral phear an heat in the if mometer inverted in the disc. If so, I do not think is truceable to friction, percassion, compreasion, elecis trical or ohemical action, the asaal means for the trical, or chemical action, the asoal means for the
erolation of heat, as the maohine oan be imagined evolation of heat, as the maohine asn be imagined perfectly rigid in ite parto, and frictionless withont inif all dises of eqnal woight and diameter (the thickif all dises of equal weight and diameter (the thickness, of cnarse, being in inverse proporticn to apecific gravity), but of different materials, wonld offer the amonnt of heat worked at the same velocity. The arrangement of the machine is very simple, apत is happy to supply the deaign.
A. R. M.

HOW TO USE A BOOK WITHOUT HANDS.

[4255.]-Ir mast be very gratifring to von, Mr. Editor, to know that the Encuibi Mechanic bas been the menns of procuring for the nnfortnnate man who had lost his bands the neful and very ingenions instrument described at p . 224, which " M . 0 ." has been clever enongb and generous enough to contrive and mako for him. It is something lite, but an improvement on, the instrument I sam many years ago for tarning over music with when the hands are engaged ; and it is likoly, if "M. O." wonld make such for sale, that riolin and fute players would be glad to prrchase it, and I for one should be glad to know that its ingenious and lind maker reaped proft as well as the praice and thanks be is so justly entitled to.

Pbilo.

RELIEF FOR CATARRH.

[4256.]-A yorkion (Dresden) correspondent says that the following has been fonnd very effective in rolieving cold in the head, and not unpleazant: :-Fill a waturated with a mixture of pure carbolio acid, 5 parts ; saturated with a mixture of pare carbotio acid, 5 parts ;
reotified apirit of wine, 5 parta ; strong solation of reotified apirit of wine, 5 parta; atrong solation of
emmonia, 6 parta; water 10 parta. The vapons are

ELECTRIC BELLS ANTICIPATED.

[4257.]-Trerz is an account of a similar apparatus tn that referred to in let. $4200, \mathrm{p} .258$, as employed by the Moors of Grenada, where there was a cortain armed fgare which, os the approach of an enemy to the ciry. arned and pointed its Bpear in tot as these fignres mast have been, we have equally well-anthenticated accoants of far more valuablo prodnots of the wisdom of our ancestors, of which we have not yet recovered any reminiscences, even so faint as our olectric telegraphs are of these ancient sentinols. For instanco our commiseariat departments in their endeapoars to accommodate our troops in the satama all very far behind ohich would fold up into pockethandkerchief, and yot extend so as to shelter a whole army. Then, again, even our oxpress trains and finest ocean steamers are miserable attempts at locomotion compared with the lost art of manufactaring carpets on whioh it was only necessary to sit and to be at once transported to any part of the earth at plea nare. Those, no doabt, were the go
mere moderns are poor pretenders.

SIGMA.

NEW DOUBLE STARS.

[4258.]-I bea to report the followiag doable stars found with my bin. Alvan.Clark refractor a fov venings since :-
CoryI $=$ L 23488.12 h .26 m .7 s, , $8.15^{\circ} 56^{\prime}: 8,14$ $260^{\circ}: 10^{\prime \prime}$. This pair is $8 \mathrm{~m} . f$ of Corvi, and aboat 20 forther sonth ; the northern of two 8 mag. stara, abou 25' apart. Probably a moderately difficalt ohject.
 $10: 180^{\circ}: 1^{\prime \prime}$. I woald call particular attention to this exquisitely beautifal donble in the immediate vicinit
of the well-known pair ξ Boitis, f that atar 1 m . s . of the well-known pair ξ Boïtis, f that atar 1m. 6s.,
and declination 23 , less. I have only seen it once, nnd and declination 23 less. I have only seen it once, nith
although on that occasion it was well separated with althongh on that occasion it was weil separated win
clean, sharpl 5 -defined discs, it cannot be a very easy clean, sharply-defined discs, it cannot bo a very eats,
pair with a 6 in. apertare, except in very good weather. pair with a 6in. apertare, except in vary good weal have It is a little strango, howerer, that it shoured and measnred for so many years. It is certainly a very beantifal pair under favourable conditions, and sum. ciently difficult with amall instrumenta to make it an interesting object.

The accompanying sketch will enable any one to ind this withont an equatorial moanting, the etar marked D being the pair in qnestion. The stars marked 1, 2, and 3 are respectively ${ }^{\text {Nos. }} 955,989$, and 1008 ($=I_{1}$
27137 of Woise's "Bessel." The donble is not 27137) of Weisse's "Bessel." The donble is not
incloded in that catalogne, bat is No. 27106 of Lalande. Is 8 variable? Its magnitude in Lalande is 7, and in Weisse 6.7 . It is now very plainly visible to the naked ere at any time. Argelander, whose "Uranometria Nora" is almost perfect in this respect, has not given
it, from which scme change might perhaps be inferred.
Will Mr. Knott give some later measurements than those made hy Mr. Daves, of $\mathbf{O 2}$ 288, if any have been made? A few erenipgs ago I picked up this pair (R.A. 14 h .47 m .19 s ., N $16^{\circ} 14^{\prime}$), and at first supposed it mast be new, as my estimate of the distance was so much graater than that of OX. Looking at it again, just before finding the pair given above, I felt certain
that the pair I had fond was identical with $\mathbf{O \Sigma} 288$. that the pair I had fonnd was identical with " oxtasse
In Otto Struve's Arat catalogne it is marked "fortase oblonga," and in the catalogne of 1843 the distance is
 eat . Now, its distance is at least twioe that. My
eatimate before identifying it was $1 \cdot 5^{\prime \prime}$, and it cannot be less than $1 t^{\prime \prime}$. It is now a comparatively easy object. The new pair given above is apparently half a second closer.
The new pair a. f. 6 Comm tarns out to be quite a
aticate object, and more difforit than I at first supposed.
Chicago, May 6, 1872.
S. W. Burneax.

IS LIGHT INVISIBLE.

[4259.]-Soss time since I sam an experimen like an explanation of the following:-The undulator theory of light aseumes that a subtle olastic finid pervades and flls infnite space, all faid, solid, arid
ether, in a atate of rest, is darknoss, and in a state of andulatory motion is light. This thoory asbames hat Sapposing, then, I cast my eye apon an ohject, I do not see the object, but the rays of light thit are not see the object, but the rays on
reflected from the object. Thus, whem I look apon the green gields before my house, I do not 600 the green aelds before my honse,
fields, bat the rays of light that are reflected from the fielde, and the reason why they appear grean is because they absorb all the colours of the spectram, excepting the yollow and blae, which go to make ap the grees appearance. Hero I am in a fix. In the first place, I appenrance. He not see the object; in the socend, it is asserted I do not see the light-what do I see? A simple experiment is enough to prove I do not see the object I cast my eyes apon. If I walk into a darkened apartment I see nothing. I light the gas and see, or imagine I seo, everything. I have added nothing bat a light, therofore it must be the light I see. It may be said that the waves of laminiferous ether strike the eye with inconoeivable rapidity and produce the sensation of lighs. Well, bo it so, the luminiferoas ether then beoomes risible, and it is light; if not visible in the ocular sense. it becomes visible to the touch-the toach apan eye.

Jozn Hopenss.

ATOMICITIES.-ELECTROLYSIS AND MODERN

 CHEMISTRY.[4260.]-Howerer simple the facts involved, it is not easy to clear away the muddle and confasion of diatomic philosophy. "Sigma" says we cannot oncape from what are diatomic elements, such as zinc, enpper, salphario acid, ac.; and, thereforo, we are bound to consider olectrolysis as snbsisting $\begin{aligned} & \text { linesr chain of } \mathrm{H}, \mathrm{Zn}, \in \mathrm{a}, \text { " dc. In other words, it is }\end{aligned}$ linear chain of $\mathrm{H}_{2}, \mathrm{Zn}$, O a, " dc. In other wordi,
circnit of molecales, and not of atoms. In this great assumption the whole secret is involved.
If a tonsion of 1 volt. (ronghly the force of 1 Danien cell) in a voltaic circuit involves an enerzy equivalent to 4,673 foot ponnds per equivalent, and if this action is not thruagh "ehemical equivalents of maller, or of transmitted through the centres of allincted," then I hold that this nnit of force should be 9,316 , and not 4,673. But wherefore this dire necessity-this thraldom, Which "cannot escape" Prom diatomic or donbled atoms? One paragraph of diatomic evidence
would be of more worth than pages of assumptive reiteration.
Δs to the unfortunate reasons which have led to this donbling of many a toms, I would refer to a paper "On the Atomic Weights" (Chemical Newi, February 9, 1873). noch othere, chemists Then, as to the curions facts which have puzzled electricians, and led to "imaginary laws of eleotrolysin," what are the laws reforred to I know not; bnt, if they are more imaginary than the atomicity electrolysia of "Sigma," I do not covet their acquaintance. As device alfords any enlightenment. "Sigma" has-

No. 8. $\mathrm{H}_{3} \mathrm{O}$

Now, taking No. 8 on the simplest ohain, we haro, first, a molecale of $\mathrm{H}_{2}=2$ rols., connected with hale s molecule of oxygen $=1$ rol. 1 secondly, wo bave is weige ore with molecale of ohlorine $=2$ vols. Thirdly we have a donble molecule of copper connected with 1 molecnle of chlorine ; and, to the explaining with 1 moleonie of of chlorine; andi, I would saj-Prodigious !
The chemical peculiarity involved in what is called cupreous chloride, $\in \mathfrak{a C l}$. or $\mathrm{Cn}_{2} \mathrm{Cl}$, I have pointed ont in a paper "On Some New sniphar Salts (Chemical further illastrate this allotropic pecnliarity by a somewhat imilar action in organic chemistry. A nem geld oh great intereat is opening up in what are called "condenscd melecales." The compound radicals, which act and react like elements, are found capable of condensation, so that two or three atoms condense into one, in which state they are truly single atoms, and vala metrically or chemically (and, might not say electro lytically ; they enmport themselver as nach. Thay combine with one H and form characteristic hydriaes, or with one 0 or one Cl and form corresponang aeide ar bases; they glncosides, \&c.
Δ clearer conception of this law of action will tend to remove certain anomalies in old mineral chemistry as copper, and some other elements certainly share this
affection. Here, then, is a problem for some inquiring affection. Here, then, is a problem for some inqniring
lectrotypist, for he may, in a given time, or with electrotypist, for he may, in a given time, or with a
given potential, deposit a double weight of allotropic copper !
I cannot enlarge here on the obemical evidence in this direction, and brietly compare this view with the molecalar chain of "Sigma"-

$$
\begin{array}{lllll}
\text { HO } & \quad \mathrm{CuCl} & 1 & \mathrm{enCl} .
\end{array}
$$

Here we have one oxide and two chlorides, all atrictly analogous, both in type and fanction.
" Eclecticus" is pained at the thought of "quaralling " with an accomplished chemist, who bils rair to rank high where only great abilht and athiment can succeen. In descending to the level of an oatiade
thinker, G. E. Davis is both fair and courteous, and thinker, G. E. Davii

Edrecticos.

May 31, 1872. ENGLISH MECHANIC AND WORID OF SCIENCE.-No. 375.

CEMEENT FOR AND ATTERTING

 MEERSCHAUM.[4281.]-MArY thanks for the advioe and ruggestions
 atteoh the greatout weight, and from my own practical
The cement montioned by "Saul Rymea," experionoe. The cement mone doable gam and plaster of Paris, and the mode for tosting a meerschanm pipe mentioned by "A., Liverpool," is orronens; rank
imitations will float as stated by "O., Glasgow;" in your lssuc of May 10 . The coment mentioned by W. R. Donaldson will have my immedialo attention, for which I mast thank him. The Germans in town have now a neat way of mending moerschaum pipos broken tobeco pipes), by inserting a Ane fiting bone or lead tabe, 1 in. In length, to connect the broken part, which is also comented, tho broken part forming one wide of a neatly carred bnokle. I beg to add, for the Professor Smath, M.A., of this mineral, in his course of lectures on "Mineralogy"" to the stadents of the lectares were not pablished. Moersohaum is a hrdrated ailicate of magnesiam. Ite chemional composition is ($M_{g_{2}}$ Sis $^{2}+\frac{8}{2} \mathrm{H}$) and ita percentage composition is-

$100 \cdot 0$ (Nieol).
Soveral varieties are known, generally associated Soveral varieties are known, generany aso
with hornblendio rock. It broaka with a ane earthy fruoture, that is, like fine grained chalk. Its hardnoss is aboat 2°, or, in other words, it may be seratched with the Anger nail. Its specifc gravity is 0.8 , hence
it will Liont in water, and it is from its being pioked ap it times foating on the goa that the Germans call it " fomm of the sea," this boing the meaning of the word mearsohanm: meer, a lake or sea ; schanm, foam or scum. mearsohanm: meer, asay freany or soapy feel, in common with most mapnesiom minerals. When a fractured sarface is applied to the tonge is asia Minor, Greece, near Madrid, and Toledo, Moravia, and Wermeland. Real meerachanm pipes are turnod and carved from the solid minera, made from compressed scrapings and steeped in oil, and generally heavier and less perfect thinn those made and generally hoaner and less The Tarks absolntely employ meerschaum as a sabatitute for soap in washing, for the earth, and it lathers in water and will remore grease.

Reading.

Zeta.
OHLOROFORMING BEES TO REMOVE HONEY. [4262.]-Trisxisa it may be usefal to many readera of bayb, practised several times with soccess. The quantity of ohloroform required for an ordinary hive is the sixth part of an ounce: a large hive may opponite to but about four feet distant from, the oppoaite to, on the table aproed a thick linen cloth, in contre place a small shallow or sonp plate, which cover with a pioce of wire ganze to prevent the bees coming in immediate oontact witt the hive from the board on quich it in standing. set it down on the top of the table, wheoping the plate in the centre, cover the hive clesely ap with clothe ; in avo and tronty minutes the bees are not only sound asleep, bat not one is left among the combs, the whole are lylng helpless on the table. Now remove what honey you think fit as expeditionsig and the bees, as they recover, will retarn to the and the bees, asicile. Δ bright, calm, early morning is the best time. Be cantious at frut, bat practice makes perfect
H. B. E.
incubators.-To " Hatcher," and all Rzaders ap Concbry.
[4368.]-Yov are quito right in what you gay on p. 229. The incabator does absorb the moistare of phe oggs too much; I therefore advised you to damp the eggs well. I and it a good plan to float the egga in
warm water for a minute or two, a day or two before they are due. The hens, if set in a very dry place, get a manl brood; I therefore set them in a cool damp place if I can, or I put two shovelfals of fresh earth under the nest before I make it ap, or a large sod fresh ont. I know this is contrary to most people's notion of kooping the hens warm, but it prevente the increase of vermin, and I get more chicks. I am corroborated
in this opinion by Mr. Wright, in bia "Poaltry Keeper's Guide,", and he is a trastwerthy anthority. In the incabator I now make a cotton bag, and pat in a quart of damp warm bran. Aat it down to about an inoh thick, and pat it npon the egge nonder the glass ; this gives the required preanare, and in a great measure provente the absorption so detrimental to the welfare
of the chicks in the egge. This bran bed will require of the chicks in the egge. This bran bed will require
renewing about every third day or so ; in this way you will got good results. If you are timid sbont it, try it on part only, and aee the diference : with the bed they require no more damping. The foating the egge the laget day or two ocrtainly zasiats in freeing the chioks from the sholl or inner lining should they be gammed thereto, which you cannot aseortsin antil too late.
M. 0 .

OF AUGUSTUS LE PLONGEON, M.D., ON THE COSMIC FLUID.
[4264.]-Tre cosmic Anid or ether I suppose to rotate and rovolvo in orbit amidat the aerial ainmsaliong F.C.S., in "The Fral of the San," published in 1870 , opines all apace is flled with an atmosphere, like the one we breathe except in its extreme rarity; tharer as atmosphore has no limit, but grows rarer and
it recedes from its attracting oentro nutil terrestrial it recedes from ita atiracting that of some othor orb at gravitation is neatralisea by attion from each is equal. Between the orbs A and B, for inatance, the point C Betweea the orbst of equilibriam.
The point C , where the tro atmospheres join, is distant from A and B in the ratio of their respective weights, thus -
$A C^{*}$: $C B^{\circ}$: : A: B.
Now we infor the moon has no atmosphere of
Now we infor, the moon has but has the like conemic fuid, which will rotate and revolve with it, and, I a4k, are we, when it passes between Sol and us, to infer that
 through an extraordinarily dense medium. Dr. Plongeon asserts the cosmic faid opposes the orbit motion of the earth; that this front resiatance canses diurnal rotation of the earth and its conical movement, occapying 25,868 yoars ; its tide-producing vibration; and ing $\begin{aligned} & \text { continnous } \text { Iriction throughout its sarface, bat mainly } \\ & \text { and }\end{aligned}$ at the eqnator-a canse of heat at the earth's surface. Is not such renolt from interstollar finid quite an over estimate? We see becanse objects reboand etber, but of a feasther fleating in the air ; bat were the ether equally dense in space, where, 1 ask, but in falling meleors or aierrolites can there be friction? After the frst impulse to motion each orb in motion creates a raeunm behind it, which is rushed into with an impetns to the orb, evidently as acceleratingly effective as anything in front is obstractive. Whars along with it is there in front ith it, especially in front of it, in an overosisted orbit ? Sappose the earth, by some terrific collision, drivez off from its atmosphere and orbit by suddenly acquiring a speed it could not all at once im-

part to ite air, how would tive air, onen the earth's atmosphers, deport itself? Wonld not it gravitate to the nearest powerfal onongh orb anlo not all the atoms of centrogen and oxygen and all other fluide descend by nitrogen and oxvgen and an other of all their allied orbs, bat because thoy ribrate molecalarly to the creation or maintenance of vacuam which booys them up? In so far as rotation canses ensterly and westerly winds it produces friction and heat, but he easterly wind being mostly northerily, destroys mach more hea importing into his theory more imaginary canses than importing adace reasons to support. Did any one live to testify as to the tomporatare of a cannon-ball on leaving the cannon and its fire? If on splitting wo find the intorior hot and extorior cool,
cooled by its excursion. Bat enoagh: I wait to see if cooled by its excarsion. in satencagh: Int tilt to dis-
some veteran soldier in ace do some veteran solaier the over-brave atterances of a -omatare some or
nevertheless clever M.D.
nemy diagram the outer circles denote extension of the atmospheres within tho bounds beyond which they would intersect each other; how far, besond this, rotation influence extends, of course, is matter for vations.
J. Barwick.

SULPHOR AS A BLEACHING AGENT.

[4265.]-I HAVE looked forward with special interest to Mr. Bottone's papers on the salphur compounds, in the hope that he would attempt some explanation of the manner in when Chlorine wo, know, acts in this manner, in the agent. Ce of water, by nuiting with the hydrogen and presence of the orygen-the trae bleaching agent : this is intelligible ongog. When Roscoe and others, howis intelligible enough, then the action of salphar is ever, go on to toll as that the action of salphar is
just the opposite of this, that sulphar dioxide bleaches just the opposite, or hat are we to infor with regard to by. deoxidation, whation? What is the true bleaching agent in the case of the sulphar componnds, and how agent in the case of it, like oxygen, form insoluble com.
does it act? Does does it at? ponnds with the vegetable oolouring matter present? In what sense, again, are the colours said to be meroly masked? If Mr. Bottone will kindly come to our assis--will soel greatly obliged to him.
"JACK OF ALL TRADES."
[4268.] - Fgw of your resders havo not admired, and many have profitod by, the varied and acourate hnow. adwe aisplayed be kindly ready to commaniosto ; and the ery leat we can do, now he is snffering from illness very least we can do, now he merely to dosiro bat to do and the elfocts onote his recovery. It is not posible to orm ars action orm a ver" Jeck" has said enough to show that ho lone, meliof from worry, and, very probably, at least a temprary change of residence; he oertainly needs that pi the be etill living in the place where he contracted his age anless, indoed, it be one which is free from hisuadaring a great part of the yoar, and even in that ague daring a great part of residenco woald probably be very beneficial. It ofton happens that doctors, in be very be their patiente circumstances, adries that ignoranoe which is impossible, and that may bo the ore triend may have been so roma case now. Oar gode for the help of others as to have naive his own intaresta, or his severe illness may negloctored exch loas and expense as to place mental has and freedom from anxioty, which are essential to his recorry ont of his reach, anless some of the many his rom hes often and so kindly helped will now join whom hal to aspe life so valuable. As I sm in togethor tor zuggestion of aid possibly needed may appear to be an suggesilin of intrasion. bat if the case be as I surges impertinene, I trast if will not moand our friend's delicses to peceive help in the only form in which mot of us an ofer it and that he will foel under no painfal of us the oursalves that we are simply discharging a just obligation, and acting towards anther as to to arda ns under similar circumstances. $11, \mathrm{Mr}$. Editor, you think such aid is needod, my gainea is rosdy; and all who have benefited by "Jack's" advice will pay for it. ho will be freed from all anriety on not legally It will be only payment of just, though philo.
enforcible, debts.
[Mr. J. W. Hayward, of Tonnage House, Carrow. Norwich, has alsn written a kindly-worded letter on the health of "Jack of All Trades," and snggests tant he should, if possible, visit Smedley's Hydropathio Establishment, Matlock, for 2 short time. "I' soor, should Mr . Hayward, Jack of All Trades is poor, be happy to forward him $£ 1$ to help to pay his expenses, if he would accept it." We may inform our readers that our versatile friend Jack with a large family, and from what we know of him we believe that be is as ready to help his neigtoour an he is willing to give the best adrice he can to change as ask it in our columns. No donbt such a change as that suggested by Mr. Hay ward wonld re-estabias his hoalth. If three othor correspondente would imitate the unsolicited example of "Phils" and Mr. Kay ward, making in all 25 , the Editor wonld oheorinly donble the sum, and we hope "Jack" Would
peadent to accept the present. -ED.]

DRIING PLANTS FOR HERBARIUM.

[4267.] - Im my japenilo dayb, being a great rambler mongst the fields and along a sea-shore margiu, 1 oollected a large namber of plants of various kinds. and dried them by moans of warm sand and sheets of blotting paper changing and drying both sand and papers pery frequently. My pross was the sacking. papers and loose-cushioned old-fashioned sofa (not old fashioned in the dase I allude to), so that every one who visited ns, and accepted a seat on the said sofa, was so far a contributor, unwittingly, to my Hortus Siceres 1 still possess most of those specimens, almos Siceres. 1 stild possess when I look at them, I can say, with Montgomery, "Days of my childhood, hail ${ }^{\text {H. }}$ O'B.

MARSH MALLOW FOR HARDENING PLAGTER OF PARIS.
[4368.]-The following may prove usoful to your correspondents, on which anbject 1 contribate for April. article to the British Journal of Dental from the porosity of plaster of Paris, and having tried alam (subsulphate of alamina), salt (chloride of sodiam), ace, and tinding no improvement, I ramembered that I had somewhere read of marsh mallow (Malva: a genas of the Mona. delphia polyandrime as a remedy for the above defect; I therefore procured 1 oz . of the above, half of which I placed in a pint bottle, on which I poured hoiling-hot I paleri, asing hall the above solution and half water to mix the plaster to the required consistency, and bavo mince had no trouble whatover, it being quite hard and non- porous.
E. Grabam Young, g.D.

HOW TO OBTAIN DOUBLE FLOWERS FROM

[4269.]-MANY years ago I was very fond of flowers, and had the advantage of a ane garden. I was very saccessfal in obtaining double flowering plants of the diferent species of stock gillyflower. The plan 1 adopted was freqnent transplanting the first year, with good rotten compost, generally tazen rom an fowering, I bed. As the planta began to propare and selecting such atripped them of all side shoots, sua would be likely to produce semi-donble flowers, I arst staked and secrured prom with a string of bass, and then with a sharp
thenknifo took off a strip of bark, tin. deop, threo-

REVOLTING PUDDLING FURNACES.

[4253.]-"R. 8." (let. 4172) has not suoceeded in explaining away the facts already adduced in reference to Mr. Danka' claim to the invention of tho rovolving pradling farnace. Mr. Walker's experiments failed was not his fault, but his migfortane; whilo even with the aid of a good chimney Mr. Danke' farnsce is reported to be a "bad melter." As a manager of iron works and a practical meohanio, I consider Mr. Danks' farnace to be neither more nor less than a combination of the inventions of Mesars. Walker and Tooth; and, ontil Mr. Danks has othorwise proved his claims to this invention, "R. S." bas no right to put ferth his bumble opinions as to the superiority of Mr. Danks farnace. $\Delta \mathrm{n}$ invention lying in the pigeon-holes in the Patent Offee is not loat, or a thing to we pirateri with impanity; neither can a more improver in a sense of the word be conaidered an original invent. The Danks' furnace appeare to me a second edition the American reaping-machine. In 1825, if I mist not the year, an English mochanic invented a rent machine; it was testod and did ita work well. On grat pablic trial the machine was smached to T and the inventor pelted with atonen by an eni mob of farm labourers. This invention lay don antil the Great Exhibition of 1851, When the r machine again appeared as a now inventic! America, and, of courso, patented. The tri. oxposed, and the patent, like the revolving for to the ground.
"R. S.'s" lazatations of the Iron and Steel are rather out of place. It cannot be adn: that soientific body has actod fairly by rashi iron-melting.temperature zeal at Mr. Da before the original invention at home had cally tested. In the absence of this fair part of this institation the pleacant tri Atlantio, the convivial dinners and garhing votes of thanks from the lordiv sized portrait of the noble President that smack of egotism already deacr
proverb informs ns that things dear
fotched are greatly admired by fanta .
no, apparently, with the Iron and Ste.
the Iron and Steel Institate acted or
juatitia, ruat coolum," justice would
Measm. Walker and Tooth, with
Danke.
G. \mathbf{S}

A NEW MODE OF CONVERT
FORCE INTO ITS HEAT
[4254.]-IT has struck me
poriment, which, however, I he
fitting adaition to those for
illustration of the mechani.
When a diso is mado to rerol
it offers resistanco to being :
dioular to the plane of it
principle of the sustentati
scope, of whioh inatramen:
English Mgchamic som
a machine so that while n
rapidly in one plane itea ,
perpendicalar to the for
absorbed independent
From the irst princip
diso, and the amoon
mometer inserted ir
that the convortion
is traceable to fric
trical, or chemical
evolution of heat.
perfectly rigid in
teriering with its
if all dises of e
ness, of cnarse,
gravity), but
amount of b.
amount of h
arrangement
happy to sur
HOW
[4255.]-
Editor, t -
the mear
had lont
ment i
clever
make!
ment
tarni
and:
that
t,
nio
pr

1 m. . I shonld say "yon " can
10 a pound of flour, and prodnce o a pound of flour, and prodnce r componnded of these (nnm - componad nambers, of wnier or
wonld be "concrete maltiplica 4) " will represent." Now, 2 is a ri two numbers, one and one not be far from the mark in nld be 2 pounds, or 2 pints, of t be determined by experiments.

M. A.

giant planet.

icle which appears in the Cornhll muth (May) under the above title, , pp. 244 and 245 of "onrs" bears iming from the pen of Mr. Droctor, Spectator in the leading article of your foot-nnte, and if so, it will be s to his "Essays on Astronomy," a compilation of most of his previons nt scrials, and, in its present con11 worthy the stady of all stadents in
or is always so securate in his quotations on which he bases his theories, pointing out an apparent omission Where the satellites are regarded an Iupiter's laminosity, the writer quotes servation of Dec. 80 last, of the forrth Feb. 3 of the third satellite in "dark Feb. 3 of the third satellite in "dark to will have been eatablished "' he omita ve the instnnces of the frst, and second dart transit" an the remart of Padre dark transit" as the remari of Padre satellites" appears to apply to the immeas to the bet arionr of the satellites olose to
not to their transit as dary epots across er of disc. I was fevoured, through r optical means (a 4.88 -in. refractor by itnoes three "dark transits" during the tinn of Jupiter-viz., the foarth satellitio on d Feb. 18, and the third satollite on March 24
lestar cese, the eatallite not being on the
o same time as its shadow (as in Padre teservation of Feb. 8, I had not the means of os accurately the cemparative darkness of but it appeared to be almost as black as its hioh came on afterwards. I wonld again csl to the peonlarity I pointed out (Nlites p. 188) last, the satellite showing itself as a dark er to the western edge than it did to the indge of Jnpiter after passing on at the coment of transit.
is no more interesting stady with instriments ent excellence than the observation of the in the tints of the equatorial zone of belts with - varying changes of their form, and the great of ninule load to Jupiter the mottled appear ich probably give to Jupiter the Mr. Buckingham's fire 21-in. refractor is men Mr . Buckingham ine $21-\mathrm{in}$. refractor is men d in the articie as showing these minute clonds, as I have seen that instramen noticed severa ink it is not generglly known that thongh the ink it is not generally known bat, thongh the the credit of the optical part (the most easential) ine to Mr. Wray. As many of "our" astronoIne to Kr. Wray. As many of our astrono an observation of Jupiter given in the firat number the Prilosophical riter given in the irat number the Philosophical Trancactions, published in Lonextract from the original:-"The ingenions Mr n extrsot from the original:-"The ingenions Mr Hoot did, some months since, intimate to a friend of

2mer

the ssia
length of the diameter of Japiter,
Linea.
of Meat.-Professor Artns, of Jena, re new method of making extract of meat' , gelatine, and fat, which are all cess, and which would seem,
o be the only really nutritious For this purpose, by a very of the meat is made first
res ont the soluble salts, the latine and creatine. The y with cold water, is
in's digester, and the
mraed off the surface, e oold extract. The etter, in a vacuamof preparing an sodswhich neces-
most valuable

REPLIES TO QUERIES.

-** In their answers, Correspoxdents are respectfully requested to mention, in each instance, the title and number of the query asied.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and put draw. Incs for illustration on separate pleces of paper. 2. Pat
titlos to queries, and when ancwering quarles put the titigs to queries, and when andwering quaries put the
nambers as well as the tities of the gnering to which the repiles refer. 8. Nocharge is made foriuserting letters, queries, or replieg. 4. Commercialletters, or queries, or edncational or soientifo information is answered through the post. 6. Letters sent to corrospondents,
under cover to the Editor, are not forwarded and the under cover to the Editor, are not forwarded; and
names of corregpondents are not given to inquirers.
[10478.]-Pork Diet. - I am gled to find some one Who thinks as I do, and congratulate the " Mother" on having had the coarage to introduce the subject of "Pork Diet;" for it regnires conrage to again raise a question which has boen discossed so often and so ably, and generally with the same result-which result is not satisfcotory to non-pork-eating people. Wben in No. 356 there appeared a query on the same, I hoped it would have met with a more general response.
"Philo" alone answered, and not to the point. It was disappointing, but what can one say to these olde and wiser heads?-except, indeed, that "wisdom i not always with the mighty, nor nnderstanding with the etrong." Had "Philo"' and the other gentleman worn ont less carpet in lighting or not lighting electric aparks, we might have had somse valasble reasoning from them. As it is, I bope that some earnest and capable mind will take the mattor up, and so convisce some others of the unfitness of the pig for food Rabbits and shell-fish are eqnally rubbish. They aro coarse, impare diet, and have a vile and lowering in finence on the mind. It may be that much of the crime and misery among the lower orders originatic from suoh a cause as this. I have frequently noted irritability such food on those sbout mp, cansing irritability and peevishness in both yoang and middle aged, and if there be a "deaf grandmother" she will be more deal because more crochetty. If such is the infuence on reaned and educated minds what can it be with th
Sarar.
[10640.]-A Reasion Wanted.-I beg to state, in reply to Mr. Taylor (p. 204) that it is in the act of breatbing ont that strength to lift weights is increased, and that I firmly believe breathing out air from the langs is not the same thiag as breathing in. I beg to add that, very often, I have found breathing out gir from the langs grestly help in ascending hills, giving a compsetness and sense of lightness to the body, pleasant to experience, as well as helpfnl in the ascent. Breathing in reduces both the lifting and the ascendGrrard Smith.
[10664.]-Angle of Incidence and Renlection has given on p. 204, and his explanation, so far as it coes is correct, bat still it does not acconnt for the fact that both times the ball shonld take the same conrse after having strack. I am afraid I oannot explain it bat shall venture to hint at a probable reason. Br the nature of the problem, the red ball having to retarn to its original position at the instant of striking the line joining their centres must be perpendicalar to the end of the table, and if the bslle were perfectly elastic, the result in sll cases with sny angle or velocity would be that the striking ball wonld proceed parallel to the ond of the table; this is on the supposition that the balls are physical prints. The elastioity not being perfect canses the ball coming from P to take the direc tion $\triangle D, \frac{B D}{B C}$ beisg the co-efficient of elasticity, simi larly a ball coming from P^{\prime} with a velocity $A E$ should pass through a point $G, \frac{E G}{E F}$ being the same co-efficient of elasticity. But this co-eflisient has been proved by experiment to be less with increased velocity; it should

into a war of words with "West Cornwall." I will tell him, is confidence, I do lovenoft colder, it is 80 very convenieut. Last woek I had a Arat-class lever watch to repair. It had three of the teeth and a part of the rim broken out of the fusee-wheel. There had been a fracture of the brass, done, I presume, when the meta slit of thensed, and recommended a new wheel, but the question was asked, "Can yon no renair tiis one?" I seid, Certainly I cen. Now, duvetailiug aloue woald not have done. Herd soldering pould have softenod the metal, therefore I made nse of a divetail and the convenient soft soliter, and made a nond job of it, which will stand as long as the wateh will lazt. I will give "W. C." one of my practical wrinkles for soft soldering small jobs, which I have no doubt will be useful to many readers of the Englise Inceasic. Take a common German biiver apoon, drill a small hole in the middle of boml. Now take a spoonfal of melted metal and ran it along any cold sarface, and you will make small solder wire, about the thickness of staff wire; ran it into four or six-inch lengths. Cat a short piece of peg poon, make a hole in the end, press in the end of a length of solder-wire. Now take a piece of mainspring, press into the slit of a batswing gas-bnencr, close down to the bottom on one side and a little from the bottom of the other. Tarn on the gas, and son have a amall horizontal finepointed jet of flame. Now pleae the peg wood end of oolder in your month as you wonld a blow-pipe; pot a drop of spirit on to your work. You have both hande at liberty: bring the two piaces together you wish to solder, and let the tip of flame impinge uponit. By quick and any amount of wort can be doas common jewellery work. "W. C." sars I entirely omitted Geneva watohes. Why import them into the controversy ? " S. H. L." asked to kno how to colle an English eseapo-wheel. It conld not be a Geneva as the Swiss workmen do not employ collets, but sea their wheels on the pinions.-A Yoriseriez Pivot.
[11108.] - THIt Fammer.-As Mr. Fenpell still persists that his drswing of a tilt hammer is correct Mecramy that it is an ingenions isposibility, cost five times the price of a proper hammer, and not do the dois erpected I hare not time nor to more into detail or send sketch, but will do so il wished.-A Barrister.
[11120.]-A Question of Sight.-To " K. L. G." - By "air nnder special mechanical pressare," I mesn air subjected to pressure beyond that of the open nir anperincumbent and around it. As "E. L. G. will not aocept mp feeble illaatration of single
needle reaching from the san, let him sappone the needle reaching from the sun, let him sappone the cosmic faid to be a dense solid (of oourse he drives
me to suppose the "impossible") from the man to the me to suppose the "impossible") from the un to the
earth; then, if without a vacanm between any of its earth; then, if without a vacanm between any of its
atoms, it would strike the earth when it itself was atoms, it would strike the earth when it itseli was
atrack at the ran, how oan he state such to be linger atrack at the ran, how ean he state snch to be longor than light, whioh travels at less than 200,000 milear per seonnd, Whilst the sun is distant more than $96,000,00$ miles. I think I never could be so abstracted es to pet down 17,000 feet as the speed of light, though I may
have let feet alip in for miles. I regret it, and will try to mend. -J. Barwior.
[11375.]-Darkening Walnut (U.Q.).-Boil the husks or skins of walnats when they are black and length of time, and does not spoil the look of the grain. -F. J. G.
[11333.]-Motive Power for Amaterurs.-I am sorry that "Zoo Andra" shonald be annoyed by my classing his plan with those fancies-plansibie in them-selves-which are the banc of young and enthusiastic mechanics. He will find the pendalam iden one of those proposals to gain or multiply power which are Andra" Andra" will refer to page 208 ho will find the plan reto enablo a man to do the largest amonnt of eort with ont assistance, and of conrse worked by a treadle. I have had some experience with circular saws from sft. diameter to 3in., and although I grant speed is advis. sble, it is of no ase without sufficient power, and the plan proposed by me will allow much harder work to be done than can be managed by a saw fitted to a lathe in the usual mander. A circular saw will ent very well at a slow pace if sufficient power be applied to keep it going, and will, in many cases, cut more at a moderate than a high speed; the reason of this is that the teeth are frequently too close, and do not take proper hold of the wood. The teeth of all saws require to be enlarged as the speed with which they are drivon is inoreased.A Barbister.
[11386.]-Crystals in Gas Tar.-(To MR. Bot-TONE.)-I have always taken the torm artificial alizarine to mean the substance prepared from anthraquinone, from rom madder, and the tar is certainly goneriolio in this sense: wive any of the with the substance termed naphthazerine by gohiitzenberger, bat I never heard of phthazm artificial alizarine being applied to this body herm arcioly has the same rolation to naphthaline that alizarine has to anthracene.-Etayc
[11452.]-Rain-water Tanks (U. Q.).-"Rosso" had better construct his tank of gelvanised iron, Which is far proferable to bricks and mortar. I have a large tank made of it, and it has answered eficiently. The cover can be made on a hinge, or one with handio lift right ofil. If "Rosso" requires she water cloan for
any special purpose, he had better have the tank in an
foarths round the stalk, taking particalar care to leave one-forith of the circle of bark intset. The seed from the plants so treated produced nearly all donble flowers. The principle on which I acted was,
that the blond or sap of a plant ascends through the that the blond or sap of a plant ascends through the
centre or pith, which may be called the artery; and centre or pith, which may be called the artery; and
again deacends betreen the atem and bark, correspond. again deacends betreen the atem and bark, correspond-
ing to the veins of a llving animal. The partial stop. ing to the veins of a living animal. The partial stop-
page of the deccendiog current was to gire the plant page of the descendiog current was to gire the plant
a sort of apoplexy. By this means the finest denble a sort of apoplexy. By this means the finest danble
anemones can be produced, and plants beantifully anemones can be produced, and plants beantifully
striped can be obtained by crosaing. Thus select (asy) striped can be obtained by crosaing. Thus select (asy) a crimson for the male plant, to be crossed with a
white (the fomale). As soon as you can carefully npen White (the female). As soon as you can carefully npen
the petals of the white flower, extract all the stamens with a small pincers, and immediately cover both fowers with a fine maslin bag. Examine frequently
with a band microscope the stamene of the red, and With a hand microscope the stamene of the red, and
when they appear ripe, extract them carofully one at a time, and removing the bag from the white fower, gently rab the pallen dust over the pistils. Then cover the impregnated flower agnin with the bag for a few days until all danger of extra impregnation from ingeots is over.

From an old gardener who was celebrated for his stoek gillyflowers I obtained the following information: His plan was to save seed from the semi-double plants only, and to carefally wrap up the seed in brown paper, not to be aprin opened for tive jears. He chowred me his collection of seeds, and gave me some of white snd crimson from packages, whioh he deolared had been saved five rears. I sowed those seeds, and
the next year found nearly all the plants produced the next year found nearly all the plants produced
double flowers.
E.J.D.

MTCROSCOPE.

[4270.]-As the micrencope trade is stocked with a clats of instraments which are constructed meroly to hold together while being sold, a few words on the sabject mag assiat others besides "A Capadian Sabscriber " in making a judioions bargain. First, then, whare to the snpport of on expenaire front shop he will And every lacility for doing so, but let it be underatood that he thas allowit the shopkeeper a ruinons percentage
fer the mere trouble of selling. The majority of this class are more salesmen, and their whole knowiedge of microscopy might, as a rale, be condensed into the text, "Here are the instroments and I want to sell them." In support of this statement I quote Mr. J. F. Heather, who, speaking of microscopes in his wellknown book, says that "many so-called opticians are mere sellers of articles, of the qualities of which they are totally ignorant." And I would add that an instrament bearing an ominent name often emansles trom the hand of poor Bill somebody, who lives, works,
and appears very likely to die, in some garret or kitaben.

In tbo mechanical part nothing is of greater importance than the focuasing rack motion; and, therefore, it should be seen that it has a good, even, and parallel atting, without the least "shake," false motion, or nasty grating, produced by the pinion being $s o t$ too deeply into the teeth. Pat an object under a
lin. power on the instrument and watch it (the object) in. power on the instrument and watch it (the object)
as it gradnally comes into foous ; if it is seen to move about in the field the raok is imperfect, and shnuld be rejected. Next, try the tine adjuatment with a bigher power, and the same rale applies to both. Notice attod bj enro throagh which the rack bar slias is attod by a separato plate, as many are made to if by a gentle use of the hammer round the top. The piniou on wesring sway, leave the instrument as innocent of onything like "cobbling" as it is incapable of proper indistinet at another, the probeble carse is that the stage is not at right angles with the optical axis of the instrument, though the object may be imperfectly mounted, so, to make certain, tarn it upside down or monnted, so, to make certain, turn it upside down or
try another, usipr a high power for this. Take out the objective and erepiece, and looking straight down the objective and erepiece, and looking atraight down the tube turn the diaphragm ronnd and soe that the apertures are pretty central, as theg appear successively reasorably tight. and that the whole is steady, proporreasorably tight, and th
tionate, and well-atted.
A set of French achromatica containing three powers (that in, in all, three pairs of lenses) will do excellently lor all general parposen of interest, but in the deeper atudied there are many things which cannot be properly seen without the une of irst-class objectives, which are sery expensive. Grond test objocts are the Navicula apmas, completel corered with a number of longitndinal and tranperse lines, and the Postare fambea or eip and tranverse lines, and the Postura flambea, or skipthich inold appenr anved ith a marks like notes of admiration. In choosing a binocular look first into the straight tabe, and notice the exact position of the object in the field, and in what parts it position of the object in the field, and in what parts it
tonches the edge ; then see the image in the side tobe, and it should exactly correspond; should it not touch the edge at the same part the error may owe its canse o one apertare being larger than the other, so pat the Whon, if this fanlt is still apparent, the prism muat be met wrong or the body at a wrong angle. The arrangement for raising or lowering the draw tabes should movesmoothly, and one is higher than the nther, that image will be the most magnified and an indistinctness will be the consequence; place both eyes over the instrament and right ese and looking down the left tube, and then
shatting the left eye and looking down tho right tube, so that bath images are seen at tho same time; they
shonld then appear stereoscopical and sharply defined, shonld then appear atereoscopical and sharply defned,
free from darkness and prismatic or other glare caused iree from darkness and prismatic or other glare caused
by the entrance of light between the bodios, the right by the entrance of light between the bodios, the right
one often being navoidably lighter than the left, but one often being naavoidably lighter than the left, but
thore are many who fail to see the binocalar effect. thore sre many who fail to see the binocalar elmech.
Now, if l kave nof exhansted the subject. Inevertheless must hare exhausted the pationce of those who read this letier, so conclude by informing "Cansda" that the price varies from ft to 8400 , but a very serviceable instrument may be had for about 14 guineas, with three powers, mechanical stage, condensor, frog-plate, polariscope, parabola, live box, neatral tint refector (or camera lacida), forceps, and all accessories, bat in one of the best kind doable that amount may easily b
given for the lenses alone.
C. G.P.
.NEW (?) PROOF OF PYTHAGORAS' THEORY.
[4271.$]$-Is your nnmber of 10 th inst., p. 203, Mr. Recordon has exhibited an old arrangemont. I refor him to "Un Million de Faits" for a qeneralisation proved by Clairant's brother (querr, dating from the erect any lateral parallelograms, ACDE, BCFG. Let DE,G F produced, meet in H. Join HC, produce it to cat AB in I, and extend to K, IK = CH. Draw
 parallel $\triangle K$ + parallel BF'"' For, join $A H$, $A K$, $B A, B K$. Then $\triangle \triangle C H$ is half $A E$ (same base and same parallels) ; $\triangle A C H=\triangle A I K$ eqnal bases on
same line $H K$, and same vertex; $\triangle A I K$ is half $A K$ (same base and eame parallels), whence $\mathrm{L} I=C D$; similarly $M I=C G$. Q.E.D.
 47, I.)
Is it possible that this diagram will illusirate the as Euclid 47, $I_{\text {., does }}$ that of rectangular ones?

My friend Mr. Perigal many years ago gave a
 lows:-Oa right $\underset{\text { angle }}{\text { describe }} \boldsymbol{A} \underset{\text { lateral }}{C}$ squares AH, BD, AW. Bisect each
side, $\mathbf{A B}$ in Q, P. O, N; draw QT, OS parallel
to AC, and NU. to A parallel to BC intercepted at R, sively. Through tively. Through
centre F of AC equaro, draw IL and $\mathrm{K} M$ pernen.
I L. Then shall the eight foar-side dicular to AB or $K F L C, L F A M, M F I Q$, ANTQ, QLIPB, PSOW, OUNV, be all equal and similar to each other; and
RSTU is aquare = CBED. Then AH may be cut R S T U is a square = CBED. Then A H mar be cut
up and ite pieces placed ronad BD, so as to produce $\mathrm{A} W$ and its pieces placed ronad $B \mathrm{D}$, so as to produco A - proving it to the layman as well
of mathematios that $A B^{2}=A c^{2}+B c^{3}$.
S. M. Drach.

RECURRENT VISION, ac.

[4272.]-Tre following fact may help to elucidato the "recarrent vision" of Profestor Young (sec p. 190): The image impressed on the retina, after looking at a oye, and is not a continuous impression, an it ordinarily appears to be when the eyes are equal. This may be proved by sny one who can combine the two iews of a stereograph without a stereoscope (by directing the axes of the eses parallel as in looking at a disobject). Thus, stick tro discs of black paper (about balf an inch diameter) on a sheet of white paper, the distance between them being equal to the distance between the eyes ; then, helding the paper ahout a foot from the eyes, so that a line between the discs Woald bine the discs as a stereograph, so that the right eye looks at the right dise, and sees the left diac rather

eyes steadily fired on the cantres of the diecs) for abont half a minute, shat the ores quickly and wait (somefimes for Ω few seconds) until the images appear, meannwhile shading the eyelids and gently preaning them is he images do not appear casily, or if they cease for a in seconts (a gon on for sbont a minnte), and if the hing, lasts oir and on thore vill appear a cemtral strong riac ime successin, there will appeare of the right eye isc image, formed by the right image of the right eye ad the left image of the liternataly sppearigg ame second images of each eye alternately appearing aro on each side, one becoming visible when the oshar disap peara. Each of these transient inagis lationt being perceptible, ss the imagen of each eyestrengthen and diminish.
Now, whether Professor Young's recurrent vision resnlts from a shorter period of recurrence of rather a different character, affecting both oyes nimultameonsly, more vividly than the other, is uncertain, bat the more vividly than the other, is uncortion,

While on virionary subjeots, I may as well mention 2 remedy for the dazzles, with which many of your readers may be troahled, as was the late Sir John Herechel ; by the dazzlos I mean a quivering appearance of a dark and light, or coloured shade or mpression of lines moving engularly or oerpeniaely, which commences at she extreme hmits of risjen, and gradually encroanhes towards the objects of view, until in it is impossible to see anything distinctly, though the it is impossible to see anything distinctly, shough the forms and positions of objects appear quite unainected
by it. A fraction of a grain of enlphate of quinine will by it. A fraction of a grain of enlphate of quinine will remove this appearance in sbout ton minutes, thoraph otherwise it will continue for some hours. This in the homoopathic consequesce of the fact which was first perceived-namely, the production of the dazzles ty e small quantity of sulphate of quinine, whioh is an elleot any of your readers who if not already drazed with large doees of that medicine.
W. M. FLimpere Perver

COMMUNICATING ROTARY MOTION TO BALI FIRED FROM SMOOTH-BORFD GUN.
[4278.]-"Philus Ward" (letter 4159, p. 297) may perhaps not have heard of the Mackay gan, which was tried nomo fow years ago near Liverpool, againat a target of the "Agincourt" pattern, if I remember rightly. Mr. Mackey nsed a rifled gun, from which he
fired evlindro-conoidal ahot, without studs or any other fired cylindro-conoidal ahot, without studs or any other contrivance to take the rifling. The shot was rotated by the gas escaping alongside the shot, through the
grooves; hence it was called the "Windage gun." I grooves; hence it was called the "Windage gun." I
remember seeing the terget shortly alser the experfremember seeing the terget shortiy alsor the expork ments, and the shot seamed to have done good work
upon it. The system soon afterwards sank into obnpon it. The system soon afterwards sank bos in
livion, for what reason I can hardly any, but shese livion, for whas reason I can hardy may,
must have been something wrong somewhere. Artillery Captain.

CONCRETE MULTIPLICATION.

[4274.]- I RAVM no deeire to be hypercritical and only again object to "Sigma's" further explanation of beliere that, boing erroseons, it may tend to produce benere that, being errosecus, it may tond to produce
confusion of ideas in others. It is worth while on confasion of ideas in others. It is worth while on has oecasioned greater confliats of opinicn than misunderstanding the forms involved in the subject in dispnte. No whet is the mesning of multiplimation? it has either the simple arithmetical sense of repetition a certain number of times (integral or fractional). or it has a more general algebraical meaning.
In the first case, it refors to the arithmetical eperation npon another number, abstract or concrete, in which case anything forcign to the idea of nomber cannot become introdnced, and so there can arive no idea of squareness or solidity. In the second, results case is it a valid reason against the possibility of any case in it a valid reason against the poosibility of any
operation that it has no meubing. We may, for inoperation that it has no mouning. We may, for in$\sqrt{\text { 6tapee, in algebraical eperations arrive at the resalt }}$ gible, quantity, but it dossible, and itself an unintolliof the operstion of which it is the result. Another explanation, then, must be given of the reanlt of the so-called maltiplication of concrete which I have already given, that the onit is supposed which I have alreadry given, that the nnit is supposed
to be ohanged before the multiplication takea plece. If pounds cannot be maltiplied by pounds there is no If pounds cannot be maltiplied by pounds there is mo
reason, either d priori or ponteriori, why foet can bo reason, either d priori or ponteriori, why foet can be
maltiplied by fcet. To say that "conorete multiplicamultiplied by fcet. To say that "conorete multipica-
tion" is an arithmetical dodge is quite beside the tion" is an arithmetical dodge is quite beside the
subject: what is so called is straightforward and simple proceeding when rightly explained. Nor can I kimple proceeding when rightly explained. Nor can I nambers are only susceptible of addition and snbtrao tion." This can only mean, I think, that though we cannot maltiply a poand by a ponvi, yet we may increase a pound by a pound, as if the pound were the arithmetical operation, and not the increace or addition of it. I need not parsue this question further. sion of it. I need not parsue this question further,
bat I can discern no other reason for "Sigma's" assertion than this supposition. The fact is, that conassertion than this supposition. The fact is, shat con-
crete, as well as abstract, quantitios are susceptible of moltiplication and division as well as of addition and sabtraction. We do not in any case perform the subtraction. We do not in any case porform the
operation by means of the concrete quantity, but with reapeat to it.
nasky, I can see no!hing impossible in "Gigmas's "
"reductio ad absurdam." I shonld say "ron" cav paste, which of water to a pound of ar and pronnce (nnm bers, I presume, for to compond numbers, of water or floar, or even paste, wonld be "concrete mnltiplica. tion " with a vengrance) "will represent." Now, 3 is a namber componaded of two nombers, nne and ona and I think we should not be far frnm the mark in saying that there would be 2 ponnda, or 2 pints, n
pasto. If greater exactness is reguired-finl erneri pasto. If greater exactness is required-finl experi
mentum /-let the onit be determined by experiments.
M. А.

a Giant planet.

[4275]-Tre article which appears in the Cornh'l Magazine for this month (May) under the above title and given, with the cxaeptinn of a few preparatiry evident marks of coming from the pen of Mr. Proctor, as sarmised by the Spectator in the leading article o May 4. as stated in your foot-nnte, and if so, it will be a suitable appendix to his "Essass on Astronoms," lately published, a compilation of most of his previons papers in different serials, and, in its present con-
nected form, well worthy the stady of all stadents in astronomy.
As Mr. Proctor is always so accurate in his quotations of observations on which he bases his theories, I feel diffident in pointing oat an apparent omission photometers of Japiter's laminnsits. the writer quates photometers of Japiter's laminneitr. the riter quctes
Mr. Lassell's observation of Dec. 30 last. of the fourth mr. Lassell's observation of Dec. 80 last. of the fourth
satellite in "dark transit," and also Padre Secehi's observation of Feb. 3 of the third satellite in "dark tranait," and states "that the comparative darkneas of al cour batellites will have boen established;" he onsits however, to pive the instances of the first and qecond astalites in "dark transit,". as the remark of Padre
Soochi in his narrative that "this fact is not a now one for the other satellites," appears to apply to the imme. diate oontext as to the behaviour of the satellites close to the edge and not to their transit as dark epots across the remainder of disc. I was favoured, through nooh smaller optical means (a $4 \cdot 28$-in. refractor by Wirny), to witnens three "dark transits" daring the Dec. 80 and Feb. 18, and the third satollite on March 24 latt; in the latter oase, the satellite not being on the lisc at the eame time as its shadow (as in Padre eceni's observation of Feb. 3, I had not the means of adging 80 accurately ho comparaivo harkness of hadow, which came on afterwards. I woald again call attention to the pecalarity I pointed out (No. 363 p. 608) in the observation of the transit of satellite 4 on 18th Pebraary last, the satellite showing itself as a dark pot nearer to the western edge than it did to the ascorn edge of Japiter aftar passing on at the com Thare is no more interesting atudy with instrnments of sufficient excellence than the observation of the ahanges in the tints of the eqnatorial zone of belts with she evor-varying changes of their form, and the great number of minate clond-like markings sometimes seen, and whioh probably give to Jnpiter the mottled appearance observed nnier less favoarahle conditions. By the may, Mr. Backingham's fire $21-\mathrm{in}$. refractor is menhoned in the article as showing these minute clonds, and as I have seen that instrnment noticed several times in newspapers withont stating the makrr's name, I think it is not genorally known that, thoogh the owner constrncted the equatorial monntings and fittings, the credit of the optical part (the most essential), mical readers may. As many the quaint account of an observation of Japiter given in the first nomber of the Philooophical Traneactions, pnblished in Lonan extract from the orizinal:-"The ingenions Mr. Hook did, some montha since, intimato to a friend of bis that he had, with an ex ellient twelve foot telesoone, observed some davs before he the spoke of it (viz., on the 9th day of May, 1664, about nine of the clock at dight), a small spot in the biggest of the three obecorer belts of Japiter, and that, within tro hoars after, the said spots hat moved from east to west about hall the length of the dismeter of Japiter.

Lifiba.

Britract of Meat.-Professor Artns, of Jena, zocommends a now method of making extract of meat, Which possesses the advantage over that of Liebig in rotaining the albumen, gelative, and fat, which are all remored by Liebig's process, and which would seem, from recont experimente, to be the only really natritions elements of the meat. For this parpose, by a very simple apparatas, an extract of the mentis made first with cold water ; this dissolves ont the soluble salts, the albamen, and part of the gelatine and creatine. The meat, after extraction in th:ia way with cold water, is then boiled for an hour in a Papin's digentor, and the liquid pressed out. The fat iq skimmed off the surface, mised extract is mixen with the cna extrat. proper oonsistonce in a and bath, or better, in a varnim. apparatas. This certainlv, nnys the Brit sh Medical extract of matat manch bether way of preparing an sitate the throwing away of the most valuable ennstitaentu.

BEPLIES TO QUERDES.

** In their ansucers, Corresposdents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on onn side of the paper only, and pat draw inci Por illustration on separate pieres oi paper. 2. Pnt

 edicational or scientifit informntion is answered through the post. 6. Letters sent to correspondentr.
under cover to the Editor, are not forwarded and the names of correspondents are not given to inquirers.
nat
[10178.]-Pork Diet.-I am glad to find some on who thinks as I do, and congratulate the "Mother" on baving had the courage to introdnce the kulbject o Pork Diet ;" for it regnires conrage to again raise question which has been discussed 50 often and s ahly, and generally with the same resalt-which resnl is not satisfactory to non-pork-eating people. When in No. 356 there appeared a query on the same, I hoped it would have met with a more general response "Philo" alone answered, and not to the point. I was dikappointing, bat what can one say to these older and wiser heads?-except, indeed, that "wisdom is not awass with the mighty, nor understanding with the atrong." Had "Pbilo" and the other gentleman worn ont less carpet in lighting or not lighting electric aparks, we might have had some valuable ressoning from them. As it is, I hope that some earnest nuit capable mind will take the matter up, and so convivoe some others of the unfitness of the pig for food. Rabbits and shell-fish are eqnally rubbinh. Thry are coarse, impare diet, and have a vile and lowering inHiaence on the mind. It may be that much of the crime and misery among the lower orders originati, he fuck a canse as this. I have frequently noted irritabilits ond food on those abont mo, cansing aged, and if there be a "deaf grandmother" she will be more deaf becanse more crochetty. If such is the influence on refined and educated minds what can it b with the antanght but hartfal and debasing?Saraf.
[10640.]-A Reason Wanted. -I beg to state, in reply to Mr. Taylor (p. 204) that it is in the act of breatbing ont that streugth to lift weights is increased, and that I firmly believe breathing out air from the longs is not the same thiag as breathing in. I beg to from the langs greatly help in asoending bills, giving rom the langs greatly help in ascending bills, giving pleasant to experience, as well as helpinl in the ascent Breathing in reduces both the lifting and the ascend ing puwer. Such is the fact, and experience of SмाTH
[10664.]-Angle of Incidence and Reflection -I thank " Billiardist'" for the illastrative case he has given on p. 204, and his explanation, so far as it goes, both times the ball should tako the same course afte having strnck. I am afraid I cannot explain it, bot shall venture to hint at a probable reason. By the nature of the problem, the red ball having to return to its original position at the instant of striking the line joining their centres mast be perpendicnlar to the end of the table, and if the balls were perfectly elaatic, the resalt in all cases with any angle or velocity woald be that the striking ball would proceed parallel to the end of the table; this is on the snpposition that the balls are physical pnints. The elnsticity not buing tion $A D, \begin{aligned} & B \\ & B \\ & \mathbb{C}\end{aligned}$ being the co-efficient of elasticity, simi larly a ball coming from P^{\prime} with a velocity $A E$ shonld pass through a point G. E G F being the same co-efficient of elasticity. But this co-eff sient has been proved by eperiment to be less with increased velocity ; it shonld therefors, pass in some
suah direction as A H, in place of whioh it appears it travels in direction A M. Now, I ventare to saggest the following as a reason, but shonld be glad to have the opinion of more competent perballs strike a whirli:g motion is impartod tis them, the ball A rotat-
sented by the arrow. The eifect of this motion rabbing on the table must be to retard the motion of he ball on the one side more than the other, acting as radder, aud cansing it to describe a carve, suchas
indicated by the dotted line. Now, with a greater velocity, and at particular an Now of striking, this velocity, and at particular anules of striking, this
rotary mution is increased, and, consequently, its deviating effect. I have no doabt some of your correspondents will be able to give a better explana-
[10781.]-Fastening Escape- Wheel in Lever
Watch.-I have not the time uor the desire to enter
into a war of words with "West Cornwall." I will tell him, in enn!ldence, I do lovemoft nolder, it in so very o repnir. It had three of the toeth and a part of the rim broken ont of the fusee-wheel. There hed been e fracturn of the bracs, done, I presame, when the meta was condensed, and unfortuately it was opposite the slit of the maintaining power spring. I recommended a now "heel, but the question was asked, "Can yon not tailiva aloue wnald not bave done. Hard boldering Fould hare softengd the metal, therefore I made nse of huvutuil and the convenient soft soller, and male a gond job of it, which will stand as long as the watch
will lat. I will give "W. C." one of my practical wrink!ea for soft aoldering amall jobs, which I have no doubt will be nseful to many readers of the ENGLISt Mecianic. Take a common German silver rpaon, spoonful of melted metal and run it alng any cold snrface, and you will wake small solder wira, about the thickness of stafl wire; ran it into fonr or six-inch lengths. Cat a slort piece of peg woon, make a hole in the end, press in the end of a length of solder-wire Now take a piece of mainspring, press into the slit of a hatswing gas-bnener, clost down to the bottom on one side and a little from tho bottom of the other. Tura on the gas, and you have a sinall horizontal fine pointed jet of flame. Now place the peg wood end of onlder in vonr month as you wonld a blow-pipe; pat lrop of spirit on to your work. You have both hands a liberty: bring the two pieces together you wish to solder, and let tbe tip of flame impinge upon it. By this method any amount of work aan be done in a quick and neat manner. I nse it for all kinds o common jewellery work. "W. C." sers I entirely omitted Geneva watches. Why import them into the S. H. L." asked to know how to colle as the Sqias Forkmen do notemploy colleta, bnt sea their wheels on the pinions.-A Yonksizan Pivot
[11109.] - TH1t Hammer.-As Mr. Fenpell still persists that his drawing of a tilt hammer is oorrect Mrcilanic that it is an ingenions impossibility, would ost five times the price of a proper hammer, and no o the daty expectod. I have not time now to g more into detail or send a sketch, bat will do so if wished.-A Barnister.
[11120.]-A Question of \&ight.-To "B. L. G." -By "air under special mechanical pressure," I mean air subjected to pressure beyond that of the open will not acumbent and around it. As of a seeble illastration of aingle needie reaching from the sun, let him suppose the cosmic finid to be a densesolid (of conrse he drives ne to anppose the "impossible") from the san to the arth; then, if withnat a vacuam botweon any of it atrack it woald strike the earth when it itsolf wes than light, which travels at iess than such 000 miles pe eonnd, whilst the sun is distant more than $95,000,000$ miles. I think I never conld be so abstractad as to pat down 17,000 feet as the speed of light, thongh I may have let feet slip in for miles. I regret it, and wil try to mend.-J. Barwiok.
[11275.]-Darkening Walnut (J.Q.).-Boil the hanke or sking of welnnts when thor ore blect and rotten to a jelly and ase hot or cold. Will keep amy ength of time, and does not spoil the look of the grain -F.J. G.
[11333.f-Motive Power for Amateurs -I am sorry that "Zoo Andra" should be sonnyed by my classing his plan with those fancies-plansibie in them-selves-which are the bane of yonng and enthasiastic mechanics. Is will find the pendulam idea one of hose proposals to gain or maltiply power which are Andra" will refer to page 208 he will find the plan re ommended there is for a single-unnded ssm-i.e., one o onablo a man to do the largest ammant of work with out assistance, and of conrse worked by a treadle. I have bad some experience with circular saws from 4 ft . dismeter to 8 in ., sad althongh I grant speed is adris able, it is of no ase withont safficient power, and the plan proposed by me will allow mach harder work to be one than can be manaqed by a saw fitted to a latte in he nenal manner. A circular saw will ent very well a slow pace if sufficient power be applied to keep it going, and will, in many cases, cut more at m moderate than a high speed; the reason of this is that the teeth are frequently too slose, and do not take proper hold of as the speed with which they are driven is increased.a Barrister.
[11386.]-Crystals in Gas Tar.-(To Mr Botone. - I have always taken the term artificial alizarine to mean the substance prepared frum anthraquinone, from madder, and the term is certainly generally need from madier, and the term is certainly generally nked the last two years. I am acqneinted with the anbstance the lust two years. I am acquaigted with termod naphthazarino by Gchulaenberger, bal I zover heard of this term artincial alizarive beling applied to this borly. Which, probably, has the bame relation to
[11452.]-Rain.water Tanks (U. Q.).-"Rosso" had better constract his tank of galvanised iron, which is far preferable to bricks and mortar. I have a large tank mude of it, sad it has answered officiertly. The cover cau he made "n a hinge, or one with handie to
lift right off. If "Rosso" requires the water clean for any special parpose, he had better have the tank in an
open place; to catch weter from roof, have it made
lip level with ahoot. The water can be drawn of lip level with shoot. The water can be drawn off
with a tap or bucket; I bave a tap for mine, which with a tap or bucket; I bave a tap for mine, which
aroids the neceesity of getting to the top with a bucket.
I know of no method to I know of no method to clean oat, except drawing all the water off. Perhaps anme correspondent of "ours"
can give a plan for the edification of "Rosso," myself, can give a plan for the edification
and other anbscribers.-H. B. E.
[11572.]-Compressing Water.-To the question asked by Mr. Westrood-viz., how it is ques-
the pressure is pamped ap and allowed to remain on the pressare is pamped up and allowed to remain on alters-I offer the following suggestions:-Mr. Westwood answers his own question thas: "That proves to
me that the water is compressed." Now, I think, it is a proof that the water is not compressed, but is driven out of the oylinder, oither through the joints or into or enormons pressure, no doabt, to drive water into the ring of steel forming the sides of the cylinder, 8 in. thick, but there seems to be a vary great pressure in gallon (277 cubic inches), and suppose the rromainder driven into the pores of the cylinder sides-into, that is, something like 60,000 cabio inches of steel, or (say) one cubic inch of water into 200 cabic inches of metal,
and the gallon of water is disposed of. In am supposing the conditions Arst stated to be perfectly accurateviz., that the head and foot of the ram are perfectly immorable at the momont when the extra gallon of
water begins to onter the cylinder. Otherwise there is nothing in the question, because it only requires a motion of less than \ddagger in. in the ram to dispose of the is compressible it probsbly is so becanse of the air it contains, and in that case would probably be equall as elantio as comprensible; and, if so, the preasure indice that the necessarily rise, whilo the fact is atated to reacon, 1 think, come other meana of diaposing of the extra, gallon of water than by comprossing the cylinder
full to the extent of about a 220 th part of it mast be songht. Water is supposed to be olightly balk. pressible, bat nothing like to this extent. A fer trials with this machine, and very acourato records of the proceedinge and resalt, would bo of general interest.-
C. .
[11572.]-Compreasing Water.-One million parts of water are redaced by 51 parta for each atmo-
iphere of pressure aboat 151 b . On the square inch aphere of pressure-abont 15lb. on the square inch. This is Colladon and Sturm's resnlts, Which Regnanlt, however, considers a trife too high. Thus, suppose
the hydraulic press to hold one million half-pints when the hydraulic press to hold one million half-pints when
the ram is driven up so as to jnst touch the head-block, the ram is driven ip so as to jnst touch the head-block,
we know that it is possible to pump in more water, we know that it is possible to pump in more water,
and this amount will be in reund numbers 50 half-piuts and this amount will be in reand numbers 50 half-piuth
for each " 151 b . per square inch" of additional pressare. Regnanlt calcalates the diminntion in the bulk of water under the pressure of ench additional
atmosphere to be forty-seven millionths. The comatmoaphere to be fortp-seven millionths. The com-
pressibility of water is greater at low than at high
temperatures, temperatures.-Saul Ryaea.
Claire Deville - iry Steam.-According to Henri 8t. Claire Deville, steam gets dissociated into its elements at the temperature of 250° Centigrade, and not until it has reached that degree of heat. Now, it is not into its elements ; but, being saperheated, its molecales occupy a larger area, and being most tennons, give ap and, consequentily, the hydrogen thas liberated barns alo. That this is the probable influence of snperheated steam may be concladed from a series of experiments made by Prof. Frankland, if I am not mistaken, and Which prove that a candle, on burning at the top of a mountain, gives less smoke than at the bottom of a mine, althongh (and especially becanse) the air is more tenuous at the top of a monntain than in a plain and
at the bottom of mina.-FF. T.
[11615.] -Teeth.-Tinctare of iron will not canse the teeth to become loose. I shoald not recommend your correspond ont to nae alam (subsalphate of alnmina
and potash), as it contains sulpharic acid, which has a and potash), as it contains solpharic acid, which has a
very injarious action on the toeth. There are many lotions recommended for restoring the attachment of the periostenm, but thoy are not to be much relied caloulas 9 If so, that wonld scoonat for the saivary of your toeth, as this is constantly gravitating from the aalt of whioh the salivan is composed, and collect. ing about the necke (cervix) composed, and collect. canses infammation, and consequent recision of the gam. The only efficient remedy for this is to andergo asing astringent having your teeth scaled, and then ning astringent lotiona, such 28 tincture of myrrb, or
the following preparation :- Mastic (in powder) 2dr.; baleam of Pera, fdr.; gam, 2drs. or prader in orang
 Grabak Young, 8.D., Bristol.
[11632.]-Dobility.-Any one who discovers, or has discovered, "two most noble medicines" which effect the
care of all disease, and refuess to mako them known cure of all disease, and refases to make them known, do notsay that he is not entitled to reap a pecuniery roward for his discovery, but there is a difference between inventing a new method of making steel and discovering saul myagaring the diseases which aflict mankind. saul Rymea.
[11687.]-Sp eeding Machinery.-Suppore that - palley of 18in. in eircamference is on the driving driven ahaft, ite palley should bo $\frac{18}{8}=6 \mathrm{in}$. in circum.
ference. If great aconracy was required, the thickness of the belt might reqnire consideration, as a
pound of water raised 1° Fahr., represents, theoretically, 772 foot-ponnds.-PHuMNTHROPIST.
[11697.] - American Lathe Chuck. - The Warwick or scroll chnck is extremely usefal, slso the twist drills, as they will out rapidly to any depth in soid metal. As sold, however, they are groand with
too much crit, which causes them sometimes to ran in and stop. especially just as they are through the work. ishonly not now like to be without a set, as when
properly ground they are by far the best drills I ever properly ground they
[11711.]-Time at our Antipodes.-This is a most interesting gnestion, and is not yet diaposed of. notwithstanding all that has appeared on the subject in your rery valabble journel, so that I for one rejoice that yon have allowed the discossion to be cono yon a ittio longer. Many communicalions adrosied but havave not heiped us a bit to solve the problem, without knowledge." Amongst the latest of these I am sorry to hive to reckon Mr. Birt's diagrams and explanation, which I have made three attempts to nnderstand withoat snccess. One of the best letters is "masters in Israt," to by T. S." If some of orr kindly answer the letter of "T. S." in as lucid a manner as it is written in, your readers will be greatly indebted to them. I have pondered this matter for years, and hail with joy the discassion of it. Will any of onr savants kindly answer me this question? One of opposite that of Greenwich, or 180° on On this island there are English missionaries. As I write it is exactly 12 o'clock by Greenwich mean time at midof Might betwoen Friday the 17th and Saturday the 18th of May. Consequently, at Vans it is exaotly 120^{\prime} olock noon on Frit with 17 or do they call it?-KsLBr.
[11711.]-Time at Our Antipodes.-I have every reason to speak with respect of Mr. Birt, bat this will not provent me saying that he is evidently lost in a for on this anbjert. In his letter which
appears in this week's (Mar 24th) Englise MECHANIC. he positively says that "T. S." is wrong in assumiag that a mesrage tolegraphed from London at noon on
Tuesday, May 7 , woald reach New Orleans at 6 a.m. on the same day, but that it will not reach that place till 6 o'clock on Weduesday, eighteen hoors after its despatch. That is to say, that when it is 18 at
noon at London nn Tuesday, May 7 , it is 6 a.m. Wednesdar, May 8. Now, every tyro knows that the san in appearance and in effect) moves ronnd the earth
from east to weat, passing over 15° in one honr. Num rom east to weat. passing over 15° in one honr. Nuw
York is abnat 75° to the weat of London; therefore the sun reaches Londoa five hours before it reaches New York; bo that when it is twelve st noon in
London it is $7 \mathrm{a} . \mathrm{m}$. of the same lav in Now York. Wo London it is 7 a.m. on the same day in Now York. We
verify this calcalation everv mrring by reading the telegraphic messages from New York which nfe found on our breakfast tables. New Orleans is 15° west of
New York. and, therefore, when it is 7 am . at New York. and, therefore, when it is 7 a.m. at
New York, it is 6 a.m. at New Orleans. We are sure about the time of New Yerk from the scores of mes. sages which are flakhed from Now York to London,
and from London to New York every day. Now, if Mr. and from London to New York evory day. Now, if Mr.
Birt's theory be correct, when it is 7 o'clock Birt' etheory be correct, when it is 7 o'clock a.m.
of Tuesday, May 7. at Nem York, it is $6 \mathrm{a} . \mathrm{m}$. of Wednesday, May 8, at New Orleans, which is a reductio ad absurdum. Further, if Mr. Birt's theory be correct,
then it would happen that the news from New Orleans, then it would happen that the news from New Orleans,
New York, and other oities of the United States which appears in the morning newspapers of 2 Wednesday would be, not the news of the previous Tuesday, bat of part of the thing Thursday, or, at all events, of the latter part of the same day. Every nowspaper reader knows in New York, one evening before the performance commenced, addressed his andience thas: "Ladies and gentlemen. I am sorry to inform you that the 12 ocheatre, Paris, was bornt down this evening, at in New York in speaking of Paris, bnt cannot he done in Paris or London in relating New York newn.-Krlby.
[11715.]-Temting Acetio Aold.-Corriction.I omitted when describing the mode of teating for free solpharic acid, at p. 234, to state that after decom-
posing the surfeited sulphate of barytos by heating it, posing the surfeited sulphate of barytor by heating it,
mixed with charcoal, by a blowpipe flame, that the malphide formed must be decomposed by hrdrochloric or other strong acid, when sulphoretted hydrogen will itself be quite free from salphate, of which common itsite lead often containa a little.-PHiLo.
[11731.]-Hair Wash.-It seems to me that a snperabundance of scurl in any hend-except in a diseased condition of the scalp-is simply, to nse plain English, a case of dirt. Scart is a natural bealthy concurf skin thead. It is the continnous monlting of the entangled in the hair in flakes. Now all washes and messes that have not as their base a liberal sapply of
soap and water, are but sids to its formation. Wond any bath-loving Englithman or woman consider such enncoction as any one of those recommended to "Exeelsior," a cleanly substitute for bis or her daily glycerine, honey, bornx, camphor, or quicklime, and Tith it anointing one's face, body, arms, and legs, aud then saying. " l'm clean!", The absardity is at once
apparent. Why, then, treat the head to soch disease-
prodacing agencies? Has it not the same number of pores per square inoh to be parifed as other members
of the body? In all these patent and home-manufe tured washes the modus operandi and mo-manaife follows: The wash is poured on flannel or sponge and briskly rabbed into the roots of the hair until the sear is dissolved and the shin looks white; thon the head is considered clean, whereas it merely melta the grease. acarf, and dirt into the hair, where it dries to form a trap for freyh scarf and dirt. As for the tooth-comb, it is a capital instrument of tortare for such undue irritation of the akin as will prodace a seriously disensed con-
dition. I know many ladies objeot to wshing their dition. I know many ladios objoct to washing their drying; but is that an exanise for such a state of unhoaltby hidden dirt as must exist after the use of these wasbes? No matter what length the hair may be, where it is regalarly cleansod, ive minntes for washing and aboat flteen for drying with warm towala in ample. The use of soap and water, with a little ammonia to aid in dissolving the grease, regalar brushing of the plin of the head with a moderately hard brash, and juast enough pomatum to sapply needed oil, will speedily remore nnsightly scarl, except in the case of genaine skin disorder, when a doctor should be consaltod.-M. Pope.
[11753.] - Meersch haum Pipe.-"F. G.C." cannot remove the black colour produced by a solution of burnt in by smoking Thprognolan is to wax, but bowl rewayed, at any pipe-makers in town, which will cost about 2 s . It is the thin coating of vax on all pipes that holds the colouring matter, and when warm from smoking is very susceptible of any liquid matter, and even the perapiration of the hand.-Zeta, Rending.
[11756.] - Power of Water Wheel.-Man thanks to Mr. Gillaird and "B. A." for taking notioe ol ny queries respecting the powor of water-wheel. Inow is at the bottom of the reservoir conical plag 8in. in diameter, tapering down to 7in., raised by a acrew to reregulate the iow of Water; the distance from this to the op of water- Wheel is 110 yarde, and diameter of the pipe
9in. inside ; the fall from bottom of reservoir to the top of the wheel 6 ft and from the motser the pipe the bottom ef wheel-pit 14ft. 9in. The wheol is an over shot, and 14tt. in diameter; the width of the iron rim is 10 in ., and tin. thick, made of six segmente on eneh side. The wheel has 48 backete, each will hold 5 makes 0 water, the circamiorence is 44t.. 2in., sn is of iron $54 t$, Bameter of the bearing 5in., and weight of shaft 10 cwt . Buckets and arms are made of wood.-WATBE. Wheri [11762.]-To take Honey from Bees by Using will give him an acconnt of an experiment I made with will give him ar accoant of an experiment I made with
clioroform in the antumn of 1869 . I selected threo strong stock, in common strav bires, weighing abont solb. cach. Before dusk I loosened the hires from the quickly. After they were quiet, mpisced a them of quickiy. After they were quiet, I placed a stool close
behind the hives, on which I atood a common earthen pandarge enough to admit the hive about two inches nd tapering to the bottom. In the bottom of this placed a small bodroom candlestick, with the candle third of an onnce phial of chloroform, placed the hive over, and threw a wet cloth over the whole. In Ave minates, after tapping the hives a fer times, moot of the comb out, emptied the bee 1 hen toor abjut hall placed it on the stool arein, nd into ho hire, and tion with the other two. In neither hive were the bees quite stapefied, but could only orawl. All the stocks lived through the winter, bat did not do very well the dext swarming season. The honey was a mach better colour and taste than sometimes it is When taken with effair, and Ithought it rather was 2 rather tronblesome of my recollection, they (the three stocks) did no arther good. I havo not tried the experim) did no In the summer of " 70 I wrote a few lettors to "oars"; on "Bee Management," and asked that some of my made a trial of chloroform, moth any of them hal - half-ridiculous half- sarcastic lottor from "Reco with and though a constant reader hoter from "Recneps" "ours" with any of my experience, dc.- Breks LATE Oxon Farmer.
[11762.]-To Take Honey from Bees by Using Chloroform.-The quantity of chluroform required for an ordinary sized hive is the sisth part of
an ounce; a very large hive may take nearly a paarter an ounce; a very large hive may take nearly a quarter
of an ounce. Set down a table opposito to, and about 4lt. distant from the hive; on the table sprend a thick linen cloth, in the centre of the table place a small shallow plate, which cover with a piece of wire gauze,
to prevent the bees coming in immediate contact with to prevent the bees coming in immediate contact with
the chloroform. Now, quickly and caationsly lift the hive from the floor-board on which it is standing, set it on the table, beeping the plate in the centre; covar the hive closely with cloths, and in twenty minates or
so the bees will be sound asleep. You can now remore so the bees will be sound asleep. You can now remove
the honey ycu require, replace the hive, and the bees, as they recover, will return home.-J. W. Rickrord.
[11789.]-Effect of Temperature on Ale.-I have noticed the same effect on ale brewed at home hard water has, probebly, little to pure, water, so that menon. Most likely, water at low temperatares has less capacity for holding extraneons matter in solation decoctions, us well may in arite in wine and regetablo
remedy but keeping the ale in a cellar of suitable temperature, and, indeed, if "W. A. N." conld discover a method of brewing ale which wonld keep its qualities and appearance under all temperature
speedily go out of fashion.-J. CoLby.
[11789.]-Fifeot of Temperature on Ale.I am obliged to Augustus Avame for his answer. Does he moan me to underatand that by the use of
Boane's patent material such a thing an my ale going clondy from cold will be entirely preventod? If the nature of the water is not the oanse, how is it that a
giass of bright ale drawn from a cask will, upon being exposed to cold, go aloudy and go bright again when brought into a warm atmorphere? and how does he account for the fact of the cold not having the sam efleot on other ales, mine being the ouly ale that I
know of that is aflected by cold in the manner mentioned? Of courne, there may be plenty of other brewers labouring onder this dificulty as woll so mysall, as in winter time is is a great drawback to my success in brewing. Will Angantus Avame suy
if ho knows an instance of this difficulty having been if ho knows an instance of this difficulty having been got orer, aither by the use of Beane's material, or any
other means? If I had to use this material would other means ? If I had to nse this matorial would there be no insoluble matter in the casky, as I
cearoely imagine that to be the case $7-W .4$. N.
[11799.]-Botany of Cornwall-Your corre spondent will find a catalogre of the mosses and lichens of Devon and Cornwall, by Messrs. E. M. Reporte of the Plymonth Institution and Devon and Cornwall Natural History Society (Plymonth: Keys and Bon). The beat book with plates for naming publishing in parts, but this is a very expensive work. pablishing in parts, but this is a very expenaive work lent book for naming flowering plants, but has no plater.-12. F. P.
[11800.]-Cool Air in Hot Climates.-The danger of breathing unwholeaome sir, from which Mr Bottone suffered by sleeping in a cellar when residing
in Italy (see p. 285), will not be incurred if the cooled in Italy (see p. 285), will not be incarred it the cooled
air be drawn from dry wells dug in the subsoil, below that which is charged with organic matter. There is a strong and very natnral dread in many places-eape-
cisily in those where the difference between day and cislly in those where the difference between day and
night temperature is great, and the formation of dew night temperature is great, and the formation of dew into dwellings, and it is very common to attribute the injory often sustained to the coldness of the air, Whioh is really caused by the mist, or rather by the organic matter, perhaps by the living organisms contained in those who sleep at a level above the mist suffer less than those who sloep near the ground level, and that oven such a slight obstacle to the ontrance of mist as a maslin blind is a ognsiderable though incomplete protection against the effects of night air, which, it is evident, can scarcely aflect aither its temperature or its whether solid or liquid. It is highly probsble, though not, I think, proved, that if malarions air were filtered through charcoal it might be breathed with impunity.
and it is certain that danger from it would be thuch and it is certain that
[11810.]-Colds in the Fead, Eo.-If " X. Y." will pay attention to the following I think he will find relief:-Procure a pair of rough bath-gloves and rab the skin all over the body every morning until a dry towel; if convenient, a cold sponge bath every morning with above wonld be better. Kiep the bowels anativg (with a attie oastor oil), if necessary, and tried, and now enjoy perfect relief from n me com. plaint, which was constantly annoying ine. As a rule, i found drags only gave mo temporary reliaf.\triangle SYMPATHEEER.
[11810.]-Colds in the Head, \&c.-"X. Y.," if not no w a daily bather, has a grand career and cure
before him !-viz., the simple adoption of means to before him !-viz., the simple adoption of means to only by a daily washing. In my younger years I was a victim to colds in the head ; eyes, ears, and throat
being continually affected, off and on, and worse in oeing continually affected, off and on, and worse in
enmmer than in winter. At length, when I was about enramer than in winter. kind doctor lent me Coombe's
twenty years of age, my
" Physiology." with the remark that it would not suit "Physiology," with the remark that it would not suit him to lend it to all his patients to read. By his advice I then began the " daily sponge, nsing a long and
rather coarse sheet as an onveloper from cold air, a small diaper towel to rab dry under said sheot; and now, after forty jeara' trial, I am more than everthank ful that I was so porsuaded; and attribute a large por
tion of prolonged life to this regular daily cleanaing of tion of prolonged life to this regular daily cleansing of
the skin, winter and summer alike, at home or abroad, the akin, winter and summer alike, at home or abroad,
from top to toe-not requiring to spend more than from top to toe-not requiring to spend more than
from five to seven minntes every morning at it ; but I should not know how to dress withont "sponging," snd often am surprised at the muddy state of the water
when the sponge has been well aqueezed in it to get out When the sponge has been well aqueer.ed in it to get out
the geales of "skin dirt." Already I have made the acales of "akin dirt." Already I have made many of "our" intelligent readern.-ONE Who
Preackes AND Praotisks.
[11814J-工athe Queries. -I have unfortunately mishaid my copy of the EKGLIBE MECRANIG of the
10th of May; but from what I recollect of the query 10th of May; but from what I recollect of the query tuder this namber (11814), "A., luverpoal," while What the question was. My imp eassion ia that another and, if possible, simpler way of flting a doable-bear-
pears to be was the thing askod for. "A., Liverpool, lathe, not intended to be fited ap for self-actin aliding at all. The cone of the rear end of the mandril is commonly reversed, and the steel fixed collar also reversed, the movable collar being then bored through and ground out truly cylindrical, and fitted on a plain part of the mendril with a this not fittod be hind it to adjust it for tightness and wesr. It is, perhaps, a little easier to make a mandril this way, as only one collar has to be velded on the mandril in adjustable cone, which must be made in the most eccurate manner to fit very tight on the mandril although, to be sure, I have seen ode on a new latio was held perpendicularly. I have a very good head on my lathe with a homogeneons iron (mild steel) mandril not hardened, ranning in Babbet's metal bearings which were cast on the mandril in paper monlds with wooden bottoms, and tarned on the mandril itself to ft the holes in the head-stock, into which they were afterwards forced by sorew pressure, assisted by a big mallet, by soraping with a ponknifo. It won't do to le these white metal bearings get dry. The mandril above-montioned is atted as desoribed with reversed coner.-J. K. P.
[11816.] -Fising Balance Wheel on Verge.In reply to " g . H. L., choose a verge the proper length, out the pallet-leaves the right width ; now nut on to the pallet next the collet a screw ferrule. Prepare a bow in the following manner:-Take a piece of whalebone eight or ten inches in length, scrape it with a sharp knife nntil, when holding by one end, jou can bend it by blowing atit. Now make a bow of it with a fine horsehair ; pat your verge into the trirns, and run it backwards and forwards with the bow; bring the tool up to the work only when drawing the bow towards yon. This requires a large amount of pracice (it is the skill to dorn down the collet till the hair-spring collet jnst fits tight on to it. Now turn down the seat for the bslance. tarn the bottom of seat fiat, not hollow, else, when riveting on, the edge gives way, and your balance will not be trae. Drive on the balance, and mark where it will want turning down; leavo just enough to rivet (yon can leave the top hollow, it is botter to rivet when lets so) verge rin dow pivot, right siz9, cut off prope length, ronnd np and polish. The same with the collet pirot, except that yon must turn up true before nsing pivot fle. Now rivet on balance and finish up topcollet on 'scape stafr. Take off ferrnle, pat it into the tarns, and see if the balanoe is really a balance if it is it mnat not be loft 80 (not in verge watches) When the balance is put in and in a state of rest, the point next the follower of crown wheel must be left a little the hesviest, as all verge watches lose a certain amonnt of the cross of the balance when the figure 12 is downerds, and therefore gain time. I have no faith in the isochronous properties of the hair-spring When applied to recoil eacapementseping, without exception of old varge watches I have so treated.-A Yoresimer Proot.
[11825.] - Testing Bleaching Powder.-I would have answered this query sooner, bat I have The method proposed by our mutaal friend, Mr. 8 Bottone, would, I fear, be found rather expensive for general use, not to speak of the length of time required or each estimation. The following (Gay Lussac's nethod will, I think, be found very satisfactory. It is rine with arsenions acid, in presence of water, gives rise to the formation of arsenic acid and $\mathrm{HCl}:-\mathrm{AsO}_{3}+$ $3 \mathrm{Cl}+2 \mathrm{HO}=\mathrm{AsO}_{5}+2 \mathrm{HCl} 1$ eq. of $\mathrm{AsO}_{3}=99$, ro. quires accordingly AsO_{5}. Consequently, the amount of a solation of ohlorine required to convert a definite quantity of AsO_{3} into AsO_{5}, indicates at once the amonnt of chlorine present in that solution. To prepare the AsO_{3} solnpresent dissolve 99 grs . arsenioas acid in $4,000 \mathrm{grs}$. msrs water. This strength will be found most suitable. Snppose you work apon 50 grs . of the powler, and convert 1000 grs . mers. of the $A 803$ solan powder. 17.75×2. 5 of chloride of hme. The powder must satitarsted in be known when the liquor ceases to give a purple colonr with starch paper. I will be happy to give furAug part.
AuGRIM.
[11825.]-Testing Bleaching Powder.-The plan of acting on the powder with dilnte sulpharic of silver nitrate, as recommended by Mr. Bottone, is open to several objections, and is more calcalated to mistead any Who may try it, than aid Bottone in his directions says, "the quantity of nitrate of silver must be eqnal to the emonnt of chloride of lime to be tested." Now, say we start with 100 graius of each; many samples of bloaching powder contain 35 per ceni of avalabe it would require nearly 108 grains of prre silver, or 172 craing of nitzate, even to fix the chlorine; suecondly. chlorine does not act upon silver nitrate we na to pro
produces silver hispochlorite (Balard), as solable, bat Very unstable, salt, which is soon resolved into 2 mixtare of chloride and ohlorato. The formation of silver hirall would canse a loss, it being a somble the lis, some of the chlorino woola rentin disaovedi holiquid in the reasel A, and there in no provision In lin the siotoc for its anal and total expuision known and thoronghly ralisble mothod introduood by Penot, which consists in adding to a deAnite quantity of a solation of the bleaching porder an alkaline sola tion of sodium arsenite till a point is roached when drop of the mixtare ceanees to form blue apota when placed on paper imbued with a mixture of potasoion iodide and atarch. The mode of operating is ai follown:-1. Disolve 99 grains of pure arienions acic vith 350 grains of pare crystallised rodium earbonate in 6,000 to 7,000 grains of water with the aid of hoent, allow to oool to the tomperatare of the air, and then make up the solation to ezactly 10,000 graine measara vith water; 1,000 grains measare of this solntion represent $7 \cdot 1$ grains of free ohlorine. 2. Take 50 graina bood staroh, and 4,000 grains Wator, raise slowly to orystallised sodinm cerbonste. Bosk etrips of goo alter-paper with this and dry them. Keep them wel secured from the air in a bottlo. 8. Take 100 grain of the bleaching powder and rub it up in a mortar to a perfectly smooth paste; with water pour the liquid into a 10,000 grain flask, rinse the mortar well on several times with fresh water, and make up the whole to 10,000 grains. Agitate the whole well, and remove 1,000 grains of the tarbid liqnor by means of a pipette
to a beaker. Arrange a number of spaall pieces of the to a beaker. Arrange a number of spaall pieces of the starch paper on a plate, and from a 1,000 grain
burette add carefully the arsenic liquor till a drop of the mixture just ceases to carse any coloured spot; the point can easily be hit to one drop. Sappose in an experiment 450 grains measare of the arsenic solution are consumed, then as 1,000 grains of the liquor are equal to 7.1 grains of chlorine, 450 graing are equal to 8.195 grains-that is, 10 grains of the bleaching powder contain $8 \cdot 195$ grains of available ohlorine, or
31.95 per cent. If the arsenious acid and sodiam car bonate are quite pure the standard solution will keep long time naltered. I believe this to be the only mode of proceeding which enables us to discriminate between the calciom hypochlorite and calcium chlorate; of thi last salt, bleaching powder often oontains several per cents., Which in the ordinary way of testing, would
indicate as chlorine, though really this salt is of no indicate as chlorine, though really
use practically in bleaching.-ETEYL.
[11826.]-Tinning and Soldering.-In my re marks on this subject, p. 261, "tin, dc."" has been substituted for the word " zino."-W. T. M. D.
[11840.]-Whooping Cough.-The remedy reoommended by "T. C. H." is also strongly recom meaded in Anstralia. - Manus.
[11840.]-Whooping Cough.-The remedy for ais complaint rery mach in use in Borkshire, and found effectual in many casos, is as follows: In all pint of bost vinegar pat a new-laid egg follewing day when best it op wall and strain. Dose, a teaspoonfa three times a day.-Zeta, Reading.
[11840.]-Whooping Cough. - Try Roche's enbrocation, to be nsed externally by rubbing in the ohest every evening at bedtime. It oan be bought of olive oil 2oz. oil of amber 10z., and oil of cloves drachm.-H. B. E.
[11841.]-Fiuman Belios.-Yes-it is too true In the Etruscan vase room of the British Mraseum, in the bottom compartment the relics from the old pots and pans surrounding them, lie the well-preserved mortal remaing of "Myke rinus the Holy," the pyramid builder, the cotemporary of Abraham. Even with the help of a catalogao you will not reany for the of yesterday are thought worthy of glont good enongh for the remains of a mighty monarch of the days whon or the remains young, who has left his stamp on its face in the shape of a monument of exquisite taste which Time seems powerless to destroy. His sarco phagns lies at tho bollom of the is the body ley ther would be bettor for our creantly buried within it. The object of the also, decently bnried witers to be to overcome the museam sathorities appestrs to dust. "Dust thoo monarch's arersion to ratarn to darn," shonld be placed is a motto orer the compartment. Ther seem to have abont as much respeot for the king as the historian of the kbaliphs had, who records aboat it opening of the sarcophagus, "that they for rotten carcase of an inflel," which, accoringly, the
turned ont on to the floor and left there. Would it b too much to expect that the remains should be at leas removed to the Egyptian room and placed in an air tight glass case, and that some pains should be taken to preserve them from the rapid destruction Which exposare to the air mustbe to expect that anything in I suppose, be too much to explings ehould be added thereto snch as onr neighbeurs wonld indalge in it they had it in the Lourre. The late Baron Bansen made some sharp semarks, in his "History of Egypt, aboat our trestment of thece remains, hioh shoald long since have shamed the authorities of the musenm into some action abont them; but kicking ta move gs Brisons. T. C. H.
[11841.]-The Oldest Euman Relics.- On what groand does Mr. Matthews (p. 286) regard the akeloton of Pbarosh My kerinus as the oldest Human relic? Has be never heard or reid of the Neanderthal and Engis skalls? If not, Sir John Lnbbock's admirable work, "Prehistoric Times," will enable him to correct his idess on this most important subject.a Fillow of tay Royal astronoxical socirty.
[11847.]-Curry.-The recipes for true Indian curry are nameroas, and vary much in proportion of ingredients. The total quantity of powder in each of the following recipes being nearly equal, the relative proportion of the different colouring, heating, and proportion of the difierent coloaring, heatiog, and fiavoring ingrediens, that the proportion of cayenne is generally so large that a proper quantity of the powder generally so large that a proper quantity of the powder ingredients ; and the late editor of the Pharmaceutical ingreaients; and une late editor of the Pharmaceutical Journal jostiy complains that many reaipes contain too large a proportion of tarmeric. And the ingredients
should be of fine quality, and rocantly ground. No. 1 , I think, will be found very nico.

	1		3		5	6	7	8	9	10		12	
Turmeric.......	9	6	6	8	9	9	9	4	6	6			
Cortand'r seed	9	16	12	22	10	9	16	12	11	16			
Musterd.....	3		-	-		3			-	-			
Cayenne	23	4	11	1	14	84	14	2	1	2		1	
Black pepper.	6	8	8	2	3	3	21	4	5	12		4	
Allspice........		-	-				-	-	2		-		
Oloves..........	1			-	$\frac{1}{1}$								
Clnnamon.....	2								8				
Ginger	1			-	3				2			4	
Mince............	1								-				
Fenugreek.....			8						2				
Camin		3	2			-		2			3	1	
Oardamoms ...	2		-			$1 \pm$				-	-	2.	

-Blabley.

[11857.]-Gelatine Moulds for Plaster Orna. menta. - A mixture of good glue, not too stiff, with fine brownsugar, will give flexible moalds.-S. Bottone.
[11861.]-Glove Oleaning. - Pat the hand in the glove, and while on the stretch, carefully rub with a fine ploce of old tannel dipped in benzole. One night's oxpoane to the at.
[11868.]-Charcoal.-The produce in charcoal is apparently at frat sight very variable. The experiments undertaken by Janker, at the instigation of Berthier, at the smelting works at Planen, are of all others the moat trustivorthy.
old. Dry oak, peeled 2 years, yielded 25.7 per cent. old. Dry oak, peeled 2 year, sielded $25 \cdot 7$ per cent.
charcooal, and -34 per cent. hall charred wood ; unpeeled, flelded 24 per cent. charcoal, 3 per cent. half charred wrod; green oak, 22 per cent. charconl, 3 per cent. half oharred wood ; green oak with lops, branches, \&c., yiolded $18 \cdot 5$ per cent, charcoal, 4 per cent. half charred wood. The wood was charred in hesps of 21 ft . diametor. The commercial products that can be obtained are tar and pyroligneuns acid. The sale of these is vary much dependent apon the natare of the country in which you are, and is oflon oxcoedingly smanl, and jet various methods have been tried, though not always with success, for collecting them. The retort furnace admits of all the produce being oompletely collected, an advantage which is only connterbalanced by the necessity of employing small quantities of wood at once; for it is clear that the bad conducting power of Wood and charooal must offer an insurmonntable obstacle to the penetration of heat from without, into the interior of a larger farnace, and that its fall action cannot there be exerted. This kind of furnace is excoedingly eppropriate for the production of tar, when charcoal is not the chiel product required, but when the ohief product required is tar. Accoraing to Stolze, the amoant of tar in oak is irom 10 to 20 per cent. When the retort begins to be at a red heat, the first gases Which appear are combastible. At some farnaces thero is at a red is at a red heat (th need not be upon a grate), and then the gases are will no ghted and tarned into the furnace, Which they will now entirely support without any stoking for about 16 hours. The geses are now to be tarned off, and ther of disposing of the combnatible gesenomical manner of disposing of the combustible gases. I don't think of the charcoal conld be profitably dieposed of.tion of the
[11882.]-Oherroal.-"Prentice " would get about 84 cWt . Of oharcoal from a ton of oat tops dried in the air by burning them in a retort ; and 5 cot . by the prodistillation in the retort are condenevolved during the and pyroligneous acid are produced, nsed by calicopeinters and others.-WOODmax.
[11864.]-Rabbit Disease.-I once had a rabbit aflected in the same way as that of James King'a, and I completely cured it by rabbing flowers of sulphar on ite skin every morning, avd it had no return of the
complaint again.-J. W. RICBYond.
[11864.]-Rabbit Disease.-Let your rabbits hare as much fresh air and as good food an possible. Rab into the bald patohes every day a little of the dilnted nitrate of mercury ointment ; if this fails try the tar ointment.-T. I. Perston.
[11867.]-Separating Tar from Wool.-Pare benzole will eanily remove tar or pitch from wool. It
will also remove paint, if it has not remained too long on wool.-F. T.
[11867.] - Scparating Tar from Wool. Washing with benzine, to
[11888.]-Ash Timber.-Ash timber felled in winter is beat when cat into planks for seasoning as soon as felled; but I wonld advise "Ash" to let his timber stay with the bark on until next antumn, and then cut it up, 28 if done now, and hot weather sets in, it would crack and warp. I should advise him to put his timber in a shed, as it Fould keep it a better colour. Good ash timber is worth about a shilling a foot oube when within ten miles of a manufacturing town. When sold by the inch it is quoted at, say, 2d. par in. for 8in. plank-that is, 6d. per superficial ft. It is sometimes sold by the lineal yerd of 9in. wide-thus, 9 superficial ft. equal 4 lineal yards.-Woodmas.
[11869.]-Zinc 7. Coal.-Coal can unite with a greater quantity of oxygen during the process of combustion than zinc does, and, therofore, gives ont more prop, the amount of heat given out being in the proporact the following from "Recent Improvements in the Steam Engine," by Boarne, p. 5 :-"In the animal economy a given quantity of carbon produces its equivalent of power with far less waste then in the best steam-engine, although the teraperature is not great; and the same result takea place in a voltaic great; and the same result takes place ha a rolaic made to work an engine with far less loss than its equivalent quantity of heat. It does not, however, appear to be in the least probable that electro-magnetic engines will be brought into ase to supersede steam-engines, will be broughrens thonld be discorered of obtainin the electricity from coal instead of zinc . . . A pound of coal consumed in an engine will produce more than twice the power produced in a galvanic battery by a pound of zinc, and the cost of the coal will also be very much less." In the best steam-engines only very mach less. In the best steam-engines only
about one-tenth of the value of heat is obtained an about one-tenth of therist.
[11872.] Carbonio Acid Gas and the Atmo-sphere.-The pressare of the sir is 14.75 (say 151 b on the inch. It varies at different places at different times, as we see from the fluotaations of the barometer. Calculate the weight of the atmosphere by finding the number of square inches on the earth's surface, and maltiplying this by $15,8,000$ miles is the diameter of the earth approximately. $(8,000)^{3} \times 8 \cdot 1416=$ area of earth in square milos (sar) 200,000,000. There are 63,860 inches in a mile, or $(68,360)^{2}$ inches in a square mile. In round numbers $4,900,000,000$ square inohes. 200,000,000

400,000,000

$80,000,000,000,000,000$ pounds is the weight' of the atmosphere, or apout $85,600,000,000,000$ tons. I am not sure of the proportion of carbonic acid in the ai in its normal state-perheps, one part in 10,000; if 80 divide by 10,000 . If the carbonic acid ware increased tenfold or less, animal life would suffer serioasly. Philanthropist.
[11875.]-Spectrum Colours.-It is almost im. possible to get a pare white with our known pigments, the nearest approach being a light gray. Divide your disc into 4 equal parts, colour two divisions with the best Prosaian blae one with carmine and one gamboge yellow.-S. Bottone.
[11876.]-Hydraulic Press.-I could send you 8 drawing, or a calcalation ; I cannot go much into the workmanship. The great difficulty, which was to
 prevent the water escaping past the piston, wes obviated by Mandsley, who used a leather collar secured round the upper part of the piston, so that the greater the prossure of the water the more
closely the leather collar or flap was pressed againat the inside of the cylinder. Of course, the piston is made to fit very small to indicate the action of the collar. - PHiruan TBPOPIBT.
[11876.]-Hydraulic Press.-I inclose seotional drawings of the press. The aize that I have calculated for is, I think, about the gmallest size that can press can be used for experimenting apon the crushing press can be used for experimenting upon the crasin of wood and metal, and if well got up, will form an appropriate and ornamental machine to receive prizes at the local industrial exhibitions. The berrel of tare inch, and the pillars will bear aboe tons per aquare same amount i here introdiced or the dimenaions specinedi 1 have hiroduced a novel of action to e hrly be. This is more importent in amall mechines in large in large ones, ab la relative size for large ones, and easy for amall ones If " Modincation coasists in the screw B, F cgs. 1 and If "Ricardo "prefers otherwise, he can dispense with

 long, it most be torned . din perallel, and polished long; it mast be turned truly parallel, and polished as friction. Thicknees of barral to be fin., no lems, and
if possible, thicker; it is to be made of gan metal, or very fine brass. It would be best to mate a complote casting of the bottom of the ram with the top and body with a wide ledge or flange at the bottom, as shown in drawing ; this flange to be tin. thick, and 8yin. diameter. This mast then be turned on the exterior, and borad just where the etuffing-box gland has to ge in. The stan...g box gland had best be a oanting 8 fin. diameter 3 the top, or greatent diameter, asd larned to 1\$̣in. in th other exterior diameter, and sin. deep, as at J, in the drawings. It must now be put into its place and drilled with the five holos for bolto. The bolts are to be made of 0ne-eighth or threo-sixteonths irom Nire, at leart 1 tiu. long. The bolts haring bean pat into their places, the gland and the ram barrel are to be bored together; this wilk be tant done oy inormand The orosa plates 8 and N are to be gin. or sim, wroegh or drilled in them so as to be able to atide ameothly.

The plate at the top to be of cast or wrought irom, preferably the former, to be five-oighths or eleven-ixIt is to be an inch thick, tapering to tin. at the edzees. It is to be 4 in. square. The columns are to be ecm. posed of rod iron, enciraled by brass pipe, sas shown at C and D, where 1 is the pipo, and D the rod. The rods are tor geth ronnd heads of iney are to be ghin. in meler, wh rond hoads of meler; thay are wher end, to be very careinlly made, as the whole atromgth with bed with bad scrows should be rejectod; the nute to be olumns to be carefally tarned to fit the brass pipes. They are to be placed 8tin. diatance from each ofber. The screw \mathbf{B} would be best chased with s oosrse chasThe screw B would be best chased with soarse ohse
ing tool with a square thread, and, if posiblo it ing tool with s square thread, and, if posibleg it orev ghould be itin. diameter, if of wrought inan, and
about gin. diameter if of steel (not hardened, as it diminishes its tensile strength, and it will last long enough without). The small wheel at the top is to be cast of brass, without arms, but one solid piece, $1 \frac{1}{i} \mathrm{in}$. diameter. It might be milled at the edge, and if so, copper, fin. thick, and sin. high, turned to some orna mental pattern. The foundation plate to be gin. thick, and 5in. diameter, to be tarned out of a piece of boiler plate, and polished; this is to be let into a square mahogany plinth, $6 \frac{1}{2} \mathrm{in}$. or 7 in . sqnare, and lin.
thick. The cross plate N can be soldered to the top thick. The cross plate \mathbf{N} can be soldered to the top of the ram R, as there will be no strain tending to separate them. The directions for making a forcepump were given some weeks back, and by altering the dimensions, the same plan of constraction could be used in this case. The planger can be made ont of a piece of brass wire, screwed into a little brass block for the pump lever to work in. The pump plate is to be made of a piece of plate brass, $\frac{1}{3}$ in. thick, 3 in . high, and tin. wide, sawn out to shape, shown as Y in the drawings. The pamp can be screwed, or if screws are pump laver is, to be madered to pamp plate. The iron wire, \ddagger in. thick, and $2 \neq \mathrm{in}$. long, having three holes, ge $\ddagger \mathrm{in}$. from one end, and the others at $\frac{1}{2} \mathrm{in}$., lin., respectively distant from it. There is also a short connecting rod between plunger and lever; this is to be made of two sides of brass plate, soldered together in the middle, the holes drilled at the ends, and the ends bent apart, so as to allow the top of planger and the lever to slip between and be pinned on; it is then to be finished off bright. For the stuffing boxes, I wonld not advise "Ricardo" to nse
leather, but well-greased hemp strands.-P. W. H. J.
[11876.]-Hydraulic Press.-It is almost impossible to give "Ricardo" any information, as his question is in such general terms. If he will give press, and what amonnt of actanal work he wishes it to press, and what amonnt of actual
[11877.]-Slide Valve Question.-The slide qalve is moved by a small piston, the steam for actuat-

means of spindle valves in the covers of the main cylinder, and which are opened by the piston jnst be-
fore it reaches the end of each stroke. I send a fore it reaches the end of each etroke. I send a
longitudinal section showing internal passages.-Roor.
[11878.] - Photography.-"Camera" will find a soft lead pencil applied to the varnished surface of the negative as convenient as anything for retouching, The parts so treated will not require varnishing again; but my advice is that he should try and get his pictures as perfect as possible by photography alone, pictures as perfect as possible trust to retonching. as only bad negatives are at all improved by it. The canse of the difficulty at all improved by it. m mentioned in the second query is over-exposure, the light being so much more intense ont of doors than in. light being so
[11878.]-Photography.-Itisa sign of bad management if a negative requires "touching." Try to make perfect negatives; withont this you will never be a snceessful photographer. The reason why jour outdoor snitures " "fash out" is becanse they are "over
piot
exposed." In the open air expose only one-tenth of what you do under glass.-S. Bottoxe.
[11878.]-Photography.-Your landscapes flash into view the moment the developer is applied because you have probably not taken into due consideration that landscape negatives require considerably less expoarure than pictures taken indoors. Indeed, under porure than picturess taken indoors. Indeed, under
favourable circumstances, landscapes
require little more (if any) than instantaneous exposure.-Quercus.
[11878.]-Photography.-I presnme "Camera" means spots and pin-holes in his negatives : if so, they should be stopped with Indian ink, applied with a small brash. The negative will not require varnishing again. For outdoor work he shonld use a wealk develop. ing solution, and be sure not to over-develop or he will fog his picture. As soon as he can see the detail in the
shadows when looking throngh the negative he should shadows when looking through the negative he should Wash off the developer and clear (fix) the picture.c. S. W.
[11883.] - Sustaining Power of Cast Iron Column.-The column may be, practically considered, as one of 7 i ib . diameter. At all events our error will
be on the safe side, and I don't see that such a small difference in the top and bottom diameters conld table much difference in the result. Harst gives in his gives, the safe load $=$ one-tenth breaking weight. He 1648 tons, but there is a column, the safe load when the length of the column is less than 30 diameters. Let S be the strength for lopg columns given in the table; and $\mathrm{C}=49$ times the sectional area of the metal in inches. Then strength for long columns $10 \mathrm{~S}+\mathrm{C}$. Then substituting $\mathrm{S}=164.8$ and $\mathbf{C}=$ $49 \times\left(7 \frac{1}{2}\right)^{2} \times 7854=2164 \cdot 76 . \therefore \frac{164.8 \times 2164 \cdot 76}{164}$
$=273$ tons abont. - P. W. H. J.
[11884.]-Power of Water Wheel.-As "R. S. has not told me the number of bnckets, I shall nse Fair baira's rale for finding them. Let D be the diameter The wheel in feet, and N the number of backets. $\mathrm{D} \times 2 \cdot 3=25 \mathrm{~s} \times 2.3=$ aboat 56 , and the circumfer ence of the wheel $=80 \cdot 1 \mathrm{ft}$., therefore the backets are nt a distance of $\frac{80 \cdot 1}{56} \mathrm{ft} .=\frac{801}{560} \times 12=17 \mathrm{fin}$. nearly.
Then suppose that each bucket contains upon an average 8 cabic feet, then the number of cubic feet consumed by the wheel $=56 \times 8=448$ per revolution, Then the proper velocity of periphery I find by tables 60ft. per minnte $=360 \mathrm{ft}$., and the circomference the wheel $=80 \cdot 1 \mathrm{ft}$. \therefore the number of revolutions per minute $=\frac{360}{80 \cdot 1}$, or nearly $4 \frac{1}{2}$ revolations. \therefore quantity of water consumed per minute $=448 \times 4 \frac{1}{2}$ cubic feet Then let $\mathrm{P}=$ effective horse-power, $Q=$ quantity o water in cabic feet per min., and $h=$ head of water
feet. Then $P={ }^{0} 00113 Q^{2} h$ in high breast wheels. Then substitating $Q=(448 \times 5)$, and $h=19 \mathrm{tt}$. H. \cdot P. $=\cdot 00113 \times 448 \times 4 \frac{1}{2} \times 19=43.28352$, so that the wheel would work about 40 horse-power economi cally.-P. W. H. J.
[11884.] - Power of Water Wheel.-Had "R.S.', given the depth of shrouds to the water-wheel name
visible for days, though it was always on right duty, as it entirely freed the honse from beetles. I see
"G. W. O. H." and "Emily" recommend cucumber rind and phosphoras "Enate recommend cacumber enough where beetles can be connted by the dozen; but, from experience, I can say it is useless against such brigades of the "varments" as sometimes swarm into our kitchens. As for the latter, sarely no one with children or live pets would ventare to use it.M. Pope.
[11889.]-Hedgehog.-I hope Mr. Pope will not think it presumptaons of me in answering "F. S.," but Thave had a hedgehog for the same parpose, and I he conld get. He will find it a most amnsing pet and it will get very tame in a ferdays. They are very fond of wermth; mine need to get pnder the kitecry in the cold, winter evenings and occasionally aleep with $\mathrm{my} \mathrm{dog} \mathrm{(who} \mathrm{is} \mathrm{a} \mathrm{cnrly} \mathrm{one)} \mathrm{to} \mathrm{the} \mathrm{no} \mathrm{smali} \mathrm{annopance}$ of Tiny. They will eat meat raw or coaked (which most be cot small), as they like change of diet, and must be cat small), as they like a change of diet, and require a bed of hay to sleep in during the day I wid to keep mine in age till ioht and then let it out to orop those London pests, and they will not rofase few crickets.-J. W. Ricripord.
[11891.]-Contents of Cistern.-We can regard the cistern as half a cylinder. The first step will be to nind the namber of cabic feet in the cistera. Let D be If the found, then one-half of that will be the contents of cistern. The contents of cylinder are $\mathrm{D}^{2} \times 7854 \times \mathrm{L}$ cabic feet, and then $\frac{D 3 \times 7854 \times L}{2}$ number of cabic
feet in cistern, and as there are $\mathbf{6 . 2 3 5 5}$ gallons in one cubic foot, \because the number of gallons in the cistern is $\xrightarrow{\mathrm{D}^{2} \times 7854 \times \mathrm{L} \times 6.2355 \text {. }}-\mathrm{P}$. W. H. J.
[11891.]-Contents of Cistern.-Maltiply the area of the base in square feet by the depth of water in area of the base in square $6 \cdot 23$ for the contents of the cistern in gallons.-S. J.
[11898.]-Tempering Cast Steel Chisels.-The easipst way to harden and temper steel chisels is to heat the chisel to a bright red about half-way up, and then cool it abont an inch up, which will harden it ; now you want to let it down to the required temper ; you mast now rab the cooled part with a piece of briok or rongh stone till bright. The brightened part will now change onlorr, beginning at a light straw tillit gets to a parple. The best colour for "Inquirer" is between the two ; cool it when the required colour comes.-R. Wribank.
[11899.]-Etching on Glass.-"Un Irlandais , can buy the hydroflooric acid much cheaper and stronger than he can make it, but if he would like to try, here is the process :- -Heat some calcio flaoride
$\left(\mathrm{C}_{2} \mathrm{Fg}\right)$ with twice its weight of sulphnric acid ($\left.\mathrm{SO}_{2} \mathrm{Ho}\right)$ (CaFg) with twice its weight of sulphuric acid $\left(\mathrm{SO}_{2} \mathrm{HO} 2\right.$)
in leaden retort, and pass tise gas evolved throagh a in a leaden retort, and pass tie gas evolved throngh a
U -shaped lead tabe, surrounded by a freezing mixtare, U -shaped lead tabe, surrounded by a freezing mixtare,
a volatile and colonrless liquid is obtained. To etch on glass, heat some white wax or beeswax in a beaker, glass, heat some white wax or beeswax in a beaker,
and apply it to glass, to be etched with a feather or and apply it to glass, to be etched with a feather or
small brush; now, very gently warm the glass over a small brush; now, very gently warm the glass over a
Bunsen or a gas jet, and well float the wax until it lays Bunsen or a gas jet, and well float the wax until it lays
even, pouring off any excess; after cooling, take an even, pouring off any excess; after cooling, hake a
needle and write on any design, and flow on the acid; neede result will be that the glass is etched where not the result will be that the glas.
protected by the wax.-Lictor.
[11900.] - Electro-Plating.-With "Sigma's" permission, I beg to inform "Un Irlandais" that he will get all the information he requires from a cheap manual, published by Virtue and Co. I believe it is called "Electro-Metallurgy Practically Treated," by
Alex. Watt. It is one of the well-known Weale's series.-Quercus.
[11901.]-Grip Chuck-To "P. G. T."-You only want one tap to make your left-handed jaw with; dies are of little or no use for such a job, as the acrews ought to matoh perfectly, and you cannot make sure of getting them to do so when marked out with dies; they should be done in a screwing lathe. From the way in which you speak of Whitworth's "set of four right-handed "taps, I guess you are rather a young hand. I don't approve of the right and lert-hand screw grip chacks for general purposes. They are usefal in things from the same patters to do, bat for jobbing things from the same pattern to do
give me a four jaw chnck.-J. K. P.
[11902.]-Chlorine.-The gas evolved from hypochlorite of lime is undonbtedly very injurious, and if long continued would produce serious consequences to the macons lining of the throat, month, and lungs. action.-T. I. Preston.
[11902.]-Chlorine.-The gas evolved from the substance eommonly called chloride of lime, or bleachsubstance commonly called chloride of lime, or bleach-
ing powder, is not chlorine, bat hypochlorous anhying powder, is not chlorine, bat hypochlorous anhy-
dride, which is removed from the above compound by dride, which is removed from the above compound oy
the carbonic anhydride present in the air of the room. That gas, as well as chlorine, becomes injurious when That gas, as well as chlorine, becomes injurious when
it is in a moderato quantity. The quantity of bleachit is in a.moderate quantity.
ing-powder put in a room onght never to exceed two or ing-powder put in a roum oughighe ounces, especially at night, as there is not suffithree ounces, especially at night, as there is notson
cient ventilation. Great preanations mast be taken as cient ventilation. Great preanations must be thay ar-
to chlorine, or hypochlorous anhydride, as they exerto chlorine, or hypochlorous anhydride, as they exer-
cise a most suffocating and offensive action on the cise a most
lungs.-T. T.
[11902.] -Chlorine.-I speak from five years' daily or rather peatarnal, experience. Chlorine, in molera
tion, is not injarions in a sleeping-rocm ; on the contrary, I have found very great benefit from it.-S. BOTTONE.
[11908.]-Quinine.-Sometimes andalterated with the salicine, and phloridzine group of alkaloids; some-
timen with the less active cinchons alkaloids.-S. Bottone.
[11903.] - Quinine. - When the adalteration is white sngar, it is detected by the solntion of the saspected salt in as much potassic carbonate as will satnrate the salphuric acid. If sugar be present it will
then be detected by the taste. If the anialteration be then be detected by the taste. If the arialteration be starch, a portion of the suspected salt will remsin
insolnhle in cold water; and if the mi mure be hested insolnhie in cold water; and if the mitare be heated
to 170° Falir., then cooled, and tincture of iodine to 170° Falir., then cooled, and the atarch will be made evident hy the blne added, the atarch win be made evict Boracic acid is detected by dissolving the salt colonr. Boracic acid is detected by dissolving the salt acid be present, the flame will be green. It is more
difficult to detect the snlphate of lime, which is manadifficult to detect the snlphate of lime, which is manafactured in acicalar crystala, exprossly for the purpose
of adulterating the sulphate of quinine. It may, of adalterating the sulphate of quinine. It may, however, be detected by exposing the snspected salt to 2 red hert; the sulphate of quinine is
decomposed, bat the sulphate of lime merely loses decomposed, but the sulphate of lime merely loses
its weter of crystallisation, and when mixed with Fater, it repidly absorbs the finid, and will water, it rapidly absorbs the finid, and will
solidify in a few reconds. If the adulteration be an anhydrous sulphate of lime, it will remain insoluble in water while the solphate, of qninine dissolver. 10 grains of sulphate of quinine, with 10 drops of dilnted aulpharic acid, and $\frac{1}{1} \mathrm{oz}$. of water, form a perfect solution, from which amona precipitate. This redissolves on agitating the whole with foz. of pure ether, without the production of any crystalline matter floating on the lower of the two strata, into which the agitated flaid separates on rest; It is donbten the if absence of quinidine and cinchonine. It is doubtfal if quinine can of itself canse salivawith, the chief symptoms of which are intense headacho, scoompanied by ranning at the eyes and nose. As it is not an uncommon procedore to commences a course of quinine by taking pargatives, the salivation might have been produced by calomel. Amorphons quinis may be prodnced by dissolving the disulphate of quinine in dilute sulpharic acid, and evaporating to dryness.-T. I. Preston.
[11911.]-Lathe Head Mandril.-In answer to "Anglo-America," I don't see how such bearings as he aketches would be applicable to an eccentric chnck, and I think they wonld be much more tronhlesome to fit than the ordinary ones to a lathe mandril, and, there-
fore, less likely to be well done-J. K. P. fore, less likely to be well done.-J. K. P.
[11912.]-Chemical.-For the purpose of initiating the stadent into the ohanges brought about by modern to Modern Chemistry." 1851; and Odling's "Mannal of Chemistry."-S. Botrone.
[11912.]-Ohemical.-Fowno's "Chemistry," pablished by Charchill.-T. I. Preston.
[11929.]-Chemical-Nothing.-S. Botrone.
[11951.]-Photography.-Procnre a small keg or cask, stand it on end, insert a amall tap at lower oxtremity. Place your cask in some convenient mode,
gn that the waite water may ran down some sink. sn that the waste water may ran down some sink.
Fill your cask with water, place jonr prints in a diak Fill your cask with water, place your prints in a diak
jnst below the tap. Now turn on the water in a fine stream, not exceeding the thickness of a straw. The superfaous water will flow over the sides of the dish, while the prints will remain in it. From six to ten hours will be required to remove ontirely the hypo-salphite.-S. Bottone.
[11961.]-The Leclanche Cell.-I believe that zinc are donble orm on the porous cell and on the They are easily removed by soaking in warm water, and their production may be prevented by using only a half saturated solation instead of a saturated one, as usually directed. For such purposes as bell-ringing I do not think there is any cell to compare with the mancaness, of which the Leclanche is the most readily obtained form. The zinc need not be amalga. mated, but the force is somewhat higher with amulgamated zinc.-Sigma.
[11903.]-Brass Springe.-Brass can be tempered by hammering. Take a stout brask wire, place
it on a smooth steel asvil, beat it to the reqnired thinness with a ronnd-faced hammer, and yon will get it neas with a round-faced hammer, and yon
as "springy" as you please.-S. Bottone.
[11965.]-To Blacken Brass.-Pass over the snrface to be blackoned with a sponge dipped in a
dilate solation of bichloride of platinum.-S. Botrone.
[11066.]-Dandelion Roots.-Is in perfection now. Cannot recommend the wine for medicinal parposes. The extract, or even the simple decoction, is
prefersble. Flowers much used by drnegists to make oxtract. Capital tonic, bitter and aperient, especially oxtract. Capital tonic, bitter and aperiont, especially S. Bottone.

Carbonic Acid in Charcoal.-Dr. H. Vohl, of Cologne, enpposes he has proved that the carbonic noid ohtained by heating charcoal is not derived frnm
\mathbf{t} :e charcoal itself, but is carbonic acid occluded hy $\$$ ie charcoal itself, but is carbonic acid occladed hy
t iat sabstance, being derived from the atmosphere. He ofates that charcoal freed from carbonio acid, aud former gas, even when heated to 880° Fuhr.

UNANSWERED QUERIES.

The numbers and titles of queries which remain un-
ansoered for tive weeks ars inserted in this lint. We trust answeered for flve weeks are inserted in this list. We trust
our reaiders will look over the list, and send what inforour reariers will look over the list, and aend what infor-
mation they ean for the boweft of their fellow contributore.

Rince our last "F. J. G." has answered 11275;
H. B. E.," 11458.
11596 Photographing Engravings, p. 131

11605 The Organ Built.
11611 Opaline Photographs, 138
11613 Stuffing and Preserving Animals, 182
11825 Deaf Dog. 138
Deal Dog. 139
Compendious Perpetual Calondar, 182
Tudibi Gam, 132
Tadibi Gum, 132
Davis's Refrigerator Car, 188
Cormona Wood, 132
Romsey Observatory,
Romsey Observator
Estate Agency, 192
Annealing Steel, 132
Aanealing
Tasmania, 182
Black Varrish for Microscopio Objects, p. 183
Colouring Walls, 183
11662 Colouring Walls, 183

QUERIES.

[11984.]-Tea Testing.-Being anxious to test my
anily mannfacture of tea-in cup or infasion, for daily manufacture of tea-in cup or infusion, for
strength, flavour, pungency, and briskness; as to quality; fisd sourness, mustiness, and fiattishness, when of bad quallty, throaghoat the season-but not knowing in the wry of doing so, as to requisite chemiorls (if min) and instrumente for the teste, tngether with detailed information as to operations for the different qualities ? Is there do instrument, or cannot one be introdnced for
testing tes in sfrength, in the same manaer an they tell testing tes in strength, in the same manaer an they tell
spirits? If so. where is it to be had, at what price, and is spirits 9 If so. Where is it to be had, at what price, and is
it efficient? if not, conld any one sugatat a snitsble instrument? We generally test by tanting as the brokers stomach may not at all times satisfactory; for one's stomach many be out of order, or may be, sioksess may
prevent one, or one's month may be out by baving
attended a dinner party, te., the previons night H1985.]-Machine to Out Leàves.-I wish to cut 240lb. of green leaves daily (from 2in. to 8in. in length) as chaff is cnt. Can any one suggest a aimple and suitable machine, to be worked by a couple of boys (one
feeding the machine, and the other working it)? A detalled illustrated explenation will oblige-ANox.
[l1986.]-Chemical Properties of Tea Leaves. - What properties are there in tea leaves, to give the manufactured tea therefrom strength, briakness, punpency. and fievorr 9 How do the chemical actions
take place to secure the above qualities? [119871-Draft Foles in Tirelace
[11987.1-Draft Eioles in Fireplaces.-Of what
use are draft holes in fireplaces, and why? Previons to my arrival here some fifty fireplaces were erected for drying the green ten leaves, but withoat draft holes. I wish to knnw whether this bas any effect on the fires, remedy them in any way? I forgot to bay over each of these fireplaces there are five trays for drying the leaf
in, and a sixth for catching the tes dust, to prevent it in, and a sixth for catching the tos
from falling futo the fire.-Amon.
[11088, 1 -Dyeing and Fizing.-Wishing to dve with Jidson's dyes, can any ono infnrm me what are the
severnl mordants for fixing the different colon's sold, several mordants for fixing the different colon's sold,
and how the operation for the different colours is to be and how the operation
carried on ?-ANow.
[11889.]-Extract of Tea,-How can I make the extract of tes, so as to be nsed in the same manner and proportion as the essence of coffee Fention Explatory
illustration of instruments and operation will obligeAsor.
[11990.]-Ice Making.- It is 97° thermometer in the pact, portable, and cheap machine, for making from one to two pounds of transparent or other fice at a time? The materials to make it with I shoald like to be procurable in India, and of that description as to be used over and over agnin without much loss of them. The
machine to be capable of cooling a conple of bottles of machine to be capable of cooling a conple of bottles of
liquor when ice is not being made; and the machine to be as amall as posaible. An invention of a machine was for a few shillines, by which tranaparent ice could be made, and supnlied by Brown Bros., of 43, Cranbourn-
street. ${ }^{*}$ W.C., London. An ex Blanatory and detailed illustration of this maohine will greatly oblige-Anon. [11991.]-Focal Length of Lenses.- What is
meant by the focal length (as 4itn. or 3in.) or focas of a lens in camera or teloscone? How is it ascertained, and why is it necessary to know it ?-Anox.
[1199.]-Edwards' Graphogenic Apparatus. - An illastrater explanation nf this appara
[11998.] - Photographic Process.- Is any noe agquainted witha process of a dry nature (as dry plates)
which is as good or at nll approvimate to the wet collodion procerses, in certainty, perfection of detail, and of any number of plates being preparod at one time. keep for weoks and months (the longer the better), not oneding to be developed for days after exposure. The
plates must bear carriage for the nae of a tourist, and, if practicable, prepared on mica instend of class, so as to involve as littlo wright as possible. Information on the
preparation of plates, exposare, development, with chemicals. \&c., necessary, and operations of workinc, will miniature photographic apparatuses for moviug objects.

[1199

[1GM4.]-Instrument for Measuring and Ro-Purposes.-Is there any portable and cheap ingtric.
ment invented for the parpose of recording the differences of lipht (sun) on different oconsions or days off and on in s moment, so as to aid photarapher (amatemrs) for a certainty, as to the time requisite for exposaro of the plates! Of course it must be procurable,
with information ns to the diferences of light, when using lenses of diffrrent gizos and quallities, and gise of
opening used.-Anos
[11995.]-Patent Rights,-Somewhere about ten
(twelve yers since, I made a machine (which is still or twelre years since, I made a machine (which is atill
in nge), and I have noticed that recently a patent has in nse), and I have noticed that recently a patent has
been granted for one similar to another firm. Can you been granted for one similar to another firm. Can you
or nny of your correspondents kindly inform me Whether
Covinis.
[11996.]-Deafness Arising from Cold.-WH any of "our" readers kindly inform me of some effectan
[11997.]- Warming Greenhouses with Gas,
" Houblon " will greatly oblige by giving a drawing asd Houblon " will greatly oblige by giving a drawing as faller dercriptinn of his apparently excellent plan for
the abovo. mentinned in reply 8735, p. 44. 8ant. 29,1871 , the abovo. mentinued in reply 8735, p. 44. 8adt.
and say if it stood the test of winter.- B. B.
[11898.] - Dry Solder. - What is meant by dry
solder ?-W. T. M. D.
[11909]-Chut
the interior of the American onnokive a description of advertised in the interior of the American ohngk
the Enoliby Meceanic ?-W. A. M.
[12000.]-Insects in Tables and Chairs.-How can stop these ? about as large ss pinholes. I should he glad of a recipe for arresting further depredations.-Fox.
[12001.]- Hair'Turning White-To "AczD Resprs" to put the cantharides to the glycerine and lemon ss well as oil and lime-water or not $\%$ Also I ghould like "Aald Reekie's" ndvice or opinion upon the following: Mr hair turned white, also one eyebrow, at the age of
gixteen. present age twenty, is there any cure? If not, gixteen, present are twenty, is there any cure?
is the above recipe the best I can une to preven
tending or turning all my hair white?
[12002.]-Zinc for Aquariom.-Will any of yoo correspondents kindly inform mo if an aquariam partiy or the hest means of constracting an aquariom ?-A Threz Years' Subscribrz.
[12003.1-Keeping Dust from Turret Clockswhere there will always be a good deal of dust: a glant csse has, therefore, been ordered for it, which is to be made as duat-tight as possible. There seems to be same
danger (when a case is nearly air.tight) of moisture condanger (when a case is nearly air.tight) of moistare condeusing on tive works of the olock in damp Weather.
(Seo "Clock and Watchmaking." Weale's series, p. 21 , 5th edition.) Of course this mast be provented from put a j ing in some wey or otber ic noid into the case? Orta jar half fall of strong sulpharic aold better? Conid not the jar full of the same pieces be used for ninng time if it is heated in sn oven occasion-
ally, to Arive off the moisture whlch the chloride has collected? Sulphuric acid gives ofi no corrosive fumes at ordinary temperatures, is calcinm ohloride equally
harmless?-E. G. Lodsr, Trinity College, Cambridge.
[12004.]-Nitrate of Eoda.-Can any conrespondent inform me concerning nitrate of soda, whence deas is come, and is the supply likely to be permament ? When ordinary effocts on the wheat plant ?-A Farker
[12005.]-Fleming's Tocking Corks.-What is the princi
THROPIET.
[12096.] - Liquor Oils. - Wonld some of your numerous readers who understand chemistry well (and throogh your valuable journal. the process of mana-
facture of the different liquor oils, or essences, that are facture of the different liquor oils, or essences, that are
nsed br bravds, gin, rum, cider, and wine makers with the different articies nsed ? also, the whole process of mannfactire? If some one would confor this favour.
and the pfitnr not consider too much space occapied. end the phithr not consider too mu
they would very mach oblige-R. R .
[1:007.] - Purification of Iron.-Can anr of your readers inform me whether s stream of superbeated sterin with atmospheric air has ever been used in the
pudding of iron, with a view to separating the sulphat nud phosplirne-as sulphuretted and phosphoretted hydrogen-and woald aome of your readers practically
and chemically acqusinted with the subject, give me and chemically acquainted with the subject, give me their opinious on the matter ? -Wa. U. BuEL.
[12008.]-Cork Cutting.-I shoold feel obliged if
anme kind reader would furnish information throngh the Mrchanic regarding the best cork-cutting machise and price of same. Also whether it can be worked br person unnequainted with cork-catting, apd if the corks
so cut are quite as good as those cut by hand.-Contex. [12009.]-P12otographic Lens.--Will some photio graphic friend kindly inform me whether it is possible to take n pirture by the calotype process, with a siug!
donbleconvex lens? If so, what would be the right size and focus for pictures 4fin. $\times 8$ 8in.?-A Begrinse.
[13010.]-Bee Management.-I am sure wa ali
pprecinte Mr. Abbott's letters on bee management apprecinte Mr. Abbott's letters on bee management.
I have, like him, heen obliged to have recourse to feedioz. having noticed neveral dead larve at the mouths of the hives, which were strong and would have swarmed ert this, but fir the wet and cold wenther. But I Wonld
ask Mr. Ahbott to explain what be means by "Sorw fitful honrs of ganshine made them believe in the almanack." Er theru he menns the bees, I suppose. and Again, "ther have exhansted their store of hnaey
through taith in the infernal almanack." Now, I hare
kept becs several vears, snd have never heard that bees keple becthing to do wr, and have never heard that bees by searehing in the hive. The Rev. J. G. Wood, in his
excellent work on bees, sars: "Would one conld look ai a few of the beo blue-books." Now, by this lettor. it wonld geem that there are such thinge as books use
and faith pat in by the bees. I am sure the Rev. J. and faith pit in by the bees. I am sure the Rev. J.
Wood would like (and so should I) to see an almanac though it was an infernal ono.-Cownar Hatch.
[13011.]-Magic Lantern Effecta.-Can any enrrespondent inform me how to make a slide to pxhibit
falling nnow in the dissolving view lantern?

[12012] - Water Power.-" Ignoramus, would be plensed to learn what actani nower he could procure
from n 3id. run of water (through a sin. pipe) constant?
 ar turbino, and cost of each, and how made? Fall fit. at least.-Ionorarves.
As it bappens to be my lot to make a licing by watches as it bappens to be my lot to make aliting by watches some information regarding when, and by whom, the
 provement up to the present time. Will any resder
Kkindly niform me through the Englise MECBANIC if such is in print? ${ }^{\text {-A }}$ Glasoow Highandeb.
[12014.]-Organ-To "J. D."-Will "J. D." or some other correspondent kindly ansmer this quastion. The boxes connected with the bellows, with a small pallet to each pipe, iuside the "box." How are these pallets Fou bore a hole through the bottom of the "box." coald never got them air-tight, and jot be able to move easily enough.-E. C.
[12015.]-The Gyro Pigeon-Can any of your
readers inform me if the kyro pigeon, described on P. 222 of the Mrchanro , No. 373 , can be made to describe ment of the apparatas? What is the price? Can the shot marks be rerdily efficed after one good hit, so as
to show clearly the result of the next shot? and how far

 [12016.]-Cutting Cardboard Mounte. Will any
correspondent tell me how the white Bristol board uked for putting over water-colour drawings, \&c., is cut? The rat in no clean, and the bovel angally so true, that it
looke as if it were done by machinery. Is this work done by a machine or by hand ? What tool is used. how is the board kept ateady, and on what is it placed or cutting ? - J. K. W
[18017.]- Electro Iron.-Can any of your readers ell me how de deponi lectro-iron? 10 not mean the steel incing of oopper, bat \boldsymbol{A} inir deposit of requlline iron.
1 have specimens of electro iron from Rusiln (by Jacobi: patent) but can not and any one in England who will do the work. I have myself doposited a thin film of bright iron, but it then tarned to mud.-Baprled.
[12018.]-Star Distances.- Will Mr. Proctor or stars, from the 1st to the 12th magnitade, inclasive ?Dozert
[i2018.] - Damp Walls.-A wash is frequently used to prevent damp walla, consisting of a solution of anap, rater. Sometimes soap linseed oil, and alam, are mixed and applied at once, and the efficacy of both pro-
cesses is, it believe, well attested. Will "Sigma" or Mr. cesses is, I believe well attested. Will "sigma "or
Bottone kindly teli the chemistry of this?-A. O. G.
[12020.]-Tireing Cart Wheels.-Could any one wheel? Sny a wheel 8 it. 8 in. High, 1 Ihin. dished, how mach should the bar be hollow on the ecke, to come the same dish or bevel as the wheel? Any information will
[12021.]-Turning. - What is the best kipd of chuck to be used
[12022.]-Forest and Rainfall.-It is asserted ation on this the rainial. Where can the bject be found ?-ELx Hirsx
suble
[12023.1-Diasolving Bone.-Will any of "our" bone, so as to monld it to any shape required ?-A. S. A. [12034.]-Photographia-Will some reader kindly portrait camera and lens which is quite light-proof, but when I take a portrait I focis the face, and I find it nice and sharn, but all round -hair, neck, bands, \&c., are very
doll. 1 photokraphed a large placard the other day, and agd below and each side of the centre are slmust in visible. Are the glasses of the lens in wrong, as they have ben taken ont to be cleaned? II wrouk, how
should they be pat in, or what else can cause it? To in A Fix.
[12025.]-Chiding Stone-I have a print represent. ing a arge lioulder lying on a large sqaare slab ut stone,
wilh the name "Chiding Stone" nuder. Can any ono tell me where it is? ?J. K . P .
[120ㄹ․]-Greenheart TMmber.-At a sale of surplus stures at one of the Goverument dockyards, I pur-
cbased a considerable quantity of greenheart plank. Nut knowing what to do with it, and being utterly jonornnt of its specialies, I laid it down for a granary
foor, scrowiug, not nailing it down. Happening to take
 alinost eqnal to whalobone. I had a rod of tin. square prepared; this I supported on trectles 2ft. 8in. Apart, and
 this lin squaro rod took no le ss than stislb. to break it.
Under hhs logd it gradally gave way, breaking up in long dibres almost like honp in a rop, yarn. 1 yp tited
with other woods of equal size, and under sinilur con with other woods of equal size, and under sinilur con-
ditionk Among the rest the heart of pitch pine fhis
broke short (kithont warding) under a weight of My object in writing this is to get from Jack of All

 cuttle-tecding tronghs, or parposes where it is nlter-
nately csposed to rain, san, or moisture? it ia rather
 cinne timo i might get almilar anawer as to the
specialties of Santa Marin timber, of which I bought one or two lots, and which I have been nsiag up for
door and window cills, and also with advantage for door and window cills, and also with advantage for
enrt shafts. Any kind friond among your contributors who will pire information on the above will greatly who will giro infor
oblige-K Boda Box.
[12027.]-Albert Durer's Engravings - Will any of original etchings by Albert Duirer? Where man doubted originals be seen? Is the water-mark of the papor any guide? I have three; one, "The Anointing A. M." Aod," has for ther, apparently a mabjeot trom the A pocaliypse, is marked, as well as I can make ont,
" D. RIaw." The third bears the wator-mark " Vienne."
[12028.]-Dimenaions of Balloon - Can any cor carry 1201 lb . f it would be infinted with pure hydrugen. of any hould be much obliged for the names and price ROLINNG STONE
[12029]. - Object Glass. - Why are gome ohjecthold the lenses in plact to corroct defects or merely to form 28 well 88 those not balsamed? Would observing the sun distarb the balsam, thereby spoiling the view -C. B .
[12030.]-Sun Screen.-II Rev. E. L. Berthon (letter 3037, p. 150) will oblige by gtating the way to deposit the silver on the deld-glase of telescope and proportions of
cheraicala required, I shall esteem it a favorr.-C. B.
[12031.]-E mode of cooking their pers that makes them very savonry, goft, and swollen, as big as, if not hifger than,
when full krown, unplucked from the gtalk. If any brother resder could and would describe how they are done, he would grestly oblige-Poor TeEth
[12032]- Fishing Nets.- Can any one give the par tionlars of process used by the French fishermen for nechas thy hat in as the Aisbermen of thif onuntry do? Cutch catech and Gambier are the ingredients used bere, but they do not seom to angwor the parpose, as the nets require rebarking and drying often, whergas the French can be hished with for months without either.-ERIN.
[12033.]-Waterproof Pishing Socks.-Can any fellow reader tell mo how I oan make a chenp pair of
waterproof socks I I have thought of indiarabber soluwaterproof socks 9 I have thought of indiarnbber sola-
tion laid on canvas, bat I am afraid it wonld be ton tion laid on canvar, bat i am afraid it wonld be ton
sticky. Any information on the above subject will sticky._Any in
oblige._WADER
[12034.]-Ordnance Map of London and Enare Riven in feet nbove lie ap proximate menn water at iverpool cau is hous mean water at Liverpool and high water at Londonbridge 9-Rook
[12035.]-The University of Turin.-Will our kind friend Mr. Bottone give a little information as to the University of Tarin? Whether Englishmen can be educated free, and any particulars sultable to a yonng man who
[12036.]-Engine.-Would any of yonr correspondepts favorur me with an angwer to the following?
What would be considered the proper dimengions of a bailer for a small horizontal engino lin. bore, 2in stroke fand what would be the power of an engine of GRABAM YOUNG, S.D.
[12037.]-Mining Query. - What is Are-setting, and how is it applied
[12038]-Atmospheric Electricity and Mag. netism. - Will "sigma," or some other kind reader,
Btate how the smount of atmospheric electricity can be Btate how the smount of atmospheric electricity can be
registered, what apparatus is required, and can it be registered, what apparatus is required, aud can it be
procared at a moderate cost? Also, how is terrestrial magnetism observed? Can instruments firr testing intconity be pur
makers ?
[12039.]-The Pressure of the Wind-Perhaps some of your correspondents might inform me if ayy which the finlowing point may be determined. Suppose two polished plates, a loot square each to be placed,
the one vertically, at right angles to the direction of the the one vertically, at right anglos to the direction or the ground. Sappose the pressure of the wind, orring the vertical plate forward, to be equal to one pound, what
is the annuut of pressare exerted on the horizontni plate tending to move it forward along the ground, the wiall, of conrse, being assamed to act only on the appor surfince of the plate, and not on its edges? The particles of the air strike the surface of the horizontal plate xerted consequently the prossure of the pressure decomposid into two components, the one verticnlto the enfrace ot tha plate, and the other horizontal. Tho
gneation to be determined is, what is the amount of question to be determined is, what is the
[12n40.]-Navigation-Will some practical readeray the mate of a ship-kindly tell me the beat bouks to read, and the easiest fay of picking up sutficient know-
ledge of this science to interest one, and to fill up some of the weary hours on board ship ? Although;uot a suilor by profession, I have, in common with many otlicrs, often regretted my ignorance
voyages I have made?-A. B. \mathbf{C}.
"[12041.]-Burnishers for Brass-work. - Will "Jack of All Trades," or any other of our readers, kindly inform me what kind of burnishors brasy fitishers use
Ior buruighing their brasswork, cither before or after it fur burnishing their brasswork, ci
has been lacquered ?-J. W. CAID.
[12042]-Boiler.-I have a 1 horse-power tubular hoilcr, Rnd wilibe glad in some of your hind corresponuns two pipos inside from the bulton, each side mecting niler steam dome. I want to know tio use of them. Tho boiler plates are three-sixtoenths of an inch in
hickness in aldes, one-eighth of an inch in back, and
copper riveted. I want to know at what preacure I may
work it with satoty. [10 will saloly.
$[12043]-$. Poultry Breeding.-Could any of "our"
readers inform me it there are any places in England readers inform me if there are any places in England
where they breed poultry on a large acnle for the parpose of profi? and il so, would they kindly say whero and any other information thoy conld give me, at I want to ingpect one, to
myeelf ?-C. $\mathrm{H} . \mathrm{C}$.
[12044.]-Rosin Grease. - Can any of your readers quantity of oach, and the process of manalacture ? INQuIRER
[12045.]-Analysis.-Will G. E. Davis, or S. Bottone, difficult ? ohemionl reader, assiat mo in the following sisted of beeswax and sulphur, but I want to know the exnct percentage. I was told by a Protessor of Chemistry that beoswax coalla bo daid tod in ether and alcohon, and that the salphur woald be loft behind ; but on trial Of carbon nosidue. I next tried dissolving in bisalphide of carbon, and then allowing to evaporate ; but no
crystals of enlphur were left. I think that the substanoe has been malted together, and then ground to e 0 no powder. I am very anxions to be able to gat at ite proportiona. I may any it in uned in the conatruction of telograph cablea.-Lictor.
" ${ }^{212016 .]- \text { Endorsing Ink.-Wul some resder of }}$ "ours "oblige me with a receipt for endorsing ink for brass atamps P Tho deaiderata are that it shall dry
rapidy on the paper, but not dry on the ink pad.-
F. V. H.
 as simply as possible, how to tind the length of radias of n sector (like figare in query 1166 , p. 650, Vol. Xiv.)
whon the messurement is givon as ohords; alsa, when Whon the meas srement is
givon as ourves ?-T.
[12048.]-Trip to Ireland. - I intend, daring Jay. spending a week in and aboat Dublin. I shail go from Liverpool direct to Dubin and places about Wichow,
Bray, and Parsonstown. 1 would like a reliable guidebook. I would also be glad of a good map, geological p:eferred.-A Wandizer.
[12049.]-Aerated Watar Machinee.-Would any and management of the abore machines? [12050.]-Socotrine Aloes-Wim any of your variea in colour from a dark rich brown to a light grab? -B .
[12051.]- Fire Fingines-Will "Phllanthropist, whon in No. 370, profiers furthor information in connoe advantage is obtained from an alr ressel bolng fitted to the suction side of the pumps in these engines?
[12052.]-Rust in Brewing Watar.-Will any of
of your nameroas readers iniorm me how to conatruat it in passing through oast-iron pipos ? I should require to filter about 1,500 gallona (say) in three houre The dishace from tank to inlat pipe overhoad is 8it., so Conom neti.
[12053.]-Canaries-I have a hen canary that is at wheozing and snifing as if she had a bad coll. Can nny ono inform me what is the canse of this? May this
not have something to do with the rotten egge What not have somothing to do with the rotten egge ? What
is the care for this? 1 have also a cock caanry similarly is the care for this? 1 have also a oock camary similarly
affected. He is only now boginning to . though he was a splendid whistlor not leng ago. Ihare it do them eny harm to bo put oat in the open adr for a few hours daily ?-BED op Srose.
[12054]-The Needie Lock-Can any kind reader five a detailod description of tick
[13055.]-Works on Pedal Playing.-Can any works on pedal playing for the organ?-A Strogaline Orgamist.

the english mechanic lifebont funb.

Oubscriptione to be formardod to the guitor, at the 0mion, in,
Amonnt previoasly aeknowledged

28s
5
8

Water of the Deep Sea.-Ap apparatus for obtainiug water from the depths of the ocean has been invented in Germany. An opon vessel of suitable form and size is lowered by means of a rope, and when the esired depth has been reached an electrical carrent is
transmitted throngh a wire that accompanies the lowering rope, and this current, indacing activity in an electro-magnet attached to the apparata, powerfal springs, whioh act apon stop-cocks, thas inclosiug the water at any degree of depth. Some usefal oxperiments in the determination of the carbonic acio
in sea-water have been made through the agenoy of this apparatus.
Raphacl's Cartoons.- With a view to presorve accurate copies of the cartoons of Raphael, the Lords of the Committce of Conncil on Edacation, acting throngh a committee, propose to seloct nine artiste to make preliminary studies of given parts of three of an cartoons. Artists will irst be required to compo oil, an accurate copy either in wator-colours, Beantifal Cate. Theso will be sent in to the Secretary of the Science and Art Department by the 31at of Jnly, 1872 . From the can idates so competing, nine the cartouns themselves of portions set out by the committce as a final test.

ANSWERS TO COBRESPONDENTS.

***th communieations should be addressed to the EDITOR of the Evelibi Mrchanio, 81, Taviotock-street, Oovent Gardon, W.O.

The following are the inittals, ace, of letters to hnnd ap to Tuesda
T. T. Greg.-Stephen Reny.-J. P.--Arthrr Monchton.G. A. W.-J. A. R. Ruillaume.-James Best.-The Harmonious Blacksmith-H. Franklin Parsons.-P. Santalinus.- Well-wigher.-James Gillinqham.-Jobn
Wilking.-S. Deacon and Co-Jahez Francis. - Wm. Bowles.-Robt. W. Armstrong-F. R. A. S. A. Amatenr.
 Mechanic's Wife.-A Subsorlber.-One in Noed. Cristo.-R. O. Berry-Emily Jane.-R. A. B.-Philo-
T. A. Ar-Mangh.-M. Parls.-S. M. Drach. -Joun
 Fennell:-P. J. M. Evang, X. Y. Z.-Cymro Glin. Hantiby.-J. Barwick.-M. Y-An Engine Driver.A., Liverpook.-Lovati-T. Smith-Thos. Focther.-Cartes.-J. Sheldon. - E. W. Braithwaite. - N. Jocelyn. W. M. H. Neal.- Rev. C. R. Holmes,-W. II. Skelton.W. M.-Gwastad.-M. Garter.-Pints and Crosamans. Stone-M. A. Simmongs.-Ontside Labourer.- Be in of
 gmith.-E. W. 8.-En Avant.-Hope.-J. H. L.-P. H.
Holland.-Separator.-P. H. D.-J. T. Onkley.-E. N.
Piers.-T. L.-B. F.-Sarah Lewig.-Jacques-Erick.-Piers.-T.L. F .
J. Barwicx.-The errors in your letter on the alcohol question are your own. Wo cannot spare the space you require to correct them.
B. Tномpson.-Yours on "Electricity" next week.

Misirva.-Consult the Times advortisement qheet.
J. W. Hapward.-Forwarded to "Jack of All Trades."
I. L. G.-Your "More Proofs of the Delnge" next week
A. Bucc.-See "Philo's" letter on "Jack of All Trades."
W. D. L. Writing from Wigan, asys: "It is now Monday noon and I have not got Friday's pan Mr. Plense
attend to ith. We have uothing to atteri: in snch mettor. The ENALIBE Mecrinic is inv riably pib. lished at ten o'alock on Thursday morninga, and if not deliverad to subseribers in time, the fault is not ourt

Chardes Roche.-Yours on "Debility" next week

Ax Old Rxadze-If an old reader you are a negligent or forgetful one, or jou would have known and remepbered that your questions appertaluing to chucks have been angwered in varions ways.
E. B., J. Wrinhame, and Rlamorn.-Queries too trivial.
E. L. D., J. JoDson, and E. D.-The oontroversy on "How we see a Distant Object is closed.
G. Pimminatox. - We have no desire to withdraw onr aessertion in reference to "perpetanal moti,n and perpetal fools," neither can we consent to a rediscussion of the subject, or any aspeot of it, in our pages. You sny you have ween working at the problen for thir-
teen years." We are sorry to hear it, as your time has been wasted. You cannot get moze out of your been wasted. You cannot get moze ont of yonr "moomsday. We don't know Mr. Dirok's address.
F. J. Godder--See reply by "Berks late Oxon Farmer," on removing bees.
Hydroloorst.-Cat't you send something more aubsautial and defnite on the question.
J. W. Bodwrilu-Try to write on thicher paper and in a plainer hand, and we should probably lnsert.
W. C. M.-See "Sigma's" letter this week. The one prengraph we have given from the hand-book mast suffice.
 indices to back vols.'
Artillizarmak.-Very often it ie the case, but if yon have anything really good, make the department listen
.
L. E. Dums.- Yoar request oould not be complied with,

Polsa.-Ask your medical man, if you must imagine yoarself ill.
Dedalus-For information on mounting microscoplc
objects in damar, see pp. 183, 343 , and 380 , Vol. XIIf. objects in damar, see pp. 183, 343, and 380, Vol. XIIl.
E. L. G. \triangle axd TEI Pope. - Mr. J. Birmingham writes:Lyell to the Pope. It is all very well to langh at his theories and the literary style in which he tries to set them forth, but I pat it to yon as a gentleman whether you ragh rers and contributors, and to the rast majority
of civilised and Christian men." Perhapa "E. L. G." will take the bint.
W. C. M. - You heve ouly gent part of the description of be worth the space it would ocoupy.
J. Drxox.- Plegse do not eend us "one or two more com. munications" anless you treat the question moro eannot find space.
J. D.-It is impoedble to make out the impression of the ouin sent.

Trofbligome.-None.

A. M.-Incabatora havo been frequently treated of in
 recent back numbers.

THE INVENTOR.

applications for letters patent during the WERE ENDING MAY 21, 2872.
1:Nsi O. Schnize, Finalniry-circna, for now and lmproved moder 1986
monta
To
domestic
Mydranilice. $12 e 77$ J. Clark, Belmont-terrace, North Kenaliggton, for improve-
mente in rallway brakee. 138 L . Engel, Mumford-court. Choapside, for attarhing ther.
mometers to the handles of numbrellas, parasols, sticks, whips, and 1329 W. J. Perkins. Baker-street. Portman-square, for a new or improved portabie nneumatic apparatus or bracket for supporting 1990 T. A. Ashton, Bheffield for at

1391 F. G. Fienry. Marrick aquare. Soath wark, and A. Tylnf.
iswate

1.2, F. J. Hamel Avenue rosd, Regent's Park, for impropements
in tos hir.ery for the compression or consolidation of blocks of

133 1. Brown, Edinburgh, for Improvements in retiliaing the
 1 IBa F. L. H. Dauchell, Horwich, Lancashire, for an Improvod 1ans A. Slater, Lurerpeol, for Improvements in printing from 103 H . Turmer, Shefleid, for improvements in the application wire to building and
1397 B. Lonker. Fingaton apon-Thames, for improvemente in
vontlinting bricks or slabs, nnd in arrangoinents to be used for ventilating boiticultural and othor structures.
1393 E. Watteen. Middleshro'-on Tess, or improvements in
machinery or apparatus for driving holes or drilt-ways in rocks. A
139) E. Brook, Haddersfinfa, for improved machinery for
fucilitatiug the applicution of labels to bobbing and other articlen. $11^{\prime 0}$ H. D. Plimsonl, Gordon-square, Middlosex, for improvement 1401 .
1401 W . Toy nnd J. Pinker, Tiverpool, for an improved packing
for stian and other motive. powar engines. 1402 S. P. Longman and E. C. Alderman, Islington, for reglater-
ing the ixue of tickets in public conveyances and el eowhere. $14 / 23$ IH. H. Mawhinney, Massinchusetts, for now and asefal 140 J. Arnold. Weat Smithfield, for improvements in "enemas" or injectiou apparatne
1403 J . Howard and E T. Boasfield, Bedfordshife for Imprive.
monts in tho construction of ploughis and other illing imple1tori A. Wilbaux, Paria, for improvements in the mannfactive
of paper hingings, and priating on tuffs er other similiar materials. 1407 af Naxsomo, Rochdalo, for improvements in emery rollera

1603 W. R. Like. Southampton-balldiags, for improvements in
npparatina firt prodacing compression upon metallic articles. A
1403 J . H. Johnson, Lincoln's Inn-filds, for Improvements in the treatment or ores, more particularly iron ore, tor the manufac-
ture of cat iron, wronght itron, and stoel therefrom, and in the
appuratus to
lito J. F. Johneon. Linciln's Inn-folds, for improvements in
the mannfacture of artifial manure. A commanication.
1411 F. Trotman, Znological Gardens, Regent's Park, for im.
provemants in renectink apparatus or ditungs for ase in lishtiug
ap theatres and other balldings.
ap theatres and other balldings.
1412 S. H. Larmath, Salford, and F. Norton, Maneheater, for
inuprovemente in standards or snpports for telegraph.wires. 1113 S. Swain, Bradford, for improvements in gas fittings.
141 W. Boss, Glasgow, for improvements in water closel
1415 B. French, Rochester, U.S., for improvements in lubrics. ung cumpounds.
in16 . Crabtree. T. Crabtree, and J. Crabtree, Manchester, for
imirovements in apparatug for singeing or filing cotton or other fabricy. 117 J. H. Johnann. Lincoin's Inn-inids, for Impravements in
raction engines or road steamers, and other velicles. A communi1418 W. R. Lake, Southampton-hnildings, for improvements in mules for aplaning. A communication
1419 J. C. Browne, The Cedars, Hampton- Wiek, for improvementa
in the construction and in the form of vosuols and boate
$1120 \mathrm{~K} . \mathrm{H}$. Cornisn, Market street, Mayfair, for improvements in
apparatus ned for the manafacture of gas, applicable also to that
 1431 J. Roluey, Manchestar. for a new or improved filtering
medium, suitable also as a disinfectant and deodoriser. 1492 G. T. Bonsfild, Loughborongh Park, Brixton, for a now and
asefni improvement in apparatus for puddling and meltigs iron. A commar P. Jensen. Chaneery.lane, for Improvements in the con
stincti n of cone osens, in the ntilination of the waste heat therestincti in of cone orens, in the atilination of the waste hest there
from.
 1425 W. R. T,ake, Sonthampton-buildinga, ing an improved ciamp for joining and aecaring ropwe and for other like purposes. 4 comp 1626 W. Glover, gt. James'rond, Old Kent-road, and F. Rrins,
Bankside, Southwark, for tmprovementa in govemors for motive: power engines. 1477 H. B. Fox, Oxton, Oh
altering and cooling liquida.
113 K K. Hishton, M.A., Patney, for improvements in electric 1429 J. G. Brigys, Graceohnceh-atreet, Oity, for Improvemonts in
the manulacture of stereotypes, and in apparatus for use thicroin. 1430 E. Grinerd, Jon., Bernard-atreet, Russell-square, for an mprovement in portmanteaus.
1431
proved method of manufacturing "rond. Hacknoy, for an im.
in
for cutting ont
 nplicable miso to the munufacture of spalles, shovila, pilks,
hoes, pit hfirk and simar articles, and alao to the manufucturo of handles for such tools.
1452 J. Satherland, Glasgow, for improvements in furnaces for
paddilig and ro-henting iron. 1478 J G. Haghas, Sanderiand, for improvements in propelling
steain bips. 1626 J. Cartor and J. E. Carter, Eallfax, Yorknhire, for an im.
proved means or apparatus for mouldina nd casting iead, slophon proved mans or apparatus for moulding ndd castling lead, alphon
pipes, or stench traps, or other bent pipes or tubes. 1495 J. Shelield, Glasgow, for improvements in farnaces for melting Elays.
1436 T. Maynard, Dawley. Middiaser, for improvement.
manulactire of bricks and la the kulas employod therutor.
157 J. V. P. Cagrange, Paris, for improvements in the treat
ment in incharing juicea and sjrus.
$143 y$ F. P. Preaton, J. T. Prestige, F. J. Prestan, and W. A
Prextidy, Hizh-street, Dediford, fur inproverients in apparatus for rexulating the supply of water to water-ilosets and other places.

1440 Sir F. Blnckwood, Marlborough Clab, Pall Mall, for Improve-
ments in signal landorns. ments in signal lanterns.
 1448 W. Gosage, Whidnez, Lancashlire, for tmarevements in the
manufactare of certain alikaline carbonates for the pargose of obtainimg carbonio-ectd gas therofrom.
1448 G. Davey, New Cavendish-atisent, Portiand-plagee. for ire-
provementa in tha mannfactare or ertincial or Imitation ivorr,
 the production of a vailoty of substitates for ornamental and
decorative objects.
 wethod of producing the same.
1445 J . Hall, Chancery.Lene, for improvements in window-meh 1116 G. T. Cross. Now Croun, and A. Maegilluray, Camberwall,
for improvements in means and in apparatus or appliances for for improvemente in meang and in apparatus or applian
clearing or cleaning tramway raila and the groven thercin.
1447 J . A. Dingoffe, Paris, for improvements in the conntraction
of telegrapt posts and in tho apparatus in connoction therewith 148 E . Lits and in tho apparat on or or improved apparatas or $14+8$ E. Lofts, Cambridgn, for a now or im
arrangoment for washing and rinsing bottlea.
14.9 G. B. Lewis and W. M. Ward, Eavt Boston, U.S., for imp-
provermonts in machinery fo: the manufacture of tiobing and other nets. 140 J. J. Kern, Oxford-street, for an improved comblaed cot 1451 J. C. Ellis, Piccadilly, for a convertjble day and atght mal. wey carriage. Lake, Southampton-bulldings, for improvemeste in
W . R. Lake, pueuratic signal telegranih apparatus, chiety dealgnod for ese in
sieum ships. A comannication. 1433 T. A. Edison, Newark, U.S., for improvementa in printiag
telegraphs. 1154 T. Sheehan, Dankirk, U.S., for an improved proeese for
ateelifying tron. 1055 D 1455 D. Johnson, Wrexharn, Denhighnhire, for an improved
procose and apparatus for washing, frying, docoloritiog and 1456 W . Ukark, Chancery-lane, for extracting the whole (or mearls the whole) of the ant hracene contained in coal tar, and the plech socraing therefrom, withint either carbontaing or decomponing the
pilch. A comunanication. 1457 W . Morris. Deptford, for an Improved mode or metbed of
and means for estatinhing a communicuation with water or gas maina.
168
W. R. Lake, Sonthamptonbulldings, for an smpeored
for painting. A commanication. 1159 W. R. Lake, 8 sintinnmpton-balldinga, for improveraente in 1450 E. H. C. Menckton, Fineabada, Wannford, for Improve-
ment in the conatraction and arrangemient or furnaces nuited for smelting and fusing erery deacription ot ores and metals and giess, for henting gas and other retorts, and for othor usofal parposee,
and in the means and applinnces necestary theret 1461 W. . F. Fearnlef, Eardleg.ereqcent, Weat Brompton, far
improvements in apparatus for making liluminating gal, heating 1462 J. H. Welbol, Geneva, Bwitzorland, for Improvements in 1462 J. H. Welbel, Geneva, 8whing rallway carriages.
appuratis for warming
1663 I. Liehich, Chnrch.Atreat. Camberwell.green, for an ap-
 producod in playlag.
1664 L. A. E. MacKinnon, Grent 8t. Helens, London, for im.
provements in mesns or apparatus for use in extinguishing fro by
the id of carbanic acile gian 1485 B. T. Nownham. Bath, for improvements in earriages and
parts connected therewith.
 munication.
1467 A. Jaynor, Clapbam.road, nnd M. Low. Lee, for Improve-
ments in steam boilers and furauces for consaniog amoke and
1468 J. Spratt, Camberwell, for a new or Improved food for cate. 1409 G. Bedson, Manchester, for tmprovements is paddilag 1470 J. F. Johnaon. Lincoln'a Inn.filis. for improvements in
the manufactare of shoes, and in machinery and apparatas conthe manufa.tare of shoes, and in m
nected therewith. A communiction.
1471 W. A. Hubbard, Ramagate, for an tmproved level.
1473 C. G. Wilson, C.E.. Ruyal Exchange-bullinger, Chy, for an 1473 C. II. Siemens, Great George-street. Weatminster, for fm-
provernenta in the aupports, fastenings, and jolnts of undergroand provernenta in
1474 P. Jensen, Chancery-laue. Sor Improvements in the con-
truction of bridgo plers, wharves, docka, and other hydraulie atruction of bridge plers, wharves, docka, and other hydraulic
structares, and in apparatus therofor. A communication. 1475 R. Allan, Glusgow, for improvementa in rolectors tor gas
and other Lights. A coun un in on.
 paper-making. 1477 A. Fryer, Mnnchatar, for impropementa in the treatmont of
cane sugn, Rnd in machinery or apparitut to be employed In connection H. A. Bonnerille, Plocadilly, for improvomente in tha pro
duction of motive power, and in the apparatas connected there pfith duction or motive pow, and is the apparutal commanication. 1779 H. A. Bonneville, Plccodlly, for improvements in the eor
struction if two-wheoled velicles for the convejance of pasengers 1480 W. K. Gedge, Wellington-street, Strand, for an teaproved
or kood
140 . 1481 A. . . do M1gnot and J. Clanter, Bordoanx, Frapee, for az
inder improved generator of expanded giducs inteuiled
generator, and applicable to all kind of engines.
1492 C. M. Lhoyd. Sonth Lambeth. for now or combined manebine
for snwink, moalding, planing, tenoning, and cutiag ont rarios
 1483 C. Anderson, Biadford, for an 1 mprnved appantar for
 potnt to terminus, and vice vorsa, and for indicating the cloaring 1184 J . Wadilington and W. Caralde, Hallfax, for en lapeored 1.4Ns 8. Rasuell, Bayswater. for improvementa in mang and
apparatus for stoppering botiles contuluing aerated and otber 1286 W. Anheroft, Woiverhampton, for improvementa in presee 1087 J. Goodfollow, Blackburn, for Improvements in motallic 1489 O. Richarionn, Gracocharch-street, Clty, for Improvasante
 sppuratus therefor. A communication.

©hat Cutylisht deftechanic

WORLD OF SCIENCE AND ART.
FRIDAY, JUNE 7, 1878.

ARTIOLES.

MR. PROCTOR'S ESSAYS ON ASTRONOMY.*

\mathbf{M}^{1}R. PROCTOR is a puzzle to us. Scarcely are the sheets of one of his books dry from the press than he is again before ns with another. Uno avulso non deficit alter. Each of his works appears contemporaneously with the announcement of its successor, and "the cry is still, they come." Oar diffionlty would be decreased did our anthor exhibit any signs of having overwritten himself, or of being gailty of mere bookmaking; bnt, assuredly, none such are apparent, each essay in the volume now under review hearing marks of the same careful study and deliberate preparation which have characterised all his former productions. Emphatically it may be affirmed of Mr. Proctor that his atterances are those of a man who has something to say, and not merely of one who has to say something. For, after all, the chief charm and merit of his writing lies in the cvidence which it contains of earnest and otiginal thought on the subjects which be discusses; it being as refreshing as it is novel, in these days of compiled scientific "Handbooks," "Manabla," \&e., to find a writer to whom paste is as an occult compolind, and scissors as unknown as they were to our progenitors in the Flint Age.
The ostensible object of the anthor of the volume now before us is to collect in it those essays to which he has had most frequently to refer in his "San," "Other Worlds," \&c. ; bat it would be doing him an injustice to suffer it to be imagined that the present work is of interest only to the readers of his previons ones. Viewed merely as an independent contribution to astronomy, there are very few pages in it from which the stadent will not derive both pleasure and instruction; and, collected, as its contents are, from widely diverse sources, mach in it mast necessarily be perfeetly new to any reader. The advantage of obtaining many valuable contributions to the proceedings of the Royal Astronomical Society-otherwise practically inacces. sible to him-is one which many a young astronomer, especially, will appreciate.

The first three essays have reference to the life and work of that great astronomical philosopher who has but recontly passed from among us, Sir John Herschel ; and it is not uninteresting to $n s$ to note, in passing (implying, as we conceive it does, a tacit compliment), that the one with which the book opens is the éloge which first appeared in our own columns (Englisi Mecianic, these thre, p. 195). On the whole, we may regard of Sir John Herschel's distinctive intellectual peculiarities, and of the kind and nature of the work which he did so bravely and honestly. More merely flattering notices of his labours may have appeared, but certainly no more impartial one has yet been given to the pablic. But, in saging this, we must not be held to sabscribe wholly and noreservedly to all Mr. Proctor's dicta; for, to take a simple (even if it may appear a trivial) instance from pp. 36 and 37, it does seem to ns somewhat "hypercritical" on our anthor's part to object to the very harmless pieces of pleasantry which he there quotes. Granting, which we do at once, that they would have been wholly ont of place in formal papers, intended to be read before any of the learned societies, we really mast take exception to the assumption that trivialities mast, ex necessitate, be excladed from popular exposition; siace we believe that, to a certain order of minds, these homely illustrations bring conceptions with an amonnt of force and vividness that no merely rigid enunciation of facts ever succeeds in doing. That "Dulce est desipere in loco" is as true now as it was when Horaee wrote it. 1900 years ago; and it is a little hard upon the man of science to deprive him of an instrument Which is wielded with effect in the Sennte, at the
Bar, and even in the Pnlpit. Before dismissing the particular papers which we are now discussing,
we would invite the especial attention of astronomical amateurs to the remarks and protest made on pp .43 and 44. It would be well if these could be reprinted on a large oard and hung ap in every telescope-room in the kingdom. Notably wrald we recommend the Observing Astronomical Society to reproduce them in a pamphlet form, and circulate them among its members. Real service might, in that way, be done to science.
The fourth essay is on Mars; one of the subjects whioh Mr. Proctor has made peculiarly his own. This gives a mass of detail as to the physical structure of the planet's surface; and the means adopted by the author to determine, with very retned accuraoy, his precise rotation period. In connection with this essay we would point to the diagram of the orbits of the Earth and Mars, in the plate facing p. 51 , as an example of the thorougliness of all Mr. Proctor's work. If there be one thing rather than another which is executed in a perfanctory manner in popular works on astronomy, it is the drawing of diagrams; a series of concentric circles, with the most absolutely hap-hazard proportion sabsisting between their radii, mostly doing duty for delineations of the various planetary orbits. The particular diagram of which we are now speaking presents an extrnordinary contrast to this slipshod kind of work, being most carefully and elaborately drawn to scale; and, the nodes being marked and the inclination of the orbit of Mars to the ecliptic given, we would saygest to the student that it would be a profitable exercise to obtain a conple of sheets of cardboard and reproduce the plate under discussion in, as it were, a solid form. He would hence gain a more vivid ider of the relations subsisting between us and our neighbour in space than he could derive from almost any amount of reading.

The three succeeding essays relate to the planet Saturn. Wlth reference to these, it will be sufficient to note that they are by the anthor of "Saturn and its System;" the frontispiece of which grand monograph, by the way, decorates the present work also.
The next four papers, on the November shooting stars, and on meteors generally, will be read now with considerable interest in connection with Schiaparelli's extreordinary discovery (for which the Royal Astronomical Society granted him its gold medsl in February last) of the correlation of these marvellous laminous streams and comets.
From meteors to the zodiacal light, and hence to the solar corona, the transition is natural, and these subjects are treated in the sequence indicated. How thoroughly Mr. Prootor crashes the hypothesis of the terrestrial origin of the corona, the resder must go to his book itself to learn; and it must, we think, be a source of some gratification to him to have found how absolutely and entirely the recent Indian eclipse observations settled the question of the character of this stapendous solar appendage, and justified the views which he advanced, on theoretical grounds, so, relatively, long ago. Sarely this power of vaticination is the glory, 28 it is the orucial test of true science ; the future is opened to him who will read it aright, and the prophet and the philosopher are one
"The Sun's Journey through Space" deals with a problem which has successively engaged the attention of Sir William Herschel, Otto Strnve, and the present Astronomer Roysl; of which, however, all that can be fairly said is that that existence and direction of'such motion is demonstrated. "Coloured Suns" has reference to those exquisitely tinted gems which spangle our night sky; and "News from Sirins" to a snbject which was treated in a popular form in our eleventh volume (p. 3G1) by one of our own correspondents.
The succeeding essay on "Equal-surface Projections of the Globe," is but a quasi-astronomical one; but it appears as a necessary introduction to its successors, which contain the author's specula tions on the physical structure of the sidereal
heaven. Every word of these will repay perasal. There are, farther, three appendices, two having reference to subjects discussed in the main body of the work, and the third treating of the ap proaching transit of Venus in 1874. Here, again, we bave some of Mr. Proctor's exquisite and admirably accurate delineations of the aspect of our own world, as viewed from the San daring the passage of Venus across his face.

Regarding the work as a whole, it is impossible to epeak of it otherwise than in terms of very
high commendation; but we here and there come
upon statements, or modes of expression, to which it is difficult, unhesitatingly, to subscribe. As examples to illustrate this assertion we wonld refer to a foot-note on p. 181, in which the hypothesis is advanced that the earth, as viewed from Venus or Mercury, must sometimes look green, and sometimes "dan or fawn coloured;" this opinion being founded on the assumption that the ocean would appear bluish green, and the land on the average of a brownish tint. Now, excluding altogether the mass of cloud, which covering as it does no inconsiderable portion of the earth's visible hemisphere, would refleot a brilliant faintly yellowish white light, we would merely observe that the larger oceans are of a black-blue tint, rather than of a blaish-green one ; and that, considering the enormous area of land oovered with vegetation, it is very improbable that it should (save over relatively minute areas) exhibit a brown hue. Portions of the earth's sarface, like the African deserts, would no doubt look buff or dnn coloured, assuming the superincumbent atmosphere to be free from cloud; bat it surely cannot have escaped our author's recollection, that during the very eclipse (the one of 1870) with reference to which he calls in his conjectural terrestrial tints to account for an observed greenness of the Moon's dark body, a very large proportion of the visible hemisphere was covered with clond, and that to an extent which was very nearly rendoring all observation nugatory. Certainly the African continent seems to have been shrouded in an impenetrable pall. Mutatis mutandis, the same observations would apply to the eclipse of 1860 ; since, if we have reason to expect any continent to look green, as viewed from external space, it would be that of America, with its virgin forests and millions of acres of prairie and savannab. Yet we are told that during the eclipse of 1860 the Moon "presented a brown hue," ghe then being mainly illaminated by earth-shine from America. Again, on p. 280, we find a reference to Madler's theory of the orbital motion of our system round Alcyone, a motion which we conceived had long been held to have had its only warrant in that astronomer's imagination. And further, in the essay on "A Novel Way of Studying the Stars," on Pp. 308 and 309, we find our author using the words "higher" and "lower," as applied to star magnitudes, in a way which we think open to question. In ordinary parlauce we should call 2 a low number, and 520,000 a high one. Why, then, a star of the first magnitude should be spozen of as of high magnitude, and one of the tenth as of a low magnitude, is not, at first sight very apparent. Even admitting that reasons may be advanced in justifioation of this nomenclature, we cannot but regard it as decidedly perplexing to the student.
Five misprints, and as far as our comewhet oareful examination has extended, five only, disfigure the present volume. The first is on p. 72, where " line of light" appears for line of sight. The next on p. 89, where the compositor has spoken of examining Satprn "with a powerful microscope ; !" the third, on p. 91, where "Handibook" stands for Handbook; and the fourth is in a foot-note on p. 185, where " saperior conjunction" is printed for inferior conjanction. The blaokness of Venus's dise in contrast with the surrounding sky during her superior conjunction, would, we are tempted to think, astonish observers very much indeed. The last we have noted is on p. 256, where the northern horizon is called the southern horizon."
We can only, in conclasion, express a hope that our rapid survey of the leading features of this, Mr. Proctor's latest work, and our curt summary of its contents, will induce the earnest astronomi cal stadent to go direct to its pages for trnstworthy information concerning the most recent results of cosmical investigation. From them he may learn, in a popolar and most attractive form, what has been accomplished towards the solution of some of the very grandest prublems which the haman intellect has ever attacked.
We have reproduced on another page one of the essays, as a sample of the interesting oontents of the book.

TELESCOPIC WORK FOR MOONLIGHI EVENINGS.
By W. R. Birt, F.R.A.S., F.M.S.
The Great Sirsalis Cieft.
THE study of lunar clefts is increasing in interest, and, embracing as it does, a c of objects that differ so exceedingly frum
attention cannot be bestowed upon it. A cleft may be described as a garror channel ranning throngh every varietr of smrface, sometimes penetrating and dividing monatain ranges or catting down cliffs aud headlands, at others traversing plains or existing in the interiors of craters, having tnnnelled beneath the surrounding wall or pierced it to its foundation with a deep ravine. The appearance of such an object as viowed with a powerfal telescope is not easily forgotten, the sharp linear character which it exbibits among the surrounding diverse forms rireta the attention and creates a desire to know what parpose so singular a feature subserves in the lunar economy. Often commencing and terminating with a small craterlet, clefts have been supposed in some way to ennnect distant openings. Our business, however, is not with conjecture, bat with facts.
In No. 311, March 10, 1871, p. 577, we presented to our readers an account of a system of ramifying clefts which appeared to oricinate in the Crater Triesnceser. We have now the pleasure to notice a single cleft situated in a region of a different character to that in the neighborarhood of Triesnecker; it is known as the Great Siranlis Cleft. The errlicst notice of this cleft which we have been able to find is of the date 1824 , by Lohrmann, who gives on his map, constracted from ohservations made in 1822 to 1839 , a cleft commencing at the parallel of $20^{\circ} \mathrm{S}$., passins northward partly through the crater 204, and thence to a small crater (No. 7 on the aketch accompanying this article), on the S.W. of the dunble crater 205 (Sirsalis). With the exception of an interruption by the crater 204 the cleft is contimuns on Lohrmann's mnp. In the year 1532 , October 8 , Beer and Miduler observed and figured in their map the sonthern part of the cleft of a curved firm not figured by Lohrmann, which they treated as a separate cleft, designating it Fichstait γ. It is No. 64 in their catalogue. On October 20, 1533, they detected a portion of the northern part, terminating near Sirsalis, which they termed Citiger e. It is No. 49 in their catalogne. It is likely the instrnment which Mädler was then nsing was inadequate to show the intermediate portion figured by Lohrmann. In 1866 Julias Schmidt published his "Rillen auf dem Mond," in whioh he refers to Lohrmann's notice of 1824, and Midler's of October, 1832; bat he does not mention No. 64 Eichstadt γ, except as the strong sontherly curved γ, having, as he says, seen the whole in 1850 and 1851. The length he gives is 4^{5} German miles, or 207 English miles.
We are in possession of three unpablished series of observations of the Cireat Sirsalis Cleft. One of observations of the rreat Sirsalis Cleft. One
by Messrs. Knott and Birt, made with Mr. Knott's Alvan Clark refractor of $7 \cdot 3$ inches aperture, on October 2 and 3, 1805. One by M. Gandibיrt, with his silvered glass reflector of about sin. aperture, on Nov. 6, 1870 ; and one by Mr. Knobel with his 8 in. ppeculum, on May 21, 1872. As the stndy of this cleft is interesting on more ascounts than oue, and it can be well observed from thirteen to forteen days of the mon's a:ee, we shall sive the observations principally as recorded by the several observers, illustrated by a drewing, in which each object specially referred to is nnmbered ; the scale is that of Beer and Aitiler's large map, the positions of the larger ohisets being token from it.
The cleft is desiznated in the symbolio nomen. clature III $\mathrm{C} \boldsymbol{w}^{1}$, III C^{0}, and III $\mathrm{C} \mu^{\circ}$, aecording to the areas in which its portions are situated On October 2, 18it, it was observed to take its rise from the N.W. rim of the crater III C ${ }^{11}$ (No. 1 in the drawing., the rim of which it cut through. On Lohrmanu's map it is seen as extending S.S.E. from the S.E. rim of No. 1, a portion of it being figared as on the S.E. Hoor of this crater; according to Lohrmann it is interrupted by the S.E. rim. Beer and Miidler do not firure No. 1 as a crater, but as two nearly parallel mountain ranges with an oblique range betw:en them on the north and nearly open on the south, and they bring the cleft through the S.E. rim across the floor to the W. rim, which is not distarbed. In M. Gaudibert's sketch of November 6, 1870, the cleft is shown as given by Lohrmann, the rim interrapting it, and it is described as passing under the wall. In Mr. Knobel's drawing of Diny 21,1872 , it is sbown and described as catting clenn through the walls and floor of the crater. This is a point of no ordinary iuterest. Lohrmann and Gaudibert agree in its not outting throngh the S.E. rim, Becr and Mudler and Kuobel in the rim being separated by it. As re gards the N.W. rim, Luhrmann and Madler show
it entire. Knott and Birt and Knobel speak of it as separated br the cleft, and Knobel alone shows both rims separated. In the earlier observations the rim appeared to be namffected by the cleft. bnt in 1855, 1870, and 1872 it appeared as cut throngh. This requence does not, however, characterise the S.E. rim at the epoch of Lohrmann, 1824 , and in 1870 the rim was seen entire, bat separated at the time of Beer and Mäller, and also in May, 1872. The alternation of the wo appearances precindel the idea of the rim having existed in two different states, and it would be an interesting matter for inquiry as to whether Libration will account for these appear ances, but the small number of observations wil not allow of a solution. No. 1 has cwo craterlets on the S.W., they are both in Lohrmann and in Beer and Madler. Mr. Knobel's N.W. orater is double, M. Gandibert gives neither of them.
From the crater No. 1 the cleft was traced on October 2, 1865, through a depressed portion of the moon's sarface, III C नes, catting a headland III $\mathrm{C} \boldsymbol{r}^{9}$ (No. 2 in drawing), which projected into the depression. In cutting through the headland the cleft grazed the east side of a somewhat conspicuous but small crater III C \boldsymbol{r}^{-1} (No. 3 on drawing). The dopression, headland, and crater are shown by Lohrmann, bat not by Beer and Midler, and the crater is shown by Gaudibert and Knobel exactly as described above. The course

of the cleft was noticed in 1865 to be west of a crater III Cos (No. 4 in drawing) marked a by Beer and Madler: it is in a live with Critger ond Fontana. On May 21, 1872, Mr. Knobel found a small craterlet on the cleft opposite to No. 4. From a point a little north of this craterlict Mr. Knobel observed a delicate offishoot from the main cleft towards No. 4. Returning to the observations of 1865 the cleft ras seen to pass through a cliff III C of, which is shown by Lohriname, with the cleft to the east of it; Becr and Miidler also show the olifi: North of the ciff the appearance of the cleft was exceedingly distinct, as it crossed nn elevated platean, III C or to the weat of a craterlet, III C (No. 5 on the drawing), where it is terminated on Beer and Mailler's map. This craterlet is given by Lohrmann, who gives another close to gud west of the cleft, which is given by Beer and Maller, the E. craterlet beiug omitted by them. The W. craterlet was not reen by Gaadibert and Finobel in 1870 and 1872. From the point at which Beer and Mudler mark its termination its continuation was observed in 1865 along the N.W. slope of the platena, III C σ, to near the sonth edge of the craterlet, III C μ^{3} (f of Beer and Madler, and No. 6 on the drawing) where it disappeared. It reappeared at the north-western border of the crater, III C μ^{3} (I of Beer and Madler, and No. 7 on the drawing) descended, the slope was continned on the sonth-west of a
nated at the crater III C μ^{1} (No. 8 on the drawivg).
The craters Nos. 6 and 7 are shown br Lohrmann, and given by Gaudibert and Knobel, and in connection with them we have a repetition of the phenomena presented in the case of No. 1. Lohrmann, in 1824, showed the cleft as terrainating at No. 7. Knott and Birt, in 1865, speat of its disappearance at No. 6, and reappearance at the north-western side of No. 7. Gandibert, in 1870, delineated and describing it as crossing No. 7, and in Koobel's drawing of May 21, 187!, it is shown as interrapted by the east side of No. 7 ; indeed, its appearance is mnch as described by Knott and Birt. A carefal determination of the circnmstances of Libration, ander which there different appearanees are presented will go far to make us acquainted with hypsometrical and other relations.
On the 3rd of October, 1865, some further observations on this cleft were made by Messrs. Knott and Birt, the portion gnath-east of the erater No. 1, and designated III Ca^{1}, was seen to run along the foot of the cliff III $\mathrm{C} \boldsymbol{\pi}^{*}$, the eliff forming the west side of the cleft which then crossed the crater No. 1, its course being diverted by the crater III C ${ }^{10}$ on the south-western part of the floor. It does not appear that either M. Gaudibert or Mr. Knobel saw this crster on the floor of No. 1 at the epochs of the later observations. It is desirablo to inclade in the study of the clefts the search for craterlets on the lines of fracture, if such they be, and also to ascertain if in any instance a cleft really partakes of the nature of a tannel.

BEDDING-OUT.

TIHE time for planting out the flowers which it is now the fashion to employ for ornamenting our gardens during the summer and aatumn months having arrived, it may be as well if we esy a fer words on the sabject, for many of our readers are amateny gardeners, and the present plan of "beddiag-out," as it is called, is so mach the rage that one of our daily contemporaries has actually devoted a column to the important question. Time was when our gardens, while presenting jnst as pleasing an appearance in summer as they now do, were not the blank deserted patches of black mould which is their chronic state ander the fashionable régime darivg the most cheerless part of the year. Then we had flowers of some sort nearly all the year round, and, at least our parierres lonked green, and exhibit the exuberant rejuvenesconce of the genial and growing frring. Now all this is altered, and our pablic and private gardens are bare of bloom from October to May. It is true that our changeable olimate is the canse in a great measure of this state of thirigs, for the inclement springs of the last few years have done much to retard the "bedding-out" time even nader the present system. But this shortening of onr flower season is not entircly due to the treacherous weather of May, wiich was formerly the ohicf plauting-ont month; bat is in a great measure occasioned by the vicions system of "codaling in vogue with gardeners, amateur and profes. sional. Geraniuns, calceolarias, verbenas, and beliotropes are now forced along at sach a pace that slight frosts in May, and even in June, affect their weak frames aud nnconsolidated tissues to an extent that a month of warm weather almost fails to repair. Instead of strong, healthy. antumn-struck cuttiags, the market is glattid with cheap plants that a few months previously ware merely shoots on the parert stem; and the consequence is that a cold, wet spring males such wretched objects of them that the parchaser is disappointed, while no credit end, ultimately, no gain accrue to the producer. The present system is the most espensive style of zardeaing that can be adoptei. and if the result is worth the candle it is wor:3 while to insure obtaining it after the eandle is burnt. The Daily Nices essays to prove that English gardeners are not masters of their profession, aud that a considerable reduction in th: first cost might be effected by the plan of propagating bedding-out stuff it recommends. "Ask an ordinnty Euglish gardener," says our contemporary. " to thrn you out at the end of evers May (ray) three thousand phints, and he will be sare to ask yon where is your greenhouse. Failias that, in his eyes, absolutely indispensable appen. dage, he will not be ashamed to own himself absolutely powerlegs to meet your wishee. It vain will you point to three or foar large ston:
frames, solid at the sides and woll-glazed, and inform him that he has at his disposal any amount you that he can do nothing with them. They are ououmber frames in his eyes, and nothing more. Yet no better appliances, nine times ont of ten, are at the command of the gardeners who decorate the beantiful villas that surround Paris with can teatify who saw them deeerted, bat in all their beanty, when the Germans invested the reat capital. If an Englishman wishes to attain the same results by the same small means, must break his'gardener's will to his own. Given such a frame as we have epolien of, and four or five hundred of the hardier geraniams-such as Tom Thamb, Tom Thamb's Master, Lady Constance Grosvenor, and the Duchess of Sutherland -may with care be carried throngh the coldest and, even what is far more trying, the wettest winter. What are termed the Moliaged pelargoSpring, will not, it is true, or but rarely, endare this simple treatment; but if the bright and flowering geraniums are preserved, the exquisite charm and variety that are given by folinged plantís can be still more easily obtained by other means. Abuadance of white is a sine-quá-non in the bedding-ont style of gardening; and white may be secured to an unlimited extent without Tomentosum, with its beantifal silver-gray leaves, is as hardy as common grase, and can be propagated by division either in the late autumn or the early spring. It is to be seen in almost every cottage garden, only there it is allowed to flower, as it must not be when intended to serve the purpose of which we are speaking. Another most Maritima, which has only to be sown under a south wail, from seed, in September, to be left oat all the winter, and to be potted in spring, to make a famons show by the end of May.
After white in importance comes blue; and the beat, indeed the only good blae, unfortunately, the Lobelie, can be grown by any one who can make a hotbed of stable-manure in February. By its side, in the same manner, may be raised
the Oxalis, that lovely bronze-coloured olover; the tall Perilla ; and last, but anything but least. the Pyrethrum, or Golden Feather. Only, in all these instances, care has to supply the place of extravagant ontlay; whereas extravagant outlay is just the one thing that delights the English gardener most."
Now, as a matter of fact, a greenhouse will cost no more to construct than the requisite frames to preserve and propagate an equal number of plants ; while it is immeasurably more convenient for the gardener, requiring less labour and time for the due performance of the various attentions necessary for the health and welfare of his patients. Besides, frames with their fermenting masses of leaves and stable manure can be made to yield a more profitable return from early vegetables than " bedding-out" stuff would give-doing this, moreover, while the latter is in "winter quarters," and then coming in handy for the "hardening-off" process.

So muoh for the expense of the system. There is another side to the question as to the advantage of the present arrangement of fowering and brilliant foliaged plants. The gorgeous masses of colour are, no donbt. pleasing when set out in a harmonions manner, but they require to be surrounded with large masses of green, as mach to exhibit their full beanty as to relieve the eye, which is apt to be dazzled by the glaring lines of yellow and scarlet -the heat, in fact, of the "painted carpet" produced by "solid planting." For this reason the solid" style is utterly unsuited to small gardens where grass is conspicuons by its absence; and the plants should therefore be so placed that they may develop their foliage and permit the earth to be seen between them. Inderendently of all this, the aspect of the sabject which we are most inclined to look at is left ont in the coldthe individuality of the plants is atterly destroyed. and the mental pleasure which might be derived from a study of their physiology and life-history is lost in the mere sensnal gratification of harmoniously arranged colours. The principal valne of a garden to our readers consists in the facility whichitaffords for the study of vegetable phrsiology and the refining influence which a contemplation of the works of Nature must always excrcise upon the mind. How this may best be carried ont, with the further advantage of having Howers all the year cound, we shall probably explain at some fut ure time.

ELECTRICITY: WHAT IS IT ?-II.

By B. Thompson.

T_{1}^{I}
LECTRICITY a Modification of the Motion of Heat. - In the second part of this communication it is my object to try and show that the motion which I think has been proved to constitate a current of electricity is only a modification of that of heat. Let us follow out the experiment touched on in the latter part of the former paper. When the ourrent of electricity is increased, of course more electricity passes in a given time, but if no more matter be given for the electricity to be conducted by, the rapidity of polarisation mast be increased, which, if it be motion, will show itself, as we have found it does, by increase of heat. Increasing the carrent still more we obtain farther evidence of the increase of motion, for if the radintion from the wire be submitted to the action of a prism (of rock salt, because of the absorbing power of glass), we get no visible spectrum, but heat is found toexist greatest where it would had there been a visible spectrnm-viz., just beyond where the red becomes visible, when the carront, and therefore the heat, is still further increased. The fact of the spectrum becoming visible and extending is very siguificant, for it shows that more rapid vibrations have been compeiled by the increased carrent, and it may be increased until the spectram includes the actinic rays only shown by the phenomenon of flaorescence.

This similarity in nature between heat and electricity which we are discussing affords a ready explanation of the fact that a good conductor of heat is also a good conductor of electricity, and a good insulator of electricity a good insulator of heat : the same sabstance winich tops the motion of heat stops that of electricity.
The phenomena of electrolysis, too, have an important bearing on this part of the subject, inasmuch as they present tangible evidence of the changes electricity works in compoand bodies : so we will now consider them.
We know that no other forces, sare heat and electricity. can effect the decomposition of any compound by apparently destroying the affinitics of its elements for each other; we likewise know that electricity will decompose substances that defy any other means of analysis; and that electricity is converible into the most intense artificial heat and light known. Can we fail to seo the siguificance of this fact, which distinctly points to their similarity of unture? Even the simple evidence of their being convertible into each other is sufficient to show that they have a common origin, and beyond this we find they act in the asme way, and have a connection so close that it is impossible to produce the one without the other.

Heat destroys the affinities between the constitrents of compound bodies, or at least suspends them, by removing the atoms beyond the aphere of each other's attraction; nnd taking any example we may, the heat ruquired to decompose a compound body is exactly the same in amount. that was given off in its composition. For example, take the gases, oxygen, (0) and bydrogen (H) ; like all gases, they contain a large amount of latent heat. When they combine to form water OH_{3}, the greater part of this is given off, becanse the latent heat of water, ard indeed all liquids and solids. is considerably lower than that of a gaseous bouy; but it will be seen at once that to again pass into the gaseous state, the oxygen (0) and hydrogen (H_{3}) mast be supplied with the snme nmount of heat that they gave ap when forming water, and with less than this amount they will not be decomposed, except when electricity is employed; that the electricity has given them a different foroe to that which they possessed before cannot be admitted, for they will vield just the same heat on again forming water as in the first 8e.
Again, if a current of electricity which produces the greatest heat and light klown to us can aiso decompose substances which 10 other agent will tonch, and that this decompmition can ouly be effeoted by an amount of heat being supplied to the molecales safficient for their constituents to exist in an uncombined state-so far as we are able to dircover-would it not be a remarkahle
thing if electricity suspended the affuities of an electrolyte by other means than that of heat cor motion) which it can supply of such great intensity?

I believe I am right in stating that when the temperature of water is raised to abuut $200^{\circ} \mathrm{C}$. it is decomposed; this being the case, we may with reason conclude that virtually a beat of
$200^{\circ} \mathrm{C}$. is given out in the combination of oxpern and hydrogen, and forms water, and therefore thit a motion corresponding to this heat mast be supplied by the electric current when it effects the decomposition of water, and this sapposition is perfectly consistent with fact, for a very powerinl current is required to decompose water alone ; ant the heat dereloped in a bad condnotor, such as Water is, increases enormonsly with the nucucatation of battery power. Hore, then, I thinls, we can approach nearer to the theory I an tryive to explain than we have hitherio done; for, besides baving the conditions necessary to produce the required heat for the decomposition of OH_{2} (water)-a powerful current and poor conducter, itself a proof almost of the agency by which the water is decomposed-we can (retaining the same arrangement of decomposing cell) apply heat direct, instead of the electric current, with exactiy the same resalt. Thus, if the platinum electrodes of the voltameter or decomposivg cell be heated by the oxy-hydrogen flame, the watcr is deccmposed the same as with a battery; blowing, again, how intimately connected the two modes of motion, of heat and electricity, are.
The influence of pressure in the decomposing cell also tends to confirm this theory, for, if an electrolyte in a decomposing cell be sabmitted to pressure, the decomposition is entirely suspended. The expansion consequent npon increased temperatare and nltimate decomposition being prevented, the current manifests itself as heat, instead of being rendered latent; observing exactly analogous laws to those of heat in relation to oonstant pressure and constant volume.

Following the sbove course of reasoning, I think we shall be able to comprehend more clearly what occurs in a decomposing cell or ordinary voltaio battery. The first effect of the voltaic current is to polarise the molecules of the electrolyte, which, I think we have proved, is accompanied by a motion of them; this motion represents, or is virtually, a certain amount of heat; indeed, a great part is manifest to us as heat; and if the :apidity of vibration is sufficient, the heat is supphicd requisite for the constituents of the oomponnd to exist separately; of course, this amount varies with the compoand beivg decomposed. In the case of water, as we have before shown, the heat required is very great. When, however, a small quantity of sulphuric acid ($\mathrm{SO}, \mathrm{HO}_{2}$) is added, the water is decomposed readily by two or three batteries, on account of a secozdary action. O being liberated at one pole and H_{3} at the other, the SO_{s} (sulpharic nabydride) combines with another molecule of $\mathrm{H}_{2} \mathrm{O}$ (water) to form again $\mathrm{SO}_{2} \mathrm{HO}_{2}$ or $\mathrm{H}_{2} \mathrm{SO}_{4}$, and so the acion is continued.

I have taken all along water as the exsmp!e to work with, but any other compound will ansxer just as well, and the same rearoning apply to it; for instance, take CuSO_{4} (salphate of copper), where we bave a compond in which the base Cn (copper) gives oat very little h (at in combiving with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulpharic acid) : inde+d, it dnes not combine very powerfally at all, but is easily displaced by other metals; in this example of weah affinity we might reasonably suppose that a weris ourrent woald effect their decomposition; such is the case, CuSO4 is even decomposed, by one ce!l of a battery.

Going a step further to the voltaic coll itself. I think it is very generally admitted now by scientific men, that "ehemical alfinity" is identical with "eleotrical attraction:" iudeed, modern chemistry divides the elements into ohlornus and bnsyions or + and - ; and it will be admitied that nill bodies vary in their susceptibility to electrical action; or, if wo may use the term, in their aflinity for it. Friction is the reali-st
method of developing it, and when develojed in this way is called statical electricitr

The theory to account for this which inds most general acceptance is, that the derelopment of electricity is the result of the seraration
and renewal of contact botwen dissimilar borite and reneral of contact botween dissimilar borite
and plectricity is distrilated ammant thera in quantities proportional to their acinity for it (or may we not say to their purter in renderis. it lateut ?). Nom, let the atiritr of glase for it the r prosented br 4 , and the affinite of a rabber of silk by 6, maling togetler 10 . Whan these bocics are bronght together, this ration af niey ear ncaily equally distributed over the two bodies the affinity of the glnes, then, in this conce. would be increased from 4 to 5 , the ufleitr, of the
ruhber decreased from C to 5 , the totil, $10, \%$ maining the same; when we separate the roblor from the glass, or break the contaot, the o:igis:
affinities, 4 and 6, are restored, whilst the new
distribution, 5 and 5 , remains; the quantity of distribution, 5 and 5 , remains; the quantity of electricity in the glass, therefore, has been increased by 1 , and hence is positively eleotrified and the rubber negatively.

The same kind of reasoning must be employed to explain the effeot of oontact between the dissimilar metals in a voltaic battery. It was this behaviour, probably, that led so many of the earlier electriciuns to believe that contact alone was necessary to generate a current of electricity.
Now, taking one of the simplest voltaic batteries-a plate of amalgamated zinc and a plate
of copper immersed in dilute salphuric acid-so long as the plates remain anconnected no ourrent circulates, nor does any decomposition occur, at least, very small in amonnt, if any, due to the ordinary affinities of the plates for the elements of the onmpound; bat when the two metals, zinc and copper, are oonnected by a oonductor, powerful ohemioal action ensues, acoompanied by a current of electricity, which, indeed, it has generated. The strength of the carrent, too, is
always proportional to the amount of zinc dissolved in a given time, and it is one of the important points which should be noticed, as will be seen afterwards.

The amalgamated zinc has little power of itself to separate the constituents of the liqnid in which it is immersed, but on receiving additional assistance from its connection with the copper by the new distribation it has its affinity or electrical sttraction increased sufficiently to overcome the existing affinities between the elements of the solation in which it is placed, and thereby decompose it. Bat we have said that the same amonnt of heat or motion is reqnired to decompose a compound that was given off in its com position; applying this to the point in question, I should say that the affinity of the zino now represents an amount of heat or force equal to that required by the elements of the electrolyte to exist in a separate state-i.e., the H_{2} has an amonnt of heat given to it, must have, to enable it to take the gaseons state as it does; and so must the O , or the O and H_{2} wonld not part
company. Indeed, any body in passing from the company. Indeed, any body in passing from the quantities of heat. From whence does this heat oome? We are obliged to refer it to the new
affinity obtained by the contact of the two affinity obtained by the contact of the two dissimilar metals.
If now it be admitted that chemical affinity-the affinity we have to do with here-is only electrical attraction, and that attraction can only exist where there is an excess of electricity, we have a ready explanation as to how the decomposition occurs when the metals are connected ; that is, when the
new distribution takes place, for it has been shown new distribution takes place, for it has been shown
that elictricity, if not a form of heat, represents in its effects this heat.
The oxygen, however, liberated in the battery we have been speaking about, does not continue in the gaseous state, as the H_{2} liberated at the copper plate does, bnt combines with the zinc, forming oxide of zinc (ZuO), and in doing so, of course, gives up again, more or less, the force which it absorbed when parting with the hydrogen. What is this force? Where does it go? I think we cannot fail to see that it is this force which, when snpplied with suitable conditions to circulate throngh a conductor, is called the eloctric current, though, of course, it must have andergone some modification from the true form of heat. If the suitable arrangement is not snpplied, no sign of electricity is present, but the chemical action manifests itsolf as heat. It must be remembered that part of the current must return to the zinc to again render it electro-positive, otherwise all action ceases.

This theory, if I may call it sach, I think we shall find applicable to all the phenomena obserred in a battery, for the strength of a current produced by a given expenditure of zinc is always proportional to the amount of work it does in overcoming the resistance of its conductors, and if the corrent loses strength by the interposition of work its equivalent is always found
in the work done, whatever that may be, whether to induce magnetism in iron, work machivery, or circulate through a long conducting wire ; just as there is with heat, 80 is there with electricity a true mechanical value.
Another important thing for us to notice liere is, that if there is not sufficient work for the battery to do, the surplan furce tarns directly iuto heat, the behaviour being exactly annlogous to that obserred in machines where heat is the motive
power. If the machine is made to work, an
amount of force or heat is lost proportional to the work done ; bat if the machine is not working, the force or heat is found to be distribated over all the parts of it.
(To be concluded in another paper.)

SMELL.

T
HE Monitcur Scientifique contains a paper by M. Papillon on this subject, having reference to recent disooveries in chemistry and physiology. We extract from it the following:-
The seat of the sense of smell is, as we know, The seat of the sense of smell is, 28 we know,
in the lining membrane of the nostrils. This membrane has a mucous and irregular surface, over which spread a number of nerves, with delicate terminations. It secretes a lubricating liquid. By means of mascles, the apparatus of smell is dilated or contracted, like that of sight.
The mechanics of smell are, simply, the contact of odorons particles and the olfactory nerve. These particles are carried by the air into the nostrils. If, on the one hand, the nerve is injured, or even compressed; if, on the other, the sir is prevented from passing into the nostrils, there is an absence of smell. The upper part of the nostrils is the most sensitive as regards odour. The sense of smell varies much in different people. Some are entirely without it. Others are quite insensible to certain odours: a case similar to that of Daltonism, in which some eyes fail to perceive certain colours. It is recorded of a certain priest that he perceived no odours but those of smoke and decayed cabbage, and to another person vanills seemed quite inodorons. Blumenbach speaks of an Englishman who could not perceive the fragrance of mignonette.
Smell is sometimes voluntary, sometimes involnntary. In the former case, to obtain a lively sensation, we close the moath, and make a long inspiration, or a series of short and jerking ones. The muscles contrsct the orifice of the nostrils, and thas increase the intensity of the carrent of air. On the other hand, whon we wish not to
smell, we expire throngh the nose, so as to drive smell, we expire throngh the nose, so as to drive
a way the odorous air, and inspire by the opened month.
Smell and odonrs are closely connected with the phenomena of taste or gustation. Most savours perceived by us arise from a combination of sensations of smell with those of taste. There are, indeed, only four primitive and radical kinds of taste-acid, sweet, salt, and bitter. This may be shown by experiment. If we close our nostrils on tasting any sapid substance, the perceired taste will oome ander one or other of these four heads. Thus, when the olfactory membrane is diseased, the savour of food is altered.
How do odorons substances act with reference to the matter which separates them from the organ of smell? Prevost, in 1799, showed that if an odorous body were pat in a saucer fall of water, the emanations from it agitated the mole-
cules of the water visibly. These motions, of which oamphor gives a very good example, have been recently stadied by M. Liegeois.

He found that some substances caused movements of gyration and translation over the water surface, sinuilar to those of camphor. Of this class are benzoic acid, succivio acid, and orange bark. In the case of others, this motion ceases very soon, as they become encased in an oily layer over their surface.
He thinks these motions are due, not to a disengagement of gas, causing something like recoil, bet to the separation and rapid ditiasion of the odorous particles in the water. The fluid shows aftinity for these. Similarly, a drop of oil falling on water sends ont an intiuite number of very small globales, which spread through the liquid,
while the volume of the drop is not sensibly diminished. So with aromatic essences. Though insolable in water, the small odorous particles tend to disperse themselves in it. A small quantity of odorous powder will thus impart perfamo to a large body of water.
It is these same odorous molecules which are carried to our nostrils. And the action of water is thought by M. Liegeois to assist in the formation of them. In the morning, when the ground is moist, and the flowers are covered with dew-drops, there is a large cxbsiation of perfame.
Similurly, after a shower of rain. In gustation we hare sowething aualogous: the saliva is fitted to diifuse the odorant principle; by the motion of the tougue in the cavity of the mouth, this dit'asion is promoted, for the surface of evaporation is enlarged. Now, in the same way as the
small particles diffuec themselves in mater do
they diffuse themselves in air, which then becomes the vehicle carrying them to our nostrils.
Some odorons substances have a very grest diffusibility. Ambergris, newly csst on the shore, is smelt a long way off. Bertholin states that the odour of rosemary off the Spanish cosst is perceptible long before the land comes in sight. The degree of division of the particles is in some cases marvellons. A grain of musk will perfume an apartment for a whole year, without sensibly losing weight. Haller mentions having kept for forty years some pieces of paper perfumed with a grain of ambergris, and at the end of that time they still retained their odour.
It is to be noted that the odorous particles are sent out, and the body emitting them does not aot as a centre of agitation, giving rise to vibrations. It is thns a differant case from those of light and heat. The odour is the odorous molecule itself; whereas light, as perceived, is not the luminous body.
We cannot tell whether oxygen has some ohemical influence on the particles; nor what kind of action takes place on contact of the particle with the nerve, whether a mechanical agitation or a chemical decomposition. But the distinction of the senses sinto physical (sight, touch, and hearing) and chemical (taste and smell) is a just one. In the latter, contect is always implied.

An able writer has recently tried to prove a kind of music in odours. That is, different odours, according to him, affect the olfactory
nerve in various degrees, corresponding to those in which sonnd affects the auditory nerve. Thus we may have octaves of odours. He enumerates various substances that produce the same impression, but in different degrees ; e.g., these foar, almond, heliotrope, vanilla, and clematis. By combination he obtains semi-odours, corresponding to semitones; e.g., a rose with a geranium. He points ont principles of harmony in perfumes corresponding to those in colours, and thinks it possible to produce a desired perfume from a mixture of others.
The theory is ingenious and worthy of attention, bat it is open to grave objections. For the barmony in colours and sounds depends on exact numerical relations, which may be accarately determined; wheress, in the case of smell, the criterion is capricions and uncertain, and it is not possible to reduce to formala what our sanse reveals.
There are many cases of hallacination as regards smell; united, generally, with insanity on other points. Lunatics have been met with who constantly complained of a fetid odour ; others rejoiced in the most delicions, thongh imaginary, perfumes. M. Lelat tells of a patient in the Salpetrière, who was continnally tronbled with the smell of dead bodies, which she thought to have been buried in the establishment.

Capellini mentions the case of a lady who oonld not bear the smell of a rose, and fainted one day when a friend came in with one that was artificial in her haud. Many other instances could be given. It seems to be well anthenticated, that in lunatic asylums these delusions as to smell are very frequent.
The intensity and delicacy of the sense of smell vary in different individaals and races. In some it is wonderfully sensitive. Woodwart tells of a woman who predicted storms seversl hours in advance, from the sulphurons odoar (due to ozone probably) which she perceived in the air. A young American who was deaf, dumb, and blind, became a good botanist, simply by the sense of smell. It is, however, in some of the lower animals that we find the sense most highly developed: ruminants, pachydermous animals, and, above all, carnivornos mammifers.
Smell is, with some of them, like an eye, which sees objecte, not only where they are, but where they have been. The keen scent of the dog is well known.
Humboldt mentions that when, in his travels in South America, it was desired to attract condors, all they had to do was to slanghter an ox or a horse, and in a short time the odour attracted a number of these birds, though none were visible previousiy. Of birds, waders hare the largest olfactory nerves, and their sense of smell is most highly developed.
The olfactory organ in reptiles is large. Fishes also have an olfactory membrane; and fishermen have observed that they are driven away when certain ollorons substances are thrown into the: water. Sharks and other voracious fishes often gather from great distances when a carcase is thrown into the sea. Crustaceans are not insodr
sible to emanations which come in contact with their olfactory fibres.

Entomologists say that the sense of smell in insects is very subtle, but it is difficult to determine the seat of it. When meat is exposed in the air, flies soon appear in great numbers, though none were seen before. The carcases of animals left on the ground attract hosts of insects, which find nourishment in them, and deposit their eggs. This will often happen when the object is concealed, so that their search cannot be guided by sight.
The flower of the cuckoo fruit gives forth a fetid odour, and a number of flies and other insects are often seen moving about on the corolla, in search, it is said, of decayed matter, from which, they imagine, the odour proceeds.

SELF-ACTING BLIND ROLLER.

ASIMPLE farm of self-acting blind roller has been recently patented by Messrs. J. Manuel \& Son, which will be readily understood rom the engraving and the following description. The principal feature of the invention consists in the application of a friction brake, which pra vents the roller turning except when released by the single cord which is found sufficient for moving the blind to the different positions re quired. On an ordinary blind roller, between the drum or pulley on which the cord is wound and the bearing bracket, a washer, consisting of a ring of rubber, guttapercha, leather, cork, or any substance capable of causing friction, is fixed. On the window frame or jamb, at a point above

THE WESTINGHOUSE ATMOSPHERIC

 RAILWAY BRAKE.THE railway brake invented by Mr. Westinghouse, which has during a period of three years proved itself to be the best mechanism for the purpose in use in the United States, has at length been tried by two railway companies in this country, with a result very gratifying, though not, we imagine, unexpected by its ingenious in ventor. The principle of the brake consists in the application of the elastic force of compressed air to actuate the ordinary brake blocks, the control of which throughout the train is left entirely in the hands of the driver. The remarkably short distances in which long trains can be stopped by its means was made apparent on its introduction to the American railways, and the results there regularly obtained in practice have been reprodnced here. In the trials recently made on the Caledonian line near Glasgow, with a train consisting of twelve carriages and two vans drawn by one of the powerful fast four-coupled engines belonging to the company, stoppages were made in 19 seconds and in 264 yards on the level, when previously going at the speed of 50 miles per hour. While travelling at the same speed, and running down an incline of 1 in 130, a dead stop was come to in 20 seconds and in a space of 268 yards; and when running down a gradient of 1 in 68 at 60 miles an hour ($29 \frac{1}{3}$ yards a second) the train was brought to a standstill within 308 yards in 23 seconds. These results are amply sufficient to show the value of the new (as far as this conntry is concerned) brake, even when examined solely in the light of the

the washer, a lever brake, consisting of a curvilinear pendant, is secured by a pin or screw in the frame bracket, or jamb, so as to bear against a portion of the circumference of the washer. This friction lever may be made of metal or wood or other combination of materials, and may be lined internally to enable it to exercise speedy friction on the washer, by its own gravity and contact always tending to cause it to press on the side periphery of the washer. The pendant lever or brake when in position rests with its lower extremity (through which the cord is passed (projecting forwards from the vertical line drawn from the centre of its pivot, and consequently the cord from the drum or pulley is held forward at a tangent, as shown in Fig. 3 ; consequently when the cord is pulled by the operator it becomes vertical by tension, and thus throws back the projecting under-point and prevents the friction brake bearing against the roller washer. The cord can then be pulled to raise the blind wholly or partly, and immediately the cord is released the swinging lever hangs forward and holds the roller exactly in the position required. When it is desired to lower the blind it is only necessary to slightly depress the cord, so as to throw the brake out of friction and to let the cord slip through the hand till the blind has wholly or partly descended, the release of the cord allowing the brake to act without the use of any rack or spring or other equivalent. Fig. 1 represents an elevation of the blind roller; Fig. 2 an end view with brake released; and Fig. 3 an end view showing the blind at rest, the hand having left the cord. In each figure A is the washer ring and B the brake.
figures thus obtained, but there is another point of view which appears to have been overlooked by the chroniclers of the experiments. Under the present system, as our readers are aware, the driver or the stoker has the immediate control only of the brake attached to the tender. In order that the other brakes on the train may be applied he is obliged to whistle to call the attention of and signal to, the guards, who, it is to be hoped, always pay prompt attention to the commands of the driver thus conveyed. As many of our readers will not require to be told, however, long acquaintance with danger renders those callous who have to face it ; and although we are inclined to be reticent in insinuating that guards do not always pay that attention to the whistle of the driver they are supposed to do, there cannot be the slightest doubt that far too much is left to their care; in other words, that the command of the train is taken out of the hands of the man best capableof governing it, to an extent which should not be allowed when a remedy is pointed out. But granting that the guards are always on the qui vive, with their hands on the brake wheel, ready at the first intimation of danger to apply the means of stopping the train under their control, it must be acknowledged that with trains travelling at 50 miles per hour even fractions of a second are valuable amounts of time, and it is only too true, having been proved in numerous instances, that the waste of these fractions of time in whistling and in getting the brakes put down, has often resulted in accident, or rather has failed to prevent what would have been, nuder a better arranged system, preventible. With the Westing. honse air-brake, on the contrary, the application
of every brake on the train may be almost simul taneous with the intimation of danger, depending solely on the quickness or smartness with which the driver puts in operation the means at his disposal. Under the present arrangement the time occupied in whistling and getting the brakes on often means just the difference between a collision and its avoidance, for although the time thus occupied may seem almost inappre ciable, it is frequently of sufficiently lengthy duration to be a trifle too long.
It is time, however, that we proceeded to describe what experience has shown to be the best arrangement for stopping trains yet put into practice. The most important part of the Westinghouse system is the method of compressing the air and storing it up for use when required. This is accomplished by an ingeniously contrived engine and pump secured to the outside of the locomotive, between the driving-wheel and the trailer ; in fact, on one side of the fire-box in a similar position to that frequently occupied by the Giffard's injector. The piston of the little cylinder and that of the pump are connected together by a rod of a somewhat peculiar section obtained by cutting or filing down the ordinary circular rod on four sides. The object of this is to prevent the turning of the pistons, which, owing to the peculiar arrangement of the steam-valve and the absence of guides, \&c., would otherwise be free to rotate. The arrangements for the admission and regulation of the steam to the pump engine are of a very ingenions character, and we shall probably illustrate them at a future time; suffice it to say, that the steam-valve is contained in a cylindrical chamber, and is made to rotate to admit and exhaust the steam. This rotatory movement is obtained from a very small piston actuated by steam, situated on the top of the cylinder and working at right angles to its axis. The main piston-rod is hollow for more than half its length, so as to permit the insertion of a rod connected with a valve which admits steam to the small piston employed to rotate the valve-rod Thas the motion of the piston-rod actuates this valve-rod, and the steam being caused to act upon the same piston, the valve is rotated to the re quired positions. The air-pump is double-acting, takes its air through a strainer, and also draws in a supply of the lubricator at each strokemineral oils being used for the purpose, owing to the great heat developed by the forcible compression carbonising all other lubricating materials. The compressed air is forced from the pump to a strong cylindrical receptacle carried under the foot-plate of the engine, and it is found in practice that the pump is self-governing, working when the air chamber is full at just sufficient speed to supply the small leakage which unavoidably takes place, but when the pressure which thus opposes its movements is reduced on applying the concentrated force to the brakes, it immediately spring into rapid action and restores the normal press sure. The small engine and pump is capable of a speed of 100 double strokes per minute in the event of any extraordinary leakage, less than onethird of that speed being found amply sufficient however, under ordinary circumstance. The reservoir is provided with a small safety-valve, so that whatever the pressure of the steam in the boiler of the locomotive may be, the pump may be allowed to work as fast as it can against the pressure of the air in the reservoir, generally from 601b. to 701b. per sq. in. The compressed air is led by a pipe from the reservoir to a three-way cock placed conveniently to the hand of the driver which communicates by one pipe with a three-way cock situated beneath the foot-plate, and by the other pipe with the atmosphere. In connection with this second three-way cock are inch iron gas. pipes, fixed beneath each carriage one on each side, the joints between the carriages being mod with stout specially prepared indiarubber tubiog and an ingenions coupling, the air-tight fit of which is secured by means of the compressed air itself. The object of having two sets of pipes is partly to insure against mishap to one set of tubes, in which case the other would be sufficient for all the purposes required, and partly to facilitate the connection of the different carriages; for the couplings, being provided with male and female screws respectively, and all the carriages being fitted alike, it is obvious whichever end of the carriage it is desired to couple will present the pipes in the reqnired position, which could not be the case if only one pipe was employed. The coupling is fitted with two valves, which, when the connection is perfect, are both open and allow of the passage of the compressed air, but in the event of rupture of amy of the couplings by
neci leat, or if the connection throngh careloanness kas not beon made, the valres close the end of the pipe and prevent the escape of the air. Besides this solf-acting arrangement tho driver can, by means of the three-way cock beneath the footpl:te, shat off the compressed air from either or both of the pipes.
The air being thus led thronghout the whole longth of the train is conveyed by branch pipes t_{1} an air cylinder noder each carriage. This eylinder contains a piston packed by a cup-leather, eud connected with a rod, to the onter end of Which is attached a conical cup, which receives the thrust rods employed to acturte the brake$s:$ aft. A small pipe is ingerted in the frout cover of the cylinder to permit the escape of air when tie piston is going forward, and to admit it when the piston is going back. Thus the whole operation is readily understood. The driver by means of the three-way cock placed near his rigint hand admits the compressed air to the pipes a:d the cylinders, where it moves the pistons, and 35 means of the thrnst-rods and gear forces the wrake-blocks against the wheels with a degree of pressure entirely under the control of the driver, Who can thas by a mere turn of the wrist lock evary wheel in the train, or bring just sufficient iriction into play to check the speed and retard a orain when ranning down an incline or throngl a station where nomerous points and dangerous crossines render 50 miles an hour a hazardous sleed. By another tarn of the wrist the compressed air which bas done its work is permitted to escape into the atmosphere, and spiral springs immeciately draw away the brake-hlocks and pash back the pistons in the air cylinders. The ax:sting bralic-gear can be made arailable for the
applichtion of compressed air, but where new application of compressed air, bat where new
gear has to be provided Mr. Westinghonee prefers to adopt an arrangement of swing brake winich pnesesses the valnable properties of equalising The pressure on the blocks, however nnequally ti'er casy be worn, and of preventing all jar and Thistion, none being perceptible, it is said, in
ise first-class carriage to which it las been We first-class carriage to which
applied on the Caledonian Railway.
Mr. W.stiughouse has also devised a simple s.stem of signalling between passeugers, spards. and driver, which depends on the adoption of the atmospheric brake, however. It consists in fitting each carringo with a small reservoir, whioh is smpilied with compressed air every tine the brakes are applied. Wires lead from the different compartments to a lover in connection with a valve in this reservoir, which lever also works a kind of semaphore indicating the part of the carriage whenco the signal was made. The valve being opened, the air rushes along the pipes and sounds whistles aear the driver and in the gnards' vans. These whistles are also nnavoidably bluwn when the brakes are put on, and to prevent the continuance of the sound longer than is required. a peculiar form of whistle is adopted, consisting of a cyliudrical pipe contrining a loosely-fitting jiston, which permits sufficient air to pass to nonnd the alarm, but which is driven np so as to close the outlot as the volume of air increases. All the details of the mechanism seem to have been well and oarefully thonght out, as regards bonth the brake and the signalling apparatus, each of which answers its parpose in an admirable manner. When we further consider that the cost ic applicstion onnnot amount to a very grest sum, that the conpling of the pipes occupies bat a few eaconds, and that the power of the driver over Lis train is considerably increas?d (which means, cs we take it, increased safety fur the passengers), we are curions to see what action will be taken railway companies, who hare some regard for the money they pey array in damages if they
hare no respect for the lives of the public.
the production of chlorine and HYPOCELORIZES.

ANY improrements in the manufacture of chlorine must be, as the majority of our readers are perfectly well asware, of considerable Kingdom. Wo gave an acconut of an improved procoss on $p .5 \tilde{y}^{\circ}$ of Vol. XII., and we are now enabled to give the details of the method reoently patented by M. Tessié du Motay. According to that distinpuished chemist, the processes hitherto employed to produce chlorine continuously by means of oxygen or of air and hydrochlorio acid in the presconce of certain metallic peroxides or drhydrating salts have never given practically
:uable results, because the excess of oxygen or
nir and nitrogen mixed with the chlorine gever. ated partly provents the condensation of this chlorine or its combination with the alkalies and alkaline-earthy bodies intended to produce hypo chlorites suitable for practical use in bleaching The object of M. Tessié du Motay's process is While wholly or partinily utilising the hydrochloric acid employed, to generate pure chlorine in an isolated state which can combine without waste with the alkaline or alkalino-terroas bodies in the form of bleaching chlorides; and to accomplish his the inventor has discovered two methods.

1. Into a retort heated to a deep red, con taining peroxile of manganese or a mixture of peroxide of mancanese and lime, a current of hydrochloric acid is carsed to pass; chlorine and steam are produced and disengsced, and there remain in the retort non-decomposed peroxide of manganese and chloride of manganese, or a mix ture of peroxide of manganese, chloride of manannese, and chloride of calcium. The chlorine is collected in the water or led amay into a chamber for the production of dry hypochlorites. Orer the mixtare remaining in the retort a current of air or oxygen of the same temperature is cansed to pass, which, in the presence of peroxide of manganese decomposes at once the cbloride of manganese alone or the chlorides of manganese and calcium regenerated from the sesquioxide of manganese alone into sesquioxide of manganese mixed with lime, and sets at liberty the chlorine contained in the chlorides. This chlorine mixed with air and azote or oxygen is led into vats containing a mixture of lime and protoxide of manganese which has been previonsly produced by the decomposition of chloride of manganese by an excess of lime, the soluble chloride of calcium produced in this reaction having been previonsl ran off. In preseace of the oxygen of the ake and of the ebloriue it produces immediately sesqui which in reaeting upon the sesquioxide-predirees finally the hydrate of peroxide of mangarase and chloride of calciom. The excess of lime rematn ing having no longer to rot npon the sesquioxide remsins in the state of bypochlorite of lime. Upon this mixture composed of hydrate of per oxide of manganese, chloide of colcinm, and bypoohlorite of lime, liquid hydrochloric acid is made to roant in the ordinary manyer. Chlorine is at once disengaged by the reaction of thia acid
on the ons hand urgon the hydrate of peroxide of manganese' and of the other npon tho hypo cblorito of lime. This chlorine is lid into the chamber for the production of hypochlorites. After this reaction it remains in the vats of the chlorides of manganese and calcinm. Upon the chlorides of manganese and calcium an excess of lime is again cansed to act, which reproduces the mixture of protoxide of manganese, chloride of calcinm, aud lime already r ferred to. The soluble chloride of calciura is then run off, and there remains in the insolable state a mixture of protoxide of manganese and lime, which will serve for other similar operations by repassing under the action of chlorine and air to the state of hydrate of peroxide of manganeas, chloride of calcium, and hypochlorite of liquid lime.

It therefore follows, first, that by the reaction of gaseons hydrochloric acid npon air and oxygen in retorts heated to redness containing peroxide of manganese or a mixture of peroxide of mancanese and lime, a first quantity of pure chlorine is produced, which is led away into condensing chambers, and for the production of dry hypochlorites ; secondly, that by the decomposition by means of air or oxygen of the chloride of manganese alone, or the chlorides of manganese and lime contained in the said retorts. gaseous compounds are produced containiver, at once oxyen and chlorine. Theso compounds in their passage across the vats containing the protoxide of manganese and liquid hypochlorites of lime prodncepre chlorine by the netion of liquid hredrochlorio acid, the cblorine in its turn being led into the chambers for the prodaction of dry hypocblorites. Insteal of the mixture of protoxide of manganese and lime in excess, over which the chlorine mixed with air and oxygon is cansed to pass just as it comes from the retorts, a milk of lime may be employed, which is transformed into hypochlorite of lime. This hypochlorite as well as the mixtare of hydrate of peroxide of manganese and bypochlorite of lime treated by liquid hydrocbloric acid regenerates pure chlorine suitable to be taken to the chambers for the production of dry bypo chlorites.
The ohloride of calcium remeining from the operation is collected in vessels wherein carbonate
of magnewia, or magnesia and cribhatic acid, see
cansed to react simultancously, carbonate of lime and chlorile of magnesium being produced. This distilied chloride of magnesium regenerates the hydrochloric acid, which is again exaployed for the production of a fresh quantity of chlorine. The magnesia remaining serves again for enother operation. Thas the reactions which constitute the process are shortly as follows:-1, the oxides of manganese serving for the production of chlorine are ceaselessly regenerated; 2, the hydrochlorio acid is atilised completely for the production of chlorine; 3 , all the chlorine generated is in a pure state, and consequently suitable for the production of dry hypochlorites.
2. The second method only differs from the one jast described in the substitution of magnesia for lime, the chlorides of magnesinm produced being withoat transformation, and capable of re-enged dering hydrochloric acid by simple distillation.

COLOURED SUNS.*

I
TF a brilliant star be observed when near the horizon, it will be soen to present the beancolours thomenon oi coloured scintilainan The seen in the solar spectram or in the rainbow. By comparison with them the light which flashes from the raby, the emerald, the sapphire, or the topaz, appears dull and almost earthy. There are four or ave stars which present this phenomenon with charming distinctzess. The brilliant Vega min the is one of these. At paidnight in winter, and eartier with the approach of spring, this splerdid steel-blee star may be seen as it skirts the sonthers horizon scintillating with red, and bline, and emerald light Arcturus twinbles yet more brilliantly low dowo towards the notideast in our spring erenings.
Capc:lle is another notabla scintillator, seen low down towards the north dening the momese sights.
But thewe, though they are ther thern stars, yet shime with evplendour far inferior to that of Sirins, the famens doy-ster. No one can horizon this noble orb asitusses above the soather exhibited by Sirius as in saintill
 the celestial light which glenmed from the shield and helmet of Diomed to the raye of "Birias, the brilliancy witeu laved by:oonanda wames;" and, to
 same in
As the fiery Siring athors than
And bickeris intor red nnd emeratd, ghone their moriuns, washed with morning, as they osmm.
It is lifficult to persuade onpelf that these everchanging tints do not really betong to the stare. But there is now no donbt that they are cansed by onr own atmosphere. Uueqnally warm, usequally dense, and uncqually moist in its various strata. the air transmits irvegularly those coloured rays which together produce the light of star Now one 80 that the star appears to change colour Cut it is only low down towards the horizon that these changes triko place to their faß extent. In the tropics, where the air is more uniform in exture, so to speak, the stars do not scintillate naless they are quita elose to the horizon, "a
circumstance," says Humboldt, "which gives a circumstance," says Humbolda, "which gives an
peculiarly calm and serune character to the celestial derths in thoze countrics.
Eut the stars are not wemting in real colours, ennsed by pecaliaritics in the quality of the light which they emit towards us. In tropicareoantries the coloars of the stars forw a very obvioas and a very beantifal plenomenoa- The whole heaven seemg set with varionsly colouren gems. In our latitades, none bat the brichtest stars exhibit distimetly marked colours to time natsed eye. Siring, Rugulus and spica are white stars; Betelgens, Aldebaran, Arcturns, and Antaros are red; Procyon Capelia, and the Eole-star are yellow; Castor ex are blaish. Antures, which we have described ns a red star, presents, when carefolly wotched, a gyeauish scintillationso peenliar as to have eariy attracted the notice of nstronotmers. The green tint of Castor had been found to arise from the fact that the star is doubre, and oue of the components green. But, for a loug whily powerfal instraments railed to ex hibit a companion to Antares. At length General Mitchell, with the greal refractor of the Cinciunsti Obsernetory, detceied a minute green companion to
this britiaut red stay---the Sirius of red stars, as it has been termed.
But, as we have anid, the stars which present distinctly marked colonrs to the naked ere in oar latitudes are few aed far between. It is in the telescope that our observers have to seek for a fall
 turge
viev of the delicate phenomenon of coloured stars. When a vervey is made of the heavens with a powerful telescope, peculiarities well worthy of careful attention are revealed to the observer.
We have seen that there are no stars visible to the naked oye which are decidedly blue or green. The ancients, also, recognised only red and white stars. In the telescope, this peculiarity is still observable when single stars only are looked at. Wo meet with some telescopic stars, the depth of whose red colour is remarkable. There are stars of a dery red, of a deep blood-red, and of a fnll orange colour. There in a well. known etar entitled the "garnet star." And, in fact, every variety of colour, from
white through yellow and orange to a deep, almost dusky red, is met with among the single tixed stars. Bnt there is no instance throncishont the whole heavens of a single green, blue, or violet star.

The case is altered when we come to examine those donble. triple, and multiple stars, the observation of which is one of the most pleasing employments of the amatear trlescopist. Amongst these systems we meet with all the rainbow, such as fawn-colonr, lilac, gray, and so on. "The attentive obserration of tho doable stars," writes the celebrated Struve (who detected ,000 of these objects) "teaches us that, besites are to be met with." "Here we have a green star are to be met with.' "Here we have a green star
with a deep blood-red companion, thero an orange primary accompanied by a purple or indigo-blue satellite. White is found mixed with light or dark red, purple, rohy, or verniliou." Somectimes a Eingle system offers at one riew many different
colours. Such is the case with the remarkable colears. Such is the case with the remarkable Sunt detected by it is composed of no less than 110 stars, which, seen in a telescope of sutficient size, appear, Herschel tells us. like "a casket of rariously culoured precions stoues."
It will be well to examine some of the collocations of culour, that we may trace the presence of a law of distribution, if such exist.

We have said that blue stars are not met with singly in the heavens. Among double stars they are enmmon enongh. Bnt they are generally small.
Wien the larger star or primary is not white, it is neually either red or yellow; then the smaller star bor satellite, as we may term it-is frequently
blue or green. But this is so far froun being a law will out exception that the more common case is to find both stars similarly tinted. Amougst 596 bright 'donbles," Struve fonnd 375 whose components were eimilarly coloured, 101 whose components prescated colours belonging to the same end of the spectrum,
snd only 120 in which the colonrs were totally diferent.
Amongst doable stars whose coroponents are similarly tinted, by far the greater number are of doable blae stars; and in the sonthern heavens there is a groap containing a mallitude of stars, ald
\qquad It is inapossible, therefore, to suppose that the blue coloars seen in multiple systems are due to the mere effect of contrast. In some cases this may happen, however; or at any rate the effect of con-
trist may intensify the colours of eacly compenent trast may intensify the colours of each compenent
of a "complementary double." There is one very charming instance of complementary colours in a duable star whici may be separated with a telescope of very low power. We refer to the star Altireo on are orange anc blue, the tints being well promonced It has been fooud that when one of the components is hidden, the other still preserves its colour, thongi not quite so distinctly as when both aro seen 3tar ${ }^{2}$ Andromedre. The primary is red, tie the smaller component is found to be it eff scopes and doabts exist among astronomers whether the two minute components of the lesser star are both green, or one blua and the other yelluc. There is another doable star very beantiful in a powerful telescope. This is the star \& Boitis, on the Herde-
man's belt ; it is called also Mirach, and, on acconnt of its extreme beanty, Paloherrima. The cornpo nents are nearly equal-one orangs, the other a delicate emerald greon.
One of the most startling facts revealed by the careful observation of the fixed stars is that their colour is not nachangeable.
We mas begin al ouce with the brightest of the fixed stars-Sirius. This star was knowu to the ancients as a rec star. To its fiery hue may to it by ancient astronomers. At present Sirius is brilliantly and anmistakeably white.
We have not such decisive evidence in the case of any other noted atar. But among telescopic stars, there have been some very remarksible changes.
There are two deuble stars, desoribed by the elder Herschel as white, which now exbibit golden-yellow primaries and greonish satallites. That carefal
observer, Admiral Smyth, records also that one of the components of a donble star in Hercules changed, in twelve years, from " yellow, through gray, cherry-

The questions may well be asked: Whence do the stars derive their distinctions of colonr, and hy What processes do their colours, change? To these which if modern discoveries have supplied answ It had long been saspected that the stars are in reality suns. It had been shown that their distance from us nust be so enormons as to enable ns to rasizn to them an intrinsic briliancy fully eqnal, in some instances, and in others far superior, to that of oar own sun. Nothing remained but that we shonld have some evidence that the kind of lipht the emit is similar to that which we receive from the
sun. This evidence 4as been supplied, though only late years.
We canuot bere enter at length info an account of the important discoveriss of Kirchhoff and
Bunsen. wlich have cnalled astronomers to amalrs. the light emitted from the celostial bodies. It will be sufficient to remarrs that in the solar spactrnm there are observed fine daris lines brenking the coutinuity of the streak of light, and that these lines have been proved to bo due to the presence of the vapours of certain elensents in the solar atmosphere. The proof drpends on the exact corre pondence of numbers of these lines, gronped in a complex mamer (so as entirely to eliminate the possibility of a mere chance accordauce) with the bright lines feen in the spectra of light from the vaporrs of those elements. When ouce Kirchhof and Bunsen
had proved the possibility of exhibiting the same had proved the possibility of exhibiting the same
set of lines either as bright lines on a dark ground or as ilerk lines on a brillinnt spectrum. all doubt as to their menning in the solor spectrum disappeared at once.
It has been found that in the sun's atmosphare there are pressut the rapours of irna, copper, sinc. other metals. But the rapones of tin, lead, silver, and gold do not apnear to be present in the solar at mosphere. One of the most remarkable darls lives is due to the presence of hydrogen.
But it has been fonnd possible to extend these rescarches to the fixed stars. Drs. Huggins and Miller have done this successfolly, and their discresies afforid a means of ashigung very suincient
reasons for the colours of the brighter stars. By analogy aloo we may extend a sinilar interpretation to the colours of stars not bright ennach to give \boldsymbol{a}^{n} spectram which can be satisfactorily
exnmined. Let ns take first the brilliant Sirins. This star belongs to the sonthern half of the celos' ial sphere, and allhough it becomes visible at certain seasons in our latitude, it never rises very bigh above the horizon. In fact, at its highest-that is, whendae southit is only twenty-two degrees above the horizon, or less than one-fourth of the way from the horizon to the point inmeriintely overhrad. This pecaliarity somewnat interferes mith the sibscruation of the celebrated physicists we have camad. On the other hand the exceeding brilliaucy of Sirius makers some hand the exceeding brimiancy of sirvic misturhinces. By selerting very favourable opportarities, Husgins and Miller were aule to maiyse the star's spectrum
with the following result :with the following result:
The ntmosphere
The ntmosphere around Sirina contains sodiam, mamresium, kydrogen, and probably iron.
The whole spectram is cuvered by a very large number of faint and fine lines, indicating a correspouding variety in the sabstances vapourised in Tho star's nt mosphere.
The hydrogen lines are abnormally strong as compared with the solar spe
This last circumstance is well worthy of notioe since it is a pec riuiurity characteristic of white stars \rightarrow so that we begin already to find a hint respecting the source of colour or of the absence of colour in stars.
Take next an orange-red star, the brilliant Betelgenx. The spectrum of this otar was very care-
fully analysed by Hoggins and Miller. They marked down the places of two or three huadred lines. and measnred tho position of no less than eighty. They found that sodinra, magnesinm, calciun, iron, aud bismuth are present in the star's atmosphere, but the two strong lines which note the presence of hydrogen are wanting.
Take neat the yellow star. Pollux. The observers were not able to obtain very satisfactory measures of this star; but they established the presence of sodium and macnesinm in the stars atmosphere: and again the strong hines of hydrogen were foan to be missing.

Bat wo are not erititled to assume that red and yellow etars are characterised by the absence of hydrogen from their atmospheres. On the contrary.
the noted red star Aldebaran, the spectrum of which was very carefally amalysed by Hugcins and Miller, was very carefally analysed by Hugcins and perfoct distinctness. This star exhibited a richness in the construction of its atmosphere not presented by any other. The clements proved to bo present
are sodiam, magnesium. calcium, iron, bismath, are sodiam, magnesium. calcium, iron, bismath,
telhurium, antimocy, nud mercury. It mast not be supposed, in this or any other case, that other olements might zot by a Enfficiently laborious
ecratiny be provei to exist in the star's atmosphere.

The observations required, says Dr. Huggins, "are extremely fatiguing to the eye, and necessarily limited to the stronger lines of each spectram.
It is clear, however, from the abore short list of examples, that a considerable variety exists in tho physical constitation of the fixed stars. This of itself affords a anggestive hint respecting the true explanation of the variety of colour which we have described. And the peculiarity that in the white stars the hydrogen lines are singularly strong, winile the metallic lines are 25 singularly weak, is yet moie the metalin lines are as singalarly star. Was it nt that time unlike present red stars? Does it nut seem more probable that, if there haid existed in those days a Huggins or a Siller, and the instraments osed so snccesafully by theso observers lia been invented, it would have been found that Sirius did not-when a red star-present puculiarities now observed only in whito stars?
We recognise, then, the influence of time annn the spectram of this celebrated star, as probaily tuding to render the lines of kylrogen more distinct than of yore, and the lines of the metalic elements less distinct. But what is the meaning of such a change? Suppose a chethist. for exampie, observing the spectrum of the game prodaced botice that the lines of a componad slowly increased it. listinothes whie the lines of others crew fainter how would he interpret such a plenomenon? If we remenhered onls that the dark lines are dea to the absorptive effect of the vapour they corresponiz to, on light which is trying. so to spenk, to mass through the vaponr, we might readily juisp at an 2 conclusicn, and answer that the crent of nisorpmore distinct, and vice versa. But we must alsc consider that these lines are partly tise ellect of contrast. The limelight held before tive sun's di:c appears blact, thongh so dazzling when seen aloue. thing be, therefore-or rather we nay say it cectai streak which seem dark are in renlity lmmuuns, or-which is merely auother way of saving the same thing-that the vapours which aboorb light from tho solar beams, send us light of thoir own. And sc fith stars. Therefore, we have this aimculy to contend agains ange in the intensity of a line. or of a set of lives, is dne to a variation in the lightiving power of the corresponding rapour, or to a variation in the quantity of vapour whose absorpive elfiects proluce the fines.
But, inasmuch as it resulted from Dr. Hugfins examinatiou of a temporary star whin apitare last year, that the incrense of licht-for it was ouly the ahnormal brillinney of the star winc.1 was reany finmorary-was at seems on the whoie more prob.hble that the increndescent vapours of stars bary with variable brilliancy, than that they vary ia quantitative distribntion
As regaris the constant colours of different stare we ar
sulta.

For instance, we may dismiss at ouce the theory some years ago by the French astronomic M. Doppler. He snpposed that the colours of ε star are due to the proper molions ch the eta. acting so as-in elfect-to leng, ieu or shes of limbt proceeding from the star to enith, jast as the apparent breadth of sea-waves would bo greater or less to a swimmer according as he wam with or against their course. It is quite clear tian the effects of a motion rapid enough to produce stech a clange would be to shift the position of the who spectrum,-and this change would be rea. . Apurt from by a refcreuce to the would not be changed br such, motion the spectram being merely dis placed, not affected in its characteristics of colour
(Sce p. 275.)
Another theory-that the orange and red tints indicate a lower degree of temperature-must al:o be dismissed. For we have seen that the epectia of red stars indicate the presence of the iron and other metals, and nothing but an ingly high temperature could vapourie these.
It sernis clear that the difference of tint is due to the different arrangement of the dark lines-in other words, to an absolate difference of phssical constitution. "There is a striking citicreuce, remarks Huggins, "between the effect on the coiour lines in the green and blue part of the spectrum of Beteigeax, and of the corresponding part of the spectrum of Sirins, in which the dark lines are faint, and wholly anequal to prodnce any noticeablo subduing of the blne and green rays.
subduing of the bine and green rays.
But wo have still to consider the pecaliarities presented by the double stars. We have seen that

* I may be permitted to notice that this whs a mong the earliest published references to the possibility oi detcrmining of the spectral lines. Very shortly afterwarip, Dr. Huggins had sacceeded in applyiug the methoi, Which ho had been endeavouriog anaware of this whes before. 1 wns, however,
wrote the above lines. I beliove, in fact, his rescal wrote the above lines. I beliove, in
were carried on altogether privately.
amongst the components of these there are observed some which present a distinct blue colour. It has been fonnd possible to aualyse some of these with the spectroscope. We have spoken of the charming
double star Albireo. the components of which are double star Albireo. the components of which are
orange aud blue. Both have been analysed-with this result, that the spectram of the orange component is remarkable for the great strength of the lines in the green, blae, and violet, while the spectrum of the blue component is equally remark-
able for the great number of groups of fine lines in the orange and yellow.
It would seem, then, that the complementary colnurs observed in certain double stars indicate a Fnrt of complementary distribation of elements which in our own sun are associated equably and intimately.
ntimately.
And we must note here, in passing, that it is not alisolutely necessary, as some bave supposed, that, if there are systems of worlds circulating around ench double suns, there shonld be any remarkable
difference in the quality of light distribated to the difference in the quality of light distribated to the
planets, as compared with that which we receive planets, as compared with that which we receive
from the Sun. Sir John Herschel has spoken of the charming contrasts and grateful vicissitudes -a red or a green day, for instance, alternating with a white one or with darkness, according as one or other or both of the stars should be above the
horizon." But if the dependent orbs swept in very ride circuits about their doable sun, they would receive white light during nearly the whole of each of their days, since it would only be during a brief interval that either sun would be visible alone above interval horizon.
Of the deeply coloured stars which are visible with he telescope, none have been found sufficiently brilliant to admit of exact analysis.
A pecaliarity has been remarked by a distingnished modern observer which is worthy of carefal attention. Many of the regularly variable stars, when passing into their phase of minimum brightness, exhibit a ruddy tinge which is very conspicuous in instruments of adequate power. It does not seem easy to explain this as due to any change in the vaporons constitation of a variable starsince it seems difficalt to show why such changes appear to be more probable than that these changes are due, either to the rotation of the star itself and the presentation in a cyclic order of the different parts of an nnequally illaminated globe, or to the evolution round the star of an extensive vaporous mass whose interposition cuts off from us at regular intervals a portion of the star's light.
It is remarkable that a large number of the known rariable stars are red or orange. There is one not-
able exception, however, for Algol-the celebrated able exception, however, for Algol-the ce
tariable in Medusa's head-is a white star.
It is probable that a careful examination of the stars with any efflicient "colour-tester" wonld lead to the discovery of many cases of variation in of colour-but a test of this sort is not very sntisfactory. Opaque colours generally vary with time, so that it is impossible to say that two observers, even if they have used the same strip of coloured
discs. have really made observations fairly compar discs. have really mander se. And it is further to be noted that alle inter se. And it is further to be noted many persons who find a difficulty and uncertainty in the comparison of stars, or brilliants, with opaque colour-ecales. An ingenions student of science has suggested the ase of chemical solntinna, which can always be reproduced with cer-
taiuty ; and he has described a method for forming taiuty: and he has described a method for forming
an artitcial star in the feld of view of a telescope. and for gradually varying the colour of the star until it shonld coincide with that of a fixed star whose colour we may desire to determine. The great objection to the plan is its complexity.
Coloured plasses, through which a small white disc within the telescope might le illuminated (just as the wires are illaminated in the ordinary transit
telescope.). woald serve the same parpose much mor telcscope.). Woald serve the same parpose mach more simply. The inquiry is an exceedingly interesting one, and Sir Jonn Herschel has expressed the opinion that there is no field of labour open to the amateur tclescopist which affords a better promise
of original discoveries than the search for such of original discoveries described.
variations as we have der

WOOD VENEERS FOR COVERING WALLS.
THE following particulars of the method of pre-pnper-hangings, are sent by a correspondent to the hronicle :-
Some time since, Dr. Ass Gray presented to the Musean at Kew a series of thin veneers, or rather sheets of wood, such as had been introduced into America for covering the walls of rooms instead of paper. These wood papers, if we may so call them. are exhibited amongst the American woods in the timber moseum (No.3), and though the specimens

Journal of Sceicnee, for Ootober 1867, in the "Chronicle of Astronomy.' An instiament of some such sort had ben conastructed earlier by Mr. Bist, who called it the
homochromatoscope.
there shown are not more than from 2 ft . to 3 ft . long, and 18 in . wide, they are, we nnderstand, to be war in America in lengths of 10 ft. and of the entire width of the trunk from which they are taken. They
are of a nniform thickness throughoat, and scarcely, are of a nniform thickness throughoat, and scarcely,
if at all, thicker than ordinary wall paper. They are produced by a kiud of gigantic planing-machine the papers being simply luge shavings. In mos of them the grain runs longitudinally, the trunk of the tree being fod against the plane, or the plane being worked along the trank in that direction, but by a further development of this wood nachine much wider veneers are obtained. A wider bladeis, of course, necessary, and the trank of the tree being a cylinder, and by a very even and nniform pressure against the edge of the plane, a continnous shaving or veneer, of any desired thickness or length, is prolling the retable tissues Though thase wood papers are of comparatively recentintroduction wood papers are of comparatively recent introduction in America, it nppears the patent for their production so long ago as $14: 26$, by which the patentee covered a piano with shects of ivory so produced. For the veneering of small objects, such as telescope tubes, sword canes, \&c., the wood shavings are nsually applied with thin papers; the backing or usually employed for making cardboard, by which wo sheets, supplied from rollers, after being brough liquid paste or aize revolving brush, dipping is compressing rollers, and then taken up on the used for walls without any lining or backing but before being applied they were thoronghly soaked in water to make them pliable ; when lined with paper however, they are much stronger, and are used
exactly as ordinary wall papers by pasting the sheets, or if preferred the wall itself. The sheets are so thin that the elges can be lapped over each other a readily and neatly as actual paper. After being properly fixed the walls can be either left antonched rubbed down with oil, or varnished, and in either hinoagst the we bird's-epe yenple (Acer saccharinum), red maple (Λ. rabrum), swamp carly maplo (A. rubrum), mahogany (Swietenia Mahagoni), black walnut (Juglans nigra), button Americanus), \&o.

NATURE PRINTS BY PHOTOGRAPHY.

THERE are probably but few of our readers who ced by skifful manipulators of the ordinary nature-printing processes. Probably the best method of producing these elegant pictures of leaves, ferns and grasses is the most neglected of an, allough it is possibly the most simple of all. We allude to
the atilisation of photography in this connection and extract some interesting details of the process from the Photographic News.

Our contemporary has more than once called at tention to the very interesting, hat singularly neglected, branch of photography, the production of copies of ferns, leaves, grasses, and other botanical specimens, by printing direct from the freshly gathered plant without the intervention of a nega-
tive. The production of these " leaf prints," as our American neighboars have styled them, is an occu pation at once simple, elegant, and interesting, and may be adopted either for the parpose of securing pretty floral pictures and decorative designs, or for the more important parpose of aiding botanical studies. Where decorative results only are reqnired there is abnndant opportanity for the exercise o taste in arrauging the leaves, stems, and blossoma
of varinas plants in pictorial bouquets in graceful of rarinns plants in pictorial bouquets in graceful
wreaths; ferns, and the leaves of varions creeping wreaths; ferns, and the leaves of varions creeping
plants, such as the ivp, the linaria various grasses plants, such as the ivy, the innaria, various grasses, other of the most comanon wild plants growing by the hedge side, will yield endless varieties of effect. Where aid to study is the nim, the plan in question is not less full of interest and value. One of the first objects of the botanical stadent is to acquire a distinctive knowledge of the appearance of plant which can only be acquired by constant comparison When the stadent turns to the dried specimens in bis flora, he finds that he has lost mich of the characteristic of the fresh plant. By skilfally using the plant. or portions of it at a time, as a negative
he can retain many qualities utterly lost in the dried he can retain many qualities atterly lost in the dried
plant, however carefally preserved. Where the student, besides securing self-prints of the leave and other portions of the plaut admitting such treat ment, will also take the trouble to photograph the whole plant, either the size of nature or in some definite relation to the size of nature, he will gain an enormous advantage in his studies. A set of such photorraphs accompanying his preserred specimeknow.
Treating of the subject for decorative parposes

1. The leaves and ferns should not be dried, as the dried leaves do not permit the light to delineate their beautifnl and delicate venation. They should be freshly gathered and pressed between the leave of a book, just encugh to extract the excess o moisture, and then naed before the delicate veins have become dry and opaque to light. The fines
impressions are those from the fresh loaves and impre
2. They are not placed on sensitive paper, bu rastened by mucilage to a sheet of glass in the form of the design required. This glass is then placed in a prossure frame, and used as a negative from which to print. The sensitive paper placed apon this negative must be exposed to sunlight from ten minates to half an honr, according to the season of the year, or the intensity of the chemical rays. Th pictures can then be toned, fixed, and mounted like ther photographic prints.
3. It is not true "that it requires bat little skill to arrange the leaves and sprigs of fern, and none to print them." As the chief part of my work has heen done by other and gentler hands than my own can, withont a charge of immodesty. assure you that the work requires great taste and skill, and the expenditure of much time, labour, and patience.
again, great care is necossary in printing not in injure or start off the delicate ferns from the glasa. After the print is made, a sheet of white letter-paper ghould always be placed over the ferns, and the back-board put in position again to protect them from injary, and to keep them from drying and coming off the glass.
For the help of those who may desire to adopt his methol as an aid to botanical studies, we reprin a few hints from Professor Hime's excellent work on the sabject:-
In gathering leaves for photographic parposes some care should be taken to procare perfect and characteristic specimens. The margins should be kept as free from overlapping as possible when the leaves are placed in the printing frame or pressed leaves are placed in the printing frame or pressed wilted, bat generally the sooner they are snbjected Wilted, but generaily the sooner they are snbjected o a slight pressare the better. A portionio or ordi nary athas, sapplied with sheets of printing-paper
should be taken to the woods, in which the most Ahould be taken to the woods, in Which the mos
delicate one-as the maiden-hair, fine-haired monn tain fern, \&o. -can be placed as sonn as placked Many leaves can be printed from without pressing or drying-as forest leaves, many ferns, columbine anemone, black carrant, \&ec., but when the pines o the leaf may be expressed by the pressure ased in printing, and stain the scnsitive paper, it will be necessary to sabject them to some pressare between the folds of bibuious paper. They
however, be dried as for an herbariam.
The ribs and veins in prints made from nndried leaves appear as sharply-defined dark lines, and the whole appearance of the prints is superior to those made from dried lesves, in whioh the ribs and veins are represented by comparatively ill-defned white lines.
The reason of the difference alluded to lies in the fact that the ribs and veins, whilst filled with the finds which they conveg, are transparent, and allow the light to pass through and make a record of them in dark lines. When dry and empty they are opaqne and, by preventing the action of light, produce white

Dried leaves may be made to give prints in all respects equal to, and sometimes aven superior to those obtained from freshly-gathered ones. by soaking them for several hours in water nutil the veins become expanded and filled. They mast then be pressed between the folds of bibulous paper unti dry enough saperticially to print from. After this reatment they will only remain in good photographic coniltion several days, but the operation can be repeated as often as desired. A little glycerine added o the water will cause the veins to remain trans parent longer, and a little hydrochloric acid wil acilitate the filling of the veins in some cases.
When it is desired to print from several leaves apon the same piece of paper at the same time, it will be found convenient to fasten them to the glass by means of dilate gum.water. Immediately afte being fastened to the glass in this way, they should be subjected to the pressure of the clothes-clip as in printing from them. In some cases it is best to place the leaves-especially dried onos-between folds of writing-paper, and sabject them to as great a degree of pressure as can be obtained by means of an ordinary letter-press, before fastening them on the glass. If the leaves are not of the same in tensity, the most intense-those that require the longest time to print-may be bleached as much as necessary by means of Labarraque's solution, or those least intense may be stained lifht yellow by means of turmeric. Small plants with Howers that preserve their shape somewhat in pressing-a violets-can be photographod entire.
As all prints taken from the leaves themselves must consist of a light image on a dark background Professor Himes suggests that for many parposes an improved effect will be produced by using the with wax to render it transparent. The followiug is the method recommended;-

Melt some pure white wax by placing it in a shallow dish placod in a pan of boiling water. Immerse in the melted wax sheets of blotting-paper. As these sheets will absorb mach more wax than is
required, a pile is to be made of (say) half-a-dozen of required, a pile is to be made of (say) half-a-dozen of
these with half-a-dozen clean sheets of blottingpaper, placing alternately waxed paper and clean blotting.paper, a few extra sheets of the latter being placed at top and bottom. The whole pile is then pressed with a fiat iron heated to about the temperature of boiling water. By this treatment a series rature of bouling water. Byiformly waxed sheets of blottiog.paper will be obtained. When a print is to be raxed for use as a and then npon its face is laid a sheet of the waped paper; this is then covered with two or three sheets of blotting-paper, and the whole pressed with the of blotting-paper, and the whole pressed with the hot iron. The negative is thas uniformly waxed, purposes.

Silver prints will, of course, be found to answer every purpose, and carbon prints, in suitable colours, still better. Blae and brown prints may be obtained as follows:-Prepare-
Ferridcyanide of potassiom (red pras-
siate of potash)
.........................
100 grains
Apply the solution with a tuft of cotton to a piece of Saxe paper pinned to a board. This will give paper of a uniform yellow tint. This, on exposure to light, becomes blue; the only fixing process necessary, being copions washing in water until all
trace of yellowness is removed. A saturated solu. tion of bichromate of potash produces brown images by similar treatment, excess of washing having a tendency to decompose the image of brown oxide of chromium, and leave a pale green image of sesquioxromiam, and leav chromiam.

FLUID MEAT.

A SOLUBLE preparation, under the above title, F.C.S., which is Tikely to become of some economic as well as medical importance, says Food, Water, aud Air. Mr. Darby recently gave some interesting particulars respecting this article to the Food Committee of the Society of Arts, from which we glean the following:-
" Fluid meat contains all the constituents of lean meat, including fibrine, gelatine, and coagulable albamen. By the process pursued these are all
brought into a condition in which they are soluble in Wrater and are not any longer coagulable on heating-in which state they have been designated peptones. This change is effected, as in ordinary
digestion, by means of pepsin and hydrochloric acid. digeastion, by means of pepsin and hydrochloric acid. in wator previously acidulated with hydrochloric scid, at a temperature of 96° to 100° Fahr., until the whole of the fibrine of the meat has disappeared. She liquor is then filtered, separating small portions of fat, cartilage, or other insolable matters, and
neutralised by means of carbonate of soda, and neutralised by means of carbonate of soda, and soft extract. But this process, whatever care may be taken, leaves the fluid meat, with a strong bitter taste. This bitterness attaches always to meat
digested with pepsin ; and this, in the opinion of medical men, would wholly preclude its acceptance and adoption as an article of food. In order to remore this bitter taste, and to obviate the objection
to fuid meate on that ground, I have made many experimental researches, and have at length discovered that the purpose is completely and satis-
factorily effected by the addition, in a certain part factorily effected by the addition, in a certain part
of the process, of a small proportion of fresh panareas. The finid meat so prepared is entirely free from any bitter flavoar."
Mr. Darby regards these changes as exactly anslogous to the action of the pepsin and pancreas tained from 201b. of lean meat, and he considers that even by using English beef economy is effected in certain cases, while, of course, the employment of plentiful would be attended with an equivalent increase of profit.

A NEW ANILIKE VIOLET.

M.CLAVEL, of Beslo, Switzerland, has published an eccount of the preparation of a new violet, obtained by heating magenta and
iodide of ethyl without pressure. He calls it the iodide of ethyl withont pressare. He calls it the
"night violet," and obtains it by means of a condenser connected to the apparatus with a glass tube, in which the iodide of methyl, as fast as it is
volatilised by the heat, is recondensed and falls back as a liqnid. The apparatus is a common cast iron boiler heated by means of a steam jacket. The
cover has two openings for two glass tubes in connection with a worm for condengation. The vapours rising out of the boilers pass into the worm, are there condensed, and from thence ran as a liquid iato the scoond glass tabe which leads back the
iodide of ethyl in a regalar atream. For the pre -1
paration, he takes magenta crystals, solid caustic soda, and iodide of ethyl, with a suitable quantity of wood spirit; or the iodide of methyl can be nsed, and alcohol naed as a solvent. The magenta and the soda are put into the boiler together, and well stirred till the mixture becomes uniform. Hall of the iodide of ethyl is then added, the lid closed, and the condenser connected. Heat is now applied for six hours. The apparatus is then cooled, the remaining half of the iodide of ethyl added, and heating resumed for six hours more. After this time the connection between the condenser and the second or return glass tabe is closed by means of a tap, and another tap is opened to allow the condensed iodide of etbyl to run off into a receiver. Heat is again applied, and maintained until all the iodide of ethyl and wood apirit are distilled over and proserved for use on another occasion. The mass whioh is left behind in the boiler is then taken out, and boiled for a considerable time with a strong lye
of canstic potash. This removes all the iodine in of canatic potagh. This removes all the iodine in
the form of iodide of potassiam, while the "night violet," is deposited as a cake. This is now in the state of an insolable base. To rendor it solable in water, it must be combined with an acid. For this parpose, the cake is dissolved in dilate sulpharic acid. When this has been done, the colour is thrown down by neatralising with a solution of sode. It is then washed in cold water, dissolved in boiling water, and fually reprecipitated by the addition or which, when seen by artiflciell light, seem of a reddish brown colour, this dye retains its beantifal blue tone. A variety of shades may be obtained by varying the proportions of magenta, soda, aud iodide of ethyl.

IMPROVED PATTERN OIL.CAN.

A^{N}
N improvement in mechanics' oil-cans recently class of oil-cans in which the oil is ejected by pres. sure on a piston or a portion of the can made elastic for the parpose. Such cans have hitherto elastic for the parpose. Such cans have hitherto
possessed but limited durability, inasmuch as the

bottom generally became worn out hefore the boily and as it formed an integral part of the latter, the
destraction of the bottom cansed the loss of the whole ; the necessary repair not werranting the expense. This is obviated in the improved can by making the bottom readily detachable, so that when necessary or desirable it can be replaced by another,
and as several bottoms are sold with the can th, cost of repair is reduced to the minimum. The can is of the usual form, but provided at its base with an annular piece of brass or other metal securely soldered in place, and furnished with a screw thread ring or base-parface; at the upper edge of this ixed ring or base piece is an internal iange, a, on which
a washer of leather or like material is laid; the flexible bottom is then placed with its edge on the washer just mentioned, and a second washer is laid apon the edge of the opposite side of the bottom. The annular nut shown, being provided with a screw-thread on its outer surface corresponding to
that on the ring forming the base, is then screwed home, and firmly clamping the edge portions of the bottom, together with the washers, tightly tixes the bottom in position. The annular nat, is, in practice, fitted with internal projections in order that it may be easily turned. The bottom has the usua swelled or bulging contour, and may be fitted with a spring, as shownjin the figare, arranged between course the fixed transverse bar, bat man can impairing the advantages secured by the essential fenture of the invention.

BITUMEN AS A PHOTOGRAPHIC MATERIAL. FRENCH photographor, M. Derpaquis, recently France, specimens of a new photographic agent which is likely to yield valuable results for photoengraving and photo-lithographic parposes. This is bitumen of Judsen, which is used for sensitising either sheets of paper or mica. In calling attention to this new process, M. Despaquis sald that the paper may be preserved for an indefinite period, if screened from light and protected from the effects of moisture. The manipalations necessary to ita employment are of the most simple character and are confined to placing the paper under a negative in the ordinary manner, exposing to light (a very long exposure is necessary) and washing subsequently in essence of turpentine.
The samples of paper are of varions linds. No. 1 is as transparent as glass, and is covered with a sensitive film of bitumen; it serves for the production of transparent positives, and for reproducing
clichés, which may be put into the frame reverse cliches, which may be pat into the irame reverses
if desired, acoording as the image is required for photo-engraving or carbon printing.
No. 2 is also transparent, but possesses more the appearance of ground glass. It is suitable for making transparent prints for stereoscopes, transparencies, \&c., at a low price. With prints of this kind, the stereoscope needs no glass, and is, therefore, very light and portable. This same nitaterial answers well for the proparation of so-called photominiatures, which are produced by means of two prints superposed, the lower one being vigoronsly coloured ; the tints, when viewed by transparency through the apper print, possess very fine gradations. The upper print is produced npon this No. 2 paper, which will doabtless be foand to answer the parpose much better than albumenised silver paper
rendered transparent by varnish. rendered trangparent by varnish.
No. 3 has a matt or opal white surface, formed by means of oxide of zinc and starch. It sorves very well for the production of the seoond or lower print required for the object previously mentioned, and is also suitable for the preparation of transparencies. All three papers may be attached or mounted upon cardboard like ordinary prints. To do this, the print is pat apon a glass plate and covered with
thin card slightly moistened; the two surfaces are then pasig thy adhesion takes place.
The fourth material, which is likewise sengitised by means of bitumen, is, however, capable of more important applications. It is prepared specially for the transfer of photographic prints, with ail their half tones, to stone or zinc. for working up with fatty inks, and printing apon wood, class, enamel, painter's canvas paper, \&c.
In this last nemed material, a film of gam is placed between the gelatine fllm and the film of bitumen, and as no washing in water is required for developing and fixing, it is attached while still wet with essence. If already washed and dried, the print is again
treated with the essence upon the stone, zinc, wood, treated with the essenoe apon the stone, zinc, wood,
\&c. ; then by the aid of a sheet of thick and moist \&s. ; then by the aid of a sheet of thick and moist
blotting paper, which is placed upon it and pressed down to chase e way air babbles, the print is allowed to dry under a slight pressure, as in carbon printing. The blotting paper should somewhat overiap the print. One or two dry sheets of the same kind are placed over the wet paper, and these are then
covered with a few glass plates. After the lapse of a few hours, the dried sheets are removed by means of a sponge and water applied to the last sheet of blotling-paper, and the gelatine being softened the gum is dissolved; the blotting-pad is then lifted off, carrying with it the gelatine, and leaving the bitucarrying with atase or metal surface. The image is thas transported to the block, and nothing is then
necessary but to etch the same in the usual manner necessary but to etch the same in the usual manne
with acid. The preparation of bitumen paper is, of conrse, no novelty, but it is the special employment of gelatine that is new. This renders the application of water unnecessary in development, and the film does not carbonate of baryta oxide of zinc, and various colours, it is possible to impart to the film any degree of transparency desirable. The ${ }^{\text {two prin- }}$ cipal points of importance are the application of bitumen of Judza to a support of gelatine, Which, for the bitumen, is not modified or changed in any way during the process of washing ; and the special way daring the process of washing; and is special herent to its basis, and of so solid a nature that it will allow of the applicaHfon of a layer of printer's ink by meaus of a roller. Acilefor etching may be employed with impanity.
This is a very important matter for photo-engraving or photo-bithographic parposes. Maps and drawings have been prepared apon glass by M. Despaquis in the manner indicated, and in these cases not only is the etching of extraordinary depth, but the fineness of detail is perfect, proving beyond doubt that the hydroinuoric acid which had been film. These same qualities are only to be seen upon metal engravings ; and although M. Despaquis is metal engravings; and although m. Despaquin is abled to obtain these resultiterary easily.

As to the transparent pictures produced by monns of this material, they are certuiuly very beautifal very cbarming illuninated de pigns. The manipulations are exceedingly simple: there is no sensitising, no fxiug, and no toniog, inasmuch as the whole operation consists in placing the prepared material operation consists in placing the prepared material a essence of turpentine.

SOIENTIFIO SOOLETIES.

CHEMICAL SOCIETY.

The Atomic Theory.

A^{T}Ta recent meetiug of this Society a paper was read by Mr . Atkinson, entitled "An Examination of a recent Attack upon the Atomic Theory."
haring reference to a paper by Dr. Wright "On the Relations between the Atomic Hypothesis and the Condensed Symbolic Expressions of Chemical Facts and Changes known as Dissected (structural) Formnla." recently rend hefore the Sheicty, quad prtbished in the April namber of the Philosop, hical Magazime, which led to an nnimated discussion. Mr. Atkinson said tlat Dr. Wrigbt. notwithstaniling his baving asserted that the atomic theory is nn-
necessary, invariably uses it, arguing that we mnst necessary, invariably uses it, arguing that we mnst
either accept the atomic theory, in order to revise either aocept the atomic theory, in order to revise
the approximate resalts obtainca in any given analysis, or adopt the actual namber obtnined, instancing Roscoe's analysis and determination of the vaporr density of tangsten oxy-chloride and other tangsten compounds. Dr. Wright refers to the law of multiple proportions as one of the facts of chemistry, but experiment does not lead to nambers which are mnltiples of his combining numbers, that is, the law of maltiple proportions is not an experimental fact: thas, the rapour density of ferric chloride would lead to the atomic weight 112 for
iron, and that of aluminium chloride to 55 for aluminium. Dr. Wripht's aialysis of hydrobromate of bromocouide would lead him to the formala

$$
\mathrm{C}_{1 \mathrm{~B}} \frac{1}{7}, \mathrm{H}_{22} \frac{1}{6}, \operatorname{Br}^{\frac{15}{16}}, \text { No. } 2 ;
$$

instend of $\mathrm{C}_{1} \mathrm{H}_{21} \mathrm{Br}_{\text {a }}$ No. 2, the onc he had adopted; instead, however, of accepting the and takes the nearest numbirs which yield a formnla containinerouly integral multiplcs of atounic weights. He also siid that Dr. Wright had not attempted to explain the cause of isomerism, which can be readily done by the notion of the existcnce
of atoms associated in different relative positions.
Dr. Wright said it was somewhat difficult to reply to a large namber of objections which be had only just heard for the first time. He was afraid of his paper, which was to distinguish between the employment of certain symbols to cxpress certrin facts, und the adoption of the atomic hypothesis to ex. plain these facts. One of the charges was that of deny--
ing the atomic theory, and yet of employing that ing the atomic theory, and yet of employing that
theory: the instance adduced being that the approxi. theory: the instance adduced being that the approxi-
mate results oltained by his analysis of bydrobromate results obtiained by his analysis of bydrobro-
mate of bromocodide would lead to the formula-

$$
\mathrm{C}_{19} \frac{1}{7}, \mathrm{H}_{22} \frac{1}{6}, \mathrm{Br}_{16}^{15}, \mathrm{No.} \text {. }
$$

He need only say, that taking into account the errors of experiment, such as the presence of water, dcc., the nearest whole numbers which represent
his resalts lead to the formala $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{NO}_{2}$; and his resalts lead to the formula $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{No}_{2}$; and
that in assigning this as the fornula, he did so that in assigning this as the formula, he did so
quite independently of the atomic theory. With regard to his observations that the determination of the vaponr density of ferric chloride and alaminium chlorido would lead to the numbers $\mathrm{Fe}=112$ and $A 1=55$ he seems to have forgotten that the speaker bad especinlly stated that compounds that
dissociate, dissociate, or are believed to do so, minst he exeluded in the determination of the conbining uninber of the element. It is quite possible to express sym.
b. ically the difference between isomeric compounds rithont reference to any theory whatever: the two isoueric propylic alcohols, for instance, when treated with reagents, give rise to different products, and theselacts can be recalled by the employ. siderations. Theo apartser could scarcely see what great advantage was gained by the discussiou of such a purely theoretical question as the constitution of matter. the important point being to cxpress
symbolically the facts with which we are acquainted. At present sufficient distinction was not made between Dulton's proposal to rcpresent the resuits of his quantitative amalsses by symbols, and the theory fonnded on these results-namely, that matter is
bnilt up of small particles or atoms, sul these baik up of shall particles or atoms, and these again are unilial to form molecules. The listter was use of symbols to represent facts quite apart froun any theory cave ns a power similar to that which
the symbols in algebra gires to the methen

Mr. J. Newlands remarked that it was very important to distinguish between the two proposals of Daltun-mamely, the law of multiple proportions and the throry of the existence of atoms founded on it. Di. Dirers sail thre was one point he would like to reffr to, and that was whether in sodium ohloride, for instance, the sollium and the chlorino existed na sucb. On briuging torether chlorine and exicted as sucb. On briugitg toretber chlorine and
sodium, the two united with prodaction of intense sodium, the two united with prodaction of intense
heat, and formed a compound as difiorent from either sodiam or ohloring as these were from one another. True, we could oblain these elemente from the compouml, hut we conlii not ser they exist in it as sncl. Wo know nothing of the siructure of
conpled smbtances excopt that lif certain reactions conpled stibstances exept that liy certain reactions
they vield certain products. It is quito possible, they vipld certain products. It is quite possible,
therefore, that aithounh wo get out the sana eloments from two isomeric bocies, these may differ in the amount of force they contain.
Dr. Williamsen asil that although it was a anestion of pery great difficrity to decide upon facts sn remote from onr senses as these minnte particles of which matter was built up. yet it was no nore unreasonable to do so thn with the enormons uasses
in the remote reginns of our planetary system. in the remone refinas of our planetary system. He must say that those who consider it simply the part
of science to record the reanlts of obervations, and not to endenronr to connect them with one another, know not what science is. A thenry different from the atomic theory wonld be very raluable by reason of its civing us another point of view from which we might bebola the facts with which we are ac-
quaimed. He would heil sucla a theory with delight. Mr. Atline woula heil surita theocessary for him to reply, as most of the points raised had been refuted by subsequent speakers.
The Cbairman. Dr. Debus, was inclined to think that the representation of facts hy symbols, without connection with some theors, wes very like a body withnat a sonl; the haman mind conid never rest satisfied simply with the ontside representation of things, but would look for the canses which connect them. From abont 1808 to 1890 , in Germany, the dynainical theory ndrauced hy Karl was generslly cmpinged, nud it is remartable that no grat dis. chemist existed during that period; whilst in Eugland and in France, where the atomic theory was ndopted, science advanced rapidis; when, ciemistry at once began to improve. These things spoke for themselves.

USEFUL AND SOIENTIFIO NOTES.

Force and Energy.-By" force" in ripid signifcation is nuderstood the power of prouncing "energe;" by "rnarcer," the pawer of pelforming work. To kire
an illustratinn: ponjer has force, the canncu-ball energy; but io epenk of the forco of the cannun-hall is inexact. It may also br remarich that the words "actnal", and "pntential"a-e in frrqnent use to qnalify the state in whioh energr is mot with. By actnal encrgy is meant onerer in all active state, esergs which is duing
work. Br pritential encray, ener work. Br potential encrgy, enersy at rest- enorgy
capable of doing work, but not doing it. In a beut cross-bow there is potential evergs-onergy in a stato of rest, bat reade to becomo actral or to manifest itself, when the trigeer is pmiled. Afain, actual noergy is evolved from the env. Ey rewernble lite this is made
potential in the organic conpounds formed. In these potential in the organic compounds formed. In these
organic compon:lds the enerity is stored on in a latent organic compon:nds the enerif is stored on in a latent
condition ; poteutial everyy is ruconverted into actual energe when they ulier ar cisidation during combustion, or in their atiliation in the auimal economy.
Meerschaum. - At the Berlin Gengran'iical Sosiety's Deceruber meeting. M. Kiegler described the sonrces whence the considernelo annanl sapply of
meerschana for meerschanm pipes is derived. Largo meerscham for meerschanm pipes indorived. Largo
quantities of this miural, ko highly esteemed by quatere, come from Hrabschitz and Oilawan in Anstrian, come from frabscint and ore it is found imbedded betiveen thick strata of scrpentive rock. It is also found in Spain at Esennche, Vallerns, and Toledo; the best, however, compes rram Asia Sinor. The chici places are
the celebratud meerachanm raines from six the celebrat.d mecrachanm rawes from six to eight
niles sonth-east of Evisizhchr, on the river Parsak, nhief trinntary to tioe river Sagnias. They were known to Xerophod, aud they are nom worked principally by Armevian Christians, who sink narrow pits to watar or of this minern, and work the sides out until anct ier pla-e. Summ meersciaunc cumes from Brassa,
 The pipo nu:rufactare nnd eurving is principally carried ", man in ievanand in Cuhla, Dachy of SaxeCoburg. Gollia. The conmirreial value of meerschnom carrings at these pluces mar be etimated at $£ 400,000$ annailly. IIIowever, very lirize quantisien of themare not made from eruaine bat (rom artilicial material. powder, nnd then boiled with linsed oil and nluno. When this mixture has mhitient colcesion, it is cast in nonlis aud carefnlly dried aud carved, as if thene blocks of mineral had been natural. It is said that abrout one-liaif of ull pipes now sold as9 made from

TETTFRS TO THE FDITOR
TWe do not hold ourecires responsible for the opinione corrernications should bo drawz up as brictly as that all co
possible.]
All communications should be addrcssed to the Editor Garden, W.O.
Ali Chequet and Post Oglce Orders to be made payabie to J. Passyoze EdwaEds.
"I would have every nne write what he known, and as moch as he kimws, but no more: and that unt in this orig, hot in alt other subjects: For such a pnrson may
have some partjular knowiedge and experience of the have some particular knowledge and experience of the natare "f sucta persou or such a fountain, tial as to
other thinga, knows no more than what errebedy d.eg, and yet to krep a cintinr with thin liute pittince of his,
will undertake to write the whole ludy of physicks: a
vice frin whence grent inconvenience derive their original."-Montaignes Essays.
*** In order to facilitate refercmer, Oorrespondentanchen apeaking of any Letter previously inscrted, will obliga by mentioning the number of the Letter, as well athe page on whick it appears.

THE UNDULATORY THEORY OF LIGHT FOCUS OF A LENS - AND CEMENTED OBJECT-GLASSES.
[4270.]-1r. Hopkins (let. 4959, p. 280) bas either talev ringalarly littlo pains to acqurnint himself with the undalatory theory of light, or he is indelited to his simply ridiculons, to say nothing of its being mitrae that "the undulatory theory of light essumes that what "is called luminiferous ether state of rest is darkness, and in a state of undulator motion is light!" The function of the ether is : tranemil vibrations from the soarce of what we call li,ut to the haman retina, which is then itself Ret into a state of ioconceivably repid vibration. as ligitt. It is mere nonsense to talk of the medium which transmita
Hopking a rough illastration may help to ohow Mr thop be is famine into which he has fallen. I assamo pin made at one end of a long beam of wood, or fellea tree, is quite andible to any one who will pat his ear against the other. Evideritly, then, what happens in this case is that the ribrations cansed br the scratchios; of the pin aro transmitted along the thbres of the woon, that they set up corresponding vibrations in tis we thas he of the enr, and that, in common par, noes ever, that I have ever heard of, has ret attemptel to enunciate the theory of this action by saying tiint the coool in a state of rest is silence, and in a stateol ands. latory motion is sound; and yot I fancy that even jour correspondeut mnst admit that this is no oaricatare of light.
"Avon." puts a query (11391, p. 2S8) which he might have answert from, or found answered in, any lour pendy catechism on "Optics;" and I really mast crise for indulgonce, bir, for wasting the space necessis len a reply to so ridicalons a question. The oca the imege of a duen, is the distance from it at whied It "is asecertained"" object, like the sun, is formed and moving a sheet of cardboard to and fro antil ins imane is perfectly sharp and well defined opon it. a divided rule will then measure the distanco betreen the lens and the card. It is "neceseary to know it" (among other trifing reanons) becanse the erepieces in a telescope and the plate-bolder in a photographic camera have to be placed in this focas. In this reply 1 Lave deait wholly with the principal focus of a leas, and said nothing aboat conjagate foci. I, moreover expressly disclaim any attempt to gire a scientidic
"C. B." (query 12039, p. 283) will find that, as a rale, terratrial telescopes only, have their object-glanif to pend with baisam. I fancy that the makers do 1 pluce sulpe with lensas exposed to much damp or cespecisi!! increase of li,int ; and I think that they claim a siak ought not to melt the Dalsam, as it transmits beal rays pretty freely.
a Fellow of the Royal Astronomical Societt.

DISTANCES OF THE STARS.

[4277.]-If there be one man in Fngland who know mure of the sidereal depths than another, indubital.
 for him. If our querist will tarn to p. 35 of vore lat for him. If our querist will tarn to p. 35 of yoar lai star whose distance has yet been determiued (there abont a dozen of them) in a letter by theres writcr. In perasing this list "Dorset, ${ }^{\text {, }}$, pill brecen by the ourious fact that the smalleat stars are come of the nearcst: as, from the sy in which his question in framed, be woold sppear to be onder the imestion that the smaller stars are the farther they are of Yonr correspondent must forthwith obtain, read mart learn, aud in wardly digest Mr. Proctor's last tort tio "Esseys on Astronorg" Its perneal will workit him most astonishingly a to the atrocture of the siciereal universe.
afeliow of tife Royal Astrononical Societt.

PRACTICAL METHODS OF INCREASING TH

 LOUDNESS OF PLANOFORTE TREBLES.[4:278.]-For the parpose of inereasing the londness of the treble sonnds of pianos only the sabjoined means seem applicable.

1. The carrying out of any improvement in the sonndboard, which is, or may become, known. I fear there is but little to be hoped for in this line, when I see that very little change or alteration has been made, for more tha
2. Increasing the force with which the hammer atrikes the atrings. This seems much more promising, for it is univerially admitted that no piano with a weak action can gield powerfnl qounds, howevar large it may be, or
howerer thick its strings are. The force of the blow bowever thick its strings are. The force of the blow may be increased by two methoda. We may make the relocity. A hammer donble the waight of snother. Which moves with the same relocity, muat atrike the strings with doable the force the lighter hammer can strike them; but this (althongh a very great improvement in the bass) is unsuitable for the treble, because it is found to be impracticable to canse a very heary bsmmer to reboun to prevent it from partially damping after striking them and thereby (beades proventing the full power of sonnd from being developed) prodacing what is termed a "blocky" quality of tone. When light hammer is impelled with great velocity, we obtain a nuffiently powerfal blow vithout indacing "blockyness," becarse it rebounds from the strings instantly after striking them; in a word, it don't sensibly "damp" their vibrations, and suffers their fall power of sound to become developed. Considering that comparatively light hammer may be made to atrikeescept inducing objectionsble woight of touch, also that sufficient force for any practical requirement may be obtained long before the touch becomes anpleasantly heary-I think there can be no doubt that this method (which produces sonnds of the greatest powar and clearest quality) ought to be preferred.
3. Another method, which may be employed in conjunotion with the above, is reducing the thiokness of the covering of the hammera, or, what is preferable,
covering them with harder material. Probably, there is not mach farther to be done in this way. I think it is already carried out pretty vigh as far as it well can be to advantage in ordinary English-made pianos, so long as their strings bo not increased in thickness and harder than any we can employ to strike ordiuary strings without indacing a disagroeable qualitr of tone. In this respect, many pianos of foroign make differ much from those of home production. Instead of, like most of the latter, having their hammers two hard, they are asually much too soft-at least in the treble-and most of them wonld be greatly improved by re-covering oron with docskin leather, the tones prodeced by wich I prefer to any I have ret heard prodaced by feltcovered hammers, bnt which material requires renewal too frequently to be suitnble for general use. I may remark, however, the weakness of the trebles of foreignmade pianos-like the same defect in many of those home prodaced-is often cansed by defects in the sonndhammers being too solt.

Having thus pretty well exhausted every means Which seems likely to be adopted in practice-excepting an improvement in the scale, for, I believe, extending the sonndboard beyond, or, as ia an upright piano, abovethe hammer line, as carried out by Godmin,
Nosworthy, Alired Wornem, and others sensibly angment the londness, however much it may improve the timbre or quality, of the treblo sounds of a improve the timbre or quality of the treblo soands of a
piano, also dismissing Mr. Jonkinson's plan, on the piano, also dismissing ilr. Jenkinson's plan, on the
grond that it must bo too costly to execute and keep in order to be adopted for general ordinary treble (it being, in trath, conetructing two ordinary treble (it being, in trath, conatructing two
treble pianos with one action common to both, and placing them in the same case with one tonor and one bass piann), I now proceed to state what may be efiected by altering the scale-d.en, the lengths and
thickness of tion atrings emplosed to produce sonnds of thickness of
giren pitches.

Thalberg once said that, ceatris paribue, " the londvess of a pianoforte mast be in proportion to the mass of matter wecsn pat in motion to produce sonnd; donbtless,
this is quite trne within the linit "to produce sonnd" this is quite true within the limit "to produce sound,"
also that in practice that mass is only limited by the also that in practice that mass is only limited by the
amonnt of force our Angers are able to impart to the amount of force our ingers are able to impart to tre keys of the instramenti Conld pianiste play on instra-
ments with "tnppenny and threepenny tonches " (see menta with inppenny and threepenny tonches (see
my artiwle on harpsichord torahes, p. 170, No. 371), which tuppenny and threepenny toaches became six penny and ninepenny, alias six and nine onnces torohes when the jacks pluoked all the atrings, masa of matter into sonoroas vibration; but, I enppose, our fingers are net so atrong as those of our forefathers, or even those of litho Ganny Barney-the raoe is said
to degenerato-so we can effect no uneful parpose by nngmenting the mans of the vibrakigg parts indeanitely Iue force uf modern pianiat's ingers is a limited quantitr, which fact prastioally limite the masa they
can pat into sonorous vibration; and this, combined with the mechanical difticalties of exeouting modorn cianoforte masic, prevents as from making our pianotouches mnch heavier than the threepenng touch for-
merly emplosed on one harpsichord jack; in other worde, wo are limited to ahout 3oz.; nay, 2zoz., or oren
2yoz. sonches, are generally proferred to soz., oven in
strong-handed Great Britain, and most continental
pianists conoplain if the weight of tonch exoeeds 2 oz . pianists complain if the weight of tonch excoeds $20 z$ or 2$\}$. at most.
This necessity for comparatively light touches also partly limits the namber and thickness of noisonous singla admissible weight of tonch, it is, of cun limitod by theless to employ a mass of material in the form of strings greater than the blow can vibrate properly: opnscqnently, even if pianoforte makers were not limited, as they practically are, by considerations of oommercial requirement aud practical convenience,
from increasing the number of tho strings for one note begond three or four at most-I believs very few instruments have so many as foar, even if made in failing to they would soon arrive at the condicion of sounds produced, because of tie failure of the hammer's blow to vibrate so many strings properly.
So long as the number of strings be limited to three, there is no danger of being nanable to strike them with sufficient force, both the astions engraved in No. 865 being quite able to do this, however long and thick we can make the strings. Indeed, long betore the
force of the blow could become too weak, relatipel to the mass of three strings, the want of tensile strength of their material comp +1 s us to limit their length, and I fear the quite nnavoidable consequent production of sounds of very nnpleasant quality prevents ns from very greatly increasing their thickness. Probably, omployed is quite as great an increase of thickueas as can be allowed for treble etrings; besides which, it shonld not be forgotten that overy increase of longth and thickness mast be attouded by a proportionste iucrease of rigidity, which soon more than compensates for anj advantages increased lenith and thickness afford if the latter be carried to excesis.
At first sight M. Thulberg's diotere might snggost increasing the smperficial area of the soundboard in the trebte, ss wall as iacmasing the length and thickness of the strings, and if caterin paribus conld in and probably suecessfal, for oar pirpose to do this; bat, slas! cacteris paribus cannert be maintained. Thalberg said "maintained in vibrntion," whioh a larger sonudboard hardly can be if it cannot first be put into vibration, and that is jast the thing very short ptrings cannot do. It is very easy to make vonr treble sonndbeard lercer, st lesat bovend the bridya; ; bate cui bono, if you csanot erga make it vibreto (minoh for those vibrations to geaurabo aodiblif seande; I fess we never shall be able to canes the necemarily short strings in the treble of a piano to induce the somoveas vibrations of its belly for any distanoe manh fartier than donhle the len; th of each strisg bepond each side of the bridge which sanports them, or abora and below that bridge in npright instraments; and, as any extension of the sonndionard beyond tiat distence whiuh the strings can (audibly) vibrate mast be quito ine capablo of increaing the loudness, hiswever much it may afect the timbre or quanty of the soauds prothe superficial area of onr soundbourds in the treblo porpose of inoresaing the loudness of thu trcbio soind of pianos we seem to have no other resources than inof pianos we neem to have no other resources than in-
creasiug the number, the thickness, and the levath of creasise tho number, the thickness, and the levath of hammers shich striks them. Practically, as commercial considerations prevent auy increase in their namber, Hureduced the thres methods I hane
Huw to carry out those methods I hare giren very fall-perhaps it miche truly be said rery prolix-
ingractions in my articles on pianoforte actions in Nos.ractions in my articles on piauoforte actions in
Nos. $339,339,367,3 i 4$, and 370 , especially in those printed in Nos. 363, 369, and 870, illast:ated by the angravings in No. sos, a.so inthe industiated article on an improved bcale fur tho lengtha of piano strings en passant, remark that the lengths shown in the flyure
are only two-thirds the fall lengths of the strings from are only two-thirds the rail lengths of the strings from
C ebove tho lines to $E,: 0$ semitunes, so a murkman, when making his ganges, will have to make each note
 need not be a difliculty to the "skilled labourer." In that paper I parposcly omilt d sprcifing the thickness determined by the qualits of tho toue you desire to prodnce, and in this mutter individual tastes differ
ureally. For the same reason I omitted to apecifs the
 make the hammers atrike the stringa; for this, again,
ought to be varied accordinz to the thichness of the strivgs (of any given longth) employed to produce a sound of given pitch; alsin perhaps, according to the
nnmber of nuisonoas strings strack by one hanmor, number of nuisonons etrings stract br one harnmor,
for it is obvious the thiclier and more in namber tho forings be, the more thuy mast resist the blow a haminer of given weight, movisg at a given velocitr, can atrike. That three strings whose total mass is fifty per cent. greater than the mass of two striags, mast resist the
same hammer's blow hulf ns mach again as two strings possibly can, is indisputable. Nor, I see no pissible possibly can, is indisputable. Nor, i see no passible
method of even partly compensating for this increase acthod of even partly compensating for this increase
of resistance-so lonin ag tho force of tho blow bo not angmouted-bot can-ing that blow to be deliesed on a pertion of the etring whin is less rigid, io other words,
somewhat farther from the bridge. Prolably few persons mbo manufactare pianoforten
or salo will be induccil to atriug them so leavily as I prefer doing. I think they woald prefer employing

No. 19 or 20 for middle C, and No. 20, 22, or 23 for tenor C, in which case, supposing the lengths of the stringe of those notes to remain unaitered, it might be preforable, instead of carsing the hammors to strike them at the seme digtancos from the bridge, as I have specifed sifin., and 7 tin therefrom
For strings of the thickness I prefer asing I have already stated the distance from the bridge I should canse the hammers to strike them, bat to save the trouble of reference to back numbers-some of them and ther back-I again specify the sizes of the Wires and the strixing distances for the G and Ca below the mencing at in the scale printed in No. 37. . sizes specified below:-

6 notes of No. 15			6 noten of Na 21		
7	,	16	5	"	28
8	"	17	4	"	28
8	"	18	8	"	9
7	"	19	g	"	25
7	"	20	2	"	26

Assuming the instrament thas strang to be triohoril down to fiddle G, I shonld strike its stringe at the distances from the bridge specifled bolow:-

C 8in. long, lin. from the bridge.
(As shown in diagram p. 202, No. 372.)
$G 10^{3} / 4 \mathrm{in}$. long, $11 / 4 \mathrm{in}$. from the bridge
C 15in. long, 2 in . from the bridge.
G 19in. long, $3^{7 / 8}$ in. from the bridge.
C 26in. long, $52 / 10 \mathrm{in}$. from the bridge.
G $351 / \mathrm{in}$. long, $\mathrm{c}^{1 / 2} \mathrm{in}$. from the bridge. C 50 in. long, 8in. from the bridge.

Probably, it would be prefernble to atrike the atringe of Fs immediately below tidue G, a trifie nearer the bridge than the distance this scale would allord, becmas of one note having but two stringe, alarger than those of fiddle G, might be a trifle def. cient in firmness if struok so far from the bridge by an eqnally heavy hammer. Personally, I shoald mach profer that note to be strang with wire one size larger, proser that note No. 25, instesd of No. 24, in which case it might be desirable to string the two loweat notes, C and
C 8 with No. 27, also D and Ds, with No. 26 wire. If this be done, the striking distances for those notes may very safely remain analtered, and, providod the hardness of the hammers be carefully ragulated-in other words, the instrament's hammers be well "toned" -no offunsivo break in the londness or quality of its -no oununsive break in the whe whence three strings are succeeded by two.

I rather think, Mr. Editor, that on the subject of piauvfortes I have pretty nearly written myself out. Ficepting the article on braoing and sonndboard mak-
ing which you have, and one on the rarions metiods of tuning which have been employed, I don't think I of tuning which have been employed, have mach more to say on this subjeot, so I intend to rest, and trast that yourself and iny fellow readers will rest, and trast that yourself and my foll that these long-winded opistles which have extendud over more than two years have nearly reached their terminus. Sooth to say, the subject of pianoforte inaprovement seems to the follow reader find a exhanstcd. However, should any follow reader ind a difficulty in understanding what I am bat too conscions is ve:y imperiectly expressed, I can only ada in in the way of explanation-either through the columns of "our" jonrnal or privately-which my amall brains may enable mo to give; also to reply to any quastions, addressed either specially to myself or genorally to my
fellow resdera, which my very limited experience will fellow reader, which my very lim to the last of these, addressed to me by "H. D. W." (No. 11766), I hare already writter and will sond soon.

The Harmonious Blacesmith.

INTERNAL RESISTANCE.-MANCE'S METHOD. [4279.] - I Have to thank "Pi," p. 276, for desoribing this prosess, which I had orerlooked, it oran I had seen it. The process is good, particularly as parposes; bat for its special purpose it ia scarcely so shant given by Mr. Fitz-Gerald, which I should always nse myself, if for no other reason than the apparatas, once prepared, a siagle operation is zll that is necessary at any after time, and the resistance
of a single cell or battery is read off at once from the of a single cell or battery is read off at once from it is important to have as small resistances as possible in the circait, as the resistance sought mast hold prorelative quantity, the greater the accuracy attainable.

Sroxa.

MEERSCHAUM.

[4380.]-Ir answer to let. 4261, for meerschaum repairs, take a shank bone and make small tabes, tabe a nice Hit ; make that hot and corar with white wax or beeswax that all the oil has been prensed out of, and, heating the pipe, pass it throagh. This is the best and only way I have found to make a job of them, and if the juint is kept clean it will acarcely be being treated to a bath of wax when manufactared, there is no way of cementing that ever I have found.

A SIMPLE METHOD OF HEALING WOUNDS. [4881.]-I sEND, for the beneat of your numerons readers, many of whom often ind some tronble in henling woands from cats, burna, ac., the following aimple plan recommended by Dr. James Braith waite of Leeda, in the current number of the Brition Medical Journal. The plan in especially applicsble to ulcers or fertered wounda which have faijed to heal by first intent through the entrance of dirt or some foreign substance. Dr. Draith waite sayz: The application of an aqneous olation of carbolic seid (one drachm to eight ounces of Titer) to an ill-conditioned ulcer cleans it from all prrolent matter, and onuses it to ansume a healthy red appoarance, with each granalation distinetly vistble. If a wound in this atate be freely exposed to warm dry air for some hours, it becomes glazed and dried on the surface. It becomes covered by what is practically an impervioas tranuparent membrane, closely applied to the surface of the granulations, and oxercising a cortain amount of mechanical preseare pon them. In many caces, no matter forms nuderbeath thin memrorano, adi cicatriation goon on underneath it with great rapidity. In time, the membrane and ai. Ho mallor visible through it; the lotion ehould then be reapplied, and the ronnd dried by exposare, as before. Immodiatoly this to done, the incamed edges or the nicer commenco to puly ha colour, ahe tin or nity- ioar wo hintf-tour wours have noarky the wint of nataral skin.
 lucors on the las, an in in lotion and enbeoquent drying oan bo done in the lotion and eubuequant drying ant bo done in the ovening, altar the conclanion of the day's work.
Disinjeotand.-From the same anthority I learn that MT. T. L. Phipton, F.C.S., eayy: "Tho aimplest, most effoctivo, and mont agreeable "mothod of diainoctug houses conilito ime ang he lho hoase, oa cila an uphere of hoo hoace will be found to have an odour rencmbiog thal of ho mo say, when this odour talighy parceptiblo has been used in sumcient quantity. The reason for is that the chlorine gas given of if a heary gan, and falls to the ground.
I doabt, bowever,
I doabt, nowever, whether ohlorine gas is given of anless the chloride of lime is treated with an acid.
Some of our chemical contribators will perhaps any.
L. T. F.

AMATEUR ORGAN BUILDING.

[4288.] - Wril you ind papace for the following questions on amateur organ building. First, I want information to onable me to progresa with my own organ and. secondly, I am anxions to see whether it is not possible to make an altogether cheapor instrumont than many of those advocated in the colnmns of tha Engursi MgCBAxic. I am half-way through a largo
organ-that is to say, for such a class of amatenr as organ-that is to say, for such a class of amatenr as myeolf; my ideas being so onlargod by reading of the pedal baces, two rows of keyn, swoll box, \&c., that t did not ocour to me at the oncot that a swoll box really moant a case, eay $6 \mathrm{ft} . \times 3 \mathrm{ft}$, $\times 4 \mathrm{4tt}$. 6 in . high, of
1 in . stufl, or that the mere fact of uniting principal 1 iin. staff, or that the mere fact of aniting principal as a atop instead of uniting oonpler, meant the cutting of paper pattorns for a weok, and abont lewt. of metal extra. I agree with Dr. Uakher, now too late, that for the majority of amateurs a 4-atopped
organ in quito enough. If the lettar is too long, ploese omit it and insert the queries only.
Stockboards, or appor board, for an organ of C stopk soundboard 6it. lin. by 21t. 8in.- I propose to mate it in three parta, of $1 \frac{1}{2}$. pine or deal (mahogany cannot be afrorded), 28 by so doing tro stops can be placed apon each. How can I avoid the boards carling, as i breoed with crose-wood, ecrows and glae they will
perhaps curl? And a shifting brace lite adrawing porhaps curl 9 And a shifting brace like a drawing
bourd I do not think will act apon a width of 11 in. Is it better to make it in three parts, with reck to each. or to make one board fall nize of sonndboard to take all the pipes?
Will come of "our" readers send a fow hints with a View of cheapening an orgen, subatituting (eay) pine for mahogany. What can be the use of apecilying lin. or 1 iin. mahogany for a wind-cheat, and covering that part of the soundboard not covered by the wind. cheat with parchment? As both are anbject to the came preasure, provided conatruetion can be carried out, I conceive that the roantlinga conld be reduced to the atrength of the parchment Provided the middle board of the bellows is made strong and firm, say lin. or
fin. staf. the bottom, top board, and frame of tin. stuff, ? fn. staf. the bottom, top board, and frame of tin. staff, fin. pino, and covered with paper, or rag and glae, or perhape of millboard, the object being to redace the necessity for fine woodwork and expense ? Is not the reservoir only an air-tight bag? I am a vortor in metals and a dranghtsman, bat not a worker in woods,
and theroby can be conceived the necomity to reduce and theroby can be conceived the
the woodwork an much as possible.
Hariag got all the metal pipes to theoretical ceale, What in the next operation before placing in the organ for voicing and tuning, and what are the lengths in practice? " J. D." gives lin. sharter than the scale for a stoppod wood pipe. If I so andertand, this will gire about 8in. or Ain. shortor on account of length of plag for the 12 basces CC to C. Is it the practice to roice and time the octivos, and from these lengthe to atrike a new carre to cut the rest to ?

Dehogitrman.

ELECTRTCITY.-WEAT IS IT 9
[4283.]-Ix reply to Mr. Fitz-Gerald (let. 4251), Ithink he is peculiarly sharp on those who hold opinions con-
trary to his own with regard to alectricity, for if I rememtrary to his own with regard to alectricity, for if I remember right, a nimilar letter to the one he referred to ap-
peared in the Enalise MzoHANIC when "Sigma" began peared in the Enalish Mzchanic when "sigma" began
his papera on eleotricity. I forget (if I over knew) hiib papers on oleotricity. I forget (if 1 over knew)
what theory Mr . Fitz. Gerald proposes to replace those What theory Mr. Fitz. Gerald proposes to replace those Which he claimi to have apset, bat if it had been a astinfactory one, and gezerally accepted, I cannot imaThine that I thould have been ignorant of it for eo long. The desntory nature of the firat paper which Mr. F. complains of will, I am afraid, be shared by them all,
though by the others, perhaps, to a less oxtant than though by the others, perhaps, to a less extent than
the arst ; indeed, I conld see no way out of it withoat the irst; indeed, I could see no way
Besides being very premature in his comments, I think Mr. F. is very mech out of place in calling the paper ladicrous becanse contrary to his belief; for, in spite of his exhanstive investigations, vhich I have
never seen and only once before heard of, many eminever seen and only once before heard of, many eminent philosophers still regard eloctricity as a forco-
indeed, the things be claims to have proved are diroctly appoed, the the belief of some of our arrat philonophers pponed to the benief of some of our nirit plat ocertainly aeed not be petitio principii. B. Tzompsor.

SOLAR FACULE.

[4284.]-Write observing the sup at 6 p.m., on the afternoon of the 97th, I noticed two large and brilliant facule at the south-eaatorn part of the dinc. They dorably loreshortened. The one farthest away from the odge was rather the larger of the tro, but not so intensely brilliant as the socond. I was at this time observing with a glass of 2 lin. apertare, and powar of O. On changing the latter for one of 2001 was intantly enabled to 100 farthor details. The appor one nheomposed of three mases, a largor it were, by it. Tho scoond presented somevhat the appearance of a lanar crator, and the interior gave a fair idea of ite foor. Both the facale were componed of amall inkes, not unlike the feathers of a bird's Fing. Thoro was no spot in the immediato neighboarhood,
ay conniderable nize within 50,000 miles distance.

The pores of the aun were partially visible round them, but seemed to be put out by the intenaity of the light from these facule.
It is worthy of notice that the shape of both of them was decidodly round, and there were no waves running sharply out from either, as is ugaally the case in large
ontburats. I may mention that on the 26 th , I had outbarats. I may mention that on the tha, poaition notioed a mmall patch of light in exactly the position
these would havo ocoupied had they followed the usual rotation. The annoxed drawing will probably resider rotation. The annoxed drawing 『ill probsbly render
the explanation alearer.
Harpur-placo, Bedford, May 80.

THE HARMONTOUS BLACKSMITH'S" FUNNY

 FIR8T FIDDLE.-To "F.R.A.B."[4285.]-I beg to asarare "F.R.A.S." that he is totally mistaken regarding our relative positions1 was going to write in the sciention world; but, alas from I being head partner soliciting forgiveneas, or from I being head partner soliciting forgiveneas, or
rather advice from the Co., it is he who is certainly, at least, one of the heads of our scientific Co. - I mean cooperative for mataal inatruction-journal. Hence, it desireth "t rarpring that the umblo blackmita desiroth to "sit at the feet of to scientiac a Gamaliel as ine "F.R.A.B., Who, although much the "Blackmith's janior, wa, as the wrilor woll remembers devoted to the parsait of science at mhat early period
of "F.R.A.s.' " life whon it was my miafortane to be "earning my bread ${ }^{n} \rightarrow$ thing "F.R.A.S." never had to do-by manufaotaring and commercial enterpriae, Which, by the way, seldom sow the "seeds" of seienco.
I fear my rather long article on this fiddle is bardly clear: in fect, it can't well be if anything like a bridge is deducible. I never had any intontion of employing a bridge proper, uning that rord to denote something on which stringe rest, and which connects them with
the soundboard. The piece of hard wood, fitin. \times lin., the soundboard. The piece of hard wood, 4tin. \times lin.,
which I proposod thould be glaed on the under surface
of the soundboard, can hardly be termed a bridge, for it nimply reinforces soandboard No. 1, and proventan it rom becoming aplit between the boles bored in it for the reception of the strings, which I distinctly stated waro atrached to sound board No. 1 jast lize those of a the strings cannot that, for facilitating porformas for the atringa mast be bored pretty near each other, atay as near or a trito nearer than the strings of an ordinary violin are to esch other on ita bridge ; concenary violin are to each other on ite bridge ; conce-
quontly, if No. 1 moundboard be not reinforced it would quanati, cortainly be aplit by the tomaion of the atringe. The reason why I profer plecing the atringa a trifie alower than usual is simply to bring the arat atring more convenioaky wila rack; wore il not that there mail be ivo naload of encery. It the frit four strings are the game length (eay 13in.) as the first our strings are the same length (say 13in.) as
thono of the ordinary violin ; consequently, the stopping thill be an eary on my tadde as on "any other man'* fiddlo," berring that to reach them we must reach over the two C stringi, by which its compass is extended.
In regard to the length of the latter-to borrow the langage Punch alloges Mr. Gladstone applied to Carbora,-I might hsre treated them "ancor thret have made tenor C string, say, 14iv. long, which is havo made tanor C string, say, 14in. long, whioh is
about its length in the viole. This would hero required at to be "stopped" in planes differing from thoee of it to bo "atopped "in planes diriring irom thoe of apart in the tenor than thoy are in the riolin. I might alco have designed it the same length as the stringo of a Violoncello, thus making the CC atring ite asana longth. Probably, doing this woald prodicoe the moat
powerfal sonde of the aneat timbre or quality bat as powerfal soande of the aneat timbre or quality, bat ak or Piatti, nor oven to surpati my late friend J. A. Turner on the tonor C atring, from which I havo often heard him olicit counds of great power, rivalling even thoee of the Fronch horn in purity, I, Iiko a trae Englishman, chces a middle course; in a word, like all practical politicians, I socoptod a compromise, end doaigned both the C stringa only 2f. long, Which, cient tension, will, I little donbt, afford counds quito poverfal enough for ordinery chamber masic performed in the domiciles of her Majeaty's sabjecte, who are oddly termed by Mr. Gladstone the apper middles; also in those of Who might, quite an appropriatoly, be
termed the "grcat middle middle class, for not many termed the "grcat middie middle class," for not many
of their residences have rooms whose cubic capacity of their residence
Why the holee in soundboard No. 1, which receive one end of each string, shonld be disposed on the segment of a circle of unusually emall redina I cennot conceive. For anything I can see to the contrary, the radius of that circle may be quite as long as that of which the bridge of an ordinary riolin is a segment.
Provided the finger-board be ponitod somernat nearer Provided the finger-bosrd be ponited somowhat nearer to the strings than nanal, the radius of the are might even be lengthened, beoanse, so long as there be no
danger of the bow touohing other atrings than those danger of the bow touohing other atrings than those wieal importance how fiat the finger-board may be made, or how long the rediug of the circle, on a portion of which the atrings are disposed, may be. This appears to be a mere mattor of pracical conveniance,
and thene considerations seem to me to dispone of the and these consicerations seem to wo to diapone or the objeotion that my fanny first fade would "necesaitation
a peouliar style of bowing." Wore that objection well founded it would, in my opinion, be a very grave one. Although myealf one of the "pecaliar peoplo"-1 don't mean the religious (?) sect so-called, bat maraly
an odd fellow-I yet, being also a rigid Conserrative, deom all unneoessary departaros from ordinary praotice exoeodingly anwico. Now, such a dopartare as necosaitated the bowing of only ore siring at a time
inatead of (What wo can now accomplish) the bowing of instend of (what we can now acoomplish) the bowing of two atrings together, would, I opine, bo extremely
objectionable, beoanse it would deprive us of one of the objectionabio, bearase it woulo performanoe-to wit, the irreatest eharms of good solo periormanot rendered by one performer a colo seems rather Hybernan nowean clatare. This doprivation would, however,
abomination, which deterven to bo accurned with bell, abomination, Whiok doserven to bo aocarsed with bell, book, and cande, or oven 10 me yot strongor auathoma, if sach great medicing cean (with dorioal masintance, although lay asdistance is often rendered) be presoribed and dispensed.
Probsbly, the Angering might, for a timee, be ${ }^{c o s}$ a bit of a pazzie." Any variation in the lopgths of addio atrings must bo a bit of a puzzle" to performerr pazzio a lititlo compler a poscibla, I aroided decigning the one or two thickent atringa of the violin portiom of my addle any longor than usual, although etrongly Wompred the G and D atringi made 9 at. long they worla dorbtless yield more powerfal sonnds of finer quality donbiless yioda more poworfal soandi or aner quality were they both loadod by wire wrappod roand themwhich, according to my exporionco, greatly impore boti the power and the "Fider. 1 radar and motlol his fellow adacre woala and hair performances stoppod by the atops on thoee atringe rent traneverio planes to the atopa on the A and E itrings. It would, indeed, be very inconvenient to periorm on an instrumont whion han tno dirferen courso, the same objeotion must apply, althoogh vith much lese force, to mating the tro datrioge longer
than the G etring; but I thooght it preferable to
encounter this evi.-nlthough it is far from an inconsiderable 0 if -t'an the, perhaps, unavoidable consequence of bad tone, which, I fear, must neceasarily recnlt from the employmont of Cetringe no longer than the G string. In this instance, as bofore, that true of the great Conservative party in "compromise."

Thes Habmomiovs Braciamite.

SUN SCREENS.

[4286.]-Winc "A Fellow of the Royal Astronomical Society 'sllow mo to point out that his anggestion (let. 4223 , p . 278) in reforer es to amoking instead of indeed, the principle can hardly been said to be the same. They are both dependent on the effect of "minuto solid particles, in the one case of carbon, in the other of silver," it it trae, bat the former act by aboorption, the latter by refection. The field los would consequently be mach warmed in the first case, and hardly at all in the second. With a large aper. bo conaiderable althongh the actual focus in formed some little distance beyond it. Bat there is another consideration-riz., that though a sumfoient thickness of lampblack will nudoabtedly absorb all light and much beat, yot a considerable portion of the heat ia transmitted through it, as much, I think, as 88 per cent. for a Alm of ordinary thickneas.' The carbon particlea aro not by any means so athermanous we thoy are opaque, and I need not say that tranamitted heat is unplessant to the eye of the observer. In the care of a bright nilver surface everything, heat as well an light, is reflected back and away ap the tabe again. I hope "F.R.A.S." will excase my calling to the attention of his readers these to him well-known, though postibly overlooked, inots.
By the way, I remember that a short time ago one of jour correspondents raised an objection to $M \mathrm{Mr}$. Berthon's plan of silvering the lens, on the groand that on the object side of the leng, which might prodace a disturbance from convecthe word hot, and the closing clanse depen dent thereon, and he sente nce is correct formed, bat it is not hot. In the intense focas of an electrio light, the air might be actanlly at a freezing cemperature, While a piece placed in it would be in cantly rendered incandescot absorb heat, it cannot be warmed by any quantity pagaing throngh it. Pare ir is almost perfectly vently is quito noaffected by tho pagasge of radiant hi A^{\prime}, however in tense.
Δ very striking experiment in proof, or rather illasing, devised hy Dr. Tyndall
Take an air thermometer with a single large clear thin balb, so mensitive that momentary contact with the finger will notably depress the column of liquid (I say depress, becanse in theso instrumenis the bulb is at the cumprit of the stem). Place this in the rays of the electrio light convergod with glass lenses, to that the intense focus may bo formed in the contro of ita balb. Although the glare is intolerable, not a motion of the liquid onsues, the rays pass through the sir without cosmmanicating any warmth to it As Tyndall observes, " A person on first soeing this can hardly believe his eyes." Of coarse, if the glass be slightly lampblacked, or even if a littje tobecoco smoke be introdaced into the bulb, a most violent depression of the colamn is instantly produced.
starcs.

Is Light invisible ?

[1287.]-Jorn Hoprivs (lot. 4869) some time sinco entr an experiment described "to prove the invisibility of light."I presume it was the beantiful experiment shown by Profescor Tyndall in his lectare on "Atmospherio Dast;" but our correspondent is not satiafied With the deduction therofrom that light is inviaible, and proceos rory nestly to atato the dilomma or "ax i" but if think he will find that the dilemmes arises, an in moat other canes, from an ambigrone meaning attached ambiguity is in the nord vidible. If the vinibility of ambigaity is in the pord viable. Is the viaibiity of light only meant that ight procoeding from incandes-
cent or reteoting bodies in the direct line of viaion of cent or reteoting bodies in the direct line of vidion of the apeetator axcites the optio nerve and producen in might be admitted. Bat vielbility means more than might

Before light can be pronornced to be viaible, it muat be shown that it can be seon in whatover line it is procoeding, oven though that line shonld be rartical or at right angles to the line of vision. For instanco, let the apectator stand in a nquare chamber, his back to the wall. In the wall on his right hand is an opening
admitting the seanight, whiah falls apon the wall on hie haft. Ho is oonecione that the wall on his loft is illaminated, becenae the light is relected to his eje,
and exciter the optic nerve accordingly ; bat the light pacoing through the ohamber from right to left is aviaible. He may, perhapa, percolva a faint pathway or apparent light; bnt this woold be only illominated only "the gay motea that people the sunbeam." Now if a apray of water, or a jet of iteam, or a clond of emoke were pasaing from right to left, it would be visible, and would obscare the view of the wall of the chamber immediately in front of the speotator; but light in its transit is intrisible, and the wall opponite is distinclly disoerned, which it would not be if the light were visible ; and it is woll for ns that light is not raible, if it were we might almont as well be blind, for we should see nothing else distinctly. I think vo must concunde that although light in the exciting oanse of rision, it is in itsell invisible:

Вово.

MAGNETO-ELECTRIC MACHINE.

[1288.]-IT has been asked from time to time through the mediam of the ENGLIBE MECHANIC how a magneto-electric machine oan be constracted : al. thongh there are many contributors better able than myaelf to answer this question, I ventare in a hamble way to do so. The Figs. 1, 2 , and 8, will asaist mo to describe its various parts. There are many kinds of magnoto-electrio machines, but the prindiple is the samo in them all. Fig. 1 is a representation of one most commonly in use; Δ is a powerfal horno-shoe magnet; B B aro reele which are generally made of boxnood, on to which is coiled a quantity of moderatoly Ane, insulated wire; in the contro of each reel is placed roond soft tron, joined to O O , which in also roft iron; but as thin part of the machine is the moat dififoult to understand, I will go more into details directly. D is the armatare of the magnet A_{1} made of colt iron, whioh can be moved to regalate the gat bend, E represente a grooved wheel for the aso wheol seen in Fig. 8, E. Fis a toothed wheel running in another wheel attached to E , to increane

its speed; a handle is screwed on the axis of F. G representa the framework made of brass to sait the requiremonts of the machine. I will direct attontion
now to Fig. 2 ; the secret of those mmohines dopends now to Fig. 2 ; the secret of those machines dopends
materially npon the constraction of the spindle which materially apon the constraction of the apindle "hich carries the reels of wire. D is a round piece of iron,
fled fat on tro sides at F, bat not at the end beyond tled fation tro sides at F, bat not at the end beyond F. One part of the apindle is electrioally insainted from the other, which may be done in the following manner:-Let a moderately-aized hole be drilled into
D horizontally, and incert a piece of ivory or valD horizontally, and incert a piece of ivory or valcanite i a hole is then to be drilled into the ivory to admit the thin part of the apindle C; care mast be taken not to drill the hole in the ivory deep enough to allow C to touch D. The wire mnat be wound on the roels as follows : Each reol is dilled separately, a length of wire must be left to come ontaide of each; let the wire in the arat reel be wonnd on from right to left under the reel, and of course left to right above, bat the aecond reel in an opposite direction; the two ende from the inside of the reels are noldered together not to tonch D, then one of the free ends is noldered to D, shown at G; the other ond to C at H which mast not towch D. The reels when fixed in the mechine are shown in Fig. 1. The C end of the opindle rans in a hole in a plate parallel with the magnet; the end F comes throngh H, which is a bit of box-wood axed in plato G to insulate F from the other part of the machine. This leads me to explain Fig. 8, which shows the top and behind of plato G. IH is a stiff spring seroved to the projection at the top of G. and mede to bend to the back, that it may press on the spindle at F, Fig. 2, but the spring mast not touch the fat sides. The machine completo is put into a enitable box, a binding sorew goen throagh one end and into I, Fig. 1, anothor throagh the other end, bnt a spring mast be attachod to thir, and not tonch the machine except the F end of the spindle D, against H, Fig. 1. I think a little attontion to the diagrame, dc., will give some idea how these machines are constructed, bat it muat be anderatood who ever constracta one should uso joagment at every atago of him progrent, at success dopends upon exectnens in overy part.
J. Thompeos.

"E. L. G.'』" COMET.

[4289.]-"Haprig no case, abase the plaintiffe solicitor." "E. L. G." in getting ont of temper, and herefore out of judgreent, or he woald not have writton ho arrt paragraph of let. 4200, p. 27, in which he ignores some of my arguments as thoagh thoy were mero ungupported astertions, as is the case with too many of his own. Ho mast romember, bowovar, that if I replied to one of his extraordinary fallecies, "This is abeard," I did not do so as an exa cathedra condemna-
tion, but gave the reason why it was ataurd, a reanon tion, but gave the reacon why it
to which he bas given no reply.

So also as to my argament as to the pressures rosnlting from the rupposed fall of 10rt. per minate of Water; he actually Roes so far as to talaify my argament by eaying that I "invent nome nonknown law whereby water that fell on land woald not remain thereon long enough to press it." I did nothing oven resembling this, but pointed out the self-erident fact that if tho carth in costed with a mere elastic nim, which "E. L. G." asserts would be distarbed by this proesure, then the wator falling all over the surface would preses equally on see and land, and therefore not produce thio resalt atated, bnt woald produce the opporito as soon as the "Eter ran off the land. Nor is it at all reasonable that "E. L. G." ahonld foits his reoponsibilitias upot mie by aking how I got the water back from the ceas. I nover pat it there, I do not beliove it ever was thero but as " E. L. G." aseerta that it was, and in quantity sumpient to oover cen and land, it is for him to show how the drainage was effected. I see how he moans to do thin; he proposes to lowar the sea bod, and eo make a cavity, and to raice the Andes, Himalayan, Alpi, and other great rangoe, 00 making space for water. But, as he colls us he in the "defender of natural lam versua miraclen," he muat show where the force alme from to effect this. He bae brought the watar in a comet, and io arranged thinge that the whole carth is submorged; It in, thorefore, on his nhowing a mase of fased minaral covered with a alm of soliditited materials, and agaip by a stratum more or lens deep of water, of coarse in che form of a apheroid of rotation. Now, what new force diaturbed this condition of equilibrium, doprosaing one portion and elevating others of the corering flm ? Ordinary earthquaken and volcanoes may bo accounted for by gradual cooling and contraction of the mash, bat not this suaden and onormons ohange.
Again, "E. L. G." permits his wrath to overmastor the most ordinary conrtesy, When he ventarea to say he does not boliove" Roscoe or Haggina mado a remark I quoted, and the source of which I named, oopying and giving it as a vorbatim extract. The worde will be found on p. 258 of the arrit edition of Roncoo's "Bpectrum Analysis;" nor can I nee that, whether Roscoe was playing the baffoon or no in making the statement, I was doing so in quoting it in reply to the ridiculonas assortions and baseloss asesamptions with Which "E. L. G." alls page attor page.
One woald really suppose that those who object to thite comelic dogma wore a mere ignorant minority; that no one who really knows "the chiel points yot discorered respeeting comotn, the oarth, and the propertice of Anids," can possibly require any evidenoe in support of it, for with charming naivelt " E. L. G." remarks, "No one so acquainted would, I oonceive, nak for proof of anything to obrions" But as "E. L. G." also saye he stands "alone, unlens Mr. Gosse or come othor phyticiat liken to help" him, therefore, it is ovident that "E. L. G." is alone noquaintod with those discoverod laws. That is the onee; the oomet is his own
discovery, unless he got it an a logsog from Whiston. discovery, unless he got it as a logacy from Whiston.
Now, "E. K. G." commenced this dissuasion at p. 91 , Now, " E. I. G." commenced this diagusaion at p. 91,
with a charactoristio throat of demolition to ovory one with a characteristio throat of demolition to ovory one
not inclived to adoot his viows, and with a dibinct not inclived to adopt his viows, and with a distinct
promico to " hhow that every kind of evidence that promice to "ghow that every kind of eridence that conld be fancied on thin point exiats. Thare is no
condict of evidence; all in harmoniond." I have juat conaice of evidence ; all is harmoniono." I have juat
mearured the space be has takon up-juatilt columns ; meacured the spaco be has taken up-junt $11 \frac{1}{2}$ colamns ; and having given us one evidenoo (as he considerrit, it, bat no one olso)-ria., the roanded form of hilla and sweep valos;" he again tellin ua "there is abandant oridence of a steam comet-fall 50 centurios ago, bat not one of gac, for at lenet many thousands." Now, if there is any evidence either of the ocearrence or the period, lot us have it, in as fow worde and as plain a staitoment as "E. L. G.'s" peouliarition will pormit-bat let us have nothing olse. I proteat agninat page aftor page being filled op with magnilogrent phrases meaning nothing. It is almont imposalble to diecuse the subject at all without shoeking many people's feelings, and poscibly injaring come poople'a faith in mattors of Arat importanco, bus it in quite impoesible to discana it in the abeosco of a single particle of evidence ; and, for my own part, these are my lant words apon it, at all evente till somo evidence is forthooming, ${ }^{2}$ I havo no wiah to have a mero sparring-match with "E. L. G.," which is very mach like aghting a cloud.
sigma.
"E. L. G." AND THE PROOF OF THE DELUGE. [4290.]-I Ton would wish heartily to thank E. L. G." for his oxcallent lotiore on this subject, "F. R. A. S. A " myeer, and to mar friend "Sigma's" soorn. But I am one of those old.fachioned people who have not yot been to far "educated" as to havo come to regard the Deluge as a "myth," a "grand old logend," and ite recorder, though "learned in all the knowledge of the Egyptians," at no moro than "a comi-barbarous Hebrom." But, then, I am only an riahman, trained in the Iriah University of good Queen Bess, whero the profescora, as a rulo, do not be that an it may, I Thave mat be my miven up "the tales of my childhood," and though I do not go with everything
"E L. G." sars, I think there is a great deal in what he has bronght forward which no one has as yet proved
false, or shown to be leas likely than what they would false, ar shown to be
thomselves sahatitate.
"E. L. G." is right woll sble to oope with eithor "Sigme" or "F R. A. S.," who, I regret to think, consider all who differ lrom their dicta as regards a
flood 5000 years ago ot be "playing deliberately into the hands of the intidel and scoffier." I cannot see
how this need be, and, therefore, I venture to point how this need be, and, therefore, I ventare to point
out one or two weak pnints in "Sigma's" answers, as it appoars to me, and trust he may reconsider what he
has written, or found his ohjections on somothing else. Lae writen, or found his ohe to "E. Enrrow valas" in the earth. and says that its effect on a heap of clay is not at all applicable to the
form, past or present, of the earth's surfaoo-for that if any thing is certain it is thia, "that the original condition of the earth was not that of a mass of clay,
mond, or sand," that " olay, mud, and sand are the promoyd, or sand," that "olay, mud, and sand are the pro-
dnote of the weariog away of old solid rocks, and are again passing into nolid rock.
Now from this

Now, from this one would soppose that "E. I. G.'s" theory was based on the sapposition that at the time of
the flood which he contends for there were no rocks. that the earth was only a lamp of clay, sand, and gravel. Starting, then, with this unto "Eded snpposition,
which he seema to wieh to father on "E. L. G.," he pro"E. L. G.' $口$, " comet on this oarth (which he "Sigma" has made for himself) "would be to reduce it to a
true
spheroid of rotation covered with watar over its true spheroid
Now I have reed very carefally all that "E. L. G." has mritten on this subject, and it seems to me ho has
noter once given ground for anoh an nnfoanded nap. position to be atteribated to him, and has in more than one place atated that it is the "drift gravel," or
"bouldar clay" (let. 4157, p. 228), the then loose earth or diaintegrated rock, which he believed the Delnge
had formed and alone coald form into "sweep vales." down a hard jagred rock, and make it into a gentle of mad, sand, and gravel, and thas form a gentlo alope. If any one doabts this let him welt along the bank of see so many instances of its effects in forming of mad, gand, and gravel, sweep vales and sloping hills in a in rod which once covered the whole earth at the same time as a mythical event, but rather as the most nstaral way of explaining the numberless facts he is eyen to.
Sigms " oeems to think it a more rational esplanation to believe that there were a number of ocal
flocda-which to praduoe the effects must hare been flocda-Which to produce the effiects must hare been
grester than any recorded in profane history or in the memory or experiance of later times, and these rreat than to believe possible the one great flood recorderl in a brok which some still regard as divine, and of which one flood there is traditional record distinct fong amongst all nations even the mosibarbarons. and no
"Sigma " (let. 4198, p. 252) sars a mase of water falling over the whole sarface woold do the reverse of What "E. L. G." states-i.e.. the sinking of the high. the breaking op of all "the fountains or foundations of the abras:
Doos "Sigmas" forget the little bat important fact, that the general surface of the land is sowewhat
above tho sea level, and therefore, thongh the water above tho sea level, and therefore, though the water
misht rin into the sea, it conld only do so if the minht rnn into the ses. it conld only do so in the sink nuder the weight of vater, which, hacause of the difference of level wonld frrst fall on it?
The question, then, is, would there not have zocoumaTho question, then, is, would there not have zoomma-
lated on the land and into the hollows a weight of Water sufficient to entirely overtarn the balance before
a single drnp had fallen on the sea. I think there is a single drpp had fallon on the sea. Ithink there is
no doabt " E . L. G.'s" oomet would offect what he nontends for, and not the reverae.
contands dor, and not the reverne. that he is argning honestly for the trath when he sars "the 10it. on the area of the land wonld be balanced by the 10it. per
minate on the san "? Is be so poor a mathomatician minate on the sas"? Is be so poor a mathomatician as to think that the water will ran as quickly of an
inclined plane, and at the enimo time do the work of transporting mad, sand, nud gravel, nprootina treos,
ander shrnba, and everything, nnd carrying them along n
winding course, and yet onir tare the same time as it taicas to sall throagh the heigint of the inclined planobe accumalated on the land no more than 1oft. water be accumulated on the land no more than 10f. water,
by the same time there was 10tt. on the sea ? How clas
conld the 10 t. on sea balance the 10t. on could the 10 ft . on sen balance the 10ft. on land? It
woald have to balance many times 10ft. on the land. woald have to balance many times 10ft. on the land. fetter 4193, ard he will seo he is all wrong, and thnt a mass of water falling over the whole snrface wonld certainld increase the prossure on the land
t would on the gea, and first on the land.
Let tas take "E. L. G.'s" rainfall. of 10 et. por minate; there are, I imagine. many inland plaina or
vallers, call them what rou liko, and of large extont, Valess, call them what rou iko, and of large extent,
whose level is some thonsand feet abovo the sea. Nom the rain which fell on the bighest monntains woald ran down into these vallers and then form lakes, and thas there might be crincentrated at one point on the to bear but a minate before, and this might and
to wonld in certain places be the case hiefore a a
loop of rain bad fallen on the sea
till the lend began to sink, the water wonld tend to ran off; but still it would be retarded safil. ciently to form the elerated lakes I have spoken of.
Bat further, even iot as exppose that the rain began to Bat further, even lot onsappose that the rain began to
fall on the sea at the same time as on the land, or at a rall on the sea at the same time as on the land, or at a
period of time so shortly after as to be inappreciahle; and so it wore possible to have 10ft. onspa bninuciac he 10 tt . on lanid. it wonld not have the effect "Sigma" supposes, for 10ft. on the sea surfare would be equal to
the pressure of a colnmn of water 10ft. high distributed equally over all the bottom of the sea. and this it could bear without any sinking. Now, in the second minate, 0ft. more would be added to the pressare on sea's oot be 20 ft . at one place and 60 ft . or 100 ft . at another ; it would be 20 t. plas whatever in the second minate might have run down off the land, which woald yot be more than a foot over the whole sea, if it would ba so much. Bnt what state of things would obtain on the land at end of the same second minnte? In many places there would ho au increased pressare ol many hondred amess grenter hanithad obinar ander this it might begin to yield, and if bofore, and nder this it might begin to yiela, and if set it going in the opposite direction. "Sigma" may know this from his chemical balance-if he puts too much in one scale and it begins to descend, a greater weight in the opposite fcale will not at once make it sink, and coald only do so by raising the bottom of the sea, whose wators wonld rash in on the lands, and tas help to flood and sink them.
P.S.-I trast "E. L. G." will give us some more proofs. Ho has many a one who sympathises with him in his desire, in this and other matters, to have the trath known and acted on. Let him manfully, yet hambly, fight, and the viotory will not be nncertain, thongh, perhapa, delayed. It he were not so well able
to hold his own against all comers, more friends would spenk out. Till help is wanted, it is oftentimes better
withheld.
D. \mathbf{E}. withheld.

THE DELUGE.

[4291.]-Whils endeavonring to avoid infringing the law laid down for the exclaqion of theological disa engsions (a law which, however, I much regrot, as I long I wish to address a fow words to "E. L. G.". on the nebject of his recent letters on the Deluge. Why does he give himself the tronble of trying to explain snoh an impoesible phenomenon as a nuiversal Delage, deep enongh to snbmerge the hills allotor the oarth, when
there is at hand a far oasier actution of the question? There bad not been time enaugh since the Creation fer men to have spread themselves very far from their first dwclling place, and, in all probability, their wanderings of themselves and their herds conld be maintained with little or noexertion; therefore, what is more nataral than to suppose that the Delage, which was resily nniversal as regards man and ais possessions, should
have been only partial as regards the whole earth? have been only partial as regaras Provided that it accumplished the destrnetion of every humau being, this awful instrmment of the Dirine wrath had done its wnrk, and farther ravage wan un-
necessary. God's wisdom in adapting means to an nend will not allow us to soppose that in order to destroy man. He drownent the whole'earth, where man ondil it is proved to the contrary, that the FDelage was not noiversal, bat partial, and conflued to those rezions onhnitur
Apol-gisiug for haring ocenpied so mnoh of yonr valuable rpace with these notions of mine, 1 leave from his comet, aud when that is satisfactorily done how specimens of all the oreatures of the earth could have been got into the Ark and preserved from destrue. groand.
Ve cannot do this his theory falls to the
Vertumes.

MORE PROOFS OF THE DELUGE.-II.

[4292] -"As lakes and river pystema," bays Darwin, in his famons work on "Nataral Selection," chap. xii., other by barriers of land, it might lave been thought that resh-water produclions would not have ranged apparently a still more formidable barrier, that they wonld nerer have extended to distant conntrice." Certainly that seems, on any Lrellist riew of Geologr, very obrions. Of the three mansions of terrestria has free connection ronnd the globe, or over mot of its face, haviog but a few detaethed oatliers, as the crapian aud minor salt lakes. The first, the laud, is and the outliers (of which our Britain is only aboat, the twelfth largest) vastly more nameroas than those of sait water. Bat the fresh-water mangion, widely
difurent in plan from either, is in conatlegs thonsands of separate chambers, the largest barely holding a fraction of a titho of it, and all of them as separate each from each, even when as near as the Thames and Nedway, as are the earth and moos. Assaredly, few
things coald be plainer than that now in action" wero uninterrapted, the wansinn most nuifornly stocked muat be the sea; next to it the contheir land and possibly some or many islands to which them) might be occasionally carried on driftwood, by birds, or even on ice; but that the fresh water, in its
valloy, mast have the diverse, localised and peealiar atooks. Now hear Darwin proceed:-"Bat the cesh is exactly the reverse. (111) Not only have many fresh-water apecies, belongiog to quite different clagses n enormons range, but allied species prevail in emarkable manner throughout the worla. Brezil Brazil,
reeh-Iresh-water insects, shells, ari, and at the dissimilaritu
of the aurrounding terrestrial beings, comparod with tose of Britain.

With respect to plants," be adds, "it has lora been known what onormons ranges many fresh water and even marsh species have, both orer continents and the most remote oceanic islands. This is strikingly shown, as remarked by Alph. de Candolle, in large groaps of terrestrial plants, which have only a very ew aquatic members; for these latter seem immediately to acquire, as if in consequence, a very wide range-" That is, in sach a group or family the mnjority of the members, those of dry habitat, with their free ran of all their continent's aplands and connected frame, these aro all localised; bat the farer branches of the family that need markh or even constant water, and so are locked in by hills, each to its particular rale or basin, "these latter seem immediately to acquire, as if in con-
sequence (1), a very wide range," or "enormous ranges. sequence (1), a very wide range," or "enormous ranges,
both over continents and the most remote noeanic islands"
Now, surely, if "the distribution of living being"" is to prove anything at all (as "Santalinas" and your other correspondents tell us it must, though I have cemolished any connection between their facts and their dogma about deluges), here is a startling world-wide class of facts, according to Darwin and Do Candolle, then whom I know of no higher "anthorities". on this distribution, that must go to prove something ! Thu
tronble taken by Darwin, as detailed in the rest of that tronble taken by Darwin, as detailed in the rest of that
chapter, is traly worth reading. Nothing less eonil impress on minds llke our "F.R.A.S.", M. Paris. "Osa," \&c., the transcendent irreooncileableness of the
above general facts with his baseless L vellinn dogms above keneral facts with his baseless Lvellinn dogms
all these elaborate experimonts with dack's feet, ace. to prove what? Only barely to maka out a poesihility of some occasiomal transfer of fresh-water ower hills (though the lattery, iudeed, the commoner moblem, is not solved at all)-a bare chance of wan reab-water organisms happening $n o w$ and tbea to obtain diffnsions approachiug or dis!antly imitatiog What is general to most of the ses and dry land ones. This is the ntmont the experiments establish (as to mach), when, by Darwin's own acconat, as you se
above, the thing to be explained is not a ditasion above, the thing to be explained is not a diflasion nf
some, nay, not evon of all or the generality of fresh sone, nay, not evon of all or the generality of iresh or land apecies; but a diffasion of them as a $\boldsymbol{r l}^{-\pi} r^{r}$ rule, sinar and orer
the sea and land ones
In short, if such things are evidence at all, While there is absolutely no evidence of all or the grnerality of land having ever, in anv geologio period. been conneeted, or even the whole of the selt waters having been so, it is quite otherwise with the fresh.
Thare is just all the evidence the nalare of the caso Thare is jast ail the evidence the nalare of the caso Fonld seem to admit of, that the frrsh waters bave been onnnected, and this in quite the modern geologic pericd, hat of the existing (not extinct) plants and animala "partial deloges" of "F. R. A. S.," and others-cean none of the geolngers, by the way, tell ns the limits of eren the very last ? I do not even ask for the last bat one of these delages)-no single fact for any one of these ancarsed aud, as far as they bave shown, sheres: miraculous deluges, baseless miths of their imasiss-
tions; bnt, on the other hand, all the eridence ths: could well be imagined (consistently with known lam: hat once, in recent ages, o layer of fresh water has covered both our continents and oceans at once.
And so, if it be known, as M. Paris tolls ns, p. 855 (bat it is atill unknown to me), that mero freshets o Indian rivers kill "millions of sea fish," then, probably. their mourner has to mourn the death, at that delugs the sole traceable one), of still more of his marine friends; nnless there be reasons (as there may be plesty neither known nor knowable) for a rertical accession of resh water killing fower than a lateral. Bat whetie: more or fewer, billions or tens, I fail to tract
connection of their deaths with oar argament.
Now, being in this twelfth chapter of Darwin. Fe may 28 well quote his other grand pazale, that of Ho
beings on "oceanio isiands." First, he tells us, "Ths species of all kinds which inhabit oceanic islanda are few in namber compared with those on equal cont. nentrla areas. Alph. de Candolle admits this for plants aud Wollaeton for insects." Of this he proceeds is ive vary striking examples; all New Zealaud, for ittance (equal in extent and climates to Italr and Sirs contipents of a handredth its size aud bat one aniform climate-nay, than a civilisedisie as small and aniform as Anglesea ! This fermess of seccies (in either kises their separatents on islands even within sight of ase other (which astonishes Lyell ir tho case of Madeirs and Porto Santo, two very ancient isles, long, loaf ante-Noachian)-these two facts, especially coaplei as he arys, with great stmilarit! in their fossil Etim pecies, are two quite general faits, for which neitu enor any of his school ha thongh, of conrse, there is a theorr, that of the "eerzs barbarons Hebrews," that so obrionsly fita pat iato both, that it would bean insult to the commen

Tho same, of conrse, applise to the following of Darwin's facts-" Ocennic islands are sometimes deacient in raimals of certain whole clasees.
sreth differences in number, and the absence
scel diferences in number, and the absence of certain
while groups of animals and plants on i:lands ara mbile groups of animals and plants on i:lands are
generally accounted for ") (ie., said in other bonks to h. 50) "br anpposed differences in their physical onnditinns; bat this explanation is not a little donbtral. With reapcct to the ahsence of Whole orders of animals
ou occanic islands, Bory de St. Vincent long ago reon ocnanic ialnnds, Bory de St. Vincent ling ago re-
murked that Butrachians (frogs, toads, newts) are never murked that Batrachians (fross, toada, newts) are nover
fonnd on nar nf the many islands with whioh the great ocenns are stadded. ...This general abseoce of frogs, tnads, and nerta, on so many oceanic inlands cannot
be accounted for by their physical conditions. Indeod, be accounted for by their physical conditions. Indeed,
it seems that ialnads are peculinrly well ulted for these nnimals; for frogs have boen introdaced into Madeira, the $\Delta z o r e s, ~ a n d ~ M a n r i t i n s, ~ a n d ~ h a v e ~ s o ~ m u l t i p l i e d ~ a s ~$ of crention, they should not have beeu created there, it wonld be dimicalt to explain." Certainly, I agree with the eminent natnralist, very difficnit in leed : ospecially as it seems plenty of fossil extinct species of such absent orders dill exist oren on inlands !
"Mnmmale," he proceeds, "offer ancther a
"Mnmmale," he proceeds, "offer ancther and a
imilar case. I have carefally searched the oldest roysges, and as yet I have not found a single instance free from donbt, of a terrestrial mammal (exclading douceticated auimals kept by the natives) inhabiting an ipland sitnated above 800 miles from a continont
or great coutiuental island; and many islands situated at a mach leas diatnnce are eqnally barren.
it caunot be said that small islands will not sapport at least small mammals, for they occar in many parts of the world on very small islands, when lying close to a continent; and hardly an island can be named on which our smaller
und gredrapeds have not become nataralised
maltiplied. It cannot be said on the ordi. und greatly maltiplied, It cannot be said on the ordi-
nars view of croation" (what on earth is the ordinary iem of creation?-I am at a loss to conjecture) "that there has not been time for the creation of mammala mnny volcanic islands are snfflciently ancient.' What precise antiqnity thls requires, I cannot find the earned creationist to have anywhere told ns. Aocording to Milton, the only other anthority at hand, not a great period:-

The gracsy olnis then oalvell : then hall appear'd
The tainny linu, pawing to get free The farny lina, pawing to get free
Bat Darwin proceeds : "Althongh terrestrial mammale do not occur on oceanic islands, aririal mammals is has the creative force pradnced bats, and be asked, nther mammals on remnte inlauds? On my view this can be easily answered, for no terrestrial mammal can be transported across a wide space of soa, bat bats can me, view, hat I was not a rare Darwin's view was the one to yield it. "No terrestrial mammal can he transported across a wide space of sea" 1 Bat what the island any more than bats? Why not be developed there? Since ℓ yous say, " it cannot be said there has there? Since ℓ on say, "it cannot be said there has
not been time," and "many voleanic islands sre sotfeciently ancient, as shown by the stapendons degradation which they have suffered, and hy thrir ifrisry strata." You explain indeed "easily" (and hats, but n ot the larger fact, the absence of all the tiat mom maly
Hat we have not exhanated, we have not yet come to the climax of, Darwin's dilavian proofs. "He who
admita the doctrine of the creation of each separate admits the doctrine of the creation of each separate tho best adapted plants and animals have not been [later edition, " were not "] created on ocearic islands, mily and perfectly than has Natare" (later edition, than did Netnre'). Assaredly Then von see, of the ithroe terms you prefer), if acting in regard to Wingely bass betn a stapendons blanderer indeed! Widely different from what it had done on contineuta,
nad in beas, and even the now infinitely separatedhits and in seas, and even the now infinitely separatedhits
of freah water, more numerons and even smaller of freeh water, more nnmerons and even smaller
than islands on the whole! Jnist observe! In one or
centaries onlr, our ships merely happen, by blind chance, to carry into most ibands, plants or animals
so vesily fitter to their physical conditions than the native sprcies that have been there, according to Jarwin's present faith-faith in the Lrollian priestnod -for thousands of centaries at least, as to starve
nt, crowd out, aud exterminate, in a single centary,
ancient, million-year-settled possessors of the Oh, blandering natural process! With all this
to drawninon, natame, time, time" (as Scrope hath the very prophet thereof), anable in all these million ces, cither to develop in, or get into these islands, a
ock half so fitted to them an man unintentionally
man n's ships, by pure chance) happens to introduce one short contary
And this same process observe, infallible, 28 all Amit, in stocking regions where it once "purates, even
a a gemeration or twol A crux indeed for Darwin, nder Lyellian bonds, all this insnlar misdintribation ! taken in connection with all else, with the nuiform
of deltan, and waterfalls, and peat-bogs, the irersal dilaviation, the flood-scoured surface, the oulder-drift, owpot, and lodged in every isle nad
very river-vale alike, the iceberf-droppod trains of urey wethers," and other erratic blocks-what can be taral selection, no repular or continuing cente, has ataral melection, no repular or continuing canco, has
is foand, as regards inlands, to be mere mis-distribu tion; therefore, the work of nothing regnlar or long of some quick, sharp, sadden catastrophe.
E. L. G.

A BATCH FROY MR BOTTONE

[4298.]-(4265.)-Solphur as a Bleaching Aarnt -Sulphuroas acid and its conceners are powerfnl reducing agents, bat they require certain favourable circumstances to bring their deoxidising powers into oxygen forom pharons ashydride canmot of isself absorb oxide of nitrogen it does so readily. A strong solation
oxide of of andphorons acid in water is tolerably permanent, i, wir be excluded, bat after the lapso of some weeks part of the water is decomposed, hydrogen is set free, and sulpharic acid is formed, thas:-
$\mathrm{H}_{4} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$.
The presence of organic matter seems particularls furoarable to the prodaction of this effect, and in many cases the organic matter alsorbs the hydrazen
liberated. Cases however occur in which the hydrozen iberated. Cases however occur in which the hydrogen
is not absorbed. It by no means follocs, however, that s not absorbed. It bryo means follows, however. that
the result of the deoxidation is insoluble, as " Δ. E . S ." seems to infer. The following eqnitions may be acceptable, as illastrati
acid in several cases :-

Blue Indigo.	Sulpharous Acid.	Snlpharic Acil.	White Indigo.
$2 \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}+\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{5}+\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$			
Rosanili	Snlpharous Acid.	Salpharic Acid.	Lencana. line.
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}$			
Alloxan.	alpharous Acid.	Snlphnrio Acid.	dloxantine.
$2 \mathrm{C} 4 \mathrm{H}_{3} \mathrm{~N}$	$+\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{H}_{2} \mathrm{SO}_{4}+$	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{7}$

New Method of Obtaining Potassiex (p. 273). This is by no means a novelty. In 1805, while at
Norara, I prepared both pntazainm and sodinm by the Novara, I prepared both pntazainm and sodinm by the
action of iron tilings on the respective sulphides. The mode of operation quoted last week is, however, far from being the best. I found that a , straight ganbarrel, with the nipple plauged, and inclosed in fireclar, is the best retort to be got. This is charged with
the alkaline sulphide and irrn flings, laid transversely the alkaline sulphide and ircn flings, laid transversely
in a furnace, while a short U-shaprd tnbe, carring a in a furnace, while a short
globule of morcary, and fitted with a nork, is lisept in geadiness. Diore than three-qnarters of the gun-barrel readiness.
mnst proct from the farnace, and be tept cool by artificial mean?. When the body of the gan-barrel has attained a cherry red heat, the beut tabe and cork is to be inserted into the cold end of the barrol. The heat mast now be increasod and kept np for abont an honr. The glass tube mar now be corked and the gnnbarrel allowed to cool. When quite onld the mercary
tabe is to be removed, and the potassinm, which will be tabe is to be removed, and the potassinm, which will be
fonnd condensed at the cool end of the gan-barrel, quickly removed by a bent scraper, and preserved under naphtha. It the heat be sufficiently high all the
potassium will de expelled from the salphide.
B. Bottone.

ANALYSES FROM GEORGE E. DAVIS.

[4294.]-I dare pay" S. S.," who inserted a query in the Englibe Mechanic some time since, mast have thoagat 10 did not mean to reply, seeing that I
had let sach a long time alip orer without taking any apparent notice. I promised to perform the analyses whan I had sufficient leisare, and now that time haa arrived, I hasten to pnblish the results, so that " S . S." mar publish the analyses he has received from the
"leader" already spoken of.
A qualitative annlysis only has been made, and therelore to say how the bases and acids are combined
wonld be simply an absurdity. I give them separately bat if " S . S." particularly requires a qnalitative analysia made, 1 will do so for a consideration, which, in the present instance, will be rather high.
To proceed with the hittle marked "No. 1 Liqnid," I sound as follows:-. Ccil hadickes: Cblorine, phosphoric, suipharic, oarbonic. Bustyls: Alnmininm, sodinm, trace of rantity of a fatty acid.
The following is the analysis of the liquid contained in the bottle marked "No. 2 Liquid: --icial Ranicks : Chlorike, byposnlphnrous, Rulphuric, carbonic, phos-
phoric, ailicic. Banylla: Alnmininm, andium, potassiam, phoric, nilicic. Baspl/s: Alnmininm, Rndium,
traces of iron. Neutral Sulstance: Water.
The tin canister containing a paste, and labelled "Composition Paste for Analysis," Eave, on examining the contents, the following resalt:-Partly decomposed
orgauised snbstance, sodiam hamate, with traces of organised snbsta
copper salphate.
Hering now given the results of the qualitative "W. R." has done. I shonld like him to write me pergonally, especially if " W. R." Bhonld happera to be
Gzorar E. Davis.
Redelife, near Manchester, May 30.

AN IMPROVED BEEHIVE.
[4295.]-Thougr "Boe-Koepar," in his interesting letter (4187, p. 251) does not expressly say so, no donbt and durable is to prolect his bees of his hive so thick adrantageous not only to save thom from danger, but for economy of food. Mr. Pagden, of Alfriston. in his or economy or hood. Mr. Pagden, of Alriston. in his clover little book, called " 170 a yenr: How I Made it
by my Beer," bara at p. 29 that ho has proved hy by my Beeq," sars at p. 29 that ho has proved hy
withing hives containing fow and many weishing hives containing fow and many bees that smali as by a large number, a fact mentioned by many writers, though "no one," he sara, "has been able sati.sfactorily to explain how this mystarions fact is o bo sccoanted for.'
Thongh it in nnsafe to conclude that a genoral rale is estalished by one experiment, however apparently in a hive jo believe that it is true that many bees in a hieir noubers than fer and that the explengtion is that nhen many are togcther ther keep esol oth rarm with less proportionate conemption of food es nol (which hones chiefly ie) hen not nol (which hones clitifly ie) when not aned ap in the
secretion of wax. It is well known that all animalis eat less whenever they are less exposed to cold, and bees then warm and not needing wax require bat little eat-producing food. If this bo the correct explana ion, it follows that hives should be very well protected rom cold in winter, and fortnately the yame means will be effectnal in protecting them from heat in anmmer if snfficient ventilation be provided for, but "ey will at all times need a great deal more air than "jnot ss mach as is brenthed, neithor more nor leas." and if they do not get far more, they will soon want and if they do not get far more, they will soon want
none at all, neither shonld we if ailly enough to condue parselves to his allowance.
I do not know whether the experiment has ever been tried, bat it is, I think, worth trying, if it woald not pay to redace the consumption of boney by bets in wintar, by very gently warming their hived, or the done very cantiously, lest farmth should stimalate thein to nnnataral activity. Possibly some of voar correspondents may know if the experiment has been ried, and with what result. I know that hives are sometimes warmed to remove damp, bat can heat bo
used to alave food?
Philo.

REVOLVING PUDDLING FURNACE.

[4296.]-Tre question as to Mr. Danks being the origiual inventor of the revolving puddling farnace will from present appearances havo to be decided in a court vention there is no doubt Mr. Danks is ontitled to it A similar A similar manner of padding was tried years ago at
Dowlais and failed; since then Mr. Danka informa the trade that ho has sncceeded in whet the Dowlais Com trade that ho has saccecded in whal pany failed in, which in a great measare he has
done by asing a new description of "fettling." This done by asing a now debcription of "fotling." This hron and Steel Institnto (of which "G. S." seems inclined to speak disparagingty), one of the leaders of the commission being from the very pla ins where the invention was originally tried. If Mr. Danks's invention is adopted gezerally, and proved to satisfaction, then the Steel Institato bas performed a service for this country, which, perperformed a service for this coantry, which, perTrevithick invented nad patonted the fict locomatio. made , made, but
saceess.
The remarks of "G. S." about the new Institute are very nndeserved; they are doing a good work, which is acknowledged by foreigners of tho highost distinction in the iron trade, such as M . Schneider and others;
nad as to his remarks about "gnshing rotes of thanks from lordly lips," When " G. 8 ." can beueft mankinit by writiug such an inangural address as the late noslePresidont did at the first moeting of the Institate, be President did at the first meeting of "Ge listened to as an anthority. " S ." mast remember he belongs to an honourable profeicion, which member he belongs to an honourable profeision, which
deservedly boants of an institnte in connection with it milar to the Iron and Steel Inatitate to the iron treite
A Memper of tae Iron and Stiel Ixbtitute,
ENTOMOLOGICAL-(II.)-ON LARVE.
[4297.]-The apparatus required in collecting larvois a metal larva-bos, a large cotton nubrella, a strong wire ring-net, a stiok, and a box to pat food in to bring it home. some collectora profer chip boxes to
metal ones, bat they are liable to break in and thill the metal
Thas equipped, the collector may set out. When a suitablo locality is reached, he should proceed to beat the trees and bashes, holding the umbrella anderneath to catch the larvee that fall, which may then be
boxed with some of their food plant. Many larvae will boxed with aome of their food plant. Many larval will contrive io elade observation by being quite still, and like pieces of atiok than anything else.
another method of collecting larve is to aweep over the herbnge with the neth and so obtain many larra which coald bo foand in no other way.
Concerning the best time of the year for oollecting larve. I think all seasons are good, bat early in the
spring, in February or Maroh, many otherwise spring, in February or Marob, many othorwise
nuobtainable larve may be found on grasay bankg. nuobtainable larve may be fonnd on grany banka.
The next best season is aboat the ond of May or The next best season is aboat the ond of May or
beginning of Jnne, when the trees have been in leaf some time. Lestly, many hybernating larrw may b.
found junt before the leanas drop off. Jast before :.
jast after cunset are the best times, though the collector will meet with success all day long. Some larve are great wood borert, such as Cossus ligniperda (Goat) but the collector may be deceived by the boringe of beques, when he expects a good lepidopterous larva; the different appearance of the holea mast, of courne bo learnt by oxperience. Other larven, such as that o Catocala nupta (Red Underwing), rest during the day on the bark of their food tree ((illow), artinuly concealed from general observation by the similarity in their colour to the bark of the tree, and by their filling ry he bollown in it.
Lastly, the presence of birds, such as tits and creepers, shows that larve-which are their food-are creepers, shows hand, and this ought to make the oollector eren more active in his search.

BONES AS MANURE

[4208.]-Soxe' of your correspondente appearing aterested in the queation of mannres, especially artifcial and dissolved bonos, I forward a clipping hich may be fonad nsefal.
The complaint of frand in the mannfacture of commercial manares gives rise to many questions eoncerning the manufactare of bones into some srailable form by the farmer himsolf. Bones and coprolites are al. most the only reliablo sources of sapply to replace the phosphates ; but bones broken into fragmenif of not nore than an ounce in weight each will, ouder ordiaary circumstances, remain in the soil andecomposed for half a contury, and consequently bat little beneft will be derived from their use. Bones, to be of immediate value, must be ground fine; bat this with "raw bones "is a very difficalt process. When subjected to the action of high steam they lose all their oil and a large portion of the gelatine, thas beooming brittle, and asily ground in a common mill. The same end can be reached more directly by burning the bonen, the waste being merely the animal matter contained in them. The phosphate of lime is unaffected by oither steaming or bnrning. The mineral part of the bones hus separated, will be found to consist sabstantially of 45 per cent. of phosphoric acid and 55 of lime. This compound is insolabie in pare water, and bat very aparibgly soluble in rain water charged with carbonic wid. If wo take this "bone phosphate " and add to it little more than hall its weight of sulpharic acid commercial oil of vitriol), wo shall in a fer daye produce a new compound, in which the sulpharic acid has removed two-thirds of the lime from the bones, comfining with it to form Rypsum, supplying the place of the lime thus removed with water. This is a true solable superphosphate. Its elemente are :-Phosphoric cid, 60.69 ; lime (calcium), $28 \cdot 98$; water, $15 \cdot 38$.
This mass will be fond vory tenacions, and somowhat difficult to handle. To remedy this it should be mired, in sufficiont quantities to render it dry, with come good absorbent, suoh as dry awamp muck reduces rond dust. Lime or ashes should never be used for this parpose.
Several farmers might co-operate in the construction of a mill, and thus produce the bone meal which From this, they can make heir own superphosphate, and neo it either by itsel mixed with componted manare.
Bat bones may bo reduced to a very ine state of division by the ase of atrong wood ashes, and that presenting a large surface to the solvent action o rater and carbonic soid in the soil, may be of great value in maintaining fertility. The following formale has been suggested for using bones with ashes:-

Pounds.
Ground boner ... 100
Ground bonel...
Strong wood
............. .400
.70
Epsom salts. .. 10
Dissolve the sode nitrate and Epsom salte in sufncient water to thoroughly moiston the ashen and bone moal. Mix well, and let it stand ten dayb, stirring it daily. Use some absorbent, such as dry muck palverised, to dry the mass and reduce it to powder. Rainite may be sabatituted for the acheen, in phole or in part. This amount ued
In come parts a diffoulty will be found in obtaining the quantity of wood ashes here mentioned, but it should be remembered that almont any vegetable refase the alippings of hedges and trees boing posidbly more ervioeable than the ashee of burnt wood.
Many persons who have stadied the quention are frmly convinced thast the stimulating manires, suob as contain ammonia are rarely required, that plants will obtain all of this that in absolately necensary from the the soil; and all that the farmer noed do is to supply the soil; and all that the farmer noed do is to supply phonphoric acid, and the speoisl saits, which an potash for potatoen.
B. T. R.

PURE GEOMETRY OF 113 : 855.

[4299.]-Sirese in this approximation to circamfe ence $855=15^{2}+9{ }^{2}+73$, and $118=89+72$, I find this permita of a geometrio result oxcluding arith matical divisions, eg., $M N=11 P Q=\frac{1}{7} R S$, to.
On diameter $\triangle B$ of a circle, radias $A C=1$, extende
$=$ side inseribed square $=\mathcal{N}^{\prime} \mathbf{A}$. From E. radins $A D$ $=3$, cut $\triangle D$ in $F \therefore \triangle F^{2}=E F^{2}-\Delta E^{2}=9-Y=$ 7, $A G E 4.2=8$, hence $G F$ is cut by perpendionlar
$A H$ in ratio $8: 7:: G H: F H=G Q$ on $G F$,

Next, on HA make HM $=H F, G M=\sqrt{118}$ in same units: then $F K \perp G P=G J$ gives $G K=$ $\sqrt{306=15^{2}}+9^{2}$; KLLGK $=\mathrm{FH}$ gives $G L=$ $\sqrt{8166+49}=855 ; G N 1 G L=G M ; G P \perp L N$ Vhence $N P ; P L$: $: 119: 855$.
Farther, $\frac{\Delta H}{A C}=2 \sqrt{\frac{7 \times 8}{15}}, \mathrm{FH}=\sqrt{7 \times 7} \frac{H M_{1}}{15}$. M falls between A and H.

I append some appropriate fractions, devised by my late friend, C. J. Willich (Philosophical Magazine, May, 1863), and resolved by me. Note specially the, cabe root of $\frac{1}{6}$ of π.

$=\frac{855}{118}$	-0.000002	$\frac{5 \times 71}{64+49+72}$
$x=7$	- 0.000001,6	7
$\overline{860}=\overline{803}$, $784+18$
$x^{2}=\frac{227}{23}$	$+0.000039$	$\frac{441+9+4}{36+y+1}$
$=\frac{23200}{763}$	-0.000022	$\frac{200}{7} \times \frac{100+16}{100+y}$
$I=\frac{296}{167}$	$+0.000001$	$\frac{100+198}{100+49+18}$
$/ x=\frac{381}{2426}$	-0.000010	$\frac{225+81+25}{2(113)}$
$\sqrt{\frac{1}{\pi}}=\frac{145}{257}$	-0.000012	$\frac{144+1}{256+1}$
$\sqrt[8]{\frac{\pi}{6}}=\frac{457}{567}$	- 0.000000,5 =	$\frac{441+16^{*}}{21.27}$
$\text { lp. log. } x=\frac{87}{76}$	-0.000007	$\frac{3}{4} \cdot \frac{29}{19}$
$\text { Iod. log. }=\frac{195}{449}$	$+0.000004$	$\frac{15.13}{400+49}$
$=\frac{1264}{465}$	$+0.000002$	$\frac{16.79}{15.31}$

\cdot Hence $(8-3)(8+4): 83:: 1-\sqrt[8]{\frac{\pi}{6}}: 1:+\sqrt[8]{\frac{\pi}{6}}$ aearly.

I find namber of times overy digit of ocecars in the frst nix handred decimals of Mr. Shanka' ralue to be as follows:-

To dec... 100th \qquad Add	0	1	2	8			6			9
		12	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	${ }_{8}^{11}$	10	12	$\overline{7}$		13	14 9
$\begin{array}{\|l\|} \hline \text { 200th } \\ \text { Add } \end{array}$	${ }_{7}^{19}$	20 10	12	19	22	${ }^{20}$	16 15	12	${ }_{9}^{25}$	23 7
$\left.\begin{array}{\|l\|} \hline \text { 300th } \\ \text { Add } \end{array} \right\rvert\,$	26 11	30 13	35 9	${ }^{31}$	37 10	${ }_{12} 27$	31 11	19	18	30 9
400th	${ }_{6}^{87}$	${ }_{16}^{43}$	$\stackrel{4}{4}$	39 12	47	$\begin{aligned} & 39 \\ & 11 \end{aligned}$	42 5	26 12	4	39 10
500th Add	43 13	59	$\begin{aligned} & 53 \\ & 11 \end{aligned}$	$\begin{aligned} & 51 \\ & 13 \end{aligned}$	$\begin{aligned} & 54 \\ & 10 \end{aligned}$	50	$\begin{aligned} & 47 \\ & 15 \end{aligned}$	${ }_{8}^{38}$	5	51 15
600th	${ }^{56}$	63	64	64	64	56	6.2	46	59	66

Here the same number is repeated as follows :-

For 500th, repeat 1. 1.1.7.6.6.6.6.11.2.1.2.1

DETERMINING THE SPECIFIO GRAVITY OF POROUS SUBSTANCES
[4800.]-Trir plan suggented by Dr. G. E. Morse, described at p. 280, appeara to be well auited for the parpose; but not better, I think, than the old oneproposed, I believe, by sir John Leslie-of inclosing in the appor part of a glass tube a known woight of the sabstance whose bulk has to be determined, so that its apecific gravity may be calculated. The tnbe Wich mast be more than 15 in . long, is placed in ${ }^{\text {a }}$ arger tabe alled with mercury till the surface of the quic metal corresponas with a mark on the inner tabe; the top of this ia then closed air-tight, and the保 of courbe, ano alr ing force thg an or thich is not ocerpied by the colid motter and hale the whion an pace botweon that he space occapied by the mercary, Which dends in ke號 ontained in it, is equal to the space occupied by auch
 may be anited with it mechanioally. This rolame ma he mercury, its woigh raing graal in proportion w objection to the use of this simple instrament not known to me. Prumo.

DR. CARPENTER AŃD PERBPBCTIVR

[4301.]-TeE reason, I think, why a pictare does not embrace so many degrees vertically an horizontally is becance it represents a soene more or less doAned, viewed by an oye directed to one point. The nataral shape of a picture is, therefore, an ollipse, of Which the major is to the minor axis as 8 to 2 B. D. T." (let. 4190, p. 252), whose previous letter I was not so uncourtoons as to reply to without rending. will see that our tower need not be made ap of parallel pes to suit a rectangular representation of the scene. E. L. G." (let. 4189) gives the better reason, bat as he adds that pictures are not always viowed from the point of sight, it is annecensary for me to say more than this, that an they are to be the beat reprosentations possible, under all circumatanoes we may be surer of the real trath by following what mact be dopioted on the glase plane of projection-namely, convargence I do not quite egree about the oursection
 the eyo, aithough quite aware that we really beo no by the oye, bat by the brain. A plane of projection boing an entirely artincial matier is changed oy the alightont movement of the ayo. I have nover seon the " E L. G " to by E. Hi. (lot. 4191). To him, at to arranged, but is a compromise, and is painted for effect. Architoctaral photographs are simply horrible

PAINE'S MAGNETIC ENGINE, to.
[4802.]-On p. 611 of your last velame "Sigman abked in a very pointed way, "Where's the pock ol popper Peter Piper pioked "' I have just come zorose a piece of "intelligence" which will sapply him with the not anexpected information. According to the New York Telegrapher, the " peck of pepper" cannot be found or it seems the Electro-magnetic-wood-sawing-and driving-men-of - war - across - the - Atlantic-for - nothicg Company has "gone up"; that Peter Piper himsel" has "loft for the Enst, whore the wise men eame trom." and that the stockholders have experienced an olectric shock in the shape of a total loss of their money- $8,000,000$ dollars.
In other words, Mr. Paine has failed to do what be publicly stated, with much show of offended dignity and njured innocence, he had done and could do, and hea retired from the country to "perfect the details" of his maohine in quiet. So far Mr. Paine. What hat become of Mr. Slater's engine, of which at one time we heard so much from Mr. Hightion? The latter gentleman appeart to havo givon up attempting to perfect its details, as his attention is now devoted to elegraphing throagh aninsulated sub-marine wires, which of coarse would be mach cheaper than the rather cootly cabloe fonnd neceasary in praction. Mr. Highton sarely owes it to science to make as fall a report of his failure ss he did of the "fects" by which he thonght to overthrow the experimonts of Joule. I woald alno ask Dr. Paokman how he is progracsing With hit, ateam-engine, mentioned on p. is likely to delight the hearts of "our" readers.
$\dot{s}_{\text {sut }}$ Rtigen.
SUPPORT OF SPINNING TOP.-UPWARD DEFLECTION OF BULLET.
[4898.]-Ir is a misfortune that many men of great alent waste their time and onstgies in attompting to prope why some particular effect is prodaced, witheat a the irst place ascortaining what the fact really it. Many of as have heard of the glass globe pnzzle, the qnestion being, "How in it that a live fish added to a globe partly fllod with wator does not increase itu weight $7^{\prime \prime}$ The learned of the time ontered freely into the discusaion, which came to an antimely ond by a oynic requiring the globe to be weighed before and after the addition of the fish. Mr. Taylor aays be "shall be mach aurprised to hear that a spinning-top win stand in recuo for a moment." Would be be vary mach surprised to hear that Faraday kept a top apinning in racuo for one hour and forty minuten?

Amidat all the planible therios and apeculations to aceonnt for the movecueats of the top and gyroscope, node as vot appear to aflord any satiafactory colution

 node as yot appear to afiord any satiafioctory colution of the problem.With regard to the ballet rising from the gan, this again in a popalar fallaoy, of which it is eary to trace the origin. When a gan is fred from the shoulder the point of resiatance not being in a atraight line with the force exerted by the ignited porder, bat sereral inchen bolow, the muzslo natarally rises. It hat been and acoortained from the experimentis of whitworth lide. ront in that direction parallal to itsolf, tho bullet will not riee. To give a more homely illactration, every one accustomed to plistol praotice knows that pistols throw very high as a rnle, bet if the hand be tarated sideways, the ballets instand of vertical.
Δ Barbibter.

SPINNING TOP.

[4304.]-I carror just now lay my hands on the aumbar " E . H." (lot. t101, p. 252) refors to. It appears to me, a perfoct top in a porfect vacuum, and ver, being equally on all sides affected by gravity lof there be friction, rotation souner or later atops, and tho top falli. Lot "E. H."-not resorting to any dodge a la Colnmbur-sot up a top on ite peag, and toll na what, if not gravity, canses it to fall. Let him then spin it; the top remaine apright becase its motion connteracts its tendency to find a ponition of rest. Perhapa I I do not anderstand "E. E." The particles
are moving in a plane, and cannot get out of that plane are moving in a plane, and cannot got out of that planc them, as the top is not a theoretical top, and at last is
too atrong for the other force. Paris.
[4905.]-I Cannot refor to the Mrobanic of Jannary, 1870, consequently know not what the "old tallacy" is, which M. Paris and myself are accused of reviving by "E. H.," let. 4191, p. 252, but I have a trong notion if "E. H." tries the following experimont, that he will withdraw his anthoritativo fat as to which is right. Take a weight suspended to a cord; lot it go, and it falls to the groand from the effect of the attraction of gravitation; pick it ap and cause it to revolve rapidly and vertically, then let it go as it passes the highest or lowest part of its circuit. It will aot then fall to the groand, but will travel in a tangen o the centre of gyration as long as the velocity io maintained, and if the "force of gravity" in not orercome As it seoms that I have
As it scoms that I have not convered my meaning clearly upon the point to J. M. Taslor, I Fill endeavour to do so thas:-When any body is made to revolve, ita contre of gravity is not, mathematically spoaking, in a vertical line with the point of rotation. An a consequence, there is an unequalattraction, Which in greatest at the lowest side of the circle, but in instantly conveged to the highost part, which has the effect of raising the one side and lowering the other until the attraction of gravitation is equal all round; he will plainly sed this by uning a toetotam, as the motion becomes so slow as to oanse hie air.onabion to rado like the basoles fabric of a rision." He will obzerve the hearier side dip, bat being immediately. Whisked to the higher side connteracte the attraction until the velocity becomes too slow. Does he oompare s bicjele rider who keeps orect, although going at morely a foot pace, to a ballet from a gan? Sarely hn is poking fan at as. I wonld like to know particulars as to how he satisfled himself that a ball Ared horizontally almays rises. I don't say
ehat it doen not, but I have not seen it proved, although ehat it does not
often mecerted.

Iiverpool.
[4306.]-I oan asactre your correspondent J. Mr. Taylor that I have séen a top opin for one hour and ton minates in racuo. This was a top made, I be-
lieve, by Troaghton, of black glase, with a steal point lieve, by Troaghton, ot back glass, with a steel point in a sapphire cap, now at the observatory at Armagh,
in Iroland, and assuredly it did not wobblo. It was in Yroana, and attempt to afford an artificial horizon at sea, which failed. The rising of a top and the gradual steadying of its motion depend apon the good diagram of the foroes, I think, in the Saturday gagaring, bat I have it not. Let Mr. Taylor spin a seal ring on a table with the seal sideways: the seal, or the hearicot part of a riog when mado symmetrical, but of diferont materials, will rise to the sammit. Vis.

CABINET FOR MICROSCOPIC OBJECTS.

[4307.]-Tre following in a deacription of a atrong. light, and oommodiona cabinet for microsoopical objecta. Lot a cane be made baving a door baok and
front meacuring inside $10 i n$. high, 8 in. wide and 6 din front meacuring inside 10 ing . high, 8in. wide, and 6 jin . from door to door, and let a vortioal partition tin. thick divide the oace into two oompartmenta : eech will be
iOin. high, 8 in. wide, and 3 tin. deep. At ilin. from both 10in. high, 8 in. wide, and 3 inin. deep. At tin. from both
sides of partitlon $A x$ a zinc plato of the same dimenaiona as innide of caso, perforated 28 ahown in sketch, and tin. from each of these a second plate, perfornted in procisely the same manner. Each pair of plates,
ingtead of boing fxed, may be in one sheot, donbled ingtoad of being Axed, may be in one sheot, doubled
over so an to be 2in. apart, and coldered at the bottom ; over so and to be 2in. apart, and coldered at the bolt.
they could then be drann in and out if necessary.

The perforations are to be made thas: Dram tin. margin all roand each plate, and lot the middle apace
thas inclesed be divided into fire vertical oolamng,
nine-eighths of an inch wide, baring a space betaeen each of fin. Each oolnmn is to have lines itn. apart,
raled from top to bottom, and the space inclosed by ralod from top to bottom,
ovory other two cut awsy.
The mode of arrangement is as follows: The glasa sides are to be passed through the slits in the front plate into the corresponding alits in the back plate. as
far as the partition allows. This will leave about
tin far as the partition allows. This will leave abjut tin. of each slide projecting in front quito sufficient to admit of their being easily withdra wn. In the space between the sliden the name of the objeet may be Written, or a number may bo placed at the side throngh doors muat be glazed with rather thick glass, and made of fit nearly close to the slipn, to provent them falling out shonid the cabinet become tilted; or the doors might te of wood, padded inside.

Δ cabinet this nize would hold five alides horizontally and thirty six vertically, equal to 180 in each division, equal to 860 in all. Erery slide woald lie fat, and be perfectly easy of accoss without diatarbing any other. Some of the slits might be left farther apart than others (for deep cells), having the front apertare cat to correnpond with size of cell. Thene cabineta can, of course, be made larger or smaller than the above, and as there in not mach work in them need not be vory expensive, nothing like 50s. or 60s.- the price the mekers charge for a case to hold this namber of alides. I have raid nothing about outside ornamentation, which may bo left to individaal taste. The front plate might be elootro-gilt, and would then present a hand

HOW THE TONES OF A VIOLIN MAY BE
INCREASED.
[4808.]-"Fiddler" (leL. 4197, p. 258) saya, "I thought at Arst (and do now in part believe) that the pressare of the stringa on the bridge interfered with the vibrations of the breast." I have made the exporiment, and come to the conclasion that in a good violin the np-pressure of the breast in just so mach more againat the atrings-say 8 to 7-as the down pressire, so that the pressare of the angers and the "Fidd the atrings make it nearly equal. Howerer, Fiader may try the experiment himsell by hinging - neck of a violin on a piece of wood a, and centreing bens, or oinht pieces together, b reprosenting the neck, and with the other on the piece of wood. Then passing a string over the bridge as usual, patting it hrough a loop, and fastening it to a weight c, he will and that the pressure of the breast is net only more against the atrings near the middle where the bridge is, but also on every centred piece, which he has to keep down separately. Besides this, in the violin, after the breast and atringe are in what I may oall proper tension, they zot 2 a a appport againat the neck, and from this support or breast the neok forms a levcr palling the back (if arched) straight, or a amall portion towarde it, and forces the sonndpost againgt the breast also. Whether the law of vibration was known to the first makers of violine, or whethor it was found out bit by bit, I cannot answor ; bat the fact is, the and if I maj constractod strictly in acoordance with it, ring aftor the action coases on the etringe, for it it be free, exoept the atringe. ringing initruments mast got a littlo more tone ont of such a small breast (for it is loss than a square foot, and we oannot make it larger) is to construct the breast of pieoes of wood (I
have jast made three pioces ; the hard grain is rose-

wood, beach, and Virginia pine rospeotivoly, and barkwood in each , ol them, representing the soit grain. Trying them with the taning.fort they are cortainly much londer than 8 wiss pine), prevent the soand parta from "panlking" oat on either aido, which thoy do at present, and consequently the wood is raroled sideways. And then not a oat mant be done withont atriotly observing the la apeoitic grarity, inertia, teasion, leverago, and in this reapect the form also. I think this a fitting pisoe to esy ${ }^{\text {a }}$ fow vords on "The Harmonioas Blaok-
smith's" ingenioas invention (lot. and diagram 4201, p. 254). Whatover merits that instrament may have then Inished afler the diagram, it cannot produoe the tone of a violin, becaase the strings palling of compressing the sond boarde.
J. H. Schocet.

REPLIES TO QUERIES.

-** In their answers, Correspondents are respectully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat drawings for illastration on separato pleces of paper. 2 Put hitles to queries, and when snaworing querios put the replies refer. 8. Nocharge is made quor inserting letters queries, or replies. 4. Commercialletters, or queries, or replices, are not insurted. B. No question akking for educatiosal or scientifio information is answered
through the post. 6. Letters sent to correspondents,
under cover to the Editor, are not forwarded; and the namog of correspondents are not given to inquirers.
[9440.]-Mathematical Question (U.Q).-This is answered in No. 370, with diagram. To find K, the simplest constraction is to sweep a circle from E as centre with ED radias, making the chord EK equal to makes a good exercise in geometry.-Conrespondent. [10478.] - Pork Diet. - While admitting the advisability of being extremely carefal in the selection of pork, owing to the ease with which parasitic insects, trichinæ, ascarides, *cc., may be introduced into the human system by the use of diseased animals, I am by no means prepared to go the "whole hog " with a
"Mother" and "Sarah" in the nniversal condemnatiou of Piggg, Eig. Pork is really extromaly well adapted to the nourishment of those inhabiting cold conntrias, ase the large amount of carbon it eupplies is a groat aid in maintaining animel heal. Poor bunny has been vory harshly treated, and I am conididont from exporience withont any jast canse. $\Delta 8$ to ogaters, co., they are certainly highly notritive, and it is greatly to be regrotted that our supply is ao limited. The annoxed table of the amonnt per cent. of water, starch, fat, glaten, and Abrino, present in beef, pork, rabbit
and oysters, may perhaps intereat Sarah and Co. :-

Wator. Starch \& fat. $\begin{gathered}\text { Glalatine, } \\ \text { glten, and } \\ \text { gbrine. }\end{gathered}$

Lean beaf.....	78.0	8.0	Abrine.	
				19.0
Leap pork......	76.0	5.0	19.0
Fat beef	68.0		27.0	10.0
Fat pork	600	80.0	10.0
Rablit .	88.0	2.0		10.0
Oystor	79.0		$0 \cdot 0$		21.0

-S. Bottons

[10664.] - Angle of Refleotion and Inci dence.-Many thanks for "F. N.'d" anggestion, but with a true stroke the ball will rot rotate on vertical axis at the momont of contact, nor daring any portion of ite course. If, however, the ball be gtrack a little to the right or left of the contre, this will take place, and the ball will form a parabolic curve aftor gerallal to the top oashion this is at variance to the notions I have hitherto imbibed of motion and forcee. "F. N.'n" diagram leads me to suppose he is ander the impression that in each case the red is strack so that it retarns from the top cushion at right anglen. If so played," strength" would not be required; both strokee should bo played a half ball, and if the harder atroke be plajed from the left-hand side of the table, the red rotarning from the bottom cushion will come to rest near the left top corner pooket. If the ball from the arst position be played with strength, the bsill will strike the side oushion instead of going into the pocket, and if from the second position, with a gentle atroke the ball will strike the top cashion.-BrLLrazdist.
[11196.]-Turning Perpendicular Shaft.-The varioas replien to this query have all omittod the landamental ralo to be observed strictly, that ia, that one ahaft may be driven by a bert from another lying
at all angles with each other from 0° to 90°, provided that their centres aro in parallel planes, without which the bolt will not keep on.-SEPARATOB.
[11886.]-Orystals in Gan Tar.-Let "Ethyl" refor to his Sohützenberger, and he will and that naphthazarine is the artitial alizariae, in contradistinction to the real alizarine, however obtained.8. Bottons.
[11423.]-Surgery.-Some years cince a servant girl in my family ran a noedile into her foot, jaat aspeodally at a ventare so close pon a joint In this appooially at ventare no lose apon a joink in thi inemma linsoed ponitioe applied. Removing this in a fow coll mo he resul baig the rooovery of mordalo portion.
 poinh, wau, artar a nont pancit carch, rouna. Fitted ogether, the needio was eairo. Your heapoa table apoonials of meal put into a sazcepan with a manl quantity oi heatod arr, hot all cold waior, rapilu, and form of ponltion for hot all throagh, makes the best form of ponitice for
the parpose, atir
and form. Monthe of suifering may the parpose, stifir and arm. Monthe of sumering may time sares nino."-H. B.
[11564.]-Blaokberry and Etrawberry (J. Q). -I have read and re-read this query without boing able to make oat whioh of the froita the first two sentences
relate to, or what M. Paris wishes to ask about the
blackberry, which he does not name aftor the above heading. Io never beard oi its calivation, hragh it is requires to be very fally ripe before developing its peculiar favour, and seema to be nearly alwaps, when peculiar favour, and seema to be nearly aiways, when
gathered at all, gathered too soon. This flavour exceeds in richness that of its two cognate varieties, the red and white raspberry, 2 mach as the black carrant
exceeds the red or white. I know not whether botaniste have in these cases made the bleok fruit another nists have in these cases made the bleok frait another
epecies from the red and white, bat its flarour woald epecies
seem to entitle it to that distinction; and thero are othor differences, as tho black currant, having a mach larger "snuif" (or remaina of the fower), and the blackberiy, growing in greater bunches than either of the oultivated robi, and having stouter thorns. I once read a skeleton in a Wiltshire barrow being sown, and prodacing the red raspherry! This was sapposed to show that the red, as well as the black frait, had been iuextinct. in ancient britain, and bad bince become extinct.
where the raspberry is now indigenous, and how we obtained it.-E. L. G.
[1572.]-Compressing Water.-May I ventare to point out to "Sanl Rymea" that in replying to this question (p. 284) a detail bas escaped his memors, Which, althoagh, of little importance, probably, so far as concerns Mr. Westwood's query, may as well be
mentioned here. The compression produced by each additional pressure of one ntrosphere in oze million parts of water irect from air was fond by Colladon
and Sturm to be $51-3$ millionths. This result is almost identical with "Sanl Rymea's," as given at p. 234, save that the italicieed words are omitted in his reply. I
hope "Sanl Rymea" will not deem me guilty of need. less and carping criticism in directing attention to the lapous. I merely do so, becanse in compressing water containing air, the resalt obtained by Colladnn and
Starm was 495 millionths. The latter resnlt approximates more nearly to Regnault's 47 millionths, In
faot, Regnanlt's result may be takin, I thinls, as the mean compression of water, if we call Colladon and Sturm's 49.5 millionths the maximam, and Oersted's 16.1 millionthe the minimum resalt.-A. J.V. G.
[11589.]-Dry Steam.-I am afraid "A.,Liverpool," is stin rather at fanalt in his attempt to explain what dry stenm really is. Ercry one knows that each incre-
mont of beatincreases the prcessure of steam, bnt action and reaction must be reciprocal, and thorefore the preasure of the saperheated steam must be as great rowards the boiler as towarda the other eud of the pipe;
and, indeed, if the resiatauce was not greater at tho and, indeed, if the resiatauce was not greater at tho ruah as readily back into the boiler as into thu atmosphcre; the prossure of the steam, therefore, after all the farnace coil, cannot possibly exceed the 31 b . presenre farnace coil, cannot possibly exceed the 3ib. presenre
in the boiler. Still, this is a long key from acconnting for what dry steam really is; and, I saspect, if ehemistry- Whioh "a." seems to ignore - cannot
give a satisfactory explanation, still less can pnengive mics.-Catoric.
${ }_{250}{ }^{[11089 .]}$ C. read 2500 C. Steam. T. F . my reply, p. 281, for [11589.]-Dry Steam.
[11589.]-Dry Steam - This rery easy query has
been sidgularly ill-treated; not one reply without some ladicrous error : Firat, "A., Liverpool", (p.157), says "Yoa mar place your hand in high pressare steam,", which is absurdly impossible. The only way to toueh high pressure stoam woold be to hare your liand bonnd
to an apertarein a builer, so as to form a valice confning to an apertarein a boiler, so as to form a valre confning
the steam. That which has once left the boiler, be it the steam. That which has once left the boiler, be it
only a barleycorn from the ontlet, is no longer high, but "low pressare" steam, and the reason it will not
scald soa like the lower pressure steam of a tea-kettle is its cooling by sudiren expansion. I cannot see (with deferenco to "Caloric,", p. 233) how the term
"dry" steam can bo otherwise applied than as a "dry" steam can be otherwise applied than as a
grnonym with " overheated " or " subsaturated steam " that which will dry bodies, or tabe up additional water Atmospheric steam is dry, except in a rain-clond; dry even in falling rain, and may have ite dryness ex.
pressed by the number of degrees it has to be cooled to reach its "dew point," or become "steam of satnration." The comet of the Delage, however low in temperatare, was, I bave no doabt, dry ateam; and need
not during its whole fall render the air anywhere a wetting air, though a mile of water shoald fall through it as rain in a day or two-of course, the steam that
"Caloric" sars (p .10 C) was incondeusable by cold, was "Caloric sars (p. 10G) was incondensable by oold, was Then passed over iron, zinc, coal, or other combnatibles st a temperatare " to kindle timber,"-bat not decom. posed "into oxygen and hydrogen," atter "J. L."
(p. 181). The oxygen remains with thg ion or ainc or carbon, and in the latter case forming carbonic acid, will, by its mixtare with tho hydrogel, make it nainfammable. This would eren be the result of
pasaing throagh tubes of red-hot cast iron, bat with pasaing through tubes of red-hot cast iron, but with
wrought iron the steam may be made infammable hydrogen, and balloons have been thas filled. Of course, a cartain remnant of andecomposed ateam would also mark its inflammability.-E. L. G.
[11630.]-Compendious Perpetual Calendar petanil Cross Calendar," bhould refer to "The Per- Recordon, B.A. LLon-
don: Trabner and don: Trabner and Co. This little work was noticed introduction to it, the querist will see how he conld constract such a calesdar as be desires, say in metal, apparatas there deacribed yearly interchangeable.-
B. $A_{\text {a }}$
[11632.]-Debility.-I may, perhaps, be permitted betreen "Amatear" and "Sanl Rymea." The latter thinks there is no occasion to defeud either allopaths or bomeopaths against the charges of the former. Now, as one desirous to learn, I should be vers glad if Sanl Rymea" woald state what the principles of allopathy really are, and what is their rationale. Till lately the sheet anchor of the medical profession was the lancet, which wab ased indiscriminately in diseases
of erery class. Tate the instance of trphoid fever. of evers cass. Take the instance of typhoid fever.
Here, as far as modern ecience has been able to ascer tain, the blood is poisoned. As a remedr allopathy tain, the blood is poisoned. As a remedy allopathy
dictated the withdrawal of a part of the blood in the dictated the witiderawai, of a part of the this jast as logical as if we, in order to disisfect a river suffering from the infox of sewage, shonld purap ont and throw step wonld in some "ocoalt" manaer render the resi. dne limpid and wholerome? If "Sanl Rynea" is acquainted with the history of medicine, be mast be perfectls a ware that what aro oalled "forerish sympt.mas" "tere deemed eapecially to indicate copious
blond-letting. Yet, be ought also to know that those very symptome are broagit on by loss of blood, as battlefield can teatify. It may be said that bloodletti"g bas now fallon into comparative disuge letti"g bas now fallen into comparative disuse.
Granted: thanks to the pressure from withont, which the Anti-Lancet has contributed to areate. Bat has the irrationality of the practice evor been formnily
admitted? And what shall we aay of a system which can thna repudiate its grand proceriare, and yet claim the adhesion-I will not say of scientific meu-bat of prevalent with blood-letting, aud alwost equally ruinoas, was the sweeping ase of drastic pargatives. Bat a short time ago, if an allopathic prachioner was of circumstances, to administer a brisk dose of what is atill popnlarly and inclasively called "medicine." This error, thongh on the wane, as the dimiuished in the "theories of quacks," who appear to treasare ap what the nllopaths hare gradually and quietly repudiated. Bat I cannut help reminding "Saul created that rery fuith in "Solidway"s pilla" which he now deplores and wonders at. "Saul Rymea" may, again, arge that random pargation is now less fre allopathy is gradually changing its natnre, thongh not its name; its fractice, though not its principles, and is approaching the altera-tonic systern. Your correthe canse of cholera. Will he kindly explain how it is that, of three men, living in the samo house, and exposed to the same inluences daring the epidemic of shall take it, bat recover, whitst the third shall die? Heart-disease seems also to your correspondent some thing inconceivable as a result of nervoas debility. Is disease of the brain, and that it is found most widely to the latter? The fact is that allopathy, at least in the days when it was young aud bold, conceived of dis. ease as a positive entity-as a something which could
be drawn ont by blood-letting; lives and sudorifica, or poisontd by "drugg and connter drags." The only diliculty was that someThere is deep trath in the story of the French phy. sician who andertook the trentment of a desperate vanished ander his treatment, but just gradnally trace had disappeared the man died. The physician carefully examining the corpse of his patient, re tant guerri." This is scarcely a caricature of allopathy I will only add that I shall be very glad to auswer through the Engilise Mechanic, any qnostions which may be pat to me on this important subject.-Charles
[11650.]-Annealing Steel-It is what are apoil pins-riz., ine hard pill sometimes dofy to touch them; you can mase your steel beantifnlly soft bs patting it into a box made for the parpose, billed with dnast charcoal, closed nir-tigtt, heated thoronghly through to a red heat, and then allowed to get cold. A piece of stout gas-pipe, with one eud welded and the quantity of steel. For largo quantities make a char coal tire, heat the steel to a red heat, and let the whole get e sld together. - Kyrus.
[11656.]-Boiler for small Steamboat.-In roference to the above query wonld " P. W. H. J." ploase inform mo if the briler aud engine, as shown ou p. 2jy, would be powerial enough to drive a boat
21ft. long by 7ft. beam? And would there be a governor required, as I think it would not work withon one or a ny- Wheel.
3iin. 3yin. stroze: am 1 to onderatand that syin. is the diameter of the cylinder and in. the length of stroko ? are the doubloccentrics hor reversing gear ? 18 so, how are the above will mach oblige.-W. H. SuEpaEnd.
[11674.]-Stretched Indiarubber.-I do not sappose that any of soar readers can give "Philanthropist "the information he requires. It appeari to be mare than that given out by the rabber in returning to its normal stale.-E. M.
[11687.]-Speeding Machinery.- Ermator,

[11711.]-Time at our Antipodea.- I $\mathrm{I}^{\prime \prime}$ Kelby' anite sare that every particle of fog has oleared anai irom his own mind with regard to this question? He colla as that the anzoancement of the destruction of a bnilding in Paria by fire at 120^{\prime} clock can be made in pablicaris the same erening, a simuar case to from Indicaion in London of the eclipse telegrame evea occarred. He tornoon of the day on whic messace from New York are fonnd ou oar breakiant tajles. Sarely he does not moan the news of the previons evening, in which there would be uothing extraordinary At the time we were acquainted with a message naaticd the same morning we should have hinished oar break fasta long ago. I may still be enveloped in a log, but to me the two stalemeats do not feem to bo acchail I may have been in orror in assuming the diartam No. 1, on P. 284, to represent the simplisueons
existence of Tnesday all over the world, and even is this be so the principle will nevertheless remain, as is manitest from the following statement:-A day of twenty-foar hoars - Taesdar, only exist simultanooasly over the world for a siogi: moment; previons to this moment seme partion of Monday remains to some of the inbabitants of the earth. At and after this momont a por'jun Wednesday comes into existence. The Mouday in every its preder of the world. After Monday is gateneader by a aingle meridian on the hemi phere turned away from the sun. As this meridian approaches tuesur more and more of Wednesday comes into existence, and less and less of Taesday remaina. When this Wednen has passed over an are of lire Tuesday. The time east of thia particular meridina in reckoned Ry of Tnesday, the time west of it as of minesday. the $36 y$ meridigus it Perhaps it ma assist "Kelby" if he cen really devote saficient though the subject, to call attention to the increase, in guished from to locrease oi the absolute, Dissam No.1, on p. 234, assaming it to be Taesdne over the Whole world, gives the commencement of the absolnte Wednesday on the meridian 270°. Twelve hoars after. wards the meridian 270 eomer op to the sar, diacram 3. Daring theso twelve hours Wedneeday has been Dearing in mind that twenty.four moridians mark the successive hoors, twenty four noons of Wedresday from transth, and when tis teparturfourth has rassed the decreasing portion of Wednesdar has still 20 ran honrs each. When the meridian 270° is turned aras from the san it is Tuceday everywiero. Daring the first period the twelre morning hours of Wednordaj occur to places west of the upper solar moridian, disgrad Wednesany is estabis periva tweire noose diagram $\overline{0}$. Darinz the third period the remainin twelve noons transpire, and one hall of Wednectis has departed, one hall of Tuursday haring taiken its place, nud during the last period the afternoon houn apper seslar reave the globe al plar is fally este blished. As, according to "Kelby," I am in a state of fos it is not nulikely that I have imagined the above cie. regard it as an instance of the nse of the imagination in scientific inquiry.-W. R. Birt.
[11711.]-Time at our Antipodes.-Some o your correspondenta appear to have got into a mazo tusion worse confonnded. I shall endeavoar to answer the very scusible question pat by "T. S." Fortanatelr, there is no great amoant of inhabited or inhabitable land at onr autipodes, or as "T. S." jastly remarts, the east of the geridian of 180° it is Souder and to the West it is Mouday, and any of the small groaps o islavds sitanted in the Pacific on eitber side of this meridian may have Sanday on one island and Betur day on an adjoining one. The only parties at present ail navigntors on passiug the meridinn it iso is ancid eastward, ras. on a Saturdar, to call the next day alos Satarday, thns having two Satnrdays in the week; but if going to the westward they monid kkip over the
Sunduy, and have only six days in that week. I hope "T.S."-F. N.
[11711.]-Time at our Antipodes.-Replsine to "Kelby" on What he considers a very intercuing question, I think can satisty him, and set the question tinent, and also most of the iglands in the goath Pacific, and speut some considerable time at the Fif 2 ryland named by him, with whose man-eating to state that in every island I thas visited they their time in advance of ours, and in no case did I find t, or hear of its buing reckoned, otherwise-the reasu being, I presume, that by far the greater majoriay ward, and, therefore, hare shortened each day in pro arriving on the 180° longitnde at any given day as twelve noon in England, it will be twelve the provivas

night, and Sepabator.

[11711.]-Time at our Antipodes.-I have to lask Mr. W. H. Birt fir the trouble he has talien in answering my qnestinn, and only regret that the knot'y
point is to $m y$ mind still unsolven. In his letter (p . 259) point is to my mind still unsolven. In his lettar (p. 259)
ine giates that I am wrong in supposing that a message dispatched from Loodon at noon on Tuerday, May 7 , would be dropped at New Orleans at σ a.m. on the same day; and, frrther on, explains that the difference in
time reckoned aecording to the earth's rotation being 18 bours the aecording to the eartih's rotation bcing 18 hours, the message wonld really be dropped at New 6 a.m. "Wednesdny" morning, not on "Tnesdar" 6 a.m. "Wcdnesday" morning, not on "Taesdap"
morning. This, reckoning New Orleans to be 270 " East instead of 90° Weit, eeema right enongh, but unfortunately totally at variance with dails experience. We here no direct commnuication with New Orleans by telegraph, hat we have with Now York, and as the longitadinal difference hetween these two citios only accounts for ebiut one hour diference in time, eithe place would answer my purpose gnite as well. Bat to
be correct, if the time at Now Orleans be is hours be correct, if the time at Now Orieang be 18 hours
later than our own, the time at New York should be 19 hours later, but this is not the case. Every afternoon bout i P. Wo receive in London the opening prices than 1 opening there at aboat 11 a.m. Now, applying the 18 hourn later than our own, and therofore at New York 19 hours later. Treerday 4 p.m. in London, oupht to be arnehronons with Wednerday 11 a.m. in Now York, not
Tuesday. Referring to his diagram No. 2 in his former Tuesday. Referring to his diagram No. 2 in his former
jatter, p. 294 , he says: "If now wo take the times for linter, p. 294, he says: "
diagram No. 9, we have

90° civil time, Tnesday, May 7, 6 p.m. 270° "

Clear pungh as regards the difleronce of 12 bours, the
one being tho antipodes of the other, bat he aliso shows 0^{2} civil time, Tresday, May 7, 12 noon
and as I have jnst shown that by our telegraphio eepatcles that tha time at 970° (or 90° West) is $6 \mathrm{a} . \mathrm{m}$ Taedar, and net Weduesday, I only tind myself landed at my nrigizal starting point-viz., that the message
from London. Tueday, May 7, 12 noon, by the east, it drapred at Calenta, would find the time there to bo Taesday 8 p.m. (this is admitted), and that the one by tisee to be Tnesiday 8 a.m., and thas meet at tho antipodes the frat at Tuesday midnight, the second at ruesday hrenk of day. That every day mast have an
absolate commencement somewhere on the earth's surface, I do not donbt, and I can only imagine that every country tixes its onn time, or adopts that already fixed messare every 15° equivalent to one hoar in time, there mast be somo point at which they would and thembelves evtirely out in thoir reckoning. I rould add, that servatory nt Wiasington inatead of Greeñich, their day from San Francisco to New York is procisely the same as onrs, therefore we could not have Taesing 12 yoon at London and Wednesdn.
Oriearid at the sume moment-T. S.
111718. - Cheap Water Filter.-The zine and more harm than the usaal zinc-lioed cisterns and lead pipes.-Aquaries.
[11731.]-Assayer's Duties. - Thanks to J. Roske! for his landuess in bringing onder my notice
the fact that the method given by me in roply to G. T. Fi. is bol enruct. Tho then piven wonld, indeed, be right enouh if such a thing existed as a
copper ore standart, hat there is no sueh thing, the so-valled "ptandard"" beidg a " snblime hambag." Now, mifortana:ely, when to repls, and when I had the time, I found that I hal mi i placed the namber containing the query, so that it was ont of my power to apply myself to tho solation of the example given. Had I done so, I mould have ad. standard of snch low produce ores, and then to appls standa-l of snch low produce ores, and then to apply
the roles given, when ho would have a fair approxima. t ton t) the galue of his ore; or he might take the price per anit, and from the prodace of his ore deduct its prefue. Indeed. I coald show "G. T. M." one other mode of valnation, and explain at length the valuation same renson given by J. Roskell-hamely, that it woald be a betayal of professional contidence. My rnle, as eren at the present high rate of copper, "G. T. H.'s"; as eren at the prescnt high rate of enpper, "G. T. H.'s",
nre is only worth abont, at the ontgide, $\mathcal{E} 1$
12s. a ton. I need burdly remnrt birm minch obliged I am, therefure, to J. Ruilsell fur his kindaess iu pointing out my tribatima to our metallargical department does not tribating to onr metallargical department does not
oftener agaro among our correspondents.-UN InLaNdats.
[11725.] - Reversing Gear for Oscillating ployed in the ateambonts on the Thamea deacrihed by "Jnck of AH Trades", on page 91, Vol. XIV. No sytem hay yet bean devised.-E. M.
[11727.] - Cork-cutting Machine.-"Balma-
 inform hima.-E. M. inform hisu.-E. M.
[11741.]-Boot and Shoemaking.-First you
the rboe or bont out if yon take yonr last; but the
 rater to soften them, open them ont, and lar them on leatlier, tack these pieces of panper the size of tho small stcol tacks, or pasta them with paste (paste made with rye floar is best); then close or stitch them together, holding them between your knees with clamps. Next get the last the size ynu want your place Procare some insole leather, soas in water round the last on the smonth side, mark the leather exactly by the mart place the emooth side on the lo tack on with three or loar tacks, press it close to the last, and while wet trim your insole close to the last all round. The shape of your shoe depends on this, Trim the rough off the bottom of your insole. Some shoomakers make two alight nicka round the insole, one about a quarter of an iuch from the edgo, the othe aboat halt an inch. Putting the awl in at one an and the atitches are not so liable to break their hold o the leather. Next place the top lovel and straight on the lost, get the pliera, and pall tight over the to drive a tack in the centre of the toe and one in th heel. Shoematers senerally pash betwixt the last and the top leather on the instep according to the size of the foot roand the instep lenther abont an inch broad that rill a pieco of top heel. You then place the heel of the shoo towarde yon, holding it on your knee with e strap, which goes beel first, pat your sul in at the insole bnt not to deep; Bew the narrow piece roand the heel, leaving enongh to tarn orer ; this done, take a bit ofl the edge of yonr welt, and sew ronnd your ehoe, pattligg from ionr to five stitohes to the inch; keep your welt level while sewing. Get a stick, make it flat at one end orm the hoel, tarn the narrow piees of top leather (some call it a ran) over, and stitch down with a few stitches. Place yonr shoe on the rongh side of your bottom pather, mark round, and ont off. You might gave a the heel. Then put a bit of inferior leather to finiah ap the heel, hammer your bothin soles, fill ap the middle with smill bite, put on sour sole, and tack down. Next stitch the sole on ; place the awl through the welt, holding the shoe so that you will the awl-between tho top and the narrow picee that is turued over and throngh the Leel pieces; these being ewn on, get the sharp end of your hammer, and ham are wet, this will made the edge better to flinish. Trim the edgea ronnd when dry, be:ag carefal not to cat the op leather; scrape round and pat ink on, let the ink rry, pat your heel-ball on, and hoat your iron ho rub np with a bit of old cloth. If Mr. Lonsdale wants to make the bottom smooth, and put a polisio on, he mast cuta nick in the bottom sole to let the stitches in; then scrape the bottom, and fle it and rub with sind-paper (he mast do this with the edges, if he wante andrat-class polisas). He can colour the bottom if he thinks proper. He can buy the tools at the leather seller's-a shoemaker's kit oontaing bal formation on answer any questions that he asks for information on
ehoemaking to the best of my ability, either on sewiug riveting, or pegging.-S. H. L.
[11756.]-Power of Water-wheel.-It is a pitr the pipe is so long, as thig water lojes "head frum
flaid friction. I canont sar exactly how mnch, as I have not access to tables. 6it. fall in pipos, 14ft. 9 in.
fall at wheol. Sappose the effective fall to be $19(t$. . and the buckets tiree parts full; if filled ton full the wator rans out tou gron; $43 \times 5=240$ gallons, or 24001b. of water dolivered to wheel, $3400 \times ?$ 1800 b . contained with the backets three parts fall;
1800 by $6=10,800 \mathrm{~b}$. of water delivered to wheel per minute, $10,800 \times 19=205,200$ anits of work ; tale the modulus as 6 or 3 -5, tha, we get 123,120 nnits of work per minate, or about $3 f$ horse-power. The overshot
ater-wheel u utilises the velocity of the water as well as its fall, bnt the weight of water on the wheel iucroas ing the pressare on the axis angments the friction. philunthropist.
[11799.]-Botany of Cornwall.-The Chriatinn Kuowlenge Society pabligh "The Flowering Plants of re Britain," by anne Pratt, in three vnis., which acconnt of every flower, sad a coloured picture of each alan. I have used the book for years, and have seldom psinion volumes of mosses and ferns.-E. M. P.
[11801.]-Question in Trignometry.-Finding that the answera by "H. H." and "Theodolite" to myself, and fonnd AP $=700.033$. BP $=600.023$, and $\mathbf{C} \mathbf{P}=499927$. I also worked it backwarda, using three angles of 120^{\prime} each, and found the side $A B=$ $1126 \% 5$, the side $A C=10.4403$, and the side $B C=$ $954 \cdot 47$; instead of 1137,1114 , and 958.9 , as given by kindly say, in the Engisish Mrcusic, which calculation he considers nearest the trath? And I shall slso be obliged to "H. H." to say whether bis method of ennstrncting the diagram is applicable to any triangle. Wiould it do, supposing the angles from the station P 130"? -Tamasge.
[118n1.]-Question in Trigonometry. - The calcalating any nngles: Lat $A=$ area of the triangle, cald $A=\operatorname{sum}$ of lines drawn from angle to point, $P=$

\section*{$\left.\mathrm{S}=u+v+v=\left\{\frac{1}{2}\left(a^{2}+\delta 2+c^{2}\right)+2 \cdot 3\right\} \mathrm{A}\right\} 1=1709 \cdot 9884$
 | u | $=\frac{5}{3}+\frac{b a+c^{2}-2 a}{35}=700.0864$ |
| ---: | :--- |
| v | $=\frac{8}{3}+\frac{a^{9}+c^{2}-2 b}{3}=600.0301$ |
| v | $=\frac{8}{3}+\frac{a^{9}+b^{4}-2 c}{3 S}=\frac{499.9219}{1799.9884}$ |}

[11801.]-Question in Trigonometry. - Your correspondent "H. H." has embellished his reply to this query with a more elaborate diagram than is asasly employed to illastrate the problem Whieh is the Engish MECEANIC, whether "H. H.'s" directions and diagram will apply to all triangles haring the staden P within them, or whether they will serve for one the gition of trianglo only? sappose, for instace P in "H. H.'s" diagram, how would the intersection of the circles described from the centres of the equilateral triangles have fixed the position of this point ? I slasall be glad to be corrected if I am wrong, bat it will serve for such triangles only as have the anglos snbtended by
ThzoDoLITE.
[11811.]-Time-juioe and Glycerine.-Thanks to "Auld Realie," and will he kindly inform me how
to prepare the lime.water, and the tincture of canto prepare the lime-wator, and
tharides ?-Country BARBER.
[11818.]-Aerated Water.-Gazogene too expen. sive for my private use ; is there anything cheaper that would answer same parpose.-Countir Barber.
[11825.]-Testing Bleaching Powder.-The modo proposed by "Aughrim" and "Erhyr" is cortainly gave. Will "E: Ehrl" kindly inform mo where ho obtained samples of chloride of lime containing 35 per cent of of or
Ca : Cl
Cl
never Cl, while in the coammercial product I hare
[11826.]-Tinning and Soldering.-"W.T.M.D.," if he refors to my eommanication, will tind that I state distinatly that resin is only to be used in soldering lead or zinc, that being the flax suitable for those metals, or candio grease rill do for lead. If he ever spent a duy in soldering with spirits of salts, he would not clean his hands either with "clear water," or even
with soap without a deal of tronble. I have to call in with soap without a deal of trouble. I hav
the aid of washing-powder.-A., Liverpool.
[11835.]-Arsenic in Wall Papers.-The plans for detecting arsenio, deaoribed at p. 263, by F. rreenway, and "E. B. H.," are very gond, and nnless is, qowever, the possibility of a very small quantity of arsenic being carried a way in the gas allowed to escripe arsenic being carized away ind if the alowed quantity be very small, it may thus escape detection. This is not probable, bat possible, and may be avoided by a probable, bat possible, and may be aroided Iny a of asing a commou bottle or test tabe, if one be ased with a iittle hule at the bottom, and the bottle quite mmersed in water contained in a larger vessel, the bottle may be completely filled with acidulated water, containiug also the zinc and the sabstance saspeeted contain arsenic in bome form. The hydrogen with air, may be burnt without exploding. It is convair, may be burnt withont exploding. It is stop-cock. If there be arsenio in the hydrogen, the thape rill be more visible than it there be none; it will produce a little smoke, which will condense on glaes (or on copper wire ganze, which is better) in the form of matallic arsenic or of white arsenic, most probably some of both. To make certain that this is arsesic, it should be converted into white arsenio, by heatiag it a a test tube bj a small flame of a spirit lamp, dissolving it in a eier drops of water, acidnalated with
hydrochloric acid, and tosting with salpharcted hyirogen, which gives anintense yellow slightly orange piecipitate; also with nitrate of silver and bisulphate of copper, adding with each a very small quantity of ammonia. The tirat will giva a bright lemon yellow, the last an intonse grecu precipitate, both solable in excess of ammonia, precipitated again by acid. Some
prefer to the first process precipitating metallic preter to the frst process precipitating metalic arsenic from an scidulatod solution by immersing a
slip of bright sheet copper, which becomes leaden slip of bright sheet copper, Which becomes leaden
coloured if arsenic be present. The slip of copper is then placed in a test tabe, and the arseaic driven off, oxidised, and tested as betore. I prefer the redaction by nascent hydrogen as first proposed by Mr. Marsh, -РніLо.
[11839.]-Plates Chemically Clean.-I have for many years taken a deep interest in its chemical. bearing in photography, and after very many experifound nothing so effective as the well-known "Diamond Polish," and the later, but, if possible, more praisodeserving, "Tanicare," both to be obtained of mont dealers.-CrEEB.
[11858.]-Pedal Harmonium.-I thank "Pnenmatic Lever "for his kind answer to my query, and
shall be glad to have his plan for pedals, actions, and sound board. Should like the pedals to slide nnder in-
strument; depth of my case $2 f t$., length (inside) 38 in . strument; depth of my case $2 f t$., length (inside) 88 in .
The tabes I require are such as are advertised as being The trbes I require are such as are advertised as being the vibrators are said to be ranged on vertical tribes
instead of the horizontal arrangement, thereby giving instead of the horizontal arrangem
[11863.]-Barrow-in-Furness.-I am a joiner I packed myself away there. It was all that I had heard as to basiness- plenty of work on hand and i
prospect ; in fact I got a job before I had been ther prolfect ; in ract Bat dian't I wish myself back to Manchester, but I had spent my all in going and must more Barrow for me. I have travelled all over the United States and Canada, and have visited nearly every town of importance in England, but in all my
wanderings I never saw such a dismal, straggling, on wanderings I never saw such a dismal, straggling, nn
comfortable looking hole; go where you will the horizo is bounded by interminable brick boundary walls, an every here and there farnaces belching forth flame and amoke ; it is a veritable "Pandemoninm," and a mos
ferocious climate, no lodgings to be had, and wag low. The inhabitants, as a general thing, are the lowest of the low, and on pay-night it is next to im
possible to get along the streets for drunken men possible to get along the streets for dranken
asywhere but Barrow-in-Furness.-ALEPH.
[11876.]-Hydraulic Press.-I inclose a section of hydranlic press. A, the end section of press; B ,
the solid piston or planger; \mathbf{C}, the cylinder; D, the
cistern or tank; E , the pnmp; F , the eccentric; cistern or tank; E, the pump; F, the eccentric; G
the fly-wheel ; H, the supply pipe ; I, the safety valve

K , the tarning handle; L and M , high and low water marks. As there shonld be double actions, I need not
go into details. Two pumps, two eccentrics, two supply pipes, two safety valves. I cannot show them,
both being the end sections. - Joseph Willias Fennell.
[11877.]-Slide Valve Question.-Will "Rook" give detail of the action of the slide? also state use of
small lever seen on top of slide box, where steam enters, where exhausts, and what size steam and water cylinders would require to be for a fire-engine?
boiler being 3 ft . high, 18 in . diameter, 36 field tubes.buler
Pump
[11878.]-Photography.-To retouch negatives the best plan is to spot the parts requiring attention with asphalte varnish or Bates's black varnish, and
after printing, spot the white places in the usual way with water-colour and gum, to match the tone of your
print. In reply to yonr second query, I should say you over-expose your outdoor pictures, which would fully
account for the symptoms which you describe. Try half the exposare by way of experiment.-R. M Натсн
[11885.]-Power of Boiler.-I don't know of any existing rule for the solution of this question, so I have invented the following, which I extract from my note-
book. Let N be the number of cubic feet contained in the boiler (plain horizontal cylinder), and $z=$ numthe air, and $x=$ the number of square feet contained
in the sides and bottom (area of bottom to be divided by 2). Then $\mathrm{N}\left(z+\frac{x}{10}\right) \div 45$ for small boilers and by 50 for large ones. Applying it to the case stated
let $z=15 \times 6$, and $\frac{x}{10}=\frac{\overline{2}}{10}=1$
$\therefore \mathrm{N}=\left(90+\frac{165}{10}\right) \div 50=$ say $2 \frac{1}{6}$ cubic feet ;
boiler of 12 in . diameter, and about 26 in . long, will be sufficient; but, as it would require constant attenwould be better 15 in . diameter, and 3 ft . long. I think that it would be advisable to have a float, to let on the
water supply besides the ordinary hand-tap, and water supply besides the ordinary hand-tap, and a
fusible plug. With these, the smaller boiler could be worked with as much safety as the larger one. The calculation is made for an uncovered sheet-iron tank, and if made of stone, slate, dc., the equival
have to be much diminished.-P. W. H. J.
[11887.]-Hair Dye.-The beat hair dre that can be made is made with a solation of nitrate of ailver and
gallic acid (separately). If "Gray Beard "will advertise his address he shall have the beneit of an analysi I made some four years since of one of the best hair
dsea extant, and much advertised, ss well as sold at a dses extant, and much adve
high prico.-R. M. Hatcr.
[11891.]-Contents of Cistern.-I think "JJ. K.' mast mean the cistern to be like the letter D, placed in three times the square of the cistern'a radius, add the square of ita height, then maltiply the sum by the height (or depth), and the prodnct bp -5236 for solid content, which sum, divided by $277 \cdot 273$, will give the namber of imperial gallong.-O. B.
[11898.] -Tempering Cast-Steel Chisels. If " U. V. U." adopts R. Welbark's plan to harden his chisels, he will hare nine out of ten of them break of just about where the sarface of the Fater came. The best way to harden chisels of this kind is to get the outting part only to a red heak, plange in water slightly chilled
till cold, brighten on stone, and bring down to dark ill cold, brighten on stone, and bring down to dar
parple by patting head into the Are -KyrLe.
[11903.]-Quinine.-(1.) Quinine is rarely adnlte rated at all, espeoially the well-known makes. When (2) which may be detected in the following manner:Take 10 grains, add 10 minims of dilute anlphuric acid and hall en onnce of vater which dignolven the sus peoted sample perfeotly; add ammonia, which throws down a white precipitate. This re-dissolves on agitating the whole with hall an ounce of pare ether and if pare, withont prodacing any oryatalline matter agitated on tbe lower of the two strak into which the other salts be present, they beoome very risible there The upper stratnm of inid, if entiraly ramored and oraporated in the sir withort hest muet roigh 8.6 grains, and is pure quinis. Salicine has been known to be rised to adulterate quinine, hat on scconnt of ite property of turnisg red on the addition of strong sulpharic acid; is, I should any, extremely improbable now a days. If solable organic impurities aro sus pectoa, the calt will blacken with ntrong sulphario ammonia an described sbove, these will be found by opaporation of the solution. (8.) I do not think it has ever been known to salirato; such is no its sapposed sherapentical action. (4.) Amorphous quinine may be prepared by dissoiving parices quisolution, and evaporating it with a very gentle heat. Amorphoas quinine remaina.-R. M. Hatce.
[11903.]-Quinine. - I suppose that the question put by William Hamilton Hey refora to sulphate of guidine, and that what he calls amorphous quinine is the alkaloid itself derived from the bark. Sulphate of quinine is commonly sdulterated by one or more of the following substances: Calcinm salphate, boracic acid, mannite, sugar, starch, salicin, stoeric acid, and cinchona sulphate, or quinidine sulphate. Pare quinine sulphate, when incinerated, does not produce any ashes. When it does, it is a clear indication that it quinine sulphste is pure two grammes of this componnd will dissolve in 120 grammes of alcohol without leaving any residue. The residue, it there is any, consists chiefly of starch, or magneaia, or mineral
salts. Salicin is easily detected by the deep red coloaration imparted to the suspected compound by the addition of pare concentrated sulphuric acid Stearic acid is easily detected by dissolving quinine sulphato in water acidulated with some sulpharic acid as stearic acid does not dissolve. In order to deteo mannite or sugar, dissolve quinine sulphate in water acidalated with sulpharic acid, then procipitate by a slight excess of the solation of baric hydrate. Filter carofully the liquor, and paes through it a stream of carbonic anhydride, and boil for a fow minaten, and Alter again. The solntion, when evaporated, will leavo no residus if the suspected aalt was free of angar or mannite. As concerns the cinchonine sulphate, the parest quinine aulphate containg always two or three parts per cent. of it; a larger proportion may be 1 gramme of the salt, ind 12 grammes of other, and then 2 grammes of liquor ammonim. If there is any cinchonine it will form a precipitate at the surface of ether whith the quinine whll be ontirely diesolved in the Quinidine may be detected, as it does not precipitate by ammonium oxalate, whilet quinine does. Oralate o quinidine is afterwards removed from the solation by adding some liquor smmonis. Does quinine caneo salivation? This question will be better answered by a physician. How is amorphous quinine propared Consult any mennal on organic chemintry.-F. T
[11904.]-Suitable Spectaoles.-"A"" has ap. parently arrived at that time of life that he mast do his purpose by day, and if such power is too weak at night nse spectacles of greater power.- $\mathbf{8}$. J.
[11906.]-Spectroscope.-It is diffoult to say Which is the better, to have a micro-spectroscope or a simple one, becanse they are both usefal in difierent ways. A very simple one can be edapted to the micro sonpe or uned an a pocket spectroncope for a cont of L2 2s. ; but a really good instrument that will sopsrata the D hnes canaot be had under $\mathbf{E 5} 5 \mathrm{~s}$. to $\mathbf{2 6} 6 \mathrm{~m} .-$ B_{M} M. Hatch.
[11912.]-Chemical.-I should say you will get Fowne's "Ohemistry" (Churchill).-R. M. BATCE.
[11918.]-Ohemical.-One fandamental alteration bas been in regarding the atomic weight or combining proportion of oxygen as 16 instead of 8 ; thue, hydrogen being 1, water was formerly considered as $\frac{H}{1}+{ }_{8}$ or HO in symbolical language. It is now indieated by symbol $\mathrm{H}_{3} \mathrm{O}$, which expreeses two parte of hydrogen by weight (not stoms) to 16 of oxygen. Many of our other formuls are changed in comes quence. Roseoe's is a rory good elementary chemistry,
bat I do not know if it gives mnoh information on the bat I do not know if it gives mnoh
[11914.]-Expansion Jointe in Steam Pipes -I prefer the old fashioned stafing-box and giand properly fitted up, and packed with good indiarabber ringe lapped with apan yarn. I also ceat four brackete, two on each pipe, a convenient distance from joint, to recoive a couple of tle rods lor preventing pipes from being forced out. If pipes are already cast, $1 x$ a conple of clasps, they will answor the same purpose.-Cwes of clasps,
Finazrs.
[11914.]-Expanaion Jointe in Steam Piper. -The joint used is a stufling-box packed with indie rubber core, surroundod with hemp strands. To eare expense, it would be as well to have an ordinary tnfing-box with peoking wedged very tightly in it but instead of having the ordioary stuffing-box gland to hare just a roand plate with a hole cat in it. Thi wonld be a considaration when there are many required. -P. W. H. J.
[11915.]-Corn Soreen.-Dell's Complote Wheat aleaner is the best I have eper met with.-H. M. S
[11915.]-Corn Screen.-If "A Young Tyke" hat a barley mill on his establishment he will find it enswe his parpose admirably.-S. J.
[11980.]-" Jack of All Trades."-This gentleno would seem to be in a quer way, thing the respl of debility following his recentillness, and will eventrally weat sergy. Bat ghonld he rish to phyeic himealf, le him take bromide of potassinm, 5 gralas; tincture of nux vomice 8 drops in loz. of Fetar, thres times a dey live as well as he can; hare one gless of port wine daily; no malt liquors, and relax his studies, especially at night, for a time.-T. I. Prestox.
[11921.]-Curing Sprats.-I hope this artiale is not to be prepared for general consumption. Having chosen some fine large hish, decapitate, and wash them. To one pint of pare olive oil add six bay leaves and six cloves, place the ressel containing the mixtare on the fre and raise to boiling point. Pack the fish in tin cases, pour in sufficient hot oil to cover them, and solder down immediately. Keep for one month before using.-T. I. Preston.
[11928.]-Potatoes.-Catting of the tops neces sarily idjures the potatoes to a certain extent, but as far as my experience goes the remedy, in this case, is preferable to the disease. As to the size of potatoes, like is a matter of taste, and on my tahle I always of labour in digging the crop, in sorting, storing sod cooking, as well gs the fine sample for the market, aro my reasong for preferring size. I have never foand any hollows in mine, and I cannot say I here as jet diecorered that the mallest potatoes are the beat Inquirina Mind.
[11924.]-TO Killers.-I should-adrise "M. C." nof to have a 4ft. 6in. Fronch stone for grinding wheat upon any consideration; 4ft. stones are the bost sire he can possibly have, they tate loes driving, are quicker
dressed, and not so liable to "hill" the four. All the dressed, and not 80 liable to "kill" the flour. All the
millers that ever I oame in contect with like the tift. millers that ever I oame in $\infty 0 n$
stone the beat of any.-H. M. B.
[11924.]-To Millers.-Where a number of stones are employed the 4ft. size is generally preferred, 26 it is more manageable, and doos not heat the floar 00 much in grinding as the other. However, in sman most employed, a little time cen be deroted to grinding; the larger aize is mostly employed, as more work can be performed by it. The apeed at which each is driven onght to be about the same, the chief difference between the two sizes being that the larger requiree leas "face" than the other. -Teviotdale.
[11924.]-To TCillers.-A 4ft. millstone has the greatest power, and is mach eacier drivon thas a Llt. 6in. one. Dressing has a good deal to do with the power and speed of a stone. I wonld recommend the eye slack, as it not only allows the stone to rum oasier, but also makes the flour much sharper and
better. This is on the supposition that "M. O." is a better. This is on the supposit
four miller, -ByD or Sroxs.
[11927.]-Ante.-In Spain, I cleared my bedroom, sitting. room, and varandah by dropping a low drope of tinctare of iodine down a hole in the bedroom, where. nearly every other photographic chemical previonsly. I nover sam another ant after this application. I think it would be worth trying for white ants, or preserving timber from them. -R Y. T.
[11927.]-Ants.-Hias "A. N. T." tried equirting solation of oarbolic acid into the tobe ocoupied by his namesakes ? I think it will either drive them out or keep them in for good. Boiling waler is bed for them
if it reacher them before it gets cool, which is not if it reaches them before it get
always easy to manage.-PHmo.
[11988.]-Tiaroscoppes.-Thene instruments are is by no means the cale criterion ; fwo mioroseopen of
the mame power may difor greatly in excellence. is oher respects, such as fiald of viow, brightners of in the stosdinatism, and clearness of dolnition, also old feshioned sort, having a vertical sliding tube, hes the defect of requiring a somewhat constrained position or obearration, and the eye, in sach a poaltion, in not so evenly labrieated with ita searetion.Peminatheopist.
[11987.]-Filtering Water.-Ordinary Altration has little useful effeot in eliminating the impalpable codimentary matter in watera derived from clay lands; Whilat nataral subaidence requires several weozs to have iltered throngh oharcoal repeatedily with no afleot. I bottled flood water from a local atream weeko ago, nevertheless, complete subsidence is not even yet water the most nafinl remedy is precipitation by oalcic water the most naefral remedy is precipitation by oalcic described in these columns under several heads of quaries, amongat others, I beliove, the Prevention of quaries, amonggt others, I believe, the Prevention of three vols. Cost : a penny or 80 per thousand gallons of water, and time a tew hours.-W. R.
[11988]-Carpenter's Benoh and Tool Ohent. Fid of the apper till B is polished top as A; the hinged lid of the uppor till B is polishod mahogany, as also the fronte of the tills C, and divided in length to represent drawers; D is a mahogany slide to run irom partitioned off lor alen and gimblets, to. ; F F F, for plongh bits and brace bits, to fit in racks; G G, for ehisoly and gouges ín raoks; H H. spokeahaves, levela,

squares, ac.; I, hollows and ronnds, for heads; J, plough, sash slister, and iron plaves; L section of end of chest, showing sliden for tiles, and cover for plane box. I made one like this seventeen years ago, and took considerable pains with it, bat I never sap one more conveniently laid out for nee, and for proeerving my tools. I also made a small chest to go inside the large one, to reat on slide D, which I reed for a clothes box, and when coming to a halt, I took the cmall box to my lodginge.-R. A. B.
[11939.]-Pantograph.-I inclose sketch of the pantograph; the whole can be shifted, and adjasted to

$!$

any aize by the use of amall thamberews; no farther
[11089.]-Pantograph.-Wood Engraving.Engraving op wood, as a pastime, is not wrorth a rap; and as a profemaion, the only way to learn the art is to
be with an engraver for five or six yoars (to some people even six jears is not time enough). Engraving cannot bo learnt from a book, becaree there are bundreds of little thinge that retine the work that are draw on mood, it is beat to know something abont
engraving, or at least what sort of drawings are the best to eat. When you are about to draw on the block, you must prepare it by spreading a wash of fake White on the surfaco. When this is dry, skotch in the outline, and then put on what are teohnically called the washes or tints (which are composed of Indian ink and wator in different abedes) with a brush. This requires oare, to avoid rubbing of the ground of white. To do this, till it is perfectly dry. When the washes are on, you torch it ap with pencil, ink, and white, if reqnisito. In what is called s fac simite draming, no washes are nsed, and it is all done with pencil or lnk.-XyLOGRAPBRE.
[11948.] - Worms for Fishing.-Having only lately beoomo a aubeoriber to the Erglisi Mecranic, I cannot tall you where to ind the way given to prepare worms for baiting, but I think I can give you a fow hinte on the sabject which may prove usefal to you and others. Your expression "preparing worms for baitiog' may have a twoiold nense: it may mean either proparing them for the hook, or for ground bait, and to provent any mistake, I will answer both. Isaac Walton, in his "Complete Angler," says that "esmphor pat in your bag with your moss and worms gives them a strong and so tempting a mmell that the fish fare the worse, and you the better for it," but I don't beliere that. The means I use are aimple, and, from experience, I can recommend them. Procure a large earthen mag (isg)
1ft. 6in. deep, and 1ft. Gin. across; fll it half full of 1ft. 6in. deep, and 1ft. 6in. across; fll it half full of moss, well washed, dried in the san, and damped before use; put your worms (maiden-dew worms are the best for all fach) on the top of the moss, and let them work their wis down to the bottom; turn them over every day; thas treated, they will ecour in about a week. To givn them a red, healthy, appearance, I mix bole amongst the moss. This is, certainly, the best and simplest method for preparing worma for the hook. To propare them for ground bait, I make use of three different ways, scoording to the water I Ash in, and the Ash I want to catoh. If the stream be rapid and rather deep, I procure a ball of clay, aboat the size of a large turnip; I beat it out until it is a quarter of an inch thiok, and then roll ap the worms in it, not chopped np, but whole. The stream wears away the olay in the course of a few hours, and the worms crawl out. Il the water be deep, bat the stream not rapid, I chop np the worms in a bacin with a pair of sciasors, and pa placed a stone, beary enough to sink it to the bottom. I tic the month of the bag np, and attach a string to it long enongh to reach to the botton. I then lower the bag, and, after allowing it to remain in the water long enongh to make the paper soft, I give the string a sudden jerk, which breaks the top off the bag, and the anggish, I simply chop them ap, and throw them in with my hand.-Piscator.
[11945.]-Leaky Tap.-When a tap becomes leaky in a short time it may be due to dirty water, or to its having been gronnd with emery, which should nerer be nsed npon anything which is to move afterWards, $a s$ it is impossible to got rid of it again as it imbeds itsell in the work, and continues to cat when ite action should cease. The plag ought always to be
re-turned. I find the dust scratched ofl a good setatone re-turned. I ind the dust scrat
the bent to nse.-A., Liverpool.
[11947.] -Power of Water-wheel.-It will be necesasy to know the head and velocity of the vator belore the first part of your query can be answered.
As regards the second part, two pipes of the diameter of 6.77 in . Will discharge the same quantity of water as your voir, the velocities being the same.-ExCELsior
[11948.]-A Bad Sleeper.-" N. K. R. " no doubt is troubled with alnggish action of the liver. I would recommend a very light diet, with a medicine I sdopt myself. Senna leares, powdered rhabarb jalap; of each a pennyworth. Gronnd ginger and oream of tartar one temspoonful. Boil the senna in a pint and a half of water ; add the other ingredionts, and sweeten with ayrup of orange or sugar ; shake it up before taking; three doses for adult.-Jobepe Williax Fexnell.
[11940.]-Doctore' Commons.-It is certainly not necessary to employ a profesaional man. Any person can procure a copy on payment according to address in the Mecharic, I will procure it and sond it to him-G. C.
[11949.]-Doctore' Commons.-Any person (male or female) may search for a will, and if fonnd, obtain a copy. The applicant shonld know the Christian as Well as the surname of the deceased, and the Jear of
death from whence to begin the search. A shilling dealh frow whence to begin the search. A shiling
search stamp mnst be obtained from one of the stasearch stamp mnst be obtained from one of
tioners opposite the Probate Office, and applicant, havtioners opposite the Probate omce, and apple be directed
ing passed into. the office, will, on inquiry, be how to proceed. The cost of copy will be stated to applicant, who will be required to pay an amount on account, and the balance when the copy is rendy. No money is taken in the ofllee, all payments being
in atamps, to be obtained at the stationers.-S. J. M. in atamps, to be obtained at the stationers.-S. J. M. "Lovatt" mast first set the needle in the bar to its proper height, making the eet-screw fast; then lower the needle to its lowest position, hy turning the handle in the direction the machine is worked. Ho will hape noticed that in the formation of the stitch, the needie after learing its lovest point, rises from an eighth to
three-sirteentho of an inch to furm the loop; let him so raive the needle, atill by turning the heel or handle as before, sud When the loop is well formed, the shnttle
point must be juit entered in the loop, and about the elghth of an inch above the eye of the meedle. I forgot to mention that he mast thread the needle first. In adjuating the feed be must notice that the toeth rill sa the needie rises, but do not move horizsnially the neadle is quite clear of the oloth, and that as the above shuttle edjustment not work quite satiofece torily, it may be in conseonence of the shuttle boing a little too late. "Lovatt " will easily ascortain by trying it a little sooner if necessary.-Hors Ko Jo.
[11950.]-Bewing TRachine Dificulty.-If it has a reat motion, let the needle descend below the shattio-race and roturn npon a level with it jast before the shuttle atart ; if it hae no reat in the needle-bar, to allow the shattle to onter the loop set it that the shatio
just enters the loop as it comes up. JACI or ALL just ent
[11950.] - Bewing Dachine Dificulty: "Lovatt " should adjuat his "Defance" sewingmachine as follows:-Roplace the large wheel, lasving the small wheels loose on their shafte. Place a bit of stuff under the presser and make one atroke (with the hand) of the threaded needle. When the needle just begins to rise, aud a small loop is made in the thread, clamp the small wheel on the needle-bar tight with its screv. Then, holding the large wheel tight, move round the ahaft, actanting the shattle in its loose pinion until the point of the shattle enters a little way into the loop, and pinah the amall wheel tight. If a finer adjustmont should be necessary it may be effected by the needle jtself; anyhow, it is necessary that the point of the shattle shonld just enter the loop as the needio is beginning to rise. The asme adjustment holds good in all ahattle machines.-Gzo. Fox,
[11951.]-Photography.-If "Camera" gets a tab and pute a false bottom sbout 3 in . from the real bottom, and conducts aiphon from anderneath the
false bottom, he will be able to work as follows:-Fill false bottom, he will be able to work as follows:- 1 ,
the tub with water, pat the prints in for ten minates the tub with water, pat the prints in for ton minates;
then draw the water of with the siphon. Repeat the then draw the water off with the siphon. Repeat the
operation several times; let them remain in water operation several times; let them remain in water
for twenty-four hoars. The false bottom must be per-forated.-W. Bright.
[11951.]-Photography.-I was once in the aame fix as "Camera," and this in the way I got out of it I got a piece of 9 in. by lin. board and planed amooth and down each side. I screwed a namber of wood buttons (such as used for fastening cupboards), then laying on the prints in the same manner as you would by alates on to a house, fastening them at the joint by turning the battons. Then I got an old pail, and knocking a amall hole in the bottom clese to the edge I hang it on to the spont of the pump, then pumped antil fall, and fixed the board with the prints at an angle, so that the water fell an inch or so above the top print; it then ran down, and I thas had a ranning stream, which books on photography so strongly re commend. Of course you require to pump ygar pai them washed quickly I nsed a littlo warm water at first. them wash
[11958.]-Chemistry. - It would far exceed the imits of a reasonable reply to give even e short erpla nation of the recent changes in this acience; and I do not at all wonder that "Paterfamilias" faila to recog ise his old friends in the complex notation now in vogae. If he wishes to go in for what is termed the rational notatiou, he cannot do better than read the "Introdaction to the .Stndy of Inorganic Chemistry' (price Ss. 6d.), by W. A. Miller, a short reviow of which work he will ind at p. 341, Yol. XII. ; or he wonld find Roscos' "Lessons on Chemistry" very useful (price 4s. 6d.). If, however, he wishes to atndy the theory of atomicity, and the constitational formule adrocated by Dr. Frankland, he may get the frst volume of the "Lecture Notes for Chemical Stadenta" (published by J. Van Voorst, Paternoster-row, price 4n.), and he can follow this up with the "Textbook of Practical Chemistry," by W. G. Valentin (price 10s. 6d.). I may add that I recommend him to obtain the last-named works, for they present by far the most
iatiafactory viow of chemical acience. - Beacon Lovir.
[11954.]-Harmonium Stops.-"B Sharp" will fud the information herequires in Evairsi MgCEANic, Nos. 109 and 116. All the atops might be added, but the result was compared some time ago in our paper to
"powdered footmen behind a one-horse chaise."G. J. C.
[11954.]-Eurmoniam Stops.-"B Sharp" can introduce the expression stop into his inatrament by making a small slide or shatter for the opening on the top of the reservoir bellows, below the noundboard. It can be opened and shat by means of a wire attachod to it, and working through a small hole in the side of the soundboard, the hole being stnfied round about with chamois leather to provent esoape of wiud. The expresbion stop consists simply in shatting off the reservoir moning bat as it is very troublesome to "Wind tharp" to moniam When using it, I would advise B it to work well another plan which I tried, and ioand bellows at the bact of the ingtrament, and see what height they rise to when at their freedom. They will, perhaps, rise to twolve or fifteon inches. In that caje there is too little variation in their pressure upon the bellows, and you will require to get two sofs springs that will only rise till about nine inches, and pot thum in the place of the ones you took ont. With them there will bo little presare when the bellows is nearly shat, bat a great deal when it is open the length of the
anfety-ralve ; consequently, with any rate of pressure, you can get any atrongth of tone. You conld not introduce a tremulo stop without conatructing a separate is a good deal of troable. - J. Sxitr.
[11958.]-Level of Rallway Curve.-Where $W=$ width of gange in feet, $V=$ velocity in miles per formula will saffice: $-W \frac{V^{i}}{1-25 ~ K}$. Sabstitating the values $\mathrm{W}, \mathrm{V}_{40^{\circ}}$ and R in the above formula, we have $47 \times \frac{40^{\circ}}{1-25 \times 1680}=8 \frac{18}{91}$ inches, the difference of level or cant of the ruils. Half of the cant should be given by raising the outor rail above the leval of the
centre line, and balf by depressing the inner rail. It centre line, and balf by depressing the inner rail. It
is not necessary to take into consideration the weight is not necessary to take int
of the engine. - W. Armar.
[11958.] - Level of Rallway Curve - Let "Pupil" strain a line, 22 yards long, holding each end against the top fange of the rail, inaide of carve, then measure in centre from rail to line, and whatevor curre he has in the chain, put one-third of the same rement -as we term it-on the carve. Lot thap too little. "Papil" shoald be very careful in ranning bis "cant " into the straight line, and run it far onoagh, so that the engine may enter upon and leave the curve as easy as posaihle, for if the enrive has a tendency to leave the rails on a carve, she will almost ecrtainly do so on entering upon it, if not properly "ran ont." If gled to oblige him.-Points and Crosinges.
[11958.]-Level of Railway Curve.-According to the formula $W \frac{V}{1 \cdot 25 \mathrm{R}}=$ olevation of outer rail in inches, the letters in the formala expreaning an follows:
$\mathrm{W}=$ width of gange in feet, $\mathrm{V}=\mathrm{m}$ volocity in miles $W=$ width of gange in feet, $V=$ velocity in milos
per hour, $R=$ radius of carre in feet. I find in your per hour, \mathbf{R} = radius of carvo in foet. I find in your
case the required elevation of outer rail to be $8 \cdot 6190 \mathrm{in}$. case the requir
[11963.]-Brass Springm.- You are using soft brass, which is unsuitable for eprings, bat can be hardened only by hammering. In making some tongues for concertinas I fell into this mistare, and they did not retain their elaeticity. I then procured hardrolled brass; but found oventually that there is a sort of gray steel ooloured brask, of which English concartina notes are manafactared, and whick would make
[11964.]-To Prevent Paper Stioking to silk after being Printed with Metal Leap. -Rab your paper with a pioce of hard curd soap, and you
Tendes.
[11965.]-To Blacken Brass.-Warm it over clean gas flame or spirit lamp, and plange it while hot into nitric ecid for two or three seconde. Then retarn it to the fame, and hest it till
blisters, and leoquer.-J. F. E.
[11985.]-To Blacken Brass.-Brass may be stained black by means of a liquid containing tro acid, and one part of sulpharic acid in eighty parts of water. Zinc may also be given a fine black colour by cleaning the surface with sand and salphario acid, and immersing for an instant in a solution composed of four parts of salphate of nickel and ammonia in forty washing and drying. The black coating adheres firmly, and takes a bronze colour under the barnieher. -Hone no Io.
[11966.]-Dandelion Roots.-The best time to got the dandelion is from March till September; its
beat properties are in the root-Jous.
[11967.]-Emigration to San Francisco.In answer to the inquiries made I can reply as follows: -(1) Yes! if he lets mining atocks alone. (2) Livink is nearly as cheap in San Francisoo as in London, and
abont 50 per cent. cheaper than in Nem York. (3) abont 60 per cent. cheaper than in Now York. (3)
Take only what is necensary. Thin summer olothing is never wanted. Clothing is dearer in San Francisco than in London, bat not over 15 per cent. dearer. (4) Nearly 3,000 miloe. Seven days trip by rail from New York, or twenty-two to twenty-five days by ateamer, Yia Panama. (5) Can stop three times each day, long
enough to get meals at the stations. Some trains have enongh to get meals at the stations. Some trains have
dining-room cars attached. Breakfants coast from
俍 dining-room cars attached. Breakfasts cost from
60 cents. to 75 centa., and dinnera from one dollar to one 60 cents. to 75 centa., and dinners from one dollar to one
dollar fifty cents ; that is, 4s. to 6s. (6) Trübner and Co., Paternoster-row, or information can be had of Bowles Bros. and Co., 149, Strand. (7) Very 1 for persons who have not weak langg. (8) Ag a largo commercial town, no! As an agricaltural or mining oentre, yos ! (9 and
10) The American banters, Bowles Bros. and Co., 449, Strand, can probably give you the desired informa:-tion- - A Returned Californian.
[11968.]-Dog With Weak Sight.-If the dog light, or a cold blast of wind, and if "Libra" is in the habit of striking it on the head, the dog is suffer. in from gutta serena. Let the dog have a new bed, wholesomes food, but no flesh, a cold bath or owim daily, good ranning exercise, and brash the dog's body well meddle with its eyes, or give it any opening medicine. - Morte Cristo.
[11972.]-FDot 8olderiag Iron.-An 8-jet cassene lamp. or an ordinary triple barner benz line lamp,
would. Ithink kesp a small iron hot enoach for light jobs. - W. T. M. D.
[11981.]-Soience Examination.-A candidato informed me to-day that the reanalt wasexpected towards
the end of Jane.- ExCEL the end of Jane.-Excelsior.
[11982.]-Thruab.-I refor "A.C. L." to page 645, birds regularly with moist food, frosh made every dae in the shape of elongated pills. Leave some atack on edge of cago, and feed orer that, to toach them to peck for themselves. Keep them clean, dry, and freo from all draught ; nestlings should be corered at night with a cloth over the cage. A good cage is easily made ont of an old toa box with wickers or osiers. As they grow And when the cocks begin to ehirrap, findly let the hens regain their liberty, and oblige-jos.
(11988.)-Dyeing and Fixing.-I have nsed Judson's dyes for many years, and and that a very
little starch in the dye-bath fixes the colonr. With the litlle starch in the dye-bath fxees the colonr. With the
exception of blue, green, and black, all of the colours exception of blue. green, and black, all of the colours
will dye wool, silk, and feathers, without any other will dye wool, silk, and feathers, withont any other
preparation than their being frrst clennsed from dirt preparation than their being frrt clennsed
and grease in soap and water.-OLD Hand.
[11993.] - Photographic Procegs. - The following, perfected br Major Rassell, is extromely good and reliablo:-(1) Bromived Collodion:-Pyroxy-
line, 5 grains ; cadmiam bromide, 8 graina ; ine, 5 grains; ; cadminm bromide, 8 graina; aloohol
(speciflc gravity: $: 805$), 4 drachms; ether (gpecific (ppecitac pravity: ${ }^{\text {gravity }} 7$ 25), 4 drachma. (2) Nitrate Bath: -Distilled
 1 minim. (8) Preservative Fiuid:-Tannin, 19 grains ; distilled water, 1 ox.; alcohol, 1 drachm. (4) Alkaline Developer:-Aqueons concentrated solntion of bicarbonate of soda, 30 minime; wator, 4 drachma; pryrogallic acid, $1-5$ th grain; alcohol (absnlate), 10 minims. galic acid, $1-$ bth grain; alcohol (absilate), 10 minimes.
To be mixed juat before asing. Having thoroughly To be mixod juat before nsing. Having thoroughly
cleaned the glace or mion plate, cont it with a solution of gattapercha in chloroform, two grains to the ounce. of gattapercha in chioroform, two grains to the ounce.
Dry the plate before the fire. When quite oold coat with collodion. Let it "set " well. Immerse in nitrate bath, where it mast remain fiftoen minatea. Remove from bath, and wask in several wators, antil overy trace of free nitrate is eliminated. Now coat with the preservative solation by immersing in a bath containing the tannin solution. The plate is to be drained and reared apon end to dry. When dry it will keep good several months (away from light and duat, \&c.) Expose as for an ordinary wet collodion. To develop. - Wet the film thoronghly by immersion in a bath of pure distilled water. Thon pour on the developer and
develop until all details are well ont, bnt of a faint red develop until all details are well ont, but of a faint red
colour. Now wash away thoroughly the derelopant, colour. Now wash away thoronghly the derelopant, solation of acetic acid, the image may be intersified solation of acetic acid, the image may be intersified
by nising the unaal wet collodion developer. The pioby nsing the uraal wet collision developer. The pio-
ture is to be fixed and rarnisled as nanal.-S. Botrone.
[11994] - Instrument for Measuring and Recording the Amount of Light for Photographic Purposes.-I thint there is. It dopends on the rapidity with which sensitive paper is darkened. in proportion to the amonnt of light.-PBILAs. tHROPIST.
[12000.]-Insects in Tables and Chairs.The aimplest and most effeotual way to get rid of these pests is, first soald the farniture with boiling water, poaring it into all the joints and cracks, thon rab over with tarpentine, and when it is dry, gire a oost of
apirit varnish; this will effectually care and prevent them spirit rarnish; this will effectuall
coming back.-BED or SToNE.
[12004.]-Nitrate of Soda.-Comer from Chili and Porr The supply appears inexhanatible. Acts, probably, by sapplying nitrogen.-S. Botrone.
[12005.]-Fleming's Locking Corks.-I do not know whether the lock" cork now exteosively exhibited for eale is Fleming's, but this is a description. It consists of two pioces of box wood preferably, the lower and smaller pieoe being armly seoured to a pin
having a Barow thread on its

having a sarom thread on its
npper part. Three amall india. rubber rings are placod between the janction of the two parts of applied to the square portion the top, the two pieces of box. wood are brought forcibly together, consequently expanding the rabber ringg till they fit the is, of course, thity. The key square nut on the head of the screw is protected from the action of all bat a suitable
sized key by being snnk into the top of the "cork." The
anntred figure will. I think make all plain. A non-loek. ing "oork" on a similur principle has been in the consists of two picces of wood, thread projecting at the top. Indiarubber rings are placed between the two portions of the "cort," and a wing nut turned by the finger and thamb canses them
to expend till they tightly fit the neck of the bottle. Sacl Ryma.
[12009.]-Photographic Lens.-It is possible to take a picture (?) wilh a single bi-convex lens, but the
result is not at all sctisfactory, in consequence of the resuit is not at anisgisisfotory, in oonsequence of the
indistinctnect arising from the spherical and chro-
matic aborrations insoparable from such a lons. To cover a plate 3fin. by 4fin. the longth of locus mast to $\}$ in. Bot "A Beginnar" can got a very decent othto tin. Bat a Begindar can get a very cocant, for about 58. Bhould he not bo inclined to speculate that sam, lot him invest 2 s . in a deep meniseas (single lens) of the same foons. This will give a piotare free from distortion, and by a fow friale to ference betroen the visual and actinic foci, will prove far saperior to the bi-conver.-S. Botronz
[12012]-Water Power.-Area of pipe, $\boldsymbol{z}^{3}=9$. $9 \times \cdot 785 t=7$ square inches. Sabstitating in the
formale $v^{\circ}=2 y / h$, get $v^{\circ}=2 \times 32 \times 6=38 t$ extracting the square root $\mathfrak{v}=10 \mathrm{~d}$ nearly; but from the effeote of finid riotion $v=10, ~ n e a r l y$; bat menon of the contracted vein, the practical velocity will not be so much (I have no books of refarence op
this anbjeot here), say 10 ft . per seooad, and, besides, I do not know the length of the pipe. $10 \times \frac{7}{12}=6$ cabic foet pearly per second $=8601 \mathrm{~b}$. of watar aboat por
fecond $=21,6001 \mathrm{lb}$ of water per minate falling Gert 129,60 units of work per minnte or power. I may remark here that in oalculations there is littio nse in aiming at greater nocurecy than re bave in the data presented to us , as the lattor circumstasoes preclade a very accurato solation being obtained, and we experience this diffculty in most phygical problems. - PRHANTHROPIST.
[12012.]-Water Power.-"Ignoramus" follows in the same course of other of your correspapidente requiring information on "Water Power," but in the abeence of speaice details of valocity of whter and
lenght of pipe, I may give him some ider of the power he can obtain by edopting cither antor whel or tarbine. By adopting an open conduit ingted of a
8in. pipe, the flow of water per minute woold be aboas 8in. pipo, the
$\forall 5$ cabic 5 at.

Oonsequently, $85 \times 62 \cdot 5=5318.51 \mathrm{~b}$.

Hence ${ }^{58125} \times 6 \mathrm{ft} .=81875 \cdot 0=0085 \mathrm{EH}$ E. P .
$0.9659+00=.579540$ H.-P. water wheel.
So that, to adopt the best form of water wheel (overshot) woald give out a littlo over half horeo-porer, and uning.a diurbine would ealy. alightly incronee the powar; anoh a siso as to ramider it practically usaless.-J. GILLARD.
[12014.]-Organ.-"E. C." will find every information already sapplied by "Adept" and "J. D."." and
folly shown in section of organ eupplied by mae in the folly shown ia seotion of organ supplied by ma in the
lant number of Vol. XIV. (Consult indices.)-Josspa last number of Vol. XIV. Wiluma FenseliL.
[12019.]-Damp Walle.-The procoss is similar to one used for waterproofing oloth, as in the "sbowarhave no donbt that thave not tested the mothe alam on the soap, bo., is the production of an insoluble soap of alamina, which is deposited within the pores, and repellant non-aiherence of water to it) exorra mat ol be observed in ${ }^{2}$ waeh-hand basin with hard water. Sioks.
[12024.] - Photographic. - Your " Ax" depende on one of two oanses. Either your lons is radically
bad, and gives a curred instead of a fiat field ; or you

have misplaced the lenses after cleaning. The position thoy ought to occupy is reprecented in the adjoiving sketch.-8. Botrons.
[12024.]-Photographic.-The objective masy be fanlty, and not capable of covering the proper size plate; in that case try a smallor stop. It ts possible
the lenses may be out of place. The front lens of a portrait may be out of place. The front leas louble convex lens and a plano-concare lens cemented together, the convex side towards the object. The back lens is also duable, but althongh held in the same bra:s cell, the two glasses are not cemented together. The one nearest the front is a meniscas, or concaroconvex, the convex side towards the object to be photographed ; the lens next the carere being a donNe
couvex. I would make a sketch of the position, bat it couver. I would make a sketch of the position, bat it is not fair to aok the e
engraved. - A BARRIBTIR.
[12035.]-Chiding 8tone. - There is one in Squire Streatield's Park, close behind the village of Caidaingsione, Kent.-W. A. G.
[12028.]-Greenheart Timber.-The ficet that "Khoria Bax" bought a considernule quantity of this vuluable timber at a surplus eale of Governuent storee
would seem to indicate that the majurity of the ougers would soem to indicate that the majority of the ougers ation, for I tios, ior I prosume he got it ohoop, or he woud scaroly
pee it for dooring even a grauary. As some olight is.
stalment of the information he reqnires, I send the following particulars :-Grecnbeart is one of the " firstclase Wonds acknowledged by Llosdes survojors as begin with, but besides this it is one of the very best ooits of whinh tomake fishing-rods. In many of the celebrated Irish fisbing-roda, such as the "Castle Connell" for arlmon, it is the one material nsed. It is, however, peculiarly saited to the maonfactare of "tops," being, ame time elastio to admit of being need in single pieces of small bnlk. It may ofton be saen in light tiy. rons, in picces about 8ft. long, tapering off to the thickness of a knitting needle. Bat it is chiefly from its pornar of resisting the attacks of sea-worms that it a so ralcable in a maritime nation; for in its natnral limnoria terchrans, while it is only second to teak in resisting the attachs of the white ant. There are, I believe, two kinds of greenheart, one being considerably darker than the other; the more abnndant variety baving the sop-wood of a pale yellow and the beart-wnod a doap brnwn. Greenheart comes from British Guiana, is the wood of a tree known as the Si pira in that coantry, but called Nrctandra rolivei by Trudgold, and Laurr"s chlororylon by Ure in his $\mathrm{B} \mathrm{Ix}^{\prime \prime}$ has fonnd; aernring to Tredgold, the log requires tightly binding while being eawn to prevent it splitting ar into splint rs. The timber is admirably adapted Ir shipbailding, for bridge piles, and for facing -iarifs. My attention was first drawn to it aome years ar) by noticing the high character arrarded io Lioyd tle dont that "Khoda Bux" has got a bargain as we wood hes probsbly been thoronghly seasoned. I do not know, hat I should think it would be a rery derviceable material for the parposes he mentions. He will bs able to supply his friends with the very lest material for making fishing rods, for althongh rather material for making fishing rods, for aithough rether sharp taper to he taken from the lower end of the rod. The Sauta Mrnia timber, mentioned by "Khoda Bnx." I do not know-by that name at least.-Sacl RyMEs.
12038.] - Dimensions of Balloon. - $W=$ Wight to be raised, inclading the weight of the balloon itself; $A=$ weight of cnbic foot of air $-G=$ weight
cubie foot of the gas ; $D=$ diametor of the balloon.

$$
\begin{aligned}
\mathbf{D} & =\sqrt[3]{ } \mathbf{V} 286(\mathbf{A}-G) \\
\mathbf{W} & =5236 \mathrm{D}(\mathrm{~A}-G)
\end{aligned}
$$

Approzimately with hydrogen ges, but varying with twe state of the atmosphere-

$$
\begin{aligned}
& \mathrm{D}=\sqrt[8]{25 \cdot 5 \mathrm{~W}} \\
& \mathrm{~W}=-0392 \mathrm{D} .
\end{aligned}
$$

The bancnncy of byirocen is about 18.3 feet to $\mathbf{H b}$. From Meieswarth's "Pockot-book."-Wimiram C

H120:1.]-Flot Peas.-Parched peas, lentils, and paddg, arearticles of general consumption thronghout
India. The mode in which they are prepared is as followa:-A lat thin iron pan, filled with sharp gritts clean and, is put on the fire, forming a sand bath; with this tine gruin to be parched is put; when sufficiently dinne, the grain is whisked ont by a broom made of Brilit bsruboo, the sand falling to the bottom. "Poor
Treth," I have no donbt, can do the same in a large frying-pan three parts filled with sand. If he wants bis peas or Indian corn soft, he had better soak them in water for six or beven hours previons to cookiog. I am surprised that parchad grain is not more nsed than rerc. It is portable and clean, and with and paan, wasied down with a littio brandy and water, formed my breakfast, diaver, and supper, for nearly a fortnight. I was never in batter oond
end of my tether.-Khoda Bux.
[12034.]-Ordannce Map of London and En-Firons.-At a given apot in the Frgent's Park, Lonsen at Liverpanl, 12tift.; above Thames high water, sen at Liverpnol,
117 ft . ; thas the difercnce 9 9ft-Level.
[12035.]-The University of Turin.-I will ohtain all inforbatinn for "Silex "that I poesibly can,
with regard to the Tnrin University, and send it in with regard to the Tinin
nezt week.-S. Botrone.
[12039.]-Atmospherio Electricity and Mag netism.-It wonld regnire a treaties to answer this quonly used for ohserving atmospheric oluctricity, bat requires special fittings for the parpose. There are alao apparatus made for mansuring the intensity of the earth's magnetiam. Ordinary scientific iostrument stecte, bat Negretti azd Zambra, of Holborn Viadact. give special atteution to this department, nud a visit tivere would, probably, give "R. C." more information than Iiconld pat in a colamo or two, particnlarly as I here not qiven any groat attention to this department of electricity.-Sigiya.
[12010.1-Navigation-Procure Norio's "Epitome of Navigation."-A., Liverpool.
[120sn.]-Navigation.-As an ex-mato of ships, shonld recommend wa B C "to atudy Norio's" Epitome" (many of the examples for one edition of which were calculated by myself); bat as this is an expenaive book, may aty that I believe there is a emall but useful oltained through any bookseller.-Sicica.
[12041.]-Burnishers for Brass.work. Withot gond silver steel or aqnte. Never used after lacquering. -Jack of All Trades.
[12046.]-Endorsing Ink-If "F. V. H." will see indice
Tradre.
[12047.]-Radins of Sector.-I am free to con. fess I do not naderstand "f.E. G.'s" question. What does he mean by the measurement being giren "as chords" or "as curves "? If he will kindly word his questinn a little more dofinitoly, I shall be glad to holp bim if able.-V. B.
[12051.]-Fire Engines.-This appears to be self-evident, as fire-engines generally are used with flexible hose pipes, unleas an air chamber were nsed to exhaust from, the hose pipa woald be exhansted for part of its length and woold flatten ap, tbereby preventing the water from fiowing slong it.-A., Liver-

ONAXSWERED QUERIES.

The numbers and titles of queries whteh remain wnanswered for five weeks are inserted in this list. We trust our readers will look over the list, and send what infor-
mation they can for the beneft of their follow contributors.
E. Lince onr laat "Corresmondnnt" bas enswored 9440 ; L. G.," 11564 ; "B. A.," 11630.

Astronniniasal, p. 158
Electrical, 158
Electrical, 158
Birth and Death Rates, 153
Phatrarniphic. 15s
Fork and Wergo Valve Motion, 158
Whentatane's Bride. 158
Hachine, 153
Reel for Rotary Sewing Machine, 158
Anchnry and Blnater Paste, 158
Ire Cheat and Refrigerntor, 158
Ire Cheat and Refrigerntor, $1: 153$
Gincer Berr Mating, p. 159
Small Prachta, 159
Para. 153
Removing Gold from Pintes Articles, 159 Reinoving Grin from Platnd Articies, 159
Fxtractivg Zine frnm Plnmber's Solder, 159 Tnughening Cast Metal, 159
Cork-catting Machine, 159
vuenies.
[12056.]-Echo.-Can anr of vour readers suzgest a emedy for stonning the cechn cansed by sponking in a large chanel with a hig
leries ? -J . T. OnkLer.
[12057.]-Defective Sewing Machine.-I have construoter Ω sewing-machion, the exact counterpart of
s Newton Willon, bat,' althongh apparently parfect in a Newton Wilson, but, althnagh apparently parfect in every detail, I often find, when worklug it, I cannot
maker sinde stitch, owing to the needle throad winding it self round the rotating book, although at other times it works satiafactorily. Could any of your sble correapondnnts inform me of the cause, and ramedy for the same?-Pritmbano.
[1958]-Bees-8warm or Brood.-A box hive wondice, a blackbeetle, slag and comb, ont of which ahaken aix weeks ago, was replaced in its outer case, and was left on the supposition that it was empty. Todsy it is cocupied by bees in considerable numbers, who have proceeded to clear the hive of dead beas, broken
bita of comb, \&c. Rnom has heen added at the top for fresh comb, and food fiven. Has a swarm taken np its iresh comb, and ineod the hive, or has the warm weather hatched brood from the old comb? Information and advice will be gratefully received by-C. R. H.
[13039.]-Watch Conversion.-Some information respecting the convarsion of vertical watches into lerpra wonld he usefnl to many. I bave nover seen the antject mentioned in the Macnanic yet. What new wheels and
[12n60.]-Glass Blowing.-Would some one kindly give particulars of bending slass tubes to any angle Also how to blow a bulb on a thia glass tube of tin bore,
with the use of a spirit-lamp and mouth blow-pipe? with the use
Emily Janz.
[120f1.]-Chemical.-Hotr may chlorste of pntash [120f1.]-Chemical.-Hor may chlorste of pntash
and chloride of potassimm bo distinguished in testing? and chloride o
EMily Jane.
[12063] -- Induction Coil. - Wonld nny brother reader qive me the followin: information:-1. Shonld primary? 2. Shonld the secnadary wire be separated by a layer of gutiapercha tissue between every coil of wire ?-J. B. P.
[12063] -Tamboar Frame.-How can I make a momon tsmbour framo?-T. GreENHALGB.
[13064.]-Diameter of Screw. - What mast be the ammeter of a vertical acraw :ibut 2eft. long, to ret upnn
 work the srrew? The flost will be encased in a rectankular cist-iron pipe, perforated and placed against n
breakrater. I am desicning a simple tidal harbour break ater. 1 am der than simple idal harbour loot of depth, at flow and ebt.-I. A. Adars
[120n5.]-Paint and Varnish for Portable Engine Bollers.- Will rome subscriber tell me the Colour green.-Esornz Darvea.
[12006.]-Washing Baliste,-Can any of your nnmerons roaders inform me if there is any eoropound
with which a blue material (bsliste) may be washed which will cause it to ro'ain its eoliur? Plaln hot Wiator aud soap briogs it oat.-Gira:nd.
[12067.] - Portable Force Pump.- Could any rellow reader of our E:gGLSH Mechanic five me any information how I conld construct a portroble force pnmp suitable for wntering a ghrden, one that could be axed in any placo required? -W. M.
[1308s.]-Surgical Dentistry.-Will any fellow works inable and posion thorough gond compondium might suit me best for reference ; with plates preferrel.-Jos.
[13069.)-Trip to Australia.-Woald any of your many readers of experienced knowledge be pood enough to say 1 thay think a trip to Australia and back
would be beneficial to Would be benefficial to a person who has suffired from
congestion of the left lung, but who is now enjoying congestion of the left hag, but who is now enjoging
pretty good henlth, with the exception of a little weak. ness if he exerts himself? Also, could they recom. mend any commision that woald help to defray
merpenses in the hardmaro line or agrioultural line? expenseg,
Wertiznn.
[1:2070.]-Electric Rite. - Will nay ono kindly give an electric kite:-ARDTANERE,
[12071.]-American Drill Chucks.- What is the one with onlra plain socket, nad am Rt a losi how to fix it. Wonld heating it a little, and ebrinking it on a
carefully turnod eplaule do, withont risk? Mine carices carefnlly turnod spindla
only a
[19072.]-Magnetic Moment.-"The moment nt a magnot ts the force lodged in one nf its poles maltipled
by the distance between them." Will "si-ma" pive me by the distance between them." Will "si-mq" pive me
n ilittle explanation of the above sentence, which is taken from Forgncon, p. S. Fnr ingtnacn, I wnit to know what
 Beacon Lovion.
[190\%.] - Scarlet Runners.-Can any of your numerius readers inform me what is the proper treat-
nent of the roots of scariet runnera, to make them grow nucpt of the roots of scariet randera,
after the first year 9-T. A. Saltza.
[12074.]-Hollis Observing Seat.-I nm informed its range is irom 5 in . to 20 in . high, and I should fed oblized to hear from any correspondent who may have
uzed the seat how it snits in this respect, as I onnnot see how anv ordinary tripod or equatorial atand oan be of any uso on objects below 45° from the horison with the ent even at its greatest elevation, whioh is only the heilitht of an ordinary room chair. I' understand if the maker is reguired to construct it higher an extra price la charged. - Oroored Nece
c12075.]-Fruit Syraps.-How are these. Which yre
mold at one ahilling per bottle, manufactared ?-CoUNTBr Barber.
[13076]-Polishing Slate Clocks, \&ec.-I have several Alate nna marble clocks, wioh, when now, had a very black aud brisht appenrance, which time has sadly altered. Will some kind reader intorm me by
what meana they can be restored to their original polish ?-ALFRED HALID.
[12077.]-Pyrethrum Parthenium: the Common Feverfew.-This plant, which is nsually con-
 inform me of the chernateristics of the ese double flowers. In what roapects they differ from the orilinary dises and raja, and how they may be obtained.-W. k. Bikt.
[13078] - Cabbage Planting.-Rhubarb. Will some one toll me what ts the best kind of early cabbage seed? Also which is the best time for planting out, so as to obtain early cobbages? Is it best to manure the ground th the end of the year where they have to grow, or if it best to defer manaring rad planting till the gring, and to have gnod planis for that purnose then? Also, in planting rhabarb. rontr, when is the time for
planting them? Is the end of the year the beat time or procuring the plants, or not till the spring? Also which is tho largest and best in oultivation?-Geosgr Rtchardson.
[2070.]-Detonating Crackers.-Will some one drome what the crackers are composed of, which, when dronper
G. E..
[12030.]-Analysis of Manures and Assaying for Certain piletals. - Would any reader be rooid onough to pive me tho names and addreaser of bome of the most relliable chemists by whom aualy.
are made at moderato charges:- y . Z.
[12081.]-Chemistry - Can any kind reader Inform me of any eimple method of detecting arsanic na
plosoboric acide, in acid liquors containing various plospboric acide, in תeid liquor
netuls in Bolution ?-HOLECLLE.
[12082.]-Turning Tools used for Metals.-Wil S. Suitiber or any other of "oar" renders, inform mo
the nnmes of the varions kind of tarning tools nsed for the namper of thr rarinu
metals? -Biacksmir.
[12033.]-Polishintg the Edges of Glass.- Will some brother render kiudly gire me directions fir polifhing the odges of glasses for lockets?
grind them in with an emery wheel.-Torquorse.
[120s4]-Tools with Swiss Mandril.-Will some

[22005.]-Cricket Bats. Would nny reader gay what the orioket bat maker uno hay ne for binding ing hats, ndd what kind of string they tse or bensize.B.
[12086.]-Velocipedes.-Gan any reader tell ma how to put rabber tires on velocipedes when the whatlis are irnotired, and
rabber ?
Boa C.
[12087.]-Violin.-How are the sides of the rinlin bent, nd set in their proper
an anclent fddler ?-BuB C .
[12088.] - Cleaning Jowellery.- Which is tbe best and quickest way of cleaning told. Whit in it that I have seen liop assistants dip the article in, let dry and polit
W. O.
[12259.] - Felt Hate.-Some of my felt hate got quitto
white round the bund, just where the bria juius. Can
any one inform mo what causes this whiteness, and What will
[13090.]-Strawberries.-M. Paris states, in some interesting "Garden Btufi" oontribated by him, that the gronnd aboat strawberries can hardly be trampled too
hard. Does he know this from exparienee or experihard. Does he know this from exparienoe or experi-
ment, or does he report it on hearsay 1 inhould like to
know. Also if know. Also in ho is a sitawberry fanien, Does ho nnd Myatt's Hantbois? Is Myatt's Hantbois a second cropper? -as 1 got some plants in the gpring of 1871 ,
some few plants of which bore fruit, well tasted but som ripening very late in the autumn, but the planta neem to have been quite exhasted, in fact, nimost
killed by the oxition. I gave them a dose of ligid manare (mixtare from watercloset and oow brre) about them too much.-DERP ERRAC
[12091.]-Plums.- Why do plums and cherries which have set or formed well now begin to fall ofr, turning
jellow or getting a red pip on the point before they fall yell? If it were frost (of which po bething betore thoy fall touch here), where the trees were in blossom would it
not have altogether prevented the formation of fruit and oansed the blossom to fall off or wither up? I know it has had this effect on some of my trees in flower at same time, thorefore, I cannot think this is the cause of
what I mention. The trees were covered with blossoms, and are covered with hall formed fruit which will ail
fall off. I fhoald mention that there is at then time, on the tree a fair crop of fruit, which will, I trust ripen, but this part (distinguished by size, now as largo seem to be increasing in size, or only very glowly and are onlx as large as bsrleyoorns) is not a third of the
fruit which set properly. The tree is about 25 years old and looks quite healthy, but in past years it did not get Yair play, szackers having been allowed to grow from its
roots, which, however, I have had carefull prned It is well dunged, and in frait time watered with llquid manure.-Debf Ebrac
[12092.]-Curl in Peach.- Will some kind horticultural friend prescribe remedy for curl in peach trees?
I have hesrd it is caused by a fy. Some information I have hard it is cansed by a fly. Some information
on its appearance, habits, and mode of life, would be very interesting; the best mode of detroying, or pre-
venting its injurious effecta Mine is a young healthy looking (lu other respects) Barrington peach, planted in good ground, on a carefully prepared station on a sonth wall, in the open air, and carefally attended to,
yet I shall have only one pach on it Do staters," the blossoms, as many of mine were so destroved, but by what inseot or bird I could never find out?-DRET ERRAC
[19093.]-Budding or Grafting.- Will some practical mall budded and not grafted or have I been rig are informed that they aro so)? I have got some plam stooks on which I intended to graft sciong in March next,
but though I have been very anccesafal in grafting aples and peare, I have only succoedede in grating one
plum, though most of those that I budd id let plum, though most of those that I budded last year have
done well. Is there more diffculty in grafting plame done well. Is there more dimpalty in grafting plams the adoption of the practice of budaing? If budding in What should I do with my stocks now? They gra atrong ones, bat, unfortanstely, I did not get them till rather late, and they have gone back a little. They are
about 4 ft . high, nnd about fin. diameter at bole. If budding is to bo adoptod, should 1 out them down so as to get young shoots for badding on in August? Is there any rood book of praction inatractions, on the grafting,
budding, pruning, and training of hardy frait trees, and not very costlv? The name of such would greatly
[12094.]-Preserving Caterpillars.-Will some of "our" ontomologists kindly toll me how to preserve caterpillars to mpant in case, with
moths and butterfies? -CHRysicis
[13095.]-Hardening 8teel Shafts.-We have an 2in. to 8 in. diameter eith neck or bearing oft. long foot from the end, 4 in . long, 1 in. diameter difficulty is to harden these in the neoks, and there only. If I should not be asking too much I should like a rongh dosign of farnace moot guitable for heating a
number at once, and the best material for hardening. nambera.
[12096.j-Copying Music.-A schoolmaster of my arquaintance is in the habit of lithographing the parts of music, and giving them to his hoys. Will some one
tell me to what extent the practice is illegal $9-\mathrm{F}$. J.
[12097.]-Venetian Blinds. - Being about to make eome for my windows, I should be thankful for a hint
as to painting the laths. I am told there is some asenlinity in mixing the paint for this parpose. Any other information on the subject would be acceptable.-
[12093.]-Dandelion Roots.-I am greatly nhiliped Ior his informatiou (11966). 1
mhould esteent it n great favour if he will kindly inform
me the simpleat and beit way to obtain the exyracts for
 elngaish liver. Is it possible to obtain the virtues out of the roct so as to keep it by you in case of need? and Whinh in beet-a deciction, tonio or aperient. for one
trouled as 1 an His advioe will be thankfully re-ceived.-Leicestrer.
[12099.]-To Advanced Chemists.-I bave an important question to ask of chemists. 1 have consulted numbers of doctors-and some of them of Earopean ro-
putation-in vain, and I cannot help thinking that chemistry will asilit mo; and I trast that vone but those well qualifed will ventare to give advice, as the snger is ittie less than life or death to me. The query both, capable of being taken internaly, that will pro-
duce the dissolution-i. calculus, and of which ithe following is a chemical analysis: Culculus easentially of maggasina character
with no trace of urio acid?
[12100.]-Venomous Serpents.-To Sati Rymed -How does he (4092, p. 198) accoant for the well-known scting se an antidote, or at snake beas of Arrica, serous consequntidote, or at least, preventing all dan at any rate, I haye seen it osed end with full effect on an unknown snake bite, and on a cobra bite?-Cires Brasels.
[12101.]-The Watch.-I should Hke to see in the anicalesson on the watch, how to clean and how of the amatith the name of the tools naed, so that niv Pivot," o: "West Cornwall," not do this?-S. H. L.
[12102]-Lightning. - Will some one be kind enongh
 traveller!-Fbed. Moors.
[13103]-Staining Glass.-Could you kindly get me informed, throngh yoar columns, how or with what of doep red, pale red, amber, green, \&c., and how, or with of deep red, pale rod, amber, green, ec., and how, or with
What, are letters taken out so clearly from the same stained glase?-Gro. PAREER.
[12104.]-Spring Curres.-Will Mr. Proctor or an of our mathematical friends Eludly inform me on th the centra? Does the curra wary in its nosire th pressure is incrensed? Is it different for different thick nesses? My reason for asking is that have had som hatentions of trying to griad a speculam, and knowing that a gpring curve is very near a parabola, I thnught
might be very valuable for ronghing out.-T. THoze.
[12105.]-Equation.- Will some mathematician kindly solve mo the following sinualtaneozs equation, involving a quadratio? 1 it is taken from
"Algebra for Beginners." $19 t h$ equation-
There are two equations-tho dot divides them-C. J. B
[13108.]-Organ Building.-Can any of your nameroun correspondents on this subject pive me any infor matinn, through yoar columns, on the fillowing? Con sidering the value of space (Bourdon) pipes take ap there any practical difficulty in making one of such pipes do the work of several by means of vilves at diffe on flutes, \&c.? Seeing thnt two podnl notes would seldom, if ever, be required to sound at once, no difficulty on that score would arise. I think I have said onongh what I mean 41 not. I oonversant with these matiors ticulars and drawings, bat as I am only an amnteur, and have never tried the experimont, I ask for information. seen it oarried ont, ac I rather fear it cannot be-0. v [12107.]-Recipe for Greasy Strapping. - I am stra
 faraish me with one?-T. W. J.
[12108]-Confusion in the Head.-What does this Indeato I beem aiways to have noises in my head ars, ce., and am anxious and dosponding. It is not a moral Ir philosophios defect, but must be a paysical disinclination to get ap. If I stoop the blood seems to rush to my head; ange forty-seven. Bitter taste in myaclf requentiy. The hest remedy 1 can find is to pu similarly aflicted, and knows of a remedy, I shoald be glad of a hint. Is it possible that it can ariso from "ocality, occupation, ct. 71 always fancy I feel more
[12109.]-Old Locomotive Tubes.-Having to ase Trades" or some one else inform me the beat motho Trades" or some one eise inform me the best mothod
for "bending" them without onusing a collapse in the Yor bending them with
[12110.]-Bilver-Plating.-WII some one of our correspondents inform mo ar simple way of recovering platingsor the silver of a dark oolorr inclined to brown ? plates or anodes turn of the same colonr, snd I cannot keep them clean. The solution evolvos gas with a rery to remove gold from brass plates, wilhou acting mach on the plates, and tr reaover the gold 9 I
do not want to gave the plateg, bat to remove the gold do not want to save the plates, bat to ramo
[12111.]-Hothouse Boiler.-My Fineries are heated by a raddle-back boiler, the furnace pit of which ills with water from a spring anloss panped twice a day of vour many iugcuiongcorrespondents will inform any of vour many ingenious correspondents will inform in
if there be any other kind of boilor that admits of bein placed higher? The present sadde-back cannot be a half would bo a great gain to me.-W. F.
[12112.]- Blivering Mirror for Telescope.-I the following query:-I have just completed a plass disc of glass an inch and a half thick On out of a upona frst magnitude star-for example, Arcturus-with the plane mirror silvered, bat with the larga mirror un rund and order to test its fraure, I see the star quit the star, but without any rars or ns the larger mirror was nansilvered, I could not want of light, use a high power, the power I used being about sixty linear. Might I consider $m y$ mirror suffciently good so that I might proceed to silver it? To should not caro to do ao, before I I as andus afrair, nnd to its flgure. Woald Mr. Key nlso kindly inform me bow to make the eviver film sufficiently hard to bear a good polish ? I nm tolerably successinl la the process, but
П18113.1-Gold Quartz-A specimen of gold quartz
weighs 806 grainm; snd its specifec gravity is 9.35 . Will some one kindly , and what specitce gravity 3 . Wh. bo in it, in graing, and aleo give the rule for entimating
[12114.]-Dye for Cricket.Cap.-I have got a bine gold braid, and a ailk tawsel : snd aftor waning it a littife it gold braid, and a silk tassel : and aftor wearing it a littie it
gets gaite me bow to get it into a clean stato withont apoiling it.

$$
1 \cdot 1.0 .
$$

[12115.]-To "Sigma."-Aboat twelve monihs agn this ralued correspondent mentioned that he had anew would commanicate the renalt: I think many of ns wonld be glad to hear how he is progreastng. I, tor ous. am delaying a long-desired change in my form of
batterv, awaliting the resalt of "Sigma's " oxperiments.

[12118.]-Hydrogen Lamp.-Can any onc toll me wit in irequently a smart oxplosion onsues whe the jet? It is ovidently confined to the outaide of the apparatus.-H. H. G.
Will some Restoring Colour of Watch. Platecolour of a ratch. plates I mant to hring the gilding colour of a watch-plate? I want to hring the gilding hack to rion gold colour: it is no
[12118.]-Organ Construction.-Oan ant res der tergme mond cause n bet of harmoniam roeds on an two stops, hat heving onlv one at present, I want to asie done without cutting the soundbosid, and so spoiling it
 hactrof.
[12119.]-Pump for Colliery.-Wonld any of yonr and the most economical kind of pamp for
fetch nlong the gallerien of the mine about ona 1 quantity of water is small, end my moans amaliin NeED.
[12130]-Light.-I have often thoupht that light on flowing through sun may be non. Inminona eiectricity substanoe invented to support the undaletory thene: until it comes in contact with gases sach as surroand our earth; and in its passago through these gases bein converted into light and heat; the deeper the ABCending e high mon depth of the trats of atr dacresain 8 , decreases The heat certainl does, and 1 have hear that the liuht also does; the sky being of a dall lesden conta
gabes. gases. Snch a theory might lead to the discorery of the a the these atoms by the number of ribrations. Suils o oomets. If the comets aro in a fluid state, and rotated on their axis. they wonld be greatly inattoned sithen
poles. Eleotricity in passing through in a polar directiva, when Elluminated by pasging through the Ras or gases woald meet in a point piving the conical taii. If the poles were still more fatiened, approaching each othe until the oomet assumed a double concave form, the
rays would diverge, giving the fantail. Would Mr Proctor, or F. R. A. 8., may thero is shadow probability ln my theory? Querv: Hus
geon through only a vacuum ?-W. H. S.
[12121.] - Chemical Preparation of Fruit Essences.- Crepaid any frutt essonces from fusal oll or method of preparing ruit
[12122.]-Drifing Bands.- Will some person of or

[12123.]-Worn Waterproof Bands.-WII some one tell me the best compositinu to thy on waterprom
sheets that are mugh wrin, to make them more durable and waterproof?-J. J. V.
[12124.]-Voice Weakneas.-I shall feel thankfol remedy subsides almost to a whirper, which is vory dotrinental to my basinese dutios.-Jacqugs Eacer.
[12125.]-Cover Plates-Can anv oorreappodent give a practical rulo for the longth and thickness of cove
plates in wroaght iron rivoted girders ?-ExosLsion.

Regelation.-The curions phenomenon of regelation can be exbibited hy placing n block of ice on ${ }^{2}$ netting of fine wire. The ico will be melted br th wire, and passing down throngh it will become trozat in a mass again below the wiro. A siagle wire ean of ine the ice aniting again behind tho wire an Anally showing no sign of haring been cut at all.
Nitrogen in Plante.-It has long been known that the quantity of nitragen contained in cereal crop the manured earth from which they are gromn; an the manner in which the additional nitrogen has heen acenired is one of the many pazzles of agricaltare chemistry. (See p. 400, Vol. XIII.) That it is derived from the air there is no question bot in mhet manner Has it heen absorbed by the plants directly from the air, or has it been frst withdrawn from the atmaspher by some of the constitaents of the soih, with which could form compounds capable of being acaimilated by M. Degablo stractares ? According to Les yonden that in the presence of organic mattor oxygen combine directly with nitrogen, forming a compound analogoas to the almic or hamic acid, prodaced by noatralisio an acid with the potassic monation of garden monld into a perfectly drs tabe he introdaced oxygen, nitmonen, ammonis, and glacose, and on heating the mixtar While at the beme time a portion of the aitrogen dir. appeared from the atmosphere of the tabe.

OHESS.

[Elited by J. W. Abbott.]

In compliance with the decire of many of our subscribera, we propose to devote a corner of our pablication to the game of ohesa. The superiority of this game ovar all others, as an intellectaal recreation, has been for centuries acknowledgod by philosophers and statesmen, who have praieed it not alone for the inexhanstible source of amasement which it affords, bat for the edncational advantages to be derived from its practice. The popularity which the gamo of chess has attained in recent times is proved by the namber of pablications apon the subject ; but no student of the chess literature of the last twenty years can fail to perceive that it is in the problem branch of the game rather than in play that modern progress in ohess is most clearly demonatrated. He would be a bold man who would, on a comparison of their pablinhed gamee, pronounce Steinitz a bettar player than Philidor, whilst few people acquainted with the aubjoot require to be argued into a conviction of the saperiority of Healey Bayer, and Lojd over the problem composers of Philidor's time. In fact, the case of Problems v. Games may be summed ap in the statement that in the present day the genias of the composer has elevated the art of problem constraction far sbove practical play, and that it is in the former that the highest manifestations of contemporary skill and anblloty in ohess are to be foand. It is annecessary, to enlarge apor the attractions which pazzles and problems have always had for the haman mind. With most intellectual people the mere atatement that a thing can be done is sufficient to imbue them with a dosire to do it, and withoat taking higher grounds, it is jast possible that the intereet which the chess fraternity now evince in the constraction and solution of problems may be attribated to some such foeling, bat whatever the canse the popularity of the chess problem is beyond cavil. We therefore intend to direct attention to problems alone, and we introduce the reader to the latest production of Frank Healoy:-

Problem I.-By Frani Healey.
Black.

White.
White to play and mate in three moves.
All communications intended for this department to Loughborough-road, Brixton, 8.W.

" JACK OF ALL TRADES."

"Jacy of All Tradrs," whose health has been fearfally shattered, is about to follow the adrice offered by Mr. Hayward, as indicated at loot-note of let. 1266, last week He also accepts, with thanks, the present of f 10 10 . which has been transmitted to him. The following correspondents immodiately responded to the appeal made :-
J. H. Hayward, Tonnage Honse,

A "Well.Wisher and Friend" has gent 2s., and B. Marsh, Rochdale, has sent 6d. The

It will be seen that the contribationg of other corrospondents rendered it annecessary for the Editor to subscribe more than $£ 2$, and that the contemplated amonnt is mado up. Let as hope that "Jack" will soon be himself egrin, and when he is he will doubs-

USEFUL AND SOIENTIFIO NOTES.

Eydraulic Plate-bending Machine. - The largest armour-plate bending machine over mana Mactured has just been complated by Mesorn. Westrood, Bookjerd po., anke. The mechine has been testod to Dockyara, Pembroke. The 4,000 tons. The large cylinder and pre capable of being moved on the bed, 50 as to sply the presarie at any part betreen bed, so as to spply the pressare at any part between he colna this moroment is oflected by
 of main bed casting. By an arrangement of scres ralve the mer can be aplied at either end of the valves hil the larg cslinder and the ram made to lift inetanthe large cy ration caneoasly. And madim conch weighing apซards of 84 block, top and bolom, dava wrigetod by four large colvmise forged from the best scrap iron. The large olamus lorged in diameter, and is worked by a set of fom parps entained in one cistarn, two being of lerge our pump coll diameter; all four work in concert to and tho 1 and the plate to be bent, and men about 600 tons presto has been attained the large pomps oy ton preseri has mall pumpa continne to work and produce the poser mail panpa necessary for bending the armour-plate.
weight of the machine complete is about 88 tons.
Royal Cornwall Polytechnio Society, Fal-mouth.-The fortieth ennual exhibition of thi society (institated 1833) will open on Wednesday, 21 s of Augast, 1872. Medale and prizes in monor will be
awarded in the following departments:-Mechanics Machinery and models ; mechanical and other scientitic nventions and improvements; specimens of nava architecture; essays and scientitic papers, de. Fine Arts :Pictures and drawing by professional artista and amatears, sculptore, arohitectaral drawings and models, and specimens of ornamental art. Photo graphy: Photographs by prooessionalis and amatours. Natural History: Eisaane, local observaiona, colechioa
ap of specimens, \&c. School Proluctions: Mochanical
and freehand drawings, specimens of penmanship, to Plain shand drawiags, specimons of penmall objects of interest connectod with science and the Ane and industrial arts, which may be considered deserving by the judges. This exhibition has been established thirty nine years, and affords an excellent opportanity for making known the merits of anventions, ce., throaghout the West of England. The exhibition is hela in a apacions hall, end continues open for eight days. No charge is made for space. The society will defray the expense of carriage, to and from the exhibition, of pictares and drawings by profesaional artists; and photographs by professional photographers. The carriage of all other articles muat be paid by the exhibitor; except in special cases, when an exceptional arrangement may be made. Exhibits should eo for warded 10 as to reach the Polytochnic Hall, Falmonth, not later than Tuesday, August 13th, after Which no space can be guaranteed. Lists of prizes and premiams,
and all farther information, may be obtained from the and all fur

THE INGLISH MECHINIC LITEBOAT TONB.

Arount proviouenly acknowlodged
$\begin{array}{llll}2855 & 9 & 7 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \\ 0 & & 6\end{array}$
2386 12 1

ANSWERS TO CORRESPONDENTS.

** AH communicatione should bos addreased to the Editor of the Englise Mecianio, 81, Tavietook-strowt, Oovent Garden, W.O. The following are the Intilala, de., of lotters to hand
ap to Tresday morning, June 4 , and unaknowlodged ap isowhere:-
H. Spink.-V. Buckloy.-H. Burridge.-H. Greenwood. Screw-oatter.-G. A. Adams.-E. H. B.-Wanderer.G. J. Lough.-J. W. Hood.-Henry Frances.-James -Gillett and Bland.- Payno and Son. - H. A. Rawson - Frances Blake.-J. D. B.-Evan Davis.-Richard Lloyd-R. L. Jones-Soul and Con-Western.-J. B.Young Natural Philosopher. Jamos Beai.- R. A. Proctor.-Fire Engine.-J. G. Parry.-Microsoopist.-
John Goundry.-E. Sharp.-Jos. Lambart.-J. in. Gorham.-Gillord Mills Rending Society.-Cervas.-Gorbam.-Giliord Milıs R.-F. R. A. S.-Art BtndentM. Reynonds.-J. P. Drake.- F. Paget-E. M. Peacook. AII. Trades.-Trovatore.-E. L. - Spotaman.-JI. C. Li
 matic Lever.-Lictor.-T. A.-A., Liverpool.-A. B. A. Landsend.-B. N.-E. Anderson.-J. T. Bargess.Comrado. E. E. L. T. W. W. Galliver.-P. W. D. R Robert Johnson. - North. West Yorkshire.- Robert J.-H. W. - A Sufferer.-Constant Subscriber.-Shafto Donalas. J. David Smilth.-X ylographer.-Lanca.-J. Barwick. Groat Walker.-H. A. S. -Tripod.-MI. J. Dodworth. T. Perry.-Ophical Briokiayer.-F. E D.-Try Again.. Aln -Henry Clarke-W.C. Hughes.-N. G. Robson -Cireb.- G. Waterton, Jup. Stewart Spires. - Oro.Assistant Manager.-Try IL -C. B. - Henry Blake.
E. W. James.-F. E.-D. N. E.-Un Irlandale-Rev.
E. L. Berthon.-W. T. Whitaker--H. B. B.-Old Sub. - Cape Colony.-John Hopkins.-J. X. T. York. - J. L. -Letter Writer.-Horos.
The Delvaz.-Old King Ooal, M. Paris, Derf Errac J. W. Rodwell, E. L. B. Un Itlandais, and Hilirand .
Hozos. - Why not, instead of finding fault, have assisted to supply deficiencles. Aak for what you want, and no doabl, gome one will assist you. You can do no ovents, part friends.
Tox DAWs.-Y Yu want ns to repeat moch of what many correspondents have from time to time gaid about photography in our pages, which wo cannot do. I r. ${ }^{\text {require. }}$ W. " 8 . W. J." has asked a simillar question
A. W. J.- 8. W. J. has asked a simitar question. numbers. We cannot repeat our information on the constraction of galvanio battories, and you ought not to expect us to do so
 so that others may have the benefit as well. W BLL-ro-Do-Tbanks for offer to answer inquirers, but judging from the two answers inclosed, you might "o G. E. L.-You. may insure insertion by sending something worth inserting, either in the form of query, answar, or letter.
C. H. W. -The fauit rests with the Post-office

A Subscriber (Lymington)-The Planchette was illas. trated and desorlbed in Vol. X, p. 230.
. H. Jonzs- -Not inserted because not of use to others. Yon appear to think that the ENGLibi MrounNic exists exclusively for you, and that, it acts unfairy. insert so essentialy inserted it we should have soted unfairly to other readors, by appropriating apace that belongs to then for scientifo purposes
HENAY JoHNson. - Inform querists through our colamns. Kina CoAL-One letter inserted. The other, "A Universal Deluge," conta given before.
Honz Ko Jo. - You can oall on employers who want sucin s. Skilled labour as you havo to sell, or yon may adyertise
J. T. BpinaOr-Yoar first articles on "Eleotro-metallargy" will appear next week.
J. T. -The first chess problem appears this week.
 B. H. L., Saturn, W. G. B, Australia, Barnard, and intente and purposes advertisements.
Westward Ho!-One part of your query is an advertise ment, and the other part cannot interest any one but yourself.
J. H. G.-Read the last four volumes of the Rivalisa Mzeranzc. Why not ask for "the whole body of physicks "
. - Consalt the series of articlos on "Plumbing." now appearing in the Building Newe
. E. L., W. M. Edwards, and Peter Piper.-Consult indioes. W. H. Bercton.-The times given in the Nauticai Almanac are calcolated for Greenwioh.
R. B. -Is not your cantion somewhat suparinons? When have we allowed the insertion of "Infidel attacks on the Truth or heal in the latter portion of sorry to wo we think the Enalise Meoranio would survive your interdict-we aro sure all that was good and worth preservation in it would, and we are not at all concerned for the fate of anything elso. Δ general and vague zocusation againat some of our most able contributors should have boen supported by something more than iwo inliala-iwo mitials moreover, whic the end of ant to help us or our readera.
the end of any attempt to holp us or our reacers.
Astrowomerr-You need not have wastod our timo by writing eight pages to tell us that you possess the wnowledge of the true theory of the deluge, and that you mean to pablish it somewhere, some time or other E. N. Peare - Your repis is an adverthement
T. Amirt. - Consult a medioal man.
T. A. (Birmingham.)-Cannot undorstand your query writo again.
4. A. Sinmonds. - You had better bind him apprantice to some large shlpping Arm.
M. CLATER, Mahogany Table, A Sabscriber, R. Gallo to bick volumes.

J. H. - Apply to your local postmaster. A Sobsomibse (Liverpool).- You are apparently
from aycoals, and should consult a physician.
from sycoais, and shou can only appear as advertise
 Joo. Parsons. If you wish to protect yourself you had
better not pablish the drawings at all till the in vontion is patented.
R O. BEREY.-For soldering without fire. see p. ${ }^{546}$ Voi. XII. We gave this reference only last week to another correspondent, who like yoursalf,
lazy to consult his indices to back volumes.

The " Buillitig News," No. 908, May 81, Contanks :-

 ledge of Banlaing Materiala, and How to Improve It; On Indian
Art; Palnted Metalle Hapgings Eor Mural Docoralin; London

THE INVENTOR.

applications for letterg patent durmg the WEES ENDING MAY $28,1875$.
 sor coting xeming moemine.

 1842 G. R. Wond. Wishaw, Lanarkehire, for improvements in 134s R. A. Browno, Ricbmopd.hill for an \{mproved ntenald to be 134 J . Holmeen, Lincoin's Inn-silde, for improvements applio
 meote in the couplidg of plpas end in the fetings heroof, and in 13se . . C. B. Brower, Ohancerr-lane, for a now or troproved atock-

 1310 J. A. Mooe. Manchentor, for Improvomenta in machinery o parneas for dy orrall, Manecheoster, for an fmproved modo of asid ap. 1851 J L. Baker and T. N. Cox, Hergrave, Northamptonahire. lor an trmprovementitia ploughe.

 mapporte. A commanication.
 $118 s$ W. Loclemood, shefioid, for tmprovements in salesy valtes

 other gives. A commanitation.
1659 T. Cockis, Gosberton, Lineommitro. for fumpromin machinery, ar epparatan for dikifipa, ne gmine
${ }^{150 e 0}$ T. Cocke, Gooberton, USNolvehtra, for troprored machinery

 mast T. B. Do Fotrast, Southamplon-ballalinge, for an imgroved

 Uon.
epperatu. semderion, Euddereteld, for mproved Avo-vailicating

 1572 G. Weativeronce. jun. Soathamphna-baflalinka, for Im.

coaplings for railuny carriag. 4 eommanicetion.
in the trentment of jowaro doposits.
 window shuttere or otherwite.
 1880 W. Begs, Preation, for an improved lead water heatar to

 ommandaction.

11892 J. Fargnbanion, Biafrgowrie, Perthabiro, for improvemente

 ${ }^{189 \%}$ F. Le B. Bedwall, croydon, tor an improved conatruetion 1208 F. Figntner, Finabury-rquaro, for improvementa in voltalo 1597

${ }^{153 P}$ R. T. Hramhey. Chancorv.lene, for furprovernentrin firnzeon
 2509 J. ghackletion and J. P. Blana, Halliux, for a mechine or
 tan oll from noedi. A communteation.

 therefor. which improve
common rosd carriagel
160β R. Mather Fountoinbridge, Eainhargh, for fmprovameote
 In apyittu
mare
parpospe
 11006 C. E. Wallu, Albort-street, Peckham, for improvementa in ropeating or revolving aro-arms.

 ${ }^{1007}$ F. Waiton and J. Jonen, Rtaines, for an improved machine

PITEREB BEALED.

 saeturo of bage ind pooches.
 othor Anlac. Bartbelmes, for improvements in shatele sewing mpecine. Wood. for tmprovements in opparatau for cooiling blast

${ }_{348}$ C. Jonee, for improvomente in the mannfaotare of cartridgo

J. C. Mowbura, for improvaments in hackuine machinoe

 w. Benson, for improvemonts in mabinery or apparatus Lor cotting conl. sis pary M. Paraons, for improvementa in ordnance and in

parpoenen. Hargroeres. for Improvoments in trosting allato

 cill

 -mpl-yed tharsfor. C . Nigntion for an improved moathploce for protoctug

 cod in apparatas omploy od theredn. in in thoosolltec
 Wol or variour otber abrou mantiork

 and potash, phosphates of soda and potash, mariatle acti, and
chloring. sers. W. Mann, for improrements in the method of gwritsin;
 therof

 120 W. B. Lake, for an improved refocitor for faclitutiag :a threading of noedief improvemonta is raliven carriago estes add

 therefor. Meoro and A. C. Moore, foc lmprovements in zoll aps to:

 indicatior. A. Olark, for mpprovemonts is covering top pollin of eard-

 107n J. Heberietn, lor

Terms of Sabscription,
payable in advance.
5s. 68. for ©ix Monthe and 11e. for Twalve Monthe, Post Foinee.
Volnmes V., VI., VII., VIIL., IX., X., XI., XII, XIII, and XIV. bouad in oloth, 78, esoh.

Indexes for esch hali-yearly volume, ap to Vol X X Fres qtd. Casoal for'Binding, 1s 6d. anch, 2a.; Posi *- Subscribers are requestod to order Casen and Vols through their bookellors, and not to send direet. The
now regniations of the Pont-ofloe prevent thetr trantnew regnatations of the Po
mieston through the Post.
To American and Belgian Subscribers.
IET Amertonn and Belainn Subscribers, espocidiy when renerring their subucriptions Are perticularis
requented to advise the Publisker of the transmission of the Post-office Order, and the exact amoant for Which it is made payable.
Sabsoribers in the Onited 8tates end Belgiam can be rupplied with the ENGLISH 0 ofice, for the sum of 18 e 8 dols. 25 a gohi, or 15ir. B0c.) per annum, parabie in alvance. Internationel The remittance should be made by lin sorut br be ordinary newer. Bar poat, but must be remitted for at the rate of 5 d . each to cover extra post age.

Notice to Subseribers.

Subseribers receiving their copies difreot from the office, are roquested to obsorve that the last namber of arem tion that a fresh remittance is nocessary, if it be desired to centinue the Sabsoription.

Charges for Advertising.

ALL ADVRRTISEMENTS (oxoept in the Exchangs ${ }^{2}$ Oolumn). per line of Eight Words..
(No advertisement inserted for lest than is)
Larger Adveritisements Contraoted for.
ADVERTISEMENTS in EXCHANGE COLUMK \&OE Bixteen Words
For every enocoeding Eight Words and charged for
Adrertisoments must reach the ofloe by intcelar on Tumeday
number.

©ht english teflechanic

解 these cases is the want in question supplied. We cannot sappose for a moment that a professorship at one of our universities is the position which a Herschel or a Huggins would desire to occupy, if the want of means or of leisure prevented him from devoting his powers to original research. Nor is the writing of books on science the employment which would be selected-except as a pis aller-by one who was anxious to investigate the secrets of nature. And for the most part it is only the fortunate few who can even thus to any degree devote themselves to the advancement of science. The salaried stations in our observatories are eagerly flled; our professorial chairs are not for the many; and ninetynine out of a hundred who take to soientific writing with the hope of profitable returns, find the expenses of pablication greater than the support they receive from the public.*

It is obvious that science must suffer seriously when so many, who might do yeoman's service, are debarred from taking part in scientific work. Let it be remembered that there is here no question of disinterestedness, or the reverse. There is, probably, not one student of science in a handred who would not be perfectly willing to do scientific work for its own sake and without hope of reward if free to do so. Bat it is one thing to look solely to the proits to be derived from scientific research, and quite another' to require before entering on such research that the degree of support commonly called "a livelihood" shall be insared to the worker. I speak plainly, becanse plain speaking is required. If science is to oanse plain speaking is required. it bursuit of the many, it must bed as a profession, providing, like other professions for those who enter it and are capable and industrious. At present, science holds no such position. It is only by making important sacrifices, and by ranning the risk of others much more important, that any person not possessing considerable means can occupy himself with scientific work.
There can be no question, then, that all who desire to see science progress as it should (and as it can progress), should give their earnest support to any scheme whereby room may be found for scientific workers at present lost to the good cause. Not in astronomy alone, but in every department of science, the great want is systemstic work and an increase in the number of regular workers ; and there is only one way in whinh this desideratum can be supplied. We must have national observatoriea, national laboratories, national soientifio salaried offices of many kinds, and I do not entertain mach doubt that before long we shall have them.
It is important, however, to notice, that in this matter not merely is it le premier pas qui coute. but that everything will depend on the nature of that first step. Science is atrong enough, probably to secure a first move from Government. Bat if the consequences of such first move be unfortunate, science will lose mach more than she will gain. Now, it cannot be denied that the first move advocated by Colonel Strange is not free from a considerable degree of risk. In the first place, Colonel Strange has associated with it promise or quasi promise of certain practically aseful resulte. This is in itself, I conceive, unfortunate. It cannot be too often insisted apon that science is not bound to answer the question Cui bono? 80 repeatedly asked of her. She is, on the contrary, bound to assert her true dignity by promising nothing. She is high enough-she has done enough-to olaim to be served for her own sake. The good will come; of this we need have no fear; but it may not come in the particular way anticipated. In any given case it may be direct, but it may also be indirect; it may come quickly, but it may also be deferred for many years. All that can be predicated with confidence is that it will reward more than amply the efforts through which it has been obtained.

But the particular good suggested by Col. Strange and by Dr. De La Rue, who supported him at the recent meeting of the Royal Astronomical Society, is scarcely such as can be safely promised by astronomers. I venture, for my own part, to

- It is, donbtless, due to the present unsatisfactory posillon of soientiac teaching in this country, that what the general reading pablic would take is nol ihat which the stadent of science woula pretor trosesplof. original ro. search would scarcely have a chance of succeas as a IIterary ventare. No pablisher would accept the risk of such a volume. It should be remembered, in faot, that the scientifc aathor is not free to select his own inne or style of writing, uniess ho can pablish at his own expense. Ho is boand to consider the opinion of the nublisher an to what the pablic is likely to find attrac-
express my utter want of confidence in the probability that the systematic study of the sun will throw asefal light on meteorological relations. That all weather-ohanges may be traced to the sun's inflnence I admit, or rather, the fact is too obvious to require mention. But that man will ever be able by atudying the spots, the facula, the prominences, or the ohromatosphere of the sun, to interpret the phenomens of the weather, appears to me to be an opinion all but demons trably incorrect We know that the san' varying diurnal course accounts for seasonal ohanges; yet we know, also, that the seasons are not similar is different years, even as respects their general features, while the weather of any single dey is almost wholly independent of the general oharacter due to the s6eson. In one region of the earth, again, a season will be exceptionally cold or hot or mild, while in another region precisely opposite characteristics will prevail. And again, whereas one part of a year may be (like last winter in the British Isles) exceptionally warm, another part may be (like the late spring) exceptionally cold, though the sun, "the domiasting source of all weather changes," presents throughoat the year the same general characterigtics. The great eleven-yearly solar spot oycle may be supposed, without improbsbility, to be ccompanied by some corresponding peculiarities of weather or by variations in the total quantity of heat received by the earth. Indeed, Mr. Baxendell has found evidence in favour of the ormer view, and Professor Piazzi Smyth (followed by Mr. Stone) has found ovidence in favour of he latter. Bat these pecaliarities are all but imperceptible, they vary in different places, they are not such as to throw light on the wider features of meteorologioal change. Now, the circumstances here considered-the sun's varying diurnal path and the great oscillatory change producing the spot-peried-are altogether the most striking festures of the sun's ralation towards the earth. If they do not throw useful light on meteorological habitudes, surely none of the minor features which we may hope to detect by prolonged and aystematic stady of the sun can be expected to do so. And even if the direot sotion of the sun were more obviously recognisable in its general effects, yet, inasmuch as oven in the length and breadth of England speck on the earth's globe-the greatest variety of weather is commonly experienced, it is surely hopeless to attempt to predict the conditions which will prevail in any one coantry when the solas relations exhibit such and such a oharaoter. fet short of this, what sort of prodiction would be of the least nse to men? Even if we admit that is the slightest prospect of our being able to do so much as this, of what earthly use would it be to predict that a storm will rage, for instance, on suoh and such a day, if the storm is as likely to rage in Russia as in England, or in India as in China?

It seems to me, then, unfortanate that Col. Strange's proposal has been accompanied by antioipations so chimerical. It is still more unfortanate that some who have supported it have not hesitated to sneer at the work done by meteorologists with the Government grant of $£ 10,000$ per annum. It is certain, in the first place, that whencesoever the means of interpreting meteorological relation are to come (if they ever come), we must know what those relations actually are. In other words, we must have these long arrays of tabulated figures-thermometric, barometric, wind-recording, cloud-recording, and the rest-if we are to understand the canse or causes of changes in the direction of the wind, in the prevalence clond, in temperature, barometric pressure, and so on. Hitherto very little has come of these reoords, it must be admitted-and, for my own part, I entertain a particularly strong impression that very little ever will come of them-but if ever the great mysteries of meteorology are solve those tabulations will have fulfilled their purpose To cease to make them is to admit that thesic mysteries are inscrutable.

Moreover, it will scarcely do to approach Government with a request for Government assistance, on the plea that the Government assistance granted to meteorologists has been completely thrown away.

But the chief point to which I would invite attention in Col. Strange's proposal- is this, that he has not indicated with sufficient olearness what he would wish Government to do. If a

* I refor throughoat to the paper read by Col. Stra before the Koyal Astronomical Suciety. If there ignorant of them or iguore them.
rague resolution, sach as his paper soens to promise, were sabmitted to Governmental consideration, Government might, with the best intentions, proceed to action which would by no means acoord with the wishes of true bovers of science. The Royal Astronomical Society, the acknowledged representative of the astronomy of England. knowe what sort of man should be placed at the head of a great national obserratory ; but Gevemment, not knowing, might place there some person withoat my real regard for scieece, and with none but borrowed scientific knowledge. If Col. Streage would so bring his proposal before the Astronomioal Society, and thas before Government, that nowe bat those who were at once zealous astronomers, trained observers, sound mathematioians, and skilfal theorisers, were placed in authority in the proposed obeervatories, no true lovar of science could refuse the proposal his most earnest support. Nothing beat good oould follow from such a course. But if there were the slightest risk that an appointment of the sort should fall into unworthy hands-and suoh risk would assuredly be involved if rague resolntions were submitted to Govermonent-it would be the daty of all who wished well to science to oppose the resolation to the atmost of their power.

A peint to be most earefully insisted upon is that the head of any national observatory ruch as has been proposed should be one who woald behave in a generous, ocnalderate, and courtoous way to all who worked under him.
In conclasion, I must remark, to provent the possibility of mimapprehensions which might mar the effect of what I have been saying, that personally I have no interest whatever in Col.
Strange's propomal. I wish to see science adrance Strange's propomal. I wish to see science advance
as rapidly as possible, and in particular that astronomy may so advance ; and I speak out of the intereat I thus take in the progress of science. In so far as I adrooste the proposal for new national observatories, it is because I believe such observatories to be very muoh wanted, and that their erection would be followed by important advances in astronomy; in so far as I oppose the proposal for their ereotion, it is becasuse I fear lest if the projeet be improperly carried out, it would lead to retrogression instead of adrance. I cannot recall any instance, for years past, where it behoved the true lover of science to be mo careful as to his aetion as in the present case.

ATR AND RAIN.*

W ${ }^{\mathrm{E}}$ have alroady (p. 239) examined a few of the facts brought forward by Dr. Angas Smith on the subjeot which forms the first moiety
of the title of this article, and have ondeavored of the title of this article, and have ondeavoured to point out the conclusions to which they lead. We have seen that a very small deficiency in the proportion of oxygen in the air we breathe, when compared with that which is known to exist in
notoriously healthy spots is sufficient to eall for a notoriously healthy spots is sufficient to call for a
rigid sanitary investigation into the canses which produce it, not merely becanse a deficiency of oxygen is in itself sure evidence of the insslubrious character of the atmosphere in which it ocours, but because there is ample ground for believing that this defioiency of the life-giving gas, found to be the normal condition of the air, is made up by a greater or lesser number of other gases, many of which are known to possess noxions properties, and whioh are also believed to be the media that afford sastenance to, and assist in the propagation of, the as yet ondefined poison-germs of disease. Granting this premise a very little consideration will show us that number of these germs floating in the air which it traverses, and that it is, therefore, as essential to make a rigid scientific investigation into the peculiarities of the rain of different localities, and the numerous foreign substances brought down by it, as into the air through which it has fallen. We know that after rain the atmosphere contains a larger percentage of oxygen than it did previously, and there is at the same time a diminution of carbonic acid; but althongh we have not been able to discover the canse of this increase of oxygen in the facts whioh chemical climatology has as yet presented to view, there can be but little doubt that it is mainly brought sbout by the removal of "atmospheric dust " and carbomic acid and other gases by the mechanical and
chemical actions of the falling water. The hemical actions of the falling water. The
alytical examination of the collected rain, in-
ir gud Rain. By R. Axous Syitio, Pl.D., F.R.a.,
r Rud Rain. By R. A
London: Longmans.
doed, embles ns to form a very good ides of the character of the air of the locality in which it has been gathered, and taken in oonnectios with an examination of the air itself on a fine day affords a reliable criterion of what may be termed
the external ralubrity of the place ander investigation.
The principal sabstances found in the rainv waters experimested on by Dr. Angus Smith are chlorides, sulphates, and ammonia. Amongst the most important, as far as quantity is concerned is undeubtedly common salt, the base of which sodium, spectrum anslysis has shown to be uni versally present. Common salt is foand in abundance in the rain of the sea-cosst, to the extent of 1 part in 10,000 parts of rain-water; but it cannot be supposed that any noxious property exists in this compond. In making analyses of the sabstances fond in rain, therefore, allowance must be made for the proportion of hydrochloric acid duo to the salt found near the sea and in the neighbourbood of towns, where it is one of the products of cosl-burning; but a distinction is oasily drawn between the two, from the fact that rain-water near the is not scid, while that taken in towns is invariably so, from the fact o its containing sulphur compounds. The com pounds of sulphur, too, are found where there is no coal-burning to 2000 unt for them, and these invarinbly proceed from decaying animal and vegetable matters, which give off sulphuretted hydrogen and sulphide of ammoniam, which, happily for us, are speedily oxidised, and aplit up. Ammonia, however, is the compound which affords a fair test of the amount of impurity in the at mosphere. When organic substances nudergo decomposition, says Dr. Smith, the nitrogen goes
off with hydrogen, forming ammonis, anless strong oxidising influences are present. Bat ammonia itself is not an infection -a smal amount, even when constant, msy not be hartfal but the probability is that this small amount is better alssent, because its presence indioates ob jectionable or decaying matter, which may send out worse substances than ammonia. The resulte obtained by the investigations of Dr. Smith into the cosstituents of the rain taken in varions parts of Great Britain give the amount of chloridee found in London rain-water as $2 \cdot 6$, when oom pared with Valentia as 100 ; while for sulphuric acid, taking Valentis as 100 , London has 750 , and Glasgow 2,571, a fact which Dr. Smith regards as explaining in some degree the great mortality of the last-mentioned place, beoause sulpharic acid is not merely a measurer of manufacturing induetry, bat also of decomposition, being a part of the oxidised sewage of the air. The "aoidity" of the rain-water is snother measure of the im parity of the atmosphere, and in this respeot exhibiting 0, Glasgow figures with the high comexhibiting 0, Glasgow figures with the high com-
parative amount of 109, and Manchester and Liverpool with 83, while London has 28. The com parative amounts of combined ammonis are and Manchester following closely with 30 and 36 In the most important table of all, that giving the comparative amounts of albuminoid ammonia -i.e., the measure of unpurified air-sewageas 1 , Gleagow cives nearly 9 , while Liverpool (3) is less than London (6), and St. Helen's and Man chester press closely on Glasgow.
The tables containing the averages of the experiments made on the different rain-waters are full of interesting and valuable information, but they mnst be read in their entirety, with a clear apnrecistion of the effect of the prevaiiing wind and other circumstances, before correct notions enn be gained; for we find that on one ocoasion the amount of hydrochloric acid found in rain collected at North Uist was no less than 3.1 graing per gallon, while a specimen taken at Kelly, Wempss Bay, yielded only 0852 per gallon, a difference which of course can only be accounted for by the eleration of the place, the direction of the wind, and the time of the year We have said sufficient here to show that an analyeis of the rain may be made to determine approximately the healthiness of a given locality or at least point out the direction which Eurther inquiries should take. For the results of the investigations made at the various places wo
must refer our readers, as before, to the book itself : so mauy different localities have furnished the materials for the experiments that a tolerably accurate prevision of the result of analysis can now he made for any spot in the British Isles Dr. Smith supplies saveral lithographs of oharac.
teristic specimens of the crystals found after
evaporating rain-water-those obtained from New-
castle-on-Tyne rain exhibiting beantifully-defined crystals of Glanber's salts (sulphate of soda). These specimens wers obtained by boiling down 200 cubic centimetres to the balk of about one and allowing one drop of this to evaporate spon taneously on a mioroseope slide, affording in many cases intereating, and in sll, valusble objects for the stady of the sanitarian chemis and microscopist. It is not necessary for the would-be investigator into this sabject to wait for a shower of rain in order to obtain an ides of the matters held suspended in, or the gases mised with the sir, for it is quite possible to obtain exaotly similar resalts by taking the air in a bottle containing a little pare water and washing it by agitation. This method has been followed by Dr. Smith in anslysing the air of houses and close places; still, he says, that although airwashings enable us to examine air where rain cannot come, and to a great extont must super sede the examination of rain, the fatter mast not be neplected, since we obtain from it a know ledge of the contents of the atmosphere at a time when we oannot watch it, and we obtain aleo the mean of a long period. With these air-washing of specimens of metropolitan air, Dr. Smith obtained some curions results, which show how necessary it is to take into account the state of the weather at the time, for in an sir-washing from Westminster Abbey Yard, taken on a fine day, he found albaminoid ammonis in the pro portion of 37 grains per million cubic feet; in one taken on the embsnkment in front of the Houses of Parliament $71 \cdot 8$; and in one taken in a field two miles beyond Clapham Junction, no fewer than 118.4 ; but the second specimen was obtained on a windy day, and the latter daring a very strong wind. It is, thorefore, necessary to take the mean of a number of experiments before deciding on the amount of impurity in the air of any particular spot; but those at present made by Dr. Smith, though comparatively few in number are of the first importance in showing the difference berween the air of some of our health-resorts, and the vitiated stuff which n large portion of the community are condemned to breathe daily and hoarly. Thas putting the amount of hydroohloric acid found at Blackpoot (Lancashire coast) 100; the com parative amount for London is 320, and on the Underground Railway, 974. The amounts of sulphurio acid (anhydrous) for the same places are Blackpool, 100 ; Lrondon, 352 ; Undengrouna Railway, 1,554. The quantities of ammonia and albuminoid ammonia are compared with thooe found at Innellan on the Firth of Clyde, which being taken at 100 , shows London with 117 and 108, Glasgow 150 and 221, and the Underground Railway 138 and 271 ; so that on these reaults London has bat little roore albuminoid ammonia than Imellan-100: 109; While Glasgow and the Underground Railway have atmosptreses little better as regards their freedom from what Dr. Fmith calls "potential ammomia" then the air obtained over a midden! It is tree tha while our author points out that the albaminoid ammonia is the most important of the chemical constituents, he cantions ug against drawing to many conclusions from its presence. organic matter," he says, " is sometimes quite sound, and so far from producing disease it may help to drive it away. All that we can say is that orgnnic nitrogenous matter shows that some organisms of a hartful kind may be present. I there is no excess of albuminoid ammonie, the hartful organisms or other matter may be presumed to be absent. If there is an excess, it is well to aroid such air until we know that it is from a source which produces not only that which is wholesome but that which continnes to be so."
With regard to the lowest percentage of carbonic acid deemed positively hartful, scientific men have failed to agree, and even Dr. Smith can give but a hesitating opinion, although he thinss that the "smallest dimination of the oxygen in the air breathed affecta animal iife, if its place is supplied by carbonic acid." But the question How can the blood be influenced by a dimination of oxygen in the atmosphere to the extent of 1 per cent. has met with contradictory answers. Liebig says, "In a closed space 8 ft . long, 9 ft . high, and 8ft. wide, a man cannot breathe trenty four hours withont nneasiness." The dange to life is not immediate, however, according to Dr. Smith, when the percentage of carbonic aci. is less than 4 per cent., provided the peraon breathing the air so adulterated is bealthy; bn "the constant lowering of the pulse, even in maeh
vitality." Dr. Smith considers that a cortain vitality." Dr. Smith consiaers of oxjgen is required to drive out the arbonic acid from the blood, and that this quantity being deficient less carbonio socid is given out, and it is certain that no danger to life and no difficulby of breathing is experienced in situations where the air contains less than the normal mount of oxygen, if carbonic aoid is also almost entirely absent. Dr. Smith gives a good rale for ascertaining the amount of oarbonic acid in the air of honses :-" Lot us keep our rooms so that the air does not give a precipitate wher a $10 \frac{1}{2} \mathrm{oz}$. bottleful is skaken with half an onnee of clear lime-water," a sanitary regalation thich can easily be carried ont.
This book aleo contains valnable information on the constitnents of smoke, looked at both from the sanitarian's point of viow and from the point of view of the consumer of large quantities of coal for heating purposes. We may at some fature time call attention to this mepeot of the smoke question, whiob is atill imperfeotly nudarstood, and in conneotion with which the tesolings of acience are stranzely negleoted. The influence of woids derived from chemical and other works upon vegetation also inds a place in this volume, which, as we intimated before, is a record of work, the full value of which will be recognised at a future time. One of our contemporaries regards the book as useless beoanse ozone finds no place in it; but ase Dr. Sidth has not yet been able to make the camermplated experiments on the subject we cament well apmplain becamse his "beginnings of a chemieal olimstology" are not so complete as we could wish.

OX 1 NBW ETSTEM OF CEDMICAL NOTENOLATURE.
 By fexurio Borrowi.

MUxit inement moge moud by teveral of nomenolature expopioyed in moloce cbemistry. Though at firnt sight it might appear that the neme applied to may sabstarce wouda have little to do with the comprehemion of its possible bodies, yet fin Fretice it in found that nothing is

 groaping of flants inse motyral ardore has had a
 the seimee of botmon. Then, for indennce, to the botanin, the knowledge chat a plame belongs to the ocitr nand Legramosce inmoliately gives him sem insigite into the pecmele properties, mode plant. A\& the monalatione proposed by the present eentary, way done mach toware placing ohe itry on the baision which it at presseit atmads. In lent fresh sud ilore accu-
rate necescitated nowl and more mocurats nomen clature; sud, as a natural mequamoe, this more accurate nomeselatare pointed to new and hitherto anexpected relations. Let us for a moment tarn beek 100 years. What possible relation does the mind become cognisant of on hearing the words "water" and " muriatic acid"? How different is the case when we use the modern scientific names "hydrogen oxide" and "hydrogen chloride." We are immediately aware of the similarities and dissimilarities of these two bodies, and are able, within certain limits, to predict the behaviour of the one from a knowledge of that of the other.

But ohemistry has taken such past strides within the last forty years that the present Lavoisierian nomenclature, superior though it be to the old Stahlian, is totally inadequate to furnish ns with distinct ideas of the numerous and complex bodies which organio chemistry is daily bringing to light. Let not the student, nor even the professed chemist, for a moment suppose that this inadequacy is imaginary. Let him call to mind the annexed moderately long name, and try whether he can, without reference to some chemical work, give an ides of the composition, properties, \&c., of the body named, Tetrethylpropylbutyayylammonidy Hrdrate. In the hope of awakening an interest in this very necessary branch of chomical science, I propose civing a few extracts from a work pablished in 1871, at Bologne, by Professcr Filopanti, of the 13olognese University, entilled "Alcuni Misteri di Chimion popolarmente spiegati, e дuova Nomen-
clatara." The system proposed has received favourable notice from the following professors :P. Piazza, F. Selmi, D. Santagata, G. Fabbi, and G. Carini, and, though novel and strange to the eye, contains, undonbtedly, the germs of a very perfect system of nomenclature. Having thas broached the subject, I shall leave Professor Filopanti to speak for himself.

Atomito Nomenclature

The new system of nomenclatare, which I proposs, is based on a principle, as easy of canception as it is of execution ; and yet able to explain all the discoveries of modern chemistry, with even greater perspicacity than the French nomenclature was capable of explaining those which were made at the conclusion of last century. The prinaiple consists in giving in certain determinate cases, an entire ideographic signification to each letter of the slphabet; the exscation consists in the expression by such letters, of the exact cham!cal formula of the body to be named. Four elements are present in organic componnds, with such great frequency as to almost exclade the others ; and these four are also among the most abundant in minerals. These four elements are at present known under the names of hydrogen, oxygen, nitrogen, and carbon. In organic chemistry these occur with greater frequency than all the rest pat together. Hence, we will represent them in the simplest and mote convenient manner, which (humanly speaking) it is possible to find-that is to may, by meames of one vowel for each of the four. But it is by no means indifferent whils rowal we choose to assign to each of these very mporlant demont, wo remember the compostion of the bodies named, but also the recteone for their haviag sach a compositlos: we wish that such names should also onable bim to foreeee the reactions and transformations of which the bodies maned capable. For this reseon, the firsi vowel, will be the most appreppiato name for haydrogen, whydrogen is mowovaleno-shat is to say, has ouly one combting powark a, the second vowel, wint, for a like bivabent-id ext, powewed of tyeo combiring powerm. For dailar reecens, i will stand for nitroyen, at mikroger actr qomernly as trivalent with chree comiving pewerv; while o is tho best vowel for catber, m_{m} by its forth place in the alphabet of vowels, it reeals the fowr combining powent, or quadrivalence of cupbon.

All the other elements are to be represented by a combination of fear letters ; the fret of which is invariably to be a, followed by the two most consplecuoas oereomants in the common name of the element ; the eadiar to be a vowel indicative of the valency of the elonsent. Thus, for example, we shall have acre for ehlorive; upsa for potassiswin ; ungm fer argenturn ; these are all monovilent dementar: wgle, calsivm; wpro, caprum, being bivalent; uphri, plionpkortus; umoh, aurum, which are trivainat ; uslo, silicon; upto, platinum; these beirg tetrevilent, ©

We mute aloe agree to mestin a nurberical valuo to tex commenate, which, with the new names of the four biogemest way melaiated botow:-

Hydrogen. Oxygen. Nitrugen. Carbon. $\begin{array}{llllllllll}b & c & a & f & g & \boldsymbol{l} & m & n & p & r \\ 1 & 2 & \mathbf{3} & 4 & \dot{5} & 6 & 7 & 8 & 9 & 0\end{array}$
The names of compounds aro then to be derived from an examination of their chemical comporition; placing the new name of the element tirst, followed by the consonant indicative of the quantity of atoms which exist. Should the number exceed ten, it is to be formed by binary combinations of the namerical consomants. The repetition of the same vowel (which may be allowable, for the parpose of facilitating pronna ciation) does not alter the value of the other letters. t is nsed to express an indefinte number: s to mark the hypothetical aatare of the body named. For instance, splandrafnacti \ddagger would be the name of a hypothetical body, composed of $96,830,482$ atoms of hydrogen, united to an imaginary number of atoms of nitrogen.
I have coined this fantastic word solely with the object of rendering more palpable the wonderfal fecuudity of this system as well as its remark-

In order that the ear may not couround oertain names, it is absolatoly neoessars that there roweis be
pronouaced as in Itailin: viz., $\mathbf{A}=\mathbf{A l}, \mathrm{E}=\mathrm{FL}, \mathrm{I}=\mathrm{HC}$, $\mathrm{O}=\mathrm{awxe}, \mathrm{U}=$ who.

+ Dar authme calty these fonr biomana, owiog to thetr occurrence in animal and ve; ;etable tife.
IThe namerionl ocagonants refer alwnyoto bor rowole
able brevity. In fact, this word can be pronounced five times more rapidly than the corresponding Arabic number, which denotes the namber o atoms of hydrogen-viz., ninety-six million, eight hundred thousend, fort handred and eighty-two, contaised in the compound.
I must here note, however, that in the names of the non-biogenous elements, suoh as upsa, ucle, sc., the two oonsonants retain their ordinary alphabetic sigrifioation, and do not aequire the convontional mumerio value. There is no danger of confusion, at thene names invariably begin with u.

Let us now come to the application of this new system, beginning at the commonest and most important of binary compounds, water. Water is composed, as we know, of two atoms of hydrogen, united to one atom of oxygen; therefore, in our atomic nomenclature its name will be:-

I must explain here the use of the accent which before giving an example, I conld not well do. When the accent is placed on the last syllable the body is a solid, when placed on the penult it exists as a' liquid, and, finally, when placed on the antepenalt the ascent denotes that the body exists as a gas. Consequently, we may express the four states of water by the four following words, the position of the syllables being quite immaterial :-

$$
\begin{aligned}
& \text { Bèca }=\text { Wuter. } \\
& \text { Beacs }=\text { Sbewne } \\
& \text { Bech }=\text { Snow. } \\
& \text { Oabe }=\text { Iee. }
\end{aligned}
$$

Lot ns now stop to consider for a moment what the short word beca teaches as, and what it calls to mind :-(1) it shows that the body contains oxygen, e; (2) that it contains hydrogen, a; (3) that in every molecate there is only one atom of the former, $b=1$; (4) and two of the latter, $c=2$; (5) that it contains no other element, there being noother vowel; (6) maltiplying the exponents $b=1$ and $c=2$ by the relative atomie weights of oxygen $=16$, and hydrogen $=1$, we learn that oxygen forms exactly eightninths, and hydrogen one-ninth of the total weight of water ; (7) that it is a liqnid, for the accent is placed on the penult; (8) that the first element is bivalent, being represented by the second vowel in the alphabet, that the other element is monovalent, as it is represented by the first vowel of the alphabet; (10) that water = beca mast be one of the simplest and most perfectly saturste (chemically) bodies, for we see that the valencles of the two monad atoms of hydrogen $=c$ a completely satisfy the two valencies of the dyad atom of oxygen be; (11) that water must, therefore, be one of the most stable and consequently one of the most abuadant bodies in all the three kingloms of nature. Now compare this with the nsual nomenclature, and see whether that is able to dersete so many things, not with four letters only, bat even with four of its longest words.'

Having given this simple example I can proceed to enlarge apon certain modes of spelling these atomio words, which will enable us to indicate whether the body in question be acid or basic, and whether we view the acidity as depadent on the hydrogen or the oxygen, we can easily point out, not only the fact of its being an acid, but also the view we take of the cause of its acidity. Let us agree to place the vowel whicis stands for the hypothetical acidifier (be it oryygen e, or liydrogen aj at the becinning of theatomic name. Afier this let us place the numerical consonant, indicating the number of atoms of this element whish the componad contaias. Lastly, let ns repest the vowel. This repetition does not inflaence the numeric value of the element, as wis have already explained. It is only used to give a distinctive character to the name. We an, therefore, write the following mames in two distinct modes, each perfectly intolligible, and cach illustrative of different theoretic views.

1. As bydracids :-

$\mathrm{H}_{2} \mathrm{SO}_{4}$ Sulphuric acid

HNO_{3} Nitric acid
$\mathrm{H}_{3} \mathrm{CO}_{3}$ Carbonic acid
$=$ Aeabuspèfe.
$\mathrm{H}_{3} \mathrm{CO}_{3} \mathrm{C}$ (ribanio soid $=$ Ababine
HOL Chorby ario moda \Rightarrow Abibaora.
2. As oxyacids:- ,

> Sulphuric acid $=$ Efebuspèea. Nitric acid $=$ Edebiba. Carbonic acid $=$ Edeboेca.

In a like manner we can express the basicity of a compound by doubling the last vowel, without interposing the numeric consonant, thus :-
NH_{3} Ámmonia
= Bìdaa.
KHO Potassium hydroxide $=$ Upsababeè.
I shall now run through a few of these atomic names, leaving my readers to make observations similar to those which I have already made with regard to water. Ammonia is an $a i^{*}$ of the commonest kind, as water is the commonest aef. Each molecule of ammonia is composed of one atom of nitrogen, united to three atoms of hydrogen, hence its simplest atomic name will be bida. But, as at ordinary pressure it is a gas, and possesses an alkaline reaction, we will apply the preceding rules, and write and pronounce its name as bidaa.
The simplest and commonest of the ao (hydrocarbons) is marsh gas, each molecule of which contains one atom of carbon united to four of hydrogen; its name will, therefore, be boafa. We immodiately perceive this to be a saturate body, for the four monad atoms of hydrogen, $f a$, satisfy the quadruple affinity of the single atom of carbon $b o$, which is tetravalent, as the vowel o (the fourth in the alphabet) indicates."
Professor Filopanti then goes on to give numerons other examples, of which I will only reproduce a few. The first I shall choose is an example of the exactitude with which these atomic names indicate the substitutions which take place during chemical reactions:-" Nitric acid being ababide, potassium nitrate is bupsabidè; in other words, one atom of hydrogen, aba, has been replaced by one atom of potassium, bupsa. The accent at the end of the word denotes that the resulting compound is solid; while the absence of doubled vowels, either at the beginning or end of the word, shows that it is neither acid nor alkaline. To illustrate the facility with which this system lends itself to eases in which isomeric bodies are to be named, I give the annexed examples of the essential oil series or terebenes :-

Oil of Turpentine $=$ Balbor.

| " | Lemons |
| ---: | :--- |$=$ Balàbor..

That phenomenon of fifteen syllables which formed the opening of our subject - viz., tetrethylpropylbutylamylammonium hydrate, is in our new language bofbibedad ; and as four of the names composing the fifteen syllables refer to the "monatomic alcohol radical" series, I proposegiving the four first terms of six of these series first with their ordinary names, and again with their atomic names:-

1. Methyl, ethyl, propyl, butyl.
2. Methylene, ethylene, propylene, butylene.
3. Methyl hydride, ethyl hydride, propyl hydride, butyl hydride.
4. Methylic alcohol, ethylic alcohol, propylic alcohol, batylic alcohol.
5. Formic aldehyde, acetic aldehyde, propylic aldehyde, butyric aldehyde.
6. Formic acid, acetic acid, propionic acid, butyric acid.
Now I believe Ishallnot be doing any injustice tomy friends, the chemists, when I say that nine-tenths of them would be very much puzzled to give the exact composition (not to speak of their physical state) of these twenty-four bodies, now so cele brated and important in modern chemistry.
Let the reader now refer to the little explanation I have given of the rules for building up the atomic names, and by so doing he will be able (be he a chemist or not) to give the exact chemical composition, basicity, neutrality, or acidity, liquid, solid, or gaseous state, whether hypothetical or otherwise, by simply reading the names of these bodies, as expressed in the new nomenclature :-
7. Bodas, gacos, domas, pafos.
8. Bòsaea, fàoco, dòala, nàofo.
9. Bòafa, laoco, dдana, bàrafo.
10. Bobèfa, becòla, benàdo, ofbèbar.
11. Bobesca, becofa, belàdo, ofbèna.
12. Acabòce, afacocè, aladocè, anafocè, \&ce.

* Compound of hydrogen and nitrogen
+ Compound of hydrogen and oxygen.

Strike me, but hear me, said Themistocles. ' Laugh, but reflect,' say I."
Those of my readers who would like to follow Professor Filopanti, in his new ideas will find a fund of information in the pamphlet which I have quoted at the beginning of this paper.

ROTATING VALVE FOR STEAM-ENGINE.

A^{C}CCORDING to a promise made in our article on the Westinghouse air-brake last week, we now illustrate the small engine employed for compressing the air, as the plan may be found useful for other purposes and under different circumstances. One advantage is that the eccentric and its rod are dispensed with, as are also the fly-wheel and the guides-one rod connecting the two pistons in the machine to which it is applied at present. It will be seen from the engravingsFig. I being an elevation with part of the cylinder removed, and Fig. 2 a vertical section taken through the valve-chest-that the valves governing the admission and eduction of the steam are of a coni cal form, and are cast in one piece with the stem, which passes out through a staffing-box. The
smaller piston the ports are so placed that a small quantity of steam is shut in at the end of each stroke thns forming o cushion. The main valves can be adjusted by means of set-screws, seen in the figures, so that while steam-tight they mas be considered in practice to work without frietion. The steam is conveyed to the valve-chest by the pipe S, and the exhaust goes through the passages marked e to the pipe \mathbf{E}, which conveys it to the chimney of the locomotive. The illnstrations will make the arrangement clear, and we need only say here that the engine and the promp in connection with it work very smoothly, even when driven at the rate of 100 double strokes per minute.

PROGRESS OF METEOROLOGY

THE "Quarterly Journal of the Meteorological Society," just issued, contains two or three important papers. One "On Large and Small Anemometers," by the Rev. Fenwick Stow, is well worthy the attention of meteorologists. In this paper the author gives the results of a series of experiments made at Hawsker with eight cup anemometers of different sizes, ranging from cups

Valve-chamber is cylindrical, and is cast on one side of what must be termed the main cylinder to distinguish it from the small cylinder at the top, which is employed to give motion to the valves. This is accomplished by means of a short arm attached to the upper end of the valvestem, the short arm carrying a pin which works in a transverse slot cut in the head of the pistonrod of the supplementary cylinder C. The latter is supplied with steam from the main valve-chest, the admission and eduction being regulated by a rotating conical valve c, actuated by the rod d, working in a boring made in the main piston-rod. The diameter of this rod, d, is reduced for the greater portion of its length, and collars are formed at each end which strike against a clipplate secured to the top of the main piston, so that as the latter completes its stroke the clip-plate strikes the upper collar on the rod d, driving it up and rotating the conical valve c, which then admits steam to one end of the little cylinder C, and by the subsequent movement of the small piston the main valve is rotated so as to admit steam to the top of the main cylinder, and of conrse simultaneously placing the bottom valve in the position for exhausting. To prevent any noise from the
of 3 in . to 9 in . diameter, the arms varying from 4 in . to 24 in . in length from the cap centres. He finds that in the case of every instrument tried the results are utterly irreconcileable with Dr. Robinson's dictum, that the centre of each cup travels at one-third of the rate at which the wind moves, and that this law is irrespective of the sise of the cups or the length of the arms. The standard anemometer used in these experiments was an electrical anemometer, with cups and arms similar in size, shape, and construction to those of the anemometers recently erected by the Meteorological Committee of the Royal Society, and so arranged as to make one contact for every mile of wind. The readings were taken by one of Breguets's "Compteurs Electriques." Assuming the indications of the standard to be correct, the cups of most of the small instruments were found to move through a space scarcely more than one fourth of that passed over by the wind. Under these circumstances it is important to ascertaie the mode in which Dr. Robinson deter mined the relation of the motion of the cups to that of the wind. It appears that the Doctor's orignal papet is now yery scarce in which he relates the experiment made for the purpose, viz., a amall
anemometer placed with its axis in a horizontal position at the end of a long arm was caused to revolve by a weight at velocities reading op to, but not exceeding, eleven miles an hour, and which when afterwards fixed in a vertical position was found, by counting its revolutions at a velocity of the wind of eleven miles an hour only, to agree approximately with the large instrument. It is somewhat remarkable that the relation of the instrumental motion to the motion of the wind should for so many years rest upon a single experiment, and now that the law obtained by this experiment has been proved not to be applicable to anemometers of all sizes, the author considers that the Meteorological Committee of the Royal Society and managers of observatories should investigate the subject for themselves. At first the Rev. F. Stow was disposed to come to the conclusion that small anemometers are not more valuable for the purposes of meteorological science than children's windmills, but on looking at the matter more closely he proposes two sizesviz., 4 in . cups on 9 in . or $9 \frac{1}{4} \mathrm{in}$. arms, and 5 in . cups on 12 in . arms, and recommends that experiments be made to ascertain the true relation existing between small and standard instruments. The concluding remarks of the paper appear to be so valuable that we quote them entire. "I cannot svoid," says the author, ${ }^{4}$ expressing the wish that opticians would consult durability more and polish less in the construction of instruments peculiarly exposed to the weather. The weakness of the arms and the want of solidity in the box are sources of mishaps even in a moderate gale. Let the cups be light, the arms bothe light and strong, the axle strong, a ad turning on a point, the bearings smooth, and contrived so as to retain the oil for a long time, the wheel work simple, the box large, and the graduations capable of being read to the nearest mile of wind from ten yards distance. A very simple electric contact-marker would be an invaluable addition to most instruments. The great essential is proportion, the next strength, and by attention to other details also, very valuable instruments (I do not mean high-priced) would be turned ont."

In a paper by R. H. Scott, Esq.,"On a New Form of Cloud," described in Nature by
Professor Poêy, we are informed that Dr. Clouston and Mr. W. S. Jevons had previously observed similar clouds. Dr. Clouston made a sketch of the cloud on March 5, 1822, the cloud on this occasion being immediately followed by a storm, the barometer falling $1 \cdot 2 \mathrm{in}$. or from 29.5 in . to 28.3 in . within 9 hours. The principal characteristic of the cloud consists of a series of dark cumulus-looking clouds hanging like festoons of dark drapery over a considerable portion of the sky, with the lower edges well-defined, as if each festoon or " pock" was filled with something heavy. From this circumstance the cloud has been termed the " pocky cloud."

Speculating on the cause of its formation, Dr. Clouston says, "this cloud may be caused by masses of moist air descending and forcing their way through drier and colder air, for its form suggests air diffusing itself downwards, just as the form of the cumulus, or the steam from the steam-engine, suggests diffusion apwards. If this be so, it shows the moist equatorial currents in greater strength than usual, and an uncommonly quick mingling of air carrents, differing in temperature and moisture-the very conditions of a storm. This cloud is well known and much dreaded by Orkney sailors." $\mathbf{M r}$. Scott introduces a letter from Dr. Moore, of

Dublin, who considers that two elements are required for the production of the phenomena characterising the clouds-viz., a rapid condensation of vapour and high electrical tension. Mr. Scott adds that the contact of two masses of air at very different temperatures and in very different hygrometrical states is precisely the condition that gives rise to the development of electrical action in the atmosphere, and to thunderstorms, so that a high state of electrical tension would accompany the forcible intermixtare of a damp with a dry stratum of air.

IMPROVED PUNCHING MACHINE.

THE improvements in punches recently patented by Mr. du Vallon, of Birmingham, consist in the combination of two knuckles with a single lever, in such a manner that the angle which the lever makes in working is diminished, and the ordinary strain upon it is avoided, while the side strains to which the parts are exposed in ordinary punches are obviated. This is accomplished by connecting the two knuckles to the upper and under side of the lever in such a manner that they are inclined obliquely to the pin of the lever when at the beginning of its stroke, but are brought into a vertical

line with it as the end of the stroke is reached, so that the thrust is exerted in a direct vertical line through the centre of motion. The principal features of this punch will be readily understood from its fulcramed rigure, in which L is the lever, haisite play to accommodate the movements of the lever, the other end of which is connected with a screw carried by the small frame E pivoted to the lower part of the body. F is the upper knuckle turning on a pin G, having its bearing in the upper solid part of the frame, and connected to the upper side of the lever L by means of the ring as shown.
the lower knuckle, connected to the under side of the lower knuckle, connected to the under side of
the lever by a similar ring, and to the body or carrier the lever by a similar ring, and to the body or carrier
of the punch also by a ring. The action of the of the punch also by a ring. The action of the
punch is as follows:-On the lever being brought into an inclined position by turning the screw, the two inclined knuckles F and I are moved, until at the end of the stroke they are brought into a vertical line with the pin or fulcrum C of the lever, thereby carrying down the panch with the force applied in a direct vertical line through the centre of motion of the lever. Instead of the two rings, one elongated ring or link may be used for conce The knuckles also may be varied in form and size, and if required for certain purposes, citter of the two could be lengthened or shortened, or in extreme cases reduced to a simple roller, as will be appa rent to our mechanical readers.

ELECTRO-METALLURGY.--I.

By J. T. Sprague ("Sigma").

Introduction.

INN the series of articles headed "Electricity: its Theory, Sources, and Applications," I have examined closely the general principles of the science, and described fully all the more important instruments for the generation and measurement of the electric current. These articles, however, are scattered through Volumes X. to XIV., and, therefore, are not in possession of many readers; for their convenience, therefore, and also for the purpose of treating the general subject now, in the point of view of the special application of the current to the depositing of metals, I will, as required, touch afresh nopon such matters as are requisite. As many readers will probably be mere beginners, I shall arrange these papers also upon the system of leading on from step to step, which in this application of electricity is possible, though quite impossible in the study of the science itself, where advanced knowledge is necessary to comprehend the simplest fundamental facts.
Although electro-metallargy is a purely practical art, and its successful practice may be accomplished with a very small modicum of science, this is true only of the factory; to learn it from books and solitary practice, and in any case to learn it intelligently and to pass beyond the range of mere "rule of thumb," it is necessary to clearly understand the principles in operation, and the terms necessarily employed in explaining those principles. Therefore, to avoid the misconeeptions so commonly due to imperfect acquaintance with the meaning of terms, I will here give a concise explanation of each of those likely to be used by myself, or to be met with and misuaderstood in other books. That this is necessary will be evidenced by the following extract from one of the best of existing books on the subject-viz., Watt's "Electro-Metallurgy :"-" Smee's battery, although far from economical, and somewhat uncertain in its action, is still employed by some, owing to the great intensity of the current which it produces, a quality of but little service to the electro-plater when the quantity is deficient." Now, intensity of current is a term in common use for "quantity;" the special feature of the Smee is its production of large quantity against small resistance at a minimum cost; its fault is that it has a very low intensity, if this term is used (as it appears to be here) as meaning tension or electro-motive force.

The following definitions are only intended for outlines ; references are given for full information to the former series of papers, and, where requisite for the present purpose, further information will be given at the proper portion of the papers themselves.
Amalgamation.-Zinc is protected from waste by having its surface coated with mercury. Information as to use and economy of zinc will follow.
Anion.-The electro-negative or chlorous radical of the salt or acid decomposed. Oxygen, acid radicals as chlorine are anions; see ions.

Anode.-The positive electrode or pole of a battery ; the wire or plate connected to the copper or other negative element of the battery the plate which leads the + current into a solution to be decomposed, and at which are set free the oxygen, acid radicals, and all - ions (anions). In electro-metallurgy it is usually formed of the metal to be deposited, in which case it is called the soluble anode or pole.
Aтом.-The supposed ultimate particle of the elements ; there are constant discussions as to the actual existence of atoms, but chemical reactions can only be satisfactorily explained by means of the atomic theory. The old idea was that atoms were ultimate particles of matter and indivisible ; this is by no means necessary; all we need to assume is that matter, as we know it, is arranged in the form of these atoms, and that if divided the separated parts would no longer have the same nature ; and, further, that whatever mathematical teaching may prove as to the possibility of subdivision, no such division does or can occur under the existing conditions of nature.

There is still much confusion as to the terms atom and equivalent, which were formerly used for the same purpose, but modern chemistry attaches a distinct idea to the atom, which correlates it, not only to chemical affinity, but to heat and other forces.

Atomic Weight. - The relative weights of the atoms as compared with that of hydrogen taken
as 1. In No. 342, Fol. XIV., p. 55, I gare a
table of the abomic weights and other particulars table of the atomic weights and other particula of the elements most important in electricity.
Battery.-A oombination of voltaic cells. The worit is commonly-bat erroneously-used for a single cell (e.g., Smee's battery), but it strictly mesns two or more cells conpled together in series. For the laws requlating the combination, see Electro-montive Force, Resistance, Current, eee Electro-montive Force, Res:btance, Current, Ces $\nabla \mathrm{M}$. XI., No. 264, Gencral Classification; ses VN. XI., No. 264, Gencral Classitication;
No. 267, Smee and other Single Liquid Cells ; No. 269, Daviell's ; No. 270, Minotto's nnd other Moditications of Daniell's; No. 272, Grove's and Bunsen's: Cos. 275 and 277, Bichromate of Pctash: No. 251, Manganese, Leclanché, Salphate of Lead, nond of Mervary. In these papers the rehitive cost of working, sc., was given, and further information as to those cells, usefal in eleotro-metallurgy, will be given heraafter.

Base.-See Radical.
Brear.-See Commatator.
Bringe. - Whentstone's. An apparatus for measuring resistances by balancing the anknown Ragainst one known and cnpabic of regalation. Description, No. 299, Vol. XII., p. 290.

Cathone.-The negntive pole of a battery; the wire or plate conneoted to the zinc; the plate at Which, in any decomposition cell, the eations or - ions are set free. In electro-metallurgy, the ohject upon which the deposit is to be formed is the cathode.

Catron.-Electro-positive elements and radicals, which are set free in eloctrolysis at the cathode. Hydrogen and metals in the order of the electro series are cations; see ions.
Cell.-Each separate vessel in which a cbemical action occurs, forming part of the electric circuit. Thas there are the active or generating cells-i.e., those which form the battery, and the decomposition cella, and these last may be of two classes: (1) Passive, or mere resistances, such are those emplnged in electro-metallargy where the metal is dissolved from the anode, and simply transferred to the cathode; (2) where chemical force is exerted and absorbed in effecting trae decomposition, as in the voltameter.

Cheyre. - Bee Units of Current.

Celorous.- Pole, a term sometimes used for the negative pole or cathode. Chlorous radical is that radical of a salt or acid which answers to chlorine in HCl -that is, it is the acid radioal or electro-negative element or anion.
Crrcutr.-The path along which the current travels. It may be divided at any part into two or more pathe. It this happens in the external circuit the proportion of the enrrent which passes is esoh "derived circnit" will bo in the inverse ratio of the sevaral resistances. When in the battery the cella are arranged side by side (or "for quantity"-i.e., for small resistance (, instead of in series, they are sach derived circuits, and their internal resistances and consequent contribution to the general current will be governed by the same law. See No. 330, Vol. XIII., p. 423. It is of importance in electro-metallargy to bear this law in mind, brosuse when several objects are snspended in one depositing ressel, each of them forms a "derived circuit," and the amount of deposit on each will depend apnn its position and distance from the anodea. The same applies even to the different parts of the same surface when not flat, and these laws explain the causes of aneven deposite.
Commotaton.-Break, contact breaker, and circuit changer. They are of many forms, according to the parpnse required ; a simple spring pressing on a point serves for a mero
break or interrapter of the current, bat the break or interrapter of the current, bat the
arrangement is often complirated when it is necessary to provide several different oircuits for the ourrent.
Cornectivery. -The degree of power to permit, current to pass ; it is the opposite of " Resistance," which see.
Connectons.-Snbstances which permit clectrivity to pass. It used to be thonght that substances wrire of tro distinct classes, conductors and insulators; bnt it is now known that it is onlr a question of degres of resistanco. Silver is the lest condactor, then other pare metala, then allors; solutions of electrolytes follow, brit at a long interral. Carrent passes throngh conductors in the ritio of their sect:onal ares, and the inverse ratio of their length; see wires.
Connectrons.-Wires, sc., completing the
be sufficiently large, and of copper, so as to give little resistance. There is often mn h troable cansed by the stiffoess of stmut wires, it is, therefore, well to form a spiral upon each connection, so as to give a little elasticity. The best connections, howerer, are made of wire cord, such as is made for window sash-line, or by twisting up fine copper wire into a cord; lengths suited to various parposes shonld be cut, and to the ends pieces of No. 12 copper wire, of a conple of inches l,ng, soldered, for insertion in binding screws. If these onds are well silvered or gilt mach trouble in cleaning will be eaved. Annoynnce from accidental contacts, \&n., is also avoided by covering these eonduetora with narrow tape plaited on, and soaking with boiled oil.

Crraent.-This word is used in many ways. The electric current means the supposed fow or passage of electricity or electrical force in the direction from + to - or positive to negative. It, therefore, originates at the zine surface in contact with the solution, and passes from the zinc to the copper or other negative metal in the liquid of the battery, but fron the negative metal to the zinc in the external circuit (see Positive and Negative). Current also means, scientifically, the measured work done chemically, or what was formerly called "quantity" (which see, also Intensity of Current). For the laws governing this, see Ohm's Lafs and Units.
In electro-metallargy an important consideration is the density of the current-that is, the relation of the actual or total current passing, to the surface or ares of the anode and cathode. This will be fally explained hereafter. It is the current or quantity alone, and entirily irrespective of the force developing the current (i.e., intensity in the older books) which affects the amount of work done chemicilly, or which is mergnred either by the galvanometer or the voltaneter. The electromotive force or tension (or intensity) is concerned only in producing the carrent against the special resistamce in each case (see Tension). Current was explained, No. 331, Vol. XIII., p. 450.
Devsirx.-See Carrent.
Enemmess - The altimate snbstances into which all the bodies we know can be resolved, aud which, themselves, bsve not been resolved into any simpler bodies. There are 63 elcments known, and two or three more suspected. They are assumed to exist in the form of atoms, aud further information will be found under that head and onder equivaleats.
Electrodes.-Faraday's term for the poles or plates leading the current into and out of a cell. (See Polee, Asode, and Cathode.)
Electnolysis.-The act of decomansition by an electric carrent. (Sce example in Equizalents.)
Electrolittes.- Bodics capable of heing decomposed by an electric corrent. They must be composed of (or rather be oapatile of bresking up into) two radicals (sce ions); therefore, sabstances which contain three or more radicals are not electrolytes; they may, however, be deccmposed by sccoudary actions. Thus all acids are electrolytes, becanse they are composed of an acid radical (simple or compound) and basic hydrogen; as HCl bydrochloric and $\mathrm{H}_{2} \mathrm{SO}_{4}$ sulpharic acids. Water appears not to be an electrolyte ($\mathrm{H}_{2} \mathrm{O}$), indicating that the two hydrogen atoms are separately combined, and do not form a radical ; it is, therciore, not decomposed when absolutely pres, but when it contains an acid or salt it is decomposed by the "sonnilary"
sets free the elements of wnter, the hydrogen coming, not from the wator but from the acid, the chlorous radical of which decomposes water, reforming the acid and setting oxygen free.
Electrometrr. - Instrument for measuring electro-static charge, but which is inapplicable to current electricity.
Elbctromotive Foner.-The tendency to dovelop electrio tension; in ordinary galvanic batteries the electromotive force is set up by the at' rastion
of zinc for an acid radical; its degree depents apon the force and namber of sneh ohnmioal atfinities in the circuit, and inasmach as there are also opposing affinities tending to develop electromotive force in the opposite direction, the actral force depends apon the excess of the total afinities in the direction of the current, over those in the
opposite direction. For full disouscion of this sulject see No. 333, Vi. Xill., p. 504 and 312, 344 , and 316 ; Vol. XIV., p. 54, 136, nnd 187 . Electronotive force of batteries, see Tablo E,

No. 346, Vof. XIV., p. 187. The unit of electromotive force is the Volt.

Exposmose.-The power possessed by liquids and gascs of diffising into each other when sepsrated by a partition or septam of animal membrane or unglazed earthenware. Electric endosmose is this action, greatly heightened by the passage of an electric current, which will frequently raise the liquid on one side of the partition several inches above the other. The la ws ascertained by Weidemannare (1) the quantity of liquid which flows out in equal times is directly proportional to the strength of the current ; (2) the quantities flowing out are (all other conditions being equal) independent of the size of the porous substance; (3) the height to which a galvanio current canses a liqnid to rise is directly proportional to the extent of the porong surface: (4) the force with which an electrio tension present on both sides of a porous division, or in a liquid, urges the liquid from the positive to the negative side of the partition, is equivalont to a pressure proportional to that tension.
The action is very troublesome in batteries, in whioh the liquid in the zinc or positive cell is transferred to the negative cell. Ordinary endosmose at the same time transfers the liquid of the negative cell to the zinc, cansing local action, as when the copper solation of the Daniell ceil onters the porous vessel.
Equivalents-All chemioal retiona take place in a definite ratio, whioh is explained by the atomic theory as dee to the combination of 1,2 , or more atoms of one substance or element, with 1, 2. more atons of others. Eaoh element has its owe equivalent weight, as compared with hydrogen, as 1. There is mach confusion of idoas, due to the change of modern chemistry from the old system of stating reactions in equivalents to the modern system of stating them in atomes. For guaneral purposes the lattar is the best ; for ordinary parposes of eleatro-metallarey the equiralest system is most convenient, and will be used here. The Table A, No. 342, Vol. XIV., p. 54, gives the equiralents and other information, but, for convenience, I will here give a list of the symbols aud equivalents of the sabstanoes likely to be mentioned. The relation of eleotricity to theee eqnivalents is suoh that in a chain or circait eomposed of any variety of compounds of two of these bodies (which are, in fact, elements, radicals, and ions) the same current would release from combination the relative weight set against each substanoe. The weights themselves are relative or abetract, bat throaghont these papers they will be taken as "grains," for the parpose of getting a definito electric measure of ourrint and work. As exsmple, a current from a Smee cell may be takon as passing through water (dilate acid, see Electrolyte), sulphate of copper, aud cyanide of silver; in each cell it would release an equivalent for an eqniralent of zine dissolved, which is commonly expressed by sayivg that in every oell in ${ }^{2}$
oircuit (battery or docomposition) there is equal. i.e., equivalent action.

The upper brackets show the substancen 23 arranged before action, the lower oues those formed or set free, + marks the anodes or dissolving plates, - the cathodes in each cell.

SEA SICKNESS

MEE following extracts from a paper by Dr. F. Pollard, in the British Hedical Journal, will be of more than usual interest at the present time. Two opposite theories have been suggested as ex-
plaining the canse of mal-de-mer-one that it plaining the canse of mal-de.mer-one that it duced by the motion of the vessel, for which the remedy wrald be lying 80 as to obtain sen increased
supply of blood to the brain ; the other, sapported by Sir J. Alderson, that increase of blood in the brain is the real cause, an analogy being drawn between the blood in its veasels and the mercury of 2 barometer.
The theory is that, as the ship sinks in the waler,
the barometric tube falls more quickly than the mercury that it contains, so that the latter tends to impinge on the npper part of the tube; and it is the blood falls less quickly than ths containing reasela, and so temds to produce pressure on the brain, "these successive impalses esasing the romitson, "the mercrury having itals owh inertiz, and not boing attachod to, or a part of, the tube, remains
stationary, at leact for a time; this the tube is puihod down upon or over the mercury." Naw thie might, perhaps, happen if the barometer were
actually pushed down suddenly, because in that case the pressare would be applied to the tube, and not to the mercury, which would simply fall by its own weight. But in the ease of a barometer merely
allowed to fall, the glace and the maremer bein to

 all be in to norove at the marerimetent.
 meter to oprillate when tho sea for rough A

weatimer jestes the mercury no in the tabe; and in order to redmee this to a minimana, certain ingenions modiacetions have been introduced in the construe suspapin Arm o ball and socheo joint, so as al araye
to mainton a mertieal divection ; otherwisa, the merecary would beepen tiked with the varion that it rese and fell might be acquired
Now, theoretically, we might imagine the blood as being jerked upward against the brain by successive blows of the ses on the ship. But it is obvious that merely assuming the recumbent posture wonld not prevent this. There would be more probability in sapposing that the brain itself might be jerked againgt the intorior of the skall when the ship was violently struck ; thus causing a series of small concussioms, and adding something to the mental and bodily distress. But this will not explain the occarreace of sea sickness in ordinary cases, when the ship rises and falls without violent concussions. mechanical one must be found.
The most probable theory of sea-sickness is that whe by Dr. Carpenter, Mr. Boin, and other writers Who considar that the mental and bodily prostration and the other symptoms arise from the constinued
action on the brain of a certain set of sensations, more particularly the sensation of want of support. This feeling, arising from the sudden loss of support, as when the looting or any prop that we lean apon
suddenly gives way, is one of a most diagrecable kind. Shonld the accident have been perilous to life, as when the foot slips close to the edge of a precipice, or a rope oracks in Alpine climbing, sickening feeling seizes the brain, the whole fram is agitated, and cold perspiration is felt all over.
The phonomena of sea-siokness appear to be due of support, consequant on the pitching and rolling of the ship. more partioularly the former. This explains the fact that the distress is most acute at we moment of the descent of the ship; whereas, When the part of the vessel in which the sufiertr
is placed rises beneath him, a comfortable gense of is placed rises beneath him, a comortable gense of
support is felt. It in well known also that the diatressing sensations may be to some extant warded
off if a downward motion of the boily be made at the time of the ship's descent, and an upward
unotion when the vessel rises. In this way a kind inotion when the vessel rises. In this way a kind the body, the nervons system is not taken so much unawares, so to speak, and thns the sensation of loss of support is less acately felt. The feeling of want of support resides essentially in the museular system; but the sensations of other senses con tribate towards it. The sight of continually alnifting ines and sarfoces is an important factar; and on the mechimery, and evil smellis of varions kinds, are othar items in the elements of carsation
That vision has something to do with the prodac tion of sea-sickness is shown by the fact that closing the eyes will often keep off the siokness for a time; and in illustration of this point, we may refer to the genaral depression, faimtucss, and even nesses, which mey, be produced in sasoeptible pergnas by "doing" too many picture geleries in rapid suocesaion, and this not dependent on the quality of the pietures themeeives. That the vibyashown noise may add to the general depresane not used to it by moing eflect produced on a porso factory, full of steam-looms at work. As regarde smelh I can teatify that going down into a hot arbin and sitting close to a reeking joint of boiled mattan, has nearly brought on sea-ichese, only wrided of by a timely retreat into the upper air.
As regards treelment, since see-sicknees arises rome cortain inprasions on the senses, the obvions indiestion is to render these gensations as foeble as
poseible. Application of the mind to an engrossing possible. Appliontion of the mind to an engrossing
book will ceep it off for a shert period; and Dr. Chambars reiates that his having to bind n a a broken finger of one of the eeamen relieved his own distress for the time. But the mind will speedily beoome alive to the sencations which foree themselves on its attention. In ordar to lessen tham mon mach as possibly, the patient should preserve the recambant postare, as near the centre of the ship as possible diminould lie on a thickly padded couch, so as to iminish the vibration. Freeh air should be should be onder to remove bed smolle. The eyes should be shaded, and as moch noieo as pessible suggestion is that of Dr. Döring, of Vienna, that a full dose of hydrate of chloral should be taken shortly before the vessel starts; and even in leng voyages before the vessel starts; and evan in hong voyages the repoated use of this medicine will insure orm-
fortable nights withoat thedisagreeable after-e fectus of opiam and chloroform.

A BONR CAVE IN YORKSHIRE.

Tsoientific exploration of caves in varions portant from the light which it throws on ancient pactas of men, and on the animals which are no longer to be found in the districts whioh they once occupied. Each fresh discovery offers \&resh proof of the comtinuity which exists between geology and history. A cave seems, indeed, the last place to history. A ceve seems, indeed, hat, last place to the results of the labours of the Settle Cave Ex ploration Committee, carried on for the last two yeara, are most valaable both geologically and his-
torically. The Victoria Cuve is situaded about torically. The Victoria Cuve is situated about half-way up a line of gray limestone clifis, overlook ing the gray limestone "pavements" and broken precipices which extend northwards to Ingleborough the roof with accumalations of earthy neark an stones. The committee began their work by cutting a trench from the outside of one of the entrances through a layer 2 ft . thick of angular fragments of stone broken away from the cliff above by the action of frost, which rested on a dark stratum composed of fragments of bone mare or less burnt, burat fragments which had formed fircplaces, very many rragments of pottory, and a few Roman coins. It
was evident that the cave had been inhabited in aucient times, and that the broken bones of the animals strewn about were the relics of the food of the inhabitants. As the trench passed into the entrance the talus of stones disappaared, and the
black or Roman-Celtic layer, as it may be called, black or Roman-Celtic layer, as it may be called lying sometimes anderneath enormous masses of rock which had fallen from the roof since it was curious articles of Roman workmanship, spiral bronze gilt armlets, and a portion of the ivory hilt of a Roman sword. Some of the ornaments present a style of art which is oertaiuly not Roman, being composed of two platee of bronze soldered toyether, and bearing flamboyant and spiral patterns of admirable design and execa tion. They certainly belong to the same school as that which produced the illaminations of one of the Anglo-Saxon gospels at Stockloolm, and the
gospels of St. Colamba preserved in Trinity Colgospels of St. Colamba preserved in Trinity Col-
lege, Dublin. The bronze gitt brooohes and fingerrings, ornamented with enamel in red, blue and yellow, and green, were also of non-Roman workmanship, although some of the designs bore traces of Roman art. Most probably they are the work of
the Boman Oolks; and there is nothing at oll
strange that the Irish art of the sixth or seventh centaries shoald have had some points in coinmon with that of the neighbouring hangdom of Strath Lanc, whirs at that time embraced sime there is clear historical evidepee that Ireland in the seventh ahd eighth oenturies exerted impor tant influence on the neighbouring countries. The broken bones of the animals show that the Celtic shorthorn, the goat, horse, and pig, were the prin cipal domestic animals which supplied the food o the dwellers in the cave. Bones of fowl implied that they kept poultry, while the roebuck, red-deer and grouse, contribated but hitile to their feasts. There can be no doabt that this strange collection
of objects was formed duxing the shode of a femily of objecte was formed dusing the abode of a femily
for some time in the care, and we have to account for some time in ihe cave, and we have to accoun lonely, strange, and uncomfortable a place. The personal ornaments, and the delicate Samian Ware are worthy of the villa of a wealthy Roman, rather than of the dwelling of men who lived by choice in caves. The few coins which were found explain and Constantine, and others being barbarons'imitations of Roman coins, whioh are assigned by namismatists to the time when Britain was being evacuated by the Roman legions. To say the leank, there are two extremes between which the date o this occupation of the cave mast lie-the fifth century, as shown by the barbaric coins, and the first
quarter of the seventh century, when the kingdom quarter of the seventh eentury, when the kingdom
of Strathelyde was comqeied by the Northumbrian of Strathclyde was comqeered by the Northumbrian
Angles. It cannot be Later, because of the presence Angles. It cannot be Iater, because of the presence
of Roman, and the abence of all English cultus. of Roman, and the abence of all English caltus. So long as the Celts of Strathclyde, cut off from the
Roman Empire, hohi their ground against the Roman Empire, helat their ground against the Angles, they would cartainly follow as nearly as by their forefathers the Roman provincials, and they would use Rosan coins and rude imitations of them for their cusreacy. We can hardly doubt that this cave was by unfortunate dwellers in Ribblesdale, who were compelled to fly from their homes with some of their cattle and other property and to exchange the laxaries of civilisation for a hard struggle for common necessaries. In no other Way can the aspasiation of works of art of so high
on order be accounted for side by side with the rude an order be accented for side by side with the rude instruments of savage hie; for it cannot be anowed
that they weve introduced into the cave by robbers because many other caves in the neighbourhood contain articies of the same order. These remains, therefore, affond as true and vivid a picture of the troublous theos of the sixth or serenth centuries as the raine o the Roman villas and cities, which, for the mon part, have been barnt. In the latter case we the homes of the Romano Celts ravaged the rocke to which the Romano Celts fled for refage But there meep evidence of a very much older Roman cooupection tham thin. At tho entrance below the Romeno-Caltio layer there wae talas of angular clay. At this loval the morimitite ditheovered a few clay. At this loval tho conmation ainovered a few along with chipped plocen of fiat amil hraken bave of ox end bear, which proved that mat in s reme
state of civilisation in marited the eato before the accomulation of the talos. Ase if it be admisted that the débris has fallem from the cilt in equa quantities at equal tuenot, boe fact and aft thial betwe above kormo. Culto , ind prove that the interval batwens the twe in thme times as groa Is that whioh separatas the sarner from our 0 Wn time; the aut boing socamalated in about 1,200 be acoepted, the date of tho craller ocmapation would be about 5,000 years ago. The gray clay on which these more ancient traces of mon rested offered a serious obstale to farther examination, since it was more than 25 ft . in thioknees within the oave, and contained no remains of man or of animala Fortunately, however, the enterprising gentlemen who form the committee have lately sunk another haft, and have obtained ovidenee of a still older occupation of the cave, not by men, but by hyænas. The broken boues, coprolites, and teeth of those animals show that in ancient times thoy lived there in considerable numbers, and the gnawed bones and teeth of the mammoth, hison, reindeer, red belong to the creatures which formed their prey The time when these aninals were living in Yorsshire is that which gealogists know as "Pleistoene or "Quaternary," and corresponas with that being fillad with similar momains. The skaft at preso has been to a depth of 30 ft from the original aurfeoe and the eccomulation of earth and bones extends to an unknown depth below. We very much hope that the committee will be enconraped by these results to continue the exploration, and we should certainly advise any one who cares
for beantiful sccnery and feels any interest in such for beantiful sccuery and feels any interest in such
investigations as these, to visit the district which investigations as these, to visit the district which
lies round Settle, and to soo the wonderful contents left behind by the hyrnas, which are being disco vered every dey.-Pall Mall Gafiette

CARPET STRETCHER.

AUSEFUL form of carpet stretcher has bsen patented in the United States, which, while holding the carpet firmly, does not tend to injure it. It is very strong, being constructed of iron throughout, and is capable of stretching the thickest and most unyielding carpet. It will be seen, on referring to the figure, that it consis's of four levers pivoted together ; the longer, which forms the operating handle, being provided with a point at the bottom to take a firm hold of the floor. The two levers marked respectively D, E, are furnished with serrated jaws, which are made to grasp the carpet at a sufficient distance from the edge to secure a firm hold without straining the fabric. The jaws being properly placed, and the point of the long lever pressed into the floor, the handle is pressed in the direction in which it is desired to stretch the carpet, when by the action of the levers C and D the jows are brought together with a force regulated by the amount of pressure applied to the handle. On reversing the motion of the long lever, the lever C presses on that portion of the lever E signalised by the letter H , thus opening the jaws, so that they can be readily

placed in a position to take a new holl. With this implement a very little exertion will enable any person to lay the most refractory carpet perfectly smooth.

ANCIENT MUSICAL INSTRUMENTS.*

Othe 1st of June the South Kensington Museum instruments. They have been obtained on loan from all quarters. money powerful as it is, conld fot buy the greater part ; and every man and woman, who loves masic, or possesses a mind, should woman, who loves music, or possesses a mind, should
study them before the unique opportunity runs study them before the unique opportunity runs ever.
Talk of the treasures of the deep! Give me the treasures of the country house; for there curiosities can always find a corner to live: in London, novel ties jostle them into their graves through mere want of space. In a word, private contributors English and foreign, have peopled one of the halls of this musenm with the spoils of time. Here are Egyption and Indian instruments, Turkish and
Chinese, very curious ; oriental banjos, \&c.; and above all a most amazing specimen of roundabont
resonance-a long black wooden tube, over which he strings are stretched, and the tube rests on two hollow everlasting pampkins. But the main feature is a number of mediæval instruments, exquisite in with gems, and inlaid with oriental lavishness and the skill of a Genoese jeweller. Here in stringed instruments alone are fall a score of obsolete varieties, and many specimens of each kind, especially of the lute, the archlute, the mandolin, the sweet viola d'amore, withits sympathetic wires that lay and trembled in unison beneath the gut strings, and prolonged the vibration; the viola di Bardone, a larger and more complicated instrument, whose sympathetic wires, twenty two in number, were placed so that they could be struck with the thumb, while the fingers played the gat strings; the viola da gamba, called by Sir Andrew Aguecheek the "viol de gamboys," and all the tribe of citterns and ghitterns that used to hang in every barber's shop for gentlemen to play, when England was famous as a musical nation, and that was before the monstrous idea of confining musical education to the less musical sex had entered the national head. Here, too, are all the instruments the translators of our Bible have bravely transplanted to Assyria and the night of ages-the sackbut, psaltery, dulcimer, \&c. ; and here are the children and grandchildren of the dulcimer-viz. the keyed dulcimer, the virginal, the clavichord, the spinet, harpsichord, pianoforte. There are nearly two hnndred specimens of the old Cremonese and other Italian violins, violas, violons, and basses, and amongst them I see a violin that a friend of mine onee gave $£ 450$ for, and a bass that was bought for $£ 800$ in Paris. But as this is theone branch I am well versed in, I postpone it for the time, my present object being merely to indicate the varions character of the treasures, and the profit that may be reaped. The Marquis of Kildare lends an Irish harp with its one row of metal strings, the wooden frame black with age, exposure, and, methinks, a little peat-smoke. To such a harp Carolan, the last great improvising Irish harper, sang his traditionary melodies that lived by ear and now are dead, alas! One comfort : as the devil escaped deai, alas in a pie by shunning Cornwall, so those being put in a pie by shunning Cornwall, so those
divine melodies-some gay, some sad-have died divine melodies-some gay, some sad- have died
and gone to heaven, and so escaped the defilement and gone to heaven, and so escaped the defilement
and degradation of being hashed and smashed into and degradation of being hashed and smashed into
quadrilles by Jullien and his followers, and played in false time and utter defiance of their dominant sentiment. There is an older harp, lent by Mr Dalway, on which is inscribed "Ego sum Rex cithararum." "Pride goeth before destruction ;" so this self-trumpeting harp is in pieces. The epithet of "King of Harps" is better merited by the noble instrument of Lady Llanover-a triple-stringed Welsh harp, made by the famous John Richards about 140 years ago. On such a harp, made by the same maker (Richards), blind Parry of Ruabon harped his "ravishing tunes a thousand years old" to the poet Gray, and so fired him with brave thoughts that he wrote "The Bard" while the music was fresh in his soul. Woe is me! who can play this harp nowadays? This one looks bursting with music. "I would give a few pounds to hear 'Sweet Richard ' played on it." But I ransacked Wales five years ago, and not one public harper did I find could play the triple harp. Yet their greatest
airs were all composed for it, and are half lost airs were
without it.
Then there are Italian spinets, one of which ought to interest the ladies; for it has nineteen hundred and twenty eight precious stones outside it, and very little music inside. There is Handel's harpsichord. He had more harpsichords than Cromwell skulls. But this time there really is a tidy pedigree made ont. There are two much finer donble harpsichords with stops and swell, one of them made by Joseph Kirkman and lent by his descendants. I heard this harpsichord played by Mr. Sullivan and the learned Mr. Engel; and it is a great and beautiful instrument, full of sweetness and tenderness, yet not deficient in grandeur : and allowed to die. The world for the pianoforte and the harpsichord too; each can do things the other cannot.
It seems at first sight strange and sad that so many stringed instruments should have been invented in modern Europe, and framed with so much skill and taste, only to die away, when so poor a thing as the guitar survives. They were not killed, as some people fancy, by our four-stringed instruments, for they ran parallel with these for centaries. Some of them no doubt deserved to die; the mandolins, and little citterns, for not making noise enough in such a world as this, and the lute and viola di Bardone for being always out of tune. I read that a contemporary of Handel said, "If a latenist lives to eighty he must have been sixty years tuning;" and another, writing to lutenists, gave them this warning, "You shall do well eve when you lay it by to put it into a bed that is coninvalid instruments and put them to bed once for all.
But I hope that true lovers of music, both male and female, will inspect the harpsichord, the viola
d'amore, and the viola da gamba with candid eyes, and give them a trial. Put these two last at their lowest, they must be superior to the guitar, since they have more tone, and arpeggios can be played on them with the band and suddenly the chords swept with the bow-a rare musical effect for any single instrument to produce. The larger viola of the two could also be fitted with the sympathetic wire strings ; the finger-boards of both conld be fretted and I apprehend the bridge of each could be arched a little. Ladies conld play the viola d'amore gracefully. Indeed, a Mrs. Ottey played the viola da gamba publicly in 1720, and a Miss Ford in 1761; teste viro doctissimo Carolo Engel. Meyerbeer thought well of the viola d'amore, for he wrote a part for it in "Les Huguenots." The late Prince Consort had music of the sixteenth centary performed on varions ancient instruments such as are now on show. On that occasion a viola da gambathat figures in this very exhibition-was played by Mr. Hatton-who, I hope, is alive to play it againand was much admired. The deceased Prince had many ideas before his age, and I think your readers will appreciate what he did for music in 1845 , when in 1872 they have examined this noble collection with the attention it deserves.

HARMONIUM REEDS.

A improved form of harmonium reed, which is claimed to afford great facilities in tuning, has been patented by Messrs. Fontainemoreau and Co., as agents for a Miss Procopé, of Stockholm. As most of our readers are aware, the usual practice is to secure the tongues by screws or rivets the frame, the right pitch being attained by scraping

the reed at one or other of its ends. Miss Procope considers that besides the inconvenience inherent in this system the reeds in time become so worn as to be almost useless, frequently breaking unexpectedly and at awkward times. These unpleasant annoyances and expensive accidents Miss Procopé thinks will be obviated by the use of her improved reed and frame, a plan and section of which is here annexed. Fig. 1 shows three reeds in plan, and Fig. 2 a section on line A B (Fig. 1). The main feature of the invention consists in employing two fongues instead of one, arrangements being made to allow of the tongues being moved in tuning them to allow of the tongues being moved in tuning them,
so as to increase or diminish the length of the so as to increase or diminish the length of the
vibrating part of the tongus until the proper pitch is obtained. The metal strips a, are ordinary vibrating tongues, held and guided by a bar or ledge c, fixed to the frame b by screws, and passing through slots on the underside of the bar c; they are fixed by the screws d, each tongue is connected by a bar to a short tongue f, which does not vibrate; and the connecting bars are attached to the tongues a by screws g, and to the tongues f by solder, rivets. or screws; h hare set screws passing throngh bole in a flange i on the frame b, and through the end of the connecting bars e.
To tune any particular reed it is only necessary to loosen the fixing screw d of its tongue, when by turning its set screw h, the length of the tongue a may be increased or diminished as required until the proper note is obtained, after which the screw d is again tightened. In some cases graduated scales are adapted to the frames of the reeds to assist in regulating the position of the tongues a.
Such is the inventor's specification, but we have no information whether the effects claimed to $b e$ produced have been really obtained in practice.

GAUGE FOR BIT BRACES.

THE garge for attaching to bit braces, of whioh the annexed figure is an illustration, has been patented in the United Statee. It is the invention of Mr. C. Whitus, of Philadelphia, and may possibly be found sugrestive, if not useful, to many of our readers. Where a number of holes of nany of our readers. Where have to be bored, wooden tubes of the requisite length are frequently nsed to slip over the bit and prevent it entering too far, or to show the mechanic when the bit has penetrated to the desired depth. It is of course obvious that a number of these wooden tubes are required to suit various descriptions and dimensions of work; these, however, are dispensed with by the employment of this simple contrivance. It consists of a sliding gavge shown detached and in position on the bit-stock. This may be made of brass, steel, or iron nickel-plated, and can be graduated to inches or to any fractions of an inch that may be desired. The sliding gange is attaohed to the side of the stook and held in the required position by means of the thambsorew and plate A; while B is the thambscrew holding the bit in the stock. The sliding garge has a ring-shaped foot, throagh which the boring tool passes as shown, and this meeting the surface of the material being bored prevents the bit penetrating to a greater depth than that to which it is set. The

cliding gange must, however, be serewed very tightly to the stook, or the sotion of the tool in boring will force it to slip, and so mislead the workman. Moreover, this attachment seems to us to be a modified "re-invention" of a contrivance we have seen in use in England for boring 3 number of boles when of a uniform depth.

PLATING WITH NICKEL AND PLATINUM. PROFESSOR RUDOLPH BOETTGER, the according to the German correspondent of Engineering, recently vindicated his priority as the inventor of the method of gal ranising metals with nickel and platinum, processes which are now attributed to E. Beequerel and isasc Adams, though they were
made pablic by Professor Bötger, more than thirty made pablic by Professor Böttger, more than thirty
years ago, in Erdmann's Journal futr Prakische years ago, in Erdmann's Journal fir Praktische
Chemie, 1843, Vol. III. He had discovered that a Solation of sulphate of nickel-ammonia, gren under the ection of a not very powerful carrent, will readily and firmly deposit a bright metallic coating apon copper and brass, which within half an hour becomes so thick and coherent that it will prevent the action of nitrif acid upon the underlying metal. Since then, the process has been oxteuded to galvanising iron and ateel, and has become highly valuable for the protection of those metals against rust and atmospheric influences when used in the construction of delioate maohinery. The costing of without the aid of a gulvanic battery, simply by
boiling them in a solation of ohloride of platinamammonium with a small excess of free ammonia, when a bright metallic coating of platinum is firmly united with the metal, which will protect it against oxidation as well as metallic nickel. When a galvanio battery is used, the metal is not generally 80 well deposited in one coherent mass, bat is apt to form minate black crystals ; when, however, the not too hot, it will also deposit on the negative not too hot, it wil also deposit on the negative
electrode a bright metallic coating. Both processes are now much in use with physical instrament makers for the protection of brass and copper parts, such as wheels in chronometers and other fine in straments, and they were first pablished at the meeting of German naturalists and physicists at Mayence in 1842.

USEFUL CEMENTS.

A
FEW days ago, says the British Journal of Photography, we found it necessary to prepare a glass dish from ordinary pieces of window glass, as a vessel of the size and form we wanted coald not be obtained to purchase. Catting the glass was a very easy matter, bat a good junction which woul stand a iiquid at a eemperatare o about 80° Fahr., was not satisfactorily effected. We have tried several cements for this parpose, but
have foand one sold as "conguline" the best. have found one sold as "conguline" the best. The
glass sarfaces are best rougtened, so as to give the cement \& "bite; " and then, on applying the warmed liquid coaguline, pressing the glass plates together and then allowing the whole to stand for some time, an excellent joint is obtained. In the same way glass and wood, or glass and metal, can be cemented together with facility. All these joints, however, give way to prolonged treatment with water if it be warm ; it is, therefore advisable to cover the joint with a layer of mastic or shellac varnish, in order to be secure against mischance. We have not fonnd cold water to affect the cement in ordinary saline liquids, but silver slightly acts upon the unprotected conguline. We have jotted down the above, as our readers may often wish to propare large glass dishes for floating paper, \&c., economically and conior feniently. Our own resulte have been so satisfactory with the cement in question that we always keep with the cement in question that we always zoep
some by us. A cement for glass and earthenware, some by us. A cement for glass and earthenware,
which is much liked by many who nse it, is made which is much liked by many who use it, is made
by adding half a pint of vinegar to an equal bulk of skimmed milk; the curd thas obtained is mixed with the whites of flve eggs (well beaten) and suff. cient powdered quicklime to form a paste. When the objects cemented with this "curd cement" are dry, they resist water and a moderate degree of heat.

NOVEL BLOWING APPARATUS.

ANOVEL blowing apparatas has, we learn from A the Adelaide Observer, been erected at a Colonin foundry, constracted on a similar principle to the "trompe" of the Catalan forge, illustrated on p. 73, Vol. Xor. at present it's is only used for tually it will, no doabt, be used for the smeltingtually it will, no doabt, be used for the smeltingfarnace. It eonsists of an empty barrel, or quarter cask, stood on end behind the fire, to the centre of which a blast pipe, from 2 in . to 3 in . in diameter, is fixed. On the top of the cask is another pipe, the name size as the blast-pipe, some 6 ft. in height, with a funnel. shaped top. Just abovo this there is a horizontal water-pipe of the ordinary service size, with a nozzle, having an aperture of din. in diameter, fixed at right angles-that is, poiuting down the pipe leading to the barrel, down which there rushes, with conaiderable force, a tiny jet of water, which causes a rush through the blast-pipe far superior both in power and steadiness, it is said, to any that can be obtained from the common blacksmith's bellows. The waste water, which is very limited in quantity, escapes through a pipe attsched for the parpose to the bottom of the barrel.

AUTOMATIC GASLIGHTING.

THE German correspondent of Engineering gives an account of the arrangement of automatic gaslighting apparatus designed by Prof. Klinkerfaes, the astronomer to the University of Grttingen. It seems that the system has been introduced into the Imperial Parliament House, having first been tried on some of the street lamps of Grttingen. The great leature of these barners is that they are completely self-regulating; the tap at the meter or the one which gives entrance to the building from the street main has merely to be turned on, and immediately all the lamps fitted with theso burners assist in the illumination. The
following is the description given by the correspondent of our contemporary :-
"A cylindrical glass vesseh, A, with perforated bottom, is screwed npon a brass gaspipe, which is prolonged by a lead cylinder, B, the latter being closed at the top and covered by au inverted glass cylinder, D, with which it commanicates through small holes. The glass vessel bears a cover of brass ending in a gaspipe and the burner, E, which commanicptes with shaped lead cylinder C, which incloses the leed pipe,
B, and glass cylinder, D, reaching considerably below the latter. If now the vessel is alled with any liquid, so that the bell-shaped part of C is per fectly covered, this liquid will stand equally high ontaide and insido of the glass cylinder, D, and gaspipe and the barner. If, however, the main cock be opened, and the pressure of the gas allowed freely to play, the gas will enter the glass cylinder, D, through the small holes, and press upon the liquid inside the latter so much that it escapes from under that cylinder, and now, outside of it, communicates with the burner. When the yas is tarned off, and the pressure ceases, the liquid will immediately rise again by the action of the atmosphere which, through the opening, d, in the cover, presses apon the surface of the liquid ontside the lead oylinder, C. It will be geen that by this arrangoment it is easy to admit the gas to as many burners as may be desired (?), and to shat it off simalianeously by only turning the main cock, and by regalating the pressure. The next thing is to light all flames simultaneously, and this is done by electricity, each apparatus acting as its own battery. For this par pose a disc of carbon, b, is fixed opon the bell-shaped part of C, and at some distance apart, and isolated by glass, the disc, c, made of zinc, which by the insulated condactor, e, and a wire, f, communicates with the top of the burner though a thin piece of platinum wire. The liquid with which the vessel is filled consists of a mixture of 18 parts of water 4 of sulphuric acid, and 3 of bichromate of potas-

sium, the vessel containing only such a quancity, that when the gas is off, the liquid does not toach the zinc disc. When, however, the gas is turned on, it presses the liquid downwards inside the bell, \mathbf{C}, until it rises outside to the level of the zinc disc, when the circuit is closed. A galvanic current is instantly prodnced, and passing through the thin platinum wire, the latter becomes red hot, in consequence of the resistance which it offers to the current, and lights the gas, hitherto escaping unbarnt from the burner, E. This very simple and ingenions contrivance answors very well in all closed buildings ; how it will do for regular street lights, and in ail (particularly cold) weathers, is another question, and can only be learnt by prolonged oxperience."

It is to be regretted that the writer does not inform us of the oost of this ingenious apparatus when compared with other and more simple methods of effecting thie same object. The coutrivance is only applicable where a number of burners are required alight at the same time; for, so far as we cau discern, there is no means of cutting off the gas from a single barner withont patting out all the lights sapplied from the same pipe or tap. This being the case, it seems as if the ordinary arrangement, with the simple addition of a piece of platinum wire to each burner, and a galvanic battery and a few handred yards or so of copper wire, would answer the purpose equally as well, with the further advantage that, the taps being with the farther adiantage that, retaned as usuale to stop the supply to any single barner or any twenty. No information is offered as to the Prequency with which the solution requires replenishing, nor as to the consumptiou of zinc. Nevertheless there may be circumstances under which the ase of this inveution of Prof. Klinkerfues might be found advantageous, and it is certaiuly ingenious.

LETTERS TO THE EDITOB.

[We do not hold ourselves responsible for the opinions of our correspondents. The Editor respectfully requests
that all communications ahould be drewn up as briefly as possible.]
All communioations should be eddreseed to the Editor of the Englise Mrcianio, 81, Taoidook-strect, Covent Gerden, W.C.
All Ohoques and Post Oplee Orders to be made payablo to J. PAgMore RDWARD.
"I would have overy one writo what ho knows, and 28 "I wouid havo overy ono wrio what ho knows and as
muoh as ho knows but no more; and that not in this
only, bat in ell other subjects: For such a person may only, bat in all other subjects: For such a person may
have some particular knowledge and experionce of the nature of such a person or sueh a fountnin, that 28 to
Other thinga, knowa no more than what everybody does, other things, knows no more than what everybody does,
and yet to koep a olutiter with this littio pittance of his, and yet to koep 20 olutter with this hitile yittance of his,
will anderako to write the whole body of physicks: A Fico Irom whence Ereat inconventonces derive their
origial"- Muntaignés Escays. original"-Muntaigne's Essays.
*** In order to facilltate reference, Correspondents when opocizing of any Letter preciously inserted, will oblige by on which it appeare.

PROCTOR'S "ESSAYS ON ASTRONOMT."

[4809.]-AB a general rule an anthor acts unwisely in commenting on remarks made in reviers of his work. But there are exceptions to this rule; and I think an exception can reasonably be made where, in
the first place, as in the ENGLISH MECHANic, correspondenco is encouraged, and where, in the second, it mast be obvious, as in the case of jour review of my
"Essays on Astronomy", that the anthor muet be "Essays on Astronomy," that the anthor must be greatly gratifed by the general tone of the critique.
Your readers will ondergand, then, that if I defend oertain points to which objection has been taken by
your reviewer, it is because I think them worthy of discassion on their own morits, and not because I aimply wish to prore myour in the right.
I mayy note, bat this only in preaing, that my objec-
tion to Herschol's "familiarising" of, scienco is based tion to Herschel's "familiarising" of science is based
on the way in whioh he familiaried, not on the fact that be did so. I objeoted, not becanse he "Ram-
bolled," bnt beoane "his gembolling was that of bolled," bit becaase "hhis gambolling was that of
Behemoth." Ho was not reod to gambolling, and (me judice) did not do it wall. Aftor all, the fanlt is but a spot on the gan, and a amall opot (a penambral
one, as it were). Bat the points I care to discuss are the following threo:-

First, as to the probeble colour of the earth seen from Venas. Hero 1 wound potnt out thet it is only because the moon's disc in colipse, ohiefty illaminated as it must be by earthrhine, does actoally appear some. times green and nomotimes brown, that I infer groenish mand sometimee browniah. Now, I must demar altogether to your reviower's objection based on the assumption that "a sery large proportion of
the visible hemisphere" (that is, the half of the earth turned towards the moonu) "was covered with clond on the occasion of the eolipee of 1870." Your reviower
does not snfficiently take into socount the fact that the part of the earth's disc traversed by the moon's shadow was olose by the extrome northern rim of the disc, and that inferences from its cloudy condition cannot apply to the great extent of the disc oocnpied by the Atlantic, Sonth Amorica, equatorial and Soathern Africa, and the Indian Ocen. Moreover, that part which (as your reriower justly remarks) was much covered with clouds
was preoisely the part whioh, being in the moon Was precisely the part which, being in the moon's
ahadow, sapplied loast light to our aatellite. I may add ahadow, sapplied least light to our aatellite. I may add
that I had before me, when I wrote, a projection of the that I had before me, when I wrote, a projection of the
disc, constructed by mpeelf (seo Quartcrly Journal of Scionce for October, 1870), with a pictare of the moon's ahadow upon it, and that my opinion was formed from a stady of that projection, and with a fall consideration of the points mentioned by your reviewer. A similar
remark applies to the eclipse of 1860 . I constructad a remark applies to the eclipe of 1860 . I constracted a projeotion of that eclipee before rentaring to express
an opinion as to the probable colonr of the earth as an opinion as to the probable colonr of the earth as
seen from the moon cn that occasion. I do not think the existence of extensive clond masses in the least afocto the argument. The cloods wonld shine with a Thito lishit, and would not nentralise, bet simply dilute the grtin, blue, or brown light prooeeding frum ux-
clonded regions. I by no means sappose (aor have I clonded rugions. I by no means anppose (aor have I
over aserted) that the earth would be of a strong green, ever asserted) that the earth woild be of a strong green,
blue, or brown colori, as seen from Venua, at any time, even if wholly unclouded. Bat I think that as Mars shines with a recognisable ruddy colour, notwithstanding extensive tracts of indigo or bluish green on his anflace, besides large whitish tracts, and as the strength
of this raddy colour is variable indopendently of the condition of our own atmosphere, the case may be somewhat similar with the earth as been from Venna.
The oceans being rolatively mach larger on the earth, The oceans being relatively mach larger on the earth,
her colour would vary, I conceive, from the brownish her coloar woild vary, I conceive, from the brownish
hnees manch diluted with white glare) due to continents to the blaish green hres due to oconna. I fancy tho " blue black" of the ooeans, if dilated with the slightly yollowish white of cloads, would give blaish green glare.
As for the foresto of Amerion, I demar to the theory that they would be green, nor woald the heathy prairies co appear; thongh at cercain seasons the "rolling
prairies" and the "Llanos" of Soath Amerioa Fould prairreenish if separately discornible from Venas. Eat the "Gran Chaco" in South America, and the exten-
sive deserts by the Rocky Monntains in North America, would be brownish, and I conceive the general reanling coloar for the Whole American continent (ailatod with ooloar. The sapposed greenness of foresta is altogether my thical. My old draning-master nsed to say, "Trees, any whole, may be red, yellow, black, or brown; almos for friction," this is not far from the trath. Ishould add that the Americas mere not the only land regions of 1860. The whole of Africe and large parts of Earope and Asia were so tarned. In any case, my riews were not put forward without careful study of the subject. Secondly, as to Mädler's theory of the orbital motion of our system round Alcyone, it is not qnite the case that this theory "only had its warrant in that astronomer's inagination.: Mridler based the theory on argaments of considerable weight in themselves
However, it will scarcely be thougbt that I adop Mowever, it will scarcely be thonght that paisopt
Mäder's theory, since I have been at great pains to show that it is erroneons. I presented his reasoning, and the objections againat it (overwholming, as I conoeive) in my lectare at the Royal Institation in May, 1879, and I tonched on thom in a paper roed bofore the Roral pocietr in sanuary peasase:-"It is worthy of notice that Miidler, having been led by certain considerations of examine the neigbbourbood of the Pleiades for traces of a commanity of proper motion, fonnded on the drift Alcyone (the lucida of the Pleiades) is the common Alcyone (the lucida of the Pleiades) is the common
centre aroand which the eidereal ajstom is moving. Bat in reality the community of motion is Taurus is only a single instance, and not the most striking tha might be pointed out, of a characteristic Which may be and Cancer there is a much morestriking drift towards the sonth.east the drilt in Taresus being towarda the the sonth-east, the drilt in Tauras being towarda the
south-weat. In the constellation Leo there is also a woll-marted drift, in this case towards Cancer."
Thirdly, as to the nomenclature of star-matgnitudes This is a matter which ought to bo sttended to by writers on satronomy, in order that a deinite rule may the moptod. I must say it seems to me that my method at random netaral. Let your reviewor ask any ten person a rery high magnitude," to mean a very faint or a very bright star. I think he will find, as I have done, that great brightness is usually inforred. I admit that "wenty" is a higher nambor than "one, bat subunt that the "first" is a highor order than the standing high in a list, we imply that the ordinal namber expressing his or its place is amall. The highest place is the first, in ordinary parlance ; and we only associate "highness" with "largeness" of number When we use the number cardinally. The only exception I know of tand that a donbtial one), is whore a mathematician apeaks of equations of a high order, bo oven here number is in question, tion "
arrived at by 20 many "maltiplyings," so to speak, of the invelved quantity in that torm whioh dotormines the order.
Of the orrata, your reviewer's "، Handibook', for "Hend Bhonld have been "Handibook" for Buchan calls his theok printers governed this mattor Buchan calls his book "Handy Book of Metoorology. and I so wrote it, bat the printers wo
and I loft them to their own derices.
The other errata are indefensible a observe that one of them is repeated in the essar you have reprinted, one of them is repeated in the cssar you have reprinted,
where "soathern" horizon, line 16 of the essay, should where "sonthern" horizon, line 16 ot the essay, should
be "northern horizon") except in so far as the law of averages teaches as that in a givon number of pages, a averages teaches as that in a givon numbar of pages, a
certain number of errata will almars occar. If the odds are a hundred to one that no glaring orror in a given page will eacape detection, tho probability is,
that in a work of over 400 pages, there will be four glaring arrors. \quad RICHARD A. Proctor.

SPINNING TOPS AND GYROSCOPES.
[4310.]- 1 ay somewhat surprised at " Δ Barrister's" statement (let. 4303, p. 306), that "amidat all the plansible theories and specalations to account for the movemeuts of topn and gyroscopes, none as vet appear
to afford any satisfactory zolution of the problem." The movements in question are strictly in accordance with the resnits dedacible from the mathematical analygis of the subject. The difticnlty is in popalarly expound. ing the subject ; and this diticulty is almost insuperabie. As to the general foatares of spinning motion, I
would remark that for s spinning top to fall in a given direction, all the moving particles in the
top, excopt those in top, except those in 1 certain vertical plane through the axis of the top, mant have their direction of motion ebanged. But the weight of the top is insafiticient to change the direction of the particles' motion in a brief interval, so long as this motion
is suficiently rapid; precielly as this weight would be is suficiently rapid; precisely ae this weight woald be
insuffeient to change the direction of the top's motion apprecisbly in a brief interval, if the top were simply flung throagh the air at a high velocity. The principle is the same in both cases. But in the case of a top flang through the air, the top's weight has time to act, and does eventanlly $B C$ not as to change the direction of fight. It is otherwise with the particles of the
rotatiug top. For a particle which, moving horizontally rotatiug top. For a particle which, moving horizontally top is to fall in a particnlar direation, will a mossant after be so placed that for the top to fall in that direction, this particle should move somerbat upwards.
Hence the ateadiness of the top's motion while the rotation is rapid.

ATMOGPHRBIO ELABTIC FOROE, \&C.
[4811.]-Mr J. M. Taycor (bether 4250, p. 279) intimates that he wonld be surprised to hiar that a top bas "stood ereot in reono." He means, I presame while spinning. If Mr. Taylor will reter to No. 17. p. 85ll find an socount of one that apun for two houre will find an zocount of one that apan for two hoor and sixteen minatee. Has Mr. Taylor tried the experi meat himeoll If sot, woald it not be beticring for vim no do 10 before
noval a theory?
ovel a theory
The centrifagal force, or, as it is now the fachion t call it, the centrifugal tendency, canmea all rotatirg bodies to resist, to a greater or loas extent, any lorce acting in such a manaer when pis lying at anchor in a seaway abe rolls to an orten that ohe never does when the paddios are at work; and the top wobbles when its rotation is oeasing for the hame reason-it is succumbing to tho forces of gravits same reason-icis Mr. Taylor doabts' Whether I ever spun a top in a vacuam. I own I never have ; bat I doabt whether he vacuam. I own rer never or, at all evanta, many tops over spua kop at all or, th all ill apin wich pertect or ho would gyratiag cortainly, bat not riming mor falling, at an angle to the horizon of oonsiderabl ramonnt, its insbility to raise itself depending apon the amoness of the point of the peg. When a top "aleeps," nneness of tho poinl of ton peg. its fall is occeaioned olely by the friction of the groond and air. Wher the op is indined, a composition of torces tares place, and the effect of gravity is to cause gration. The reason why to to with a blant point can raise itself is owing Why part of the force of friction acting at right angiea othe axis of rotation. With a fine point, this resola tion does not take place, and the top is incapable o getling ap to go to "sloep; " bat instead, gyratea in an agreeable joung persion, the too Bcientific schoolboy.

THE OONETARY DELUGE.

[4312.]-I sAm, p. 808, "These are my last words apon it," bat "Dorf Ersao's" let. 4290, p. 303, being mainly addressed to mo, compels a roply, beyond which I will not go, because I protar to expead my time and labour upon sabjects of some nee, ainas the progres things I know something of To diecass the progrea of a kypothetical and impoocible event, appears to mi waste of time; and as is orianant rom thome "odiam theo
 logicam" is anavoidable: lot can debate evver attacks on the trath of Holy soriptare," exactly as Galileo was when he arguod for the Copernican syatem Now, will "Derf Errac," who anko mon if 1 think 1 an argaing honeatly for the trath, toll me if he thinks he does so when he alteributos to others that which the never said? Win he havo the goodnee to say where
oither "F.R.A.s." or my ielf say that mo "consider all Who differ frome our licte, as regarde a Iood 5,060 sear ago, to be plaping deliberately into the hands of th intidel and seoflece? This is just an illastration of the anfair way in which men of science are treated, and Which generates kne much halkod of antagonism be tween religion and science. We anid that to link to Rether religious dogmas and ataicomeation of very quez tionable faote; that to bay that any one who dozbt whother the worla was mato in tir aky, or whether flood covered the entire globe, or whether the san and moon stood still to give one sat of men a little longe time in which to marder another sot of men; that to venture the credit of religious taith in contact with these statements, and to compol every man to choos between being al "Infdel," or swallowing bodily al these statements that all thin folly is "playing into the hands of the indal and sooifer." In ract, is it possibl to concoive any bettar process for compalling recuming mon to rejeot allogether principles eo diecredital?
This is a very very different thing from what "Dert Errac "asserts of ua
I cannot help " Derf Errac's", anderstanding E. L. G." in a different senso ; to mo it appeans tha he used the illautration of the action of falling weter upon a heap of sand or alay as deceribing the eation of the flood; and, is so, it was a farr reply that th conditions being different altogether, the illastration fails ; that illuatration was that in a heap of sand or clay, cansoas now in operation-thatia, main-wouin pro dace only deep iurrows and atonp wali, while s aoo as the tide flowing orer, would eonveet them into esver vales ; ergo, it was deduced, sncop vales on the
were iormed by a food, not by ordinary oencees.
I may incidentally remark that we may see the earl history of the arrth in the moan; instead of the moci being, as the anthor I quoted (p. 196), and other suppose, a dead planat merely, it very plainly shori that planetary bodies rere at one time in a stato al fasion, that a crast first formed on them, that that crast was pierced by openings through which the fased contents poured out as the orast contracted, and that, ultimately, as the mase nolidifed, ita surfince would be rent by rat oharma. All this wo actoally eed in the innumerable crators and otefts on the moon, all this wo 800 when any body of lave pours frome volcano, and oan waloh in progreas any day in the slag pouring from a blast furnece. In the mose, the resalt romaine becmuse theore is ne Water and atmo. the greater mases of the erth rothined all tio lightie matoricia, gaces, and mapones, seromed it) In thi was oxponed to the metion of healod greos and rupoers
which, as the temperatane lomered, were onabled to react apon it, to change its nature chemically, and to break it down mochanically, and when at last liquide conld be formed, the debris thus prodiced would drift
into the hollows of what was then trudy a mere Alm into the hollows of what was then truly a mere alm
covering a masi freely mobile, because in a highly coveriag a magi freely mobile, becaure in a higaiy
heated state of fusion. In this stage smanl ehanges of pressare wonld be really capable of disturbing the
equilibrinm of the sbell and its contents. In this way equilibriam of the shell and its contents. In this way
we can easily conceive how through gradual rery sow we can easily conceive how through gradual reey now assrimed its present atate.
Retarning to "Derf Errae's" ressarks, it is very dificult to argue and analyse exactly as to the preosurea the supposed falling torrents would produce-there is
too mach of the "might be "sbout ft. Acoordizg to too much of the "might be" about it. Aceordizg to lards then existed: it appears thiat the Ardee and Himalayas did not (at least so " \mathbf{F}. IL. G." gays), and therefore what can wo know as to the bupposed spaces on Which an extra pressure might acoumulate? I see
no sort of reason to imagine that under the eupposed onditions the fall would be even a second eartier on the land than on the sea, as the whole atmesphere would be densely charged with vapour first; but it is a pare assumption, withead a partiole of evidonoe to support it, that such a prearare (if real) coald produce any dis-
torting effeet whatover. I referred to the acesrtions of torting effeot whatover. I reforred to the acesrtions of
some distingrighed matherpatioing that the ornat of some distingrighed mank astronomioal considerations, 800 miles thick; I did not gasy I bohoved it; on the contrary, as m mere natiter of preseatopinion, claiming no great weight, ever is my own mind, I consider it
probsble the thiokness lies between 20 mpd 40 miles of olid matter, reetiag upon an acoeedingo carse and agidutinsted frased mass; but I see no sort of reseon to conclade that any posaibie accambiation of water apon any portion of this comld sppreeiably distort it fation on into seconnt the balancing efleet of the water improbable.
The key to the discussion lies in the paint I have occarrance of s univeral deluge disproves it. Ten thonsand circumstances consistent with auch an occarrence do not prove it, becanse there may be other explanations. Now, we need no comet to show that all the earth has been under water-that is, that every portion of its existing gurface was formed under water except a few protrading eminoncen-in faot, all its surface has been se nuder wator many times, and for prolonged periods, one part at one time and another part at another; there is the explanation of all those lacts which appear to support the unirersal flood, and
which also fits in with those other facts whioh incontestibly disprove it
Botore turning from the subjeet, however, I may as rell aild that when "E. I. G." hae explained what becane of the water of his comet, he has a still more difficult problem behind-via, what became of the heat, and how did anything survive it. Comets woald
seam to be incandescent, and it is very doabtful if watar could posaibly oxist nudissociated into its elemants in cometary conditions ; but as we mast assume
againgt all evidence (as " E. K. G." admits) that there Was one water comot, we need not atick at assuming it to have been cold; give it the tomperatare of absolate
zerg; it must have been in a highly diffuced state, flling m vast apace; it may have been moving in the same direotion as the earth, no wo may digtransfer into heat. But the earth's attraction drawing the water to it from space in quantity eufficient to generate a fall of $10 f t$. per minute, woald also genarate enormons heat, as wo nee when any submetear: ; 30 that it is probabla that not only rould the water itsell be nncemfortably hot, bat the air would be alled with heated rapour. Cold vaporar would not
form cool water after falling (say) 200,000 milea, and having that motion andienly asrested.
And all this is devised to support the idea of the to prove one of the worst foes of the theological degmas atteched to that ides, which alono give, substanoe Noeh'd Ark was provided tor the parpose of perpetuating saved except those in tho Ary is equally subveraive of the acconnt as to dany the nniverality of the flood, creatares greater part of the world was replenished by anything living on a raft ander a fall of 101 . yer minute) the Artrwas an entiraly unnecessary provision move (and carry for myaell) "the previone quastion.

Braza. P.S.-If any one feale faclined to maile at the number of " may bo's." and "it is probablo." will he

THE DRLUGF.

[4818.]-I Prncsivi that there are those among sour remders who oonalder the case of "E F . L. G.'s"
". stoam comet verous Livell and gerope "as the cace of "religion evrene the indael." Thic being no-i" E.E. G.!" han becorne his dutig. to tall no something more nbont his oumet, Of coures, no one can expeet him to tell shoald be ably to demeribe the natare, aibe, motion, accomplished what he requires from his eteam comot.
night (Gen. vii., 4 and 12). In this time the earth tracalled (roughly) some sixty millions of milles on her
orbitr rotating forty times on her axis. This should orbit, rotating lorty times on her axis. This should
be considered. Then, again, the enaters of the earth
hed bad retarned to their normal condition one year and ten days after the commencement of the flood
(Gen. viii., 14). This nllows 335 days for the Gon. Viii. 14). This allows 335 days for the sabsi-
dence or drying of the water - subsbidence, I sappose, according to "E.L. G.'s" theory. Then,' by the was, Fhat ras the action of the mind which "passed orer the earth "affer the flood? It would be well, also, to deecribe the condition of a saitable comet, as to total quantity of steam, maximam prassire at or near
nucleon, actual quantity of sanooos rapour (per cabic naclean, actual quantity of sqneous raport (per cobic
mile, say) in the part traversed by the earth; because. mile, say) in the part traversed by the earth; becanse,
if \mathbf{a} creed is to be formed containing the words, "I if acreed is to be formed containing the words, "II
boliove in ' E . L. G.'s' steam comet," it is as well boliove in ' E . L. G.'s. stanm comet, it is as well
that we shonld be able to kive reasous for the faith that is (or that, I sappose, will be) in us.
I would
submis
f north
I would sabmit, farther, that while there may be oxcellont reasons \&or believing Darrin. Lrell, Scrope,
Huxley, T Tndall, and others, who do not take cortain Scriptural assertions au pied de la lectre, to be mistaken it in cortain that these gentlemen are fally persanded
of the truth of what they assert ; that ther hare spoken of the truth of what they assert ; that they have spoken
with the object of adrancing truth, not of iojuriug any man's faith; and that even by comparison with "E. L. G." they are not, strictly speaking, idiotic. It can serve no good parpose, then, to sneer and be scourrilons. Correction, not castigation, is called for 17
Lyell or Serope (for instance) be mistaken. W We Lyell or scrope (for instance) be mistaken. We may
aympathise with that courage arising from conviction which leade a man to oppose argament to anthority bat I have never jot heard tbat abose or ridicale atrengthened any canse against those who, right or wrong, are certainly in oarnest. I conceive, thereforo,
that E E. L. G.'s" stoam comet would not suffer is he that "E.LL. G.'s" "steam comet would not suffer it he
could eliminate "oh" and "ah." and "assuredy" and "jast observe" and " now mark" "from his paragraphs, and trast rather to " semicolons " and "points" "than
to " notes of admiration and (startled) interrogation." to " notes of admiration and (startled) interrogation."
Sydney Smith hase toid us that " nothing does, for ton pages together, bat the indicstive mood," with whom also, I would remark that I should "not wish to deprive ' E. L. G.' of these indalgences altogether, bat merely to put him upon an allowance, and apon such an
sllowance as will give to these figures of speech the sllowance as will give to these
advantage of surprise and relief."

As a change from the Deluge, "E. L. G." might exercico his talonfe in showing us (for example) how the destraction of Bodom and Gomorrah was brought abou by a downfell of the November meteors. I commend this in a speoial manner to his ingenuity. He will see that the time of day and other circamstances of the catastrophe agree well with the theory; and as these meteors contain mach sodium, the tranematation of Lot's wife into a pillar of aalt (chloride of nodium) be-
comes pleasingly explicable. It is true Leverrier has comes pleasingly explicable. It is trae Leverriar has
set the intradnotion of the November meteors into set the introdnotion of the November meteors into on
system at the year 126 A.D.; bat that is a detail, -lik system at the year 126 A.D.; bat that is a detail, -like Sigma's" question as to what may have beoome
the water received from " E . I. G.'s" steam comet.

Richard A. Proctor.
[4314.]-I Ax sure many other readers of the English Meceanic agree with mo in hoping that the lorty days of this flood are nearly over. With a view
of pouring oil npon the tronbled watars, I cannot refrain of pouring oil upon the troubled wators, I cannof refrain no ocoasion at all for snysuch dispatation. I presume that it is only a laudable zeal for the authority of inspirstion whioh has led "E. L. G." and a fow others to believe in the nnivernality of the Deluge; because they concladed the Scripture expressions to be quite whelming evidenoes afforded by both geology ore astronomy, they have taken np the wildeat notione and most imposible theories. With the deepest conviction that their diffioalties are imaginary, I pat forth the record does not declente the Delage to have been nniversal; (8) that the description of it given in Crenesis vi. is inconsistent with sach a beliel.
The former was the clearly expressed opinion of Bishop Stillingfleet before the days of Lyellian goology, of Dr. Pye Smith, and many other good men Who had the profoundest reverence for inspiration. Sack mea pointed out that the right way of reading those statements which reemed to declars the universality of the Deluge was to oumpare the expressions used with others of a similar kiud in Scriptare, of Which the contexts or other passages gave an explana the Bouth came from the attermost parts of the earth," When the actaal distance Was a fow handred miles, but not to multiply examples, I world ast whether the expresaion "all the high hills under the whole heavan weze oovered," proves that the Alpes and
Andea, and Himalags ranges were anbmerged any more than the exprestion "there were dralling in hasan," ssserts that Bome came irom China, others from Great Britain, and others from Amerios. I dare say it will be replied that, of oourse the writer of the Acte meant only all the nations where Jews were then meant only the lands where the hamen race then existed. The tract of land between the Caspian and Blank Seas appears to have been the oradle of the human rece, and a deluge oxtending no further than
thet-the then known warld-would fulal both the divine intontion of paniahment and the langaage in whoh it is narrated.
2. I maintain that the acoount given in Ceneais is
acomaintant with the idea of a aniverasl deluge, and
especially with an extranoous source of the water such
as the cometic sac d'ean inrented by " F . G " The as the cometic sac d'oan inrented by "R. L. G." The descended from the skies, thongh it did rain during forty days, and we must remember that such a down pour as would produce a layer of water six miles thick a furions cataret that wease to be rain, and beoome dove to pluck off. But what loave no olive leas for tig as the sources of the water? They tioned twice in the same order; (1) the fountains of the great deep; (2) the windows of heaven, of which last the equivalent is certsinly rain, nor can there be
any doubt that the former is the ses or ocean to the priority of cansation is asoribed. Thus we find Scriptare and geology in harmony, when we regard the Noachian Delnge as the result of a local subsidence by "fountains of the grest deep wrore removed, and the
E. I. B.
[4815.]-Ip" E. L. G." (letter 4239, p. 276) has not ex. plored the Upper and Lower Eifel, I strongly recommend him to taze his wallet and walk gbout this wonderfal dis will find enongh to upset, in my hamble opinion, his Whartonlike theory. The Auberg here, a limestone rock, so exactly resembles a castie that every one who has seen my sketch of it has taken it for a rained fendal stronghold, and when It took the skotoh actaally thonght it a castlo. Now, "F. In G." wonld maintain that this shape was produced by a deluge of water which rounded the slopes, ont of which the rocky mass protrudes ; yet within a mile we find a large crate with beantifally rounded sides. If this crater existe before the Delage, why was it not fllled np with the sabeequently formed, why are its sides and its leve stream so roanded, except by the same agency that has roandea Csesar's camp at Wimbledon, the moats and earthwork all ovar the conntry-namely, the never ceasing action of gravitation uppn the surface Th Land-anaed but of yosterday are again a case in point sides more or less steop pil not and lating bnt wind danes formed a contary ago nill he ronided Old chall quarries show just the same thing. M. Paris.
[4816.]-Witr every respect for "E. L. G.'s" in tellectual and polemical powers, I am at a loss to
understand how he bas, as he says (letter 4292 understand how he bas, as he says (letter ta98,
p. 304), "demolished any connection between thei facts and their dogma abort the Delnge." (Who has pro poanded any dogms bnt "E.L. G." himself ?) Now 1 maintain that the facts mentioned by myself (let. 4240 and others are pertinent to the question, snd any on who undertakes to give a theory of a nniversal flood is bound to take them into accoant. In the letter in question, "E. L. G." appears to have got himself on to the horns of a dilemma in this way; fresh-water plants and animals die in sait water, salt-water plants and animals do the same in fresh water; if the flood covered the whole earth eitber one or the other must have succumbed. Sapposing the sea to have been made sufficiently fresh to have transported pond life, then the corals must have died; if it retained safficien saline material to keep the latter alive, then the formes oonld not have been transported in this way. This deluge is certainly most aecomodnting, for it ocossions not only the wide distribation of frosh water life, but also "the fewness" and "separateness" of apecies "on islands even within sight of each other," i.e., the same cause gives origin to two diametrically opposite effects. The quotations in the latter part of the lettor neither militate against Darwin's theory, nor support that of "E. L. G.," but as we are discrasing the Delage and not Darwinism I will not go into them. In con olnsion, I would point out that "E. L. G." has as yet gives no evidence fixing the date of this deluge at 5,000 jears ago, and it seems to me that if he does not make he hes finished.
P. Santalinus.

"E. L. G." AND HIS COMET.

[4317.]-I BAVE read throngh the colvmn and a hall of words with whioh "E. L. G." attompts to diapose of F.K.A.B."" M. Paris, "Sigma," and mycol, if no strongly reminded of the old lawrer's advice to his son reduced to practice, "Bad case, abuse plaintiff's attorney." As an example of "special ploading." I would commend to the atcention of the bar the way in Thich "Sigma's" reply to the remarts of "E. L. G." that a delage would obey "the laws of jeaterday's shower" has been answered. "Sigma" is, however. well able to fight his own battlo, and thowe who read his lettars can take the raal masning out of them, though, I vary maoh doubt if they are able to do the name ont of the parenthetical periods of "E. L. G." In entering into the Deluge controversy, my only object ren to obtain the premises irom which ci. Li. G. 5,000 years ago, and thet that deluge mes caused by a comet ; but this information he appears determined not to aflord me, for the Ary good reason that indeed I must be ignorant of all concerning "comets, the earth, and propertiae of flaids," or I wonld have never asked for it And this ignorance of mine heinfers, mirabile dictu, becanse a letter of twenty odd lines contains no prool of my knowledge of such subjects I If any reader from his seansintance vith soience that a comet could canse the Deluge," E, L. G." Will kindly prove it for
him: Considerate "E. L. G."! A_{8} in my defective knowledge. I am placed on a par with such a writer as " Sigma." "E. L. G." has done me honour over much; for if "Sigma" and "F.R.A.S." are ignorant men,
what a light of science he mast be, and how well suited what a light of science he mast be, and how well suited to be our instructor in "steam comets," ad hoc genus omne. For my part,
the eminence occapied by men of science (?) who have adopted for their motto nul n'aura de l'esprit que nous. adopted for their motto nul n'aura
In conclasion, I will once again ask " E . L . G .". to prove that a comet conld canse the Delage, and then prove that a comet conle canse tonbt, the readers of the Mecensic wall join with him in the belief that we all Mectanic will join with him in the belief that we ail mast have been "profoundiy ignorant" origin. I hope "Ev. L. G." will believe me when I declare that if his theory be true (which I do not believe), I hope he may be able to prove it for the sake of the cram the but, I trust, that he will at once apply himself to the task, and waste no more pace not for trnth otherwise nuch ol sit beto on the discussion, he Eaitor which is fast ${ }^{2}$ Un Irlandais.
P.S.-If " E . L. G." is not aequainted with the weight of a comet, nor cannot even form an approximate idea on the subject, why does he quarrel with Roscoe's ideas as to the magnitude of one? If Roscoe's assertion is to be put against "E. L. G.'s," may we not take our choice; for if both parties are ignorant on the matter, and Roscoe a "bnfioon," for saying a comet might fit in a room, may not "E. L. G." be a still
greater "bnffoon," for saying that one did deluge the greater
earth ?

WHERE IS THE WATER GONE TO ?
[4318.]-THis question of "E. L. G.'s" possesses ery great interest for me, and I shall be very glad i ome of our learned friends will tell us where the water does go to. I have a theory, but will instantly water, my object being to discover either what does hold Water, my object being to
While craising in the Mediterranean with the British leet, in 1862, we had occasion to touch at Cephalonia and, coming to anchor off Port Argostoli, the Admiral gave leave to the watches to go on shore; and, availing myself of this privilege, I landed, and proceeded to nquire whether heare was anything to be seen, an hour's walk to the aorthward of Argostoli, I provided hour's walk to the morthward of Argostoli, I provided myself with a guide, and upon arriving at the so-called Well I found what greatly excited my surprise, for the water was rushing through a break in the sea-barrier
and along a rocky channel, until it finally disappeared and along a rocky channel, until it finally disappaared at right angles, and at about 40 yards from the sea and my guide informed me that so it has gone on for and my guide informed me that so it has gone on for ages, and without interruption, the tide not disturbing me also that scientific men from various countries have visited this well, many of whom have cut inscriptions on floating subatances, which they have sent into it but, although the waters in the bay and surrounding the island have been anxiously watched, and the island itself explored, nothing ever sent into the well has been known to reappear.
If there were any geysers in that part of the country it might be concluded that they ejected the water eceived by the so-called well, but there being none the mater is not so easily settled. Is it probsble tha where near the crater-passage of one of the volcanoes of the Mediterranean, and, there being converted into steam, is carried off by the passage?
J. W. Rodwell.

DOUBLE STARS.-CORRECTION.
[4319.]-There is an error in the place of the new double star, f o Corvi, mentioned in my last letter. This star is Lalande 23536 (not 23488), and its righ
ascension is 2 m . 50s. greater, and declination 10^{\prime} in xcess of the latter. The magnitude in Lalande is 6 h , but it seems nearer 7 now. It is brighter, however, than L. 23488, which is noted in the same catalogne as 8 mag. As stated, the donble is the most northerly of two stars of the same right ascension, and is easily found from δ, which precedes, 5 m . 50 s .
Chicago.
S. W. Burnhay.

DR. CARPENTER AND PERSPECTIVE.
[4320.]-I Have been surprised that none who have aken part in this controversy have menianed Cruik shank's attempt to picture a converging giant. Falliog easoned that a very tall giant should be pictured with his "apper works" somewhat reduced, since his head (for example) must be further away than his feet from an observer of ordinary size. The effect, of course, was a complete failure. The picture of the giant re prese.
I mast demur to M. Paris's remark aboat pictares being compromises, understanding that remark to apply to perspective. As to colour, shading, and so ont the must always be some degree of comprowese ically exact. There is only one point which is con ventional, and that is, that the plane of projection shall be regarded as vertical. (This holds, of course, even when a picture lies on a table or desk; it is
understood to be vertical.) This rule renders it mathe. matically necessary that all vertical lines shall be
drawn parallel, no matter where the point of sight may be. More generally, all lines parallel to each other, and also to the plane of projection, must be a long horizontal row of equal honses, placed in a direction square to the line of sight, he must draw the roof-lines and basement lines parallel avd horizontal. Dr. Carpenter's reasoning would indicate that these lines should converge, as well to the right hand as to the left, which is, of coarse, out of the question.
The fandamental rale in perspective-strictly in accordance with the mathematics of the sabject-is that scale depends on the relative distance of objects cum the plane of projection. Under ordinary circumstances this amounts very nearly to saying that the eye but in tase relative distance of object by Dr. Carpenter there is a difference.

Richard A. Proctor.
PNEUMATIC LEVERS FOR ORGANS.
[4321.]-As there are many of the subscribers to the English Mechanic who take great interest in organs. I ventare to send you sections of two pneamany readers. The constraction of them presents as great a contrast as, I think, can be fonnd in similar great a contrast as,
contrivances. Drawing of these were shown to me by a person who had been employed for many yoars by a celebrated German organ builder.

The most noticeable, and in fact chief feature, of Fig. 1 is the great simplicity and ingenions application of the valve D. This valve is composed of two ronnd pieces of wood, each of which is faced with soft leather, one of these pieces (nearest the hinge of the bellows) is fixed to the sticker E, the other is loose, so as to work easily to and fro on the aticker. These pieces are cosnected at a distance $\frac{1}{2}$ in. apart by a strip of leather to piens) glaed roand tie circumference of eatween them on the valve may accommodate itself to any little variation in the working of the key action. This contrivance forms both the supply and escape valve. When the key is not pressed down tho spring F draws the fixed sarface ore valve to the hole at G and prevents the wind from entering the bellows, while the hole at H allows the wind to escape out of the bellows, when the key is I. Fig. 2 is an enlarged section of donble valve at D. Fig. 8 is a very complicated piece of mechanism; its absence of simplicity is its chief feature. The doable also the and are very liable to make the key action noisy. Fig. 4 shows escape valves; enlarged section at A, Fig. 3, the valves in contrary position. Both the sections show the levers with the key pressed down.

Pnetamtic Lever.

SOLAR EYEPIECES.
[4322.]-I have been mach interested in reading the letters of the Rev. Mr. Berthon and other correspondents on solar eyepieces; and as the sabject is by no means yet exhansted, perhaps a few remarks on Eny own experience msy not be altogether nninteresting to
your readers. Your valued correspondent "A Fellow your readers.
of the Rour valued correspondent "A Fellow forgive me for pointing out a remark in his letter (4223, p. 273) which sarely mast be a mistake. In (4223, p. 2 3) which sarely mast be a mistake. Tn remarks, "Absorbing light and heat by minnte solid remarks, "Absorbing ligst and heal by minate soind
particles. In the one case they are of carbon, in the particles. In the one case they are of carbon, in the
other of silver ; bat the principle is the same." With smoked lenses the light and heat are undonbtedly absorbed, bat with silvered ones the greater part of the light and heat mast certainly be reflected-a most important difference of principle. I formerly used smoked indeed, I donbt if it is possible to deined beautifally; indeed, 1 doabl if it equal, the definition of a Huyghenian eyepiece which has the front surface of its
there are the following serious objections to this form of eyepiece :-

1. It is by no means easy to obtain a perfectly level surface of smoke on the lens, especially if the eyepiece is of low power, and the lens consequently large. There of smoting risk of fractaring the lens in the process surface from the the eyepiece is puestion over the dill new sarface of smoke is deposited. This happens incessantly, for the intense heat of the solar rays in the focus of the telescope usually canses fragments of the smoke to falt from the lens within the first half-hour of using. 3 . The smoked surface being black, nearly the whole of the light and heat is absorbed by the field lens, which
consequently becomes intensely hot, and very ofter splits.
The continual expenditure of field lenses, and consequent trouble of grinding new ones, and the lenses so often requiring to be smoked just when a favourable moment for observation occurred, cansed me to abandon these eyepieces, in spite of their fine definition. I now use Hayghenisn eyepieces with coloured lenses-the colonrs of the two lenses so combined as to produce a white image. By this arrangement I obtain a clear white image of the sun upon a very deep blue sky , and the definition is quite satisfactory. This form of eyepiece, however, has its objectlocis size of the smn's power in feld of wha I use, I have had no less than three field lenses split, owing to the absorption of the solar light and heat; bat no accident of the kind has happened to the two higher powers. When a white image is produced, the chromatic dispersion of our atmosphere produces coloured fringes ruand the solar spots when the sun's altitade is less than abont 35 or 40 degrees. When the sun is in this position, a reddistr orange fringe is seen along the upper limb of the sun (with inverted image), and a bluish riolet one along the lower limb, the right and left limbs being free from colour. As the spots are black (or bloish black) on a white ground, the position of these fringes is, of course, reversed-the orange fringe being produced on the lower portion of the spot, and the violet fringe on the apper portion. I am convinced that these fringes are much more strongly developed in rainy weather, when our atmosphere is charged with moisture. In such weather, when the sun's altitude is not more than 15 degrees, the colours are sometimes so violent as nearly to destroy all definition. At first I tried to get rid of the colour by tilting the eye-lens in the manner adopted by our Astronomer Royal in his correcting eyepiece; and although this improved the definition very mach, I conld not totally get tid of the colour; but I foand another way or doing it as follows, without alteriag the or lower limb be brought into the centre of the field, the characteristic fringe will be seen. If the eye be now gradually lowered, the fringe will be seen to become narrower until a point is at length reaehed where the fringe completely disappears, and the limb is quite free from colour and sharply defined. By carrying the eye lower than the achromatic point, the fringe reappears of the complementary colour; Where the orange was at first it now appears violet, and vies versa. In the same manner, all the colouring round printed observations might be quoted where observers have noticed colour round the spots, or round Mercury in transit, without apparently knowing what produced it; bat had they looked through the telescope a little below the centre of the eye-lens, the colours world probably have vanished at once.

I have not vet tried the silvered lenses recommended by the Rev. Mr. Berthon, but from the correspondence which has appeared I infer that neariy the whole of the light and heat is refected. As but iittie is absorbed, quently cannot split; but I think it probable that quently cannot split; but I think it probable that
silvered lenses will nltimately be found to fail, from the same canse as the smoked ones-viz., minute particles of silver coming from the lens.
In No. $\mathbf{3 0 0}$ of the English Mrchanic is an articie on "Solar Microscopes," in which the writer explains of method of separating the rays of heat from the rays bility of the heat rays. Could not something be done in this direction with sjar eyopieces? If the rays of heat could be go
easily managed. ?

THE HOWE SEWING MACEINE.

[4823.]-The Howe Machine Company, eatablished by Elias Howe, jun., original inventor of the sewingmachine, make three varietios ; one kind, the A, B, and C, being table machines nearly alike, bat differing and C, being table machines nearly alike, bat differing in size; crlinder arm machine, all specially adapted for boot work; the latter making the nearest approach to the hand and boot closing stitch, the holes made by the needle being filled well np with the silk or thread. This is secompliahed by drawing ont the needle, the thread is then pulled through the leather, instead of allowing the needle to remain in while the thread is passing
in the bed. In the early machines, no allowance was made for the wear of the shaft holes; in the new, caps are placed on the bearings so as to allow for refacing when worn: $\$$ wo screws to each cap keep them tight. On the right hand ontaide the bracket is the driving pulley 18, the right hand cam 52 works the needle lever 48 , and 49 its atud boing the centre from which motion is communicated to the needle bar 40 . The left hand cam 74 is the shattle cam, which gives motion to the short arm of the shattle lever 78, which is pivoted on its bolt 79, riveted in the bed, it has a waoher and pin to keep the shattle lever in place. Ontside the lefthand bracket is a coller, 180, set up to prevent lateral play of the shaft.
its other end then raises the presser-foot 186 placed on the presser bar 56d The top end of the presser bar is fitted with either a btacket and adjuating serem; or the top ond formed into a serem to receive thereon, a nit with a flange which the end of the vibrating lever strites and raisas. The nat serves the purpose of regalating the haight of the lifting of the prosser-foot at each stitch; a set-screw in the top of the nut prevents unscreving. Any Howe machine may be choaply and simply improved this way; it manes more noico, bat acts effectivaly, and can, by unserewing the nat, be disconnected so that the foot is continaally on the work. This improvement of a vibrating-presser to the Howe Meohine was firtt made in Londos, and made it

throagh, which, of course, must make the hole larger; although the best work from the E machine is aeldom to be met with even in high-priced boots. It is, however, deserving the attention of all whe like the very bestwork. The machine called the "Howe" has been imitated by many makers, with more or less ancoesa; the newest form is represented in Fig. B, and one of Elise Fiowe's earliest machinea, the $\mathbf{\Delta}$ size in dotail in Fig. A. The igures indicate the cerresponding parta. 1 is the bed, 2 the arm, 15 the outside face plato. Fig. A thows the top side of bed 1 , shuttle race, and holes, with the four serews for fixing the arm 2 to bed. Fig. B shows the nuder side of bed 1, and the position of the workiag parta, 179 the main shalt supported by brackets cast

Hows Whesc Fers.-This foed meohanism consists of 24 soparate parts, besides the prescer 8 parta; when the machine is mado to lift the presser at cach stitch so ms work patterns, 12 piecen additional are added, making a total of 44 pioces for the oomplete foed mechanism. Instead of 12 pieces lor the vibrating presser 5 pieces will serve, as shown in Fig. A, 800. The face plate 15 is shown with its top sorew hole enlarged on the inside, and a slot cat to the top; in this is placed the standard 300, the faoe-piste sorow 24 passing hrough its holo, keeping all Irm together. On the top of the standard is pivoiod a levor; is carra ond th

more popalar in the Exhibition of 1862. The Howe feed mant be kept clean, and have the patient stady of any one determined to master the machino. and to prevent the delay and expense of going to a mechanio to regalato it. The feed-wheal stud 168 hat on it a collar befween the feed-wheel and braczet; the bracket has a vertical alot, and the stad made inat to It it; on its inner end is a waher and nat, which by means of a spannor can be set tast, when the
foed-wheel is placed in the beat position for foed-Whoel is placed the needle plater. When this is stirching, or juat abovent leser 169 may be put in its plece (when ill is taten to pioces to cloan, it is place (when sll is taken to pieces to aloan, it is
adrieable to put all the parts together, and test advinable to pat all she
them, before fixing in the machine). Now pat in the two feed clatotea 179, and oonvect their aprings
$1 i s \mathrm{~s}$, to the feod clatoh lever; holes or hooks are arranged for the oyes on the eade of apring to connect to. Now pat on the foed clutoh levor washer, its spring, and press in while patting the pin through the hole in the ond of loed wheel staj. Now try if ail a little at a time for a stort stitoh, and if the feed clatches are drawn baek by the springs, lively and with certainty, it not try one at a time. This part of the macto, and it requires a mechasie to repair it, or to got parto, and it requires a mechanaie to repoir it, or to got feed clatch maut bo hard, or it will not grip on the band on the aide of the wheel. This band must be band on the aide of if oiled in parts only it will make short and long stitches. Ou making cortain all is
right set ap the screw of the feed brake 177, until the wheel cannot bo pollod backwards by tho feed motion. Get the hand to jndge by practice the atrain required; for want of this nont the machine.
wear ont the machine.
All being right, set the feed enam 189, Fig. B, tewaris the reed wel, and the feed rider 175 will be made to 173 , to its hook ander the bed, and test it Now adrance the feed cone 182, by tarning its nat, 184, and all is ready for work. The feed cono cam is kept in its place from tarning ean the main shaft by a clot, in which slides a serow slong with the cam to prevent its twisting. Theed. The old feed difers only in the cone cam part, 182 . Instead of this sileat motion the action in part, old is by an eccentrio, 182, in Fig. A, tixed on the ond of the shall, 00 at to set om the and its rider 175). The eppor or short ond has a projection which can only mopethe length of the stituh projection which can ony move the length of the stitur in frout of the lever. The parts are shown detached in Fig. A. The darability of this feed lever is rery good, if the eccentric is oiled in the old machine. As it works well, boot machinists care little abont the noise of the feed. Indeed, all weil coacs in trate ase aes,
 good work done is cheerful, but silence with mach troable in working, or slow epoed and poor oarnings, is condemned by employers and employed.
The Hows Shetrly Mecranise conemits of 18 parts in the new, Fig. B, sad 11 parts in tho old, Fig.
A and E. In the latter the parta pre shown detached, the shattle 61 has on its batt end a hook or tail piece; between this hook and the batt end the shattle driver is fitted, leaving room for the thickest theread to pass osaily between the shattle, 61, and the hook driver link, 85 , Fig. E, whioh, instead of cliding, is simply
carried direct by the shattle
it carried direct by the shattle berr 78 ; it has on its
lengest end the hole to take the atial of the shattle driver, so that it will swivel slightyy, and in thus kept grided by the shattle race in a stryigts direction, while hae end of the lever 78 makes a ourved motion. To prevent the driver lifting out, a washer and pin below on a stad, 79 , as a centre, and is kept np to its place by a washor and pin. The stud is riveted into the bed of machine. On the short end of shattle lever is a hole into which is riveted asteel stad, on which rerolves the roller, actuated by the groove of the
shantle cam 74, adjusted on the main shaft by a screw. An inspection of Fig. B will show the parts in working. position, having the same reference numbers as Fig.
A pieces. This new shnttle driver is more ateady and A pieces. This new shnttle driver is more steady and
darable at its work. It will be seen the hook shattle driver 85, is here replacod by a slide. It bas a stad riveted in it to eomneet to the hole of the shattle driver
link 32, which has its atud working in the hole on the link 82 , which has its stad working in the hole on the
end of shattle lever 78 . The shuttle driver slide is fitted into a groove on each side of the shattle race Which makes it travel truly. On ite apper side is fixod
the shattle driver, and adjustod by two screws so as to the shattle driver, and adjustod by two screws so as to
work and clear the shattle. Instead of this plan to work the hook shattle, sometimes a shattle without hook is ased, and then the shattle driver is formed to
embrace the sluttle so as to drive it from both point and batt end, as in the Singor or Thomas's machines.
The Howb Nbedle Mrchanisy consists of 16 of the thread gaides. The detached parts are shown in Fig. A, old maohine, and all in place in new machine
Fig. B. The needle-bar 10 is drilled at the lower end to hold the needle, which is set fast by its screw 41 . On the opposite side of the screw a hole is drilled in the rato pieces are attached for gaiding the thread and leeeping the oil away from it. On the top of the bar
there is a hole or short tabo to gaide the thresd, and carry it ap and down with the bar. About the middle of the bar a projection holds a pin and forms a joint for the needle-bar piston 46. The piston end fits into
the hole in the end of the needle-lever 48. This is a very dnrable joint, but it is badly appliod, the centre pin and strain not being in the centre of the needle. bar; it is not only harder to work, bat throws the wear centre stad 49, and is bent down ward, passing throngh the hole in the bed, to the needie care 52 . In the cam groove fits a roller revolring on a atad rivoted in the needle arm.
Taz Howe Parsbra Mrchanzea consista on 9 part to lilt the old, and 10 in the now machine, Fig. \mathbf{B}; figures or designa, about twelve pieces mora aro added. For too-eap flowering this is neecied. Without this
lifting the presser or feeder at every stitch made, there is a great atiffness in handling the work, yet the
bnik of modern machinos, eapecinlly for fandily nae, brik of modern machinos, eapecinily ior inamily osse,
are so made, to nocid expeuse sonetimes, bat mostly are so mate to nroid expetse sometimes, but mostry
hecnnse of the imposibility of attaching mechanism that will keep in order. For general work there is a decined advantage in the pressor lifting of the work, or better still, as in Thomas's machine, nod its class,
the feeder itself lifting. In this machine the feader the feeder itself lifting. In this machine the feoder
mechanism is certainly complicated, but hog rinly a the same work could be done with 4 instend of 44 piaces, overy mechanic wonld prononnce in favorr of aimplicity, and every machine worker woald find far
less tronble. In practice the repairing of Thomas's machines often require no work to the feed, but the Howe seldom escapes withont it. The fact is here
noted in its place, and will in dro time be compared with othor facta to be bronght forward respecting other machines, bome of them cobbled with en ar
when new to prevent noise, bnt such that a few dars whon now to prevent show the makeshift natare of such contrivances.
The Hows Thrsion consists of two pieces in the old plan machine. A plate of steel Fi,. A 116 with a
larpe hole at the wide end, throngh which the thamb titch screw in pased to its hole. At the top, on the right hand aide of the arm, or nearest the arm sponl pin 5. The spool of thresi plaoed on this pin is passed
to the tension-plate, ontering a hole in the end, at the right hand of the thumb-nat, then passing its sile enters a serien of holea, to make friction according to
the tensiou reqnired, the floal adjustmout boing regnlated by the thamb-screm pressing the tensionplate 116, acttag as a spring nipon the top of the arm. Fig. A, the thread laying butween the plate and arm
is thus pressed with delicact. It is a good tension, bat is thas pressed with delicacy. It is a good tenaion, but
troublecoma to thread through so many hoies; to aveid this, the vew thread is tied to the weed up, and so drawn throagh all the holes quickly, bnt it is anato, Fig. C, aroids this it sonsiats of 12 pieces. The atand 117 , back plate 118, tonsion-whool 119, ith edges are formed sone
on onat like sar.toeth being boat alternately to lay in. The thamh-nat, 123, regulates the tension when screwed by pronsing on a washer, which actiag
on pad or cloth wasters, one each side of the tenyionWheel presses thereon to check its tarning, and is thas gradasted to the natare of the work.
Ready yor Work.-Fig. D represeate the npper ing it ready for work. 190 showa the throat-plate screw in one end of a narrow steel-plate. in the other eud is the needle hole, covering the zeedie-alot in the shantlle-race. To suit different sized needlos or work, there are two throat-plates, easd easily ohanget. By be resored or roplaced. Thor, neadio blatlo caa secures the needles, the bar tives ap and dot-screw be. tweon a front nnd a back cap-plate, the beek cap-plate beivg adjasted to the arm, so that by turaing, and ad needle can be moved nearer to ar from the thatele.
Thasad "Takb- Up."-At 83 tha coibd mpring wire. ond having an eyclet. 37 and 38 are gaido pins. From the spool, the thread. is pazaed to the tension, Fig. C; dram it ander its checi spring 129, that rests on the top of the tension stud 117, carrying the threal back until i rests against the chock epring 194, then pass the thread around the natide of that thension wheel
fine twice, then througt onee, or ig D, and thence into the slot at the top of the needie-bar 40 , thence do wnward under the thrend guide pin 3.4 , nad through the take-np evelet 32, and back again to the right of the lever pin 37, and thence through the guide at the end of needle bar, and, lastly, the oye of the seenle. The siathe piaced in positon, one tarn of up through the needle hole, and lay in the position shown ready for working.
[The jormution of the lock-stitch vill be arplainca ucoid perplexing the reaukr neetllessly.]
Before learing the Howe take-ap, it is well to notice that it is copied in many machines, bat for domestic bendink, and it will canse "slip-stitch" and other tronbles. The strain on the thread is regnlated by setting the fcrew whon the take-np eselet 32 is placed away from the pins 37 and 88 , abont lin. to 2 in. to the by the fingers, until exparience enables it to be done properly, otherwise to meddie with it will canse very property, ole indeed. The eyolot should be set for the mediam thickuess of fabrio; the travel varies for thick and thin. One of the nowest improvements is to make a self-acting compensation for this by causing a pin in the presser bar to act apon the side of the takeip, 30 as to prees it forward whon the presser bar is np, 20 as to press it
lifted by the extrater thickness of tabric. This is a volcome improvement, $*$ it prevente slip-atitch or breaking thread.
4 review of the foregoing description oannot fail to of the most and E illinstrate the principal parts in dotail, it is ne cessary to observe that all the items, such as scromi, pins, \&o., are not ohown, nor the holes in the parts, so as to enable noy one to mato the machine from this description. It is not a convenient machine to make, too many specill tools being required for the parpose, aud to be of any service the Howe machine matt have
good workmanship. especially the modern machine, aud the extra number of parto in it would make the for tsmily sewing. Fig. B, C, and D, if shown in detail, in all ita parts, woald conver an idea of immense labonr. It is nsnally supposed that Americans aim at simplicity in constrnction, and ecnnomical prodnction, but here, as in the Singor machine, we have examples to the contrary. Having speat thoosands ol
pounds in factory and apecial tools, auy change would pounds in factory and special tonls, nuy change woald binered better to continue to make the old plan, and udd cristly imprnements, rather than make an entire hnine on a new system.
Without connting
machipe machine, Fig. A and E. there are So eeparate parts,
aud in the modern machine $\mathrm{B}, \mathrm{C}, \mathrm{D}$, with vibrating presser, 130 parts. If the parts were merely castings centaining bat little work, then this complication wonld be nn otjection, bat as nearly erery part is machined,
and anme passed through several machines, the amount of labour far exceeds what is necossary for a sewingmachine ; and on consideration it really is astonishing to ind euch extravagant samples from the Araericans,
who are nanally allowed to be abore all othicr makers Throaghont the world in deviaing and makin: the most simple and ecomomical articles, en wing in light domestic machinery. The Wheeler-Wilson machine is nn exception to this oomplication, but its power is so
limited that it eanat be fairly connpared with tho Howe and large stager machiues, which are so well Howe and arge shager machiues, which aro so weine,
koown for doiag heovy work. The Howe clase machine, no doubh is deing nine-tenths of all the boots made, besides oficer work: the Binger class is also doing extersive nud consomot emplorment will be sare, in no distent tima to canse mennfacturers to consider the adriaability of adopting machines eimple in constrac equ: lily efective.

Some mannfacturers consider three years as the duration of a machime, and then replace the old with now, to beop up the quality of the wert, and save the enormoes cont of rapairy such complication entails.
When they are able to disoover machines may last four times longer, and be eqnally, or more effectire, becanse of simplicity and scientifia, constraction, then a great of eimplicity and beiention coastraction, then a great the English Mechanco eonvering thronghout the world valuable informationon this anbject, end reliable. because open to correction if error be advanced or misstatements made, the trath may be simply arrived at, while ments made, the trataned by the peraral of conflicting trade circalars is comparatively neebeas, secing nearly all claim to rend the hest meats have infuenced many to buy machines that are remarkable chiefly for the tronble they give the worker, and taeir money-wasting properties. clocks, and as
machines beoome as common as conser commonly nnderstood, better things for the users will appear; then paffing circulars and big column adverappear; then puffing circulars and big column adver-
tisoments will diminish, merit will stand socare, the best and cheapest will be sought and obtained, while the useless disappear.

P. SANTALINUS" AND HIS CORALS.

[4324.] - "P. Santalinus" mardepend on it that it takes not much "care" (letter 4240, p. 277) to avoid mentioning these "reef.bailding corals." Why should any reef is growing, then at what rate it formally grew. st what rate the crowth has bean eccelersted or retarded at each period for the last 80,001) vears (ar thatere age be is going to argse abont)-ovidences as to what kind of interraption a fall of frnah water moeld canse (they must have rather heary falls from tropical rains twice every year)-ovidence of the pressure it vould take to srrest them, of how long their growth has been nabroken, and a few other points, it uay throw some light on the Delnge, possibly on its amount. But whatover evidence is knores must be somowhere producible or reeorded. Why does he not tell us where? That wonld anroly be a less waste of yonr paper than asking me if I expect him "to beliere" this or that. I have no doabt he will believe with a very capacionsly "digesting faith" whatever he likes; but what on earth can it matter to any one else what a man
"believes," who is capable of believing hills and rales rounded off, with their convex and concare sweeps of half a mile to a mile radius, hy frost oracking tine strata (p. 290, letter 410.s)? His lest letter (p. 277) seems to imply we have someberty who has ived apon and watched oertain coral reefs long enough "th "report from personal knowledge," bow many Of conrse Agassiz nerer said ansthing so absurd. He hns, probably, discussed evidences aboat the said length of growth, and these would be matter of sciantific Bnt if he and proper to explain in a "Mirror of Science. is in no sense "Science", bat Donma; and the scoep tence thereof is Religion. Whatever is tatien thes, 00 What some one "reports from personal knowlealge" Whether the "personal knowledge" be that of Agaeni or of Brigham lonag, or oligion, a totally distine thing from science.
In the beginning of his letter "Santalinas" appears to and Arctio plants, be imitates matter of the Alpine Before any anch alpine facts, however, become "gnb veraive" of anything of mine, he has missing linto to supply. Firat it has to be shown that a new Alpu nime (indeed 60 centuries) without those same pecatior
plants. In the absence of opportunity for experianalogy at hand. Many plants, he prohably knows, analogy at hand. Many plants, he prohaby knows, are pecaliar to the sea-side felds, except that they also grow around salt springs, natnral or pumped up for
salt-works. In the heart of Germany are many altmines ani works, alwaye with these plants abnndast; and when a now mine is opened, be it hnndreds of miles from such planta, no sconer has the brine been at the
anrface one season, than the sea-sido plants appear. anrface one season, than the sea-sido plants appear.
Ther are as incapable of growing in other inland They are as incapable of growing in other inland
fields as the Alpine and Arctic plants in a rich lowland, fields as the Alpine and Aretic plants in a rich lowland,
or rather mare so. For Alpine ones conld probably or rather mare so. For Alpine ones conld probably competition of the many fitter to thoee olimates. Well, yor see, most planta have their seeds nearly micro-
scopic, to be conveged everywhere. Arctic and Alpine scopic, to be conveyed everiwhere. Arctic and Alpine
ones especially have them minute, abndant, and transportable; and their non.growth in a given place
no more implies the non-arival of their geed there no more implies the non-arrival of their seed there
than the aboence of sea-side plants in Oxfordshire imthan the absence of sea-side plants in Oxfordshire im.
plios absence of their seed; or than the (reported) plies absence of their seed; or than the (reported)
existence of but one plant on Lundon Bridge, a cherry stock, proves that no
been thrown there.
What Mr. Wallace means by "a perfectly distinct fanna" in two islands, I cannot toll. In the only accurate seuse I can give the words, namely, that no
animal shoald be conmon to them, I donbt if any two animal shoald be common to them, I donbt if any two conntries on earth bave been proved to have a "perfact of this kind is that stated in Johnston's Atles abont fact of this kind is that stated in Johnston's Atlas about
Borneo and Java, that on the former (the largest equatorial island, largest but one or two on earth, and absolvely largest cholly intertropical piece of land) no enake has yet been foand; while Java, its next neigh-
bonr, has the most ophidian apecies (both harmleas bonr, has the most ophidian epecies (both harmles the bearing of such facts on the Deluge questions.
E. L. G.

ROSCOE'S "HATFUL" OF COMET.
[4925.]-ON referring to Roscoo's "Bpeotram Analysis," second edition, I find, se I suspected (p. 277),
that the playful (or rather brufioonish) expresaion quoted by "Sigme" (let. 4193, par. 11) is modified by something that would have oponed any reader's oyes to its ebsardity. Copying one line farther woald have done e0, and eocordingly the "verbatim extract" carefully wrote Roscoe (p. 292), " whether there is as much matior in this comet [Brorsen's] as wonld fill this room or as much as would fill one's hint; and this monount of matter [rchat amonnt ?] is apread over an enormans space. The diameter of this comet has been detormined
for me by Mr. Baxendell, who tolls me that it is about 60,700 miles-an immense apace over which to spread so small an smonnt of substance." The rioh Hibernicism of this whole extraot, when one comes actanlly to write it down, is really too much for me, and leads me to the bnffion as muck as" our "Sigma." I mast frankly coquit "Sigma" of rivalling, or as yet approaching, this bit of professional logic. The cream of the fan is that instead of a measure of mass,-instead of naying "we know not whethor there is!' a ton or a handredweight, Roscoe pitchos upon that sole kind of measure,
for the cometary matter, which was known. The onls thing popularly known about it was, not indeed how much matter, but what space it flled,-not how much more than a ton, or a billion or a trillion tons (each equally probable), bat simply and directly, how mach coording to his or a room it "woald fill" -namely, miles. All that he can bay of the matter, densa or rare, is that it does fill these $60,700^{4} \times \cdot 5: 36$ cubic miles. occupies these billions of cubic miles,-we know not chether much or littie for them)-" is spread over an enormons space" " "Mr. Bexendell tells me,"to spresd so small an emonnt of substance "! He had just as mach groand to say, "a every little space wherain to compress $\%$ grcat an amoant of air or vaporoas nubatance "
For anght that any astronomer knows, that very comet's "inappreviable" mass exceeds an equal balk of Herschel's "Familiar Lectures" (p.132) it will be found Herschels "Familiar Lectares" (p. 132) it will be found (this is noither of thom), have approached near enongh to planets to have made their masses appreciable had they exoeeded (eccording to Mrs. Somerville and HamWhich latter I fiud in Chambers's "Descriptive Agtronomy" set down as 6,069 trillion tons. Either of th se tw comets then, for anght yet known, may contain un lions ! and still have their mase inapprexiable.
But I need not have said (p. 277) that poasibly the allowsble, that possibly the comet is not finoun to con tain more, A heavenly body, thongh of mass "inapdsye it is observed-mach more to make, like Brorsen's comet, whole observed revolntions-have very many times the mass of the same volume of cosmio flaid or ether. Now, Sir William Thomeon showed in a paper On the Poseivle Density of the Laminiferous Mediom, that its density cannot be below a limit he there compotes ; asd he seys "it is aloo worth observing that the onationation of the terrestrial atmosphore wonld be in interplanetary encee, if rareited according to Boylo's
aw almays." His conclusion is, "A ponnd of the medinm, in the space traressed by the earth, cannot side. The earth itself, in moving throngh it, cannot displace lese than 250 pounds of raster." That is not weighing the ether by its gracity, observe (since it must bo non-gravitant) but its ivertia density. Well, then, $\cdot 5236 \times 60.7^{3}$ of the above eubes, you ree the very cosmic fluid or ether oncupring thnt npace must not be under $60.7^{3} \times \cdot 5236$ pounds-that is, close on 284,000 ponnds, or 100 tons; and the comet's own mass, cosinerlin, but elso visibly gravitation downward, oonld not be nuder a very great many ench handreds of tons, withoat being rapidly retarded and brought to a standstill. These, at liast, Professor Roecoo has to get into his room or hat. E. L. G.
It is really s pity that $\alpha 0$ nble and no industrions a writer as "E. L. G." shonld so freely ntter provocative
words. Wiy call "Sigme" a "baffoon" or "bnfioonish"? We believe "Sigma" to be an earnest and sincere nearcher after trath, as mach so as
"E. L. G." It is the easiest thing in the world to call names and nge exasperating langume; and the lowest porter in Covent-gurden, as we can testify to onr sorrow, can beat " E . L. G." in that line any day. Bat
it is not so easy to ppeak with propriety and precision Wisdon, as a prle, is moderate, and strength, as a rule is calm. "E. L. G." has launched a thoory as to the canse of the Delnge ns recorded in the Old Testament, which natnrally crokes spirited criticism, and he mast not expect that overy one who opposes him is necessarily a fool, or hostila to him personally. As he gives in retnen. Ho eers a might fairly oxpect hard from the shoulder," but nnprepared for reciprocal action. More thar once "E. L. G." has wisoly deprecated wasting orr space. Miaht he not economise fragmont of it, and fragments of correspondents temper as well, hy a less generous use of inevitably irritating epithets? If he did so his wealth of learning, his couraze, his enthnsiasm, and his "devouring activity," woald com-
mand the admiration of a still lurger circle of readers. -End.]

ON THE RTFLING OF GREAT GUNS.

[4326.]-NOT being a scientific artillerist, I shall be grastly obliged if "Artillery Captain," or "any other man who knows, wiu correct any errors I may inadimportance of which-antil all men become Ohristian -reems to jastify its ventilation.
I believe most of our great gans are riffed on the American plan, otherwise known as the French or (2) of which seem to be very problematical, for it is open to the objection that the rotation of the projectile depends on the employment of soft metal studs, usually inserted in holes bored in the ehell, which must necessarily weaken its wells, anless the oasting be re-
inforoed where those holes are drilled. Increasing twist where those holes are drilled. projectile be wided by objectionable; because of which is neces sarily in practice some distance behind the other, they cannot both be made to fit the grooves of the rifling, simply becanse the cast-iron shell is a trife too rigid to enable the ganner to twist it while it is being rammed home. To enable shells thas gaided to be of studs is usually made considerably smaller than the other, so that noarly the whole work of rotatiag the projectile is thrown on the hinder series. This prevents the twist from being increased sufficiently to insure the rotation of shells whose length mach exceeds two and a half diameters-in other words, it limits for a given calibre. Ithink this a fatal objection-not to mention that drilling holes in shells and fining stads shell itself, which might be done were it not that soft metal is a necessity for guiding shells in guns with increasing twist. It is
I have taken some trouble to learn what the advan. tages of the increasing twist are; bat I fear, like the Spanish fleet which could not be seen becanse it was out of sight, those advantages are quite hidden from ont of mind" was the good old practical rule, especially in the case of our friends; but the advantages of increasing twist, although to me quite out of sight, seem by no means ont of the minds of those who direct the construction of our great gans (probably because their minds are characterised by a considorable, not to say an "increasing" twist), but however that may be, is not enough for modern long ranges with greatly elongated projectiles.
Probably the original "Yankee notion" we imported Was that if the grooves had little or no spiral inclination near the chamber, putting the shot into motion would be less resisted, which is quite true. It is also quite true that this is not (when proper powder is ased) of the slightest practical importance. Wore the powder is converted, developed before the shot commenced to move along the chase, it wonld be no more than reasonable to employ some means (not necessarily this menns) of diminishing the rosistance to its motion, or what is far preferable, preventing no rapid development of pressare, which is the very thing we do when We employ priamatic or pebble powder. Practi-
cally, nothing of the kind happens; the maximum of
pressure does not obtaia until the projectile has trarolled eome distance, mavally from hall to two-thirds forward motion, which regults foom matieg the to it of the rifing as great at the ohamber as it is now made st the muzzle, would not dangeronaly increase the train on the gan, in fact, it would ensble ns in prac tice somewhat to diminish that strain, for a smaller weight of powder vonid expel the projectile with tho same velocity it now obtaing, becanve a miform twist does not resist its expalsiou nearly so much as an in oreasing twist does. N. B.-This fact was proved by many experimental triale.
Incrussing twist is a nommon cause of the gen's dostraction. Several of the Americas "Parrott", geme thus rilied had their mazzles blown or at the siege of Charieston, and one 8in. cast-iron gau employed at Sebastopol snflered the seme rather rapid method of shortening its chase, bat it is some oomfort to benero ent Christians (who invaripbly do good to those who deapitefally une them) that this "Whistiong Dick,
our men denignated it, asterwards did very good service as a howitrer.
I have already mentioned that among the evils of increasing twist, diminution of range is one, and not the least. Burning the same weight, 25ib 'i of the shell with a velocity of $59 f t$. per seeond, greater then the Woolwieh gun of the same ealibre did; it would consequently have struck a blow 188 foot tons hes viorm or what comes to much the eame thing, it would have sent its shot considerably farther, for cateris paribue range depends on the rolooity with Which the projectile leaves the mazzle of the gan.
We are told Bir J. Whitworth hae anceeeded in casting shells whioh fit his new kan with eaficient accaraoy ust as they leave the mould, or rather, I oping, as khey dic., another man-oan do," to as soft stads are net a necessity for gans rifled with aniform twist, I prosume Woolvioh ean rival Manohestor, and oast ahalls with continuons spiral ribe on their ontar sarfeces. Such ribe, being part of the eaetiong, rather ateengthen then weaken the walls of the sholl, and acid notring to however, as the shell, if eath in eand and monlded vertically, would have to be vithdrawn spirally. meohine moulding woild, as nemal, be preferchio to hand labour, ospecielly for lifting the pattiorn or medel ont of the sand; but I suspect in preatice metal monlds woald be generally employed, and they may be formed in any namber of parts required to ensble them to be taken away from the easting, even if the latter coald not be withdrawn from them by having apiral motion commanicated to it; however, I eee no preotionl dien. commanicated to
oulty in doing this.
I surpect it would be dimerlt in praotice to cant oon timaons spiral ribs, even in metal monids, which would ft the grooves of the rifting like planed ribs do, and, ae planing is costly, and wo can do withoat it, I think it would be well to cast the ribe with these surhaces, Which bear againat the grooves nomewhat vert the continuous ribs into two ceries of stads; vort the continuous ribs into two ceries of stads; long studs, indeed, so long that there would be no lang stads, indeed, so long that there would be no are whose bearing sarfsoes are usually too small to endure the pressure they aresmbjected to. In conclusion I beg to inquire if there woald he anyinsuperable preo tioal difficalty in converting Wool mioh guns into gang with uniform twist, provided the twiat be not increased Of couree, it could be done if they were bored out about the depth of the grooves larger. If this be done, the new bores might have any amonnt of twist required oven for projectiles tre or aix diamoters long; but I Lear our guns are hardly gtrong enough to bear thin treat morced into the old onee after boring them, and their oalibres thus diminished

The Harmoniots Blacigsitti.

BIMIIARDS.

[4827.]-I bEG respeotfully to suggeot that a few articles on the science of biliarde (if not written 600 scientitioally) would be cooeptable to many of year readera. I have reounthy beon trying to parrohase a
book on the gubjoot, but ean get nothing betreen a worthlone bandbook, price 8d. and a thiok tomo, price 80.

AURORA.

[4828.]-On June 8, 1872, at 11 p.m., a fline aurora, oxhibiting a pale, delicate, silvery-gray light, was observad at Walthamstom. A perfeotly vertical recti-
lineal, but not very broad, atreamer nearly coincided With the mot very broad, atreamer nearly coincided
manctic meridian. Shonld any of the mimerons readers of the ExGlise Nscianic have observed this angora apectrosoopioally and will kindly communicate a notice of the lines seen, with a
meanarement of ware length, the observations may be of sarrice.
While annocancing this aurora, I may jast note that from the rosearches of Loomin, it appeara that the number of zarorem has maximnon and minimum aboat evory tan yoens, and this is oonfrmed by Donati. It is a singalar circemastance that in the pariod of ten years thero are two or three oonsoestive yeara daring
which fine aurorw are seen in plecos which are not vary near to oithar of the polos of the earth. The
heights of aurore vary from 80 to 180 miles. "What," heights of aurore vary from 60 to 160 m
aice Donati, " oxiges at these heights?
W. B. Biet.

TIME MEASURERS.

[4329.]-Last month's Argosy contains an excellent article on the above subject, and believing that the article is one that will be of interest to many, if not all, of your readers, I give a condensation of it. the earliest ages to find the time wonld no donbt be by noticing the movement of a shadow from a rock, sc.; but as the world grew, a more minute division was essential. Pliny said that twelve years before the war with Pyrrhus, a sundial was said to have been erected at the Temple of Quirinus, and this dial served for ninety-nine years, after which one more minutely defined was placed near it. As this wonld only serve when the sun shone, a water-clock was invented by the when the sun shone, a water-clock was invented by the
Greeks, and introduced into Rome about 195 B.C. The water clock consisted of an earthenware or metal Water clock consisted of an earthenware or metal
vessel perforated with a hole, and filled with water, vesse perforated with a hole, and filled with water, with lines denoting the hours, as the water rose to the level of the mark. In the Athenian and Roman Courts of Justice the water clock was nsed, the water being in three portions, one each for defendant, probecutor, and jadge. The next mention of a sundial was that erected by the Emperor Angustus in the Campus Martius. In the middle of the third centary an Alexandrian invented the hour or sand-glass. King Alfred the Great measured time by wax tapers, marked off and denoting the hour as they barnt from mark to mark. The first clock showing the bonr on the dial, was supposed to be one sent by Pope Panl as a present to Pepin, King of France. Then one is mentioned as invented by Pacificus, Archdeacon of Genos, in the ninth century, that indicated date, day, and phases of the moon as well as the hours. But the most splendid amongst the early specimens of horology was the clock presented to Charlemagne by the Caliph Haronn-al-Raschid. Tis case was of brass, damascened with of each hour an equal number of iron balls fell on the of each which sonnded, and immediately twelve windows opened, out of which proceeded the same number of horsemen, armed cap- α-pie. After performing various evolutions the figures withdrew, and the windows closed. The motive power was water. After remarking that it has never been clearly ascertained where or by whom weights were first anbstituted as motive power, the article adds, the invention mast have remained imperfect, as little use was made of clocks in the 11th and 12th centuries. The first allusion to a atriking clock is found in the "Usages de i'Ordre des Citeanx," compiled about A.D., 1120 . In the eleventh year of Edward I., A.D., 1228 , the clock-honse, near In 1286, the first clock was erected in St. Panl's, and in 1292, one in Canterbary Cathedral. In the reign of Edward III. protoction was granted to three "orlogiers." An impulse was given to clockmakers in the fourteenth centary, and the art from then made steady progress; about this time weights and a fly-wheel began to be
made for private use. About the end of the fourteenth centary, the spiral sprinz (a band of fine steel rolled in a drum or barrel) was invented. Watches Tould now begin to be made. One watch is mentioned in the sixteenth centary set in a ring, and in 1572, Parker, Archbishop of Canterbary, bequeathed to his brother a walking-stick with a watch in its head. Henry VIIf. had a watoh that only required winding up every eight days. Watches were mostly oval in
shape and of exquisite exterior, and coffins and death's-heads were also the forms nased. A death'shead watch, belonging originally to Mary Queen of Seots, is still extant. In 1540 , the fuse: was invented. Bat even in Shakespeare's day pocket dials were mach used. In the reign of Charles I., a charter of incorporation was granted to English watchmakers, forbid-
ding any clocks, watches, or alarums, to be imported ding any clocka, watches, or alarums, to be imported
from any other country. In 1639, Galileo Galilei published his discovery of pendulnms, and the penduthe inventor of the pendulum in Hayghens was not regnlator in the most scientific manner. In 1641 , Richard Harris invented a long pendnlam clock, and this, or a similar one, was put in St. Panl's Charch, maker, invented the repeating mechanism, by which the hour last struck might be known by palling a string. The anchor escapement was added by Clement in 1680 . In the eighteenth centary further improvements were made, and Jno. Harrison constructed a chronometer which determined the longitude within such limits as to procure for himself the Parliamentary reward of $£ 20,000$. Other interesting particulars and anecdotes are added, which I have omitted for fear of encroaching too much on your space. I may add that the article is well worth the perusal of all your readers.
Farnworth, near Bolton. Fred. W. Briscos.

TIN BOXES TO HOLD COPPERS.
[4330.]-I sEs that in large grocery establishments coppers are connted out in five shilling bundles and ceiver a sufficient means of checking the amount, as it is awkward to break the paper and count them over again, althongh the initials of the sender placed on each bondle may be given as a gaarantee. I propose that small tin boxes of a cylindrical form, having a hinge at the end or along the side, as most convenient. and stamped with a maker's name should be used, each to have 30 divisions; each division should be large enough to bold one penny loosely.

Philanthiopist.

ORNAMENTAL TURNING.-XII.
[4381.]-Having described the mode of tarning and ornamenting emall table pillars, I may not be out o place if i describe the easiest way to finish off the table
by making and turning the top. Procnre the wod reqnired for the top, make good joints with best glue, the more joints the better, if good, as that prevents the table top from warping or twisting; when the joint are quite dry (by the way, do not dry the joints to quickly, near a fire is best) plane off the top smooth veneer top be twisted, stand jt before the fire a short time, having previonsly damped the other side, bat if the twist cannot be removed by ordirary means, the following process very seldom fails: If the table top is 20 in . in diameter, tarn a piece of wood 16 in . in diameter, as a back board; bore four holes tin. from the the centre as possible (by upon the top as nea means of so doing is to mark the centre of the top with the compass point, stick in a bradawl minus the handle, carefally lay the back board so that the awl is the centre of the hole in the back board) then fasten the board to the top with stont screws ; by that means a table top can be invariably drawn flat position by monldings are turned, kept in a fal descriptions of mouldings suitable for small fancy as

well as coffee tables. No. 1 is called an ogee and thumb monlding; No. 2 is a doable moulding adapted for carving. By the way, a very simple mode of ornamenting such monldings, where the amateur is no ap in carving, is to purchase one or two stamp panches, and stamp the mouldings; if care be taken in the execution of such, a very pretty effect can be had. While upon this subject, I may state for the in formation of our readers that veneers can be parchased very cheap, and of suitable sizes to suit the amatear if a fancy top be required, the pattern can be pur cassed entire, such as dranght boards, basket of flowers, and in fact, every variety; the veneers are laid on paper, and in laying such veneers care mast b upwards, as when dry can be removed easily apwards, as when dry can be removed easily. The
veneers for such tops vary from 9s. to 10s. each; in laying such veneers use a zinc cani, place the tops hand screws. Sayukl Syither.

GRINDING TURNING TOOLS.

[4392.]-As amateur tarners require their tools ground more frequently than their more proficient brethren, a few hints may not be out of place. In the first place, if the amateur cannot afford two sets of tools for hard and soft wood, he must grind even more requently; if at all possible, use a large grindstone with a moderate supply of water; if the amateur cannot obtain or has not a large stone, an 8in. dry stone can water on the lathe, but at a slow speed; do not use and as the tool warms, plange it in the water; do not by any means allow the tool to ehange colour, or you will alter its temper, and very likely your own, when using the same, bat as good tools ar and as the amateur may not always have help at hand

to turn away at the handle, I send sketch of a simple way of doing without extra help; the sketch will above description can readers. A grindstone of the made and fixed for 10 s ., or those who wonld rather bay than make, can purchase one ready for work for f1. For wet grindetenespurchase a bilstone ;if required 10 work dry as described sbove, state so on parchasin one.

HORSE POWER.

[4333.]-I AM directed to forward yon copies of a etter addressed by the Board of Trade to this Institntion on the sabject of nominal horse-power, and of the reply thereto, and I am te express a hope that yon may English Mechanic

Adrlan Vizetelly, Assist. Sec.
Institntion of Naval Architects, 9, Adelphi-terrace. London, W.C., June 6, 1872.

[Copy.]

Board of Trade, Whitehall-gardens, March, 22, 1872.
Srr,- I am directed by the Board of Trade to inclose some copies of a Memorandum on "Horse-Power" of Steam Engines. Representations have been made to the Board that the term "nominal horse-power" conveys no definite meaning. This term occurs in Section 5 of the Merchant Shipping Act, 1862, of which a copy is inclosed. The Board of Trade will be glad to receive any observations on the subject with which the Conncil of the Naval Architects may be able to favour them. If some understanding can be come to on the point, a definition of the term might be agreed to which will be accepted not only by the manufactarers and asers of engines, bat by the Legislature in the event o the term " nominal horse-power" being retained when the Statate is revised.-I am sir, your obedient set
(Signed) Thomas Gray.
The Secretary, Naval Architects, Adelphi.
Institation of Naval Architects, 9, Adelphi-terrace,

London, W.C., Jane 4, 1872 .

Sir,-In reply to your letter (M) of the 22 nd March, in which you ask for certain advice with respect to the term " nominal horse-power," I am directed to inform yon that the snbject has been carefully considered by a Committee of the Conncil of this Institation, with the following resalts :-The oommittee were unanimously
of opinion that the "nominal horse-power," as at present ordinarily used for commercial purposes, conpresent ordinarily used for commercial parposes, con-
veys no defnite meaning. They were also unanimons veys no defnite meaning. They were also unanimons
in considering that the proposals contained in Mr . in considering that the probosals contained in Mr.
MaeFarlane Gray's pamphlet conld not be reeommended for adoption. The majority of the committee mended for adoption. The majority of the committee were of opinion that no formulm depending apon the furnaces could be relied npon as giving a satisfactory measure of the poyer of an engine, and that eren if measure of the poyer and boilers now in use conld be comprised under one general expression for the be comprised nnder one general oxpression for the
power, the progress of invention woald soon vitiate any such expression of formula. The entire abandonment of an old commercial stardard, such as "nominal horse-power," however inaccurate, must be a matter of considerable inconvenience, and accordingly great attention was given by the committee to the question whether that standard could not be amended and retained. Among the many plans considered, not one received unanimous or even general approval. That which met with least objection was that the indicated worse-power, as ascertained on a trial trip, shonld be taken either as the "nominal horse-power" or as a basis for it, being divided by a suitable divisor. The committee were of opinion that for the purposes of the Act, if any standard at all of horse-power is to be nsed with reference to the engineers, it wonld be better to
name 400 "indicated horse-power," in place of 100 name 400 indicated horse-power," in place of 100
"nominal horse-power." The committee were also "nominal horse-power." The committee were also going ships should be required to pass some examinaion, and the conncil think it desirable that this Trade.-I have the honour to be, sir, your obedient Trade.-I have the honour to be, sir, your obedient
servant, (Signed) C. W. Merrifield, Hon. Sec.
The Secretary, the Board of Trade,
Whitehall-gardens, S.W
OUR SUMMER VISITORS.-THE NIGHTINGALE.
4334.]-Living in the East Riding, I am told that the nightingale is, thongh rather rare, yet not anknown, and a clergyman has told me that he has heard two about three miles apart, singing all through the
spring of 1870 near here, so that "Avon's" statement spring of 1870 near here, so that "Avon's" statement
(page 197, let. 4088) woald appear to require modificapage 197, let. 4088) would appear to require modiaca-
Hedrra.
tion.

RECURRENT VISION.
[4335.]-Mr. Petrie (let. 4272, p. 282), in his remarks on Professor Young (see p. 190), overlooks a fact that should be noticed. Continuons sight require but eight pulsations per second on the eye. The repe-
titions of light observed were more faint each time, and titions of light observed were more faint each time, and
rarely reached a fourth. Cannot this be accounted for rarely reached a fourth. Cannot this be ascounted for
by external canses? The Leyden-jar sparks of the Holtz machine reached 9in. in length, and the intervals Hotz machine reached 9in. werg less than $\frac{1}{4}$ second each. Conld recurrence resalt from reverberation of the cosmic flaid, as echo results from reverberation of air? Was there no spherical concavity in any part of the room, and was not the Professor in its retlecting focus? May not even a fat surface, after a very near
and extraordinary electric-shock, reprodace vision in the way that sound is refiected from the flat sarfaces of an empty room?
In Professor Young's experiment, the intervals of darkness were that the real intervals in less than $4-1=$ th of a second. Does not this admit of the supposition of its arising from other reverberation? ${ }^{\text {J. Barwick. }}$

[4888.]- I trix now proceed to speak of the management of Larva. Firaty, the cage demands our attention; rery cheap and serviceable cages may be made from boxes parchased for almost nothing at the groeer's, and haring a piece of perforated zinc substitated for the bottom, and a piece of glass in the
top, the cace being stood on end when in aso. I shonld top, the cace being stood on end whes in aso. I shoold live in. Ol course the cages can be divided into suitable compartments. The food shonld be put in a little bottle of water to keep it green, and there should be a small box of damp earth in the cage for such larro as like to enter it, to tarn to papes. Concerning the earth, I think leal mould is as good as any, though many soils aro recommended by many collectors. Cuncarning food, piecos shonld be rathered from the plants on which the larres were fonnd. However, this is sometimes not easily obtained, and I then rocommond
alliod genera of the plants, which may be found in alliod genera of the plants, which may be found in botanical books, for these aro ofton usefal. Next may be mentioned general favourites; by these I menn foand sallow and backthorn generally liked by Geometre; lettuce, birch, plam, and others by Noctuc. The food shonld be gathered early in the morning,
while it is moist with dev, but wet food ahould not be given to young larve.
Many larros are very apt to be lost when new fond is given them, as they oling to the old lood and hide themeelves in it, so they are overlooked and thrown amay. Hybernating lerve should be left vat of doors all tho winter, and hairy onee nhonld be kept dry, or
 thoald be kopt moist daring the wintor. I mast cans. Sactilitia, and otheri, which should be Copt in cages by themsolves, or they fill derour all others that are with them. Some, at the pace and kittens, nibble of eeeh other's tails when kept in confnement. The larva of Cosous ligniperda ehonld have a piece of a branoh of ash that is green given him to feod on.

Larro have many ailmonts pecaliar to them, of watal if will men fatal if the eggs are laid in the larra, lor it is anre not Next, larve have a great liking for committing suicide by drowning, and this should be avoided by fllling the month of the bottle in which the food is with oork. Thirdly, hairy larra have often been attecked by a fangas produced irom a demp atmosphere, and when larve must dia. Larve may be presprved by being larved must dio immernion in epirits of wine, and then have the eontents of their body extracted and the case filled | with wool. |
| :--- |

A CLEAN PIPE

(4837.) - I mave read all the prosoriptions for this laxury which have appeared in the Meceanic, but have eoon none 10 simple, inexpensive, and effectaal, as the following:-Cat ap with a pair of anger-nipperi common charcoal into bite aboat the sizz of a pea; place two or three bite-more if a half pipe only be wantod-into the bowl, and all up with tobscoo. The
latter will be found to bura more freely, vazocompanied by any wheozing or babbling soand; the charoonl. when the pipe is inished, will have absorbed all the oil and saliva, and the tobacoo will be wholly consumed. By this process, there will be affected a saving of at least 20 per cont., an there will be no wasto in tho ohape of the aodden mase of unconsumed tobacco usually left at the
bottom of an ordinary pipe.

SAFETY LAMP FOR MTNERS.

[4388.]-THE objection to Mr. Plimsoll's lamp (let. 4234) that it would be an inconvenience for the light to go out when brought in contact with gas, is not a ralid one. Compared with the lese liability to an explosion, the inconvenience is bat dast in the balance. Dary's lamp may be an excellent one for measaring the
strength and quantity of an aczamulation of gas ; but strength and quantity of an aceumulation of gas; but
its anfiness for the working miner is proved by the faot that it is now little need. At the comparative ex. periments that were made at the Oaka Colliory, shortly aftor the great oxploaion, the Dary lamp was declared Che least gate of the whole tried, except, I believe, the
"Clany." The lamp wanted for the anintelligent "Clany." The lamp wanted for the anintelligent miner is one whigh is salf-extingoishing in an accuma-
lation or a current of gas, and aleo in the act of being apened.

Assistant Manager.

SILVER FILMS FOR SUN-SCREENS.
[4339.]-Tuovar an able and esteemed Follow of our society, the R. A. B., generally writes to excellent parpose what he has well considered, I think the question he has addressed to mee (lettor 4225) is an exception to this rule-Nemo morlatium, do. In reply, I bes to eay that I loave to him the experiment of smoking the geld-lences of his ejo-pieces, at I have too great a
rogard for mine. I must add that I do not "adrocate" rogard for mino. I must sdd that I do not "advocate" absorbing light and heat by silvered glass san-bcreens, and that, on the contrary, I aim at their reflection.
The diference between a coating of lampblack and one The difiference between a oosting of lamplack and one of the most brillinnt silver is aboat as great as can
vell be imagined, the first being the best absorber and Tell be imagined, the frat being the best absorber and
the worat reflector of light and heat, the latter their worat absorber and beat relector.
Rompey, Jane B, 1872
E. I. Berthon.

BELL PIANETTE.-To "ThE HABMomots Blacysxtri."
[4340]-I Ax now in a position to falal the promise made at p. 275 of the present rolume. The name of the orifinal patentee of the instrument, of which the
above is a modification (?), in Charles Clagget. The above is a modif cation (?), is Charlos. Clagget. The
specification is No. 1664 , dato A.D. 1788 , at p. 4 , eighth specication
improvement.
B. Bottong.

WIRING GARDEN WALLS.

[4341.]-Have any of "our" bortioaltaral or gardening readere ever tried the French plan of wiring walls and arecting trallises for training fruit troes ? Some time aince I was atrongly recommended by an iriend to try the plan, whioh has answered very I know of no way whereby one may so highly improve the garden coltaro of the pear as by paying more garcon caltaro of the pear as by paying moro
attention to it at an espalier tree. This in the opinion

of many of the best frnit growers in Britain, who agree that there is no finer frait than that gathered from well managed eapalier trees. To form the sapport for their eapalier frait trees, the French have adopted the syatem, which will at once be apparent to all readers of "orrs" as a cheap, neat, and everlasting method. All
the attinge are galvanised, No. 14 boing the best size the fttinge are galvanised, No. 14 boing the best size
wire for wall. For straining the wires a galvanised wire for walle. For atraining the wires a galvanised raidiaseur is used, as in Fig. 2. I may mention the
intermediato standard and terminal post have selfintermodiate standard and terminal post have self-
fixing bases, and the wires I have placed 8 in . apsrt bat firing bases, and the wires I have pla
of course the distance can be variod.
H. B. E.

THE PIANO ALLIANCE.

[4842.]-Trose of your readers who recently ex. proased a deaire for cheap pianofortes will find some little hope that their wishes are aboat to be mot in a conple of pecimen natruments on view at the Intercompass have been sacriticed to a saving in ball and oostliness ; but here if a short description, and zome of your readera may probably pay them a visit, and give us the beneat of their inspection. There are two Bitisments, one of in. high, which severally stand in spacee of 2 ft . 8 in . 8it. 1 fta . Bing., and in 3ft. 8in. by 1ft. 8in., and to whieh
by are afiled prices that ought to make one or the other aro minxibl prices that onght to make one or the othor accantiest atudy. Instraments are also spoken of as acaniest entuay. Insiramente are also spozen of as being forthcoming, of the same compass, bat of the
shape of the epinet. It is claimed for these comparashape of the opinet. instruments that all the pianoforto masio best worth plasing in within thoir compass; bat of this I know nothing, and shall feel glad if any of your readors can supply farther information
K. T. L.

DUPLICATION OF THE CUBE.

[4848.]-Is 1863, I fonnd that $3 \sqrt{-1}$ is noerly equal the square root of $0.933+0.859$ or 1.5874 -i.e., $1-25992682$; the oxcess being -00000,526, about $2 i$ millionth. Since 1.5874 is 1.26 aquared, lese 0002, take this conatruction. Biect a line SH sacoosaively $\mathrm{SH}=1$, so as to get its 64th part z Ha. Henco, uquare of $\triangle H=$ chord $\triangle F$ in circle diametor $8 A$, the sapplementary ehord SF $=\sqrt{1 \cdot j 81 t}=3 \sqrt{\bar{y}}$ to a 2! millionth.

To And the unit of which $S A=1 \cdot 26$, bisect $R H$ in $C, C A=A R$, chord $K A=$ radias $=K E \perp$ on

 namorically approximate.

IHE PALEOLITHIC AGE AND PRIMITIVE MAN.
[4344.]-TrI Palmolithic (or "first rtone ") age was a period in thich, according to sir J. Labbock, "man nsod rade implements of stone, which were never polished," and in which "he was ignorant of pottery, and of metals " (See Lubbock's Introdnction to Nillson"s "Stone Age of Scandinaria.") Will those
definitions stand the test of recent facts? I think deffni
not.
First, it is an andonbted fact that pottery has been found in cares which are olagsed as Palmolithic. In a cave at Pondres in Languedoo, pottery was lound in a atratum older than that which contained remains of Palmolithic mammalia: M. Rochebrune lately tound pottery in the Rancogne cave日 mixed with the bones of the cave-bear, and cavo-hy ena ; at the cave of Frontal M. Dapont fonnd pottery and the bones of the aarebear together; in Bavaria a cave has jast been opened, in which pottery was fonnd mixed with the bones of the lion, oave-bear, and hymas; and so often did Dapont find pottery in the Palmolithic cares of the Lesse that he derotes a special section of his work to its description. Now, if cave-evidence is worth anything at all, we have proofs that man made pottory in an age when tbe rhinoceros, cave.lion, mammoth, and care-bear existed, and as Sir J. Labbock himself tells ns that these animals characterised the Palmolithic age, it follows irresistibly that in the Palmolithic age man did make pottory
Sir J. Labbock, it appears, admitted in a recent address to the Anthropological Society that pottery had boen found in Palmolithic cares, but he said that these were only "exceptions." This is amusing, for Sir John is taring for granted what he ought to prove; these fragmonts of pottery in the Palmolithic caves are exceptions only if his hypochesis is trae, bat not otherwine, and to aserme that man made no pottery in the first atone age, and then to call the facta brought against that assumption "meroly exceptions" is to beg the whole question in dispate. Socondly, it is also a fact that polished stone weapons havo been found in Palmolithic deposits. In a gravel pit in Charento in Weatorn Franco, a few years back, I iragment of a poished stone nd tichorhine rhinoceros ; in bones of the elephant, and the the same age, a polished stone ingtrument was aleo found; a hatohet perfectly polished was foand in the dilavial beds of Loire-otChère by M. l'abbe Bargeois ; while in the dilavial beds on the shores of the Lake of Soing polished stone weapons werc foand. Not merely have the gravel bede yielded these polished tools, bat M. Rochebrane has found them in the cares at Charente, and he states that the poliebed hatohet found in the gravol beds of Romt was jast like the ordinary type of polished stone hatchots, and that these polished tools 0000 y in the
valley gravele, mixed with the bones of the mammoth and rhinoceros.
Now, Sir J. Labbcek says that polished hatohots " do not occar in the river-drift gravol beds, nor in association with the great extinet mammalia " (Nillson's "Scandinaria," p. 23), bat the instances giren abovo Nhow that this statement is now quite incorreot, and as these velley gravela in which the polished hatohete are found are andoabtedly of Palmolithic age, it followa that man made polished weapons at that time.
But now lot us go a stop farther, and ask the quesHion On what evidence is the opinion founded that Palmolithic man mado neither pottory nor poliched weapons, and that he was ignorant of the metalis ?" heve na that it reste on negative evidence alone. We bave not found these things in the Palmolithio deposits, therefore they did not oxist at that time. But every regard negows that Sir C. Lyoll and sir J. Labbock liere in the extreme imperfection of the geological record; how, then, does it happen that when they approach the questione of the antiquity and primitive condition of man, they auddenly change front and say that negative evidence which in palmontology is almost valueless, suddenly in connection with primitive archmology becomes so very valuable that a whole sories of claseifications can be based on it? The valae of negative evidence is thas expressed by one of the best known of modern English geologists:-"The absence of fossils of a certuin kipd, assamed because such fossils have not yet boen determined, it no prool whatever that the animals which would have left them did not exist." Very good ; then we ask that in common fairnese this principle be also applied to primitive archeology, and we say in the same worde, "The absence of pottery and of polished tools, assamed becanse sach relics have not yet been discovered, is no proof whatever that these relics were not made." If Sir C. Lyell's principle is good in the silariar or Carboniferous period it is also good in the Palmolithic period, and as he hesitatas to sas that certain races of animals did not exiat in the Cambrian age becanse wo have not fonnd traces of them, so he ought aliso to heritate to say that pottery and polished axes did not exist in the Paleolithio age becange wo have not found them.
Carionsly enongh, Sir C. Iyell, when be comes to answer the question why no bones have been found in the Somme gravel-bed, regards negative evidence of no raluo, for he immediately pats forward ingenious argaments to account for thoir sbsonoe, and precisely in the anme manner, instead of assuming no pottery or polished toole existed in the Pulvolithio age, he ought, in accordance with his principles, to try to explain that slthongh we have n
We have soen that primitive "Palmolithic " man was neither ignorant of polished tools nor of pottery.
and this being the case, we fond that genlogy does not revenl that, man originally was in a state of "ntter
barbariame." The frapments of bones from the caves barbarism." The fragments of bones from the caves
refute such a notion, for the Engis sknill might have refute guch a notion, for the Engis sknll might hare
belonged to a Earopean of the present day, and the Nanlette ja has affinities with the Sclavonians. These are the oldest haman remains in Europe that we can
call into court, and they are omphatio witnessos call ingto court, and they are emphatio witnessos
againt the theory of "utter barbarism." Trae it is
that that that theory has other sciences bronght in to support it, bat whatever may be said in its favour it is clear that geology does not anpport it. As for the argaments bronght forward in its farour from modarn aspaces,
they break down totally under a searching investigathey break down totally under a searching investiga-
tion, and only afford another instance of how a punderons theory can be built apon a fonndation of sanu. while fresh discoveries only ahow us how true were the words of a modern philosopher when he describcd
"the slaging of beantifur theories by agly facte."
D. G. W.

ARE CONVENTIONAL TERMS SCIENTIFIC?
[4345.]-IN "Bigme's" letter (4193) the following argament is unod:-As the biblical cosmogony is
almays in perfeot accordance, not with late scientitic always in perfect aecordance, not with late scientitic
diseovery, but with the ideas of the people to whom the diseovery, but with the idess of the people to whom the ing acientifio facts cannot be relied on; this is only partially true, as the evident exceptions in accordance
with " late scientifice discovery "(such as the earth being with " late scientife discovery" (ouch as the earth being
stated to be hang Epon nothing) will, of course, be stated to be hang epon nothing), will, of corrse, be
borne in mind. Now, i/ "Sigms's." above arguant be tria, I am forced to the conclusion that as modern scientifio works contain exprossions not in aecordance
with scientife discovery, they cannot be relicd on with scientiffe discovery, they cannot be relied on; Humboldt, for ingtance, nsed such terms as "The Celestial Vanlt," "Fixed Stars," thongh we all know
they have a vach motion of translation, and probably they have a ract motion of translation, and probably
of rotation aleo; he says that the zodiacal light "rises of rotation aleo; he says that the zodiacal light "rises
in a pyramidal form," and he mootions as distinctly as in a pyramidal form," and he mootions as distinctly as
possible that there is a "Milky Way between the Scorpossible that tbere is a "Milty Wray between the Scor beliove in the scientific accuracy of the description of this eurious collection? Herschel also writes of the "diarnal motion of the stars," and defines the day as the time betreen "the departare of the san from a given moridian, and its next roturn to the game ;" he
also implies a top and bottom to space, for he writes of the " ascending and desconding nodes."
As we accept all the statements of modern scientific books, zaless they are professedly such terme as are
conventional, so we must do with that one most ancient conventionad, so we munt do with that one most ancient
book, which stands alone in antiquity by its showing a perfect agreement with modern science, excepting, of conrse, certain conventional terms which, like the above quoted, ware perfoctly naderstood as such. It is
nows to me that the Mosaic zecounte are only connews to me that the Mosaic secoante are only con-
cerning "the Jewish family and race, and all the rest of the world and its history is iznored;' if so, what is the tenth chapter of Genesis about, and to whom does it refer ? If the Deluge only affected a people dwelling in "a fertile river district," as "Sigma' gratuitously supposes, how is it that those people were
handed on the top of a high moontain? One part of handed on the top of a high moontain? One part o the narratipe is quite as antboritative as another.
have as great a desire as "Sigma" not to get "into a have as groat a desire as "Sigma "not to ret "into a morass of theological squabbles" in the Enclisi
Mrchanic; but as he has already stated one side of a Mecianic; but as he has already stated one side
matter, the other side must also have a hearing.
W. M. Flindere Petriz.

ARTIFICIAL STONE.

[4346.] - "Krods Bux" (letter 4212, page 277) says an artificial stone has been prodnced of sarpassing hardness and capable of a beantifll poligh by the mix-
tare of caurtic mangesia slacked with chloride of mag. tare of caurtic mangesia alacked with chloride of mag-
nesiam." Will "Khoda Bax" Liudly mention whether nesiom. "pers nally tosted this assertion, which I knor he has pers.nally tested this assertion, which I know
well appeared in many papers a fer years ago? 1 have well appeared in many papers a ier years ago? repartody made the mixture, and verer obtaided anyrepestedy made the mixtare, and ucver obtaided anynot, in fact, mach, harder than good plaster of Paris.
not, not, in fact, mach harder than good plaster of Paris,
Ransome's artifcial stone is more like real stone,
becen becanse the constituents of stane are indaced to com.
bine and form his compound, bnt Ransome's method bine and form his componad, bnt Ransomes's method produces only surfaces too coarse to take a poligh. Hia
siliceoas flaid will not sink into sand, de., in an ima. palpable state. Mr. Ransome was working at this palpable state. Mr. Ransome was working at this had pamped the air out of masses of plaster, sc., and thin, while in the exhansted receiver, had let in his dissolved silica; bat the fint $\%$-hearted Aaid stiu practically, of any gabstance whose pores wero not as open as coarseish sand, which is, of course, incapable When it sets of anything like a polish. Being, therefore, nambe to find anything so like (say) marrble as to be suitable whon set, for statuettes, dc., I shall feel greatly
obliged by "Kioda Bax," or S. Botione, or any of our chemists, saying whether canatic magnesia and chloride of magnesium, or anyothor mixtures, hare been proved of magnesium, or anyother mixtares, have been proved
by themuelves to do what M. Sorel claims for his inbention.
As "Khoda Bax" is interested in concrete, it is well Worth bis while to see Mr. Nicoll, the shirt manofactaror in the Regent-circas, not the Regont-street tailor. When Working noder a Govarnment commission, we examined his muthod of bailding thoroughly, and it has some
oxcellent festares. Amongst other things he proposed orcellent festares. Amongat other things he proposed
to whitemast his insides with Soral's minture, so as
to obtain that mach dest to obtain that mach desired thing for the pJorer
clasces-washable walls-but being, as I have some
reason to atill fear it is, only a porons cement, it absorbed water, and he had to g
his plan for building cottages, \&c.
Time seema to be a sine.qui-non in stono-making. Whenever Nature gets a very hard job to do sho sakes plenty of timo to do it in. Perhaps a sham meerschanm, tho coustituente of which are the same as a reul one,
if let alone for a for million years, and presisure, perLaps, added, would get real in the end.

Not Proven.
DEFINITION OF CHEMICAL COMPOUNDS.
[4847.]-I GAVR not had time to analyee the contents of both bottles sent by "s. S." (query 9457, p.
489, Vol. XIV.). " S . S." adrerts in one of his com489, Vol. XIV.). "S. 8.". adrerts in one of his com.
manications to bis analyat leaving turo inorganie componuds undefined, as also to organic matier being pound andensed, as also to organic matuer being
present of unknown hind or origin. The flaid I have
 erasined muant sarely be very difierent from the sabor
atance origiually quoted, for this is simply crodo liqnor stance origiually quoted, for this is simply crodo liqnor
soda, very possib!y prepared as a boiler anti-incrustasoda, very possibly prepared as a boiler anti-incrasta-
ting fluid. The awonat of organic matter present is ting fuma. che amonat of organic matter present is verely dirt-that is, matter ont of place, and is probably derived from the crade materials of which the proderived from the crade materials of which the prendefined inorganic substances should remain in the former analsis, for the mixture is simple enough, presenting no diximiculties to any one engaged in analytical parations. I must, howerer, mention that ail the may explain that this inclndes some potash present undetormined quantity. The second bottle which 1 have not analysed appears to coutain a large quantity carbonated alkali, and is probably somewhat
analogous to the other specimen, bat of different analogons to the other specimen, bat of different
quality. It shoald be noticed that my analysis is nantitative, that of Mr. G.E. Davis qnalitative. Table marked "No. 1 Liqnid." recetred from "g. S.," a correspondent of the Exeluwa Mrcmusac,

GOVERNMENT AND AMATEUR BOTENCN.-II.
[4348.]-Tre sabject of the caltivation of science by juateurs is of no orn the relation of the amatear to the professional astronomer, for example, many cirthe professional astronomer, for oxample, many cir-
camatances mast be taken into aceonat ; in both departments there are different grades, dependent an the one hand apon patronage, and on the other apen sabject of Gorernment patronage as extonded to one of the nost important branches of astronomy, and endeeronred to show that to bring that branch to its preseat state of perfection a high order of mind was necessary. Now. patronage from the higheat sonroe exteads downwards throngh evary grade of society, and
we may yecognise two directions in which it has we may reeognise tho ditections in which Go has been manifgste
ment aid. Wo have, for instance, the establith hment mont aid. We have, or instance, the establiohment queathed by caltivators of astronomy administered by trastecs ; othera have been necessitated hy the reqnire ments of commerce and are inaintained by manicipal or other fands ; and there are not a fow obeervatorien, which Lare been foanded by private gentlomen, who oither themselves oultivate some branch of the science or employ obeervers to carry out thnir viows, bat they highost clase of professional astronnmera are those im. mediately conneeted with the Government; next to endowed and similar obserratories ; and, lastly, in the same class-i.e., professional astrouomers-may be reckoned the assistants in private observatories, and these classes may to a certain extent aford a measare
of astronomical calibre. Amatears, who stand on a different forting are, like the varions sources of patronage. found in every grade of society. The private poans-sing en atron farvishes it a:cording to his means with the best in: struments of the day, and employs his leisare in observing, and, probably, prosecuting somo special object for the adrancement of which he emplays an aspi tant he may not devote the observatory to any special branch of inquiry, bat use it in a desultors manner. The artican, who has bat few leisure hoars, telescope, with which he observes the beaveus, comparing his seeings with sach records as the astro sod which, perheps, inducas him to bestow his attontion on some particular nabject in which he sappoess there is a deticiency of information. It is to these soarces of putronage and developments of mental power that astronomy is indebted
otherwiso than from Government aid
The mention of astronomical literature dírecta atten sion to the greatest of all haman helpa, oither to the
professional or manatear actrogeaner. Thace are two methods by which the results of the lebonre of astro-
nomers may be preserved, either by manuacript or nomers may be preserved, either by marracript or or
printed records. There is, doabtless, in one way or printed records. There is, doabtiess, in one way or
another a large
quantity of manascript records in another a large quantity of manascript recoras in
existence; bat it is in comparatively for instarces that anch records are permanently preserved. Even is the such records are permanenkly proserved. Even ia sas valusble mannscript calculations were sold for wate paper; it is, therefore, of the last importance that the results of obserrations should in some way be promptly results of obserrations should in some way be prompis
printed. It is by the publication of astronomical
 the amateur is belped forward in his inquiries, and the more he is acquainted with the laboura of his prede-
cessors and contemporaries the less likely is ho to tread on gronnd already occapied

It was my intention to glance in this letter at the progress of three departments of antronomy which have been specially coltivatod by amatears-mamely,
variable stars, hinary stars, and solar physics, but the variable stars, hinary stars, and solar physics, but the above remariss on the relation of amatour to protelr-
aional astronomy have left bat litile space for the paraional astronomy have left bat litae space for the par-
pose. As regards binary stars, I may briefly remariz pose As regards binary atara, I mey briefy remart
that it is not so much the history of the subject as a notice of its departments which at the prosent time would, I apprehend, be of the greatest use to amateuri These depurtments consist (1) of medsurements, (2) of catalogues, and (3) of compatations of orbits, and exercise three classes of mind. In hin report to tho
Board of Visitors, the Astronomer Boyal, alluding to a possible extension measnrement vations whiob can b
which do not require
which do not imply o
to private observers.

amstenra.

 orbits of certain binary aystomas. Taking the present
moment as our etandpoint our litematare oealuins the records of what bees been done. For the fotare we need
early pablication of measures, the iname of revised nataearly publication of measures, the iaces of revised cata.
lozuos at stated intervals of a certain number of years; Etebalar view of the olmants of binary orbi table of referesces to the verions Wecke in which thay
ocour. On the meven of meeting thoee warta I gany there is no difficulty.
W. R. Birt.

OUR COAL STORES AND THE ATMOSPHERE.
[4349.]-There has hatoly been ruach inquiry ase to the period when our coal-mines will be exhansted, or hepired Bat I hearboniferout bure win have disor angmered where is it all going to, and cent the atmes. phare contain it without being rodaced to a poisonoas phere
mass.

Now, when three tons of carban are barned in the atmosphere they unite with eight tons of oxygen and produce eloven toas of carbourte meia, or Wrat is the with two hundred and sistr-six million toms of oxyger and form three bundred and sixty. six miltion tons of carbonic acid, and as Eagland alono is raistog to the carbonic acid, and as England alone is raisiog to the
surface one hundred and twelve mitliou tons of coal sarface one handred and twelve million tons of cosl
annually, it will be seen that she is converting three quarters of a million tons of oxygen into one million tons of carbonio moid every day. Alan when we take it into consideration that carbonio acid ans is more than half as heary again as common air, consequently ite tendency is to float near the surface of the earth, and when we know how mall a quantity it takes to ender the air nnat for respiration-for Dr. Smith hat cent. of carbonic acid gas in the atmosptrere candlet gire indicutionsf of going out, and the young lady who was breathing in the same air saddenly became pale and had to be assisted out of the chamber in which the experiment was made-I think it bohoros us to inquire how long this process can bo continned without affeet ing the animal kingdom, especially as other nationt are following the footsteps of Great Britain, for had they been prodacing and consaming soal at the same rate, we would evidently have had to cerse worting coal before the expiration of a centary; and before oor mining engineers talk abont raising aut the coal to the sarface-that is, thick seams and thin seams, and seams at a great dopth-ibey madt tell usimbat chey are going or the animal kingdom will have to parish.
To illastrate the above remarks, I will take Great Britain and its atmosphere, whose weight is aboat three and a qnarter billion tons. Noin we have one hundred and forty million tons of obtalnable conl which, when barned in the atmosphere, will give half Which, wien barned in the atmosphere, will give hal render ten atmospheres uko Great Britain anfit for respiration.
I am aware that vegetation is over active in decomposing this gas, bat the earbon extracted from the posing this gas, bat the earbon extraotod from the
atmosphere in this way is sent back to it again by the animal kingdom in tho form of carbonic acid gas, and as the popalation of the earth increaces, all thoes large and ancient forests which exist will have to bo broken
earbos will be redueed to oarbonio acid gas, and alti-
mately find ite way to the atmosphere. In conclading. I may remark that the time when we shall have to cease I monting coal for the above reason may be far distant hat it will surely oome long before we have consmmed hanh an mmazing quantity of coal as is imbedded

BOOT AND SHOE MAKNNG.

[4950.]-A yono your correapondents, do any understand the philosoppy of beot and sho making? It
strikes me forcibly (telegraphed ap from my big toe) that the science of fitting is very far bebind the nae. Some roally practical artielos on thin snbject woald be of much granter atility (which Lennir detiues as that ing pain) to many readers than theories on the Deluge. Onfortunately, I am only Jeck of some trades, and thing done, I woald do it myself," bat my poor feet have compelled me to pive some thonght to the sabject. Boots and shoes are generally made according to a fashinnalle, bat fanlty pattern-or in other words, the are to be worn. Now, I happen to have an extra long big toe. which refases (without piving grent pain) to be twisted over it neighbours, thongh shoemakers makers have abetted them. The joint hes been someWhat swollen by this brotal treatment, and can now measnres less than prensnre. The instep at one part the foot at the inside stands an inoh olear a bove a lerel surface on which the foot may be placed. I have never been able to And a ready made pair of boots or them according to the ordinary system, to measnre, I cannot oven get my feet into their place. I hare had lasts made trioe, and even that is no remodr, as the last maker pursnes the same course with the shooconsidered as well as the mensure. Two persona may have feet of same length and width, and require very diferently shaped boots to fit comiortably, yet shoemakers would rake them on the same laste. It is clear that to do the thing perfecty, every ong oshonld
have his own lasta, but then, whero will yoa get com. petent lastmakers? My big toe lies straight forward, the lasts I bave lately got are pared off to n thin edgo on both sider, and hare only height for point of lig sibly atilise it. Can any one adrance the science, and hejp sufferers in the foot, and among the rest,

Inisu Meomanio?
pIANOFORTE BRACING AND BELLYING.-I. [4351.]-Ths subjoined article was written reveral weeks ngo, but postponed for more interesting matter. (lof. s7721 proposes for making the backs of cottage pianos stronger, woand be effiective in preventing them method, and other methods identical in principle with it, have long been suocessfally employed. Somewhere
aboat sixty years ago the late Mr. J. J. Hawkins eflectod the very same resalt by subjocting tho backs of hic iron braces to oomprassion by means of tension
rode which effeotually resisted the tendener of the tensile force of the strings to arch them. Yet later, others have done similar things, especially Mesars. W. daced the fame resolt by trussing the wooden bracings just as other wooden beams are trasased by metal rods, Mr. Mott, in whioh the bracinge are tied to the the frame, as shown in Fig. 2 , p. 613, Vol. XIV., in which all the tie bolts required for one piano woald not cost more than about half-a-crown. I think, howerer, that pianoforte maker to truse his bracings even on increase their power to resist flesnre by counter tension rods, a la Hawking, or to back them ap with nugle or
T iron (in the manaer the late Thoo. Role did abont T irst), or with fatiron, as "'P. C. L"" proposes, for so little cost as that of a fow additionnl wooden braciugs Which stand the zanker in only about sighteenpence eacb. Soch contrivances are perfectly legitimate
for strengthening the backs of old pianos, although personally I profer front iron braciogs on houlmeak's for their presentstringe, or when it is desired to string them hoavior (in most of sach instraneents, no greatimprovememat can be expeoted anloss both this and increasing the lengtha of their stringa of given pitch be eliected), bat they can hardly be termod
legitimate mothods of makiug nown strong backs, when cegitimate mothods of makiug now sirong backs,
The besetting sin of most of these contrivances-and they share this reproach with additional wooden oracint-is that they exaggerate a too common exist. now. as umailiy constracted, moch too heavy to bo handed convenienkly. ceteris paribus, the lightent bracing will bo that which is in the same plane with the atringo-or at least that bracing parte of Whose jast like that emplosed by Mezara. Erards for apright instraments. Any piano with its bracing ontirely above or below its strings, or in two aeries (one above and the
ordinary grand pianos and of cottage pianos braced the brocuan are, both of which arrangements require mnch heag to be tied or struttes, or necessitates. Of conrse, it is theoretically possible to deeign and constract braring partly nlopera and partly of the tie.bolta-chall not exceed Erard's, bat it would be rather ditfioalt, in practice, to apply it.
When the bracing is oniy on one kide (sas, ander the increases in proportion as ther are placed fatther from it-nnless, indeed, the braces be tied to the kes-bottom on Mot's asatem, when, practically spoaking, thay cannot become arched, so their dietance from the rable to place the strings of ordinnry contage pianos as near their bracing as possihio. Their strings ure too the soondbourd is not arched more than is needfal, and the down hearing of the strings not excessive, by making the bridge only tin. thick the atringe may be cannot well be, as any one may satisty himself by making a sectional fuil-s:zed draxing of the parts. Of the strings, it cannot bo of any practical importance bow far the one set of hracings is from tho other, for their power to renist the tension of the strings will be equally great whatever distance they may be from the latter, and it becomen a mere matter of pratieal conrenience how far ther shall be placed apart.
T. C. L." alao asks formy experience in soundingboart waking. Alas! it is nearir nil, at loast, very theranent. It, however, my practical exporience has indastrions inquirer and a carefal observer of others doings in this watter ; but I may renark that practical pianolorte makers are nanally remarkably reticent on
bellying, and some other brauches of their art Whether they know much or little, may he a fair question, but cortainly thos are very anwilling to commanicate huowledze.
Thave observed the thicknesses of pianoforte sound boards differ considerably, and that really good instru ments are conitructed in which they vary mach, not the section of and namber of their bars. In ordinary cottage pianos the number of belly bars seems often to be snbordinated to and determinod by the namber of bracing in the back and the distance the latter are apart. When fow in number, say tive, two belly. bars
are often fonnd botween each, which makes their total namber ten or twelve; in my opinion, this is none too many in the treble, but needleas for the bass. When the number of wooden bracings became in-
orcasod to seven, eight, or nino-I have seen nine in some modern backs-the spaces between each beomme so mach diminisbed that there is not room for more than one belly bar betweon each. In pianos with
seven bracinga, I bave, however, occasionally seon tro belly bars, between each of the bracinga nearest the farthe end, thooe bracings bethor apart to allow ranat for two bars between it and them, which I conaider an improvement. This enabled t
If de,iguing a soundboard, I shonid profer placing the fonr shortest belly-bars only 4 in . or $4 \frac{1}{2}$ in. apart introdnction of centre. This woula into the bact fignred on p. 113 (No. Si22)-in other worls, placiug at the trable the same space four occupy in tant igare nnmerons the belly-bars the more nearly nniform the rigidity of the enindbard mast be. I think this is a matter of onmo importauce, especially in the treble, ar avoiding inequalities of loadness in tho sonods of for tha late W. T. constructed a back the six treble bracings of which were made of only gin. stnf, which, When planed, becamo abont 1 tin. thick. These wore placed 2in. apart from centre to centro, loaring spaces bar made of fin. stnir (tapered sideways so that it conild not toach the bracings), the section of which, bofore its sides were tapered, was lin. $x \geqslant$ in. It was also tapered pretty regularly from its decpest part beneath the
bridge to three-sixtoenths of an inch in thickneas There it entered the rebates. The design was mine and its eseontant had not much faith in it antil the strings wore pat on and he was able to "hammer" them, attor which he acknowledged it was the most powerfal treble he had ever constracted. Certainly it Was ane, althongh the scale whs comparatively a shor its octare 6 i in ichora, being 2 in . long, of No. 14 wire. Had the scale been that igared in No. 972, its power would have beonincreased at least 5^{\prime}) por cent.
Besides its normal fanction of affording a firm support for the atrings, the bridge acts as a transverse board, bnt aloo with all its belly-bars, thas distribating the downward pressure of the strings (technicully sidermed the down bearings) pretty eqnully over a concuthris paribus the better mast it do this, which is probably the reason we gee the bridges of modorn older iustramentach It wonld neem, however, that every anamentation of the masa of the bridgo mast, hive increaving the stiffoess of tho bell 5 -bars, obstruet strings to the soundboard, and we onght to bear in
mind that the latter is only carsed to vibrate by the The ordinary practical method of proceeding is to glue the bridge on the soundboard before the bellygreatly facilitates making the joint, and is the least costly way of proceeding, bat I am far from beliering a rizid nbligue transverse bar, it mast reaist-in prothe belly to arch it. This is nanally effected by mik. ing the under faces of each belly-bar a segment of a circular arc-it is mach preferablo to make it elliptical are frrced down on its back by wooden apring bars (tecinically termed "go bars"), many go bars being sprnnk on each belly-bar, ${ }^{\text {of }}$ that the convex aurfaces flat aurface of the soundboard. Thas all the arching the latter obtains being cansed by the reaction of the carred belly-bars when, after the glae bas become dry.; So lorg as we are content to have our coandboards segments of circles, this plan would answer aumirably If the bridge were nut glaed to the soaudboard,
although it won't serve for soandboards whose sarfaces are longitndinal segments of ellipses, by far out or lork. They require a belly-board hollow allowing for the thickness of the wood of which the belly is made-of the elliptieally formed belly-bars, provided always the bridge be not attached before the at assumes their form readily, bat it don't do this when the brhge has previonsly bean glaed on it. On the cont:ary, instead of becomiag a circular or elliptical arc, it becowes distorted; in workshop phraseology, distorted hike roast pork," and we can hardly expeot which are fither fat or of some rely as heosetric frure (say) circular or elliptical, which latter has the sathaiene of enabling the soundboard to be mado necessarily conver beneath middle C, and thereby necessitating the plecing of the strings further from pianos, all the bracings of which are nanally betiud their soundboarils, and therefore anavoilably more distant from their strings than coald be wished.
I think I hear re practical man exclaim "All very your belly before the bridge is glaed on, how are you and the velly." Well, I must acknnwledge it is more difficnit to do this after than before, and rather more costly, but certainly no impossibility, for it has been done more than once. It was done by the late
W. T. in my experimental grand, who :oado the bringe in fonr pieces (lengths), connected by long ver-tical-scarfed joints dnly dowelled. Ho fitted each and glued them on it successively, commenoing at the treble. To insure the total absence of any possible strain which might distort this sounding-board (the reader will understand that in this sonse I profor being ingtrolal abstainer,") it was fitted into axed nltimately, before the bridge mas titted to it, and the latter was even glned ia ita place before the sonndthey were not required, for he inserted neveral screws through the soundboard into the bridge, which oifectually clamped that and the bridge together. Of course, both were made pretty hot bofore glacing, and the (thin) glae nsed was not allowed to become cold betore the scrows where driven home. and a better next weok. The HARMONIOUS BLAOKSMITH.

BEE MANAGEMENT.

[4352.]-"Colney Hatch" (let. 13010, p. 888) doos not seem to understand my figarative allasions to the almanack and the weather in a lato letter on this sub. ject, and 1 am equally in the dark as to What ho is dions of both considering the strong ll, it is not at all sarprixing that oue cannot understand the other. Qaibuling at my Ggare of speech will not alter facts, and it mast be patent to every one that "time is ont of joint" as regarls the oxperience of men and the inexpect more faraners, and men too, have ath of Jnne. and I adhere to the sense of my former letter, that with hees ns with mon, instinct and experience are both at fault. What I chiedy wish to impress on beo weepers is the fact tbat at this time of yoar a sper if they are not assisted. Prophesying aftor all is over, and like ing people what they ought to have done, is retory. If a farmer had a herd of cattle or a flock of sheep in a field, be it over so large, and drought and heat made growth impossible, would he not be thonght an arrant fool, sod oriminally crael, if by neglecting to sapuly his tlock or herd with the monns of existenoe tion?
Bees, however, may be penned in their hives by the weather like a lot of piga in a stye, or sheep or cattle why have not bee, jet in the name of ciatance as the animals aforessid? The law holds it criminal to
are annually starved to death withont a thought of the croelty inficted, or the great waste of weaith to the conntry at large. In England, the crop of honey in summer, like the crop of ice in winter, depends entirely ppon the weather, yet from want of thought and care, the greater parts of beth crops are allowed to
waste themselves, while thonsands of pounds aro exwaste themselves, while thonsands of poande are ex-
pended annaally in importiug similar articles from pended annally in importiug similar articles from
foreign coantries, or else John Ball manafactares them at home for himself.
Hanwell, Jane 8.
C. N. Abbott.

USEFUL AND SOIENTIFIO NOTES.

The Fireweed.-The epilobinm, or fireweed, a species of cotion plant, springn ap spontaneoanly on of acres of this plant are to be seen in the north woods of New York. ft is perennial, grows to the height of 4ft. to 6 ft., the stem being fin. in diameter, and some 2ft. from the top, patting outa dozen to twenly branches, each bearing from fifteen to twenty pods, that, in each bearing from fifteen to wenty pods, that, in Augast, open end display a White ibre like that in the numeroas, but do not require ginning to separate them from the fibre. The plants grow close together on poor or rich soil, and in any elimate from 40° north to the Arctic Circle. Ite southern limit of growth is the northern limit of cotton, and is very similar to cotton. Mr. Miller, of Utica, made candle and lamp wicks of it, and ropes that proved as atrong as cotton ropes of the same size. Carded and span, it made excellent yarn, same size. Carded and spon,
from which a stocking was knit. Its fibro makea the finest of paper, being almont equal to aill for this parpose.
Preserving Cucumbers.-A Russian correspon. dent of the Rrive. Horticole thas describes a method of preserving cacambers:-The cacambers are washed, placed in a barrel in layers with berbs such as fennel, paruley, tarrapon, onions and rose leaves intermixed. sometimes alispice or long pepper is sdded. When
the barrel is nearly fall, a solution of salt (11b. to 123 the barrel is nearly fall, a solation of salt (1lb. to 123 litres of boiling water) is poured when cold into the
bnrrel throngh a smal hole in the top, which is afterbnrrel throngh a small hole in the top, which is after-
warde tightly corked. The barrels are kept in a cellar or in a house, and when required for use the cucumbers or in a honse, and when required for use the cucambers vinegar is ased in addition to the sall.
Sea Water at Home.-A scheme for sppplying North Shields with salt water is being rapidly completed. The reservoir at the north- west end of the town is about finished, and two-thirds of the pipes
bave been laid. It is anticipated that, besides pro-
 and cleaning the streets, and likewise supplying the pallic batbs, the corporation will be able to connect many private renidencea with thie novel schome.
Hydro. Flectric Telegraphy.-According to Les Mondes, M. Ferdinand Tourmasi is the inventor of a new method of telegraphing through tobes foll of The tube is of copper $1-16 \mathrm{th}$ of an inch in diameter The experiment is made with a length $3,280 \mathrm{ft}$, and the inventor hopes to obtrin, Arst aspeed of transmission of at loast 600 signals a minate, oven throagh a length of 1,000 miles ; seennd, a simaltaneous exchange of correspondence by the same to be-that is, to signal deepatohes; and fourth, a vory small coost of conatruction. The thread of water is in commanication at ench end with two pistons of the same diameter. One of these pistons is slightly pressed, and the motion is im. mediately transmitted to the other piston. The tabe and its pistons are in connection with an electrothe reception of messages.
Boiled Rico-" "Ixion" says:-It is an interesting and important physiological law that the same food, if mashod, will not nonrish, whereas, if cooked firm, potato with a "bone" in it, whilo the Scotehman likes porato with a bone in it, while tho sootehman likes woman boil a potato. She does it with skill intaiWeat A have often watched her as I have watohed the Weat Arrican cooking his rice, the grains of which roll over, just like the Irishwoman's potatoes. Dame Natare, too, cooks baby't breast-milt with a bone in
it, which ignorant motherg and nurses esteem a mis. it, Which ignorant mothers and nurses estaem a mis.
take. And nowas to rice. Immersion in boiling water, loose or in a cloth, for thirty minutes, cooks it perlens according to the state of the barometer and quality of the water.
New Green Pigment-A now green has been discovered, which is said to be brilliant enough to replace the poisonous colour produced by arsenio. It it
composed of twenty parts of oxide of zinc and one of composed of twenty parts of oxide of zinc and one of
snlphate of cobalt, mixed into a pasto with walar, and exposed to a red hoat.
To Preserve Pegged Boots and Shoes-II pegged boots are occasionally dressed with petrolenm between the soloe and apper leather, they will not rip. It the soles of boots and shoes are dressed with pegs, it is said, are not affected by dryness aftor beiag well saturated with the liquid.
The progress of all real science is towards compresthe ondless detail of indiridas whole aim to sapersede ment of eanily romemberod and readily applicable la 1 s,
-Sir J. Herachel.

REPLIES TO QUERIES.

- In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on ont side of the paper only, and pat drawIngs for illustration on separate pieces of paper. 2. Pat titles to queries, and when answering queries pat the
numbers as well as the titles of the queries to which the replies refor. 3. No charge is made for inserting letters queries, or replion. 4. Comumercial letters, or querios, or replies, are not inserted. 5. No question anking for
educallonal or solenticic
informatiog is answered educational or scientifo information is 2nswared
inrough the post. through the post. W. Letters sent to corresponad the names of correspondents are not givon to inquirern.
[11120.]-A Question of Sight.-Steal need not be "a dense solid." It is sotnetimes a dense bat perfoctly mobile fluid, und the rate of propagation of impalses dependa, not on the solidity or flaidity, but only on elasticitr, which may be equal (or augh that and water. Mr. Barwick did not call the velocity of light in any nediam 17,000ft. per second, that I am anare; but he copied this as the velocity of sonnd (and therefore of any kind of impalse) in steel-that is probably near the mark, and if so, it follows that if
the "cosmic anid" were replacod by steel (probsbly either floid or solid steal), then any impalse from the sun (call it light or what you will) woald take 21 years to resch as, instead of 81 minates. Mr. Barwick is Wandering utterly out of his depth, and becoming a
second "T. A.," or if possible, worse.-E. L. G.[This controversy mast end here.-ED.]
[11416.]-Cross.bow (U.Q.)-Make a bow as described at p. 180, reply 11471, then get out a stock of deal, resembling in every rospect a single barrel gunslock except that ine rroove mast not be so deep, bat longer-i.e., a fow inches louger than yora arrows,
which must be doable-feathered. The brass trigger resembles a roughly formed 7, riveted to work freely throagh the stock, and held in its place by a atrong
spring. The bow is fixed horizontally at the end of spring. The bow is fixed hnrizontally at the end of
the groove. The string is palled back over the trigger, the arrow lying in the groove.-HEDERA.
[11457.] - Motive Powor for Amateurs. Our friend, " 4 Barrister," is in error it he sapposes that I, for one, can produce motive power from a fy. Theel (tast is to asy, in the light he took my explana. certain A circalar or rotatory motion is required for a not obtainable I Consequently, what is next best 9 Most decidedly not the lever-i. e., pendalam. I stated in reply to query 11457 that I would prodnce more power from a fly. Wheel than " Zoo Andra" can with his lever
 the pandulum. Nuw, it is a woll known fact that the larger the fif-wheel of an engine (in reakin), 20 much the better the working of the asme-for instance, a two horsepower steam-engine, nomina, in good working order, of (Bay) 401b. to the square indoh; the po a pressare from the sid to the aquare inob; the power derived small saw bench, the workman cannot get sufficient power. What is the cheapest and best mode of remedying the same? I can, from experience, say a larger fily-wheel on the ergine will allow more work Wheel is of the ordinary size. On the other hand, quicker and equally good plan woald be, if allowed, to raise the preseare of ateam from 401b. to 601b. per
square inch as it is far cheaper to drive at a high square inch, as it is far cheaper to drive at a high to fit a manalal saw bench is to fix a fif-wheel on the saw spiudle. I am afraid "A Barrister's" experionce plaoe snfflcient spoed coald not be oitained. The plan I have foand anewer when stoam, or, in fact, any other than own laboar coald be obtained, wha to ax a fywheel on a crank ander a table made for the parpose; centres the ith-wheel a saw spindle running in two leather with a wond pallay tixed on the spindio; a a treadio same as on an ordinary lathe; bat, an I ' have in proviona numbers of the Mrceanic atatod, sa wing
without steam power is very hard work.-BAMUEL withont st
[11529.]-Dermestes (U.Q.).-As no other correspondent has come forward to give the required information concerning this beetle, I have rentared to
acquaint "Redivivas" with the little 1 know of it. In the first place he has given the prong name, by Which means it escaped my notioe for a time. The name of the beetle referred to is, Drrmastes lardarius, D. lardarius belongs to the family of Necrophagous beelles, ix genera of which have beon fonad in Great Britain. Thoy are easily distinguished by their band across the back, with three black spota on each wing case. The larvin are known by their long slender body, which is divided into thirteen begments, and thickly covered with reddish brown hairs of a bristle. like shape. They very carofally conceal themselvos rrom sight in the object they are engaged in devouring. eking, which they Bhed noveral times daring their larval state. They are particalarly partial to the preserved
and akin of any animal that happens to fall in their was,
therefore they prove very destraotive to collections of natural history, where they gain access to them. Bacon and hams form a faroarite diet of these deatrue.
tive insects, which invariably attack them for the akin's tive insects, which invariably attack them for the akin'd
sake, and having by natare a ravenous appetite of ten sake, and baving oy natare the riano. As "Redivivae" reqnires them for proparing skeletons of small animale. I must confess my donbt as to whether they will attack I must contess my donbs as to whether they will ack Preshly killed specimens, at their food generally con-
sists of preserved nataral history subjecta.-Henay Bists of
BLAEE.
[11531.]-Water Wheel.-I certainly understood "P. W. H. J." (p. 156) to mean a rotary water engine, not a tarbine whoel, but in his subsequent lotler (p. 258) he saye a rotary water ongine is nanally called a tarbise, distingaished by the name of the inventor. This may be the practice of our friends in Massachnsette, where it is said they can produce tarbines which give out 185 per cent. of the gross power produoed by the fell. Unfortunately for as in this coantry we fad it as impossible to creato power as it is to create matter. For this reason no clase of motive power engines can ever be made or expected to give out the same amount of power as that due to the driving body, whether it be way or sleam. The rotary walor engine, of all othera, cating said to give the greatest power, the reciproexceede steam-ongine the least. At best it nerer the 4 or 10 per cent. of what is due to the powar of 3 per cent. of unefal effect is obtained. This is certainly to be regretted, as the expense or oconomising of fual is a mattor of considerable importance to the emplosers of the stoam-engine, and I fear so loag as the reciprocating principal is continued so long will it remain a prodigions destroyer of power. If my rotary engine can in anywiso tend to enggest improvements in the reciprocating steam-engine 1 am quite willing to place it at the service of "P. W. H.J." or any other respect able person, on condition that satisfactory socurity cas other given for ita safety, and if it dues not boat any presenras of motora by 6 per oonk. (8ohmid's water part party accepting this challengeshall receive my engine. as a one accepting the challenge must edvertise his address so that we mas commanicate direct.-ED.]
[11554.]-Pedestrian Tour.-May I ask "Phils; whether his canvas shoes (mentioned at p. 292) wil stand a walk throngh long wet grass, or a ford acrose a linen shirta, bat flannel shitts are infinitely preforable with them a cold in the head is not a necessary consequence of a five minutes' halt. -Hedsera.
[11572.]-Compresaing Water.-"A. J. V. G.'s" corroction is not by any means "carping critucism. \mathbf{I} cannot find any nntice of the atate of the water in eitha Philosophy." The letter work sayr, "The true compressibility of water, according to recent experimonts condacted ander the direction of M. Jamia by 15°. Amanry and Descamps is, at the temporataro oi sboat the 000457 per atmosphore. It Notame singular, too, that the compresaibility of water free from air should be greater than when air is present in that ligqid, 51.3 as agninat 49.5 millionths. I cannot agree with "C. S.'s" notion of "where the water goes to" (p. 294); for if the water ean enter the pores of the cylinder sides. I see nothing to provent it coming ont be ime othor side, and ander these circamstances it woala touching the pamps, an event of daily occarrence in any large printing-omoe where booke are tarned oatSAUL Rymba.
[11625.]-Deaf Dog (U.Q).-I know no certain cure, bat this query being nuanswered. I will give a angeation. Let one or two drops of Dellar's essence for deafness (obtained at any chemist's), fall into each
asr ouce a day. I havy tried it porsoaally with geod results. It is painless.-Monte Cassto.
[11532.]-Debility.-As I asid before, on page 207, there is no occasion for an insigniticatit individal like "Sanl Rymea" to defond allopaths againat the The "principles of allopathy"are, or, rather, the main The principles of aliopatay"are, or, rather, the main prineip off disease and ite eflects; whether the beat means for effecting that parpose are adopted and pat into foroe I do not know, bat I do know that the practitioners of this system of mudicine think they aro right and are quite willing to listen to any botter moristi"" the lancet was the sheet anchor of the medical profossion, and I sappone the "drastic pargatives" were the trasty cable. Ho nlso pots the question, "What shall wo say of a asstem which can that ropadiats its grand procodare, and yet claim the adhesion of a community not void of common senge?" Woll, "till messengers with relays of horses on basinosecial of importance , wat relays of horses on businose of void of common sense" think of the indiridate not adopted the same mean nown What who adopted the same means nowarays ? What would a aystem of medicine which elung to the lancet and drantic pargatives in pito of the to tre lancot and half century? Mr. Mooke niks me to explain how it halreatary that of three men subject to tho oame induances one is that of three men subject to the dame induences one and the third escenpes scot-froe. Woll, old-fashioned
liar People" carry out on the " reat and be thankful" question to the "Deluge" correspondents. The theology of one sciantific anbjeot is quito enough at a time for the readers of the Exarisi Mrcianio, so I reply that the two men who were attacked with cholera were more uasceptible to the poicon than the one who was not attacked, and the man who died had not anfficiont trength of constitation to enable him to throw ofl ite ceirmble as s result of nervons debility," but what I did renture to ridicule wat the prepostoroas notion that eervous debility was the oarse of discases of chaaoters so opposito as ty phoid, eczoms, rhermatism, and ho understands the subject will ascert that nervous debility is found as a normal comdition in the healthy man. Nervous debility is, in fact, an eflect-not a cause ; and the canses which give rise to meh an ceptible to the poison-germs of disease. But what does Mr. Rooke mean by "nervons debility"? What does the anthor of the Anti-Lencet intend to imply by hing es extroordinary as those debinty is nome medicines" which cure every disoase under the sun, and enable every one to live to the "allotted apsin" at least. It is my misfortane never to have seen or read the Anti-Lancet, and I am afraid, after what I bave heard, that I am not likely to read it nuless it be an mome very unlikely occasion, When I have nothing . hoo tantam ponsum dicere: non mo to." ("I do not like thee, Dr. Fell; the resson thy I cannot tell; bat this I know right well-I do not like thee, Dr. Fell.") It is very easy to nneer at medical men and their art (not acience, mind), but these very aneerers are often the first to ceek the aid of the doctor; if laft to the tender mercies of the quackn, how long before they would be improved of the face of the ang in the forg. Rooke seeks to make capital by callind himself mistaten ; if he, or the anthor of the Anti. Lancet, knows of any means of curing the ills which flesh is popalarly said to be heir to, in the name of Humanity let him make them pablic. I do not believe in panacens, the Designer of the haman coonomy loft his aris in so nnfinished a state that man fonnd it necessary to "mend it." I am not above learning anything that is worth knowing, but I hate quackery, while I pity its duper.-Saul Rymea.
[11632.]-Debility.-Ignatia amara (8t. Ignatius' Bean) will care nervous debility and varions painfal and irritable conditions of the brain and nervons system. Hooper, in his "Medical Dietionary," page
688, fifth edition, says that "in the Phillipine Islands the ignatis is used in all diseases." Chambere, in his "Cyclopredia," folio edition, 4 vola., pablished in 1799 , says, "The ignatia is mnoh celebrated for ite medical virtres, being recommended in vertigoes, lethargies, epilepsies, asthmas, quartian sgaes, and worms." Hac, in his "Travels throngh Tartary, Thibet, and China, a Fork published in 2 vols., at the oflice of the Illus-
strated Library, 227, Strand, says, in Fol. 1, page 158, [That the ignatis is called Kon-Kono; that if taken inwaraly, it modifies the heat of the blood and oxtinguishes all infammations. It is an excellentspecific for cheracter in the Chineen Materia Mend enjoying a high character in the Chineso Materia Medica." The plant is common in the West Indies and the Phillipine Islands, Market. The extract is propared by pulveriaing the bean and anbjecting the powder to the action of alcohol for 10 or 18 days, observing to shaze it occasionaly; at the oxpiration of this period it shonld be filtered through placed over boiling rater. In sfow horps the a basin piaced over boing water. In a few hours the spirit will bottom of the basin ready for use. The proportion of the orme of pills, are as follows:-Alcoholis extra into the form of pills, are as follows:-Acoholic extract of the gratina amara, 80 grains ; powdered gum arabic, 10
grains. Make into 40 pills, and take one an hour after reakfast, and one an hour before supper, or si leas an hour before retiring to reat. Half a pill night and morning will be fonnd sufficient for very young, very aged, or very delicate perions. The pill may be easily
cut if laid on a damp cloth for a short time to soften them, or they may be made of the half grain size at them, or they may be made of the half grain aiz
the time of preparing them.-E. Parker.
[11652.]-Tasmania (U.Q.).-There is a small pamphlet entitled "Practical Hints to Emigrants to Assembly. Apply for it to Charles to Be House o Assembly. Apply for it to Charles S. Bailoy, Esq. poration, 84, Lombard-atreet, London.-Hedera.
[11711.]-Time at our Antipoden.-I cannot conceive what elncidation this rory simple, not to say puerile, question, can need. Surely, the slightest conmeridian norld show any one that fnere can be ao the beginning of Sunday and of Monday. Which, then shall it be? A ship arriving from Erarope westward having passed throngh The name of the day, then, oan only depend on whether the first Earopean settlers or missionaries arrived at the island rid Cape Horn or vid the Cape of Good Hope. Of course there are islands about the mid Pacific that were first approached each way, and so, thongh very dear together, have to call the mame day Sunday in one leand and Monday in the next. This is ungroidable,
and there might be a sinueus line marked from Bohring's 8trait to the sonth pole (of courso, orosaing no land) as the line where "the dey begins." But in all probability, islands discovered from the oast and from the west are so mired up that Monday may begin in some before Sanday beging in others, and the line woald have to be accompanied by detached bits of each, like the bits of English connties "gitnate in" another county, as gazetteers cay. I beliero all our fartheat colonies name their days as it reached round the old "Cape," therefore begin and end every date before us ; and so, if you gethere by Suez or Cape Town you find no change of time; but if you go by the Horn or Panama, and arrive on the ship's "1st of Janaary" or what not you
E. L. G.
[11711.]-THme at our Antipodes.-Althongh the fog has not yet cleared away from some of us, bere are others who see the thing so cloarly as to satinfy "Kelby," and set the question at rest. "Soperator" quotes the reckoning, at the Fiji Ialands as boing in drance of onrs, and that when it is noon in England is twelve the previons night at Fiji-i. e., the Tuesay, for example, is ending, and the Wednesday beginving. So far we have a starting point from which or reckon onr absolnte day. Tuesday, twelve o'clock at night at Fiji, is Wednesday, 6 a.m., at New Orleans, clearly shows the rockonings at London and New York to be of the same day by the dispatch and arrival of telegrams at $11 \mathrm{a} . \mathrm{m}$. and $4 \mathrm{p} . \mathrm{m}$. respectively at Now York and London, and reasons that Now Orleans being one honr wost of New York the time there is $6 \mathrm{am} . \mathrm{m}$. of Taesday, at which his tolegram would be dropped, and he finds himsell landed at his original starting pointviz., the arrival of the message dispatched from London at noon, at the Antipodes at both Tuesday midnight and Taesday break of day, meaning, of conrse, she ending and beginning of the same day, Thay, and this is his perplexity. I am sorely afraid that by introducing another diagram I shall not only make " confasion worse confonnded," as "F. N." has it ; but accumalate confusion upon confusion until at last the whole sabject will be suoh a mass of confasion that the
trath of this knotty question will disappear, and there trath of this knotty question will dissppenr, and there
will be no anravelling it ; nevertheless, I mast claim wour indalgence, Mr. Editor, and ask for the admission your indagence, Mr. Editor, and ask or the admission
of the accompanying diagram. "T. S." does not doubt that every day has an absolute commencemant doubt that every day has an absolate commencemant
somewhere on the earth's surface, and imagines that somewhere on the earth's surface, and imagines that
every country fixes its own time. That the absolate day is independent of arbitrary sattlement is, I think, obvious. Time is not as we choose to reckon it, otherwise I might not have erroneously assumed 370° as the meridian at which the day commences, and which "T. S." finds does not fit nor will 180°, that of our Antipodes, fally meet the question. The diagram, which is

arranged to show the latter half of Tuesday, the whole of Wednesday (the thick horizontal lines), and the frat half of Thursday, is to be read from right to left, and rom bottom to top. The commencement on the righ Taesden partisl dark line signifes the midnight between $0-0$ shows the progression of Wednesdas's noon fiom 181° to 181° in the reverse order of the longitudes from east to wosh, and the upper terminations of the dark lines represent midnight between Wednesday and Thursday. Now, applying this diagram, in the first place, to the perplexity of "T. S.," we have the middle ine $12-12$ right across the diagram, signifying tha For clearness of exprossion to may regard the meridian 1° east as that of London from phence the message is dispatched (in this cose Wednesdey instead of Tuesday) ; the 12 on the right hand under 181° is midnight, between Tuesday and Wedneaday, the time of the reception of the messege. The meridian 6 hours to the east is 271° corresponding to New Orleans, where it is $6 \mathrm{a} . \mathrm{m}$. We n nodsy morsing, noon occurring at London, and $6 \mathrm{p} . \mathrm{m}$. at Calontta. The line terminates rue ralue of the second under 181. Now to find the we most tako these facts into consideration meridian meridians east of 1°, the central vertical line of the
diagram, have afternoon hoars, therefore their uatural lermination is 12 at night of Wednesday, or the com mencement of Tharsday. All the meridians west of whioh is morning hoars, the nataral commencement of would appear from this that on the meridian of 181° both Wednesday and Tharaday were commencing at the same instant, but it is motuslly not so, as there is really the 24 hours of Wednesday between them on the earth's surface, the abaolute Taesday just expiring, and the absolate Thursday commencing. These 24 honrs, however, begin and end on the same meridian, oonsequontiy, the intermently disappear at that meridian and the rectoniog from the eastern meridian 181° to the one immediately west of it, 180° passen anddenly from Tuesday to Wednesday, explain. ing the facts mentioned by "F. N." of a ship going to the westward skipping over a day, and a ship sailing towards the east gaining one. This leads me to the consideration of the second dian, at which it is non of a given day, and $6 \mathrm{a} . \mathrm{m}$. of the succeoding day, at a meridian still farther vest, which "Kelby" styles a reductio ad abourdum. In applying the diagram to this case, instead of the noon meridian being 1°, it is 271°, the lowest $18-18$ linu represents 6 a.m. at 181°, the dot on this line over 271° siguifying noon at Taesday at Now Orleans. Now, it is midnight at Calcutta between Tuesday and Wednesday at this moment, and 6 a.m. Wednesday at 181°. There heing six hours of Wednesday and eighteen hoars of Taesday in existence, the diagram shows that $7 \mathrm{a} . \mathrm{m}$. of Tuesday falls on meridian 196°, or one hour east of 181°; a similar case to that sapposed between New
Orleans sud New York, and may be thas orpressed164° West longitade, 7 a.m. Tuesday,

Perhaps "Kelby" can show that this also is a reduction ul absurclum, and if so, perhaps he can atill further ahow how the change from Taenday to Wednesday can be eflected withont it. As the greatest portion of the meridian 181° is on the ocean, no inconvenience of any moment can arise from the circumstance that a sudden change of reckoning from Tuesday to Wednesday, for example, accompanies it as it approaches to and recedes from the sun. Let $u s$ take the earliest noon of Wednesday, which occurs, according to the diagram, in longitude 181 at the time when 1 p.m. of Tnesday. in longitude 196° or 164° west. If in my last communication, Jane 7 (p. 808) the meridian 181° be smbsti tated for 270°, and diagram No. 2 (p. 284) for No. 1 the lowest line $18-12$ representing the establishment of Taesday over the whole world in the present dia gram-will correspond to disgram No. 2 ($p .23 t$), and last communication.-W. R. Birt
[This controversy has exhausted all the apace wo can spare for it.-ED.]
[11731.] - Eair Wash. - I don't know why "Excelsior" \&aile, becanse I know that borax and camphor is a very good thing, as I have often used it The camphor does not dissolve except in very smal proportions in water, and if the lnmps are big enough may be used to fresh weter and borax over and ove body are But why use any wash? Impurities from tho body, and there or more effectnal than mosp and arer, brush aud small anantity of ammonia.-E. T. S.
[11743.]-Eumea Elegans.-This is generally considered a sat-tropical plant, but is easily raised from seed with a little heat. (t may be planted nut in May. Any good compost will do-rotted tarls, stable manare and sand. It will not grow so well in such a seasnn a
the present as it would if we had a little summer the present as it
[11756.]-Water Wheel.-I promised in a former issue to sapply the required information, provided your correapondent would give some more explicit data; however, I must crave his patience, being still in want
of one of the mont essential points-i e., the velocity of one of the most ensential points-ie., the velocity per seoond, which I omitted in my former query, not
being wiahfal to encroach npon your space by merely assaming volocitiep, as I see two of your correspondents do. If your correspondent "Water Wheel" will kindly farnish the velocity, I will reply to his query. J. Gillaird.
[11780.]-Soldering Jewellery.-If "New Pivot" will fuse together 3 parts gold, 3 parts gilver, $1 \frac{1}{2}$ that will fow at a dall red heat, saitable for gold brooches, gaerds, \&0.-H. B. B.
[1772.]-Black Lacquer. - Branswick black, recipes for which have receutly appeared.-K. T. L.
[11781.]-Lathe. - In section 3, read " beading ool" for "treading tool."-Saytel Syither
[11809.]-Cool Air in Hot Climates.-I am surprised that if the "now and excelleut sun-screen "(reply heets of "sheet plate" plass are so treated for use eithes n tropical windows (with a partly translucent film), or (quite opaque and reflective) for covering the bourds of alousies, and even roofing. A conservatory-like stric. are wholly so glezed would certainly be the coole: $:$ ngast, might be fixed on the glass by a coating of E. I. G.
[11819] - Oatcake Making and Baking Machine.-There is a machine fir that parpose.
made and inrocted, I beliere, at Shipley in Yorkshire.

I am well acquaintod with a baker who parchaced one, bat he soon geve it up, es he could do it far quioker by
hand. If I remember right the cost of the meehtio hand. If I remember right the cost of the machino was about e25.-A WOULD.BE BAKEE.
[11873.] - Carbonic Acid Gas and the Atmosphere. - The proportion of carbonic aeid is Atmosphare.-The proportion of carbonic aeid is nearly four times as mach es "Philanthropist"
gressed - more exactly, threonad-athird times as goessed - more exacty, threerand-arkhird times as
mach in the open conntry and from four to five mach in the open conntry and from foar to five
times as maoh in townes In Dr. Angas Smith's times as maoh in tomas In Dr. Angas Smith's
"Air and Rain," the smallest proportion atated as ob"Air and Rain," the smallest proportion stated as ob-
searved is 03 par cant.-i. an, these parts by measure served is 03 par oent.-i, a, thsse parts by measure in 10,000 , the mean of a large namber of country places in Scotland, is os36 per cont. ; and that of specimans in Landon is 04804 par cant. As carbonic acid is heavier than air, the waight of that in the atmosphere may be cacumed bo be about 5 parte in 10,000 , or one in 2,000. An to tho inarease that micht be borne without injury to animal lifo, bat little is nocuratoly known. Whes the enormoue proportion of 88 per cent, or
90 times that of pare air is mixed, animale die quickly, 90 times that of pare sir is mixed, animals die quickly, not, as some sappose, irom direct doficiancy of oxygen, bat from the procence of carbonic acid, for if that be abmorbed by lime or otharwise, air still moxe deficient in orygen many bo breathed with impanity. Close rooms bomatimes contain sir with twioe or three timea, occaaionally as mach as ten timos, the natural proportion of earboaic acid, Which, if produced, as it ranally is, by peaspiration and comboation, rendera it dread fally oppreasive ; but air containing a similar proportion of pare carbonic acia, produced when making sodas water,
is neither nnpleasant, nor, I believe, injurious. Cerin neither anploasant, nor, I beliere, injarions. Cernainly, the unpleasantneas, and, probebly, the injarionsnees of ordinary close rooms is canased, not by the oarare those products themelves injurious in moderato are those products themselves injurious in moderato quantity mintil they have madergone some change, for, ase conetantly draning beok into our lumge nome of the ave whiah has juth lett them, but remanamed in the windpipe or othar air pasagges, while the lungs themcolves mast be always flled with wir eontaining a very hreas proportioa, probably ton per coat. of carbonic acoid, ovident, thorefore, that it is not either oarbonic ncid or palmovery aceretion which is, por se, injurious, for or paymavary acretion Which is, por se, injurious, for ciderable excens of earbonic acid, or the presence of palmonary excerction, which has endorgone a change in palmonary excrouion, which has endorrone a abange in beforr it hander ndergone mooh ehange, we shall not beffer from it, at all experienoe proves,-Prillo.
[11875.]-Bpeotrum Colowrs.-The impossibility of making a coloured spinner appear white in the presence of a real white (equally illnminated) is absolute, arising from the nature of light, and need not imphy any imporfection in the paints, gs "H. P. H." fancion (p. 262). But "Utile Dalei" will and it poenible, after a few wall noted trials, and with omre and thought, to make nectors of either twa, ellroe, seren, cr any intermediate namber of colouri, combine by rotation into no clear a gray that the contraet of a bleck border and middle will mate it (in the absence of white) pess for a very tolarable white in the aunshine, Ho ohould repeat the sories (Whefher two or seven) foar or six of his dice. The fellowing paira quase noarly complomentary, or will produce thite, the latter of emch paie excoeeding the former one in depth, and also in apace, poesibly as three to one in space, or less, as sound by trial :-Pale chrome yellow and smalt; orange chrome
and cobalt blue; vermilion and bloiah verditer, or and cobalt blue; ; vermilion and bloigh verditer, or
verdigris (equal); emerald green and magesta, or verdigris (equal); emerald green and magosta, or
barnt carmine. Of course, what each pair will do barnt carmine. Of course, what each pair will do
separately, any tro or more of suoh pairs will do separatheiy, any two
together.-E. L. \mathbf{G}.
[11886.]-A Thick Soled Shoe.-These soles are of cort, and to baild them is conaidered a ornok job, and those crack balude who do thom are tem and far made for Years ago maay elderly ladies hed oorke had a round gum for building them. If "Woe Pot" oan work to or underatand a aliotoch, I cond him ona The upper is the same as the ordinary one, the inner sole rounded apon the leat, bat the chamiar is more upright than for welta. The box for cork is a rean of

tight ratage leather, propared the amone way with chamfer as the ordinary walt, bat is zet eema on the same as ordinary welte, but vertical, or at right anglea With the sole (see B, Fig. 2, whioh it a seotion). The rann proper is a piece of good kipp or call, tongh, and not too tight. Thia is ladd down apon the apper and sewn between the box and apper. The bor ppece shoald be long enongh to para to chape and thiokness required. Aftor the cork is fitted in with good resin paste, draw the rann over and heoe it, and stitch the sole to the rann edge (fee arrown, Fig. 1). The dotted
line igured is the cownig of rain and boz or wolk. The hoel is best allod up with light wood; a piece of willow is beat. The oatar sole is stitehed on to tho edge of the rann with a round awl, not whet is usmaly tarmed a ronnd ant or seming and, whioh is oval, but a parfooth round neodle anl, such so is used or wis ruod for rood heol work for maff rnase in olden times. Description: S, outor sole ; C, cork ; L, last ; U, apper ; $\mathrm{R}_{\text {, }}$ rann ; B, box. The pame letter abow tame parts. $M 1$ is a beasi phate to shield the cotk and shoo, and forman a bridge; M2, pat tuder the sole and lop piece.-JıCx an Aut Trapzs.
[11887.] - Hair Dye. - Woald T. T. Preston (p. 287) oblige me by giving the formala for the terchloride of gold hair dye, and the directions for
using it ?-ANOTHER Grat BenRD.
[11897.]-Fastening Fret Baw.-"G. W. C. H." mast make a movable joint between the end of the ash
spring and his anm catch. I mend aketch; the join

is at Δ, the lowor part must work on a bearing ; by Samozl Smither
[11901.]-Grip Grack.-Why does not "F. G. T." make the scrow in the lathe? I have a chaok I nade, which is worted by one, and will take in from sin. to
\square
tetch, and T lound no amfont in matint it mith tho common scrent tool. A A tho eerem right wand left common screw tool. A A tho serew right and left
handed, B works in a brase bearer, C bevelled of for namded, B works in a brass be
the handle to turn. - E. T.
[11932.]-Organ Bellows.-Arrange the bellows' action so that the feoders of both bellows shall be worked by one handle. If the bellowa have the geme preseare of wind, it world be a good plan to connect tham with a wind trank aloo; if the preesuras ane diflerent, don't ure the trank-Pxzmantic Levar.
[11018.] - A Bad sleoper. - The dinugroenble gymptoma of whioh "N. K. R." complains may be alleriated by his learing off the nae of alcohol, mapposing him to be a drinker of spirits; by smoking placing a rasioin in his the weed; or, in any oase, by placing a raiain in his moath when he goee to bed, and by keeping it there all night. A raidin kept in the month during sevare walking or olimbing is a well-
known prevention of thirst. -TEY IT.
[11950.]-Sewing Machine Diffoulty.-The needle-bar goes down, then rises again a littlo way to form the loop for point of shattle to pass throagh, then goes down again to enlarge the loop while the shattle is pasaing through; when the needle is at the lowest point the socond time the ehatte shoald be rather more than half past the needle. It the upper thread catches the shattle when the needle-bar comes np to tigaten the stitch; meve it a oog forward. H. A. S.
[11965.]-Dandelion Roots-April and May are the most popular months with the old Yorkshire dames They use the largo roots only, slicing them and boiling them down well. The liquor is said to be a tonic, and "good for the liver complaint" -Hzdren.
r11991.]-Focal Length of Lenses.-The focal length of a lens for parallel rays:-Lnt $A C B$ be lons, E A, D C, L B, ruys falling upon it, these con-A-A Vorge nemrly to a point
 lemgth or is the foonal ness of the lans is be considered I F is
the focal length. One vary aimple way of dotarmining it is to use tho bons as a burning glass and obearto the distance of the object which produces the beat efrect, or dise mes it in a talasoope tabe wish aso oye is obtrined the eoal length. When if the eye-lene be concere, as in an opers glass, its focal length added to thia dirtance will give the loea length of the objeot glass. If the eyo-gians be a convex one, showing an invertod image, anbtract its focal longth from the distance between the lenses. A appliod to photography, cateris parious, a lens of shor foeas mots more quidky bat does not give so good a defnition, except in the part foensed lor, the contre of the field.-Pisilantrropiax.
[11898.]-Photographio Procens.-There is no dry procesh yot discovered which has the rapiefty of exposare and dovelopment pecelise to wet platos. Bat, it Editor) send partioclars of a dry-plate pmon our givos very good recalts indeod, with ove to two minutsa axpose; good light; tipgle tereo. lens three timeth aperture.-J. Davio Byitri.
[11995.]-Patent Rights-The resalt of any party patenting a machine aimilar to another, which has been in aso previoasly, is that the accond patent is
[18000.]-Incoote in Trables and Chatres.-Th seat-fruming of chaire, and pomibly the parts of the tablee montioned by "Fox," are sevally made of beeob and Enalish weod reonlianly liable to syteoke of the wool worm. For soch orlimany attolee. I know of no romedy if the meant adopted by Mc. W. G. Rogere in restoring the werld-nmous cavinge of Gibboan is inappliomble of too expendre. The eanvings in the chapel at Clastumorth wese restered by Ms. Bogers is ta rollowing pmamar:-To denicicy tho insecte, bo piaced ine corvinga in a ctrong molution of cocrosiv subimate (chloasico of mercury) in mator. The origina tint of the mood, being impaired by thil, wiss renioned or ammonia amd matriatio aoid. An xalucion of gra or goladine wien aftermede injooted to Bll ap the win alter- sma gurecothon tho fabric al the carvinghe them to thedr original bengty-scound I belisere, to this day. At Finginh woods are hiable to attacks of worenEnglish winut, alk, booth, or say othore meal to turaikuro, parfoct im manify from which is aotioed in

(12002.]-Iritrate of Soda is mot with in Bpean, and in various pertis of Indis, but the mont remariable deposit occurs in Porn, in a truot of country ahour thirty-Ave milen from the ooust, where no rain falls, am evon wind is harity hnown, with mocredy a trace of vegetable matter. The depth of the deposit neria from bin. to sh., and extonde over the country tow several lengres. Genuine mitrete of sods shoald not
 mitrogen which it contalar in the form or mitric nad 2 the element hal stamadai ghe whont plant on
 usen, شo.--SODA.
[12009.]-Photogeraphic Lens-It is poscible to take a pioture by a single bi-conser. lens ; bat it wil require a protty amall stop in front and so will be alow. An armaggement ment also be mado to allow the plate to lie a littlo manuer to the lens than the ground glase is, es the chamicol Loose is aboztar than the viane the one I romporiber cocreouly, the divarene tha hane Δ lane with a fcoal heogth of about bin will give a very good pieture tho aise mentioned. Is "A Beginnar" is going to parobmo e. leas, he abould got man achromatio ou au ircte sua men he
 aboat 54. "A Beginner" will aled And the oollodion process much easior to manage than the calotype. Occantonal Proto.
[12012]-Watar-Power.-Bettar than acarmin a daprocatory titte, sueh an "Ignoramas" mould be akrafol attention to, and a plain and fall doscription of a ceno requiring an anaw. Woula pot ignornman
 rusue as not to mamil or ar aucwar ? What " rum of wher (haroagh a Bin. pipe) as to quantity? pat in this form : There in water at 4 , and it rum pat in this form : Thare in water at a, and is in f throagh a 8 in pipe troon A to B. Tbe point B is
from A, herizontally, and f. boler $j t$ vertically from A, horizontally, and ft bober jt, varicicaly to keap the pipe coustan thy sunning fall. At the point B keep the pipe constanily yanning lall At the poin be the best, so ? Sach, a quortion would sdmit of a deAnite answer. Different parions mategt give diffarant answers, acoording to their opinione, bat at least thay woald have date apon which to give thomoc. 8.
[12014.]-Organ. If "E C."" wis look beot at "our" Minonamic of January 26, 1878, as F. 488, h roquires.-Yosk.
[12020.]-THreing Oart-Wheele. -In samwer to "U. V. W." is the whoel is merely diehed-that in, is the tope of the followe are npright with the wheell the tire will not require bevolling; but il the felloas sux
bevelled to make the tire wear even, shat the tivo up bevelled to make the tire wear even, shnt the tiso ap
litte emaller than the front or amanlest edge of wheel to dramil it up tight whan or, smanst edge of wheel to draw it ap agigh whan on, edge of whoel, which may bo tried by running both tire and whell with the tramer with which I sippoen you are soquainted. For wheol $84 t$. 8 in. high, tire 2fin by tin., say tin. smalliar than the wheal in oircumferenae. For wheol Plt. 10in. high, same sizo tire, say 1fid smaller. maller in proportion it should be, as it vill tire the smaller in proportion
[12021.]-Turning.-All you require is a netal chack with a plece of hard wood driven in, to chack up oylunder to bore, which is assily dono as foilows: When chucked ap, turn the mouth perfectry trae, take pioce of hard wood tarned to tize of bore, man appered off, run a aut with tozon sum norose the brekt of a pheir of ataye, or arinoline stoel will do if

A $A \quad A$

brace cylindar, at thver-A is matoel antior with squas oage slighthy projecting sbeve wood B ut end, and back headetooles the covers cen be doed in camp chwale

[12028]-Forent end Eatins11. -I Em not anme that it has boen geostod that is sio deetrotion of

JUNE 14, 1872. ENGLISH MECHANIC AND WORLD OF SCIENCE.-No. 377.
forests cauces a diminntion of the rainfall" if we understand by that the rainfall over a considerable length of time, bat it has been noticed on the Earopean contincnt (and I believe Arst in France) that the effect of clearing the forests has been to canse the total
amount of rain to fiow of the ground more nnequally amount of rain to flow off the ground more nnequally
during ahort lengths of time, therefore causing flonds daring ohort lengths of time, therefore causing flonds
ai some times and drought at others; and it was after ai some timen and droaght at others; and it was alter an excessive nood which swept avay a railway riaduct antention was frst drawn to this question. At present I can ocly echo the question put-" Where can the best information on this sabject be found
[12034.]- Photographic.- It is likely that the glasses are all right, but a amaller atop is wanted to give sharpness all ovor the plate. This is how the are cemented together and are placed with the cosvex side towards the sitter. The back pair are separated by a ring, the concare glass with its convex side next most convex side towards the conoave glass.Occabional Pboto.
[12024.]-Photographic.-Lef "One in a Fix" insert a suitable stop in front of his lons. I think his
difficult necessitate a longer exposare.-J. DAVID SIMTH.
[12026.]-Greenheart Timber.-Greenheart is used for wiue laths-that is to say, agreat quantity is cut for such parposes; the exact way of neing I cannot
tell. The size the laths are cut is one inch hy one tell. The size the laths are cut is ono inch hy one half inch; any length over fit. Greanbeart is also used for gan oarriaget, and I have had portions of olu
ahips made of suoh. I do not know if it has any ships made of suoh. I do not know if it has any
specinl use apart from what I have stated, with the exception of a few fancy goods requiring hard woodssuch as office ralers, dranghts, tce. I should expect it vould stand any amount of san and weather. Santa Maria timber, an regards the cabinet trade, was a failure. I have cut a great quantity of it. It very much resembles mahogeny, but it difers from mahogany when being made ap. It very soon splits-for instance, chair
lega turned out of Santa Maris, when being mortiged, split legs tarned out of Santa Maria, when being mortised, split
cooner than deal. It also contains a kind of grit that sooner than doal. It also contains a kind of grit that dulle the tools and notobes them. I should not adviso it mysealf for oart mbafte or eart panals, or any kind of mork likely to receive rough wsige, nuless of any dockrards are the remains or refase of ship bailding and insunfactories of gan carringes. I bave attended many salos at Woolwioh and Deptford, and never saw wuoh greenheart or Santa Maria. The wood principally conaista of tenk, mahogany, birch, beech, elm, and at intervals greenheart, Aftican oak, English oal
American oakt, fir, and deals.-SAxobl Smithre.
[12097.]-Albert Durer's Engravings.-The distinguishing marks on Durer's etchings are his mosegram, his soitness, aod his tonch. A number of
his platos cas be soan at the British Ifaseum.XILLOGRAPBER.
[12029.]-Objeot Giasa.-The layer of sir botweon tun lenses will alvays cause a loes of more light by trffection than a similar layer of baleam would, the
latter baring nearrly as refractive a density as glase, and at the sarface dividing equally refractive media,
there is no refection at all. Bat some object glasses there is no reflection at all. But some object glasses
hare the two murfaces that meet of very different radii, and then the inclosed lens of air is necessary, and balsame would not supply ite place.-E. L. G.
[12081.]-Fiot Peas.-Let the peass stand in cold water all night. Afterwards place them in a pan of water, juat allowing the whtior to cover them, add a good-aized ham bose. It must have ham on, of conrse,
Place the pran upon the fire, and as the water boils add salt and pepper. After a time the whole will become them this way. I ofton indulge in them mysolf, with suadry miaglvinge an to the quality of the meat em. ployed, which is ofton mere alink. -Jo日n Hopmes.
[19034.]-Ordnance Lap of London and Environs.-Trinity high-water mark at London. bridge is $12 \cdot 48 \mathrm{ft}$ ab
Lirarpool.
H.
.
"12035.] - University of Turin. - Onless Suex " intended to enrol himsell as a candidate for one of the Government examinations, no special fees are oxpected mede as to his nationalit, and no in the kingdom gives a foreigaer the right of citizenship, no fear need be entortained of rejeotion on the
groands of antionality, but a small fee, amounting I believe to aboat 100f. per annam-ct-is reqnired of thone who intend earolling themselrea as candidates for examination. Learn Italian and French tolerably before going, as otherwiae you will lose much time
take Balwer's adrice and avoid Eoglishmen abroad attend the really excollent classes in German, French, Ppanish, Latin, Greak, beadas Chemistry, Botany, better and wiser man. Bat avoid all gambling, be it billiards or cards, for the Italians are crack players at the former, and rather too atrong for an Enpliphman
at the latter. Above all, do not lot the delightial soft-parpose.-S. Botross.
[12039.]-The Premaure of the Wind.-This question is pat in a wrong form. The intention is, 1 force, acting at right angles to a plane surface one foot aquare, would hare in moving it horizontally, suppos ing it to bo laid fat and horizontal, aud taking no
account of the thicknese of its edges. And then the questionor, in the latter part of his question, assumes that the wind acts obliquely to the surftuce of the plate.
Bat this is a form of "begging the question." If the Bat this is a form of "begging the question." If the
plate in the Arst instance is to be sapposed to be at right engles to the direction of the wind acting horizontally, then there is no oblique action at all. The zontanly then there is no oblique action at anl. The action of the wind blowing horizontally upon a ha friction only. In order to determine what the force of friction would be we mast know the velocity, and this is not stated. It is left to any answerer to guess, or assnme, what velocity woold correspend to a pressura assmo, what verochot. Let the inquirer tell as what of lib. per square foot. Let the inquirer tell as what
is the velocity of a wind that will exert a pressure of lib. per square foot, on a surface placed at right angles to its direction, and then one may be able, by reason echanical lewn, to say
wind woald tend to move a plate horizoutally.-C. 8 .
[12039.]-The Pressure of the Wind.-A late namber of the Mechunics Magainc contains a series of experiments on this sabject. An inclined plane having an inclination to the horizon of 15°, experienced an upmard pressure of about four times as mach as the horizontal resistance. We might have experted anch resalte from the theory of the resolation of forces. When $\theta=15^{\circ}$, cosine θ^{7} is abont forr times as groat as zontal direction, but at a slight angle downwards. Philantiropist.
[12041.] - Burnishers for Brasswork, either for use in the lathe, or at the vice by hand, are nothing more than pieces of steel hardened, polished, and
coloured on an emery top, and of the shape suitable for the description of work. Brass is lacquered after it is burnished to provent its tarnimhing. - W. Allas.
[12045.]-Analysis.-In order to determine the relative quantities of sulphur and beeswax in the mixture which your correspondent "Lictor" wishes to analyse, the only accurate method will be to convert the sulphar into snlphnric acid, and then into salphate of barium, and from that to calenlate the amount of salphar present. In order to effect this, weigh ont (say) 100 grains of the mixture and add pare nitric acid, then warm and add gradually portions of chlorate of potash. So soon as the sulphur is oxidised add hydrochloric ncid and evaporate almost to dryness, and then alter. To the filter ald a quantity of water, and then a solation of chloride of bariam and boil; allow to filter the ast cold, then pour the clear liquid apon being eathe amorint of ash which is left on burning (timated); adal a freah quantity of water, and the precipitate upon the filter times; and, lastiy, pour platinum or porcelain dish ; allow to cool, then add a lem drops of anlpharic acid, and heat gradually; then weigh. From the following data the amonnt of sulphar may be calculated. 233 parts of salphate of bariam
= 82 parts of salphar.-ANDREW F. HARGEBAVEs.
[12017.]-Radius of Sector.-It it be a sectorthat is, it the two cats would meet at the common as their lengths, or the length of their chatio "T. E. G.," therefore, has only to work the " role of three " sum :-As the dillerence of the two chorda (or of the two carves) is to the onter chord (or orerda (or as the case may bel, so is the difference of the two as the case may bel. so ir the difle the outer radies.-E. L. G.
radii
[12048.]-Trip to Ireland.-Black's or Brad shar's Guides to Ireland, and toariots' handbooks. lorget the exact titles.-Philantaropist.
[12050.]-Socotrine Aloes. - Any intenselycoloured, bnt trangparent (or non-opaqne) body, necessarily, mas, but a very pulo shade when grop coloar in Thas, you may grind the deepest blue glass ased ornamentally (or any mock gem, or real either) into a nearly white powdor. The blue glass ground to malke even the palest smalt blue is in the mass merely jet black. Dry gamboge will illastrate the onme faot being slightly tradsparent, but with the singular property of tarning opaque when wetted.-E. L. G.
[12055.] - Works on Pedal Playing. - The most asefal atudies out for the pedals are those by W.
T. Best, Es η. Organist, Albert Hall, Kensington, T. Best, Esi., Organist, Albert Hall, Kensington, and St. George's Hall, Liverpool. Novello and Co. Price
12s. If "A Stragaling Organiat " wishes to mater pedals, get the bonk, learn the first stady before the second, attend to the directions given, and by the time be gets to the last stady, be will find no difficulty in any pedal obligato he may meet in organ music.- York.
[12055.]-Works on Pedal Playing.-I don' think yon could bave a hatter bonk for itsitraetions on playing the pedals than Geerre Cooper's " Introdaction
to the Organ for the Use of Students." Price 68. Rinck's aro also vory good. Cooper's may, perhaps, be ont of print, as I have had mine aboai ten yoara-
[12056.]-Echo.-A curtain of thick woollen cloth, hung from the point, and fastened to the sides of the roof, will stop the echo complained of. "J. T. O." most find oat by experiment the depth reqnired, as, of
coarse, that will depend apon the height of the buildcourse, that will depe
ing, Be.-Sacristas.
[12058.]-Bees.-Swarm or Brood.-It is just possible that aswarm of bees has taken poseession of tained a quantity of boney which some neighbouring becs havo been plandering, hence the busy appcarance. It would be absurd to suppoie the heat of the
of cold in the previons winter. If a swarm has taken possession home. loads of pollen on their legs in fine weather, whi wot any, and the bees will remain in his hire all night, 4ut if they are robbers they will bring nothing to the hive at all, and except a fow be-
nighted or benumbed bees nene will be left in the hive aighted or benn mbed bees nene will be left in the hive altor dark. It was enlpable carclessness, at least, on
the part of "C. R. H.* to leave a hive in which bees the part of C. R. H. to leave a hive in which bees isease, to be preyed apon by a neighboar's bees ; bat werc, a trap to catch a neighbour's swarm, the action were, a trap to catch a neighbour's swarm, the action
was simply dishovest.-C. N. Asbotr, Hanwell, W.
[12061.]-Chemical.-Cblorate of potassium is ensily distinguished from chloride of potnssiam, as the former does not form a precipitato with nitrate of silvar, Whilat the latter produces a white curdy precipilato in liquor ammonia.-F. T.
[12081.] - Chemical. - In answer to "Emily Jane," chlorate of potash (or, more correctly, of
potassinm) when melted in a test-tahe ovolves potassinm) when melted in a tost-tube ovolves deflazrates vividly. With concentrated sulphuric acid tho solid salt cires a deep yellow explosive gas, possessing bleaching propertics, whilo the obloride and soluble in water. The solution of a chlorato gives and soluble in water. The solation of a chlorato gives
no precipitate with nitrate of silver, but a chloride no procipitate with nitrate of silver, bat a chloride
produces white, curdy, silver chloride, insolable in nitric acid, and gradnally darkening in the light. Consequently, if the chlorate contain obloride, which is often the case, a precipitato will be prodnced on
addition of silver nitrate. To detect amall qnantities addition of silver nitrate. To detect emall qnantities
of chlorate in solntion, and in tho absence of chloride, of chlorate in solntion, and in tho absence of chloride,
acidify with dilate sulphario acid, and make blue with acidity with dilate salphario acia, and make blue with
solution of indigo. Then add gradually a solution of solpharous acid or sodiam salphite. In the presence of a chlorate chlorine will be liberated, which will discolorise the indigo; excess of sulphite will prevent the reaction. If a chloride be present in a liquid nogether with a chlorate, they are best detected as
follows:-Add nitrate of silver to the solation, and filter from the precipitated chloride. To a solation of rodiam sulphito add nitrate of silver till a permanent precipitate is prodaced, then add dilnte nitric acid till clear. Mirix the solation with the filtrate from the chloride of silver, when a fresh procipitate of chlorias of siver wition prodaced il chiorato is present. The precipitation is immediato and complete on heating, bet only occars slowly in the oold. If
sulphate of silver and sulpharic acid are employed sulphate of silver and sulpharic acid are employed
instead of nitrate and nitric ecid the toat is still more perfect, and the prosenco of nitrate may readily be deteoted, if deaired, in the filtrate from the second precipitate of silvar chloride.-Alyrbd H. Allesn.
[12061.]-Chemical.-In reply to "Emily Jane" (p. 313) potassium chloride may be distingainhed from the chlorate by precipitating it with nitrate of silver,
which will lesve the ohlorate in solation.-J. Boskelu.
[12006.]-Induction Coll.-1. It is indifferent Which way yoa lay the mecondary mire; bat it is usaal Yea, when you have laid one ooil from end to end varnish it, when dry corer it with a layer of gnttapercha, and then proceed to lay on another coil. Fall percha, ann then proceed to ley on another coil. Fall Bottose.
[12072.]-Magnetic Moment.-The quotation Which "Beacon Loagh" wibhes explained is one which presupposes that the reader anderstands tho technical Fergematical term "momenh" and ol tho The so moment of any agency is its rolatis is ite power to retarn to its position of N. and 8 nfter distarbance, or rather the foroe required to deflect it from that position; this depends on the actnal intensity of the magnetism, and also on its ength of the magnet-i.e., the leverage exeled (no its energy sapposed to be concrativo any units may bo ased ; bat the absolute anita are the only ones desirable to employ.-Sigus.
[13073.]-Scarlet Runners. - Scarcely worth while, even if possible, these beans being so pecaliarly
sabject to thermometrical changes.-HENBY NzwAS:
[12078.] - Cabbage Planting. - Rhubarb. I would adrise George Richardson to obtsin seed of the Early Drarf York, as one of the best early cabbages. It bis garden is in an exposed situation, and in the North of England, I aay do not plant cabbage in wintor, as they rery rarely grow to any aize. Dig in mamare in antamn, and lot the ground lie in a roag ho ant winter, and morely tarn the top soin a ing the manure he may trench it to the depth of 18in. As to rhabarb, it ought to be planted in antamn and watered freely with soapsuds.-Bed or Stons.
[12079.]-Detonating Crackers.-A small pieco of fulminate of silver is mixed up with small pieces of gannister. When thrown apon the proand the friction
apon the fulminate canses the explosion. - Elscraic.
[120n0.]-Analysis of Manures and Assay-
ing for Certain Metals.-This is a commercial ing for Certain Metale-This is a commercial qnerr, and crept in by mistake. "X. Y. Z." mnst ask will get replies.-ED.
[12081.] Chemistry.-In answer to "Molecule,"
solation of ammonium molsbdate in water, or boil molrbdic acid with ammonia. Add this solation to moderately strong nitric acid, taking care that the nitric acid is in excess; filter it necessary. This silntion when added in plonty to any acid liquid containing a phosphate or arseniate prodaces a yellow precipitate, which is promoted by stirring with a lass rod, the precipitate having a tendency to become deposited in streaks on the sides of the vessel whereever the rod bas tonched. Moderate heating much promotes the precipitation. If mach hydrochloric acid is present in the solution to be tested, it is best to evaporate to a small balk with some nitric acid before applying the test. silica, when present, shonld be separated by evaporation to dryness and re-solation in nitric scid. The test is very delicate and reliable when carefally performed, and is especially adapted for detecting small quantities. To ascertain whether the yellow precipitate is due to arsenio or to phosphoric acid, olter ofl the liquid and wash the precipitate with a little cold water; then pour ammonia ou it, in which it will disaolve. To this liqnid add a clear mixture of cbloride of ammoninm, ammonia, and salphate of na jaesinm, and stir well with a glass rod. Streaks will be produced on the sides of the tabe. Decant the fluid into another tabe. Wash the streaks well with distilled water, and then poar in some nitrate of silvor (free from acid). The streaks will become brown if argenic acid is present, bat yollow if produced by phosphate. If both be present together, gradanl addition of weak acetic acid will dissolve the yellow first, and the brown coloar will become bettor developed. If farther confirmation be required, the liqnid decanted from the treaks may be filtered, the precipitate washed with cold water, and dissolved hy poaring dilate hydrochlorio acid over it. Add sulphite of sodiam to the solation, boil well, and treat with sulpharetted hydrogen, when any arsenic will be thrown down as a yellow precipiate, while phosphate will remain in solation. Arsenio and phosphoric acids prosent the closest resemblance, and the above reactions are the only ones by which they can be distingaished, and in the method described thoy are employed in the best manner. By following
the directions carefully, "Molecule" may insure success. III the molybdate solation and magnesia mixture are kept; ready prepared, the process is not a long one. At any rato, it is the shortest there in for the given conditiong-namely, acid liquors containing varions metals in solation. If "Molecalo" moets with any difficalty from the presence or antimony or tin, I can help him out of it.-Alpred H. Allen.
[12081.] - Chemistry. - Arsonio will be distingaished most often by the rod yellow precipitate it forms with sulpharettod hydrogen, the red precipitate it forms with nitrato of silver, and still better by the ring it produces in the Marsh apparatus. marnesiam sulphate, which produces a white crys talline precipitate solable in acida; that of nitrate of silvor which forms a yellow precipitato, soluble in ammonia and dilated nitric acid; and that of molybdate of ammoniom thich producas in a solution of phosphato acidalated with nitric acid a yellow precipiphosphalich appears sometimes immedistoly precipl times altor a moderate heat has been applied to the tesf tabes.-F. T.
[12086.]- Felootpeden.-Gattaperchas cement will annwer "Bob C.'s" parpose. He can get it where shoemaker's matorials are sold, and the shopkoeper
mill toll him how to nse it. Half.round rabber is mach will tell him how te use it. Half.round rabber is much better than fat. This cement will last for hundreds of
mileg, and when it gives oat oan be renewed in a few miles, and when it give
minates.-SAorstar.
[12088.] - Oleaning Jewellery. - Probably jowaller's ropge-ELEctric.
[12089.]-Felt Hate.-Perspiration, or greace, or both, soaks throngh. Dissolve some ammonia in warm Water, and wash the hate with it, using a piece of
cloth, black or light according to the colour of the hat. -sacribtan.
[12094.] - Preserving Caterpillars.-Kill the oaterpillar by immersion in boiling water. Cat a small oxtract the intestires and fatty matter. Fill ap with extract the intestires and ratty matter. Fill np with
cotton wool, which has been previoasis soaked in an colton wool, which has been previoas/r soake in an This is about the best means known, bat it is very un-satisfactory.-S. Botrone.
[12097.]- Venetian Blinds.-Procare some ordinary paint, and add spirit of tarpentine till the paint is rery thin indeed, then lay it on in the nsual way. Blind-makers dip the laths into the paint; but unleas "F. A. R." has a great many laths to ooloar, I think he had better not do that. At least three coats will be
required; then varnish in the nagal way.-SACRIBTAN.
[12098.] -Dandelion Roots.-I am not a merical man, so that I should not feel justitiod in recommending anything of which I had not personal experience. With regard to Taraxecam, or dandelion, it is asailly beld to be an excellent remedy for the disease mentioned by
my interlocator. Bat ishould certainly not advise him my interlocator. Bat ishould certainly not advise him to make his own extract, as that necessitates the nse
of a vacunm pan. Let him go to some respectable oi a ractam pan. Let him go to some respectable manufacturing chemist, such as Morson, Bell Barton, de., sud mach better article than he could possibly preget s man better article than he conld possibly pre-
pare, at R very low figare. The process asually mapted pare, at R very low agare. The process asaally mopoted crushing them between rollers, expreasing the juice crushing them between rollers, expreasing the jaice fralls eraporating the jaice in a vacoum pan, ontil it attales the coneisteney of stirl jam.-s. Botrone.
[12099.]-To Advanced Ohemists.-Drink large quantities of pare milk, altor it has become sonr, as
the lactic acid which bas been thas produced forms with magnesia a componnd solublo in water. This remedy has very often been applied with success by
Prof. Bonchardat, of the Facalty of Medicine in Paris. Prof. Bo
12100.]-Venomous Serpente.-The " soake tone," and every other so-called antidote that could be obtained, was tried in India and found useless. It should be mentioned, however, that they were tried on cases in which there was no doabt the poison had been irjected. The case which "Cireb" refers to as having witnessed was probably one of many in which no venom was ejected by the cobra: hence the recuvery. I believe there is a reward offered for the discovary of an antidote, and if "Cireb" is acquainted with one he can claim the money and make himself famons. The appalling namber of deatas annually occasioned by snake bites in Indis would seem to contradict the notion that any snake stone or snake bean is success. folly emplosed as a remeds. Further and complete information on what has been done in the mattor will doabtless be farnished in the monograph of the announced to be shartly pablished.-Savl Ryuea.
[12105.]-Equation. -1 st. $-x^{2}+x!y=28$. 2nd $x y-y^{2}=8$. From the 2nd, $x=\frac{\left(y^{2}+8\right)}{y}$. Substitating this for x in the $1 \mathrm{st}, \frac{\left(y^{2}+3\right)^{2}}{y^{2}}+y^{2}+8=28$ $\therefore \underline{\left(y^{3}+3\right)^{2}}$
$=25-y \beta_{1} \therefore\left(y^{2}+8\right)^{3}=25 y^{3}-y^{4}$.
Squaring the first part, $y^{4}+6 y^{3}+9=25 y^{2}-y^{4}$,
$\therefore 2 y^{4}-19 y^{2}=-9, y^{4}-\frac{19}{2} y^{2}=-\frac{9}{2}, \therefore y^{4}-$
$\frac{19}{2} y^{2}+\left(\frac{19}{4}\right)^{2}=\frac{199}{4^{2}}-\frac{9}{2}=\frac{17^{2}}{4^{2}}, \therefore y^{2}-\frac{19}{4}=\frac{17}{4}$.
$y^{2}=\frac{86}{1}=9, \therefore y=8$. From equation $2 \mathrm{ad}, 3 x-9$
3, $\therefore 8 x=12, \therefore x=4$. -SUMMA.
[12105.]-Equation. $-1 \mathrm{st}-x^{2}+x y=28$. 2nd
$x y-y^{2}=3 . ~ L e t ~$
x $y^{3}=28, y^{3}\left(v^{3}+v\right)=28, y^{2}=28$ $y^{2}=8, y^{2}(v-1)=3, y^{2}=\frac{3}{v-1} \cdot \frac{2 R}{v^{2}+v}=\frac{3}{v-1}$. $8 v^{2}+$
25
$\frac{5}{8} v$ $3 v=28 v-28,3 v^{3}-25 v=-28, v^{2}-$
$+\frac{625}{36}=\frac{625-836}{30}=\frac{289}{36}, v-\frac{25}{6}= \pm \frac{17}{6}, v$ $\frac{4}{3}$ or 7. Then $x=\frac{4}{8}$ or $7 y, \frac{16}{9} y^{2}+\frac{4 y^{3}}{8}=28$, $\therefore y=3$, and $x=4$; or $49 y^{2}+7 y^{2}=28, \therefore y=\sqrt{7}$, $x=7 \sqrt{\text { b }}$-Whlmott Henderson.
[12105.]-Equation.-All simaltaneons bomogeneoas equations can be solved by patting one rariable equal to a maltiple of the ord tions as this too hard for jor get the key to the book. dions 28 this too har

- МАtirxaticun.
[12108.] - Confasion in the Head. - Let Agent " try hall-rations, or at leant abstinence from meat and beor (espocially stont and porter) once a week, and get all the fresh air and exercise he can. An
ocoaional dose of Epsom malts will do him good. Sacrietar.
[12109.]-Old Locomotive Tubes.-Plag one end, fill with molten lead. When cold, bend as you require. Theo apply sufficient heat to melt out the lead.-s. Botronz.
[12110.]-8liver Plating.-If "Electro" will place his solntion into a large open pan and then add cipitated in the form of sulphate of silver. When it is settled be may poar oll the sapernatant liquor, collect the sulphate, dry it, and then send to the refiners. Perhaps the caure of the dilver depositing brownis, if Perhaps bright solation, an excess of bisulphide of carbon. Remove the gold by the porous cell process, when the lives in the neighbourhood of Sheffield, I shall be very hives in the neighbourhood of Sherfield, 1 shall be v
glad to put it to rights for him gratis.- Elecraic.
[12115.] - Battery. - The description of my arrangement of battery alall be given at an early dato in my papers on "Electro-metallargy" now commenced. It has given me great satisfaction.--Sigxa.
[12124.]- Voice Weakneas.- Speaking and aing. ing load are good, bat yon can't sing to the accompani or constant : in the laryax or langs? ? Heney Newmas

London Aesociation of Foremen Engineers.

- At the last monthly meeting, on Satarday, Jane the 1st, Mr. J. Irvine, vice-president, in the chair, a paper on cast iron was read by Mr. Lasird. The main pointa traction from oold and expansion from heat, the lawe Which regalata the action and reaction of cast iron ander the conditions of motion and rest, the bearing of ohemical equipalents on mixtares of metals, and the improvemests to be effected iu the cooling of molten metal as well an the smeliorations of form denirable in castings. The paper was discoased by coveral members and the discuasion altimately allowed to stand ors until the next meeting, on Satarday. Joly the 6th. The candidates, Mr. W. Daubney and Mr. W. Ladiey, were elected membera of the asenciation. Mr. Charlos Leager was pat into nomination.

ONANSWERED QUERIES.

The numbers and tities of querios whiek remain unanswered for five weeks are inserted in this lint. We trus unf readers will look over the list, and send whal infor mation
Since our last "Hedera" has answered 11416, 1163; Heary Blake, 11529; " Moute Christo," 11630.
1734 Engine Connter, p. 184
1735 Gilding on Glass,
Potash Salts, 184
Watch Keys, 184
Coll Construction, 184
Crucible for Quartz, 184
Pollishing Diamond, 184
Tempering Charcoal Lron, 184
Boring for Coal, 184
English Mechanio Colony, 184
Watehmaking, 18
Piano in Canada, 184
Tricycle, 184
Cleaning Plain Blue Silk, 184
Tugboat for River WVA, 184
Commercial Goograpin. 184
8weeping Machine, p. 185°
Photographic- 185
Mand, 185
Band, 185
Electric Signal Bell, 185

QUERIES.

[12198.]-a Draconim.-Will "F.R.A. 8." oblige me y relerring to quorv No. 11716, Which be kindly an , inear I required. I took my idea from the oralo the passage, which is from a prper by P. 8myth, on the Great Pyramid. Will "F. RA. A." kindly explain it ? "The writer ascertained also that the entrance passage meridian point the pole, at a diatance from." But the question which pazzlod him was, which of the two times of the etar being that distance rom the pole, could have been the one intended to be
typitied ${ }^{\text {For }}$ two such condicting times there wore typined For two such conticting times there were, seeing that the star's closest approach to the pole, and
within only ten minutes thereof, occurred near the year 2800 B.C.; and on that accennt, both 600 jears before such date, equally with 600 yesrs after it, the sta must have reached (though on opposite siden) by ite
nniform "precessional displacement, the typioal $8^{\circ} 42^{2}$. in dicated by the entrance passage." It is the lafter part which [wish particularly to have explained.-J. X. T.
[12127.]-Eierbs.-Can any one rebommend to mes good (cheap) work on the medicinal p
[12128]-Portable Dark Tent.-Will some of yous calis a por making a portable pholographio dak tonk, lor working material for oovering the person, mode of applying it man will greatly oblige-OcCasioxal Proto.
[12129.] - Fire Bars, - Will some correspondent nform me whetuor asat-iron fire-bara last longer than roughtiron bare, and why the latter are alwaje used boilers? The fusing point of oant fron ie no donbt, lese than that of wrought iron; but some anthorities state that esst iron resista the Wasting action of heat and amme ap to a certain point better than wrought iros Perhaps the chemical propertios of the coal have some
thing to do with the duration of the bars, and will anfing to cast iron less than wrought Does Wadeh steam coal of the best quality require a leas air space between the bars,
Jornsox.
[12130.]-Electricity.-Will some one of your alec trical correspondents be 80 good as to inform me wo machine is simuar to one from a galvanic battory
How far fill it produce the same effeote ? - E. T. S.
[12131.]-Flectricity Applied to Engraving.Has electricity been applied to engraving and oopyiag wring. If not, 1 shoula suppose mint metic plate thinly conted with wax, to be subjected to the action of a galvanic battery (the engraring or writing being pre the parts to appear in the engraving) we should hare deposit of copper, ec., in reliff, and the plate, when taken from the battery and the way removed, might be printed from as in a wood engraving. - Philanyeriopiot
[18132]-Polariscope.-I have ondeavonred to om struct a polariscope thas:-I have arranged two laser of crown alass plates ($16 i \mathrm{in}$. onch) at an angle of 56 , 4 in two different pill boxes, holes about the size of six pences being cut in lids and bottoms of the boxes, ba slightly dimmed. I have placed various crystals between the analysing and polarising layera, bnt asn get no se'e ito or Nichol's prism. Should dimness or perfec darkness be produced at 90° and 270^{2} by revolving either anslyber or poleriser? Should the tabes be blackened inside? Can brillinnt colours be obtained by simple hrindles of glass, arranged at
I fall? Pray help the-NeEDr.
[18139]-Hard Water. - The water from the vel in my houge is very hard, and a medical man gives it as his opinion shat it will cause gravel, if used for
drinking purposes. Can anything be dono to it $? ~ W i l l$ drinking purposes. Can anything be don
[12184]-Restoring Brass Wire.-I have about bat which has beou exposod to the alr and is now rottea

Are there any means to bring it back to its former state of quallty ?-Keicitisp.
[12185.]-Cheat Expander. -I am in the babit of using a chest expander, but I tind that after asing them a short time they renerally break at the jnnction of the
indiarabber with the handlo. Will "Jack of All Trades" indiarnbber with tha handlo. Will "Jack of All Trades" me how to make one to act by the compression of a me how to make one to sct by the compression of a
bpring, and to be capable ol beling get to suit diferent degrees of atrength 9 --Trowas Southwnil.
[22188.]-Monkey or Jamaica Nut. - What in this have now aprung up; they prow very quickly; the nut is of a yeilow-brown coloar, rongh, and is like a amall gaushge, lin. long, and slighty gqueezed in the centre. nncooked broad bean and are situato at onch end. The
leaf is lilacoshaped and is made of three potals or leaf is lilac-shaped and is made of three potals or
branchee. Will the plant oatlive an English winter? [D2187.] - Liquid and Solid. - What are th general I roceivod dednitions of the words liquid and While in Ganot's "Natural Phllosophy," it is ranked whth the liquids.-C. P. E.
[19138]-Chemicals that Absorb Moisture. moisture from the air 9 Not mach as lime, which does not thereby become damp, but such as become and remain wet from the moisture absorbed.-LXXXVIII. [21239.]- Wechenioal Eduoation. - Will you or any of your readert inform me of ashool where they
give a thorough pruotical mechanical education ? give ${ }^{2}$ thorongh pract
QUADRANT, Nottingham.
[12140.]-Ohemical.-Can any one tell me is the mode of making potazaium by Profossor Dolbear, and
desoribed in last week's Mscianic is at nill dangerons described in last weak's Mrcranic is at anll dangorons?
I have bitherio underatood that it is not the cost of the materials so much at the donger Io iourred in making it it bo separated frnm the coal-oll complotely, $t 0$ as to be It to use?-J. 8. Hoynze.
[12141.]-Watchmaking. - Will "A Yorkshire balrapring to tolor jowel hole in the 'moape whoel cook of a Geneva watch ? -No amatrur.
[a142, -Leaky Tubes.- What is the proper way to atop the tabes leaking in a portable en
[19148.]-Dayenne.-I have to pack occasionally a prose or two of small paokets containing enajonma
generally have a cold after it, caused, I belleve, by the cajenne. Can any of your readers givo a plan os that
I can esoape its diangreeable effecto it alco oanses me I can esospe its diaggreeable
[19144.]-Timber Housea.-I shall feel oblliged if
ome of your numerous readers will latorm me of the come of your numerous readers will Inform me of the

beat mode of construoting half-timbor framing for oat. side walla giving the beat method of keoping the
woather from the interior. I propose dolng it thas- Bre
n2945.]-Bmall Steam Boiler.- I have a table engine, cyllinder depth, sfin. ; bore, Mjn. Would any Mramisio the dimenalons of the boller I ahould require J. pper, whether riveted or brayed, and probable cost?-
[19146.]-How to Procure a Patont.-I havo conatruoted a new apparatua which 1 am desirous to proteot
by lettors patent, but havo no means to employ a law agenit. Will any of my follow anbscribers to thin journal kyidy in and they will greatly oblige-G. Y.
[19147.] - Coohineal. - The other day 1 made a Axateur ior the hair, Alter A recipe in Boently's "Unotal Druggiste' Receipt Book," adding maciloge of trajacanth
 with otto of rosee. Instoed of boing colonred rod as one
might expect, the resulting compound was of a dirty mrey colour. What was the cause of this ? - D. N. E.
[12148]-Bolier Query, - I have a boilor of sheet. 1in. spart, 2it. 6in. high, 1tt. 101n. diamoter, with eix tubee of lin. Internal diamoter of iron external áro-box. What is the groateot pressure it is rafe to work at, and what horso-power is it?-Laxch.
[19149.]-Fellmongering.- Wul any readers inform or recommend a work on ${ }^{\circ}$ Fellmongoring p"-C $\Delta \mathrm{Pr}$ Colosy.
[212150.)-Photography.-Could any subscriber of
practical experience sdive an amatour which ould be practical experience advico an amatear which would be
the beat prooens for him to adopt-viz, the old plan of collodion and eiliver bath or the new collodio-bromide sid chlety for portrititare. A hat or two ss to the adrantages and dieadrantages of either process and ahort working detalls, would obligo-Terrop.
[12151.]-Concrete Engine Beas.-I wish to $18 \mathrm{so}, \mathrm{how}$ do they angere? Are thoy an arbuantial and arm an those of athlar atones? Does the conereto take long to met 9-NORTE-WEsT Yosxssire
[12182]-Dyeing Raw Ootton-Woald rome of and quichoet way to dye raw ootion a good biact,
[19153.]-Ant Eill Earth.-Conld "Khoda Bax" hindly put me in the way of inporting some of the ant-
hill earib, mentioned a year or no ago by "Eoa" (who for hill earth, mentioned a year or bo go by "EOs " (who for
some reason moems at present oclipsed), as nsed by native jowellors, dec, as monlds for casting metais into ? nanart or so would be sufficient. I mill give my fello
and Coaders the benofit of any succeenio I may obtain by using In a lormer lotier 1 mentioned 2 brick dust and
plaster as answering for brase, so., and so it does, bat I plaster as anawering for brass, do., and so it does, bat
want something harder and not bo friable as this I want somothing harder and not so fria
[12154.]-Coloured Printing Inks.-Wim "Zoo Andra, bo kind enmugh to mention the name of the
varnishes used ia mixlug the above?
[12155.] -The Suspended Shilling. -Another Reason Wanted. - Like the problem of urling heavy weighte without difmonlty, the following is an old ex:
periment, but may, like that, afford food for the inperiment, but may, like chat, afford food for the in-
genuity
of some $n f$ giscover the ralson detre. Tio a shilling to one end of a plece of thread, and hold the other end between the
thamb and forefinger of the right hand ; rest the elhow apon the table and throw back the hand so that the
thread shall pass over the ball of the thamb, and lot the thread shall pass over the ball of the thamb, and lot tho
Bhilling be suspended in the centre of an ompty tambler. Premising that the hand of the operator be porfectly gteady, the ahilling will in n low moments become per. a moment or two, when it will assume the motion of pendulam, incroasing in voleoity until it strikes againgt the sides of the glass, which it will do a namber of times equal to that of tho hour which is nearest at hand-e. g.".
if the operation be performed at (nay) a quarter to wrelve, it will strike the gless twelve timen; if at a quarter to one, only once. Its motion will then gradually,
subside antill it wain remains suepended at perfect rest, subside antill it wain remains suspendod at perfoct resh,
after which it will move no more. Ihave repeatedly
performed this experiment succein nessed othors do the same. I have nlao sean othera Whose hands appoared equally stead, atterly feili, tho shiming persiatently refusing to oscillate. The former part of the exporimont may be oxplainod, I Imagine, by the action of the pulse, but how to scoonnt for the
shuling striking the hour is the destideratum, -H. G. W.
[12156]-Mice Eating Peas.-I have sown both poess and beans in my karden twioe, but mioo or some
thing olise oat them. Please gay what would provent thing olse oat thom. Please gay
these maranders doing co.-8sagoz.
[19157.] - Fmell of Paint.- Wil mome one be good enough to say what will take away the anploagent smedl of now paint ?-sinaos.
[19188]-Packing Ringe of Piston.-Would Mr. Mircenamic, toll me how to turn up and at the packing

[12159.]-Lime Juice.-Will Mr. 8. Bottone or some chemioal friend inform me what limo jaico and lemon
[18180.]-Size of Iron Tool, czo.-Thanks to Mr. Purkish for the kind and satigraciory mannor with which he hat anowered my quogioni, bat what to What proportion he finds best of iron tool to mirror? I may, perhapa, juat say I am anzloas to arrive at per-
foction with my mirrorg, henoe the reason of my tronblotoction with my mirrora, hence the reacos of my tronbio-
ing Mr. Purkice. I hare made some Very good mirrora, and have one at prosent
favourable ciroametances) the Inventor's column 180 yards diatant-OPTIOAL BRICELAYYZ.
[19181.]-Mangle. Will some kind meohanio help meq I wish to maike a mangie. Thant the sizes of what sort of wood would utand beet. The sort I want is one of those that works with a olhain.-Munger
[12162] - Machine Punches. - Will any resder Kladly give a bhort description of any maohine punches other than the levar, the screw, and tar AGAX.
[11163]-Weernchaum Pipee.-Wil "Z Zota " docoribe the proceses of re-waring a pipo? Can it be done by a non-profenalonal? Also, how ean I remove the
colour from \& plpe, which has not coloured niooly? AxLax.
[18184]-Temperature of the Planete -In the article on "Japiter" In the number for May ${ }^{24} \mathrm{p}$. 444 , it is
assumed that an Iatensely heated planet is unatito be the abode of living creatures." Aro there any solentifo groands or onlty for living beinge, or the best one? Does the great heat of Mercary, for instanco, procinde that planet from swarming with oreatures ns dolioately and Whacoriully adapted to surrounding conditions-ol Trich to
[12165]]-Cream Cheese.-Will some subscriber kindly linform me how to make a good cresm cheese? Also, how to pror
ri2166]-The Enfield Rifle. Why is the Enfeld Hife bored out to s77 of an inch ? - Willink Milinar.
[18187.]-Dry Soap.- I shoald be rery glad to know,
throngh the MxCanic, the ingredionts ol, and modus throngh the MYCBANIC, the ingredionts of, and modus
operandi requiate to produce, the dry moap, such as operandi requinite to produce, the dry soap, such as
Bhav's, now mo much in use.-AM OLD WxGrox SUBBhan's,
BCRIBER.
[12168] - Ihmolight or Electric-Light for Magic Lantern-Tue Committec of a Young Men's chisian Association aro dosirous of obtaining replios of the Mroras wri who has had praotical soquaintance with the matters lnquired of:-1. The first cost of n
superior alnglo and doable lantern with limelight, and superior alngle and donblo lantern with limelight, and
also with electric light , all necessary apparatus to be included. 2 The cost of worting eanoh for esch ocea. sion on which it might be aned. 8. Which is the and disadrantages of aach kind. 5 . How many cells mould bo required for the oleotrio light, and whioh kind or coll the bot? 6 . To what other uses could the
olootrio 1 ight bo put that the limelight conld not? Any olootric light be put that the limellght coonld not ? Any
other liformation that might soem necescary would be other Information that might see
thankfull recelved. - $\mathbf{H o x}$. Sre.
[12160]-"E L. G " and the Yorkthire Wold-
account for the Yorkshire wold-combes? (2) How does he account for them 9-HEDren.
[12170.]-Dyeing.-Can any reader inform mo if
there is an asmociation for the spocial instraction of there is an asaociation for the special instraction of
drers in the chemitry of dyeing, in any town in the dvers in the chemistry of dyeing, in any town in th
Uaited States? If so, whero? JIEUE TEiNTURER
[12171.]-Utilising, Chemical Products. - Wiu Mr. Bottone, "Sigma," or any othor competont kind riond, inform me of a mothod to save the following
raluable produots, which 1 am convinced ought not to thrown away? In electro-plating establishments ailver is strippod from artiales by means of saltpetre in hot anlphurio acild, and then precipitated by common salt. I nu not a chemist, bat I appose when the ohloride of
silver is taken from the solation there remains nitrate silver is taken from the solation, there remains nitrate or sode and sulphate of potsich duated with aboat oigh theso filts to per 1 whonid How can aryataluse out the form of causific potach and soda if possible. Oan it be done by means of lime ?-Stescrisire
[12172]-Constipation-As a regular subsoriber moy 1 abr for adice or your namerous and talontiod
correspondonts for tho followiog :-I am a dreadfal sufferer for most obstinate conatipation. Perhaps some of your correepondenta have recelved relief from this annoyance, and would gladly give their experience for
the bene日t of a sufferer. I have boen under eight dootora, and thoy give me no relios-at leatt only tem dootora
porary.
dind
[19178.]-Coloured Ink. - I havonsed Jadeon's dyes, whioh 1 nad advertised in the ENGLIBH MECBABIC, to make various fanoy inks with, yet they all seem to want glad if some correspoadent woald tell me what to add to mpart this roquired quality.-E B. \mathbf{B}.
[12174.]-Agrioulture-I am anxious to know how to discorn botween red clover and Amorican oow-grass "oar" agrioultaral roaders. Those grasses, so seemingly alike in appearance, are strangoly differant in the effecte they produce on cattle fod on them. The cow-graes may
bo eaten with impanity, bat the red clover, if eaten to bo oaten with impanity, bat the red olorer, If eaten to
oxceas, gonerates sooh quantitios of gas in the cor't oxceng, gonerates soch quantitios of gas in sion
stomach, that it swells to an immense size, raptaree stomach, that it swells to an immense sixe, rap
and barsts, no that the cow dies apoedily.-E. B. F.
[19175.]-Soundboard-"The Harmonions Blaokmith has Lold os that the tones of musical box can soundboard. Will he kindly gay what aize, and hom I am to construot a soundboard suitablo for a masioal. box Which is sboat gth. In length by 8in square and would it not be better to take the mochaniem out of the box, and screw it direotly on the board 9-E. B4F.
[18176.]-Hydrogen Flame.-I want to procure a
good hydrogen
game, and for this purpose 1 have frequantly pat zino with sulphnric acid and water, into a bottlo atted with tube, with small bore as diriocted in books; bat I have Invariably been rowarded by an explosion of the whole nifrir, and though I have repeatodly
tried, I have always fillod to attain my desire. I wait
 well aoquainted with the theory, but very deIcient in practice. Perhaps " our"praotionl frieade oan help mo-
I deaire to exprosi my thanks to "F. R. A. s." for his kind answor to my inquirios respecting japitor.Whitixam.
$[19177$.$] -Algebra. - In Todhuntor's "Angebra;'$

$$
\frac{a}{(a-b)(a-c)(x-a)}
$$

$\overline{(b-a)(b-c)(x-b)}$
may be written
$+\overline{(c-a)(c-b)(x-a)}$ $\frac{a}{(a-b)(c-a)(x-2)}$
$\overline{(a-b)(b-c)(x-b)}$

$\overline{(c-a)(b-c)}(\overline{x-c})$

Will some follorw reader Hindty explain how thin trans-
formation is effected, and give the pule ?-W. M.
[[21788.]- French Magazine.-Can any anbeoriber to "ours" give nue the tulie, price, and name of the pab-
Hishers of a French magazine comblaing literature, Hike "Chagberi's Journal"? The "Revue dos doux Mondes" is too much of a political periodiosh. -

JACK OF ALL TRADES."
Sisce we went to press last weak we have received from

Solicitor	\ldots	\ldots	\ldots	\ldots	$£ 1$	1	0
G. H. G.	\ldots	\ldots	\ldots	\ldots	1	1	0
Curative	\ldots	\ldots	\ldots	\ldots	1	1	0
Manus	\ldots	\ldots	\ldots	\ldots	1	1	0
J. Halden	\cdots	\ldots	\ldots	\ldots	1	0	0
T. Wheatley and	Rev. Gerard Smith	0	15	0			

We intended at first to contine the sum to 210 , but as others have signifled their desire to subscribe, we can have no possible opjection. And if two others will send us al 18. each, we wint rausmit to "Jack" another cheque for cio 10s. Jack is at Jratiock, and has been from change of air and scenery, and the curative treatment he is undergolng. One reason why we tive treatment he is undergoing. One reason why wo
willingly fall in with the desire to make the suma et21 in all, is that Jack has a large family solely dependent upon him for a livelibood.
After the $£ 21$ are subseribed the list will be inally closed. This must not be looked upon as a general sabscription, but as a sum presented to a kiadhearted. indnstrious, and deserving man, by atew brother
readerit who apprectate and respect him.

OHESS.

Asr commmiontions intended for this department to to be addresed to J. W. Abbott, 7, Claremont-place, Loughborough-romd, Brixton, S.W.'
A. gathering of ohess players will take place at the Cryotal Palace on Jaly the 18th and 20th, ander the suspices of the Britimh Chess Ameciation.

TO CORRESPONDENTIS

J. K.- You will gee that we have arailed ourselves of your emart little problem.
R. A. Proctor (Clapham).-We are much obliged for the problems, which shall receive our best attention. Asco.- Your problem shall be examined. In the monn time have the goodnens to forward your name and address.
A. R. Molison (8wansea). -The variation is wrong. If (1) K to $Q \mathrm{Kt} 7$; (2) Q to K B 6 will not solve it, (1) K to Q Kt 7 ; (2) Q to K
oompare the pabliched solation.
T. T. D.-Thanks. Next woek.
F. Owder (Hoxton), and Wrazar (Dulwioh).-Problem No. 1 cannot be solved in the way you propose. Corbmor solations to Problem 1 have been recoived from R. A. Proctor; J. Bereaford (Vanxhall); and C. D. (Clapham)

Pboblex II.-By J. Kinng. Black.

White.
White to play and mate in three moves.
Solution to Problex I.

Whit.

1. K to Kt 7
2. Q to Q 5 (ch.)
3. Kt mates.
4. Q to B 8 (ch.)
5. Q pastes.

THE ENGLIRH MRECHANIC LIFEBOAT FUNB sabecetptions to bo forwarded to the Editor, at the Oflec, 81 , Amount proviounly aciknowledgel B. Weatherh gg
Honry Nowruag
H. $8 . .$.

ANSWERS TO CORRESPONDENTS.

*** Sil oommunications should be addressed to the EDTOR of the ENGLISH MBCBAFIO, 81, Tavistock-street, EDrTor of the ENGLI
Oovent Garden, W.O.

The following are the initials, te., of lettors to hand up to Taesday morning, Jane 11, and unacknowledgod elsewhere:-
J E. Crowther.-J. B. Ward-D. H. G.-Capt. D. F AUsn.-Wm. Cooper.-J. M. Mayficld.-R. A. Proctor. - Charles Brewer.-B. C. Hughes.-H. B.-Geo. Sant. E. Frank Mason.-H. T. Miles.-Rev. Gerard Smith.E. Colling.-J. C. Lambert.-T. A.-Wm. Mirry.-
John Bailey and Co.-Cunningham and Co.-Dr. T. John Bailey and Co.-Cunningham and Co.-Dr. T. C.
Burton.-R. Starkie.-General Thompson,-S. Hewitt. BP. H. Gosse.-Shasloden.-Rev. J. O. Carriok.W. L. Nash.-J. Hewitt.-E. W. Gsdsby.-J. H. T.-
S. H. B. - M. Paris.-E. L. G.-W. F. Potter.-495.-One Anxious to Learn-F. M.-Aruma.-A Newport Lad.En Avant.-H. B. R.-M. H. B.-M. N.-J. Marsden.-
C. A. B.-Constant Reader.-E. H.-A. Woolsey Blacklook. - M. Donstant Reader.-Enia.-A Subscriber-A. Woolsey BlackJ. U.-Vulcanite.-Another Gray Beard.-R. Turaley.--T. H. F.-Cottager.-Trigo.-D. T. L. K-W. Hooper. J. W. Taylor.-Aleph.-Maica.-C. B.-A Now Sub-scribor.-Gancho-W. Rose.-Rat-Tat.-Excelsior.Pakman, M.D.-E. B. Fennesgy,-Wilitam.-W. B. - N Beav. T. W. Nichol-Wondering Willy-M. Pike. -1
Bencon Lough-Henry Bailey.-Zuo Andra-Tripod
-R. G. B.-Citrag.-W. H. T.-Noturb,-Englend.J. C.-Joshua B. Ragner.-W. IL Pendered.-Francis John Fielden.-John Hiok, M.P. - Aesoc. Inst C. EL-Bisnatus-W. H. Bkelton-The Harmonious Black-smith.-A Constant Reader.-A Firemsn-Cyolone.W. Marquand.-R. G.-A Sub.-R. Tervet.-R G.-Amatary.-Jas. Ford-John Hopkine-R. C. T.A. Tolhansen.-James Hastie. An Old Subsoriber.-Nomo- Charles Watson.-X. Y.-Sheffeld.-R A.A Plain Man.-G. H.-Fla Dresger.-Sheffiold Blade. - C. J. Recordon. - Androw Wilkie. - Dano.-An American Amateur.-Countryman.-Tom the Tinker Liverpool-A Practical Man.-J. Foster-Manns,H. Hargraares. - B. R. B.-A. H. Allan.-A. J. V. G.C. H. W. L.-J. F. S. and H. M.-Edward Blaughter.C. H.-Thetamu.-T. B.一W. R. Hall.
W. Suate-- Your reply is an advertisemen
W. P.-Consult our advertisement pages from time to time.
. Wilimss. - There is some force in your observations. but correspondents mast be allowed a certain amount of latitude. We decidedly question the wisdom of susceptibilitios of every reader. If suoh a policy were tesorted to, our letters "to the editor" wonld lose much of their piquancy and charm, and become to a large extent "btale, fat, and unproftable." Boaides, no correspondent who has anything worth saying woild suhmit to it
E. W. R.-Not suitable. Try again, and if unsuccessful try once more.
. Hare done with shams. Try and deal with
R. B.-Your solution of the "Fifteen School Glris" is interesting, but we cannot afford more space for a consideration of the subject.
Commanications which can only appear as anvertisements to hand from Ovo, G. E. Crick, R. Whitham. Yonk.-Write T. R. Willis, who
or some other manufacturer.
or some other manafactarer. Nril Downik.-The advertisement is that of a qunck. . F. Wilkinson.-You mast put your first question
more pininly before we can annwer or insert it. For your second see indices to back volumes. Your third would occupy too much space; try the experiment yourself.
Nonrself. a determination not to be repelled.
Philantiropist.-We think not.
J. Barvicy.- Your letter on Ecientific Fiducation is insdmissible, on acconnt of its theological compari-
sons. It is, moreover, somewhat incorrect. In the matter of scientific education the State "helps the who help themselves." If you and a fow of the leading inhabitants choose to form a school of science, and put yoursolves in commanication with South Kensington, you will obtain help and incressed facilities. If none of your townsmen have sufficiont energy or public spirit to move in the matter, don't part of your letter that you think the publio librarien of all towns should bo ontitled, like the four great ilbrarles, to demand free copies of every book and newspaper pablished? We think not. At present the cax is comparatively inaignifcant, though even now it presses with some force on the authors or pablishers of expensive works, but we protest very strongly sgainet any suoh gratuitous addition to our cirealation as you appear to oontemplate.
F. Phary, J. F., Great. Walker, T. Baker, and Young Meahanic are rofarred to indices to back volumes. undertake the reaponsibility of answering either of your questione. See indices to back volumes, for lnformation on imperfect hearing
Hores.-There was no necessity for your second lettor. If your request were particularly complied with some one else would be disappointed. Though
you have taken in the work for so many years, you have not sufficiently appreciated its charactor and parpose. Every attempt that has been made to sapply "the mechanic cless," as you call it, with an organ exclusively devoted to mechanics has
failad: and if wo followed your advice, we shonld failed; and if To followed your advice, we shonld
most likely fail too. The Engish MECBANIC is what most likely fail too. The Enalish Mechavic is what the mass of its readers make it. It is based on the principle of onutuning helikes and other things he does not oare for ; and, as a rule, he contributes to its existence, not merely for his own sake, but for the sake of others. Though you have taken in fourtean volames of the Eigalish Mrchairic, you appear not to exactly understand its essence. You are a watch and clockmaker, and the Englisi Mfceanic contains week after week fragments of useful information on watch-
making. But there are watchmakers and watchmakers. Some are only interested in their craft ; others like to know somethine of otherindustries and sciences, of the laws and constitution of nature, and of the motives and movements of man. It is for the latter section that the Engrish Mrobanic exista, and by them it is partly sustained. It is the same with photpgraphy, with ongine-making, with turning, with fiddling, and the thousand and one things discussed irom time to crafteman and more for the man. Jnd ing from your letter, the Enalise Mechanio, with its multifarious information, its wid3-reaching intentions, and the true freemesonry spirit which exists amongst its readers, is not the journal best fitted tor you. We are sorry for it. We must do our work, and the English Mechanic must endeavoar to fulfilts mission notwithstanding. Comet" next week, and then we must close the controversy, as it is puhsing eside more demonstrable and praotical mattera. We have no objection to the discussion of the widest reaching theories, but they should be treated as sandwiches betwoen meals, and not as the menis themselves.
J. B. Sharpley.-Ask for ns much information as you may went, and give in return as much as convenient. articles that are adrortised. The one you inquire about is gupplied by a respoctable house.
G. W. K. L-Thanks for your information on the 1 nti Lancet philosophy. To pablish your ablo letter would quackery Some people den't orre what baracced them as long as thor oan get talked sbont. Ther lise by notoriety, and they would rather be exposed and paintedia their true colours than treated with sience. We will not even gratify them by your witheriug exposure. Whoever will help us to put down shama, whether great or smail, and to counteract the infuence of humbag in any direction, has our heartiest thanks. of all binds an inoxilugulahale hatred, qunckery who bes been trying rether adroitly me admit Who has beon tryisg, rach adroily we samit, adver so sgain Once our query columns shall thanks.
G. T.-Yours about Weatminster clock has been answered.
EqUILIBRItM.-For whet purpese.
. M. Drach. - Your corrected diagram arrived too late. Joseph Rosrgr.c. T. C. B., and AgAlygr.-Query 12000 Prevearioleres-Yours on "Dolecte in next week.
Careful Reader.-See our footnote to "g. L. G.'B
. M.-Certainly not.

THE INVENTOB

APPLICATIONB FOR LETTERG PATENT DURING THE
 property and other articles of valno, and in doorn for sach and olthe places, and in locks or factaninge for the semo, part of phich im-
 ${ }_{1618}$ H. B. Barlow. Mancheuter, for Linprovementa in machinery

 1616 J . H. Dennit, Liverponl, for improvemonta in tho trestment
if copper precipitate and in the atilisation of imparties contelned
 the saznafactare of railway raile, und in apparatas emplosed
 pparatis emplozed therofor.
 1631 P. A. Dacroa, Bordeanx, France, for Improvemente to 1622 and uko carriages. A commancation.

Improved ensi

 1623 D. Pidgion and W. Manwaring. Banbary, for improramenta162 . in reaping machinea. ${ }_{1624}^{\mathrm{W}}$. Hibeli, Balsall Heath, Worcenter, for improvementa in ${ }^{1635}$ H. K. Doria, Liverpool, for improvementa in miners' salety
 1627 apparat omployed thereln.
1627 J Gathercole, Loarhboroukh-road. Srarth Brixton, for at

 1699 H. IL. Muiler, Birminghain, for improvemanti in instre.
ments for extracting or withdrawing nall, apluon, and bolle, sod ${ }^{1830}$ or ther like uses. A commanication.
 hirta, and othor umilar parposea.
1692 C. Martin and H. Martlin, Great Winchenterstsvel, City.

 1 esar H. Hightion, M.A., Putnoy, for improvemente in gatruit
hat batteries. Whiting, Lewisham. for improvamants in partalio

 tion of photographa, and othor prints for oolonring.
1568

 ing and maintaining muasoal tonos, und in appacestat tor th purpose. A communicatlon.
1849
in. Doabolt. Berners-stroet, Oxford-stront, for tuprore:
 1651 J. Bolt. Halifax, for an improved stoppor for botlooe anty
1652 E. T. HuRhes, Chancory lane. for tupprovements in und

 machinery for aoodiding or partug atinn or hador, improramoets in
1655 W . R. Lake, sonthampton buildiuga, for im

The Ctylish cttlechanit

WORLD OF SCIENCE AND ART.

ERIDAY, JUNE 21, 1872.

ARTIOLE 8 .

REPORT OF THE COMMISSION ON sCIENTIFIC EDUCATION.

THE report of the royal commission appointed to inquire into the arrangements at present in force for affording scientific instruction to the masses, and for promoting the adrancement of science, was published some few weeks back, and many of our readers will doubtless be interested in learning the recommendations of the commission as to the improvement of the means in rogue for achieving these desirable objects. The commission consisted of the Dake of Devonahire, the Marquis of Lansdowne, Sir John Lubbook, Professors Huxley, Stokes, and H. J. S. Smith, Dr. Sharpey, Sir J. P. Kay-8hattleworth and Mr. B. Samuelson, with Mr. Norman Lookyer as secretary, names which afford sufficient guarantee that no points worthy of consideration have been overlooked. Commencing with the state of scientific instraction in training colleges and elementary day-schools, the Commissioners, while approving the principle laid down by the Revised Code of 1861 that the money grants should depend to a considerable extent on the results shown by individual examination, consider that the limitation of such examination to the "three r 's" has unfortunately narrowed the instruotion given in elementary sohouls, and curtailed the syllabus of the training colleges producing a very prejudicial effect on the education of the conntry. They do not nuderrate in any way the necessity for a thorough grounding in reading, writiug, and arithmetis-subjects, which are, in fact, the very foundation of education, bat they consider that the incroduction of "extrs subjects" into the curriculum would in no way interfere with the requisite amount of drilling in the "rudiments." With this opinion most of those who are practically acquainted with teaching must, we shonld thiok, agree ; for as a matter of fact one at least of the three elementary subjects can be made to contribute in no 8 mall degree to the teaching of the radiments of the natural sciences. Suitable books are
ready to hand, or might soon be written, the ready to hand, or might soon be written, the
language of which, while adapted to the requirements of the scholars learning reading as reading, is still sufficiently "technical" to convey a sound idea of the facts of which The New Code 01 1871, there is cally but little effect in widening the range of education in elementary schools; the grants are given almost wholly on the attainment of the required proficiency in the "three r's," and littlo encouragement is offered to the study of other subjects-evenhistory and geography. Under the present arrangement, if 75 per cent. of the scholars pass in reading, writing, and arithmetio-
a result almost invariably attained in fairly good a resalt almost invariably attained in fairly good
schools - the maximum money allowance is awarded; and as a matter of fact the existing schools did earn last year almost the full grant withoat requiring the assistance of the "extra subjects." To alter this, in one sense, undesirable state of things, the Commissioners do not propose to raise the standards in such a manner as to reduce the passes below the 75 per cent., because they think, and very properly too, that such a course would tend to discourage both masters and pupils; but they consider that instraction in the principles of natural science can be and noght to be made an essential part of the course of instruction in every elementary school. They submit
that the scale of payments may be so arranged as that the scale of payments may be so arranged as of pupils, to secure a sufficient staff of qualified teachers, and, at the same time, to insure the successfal teaching of the rudimente, while a sufticient reward is given for proficiency in extra sabjects. This, however, is a mere detail which can easily be arranged by the Edncation Department. What we desire more especially to draw attention the Commissioners that seientificinstraction must
form a sine quâ non in the currioulam of every elementary school. Whatever difficulties may at present stand in the way are not insuperable, and "there can be no good reason why such elementary scientific instruction as has long been given in the primary schools of Germany and Switzerland should not be bestowed apon English children." Several of the school boards have already determined to make elementary physical science and social economy essential sabjects in all schools
ander their jarisdiction-and the lead once taken ander their jurisdic
others mast follow.

The instruction which the Commissioners desire to become the rule and not the exception, thongh scientific in substance, would be free from needless technicality, and would be almost entirely confined to those facts which can be bronght under the direct observation of the pupils. It is, in fact, that kind of instruction which is understood by the term " objeot-lessons." These would be so arranged and methodised as to afford an intelligent idea of the prominent phenomena which lie around the every-day life of the inhabitants of a civilised world; and are the very faots which children do not notice, and which have hitherto been beld in slight regard by the arbiters of the primary edncation of the country. These "object-lessons" would not, of course, necessitate expensive apparatus or a complete mastery of the sciences by the teacher; they are, there can be bat little doubt, the very best means of awakening in the juvenile mind the perceptive faculties, and the principles of the sciances thas mentally grasped are never afterwards forgotten. It is a question, too, which we should like to see discussed, whether it would not be advisable to "sacrifice" one of the half holidays, at all events in the winter months, to that " devouring element," science. We even venture to think that the children themselves would answer this question in the affirmative; for the afternoon's instruction which could be provided by an intelligent master at an expenditure in the first instance of a few pounds, might be made the source of much amusement, which would in reality, howover, only serve to make the knowledge it is desired to impart stand out all the clearer and more prominent. It is true, as the Commissioners say, that in order to make the scientific instraction in theso schools as successful as possible, the teachers must not only have acquired the needfal amount of scientific knowledge, but must also have been carefully trained in the special methods of teaching science. It is not to be expected that all, or, indeed, any of the masters will display the skill of a Tyndall or a Haxley, and explain the transformation of energy into heat and the various branches which spring from that scientific tree, by means of a lucifer match or a hammer and a nail ; but juist that amount of ability is necessary which can put facts before the children in such a manner that they find no difficalty in comprehending and appreciating them. It is just at this point that the Commissioners are compelled to express their "fear" that the present machinery of the training colleges is inadequate to supply the necessary training to the stadents, and that an extension of the ourriculam could not be expected to succeed notil the means of scientific instruction are more complete, and the students receive a better preparation, or remain at the college for a longer poriod. Under these circamstances the Commissioners have made the following recommendations, the first two of which would appear to depend mainly on the speedy carrying-out of the third; for we are afraid that by far too many "certificated" teachers are as atterly ignorant of the natural sciences as the pupils under their care. 1. We recommend, say the Commissioners, that, as regards the elder children in elementary schools, the teaching of such radiments of physical science as we have indicated should receive more substan-
tial encouragement than is given iu the regulatial encouragement than is given in the regula-
tions of the New Code. 2 . As regards the younger ohildren, that her Majesty's inspectors shoald be directed to satisfy themselves that such elementary lessons are given as would prepare these children for the more adranced instruction to follow. 3. That the mode of instruction of pupil teachers; the conditions of admission to the training colleges; the daration of the course of study, and the syllabas of subjects tanght should be so modified as to provide for the instruction of stadents in the elements of physical science.
With regard to the scientific instruction given in science classes nnder the Soience and Art Department, the Commissioners acknowledge
to elementary bcientific teaching, the incresse in the decade from 1860 to 1870 being, in the number of schools, from 9 to 799, and in the number of stndents from 500 to 34,283 . This "remarkable impalse," however much it may be a cause of gratification when compared with 1860 is still far, very far, below the resalt it is desirable to obtain, for 34,283 spresd over the verious branches of study on the syllabus of the science classes shows but a very emall percentage of the working population of this country as seeking to asquire a knowledge of the great scientific principles on which the commercial life of their industries and consequently their own well-being so largely depend. There is no doubt, however, that with the scientific edacation fairly commenced in the primary schools a large inflax of attendants on the soienoe classes will follow; and it is fair to assume that the number of teachers will increase pari passu. The necessity of a more thorough system of inspecting science classes is strongly enforced by the Commissioners, for although they have "derived the impression" that substantial advantages result on the whole from the system parsued, yet, from the large number of failures which oocur and from the character of the answers given, it is only too apparent that the vicions method of cultivating the memory instead of the intelligence is stil adopted by a large number of science teachers. The instraction is derived from books, and the information thas acquired is tested and aided by the class examinations of the teachers, withou being illastrated by specimens or experiments, the use of apparatus, or the out-door study of nature. Not only is apparatus wanting, as a general rule, but one of the examiners complains that even so simple an expedient as the blaokboard and chalk is avoided in teaching geology; while the Commissioners affirm that " too often the teachers confine their instruction to the same routine of book-learning and class-questioning with which alone they were made familiar in the rudimentary classes in which they received their own imperfect elementary know ledge." With regard to payment by restults, the commission recommend that higher rates of capitation grant should be allowed, according to the abilities of the teacher, which would be ascer tained by "further examinations." Thus the student who passes the first exsmination would be recognised as an Elementary Science Tesoher, and the increased money payment would be offered as an "inducement" to prepare for the farther examinations to qualify as Second Grade and First Grade Science Master. The Commis sioners think it "worthy of the consideration of the Department" whether it wonld not be possible to increase the resources of the science classes by greater payments from pupils and by local contributions. Some arrangement of this kind will become necessary in proportion as prac tical instraction is introduced-and if tbe instrac tion is valued there ought to be no difficulty on this head. The efficiency of the teaching is diminished, according to the Comrnissioners, on one hand by imperfect organisation of the classes and the absence of praotical instrnction, and on and other hand by the irregnlar and unsystematic manner in which scholars have taken up the sub jects tangbt. The recommendations attached by the Commissioners to this section of their repor are of some length and great importance; and they cannot fail if carried out in the spirit which has suggested them to be the means of disseminating the best of all knowledge far more widely than it is at present, and of imparting an im mense stimulus to the scientific progress of the country. How necessary progress of this kind is will be apparent to any one who will inquire into the position of scientific inquiry in the United Kingdom. In another column we reproduce the opinions of Mr. Gore on the subjeot and corroborative testimony could be found in abundance. Even as regards Chemistry, the President of the Chemical Society recently lamented the fact that the original researches laid before that society have fallen slmost to zero. The canse of this state of things is easily discoverad, for, as Mr. Gors says, there is absolately
no provision in this country for the sapport of scientific investigators, and thus the great soarce of new trades and improvements in manufactures remains undeveloped. It is too mich to expect of men whose talents can be turned to acconnt in a profitable manner, that they will devote
themselves with nelf-sacrificing industry to the common wealth. Such instances are rare, and we have no right to expect them. But what has been done in the richest empire in the world.

ELECTRICITY: WHAT IS IT ?-III.

 By B. Trompson.(Concluded jrom p. 294.)

The Modification Heat Undergors in Order to Aprear as Electricity.-Before striking directly at the most important part of this communioation, as to what modification the motion of heat mast undergo in order to appear to us as electricity, it will be adrisable-indeed, I think necessary-to notice two or three peculiarities in other modes of obtaining carrent clectricity.
If we take a common battery, as Smee's, whioh difers very little from the one before described. the copper being replacod bs platinised silver, wo notice that there is a rapid decrease in its power when working, usnally attributed to the adherence of molecules of bydrogen to the silver plate, which sot up contrary ourrents, and thereby hinder the action of the primary one; bat the importance attached to this may be over-rated; there is no donbt as to its being a hindravec to the action, bat were it the only one, washing the plates ought to restore the energy of the battery. at least with no more decrease than there rould be were it a constaut battery of the same electromotive force, such as Grove's or Bunsen's; bat the fact is it has lost a considerable amonnt of hest and electric firce by the passing off of the ingdrogen, which cannot be replaced save by recharging the battery, and this gives another reason-perhaps the principal one-why n two Huid battery is more constant end powerfnl than a one fluid battery; in the former kind the hydrogen is for some time retained and reduced, thus preventing the loss of power which would be occasioned by its passing off, adding generally to the condacting power of the liquid it passes into, and, of course, giving up again the force which liberated it.
Again, let ns look at one of the batteries mhose action it is rather difficalt to understand ly the common theories-Grovo's gas battery. When the two platinum plates of a voltameter cona battery the water is decomposed, and H and O pass to the two tubes respectively; in these two gases, as we have shown, is stored up a large amount of force, viz., that which was expesuded in their separation, and which we are bound to admit is a modification of the motion of heat, or hest itself, for heat would be the result of their recombination." If now we disconnect the roltameter with the battery, the two gases will, after a time, have combined to form water. Besides this, however, if we connect the terminals of the voltameter, which before led to the battery, a second voltameter containing dilate sulpharic acid, the water in it will be decomposed the samo as in the first one, and nearly the same quantity of gas will be liberated; the first voltameter acting on the second the same as the bsttery did on the first. The teaching of this experiment is very important, for the oxygen and hydrogen themaselves give rise to a current of electricity oppposito in direction to the one whioh produced them, bat this olearly is not the result of any dissimilarity of metala, for both the terminals are platinum ; but to a difference in the electrical states of the two gases, one being + and the other -. In whatever way we destroy this condition of the gases, we produce heat, whether by exploding them, or allowing them to combine peacefally in the form of an electric current ; of conrse, if work be done by the current instead of beat, wo shall find its equivalent in work. Apparently, then, these two gases contain each of them a part of the motion of heat, for H and H or O and O alone will prodnoe no heat, yet their combination produces
intense heat, except when it takes the form of an intense heat, except when it takes the form of an cloetric current.
How can we, then, regard the forces of heat and electricity as such distinct phenomens? For there cannot be an electric current without chemical action; withont either an absorption or liberation of heat, and without superior afinity (which is eleotrical attraction), and this excess of affinity of a body for any component of an electrolyte supplies the heat or cold-real or vertical-to enable the constitnents to take another form, or exist independently if they do not retain this form; as they do not in batteries, part of the force will again be given up, and constitute what we call an eleotric ourrent.

* Faradey discovered that a plate of platinuin, with oxtramely clean surfaoos, plunged into nlatinuessel with taining oxygen and hydrogen in tho proportion in which nation, and vould it sell beoome red hot from which it appears that the platinuouine in attraction the two gases
 and the particles of water formed sre either vaporised

Now, I am about to make a bold hypothesir, but one, nevertheless, which, I think, has been partly furoed apon as by the former part of this paper, and which will be anpporind by what follows-viz., that a current of electricity is identical in the kind of motion with "polarised heat." thnagh they may vary very much in the rapidity of the motion. I am amare of the great
drawback to this, presented by the fact that it drawback to this, presented by the fact that it requires a more ponderable substance to conduot it than heat docs. The two states, however, are quite distinct, and a diathermanoas body may, under certain circumstances, be quite athermanous when the heat has been polarised; but even a racuam does not prevent electrical indaction. I have not the means to experiment on this subject so am obliged to depend upon reason alone. We will, ther fore, considar the points which more
particularly have led to this hrpothesis with regard to a current of electricity. Breanse heat osn bo polarised the fome as light, we innst regard heat as coustituted, like light, of two motions at right angles to each other, and a body which condacts it mnst. of course, vibrate in tho same manner. Flectricity is condncted by a continnons polarisstion of the molecules, and wo have shown that thess polarisutions must be accompanied by a motion of th:0 molecules in a hody transmitting it ; but whether this mentinn trkes place vertically, horizontally, or in any other direction, it must, of conres correspeud with no of the motions of
heat, and thereny be efnimalent-as far as the kind of motion is concerned-to a polarised ray of luat in a conductor.
The application of this thenry will explain many thinss not satiesantnrily expiciued by other theories: for instrnes, tako the ense where a current of reotricity is generited by heating the
junction of too dissimilar metals, or one end of a junction of two dissimilar metals, or one end of a that part of the heat supvijed will be divided or polarised when the metals are dissimilar, or in dissimilar statea, and offer resistance to motion in one dircetion more than another. A perfectly homogenenas condactur wheu hented will give no signs of electricity what arir, but let the homogeneity be distnrbed in the least by bending or twisting, immediately part of the heat which circulated befnre as heat takes the form of an electric current. In the first case, the heat was transmitted eqnally in all directions, but in the second one of the motions constitating a ray of heat was retarited or destroyen, giving riso to what we call a carrent of electricity, but what, according to this reasoning, is a trae polarised ray of heat. And the greater the beat smpplied the more powerfal the currcut of electricitr. If the dissimilarity between the t wo ends of the conductor be still further increased, by cooling the opposite end to that where tho heat is nnplied, the carrent agnin will be angmented proportion. ally. We find, ton, that it is the most crystal line metals, as bismnth and antimons, that gire the most powerful currents : really seleniam and bismath most effectually polarise the heat, bat the proporty which in great part is the causo of this-viz., the low conducting power of selenium-prevents its nsefulness.

Faraday found that when a solid nometallio body becomes fluid it almost entirely loses its power of conducting heat, but nequires a greatly increased capacity fir condncting electricitr, again, showing the inflaence which a change in density, or in the state of aggramation, has on the propagation or condaction of either electricity or heat.

The experiment above of producing electricity by heat may be exactly reversed, and a current of electricity be made to prodace the heat and cold at the respective junctions, where the heat and cold were applied to produce the enrrent of the heat and cold and of the direction of the current exactly reverse the effect3; bnt perinps this theory receives its greatest confirmation in the experiment quoted below. Taking a simple thermo-electric element of bismuth and antimony, if the clearage of the bismath is paralial to the face of contact, the ourrent is increased, bat if at right angles, decreased ; and just the reverse holds in the case of antimony. Bat more important than this is the fact that the element may be constructed of all bismnth or all antimony if the clearage of the pieces in contact is at right
angles. The siguificance of this has, I think, been completely overlooked, as it seems to point so dis. tinotly to the causeof a current of thermo-eleotricit.g. The two motions constitu!ing ordinary beat being divided between the two coucustors, eacia motion takes the direction which otiers thic least re-
sistance to itg progress, and the result is two carronts of electricity fowing in opposite directious, which, if they combine, form again heat. I thiok we can scarcely fail to see that, at least in the case of thermo-electricity, the current is due to the deoomposition of heat, the two motions appearing to us as + and - electricity; and if the reasoning holds for this it must for all, as elentricity is of the asme nature in whatever way protnced.
This theory may be thought a peouliar one, and I ratber expect to be told that were it trae the experiments on polarised heat would hare shown some connection before this; bat I do not say that a current of electricity is one of polarised heat, for I believe that the amplitude of vibration bas been lessened considerably, and tha length of the wave altered, before heat appears as electricity; the fact of bad or poor conductors bsing invariably nsed where a cursent of electricity of any strength is obtained seems to point to this ; indeed, some resistance is always necessary. whatever form of apparatus we use for ita production.

No doubt, there are some difficulties to the acceptance of this whioh I have not thought of or have not mentioned, and I expect there will be plenty to point oat any very flagrant errors or omissions. It there are any I shall be very ready to acknowledge or answer them.

SMELL.

(Concluded from p. 295.)

H^{4}AVING examined this subject from the physiologist's point of view, we propose now to look at it from those of the nataralist and chemist. The throe natural kingdoms all sapply odours. Among mineral matters, a few solids are odoroas. and a large number of liquids and gases, the odours being more or less etrong and agreqable, and generally characteristic. They proceed from simple bodies, as chlorine, bromine iodine; from acids, as hydroohloric acid and hydrocyanic acid; from orrburets of hydrogen, as those from petroleum; from alkaline sabstances, as ammonise.

Animal odours proceed from hydrocarbaretted and hydrosalpharetted gases ; from various soidz and salts, from the decomposition of fatty matter and from some kinds of matter seoreted in glands, as musk and ambergris.
In the vegetable kingdom there is a great variety-from odours whioh are soft and agreeable to those which are most repalsive. Plante without odour are rare; many that have no odour when fresh give forth, when dried, a very distinct perfame. The odour of plants comes from certain kinds of matter diztributed variously in their organs. In some it is solid, as balm or resin ; in others liquid, as what we call essences or essential oils. Such essences are generally concontrated in the flower, as, e.f., rose or violet but in some cases, as that of Florentine iris, the root only has perfume. In the cedar and sandal the odorons principle is in the wood; in mint it is in the loaf; in the Tonquin bean it is in the seed; in cinnamon it is in the bark. Some pleats have several odours quite distinot; orange has three-that of the leaves, giving the essence called petit-arain; that of the flower, furnishing neroli, and that of the rind or peel.

Nearly all the essences employed in perfamery are of Earonean prodaction. England prodaces lavender anc peppermint largely. At Nimez. attention is given to rosemary, thyme, aspic, and lavender. Nice makes violet its specialty Cannes extracts the essences of the roce, the vellow acacia, the jasmine, and neroli. Sicily furnishes citron and arange; Italy, iris and bergamot.
What is the chemical neture of the odorant principle in plents? The variaties of it, as chemists will tell us, fall nonder three heads, bydrocarbons, aldehydes, and ethers. Hydrocarbons are compounds of carbon and hydrogen, and represent the most simple compounds in arganic know what chemists mean by an alcohol; it is s definite combination of carbon, hydrogen, and oxygen, and may be considered as resalting from the union of a hydrocarbon with the elements of water. Spirit of wine may be tuken as the trpe.
and it takes the formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; that is. its molecule is made up of 2 atoms of carbon, 6 of hydrogen, and 1 of oxygen. Nom, as aldekyde is simply alcohol delydrogenatus-that is, alcotal with some of its hydrogen taken away, and an
other is formed from the combination of an
aloohol with an organic aoid. Here, then, we
have the constitution of nearly all the essential have the constitution of nearly all the essential oils in plants-carbon and hydrogen, with or with which these occur, we have a hydrocarbon, aldehyde, or ether. This, however, is not all. We have now spoken of quantitative differences. But it may happen that two substances, entirely differing in some properties, have the ame ohemical composition, both qualitative and quartitative. Such are isomerous bodies, How, then, do they differ? By the arrangement of their molecules. Carbon and diamond are idontical in their compogition. Ordinary phosphorus and amorphous phosphoras are one and the same sabstance. And in the odorous principle of plants we have some curions cases of isomerism. The oils of terebinth, of oitron, of bergamot, of juniper, of lavender, of pepper, of cloves, are isomers; they all have the
same chemical composition. On analysis all same chemical composition. On analysis, all give the same substances in the same proportions.
In eanh molecule of the cesence there ere 10 atoms of carbon and 16 atoms of hydrogen-axpressed by the formala $\mathrm{C}_{10} \mathrm{H}_{18}$. We are thus led to see how largely the qualitios of bodies depend on arrangement and internal motions of small component parts, about which wo as yet know very little.

But ohemists have not been contented with marely investigating the natare of the odorous principle of plants; they have sought to produce it artificially. In many cases they have succeeded, produciag sabstances with constituent parts which are identical with those of the products obtained from the plants. An Italian chemist Piris, working in France in 1838, was the first to reproduce a nataral aromatic principle. He prepared, by certain reactions, a salicylic aldehyde, which proved the same as the essential oil of meadow sweet, the penetratiug perfume of which is well known. Some years later, in 1843, M. Cahour discovered methyl-salicylio ether, and showed that it was identioal with the essence of Gaultheria procumbens, or winter-green. Wertheim followed whth further discoveries. The thing cansed cometiderajle sensation. Since then the art has adramed, and ohemists can now produce varions oila artiicially, as oil of camphor, of bitter shmonds, of cumin, of cinnamon, \&ec, withont, thet is, heving recourse to uny of the plants.
Besides the substances now refinered to, worloes others have been produced of the ecther clase, in which a very good imitation of the aroma from certain fruits has been effected. Thowo have been largely used by perfumers and confectionens. Breh artificial oils appeared for the first time at the
London Exhibition of 1851 . One of theee wes London Exhibition of 1851 . One of thene wes pear oil, giving an agreeable.odour of jargonellos, lacetic ether in aloohol. Apple oil was made by dissolving amylvaleric ethe in alcohol. The dissolving amylvalerio ether in alcohol. The
most plentifal was that of ymepples, which was ordinery butyric ether. Gpupe oil was used for giving to brandy of inferior quality the flavour of cognac. Various others might be mentioned. This syuthesis of odorous principlas is one of the most striking triumphs of organie chemistry. The creative faculty is still at mork. M. Berthelot has boen seaking to reprodue the fatty matters
of the animal economy. Some progress has been of the animal economy. Some progress has been
made towards the artificial production of sugar and this will, doubtless, be followed up by an effort to work out the synthesis of albuminous substances.
Linnreas brought his powers of analysis and classification to bear on the sabject of odours. He arranged them in seven classes, as follows:Aromatio odours, as those of the leaves of laurel ; fragrant odours, as those of fleur de lis, jasmin, cic.; ambrosial odours, as those of amber and musk ; alliaceous odours, as those of garlic, sis. Fetid odours, as those of orach, \&co.; repulsive odours, as those of many solanesp; and finally, nanseons odours. The terms ased are mostily familiar in ordinary language; but they have quite relative and conventional valuc. As of odours, as we can a musical scale. We can only compars one odour with another from its effects on the olfantory membrane. They have not sach characteriatios as can be vigorously defined. Any olassification of them mast therefose be imperfect.

Profeseor Jamen C. Wateon, in a letter dated Ann Arbor, April tth, announces to the Editor of the Anuriciun Journal of Niknces the discovery of a now
planet, hicharto unknown, in the constellation Virgo. It shinee like a star of the elerenth magnitude.

BRITYISH MANUFACTURES AND SCIENTIFIC RESEARCH.
IN an article on the future extension of Birmingham industries, recently contribated by Mr. George Gora to the Birminghami Jorning News, he
calls attention to the character of those industries, calls nttention to the character of those indastries, and in pointing out their origin he takes occasion
to inculcate the necessity for the encouragement of to inculcate the necessity for the encouragement of
scientifio research if this country is to retain its prosent pride of place in the manufactaring world. Mr. Gore commenees by uoticiug the principal industries of Birmingham, tracing the manner of their oriyin, and the method of their development, and then points out the necessity-or at least the adrisability-of endeavoning by indefatigable researoh to fonnd new manufactures and improve old ones. Let us consider, he says, German-silver and its manufacture. That sabstance is an alloy of copper, rinc, and nickel; it owes its peculiar Whiteness or " silver-like" appearance to the latter metal, and cannot be made without it ; it is certain, therefore, that by whatever means that metal or the aloy was discovered, the discovery was the
origin of the German-silver mannfacture, and was essential to all manufactures, processes, or appliances, in which German silver, nickel, or any of its compounds are used. Nickel was discovered by Cronstedt during the year 1751. and its compounds were chiefly investigated by English and foreign
chemists. Cronstedt found it as a peculiar metal in the mineral oalled knpfernichel, whilst chemically examining the properties of that subetance. The general method by which he discovered it was careful experiment, observation, and study of the proChinese maller. I believe it is a lact that the long before nickel itself whe known to be a separate metal; they had found, by experinadnt, that when cular kind of minemal and smelled, with a parti was obtained; but this also proves the general statement already made, that the German-silver manufacture was oripinated by meaiss of erepiment snd observation. It was by a more skital, but similar mode of prosedere, that Cronstedt dis covered the metal itsof, asd thus laid the basis of
improvements in the anmenacture of its alloys. impravements in the mamafacture of its alloys. I to which niekel hes already been applied in Bir mingham manufactures, nor speak of the large anase of money which hamotheen and atill are made by meane of it and its componnds.
tor tele anatectares of then wire and copper wire magnitude in this town, and were originated in the following mamane:-In 1790, Volta, an Italian phi ing diecovered the voltaic battery. In 1815, Professo Oersted, of Copenhagen, was experimenting on the relation of electric currents to magnete, and oband parallel to a horizontal copper wire, through which an aleetric carrent was passing, the magnet moved spontancously. and placed itself at right angles to the wire. From these two small experi ments, made by patting matter and its forces nndor
new conditions, observing and stqdying the results new conditions, observing and stqdying the results, of iron and copper tolegraph wire have arisen.
There is a saying that "all great things hase bad small beginniugs," and this is true, not only of electric telegraphs, but also of the great trade of electro-plating, and of the magneto-electric machine, which is now largely nsed instead of the voltaic battery. After Volt had made his small and appa prody animportant experiments on the electricity produced by metals and liquids, various persons solations. Brugnatelli, in 1805, fonnd thet two silver medals became gilded in a solutiun of gold by passing the electricity through them. Mr. Henry Bessemer, in 1834, coated varions lend oruaments with copper by using a solation of copper in a similar manner. And in 1836 Mr . De la Rue found that copies might be taken in copper of engraved copper
plates by the electro-depositing process. Faraday plates by the electro-depositing process. Faraday
discovered magneto-eleotricity in the jear 1831, by rotating a disc of copper between the poles of a magnet, and he has statcd that the first successfal result he obtained was so small that he conld hardly detect it. This simple experiment was the origin machines ere now ned by Messra, Elkington for depositing copper, wilver, and gold, instead of the roltaic battery.
Another large manufacture of this district is that of phosphorus. The origin of it is due to the man, whoever he was, who first isolated that element. Histories of chemistry tell ns that it wha dircovered by Brandt, a merchant of Hamurg, in 1669 ; bat
evidence exists that it had been obtained in the separate atate very many years kefore by the eariy Arabian chemists. Brandt oltained it by distilling a mixture of dried residue of arine and charcoal. His discovery was also made by careful experimente and observation of the properties of matter, and bad it not been made there would have buen no manuthis diatriot.

Priestly made many experiments on the absorp tion of gases by water, and proposed such liquids a beverages, and those appareathy trifing experiment aërated waters.
Persons inexperienced in scientific matters are apt to think that discoveries are generally made by accident. The reverse is, however, the cues; nearly all our great modern discoveries were aftected by men who were constantly making carefal expery ments apon the properties of matter and its forcee by subjecting them to new and definite conditions. Nearly all persons look apon such discoveries as fortanate ideas, which, when once found, arequickl developed, instead of which they are in most casee slowly devoloped results of most diffiealt menta labour. Discoverics in sajence are oceanionaly made, not by original scientific investigators, bo by practical men ongaged in manufacturing oe technical employmente. The hyiro-eleetric machine originated in this way: a man at Newcastle wan attending to a steam-boiler, and found that he re ceived electric shocks when he touched the boiler. This circumstance was investigated by bis employer. Mr., now Sir William, Armatrong, and led him to construct the hydro-electric meahime The accum lation of electricity in eubmarine tolegraph eshlen Was aloo first observed at the Gattapercha Compary' Workp, London. It was noticed on testing the cable by means of a voltaic battory (the cable beise sulmerged in water) that discharges of olectricity flowed from the cable after the battery was removed this circumstance was investigated by Faraday, and led to improvements in submarine telegraphy. In employed-viz, new experiments weral meln (thovgh not intentionally) by putting matter and its forees under new conditions, and new resalte were observed.
Scientifo disoovery, therefore, by developing now facts and laws relating to mather and its foroes, constitutes not only the basis of new menufactures, made by inventors and practioal men; and if disooveries are not made, the means by fhich improvements are effected by such men will become exhanated. The great value of new eniontifio hnownexhausted. The great value of new soientine anow now scientiflc discoreries are pobliehed there are numerous inventors and practical men who immediately endea vour to apply them to usoful purposes. Bince the first application of coal-tar to the production of dyes, every discovery in that branch a chemistr.
According to all our experience, scientific discovery provides the knowledge necessary for malking of trado and practical inventions lead to increas It might easily be shown that in the way ployment of whole armies of workmen, and in the expenditare and investment of a fabrolons amount of money in railways, telegraphs, machinery, gasworks, ohemioal works, electro-plating, photography co., in this coantry; and Birmingham bag received large share of the benefit.
The futare sucoess of this town and diotrict is dependent upon original scientific research to a degree of which persons in general can form but ittle conception. Hundreds of millions of pounds are being expended in covering the earth with telographs, and thousands of millions in covaring it with railways, gasworks, waterworks, \&c., and Birmingham and its district bas its share in supplying the rails, the wire, and the machinery. In this country alone more than $560,000,000$ of pounds have been already expended upon railways only. Original scientific research is the great fountain-head of industry, and its capability of devoloping increased rade is practically unlimited: it is at present quito in its infancy, and we are only on the very threshold of a knowledge of the forces of nature, and of the enormous resulta are being produced by the beginenormons resulta are being produced by the begin-
nings of unaided science, what may be expected nings of unaided science, what may be expected
from its futare developments, especially if scientifio research is assisted in an efeotual manner?
Numerous important subjects of investigation, capable of yielding valuable results bearing upon the trades of this town, exist in all directions. Researobes in electricity and in inorganic chemistry. particularly the metals and their componnds, would probably lead, as they have done before, to the establishment of now trades, and to improvements in local manufaotures, and thus lay the foundation of fature commercial prosperity. Discoveries in science, however, are best made, not by trying to (that object belongs to an inventor), but by making (that object belongs to an inventor, but by making
new, reliable, and systematio invertigations. By inventigating the chamical action of electricity apon saline bodien, Sir Hamphry Davy isolated sodian and magesinm, which has lel to the recent eetabligh ment in Manchester of the manufactures of thowe metale. By the abstract researches of Hofmann and others upon coal-tar, the immensely proditable manafacture of the splendid coal-tar dyes ves originated.
Scientiflo discovery is the mont valuable in if iltimato practical reanlta whon it is purnued from a
love of truth as the ruling motive, and any attempt to make it more directly and quickly remunerative. by trying to direct it into practical channels, will decrease the importance of its results, diminish the spirit of inquiry, and sooner or later redace it to the character of invention. The greatest practical realities of this age bad their origin, not in invention or a search for utilities, but in a search after important new truths, entirely irrespective of what utilities they might lead to.
I do not intend by these remarks to imply that any new trades or improvements in manufactures have been or can be effected without the labours of in ventors and practical men; but that there should be a more judicions division of labour, one man to discover new truths, another to put them into the form of practical inventions, and the practical business man to work them; because it is proved by experience that in vearly all cases these different ands of labour require men of widely different habits of mind, and that the faculties of discovery invention, and practical manufacture, are very rarely anited in one man.
Oar large manafacturers and men of business have accepted and employed the advantages of science in an endless number of ways in their occupations, and have thereby acquired great wealth; bat, notwithstanding this, and that the greatest arades of this district were originated and improved largely by means of scientific investigntion, scarcely any of the wealthy manafacturers or landholders of the locality, who have derived such great benefits from the increase of trades, pive the least assistance o scientitic research ; that which is has been attended to by none. The probable expla quite outaide the experience and lsnowledge of perquite outside the experience and lnowledge of per-
sons in general. It may be objected that such research is not aided, becanse it sometines takes a search is not ajded, becanse it sometines takes a long time to acquire a practical shape and make it
pay. We do not omit to plant an acorn because pay. We do not omit to plant an acorn because neglect to rear a child because he may not live to become a man ; but we leave scientific discovery to take care of itself.
Oar practice with regard to science is very different from the plan carried ont in Germany. Within the last few years great laboratories have been erected in Berlin, Leipsic, Aix la Chapelle, Bonn, Carlsruhe, Stuttgardt, Griefswald, and other places, at the expense of the state, and special provision has been made in them for original scientific research. A glance at the frequently pablished list of scientific investigations made in different countries will show us that the Germans are making a far groater number of discoveries in science than ourgroater namber of discoveries in science than our seives. If we are aring nation, we also mast adopt special
manuf means to promote scientific research; for how cau we expect to obtain new arts and manufacturcs, or improvements in old ones, if we do not make new discoveries in the properties of matter and its forces? I need not multiply instances of the essential dependence of our present commercial success apon abstract scientific research, but may safoly ffirm that nearly all our great manufactures have been originated by means of experiment, observation, and stady of matter and its forces; and that the great balk of the improvements made in manafactares by practical men coald not have been effected had not scientific investigators discovered, and made known in books, the properties of bodies. The inference from these conclusions is obvious: by adopting similar means, but in a more effectual way, we shall obtain similar but more successfal results.

REMOVING SCALE IN BOILERS.

THE Oneida Circular says that the stoker who has charge of the boilers employed at its printing office has recently been making a trial of tannate of soda" for removing the scale which ccumulates on the inside of the boiler-pipes in consequence of nsing hard water.
weeks' trial in our Root boiler, nearly half a bashel weeks trial in our Root boiler, nearly half a bushel The action of the tannate is to first loosen the scale. At present about 2lb. a week is used; but after the scale is once thoroughly removed, the occasional application of a much smaller quantity will keep the boilers free from any further deposit of it. 't he attendant thinks, if it continues to work as well as it now promises, it will make a saving of besides a saving in the wear and tear of the boilers, and relief from the risk of explosions. Tannate of soda has been in ase for this purpuse about three years. and is steadily caining the confidence of the pablic."
It would have been an advantage if the Oncida Circular had said what is meant by "tannato of soda;" fur, so far as we know, no chemical of that name is made in this country or imported from abrosd, witicr do we know of any formula for prodacing such a salt. Under these circumstances the ralne of the information thus made pablic is represented by an infnitesimal quantity. Possibly some of our Amerionn readers will be able to inlorm us what it is that is known as "tannate of soda" ia the States.

IMPROVED SNATCHBLOCK.

$T^{\text {¹ }}$HE improved coustruction of snatchblook shown in the onnexed figure has been recently patented by Mr.G. Tangye, of Birmingham, who claims for his invention that the action of the weight or load automatically looks the movable strap or plate, rendering annecessary the split pins or fastenings commonly employed, while the rope or chain may be more readily introduced or withdrawn than in those heretofore made. The illustration is a view of the snatchblock when opened for the adjustment of the rope or chain thereon. The movable strap A of the snatchblock is connected to the cross-head in such a manner that they will swivel together on the pin C of the cross-head which secures it to the atrap D on the other side of the block. The free end of the movable strap A is formed with a book, slot, or groove which, when the weight is on the block, engages with a pin or projection, preferably the pin, E, on which the sheave of the block revolves. By causing the movable strap A and cross-head B to swivel a space is left above the sheave, as shown, through which the rope or chain may be introdnced or withdrawn. The hook being attached to the cross-head in the usual way by a neck and rivet, the action of the weight causes the cross-head and movable strap
of the carriage. These defects are all the results of carclessness or ignorance on the part of the work men, but there are other causes that operate against the durability of the wheel ; the principal one is the failure to select those that are of proper proportions. Some manufacturers will makeall parts of the vehicle as light as possible, but select a comparatively heary wheel ; others will act the reverse, and make the wheel as light as possible. In either case the result is injarious. If the wheol is too beavy it throws all the strain upon the axle, which is the canse of nine-tenths of all the broken axles where the break is at the shoulder: if the wheel is too light it receives all the strain, and is soon torn to pieces.
There are two classes of wheele-one class owes its strength to its tlastioity, the other to its rigidity; in the first class might be placed all wheels haviog spokes lin. and nuder, while the other class would comprise all heavier sizes. Any light wheel that is constructed with too great rigidity around the hab, or too great weight at the felloes, has not only the eloment of its destraction in it, but it also proves the destruction of the axle upon which it is placed unless this is unduly large. Then, too, if the spokes are too stiff they throw all the strain on the hub, and as a result the spokes are loosened or broken at the shoulder. In oriler to secare strength in light wheels it is necessary that the hab should be small and the throat of the spoke thin and flat, and as near the shoulder of the tenon as possible; the felloes and tire should be proportionately light.
If a set of wheals are If a set of wheals are to carry 2501 b ., cara hab 3in. to 3fin. in diameter, three-quar ters of an inch spokes, three-quarters of an inch felloo, and three quarters of an inch by one-eighth of an inch steel tire is ample. I a set is needed for a
top buggy that will actop buggy that will ac-
comuodate two persons, commotate twopersons,
the total weight to be carried being aboat 5001b., the wheels should be made with a hab
3 in. to
3 in. in 33 in . to 37in. in dis-
meter, seven-eighths of an inch spoke seren eighths of an inch far loe, and seven-eighths by three-sixteenths steel tire, the axle being seven.eighths of an incl steel. the theads are bougtrengthened by adding one-sixteenth of an it:ch to the spokes, and one-eighth of an inch to the diameter of che
luub, bat nothing abore hub, bat nothing abore this unless the axle
bo increased in size. Wheels are in so:ne instances mado lighter than those first mentioned, bat when below that point there is danger of their lacting in power to produce a recoil if they become
to swivel and lock the latter sccurely on the pin or projection E; and in order to render this locking more certain the movable strap is so attached to the cross-head that when locked the oentre line 1-2 of the hook makes an angle with the longitudinal centre line 3-4 of the pulley block. The action of the wcight consequently tends to make these lines coincide and the morable strap engage with the pin or projection E .

CABRIAGE WHEELS.

0N the durability of the wheels more than on any other part of the carriage does the reputation of the builder rest. No matter how perfect all other parts may be, if the wheels are defective the vehicle is condemned. Knowing this, many first-class manafacturers employ none bat the most skilful workmen, and have their wheels made ander their own supervision, and any defect is detected before the wheels are finisbed. This is rendered necessary, says the New York Carriage Journal, from the maltiplicity of canses that operate to injare the wear of the
wheels-carelessuess in mortising the habs or in Wheels- carelessness in mortising the habs or in texture and stiffness of the timber, in spokes or felloes, bady geasoned or imperfect habs, together with the iujury inflicted by setting the tire or cutting out for the boxes-all to a greater or less degree produce defects that seriously impair the durability
mistake in making light wheels is in asing too large hubs, undor the mistaken idea that the hab. of necessity, is the point where there is the greatest amount of strain; for this reason a heary hab will be selected, and light spolses, felloes, \&e be used, giving to the wheel additional weight and bad proportions, besides removing the point of elasticity too far from the centre, and thas incrasing the rigidity and endangering the axle. The principal aim of inventors has been to secure greas sfrength at the hub; for this parpose metal, ead metal and wood combined, have been introdaced: in some cases they have met with success, bat this can be ettribated as mach to the manner in which the wheels are put together as in the advantages claimed in the patent. Heavy wheels with a wond and metal hab have proved valuable, and are taking the place of the large wood bub, but with light wheels the success has been less decided, and where it was most maritorions in preserving the wheel it was most injarious to the axles.

The trouble with wheel makers is that we have too many inveutors and too few mechanics ; but after all the inventions have bea siled to the core and the best points combined, for higut wheets thare
is nothing better than a good elun hinb, clear joand is nothing better than a good elun hnb, clear yoans
hickory spokes, and fine, close-grained hiokorf hickory spokes, and fine, close-grained hatory felloes, provided these are put together in a wort
manlike manner. One of the latest inventions is manlike manner. One of the latest inventions in
the wheel line is the mortising of the hub with twv sizes of mortieg for the same spuke ; the first mortich which is sbout one-third the depts of the whotes.

Abstract

mortised in nearly, if not quite, the full size of the spoke at the lower end; below this the thin mortise is made, the latter, however, being narrower than the fermer: and, strange as it may seem, it is claimed for this method of mortising that "the hab is not cut awsy so much in its centre, and a very small and light hub may be made to be very strong; slso. that "the wheel is more elastic than the old style of wheel, and therefore less liable to break sxles;" more than this, "the spoke is strong just where it needs strength, namely, at the shoulder, and the hab is strong just where it requires most and the hab We confess onrselves to be at a loss to understand how the strength of a be as a loss to understand how the strong nothing hub is increased by cutting it away to almost nothing at its extreme outside circumference, or how bedding a wide tenon into the lub in this wanior increases its elasticity. According to our reckoning, a 3tin. hub, made up with a apoke that has a halfinoh face and a five-sixteenth tenon would have sbont 7in. of solid timber on the outside circamference, while the spokes would run together at the outside of a box of suitable size to receive a threequarter of an inch axle, while with this improved plan there would be less than 3in. of uncut space, and by no manner of measuring can wo discover where the extra amonnt of timber is located; but as - scientific paper gives the following endorsement, scientic paper gives the tincreasing strangth y cutting it ewny. "The principle of construction is sound, and we have no doubt an excellent wheel may be made in this way." If any of our friends have an idea of trying this improved manner mortising hubs let them make a diagram of a hub, cut off at the face of the spokes, laying off all the tenons full size, both with the old and new plan, and we think they will be slow to cut their hub awry one-third more than is necessary, in order to secure greater strength. There is another weak point in the fitting up of the wheels that impnirs their strength; we refer to setting boxes. There are many good machines

ingredient in wheaten flour, and to which it owes nearly all its flesh forming properties.

Lard is not unfrequently adnlterated with potato flour or the cheaper kinds of arrowroot which is stirred into it when in a liquid state, and which gives to it when cooled an uppearance o increased whiteness aud purity

I I fear it will in time bo discovered that many small shopkeepers, in their desire to compete in point of cheapness with the large co-operative stores, are resorting to a system of adalteration which in the end cannot fail to become an evil tha will require stringent laws to repress.'

SUBMARINE STRUCTURES.

O^{F}the various methods hitherto adopted for forming structures under water, the most common is that which consists in surrounding the place of work with a dry inclosure called a coffer dam, formed by driving rows of piles into the ground, and filling the spaces between them with clay puddle, gravel, and sand.
Another system is that in which iron tubes, open at the bottom, are sunk into the water. They are then exhausted of air, and the material at the bottom, if soft, rises into them, while they, on the other hand, sink down into it. The material is then taken out and concrete substituted.

A third method is that which was adopted in making the Thames Tunnel. A sufficient thickness of earth is left between the place of work and the bottom of the river to support, daring construction, the body of water above. M. Francois Durand proposes a new mode of making passages under water, which will not involve more expense than tunnelling in terra firma, and offering further advantages, which will best appear on description. He would apply the principle in

in use, but they all cut away the ends of the spokes on the same line as the bore of the hub, and when the box is forced in the spokes bear heavy upon the metal. The constant hammering that the spokes nre subject to renders it necessary that they should rest upon the wood of the hub on account of its elasticity, whereas, if resting on the box, which is elasticity, whereas, if resting on the box, which is unyielding, it soon jars in the mortise and become the spokes at least one sixteenth of an inch below the spokes at least one sixteenth of an inch below
the bore in the hab; a little more than this would the bore in the hub; a little more than this would
do no harm, as it will need but one or two resettings of the tire to force them down as close to the metal as is consistent with the safety of the wheel.

ADULTERATION OF FOOD.

D^{n}R. WHITMORE, the Medical Officer of Health for Marylebone, writes :-
"Whilst the question of a pure and constant water supply is engaging public attention, some little consideration might also be advantageously given to the quality of our food supply. For some time past certain articles of food, principally those in daily consumption by the poorer classes, have been brought under my notice, which on examination I have found to be deficient in those natritive properties, which, when genuine, they are found to possess. I may refer more particularly to milk, a practice of late years amongst many dairymen to supply milk of a 'superior quality' for the use of the nursery, and to charge an increased price for it; but as this kind of milk cau only be genuine at the best, the fair inference is, that all milk not Intended for nursery use is not genuine, and that It is not I have in many instances been enabled by analysis to prove. With regard to bread, the principal adulterative article used in making it is is so far objectionable that it contains none of the vegetable fibrine which constitutes au important
various ways, as for making a passage between the banks of a river, for laying the foundation of piers, breakwaters, \&c. The principle of the invention consists in enveloping the structure which is in course of formation with a cloth texture impermeable to water. An iron shield of sufficient weight to remain at the bottom of the water, notwithstanding the air inclosed, supports this cloth, forming a work chamber, whose sec tion is a little larger than that of the tunnel being made. The shield is represented in the drawing at d. This shield is crossed in its central part by metallic bars, on which are placed such weights as are necessary to the stability of the apparatus, and in such a way that its centre of gravity is between the wheels of the carriage C, which sustains it, and by means of which its advance is regulated. Lastly a pipe g rises to the surface, and is supported by a buoy, thus ventilating the work chamber. This pipe is surrounded by the cloth e, which has to be paid out, so to speak.
Suppose, now, a subway is to be formed under some river, and that the approach has been prepared to the surface of the water. Having dredged an even channel for the tunnel, gently inclining on either side, the shield is placed at the point of entrance into the water, and the extremity of the sack into which the shield is thrast fixed behind it, the rest of the sack being in front of the shield. The construction is then proceeded with, and the apparatus is gradually advanced to the opposite bank, the ring of masonry being always within the cloth envelope and metallic shield. The carriage is moved on rails fixed on that part of the bottom which is already constructed. The advance is effected by means of hydraulic pressure. The above apparatus can, with advantage, be adapted for turnelling in terra firma,

IMPROVED SCROLL.SAW.

A^{N}improved soroll-sawing machine, patented by Mr. J. Moseley, of Syracuse, New York, seems to be highly thought of by American mechanics, and has received several prize melals at the State fairs and exhibitions where it has been shown. Simplicity in construction and oonvenience in operation are its ohief recommendationg. It can be ran, it is said, at a speed of from 800 to 1,200 "revolations" per minute, and is equally serviceable in cutting heavy work as in shaping the lightest veneer or the most delicate fret. The following desoription and illustration will, however, enable our readers to form their own opinions of its capabilities:
The saw passes through the table in the usual manner, and has its upper end attached to a suitable slide working in the adjustable guide, A, and its lower end sttached to the sliding cross-head, B, fitted to gaides anderneath the table. The vertioal movement of the cross-head, and consequently of the saw, is received from the pitman, C, connected with the wheel, D, the shaft of which also carries a fast and a loose pulley. The slide at the upper extremity of the saw is connected to

a strap, G, atbached atits upper end to a wheel, I, on one extremity of the shaft of which is a cam, From a point on the periphery of this cam extends a strap, d, to the free end of a vertically arranged wooden spring, J, the elastic action of which tends to rotate the shaft of the cam and wheel, in such wise as to exert a tension on the strap, G, thereby straining the saw. The wheel, I, is made adjustable upon its shaft by simple devices, so that the strap may be adjusted either to different lengths of saw, or to exert any required tension or strain upon the same. The apper slide and the cross-head below are fitted so that the ends of the saw are gripped between clamping surfaces without the aid of pins, and devices actuated by a short lever, F, are so arranged that, when required in the exigencies of the work in hand, the upper end of the saw may be quickly and convenientiy released from its fastenings. Means are also provided for readily raising the guide, A, out of the way under like conditions. At the base of the machine, and in convenient proximity to the foot of the operator, are pedals, so connected by appropriate mechanism with the fast and the loose pulley that one or the other of the said pedals may be used. shift the belt and to actuate the brake, accord"

28 the velt may be arranged to run in one, bears wituess of the treth of my assertion. The direction or another in atopping and starting the mechine. The upper part of the machiae is secured to the roof by tie-rods in the usual manner, and the table and driving-shaft is moanted on andriron frame.
apparatus weighing less than 400 lb .

ON RARTHQUARES AND VOLCANOES."

 By Augustue Lix Plongeor, M.D.
(Continued from p. 221.)

Q.-How the ERarthquakes are Produced.

LET us take it for granted that, owing to the living activities of the earth, a consilerable panntity of these necessary chemical elements have collected, and that the waters of the sea having poreolated and saturated them, a rery active siderable amount of oaloric. This will soon reach siderable amount of orloric. The incandengensee, particularly if the point where the incandusconee, particulariy if chemical action is tuking place happens to be the chemical actiou is tuking place happens to be electro-magnetic current passing between the sin as positive element and the earth as negative This is precisely what has occurred on the 13th o Angust. 1868, in the southern provinces of Pera, and three days later in the northern of Ecuador. It is a fact worth.y to be noted, that the great and destruc tive earthquakes have always tasen place the time of some eclipse of the sun or moon. diation takes place, and the surrounding atoms soon attain the same degree of heat as the tirst, the inciting causes being incessantly at work. From this focns of irradiation, caloric will extend from one molecule to another; and it will not bo long
before a large subierranean farnace will be in before a large sublerranean fornsice will be in
existence. What will then happen? It is perfectly existence. What will then happen? It is perfectly
obvious that the water existing in the neighbourhood will be converted into steam, and this constantly overheated inte gases, which by their enormous cilatation will exert a tremendons pressure against the wall of their phace of coninement.
Everybody is now nomuinted with the force of expansion of gases. In their action on the superficial gtrata we shall find the explanation of earthquakes. These gases must hand an issue. They press against the crust above in a perpendicnlar direction. This crast happens to be sufficiently resistant. composed of homogeneons materials that render it elastic-aphenrals thea aine place, the times. observed from the remoust antiguity to our times. All these upheavals aro nlways preceded by earthquakes, with emissions of sulpharons
salpburetted hydrogen gas, smoke, \&c.
If the ereat is not sufficiently resistent, a new orater is eponed, a roleano is formed. These are the boils on our mother carth's body, that having ejected all the matter contained in them, subside and even disappear. in the rolomino of Masalla, which has completely vanished cince the conquest by the Spaniards, and the place where it stood is now a level plain covered with burped and blackened stones. Let ns sappose resistant as to withstand the enormous pressure of the immensely dilated gases. Then the soil will be convalsed, tremendously, shaken; sothe ground.
works of ana mas has penetrated in the superficial strate of the planot, he has found then honsy-
combed; traversed in all directions by mosts combed; craversed and hollows. Which contain large deposits of water, forming lakes and pools, originating sobterranean currents, streams, and rivers Theso moats, conduits, caverns, \&c., \&c., are
foparated by wells moreor less thick. These walls in the vicinity of the furnace, being less resistaut than the crust above, give way under the pressure of the gases; an issue is opened for their escape. They
precipitate themselves iuto it with incommensurahle precipitate themselves iuto it nith incommensurahle explosions which always accompauy earthqualies and precede them by a ferw seconds, piving warnin", af their coming. By the lains of superstrata bein cararns and, these cave in ; bence the ahasements of the surface, the rendinus, the disnpparance of some streanis. the appearance of nthers- the ebangres that take pince in the configuration of the
coantries there the oatastrophe has occarred. The coantries There the oatastrophe has occarred. The
gases, in their onward rush, meet other openings; gases, in their onward rush, meet other openings
part precipitates iuto them. Soon. they expand on a larger field; their forces, not being any longer coneentrated, grow less and less as they find mire avenues through which to escape: and as they are
farther from the centre of their generation, that is further from the centre of their generation, that is
to say, from the furnace. Many of those furnaces, no doubr. exist that having commnnications with active rolcanoes are not pereeived on the surfa.e ; or havos veut in the sel The hot well dicoverel

upward pressure against the ceiling of the conduits accounts for the waters in the wells overlowing,
and for the changes of their level. The sulpharons and for the changes of accounts for the fetility nature of the gases accounts for the fetility observe
cellars.
Different and very distinct motions of the soil have been noticed during oarthquakes. They are easily accounted for. The most common is known onder the name of undinlating motion. It may be explained in this wise. The walls and ceilings of the subterranean cavities are ragged and uneven, resenuling somewhat the wares of the: with more or less deep indens; they are not composed of the same and homogentons materials. In places they are moro resistnat than in others ; and when gases come from a long distanco, and somewhat disperse, they do not exert heir power with so much force on the ceilings. They consequently gire rise to a motion similar to
that felt on board of a vessel at sea, and called for this reason undulativy mation.
Thero is a secoud motion called sussultaria, ernptive. This has been ubserved many times, and always accompauied by great catastrophes. Sach motion, foreshadowed by sulpharoas raposis. occurred during the montlis of February aud March, 1783 , in the plains of Calnbris and Mesina, when the tops of granite hills were clearly seon to jnmp up, the stone fonndations of houses, even the pavemen in the streets, were so lifted up as to be foand tarned npside down. The city of Mobsamba was year year 17:7, and the the top of a hill 100ft. high Palmet Palmeri and Scachi, in their report on the eart.
quake of Molf, which occurred the th of Angast, quake of Molf, which o.curred the a were broken at the base without losing their porpendicular position; that chimneys were haved up into the air. falling agnin in their natnral place. The city of Mendoza was destroged in 1 sil by a motion of that
kind. The ceilings of the furnace, being homocencons and resistant, will not swell or upheare, but sustain the shock occasioned by the purf of the gases incessantly arising. dilated from tho focns of heat, in the same manner as the steam escaping at intervals through the escape pipe. The perpendicular shock is repercussid to the anrfnce, in the same manner as if you give a sharp hlow under a table; the table, to be snri, will resist, bat
objects on it wil be thrown up into the atm. circular. Many doabt its existencr; but I see nothing that can be opposed orthquake that was folt in the year 1868 in San Francisco, California, and a motion of that kind is said to have been observed in the lower part of the city. After the earthquake that occurred in Valparaiso in 1822, three paimtrees, placed at a short distance from each other, were foand intertwined, and кo have renuined over sinco It is also roported that aftor the onrtaced in front of the Convent of S. Steplasuo del Bosco, were found turned round on their pedestals. Many the existence of the rotary motion
But how is such motion to ba explained? In two different manners. Have you ever moncend how a rotary motion can be imparted to a sinall metallic wheel, sapported on a strel or iron axle, on which
it can revoive freels, merels b; rulinin? vigorously with a round file one end of the axle? If so, you have seen it turn of itsclf. as it were, in the same direction as the filo is dramn.
Why would not niso a powerful stream of gases, rabbing against the rugged ceilings of the condaits, prodnce a strong electro-magnetic carrent, tha wonld impart a rotary motion to the objects on the surface, in accordance with the laws that govern carrents of induction.
Again, this rotary motion may be explained in this wiso. When twn currents of air, coming from opposite dirnetions. meet each other. thes give rise opposite indwin. If these currenta are very strong, a hurricane or toranio is the re-utt. Well. there is no reasom whe the same phenompnon, which takes place above gronud. should not also occur under ground, wheu two different carrent of cases, connig,
from opposite ditections, meet in tiae iuterterrestrial from opposite directions, meet in works in the same passapes and cavities. namner in all its manifestations when equal. Similar cansey produce like effects; then
are two carreuts of gases meeting under gronnd will produce a tornato: sul a rotary motion will be imparted to all objects withiu its loomlaries.
I have revinwed in a vers carsory manner all the effects proluced br the convalsions of the earth, and, by the aynthetic mothod of reasoning, tried to arrive at the nulerstanting of their canses. I have not adranced an upiaion which is not founded on facts acknowledged by ccince, on events reenrion
in history. I do not prip we any theory, but merely cive in these fer hin she the renult of my onn ob serra-
and

Let me then recapitulate, and sum up in a few words my

7.-Conclusiona

1. There is no central fire. It is nuphilosophical, nnscientific to uphold the opposite doatrino- or it merely rests on spoculations, nnsapported by facts
and science. It must, therefore, be disregarded by and science. It matich
all scientific minds.
2. The heat of the earth has its souree: 1st. In the friction occasioned by its rapid motion threng the cosmic matter that tills all space. 2nd. In tio rays of the sun, that, however cold in themseives, carry light that, setting in motion the molecules of the atmospuere, generates heet, waich is commani cated to the earth. 3rd. In the constant chemical decompositions that are incessantly going on in its great interior laboratories. 4th. In the oxidation of the metallic substances that compose the saper ficial strata of the planet. All these phenomena ary produced by the agency of electro-magnetism, whea seems to be the life-sustainer of the whole creation. 3. The volcanoes are not the safety valves or rents of a central fire, which does not exist; hnt are merely lecal accidents produced by a conglomera tion of materials, sulphar being one of the principal that, being soaked by salted waters, enter int ohemical decomposition, under the agency of electro magnetism, and that the rolcenoes are to the sarface of the earth what hoils are to the sarface
the human body. Which disappear as soon as the the haman body, which disapp
matter accumalated is expelled.
3. That the sun's immense reservoir of electro magnetism, and the other celestial bodies, which ar likewise reservoirs of the same agent, increases the action of the electro-magnetic carrents that traverse the earth, acoording to their respective posktina with reand to this, and basten the effect of the chemical operations, if a point of the voltaic arch formed hy them enmps in direet conteot with the place they are going on on a large soale.
4. Thiat earthynakes and roloanoen stand io intimate relations, have a common origin, and will ever occur in those places where large ch mical
action is taking place. That, in actiou is alive in every part of the earth, earthquakes may be felt on any point of its surface.
5. That the origin of earthquakes may be found in the expansion of gases genernted by the varions canses enumerated, particularly chemical decompssi-
 heavily agninst the wall sad oeilings of the caritits is which they are confined, and in trying to tind an iscee through

7. That whem a volonic motion ty gitar on be th

 arestrata of the suriaceare

meap precursozy signe

8. That among these forermanere the followi:s are the most evilient: 18t. Salpharous vapour arising from the gronod in the viainity of the tacu of the chemical action. 2nd. Strange and mygterion noises, prodnced by the activity of the geoes. 3rid Alterations of the mineral watere, coomionad by th percolation of the gases throagh the porausness a come superncial strata, and af the fresh waters in wells-phenemenon prodaced by the same canzas 5th. Cuanges in the leval of the waters in wells caused by imperceptible npheaves and depressions of the superficial strata. affecting the sources en tions of carbonic acid or sulphuretted hydrogen asa parceived in cellars, caves, wells, excarations. ith perceived in cetiars, caves, wisturbances in the atmosnjer: suddenly taking place and withont any appare canses, manifested by the loss of powar of magnes
9. That the opinion of Pliny the Elder cont mends itself to the serions consideration of all men of science: that the evil consequences of earthytat might in some measure be arrested by boring. artesian wells in the countries subject to cerri which. for those wells would act aseir raging stum partly quellod.

A few years ago, four deep wells were discoret one at each corner of the entliedral in Lime had been destroyed by the earthquake that ha city to the ground in 1637. The charoh was monnment. They have well fulalled their dnty. monument. They have well all the different ain the edidice has withatoon all the different since Pera, aud destroyed many of its strongest structar
(To be continuted.)

CARBOLIC ACID FOR PRESERVING HIDE T HE difficnlty hithe to experienced by tare according to the shue and Leather Reporter. li: to be wholly obviated by tho ase of cartbolic ac It has heen known for several years that the pre vative properties of carbolic acid, when nve
decarin suhatances of any kind, were of tho purticular eificucy. This fict was rery poir hoanght nit by the experiments of the Nex.
stop the decay of vegetable or animal substances than an application of carbolic acid. No matter to what state the decomposition bad proceeded, an application of carbolic acid instantly checked its farther progress, and rendered absolntely impossible any farther decay.

Proceeding on the knowledge thus obtained, experiments were made at one of the large tanneries in Pennsylvania, as to the effect which carbolic acid might have on the colour and grain of leather, when the hide was thus treated. It was found tbat the decomposition or decay of the hide (witheut making any difierence as to what extent it had proceeded) were instautly stopped by the application of carbolic acid, and that the colour and grain were in no way impaired. In fact, from the experiments thus far made, it would appear that both are somewhat improved and whitened by the use of the acid. but this matter has not yet been sofficiently tested to warrant the conclusion that either the grain or colour will be in any way improved, if, indeed, it is at all affected by this new agent.

PROTECTING SHEET IRON FROM RUST.

A^{N}
improved method of protecting iron from injary and deterioration has been introduced by Mr. B. Morrison, of Philadelphia, whose dhan to or intimately uniting, and amalgamating, blending, more fusible metals, so as to render soch and side more flexible, so so as to render such scale
 , and the sheet iron also more perfectly annealed and fiexible. It is essential that the sheets made of the best charcoal bloom iron, and that ce scale oxide thereon be even, or of uniform thick. acss and unbroken; and in order to produce such a scale oxide, it is recommended that the usual rough and imperfect scale be removed-by means of weak acid, in the usual manner practised in aivamising iron, and that the sheets be then passed etween a pair of smooth pressure rolls, and finally subjected to a sufficient heat to produce thereon a we and uniform scale of oxide.
Having prepared saturated or strong aqueous solntions (say) of sulphate of zinc, chloride of zinc. chloride of tin, acetate of zinc, acetate of lead, and of any other readily fusible metal that will amalgamate, unite, or combine with the deoxidised scale on the iron at a strong or bright red heat ander the hydrogen or carburetted hydrogen gas, immerse the deoxidised sheets either in one or a mixture of two or more of the said solutions for five or ten minutes, or apply the same by rubbing it on by means of a sponge or rough brush; let the excess of solution drain off, and the remainder crystallise or dry upon the surface of the sheets. Now place them in a box in the heated chamber of a furnace ; then introduce the bydrogen gas, and slowly heat to a scarcely visible red, maintaining the said low heat for (say) half an hour, more or less, to allow a perfect reduction of the oxide of the applied solution; after which the heat should be increased to a bright red, or heat a few degrees above that which may be required to fuse the now redaced softer metal and cause the same to amalgamate, blend, or unite with the deoxidised and, conseequently, soft and porous scale on the sheet iron.
To obtain brightness of surface when desired, it is proposed to pass the sheets severally between and in contact with a pair of cylindrical rapidly rotating bristle brushes; and, if afterwards intended to be put up in packs for storage or shipment, the sheets may, as a further protection against dampness, be dipped into any suitable hydrocarbon oil, and then the superfluous portion drained or wiped off. The solation of the salphate or of the acetate of zinc forms, with the deoxidised scale on the iron, an excellent coating. About three parts of the solution of chloride of zinc, mixed with two parts of the solation of chloride of tin, make, with the deoxidised scale on the iron, an excellent flexible coating of a whiter colour. Three parts of the solution of the acetate of zine, mixed with two parts of the solution of the acetate of lead and one part of solution of the chloride of tin, make, with the deoxidisfd scale on the iron, a very suitable coating for sheet firon intended to be ased in the construction of iron intended to be rsed in the construction of
toves, stove pipes, coal hods, \&c. ; but as the prefoves, stove pipes, coal hods, \&c.; but as the prelominant metal in the coating is the deoxidised scale oxide of iron, the number and proportions of
solutions of whatever metals are intended to be eolutions of whatever metals are intended to be coating desired may require.

NEW CASK-STAND.

THE annexedillustrations of Dubbin's "patent self-raising and self-setting cask-stand for er and other purposes " are almost sufficiently planatory in themselves to enable our readers advantages. The principal feat appreciate vention consists in the adaptation of a lever ctuated by a powerfal indiarubber ring, so situated s to cause an almostimperceptible elevation of one
end of the cask as the weight gradually decreases through the contents being withdrawn. The lever, it will be seen, is pivoted in the centre of the horizontal bars forming the stool or support ; its front end being connected by a strong ring, or band, of indiarubber and a rod held between the two front legs. It is evident that as the cask

becomes lighter the rubber ring is enabled to contract and so tilt the eask, which is then supported in the required position by a ratchet-bar, as shown in the figure, thus relieving the rubber band from the strain produced by the weight of the barrel. The gradual nature of the motion thus imparted to the cask obviates the annoyavce experienced with other contrivances for effecting a similar purpose, as the sediment is not disturbed and the waste is consequentiy reduced to a minimum. The absence of iron in the moving parts also avoids the inconveniences of rugty springs and screws, very natural results in the ordinary stands when placed in damp cellars.

IIEATING BY GAS.

A
SELF-ACTING apparatus for heating by Goldsmith and Dilkes, and the arrangement will doubtless be found serviceable for many different

purposes. The invention is adapted to the heating sad irons or the melting of metals, and consists in principle of a combination of levers and springs so arranged that when the substance to be melted or the article to be heated is removed from the frame upporting it over the burners, the gas is lowered and waste prevented

A rectangular or other shaped chamber is formed of sheet iron mounted apon a cast-iron bottom or stand, and is either covered or not by a hinged lid having a slot or slots made therein. It is also furnished with holes either at the upper or lower part thereof for the entrance of air. Within the chamber, and fitted to the upper part of it, is a cast-iron trough with an opening in the bottom; beneath the opening are fixed burners on Bunsen's principle, presenting a continuous or nearly continuous line of flame, the gas being admitted at the bottom of the burner from a pipe which extends to the outside of the chamber, where it is fitted with a valve. A lever which has its fulcrum within the chamber is so arranged that one end projects above the opening in the bottom of the cast-iron trough, while the other passesthrough a slot in the side of thechamber, and communicates with the valve. A spring is fastened near ons end of the lever, which bas the effect of keeping the valve in such a position as to admit but a very small quantity of gas to pass to the burner, bat upon the introduction within the trough of the iron to be heated, or the melting pot containing the metal or other material to be melted, the weight will depress one end of the lever and cause the other end to rise and open the valve, so as to allow of sufficient gas passing to the burner to produce the requisite heat. On the removal of the sad iron or melting pot the spring will canse the sufficient gas will pass to just keep a light burning. It will be seen, therefore, that when the apparata is not in active operation the consumption of gas is reduced to a minimum, but its full power is exerted
the moment the material to be heated is brought within its action.
It is obvious that the shape of the apparatus may be variously modified. For the parpose of melting it may by preference bo made round, and in this case the vessel containing the metal or other material may be made to press upon an upright spindle communicating with the valye without the intervention of any lever, as shown in the annexed figure, which will give a good idea of the principle, and saggest modifications to fit it for various parposes. In the drawing. which is a vertical section, a cylinder of wrought or cast iron or other suitable material is mounted upon a stand, in the top of which a piece of pipe forming the burner is firmly secured. Suspended from the top of the cylinder is the trongh or pan P, into which the glue-pot or melting erucible is placed with its bottom pressing on the upright spindle T, which is forced npwards by a spring coiled in the interior of the tube $\mathbf{S} ; \mathrm{B}$ is the burner where the mixture of gas and air is lit, G the supply-pipe, and L is a nut used to regulate the quantity of gas supplied. When the melting-pot is placed in the trough, T is depressed, and the valve in S is opened to its full extent, so as to permit the passage of the gas to the burner B; when the pot is removed from the trough, the spring forces up the rod I, and only sufficient gas to just keep the flame burning passes through. There is, of coarse, nothing novel or original in the idea, but the arrangement may be found useful in many ways.

MIOROSOOPIOAL NOTES.

Pattern Lead Cells.-Mr. T. Charters White, the Secretary of the Quekett Club, says that he has beeu in the habit of using cells made of a thin kind of lead known as "pattern lead," employed by dentists for taking patterns for their gold plates. It is found to answer the parpose very well; the slide may be made almost red hot without melting the cells. and the cells are very easily stuck on with murine give. For shallow cells a simple ring of gold size and gum dammar, put on thickly and allowed to get hard, auswers the purpose excellently, and if Bastian's cement is used instead. the cell can easily be built ap higher by adding layer apon those which have become dry. Another way is to use zinc cells, which stand any amount of heat acid, however, affects these, but vulcanite cells resist acids. In making cells for mounting in flaid, Mr. White says, it will be found of great advantage to set up some standard size, and keep to it, as this enables the worker in a short time to estimate correctly the exact amount of fluid required for filling-a matter of some importance.
Staining Tissues.-Dr. Durnforth writes as follows on this subject in the Lens, a new microscopical journal published at Chicago:-"It is desirable to stain sections of all soft tissues, whether from healthy or diseased specimens. First, because it enables us more accurately to distinguish germinal or nuclear matter from formed material or tissue proper, by their aifferences in receptivity of colour ; and secondly, because it brings into relief all constituents of soft tissue, and, therefore, renders their study easier and more satisfactory. The staining material which aids me most, and therefore suits me hest, is the alkaline solution of carmine made after B sales's formula. The sections should be placed in the carmine solution as soon as they are made, and they should be made as soon as possible. No positive rules can be laid down as to the precise time
required for the completion of the staining process. It will vary, within certain limits, according to the character of the tissue and alkalinity of the solution. In regard to this latter poiut, I may properly say that th, carmine solation shonld neither be all portions of the tissue will probably be stained alike; in -the latter case, mnoh of the younger or softer portion of the formed material surrounding the germinal matter will be destroyed by the excess of alkali. I generally permit my own sections to of alkali. I generally permit my own sections to
remain in carmine for three or four hours. Having completed the staining process, the sections should next bn immersed in a mixture composed of Price's
or Sarg's glycerine and distilled water, 4 drachms or Sarg's glycerine and distilled water, 4 drachms of each, and 20 drops of acetic acid. This answers the double purpose of rendering the so-called nuclei (germinal matter, bioplast) sharp and clear, and of commencing' the process of impregnating with strong glycerine; it will also remove the snperfluous carmine. After being soakedin the glycerine and water mixtare for from twelve to twenty-foar hours they should be transferred to the following mixtare: pare and strongest glycerine, loz-; pare remain in this mixtare notil they are fully saturemain in this mixtare therewith, which will take from two days to as many weaks."
Carmine Staining Solution.-Tie following is the formala for preparing Dr. Beale's well-known fragments are placed in a test-tube, and half a druchm of strong liquor ammonise added with agitation and the heat of a spirit-lamp. The carmine soon dissolves, and the liquid, after boiling a few seconds, is allowed to cool. After the lapse of an hour, much of the excess of ammonia will heve escaped.
The solution is then mixed with $20 z$. of distilled The solution is then mixed with $20 z$. of distilled ture being passed through a filter or allowed to stand for some time, the perfectly clear supernatant flaid can be poured off and kept for use
Paraffin Oil Lamps. - Mr. John A. Perry, of Liverpool, suggests in Science-Gossip the addition of camphor to increase the illuminating power of parnfin oil and improve the quality of the light; this is a well-known fact, bat here is Mr. Perry's
recipe for those who have never heard of it. "I recipe for those who have never heard of it. It that the addition of a little gum camphor to the paraffin oil in the microscope lamps burning that tivid is a very great improvement. About fifteen grains of camphor, put into an ordinary-sized lamp,
about one hour before using, will cause the lamp to give a far more intense and brilliantly white light than the paraffin oil alone would gire."
The "Germ" Theory.-At a recent meeting of the microscopical seotion of the Liverpool Medical Institution, Dr. Braidwood exhibited specimens of a very fine white powder, deposited on the inner surface of the glass of a locket inclosing hair from a ohild who hail died a year previously from malignant scarlet fever. After the child's death, a lock of hair not di:inficted was placed below a wellfitting gluss cover in the locket, and a lock which outside the glass cover but ingide the lid of the Jocket. On the locket being opened a year later a fine white powder was seen on the inner surface of When examined with a one-twelfth inch lens, this deposit was fonnd to consist of very minute spherical granules (like the microzsmes in vaccine lymph), and of sharplg-dehned, moicular, crystalline-like
bodies.

The Flavour of Butter.-The German Agriculturist says that a great portion of the fine flavour of
freeh butter is destroyed by the usual mode of washing, and he recommends a thorough kneading for the removal of the buttermilk, and a subsequent pressing in its rwentness of taste and flavour, qualities which are retaincd for a long time. To improve manufactured it thoroughly with freeh cold milk, and then to wash it in clear water: and it is said that even old and rancid butter mary be rendered palatable by washing it in water to which a few
of lime have been added.

Nitrogen in Plants.-M. Deherain (in Comptes Iminius) advances a somewhat novel theory of the re-
duction of atmospheric nitrogen to an available form for the support of plant life. He endeavours to prove that the free nitrogen of the atmosphere is brought iuto combination during the oxidation of organic
mator in the soll. To demonstrate this, he dissolves glacose in a dilute solution of ammonia in water, placed in a large fiask filled with a mixture of equal parts of nitrogen and oxygen. Having closed the
tlast, ine lowats the mixture gently for 100 hours, at the thask, ine luats the mixture gently for 100 hours, at the
end of which time the whole of the oxygen has disappenred, and $: \cdot 9$ per cent. of nitrogen has been taken up. The same process with humic acid and potash
phowa a loss of $7 \cdot 2$ of nitrogen. If these results are phows a loss of $7 \cdot 2$ of nitrogen. If theae results are
conftrmed by subseguent experiments, they will conftrmed by subsequent experiments, they will
throw light on the hitherto obscure subject of the production of nitric acid.

LETTERS TO THE EDITOR.
[Wo do not hold ourselves responsible for the opiniona of our correspondents. The Editor respectfully requena
that all oommiunications ahould be draven up as briefly as pessible.]
4ll communications should be addressed to the Editor of the ENGLI
Garden, W.C.
All Cheques and Poat Oflice Orders to be made payabl to J. PAsgMory EDwAEDE.
"I would have every one write what ho knows, and as much as he knows. but no more; and that not in this only, but in all other rubjects: For such a person may have some particular knowledge and expurain, that as to other things, knows no more than what everybody dies, and yet to keep a clutter with this little pittance of his, will andertake to write the whole body of phence great inconveniences derive their originaL"-Montaigne's Essays.
** In order to facilitate raferenco, Correspondonta whon speaking of any Letter previously inserted, will oblige by on sohieh it appeare.

WHO INVENTED NOAH'S COMET.

[4853.] -"P. Santalinus," "Sigma," and othrrs, insist on taxing me with the crime of evolving a "pet" comet for Noah, as if the dallest ever since the relations of planetary and cometsry motion were ascertained, conld ever miss so obvinus a lesson! "A legacy from Whiston," forsooth ! (p. 303, let. 4289) as if, when Nature thrusts before the noses of you and your ahildren sundry times per generation one of these "mythical" manufactnres (let. 4340) waves before you snch an ensign, as mach as to say, There, men! Such things are. as that. with no lease ; you have never had one hour's lease ;" it needed the man whom Nowton chose as suocessor to make the historical application of this ! As it had ever been worth while, before matablished for dren, to suggest how such a Noachian Story, the certainty of Natare's containing abandant means for any such catastrophe, at any moment ; her redandantly superfions displays thereof, and reiterations before each and evory of you, again and again, that such catastrophes are, must
long as she is Nature:
I bave only this wee
Arat voritten statement alighted upon, probably, tbe Arat eriuen I micht have anticipated by only abon of oourse (as I might have anticipated by only abon one and a hali "Sizma-inis" of thought), by whe irs though not, like him, successor tc Newton's chair br Newton's desire. It ia in the Phil. Trans., Vol. 33 Canse of the Universal Delage, laid before the Royal Cause of the Universal Delage, laid before Dr. Edmond Halley, R.S.S." In oopring the following chief parts, I keep the capitals to sabstantives, that our neo-Englisa dropped, it meaning to be nuderstood.
dropped, it mennt we have of the nuiveras Delage is nowhere so express as in the Holy Soriptnras; and the exact Ciroumstances, as to point of Thma, do show that some Records had been kept thereol
more particalarly than is wont in those things more parnm remote Tradition, wherein the higderived from remote Tradition, wherein the Mat are lost by length of Time. But the rame seem much too imperfeot to be the Resalit of a full Revelations matind, who would have spoke more cution apon Mankind, who thereof, had He thonght it to amply as to the Sers of Natare to the succeeding Race Iny open the Secrets of Natare I doabt not bat to all that consider the 7th chapter of Gemesis impartially, it will pass for the Remains of a much faller Acconnt of the Flood, left by the Patriarchs to their Posterity, and derived from the revelation of Noal and his Sons. " . . This we may, however, be fally assured of, that such a Dodies fnnnd far from and above the Sea, 'tis ovident, that thnee Parts hare once or more been nnder Wale been raised from the Sea has risen the Ses; to explicalo does the nacred Scripture afford any Light thereto. . . What is meant by the Fonntaing of the

What broken np, and the opening of the Windors of Hearen, seems unt so easy to be understood, but is intended to indicate the Modus of the Delace, which was, accornto Watera shove the Firmament, mentinned Ci wris i, 7 , by the Windnwe nf Hearen, knd the rising ap out nf he Groand
of the Waters ander the Earth, spoken of in the Second of the Waters ander the emarnament"- irather, the human comment thereon, these comments being differentin in the Exorlus edition, and that of Deuteronomil] . . "an that me pressions is matrardinarr Fall of Waters pressions the Hearans, not as Rain., (With macb defe-ence to Halleg, I mnst qnote, Yet seven days and I will canse it to rain unon the earth!] "but in one great Budy (!); as if the Firmament snppraed by M sese.

irmament impose on him the valgar error that the prophet regarded this Rakia (Expanse) as something of heaven." "But the Almighty, general y making nse of Nataral Means to bring about Hin Will, 1 thongtit it not amiss to give this Honourable Societs an Acconnt of some Thoughts that occurred to mo on this Subject. wherein, if I err, I shall find myself
Company.
In No. 190 of these Transactions, I have proposed the casual Choc of a Comet, or other transient Body, as Rotation of the Globe instantly the Poles and diarzal cousider the great Agitation such a Choc mast necessarily occrasion in the Sea, sufficient to answer for all those strauge Appearances of heaping vart Quantities of Earth and high Clifis apon Beds of Stella, تhich once were the Bottom of the Sen, and raising up Mountains where none were before, mixing the Elements into such Besp as the poets
describe the old Chaos, for such a Choc impelling describe the olid Parts, ould occssion the Waters, and all fluid Substances that were unconfined, as the Sea is, with one Impltus to ran violently towards that Part of the Globe where the Blow was received ; and that with Force sufficient to rake with it the whole Buttom of the Force sumu, to carry it upon the Land; heaping ap into mountains those earthy Parts it had borne away with it in those Places where the opposite Waves balance each other, miscens Ima Summis, which may accoant for those long continned Ridges of Mountains. And again, the recoil of this Heap of Waters would retarn towards the opposite Parts of the Earth, with a lesser Impetis than the firat, and so reciprucating many Times, woald at last come to settle in such a Manner as wo now observe in the Stracture of the superticial Parts of the serve in the stractare of the super it this case it will be mach mpre difficult to show how Noohl and the Animals should be preserved, than that all things in whioh was the Breath of Life, should hereby bo destrojed. . . . Sach a Choc may have occasioued that vast Depression of the Caspian walikely bat thet extreme Cold felt in the North. Weat of Americ: sbont Hudsois's Baly, may be ocessioned by those Purts of the Worid heging once been much more nort northeriy, or are immense Qasntities of Ioe yet anthewed in those Parts. . .. If this Specnlation seem thawhy to be cnltirated, I shall not be wanting farther wo ingist on the Conseqnences thereof, and to show hov to insist ond a probubla Acconnt of the strange Cats may render a prount has at least once happoned to

atrophe we

he Earth.
Some further thoughts apon the same sabjeot, delivered on the 19th of the same month, by the Person whose Jadgment I have great Beason to respect Person (?) 1 then adranced ought rather Newton (?)] oren to the Earth in Times before the Creation, asppond and cirl mot ming the present might be formed, tisun of the Deluge whereby Mankind was in a Manner extingnished
that being much more gradually bronght to pass" [bat sarely Halley here lorgets that the Dany that Noe entered ines the Ark (Linke xvil., 20), they knew not them all acay (Matt. xxiv., 89)]-" and with and toolk them all arcay (Matt. xxiv., 89) - and mith some Cirs H and "thesame Day all the Fonntains of the great Abras," ie., sll Volcanoes, "broken up and the Cataracts of Heaven opened '] "which sbler Pons, perhaps, may sccount fur" [nr he should rather have said latar knowledge]. may be taken for no more than the Contomplation
of the Effects of such a Chac as might possibly and not improbably, have befallen this Lamp of Earth and not improbably, have befallen this Luop onner of Tradition es being before the firat Production of Mcn. Tradition, as being before the irat Prodactation, or also and pasteriuri by Indaction from a coning snch an Agitation Experiments or Observations, argning snch an Agita this once, or oftener, to hare befallon the Materiais of thest, Globe." [.Wor, of course, for a generation pest,
Elie De Beanmont has abondantly proved, how much "oftpnr" and irreyularly as to time, and g:werally to the whole planet at once.] "And. perhaps " (adds Halley), "in due Periods of Time, the well-being of the fature World ; to bury deep from he well-being of pial the Sarface those Parts which by length of mape fo: indurated into Stony Sabstances, and become "This mar Vegetable Production," ec. to destroj the whole Rac
perhaps, be thought hard, perhaps, Benefit of those that aro to sncceed; Bat if wo consider Death simply, and how that the Life of each Individual is bat of a very small Duration, it will foand that as to those that are to die, it is indien whether they die a Pestisics in this grest Cit annu, or orcin only tor these tia the Pebtileace omplate the Danger they have escaped. Besides, as Sthice has it,

Vitar est avidus quisquis, non vult
Mundo secum percunte mori-
N.B.-Tho foregoing papers having been read befor the Society thirty years since, were then deposited br their Aathor in thoir Archiren, and not pabliehed
being aensible that be might have adrentured cripidam; aud apprehensive least by some ungaerdas Expression he might incur the Censure of the Sacred Order. ["Sacred" with a great S, observe, y printed, but at the Deaire of a late Committee of it.

Society, Who were pleaned to think them not nnworthy Mr. William Whiston's book, ontituled, 'A Now yoery of the Earth,' was not pablished hil aboat a year after the date hereof, and was not prose
before Jane $24 t \mathrm{th}, 1696$, to the Rogal Society."

Of coarse, the possibility now of any such "choc" as the father of cometic science bere imagined remains
jast as certain as when he wrote. No discovery has jatt as cartain as when he wrote. No discovery has
atered the possibility that any one of the comets of intinity (more numerons, as Kepler said, than fishes in the sea, and more varions in quality) may have planeWhiston thought of. The only modification on their reasoning broaght aboat by the modern discovery that the masses of this centary's comets have beon inappreciable, that is to say, none has yet been appreci-
able-two (and only two) baving been observed in positions where any mase orcr a trillion tons or thereaere not denser than air, and hence, not improbably, the majority may contain no matter more dense than
 dinco a comet might (if resembling most of the present centary's) be wholly raporons, and therefore fall with of. I shonld not say, however, the only modidcation, because thero have come, besides this; (1 (1t), the well. sbandant of all rapours, ostablishing, for every tyro, the cortainty that a comet composed of this, the only matorial that can possibly, as Goology ehow, have fallen in bistoric times on suoh a scale, must occasion exacty
the kind of dilavial rain (or "cataracts of heaven ") that Geneasis describes; and (2ndly) the geological eertainty of the mere filmy flotation of the terrestrial akin, on the molten styss within, sensitive the the cartain to be remoulded by such equable additional load, and sot moving toward a fresh equilibriam, makes the catastrophe consist; ; the same day all the fountaing "of the great abysn,"-(epithot nowhere else
foand, observe, and term nowhere applied to the sea) -boing "broken up." For this latter certainty, I
 and to the horricane lists ehowing that there are districts, as the Windward and the Virgin Islands, Where the barometer has necer sunk 2 inches below its
normal height (which it has scores of times since their discorery) withoat an instant platonic distarbance The St. Thomas caese is merely the latest of some hundred on record. There is a third modern principle, or circumstanco indeed, I might name as having similar ro-
 tion-in all matters, withoat some such interruption. rean't do. You see his last renark, about an occasional catastrophe being "not unneceBsary for the well-being of the fature World." is become pretty considerably clearer and less dispatable. Darwinism would not Fare peopled a world has now with Noachides. Natarn seleotion would have abolished Noah's family,
or any sach sort. Instesd of any of na, the earth of
ehese present ages, if retaining any hnman kind alt theee present ages, it retaining any hnman kind at all,
would have contained only the breed of the Acphilim (Gen. vi. 4), on the improbable sapposition that they had not long ago devoured each other, and loft it to the lows violont mammoths and cave-bears. And so, again, What manner of planet, think yon, would natural by the next comet that is on ita was, make of this in another centary, or two, or Ave? A globe worthy of,

MR PROCTOR $\triangle N D$ NOAH'S COMET.
[4355.]-Mr. Proctor's demands (letter 4313, page mast frat beg Hatly to repadiate any such "'duty" as he athempta, in italics, to fasten upon me. I have made no "case of religion persus the infidel, have
never naed the word "ingdel," have attacked nobody's never aned the word "ingidel," have attacked nobody's
religion;" and though "Sigins "complains, in letter altor lotter (p. 309, 326), that the subject, cannot be
touched without "ahocking many people's feelings," touohed without ahocking many people's reelings,
and being "charged with infidel athecks on the truth of Holy Scripture," I. the only writer whose columns he measures and grambles at, have not been yet
chargod with shocking or attacking any one's faith, and only wiah ans reader bo aggrieved, be he Caris. kian, Jow, SIalometan, Bhaddist "pare Deist," or
Bradlanghite, woald point out where I have offended his tonets, that I may make amends. My object has been eonanded entirely to matters of fect, physics and goology; and these, nocessarily invoiving reference they atrikingly agree with the indications of Natare,
the only onee I have quoted bappened to be the best the ony ones 1 have quoted happened to be the best shown of refer, if allowed to paraue the subject, to Hindoo and other logends very littlc known bere. But how on
earth was man to givers it would be such mortal offonce to hint a probubility that something yon go on solemnly tolling your God in your temples (at every
baptism of a child, for instance) may possibly be trae ? anptism of child, forinstance) may possibly be true?
Ang mhere olse, I believe, offence would be gireu by
just the contrary suagetion, to Lold their God soumething false instead of something truet And then, what can the reality or nameality of "F. R.A.S.," Who called np the subject by his chat-
his dread of any infuence from the "semi-barbarous Hebrews," he would actnally seem to fear that if a man only admitted they had preserved as a single to swallow Heaven knows what mystical dogmas-the ten commandments, perhapa, or Trinity, or Papal - F. R A A the very least t Why, rave the mark, event in an old history involvo accepting the religion or ethics of its writers? May not the Hebrows' Flood atory, if Natare happes to confirm it, be granted to be troe, and their theology and commandmente be robbish for anything bat rabbish? Keeping, as I have, to a physical matter alone, apart from all men's it is no amair of mine what notions are started or whose religion the facts of Natare adduced may square or not square with. Especially am I discharged from any such imaginary "duty" as Mr. Proctor italiciees, when the editor has stopped the sabject (P . 842), having obliged himself to do so by breaking his own rale bysemal fountains as that of "Vertamnas "(let. 4291), of more theosophic wrangle, worthy of Milton's Pandemoninu. Mapters of fact, it seems, are to bo decided by what "God'a wisdom in adapting menna to an end" will allow, or "not allow""1 Vertamnas" to sappose ! Probably it would not "allow, ns to suppose" a san momently twelve million times the natmost heat and light that the wholo ssatem can receive. So Mr. Proctor had better look to his astronomy, or rather, all carrent astronomy mast give way to Hampden's, if And after dimensions for the san be not exorbitanh all these Cbristians are eagorly sssaring as, any words thereof may mean anything whatever? Thas, according to "Vertumnas," the compaand, "Make thee an
arly of squared timber cubits wide, and 30 oobits high. . . . and pitch it
within and withont," \&c., may have meant, nay must have meant (or God was not so wise as "Vertnmnus"), "Go and migrate with thy family and cattle to the district of Auvergne in Ganl, till the flood is over race." If texts are thas adjastable to any meaning, what theories or discoveries can possibly hart your mean the very thiug the "infldel" is anying; or that the theory requires; or the thing discovered in Natare: or might even, in some cases, bear, as I
to suggest, the grammatical meaniug
As for the comet'd "elements," then, I will give Mr. Proctor the most probable, so far as data aeom to T = J 8102 B.C.).
$=58$.
 $i=$ very fow degrees. 1.0.

$q=0.68$ to 0.7 $e=0$.

$a=3.1$ to 8.3 , motion direct.

At the fatal day the sun was ontoring or appromehing Aquarias (thenceforth so figared), the moon Virgo, and bat growing in size for Was tailed, snd fishlike in form, and the spectators estimated the length of tail (altimately) acojrding to the only acconnt I know of, at a million Hindoo leagnes. They, Our fathere, regarded it as an appearance or thong never seen again after these seven nights, nor bettor represeuted to them than by their figore of Capricurn, bound their ressel to his mighty horn, grided and protected it through the dark and raging Delage. between a handredth of a trillion and hals a trillion tons. What rolume, and therefore diameter of globo, this might at any moment occupy as ateam, scoording to the tomperatare, its variony coats would acquire in onr sunshine, may some day be calcalable, when Regoantt's or Ranking's measures of the laws of anght that appears, be as little as 100,000 milos in dismeter, or 400,000 , or even as large ns the comet's head of 1811, for though it would in that case fall parthy on the moon as well as the earth, the smal por-
tion taken by our antellite would doubtloes disappear into the pores of her cindery crust. In the firat of these three cases, the time occupied by the steam's falling, so as to be permanently sttached to as, would or four days and nights, ind in the ligst, perhaps ton, Bat whaterer the time theoretically needed for this mere graritational collapse, Mr. Proctor will bear in miud the actual fall took mach longer, for two reasons : -First, the drops or rain. Lalls entoring the air, asy
50 miles high, with a speed of between 80,000 and 35,000 feet per secoud (eccording to the comet' diameter), and haring to lose by friction in the upper atmosphere all bat a 300 th or 500 th purhapa of this
velocity, the heat thus ovolred re-evaporated most of their bulk, so as to lot them reach the groand or sea redaced both in weight aud velocity to something like the moderate size and impact of ordinary raindrops, as tradition statea (with all probability in ita farour) that "all the foantaine of the great abyse "-i.e., all such water as did reach the gronud condensed fell on incaudescent lava, to bo rioleatly reraporised aguin and again, readoring most of the lower atinosphere chaotio

Yor weeks longer, with thanderous downpours (thongh over small the comet, and fer the houra required for theoretical collapse, the stormfall, necessarily prolonged by these carsen, might well last aix weuks, and, inceed, mast in any case till the enbsiding of general oraption, or the flery "fountains of the great hhyss" becounts, the setion of fire is as prominent as that of water). And note that the exnct number of days these etorma might endare, persons to be agved in an ark would need to be pre-informed of, though of nothing olse. There was no need for their knowing how long they should be atoat, nor how long imprifrom the moment 40 days they must be tola. Fior as, darkn ess (a fact preserved in Hindoo accounts, though not in the Bible) their hatch-door alammed down, and ract for m hat them in, "it was one nuchanging catan to chaos and primeval night, what could be done or thooght of, or how suicidal despair be averted, bat by an oracle haring limited the very nomber of daya that were to include all tha violence their drifting vessol would meet, and the ecry llay they were to expect a normal state of calm and sun re-established? And nuch seems to have been the impreasion mede by that joyful and exact falplment, that I believe we shall tho duys reckoned of the Persian King Yesdegird, 16th Jane, A.D. 632. (Halea's "Chronology," I. 197. The gears are Naboang-

But now, can Mr. Proctor fairly infer that the day Noah is eaid to have left the Ark (which he erra in anniversary) this day marked in any special way the retarn of bes and earth "to their normal condition"? What does he mean by "normal condition," or a "return" to What precise quantities of land and water? What wore the antedilavian quantities? Where are they stated? All I find stated is that Armenia had The ract adjoining for eight persons an (se Ir cild 230) mast have continued a sea for yet some centurios; and so the establishment of the present conditions was gradual. Bat a normal condition, so far as to be prodactive and suataining animal lite, nech a condition and many landa) to (and, for aught wo before the 40 days' storms were over. I say it implies this, becanae how eleo could thoee beasts live Whom a Dirin how could Noah or his sons know of their existence ?) in Gen. ix. 10 ? This difforence between oracles and mere atatements of the writer (which are only sacred with little " 8 ") none of the critics seem to note at all. Thus it is quite true, as remarked by
"E. L. B." p. 827, that Shem twice mentions in his journal, phe "breaking np" or earthquake and ernptions along with, and even before, the "cataracts rather the unexpected phenomonon impressing him the mont of the two. But does "E. L. B." consider God or Bhem the more lizoly to have given philosophifind the alleged oracles naming his "No. 1, the fountains of the deep ?" Nowhere! The only thing predicted is the rain ! Again, who said that all the high hills under the whole sky were covered, and by 15 living, the dranght of the rrix; and 1 cho that overy the earth ? There may have been (without falsifying an olive summits never submerged; bat cortainly no either 8 or 11 months afterwards ! "E. I. B." find, without a Delage, te hang on does from November, and be worth a dove's plucking next antumn?
Of course, the fall of steam ovolved muoh heat (which, please to observe, was not first considered by that prolonged the time of its fall, spread over far more time yet, and oven prevented in great measare the penetration of this heat down to tho sea-level. It was the upper strata of air that were warmed, and expanded far above their normal height, and whatever cond did not radiate into apace would be very alowly with the physical side of what is desoribed es God cansing " a wind to pass over the earth," though this breath or apirit is plainly more a spiritaal than physical statement, like the parallel in Gen. i. At all events there remained even after radiation of much heat, and melting of all the ice-which was more abundant than
 The five months that our fathers were afloat were what would normally hare been the coldeat in this hemisphere; and the seren following hot ones they were imprisoned aground and being hoisted abore the Almights Savionr, who had appeared as the Shining Fish, now made himself a rooting Roar, to ppheare the land and all its burilen ont of water, on the point of one of his mighty tusks (i.e., the Great and Little Ararat). The waters, saye the Hebrow, "were going and returning till the centh month"一i.c., the land up Japhetic brethphaving, churned the ses with a mountain, down whose sides the streams of lifo afterwards flowed.
Whon tive lanations had elapsed from the cata perihelion, were long ones, and only five new moon

Viasble in ' 150 days, then the ark which had been cansed, like Mragalhaen's vessol at the first crossing of the Paciac to drift clear of all sight of lands, and to a late rising region, suddenly grounded on the reokon 17 ch of Abib or Nisan. That is tho firat day their records daled, observe for anything good, the 17ith of Nisan. When no land had been seen for 40 fnll dayn, on the 41 st Noah sent forth the raven and dove. He would not hare needed any such experimente 40 dags after other laud, Little Ararat, was
risible, as Professor Birk imagines. The atory plainly here reverts to 40 dajs from the gronnding. The dove returning the same evening (which it roold pot if other bills were omerged only ten miles off) was kept seven complete days, and sent and bronght the olive-lea? the 19th day, as we shonld call it (bat Jews the 50th), from the groanding-i.e., from the 17th of Nisan. No land was visible then, nor became so to Noah, not even Little Ararat, till the 1st of his tenth month-i.e., the now moon of our Jaly or August. He then began to nnroof the ark and first saw how much was dry aroand him, becanse, till then, from his lantern or clearstory (mistranglated "window," a sense the word nowbere bears), he conld only see the distance, no foreground. it being hidden by the ark's projection. His birth.month, Tiari, passed; and the next came, and the apparent (Omar) anniversary of the Deluge, and still he liad to wait for a vision. At length, ten days later, came the command (revenling, periaps, the true solar langth of vear, for he may not have been astrouomical or one of the antedilavian learned), and on the 885th day be rent forth and bailt his altar, Which, like the ark itself (Argo), and the divine horned sea-monater (Capricorn), and the divive Bow of promise (that only we vesterns havo enlarged into Sagittarias), and other us to figare in the etars.
E. L. G.

THE HEAT GENERATED BY METEORS.

[4855.]-THE obsorvations of Profemor Le Conte, of the University of California, on the hoat gonerated by mo intrio ctoaes ia uraversing to monenere, may be interest to many of your reaciens, 1 now of arocen is is is is woil known, eays Proingiter Duabrie, and others, actablish the fact that meteorio plones entor oure atmosphere with veloaltios which ave truly planetary. For oxnmple, the moteorite of Orgveil moved with a velocity of at heart 18 so miles por secoud, in in anar case been lose then from 15 to so, er even 40 miles por becan iots the enormong recistance encountered por such bodies in traversing the air apeodily oxtingaishes thin high velocity, so that they retein bat a comparasively modernte valoaity on reeahing the surfece of the antin

Aocorlting to the "dypamion theory of hent," this lous of emergy is repleoed by a corregponding augmenmponet of this increase is given by Professor Le Cont in mathematioul langarge. To obtain a correct oati In mit it is nomi the metoor when entaring the atmosphere and aleo wher it has approeched near to the earth's surfoce, as Whell es the epeaific heat of the etone in relation to An eatimetip suffeiontly near for moat purpoges is obtaioed by Prosecsor Le Conte, by taking poser is obot ontering the earth's etmoephere at aboat 30 tilo on enterivg tas earth's almosphere at aboat 30 kilomolocity of the earth. This he ansqumes as reduced to 500 metres per second when near the earth's surfece and the apecitio heat is "cortainly not ander eatimated" by patitog it equal to $0-22$. On these menamptions the Proleseor firde that the increace of temporatiare Of course says contigrado degrees.

Of course, says Professor Le Conte, by far the larger portion of the heat generated by the loss of onergy of boe moving trajectory bat meanming that only the hondrede Hart of it is rotained by the that only the handredes fart or it 1 and detonelion whioh frequently acoompany the tranait of aneh bodios through our atmosphere.
In the case of small maenes, it is alear that their hish valookies wanld be more repidly extingaished by the reciatance of the air than is the case with largo enargy into boat being eocomplished in a shorter timo greatar amount of the evolied hoat would be retained by the ctone than in the lerge mane whose velocity is bore gradaelly oheaked by the renisting medinm. Hoace, when the smaller mastes plange into the spper etmonphere, the matter may be rolethiled or atterly dineipated by the intencity of the suddenlyovolved heut. In thir minutoly-dirided condition the aphore, and allimatoly reech thie surface of the earth in aphore, and aikimaliky react
It is woll known that the obsorvations of Bonzerborg, Quoctelet, Herrick, Nowton, and others, nesign to the co-chial "falling atars" volootios equal to, if not ing to the foregoing suggection, thees may bo nothing acee iman amall moteorio stomes which are volatilited in ing tippar rearince of the carth. Thus, the phenomenno of the ocomeional fall of metooric atones and tho slmot focesant appoarance of the falling stars whioh nightly priseipie of tranalormation of energs. At all erente pringiple of trana ormation of energy. At all evente athoming the fall of anch bodien moom to be folly
acconnted for by the enormona amount of heat thas generatad by their passage through the atmosphere. G. J. H.

EXISTING EVIDENCE OF THE DELUGE.

[4856.]-IT seems to be forgotten by some of "our" correspondents that tha idea of the Deluge is no "pot" or "fancy" of "E. L. G." or any one aise,
matter of ancient history and world-wide tradition, supported, moroover, by mach existing evidence. santalinus " undertonk (letter 4340, p. 277) "to call e ev facter ritterly subrersive of E. L. G.B fancies -that is, be it observed, subversive of all history written and nnwritten; but these facts on examianhion rarn ont to be mainly questions, capable of being asily anamered, as they deserve, by other questions. Now, as to existing evidences of the Delage. It appears rom the tertimonies adaused by Lyell and others, and till more plainly from the reports of cave explorations in Er glan 1, that there was a race of men roughly caloalated as oxisting from aboat 7,000 to abont 5,000 jears ago, saryge9, as wo wruld call them, some of them probably canoibals (the earth was hlied with violence ays the ancient record), living partly at least in cavob, atraggling for existence with wild beasts, bat getting the better of these by aid of gtone and bone weapons, which race of ruen about b,000 years ago became xtinct, so as to siow no trace of consection belweon
 historic times. Their bones, their instrumenta, and al memorials of them perished from view, baried severa eet deep under the debris accamalad over them by the action of rain, frost, and air; many centaries passed by, in Britain as much as 3,000 yeara, before nother race of men of superior civilisation came and ived in the same caves, all anconscions of their prede cessors buried beneath them. This is the tale plainly Lold by the caves of Settle, in Yorkshire, of which av cooonnt is given on p. 823. The excavations in Kont's Cavern, in the Rhone valley, and elserbero, lead to the same conclacion; they ghow the extinotion of a raoe of aarage men abont 5,000 years ago, and the lapse of meny centaries abliterating all traces of them before a now race prior to Earopean history, bat merging into it, arrived to people the same regions. And Lyell's evidances, apart from mere conjectares, soem to prove for these primitive mon an antiquity of no more than botween 7,000 and 8,000 years. All this agreas with the chronology of Moses rightly understood. I sas rightly anderatood, for it is too generally forgntten or
anknown that tho cbronology of the existiug Hobrew anknown that tho chronology of the existiug Hobrew
scriptares, which our English veraion follows, difers scriptares, which our English veraion follows, differ very maob from that of the oldest existing tranalation I mean the Septasgint or Greek version, made aboa 300 years before the Christian era, which exhibits wha the original Hebrem sariptures wore at that dato. Josephas also, in tha first centary of our era, recog nisea na the correct Biblical caronology, the only one known to him, tath of the septuagiot. Accordiag to it, the olde日t, and in all inkelizood the corrcor veriion, made belore the hebrew toxt was tamppren with, to date of the oreation of man is given at about 7,400 years, and that of the Delage aboat 5,000 years from the present time.
This, Mr. Editor, I have endearoured to net before your readers as no theological question such as shoold have no place in a jonrnal of science, but as a simplo matter of acience, of ancient history and modorn observation, the one coufirming the other in all essen
tial respecta.

THE SEMI-BARBAROUS HEBREWS.'

[4357.]-" F.R.A.B." has fallon into an error in stating that wo have our acoount of the Deluge
from " semi-barbaroas Hebrews." The history confrom "semi-barberoas Hebrowi." The history con-
taining that mocount was written by Moses, who, according to the narrative, which is conarmed by much acoorang to the narrative, which is conarmed by mach
internal evidence in his writinga, was, thoagh of Hebrew origin, an Egyptian prinoe by education, Hebrew origin, an Egyptian prinoe by education,
learned in all the wisdom of the Egyptians, and learned in all the wigdom of the Egyptians, and
mighty in words and in deods. He whs ratty anperior to the mass of the IIbbrow pooplo, whone leader and to the mases of the Hebrow people, whone leader and
lawgiver be became, bat who never quite underatood him or heartily submiktod to his teaching.
Whether the Hebrews themeencis can.
syled sami-barbarous is donbtiol, if to be proporly tyled somi-barbarous is doubtial, if wo oompars them With tho other nations of their time. Born in Mosopotamia, nursed in sonthern Syria, oducaled in ggypt, inally souliled between and in contigaity to Egypt, Assyria, and Phosnicis, partaking of the civilitaion and science of all three, and superior to all in drantages at least equal to the most arivanoed natione of that age. It is also to be observad that the Hobre or that ake. Nis aiso to be obsorved that the Hobrew. they were corroborated in their aocounts of the early history of mankind, as Josephus frequently reminds his readers, by the moat ancient hirtorian of other nations, as Egypt, Phosaicia, Assyria, end Greeoe, whose nations, as Egypt, Phosaicia, Asayt
Pritinge then oxtant are now inst. p. 277) means only to talls nonsente in jest when hh ppeaks of "Shem learing his untouched journal to peatiat monrate Hebrow scribe Samuel, the first of bis race." There ta no record or evidence that Shem lef an untozehed journal, whatover that muy
samuel was in no respect the first of his race.
Alphabetical writiag does not appear to have beet known to mankind till about 1500 B.C. that is the he seems to ignore the existence of Moses, what reason has he to believe in the existence of Samuel, or of any one deo in particular ? J. M. G. Beooswood.

SUNDRIES.

[4858.]-Alas: for all the old superstitiona, the nymphs and dryads no lougor hant the foantain and tho wood; their progeny, the fairies, have rantached rom the giens; the pale ghost never now retabel erm , or polata withe apot at wiloch it
 sortal to shetter another old logeva. "H. G. W." (query 18106) wents to know why a bhilting sespended rom a threed, and hang within a tumbler, stertices the hour. I will toll him.
Hang any moderately light weight in thin wey, and, axing your ejes avd attention npen it, uriek it to do nything poasibio (to aviog, for incaus. in awe are tion, meshy or strongly), it will do so ; denire it to stop and to ewing in another direction, or in a oirola, i rill inotently do so ; patit inaide a tumbler and wiah it to strite tbe time, apain it will obey, provided you kiow the thme yowrelf; or if you prefor, it will ring a funereal knell. Now pleco your hand againat some fixed anbtance and try to repeat these experiments; thic time you will fail. The whole myatery lies in the fect tha when you wosh or axpeot any motion, you anoomacioand produce that motion-instoad of ixing attontion an he object, fix it on your band and gard raningt it moving, and you may hold your alilling till you wan your supper before it will toll you the time.
Will Mr. Rodwall (let. 4818, p. 888), who has sotaelly sen the spot dit argoston where the sen whtar fiow into a oavara, car his memory as $c o$ af low botween an he say (acourahly) the the sorfeos of the wetar o
 he well or al intormittonl, and what is at that spot the notaal rise of Lde (I know it is mall), and Whether bonta oan approzoh the axact spot at all timos, or are stoppod by whether there is anything lite a rece or atroag ourreat between that and nelghboaring islands?

Does not Mr. Petrio (lat. 4845, p. 894; soe thet the quislisms he quotes from Hambolit are pare ou? opparent finots and the common moles of speect, the they therefore are of exactly the came matare at the soriptaral atatements reforred to, and are in aco armat scientilic decortptions of facta. Mr. Procter, in the colloqtialiam when he apeake of the "saris varying diarnal cource.
 what has this to do with motter, or how does th faot that modern coientitio men drop into concionl recoived expresaions (koowing tham to bo incorrect shom that ancient aimilar axpressions are to be tatren as aneaning and giving actaci facts literely

Broma.

CORK LOOK

[4859.]-I xotiovid in leat weok'in a look cork. It nall that me of the way in which the Aumericano sactem all thoir pop and ginger-boor corkn, and vhich, in ay
 wire hinged in a loop B at each ile mader the neck of the bothlo, and $100 p$ hoing formad of small wire having wo ac cacier and mafor to open, ani maves efring and time to the mannfinoturer of thow

" gIGMA" AS A " BEARCHER AFTER TRUTH."

[4880.]-TaE Edryor, blawing zae, at page 851, for the mildness, as appliod to tgigman" goologioal reamorings, deciaros his belief that "sigma" is "an carnest and sincere searchor alter trath," a position chat ido Errac" has inaarred " gigme'g" wrath by doing mo as appears from the lattor's arat paragraph lotior 4312, p. 926). I havo two rencons, then. for ceeaning is a daty to join "Derf Errac" in raising this quetionfirat, because it does porsonally concorn all readers of "Sigma' B " lotters to come to some docision vhether "Derl Errec" or the Editor has had the bettar rewoon for thoir entimates; and recondily, because it eeposs I mast be ratod at "4 striking out from the ahouldar," Whether doing so or not, and may, therefore, as ren deserve the rating. The folloming are grounde, 1 rob mit, for malntaining that "Sigma's" chiof objeot in
this Deluge mattor has not boen mearohing "for feeth," and Ing cqually has not bora prome this of other coc. and I ans equally propared "o provot his of or orer coos responconts than overthrow, anybow, by sonad or onsonnil meane as ther mey, come to hand of ecenmed miechispoas error, namely, the error (as he holde) that the Hebeer arror, namely, the orror (as or trust morthe Hebew cark roor aron the trat revered ragged in relerencen to thees most reverod the mim praise a prase, these wres not the sughtest call for shem. I have writton here wh the colume he hes been et the paine oc measure " about geologs. ithont naming or reforring neasure sbout geology, wiviout asmiag or referrita "Blgme" writien withont? 8afely, whether I enot toxte or not, my pi imary and chief anbjeot han been phy
the book that tre at loeet wice ondeavours to imprese on his reoders (lettors 4198, 4813, pp. 252, 826) tells of
the world being made and stocked in a oiril week of the world being made and stocked in osirl week oi
theno, and of the sun and moon standing still to ensble the Israelitas to complote a alaughter that the previous versen (11) say was never comploted by them, bat by hail. The Bible in dragged in ce grataitously, and these two supposed points thereof singled out to bo harped apon exactiy an by Voltaire or Bradlaugh. Now With all deforenoe to the Editor, 1 munt hatly dony khat would (oven if the Bible were the dirset sabjeot of discausion) eingle out these two popalar, or rather grandmothers', errors aboat it, and thrust them forth misets. A"sincere" thruth neoker in these days would at least know that the Hebrom pentatouchiat nevor dresmed of a creation in sis haman dayy, and was nevor sapposed by edncatod ancionts to havo in Christendom, or mo Berosis and the oldeat extant Gentiles infuenced by the Hebrew cosmogany. Noither aro Pesims xo., civ., or many Biblical passages conaistent with it.) Nor ignorrant enough, or oount on moh ignorance in others, as to quote the sun and moon "atanding still " as a thing any where mentionod in possibly gepaine Seriptare. Joshan's miracle (for it war a miracle, as much as if Mra. Grppy oame through the ceilling) consiatod in ailozoing ror hed nnamares bound themeolvos not to destroy by violence (ix. 19), like the other worships of the oonntry, by ealling on God, and eaytige to their
 Torde, ae preservod in Hobrow, havo not a arllable of hearem. and or the following rerics (18, 14) of auperstito ans legend oontrudiotory to an the rent of the thory are from no sacrod book, an thoir inserter tolle you, bat from that of Jeahar, a mere loat novel of Darid's time (2 Sam. i. 18).

1 chavienge any one to maintain ghat a sincere would thus nso long," or any matter na a chies end, valgarly current; and I nndertake to domolish, thoagh not $e 0$ readily, what Mr. Prootor says "is cortain " of, at loact one or two of the anthors he names in p. 327 ., last paragraph but one. And I beg the Editor to insert this with name or initiale an he ploseos, if writing anonymoresy is what ho means by striking out, but
E. . ${ }^{\text {B }}$. ${ }^{\text {note. }}$
[As stated last weok, this armoot fraillese controvoray mant torminato thio weok.-ED.]

SPRNALIG TOP-UPWARD DEFLEOTION OF BULEET.
[4301.] - A Blariteten" (4808) and "Vie" (4906) hare nppot my top, or rather my theorr. Many thanks to them ; let the truth provail, and error come to nought. Oace doavinced that a top ean masintain its
position in vacuo, I can fool no diffoclty in under. atanding that the daration of the rotary force will be greatly prolonged. Parther experiments in vecuo may possibly throw more light on the sabject. Thero in, howerer, no parallolisem betweon my case and that of
the philosophory whom "A Barrister" doesribes as "wheting their time and enery" in endeavonring to ccovenil for a fact before they had aseertained it to be one. The faet that I have endenroured to aocount for is one well ascertained-riz., that a top, in spinning, is supported againat the sotion of gravitation by some
forco on yot unsmatisfactorlly explained. I did not acsome that a top woald not apin in racuo, anless the conflemece I exprosed in the result of the attempt to make it do so, in farour of my theory, be so interproted.
I dedaced a theory from other groands to scoonnt for I dedaced a theory from other grounds to scoonnt for a known fact, and asked for an experiment in vacuo as repensed experiments, that the apward deflection of tho ballot whe an escertained fuct.
I emenot, however, set my experieace agutnst that of 3 (r. Whilworth, and it needs not, therefore that I should anawer "A.'s" inquiry (let. 4905) on this point, or pases over, lest diseandion shonld ink into disagrice. ment. I will only eay that atmospheric reaistance to motion to rery formiakble, sufficiently so to produco effoote which may eeaily escapo observation, as well as those which obtrude thempelves on our senses most conapmaoasly. The idder must experienoe this resiat. a degree proportionato to the velocity of the motion and area of sarface offered to its action. There is, therefore, snfficient primd facie reason for taking atmespheric prossure into ocosideration, when cortain phenomena arise, daring the metion of, bodies, whinh,
as "A Barrister" justly remirks in the case of the top, "ne explanations yet attempted have sccounted for." The epinning top showe a remarkable power to the orereoming of grartation. The sohoolboy's hoop
remaine apright, and can rigbt itrolf when in motion, but falls en it oomen to the stato of rent. The bicyclerider ocouples an position which is stable in proportion to the velocity of his motion. We are all dark enongb, as to the carse, in the face of these facts, and may scoms likely, by analogy, to lead to a discovery of the canae or canses. The shimming of a stone along the surface of water, while in motion, and its sinting apon phenomenon, and, being manifoctly due to tuid sapport arcited hr projootile foree, suggeata the ides of atmo-
"A.," of Liverpool, has brought his theory of the support of the top to a cracial test when he illastrates it by the cord and weight. Wo are thas sble to deal with the prineiple in a simple form, and can follow it to its conclanion. Whirlod round in a vertioal line and let go either at the higheat or lowest point of the cirele,
"it
gill not then " he says, "fall to the ground." Iot "it will not then," he says, "fall to the ground." Let go at either of these points, it starts parallol with the groand, and (throwing ont atmospheric resistance) it will reach the groand in the esme time, though not io the same place, as if it dropped irom his hand. ponaibly imagine that it will remain ha formed by a langent to his circle of gyration, antil it has expondod is force? Suroly none will hold with him in such a thought. Δ stone from a sling in dismissed by centriIagal force, and in jast as mach subject to gravitation from the moment of its diemissal as if shot from a gun. The line of direction is simply a resallant betw
direotion of projection and that of gravitation.
J. M. Tarloh.

Seer Green Vicarage, near Beaconufield.

[4362.]-I Wise that "A Barrister" (let. 4308, p. 808), who rarely misees hitting the nail on the head, woald show how the ordinary explanation why a
apinaing top does not fall ia not astisfactory. A top at spinaing top does not fall is not aatisfactory. At top at
rent asnnot be balanced on its pes, because it is so rent cannot be balanced on its peg, because it is so
diffloult to place the centre of gravity exactly above a diffloalt to place the centre of pravity exactly above a
mere point of support, so that it is almost sare to fall mere point of support, so that it is almost saro to soon. If, however, the top is spinning, it has not time to fall in a perceptible degree down towards its heavier side-nay the north-before, by the revolation, the hearier side is to the soath, and so of any other direotion. For the like reason, though, I cannot balancea shilling at rost on the point of a pin, I can do so easily if I make it spin quickls enoogh to make its centro of grarity chenge from ono side of the point of support to the other faster than it can fall. As the velocity of rovolation diminishes, the top or the shilling begins to wobble; before it quite atops spinning, it slips ofl ita anpport on to its edge, and rolls awsy along the floor. Thas, alao, though I oannot balance a otick on my inger without constantly moving my hand so as to keep the point of support directly beneath the weight. I can make a circular dise spin on the top of the stiol so an to leep the centre of gravity always above the point of support by vers alight changes of that point. Of course, the weight of the top or of the mhluing, or of the rovolving diso, is just the same, whether at rest or in motion, only, when in rapid motion there is not time for a perceptible fall in any direction beliove there is a tendancy to fall in an opposite Hreminti, and so the revoling body, not boing ablo to dewlin in which way to fall, doee not fall at all, jant Hike the fimous donkey that mes starred to deadi betwoon two diacks of hay, that maractod him so meetly egmethy that he
 oreditle as that the Roval or any other harrac sooiety
ever dobbled that to adid a fah to a tab of walor without ever donbled that to add a fah to a fub of walor without making the rever ren aver woald. inoresen ite woighi. illontration of pistol ahootiog, wither so powitiotely condrms my explamation at p. 204, of the read teason Why masket bellets frequeathy rice in their 00 Prise.

MR. PROCTOR ON GPINNING TOPS AND GYROSCOPES.
[4363.]-T As sarprised at Mr. Proctor's lettor (4310, p. 396). He says, not in precise language, bnt by implication. that the problem has boen solved, and then prooeeds to attempt a popalar explanation. His attempted explanation contains ideas so similiar to "A. 's," criticised by me in a letter sent you on the 11th, but not in your issue for $14 t \mathrm{th}$ Jane-that I foel bound to demar to it an tending to encoarage and propagate "A.' 1 " errors. It is not correct to say "the *eight of the top is insumpiont to ohange the direction of the particle's motion in a briol interval," however rapid the rotatory motion may bo. I say the weight of alw rop is always sufficient to ohange, and is in reality motions. In the the directions of the particlo's speaks of a particle which should at one moment move downwards and at the next upwards ; bat if we are considering the action on a singls particle and assame that gravity actaally does make it move somewhat downwards at a time when it would otherwise move horizontally, we cannot assume that gravity is suapended the next moment, and if withont gravity the partiole wonld then move somewhat upwards, with it it wonld at lesst move lens upwards. In fact, the downward effect would accumalate until the particle renched the gronnd. Mr. Proctor may, in the sentence bo eppanking of a top with its axis nearly vertioal;
bat if that is so it cught to have been stated berides, an explanation is not worth mach nuleas it ap plies to the case when the top's a aris is already suff. ciently inclined for all its particles to be to one side of the vertical line passing through its point of support. I am incliued to thick some points have yet to be elucidated in connection with this gyroscope qnestion attempting something in that direction, wonld ask Mr . Proctor to kindly iaform me, briedy, what is at present the explanation accepted by mathematical astronomers of the action known as natntion, which is have not access to recent astronomical works, aud shall foel mach obligod if Mr. Proctor will give the informa$\underset{G}{\text { Gion. }}$

Glaggot, 15th Jane.

GPINNING TOP.-PERSPEOTIVE.

[4884.]-IT is a great pity "A." (letter 4805, page tare and save you the troable. To says a veiphis will not, in certain circumstances he sapposen, fall to the groand "as long as the velocity is mainterned ${ }^{\text {! }}$ Really, he muat losrn again the rudimentio of meohat nical scienco. If the weight starts horizontally, and its relocity be maintained (say in coneequenct of its moring in a racaum), it will toneh the growand jant as soon as if it had been dropped rertioally, oven with it as described.
It is quite uasless any one attempting to explaint the sction of a spinning top who has such ortriordinary notions as "A.'s" of the ways in which the astruc. tion of gravitation can be nallitied or calaposed ol. The iden involved in his attompted explanntion was elaborately worked out in a paper read to the Glaggow Philosophical Society about afteon yours ago, and was afterwards completely exploded.
It roally would sare time and troubio if " A." and M. Paris wonld refer to tho former serios of letters in the in a plaze. Tho idean that partioles moriag (rotating ? gravitation, is quite mistake. The very gyration or oonioal motion of an inclined spinning top is an obvious continuous change of plane. Of course, if thd top is vertical, there is no change of plane, bat in that case geavity acts vertically throagh the point of sapport. in. Paris is quite in error in asying that a ptotare is to what it represents, and anch sito yield the same impression to the oyo, it must be mathomatiestly arranged.
E. \mathbf{H}.

THE KEGRO.

[4885.]-In the hope that a few remertice on the Nogro may stimulate ationtion and provoke remark 1 of naturs cosamanicstion. It seoms to me in the boos our black brother that have reea, that. I wish, then, that some of "our" learned correspondents who have read the latest intelligence will onabie ua to form a correct opinion of the origin of the Negro. Josephas gives no clue as to his progenitors, and, like most other writern, leaves us to suppose that, like Topsy, the Nogro arow'd, till it is found convenient to introluce him as a large nation with ralors and overything com. plote to morn the history. Now, from mbet have of humanity I am aware that the haman species, edmite of five varioties, bat the moat diatinot from the othor foarviz., the Cancanian, Modgolian, American, and Molayis the Nogro-the greatost diatinotion its bleek oolour and woolly hair; ite remaiaing peocliaritice may bo found more or loes eleswhore, nes narrow hoed, retroni, ing forehend, prominent oyea, elovaloased ehin, and orooked logi. It appears that the canuse of the Negro's bleck skis is a menabrane undor tho akin consieting of minute reseels charged with Anide of the deepeat haes. oanse than this, probably in the blood itwelf; analyais might determine this if some of our sarante would only do the agreeable. There in another distinet peculiarity, the Negro's offepring is as black as himealf, no mather where he emigrates, or usder what condition of society he is placed. Now, Josephus and other historians make no mention of a Negro being with Nonit in the art, yet they state sll mankind on the whole saricio to
earth were destroyed. I am, therefore, anable to earth were destroyod. I am, therefore,
an idea of the origin of the Negro. Some will have it (and this is a general opinion) that the extreme heat of the climate has acted on the surface of the skin and gradually rendered it darkor. Bat I And that the Cbinese are white, while the native of cindos. It is true that Indis is in some parts farther sonth than Ohina, bat Arabia is still closer to the Equator, and the Arabiana are anything but black. Does any one sappose that a colony of blacka, located for sny length of time in England, wonld erer bedome white ? Bat surely the learned world knows sufficient to be able to anemor the question
I should prosume that if the climate oharged the skin black in hot conatries that there would be no excaption to the rale, and that animals of all kinds would tarn black also. Mosbeys would be all black. Aro they? Better atill, the poor piga, who hare no ooverEnat India species poseves, not so the Ckinces, who are piobald. Allow me to preeent the white elephemt an a final proot that tropical olimates do not produco Neak aking.

BILSAMED OBJECT-GLABB.

[4366.]-I return many thance to "A Fellow of the Royal Axtronomical Socioty" (let. 4276, p. 800) in roply to my query abont balsamed glassea, bat it it not quite satisfactory. Ho states, as a ralo, oniy tares nomical aro balsamed, bat I have seen maky aed. I want to kan why balaam is ased. I have a triplet Barlow lens balsamed, why shonld it be so?
I have been oxperimenting with a 2 ini. object-glase of 48 in . foens, which I balsamed, and to $m y$ sarprise it redaced the foens to 86 in . focue
Are glasses balasmed to shorten the focus When thoy, or some practical optician will enlighton mo I shall be
or Bome practical optician will enlighton mo I shall bo
mach obliged.

ENTOMOLOGICAL.-(IV.)-PUPE.
[4867.]-PUPE may decidedly be considered un. intoresting things to watch compared with larver, for besides there being a great similarity betricen them very fow move oxcept to wrigglo. But it is very in. tereating to notice the different ways that pupm art
found, some being in an eartby cocoon, principally the found, some being in an eartby cocoon, prinoipally the
Noctuce and Geometre; many of these cocoons are Noctuce and Geometre; many of these cocoons are
bound together with silken fibres. Others, again, are bound together with silken fibren. Others, arain, are
found span up in leaven of their food plant A. caju found apan up in leavea of their good plant A. caju (tiger), Whilst othars make a hard cocoon inside the bart of thoir troe, as the puse
many, aleo, are quite anstencaed.
Tho best time for papme hanting is from the middle of August antil the ond of October, and at this geason of the year a great numbor of good papmare to be met with in all sorts of placos, though the best are open apots with few trees about and a soit soll ; clay oing very untavourable, and as far as situations are from the tops of trees to nearly a foot under the from the tops of trees to nearly a foot nader the ground. For the convenience of getting pupes ont of
the ground a three pronged band-fork is often nsed ; the ground a three pronged hand-iork is often nsed;
though some profer a flat trowel in preference. When thongh some profer aflat trowel in proference. Whon papme are found attached to anything, if posaible, a
part of it ought to be retained-as the cocoon should by no means be broken, or the moth will often be crippled-and pat in a bor with a gazze top out of the Thy of varmin. Sabterranean papme will require a
box alled with loamy earth, whith should be kopt box allod with loamy
damp, not wet, and cool.
It will often bo convenient to the collector to force pupe that are subterranean; this is best done by placing a framework covered with ganze into the box that contains them, freely dampink them, and placing them in front of a firo, with a piece of paper atteched
to the gauze to keap ofl the direct heat from the imago to the ganzo to ke
Pape aboald never be nept from one part of the country to another unlesa absolately necessary, as travelling does not agree with them, and will not add to their vitality. If papmare desired fur a collection the best plan is to gam the case together neatly aftor
ExTo.

NEWS FROM "EOS."

[4868.]-APTER a continuation of rea royages in four largosteamships and a amall asiling oraft (having quittod Calcatta on 15th Soplomber last), I find myself anngly moored in one of the inland monntain districts of this beanatiful land. Of course, your back nambers have only jast reached mo, after mach erratic circumlocation, and I have consequently been disabled from replying to various pressing quaries, which I mach regret; bat t traveller is necossarily ex officio, and subservient to
the winds and waves in his commanications. And now, in my own sylvan retreat, on a forest.clad slope of the flowery African Highlands (my third sojourn theroin), I am teaching the young idea to love birda, and beanta, and flowers: and having the axo, the saw, and the praning book often 14 out of the 84 houre in my fint, I am compelied to say that I have no time to do pen work; and for nearly 12 long months to come do expeot to see the "seagirt" Iale of Great Britain.
South Africa, April 29, 1872.
Eos.

MICROSCPPE CASTINGS.
[4369.]-A YRW of oar most enterpriaing opticians supply amatear mechanics with cantings of the various parts of model steam-engines, and thus afford them the rich and proftable treat of constructing mechaniom, yet althongh the editor has reviewed the catalogne of one of those opticians on page 270 , I fail to discover that any castings of microscopic stands are supplied, and I wonld suggeat to the noticp of Mr. Bateman and other tradesmen that if those parta were supplied at a
reasonablo price it would do mnoh to popalarise the reasonable price it woald do mnoh to popaiarise the microacope with those who can now only niford to
purchace those oheap shaky instrcmenta, which seldom fail to make the ownar disantistied with the stady of nature, and certainly nover allow him to stady unembarrased the minntive of hor attractions. I fancy the castinga for a Arst-class stand conld bo proitably sold for a gainea, and handreds of readers of the
Enause Mrounic have abandant ability to file, fit, and fenish them with necensary perfection.
E. B. Fexnegst

DR. PACKMAN'S STEAM-ENGINE.

[4870.]-PERMry me to reply to your able and coiontiac oorrespondent "Sanl Rymea" (let. 4802, p. feotly, withont noise or anything visible from the stoam. The speed is regalated by the farnace, which is controlled as eabily as the liame of a lamp. The stonm is condensed within one-seventh per hour of the wator required at starting, withoot wator or any meohanical means whatever. There is neither smoke, chimney, coala, nor wator.tank. It is not protected yet, as there are donbts athout the value of a patent, There the lawn are made to "keep back the people" yom progrosb, as those conoerning ros steam-
engines in England do at present. Bach noisr, cum. brous, frightfal, and dangerous things as "tractionengines " require restriction. But, why should engine: with silent and invisible machinery not have been oxempted? However, the same principles being applicable to all high preesure engines, the promised description may see the light of day in due time.
F. Pıckлax, m.d.

THE MYBORG BEE CABINET.
[4371.]-Ever since the a ppearance of letter 4187, on the 24th of last month, I bave been hoping to eee some notice of the interesting suggestions of our
Danish correspondent. The "Myborg Bee Cabinet," Danish correspondent. The "Myborg Bee Cabinet, as I will ventnre to name it, soems to promiae an
escape from some of the difficalties of the "Wood. escape from some of the difficalties of the "Wood.
bury," bat hefore constructing one I shonld like the bury. bat hefore constracting one I shonid like the
opinion of Mr. Abbott or some other experienced bee opinion of Mr. Abbott or some other experienced bee mastor, lest in aroiciog some known meonveniences we might be ronning into other and pribsibly worse
ones. Allow me, though a novice, to ask one or two ones. Allo
questions :

1. Sapposing the cabinet complete, and that a swarm has been obtained, how are the been to be introduced into their intended homes?
2. Would it not be an improvement to interpose blocks at intorvais cetween the two thicknesses of wood so as to have dead air spaces at the sides and front as well as at the back and bottom? (See letter 3162, No. 850.$)$
3. Might not the frames be made much longer so as to increase the space for the breeding celln? Mr. Abbott quds the ordinary Woodbary too amall. (See letter 3538, in No. 859.)
4. Bat the point which seems of most importance is the waste of heat which would take place in the winter in the apper half of the stnck compartment. (See the 8rd paragraph of letter 8162.) Can this be in ady way obviated?
It would be very satisfactory is Mr. Abbott could apara time to notice these or any other points in the Myborg lettor which may ocear to him. Would he also explain whe
down"?
When will our Danish friend give his promised description of his " honey tating machine"?
I hope an oditorial note will soon pat an extin suisher on the steam comet.
E. T. Grays.

AMATEUR ORGAN BUILDING.

[4372.]-In answer to "Dranghtsman" (letter 4882, p. 802), I believe many bave ventured incantionuly, withoot irat knowing or oontemplating what they
intended to build. It is not necessary to go to CCCC

for a room organ : an ordinary 8ft stopped pipe is sumaiently powerful for moderate use, which will
constitate the eame depth of note as a lift. open. If constitate the eame depth of note as a loft. open. If principle lat them not ascend higher than tenor C, principle
then they might have a $32 f t$. tone, while above tenor C, pipee being used, they can have every sweetness of plone. I will say more in a subsequent letter on new. shaped pipes, with the measurement appended of some shaped pipes, with the messurement appended of some
of them. I inclose a section of the nsual manner of laying out soundboards.

Joseph Williay Femxell.

THE HARP.

[4878.]-Wrus some one take up in our pages this neglooted instramont ? A few letters on its construction similar to thooe whio have appeared
organ, to., would be appreciatod by
G. H.

NORTH LONDON RAILWAY.-GOODS TRAINS

 and passenger trains.[4874.]-IT seeme a great pity that goods trains should be allowed to interfore with passenger traffic to the extent thoy do by being ran frequently in the day time. All pasengera who are in the habit of travelling
to the city by the North Western train due at Broad. to the city by the North Western train due at Broad.
atreet at 9.22 a.m., must, by this time, be thoroughly street at 9.22 a.m. must, by this time, be thoroughly
familiar with the following nuisance. Every morning, jami at the above expresi train to Broad-street is due at Camdea-road, a very long and vory slow goods train pasnes the station on the express line, and crawls along to Broad-atreet, rarely arriving there till 5 or 10 minatos after it is time for the express train to pot there. This has been so erer aince the express trains
commenced ranning, and it is often anything bat commenced running, and it is often anything bat
cheorfal or edifying to be in the carriage and hear the cheorfal or edifsing to be in the carriage and hear the
complaints of the pacsengeri as the train teepp stopping and whistling all the way. What a pity that a train so punctual ou the district line and other parts of the ronte, and belonging to the finest service of
trains in existence, sbould have every jonrney epoiled in a miserable goods train, which might easily bo ran $\begin{array}{ll}\text { earlior or latar. } & \text { a Disgested Pagseyoze. }\end{array}$

ON FiddLes.-To "Fiddler" and Mr. P. Davidsor.
[4375.]-"Frodlez" sajs: "You may bow a fidde string of given thickness nntil it shritks," quito trae. fore, it mast be impossible thour string shriok, there fore, t must be impossiblo that string cani move mare than one soundboard made of the samo-I presome the same kind oi-wood, is not, to the anscientiac writer of this, quito alferident. it may bo true for anything experiecce Cr, situogh, he has some experience in the employment of more than one soanisoardin, his firat fumpy fiddle, conceived in the depths of his conscioumess, existiag as yot only in imagination. "Fiddler" also says that the new iddle would "do." if it had bat one atring to each soundboard, which seems very probsble. What seems equally so is, thatif the set of strings which benerates each ind inal soind in the pianoforto had a aeparate sounaboard, "do" salmirably well. The question is, how are
also we, in practice, to provide each string, or set of strtags, with a suffient soandboard, nnless each atring or with a sufficient soandboard, nnless each etring or
stringe which generate sounds, whose pitches difter by only one semitone, be placed so far apart from each other as to become quite unmanaranble oither in a bow instrument-whose strings hare to be "stopped" by haman angers of ordinary length-or in one having
manual keys, for, anlees a whole octave of the intter bo manual teje, for, naless a whole octave of the latter b't
within the space of about 6 fin., haman hande can't perform on it
I advisedly wrote "a anfficient soundboard," bot I really on thow many sapericial inohes woald bo suffio cient. Probably, for the necesearily but short troble strings of a pianoforte fom superfacial inchos (cay
about sin. or loin.) would snfice, because mere inoreace of surface does not, in that part of its compans, seem of surface does not, in that part of its compais, seem
sensibly to increase the londness, howerar mech it sensibly to increase the loadness, howover meah it resalt the timbre, of its soanda. Loudnoss seems to resalt rather from the ample vibrations of a oompara-
tively small sarface than from the vory minute vibratioly of a large surface acting as s soundboard; and tions of a large surface acting as a soundboard; and very board it is far otherwise in the case of long, thick, and board (it is iar otherwise in the case of long, thick, ana
heary bass strings, heace we makea contra bana somewhat bigger than a kit), consequently, conla set of strings with a separste soandbord, we should goon arrive at the limit of loadness, unless, indeed, we to exachy what 1 have done in my first fanny idale. to mit, instead of one, aning many and oirectuany connecting them together; bat this is hardiy to be termea
connecting each string with one, for it is connecting it connecting each string
with many sound
monds.
If it were deaired to increase the power of atrings eo as to canse them to induce ribration of larger sonudboards, increasing their lengths (sapposing their ma torial will bear a greater tensic forco than that to which they aro now sabjectod) or thoir thiokness natarally sageet themoelvos as ho moana. Tho lormar has been done in the piano until their lengths have been about doublea, and their thichasaer more haren donbled. nay, it has boen increased irom four to eight fold. Want of tenacity, even in the very beat Roman strings, woud, Lowever, soon prevent as from mach iucreasing the length of violin strings. I notar had the grod fortane to get a frat string which did not break bofore ite pitch was raised to G above the linea-h.e., minor third, besides which, coald they bo made trice ce
long (say 28 in . instond of 18 ir.) it mast be remembered, that although the change might feoilitato "stopping" in the apper octave, it would canase the stops" to be almost as far apart as they now are on
the cello. Now, I think "Fiddlar", and all his brethrean the "cello. Now, 1 think "Fiddior", and all his brethrean
will admit that it is much easier to execato rapid will admit that $i t ~ i s ~ m u c h ~ o a s i e r ~ t o ~ e x e c n t o ~ r a p i l ~$
passages on a violin whose stringa are bat 18 in., or os passages on a violin whose strings are bat 18in., or on cello or doable bass ; anything to the contrary not withstanding Bottessini and Company may have " execated."
Increasing the thickness of fiddle stringe is not opea to the same ebjection-viz., rendering periormance more diffenit-2s greatly increacing their length is: and, to my teato, the timbre of the sounde of the A etring, raised to E, is much more pleasing than the
ordinary tone of the frst string ; but, besides the anordinary tone of the irst string; bat, besidos tho znpleaoant fact that A strings which will bear taning a remark, it is not everv one who prel. rs the timbre of a thick first atring. When, at my saggestion, the lete I evar heard-taned his A atring to E, he thought it I ever heard-taned his A Atring to E, he thought is sounded rather "tabby; ita tone was not so gathatha tory when the instrument was hold close to tho ear,
which it ordinarily is daring performance; and he thought the character of "tabbiness." Was set more developed when he plajed on his third string, the pitch of which was raised a afth to A, although he agreed with me the tone of the D striDg was improved by employiug thinner catgat, and loading it with rory thin wiro. Howover, well knowing that neither the organist
pianist, nor violinist are, while performing, beet pianist, nor violinist are, While porforming, beot
sitastod for listoning, I changed places aith my late friend, and let him hoar, to the beat of my bowing sbility, the diderance between the tone of the comparatively alack D and A strings at their original pitchea,
and thoir tone when tuned a fift sharper. Ho theen and thoir tone when tuned a fifth sharper. Ho them
acknowledged that the tone of those stringa, when theis acknowledged that the tone of those stringe, When theis
pitch was raised, "told" mach botter at the distance pitch was raised, "to
I presnme "Fiddler" will not deny that the thicker and tighter a string in, the more force-whether tha force be upplitd to it by way of peroassion, as it is in the piano, by palling, as in the harp, the late, the

the rosined bow, as those of a harp by the Angers of the
performer-will that string bear without shrieking, ptriormer- will that atring bear without shrieking ment; hence, we may hope long and thick stringe will communicates sofficient force to moderately largo soandboards to indace their vibrations at a mach farther distunce from that place on which the striage rest, or areattaohed to them. Consequently, we may reaconably onabled to employ larger single soundboaris in violins, and thereby obtain londer sounds without deterioration perhapa even with improvement, of their timbre.
I see "Fiddler" aloo anggeste that the breast of the because its bridge has two lega; poesibly so, but the reasoning seemeth rather of the order which deduced Good win Sande from the erection of Tenterden Steeple. If the iddle's breast onght to be made of two piecese of and all bis fellow fidde-constructore, glue those two pieces together, and thereby make them one piece of wood? 8arely, the two " poor feet " of its biped bridge woald "not and react" more perfectly it the two halves of the breast were diannited. When I read this rather odd notion, my original "sarage " nature was so ronsed, that I was strongly tompted to reoommond my friend "Fiddler" to perform that "happy despatch" Which aignilea "belly cat"), by ripping his belly-of course I mean only that of his diddlo-ap the middle.
It in my misfortane that the congenital dencity of my Dervona tiasue quite prevents me from oleerly -I mean his fiddle sonnd reloctors-or Mr Sohnohts pecaliar theory of the law of vibrationg. My ignorance of the latter ia, I fear, partly due to your cruelty, Mr. Editor, for he informs me you (perbaps enviive its exposition ian vation of that enlightenment which would necessarily have resulted from ite pablication in "our" journal, ite incortion in whioh wonid cartainly have anved so much valuable apaco. Had vor printed it, all that apace now devoted to the shallow theories of "The Harmonions Bleokamith " and other acoustically ignorant for far more important mattor. Mr. Schucht was kind enough to endeavour to explain his most astiafactory, to himself, theory to me when I last had the pleasure of calling on him ; but the attempt was a Wretchod tigsue had mach to do with the difficalty he experienced simple
Mey I also suggest to "Fiddier" that when he rested the back of his 'collo againat a board, whether of putting on additional sonodboard to itg vory rather patting it to the latter. Sure-ly the convexity of ite back mang-Where it touched the board-have acted to it, and cansed the said board, so long as it remained in contact, to become a sound board. Id don't think this ccello case conld possibly be a case of its rellection, but of the additional generation of sound-such, at least, is the resalt of my "refections" thereon.
The material of a sound reflector, or, to apeak more parceive as sound, ought to have a smooth (not to say polished) sorface, jost like that of a reflector of heat or light maves. Reflection, however, is more change or arnd. cound's volume than a mirror can increase the light os the sun ; both light and sound may, however, be concentrated by reflection, which is just what I suppono the eo-called ear trumpet oifects for those who are a hard of hearing at 1 am of understanding.

The Hirmoniove Blactsyith.
P.S.-Among follow dadlers, whose judgment I solicited when my frat fanny fddle was made known, I am sorry to say 1 omitiod to inclade my fellow corre spondent Mr. P. Davidson, who onoe did me the honour to requent me to commanicate information concerning violins to him. May 1 respecifully request his opinion on the probable advantages (if any) and disadrantages of my latest born infant, especiolly in the matter of What is likely to be the character of lts " voice "? Allow mo to add, I am tryiag very bard to understand Mr.
Bohucht'a last letter on the violin (4308, p. 307), bat I hare failed to arrive at its meaning.

NEW DOUBLF STARs.-To Mm. Buenhax. [4876.]-Yeve suocene in discovering clone donble atars in regions which were considered thoroughly worked up has boen mach noted on this side of the wator. The anbject was a matter of convoration Viaitation on the arat of this month and every one ecomed gratifed, and wiehed jon much fatare auccess.
Tonching your letters 4178 and 4258 , I had a fair opportanity last night, Jnne 11, of looking up two o opporanity hrearrod to-Virginis $=\mathrm{L} 28106$, objecte Comes, and Boiotis $=\mathrm{L} 27106$. The former in, indeed expery beantifal object, bat not quite so dificicalt and 1 expocted to and it. The small companion was, o courroor (12in.), and contined wisible with all apertures down to bin., which, in the condition of the air and twilight at the timo, left it just percoptible by glimpsee. If therefore, conclade that the faint companion is fairly within reach of a good $4 \frac{1}{2}$. achromatic.

Whethor this double star is a rew one or not I have

Micrometrise" to refer to, in which it is not foand. Was not so buccessfal with the more diffenlt pair L 27106 ; whetber from smoke, twilight, or tremor, after long gazing I could not persuade the little companion to show itself. In cases of this sort the imagi nation netds to be suppressed, and nothing short of seeing the object absolutely and nnmistakably onght to be allowed. In this I sailed, but shall look again the brst opportunity, when I hope to oondrm your dis. covery. Mach more interest aftaches to close and dificult pairs when in the same feld with conspicuons and well-known stars like ξ Boütis. Your gne doable in 2 this field is, however, not the only one. Looking over the small stars in the neighboarhood, I met with nasiest, it not mas be readily fonnd thas : Place है Boöti at the lower margin of a wide field and low power; the double in queation will then be just within the same fold at the top, and a line produced from ξ across the tar No. 1 of your chart (let. 4258) will almost strike it I ronghly estimated mag. 8.2 and 9.5 , 170°. mot with worth looking at, not in the Men. Mic. : R.A.
$18 \mathrm{~h} .4 \mathrm{~m} ., \mathrm{N} .82^{\circ} 45^{\prime}, \mathrm{P} .847$ D. $16^{\prime \prime} 7 \cdot 5^{2}$, and 78. The place is only near enough for finding, and the res approximate. I am sorry to say all the other start referred to in your lettora are now passed out of my range for the season; but I hope to look them ap
Fhea opportunity serves.

INCUBATORS.

[4877.]-In reply to "Hatoher" (let. 4175, p. 229) nould remind him that eggs require a cortain degree moistare, and so they do better when the hen's nes on the ground. This shoold be provided for in any acobi is bathing ite chicke thoy ofton require a littel gen is balugg ang requiro a little the shell, but frequently have not strength to make the opening large enough. We lost two the other day imply becance we could not get to the nest.
E. T. S.

THE ROBIN HOOD SEWING.MACHINE.

[4878.]-As many of my brother subscribers seem interceted in sewing-machines I send you a sketoh o

little of your valuable space. It works with ten needles, double-thread lock-stitch. Any needles may be Jeft out or put any distance to suit work. It wil
make 2,000 stitches in one minuto, and more stitches make in two minutes than any voman can make in one day. Will any reader of our valuable paper tell me if there is such a meohine at work. \quad B. Taxsley.

REOENT DISCOVERIRS OF DIAMONDS.

[4379.]-NATURE produces nothing more beantifal than the diamond, or more valuable, but it is traly astounding the ignorance that well-educated poople show aboat it. Oar emigrants either paces over the genaine stone an of no valuo, or send home paltry bits of oryatal or topar for the precious gem. It in carlous that the conalitaent material of the anamon or living predominant component of evory or pare state, 10 it the diamond carbon in a pare orystalliced form. All " our " readern know that errstallisation generally produces brilliancy ; for examplo, oarbonic scid gat, combined with lime, when crystallised, form the clear transparent dooble-refracting or Ioeland spar; bat when unoryatallined the same componnd is opaque, as in varions limestonen. The diamond is an ingredient of all living thinga and corandam of aoil.
The diamond generally occars in regions that afford - laminated granalar quartz rook called Itacolumite, which portains to the talcose series. The diamonds lie often imbedded in falky portione of this material like garnets in miea schint. In the collection of the late Mr. Ruskin is a conglomerated mass of quartz, pobbles rounded through having been waterof gold, the whole cemented togother by oxide of iron, thus showing the ascociation of diamonds and gold, and was loond in the bed of a river in Brazile thy 2n offleer took some to Portagal, and found oat the ralue. In 1844, a slave was searching for gold in the bed of a river in the proviuco of Bahia, and discovered diamonds, and it being a nem looality, 297,000 carats were found in two years, which prodnoed opwards of 2800,000. In the pold mine of Adolph, Siberia, between the jears 1833 and 1886, apwarde of fifty
diamonds were found, but onls one of these was of
considerable size. The most prodactive mines in the hose of yielded rpwards of two tons of gems. In an exhibition of native productions held at Melbnarne in 1855, unmerous small diamonda vere exhi. bited, found in varions parts of the colong. In 1886, apwards of sixty diamonds were found at tho Wool. hed Diggins, in the Ovens distriet; Bat were all very minate, weighing from \& to 2 grains. Africa is without donkt the largest diamond-yielding conntry. Dr. Atheratone, of Graham's Town, received a letter from Mr. Boyles, Clerk of the Poace, Colesberg, incloaing a diamond, which was afterward sold to Sir Philip Woodhonse for f500. This was in March, ismonds aternards, twenty other, good-bat in May, 1869, the world was startled to hear of a diamond weighing 831 carats, foand near, Bandfuntein, on the Orange river. Swalboy, the finder, sold it for 500 sheep, 10 bead of cattie, and 1 horse. It was purchased by Messra. Libenteld Bros, and was sent by reamer to England, and insared for the pasage to the tane of 830,000 . Bat this was thrown into the shade by in Aport in September that a diamond had been to be worth $110,000,000$, is it wolld bo five times as large as the Koh-i-noor, and the Kuh-i-noor'a nominal value is $24,000,000$. After great excitement, and a thorough investigation, the stone was fonnd to be a ropar, but the resemblance in this instance was Tery extra-
ordinary. The stone in the Portugnese Treseary, weighing 1,880 carats, is probably, and slmost sare to be, a topaz, or a white sapphire stone. But how absurd to report such a stone 28 the Δ ustralim apocimen withoat arst investigating. Nothing bot a topaz, or whito or jellow sapphire, it can be seratched by a splinter of ruby. It is, probably, simply not topaz, bat a common bit of quariz worth nearer 10d. than $£ 10,000,000$
In will now procees to give the method of distingaieh. ing the tras acenond. In olden times jowellers pat a of the stone. If genaine thand mastic to the back bat if a sham it made it dull and lastrelpas, show. ing the black through ite substance. Mr. King says known as the "Slave's Diamond," is now the only tone which has any chance of belng pasied of ass trae diamond. The genaine diamond may alwaya be distingaivhed by its "single refraction "-a property which is also possessed by the garnet, bat by no other precions stone. Others have a doable refracting power-that is, to speak plainer, give a double imago of a taper, or other object, when viewed throagh thair facets. When diamonds are set it is caay to soe Whether the refraction is aingle or doable by looking into the stone at the image reflected from the posterior facets. The diamond does not lose its lastre if im. mersed in water or alcohol; bat sham stones will, , srising from the inferior refractive power; a commoner method is to touch with the tongue, when genuines foel colder than 'shams. Pliny, in his "Nataral History" (lib. xxprii., c. 15), saye, "a true diamond, it placed on an Many Ane stones mast have hammer, wilited aphtis. This would be my last experiment if I was testing a diamond; bat diamonds could, it has boon said, hardly have been known to Pliny. He must have been migtaken for white sapphire, the next hardeat utone to the diamond (oide Dr. Billing's "Science of Gems." by monde were iormerly polished by the was the case with the them one against the other, ab wany experimente on the combastion of the diamond. By its frat combination with oxygen it is converted into plumbago, by a second degree into common black charcoal, and by complete sataration into carbonio scid gas. 100,000 times its mess in gold, is bat a lamp of coal dissipated by combustion into any inaalabrions gas. Thare is, however, good reason for anpposing
F. B. E.

RADIUS OF SURFACE OF OBJECT-GLASB.
[4880.] - Mr. Oldpield, in his letter (4149, p. 225), seems to lave pat the Anishing stroke on the orown lens. Bat before applying tho hammor, will he stato from these symptoms if he still thinks the case hopeMes lis now four years ininco I bought my glasess from were, according to Mesars. Chance's tarif, bin. squar were, scoording to Mesara. Chances faris, is still an immense pazzle to me, and has introdaced me to a host of optical phenomens I uever bargained for, some of which I will state for the beneft of other intending adventurers. First, with regard to taking the specitc gravity of the glass, I thought that the fragments of the ring of glass cat off the Sin. diccs were handy, but imagine my astonishment at fading that not one of these fragmenta (in the case of the crown lens) gave the same resalts, bat went something after the following order : $2 \cdot 101,2 \cdot 59,2 \cdot 57,2 \cdot 55,254,2 \cdot 44,2 \cdot 23$, and so on roand the square; so that if this is the density of the edge, what is the middle \& Secondly, in the Journal of the Society of Arts appeared a puragraph on the nabject of astigmation; this phenomena is, as Mr. Oldfleld and Mr. Vivian may be sure, not ranting in my object-glass. To begiu: Pat in the eyepiece of the teloscope-bad focus, look opwards by tilling the eye piece, I soe a focus; look down, I soe another. Which
of these will- 0 '-the-wisps mast I try to catoh? By means of a little patieuce and the obliging adjastingncrews of the tabo, you may catch aither of them, not
to forgat the tarning round the ohjoct-plags, or tiltiog ita ring or coll a little. Mr. Vivian's suggestion of the
beat poition of the edges of the lenses has not boen
forgoten ; overy little helps. But when got, best is Its ; astigryatition helpan imperfeot circle got, within the
is oither a badly-formed ellipse or a fiattened ralo. In pauking in tho oj point darts out of a star on each iside, and longthens. but, on the other hand, the cone of rays as cast from the objeot-glase is a wonder to the erepieoe, if not to roe also. Why does it move round the eyepiece in that arratio mannerr, a good contral focas appoering so near and yet so far 9 I mast conclade by stating that the optical contre was got by ranning the lons on a small
nather gix-sorewed bell-chnck. A nharp point of brass was alonaly, watched by a convex lons as to itself and its redeetion, the edge being treatad in the same way. The
edge and sarfece jext the headstook rot true, the other was ground true, then all reflections stood still, and all whe ground true, throngh also.
It is poseible, st Mr. Oldield says, one of the oursuces in not true-mont likely one of the first done. I have only ene brase tonl in my posse日aion, having se-tarned them up an I went on, so am fres to atart
 or are thay obliged to bo brape ? I Io not wish, while or are thay obliged to be braps? I do not wioh, while
thenking Mr. Vivian and Mr. Oldfiold for their kind thanking Mr. Vivian and Mr. Oldiold for their kind matorial, but shall atart vith G3in. focas and a piece of mew orown glase, if this is really bad.
W. H. Cabr.

GELENOGRAPETY.

[3881.]-Selemographical sketchea aro of general intiorest when they are neatly shaded, as that by Mr Birmingbam (paqe 277) ; a mere outline, 28 those agaenly given by Mr Birt (ex page 292), are only pro-
stable to theoe Who hare large telescopes. Many readers, like the writer, who are not possessors of rocest tolosenpes, haro a constant desire to anderstand how celostial objecta eppear when riewed throngh them, and however incomplete the boatdrawn shatch may bo, is is comprehenaive and of marrellous interest to na
compared to the dry puzzling diagram of ontline often iven, which is perplexing to all bat the aetronomer. drawn selenograph goneral reader, the more carefnilip. not more, asofal. I hope Mr. Birt will take a hint from

NITROGEN IN PLANTS.

[4882.$]$ - IKR LAWES (p. 814) han, I think, proved by dechive experimente-arst, that plante do derive much and secondly, that it is not derived from the air itself, bat from what is mingled wititit. The frat point he ectablished by growing wheat erops for a long succes.
sion of rears npon the ence plot of land without anppling any fresh manure, with the effect of obtamt ing, aras, a gradoelly deereaning orop, as the soil bethe nitrogen of ond afterwards a nearly regular one, air or the rain, or from something contained in thero. The second point was proved by growing wheat plants Wheat plants bat no nitrogenous matter, supplind vith rater and aitr conitaining carbonic acid, but no ammonis or other nitrogennas matter, the seeds
germinating and forming gtalks, and a leaf or $t=0$, Which wonld wither and anotber form, there being nitro. gen enongh, bat not more than enongh, for a leaf or matter by passing it throagh an acid aolation, which bsaorbed smmonis or nuy nitrate or nitrite. Some have found it diffcult to account for plants growing on oub contatiel ob thaining moro nitrogen than appear apon them. I bolieve the explanation is that very maoh more dow is doposited apon the leaves of plants than apon artifcial surfaces, and that therefore the quantity of dow falling is mach ander-etimated, while from it by the dew. This sobject needs experimental THE DIETRIBUTION OF ANIMALS AND PLANTS. [4383.]-I Do not regret the reviral of the enmet question, notwithatanding "E. L. G.'s" arramenta in tost agninat any direct or implied miarepresentation. I do not know whether a comet ever existed, or could exist, composed of steam, and donbt, whethor What wo have yot recoived. Bat "E. L. G." brings forward the wide difrosion of many fresb-water plants and animals as one proof of the occarronce aboats 5.000 years ago of a aniversal duluge of fresh water ! Now.
it ia very easy to set anide the facta brought forward by, Darwin in explanation of this wide difianion ; bnt peoplo mnst jndge for themselirea whether "E. L. 'G. A " hypotheris or Darwin's explanation be most reasonnhic.
Birds frequenting the vicinity of water do get maddy feet, sad it ts quite possible for the seeds of manatic plants, de, to bo conveyed by that means. Bit diffasion or destrnction seems to me, at least, questinn. able; bat supposing the former, should not the resu:t, bave been more comolete than wo actnslly find it?
Bat aro tha rivers and lakeen of fresh water such
ind isolated locnitices as "E. L. G." wonld lead us to sum.
pose ? The sources of the tributaries of many streame are frequently separated by short spaces of land, so
they may be described as a networt of raminasions and I am under the improssion that of ramincations, plants are more tolerant of remorsl than land plants ; the moathe of rivers form a means of oummunication, for a great many seeds will bear immersion in sale water for a shortor or longer time. It is very easy to see how such fish as the salmon, to.., woold gain wocess to new rivers by this means. "E. L. G." exproseos surprise at Darwin's atatement that the condition of oceanio islands accords with his theory (that wide apaces of sea or deep narrow channels form offoctua question whether, according to his hypothesis, the terrestrial mammalia might not have been developed there. Certainly, bat time and favoarable circumtances are necessary to bring it about; assuredly a much
years.

THE WONDERFUL GUN-BARREL
[4884.] -Loosing over some back numbers of the Evalisi Mechanic, I found a wondorfal gan. or ralber a somewhat deficient description thereof. What can this wonderfol gon-barrel (mentioned in let. 8887, p. 88) be made of? The writer says it was "Oatt on "principle" of canting may bo. N.B.-He is far from being a man "withoat principle ;" but as regards iron and steel, I always thooght his principle was the neverte of oasting, is boing to reader iron malleable. The writar alco says: "If a bad ingot, it can stand a heat equal to sory iron-no small heat, by the way, in the thicknoen of No. 82 wire-gange for oonversion into a locomotive tube." He also says his barrel can be produced ahoeply. Now cheapness, when not associated wharacteristic of modera civilisation French wit, the probability rifled gou-barrels contribate. Will Mr. Minshes be so kind as to inform us what the cheap material is in which this gun is cast which, like Sir J J. greater an amoant of steel castings, stands so mach Majesty's marvice over onnld be suhjeoted to in actual warfare $?$ The Harasonious Blacksmity.

SCIENCE AND EDUCATIOR.

[4385.]-THE following remarko ou this anteoot are by Dr. Cobbold, F.R.S., in his conaluding lecture of
the 8 winey conne for 1872 , ha the Lectare Theatre of
 remarking bow mach of the general tenothing given in
certain forme fo this country is opposed to the tesch. certain forms ta this conntry is opposed to the tesch.
ings of seiovee in general, and of geology to particular. It is not pleasant to any man of science to have to oppose who, perhaps, in their private life, are
better than himself; bnt in tho interests of trath it is better toran himself; bnt in tho interests of trath it is
Decespary that one shoald stand ep for mhat is trne quite independent of all personal fodum whatever. Further, methods by which camilata are trainod are bach that when they grow up they are unable
to draw eenalasions for themeelves quite indopondont to draw ecosalasions for the
of all dogma and authority.
The method of science is in itcolf attractive, simplo and grand ; there is nothing diffoult in seience. You
 J. Herschel's "Science is the knowledge of the many orderly and methodioally-arranged, so as to become comprehended by one." Every sabjoot is anpable of
being regarded in the light of a science, all that comos being reararded in the light of a science, all that como
within the cognisance of the human mind may b within the cognissoce of the human mind may bo
classed under one or other of the heads of the following echome: -

We frst speak of everything of which the human mind can take cognisance nuder the term "Conanalysis, proceed to sabdivide it into various subclasses, Which suhdivision can be carried ont as far as bined, and come altimately to what we started from. I will commence mf remarks on edncation with a goneral proposition, the trath of which will become national or individual, depends apon the dogreo of caltare of the haman mind. Reflect, if जith all onr wealth as a
shaken, and so sith a reeligion, wo patronising, we are nd ranc. ing, even at the alow pace of our mnch-abnset German wo conld point to Jills, Carlyle, Tennyson, Hnsley, co, than whnm there are not abroad men who are ment depended apoothese for bright intellects, then undoabtenly we shoold be proud of onr position as must be allowed to any one who looks at thinga broad i that as a conseqnence of the not general difnuion of ingzed with vices, one of which in interpels are cingaed with vices, one of which in intemperance.
While this implies a want of intellect, it diuplats a Whine this implies a want of intellect, it diyplats a
hovently combine and form sociotien - temperance sonietien, amongot others, with a viow of orrashing theote Tollies. Leginlators seek to atamp it out by restriotive measures, bat to wht Par pool in our hands; alter the conditions of existence of any living thing, and yon can altar ite charactor in any Take the one of the epple; tho does not wno the most delicione apple ; will does not now that romored from the penial caltace of the garden ead subjected to the wild inf nences of the garden mach The apple and poar aill revert to the old orah tree then theee gracione infanences of oaltare are remored whem them. Or, take the oase of an animal: say doma when they ran fild, as they wero allowed to do yeers ago in Angtralis, they revert to the troll. The Arsara lian dingo is acareoly different fom the ausiraparent of all doge And so it is in the higher form the lifo. Place a child in an artitioial condition and dovelopments do yon not ase t Lot at the form what fachion. The ohild, which in itself is mo beantifal and so expressire of mnich hat is lovely, to beastifal arought upin a way in whioh it thall, belore it io grown - Woman, havo all the nirs and ways of a grown ap person. It beoomes artiticial, ite manver apollt, anc gether lovely are afleced from ite charecter. Wo are all creatares of circumstances, and our ontoomes are the coneequence of the couditions in rolcomes are been placed or in thicla. Unfortanately there is in too many caees mo deatro to
 joct, and one wioh leads ns in many dipectione I feel with Mr. Oariylo in rogard to thic that thome ho Tould atamp oot these festures which aro no acrento little know what misery they enhail apon fobere generations. The objeot of man in life is to be honess gad religions prinelples, but less of thooe surroanding about which peoplo troable themselves, and which are scarcely worth the trouble. Ae to romedies, it is not that peoplo ail ap of systems, or dovising of motrood, gent bit by boome mor hoserl and and talin diroction ill eorts of progreas both my and an orory terisl Ther people is anthority pith ebsadence of poict to woild like to see such metherings this erep Sor, who ovening. Thoee gentlemen woold like to eee it certed ont on a ceal ingitels lorger than at prosent obtaino who -ald lite to sea the places of intelleoted ins provement open to the pablic on the onls day prany of them, tor selves of them. To ther oleses read, and inwardly digest the glorioas traths iaid open to oar why do not these men ase their power 9 The faot ic hoy oannot ; they are opposed by a party more poweetal in point of number
There are other helps more matorial, which may be omployed to bring ajout a bettor state of things than obtains at presont. Looik al the coaditions of existenco in which malitades are bronght ap; mioh of this ignoranoe and debasoment might be spared if only the conditions could be alterer. Now, these condricose cannot be mildred by a revohuionary process sadaonly, thay may be by an eroutionary one. One of the factora oonoerned in this oventas improvement, beliove, woald be obtaining the ansiatance of rooognised men of great power and capacity to organise a systom by which the great and glorious traths of science should be dirased doghoat the land more effectually than at present ho nol wish to disparage the hodeat efforts of those hink therking so energetically in the malter, bur bo that whilst at present it is neoessary thero shoald ompuisory eduoation of the young, when the vala have grown ip riar borealise bersoak be no compulsion necessary-it would be a matter of course and delight.
A maseum is grand, no doabt, in itsoff, and in th. structive, as it gives people a general idea of tho natare arth: bat, anloas gon hava living and esrnete men oapable of explaining the value of the treasaros of the masenm, nine.tenths at least of the value of the masetrm lomehings is losh. I hare ofttimes mandered throigh the British Maseum, and havo noticod the monderment which appearsin the eyes of oar coantry friends as they pass too and fro, and thought "Yon got an idos, carainly." But might not that instraction lying in the nusenm be tarned to mocosat in the way 1 heve menworld thers positively is not a lectare room, and no meana of gettiag inskruotion except by going romad e fow at a timo.
Bat another objection will be itarted. Where is the money to come from? To that I answer, sacteatice
 knowledge of trath. I think there is no dorat bat that if the poople do bat express their desire on thie
 bat the money and the men, will be fortheoming. have no interest in disparaging the prosent axisting results which must moroly wish, knowing the gread oe these prinuiplos tratnith acorua froms science, to mee these prinulples grada, tho direction I have spoken of world do more to pat down ignoranco and vioe than all the compalsory revolves on its own axis, and also oirolen round our great laminary, so snre te th that ecience and reason vill one day haro their enda.

We mar regard sciepee in this aspect at present as a intle cload no bigger than a man＇s head．Bat it will increase；it will length descend in refreshing ehowers npon the will at length dencend in refreshing ehowers apon the earth．Wo have the pronf of this in the facts of
derelopment in time．Place voarself in anciont derelopment in time．place yourself in ancient
Bilaria ：can you realise the posibility that tl o organ－ Sinnia ：can you reslise the posaibility that tie organ－ isms of Silaria will culminate in the devalopment of
man？Doabless，by－and－by precions fruits will be man？Doabteas，by－and－by precioas fraits will be
reaped，but there are rewards now for all，and those reaped，but thero are rewards now for all，and those aro the rowards of independence；it is on fabled reward，I assure yon，to pass through life doing your
duty in that partinniar area or aphers of action to Which you are called，and one which no dogme can destros．Therefore

> Let na all be ap and doing，
With n heart for
> stail achieving，ethl pursuing
> Learn to labour and to wait．

W．H．

on education．

［4386．］－I wrise to make a fow observations on the practical part of this important sabject．I consider that our pnolic school sud naiversity sisutems have two sorions panls，they are nonecossarily expeneive，and
from their prestige and the adivantage to be derived from them being mach overrated，they edacate more men than there is suitable omployment for，oither in this conntry or the colonies；learning is a drag in the mariket；the rapply of edacated men is largely in from the eeverity of the onmpatition to obtain gitas tions：th ose who are sncoessfal mat mocept torms， which remnnerato them very inadequately for their ex pendituro of time and money．A pablic achool edaca－
 Cambridge is about e500，this grackuating at oxtal of $£ 1,000$ ． The writer took his passage to Australia some years ago，willing to do any work be coald find，and yet he graduates，and in a practical point of view he not un－ natarally，looks at nuiveraity oducation as little botter than time nnd money thrown away．I extract the p．M4：－＂＂Annther acoonnt gave that none（fith edition）， of the older Enalish nniversitien are admitted to the foree（the Gold Coast Pirliee）．There are here npon the diggings many military mon and anivernity graduater，who generally retain their polish of mannors， though outwardly they are often the roughest of the rough．＂I conclnde miv letter by asking what practical benofit have these men derived from wasting a moderate capital on a unaless edacation．

Bobzet Lyoy，B．A．，

Ex．Boholar of Clare Collage（7h menior op．，1865）．

PERFORMANCE OF TELESOOPE，to

 ［4887．］－I DEsiRE to express my thanks to＂F．R．A．S．＂（let．4234，p．274），and elso to the Rev．F．C．K． tions．I phall feel mach obliged to either of those gentlemen for alittle information so as to cloar up the power whioh ought to be possessed by a Arst－olass
telegoope may be calcalated by dividing the standard number 4．83，by the diameter of the objeot－glass or specalum in inches．According to this，my 5 fin． specalum onght to divide stars whose distance is not magnitnde tho stars experimented on ghould have，and aloo what power shonld be expected to produce the recalt desired，aiso whether the experimeat shozid be by moonlight，twilikht，or daylight，or with the field of viow artificislly illuminated，or with a alight fog or with no moon，no artificial illamination，and no haze， any other of the conditions apecitiod，and consequently more difficult to separste．As an instance in illuatra． tion，I may mention that＂F．R．A．S．＂has frequently epecifod d Cysni as a crucial tent for a frot－ciane tole－ oope．I have thererore lookeq at this star on sovera with my bighest power，which I hind is 250 （not 270，a I sapposed）．On one occasion，however，I beliere I sen the companion daring a rather dense haze，which ren－ dered the principal star scarcely vieible to tho naked Ano
Another point also suggents itsell to me．In roferring respeoting some faint comipenions of bright stara that they bas magnifying romarkably well，or，on the Bome of these objeots exiguishod withatigh herofore it soems worth while to seek an explanation Of this pecaliarity．First，I woald inquire whethor the tars in question behave nimilarly with sill tolenoopes． and those that bear magaifying well are aingle stars with high poosts are whithor manler atars，that is to say，minuto dasters at suop digtance as to appear litre single otars，or posibly ar woild prodnce －correaponding dilation of the light．
On the other hand，if the objeots in question behave differontly with differeat telesoopes，then we mast look lor the caise in the instramenta．Here we touch apon
and refractors．I can see no reasno，other than those onnmerated above，why one rtar shonld bear a higher power than annthar the a well．agared retiector．We， not all alike，and it is fair to presnme that the spectre of the faint stars also differ among themaelves．
We also know that the bere（so－called）soliromatio ich all there is some ontotending light or and that spectram．

解 it neems to me，that if the light of a cortain char conaiste principally of those rays that are well
corrected in the object－glass need，that that atar will bear magnifying better than another apparently similar，but whose lipht is composed principally of those rnvs that go to form the necondary spectram． Hence，I shnald suppose it possible that one of two stars might bear magoiising better than the other with one object－glass，and the state of matters be roversed when another object．glacs is nesed．I shonid also sup． pose，that those nebalas or comets rboso light is foand magnifying or not，according to the position that those lines occapy in the spectram
It woald neem to follow as the resalt of the abore consideratione，that in the case of minate stars the magnitudes assigned by observers who use refractors vill vary according to the particular ohject－glass em－ ployed，and that a very dificoalt object for one tele－ soope may be comparatively easy for another．
his．Gnifrey，（query 12112，p．814），says that he tested his 10tin．mirror on arataras win a power ot sisty want of light，It may interost him to power from tented my ${ }_{5}$ in．mirror before ailvering，bat with a sitvered plane with a power of 250 ，and with that power divided，Booitis and λ Ophiachi．I had，how． power dirided，Bootis and λ Ophiach．I had．how．
over，the adrantage of having the telesoope and atand complete and in perfect order．
Gudalming．
A．Woolsey Blaceloce，k．D．

MUCSICAL－BOXES ON SOUNDBOARDS．

［4888．］－Nor having tried the expariment，I am unable to inform＂E．B．F．＂（query 12175）if the reso． nance would be more powerfal were＂ita innards＂ taken out of hia masical－box and affixed to a soand－ board．Prooably it woald，beoance the lese matter is interposed between a ribrating body and the sound． the less the transmission of its vibrations can be obstracted，so we may reasonably expect the motions of the sonndboard woald be more ample and the loud． ness of its sounds inoreased in proportion；bnt thit
don＇t seem 2 rery eany shing to do at masioal－boxee are ordinarily made．
Theoretically，the elastic bars or springs which form its＂comb＂ought to be directly connected with the soundboard，as they would bo if affixed to it；bat this is manifestly impossible．They might，howerer，be affised to a transverse wooden bar glaed on the sonudboard， which happens to be the very means employed in Mr． Golds worthy＇s pianoforto without strings．（Seo his patent，No．6498，prioe，with drawings，6d．）．This would，perhaps，induce the greateat possible resonanca，
bat it may be duabtful if oveu beoch wond would resist compres ion ennugh to afford a anfficiently firm sarface anless a plate of metal，by which that compressiou was distribated over a large surface，were interposed betroen the wood and the vibrating spring bara，were the latter in single pieces．This is the mathod adopted in my 日mall portable pianoforte withont strings，whose compass，by the way，is bnt three octaves from tenor C method employed in Mr．Crawford＇s so．called＂boll＂ pianotte．Of ooarse，it could not be required for the comb of a masical．box，which might just as readily be screved on the tranaverno wooden bar as on its ordinary sapport，assaming its proper position in relation to its pinned berrel be maintained．The transverse wooden bar might，probably to adrantare，be made of pine than beeuht for form it mecenarily great thioknese there could be no want of strength．
I doa＇t think it desirable to make the soundboard very mach larger than 30 in ．$\times 20 \mathrm{in}$ ．，beoanse I donb if the（comparatively to those of violin，harp，and piamo striugs）leoble vibrations of the prongs or teeth of the comb of any masioal－box I havo yet seen－and I have soen some protty big onos－oould oxcite the sonoroas vibration of a sarrace muoh exceeding 600in． ng ite size＂A E．B．Which can onsue from angens make his sonndbonrd（ony） 10 in ．or 18in．longer anc （eay）Bin．Wider，bat cortainly not auy thicter（I have wo nove belly－bers of the mane section on ite ander surface．I should profer them to be placed ono at aseh of its edgee．This will incresee the sapertcial area to 1120 in ．or 1178 in ．－quito as large as we cand expeot to imply otanding on it．Protably，howover were ite oomb scroved on a pine wood bar glaed on ite middle， we might hoar sounds whose loudness wonld be＂pretty conaidorable，I kalkaiate．

Teis Haryoxiots Blacegyith．

CO．0PRRATIVE STORES．

 oon not yield the satisfactory resalts expected－viz．，${ }^{\text {a }}$ probt na a retarn of cyo per week，where the esti－
matod proet of 10 por oent．produces a loss，athoagh the expeones are ander forty shillings．

A great many answers havo appoared to this lettor， some very well written，and containing asofol informa－ tion ；hnt I think I am right in may thooght that not has word has been written in answer by any one who snch a store．In my early life I passed some years in the management of a basiness of exactly the same do－ scriptinn．I caic hardly expect to obtain epace in the Erolish Mechanic to give all the information
 portant articles first－viz．，floar．I will aappose the store is baving at 393．per snok al 80 stonen，and soll－ ing at 2a．2d．per stone，learing the apparent proft of 10 per cent．，as stated in the question，and so it mond let ns ascle of flour mas anld whole jnst as receiven，but let ns trace the sack of flonr from its entrance to its
exit．The miller delivars exil．The miller delivern and empties the sack of
floar from his aack into the four－bin ；the saok，if shaken quite clean，woald only weigh Eib．，the tire allowed for it ；but the process wnald cover overything in the shop with dart，so that it is more advieable to fairly empty the sack and make leas dast，and the orot of thour in the bin wonld now be very nearly two poonde short weight．The customers are now served methey require，some with larger，some with smaller，quanti－ requiro，some with larger，some with smalior，quanti－
ties，not one will be satisfled unlest they see the torn of the seale in their farour，and with the best coules yon ennld obtain，and with only fair average care in veighing，and in the twenty，thirty，or forty tarns you wonld find three or four pounds weight loss，and the case，with common second－hand scaion，which for oheap－ would be worse than I have stated，and if the store io not provided with a flour－bia the waste wonld be minob greater in woighing diroot from the miller＇e seok．How greator in woighing diroot trom the mine ort sack．How
dioes the oase now stand ？ loss，and the next four poands wnate，at 24．per 1b．， just reduces your apparent proft 85 per oent．I have in the above instance taken one of the best articlee in ronr store，aud one in whioh there is the smellest result mnat hare been not a small proft，bat a direct loss of from 7 to 10 per cent．To make it parthe store mast either charga a highor rate of proft to meet the unavoidable loss and expense in supplying gonds in the verr small grantitios the onstomere quire them，or relase to sell except in lerger qaantities When they could not bay them at all；bnt by going between the two alternatives you can make the etore pay－viz．，refase to sell tizz of tee，ilb．of cheese，tib． amall qnantities，would，I have no doaht，entail a lose of more than 80 per cont．R．R．Burris．

ARE ANTS PIRATES

［4390．］－I Δx afraid your readers will think me ab a ${ }^{\text {wial }}$ bore with my roitoratod qneries aboat the habits of ants，bat the faot is，being rather short－ the opinions of others，instead of ohmerving for myself． Horace，I think，sang of the＂little ant with groet lahnar＂storing up food for the winter，and the moral of the little creatnre＇s life is eanugh to make one panse before rabhly destroying it．I tnd，howerer，no leas competent an authority than the Rev．W．F．Red－ siat one of the greatest frnit scoargos I hase to contend with．I have this spring killed leginns with hot watar and by hand，ret they still amarra．I am nucomanonly obliged to＇C．Lu．＇for his rocipe．Immodiately on roading it I got some swoet oil and pat a little in a sancer ia my vinery，where there ia a nest nuder the waingenting；in a few hourn the saucer，sunk in the
monld ap to the brim，was replete with dead ants．It monle ap to the brim，was replete with dead anta． rorld will feel obliged to＇C．IL．＇ 1 am truly eorry to destroy thom，but thoy make the irst improsione on
 The recipe above roferred to is as follows：－＂Fil mall phials two－thirds with wator，and add swoet oil Plunge these upright in the groand．leaving only half n inch standing ont，near the neat or rans of the ante kivery ant will come for a sip，and go home to dif．No insect can exist with oil in ite throat，yet ants are very lond of it．＂
I am obliged to＂J．C．＂for his attertion to my quee Ion；but with all the inclination to think as be thiks，

CANADIAN WATERCOURSES，HOUSES， BTOVES，\＆c．

and Lake Haron, 595ft. above the sea ; thence along Lake Erie 564tt. high, on throngh Niakara River, over the falls, into Lake Ontario, 295 ft ; and fually down the noble river St. Lawrence into the ocean. These falls denote a rooky country, and four-tenths of which is onfit for callivation. In places where the rocks abraptly terminate the soil is rich and very prodactive. The densely wooded bash aboanding on such lands furnishes the most correct example of its pro-
dnce. Tho wealth of Canadian soil is prominently dace. Tho wealth of Canadian soil is prominently illastrated above the earilh; the sield of minerals has as yet been few; coal there is none. Natare has produced wood in superabandance to connteract the effect of long and severe cold seasons ; but the most durable prodnction of heat has been withheld from the soil.
Nine-tentha of the dwelling.houses here are brilt Nine-tenths of the dwelling-honses here are brilt
entirely of wood; frames are corered ontside with entirely of wood; frames are covered outside with
weather-hoards, inside matoh-boards, with "shingle" weather-hoards, inside matoh-boards, with shingle"
roofa; shinglos are savn from pine, aboat 16in. to $1 s i a$. long, one end heing tin. thick, the other end Oin., and varying in width from 4 in. to 8 in. © they are nailed on a close boarded root, breaking joints, and exposing some 4 in . of thick end to reather; very much reslates. These shingles will last some thirty to forts yeara on a roof. Fireplaces in honsos aro not required, as the cooking stoves in ase have pipes ran through roof, or one side of honse, in an opening sarrounded one ir-ohambef. These stoves stand indepenacnt on openings and covers, whereon the coosing pots are placed; are heated with wood barn into varions the honse-is fact, saving all that "waste of fael", in English honses passing op the chimney. (Soe pp. 436, 514, 561, 589, 609, Vol. XIV.) The flues from these stoves may be carried op throagh ceiling, with elbows aboat the apper rooms, aud give the whole boase a gonial temperature. These stoves are also constracted in the Unitcd States for burning coal. They have a good draught, no smoke escaping; are clean, as no ashes come from them daring the day; and they are the gratest atilisers of fuel and heat. They have
seventeen articles of furniture with them at the time of parchase, and cost from to 20 to 30 dollars, or $£ 4$ to 56 . Canadian farmers know well how to economiso everythiug to udvantage; the ashes from these stoves
are oarefully preserved for the purpose of making soap. The maple trees growing in the bush ars tapped, and rough hewn tronghs are placed to oatch the asp for making sngar; and other trees also for
vinegar. The bush produces abundance of fine wild vinegar. The bush pronuces abundance of ine wida
strawberries, cherries, plams, nuts of varions kinds, all of which are of larger size than grown in cottagers' gardens in England.
Canada, May 30.

Gimlem.
THE RECENT DISASTROUS EFFECTS OF Lightining.
[4392]]-IT is wortly of notice that lightning has latterly been more deatructive than has been known for upwards of half a centary. Varions physical commotions of serions import hare also occurred-sach as the earthquakes in California and at Antioch, in Upper Asia, Anstralia, nnd Icoland. The commotion of Vesuvius, too, has been notable, and still we and lightning in this conntry more destractive than asual. It is recorded no less than thirteen charches have been strack by the electric faid in less than two months ; the mopst notable are, for instance, Bampton, where the fuid struck the spire, and the force displacing ten coarses of stonework on the north side, or aboat 15ft. ; the chnrch at Mashbury, Eisex, was set on fre, and with difficulty subdned; and at Rainham, East Kent, the spire, I believe, was completely destroyed. Several people have bees strack and injured; the most notable case being the detachment of volnnteers at drill who were canght in a storm somewhere in Dorsetshire on Whit Monday, and several more or less injared and paralysed. Trees innumerable havo been levelled to the groand in various parts. Honses, at several places, ai at Tamworth and Deptelectric fluid.
H. B. E.

COMPRESSIBILITY OF THE ATMOSPHERE.

 [4893.]-UNDER the abore heading (letter 4040, page ${ }^{151)}$) Mr J. M. Taylor usks an explanation concerning "the well-known phenomenon the rise of a ballet from a gan above the line of aim," having also previously stated in asme letter "that the bullet fred horizontally from a gan mast be deflected upwards." Is Mr. Taylor referring to the live of sight or to the axis of the barrel? If to the former, he wonld be right. All gans are thicker at the breech than at the muzzle, andthe line of sight, therefore, taken along the outside of the line of sight, therefore, taken along the ontside of
the gan, is not parallel to the axis of the bore. This, the gan, is not parallel to the axis of the bore. This,
though not very apparent in a riffe, is plainly manithoogh not very apparent in a riffe, is plainly manifest in a great gan, and the consequauce is that the
ballet crosses the line of sight at a greuter or loss dis. bullet crosses the line of sight at a greuter or loss dis
tance from the mazzle according to the disparity of tance from the mazzle according to the disparity
thickness between the breech and mazzle. Bat if Mr Taylor imagines that the bullet, after discharge, is really detlected npwards, that is to suy, rises above a
prolongation of the axis of the bore, be is labouriug prolongation of the axis of the bore, he is labouriug under a great, though pogsibly a popilar delasion. If Setry Iustructiou," pp. 155 to 163 , or to "Gunuery Instractions, Great Gans,"pp. 83 to 35 , he will find everything fully explaiued with diagrams which will soon lisabase his mind of such erroneoas ideas. Either of the abor \rightarrow books, price la, oan be obtuine f from auy book.
no

Taylor (letter 4350, page 279) states that he has by experiment satisfivd himself about this npward deflection. I am curious to know the nature of his experi-
ments, and strongly suspect be has been practising with the old "family blanderbuss," of whose capabilities I am villing to believe anything.
T. S.

COLOURED SUNS.

[4391.]-In the article on Mr. Proctor's "Essays on Astronomy" (No. 876, P. 291), five miaprints which occar in that volnme are given. I find, also, an error In the essay on "Coloured Sans," reprodaced in your donh 3. p. 297. Where the components of that beantifal equal." Webb in ' Boilis, are giren as nearly magnitudes as " 3 and 7 ," which accoords with Mr. Proctor in that asefal little book for beginvers, his "Half.hours with the Telescope," p. 60. The merest tyrn with the telescope has only to examine them to disonver that they are nnequal.
We all know how easily errors creep into the most carefally-written book, sud the wonder is how so few are fonnd in Mr. Proctor's works, from the great number of papsrs which have emsnated from his pen; as you truly say in the above article, "Scarcely are the sheets of one of his books dry from the press, when he is again before ns with another.

LINEA.

THE SUN.

[4395.]-TaE facalio observed on the san on May 27, and of which I gave a description in lettor 4284, p. 802, have given place to a large and scattered groap of spots in their retarn at the opposite edge of vented from sceing their firet appearance, and even on June 8, doubtless the third day from their arrival, I was only for a few minates enabled to observe them. The gronp is headed by a large and oval-shaped spot containing 6 (?) umbra, followed by a confased mass of light penambra. Round these are a quantity of small ontlying fragments detached from them. The containing several ambre.
The time which I was allowed for observation whs too short to enable me to see much detail ; bat I oould, however, distingaish that the neighboarhnod of the group was still brilliant with luminous matter.
P. W. Wyatr.

SUN SPOTS.

[4396.]-I bEG to send you sketoh of the san, taken Jane 9, 1872, 4.30 p.m. Greenw
with a 2 in. achromatic, 90 diameters.

The three groups were very beaatifal and well dofined. The spot marked A was nearer to the edge of the disc than I have bofore seen one, in fact, it appeared like a re
edge of the disc.
T. H. F.

PIANOFORTE BELLYING AND BRACING.-II. [3497.]-With regard to the thickness of soand-
boards, I may remark those constructed by different makers of good instraments vary considerably. Some maters prefer rather a thick belly, others a very thin one, rather stiffly barrod. Probably, the latter aflords the londest sonuds, especially mhile the instrament is new, and it is its tone-uext to the bearty, alias gorgeonsness, of its case-Which sells the piano ; occasionally, the pur-
chaseralso. Some men, like the Cremona fiddle-maker chaseralso. Some men, like the Cremona fiddle-maker
of old, work for posterity; they are content to sacrifice of old, work tor posterity; they are content to sacrifice come power of soand, and to produce great present ex-
cellence, combined with durability, and the capability cellence, combined with darability, and the capabints with rather thick sonndboards, others (who are disciples of the wise Irishman, who said, "Posterity never did anything for me, so I oan't aee why I should do anything for it ") prefor making more noise in the
world (or rather that their instraments shall), so they world (or rather that their instramente shall), so they as lond as possible at fras, wisely leaving posterity to take care of itself. Probebly, they are not far from being (oommercially) right, thinking their instruments
will last their time-at least, long enough for them to will last their time-
The thickness of soundboard ought, I think. to be in proportion to the hardness of the wood of which it
is made, as well as in proportion to the weight and tension of the strings with which it is to be convected. Probably, the kind of wood employed is of far leas
importance than is generally supposed, bat I believe importance than is generally supposed, bat I believe good proportions to be of far greater importance than
is generally known. I once saw a belly made of good beeoh wood, barely three-sixteenths of an inch thick, Which yielded very pleasing and powerfnl sonnds, and I bave heard exceilent pianos whose hellies were made of clean aprace deal, also others with American pine bellies. As a rale, the softer the wood, the thicker it shonld be. I think it. Would be proterable to make sonndboards for trichord instraments a trifle thicker than for bichords, besides inoreasing the depth of the belly -bars for the former, and for very thick strings I opine the sonndboard ought to be thicker than for thin strings, just as the soundboard of a harpischord, the middle C of which was of No. 6, or at most No. 8 wire, was made mach thinner than the belly of a mo-
dern piano is, whose middle C is strang with from No. dern piano is, whose middle C is strang with from No.
17 to 19 wire. It should also be more stiffy barred becanse-supposing the down bearings, or raiher the amount each string is deflected to remein the sameit is obvious three strings of the same length and thickness mast press on the bridge with 50 per cent. more force than two can do. bat, strange to say, many pianoforte makers nas the same bellies for both bichord and trichord instruments, which may account for the trebles of so many of the latter being inforior to those with only two strings to each note.
The soundboard of the instrument represented by Fig. 1 (p. 618, No. 362) was to have been made of beat Swiss pine for alont half its height, three-tenths of an inch thick, for aboat the two upper octaves, and ita thickness grsdualls redaced to two-tenths of an inch at the lowest bass. I don't think I can improve these proportions. The grain of the wood seema best horizontal, or nearly so, bey at the angle of 90, with the strings of pitch C. Assaming this belly to have ten bars, I should make them of 3 in. sprace deal, their sections 1 lin. by fin., asd taper them pretty regularly, not suddenly, as is commonly done, from beveath the bridge to their ends, which I shonld leave aboat twotenths of an inch thick. The form of their top sarfaces should be a circular aro, not twe struight lines meeting at the bridge. As I^{\prime} before stated, I think it would be an improvement to introduce two more bellybars in the high treble. If this be done, probably they would be quite rigid enongh it made fin. shallower. but it is far preferable to orr on the side of excesaive stiffness, especially in the treble, becanse a weak sonndboard is quite incompatible with fine quality of tone in that part of the compass. Should the belly be found on trial to be too etiff for the strings, the application of the chisel or a small thamb-plane to its bara will readily correct that fault. On the contrary, as I know from old experience, to my sorrom, it is far more dim-
calt to correct weakness of the belly, in pianofortes, for this correct weakness of the indicions employment of additional belly timber, appliod aither to the old bars to make them deeper, or to the belly itself in the form of additional bars, not very eavily jointed to it. With regard to the adjastable down-bearing of the mentioned, I shonld have thought my remarks could only have beon underatood as referring to the bridge on the wrest-plank. A solid metal bridge is now often cheaply made by grooring the wooden bridge to fit and perhaps, is profersble, a copper-wire, from three to four-twentiethe of an inch diameter. To make the best possible job of this, the wire shoald have a dat on that peart of its about saif bedded in the wooden bridge. N.B.-This flat ought to extend up to the highest part of its circumference, so that the gtrings cannot possibly touch the wire bridge belom its centre. The parpose of mating this fat is to provent the possibility of the string ohatiering againat the briage below the centre of the hatter Unless this iat be made, they sometimes do so wan extent which (although, perhaps, not recognisable by the unpractised ear as chatter) is readily recogniaablo as imparity of tone. So the writer-who is a man of few words-hereby cantions an intending constractor to take the precantion to nie this fiat (which provent What other flats are often gailty of on his wire bridge,
so that neither he nor the writer may be annojed by what the latter detests-" mere chatter."
If this wire bridge be well fitted in its groove, and anak therein aboat fonr-sevenths of its diameter, there is no risk of its coming out belore the stringsare pat on ; and, considering every one of them helps to prese it down in its groove, it can't well come ont of it aftor they are on. It may, however, be yet farther secured by a for wire pins alont one-twentieth diametor, drivea ot better, by a few staples which embrace it similarly driven. I prefer not tristing entirely to the earefalnest of the workman-usually, rather a donbtlal quantitywho "ronta" out the groove for the wire; he may not " bed '" it perfectly thronghont it's length, so I think i preferable te divide it into pieces abourt 6in. long, and ntroduce into the groove a moderately thick coat of my patent adamantine cement.' See article on Braing in
No. 362 . Before fixing the wire bridge, it is aleo deair able to Bore ining the wire bor otherwise nutil the cement has becoune hard; bat as that preesure should be applied throuzhont its leagth pretty equally not locally, which might bend it, a piece of thick wood
ought to be interposed betmeen the onds of the go-bars ought to be interposed betreeu the onds of the go-bars and the wire bridge.
I know no good reason, bat only a very bad, il suff. cu, sud be confined to the belly-bridge by the asme ou, sud be connined to the bolly-brigge by the zame
long enough to support the strings of one note, be fixcul on the belly-bridge, and a small wood screw-
aboat 子in., No. 6 -employed to deflect, or what would about jin. No. 6-employed to deflect, or what woald be fur preferable, to clamp the strings on this short
trausverse wire. they might be Armly held to the trausverse wire, they might be trmly held to the
bridge without defiecting them any more than is needful to give them the proper amoant of down bearing. जhish, for very heavy stringa, may be very small in-deed- Dot more than 2 to 12 per cont. of the tensile
force at mide C , and below that note. I havo repeatedly adrocated this simple and cheap method of connecting piano stringe with thuir belly-bridges, bat the pianotorte manafacturers, who employ taners, say screws, which affix the string to the bridge when it becomes necessary to "pull up" the piano, and that if this be nentected, they mast needs "puli ap" the Probably, the pianoforte-makers are not far wrong. Experiencia docet, they should know best how far tuners
are to be trusted; but to an outsider like the writer, it are to be trusted; but to an outsider like the writer, it aeems no more than jast that any toner who negle
to slacken clamping screws ought to be "pulled ap."
If it be preferred to canse the strings to bear firmly on the wire bridge, by deflecting, instead of clamping, hem to the wrest-plank, it may generally wonld be, a least, on the wrest-plank, it may be done several ways.
By far the cheapest, simplest, and most effectual nethod I have yet seen is that employed by our ingeniuns fellow-correspondent Mr. Schacht, which I 0\% proceed to describe
Mr. Bchacht inserts a common rose or cheese-headed nood screw between the strings of each bichord note, and deflects them to any desired extent by turning the acrow. No doabt, as he don't employ any wasber or cross-bar, he ronads the edges of the onder sarface of its head, so that its original sharp edges may not injare the wire. Probably a metal, a hard leather, or
valcanite cross-bar, with its lower sarface which ouches the striogs rounded, or formed a segment of a cylinder, woald be preferable to the emplosment of the nated screm-head; but, so long as its position romains analtered, it cannot much matter. It is
obvions tiat the lower the head of this scrow is the obvions that the lower the head of this scrow is the more it mast deflect downwards the strings which are
supported on the wire bridge, so he thas obtains the supported on the wire bridgo, so he thas obtains the
"adjnitable down bearing" very cheaply-in fact, you may iucroase it to your heart's content. By the sam means, if a cslindrical-faced washer and two screws be emplosed, trichord notes may have their strings onected-nay, this may be done effectually with only one rather stronger screw, say No. 10, if the Fasher
be of m tal, and long enongh to press on the six be of motal, and long enoagh to press on the six
strings of two adjacent notes. Sooth to say, this is strings of two adjacent notes. Sooth to say, this is
the very method intended to be emploged for all the the very method intended to be employed for all the
trichnrd notes of the piano partly specified on p. 562 , trichnrd
o. 360.
It must be obvions that this method might be applied to the atrings of a piano turoughout its compass to great advantage, instead of single or doable pinaing
the wreatplank bridge and trasting to side bearings for the wrestplank bridge and trastiog to side bearings for determining the lengths of their vibrating portions, and keeping the string armly attacbed to their bridges ; indeed, Mossrs. Erard actnally employ almost with apright etrings. It might add a trite to the coat with apright strings. It might add a trite to the cost certainly be well worth the emall additional expense it entails. There can be no dififcalty in carrying it out when used for the single strings of the lowest basi notes for one screw, and a cross-bar or mashor woala as certainly deflect or clamp the strings of tro such notes as pricssure bar cut into whort lengths, bat the doing of pressure bar cat into short lengths, bat the doing of the patting on of ner strings in liea of broken ones for they can jast as easily be passed under the trans verse washer as passed alongside a bridge pin.
I notice "T. C. L." represents the
I notice "T. C. L." represents the wooden brace in his drawing in No. 364, p. 665 , with a portion of its material removed extending from the centro of its
back nearly to its ends. May I request him to inform back nearly to its ends. May 1 request him to inform
ns the parpose of this? Certainly it cannot be to make ns the purpose of this? Certainly it cannot be to matie
the brace any stronger, for addition to, rather than the brace any stronger, for addition to, rather than
anbtraction from, ita material would be required for subtraction fr
bat purpose.

Tee Harmomitios Blacksmith.

A WONDERFUL CRATER.

[1398.]-AT p. 95, of the second Lomdon edition of Tyndall's work, \cdots Heat as a Mode of Motion," is the folluming note: "Professor Whlliam Thompson has recently raised a point which desorves the grave con-
sideration of theoretic geologists. Sappose the constitagents of the earth's crnst to contract on cooling, solidiffing, as the experimonts thus far made indicate, a breaking in and sinking of the ornst wonld assuredly follow its forwation. Under these circumstances it is extremely didicnit to couctive that a solid shell should be formed ronud a liqnid nncleong." In reference to
this matter I would say that, on this island there is an active volcano, in tho crater pit of which I have soen pbenomena that wonld certainly go to corroborate any experimente, tho result of which woold indicate a hreaking in and siuking of the crast. Allow me to describe a wondrons scene. The crater of "Kilanea"" id a hage black pit, the walls of Which are $1,00 \mathrm{l}$.
deep. Its diameter is three miles. The floor and walls are formed entirely of lava. In this gigantic laboratory of Nature I saw seven "lakes" of boiling lavain its action as free as water. In the largest of the lakes the lava was rolled and tossed into waves jnst at is the ocean by the wind. Entranced, for hoars I
atood and watched the wondrous sight, the night being
dark and fine. In the other lakes the agitation I have spoken of was absent-i.e., the rolling and tossing into
Wares; there was some action, howerer, but not of Waves; there was some action, however, bat not of anything likn the same intensity. And now let me speak
of what I eapecially desire to call attention to. Erer of what I eapecially desire to call attention to. Erer and annn the surfaces of these six lakes woald cool, and as the heat radiated the brilliant red of the molten for one of rigid solidity. The lake, in fact, became crasted over by rock. Thia condition lasted bat a few moments, the cooling and contracting proceeded so
rapidly. What but a few seconds before was brilliantly rapidly. What but a few seconds before was brilliantly red molten rack, was suddenly transformed into dark,
black lava. This immediately oracked in a handred black lava. This immediately oracked in a handred toppled over and
 moments to be arnated tion in its tara onoled, oracked, and sank. And so th process continned. When the surface oraoked, the eye felt emitten with the vivid beanty of the scene-the intonsity of the inght streaming through the breaking ava with electio brimancy.
Hawaii, April, 1872.
C. F. Hart.

GEOMETRICAL APPROXIMATION TO :-

[4399.]-You may, sir, think the following result worth commnuicating to your readers, if I state that,
 after carefal atudy of the
subject, I know of no geo. metrical approximation to circle quadratare of the equal degree simplicity of constraction with an extraordiuary degree of approxizuntion. It is one resalt lished some years ago, and with which I will
readers. Let $A D B$ be 2 quadrant of a circole, $A E D$ onethird of it; bisect the latter at E, and $\triangle F E$ at F; join AD, AE, AF, then shall the expression 17 AF given here, is of very easy goometrionl constraction exceed in value the quadraut $\triangle D B$ by less than 5uti $\times 2 \mathrm{~T}^{0}$, or one-1001840000th of it.
To form an ides of the degree of approximation thus obtained, imagine the construction applied to a quadrant ten million metres in length (equal to an earthqnadrant), sud the error committed would be less than one contimetre, althoagh the amallest chord ased in the constraction would exceed 800 kilometres in length. Denoting the ratio of the chord of an angle a at centre to the radias by chld. α (which means simply tha
ched. $a=2 \mathrm{sin}$. $\frac{a}{4}$), it follows that 17 chd. $\frac{\pi}{2,4}-3$ ohd. $\frac{\pi}{12}+\frac{1}{15}\left(\right.$ chd. $\frac{\pi}{24}+5$ chd. $\frac{\pi}{13}+$ chd. $\frac{\pi}{6}$) exceeds $\frac{\pi}{2}$ by less than $\frac{1}{100}$ of its value. C. J. Recordon.

sOME THOUGHTS ON THE DEFECTS IN

 HARMONIUMS.[4400.]-Therze are a few little defecta to be met with, and improvements wanted in the generality of
cheap and even good harmoniums. If these defects choap and even good harmoniums. If these defects wero remedied and the improvements carrioa oat, these than they are at present. The fullowing are the most noticeable imperfections:

1. The Reediness and Harshuess of Tone.-The tone of the harmoniam depends principally on the voicer ; a good and proper quality of the brass for the
veeds, and anitable presare and sapply of Find are indisponsable.
2. The Preponderance of the Bass.-This is a serions fanli, in most instruments we find the bass is much too powerfal for the treble. I think that the reason of this is, that if the bass reens were made softer, they would be slow in speech. How often do we hear people say that the harmoniam is so "noiay," or that it makes such an anpleasant "bazzy" sound; now, if a little more care were given to the reed work, these re-
narks would seldom be heard. If the tone of the in. narks would seldom be heard. If the tone of the inbrument is bad it is not only offensive to the player, fanlt the player only feels its effect.
3. The Forte Stops.-The atter ascleasness of thase stops in many instrumente is very apparent. The prinoipal ebject seems to be to increase the nimber of the knobs over the keys ; in other words, for "display." I have seen and tried several instraments where they soand.
4. The Sourdine.-This stop is for a somewhat similar purpose as the forte stops-viz., "diaplay. The principle of it is bad, as the supply of wind to the reeds is of sach a limited quantity as to prevent the fall articalation of an ordinary four-note chord in the bass; and if the ralve is opened enongh to supply
a chord of four notes, it becomes similar to the stop a chord of four notes, it becomes similar to the stop from which it borrows.
5. The footbonrds are frequently placed at a very inconvenient angle for the foot; this is easily remedied by lengtheniag or shoriening the connection from the boarda to the lever. The springs inside the feeders are often too atrong, cansing fatigue to the player.
6. The drawatop action is frequently noisy; the stops fily in with the least touch. If thes play al the centres thid woald be remedied.
7. The Rest for the Music.-The want, and in many cases the atter absence, of a praper rest for the music is easily to be rectified, and it would conduce not little to the comfort of the player; for what is more asnoying than for the book to sitp dowa on to the keys, or for the leaf to tarn over in the middle of a page.
I next come to consider brielly a few improvements which might be introdaced with good resalt in the cheap harmoniams, at a very little cost
8. The shape of the cases might be much improved by letting the keys stand out (3ay) 6 in . from the front or the case; this would bring the keys into a very him to piay withor the performer, and woald enable centre part of the lid were made to slant similar to a "secretaire," the shape would be muoh more elegant. Messrb. Mason and Hamlin have introduced some grea improvements in the form of the cases in their American harmoniums.
9. The introdaction of a wind indioator is a great boon to the player; it enables him to tell the quantity over the keys.
10. It is very desirable that in instruments where there are two or more sets of reeds, the tone of clarionette stop (especially, the bass) is much too heary in comparison with the other stops. I think that the 16tt. stop should form the thirl sot of reeds, and not the secoml, as is generally the case. If there is bat one set of reeds in the instrament, of courso it ohould bo of 8it. pitch; if there are tivo sots, they should be of 8ft. and 4ft. pitch, the latter voiced softly. This plan is carried ont in the hasou and Hamlin harmo niams with good effect.
The drawing.room models by Alexandre, and the cabinet harmoniams by Mason and Hamlin, are very free from the defects I have notioed. The tone is very fine. The two knee swell pedals in former are immense improvements, one is applied to the treble and oue to the bass. The swell in the Mason and Hamlin instrument has a fine crescendo, as nearly approaching the swell of the organ as possible; these instraments have castors on the bottom, on which they can easily be moved to different positions in
room.
Preumatic Lever.

ANTS IN THE TSLE OF MAY.

[4401.]-As I have lately seen in your paper some correspondence about getting rid of ants, I think that it may intereat many of yoar readers to hear that in the Isle of May, off the coast of Filesbire, the whole I believe, tro kinds on the island, neither of whioh is common on the mainland. Δ short time ago a trip was made by some of the authorities, together with some scientific gentlemen, to try various methods of getting rid of this pest. Dilate carbolio acid was found to answer well in killing the ants, bat, of conrse, the whole island coald hardly be irrigated with this mixtare. saggestion was made, of a more practicable natare, to same time applying lime. I have not, howerer, yet beard whether any plan has beon finally settled apon.
N. of M.

FINDING INTERNAL RESISTANCE OF A
 \section*{BATTERY.}

[4403.]-I sEND the following method of anding the internal resistance of a battery, which, as far as I am aware, has not yet been snggested, and which recom-
mends itself from ita simplicity and accuracy. If a battery be connected ap in circuit with a galvanometer to any resistance \mathbf{R}, and the deflection bo observed, then it R be reduced in value to r, and at the same time a shant 8 be adjusted betreon the polies of the battery b, until the dedection is the same as betore, we have between the resistances the simple and rendily proved algebraic relation $b: \mathbf{S}:: \mathbf{R}-r: r$. Hence, by a device, we may make $R=2 r$, in which case simple rale, therefore presents itself by which the resistance of a battory may beat once found by simple inspoction: Connect the battery ap to any convenien resistance with a galvanometer in cironit, noting the deflection ; then take out one-half thn total resistance (if the resistance of galvanometer be comparatively small it may be neglected practically), which inclades that of galvanometer, and adjust a shunt between the poles of the battery until the same deflection as before is given; then the resistance of the shant equals that of the batterr. One adrantage of this plan 13 that
being a nnll mothod (it being merely a question of being a nnll mothod (it heing morely a questinn of
equal deflections) any galraunmeter, even one without equal deflections) any ralraummoter, even one withoat
an accorately graduated scale, sufficos; also, no calculation is reqnired-the operation may be performed in a few minutes. I have also practically prored the acenracy of the method by means of n Thomson' reflecting galvanometer and accaratnly adjasted resist-
ance coils, the correctness of the principle beiog ance coils, the correctness of the principle beiog denser connected first with the insnlated pole of the battery, and, secondly, to the same pole after being connected to the resistance found, when the value the throw of the needle in the latter case ras ex
half that in the former. If any of your readers w like the algebraic prosf, I will send it for your

BRANNAN'S BYSTEM OF MONOLITHIC BUILD. ing.-To "Kioda Bux" and Others Interested Therein.
[4403.]-When, abont a rear and a balf aco, I put orth-in Nos. 291, 298, and 320 of the Englibs Meceasio-my notions how crriago wheels, chairs,
sashes, aud other articles of ntility might be cheaply countracted by forming their skeletons of stool wire, placiug them in metal monlds-which might be some of the interitices with fibroas materials, and then oumenting the said materials and wire skeletone into oementing the said mate mases, whose firms are thise of chairs or witbont any joints cand joints, however carefally made. alnuont certainly yiold to the struins chairs nod wheels are aobjocted t; in ordinary asp), I only pablinhed an idea which had long been familiar (at leapt to myacti), or the method of construction I rncyested is but a moditication of the manuer in which articles have been constracted in papier-michi. Certaisly I had no thonght that my angerested application of that old
pridiple, on which all mill hanrds and papers are made, deserved to be termed an invention in the sease tainsble patent right, although it mast be admitted it was-to the best of my kuuwledge-a movel appli. production of many articles of domestic ntilitr and prodaction comfort which, when thas made, woald be persnat everiasting. I may remark, on passant, that this kind of furuiture might be made in the most elegant forms-a thing of beanty is said to be a joy capable of iesinning. for as little, or even less, cost, capable of uenisung, for and cost for which our ordinarily very ngly farniture is now produced. That some younger mav, with more onergy and enterprife than a nite of laboarimprove on and work out his idea-probably with great commercial profit to himself and, he hoper, with some contident hope. He, however, never anticipated the application of wire steleton-framing to the constraction this reully bears about the amme relation to its employ. ment for chaira, to, as the door-mut is popalarly said farther in the same direction. No 1 I amglar to find thia "atopfather" has been taken by Mr. P. Brannan, .his. this system, but also their internal and external stairs, their fashes, lioors, doors, roots, and even their
tectural ornamentation on this same principle.
In Mr. Brasman'e system the floors, instead of being supportod on beams or joists (which can only resist pressere end percirsion ey their strength and rigidity, ore, if I rightly understand, simply anetwork of wire flled in by erncrete, which resists tbose forces by its flled in by a racrete, which resists those forces by its
teuacity. To obtain suficient rigidity the thickness of the doors is increased far beyond what in neceasary for mere strength. They are yet, however, but from one-fonrth to one-third as thick as wooden foor and toogh are the finors he constructs that one only even weeks old, measuring 14/t. $\times 101 \mathrm{t}$. (which was apported on bat three of its sides, it beiog attachad any support) only commnnicated a alight jar to the hand held against its under snrface when an anvil weighing aboab dirt., Was safered to fan on it from flo remay I I ot say few of those of even high-class honse:-rould bear without a dangerons amount of vibration being indaced. After this experimentum crucis a large wood fire, which well-nigh flled the against the ceiling) aud kept ali, (hit for more than two hours, bat, the matorials of this honse heing quite nininammable, no damage was done excepting that the steam generated cansed some thaking off of purtuas of to have become dry. The floor aud walls, so far from being dumaged, were rather improved by this not very entle experiment, they being semi-vitretied.
As 1 helure atated, inally expect cbairs, wheels, sc. conotructed on my ayatem would come ont at a asaal mauner, becanse those pieces of wood mast be cat ont of timber previousy sawn into planks with jointing, carving, smoothing, finishiug, and polishing by baud is noceasarily expensive, and likely, from thu genersl rise of wages which now prevails, to becomo
yet more so. Now a chair or whetl, literally ca:t in a amooth motal mould, conla at ouls ouly require the two lattor operations-perhaps only its polishing done
by hand work to prepere it for ase; and if thin be the case with chairs, doabtless Mr. Brannan's monlde sashes, chimney-pieces, and doors may be produced at
comparatively little coet by the same means. Like my comparatively little cost by the same means. Like my chairs and wheols, they conld hardly tamble to pieces. piece only. In fact, as he exprosses it, perfectly mono-
With regard to the cost of the latt.
-from thoir chespoess and the cor, wo may expect quantity uf materials reqaired for walls of given 3 strugth-it to be low. Ho stales it to vary from 15 to 40 per coat. loes than that of bailding with brick and mamber, sogordiug to local facilities fur procuring word in its ordinary sonse, is needed for bailding walls, word in its ordinary solise, is neoded for bailding walls,
Ae. Saro-ly, as mas correct cockueg friends pronoance the
word, momething like this mast eventually be a boon to us of the "great middle middie" cle.gs, who lind oar tamilies, renta, and ineomu tax so heavy; not to men durable aod of a quality vastly aqperior in sanilary qualitios to the hovele they now-I was going to write live-well, exiat in, can he erceted for perhaps rather less than two of such "sabarban villes" now cont, we may hope to effect both sanitary and some moral re orm also, for then oar agricaltural popniation vea sleeping "accommodation." In oher words, the young (haman) pigs might "enjoy" a separate dormitory und no longer "pig in" along with their remarkably "moral" pigisish parents.
feen mid on this ayetem at bull bat vill sotem have been made on this syetem at Bell Bask Village, Edmon on, and some others near Bow (where eiglty honses Durhem, and a large vilis near Snnderland. It is also inteuded to baild about thirty honges on this system at Islington, so wo have, or shall soon have, ample means of testing its work, althongh I thiak "it standa to the tenaile strength of irou or stecl wire is employed ronger on which dopends for its porer of reaiatance on the ten sile streggth (querr weakness) of mortar.
THE HAEMONiOCS BL
THE HARMONiOLS BLACKSMith.
P.S.-May I request the favour of "Khoda Bax's" opiaion on this method of monolithio constrnction also the oriticisms of others of my fellow readers who "knam qummst aboot" bni!dins, which is, alas, a very expensive inxary, when nar notinns are carried ont for mplarehitects and baidrrs who only know how to omploy stone, or brick and timber, in their constrac of suburben villes ven so strong m first-class concrote, withont wire ties, oot to mertion that, being extremely inflaminable, the are occasionally barned, aud bave to be insured, which adds something to their cost, and also, of conrse, to the rent we have to pay for the privilege of inhabiting
them, besides which, I have fonud the keoping of ordiasry houses in repair cost jnst a "litele something " o money.

USEFUL AND SOIENTIFIO NOTES.

Distillation of Wood.-Mr. Wateon Smith gives the result of his experience in the distillation of wood,
principally oak, on the large ec:le, as follows:-Tising ctorts from ft . Io ft . lung and from 3 ft . to $3 \frac{\mathrm{ft}}{\mathrm{f}}$. in diameter, which were charged every morning, the dis
tilling operation lasted cleven hours: using old oat tilling operation lasted cleven hours: using old oak
timber, cut in pieces $\because f t$. to $\because \frac{1}{2} \mathrm{it}$. long by 3in. or tin timber, cut in pieces $2 f t$. to $\because \frac{2 i t}{}$. long by 3 in. or tin.
square, the yield was, of ciarcoal $3: 2$ parts, of woodacid 509 parts, and of tar 55 pirts from a thousand of wood. To carbonise in ton of wood required 10 f cwt of coal. The wood-acill has a specific gravity of from 1.025 to 1.027 , and containmal acetic acid in the pro-
portion of 20 parta for each 1000 parts of wond distilled portion of 20 parts for each 1000 parts of wood distilled Of wood-spirit. 1000 parts of wood yielled from $5 t h$ to
8.5 parts This, after two rectilications from lime, con8.5 parts This, after two rectidations from lime, con-
stitutes the wood-maphtha oi commerce with a specio stitutes the wood
gravity of 0.850.
Continuous Battery. - In the cell contrived runcated Kollorst the negative plate is formed of a The invide of the cone beine protecied with varnish, it is ulled with sulphate of coipher in crystals and inverted in a glass ress.l derper that tho apex is pierced with a small hole. For the positive element, a thick cake of zinc is used (suspended over the face of the cone) : has a hole in the centre, through which is passed a covered wire connecting with the copper. The glass cylinder is then filled with water, and the sulphate of copper begins to melt, the rapidity of the deliquescence notches in the the access of the water than a uniforin rate, the current will be uniform in power If common or Epsom asalt be used in the water, the pound of be intens salt will continue the battery in operation for a yrar.
A Pretty Parlour Ornament.-An interesting
A Pretty Parlour Ornament.-An interesting ornament for the sitting-roum or parlour may be easily
obtained by growing one of the club moss tribe under a flass shade. I'rocure an ordinary glass shade, such as are used to protret small vases and other articles and of any size that offirs-also a china dish that is pan. Fill the latter with light soil, as vegrtable mould or sand, aud get from \& nurseryman or florist a plant of one of the common varicties of ciab mossplace this on the soll in the pan, and then the plas Thade orer it, pressing it down a litthe into the soil The earth beng kept moist. this moss will grow glass. It requires to be kept in a window near the delicatetesture and form of its ramificuions from the delicate texture and form of its ramificutions. Although the moss requires to lave a constantly moist atmo
s;here within the glass, yet it takea but litte water g; hare withiu the glass, yet it takea but little water,
becuase the evaporation from the soil condenses on the Inacr surface of the glass shade, and descends in the form of water down it again. The shade should never
be taken off. When the water is needed, a sinal be taken off. Wheu the water is needed. a sinall quantity may be poured between the outsid: of the
shade and the side of the pan, which will fiad its way under the edge of the glaks to th: earih which i inside.-Cur. Cucuntry Genleman.

REPLIES TO QUERIES.

- In their answers, Correspondents are reopoelfully requested th mention in each
and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat drawlng for illustration on aeparate piecos of papor. 2 Pat itles to queries, and when answoring queries pui the eplies refer. 8. Nocharge is mado foringerting letters querlies, or replios. 4. Commercial letters, or queries, or replies, are not incurted. 5. No questios ssking for alucatiounl or sciontitio information is auswered throagh the post. 6. Letters aent to corraspondentas
under cover to the Editor, are not forwarded; and the under cover of correspondanta are not given to iaquiresm.
[10478.]-Pork Diet. -In the Arst placo, I akt Surah serionsiy is she playing a joko whath hor 80 again. I mig $?$ it satly belier re her abont sholl- ish which I never eat, not that I think them noft for haman consnmption, but do not like them. What cange has "Sarah" to imagine that the mant of the pig is not fit to eat ? Perhaps becanse the Jowe do not eat it, or porhaps because the pig is a dirty animal and why dued she consider rablits also unfit to eat? Why does she not include the hare, which tastes mach the same as the rabit? I hope and rabbit meat and shell-fish for haven oonsamption I hope there will bo many letters on thissabject, at the same time hoping my letter may fiad room in the Cologne, Prussia
[10661.]-Angle of Eencotion and Inoidenoe. - With all due deference to " F. N.," I think our kind oorrespondent oblige me rith the detaile of the experiments of M. Athenase Dapre with balls cuspended by threads, striking aach other horisontelly Jack the Flube- Man
[11878.]-8tings of Bees,-Amonget the varion dock mentioned. Now this I have alveys foond very effectual. As boys we nsed to say a nettle sting dia not matter, as where neitles grew we were sure to And docks to oure the ating at once. And so with waspe I was out; I got s leaf of dock and appliod it and fel no more. When stang take care the sting is net lese in. Bro
[11554.]-Pedestrian Tour.-" Heders" asis mo if canvas shoes will atand a walk througt wet grace, 04
a ford acrous a atream. The canvas lots the water in a ford acroas a atream.
but some do not object inga to change and slippers. partion of ou, wax, and lamp-blect, into mine a yer as dry in my moet heep Stockingh are more perspiration than by water from cauvas "Hees have iriangaiar piece to linen shirts which are preforable to linen for a merino, any, of may, if he likes, wear a lioen front, but a linen thit wili probably give him a cold.- Paimo.
[11564.] - Blackberry and Btrawbarry.E. L. G.," on p. 907, speaks of the red raspberry being produced from seeds obtained from a barrow skeleton. I can inform him that in the neighbourhood tween Wincanton, Wiltahire, this kind of raspberry grows abandantly, as also a wild atrawberry of gaod favour. The locality is reputed to be the scene of a great batk between the famons Baxon King and the Danes, whe nain defeat on the slope of the hill, where the between Koswick and Penrith, just after risiog the hill beyond Greta Bridge, I once exjosed a banquet of ragpberries growing wild in large patch of bushes on the wide op
France.
[11589.]-Dry 8team. - I do not think that either Cectly, so I will endevoar to explain more pally. If we rake a boilor fith stoam at 81 lb . per inch and pasa that stam through tubes in a farnice, it becomes what i preseare stcam ; and if the commenication is open to above that atmophere in the boiler. bat if we cloee the valye it will rash into the boiler, bat will prodse ittle, if any, increase in the pressure, because the area
boiler is so mach greater than the surface of pipes and the loss by radiation so great, added to thich th diailushing power of conducting heat due to its smaller qunntity of water in a given volame prorenta its bein ginerated sumcienty rapid to conntorbalanos ing pipe and utick in the fire (having provioualy ofleoted a policy apon his lifo in favour of next of kia), does he magine that when all the water was converted inte increasing the presenre? As for "E. IL G." he carpe increasing the presenre? As for "E. IL G." he carps
at terms, bat eradus mr otatoment, that in given

June 21, 1872. ENGLISH MECHANIC AND WORLD OF SCIENCE.-No. 378.
rofene of low permare afoam there is mere wator than in the rame volume of high proseure stoam. If he places hia hand in the ateam isaning from a high proseare bollur ho will had that it is very hot, but being a bad conduretor, owing to the small quantity of water contelined in it, it does not bura like the low pressure does. Although well a ware that the temperatare is lowared as the stoam escapos into the atomosphere, I hare not oberred zay eonsiderable blocks of ice about the
cofoty ralvee of high pressure ongines latoly.-A., Liverpool
[11633.]-Debillity.-Noticing a fow remarks made by Charles Rooke apon the above nabject, on p. 308, I beg loave to ask him if he can pat some of us. in the Way of curing indigestion, arising from the above complaint. I have sofiered more or loas from it for
yoars, and have tried nearly evorything, but Ithink clars, and have tried nearil erorything, bat I think
hydropathy did me more good than anything. I only hydropathy did me more good than anything. I only
tried home treatment, and now it seems to lose its tried home treatment, and now it seems to lose its
olieot npon my systom-I suppose from continued oaseot npon my systom-I suppose from continued
troentment. I am now trying cold batha upon risiog troatment. I am now trying oold batha apon rising
(5.30), and tatre a glase of cold water, and at bod time evary other night two pills, composed of 1 part evory other night two pills, composed of 1 part parto of a root that comes from Suaquehanan, but I
ananot pronounce a judgment apon them yet If cannot pronoance a judgment apon them yet If
Charies Rooke would give me a few hints he would greatly oblige.-Aroua.
n1866.]-Boiler for Small Eteamboat.-I atated the dimensions of the boat as 91 ft . $\times 7 \mathrm{ft}$; ; it
should have beon 911 t . longth and 4 ft . beam. W . Bhepresid.
[11656.]-Boller for Small Eteamboat.-In the baildo ra' way of reatoning is about 8 ? tong In the beat examples of modern gteamships, both large and bost ampes of modern steamsips, both large ased
amall rangos from 1 to 3 to 1 to 6 . Now, in the design I hare given I have the nominal power as 2 and tonnage 83 ,
co that the ratio is 1 to $4 t$, about. But I atatod that site omaine would develop probably. 8 or 4 horse-power, ∞ the ratio woold be as $1: 2$, whioh world produce a
wory feat atommor indeed, probably about five knota an bour. This world be a satisfactiory performanee for 0 manall a vossel. Mr. Shepherd is quite right in his ewrmise aboot the eerror. It mast have boen a slip of motion. with an olovation. I oonld, not show the link. the two rods appear to moet is their janotion, Ith one end of the link and the other with the
If there is any difionlty ebont any detail I will another drawing. In the drawing I did not go ato may detail of the engine, beonuse from the wording of the query I thought that it was only a secondary foevice. That was how I omitted to show the fly-wheel. 2owt., or lowt. might do if pinched for epace. A governor might be nsed with great adrantarge, bat in so room, weight, and attention, that it would require room, woight, and attention, that it would reqnire
would not overwoigh all ite advantages.-P. W. H. J.
[11668.]-Steam Power. - I mast olaim the pardon of "T. W. J." for not replying to his question eonaer. The reanon is this, I appear to have loat the
number in which his query appeared, and I have fornumber in which his query appeared, and I have for-
gotton the subatance of it. As far as I see, there ought to be four brass tabes tin. or inin. dium., ordinary
braes or copper plpe. When I nsed to make modely, Iraes or copper pipe. When I nsed to make modely, brase boiler abont 1 in . diam., and 1 lin . bigh. In the oentre of thic I drilled a sin. holo, and tappod it, I
then earowed a pipe firmly into it, 8 in . long. I also soremed another tin. pipe near the top for the supply. From an optician I bought 5ft. of glass tabing that Woald just it inaide the brass trbe; this is then made
steam tight with red lead. From a joiner's I obtained ateam tight with red lead. From a joiner's I obtained
a piece of mahogany $5 \mathrm{ft.6} \mathrm{in}$. long, and 2 in in. wide, and
 Urewise mado an excavation for the sinall brass reser-
voir to fit in, to be level with the glass tabe. Every roir to fit in, to be level with the glass tabe. Every
20in. I drove into the wood clasps made of wire to 20in. I drove into the wood claspa made of wire
socure the tubing in ite bed. I aloo had two olasps for the reservoir; I then got two strips of paper lin. Wide,
and pasted them on each side of the glase tabe on the and pasted them on each side of the glass tabe on the
manogeny. On one side I divided it into inches, and manozany. On one side 1 divided it into inches, side
every din. reckon as 1 lb . pressure. On the other side wha marked the temperature corresponding to thal It win then teat boilers ap to 801b, which is as far a modela generally go. The way that I ased to do was thin-I connected pressure gaugo by union joint to
boiler, and the boiler with the water tap, which had gener, and sumeiout prossare for my parpose. This is gafor way than tonsing by salety valve, but would hardly be worth while if the inquirer had not a nambor to bo tosted. The model makers sell vary fair got-ap
prearure gages as regards appearance, but I never proavure gangee as regards appearance, but I never
heard any one who had one, and who was practically soquainted with its working-which, by the way, with these amatenrs is another thing-spoak well of them. They may be regarded as wondera it they are correct to 1016 . The fact is, they aro got ap so cheapls-that
is to say, considering the rate at which most opticians chargo-that thoy ean't apply frat-class laboar to thom. In the "bent-tabe principle," which is the Porm, the tabe raquiren a deal of experience in its
manafuctare. If there is the alightest rariance in its manafacture. If there is the slightest variance in its
compositian, s good maker would throw it aside, bnt compositian, a gooin maker wonld throw it aside, bnt
aot so these knowing opticiang. If they bend anmmon brass tnhe, it is almost enough for them. From experience they znow that the general ran of amaterrs
bay thinge to look at, or be prit uuder a glass shade. advise "T. W. J," not to hare a pressure gauge al
all, to be a permanent fixture. If studying appoarance, make one of wood sioe! y painted. For model: rely npon the gafoty ralro, and that only; modr tho right one, only give a sense of false secarity.P. W. H. J.
[11711.]-Time at our Antipodes,-For the E. L. G.

American atias, at our Antipodes.-Tn an and that both the mapa of the world bicyolar Marcator's, have a dotted line seemingly intended to mark the boundary "between Sanday and Monday." that has so puzzled your querists. Bat it only extend from $40^{\circ} \mathrm{N}$. to $\overline{50} 0^{\circ} \mathrm{S}$., learing it doubtfal which of the Alesatian Isles, and those abont Behring Strait, foilow the Amarican or Asiatic day date. It Biarts from 40° N., in $160^{\circ} \mathrm{W}$. from Green xich, and tates a SE. conrse to the equator, which it meets in $108^{\circ} \mathrm{W}$., or thereno land is then southward along that meridian, whereon South Pole. Town to exist hetween Califorain and the can, beginning at the N., are I. de Pararor, Copper I (rery near), Gallego I., and Sal-g. Gomez (called Salas on some maps). These it leaves on the Asiatic gide. Proceeding northward, are Easter I., Waihna (the nearest), St. Panl's, "American Group," Mollish's, and Donna Maria Laxara. It wonld seem that whet Me. Birt calls the "absolate day" mast begin when Waihon Island (about $109^{\circ} \mathrm{W}$. of Greenwich) begina to call it day (whether at midnight or sanrise). Bat What a pity that "Enster Island" is a fow miles behind it: Conld not these tro islands exchange names? or conld not Waihou become Sanrise I., or Dagmar, or Dayspring ? This is 16 h . 40 m ., at least, before the day of the same name begins at Greenwich, and the date continues to be used till the san has set, and midnight been reckoned by the westernmost habitation (or place ever to be inhabited) in Alaska that the Rassians have lately sold to Jonsthan, say Cape Prince of Wales, abont 16 7° W.-that is more thnn 11h. after Greenwioh has begun the next day, or $\mathbf{3 5 h}$. after it began to uso the same date, and 51 h .40 m . after Waihon Island did so. Consequently, there can be no rooment when (as Mr. Birt fancies) it is Taesday all oror the globe. For 3 3hl., between Waihoo midnight and Behring midnight, it is Monday. Tueaday, and Wednesday bat iferent places. For the romaining 20th, it is at Sal-s Gas, alvaya fro, because whatevar dan it be I., abs. both (the former walling it Thon it is about 1 anma. of Wedneaday), it is still Monday raesiday and the lafter California, Oregon, Vancoonver, Sitka, the whole of lotte's I., and Alaska (whenever it shall have settlors).-1 E. L. G.
[11746.]-Coll Construction (U.Q.). - All the power "Zeta" will get oat of his coil will not be mach, bat ho can increase the effects by using a stronger
batters.-W. Bocto
[11787.] - Eheotrio Signal Bell (U.Q.).-Ae this has appeared in the list of ananswered queries, I take the liberty of answering it as well as In able, although addrensed to Mr. Tonkos. "H. G. N.'s" magnet is probably not made of aort iron, and thorefore retains ite magnetism. I am afraid this conld not be remedied opportanity of thanking Mr. Bottone for his reply to my quary aboat the brase aprings.-GLatron.
[11792.]-Compound Engines.-The proportion betwcen the areas of high and low pressare oylinder in comppnad engines varies with the pressare and
distribntion of the steam. Some makers employ one proportion, othere another, thon, in the evgines of the Elbe, one of the P . and O . bosts, the dimemotere of the cyinders are, high pressare, $42 i n$. ; 10 w prossare, $68 i n .$,
or areas as $1: 2$, nearly ; whilst in those of the Sir Bevis, of the Union Company, the diametors are 26 in . high pressure, and 5 in. low prossure, or arase as 1:4. Wilh regard to the atgam receiver, my advice is don employ one at all if a compnand engine is indis pensable, exhanstas direct as possible from the hig
to the low presure and also exhanat into the condenser from both high and low pressare. The recoiver is not only useless, bat wastofal, the steam in passing from the high pressare into the receiver mast expand, it loses so mach power of performing mork. This is seen in the space bet moen the diagramy of compoand engines, indicating the pressare not atilised when passing between the cylinders. I will illastrate advantage, without emplosing an intermediate re coiver. Sappose the engine to be horizantal; A, high

pressure oylinder; B,
The engine oylioder to make a stroke in torrow. A is alled
art with stenm that has
propelled the piston of its cylinder in the
opposite direction. At the oommancemeut and (sagy daring one-half the stroke, A exhausts dirent into B.
The communication botwoen A and B is now closed, and Δ is opened to the condenser. The steam in B in expanding works till the end of the strolke if desirable it iy then exhansted ints the condenger, *o. Bnt why
will "Falstaf "empl)y componnd enginus ${ }^{\text {? }}$ Thay are by far more expensive to construct than aingle high

Annhtifal whether they arn so reonomiosi. Did "Finataff" see an acrount of the trials between the Suinger and Gowhawhi at Plymoath on Batarday fortnight vide Enginer or Engineering two weeks byck), the one mployiug compound, and ths other simplo ongings? farour of the compound aystem, CC. E. STBWART.
[11801.] - Quention in Trigonometry. - In answer to the qneries of "Triangle" and "Theodolito,
I hare mach pleasure in stating that both the constracthave wach pleasare in station that botione conolam, tion and calcalation are adapted to the gonoral problem, Tided that it is sitnated within the triangle on which all its inat it is sitasted within the triangle on whis be isosceles, with the angles at their vertex $=$ supple ment of their opposite angles at P, from the centre of which describo circles throngh $\triangle B C$, the point of whose intersection will still determine the point P, as in the present instance. Throagh a blar in the printing I raistook 1044 for 1040, and calcolated as suoh, which will acoount for the amall discrepancies between the solationa. Those of "Triangle" and "F. M." are right. "F. M.'s" solation woald only bo applicable when all their angles were 120°. The following, perhape, is as concise and elegeat solution ase the particular ease mentioned admits, bat not applicable to the general prohlem of different anglee aboat P. Thas, the constraction and figure as before, sinoe ain. APB:
 $A B+A C: A B-\triangle C:: \tan A B P+\triangle O P$
$\triangle B P-\triangle C P ;$ bat $\triangle B P+\triangle C P=120^{\circ}-B A C$. Whence, eslenlating B A C = $51^{\circ} 57^{\circ} 26.4^{\prime \prime}=A B P+$ A C P = $68^{\circ} 2^{\prime} 38 \cdot 6^{\prime \prime}$, A B P - \triangle C P $=9^{\circ} 57^{\prime} 94 \cdot 9^{\prime \prime}$.
 W. H.
[I1895.]-Teating Bleaching Powder.-Accurding to the researches of Kolbe (Ann. de Chim. at de
Pbys., 1867), bleaching powder contains wator ae an esseatial ingredient, and a carrefully propared apocimen gave numbers corresponding to the formala
($\left.\mathrm{Ci} \mathrm{a}^{\prime}\right)_{8} \mathrm{H}_{6} \mathrm{O}_{0} \mathrm{Cl}_{4}$.
Theory: Chlorine, $89 \cdot$; lime, $16 \cdot 2$; water, 14.8. Maspratt alco found water at an escontial ingredient. but places the theoretical amnunt of ohlorine at rarely exceeds 80 per cent., and generally averages 80 to 33 per cent." The general average foand by the writer, on testing some hundreds of casks by diferent makera, ${ }^{24} 83$ per cent., and raraly fell ander 80 per makers, was 88 per cent., and rarnily fell ander bot per must have been very poferior if they rielded ondy 20 mer cent. of arailable chlorine. His method of testing por cent. of arailable chlorine.- Brimazron.
bleaching powder is valuoless.-
[11825.]-Teating Bleanhing Powder.-Mr. S. Bottono's reply to this query is oalculated to miviond. He says that he has never lound a sample of bleaching powder to contain more than 20 por cent. arailabio chlorine. Permit me to atate that a goodion yor will. I have analysed handreds of samplea, and reject all below that mark.-Analyat.
[11825.]-Testing Bleaching Powder.-On the appearance of this query I meant to have replied, giring the arsenious acid method bat was ans lo
do $t o$ in consequence of a pressure of business. How. do 20 in consequence of a pressure of baly taken up by
ever, I fud that the subject has been ably two correspondents. My object in writing is to disabase Mr. 8. Buttone's mind on the strength of commercial bleaching powder, and also the theoreticnl quantity of
available ohlorine contained in it from tho formula given by him ($\mathrm{C}\left\{\begin{array}{l}\mathrm{Cl} \\ \mathrm{OCl}\end{array}\right)$ Ho soks "Ethyl" where he obtained samples of chloride of lime oontainfag 85 per cent. available chlorine. The writer is in worke where 120 tons are manafactured weekly, and
 37 per cent. available oblorine as it leaves the works;
if under, bajers refage it. I will for ward hien a sample provided he pass arriag. As regard; the theorutical quantity of arsilable chlorine boing lose then 85 per cont, I beg to remind him that from his formala of chloride of lime I And it to contain 71.7 per cent. The tro atoms of chlorine are arailable to the consume when acted apan by sulphario acid. (See Fresenias "Ohemistry," Yourth odition, page 603). We take CaO, CIO, CaOl + 240 as the symbol of ohloride lime, which gives $48 \cdot 96$ per cont. available chiorize
You will observe that we take two atoms of water over and whore the mish reaking ases, it reqnires the ime to be in state of hydrate to form blesohing powder.-A Practical Criemret.
[11826.] - TMnning and soldering. - "A, Lirorpool " (page 800, No. 876), recommendears in the trade and find resin and grease is beat for land (it oan be wiped ofl whan hot), muriatic soid for sinc. Any amatoar will do beat to koep chlorido of sisc corked np in a bottle (bost known in the trade as killed spirita), that will suit any parpose he may rant. Tin, zine, bras3, copper, Britanuia metal, wrought iron, Tinexr.
[11828.]-Tinning and Soldering.-I have to apspogise to "W. T. M. D." for inconsiderately eontro-
verting his statement that "clear water will remore the verting his statement that " clear water will remove of stickiness of the hands cansed by naing elarioride of
zinc." as I find now that if there hat beem no oily or
greasy contamination used in conjanction, that this
pecaliar sensation can bo removed by washing the pecaliar sensation can be removed
hande in plain water.-A., Liverpool.
[11843.]-Indiarabber Gig Apron.-I sappose no one has answered this query, becanse no one knows how easily to prevent an indiarabber apron fo together when sat apon. The only way to do it is to as French ohalk or silex-or keep it thoroughly wot with water. These articles are not meant to sit upon; with water. These articles are not meant to sit apon; sticking.-Saul Ryaea.
[11855.]-Hygrometer Motive Power.-Hair, catgat, and ordiaary string are the sabstances umually explojed in the so-called hygrometers, which are when the air is moist (Rome little time' after it has become so, thonah), but do not measure the amount of the moistare.-SAUL RYMEA.
[11875.], -Spectrum Oolours.-The remarks of "E. L. G.," in criticism tpon my reply to "Utile Dnlci," are not intelligible to me as a criticism. A
careleas glance at my reply would show that I confine careleas glance at my reply woald ghow that I coninge
myself to simple answer to the question or part of
it white light, or what his white light really is. Does he white light, or what his white light reully is. Does he
mean to say that the mixture of seveu tints (or coloura) mean to say that the mixture of seven tints (or colours)
will not produce the same white light as we derive will not produce the same white light as we derive
(say) from the sun? In this case I will go with him ; bat if he means that it is impossible to form sensim; white light, pare pigments being granted, I will not go
with him. The composition of sensibly white light with him. The composition of sensibly white light
differs widely, as every one knows who has examined differs widely, as every one knows who has examined
into the matter. If "E. L. G." wonld call upon me into the matter. If "E. L. G." wonle call upon me happy to show him that a beam of white (day) light
may be pased through white snbstances, and although may be passed through white snbstances, and although
sensibly nnaltered, so far as regards ordinary vision, sensibly unaltered, so far na regards ordinary vision,
shall yet have the larger proportion of its colours ex. shall yet have the larger proportion of its colours ex.
tingaished, as shown by the presence of innumerable tingaished, as shown by the presence of innumerable
black bands in its spectram. Of how many coloars black bands in its speotram. Of how many coloars
that white light which I woald show him was composed, Inat white light which I would show him was composed, I woald leave him to disoover, but I would convince him, at any rate, that the presence or absence of a large proportion of the different waves does not sen-
sibly affect the whitenest of the light, provided the sibly affect the whiteness of the light, provided the
withdrawal of the different colours will be according to a voll-defined law of proportion. At the risk of
"catching it, I " make these few remarke."-H. P. H. [11891.]-Contents of Cistern.-This query has been bedly treated. II the are cannot be referred to a cirole, thearea of section conld be found by the method of "Eqnidistant Ordinates," as given hy Chambers,
Elliot, and other writers on "4 Practical Mathematics." In the case of a circular segment, haviag ascertained Whether the segment be greater or less than a semiquerist :-To make the matter as plain as possible, an exumple in nnmbers may be necessary. Peferring to dingram, having given the chord DE $=16$, and versed
sine $A C=0$. Enel. $1 \cdot 47, \mathrm{DC}^{3}+\mathrm{AC}$
AD, or AD (ciord of hals
$=$ tha arc) $=10$. By the roles
of Mensuration, arc DAE $=$

 $-\Delta C=2 \ell . \quad$ The area of be (agmen will, therefore,
 ${ }_{70}^{6} /$ (approximately) This for the lesser seguent. The $\times \mathrm{DE} \times \mathrm{CF}$) $=$ gre ter segment DBE $=218 \cdot 16-70 \% / 9=14717 / 18$
nearly.
Taking the leaser segment to illastrate method, it only remains to maltiply the area of the segment by the depth of the vessel, and for gallons, to divide the product by the eapacity of a gallon. Taking the area of segment $=70 \% / 9$ squaro inches, and be $70 \% \times 43 \div 277.274=12.1564+$ gallons. Now, to ahow the faliacy of "C. B.'s"' rale, take the abore
example as an illustration. The rule, as given, may
 dopth $\div 277 \cdot 274=$ gallons. Or $\left(3 ;\left(8 \frac{1}{4}\right)^{\circ}\right.$
\times depth $\div 277 \cdot 274$. Or $127 \cdot 93293$ (aroa of segment) ares of this segmeat has been shown to be $70^{\circ} / 9$ nearly, while "C. B. "s" rule gives 127.03293 for the
area of the same segment.-JAs. Hastus. area of the same segment.-Jas. Hastik.
[11924.]-To Millera.-In the last issue of " ours," query; but, as I think, erroneously. Each size of query; but, As I think, erroneonsly. Each size of vantages as well as disadvantages ; 4 fit. peone is, ad. doubtedly, a good unefal size, but it is not necessarily the most powerfal. Your correspondents seem auaware that the sit. 8in. is fast coming into use, and cau be so called), the latter size mist perforce necessity be the most powerfal. There can be little doabt that small stonee will eventaally sapergede the large; they are lighter to move, occupy less space, and their first ccst is mach less-three most dressing. The drese will, not, howerer, last so long and they mast be driven at higher speed, conseqneatly the saving in driving power cossumed is very question. able, ulthough the dead weight of stone is less ; they

Pro a 8 ft . Sin. stone is aboat 120 revolations per minate 4ft., 100 revolations per minate; 4ft. 6 in ., 80 revolations per minate. This prodnces a rpeed at the akirt
(thereal point in question) of aboat $1350 f t$. 1220tt., and (the real point in question) of aboat 1350ft., 1220ft., and
$1100 f t$. per minnte. Under these conditions, all things 1100ft. per minute. Under these conditions, all things
else being equal, the powers are so nearly equal that else being equal, the pnwers are so nearly equal that
there is scarcely a choice between; but it nearly all there is scarcely a choice between; but it nearly all
depende apon three conditions-viz., the quality of the stone, the dressing, and the condition of the grain ; some grain will bear doable, or even more, speed than somers, and a judicions foreman in a large manafactory will ever endeavoar to suit his different classes of grain to the nature of the stones. In small country mills, where thisis not possible, we overcome the difficalty by apeod
nnd dress, damp tender grain working best in a free nnd dress, damp tender grain working best in a free
open stone driven slowly. Where the grain is dry and open stone driven slowly. Where the grain is dry and
strong, the stone rather fine-grained and hard, the speed may be raised almost indefinitely. It is sheer nonsense to talk of a large stone being more likely to heat the meal and kill the four than a smailor one ; the fanit lies in the workman, not in the stone. Drive
gently, feed lightly, and you never need fear doing misclief to yonr goods. A general fanlt amongst millers is over-diriving and over- foeding. As a matter of simple opiaion, I greatly profer a large atone for
real excellence of work; the time revolations being real excellence of work; the time revolations being
slower, the grain is less lacerated on entering slower, the grain is lees lacerated on entering
the stone, owing to the low speed at the eye, con. sequently, the grain is crashed more, and less torn, and is thas better prepared for the actnal
grinding. Oar object is (or should be) to thoroughly grinding. Oar object is (or shoald be) to thoronghly
disintegrate the flour and cloan the bran without disintegrate the flour and clean the bran without tearing it to pieces, otherwise the oolonr of the
flour will be deteriorated. As a general rule, large atones do not require lasing so close to accomplish their work as smaller ones do; the dress consequently lasts longer, and the stone works cooler, and throws the bran in larger fintter pieces ; bat so many circum. stances will vary tho resaits that no absolute rule can be laid down. The nature of the soil on which the grain grew oxercises a wonderfal infincice on the anc cessfal working of the manufacture. I would respect rolly cantion all the readers of "ours" against im plicitly reooiving all the statements pat forth by "ear numerons contributors. We are thankfoll for ideas put lorth, bat each one shonld jndge for himself if they will bear the scratiny of common sense, as it is quite erident that too many of our number avoid exercising
their own nataral gitts of one of the most naeful of their own nataral gifts of one of
natare's endowments.-E Epilon.
[11945.]-Leaky Tap.-This is probably cansed by frost. The remedy is to allow the water-way to empty itaelf. This may be eflected by boring two pin holes other ; one to let the air in, water- way, one above the other ; one to
out.-T. S. U.
[11946.]-Imitation Bronze.-Well clean the artioles to by bronzed; if old, to be boiled in soda or potash 1 se , to free them from the old lacqner, 8 c . ; if new, to be pickled in dilnted or stale aquafortis for leat work; fled and papered ap for plain work; and cleaned with emery cloth and then dipped (or may be
clash ased, it more convenient) in the bronze solation, com. posed of one quart of the best rinegar and 4oz. of corrosive sublimate, washed in clean water and dried in sawdast, or a maxtare of aboat a gallon of bawdust and 4oz. of blacklead is better ; well polish with dry blacklead and lacquer with green lacquer, heating the done by well as anything. Use a camel's hair-brash for the lacquer, which you had far better buy than attempt to make ; most wholesale chemists and drysalters sell it or wholesale gas ittors.-W. BoLTon.
[11960.]-Brewing Query.-The reason why the copper is dark after boiling is from the sulphar used
in the growth, and also caring of the hops, forming in the growth, and also caring of the hops, forming a
compound with the metal. Compound formed woald compound with the metal. Compoand formed woalia set thus upon copper, I should hink. Ad hops that as your yeast is liable to get out of order from the effect of the sulphar acting apon the fermentation. Aroma.
[11985.]-Machine to Cut Leaves.-A machine almost exactly similar to the circular saw and bench would cat the leaves as "Anon." wants. The oater rim to be farnighed with flat steel knives pleced a fow inohes apart, and the wheel to revolve in bearings atteched to the bonch or table. Two havdles may be One boy may feed it with small bandles of legves, which fall down an inclined platform when cot, while the other in working as "Anon." saggests.-Rat-Tat.
[11987.]-Draft Holes in Fireplaces.-Used so that the smoke may be consumed by admitting a constant sapply of sir, as in the patent louvre arrangement and other more simple plana, where the dranght is regalated by a system of chains, weights, and levers. "The green tea lenves" are more rapidly and efficiently dried by passing over and throagh the trays a carrent exposing the damp leares to more beneficial than fire. Kilns of damp corn are also occasionally dried by tabes of hented air. The pipes are pierced with small holos and stand opright, or empty apaces are formed with wire netting.-Rat-Tat.
[11991.]- Focal Length of Lenses and "F.R.A.S."-No one is nnder any obligation to reply those who do reply shoald reply civilly, and correctly
he might have fonnd his question, which he calls "so ridicalons," answered in any foarpenny catechism on
optics, and then proceeds to answer it inaccarately. optics, and then proceeds to answer it inaccurately.
No donbt "Anon." asked the question becaure he No donbt "Anon." asked the question becauke he
wished for information, perhaps did not know any more than I do anything abont fourpenny catechisma, or possibly he preferred paying twopence for the information to information, to giving fourpence for a catechism which woald answer this one question only. I sabmit, Mr. Editor, that it is very undesirable that inquirers who ask for-information shonld be snabbed becanse they have not the information they seek. It is desirable, also, that the answer should be accarate, which that of "F.R.A.S" is not quite.
The focas of a camera lens is not, as "F.R.A.S." well The focas of a camera lans is not, as "F.R.A.S." well knows, the point at which the rars of the sma woald
be converged to form a distinct image, and the plate be converged to form a distinct image, and the plate
holder mast not be placed at that distance, bat generally at mast not be palaced astar diatance, bat gener ally at a considerabli grester distance-namealy, al
that at which the actinio ravs (not the laminous rays) from objects at a small distance will converge-ic. the congregate focus of diverging rays. Neither is it quite accarate to say that the eyepiece of a teleecope has to be placed in the principal focns of the objectglass, for its distance has to be adjasted according to as of course "F F object and the eye of the observer, as of course "F.R.A.S." is quite aware. He disclaims any attempt to give a scientific answer to such a question, and none wae needed, bat he might at least have given a civil one or none at all, and an answer may be incomplete without being inaccurate. Originally, by the locas of a lens was meant the point at Which the heat rays of a lens used as a burning glass convarged, lenses being at irst used as barning glasses, being at for little else, and the point of greatest heat It does not exsctly correspond with the point at which either the light or the actinic, or photographic (light drawing) rajs converge.-PBLLo.
[11994.]-Instrument for Measuring and Recording the Amount of Light for Photographic Purposes.-The most simple way to make donble it into two leaves like the corers of a book, then paint one of the outtides with a kind of chooolate coloar, as nearly as possible of tho asme tint an albrmenised paper assames when exposed to the light. then cat a hole aboat the size of a shilling throogh the centre of the painted part of the card. Now this, open the leaves and place between them a piece of sensitised paper, close them agsin, and exposecto the light. Now, as the paper will darken quictis or slowly, according to the ohemical power of the light, it is only necessary to note the number of minatee sarronnding card, and the difference of time ocone at different times, and in different places, will give tho difference of actinism in the light, which does not berrespnud with illnmination; or the card-leaves can holes, and a scale of tints, then expose for a fixed length of time, and see with which of the tints the paper matches and the zame end will be gained. Bat no rule can be laid down for the exposure of the plete in the camera, becanse some subjects will require a natare of the light.-W. MARQCAND.
[11995.]-Patent Rights.-Errata.-For second patent, read said patont, and pat anothar s to warth-oss.- A., Liverpool.
[12000.]-Inseots in Tables and Ohairs.- Have solved in the newly varnished. A little camptor dissolved in the varnish nsed will prevent the recarrenoe
of the depredntors. Tobaco jaice driven into the holes with a syringe will also destroy the inseots-Rat-Tat.
[12002.]-Zinc for Aquarium.-In aniver to "A Three Yeara' Sabacribor," I beg to offer the follow. ing advice how to make, stock, and preserve it:- - Various kinds of receptacles are nsed for both the marine asd
the frebh water aquaria. The square or rectangalar the fresh water aquaria. The square or rectangular
glass tank is the most expensive, while an ordinary glass tank is the most expensive, while an ordiaary
propagating glass turned upside down and placoi in a stond forms a very good shaped and even elogant vase, especially for iresh-water animals. It may be Next comes the filling and stocking. First, a sabstratum of soil in which the plants may grow is necos. sary-jast enongh of sand, stones, and clay to oover the bottom; bat no mad-nothing that is easily removable or apt to discolour the water. Then the
weeds, and, lustly, the animals. Ordinary will do admirshly, the anima/s. Ordinary pond wator wea wo ador is necessary for the aquaria, while good sea wator is necessary tor the marine tank. Wueds
require very little soil. One of the most anccessful require very little soil. One of the most anceessful
plants for the fresh-water aquariacm is the Anacharis and risers, the weed which so often chokes our canals and rivers. It can be obtuined in Covent Garden pretty moss like plant. Bat almost any weed may be naturalised in the aquariam-the water crowfont(Renum. almost any pool daring April and Mas, and placed from tank; it takes root do most uf the pond weeds. Now for fish: -T2e ordinary stickleback, if kept by themyolves, are most
amasing inlabitants, or amasing inlabitants, or the gold fish, the carp, or the
minnow tay be proftably introduced. But in order of keep down the green cinfirue a fow snails are absoor ely necessary. To these way bo added water newts orepalsive an unimal as is by maich is by no means so repaisive an unimal as is by many believed. Bat son
magt be carfofal not to introdace aome kidds of water
hectles, but the diving spider (Argaroneta aquatica) will be found a most interesting addition. The aqua. rium is a scientific toy that costs nothing beyond the first expense of purchasing, and it provides
endless source of deligbtfal stady.-R.C.T.
[12004.]-Nitrate of Soda.-This valnable ingredient for the agricultarist may, as stated by S . Bottone, be procared in slight quantities on the frontiers of Chili and Fern, but the balk of the supply, which is unlimited, is obtained in the interior of Bolivin (see Darwin's Travels), and shipped from the port of Iquique, whence a railway of ordinary gange rans to Tarapaca, the great mining centre. Narrow gange lines of 30in. connect here, and both systems are worked with powerfal Fairlie locomotives; the larger ones made at Bristol and the others at Warrington. Continnous and heary inclines extend from the coast to the mines, and the difficulties of the line serve to illastrate the special and admirable qualities de
by this improved kind of engine.-P. Fravce.
[12008.]-Cork Cutting.-If "Cortex" can spare a visit to the Mechanical Department in the Crystal Palace, London, he may there see different working
models of cork-catting machines. It would be difficult to say which machine for the parpose is best.-Rat-Tat.
[12012.]-Water Power.-The reply of "Philan hropist" is of no use practically, I am sorry to say although I will do him the justice to say that he appears to be perfectly corrcet in theory. He has calculated the natural effect due to a fall of water, but he has not gone any further; of the four horse-power stated, above three-qnarters or and anotiter. The realy of J Gillaird is
ind and anot ier. The reply of J. Gillaird is more to the parpose, bat superficial. The actual power will in some measure depend npon the length of pipe from the reservoir to wheel. This would act by diminishing the relocity, and consequently the power, on account of the friction entailed by the greater length of pipe. The heoretical velocity due to that hend, regardless riction, is 1,180 f. per Becond ; so, being ignorant the length of pipe, we can conveniently suppose the ival give an approximate result, bat it will not be very far
from correct. The diameter of pipe $=8$ in., so that from correct. The diameter of pipe $=3$ in., so that
area $=\frac{9 \times 11}{14}$ square in., \therefore number of cabic inches $=\frac{9 \times 11}{14} \times 12000$, or $\frac{9 \times 11}{14} \times \frac{12000}{1728}$ cubic feet of water aupplied per minute. That is, $\frac{9 \times 11 \times 12000}{14 \times 1728 \times 00}$ cabic feet per second. The cheapest plan, as regards fret cost of atilising this power, would be a water wheel; and, considering the small amount of fall best. This would have a cheap first cost, but wonld not give as good a modulus. It would probably give and 3in. broad between the sides. There are to be 12 buckets. It could be made of either wood or iron; but prefer iron axle and bracings, and the rest wood is then easier to repair, make, and it costs less. Th wheel itself wonld cost from $£ 5$ to $£ 15$, dependent npon the locality. The other descriptions of water-wheels would cost abont the same, but would not be so efficient. For a motor that will last for ever, and be able to ncrease its power when the fall iacrenses from a heavy hower, \&c., give me the tarbine. The fall can't be too ign for it within reasonable limits, an all The greatest disadrantage is the speed at which they The grecessitating long bearings and care in fitting Nevertheless, I think that the mannfacture of this one would not be difficult to a tolerable mechanic, with a foundry handy, and set of tools. The speed which I have designed this one to ran at is 420 revolntions per minnte. The cost is a variable quantity, depending apon the country that the inquirer is in. The price might range from $£ 10$ to $£ 30$. With that head of strong enongh for all additional heads, so that in the rainy season it might be upwards of 2 horse-power. I end sectional drawings of turbine that will last a long time, all the parts being easily replaceable.
me, all N is a bell-shaped iron casting straight cylindrical pattern, for 2 in. from bottom, and traight cylindrical pattern, for $2 i n$. from bottom, and the top of casting. It should be a semicircular carve of 5 in. external radius, and 5 in . interval radius. The casting to be $\frac{1}{2}$ in. thick in corved part, asd sin. thick in trabin bored and key way filed, or what is better, slotted $\frac{1}{5}$ in. deep, and in. wide. There is alse a flat to be filed on in thick, 1 in. deep, and 5 in. long. They are to be in. thick, lin. deep, and 2 in . long. They are to be bending it at right angles at $1 \neq \mathrm{in}$. from one end. This has then two three-sixteenths of an inch holes to be bored in it at the smaller end in order to rivet it to bell casting. They are to bo placed at an angle of 24 with the or vanes is 49 . They are the bell casting. The guides are to be made of same thickness of iron, and in the same manner to the backets, and cat to correspond to the curvatare of the bell casting. They are to be at an angle of 66 with main casting, In the main casting there rises three main castibg, In the the ribs to be liv. by tin arms or ribs to support. The ribs to be in. by fiv., hole oleren-sisteenths of an inch diameter bored in it for
reception of the gan metal step. The step to be elevensixteenths of an inch diameter, 3din. long, with flange curned at top, beatly turned about fin. thick, to fit on top of step block. It is then to have hole bored sevensixteenths of an inch diameter, and 3in. deep for shatt diameter at top with flange 1 in. wide, sin. thick all round. The lid, or cover, to be cast 23 in. diameter, and sin. thick, with staffing box in centre, to be section as shown. The staffing box is to be $1 \frac{1}{\frac{1}{2}} \mathrm{in}$. deep, and 1 t in. diameter. To be gin. thick in flange where the bolts go through. The stuffing-box gland is to be $1 \frac{1}{4}$ in. diameter, and 1 gin . deep. This is to have flavge in. thick and gin. wide, and fastened by three fin. bin thick and gin. wice, and fastened by hree
bolts to the staffing.box. The bolts might be cast in

top of staffing-box. The lid at top is to be fastened by six sin. bolts on main casting. It is to be fitted to top with steam-tight joint. It would be best turned, bat a very fair joint can be made with the rongh casting, the scale is taken off by roughly grinding for a few minntes with river sand. The cementing materials bevil-wheel to communicate power; G, stafinog-box ; D cover; H, casing; I, arms supporting the step bloc J , which supports the step proper K. The axle X
works in it, and the bell casting N is keyed on it. B B are the guides, and A A are the bnckets or vanes. C is
the elbow for carrying away tail water. F, the supply pipe.-P. W. H. J.
[12013.]-The First Watch and Clock Made -The invention of the coiled spring in watches dates from the close of the fifteenth centary. It is claimed for Narembarg, then famons for watches, bat the priority is much dispated. Their introduction into Eugland is equally uncertain. The watch of Abbot
Whiting, dated 1536 , is of accredited antiquity, and Count D' ship, is dated 1529. Henry VIII. had a watch that went for a week; Anne Boleyn possessed another, well as a small gilt clock, now in windsor Castie. Edward VI. had, in 1542, a watch of iron. Mary Queen of Scots possessed a death's-head watch and a skull watch; one in a case of crystal, comin-slaped, nat another in which a piece of catgat supplied the place of a chain, but all these were foreign watches. period is a carious oval-shaped watch, in a silver case ornamented with mythological figares. In 1635 the value of a brass watch was forty shilnings.
was constructed the spiral or pendulum spring nvented by Dr. Hooke and improved by Tompion. Next, Jaare, by applying the pendalam spring, added to the hour hand) minate hand and wheel hand He also added the repeating movements in watches of France. Jones also made repeating watches for James IL. and William III. From 1698 all makers were compelled by law to put their names on their watches. In 1724 was invented the horizontal escapecompensation pendalum. At the beginning of the las century was invented jewelling the pivot holes of watches to prevent friction. Arnold made the smallest repeating watch ever known, for which George III. presented him with 500 guineas. Among the celebrated French watehmakers was Brequel, less than a Napoleon. He invented the tonch watch, by which a spring tonched at any time strack the hour and minate; one cost the Dake of Wellington 300 gaineas. Amongst the earliest of the wheel clocks seen in Englund was that of St. Panl's Cathedral, London, in 286. In the year 1869 the good citizens of Beauvais posed of 14 different movements, and 90.000 pieces (weighing 35,0001b.), and costing £ 5.000 . The body of the clock is 36 ft . high, of carved pals-Ancient and Modern Durston
[12020.]-Tireing Cart-Wheel - The best way you require it on the swallest edge of te ap she size dish the tire by inside the tire, which is very easily dene.-T. G. Re.
[12022.]-Forests and Rainfall-Those interested in the relations of the above are referred to Boisés et non Boisés," par M. Becquerel. Paris, 1853. 8vo. Bonssingault, J. B., "Economie Rarale" 2nd Edition. Paris, 1851 ;" or the English translation published by Bailliere." "Man and Natare, or Physical Geography as modified by Haman Action," by G. P. Mursh. London, 1864. The last-Damed is a work of Marsh. London, 1864. The last-Dan
[12036.]-Engine.-A boiler Sin. diameter by 9 in . long would drive it. At 301b. pressure, with the piston making 1,000 strokes a minute, it would be 1192 horse-power.-Amices
[12040.]-Navigation.-I could procure a Norie's, second-hand, of a friend of mine who has left the sea tise his address.-ARoma.
[12047.]-Radius of Sector.-I am sorry that I did not put it plain eanogh; what I meant by carves is the arc A F B and C F D by chords from A straight
line to B and C to D, in No. 363, p. 650 , query 11161 .line to B
T.E. G.
[12048.]-Trip to Ireland.-"A Wanderer" can procare all the maps he requirea, inclading the geological sheet, from Stanford, of Charing-cross, who mend him to procare the illustrated guide books to Wicklow and Dublin, pablished by the Graphotyping Company. This season they have issued a guide to the Shannon and Limerick, which, as "A Wanderer" intends bending his steps towards Parsonstown, may be useful to him. This gaide sapplies the most recent information, is nicely illustrated, and most agreeably written, and is farnished, too, with a good map of the South of Ireland.-E. B. F.
[12052.]-Rust in Brewing Water.-Pass the water through a tube containing a layer of fine sand or charcoal. The last is the best filtering medium for
"Cromwell."-RAT-TAT. " Cromwell."-Rat-Tat.
[12056.]-Echo.-Does J. T. Oakley mean what is commonly known as an open roof-uot ceiled ? If so, I from top of wall or eaves. If ceiled, pat in an end gallery opposite the pulpit; or if the pulpit is standing against the wall move it out about 6tt. These remedies a public speaker or preacher is most nnpleasant.Berks Farmer.
[12056.]-Echo.-Pat in false ceiling, which generally effectaally stops the complaint.-Aвомa.
[12058.]-Bees.-Swarm or Brood-Is "C.R.H." certain there were no living bees in his hive when he removed the intruders he mentions? I was deceived once or twice myself, until by accident I examined the proved that when yery weak, the remaining bees, either for warmth or safety from mice, beetles, \&c, insert themselves in the half-empty cells; and when examised, and enemies removed in time (i.e., before hatching commences), 1 have had stocks recover, and do welh Fhen not a bee could beseent wi cefer to is Maroh and April. If he is certain the old ones were dead, he may rest assured it is a swarm, either one of his own or a runaway; for if the larva was not destroyed by th would consequent on the assence of bees) or veres for according to Habert, Kirby, and Lardner, vide "Museam of Science and Art," the infant bee requires the greatest care and constant attention of that class of the com munity known as nurses. As to advice, if they are basy working, you can do nothing, let them work on. I do not know if it is punishable to leave empty hives on the stands daring swarming seasons, but on three occasion Thave thoughtlessly done so, and each time they were enanted, once, I know, by a strange swarm. Iknew eekeeper in Oxfordshire who always kept a spare
for visitors, and he has told me (in confidence, of course) he always has one runaway swarm, and sometimes more in the season. I suppose a honse ready furnished has attractions.-Beres Farmer.
[12058.]-Bees.-Swarm or Brood.-As acockney who has lived but three years in the conutry, I accept Mr. Abbott's scolding on the score of iguorance; but I plead "not guilty" to the charges of wilfal neglect, and or setting a trap for my neighboar's bees. It has been a bad season, even in this mird country, for nees ; my neighbours were losing theirs at the time I thought had lost mine, about the middle of April. A Ma query (p. 313) was written, I believe, on May in found, for the first time, bees swarming bont the month of the hive. Since I first wrote the bees have been alwars more or less visible, but I don't think they have done much work; certainly the weather is against them. But yesterday and to-day, Jane 14th) have been bright hot days, and the bees are in such numbers that they will hardly let me get near them. Some seem to be returving from the fields, and to be attacked, and, if possible, robbed at the entrance. I don't think there can have been any honey
in the ofd comb from the light weight of it, bat I in the ofd comb from the light weight of it, bat I
thint it might have contained brood which the warmoth hatched. At all events, the bees a month ago let me lift out all the boyes from the case aud wipe ont the
fldoy
be able to report progress if this warm weather continues; moanwhile, I am much obliged for the cantions Devon.
[12060.]-Glass Blowing.-The following may be of use to the querist. Profeasor J. Lawrence Swith recommends a Baneen burner, fattouned at its ex-
tremity to as to give a thin, broad flame, for bending tremity 0020 to give a thin, broad tame, for bonding
glass tabes. Thia $i a$ certainly a great improvement on glass tabes. This is certainly a great improvement on the commonly employed barnor, bat an ordinary fish. tail or batawing gas-barner will be found to give, if
possiblo, still better resalte. Mr. H. Carrington pogaibe, saill botter reanate. Mr. H. Carrington Bolton saye that he has employed for some years an
ordinary betewing burner attached to a mall, short
 stand sine the table, in order that raising the arms inconveniently high may be avoided. Sach a barner insuree a broad dame, by which the tabe is heated for two or more inchen in length; the tube is turned while in the lame, and removed for bending as nsual. The deposit of earbon which at frst sight might seem an objection is really one of the chiof advantages of asing this barner. On placing the glass in the tiame the deposit begins immediatily, and preventa too rapid a rise of comperatare and consequent oracking of the glans; daring the heating the carbon tends to distribate the heat equally over the surface of the tabe; too sadden cooling is prevented, and the glass is, as it were, annealed. The black deposit is readily removed by a dry oloth. This plan was commonly employed in Hofmann'e Laboratory, Berlin. In bending tabes of more than fin. in diameter one end shonld be olosed tightly with a cork (or wax), and air blown into the other end at the moment of benaing the air apon the gulating jadiciousiy the prossare of the thir lapter will either bulge out nor collapse, but will retain ite proper calibre. This cannot be effectod, however, with vary large tabea, or with very thin ones, which require the nice mani
blower.-A. M.
[12060.]-Glass Blowing.-Heat tube in spirit lamp, tarning it round and roand, bat neither stretch nor comprese it; when warm enough, bend. For balb ont of the fame and break it then hogi again, and out of in the end of break it, then hoas again, and orifices atop one end of tobe heat where the halb is to be as in bending, and blow se before. If sou onnnot get heat onough aith your lamp nee your blow-pipe the great secret in the ase of which is to keep your choeks tightly poffed out while you inspire through the nose.-HENRy Nuwind.
[12060]-Glaes Blowing.-Thin glass tubes are most easily bent in the common batswing flame
Hold the tabe so as to expose an inch of it to the hea Hold the tabe so as to expose an inch of it to the heat at once, which will be completely covered with soot.
When it ooftens, it may be, with careful handling, When it softeps, it may be, with careful handling, neatly bent to any angle withont fiattening. Care mast be taken not to bend too soon or too quickly. To tabe, alose the tabe in the blow-pipe flame, and by prolonged heating cause it to thicken till it has assumed
this form. By application of the month at the open end, and care.
fal blowing.
 at the same
time keeping the tabe constantly'rovolving, an even and etrong balb may be blown of any size. For fall partionlara, refer to Williams'a "Chemioal Manipulation." If it be required to blow the balb in any other part of the tabe, one end mast be closed, the glass thickened in the
same way, with like precautions to keep the trbe consame way, with like precau,
stantly tarned.-ANALyst.
[12060.]-Glass Blowing.-Glass blowing is only oxcolled in by practice. See that your tnbe is perfectly ary, hold ithe part to centre of fer the flame, gradualy bringing it down to centre of fiame, so as to warm it the part is red hot, and then the glass will bend gener ally from its own weight ; don't nse mach pressure, as the plases will backle in and almost stop the pipe ap. For blowing a bulb, blow with blowpipe on the middle of your tabing, also tarning it round ; make it as ho of your tabing, also tarning it round; make it as hot as you can, then palithe two ends apart, then blow on one of the enda, which wil stop it ap; get it to a great
heat, put the cool end in your moath and blow gently at frat, increasiog preasure as it cools; also tarn it at first, increasiog preasure as it cools; also tarn it
ronnd while blowing; you ought then to get bulb. Cannot say more in limited epace. Spirit lamp hardly gives enoagh heat, gas better.-A. R.
[12061.]-Chemical.-Chlorate of patash rany thas be diatingaished from chloride of potassinm. With a solution of nitrate of silver, chloride of potassinm gives white curdy precipitate. Chlorate of potash gives no precipitate if pare; commercial chlorate generally gives a slight precipitate, owing to the presenoe of a
trace of chloride. Chlorate of potasb, treated with trace of ohloride. Chlorate of potash, treated with
bydrochloric acid, evolves ohlorine, which may be bydrochloria acid, evolves ohlorine, whioh may be
detected by paper soaked in a solation of iodide of potassiam with starch, which is coloured blue Chloride of potassinm does not evolve chlorine ander like circumstances.-AxALyst.
[12062.]-Induotion Coil.-" J. B. P." must coil the eecondary in the same direotion as the primary ar eight layers of tisene, and each lajer of the second ary with three or four layers of tiesae, well satarating rach lajer with shellao or conling. wax varnish bat
tore of ordinary black yosin and beeswas, abont
four parta rosin and one part beeswax by weight, and poared on hot with a apoon or ladle, is far superior bat mure dificolt to apply; when tuished, the whole o be covered with eigut or toa lajers of tiseag or W. Bolton.
[12065.]-Paint and Varnich for Portable Engine Boiler.-The matorial nsed is a sort of paint and varnieh in one. callod varniah green of sumel preen, mado apecially for auch jobe, to be had 1s. Sd. per poand. If too thick thin with tarpa.18. Sd. B.
12066.]-Weshing Baliste.-Use faller's earth and ouly moderately warm water, rinse in cold, and bifore drying dip in a atroug solation of common sall. This will prevent it ranning daring drying.-Tnetap.
[12068.] - Surgical Dentistry. - "Jee" had better upply to Mesers. Jno. Charchill \& Co., pablishers, New Barlington-atreet, London, or, let him purchase Tome's "Dental Sargery" from that firm; he will find the work the ons ho wauta. No man can efficiently practice dentiotry wnlese ho is Acoenghly conversant with the contents of Mr. Tomo's work. There are many other valaeble worke on surgioal dontistry which I could enamerato; but grind wall at " Tome "B, ", and Joo " will have the principle of dentiotry, and with a Sow years' praotice he may be able to all a tooth with gold in a proper manner. That besach of the profession once acquired he may rely on a good practice ; a small
percentage of our English doptits full teeth with gold, percentage of our Engliah
as they should do. Tom.
[12069.]-Trip to Australse-Speaking from ight years' experience of life at the Diggings, I may mention that a consin of mine was aupposed to be in a oonsamption, oonstantly lying on the sofa with clear water dribbling from the moath. Ho tried a trip out to where abont the yoar 1854. Want of Coloninl ex perience chere abour the yoar i854. Want of Colonial ex perience ing with me for a foo months ho returned, and has sinco enjoyed capital health. I woold edation eny person in delicate health to take a trip there if pomible. Ba by them, as I was enabled to live rery peaily as cheaply by then, as IWae enabled to hive very neeng ascheaply other paople's ventares at lens than thoy cost at home If tolerably active, aud (this is the rab) willing to work rithout being afraid of what Mrs. Grundy would bay you can get along very well there, as long as you keep out of the pablic-hodeses.-A. Liverpool.
[12070]- Flectric Kite. - The above may bo way :-Twist a come wire on the kite, in the following eome metal points (large pins will do, on the top of the kite, and connect them with the wire on the belly. band. The kite-string shoald be soaked in stroug brine to make it conduct ; or, better still, should have sfine wire intermoven with the strands throughont its ength. A metal ring or a ter mnst be tied to the end of the string and to the ripg is fastened a sard ilk cord to ingolato the supiatus. In raising the lite, care should be taken to pass the string nnder an iron railing, or some conductor consected with the ground, lest the faid should pass through the poerator's body. You cannot be too careful in neing the kite, as it is a most dangerons toy. Oiled silk is moperior to calico for the material, as it is more water-prool.-GLATTON
[12073.]-Scarlet Runners. - If T. A. Slater will take the roots of the scarlet runners up in November, and place them in moderately danp mould in a cellar, away from frost, and plant out in single rows, 1 ft. asunder, in April, the crowne being din below the surface, they will come in bearing a month
before scarlet runners sown at the same time.
[12077.]-Pyrethrum Parthenium : the Common Feverfew.-In the double variety, the yellow lubalar torets of the dise disappear, and are replaced by white guilled fiorets. It is very common in gardens,
and seed muy be pr ocured of any seedsman. and beed
Wilinam.
[12078.] - Oabbage Planting. - The cabbage tribe are gross fecders; they like fresh rank manure, nind pieaty of it, at the tine of planting out. George to have always at hand thrifty young plants for plant ing out. The Marell and July sowings are the most important, as on these depend the supplies during winter aud spring. The finest and earliest I have grown are sutton's Imperisl. I began to cut on the 13th of April. I have also fine cabbages of Sutton' Drumhead, Blenhein, and Early York. By taking the finest plants out of the secd bed as soon as fit to plant so on-the cabbages will come in one after auother Savoy cubbages.-1 prefer Sutton's Golden Globe for Savoy cawbages.-1 prefer Sutton's Golden
winter and spring use ; main? crops, Dwarf Green winter and spring use , main crops, Dwarf Green plant in rows $\& f$ t. apart from root to root each way make 2 deep hole where each plant is to stand, and ato it puta barrowful of rank manure ; put over it a ittle earth, and on the earth plant the rhubarb with its crown level with the ground. In the cours ikg Mayatt's Victoria for main crops; Mayatts Lianseus for early crops.-M. N.
[12086.]- Velooipedes.-" Bob C:" can try a trick ruccess velocipede which 1 have seen tried with
quarters of an inch deen of the felloe all ronnd. Substitute for the wood cut away a ring of rubber, and crew on the tire again, using longer screws than before. Do not pack the rubber tightly; the fiat kind lire and rubber will last a longer time.-Rat-Tax.
[12088.]-Cleaning Jowellery.-The best way 1 know to clean gold jewellery is to use a soft bruah and jeweller's rouge; but for gitt or Brummagem joweilery no brush must be used, the film of gold being so delicate that it would be injured or entirely destroyed. That sort of woris must be dipped in a solution of cyanide of potassium and water, with the addition of a few drops of ammonia. When taken out to be well
[12088.]-Cleaning Jowellery.-The liquid to "liqua
[12089.]-Felt Eats.-The bad stuff used in stiffening has been driven out llke oily matter by the heat of the head. It can be removed with a cor brush, decoction of logwood, and soda-soap.- Bat-Tat
[12094.]-Preserving Caterpillara.-Haring killed the cat rpillar in gpirits of wine, make a sumal hole in the tall, and gently press out the contents of the skin. Then dill the shin with fine dry sand, and set it aside to dry. When dry, in about three hours, shake out the sand, and gum it on to a plece of paper to set in the cabinet. The skin can, if preforred, be filled with coloured wax. Or else, having emptied the skin, fit a small tube to bo drawn to a point into the hole in the tail. Blow through the tute into the skin turning it round over a fre. A charcoal fre is best; but if you have not got one, and cannot make one, a lamp or an ordinary fire will do. When the gkin is dry take it off the tube, and fix it in the cabinet. Caterpilar prepared by either of these ways may be anointed with a solution of reain in oil of spike uniess they are hairy ones.-G. B. E.
[12096.]-Copying Inusic.-If the mustc has been egistered, the teacher cannot use or cony it for chr culation even among his own pupils without Arat ob aining the permission of the composer. See "Every Man His Own Lawyer," price 3s. 6d., pablished by Lav stutioners in Loudon pud elsewhere-RAT-TAT
[12102.]-Lightning.-The speed of the electric spark hus been mrasured by an ingenious apparatus ully descrived in a back number of "Househald Works" (but I regret I have nut the number by me) and has been found to vary with circumstances, but said to be the quickest traveller in existence; but from mine own unscientifc observation 1 should feel inclined to bet on the lightning.-HENAY Newhay.
[12105.]-Equation.-In Hamblin Smith's " Al gebra" (p. 191), a similar question is worked folly. By question (1) $x^{2}+x y=28$. (2) $x y-y^{2}=8$. Le $m x^{2}-m^{2} x^{2}=8$. Dividing (1) by (2) $\frac{x^{2}(1+m)}{x^{2}\left(m-m^{2}\right)}=$
$\frac{28}{3}$. That in, $\frac{1+m}{m-m^{2}}=\frac{28}{3}$; or $28 m^{2}-25 m=-8$ solving the quadratio one of the values of $m=$ j). Thus from (1) $x^{2}+x^{2}=28,7 x^{2}=112, x^{3}=16$
 for y can easily be found.-C. H. W. B
[Solutiong hape also been receired from W. H. Maica, Excelaior, A. R., Molison, W. L. G., Nemo J. F. E., S. J., E. Slanghter, J. Hastie, W. S. a H. M.
W. Bnsh, C. P., H. G. M., Thetama, W. K. Hall, F. B. P. Carmichael-EED.]
[12110]-Silver Plating.-To recover the gilver raporate the solution to dryness, and fuse the product In a crucible. As for the faulty deposition, remember that the surface of the bilver-plate should be bout
equal to that of the article to be phated. If the plate equal to that of the article to be phated. If the plate dark, add a little cyanide of potassium.-W. L. G.
[19111.]-Hot-house Boller.-There is no boiler better than the saldle, where little depth of boiler house is a consideration. But to get clear o tank water about sft long can get a wre, wroughtiram ix top of tank a little above the hight of sprinis he boiler is not very large, "w. E." may tix. his present boiler in one cond of tank. If it takes up 800 much room through bricks in setting, "W. E." cal purcluse from makers one that would do without brick work, and not take up more than 3 ft . square at one and of tank.-H. Hargreaves.
[13118.] - Gold Quartz. - Taking the specifc ravity of quartz at 2.68 (say 23), and that of goll a
 the quantity of quartz.
$306 \times 3\}=(19 t) x+2 \underset{3}{2}(306-x)$,

$$
\begin{aligned}
904 \frac{1}{4} & =\frac{77 x}{4}+\frac{8(906-x)}{3}, \\
\frac{1989}{4} & =\frac{77 x}{4}+\frac{2448-8 x}{8}, \\
11984 & =281 x+9792-82 x, \\
199 x & =9149 .
\end{aligned}
$$

Whence x, the number of grains of geld $=10 \frac{158}{145}$ grains (may 10igrainy). -Excelomor.
[19118.]-Gold Quarts - Lot W, w, r° denote the wights of the compromd and the two iogredinnts, and S, s, s^{\prime} their respective specitio gravitics, * being that of the denser ingredient. Then-

$$
\begin{aligned}
w & =\frac{\left(S-R^{\prime}\right) \times s}{\left(x-x^{\prime}\right) S} \times W \\
w^{\prime} & =\frac{(A-S) R^{\prime}}{\left(N-x^{\prime}\right) S} \times W .
\end{aligned}
$$

By three forms, if $W=808, \mathrm{~s}=8.25, s=19 \cdot \mathrm{~g}$, nearly.-W, W. L. G.
[12114.]-Dre for Cricket Cap.-No remedy [12116.] - Mydrogen Lamp. - In anarver to H.H. G." In his hydrogen lamp, the first "ffect is that a mixture of hydrogen and air impinging upon it to a red heat. The mixture of hydrogen and air surrounding the platinum is an explosive one, which at a certuin high temperature is ignited, and the from the lamp. The exploston is eaused, therefore, by from the inmp. the exploston is eaused, therefore, by mediately surrounding the platinum.-ANaEYst.
[19118.]-Organ Construotion.-In ueing harmonium reeds, have a separate pan for your reeds, not on the same soundboards as your pipes; ose the pipes in a manner described in a letter in this number. Josepi Willian Fexnell.
[19122.]-Driving Bands.-From twelve ycars experience I can unheestatingly recommend leather bands as by far the best and chrapest in the end, and
regarding all weathers. Have your bands made to regarding all weathers. Have your bands made to order, and where you can tlepend on the leather being well seasoned.-Berks Farmer.
[12123.]-Worn Waterproof Bands-Boiled linseed oll, followed by boild oil and lampthack, and thoroughly dried out of doors, is yood; but whether the best is a matter of opinion.-lienry Newman.
[13124.]- Voioe Weakness.-Try a mild course of galvanism to the throat, and I should recommend you to bathe the ohest with moderately
upon risiag and going to bed.-A noxa.
[12125.]-Cover Plates.-I don't exactly understand what " Excelsior" meang by cover plates, without he means all the piatus, boih top, loutom, and sides. There are two kinds of plate girders, one of other of the box form. In practice, the most usual plan is to have the dopth one-twelfth of the length, but this varies accoriling to the moving load.--W. H. J.
[12128.]-Portable Dark Tent.-The following description of a dark tent, takon from Hardwick's " I'hotographic Chemistry," might, perhaps, suit "Occasional Thoto. The ectition is ton years old, so, bertaps, such as it is, I will give it :-1. Two boards, each ;inin. $\times 1$ sin., are hinged together by gtrong hinges; in the outer corner of each a hole is bored. 2. Four poles of light strong wood; each pole is formed of two parts, fittrd together by a brass tube; the bottom ground ; the top part, visin. long, has a smaller iron point at the end; the covering of the tent is formed of two thicknesses of yellow calico, and one of black; the seams must not correspond. This covering must bare the shape of a cube, open on one side, which side must have the forut of a sack, with a pioce of bottom part of this cube are four openings, fitting exaotly the poles, and correaponiling to the holes at of corners of the boards: on the opposite side
onbe are for or other holea procisely fitting the iron points at the top of the poles; all these holes ought to be bound with leather: the tent is packed by puting the eight half poles on the ciosed table, surrounding them with the covering doubled np, and atrapping the whole toxether. To mount it, the table is opened with the hinies downwards, the bottom half poles are passed through the holes at the corners of the table and the hoies at the bottom of the callco cube, 2 peg being inserted for the table to rest on; the four top poles are then put inside the covering, and each one fitted on to the corresponding bottom pole, and the iron points at the top being inserted into the superior holes of the calico, the whole now forms a convenient table on which all the operations of photography may be performed; a windor may be cut out, which can be filled in with adyactloic silk. This tent appears to me to be portable and convenient, and I do not remember eceing any account of a better one.-1 SANTALINTS
[18130 and 12181.]-E1eothidefty.-A murrent from a machine is the same as one from a battery, brit is produced by a highar clectro-motive furoe, and is very as to engraving wes made by Spencer in tho first paper anmoanciog the dincorery of the electrofype, and was It is also experiments ho made in originating the ar. grephy, which reverses the process. The oopper from as sugrestod, becanse it cannot be obtained of unindent overnesg, - Bioma.
[12181.]-Flectricity applied to Engraving. -I am very dunbtful whather in "Philanthrnpist's" proposed process the enpper wonld adiaere with naffcient tenacity to the metal plate to withatand the "sueking" action of the inking roller. At any rate the plan would be aseless for copying "fine work. althongh it might do for producing facsimilea of letters, de.- if the writing on the plate was done" backwards" The lithergraphio process is considerably chesper than "Philanthropist's" conld possibly be.-Sacl Ryuea.
[12182.] - Polariscope.-"Neery" will nacceed better if be takes two pieces of plate glass, backed with black velvet, and set in irames as in figare. The apper a collar, that if may be in a at any azimnth as re. garia the inwer frame. The frames in the fignre are pupposed to ret at snoh nn angle with the vertical that the incident benm shall atrition at abont 50 , the angle of total polarisation by single reflection from a will consalt the indices of hack volumes, he will find directions for the constrac. tion of polariscones where polarisation by refraction polarisation by refraction hen made nie of, suo [12183.]-Polariscop -In nnswer to "Needy, I am surprised be cannot succeed in tho way described. Bat he reems to ase the tranemitted ivntead of the retlected light, avd shonld therefore use bia
plates at an angle of at plates at an angle of at
The angles are measured from least 70° instead of 58°. The angles are measured from the perpendicular to the surface of the glass, which
"Needy" may not be aware of. It calculated from the surface of the glass the light should fall at angle of gnrtace
$\mathbf{3} \mathbf{3}^{-45}$ to obtain the best efficet by reflection, and at not more than 20° when the rocracted raya are to be used. I have a polwi-cope in which ouly glass plates are nesr, and it aviwers admirably, but it is nert to impossible to get total extinction of a bright light anch as a lamp or gas fiame gires. "Needy" must romenber that crystals only prodnce effects of colour when viewed in certain positions, and When not too thick.
By arranging bis analyser for dn:kness and tryiug By arranging his anilyser for dnekness and trying
thin films of mica aud selenite in different positions, thin films of mica and selenite in different position
success will soon be achieved.-ALFRED H. ALLEN.
[12188.]- Elard Water.-Boil some of the water for ten minntes in a glass vessel (anch as a test-tnhe), bat without letting it eraporate. If it becomes turbid and forms a doposit on the glass, the water mny be much improved oy the addition of a small quantity of deposit bich mogt be allowed to settle wand the clear deposit which mast be allowed to setfe, sunt or siphoned of for use. Ton mpar water will methe the watar taste sospy. If too little has lime will make the watar taate soapy. If too little has been used. Prectico fill soon teseh the requisite quen tity of lime water to be ased.-ALFRED H. Alien.
[121:5.]-Suspended Shilling.-Entircly due to what may be considered a form of unconscious cerebration. Let "H. G. W." vary the experiment thus. Allow all the other couditions to remsill as they are but place the tumbler on three half-crowns of the relign of William IV., and he will find that the snspended of William 1V... and he will find that the suspended nearest thereto. He utust not omit the hall-crowns. nearest the
II. P. H.
[12157.]-Smell of Paint.-Hay, sprinkled with a little chloride of lime, and left for un hour in a closed room. will remore the smell of new paint.F. A. E.
[12168.]-Lime Lisht or Electric Might for Magic Lantera.- 1 . First cost of single lantern for use with lime or electric light from $£ 5$ to $\mathfrak{f y}$; double lautern from $£ 8$ to $\mathbf{£ 1 5}$. Lime-lipht apparatus for slagle lantern (including blow pipe, gas-baga, retort. \&ce.) abont $\&: 5$ to $£ ;$; for double lantern, $£ 7$ to $£ 10$. Electric light apparatus (including reflector, holder, and forty cells). from 112 to $x^{2} \underline{0} 0$. These cetimates are exclusiro of sides and objects, a good collection of whioh can be had for $£ 10$ or E 12 ; they are also lent on hire. 2. Dependent on the time in uee; a few shillings an hour. 3. The lime-light is far cleaner, and more readily worked than the electric light. 4. The adrantages of the lime-light are cleanliness, ready preparation, ease in using, constancy of light, cheupness, portability, easy removal after use. The adsantage of the electric light is only one-intensity of light when preparation mesing with acids and fumes in working. unmanazeability in uac, inconstancy of light, expense. and absolute necassity of careful and tedious washing up after use. b. To pet a really satisfactory electric light. at least thirty or forty cells should be used; having. and the former is much the cheaper. 6. The llme-light will an wor for every purpose, except a few
experiments in spectrum analyais and radiant heat, for which the electric light is beffer, though, of course, the battery used for the electric light may also be employed for all the experiments in galvanic alectricity. I use the former myself, almost invariably. By all means choose the lime-light, and use it for all possible purposes in preference to the electric light. I apeak from experieuce. If " IIon. Sec." will write No. L, Surrey-street, Sheffield. I can help him still
[12171.]-Utilisiag Chemical Producte. The products would never pay any one to separate ; the most profitable use of them is to throw them away ; if thrown on a manure henp they would render good afrvien by the nitrates they contain, and by preventing the escape of ammonia.-sicus.
[12171.]- Utilising Chemical ProductaSubscriber ${ }^{\prime \prime}$ is right in supposing his strippling solupotass!um ; but he cannot extract the canstic allaties botassum; means of lime, nor in any other was that will pay "Subscriber" epeaks of nsing nitre. If he used "ubscriber speaks of nsing nitre. If he used nitrate of soda instead, he would effict n considerable
saving, sishb. doing as much work as 101 lb . of nitre. saving, solb. doing as much work as lollb. of nitre.
He would then have only sodium in his liquor after He would then have only sodium in his liquor after
treating with salt, and if he has any waste heut it trpating with salt, and if he has any waste beut it
might possibly be worth while to erapornte the solumight possibly be worth while to evapornte the solution, and sell the solid sulphate of sodium (or bl-sulplate of sodium, as it would really be) to sorda manufacturer. Ife would at the same time get off nitric acid, which he might readily condense and utilise. If "Subscriber" adopts this plan he should Shefficld.
[12172.]-Constipation.-In answer to "H.S.A.," I would recommend him to try what I have tried myself, and treated pationts succowfully, as follows:Early in the morning drink a tumbler of oold water. then co into a garden lawn and cut or roll the grass for half an hour three thines a wrek. with an easy moring-machinf, as I possises, the Archimedinn one: and I thint: nfter a short trial of this system, "F B. F." will find what I heve personally founil, constipation to cease and nature act with comfort. The rationale of this treatment won!d occupy too much space to describe it professionally in your valnable journal. I inctose my card for further inquiry if "H.S. A." deeires ithphysician.
[12176.]-Fydrogen Flame. -Take a small and wide-monthed glass vessel and invert it over the tube whence the gns is issuing. When this is full, test it by applying a light. keeping it inverted, and of course, at a safe distance from the generating apparatus. If it oxplodes. try it again and again. When the hydrozen burns quietly in the slase it will be safe to apply a light to the tube.-Cenves.
[12176]-Fyarogen Flame.-Your mistake is aimply that you do not walt long enourh for the air quite the. For a half-pint bottle you should wait miuutes would be better.-Gintton.
[121:7.]-Algebra.-This is only an application of the rulo which anys that the numerntor and denominator of a fraction may be multiplied by the sa me Here ceath without nitering the value of the fraction. way. which the three fractions is treated by 1 in this bry of each, and of onc of the factors of the denominator (since by multiplying any one of the factors of a quantity we multiply the whole quantity), thes making the fuctor ($n-c$) in the denominator of the first fraction become $(-a+c)$ or $(c-a)$; and the rame in the othars. We might, withont altering the signs of the numerator, change the signs of any two of the factors of the denominator since multiplying twice by - is the same as multiplying once by + , on the principle that two negatives make a positive. The probable object of the operation in this ease is to assimilate the denominators of the three fractions, and thus make it easier to find their L. C. M.-Cenves.
[12177.]-Algebra.-I suppose "W. M." is aware of the fact that $a-b=-(b-a)$. Now, if he will examine the two expressions given in his query, he prefixed to the fractions, and in the substitution in the denominators, firstly of $(c-a)$ for $(a-c)$, secondly of $(a-b)$ for $(b-a)$ and lastly $(b-c)$ for $(c-b)$. He will then percelve that the two changes halance one another, and that Mr. Todiunter's reasonting is legitimate.-Nemo.

New Disinfectant.-Mr. W. Crookes has taken out lettera patent for a new disinfectant and deodoriser. which is claimed to be saperior to any kmows agent hitherto in use. The invention consiats in mixing together or passing salphurous acid into carbolio acid in order to produce a compound possesaing disizfeoting, deodorising, and antiseptic propertios of a natare superior to those of the constituents when emplojed separately. Cresylic acid or other smiliar homologoo of carbolio acid, or the liquid known as cressote, may be emplosed for mixing with the majpherous acia.

UNANSWERED QUERIES.

	mumbers and ettles of queries which remain mared for fve weeke are ineerted in this liot. Wo trus cadors will look over the tist, and send what infor thay ean for the beneft of their fellow oontri ce our last, W. Balton has answered 11745 ton," 11787.
1179	Clatch for Driving.wheel of Veloce, p. 110
11796	Rnagh Pitch, \&c., 210
11802	Date of P
11808	Eoplectella Soinosa, 210
11804	Estate Arencies, 210
11805	Extracting Gelatine from Bones, 21
11807	Preserving Hent and Boiler, 210
11815	Fishing-rods, 210
11817	Porthand Cement, 210
11819	Roof of International Exhibition Bailding, 810
11830	Gas Bags, 210
11822	8lide-rest. 210
11829	Holtz's Electrical Machine, 210
11824	Pouching Machines, 210
11829	Tackle Poles, 210
11830	Indicatiog Tablets for Eloctric Bells, 210
11837	Organ Bellows, p. 211
11898	Clock Pallet, 311
11848	Iron Castings, 211
1184	Rabbist-sking, 211
11849	Printing in Canada, 211
1185	Supercargo, 311
11858	Pallet Springs, 211
1185	Raising Salt-water, 211

QUERIES.

[19179.]-To Eloctricians.-I shonld feel grateful to Mr. Tonkes (whd is silent of late) or any other elec-
trician who would kindly snswer the following qnestions, trician who would kindly snswer the following questions,
or any in what recognised work I may find this partior any in what recognised work imay ind this parti--1. What office does hair fulfflin the human system? Is it a good onndactor of electricity, and is the hair on the head, whioh is usually supplied from the earliest
infancy, to be understood as a conducting medinm infancy, to be nuderstood as a conducting medinm
whereby electricity or a similar ethereal fluid, is transmitted to the brain placed directly underneath, nnd through it to the nerves and ganglions, which act immediately on the blood vessels, cansing the circulation body, one regulatiof and counteracting the other so as to maintain lifo in its normal state? Has not a Auid
olectrically excited a tendency to scatter and project through almost imperceptible openings and channels by the agitation and separation of its component moleoules ? Is this in part explanatory of the circulation of and established theories? 2. Suppose an opening was made through the skall of a dead man immediately after death, and a wire leading from a powerful galvanio bsttery inserted chemically throagh the membraneous covering of the brain, and if at the bamo time warm,
healthy blood was injected into the heart and artificial healthy blood was injected into the heart and artificial respiration commenced, would life be restored, even during the limited period a current would be generated 8. If one in a number of men forming an nobroken circuit, and to whom shocks are given simultaneonsly by an electrical machine, were to die suddenly while forming a portion of the circuit, would bis death affect the remainder in any way? if. If a number of men or animals, some having an infectious direase, are similarly connected and treated, wonld the disease be carried with the current from one to the other: or does atmospherical electricity act any part in the
[12180]-Seasoning Pear Wood.- Will some corresponaent hindly inform me how long i ought to let a for I have it in one at the present time? Does it turn or I have it in one at the present time? Does it turn
well -1% not, what could I uso it for?-A. H. Coome, Cologne, Prusaia.
[12181.]- Violin Case.- Would any of your resders give me a fow practical directions for making a violln deavouring to bend a piece of pine ronnd the circular ends, by means of a number of saw cats about half through. The wood broke in some places and sprang is
othera. I should Mke to know the beat sort of wood for others. I should Mk
[12182]-Roses.-Could any of "our" horticultural readers give nie a short outline of the sticking down process for rose bushes, how and when it is done, and
$[12183]$ - Mottled Cary Wood.-I have recently
cen some ine cabinet work, made of a beantifully marked light brown wond. I am told it is a New Zealand wood of great value, called mottled cary, and the best wood grown in that country. Has any reader beard of this wood
price here? - Yase.
[1:2184.]-Brown Varnigh for Bankets. - Can
ome kind render inform me how to make it?-B. B. M. [12185.] -Madnip and Wood Laurel-What are their virtues and botanical names $9-$ B. B. M.
[12186]-Cheap Farming.- Which is the least land impoverishing method in forming? Is milking cows
[12187.]-Repolishing Chimney Plece.-I have a marblo chimoey-piece, which an nnusually stupid Washing and scrubbing, I have succeeded in taking off poligh of the marble. Can any render of "ours" giveme
[12188]-Canoe Club. - Wonld sor.
[12188]-Canoe Club. - Wonld some reader of "our" Faluable paper kindly give me some information about
che cance alubs (if more than one) established in mont ? - H. R. H. qualifications aro necessary for enrol
[18189.]-To Mr. Tonken.-I deaire to thank Mr. 12 Bmee cells (plates 3in. by 3 in.), and shall feel gratefal for advice on the following:-1. On starting these 12 cells at first they gave twice as much power as they now
do with double the quantity of acid. Not fall power, I put one-twenty-fourth of acid at first, and now one-twelfth. I am afraid I tilled the cells before the liquid was cold, if so, are they ruined, or what is the remedy? The silver plates appear thoroughly platinised, and the zinc plates and connections are all
right. 2. I havo made a coil (primary), three rows of Nc. 16 cotton-covered wire. Contact breaker acta well, but the platinum wenrs away very qnickly, soon becomes 8. Wul Mr. Tonkes kiudly explain to me clearly, how and of what Mr. Halse's coils are constracted ?-INTENsity.
[12190.]-Trios for Kale Foices. - Will some one tenors and a bass, also, afow good triog for the same voices?-Trio.
[1:191.]-Surgery Abroad.-I should be mnch as to the best place to emigrate to "ho oonld advise me ns to the best place to emigrate to where a sargeon is
likely to succeed, having a large family of growing sons, and the competition being so great at home it is hard to make ends meet. I am highly qualifed and registered, and have had extensive army practice a lonvead, bat wish to leave of unpport, nnd be able to look after my (four) amount who are motherless. My are is thirty-four, strong and healthy, but I should not like too hot a country Can any one let me know the prospects of a good surgeon relatively in North and South America, Anstralla,
Cape of Good Hope, or other favourable ylace. Is it Cape of Good Hope, or other favourable place. Is it
necessary to have introiluctions? Any reliable information will much oblig Mask Htwsstes.
[12192.]-Concrete.-Can any one tell me how to make and apply a concrete for fiooring stables and
sheds? It must not be more expensive than the ordisheds? It must not be more expensive than the ordi-
nary pitching. Any information will be thankfully
[12193.]-Magenta.- Will any one inform me how this colour can be made more permanent? I bave been usiog it on paper, but find that after a lew days expo
to the light, it almost wholly disappears.-A. W. H.
[12194.]-Enamelling. - Will "Proven," "Ethel," or some other jewelier, please to give me some instructions in the above beantital art, more particularly with regard and the preparation of the articles to be enamelled such as monograms, \&c., on lockets, stnds, \&c.? I would Invite the attention of our jewellers to this question (it has been asked before, but not answered), ns I have no
doabt it woald interest many others besides-G. P. B.
[12195.]-Ventilating and Warming Buildings. I should feel obliged to any correspondent who could inform me what is the best modern work on the ventila.
tion, lighting, and warming of bulldings. I also wish to meet with a book giving the principles on which roonnd. - P. © construoted
[12196.]-Rendering New Rope Flexible:-Can
inform me how to soften anew 4in. Manilla rope? It is now so stiff that we find it impossible to use rope in the palley blocks.-W. B.
[12197.]-Roses.-As tho badding season is coming on, wonld some subscriber well up in the subject, kindly give men list of some of the very best roses in coltiva-
tion ? would be glad also, of the names and addresses tion ? I would be glad also, of the names and addresses
of two or three of the largeat rose growers in England.of two or thr
[12198.]-Extracting Iodine from Seaweed
Ashes.-If not troubliug yon too much, could you gad Ashes.-If not troubliug yon too much, could you ind
space for the following:-Seeing " A Barrister's" answer space for the following, - Seeing "A Barrister an answer
to query 11736, p. 209, I got some seaveed and dried it, to query 1175, p. 209, i got some seaveed and dried it, earthenware potand put it on the fire, and burnt it that Way, and then followed out his instructions as near as perhaps, I barnt the weed too mack. Is the black oxide of manganese right, and how mach kelp should it tske
to make (say) toz. Is not the weed obtained airesdy burnt, and do not the glass manufacturers use something of the sort? If "A Barrister," or nny of the subscribers who answered
me, I should feel obliged. Kicp.
[18199.]-Speeding Pulleys for Gat.-How can I obtain a oorrect ratio between the large pulley of (say) on foot lathes? I want them so arranged that the gut can be slipped from one speed to another, and be equally tant.-E. Wrimsms.
[12300.]-Levelling.-Wil any of your readers enIs the 50 representing feet and the 76 the seventy-sixth part of a foot, supposing the foot to be divided into 100 parts?-Briokiayer.
[12201.]-How to Reduce Pith to a Pulp.-Can any rubscriber kindly inform me how to rednce pith to
palp? Should any acid or alkall be used ?-Janug.
[12202.]-Boat Building.-Conld the editor of the English Mechanic or any of his numerons readers, tell me the name and price of any good work on boat
building? I also wish to know the name and price of a good work on making and rigging model vessels-A
[12203]-Piotures.-A friend of mine has a painting (a summer landscape), the dimensions of which are
bont 13in. by loin., and the name of the painter is, I think, Van Bruxbols. Does the name suggest that the picture may be of some value. I also baw a hithotraphic
print in colours (4lin. by 18in.) of the ceiling of the Sistine Chapel by Michael Angelo, executed at the litbngraphlo institute of Winkelmannand Sons, at Berlin
(1852. 1853). Where can it be had in England ? BakBaros.
[12201]-Pansies.- Which is the best way to strike slips of paasies? Will they strike in any common
garden soil, or do thev require to be s ruck under glass as I anve a small frame of glass a' out 3ft. long yft.
wide? In getting a stack of prauner is it best to set slips or to get cecds? What hind of coll is beat to raise
[12205.]-Double Rockets.-Are there any Lowers now in cultivation of the duable white and yellow and then is the ther the elips? -One Ameious to Leabro
[12806.] - Geraniums and Fuschias. - Which are the best two scarlet feraniums, and the two fidest ollaged faschins anong those that have been out for the pastormen from getting them-ONE AxxiOUR TO LEARE. [12207.] - Light. - Could any of your numernas pointe:-1 Cen a of playes of any polarising inineral ench as tonrmaline Iceland apar, mica, \&c., be entirely intercepted? 2. In the progress of obscuration thus effected, from the maximam of brightuess to the minimum (or to per fact darkness), does the dimination of light proceed in regular ratio with the regulariy increasing angle of
rotatory position? That is, whilg the second plate or rotatory position ? That is, whita the second plate or
analyser rotates on the first plate or polariser, through $1,3,5,10,20,30$, \&c., degrices of the quadrant, up to 90 . mitted mimim of darkness, is the diminution of tran polarising subject that will effect these desiderata in tbe most perfect uanner ? -Iars.
[12208]-Gold Fish.-I have had a number of gold ash die lately full of spawn, and I am informed that the resson of their death was becnase they could not -Tparn. C
[12209.]-First Railway. Which was the first
rallway opened in England for pablic pascenger traflle, rand at what date? $-H . L$.
[12210.]-The Manufacture of Blacklead.-Will some correspondent inform me of the mrnufacture of blacklead for stoves, how manipalated froai the raw
plumbaro, how adulterated, mixed, mouldod and finished? $-A$. R
[12211.]-Sea Kouse-Will some kind snbscriber furnish me with some acconnt of this animal?-SCRCTATOR
[12212]- Yacht Building.- I am abont to haild a small sailing yacht, 151 t . long, Carvel built. with bent
timbers. Haviug got the lecl, stem, and stern porit timbers. Having got the kecl, stem, and stern post
together, but do not know how to dranght out the timbers to the your talented coutributors can enlighten. me.-J. U., Glasgow.
[12218.]-Coffee.-What is the cheapest, easiest to AGGRIEVED HOUBEHOLDER.
[12214.] - The Game of Quoits.-Will you kindly journal? 1. In the game of quoits, are used, snpposing the quoit pitehes on the top of tho per and splits it down throngh the middle and "rings" half of the peg, would that reckon as a "ringor," or
should it ring the whole of the peg to conat? 2. Wiat is the correct distance to play when the quoits are filb. per pair? 3. How is the distence messared from the
peg to the quoit-from the nearest part of the peg or from the bottom of it to the quoit? \& Where can I got [12215.]- Fettling Materials.- An article in the puddling firnace stntes is coated with marhella, blae billy, ilmenite, or other snitable stuff. Would some resder plesse givo the curnposition of the above three substances ?-E. M.
[12316.]-Transferring Marble Paper on Book thinges.-Can any of your readers let me know someedges, if it is much practised, and if the edge has a nood appearance when done? I have tried the marble paper prepared for the parpose-by dipping it in muriatio and other strong acids. nud then prossing it on the edge of
the book-but 1 cannet make it answer at all-BiniroPEOIA.
[12217.]-Violin Tuning.-Will "Fiddier," or "The Harmonious Blacksmith," or any correspondent of fiths, or how they ture them in each key? W. W. Mes. [12218.]- Homenturn.-We have a very old bridge over the Ouse here, and the appronch is rery steep, I a load np often put their horses to a quicker pace
just before ascending this incline. Do the horses cet Just before ascending this incline. Do the horsea get
over the difficulty any the hetter for a start at aquicker pace before asconding p-W. JaGGER, St. Ives, Hants
[12219.]-Turning Irory.-Is there any softening
process required? if so, bow is it done? Can it bo process required ? If 80 , bow is it done 7 Can it bo
turned in an ordinary lathe? Any information as arlic.
[12220.]-Superheater.-I wish to put in a superheater to my hoilers (threc 30rt. by 7ft. 6 in .), and shal
be obliged if some of your correspondents wil say whicis they consider the best and cheapest.-SUPEaHEater.
[13221.]-Brass Scraws.-Could any of "our" readers tell me the namber of threads requisite ior of the screws of which are upwards of 2in. diameter. I am at a loss to know the number of threads per inc.a they should have.-Falstaff.
[12322.] -Iron Castings.-In letter 8996 of the 19th April last, "Proven describes the method of makin:obliged if he or any of sour contributors will tell the if iron can be cast in the same way; and if so, whether it nomes out clann and without
ine iron monlda.-CAstrer.
[12823] - Wheelbarrow.-May I ask one or more of construoted so that the wheel rans in the centro insteal of the end of it, if such are made \&-0. T.
[12294.]-Cemented Object-Glass.-I hnvo late?y parchased a yin. achromatic by Dullmeyer, with a of first-rate excellence, I am naturally most anxinue :c,
preserve it in the best possible condition. I note with
on p. 300 Rives it as his opinion that "the sua ought a
freely" Will "P.RAS. have the goodneas furthor to
state what ho beileves to bo the cause of the coment state what he belioves to bo the cause of the coment
beooming diaturbed or cracked, at it hat been ofter
 cemented objoct-glass as durable and as good, with froper care, if there is any percoptible losi of light in uning a terrestrial pancratic eyepioce with the above for astronomical purposes ? -Albisio.
[12925]-Lead in Sulphuric Acid.-I have a quantlity of sulphario acid, which it of a dark brown chambera in which it inform me of a simple process Whoreby if can separate the loed, at the same time retaining the prope
the acid for chenical parposes $?$-Tox W Hirs.
[18928]-The Portuguese Lengrage.- As I wish to learn a rorign language, a lettor from "A Harruw
Pellow" (3805, March 22) came very opportune (at leati so I thought). I followed his advice, and wont to Long. pagee of which I eagerly perraed, and felt convinoed that the "Mastery" syntem would of all eystoms bo the best. Conroquently I went once more to Longmane to fanguage; but I was doomed to disappointment, as this language is not pablished in Prandergaat'e Matery
geries. Now, can "a Harrow Fellow or any of the series. Now, can "A Harrow Fellow" or any of the
obliging correspondents in "our" journal kindly tell me What to do under the circamstances, whether it would be of any use to study spanish, or if 1 shonld get a
Portaguese book of any other asstem? An answer tothis woald grently ohlige. Perhapa come of my fellow readers would join a clasa for learning Portaguese. My own intontion is, ifter haring learnt Portugneso, to emigrato to BraziL I have heard that Brazill would offer very good advantages to enaigranta. Perbaps some of my
fellow readera could throw some light on this question. -Cari.
[12227.] - Astronomical - I shoald feel much obliged if some of your nameroas correspondents would inform me what are the inclinationg of the $n \times i s$ of the
following four planeto to the plane of their orbits-MerYollowing four planete to the plane of their orbl
cury, Venus, Mars, and Jupiter.-Countayan.
[19228.]-Wood Ringraving Tools.-In p. 288 , Voscription of wood engraving with illustration of the tools nised. I have bought a set from a privato party, belog abont 8 fin. long, and like an ordinary breidewi. handle. The tools sre the right ahape, but aboat 4io. long, which makes, with the handle, nearly Bin. How is
it powaible to ase the tools ame as illustrated in Vol. IX. P The party I boaght them of gays thes were supplled to him as wood engraver's tools. Would any
rosder toll me if it woald be sdvisable to substitute roader toll me if it woald in
[12229]-Telescope. - I have for some time wished to purchane a telescope, the question being the size, and reflector (ailvered glase) for about $£ 30$; can I expond that amonnt better in any other way? In the article on "Coloured Suns" in the Enolish Miscranic for Jane 7 , frequent mention is made of the resalt produced by a
onerfal telescope. What sise and kind of telesoope powerfal telescope. What size and kind of telescope
does this mean ? or general ase-sun, moon, and planots, as woll as Ixed sars; for instance, what would Mr. Birt rocommend lor his "teloscopio work for moonlight eveninga"? In.
formation from Messre. Prootor, Birt, and "F.R.A.S., or others, would be recoived with many thank.-CANis Mrnor.
[12230.]-Platinum Solution-How oan I make on microscope work ?-AMEREMAR AMATEUR.
[12281.]-Iceland Spar.-How can I out and AMATEOR.
[12232.]-Searet Spring or Look-Will any one correspondents farnish mo of a secret spring or look for the parpose of fastoniog a clothes box. I should, of course, reqnire to know how to open it myself when necessary.-An Exigrast.
[1228s.]-Red Varnish for Patterns - Would any brother reader kindly inform me how to make a
red rarnish that will resist heat and moistare when in red varnish that will
the sand. - Eromaxd.
[12234.]-Hairspring.-I should be obliged if nome your hind readers would teil meif watchankers use a gange for inding the different sizes of halrapringe.
I have got a verge watch and I have tried above a

oblige me with dimenilions, sixe of till, wc., of ohest oblige me with dimensions,
deacribed on page 311, No. 376 .
[22236.] - Glowworms. - When and where should these be 1noked for? 1 Hive in the nelghbourhood of Hichmond Park, and remember Anding them there many
[12937.]-The Organ.-To "Preveratic Lever"I am now in a diliomme. I have made pipos, bellown, wind-ohest, and frame, and have put the last three thoy run down again In about ten seoonds. I have carefolly examined every cornor of the bellown, and have praced iresh springa on the pallets, and still the wind ruabes out of the holes where the pipes Ro in, and
apparently all over the stock boards. "Without any joking this very provoking." after having worked for
 ja the work, and with a hint or two from "Pneamalio
 matic Lever "in the namber for week ending May 81 , but It think my friend did not seo it. If Le remembers, I inquired ahiat voicing pipeg nad another question or
two (query 1l8s6) whiok I could not troable our kind editor to ingert again.-Alarh.

takligg maohino: I for one shonld uke to 500 it , as I
[18289.]-Hens' Figen-8ome of my hene lay soft ogga, one in partioular, layligg them oevery dey in all Borts of ghapes, some oat thoir eggs whil
come one give me a remedy.-Corrag
[12240.] - Photography.-Wonld any reader of the ExGliaf Meciniti inform me of the canse and reason of the following? I have tried several times to prepare
dry plates ; inse the ordinary wet plato collodion, and dry piates; i use the ordinary wot plato oollodion, and
thirty grain bath golation, and then wash well in three dishon of pare distilled water, and preserve them with malt, I then dry them woll and expose twice or three the plate for a for minutes in a paek, silvor solution, I than appiy an iron developer, but not a trace of a ploture or any sign that it has been exposed comes out.Noterb.
[12241] - Organ Pipes.-I am now making a set of stopped pipes for pedala I made one 4 ft., month cat up one. Aith, bat as it did not glve a tone so loud as I wanted, I cat it ap to one-third; it now makes a very
much less sound, whether I give it more or less wind. mach less sound, whethor I give it more or loss wind-
way, but if I pat a plece of wood on the top of the cap and throw the wind more into the pipe, it then sounds very well. The block and lip are perfoctly true. Will "Adept," or "J. D.," or any one kindly come to the want , and bay where the ranit is ? Doad for want beveling off, as "Ade
when cut high up?
[12242]- Piano Construction. - Wo have had friend "The Harmonions Ble suggestions from our old tion of planos, which, hrve soine knowledge of the subject, would be very acceptable, but to those who, like my self, have little or no knowlodge of the various parts of a piano, they aro
rather bewildering. We have had in "Our"; many lessons on the constraction of the organ and harmoniam. Bat I do not remember ever seeling any lessons on the conatruction of the plano-viz., a series of papers, with diagrams, snd overy other neceskary information as to materinls, \&c., from Irst to lest. Prosuming on the kindness of "The Harmonious Black-
gmilh," I woald bea to suggest to him that to contribut smith,
such ${ }_{2}$ gerles of lessons, with diagrams showing the sraming of strats, \&eo., and every important point, would be bighly approclated by very many of our readers, and wood-working trade, and who have long had an aching tooth for the piano, to purchase which would cost, with cabinet--ork (which seems naseparablin from working men would be able to spend.-B. R. B.
[12248] - Turpentine and Wood NaphthaCan any of your readers inform mo throagh the medinm of your paper what spirits of turpentine and wood
naphtha are principally nied for, and also give me fall naphtha are principally ased for, and also give me fall priticulars of how thoy are both made and what kind ol
timber they can be made from? What wonl tained by distlling fir or pine wood in a rotort? Are there any boeks publinhed that tell how, and what oan be obtained from different kinds of timber by die illation ?-D. T. L. R.
[12944]-To Harden Lead or Zinc Type.-Wil some kind reader tell me how to harden lead or xinc type anfelelont to renist the hest of gas aboat elght or nine hours per day ? The load type whlch I use melte in about half an hour after being in the gas. Brass type belnk so expensivo, ha is wanled ara sibstllute for hrasa type for printing metal leaf. The lead type is
[32245 .]-Ohemical-Win Mr. Davis or Mr. Bottone bo so kind as to give a mothod of separating oleient gas learing the marah gas ?-R. TERVET.
(12240.]-Seven-Keyed Tuning Fork-Would noy of yon tried one, bat I conld not get it to woik at all and I wonld inke to know whet key to set the fork on before I pat on the alides.-A Baritone Singer.
[12247.]-Sewing Maohine.-Could any reader of the ENOLISA MECHNYO toll me. if a brake can be made for a Wheoler and Wilson gewing machine to stop the Also, how onan I attech a rertical engino to the maohino if attached, how can it be stopped or set roing. Wonld a 2 in. stroke engiac do to work it ? -W . H. T.
[18248.]-8heet.Iron Fireproof. Deed Boxresialing mof your soionino readers iniorm me of a fre resialingide lining, to be of alight subutanco, such ontside duat f-TOM THETINEER.
[12249.]-High Preasure Firo-Box Boiler.-I pressure of 801b. to the aquare inch. It will be required to drive a 25 horse-poner (nominal) componnd engine tarning (say) 100 horse-power. Also to warm a foar-storied mill 40 yarda long, and at some fature time to food a dye-house ; 80lb. prossure of ateam will be ample to heat
the mill and feed dye-house. Any information from the mill and feed dye-house. Any information from your able correapondents which will enable me to get ont anpecification will be eiteemed. such as the length length of fre-grates, and how the boilar ought to be stay ed, to. - 495 .
" 12250]-Chemical.-Conld any brother reader of "ours" tell me the original method of Gay Luasach sodium, which is liquld at ordinary tomporatures? And the chemical action between thia alloy and water when brought into conteot, and what lis loft behind after the action has taken place ${ }^{2}$ - Volcanitr.
[12251.]-Flectrical.-Sappooing I had two plate gjase elootrianl machines, one haring only one-thirtietth
part of rabbing sarface of the other-could it by mork. part the emall one thirty umes foster than the large one ing the small one thirty times fanter than the large one
Ret the same amount of current out of each ?-VuL. getine.
[12259.]-EMectrical Mrachine. - Is there any with the invented that wo.nld give a stionger ourrent
 omoant of curreat, is there any 0 :her electrical maohina

Invented that weighs 101b and gives ${ }^{2}$ current greater than that of the plate-glass machine?-VuxcaMirz
[1225s.]-Organ Construction-Will bome of the the couplers jnarnal kindly inform mo how to make pedals? Also. Which stops will be the beat to ase for an instrament of two manuale and pedals? The numbor of hlops muat not exceed eight-akateve.
[12254.]-Aerostatios.-Will some one of your cor respondenta pive me the reeaons why the weight of
 suitable mechanism) in the atmosphere? Also atate why, for the samo reason, galvadic eloctricity is useloss. Havo any experimenta ever boen tried with a view of determining this point 9 if not, what are the theoretical proofy $3-$ Cyclome
[12955.]-Hair.-Can any of your readers inform me of a cure for the following disease of the hair 9 The inch long, and has always done so for the last ten years ; that is, ever since it began to grow. On examining the hair, I find it bent, and covered with little white knots, inko nits, and it brakse off at one of these white lotiony, but uothing has hitherto done me any good.-C. watsog.

OHESS

All communications intended for this department to to be addressed to J. W. АввотT, 7, Claremont-place, Loughborough-road, Brixton, 8.W.

The arrangementa in connection with the match by oorrespondence betreen the chess clubs of London and Vienna have been defnitively concladed, and play will commence forthwith. This important match will canas some excitement in the players engaged on ither side, great intereat is sare to be manifested as to the aide, ${ }^{\text {git. }}$
resalt.

TO CORRESPONDENTS

R. A. P.-No. 1 is rather too easy, and the idea is old. No. 2 admits of another solation in two moves commenoling with (1.) Q to Q B 8 (ch.). No. 8 is a noat hulle problem, and to Bail appear on tho glad to hear from you again.
G. V. G. (Gateshead).-Look again at your attempted solation to No. 1, and you will find that you have overlooked the interposition of the B P at the right moment. Thanks for your good wishes.
Arao.- Yonr problem admits of the following solation: (1) B. to B. 6; (2) K. Kt. 2. Send us another speci men of your composition, \&c.
T. J. Miller (Fakenham) and W. Cook (Pengo) are of our colamn
F. Owden (Hoxton) and R. H. Maclrap.-Re-oxamine Kling's problem attentively, and you will fad you are mistaken. Don't take it for granted that the Black King has only one move
J. H. A. H. (Chester).-We may, at nome fature time, be able to comply with jour request; bat for the present we shall adhere to our programme.
W. Aragy (Worsley).- Toar solation to Healey's problom is correot, bat it arrived too hato for acknowledgment in our lagt. A letter to have a chance of being noticed the fol
Cobrect solutions to Problem 11 havo been received from R. A. P. ; W. N. P. ; J. H. A. H. (Chestor) ; W. Airey (Worsley); J. Bereaford (Vauxhall); C. J. L. Portamoath); Argo (Yarmoath); A. R. Molison Swanses). All others are wrong.

Probley III.-By P. T. Duffy.
Black.

White.
White to play and mato in three moves.
Solution to Pbobley II.

White.	Black.
1. R to Q B 3	K moves
B to K ${ }^{\text {d }}$	2. K mores

1. K moves
2. R to Q B 3
3. B to K
4. 1 matce, acc.

USEFOL AND SOIENTIFIO NOTES.

The ivy when viewed through the Nicol prism and

 pink solenite, uppears as if covered with blossom. The cabbage moth has already made its appearance, and will visit the young cabbage and caulifiowers as soon as the plants are large enough to hold the eggs which produce the larrecealled cabbage worms capital remedy for these voracious fellows is that used by Quinn, of New Jersey. The mixture is :-1 part carbolic powder; 2 parts quicklime: 90 parta fine superphosphate. Dust the plwhen the dew is on the leaf.
Grease in Billiard Cloths. - Procure at the chemist's some powdered fuller's Earth (a very cheap article). form a paste by adding genuine spirits of turpentine. Rub the parte well in with tips of fingers and continue rubbing till the turpentine has evaporated and but a powder remains. This can be at once brushed off and all will be free from soil. Pitch. tar, or paint shares the same fate as oil. The paste may be scented with essence of lemon if noed be.

Abolition of Steamer Punnels.-Arcording to the Sciss Times, two Austrian marine officers and marine engineer have discoverad by nnited axperiments a method of conveying away under water the funnel into the air! They make use of double ventllafunnel into the air! They make use of double ventlla tors, Which compress the smoke and force it over-
board. For propelling these ventilators they employ. board. For propeling these ventilators they employ, is. the pressure of the water between the surface of the water and the place where this apparatus is fixed, or, for smaller vessels, steam power. A chief advantnge of this discovery will be the grealer security of ships of war, as, in armour-plated ships. the only valnernble part, the funnel, will be taken away For subinarine srid, will be of great value.

THE ENGLIBR mRCRANIC LIfEBOAT FUNB.

Amoent previonaly acknowiniged

$$
\begin{array}{r}
293 s_{16} \\
0 \\
0 \\
\hline
\end{array}
$$

ANSWERS TO CORRESPONDENTS.

 Covent Giardon, W.C.

The following are the initials, tre, of letters to hand cipewhere:-
Capt. A. Leslle Kaye-Geo. Awford.-J. C. Crowther.-
R. O. Berry.-A. P. Compton.-Gordon Dougias.-C. Tomiley.-Frances and Co.-OUey and Miller.-T. C. Ryiands-Evan Leigh.-Joseph Newton.-Isasc Sim. H. T. Casini. Alfred Crofts.-T. Stanners.-Wm. Ibbetson. - J. Robinson.-Philo,-Sigma-Plongh.-
Cometary.-Edward Watkins.-Crpt. Hans Busk. -A. Wake.-Dr. A. McGregor Oroft.-Lockwood nad Co.-T. Fletcher.-Rev. W. W. Garrett.-J. D. Parvis John Murphy.-Jack of All Trades-M. A. B.-C.J. B.

- Youngater.-M. A.-T. W.-Excelaior.-A Constant Render.-Charies Hopkingon.-John Wallace.-David
Morris.-Trovatore.-E. 8. T.-R. A. Proctor.-The Morris.-Trovntore.-E. S. T.-R. A. Proctor.-The
Rev. T. B. Armistend.-E. G. H.-The Harmonious Rev. T. B. Armistead.-E. G. H.-The Harmonious
Blaeksmith. F. B. Beachey.-A. M. C. D. M. Burns. - Scarborougb.- Peerless.-J. H. Bushel-J. W. Cook. Henshaw and Son.-R. K. Blessley.-Old Ford.-
H. J.-Artillery Captain.-E. I. G.-T. P. Lilly.
W. E. D.-Pinky Tono.- Marsden.-W. H. Skelton.J. H. O.-Samuel Cook.-J. C. S.-J. E. Devlin.-Rat-Tat-James Levesque.-A Leeds Subscriher.-
Farmer.-A. D. Edgar.-Devonshire.-Coruabiensis. -C. J. Recordon.-K.-Bron.-H. B. E.-Jug. Purikg.
- T. B.-Rev. H. C. Rey.-S. D.-A Three Yers'
 Tharles Coris M. F.-Dertia.-T. H. T.-An Apprentice.-Thirt.-Wentward Ho - -J. B. W. M. Mide.-Reporter.-Eyc-
 Grinsical.-W. H. Andraws.-T. W. Keynolds.-E. T. J. Pearsun, - SuIfulk Amateur. - Queroms.-T. H. Burham.-Un Irlandais.- B. W. Dundaik.-Aiter-goon-King Cotton.-John B. Lindsay.-Soeption!.-
Smithy Bteying.-T. H. F.-J. G. W.-C. H. Wingficld. Smithy 8teging.-T. H. F.-J. G. W.-C. H. Wingficld.
-Rev. J. Lukin. - A., Liverpool.-Inventor.-Saul Rymer. - Charles Lahee. - Sciolist.-A. Wake.-A.
Williame-W. H. Neal-W. M. Parker.-B. Smith.W. B. Hockling.-W. B, Lymincton.-Mra. Hodgzon.-Kdward.-J. C. J.-Vent Pek.-Beauty.-Cal.ric.-
J. E. B.-E. Barker.-Fingor Post.-Glaspowerian.J. Roskoll.-J. W. Morris -Borinner.-R. B.-E. B. F. -A. G.-Wondering Willie.-Jncques Rrick.-J. Ei-
dridge.-J. W.-Francis \& Co.-Wilson Irwin.-B. J. H.
Coymta and tim Delugr-E. K. gays:-"In closing the discusion under this hesding. yorn will consider it pertinent to the eubject to remind your readers that, while ' E . L. G.' contends that the world was
drowned by a comet, Bir Isasc Newton gnss comets drowned by a comet, 8ir Isasc Newton enys comets and that the comet of 1680 is apprnaching the vun, and will altimately fall into it, and whenever that nandens, the world will to burat up nad at an gn d."

Achilles.-1. If none of the methods of oxtracting glass stoppers given on pp. 4R 77, of the present
volume are effectual, we are afrald you will have to rive it up as a bed job. Rrery known plan is men tioned on those pages, 2. With regard to French polishing the print box, you will find all the directions You require on pp. 44, 468 , and 521 of Vol. XIII. 8.
The village of Losden, tro miles from Colchester, is probably the site of the British Camulodunam, and althongh Maldon was once regarded as the Roman Camalodunum, there is now bat little doubt that Colchester is the trne site of the Roman colony. 4. The bonk you montion is pahlished at $£ 7$ 3s. for the
five volumes, and 31 s .6 d . for the supplemental volume. vo volumes, and 318.6d. for the supplemental volume.
Confident is referred to " Hints to Corrospondents." OLD Red Cap. - Yon are certainly entitled to the sands of articles havo been made on the plan, and withat articles havo been made on the plan, and Without its being pateated, is not so certain. Can' Pr.D. - Means doctor of philosophy. The degree i obtained in Germany.
Young Hoperul. - See " Hints to Correspondents." Pacerield.-Cunsulta medioal man at onco.
T. H. Howe.-Apply to a racing paper.

Falataff - Yonr reply would give Messes. Tangye and Fides.-See another query on the same subject.
Graham Hamilton. - Something liko en advertiso ment. Iuquire in Belfast.
A. W. L.-Consult a medical man

A Smerfirid Brade.-You mast consmit some loen guide bonk. It is unrensonablo to expect us to insert queries of such limited local interest.
Sinffield, X. Y. (Birmingham), W. S., F. Chalk (Ipswich), T. R., J. Marsilen, Kamblinz Tom, Jane Rose, W. O. K., are referred to indices to back vols.
Communications which can only appenr aq advertisenefnts to hand from W. T. Wright, Bisnatins, Gaucho, J. Y., M. C., Msnus, Midshipmen, J. E. Bird.
W. H. Skelton.-You have evidently a fair share of onnflence as well as ignorauce. Ferad and try th
nnileratand the diecuasion at present going on abint nulerstand the diecussion at present going on abint
"Timeat our Antipodes." See also an article on the "Pathway of the Eclipse," of Angnst 7. 1809, in the Exclisf Mrchanic, of September 3, 1899, p. 521, Vol 1.. Your ohess query is a very absurd one. Do yuu checkmated in the given number of moves it would be no problem.
A Foremin. - Bourne's "Catechism of the Steam Engine" (Longmang).
John Hopkins. - We cannot insert your long reply to previona stntemnnts, and is characterised throughout by an evident inclination on your part for controversy for its own bake.
anctent and Modern Durston.-It was a hoax; the samo query was recently asked and answored in our pages.
Young 8tunext.- Write the Secretary to the Comedl, and see indices to back vol.
A Suracrmar.-Leroy's composition would sult youl. See advertisement.
Assoc. Inst. C.E. -The information was obtained from a Germen source. You and better commanioste with the inventor, whose address was given.
Dane and Wonderimo Willy.-Inquite of may optician. We oannot spare space for such queries.
Leiblich.- We should be glad to receive the proferred working
gested.
Ond Coms.-Your rubbingsare too indistinct to engrave Gennar.- Write to the secretary of any insarance society, or ask any tusurance agent.
A Novice.-Your query was an advertisement, and therefore not inserted. Why not read "Hints to Correspondents," and act accordingly.
P. Santalinos.- Yoars in answer to "E. L. G." came olosed.
Rzcent RzadEr-E-Early rising, cold ablations, regular
but pretty good living, pntionco and virtne but pretiy good living, patience, and virtne. Those of the past, you may assist in preserving tolerable heaith in future.
J. F. Hall, John Hopkins, and M. A.-The controversy on "Is Light Invisible" is closed.
J. T. Spraget.-Second article on "Eleotro-metallurgy" next weok.

T. B. B.-Concult last inder

8. Linwood.-The subject of Eartliquakes and Vol canses is, as you may see, conlinueld this week
E. L. W., Stoprap, Turner, J. M. Williams.-Your queries and replies are advertisements.
Lena Borrot.-We don't remember hearing from yon befors, and from tho tone of your letter do not wish to hear from you agald.
Hfwitt and Co.-Your lotter on Patent Lawe contains nothing but what wo have said axain and again.

The "Buth.ping Nhws," No. 910, Jane 14, Contaira :-

THE INVENTOR.

APPLICATIONG FOR IETTERA PATEST DUELNG TFE WEEK ENDING JUNR 11, 18 Z .
 1681 A. McKenzic. Renfrew him, F.B. for fmprovements in
restoring hent to nteam botiers or other furnaces.
 1a8s T. Hack, Hammersmith, for improvements in plpe coachas
1684 G. Thomne, Steney Stratford, for improverzents in portable 1ess G. Shaw and T. Sham, Dakinflein, Chaster, for faycove1606i J. Attios, Btrmingham, for improvements in metalife bed. stosdis and cots.

 paratna th
in making
procease

 1631 a. S. Floming, Oxford-street, for improvemente to atoppers
 1ing I A. TImmin, Manehentor, for Improvemente in the mana. 1697 F Orr, Dublin, for improvements in the nanafactase of

 the A .
 1501 1. Hall and J. Hobson, Bary, Lancashlre, fer Improremente
in lones for we iving.
 1703 A. A. B.is. Paris, for improvementa in the construction of
anipu or vancts, and in the moans or apparatus for lacting and unindlag their cargo.
1;04 J. H. Brown. Exater Mall Motal. Strand, por an tmproved
 1705 J . Finchrliff. Broming, Midulesex, for thaprovemonts
applicabie to printing machinery. applicable to printing machinery
1776 A. V. Nowton, Chancery-lanee, for an improved memeradare
of bale tio or couplige. A comminication.

 parposes, and in th
1702 L. Bcana, Clerkenwall-green, for Lemprovemente the dyotag
when indigo is employed.

 1711 D. Hntr, Serio etreet, Lincoln. Inn, for an improved
motive power machine or apparatua. A comininication. motive power machine or apparatus. A commanication.

1713 C. F. Clark nnd
mente in coffee mills.
1714 W. R. Dirls, Rtoro-street. Midaliesex, for Improveraents ta
graining wood und other surfioog.
1715 A. Greanwoot, Leosis, for an improvement in the ocastree.
tion of Bcrew gill machinery.
1ini, A. Greenn wood, Ifedis, for an maprovement in the ountrec-
tion of ecrew glil machinery. A comunubcation.
1717 J. Conlong, Blackbnrn, and J. Romith, Clagton.te. Hoorsh

 procenses known as " levanting," "momeliung," "giacing," "skiveing," and "whitening.
 1721 W. C. Mcbride. Bolf.
machlnery for acutclining fiax.
17ia T. Gray. New Wanderorth, for improrements in the meana of treatiog vegetable fibres for the manulacture of papor.
 furbicon. 174 J. Cole, Great Porthend-streat, for Impeoverienth the breect loadlig arme.

 1720 J. Dorrell, Weatboarne purk, for an improved apparate :
for containing coul, corn, or other commoditios. 172 J . N. Colby, Glasgow, for improv.
stuting boxee for i iston and other rode.
17ity J. Norris, Liveroool. for topprovements in and connoceed
with machined for anialitig printed sheets of paper. 1729 W. E. Nawt,t, Chancery. lane, for Improvemease io $1 \pi i 0$ A. Noseley, Neweastio on-Tyne, for improvementa in the
constraction of tire oscanes.

The Ctuglish geftechanit

 worm of scirsce and abrt
FRIDAY, JUNE 28, 1872.

ARTIOLEB.

NEW EVIDENCE ABOUT STAR SYBTEMS

 AND STAR DRIFT.
By Richd. A. Proctor, B.A., Cambridar,

 Honorary Secretary of the Royal Astronomical Society,

I^{T}
will be already known to those who read these columns, that on Thursday, June 13, Dr. Haggins announced to the Royal Society that among several other important discoveries he had found that there are systems of stars travelling bodily, or drifting, in definite directions through space. He had applied to these atars the spectroscopic method of determining stellar motions of approach or recession, and he had found (what no other method of determining stellar proper motions could have shown) that certain groups of stars are travelling with equal velooity towards or from the earth. Among such groups he mentioned one, the group formed by the stars, β, γ, δ, z, and ζ Onem Majoris, respecting which I had announoed more than two years ago not only that they form a drifting set, but that whenever Dr. Huggins applied the new method of researah to them he would find that they were either all receding or all approaching at an equal rate. He has found that these five stars are sotually all receding at the rate of about 30 miles per second. Moreover, he has found yet further evidenoe of their forming a single family or set of stars: for they all have similar spectrs, with the lines of hydrogen strongly marked; whereas the stars Alpha and Eta Ursw have spectra differing in character, the lines of hydrogen being scarcely discornible at all in the spectrum of Alpha, and not nearly so intense or broed in the speotrum of Ets as in the speotra of the other five stars.

I cannot but esteem myself most fortanate that within a few days only from the pablication of my researches into the laws of stellar distribntion and motion, such striking evidence in favour of one of the cometary theories should have been obtained by so skilful an observer and so eminent a physicist as Dr. Huggins. To say, indeed, that I am in a special manner gratified to find that my vaticinations respecting certain stars should turn out to be just, would be inexact. I had expressed no greater degree of confidence than I actually felt when I said that those stars would be found to move in a certain way, whenever the new method of research was applied to them; and I should have had abandant reason to be ashamed if so confident a predtetion had been shown to be erroneous. For I hold that though every student of science must expect to fall into errors, and to have from time to time to withdraw or modify his pab. lished opinions, yet that it indicates a grave offence against scientifid morality to be convioted of error where a theory has been announced as demonstrably true. It very seldom happens that a student of science is able to assert his conviction as distinguiahed from his mere opinion that a theory is sound. When he does so, he may be said to have staked his reputation on the result. If the theory is shown to be arroneous, it is demonstrated that either he spoko untruly in expressing conviction, or that he had yielded to an almost equally culpable fatuity. In either case he has lost thenceforth all olatm on the conEdence of other stadents of science.

Wherefore, in passing, I may lay down this general rule, that the student of scienoe should rather fail on the side of cantion than of confdence ; that he ahould prafer to say "the evidence pointa to the belief " than "the evidence convinces me;" that he should be careful not to say "I have shown such and such a theory to be true," when in reality he has only gathered sorse evidence in ite favour ; and, lastly, that he shonld test a view in every possiblo way, and oxamine it
in every possible light, before he announces it as a demonstrated theory. Or rather-in ninetynine oases out of a handred, he shonld attend to all these matters, and then not announce his theory (as demonstrated). As a rule, it will not lose by waiting. The exception is, when by so announoing it, the help of others may be gained for further inquiry in the same direction, or when the promalgetion of some erroneous theory is injurioualy affecting the progress of soientific inquiry. In either case it becomes the bounden duty of the atudent of science to speak plainly, if he really has deduced from sound evidence a demonstration of such and such faots.

The misfortrne is that a line of reasoning which may afford a real demonstration may not be convincing save to a few. Michell proved, for instance, that oertain stars lying olose together mast really be physically associated; and he very properly announced the discovery. A quarter of a oentury later Sir W. Hersohel demonstrated the samo feot by evidence which every one could understand. Bat Michell's demonstration, though more sabtle, was as complete. If every person who read his paper had mastered certain branches of mathematical research, every one would have admitted Michall's reasoning as unanswerable. But beosuse the majority could not appreciate Michell's reasoning, the world waited until Herschel had watched one star moving round another. This was a demonatration every one could understand; and thas the discovery is very naturally (though incorreotly) attributed to Herschel instead of Michell.
Hence the stadent of soience may learn a seoond lesson. If he has demonstrated a certain fact and has ocoasion to announce it, he should take care to present it in an acceptable form. For instance, he should prefer pictures (when he can give them) to tabular evidence. The world has not time to examine tables of figures in order to see whether they really bear out sach and such statements. He shonld remember, too, that though the world is not un willing to be convinced,* a subjeot must be rendered to some degree attractive before it will gain general attention.
This, however, is a digression. Let us return to Dr. Haggins's discovery.

It can be shown that the spectroscopic method of reeearoh into stellar motions-if it can be extended to stars of the lower orders of magnitude (I mean the fainter stars), is likely to throw much light on the subject of real star magnitudes.
Thus we have seen that the stars included in the dotted line in the accompanying figure form
two companions, are farther away then = and η, or the reverse? I conccive thet we have, in the proper motions of these etare on the colestial vanlt. The direotion magnitude of these proper motions are indicated by the small arrow atteohed to each star, the point of the arrow showing the place on the heavens which will be occupied by the serces stars at the end of 86,000 years. ${ }^{\circ}$ Now, it whin be admitted that the nearar a star in to as tho more likely is it to be affected (apparentiy) s the proper motion of the sun, in euch sort that \cdot a portion of its apparent proper motion would bo due to the sun's real motion. We may, indeed, assume, without improbability, that that nolir proper motion whioh causes a general provalcese of stellar proper motions in a certain direction. has reference to that portion of etar-space whick lies nearest to us. On this view we have only to inquire whether the stars $\beta, \gamma, \delta, \varepsilon$, and ζ on tho one hand, or a and η on the other, shift on the heavens more strictly in socordance with the effects due to the sun's proper motion in epace, in order to ascertain whether the former or the latice are nearer to us. The answer comes in mo doubtful terms. The stars a and η are moving is the star-vault almost exactly as they shored if the sun's motion were elone in question, whereas $\beta, \gamma, \delta, \varepsilon$, and ζ are moving in almost the exnotly contrary direction. It can scarcely be questioned. then, that the latter are far the most remoto.

Now, it is worthy of inquiry whether the direct speotroscopio analysis of these stase throws any light on this subject of distance.

Since β, ε, and ζ are not very unequal in apparent magnitude to a and η, it follows that if β, ϵ, and ζ are very much more remote they must in reality be very muoh larger than a mad en
Thus, suppose : to be twice as far away as (a very moderate assumption under the ciroumstances), then, since these stars are equally bright, or very nearly so, 6 must really give out foar times as much light as ๆ. Hence, sasuming equal intrinsio luminosity of the surfaces of these stars it follows that the star ε is eight timen ar lacgo as the star η_{0}. And similar remoning applies to the other atars. As, however, it is altogether is better accordance with known analcgies that the distance of the more distant drifting systom should exceed many times the interval between the sun and the stars η and a_{n} it would follow that the stars $\beta, \gamma, 0, f$, and ζ are not eight or tee times, but many times largor (sevoral handred times larger, for example) than η and a
Now, we might be led to the infarence, as at leart probeble, that ainoe the stars $f, y, \delta, \varepsilon$, and z

a single sot or sobeme. It follows as extremely probable that the stars a and η do not belong to the same region of apsce as the soheme formed by the other stars. In this case, they eithar lie very much nearer to us or very mach farther away. It is true, indeed, that we might conceive the stars belonging to one drifting set to be carried into another set drifting in another direotion. Bug it is altogether more probable that one set drifts one way because it has been exposed to such and such attractive inflaences, while the other stars, seemingly intermingled, have no such drift, because, being far removed from that region of space, they have been exposed to different influences.

Now, have we any evidence to show whether the five stars, $\beta, \gamma, \delta, \varepsilon$, and ζ, as well as ζ 's

- Whenever a student of coionco anserte that he has bopirey angairiy treated, and that tho world in in a con. thien lor grantod that the fanit is not with the world at large. There is a considerable sund of generosity and knd-hoartediness in haman nature, and 2 man who works out bis facte honeatly and patiently will seldoom have to coraplaln of want of aympathy. Only ho mask no axpect all men to give their ationtion
molely to
inint

Which thas excoed so largely the stars y and e (themselves certainly as larte as our sun), the spectram which is common to those five atarr is in itself indicative of exceptional largeners. For it is manifest that wher a star or sun is excoedingly massive, the gaseous envelopes which surround it must exist at a degree of pressure far exceeding that prevailing among the corresponding envelopes in the asse of smaller orbs, like our own san. And though it would by no means follow that the dark lines due to certais vapours would therefore be strengthened, jet there are some vapours whose lines we might expect to find bronder and stronger. For instiance, the vapours of the metallic elements would probably not produce stronger lines, or lines eo strong, as in smaller suas, simply becanso a greater proportion of thene vapours would ocoupy a position where their heat would be as great at

[^11]that of the photosphere, "and where, therefore, they wond not oause absorption, or, rather, would radiate as mach light as they absorbed. But the lighter gases, and partioutarly the gas hydrogen, might be expeotod to produce very strong and broad abeorption lines, beasase a relatively greater portion of suoh gases would be in a position where it would act absorptively on the light from the photosphere. Now, it is the case, as we have seen, that the lines of hydrogen -are reanarkably etrong in the spectra of the ave stars $\beta, \gamma, \delta_{1} \varepsilon$, and ζ Urse, whereas in η the hydrogen lines are not nearly so strong, and in e they are somewhat remarkably weak.
Here, thon, at any rate, is a vaggestion of a oertain view as to the significance of stellar eppeotra, which, should it be confirmed by futere researohes, condd not fail to throw a considerable degree of. light on the cubject of the constitution degree of Light on the subject of the constitation inquireinew faritis confirmed by other known facts.

The:star Birias is one of those which has a speotrum with remarkably strong and broad hydrogen dark lines. Now, this star is certainly mueh larger than our sun, or, rather, it certainly gires out muoh more light. It is exceedingly probable that the intringic lastre of its photoephere is greater than that of the solar photo-ephere-jet not very greatly, we may suppose, pace the researehes of St. Claire Deville and others tond to show that there is a limit to the light ead heat whioh matter oan give out, under -whatever cireamatances. Now, assuming that the intrinsic laminosity of Blirius is equal to that of our san, it is demonstrable that if we take the limiting determinations of the annual parallax of Sirias and of his absolute lustre as compared with' the sun's, has orb is greater than the an's in a proportion ranging from a minimum of 2,000 times to a maximum of 8,000 times. Taking thre highead concoivable estimate of the inherent laminosity of Sirius, the lowest estimate of his ebsolate luatre, and the maximum value of his parallax (which, of course, gives the least value Llor his dintance and for his magnitnde, so far as its caloulation depends on his distanoe), we cannot suppose that the volume of this star falls short of 1,000 times that of our sum. Here, then, is evidence stalkingly in tavour of the inference that a apeotram with strong hydrogen lizes is inclicative of relativoly enormeus magnitude.

Other etars whioh show this speotram-sis Altair, Vega, Rigel, and Regulus-are oertainly very large atara, since we are certain that onr sum, removed to a distance where, like these stars, he work have no meagurable annual papallax, would not shine nearly so brightly even as

 600 stars he
 Haggins.

 special instane
as it were, placing certain star groups. For when once we knew that certain groups forma set (and can distingaish them from other stars seen in the same direction) we have only to inquire whether their aperage proper motions on the heavens imply zolatively great distance or the reverse, Whether their spectra imply great balk or not, and so on, to gain an insight into their probable peefition, as a system, in the stellar universe.

The extension of the new method of determining motions of recess or approach to the fainter orders of atars, if it conld ever be accomplisbed-and I conceive that at an elevated station, where the atmasphere was claar and pure, this might be done-would also afford an insight into the average real motions of the etars, which woild cause the observed proper motions on the heavens to be muoh more aignificant as to stellar distances than at present.

* Yega is included among the stars whose paraliax has been eitimated. For my own part, I mant admit that after noting the disorepanclos tn the estimates of
the parallay of Sirias, and eren of 61 Cybni, by the beat the parallax of sirina, and eren of 61 Cygni, by the bout
observers, I find myself nuable to place the slightemt rellance in the actual measures of paralliax, with the angle exceptson of that of Alpha Centauri; and it ts only in the cases of Siring, of Oygni, and one or two other stars, ethat 1 cen betieve that sn obwersable bat mot acourately measurable parellax exinth.

It is very necessary, however, that we should have the heavens ganged with telesoopes of difforent apertane, after the manmer indicatod in my "Essays on Astronomy:". This is a work in which every possessor of a geod telescope conld take abeful part, and it oould not fail to throw important light on the subject of the oonstitution of the universe. Let it be remembered that Sir W. Hersohel gare but a cainute portion of his time to the work of ster -gauging-that what he did was, as he asid, "only an example to show the spirit of the method;" that Sir J. Herwahel did only about as much work is obtaining certain gauge-fiolds in the southern heavens, and that Strive has pointed to the absolate necossity of systematio ganging, and with telescopes of different eperture. The work is by no means dificoult, and it weald "toll" quiokly if the results of the garging were duly (even though very roughly) oharted.*.
There is, indeed, en immense mass of work to be done towards advancing our knowledge of the stellar aniverse. Instead of being an explored field, as so many imsgine, this fleld of resoarch has scarcely been more than entered. What Dr. Haggins has just done proves that those peouliarities of structure on which I have so long insisted have real existence. I venture to hope that the processes of research I have so long been advocating may now be entered upon. I have before me as I write the words of Sir John Herschel, the greatest astronomer of our age; and of the Astronomer Royal, the highest living authority on sabjeots astronomical, in confirmation of my opinion of their extreme importance.

ASTRONOMIOAL NOTES FOR JULY.

bya Frllow of the Royal Astronomical Socizty. mean noon on Joly 1st is $6 \mathrm{~h} .42 \mathrm{~m} .57 \cdot 46 \mathrm{~s}$, and his deolination $23^{\circ} 5^{\prime} 20 \cdot 5^{\prime \prime}$ north. Hence he will be found between the two stars ε and 36 Geminoram, at about two-thirds of the distance from the former. He rises in London on.the 1st at 3 h .50 m . a.m., and sets at 8 h .17 m. p.m. ; his rising and setting on the 81st taking place at 4 h .24 m . a.m. and 7 h .48 m . p.m. reapectively, in the same locality. Twilight still parsiats from sunset to sumrise op to the 21st, and after which there will bo a very whort (but, of course, gradually inoreasing) interval of real night. The equation of time is additive during the whole of July, increasing from $3 \mathrm{~m} .34 \cdot 62 \mathrm{~s}$. on the 1 st to 6 m .4 .58 s . on the 31 st . The semi-diameter of the anchthainetentofhia Gmonwrich meridian transit
 ing Tren. 8.75 s . of manaltithe (convertible into pande demer tive ymerivia. On the 31st his
 $15^{\prime} 47 \mathrm{~F}^{\prime}$, da thels nill uecoupy 1 m .6 .68 s . of time) rin ithe fouckilke, Is above, into mean

 on the 31 st is 8 h .37 m .39 .59 s . ; the mean time at sidereal noon, or mean time of trandit:of the fint point of Arios baing 17 h .17 m .46 .65 m . and 16h. $19 \mathrm{~m} .49 \cdot 31 \mathrm{~s}$. on those days respectively.
The Moon will be New at 6 h .24 .9 m . in the evening of July 5 ; enter her first quarter at 7h. 48.1 m . on that of the 13th; be Full at 1h. 53.3 m . in the afternoon of the 20 th ; and enter her last quarter at 7 h .18 .7 m . a a . . on the 27 th . She is 25.4 deys old at Greenwich mean noon. on the 1st, and 29.4 at the same hour on the 5th. After this she will at noon on the 6 th be 0.7 day old, and so on until the 31st, when her age will eridently be $25: 7$ dsys. At $11 \mathrm{a} . \mathrm{m}$. On the 14th Libration will render more of her sonth-eatit. quadrant visible, while at $3 \mathrm{p} . \mathrm{m}$. on the 26 thmore of her south-west quadrant will be turned towards The earth from the same cause. The observer will, however, very evidently indeed, be unable to

* My atar-gaugings with the telescope placed at my disposal for the purpose by the Royal Aatronomical 8ociety, have exterded only to the region betweon
Pleides Capelia, and Betelgeax. (I propose next whiter torenew them nander sllighty. ohanged oonditions.) This reglon is singularly interesting: It shows a vory
remarksble vacancy near the Bull's horng. This racent rembrkable vacancy near the Bull's horns. This racant
space extends beyond my telescoplo range: I shanid space extends beyond my telescopio range:
mueh uke to know how doep (telesoopioally).
avail himself of either of these phenomena. The Hoon will be in conjunction with Mert at 2 h .34 m . in the afternoon on the 4 th ; with Venus f $11 \mathrm{~h} .30 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. the neat day; with Mereury at 1h. 20 m . on the night of the 6th; with Uranus at 2 h .85 m . in the early mornieg of the 7th; and with Jupiter afterwards, 11 minutes before noon Lastly, she will be in conjunction with Saturn at 8 h .13 m . in the evening of the 19 th .

Six actual ocoultations of, and cir olose approsches of the Moan to take place during the month of July. Beginning with the evening of the 9th the moon will, as viewed from Greenwioh, pass quite alose i Leonis at 9 h .37 m ., and. at 9 h .32 mm . on that of the 14 th will also be almost in contact with 2 Libres. The first real occultation will take place on the-18th, Then BAC. 5395 will diseppeariat the Mowa's durt limb at 9 h . 42 m . p.m. to reappear from behind the bright one at 10 h .54 m . At 11 h .28 m . the nest night (that of the 17 th) the moon will almost touch 39 Ophiachi, and at 1 h .5 m . the next marning her dark limb will oocalt θ Ophinchi; the star will, however, have set ere it resppears at the bright limb afterwards at 1 h .49 m . During the early morning of the 21st at 4 h . 6 m ., BAC 7197 will disappear at the Moon's bright limb, reappearing (bolow our horizon) at the dast limb at 4 h .42 m . On the night of the anme dey, the 21at, BAC 7550 will disappear at the bright limb of the Moon at 11 h . 38m, reappearing from behind the dark limb 37 minates after midnight. On the 22nd, at 8 h .27 m . a.m., $\boldsymbol{\tau}^{1}$ Aquarii will be oceulted by the Moon's bright limb, and will emerge from behind her dark one it 8 h .37 m . Sabsequently, st 3 h . $56 \mathrm{~m} .7^{2}$ Aquarii will digappear at the bright limb, and reappem; at the derk limb at 4 h .47 m . Finsils, the moon will make alose approsehes to 64 Ceti at 1h. 46 m . a.m. on the 27th, and an bour afterwards to ξ Ceti; as also to 121 Tauriat 4h. 14m. a.m. on the 31st.

Meroury sets after the Sum during the entire month, and during the latter part of it will be in s velerably ifavourable position for obomation. He will be on the meridian on the 1 st 88.5 m . after moon, and on the 31st at 1 h .607 m . in the aftermoon. Daring the middle third of the month he may be picked ap near the west-north-west part of the horizon immediately after ganset. Mercury will be, as previously stated, in conjunction with the Moon at 11 h .20 m . on the night of the 6th. He will further be in conjumetion with Uranas at $8 \mathrm{~h} . \mathbf{3 4 m}$. in the oveping of the 7 th ; with Japiter et 6 h . 42 m , in tho afternoon of the 10th; and with Rogulns (a Leonia) at 2 h . 43 m . on that of the 24 th .
Venus is, for all practical parposes, invisible during the whole of July, from her proximity to the Sun; with which ahe is in superior conjunction at $5 \mathrm{~h} .47 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. on the 16 th . Her oonjanction with the Moon at 11 h .90 m . a.m. On the 5 th has been before adrerted to, sud we may add that ahe will also be in conjunction with Uranus at 6h. 3m. am. on the 22nd, and with Japiter at 2h. 22m. am. on the 29th. There are obvious reasons why none of these conjunctions will be observable.

Mars is a morning star, rising on the 1st at 2 h .52 m . a.m. and southing at $11 \mathrm{~h} .12 \cdot 2 \mathrm{~m}$., while on the 31 st he rises at 2 h .25 m . a.m., and is on the meridian at 10 h .41 m. , evidently setting in bright daylight. He is travelling through Gemini during the whole of July, but does not go near to any very conspicuons star. As his diametar is now
only some $4^{\prime \prime}$, and he is almost only some 4", and he is almost exactly dircular, he posseases not the very slightest interest as a tolesoopic object. We have spoken above of his conjunction with the Moon at 2 h .34 m . p.m. of the 4th.

Jupiter is now rapidly departing for the seasion, but daring the earlior part of the manth may be caught near the north-west horison soon attea sunset. He is on the meridian on the lst 1 h .46 m . in the afternoon, and on the 318 on ons 14.7 m . after noon. He is travelling through portion of Cancer. His conjunction with the Moon at 11 h . 49 m . a.m. on the 7 th ; with Nercar at 6 h .42 m. p.m. on the 10 th ; and with Venas at
2 h .22 m . a.d. on the 29 th , have been notiod under other heads.

It is jast possible that the beginning of the transit of satellite 4 at 9 h .8 m . in the aveniag of the 1 st ; that of satellite 2 at 9 h .18 m . p.m. on the 2nd and the reappearance from eclips be satellite 1 at 9 h .23 m .20 a . on the $3 \mathrm{rd}^{2} \mathrm{mgy}$ be perceptible; but from July 8 to August 28 tbe natellitites of Jupitar are invisible, from his proximity to the San.

Saturn is really the ohief objeot of aftraction in the night sky; but he continaes in Bagitasina
in the same deplorable position for observatiou
whiah he has so long occupied. He rises on the night of the 1st at 8 h .37 m ., is on the meridian at 38.7 m . after midnight, and sets at $4 \mathrm{~h}, 40 \mathrm{~m}$. (after sunrise) the next morning. On the 31st he rises at 6 h . 32 m ., sonths at $10 \mathrm{~h} .31 \cdot 6 \mathrm{~m}$., and sets at 2h. 32ma.m. on Auguat 1st. He is in opposition to the Sun at 11h. 13m. on the night of the 913. His conjunction with the Moon at 8h. 13 m . p.m. on the 19th has been previously spoken of.
Oranus is much too close to the Sup to be now observable.

Neptune rises some quactar of an hons.after midnight at the beginning of the month, and about 12 or 13 minutes past $10 \mathrm{p}, \mathrm{m}$. at the end of it; his southing and setting both takiag place in brilliant daylight. He will be found just to the north-esst of o Piscium. He is in, so-called "square" with the Sun at $5 \mathrm{~h}, 11 \mathrm{~m}$. in the afternoon of the 18 th.

It may be intaresting to nota in- cannection with this month, that on July 1at, 1770, Lexell's Comet came within $1,400,000$ miles-of the earth (the nearest approach of which any record exists) Perhaps it will tend to reassure some of those whose faith in the constancy of Nature may have been shaken by some recent vecy blatant assertion, if we add that (although we have the fallest details of the resignstion of the Duke of Grafton, the sucoession of Lord Nerth to the office of Prime Minister, the growing disoontent in America, and the sensation oreatod by the Letters of Junias) not one syllable has come down to as about a Delage, universal or partial; nor were the most able trigonometricians of that day able to detect the slightest sign of an ark.

Watoh should be kept for shooting stars between the 26 th and 29 th of July, as there woald seem to be tolerably good evidence of the existence of a recarrent ahower at this period.

THE CAUSE OF CONSUMPTIOA. So long ago as 1855 Dr. Mac Cormac published which he seeks to account for the origin of con. sumption-tabercular disesse of the lturgs, the "fell destroyer," as the novelista term it, which. deainuter the popalations of Hurope. We sasy
seek to account; becaume allhough. Dre Miv: seek to account, becaume allhongh Dre Mior joimfons have not been wanting, which sfow that many of those " learned in medicine" refuse to accept his hypothesis, while others, probably inclined to look favourably upon it, regard it as simply "not proven." It is abandantly evident from the book before us that our author has seen no reason to modify the theory first broached by him in his work on "Consumption as engendered by Rebreathed Air;" and while contenting ourselves by expressing the opinion that, in 2 commonsense point of view, there is mach of trath in the argument put forth by Dr. Mac Cormac, we proceed to lay before our readers a brief résumé of its priscipal features. Stabed in a fow words, is consed solely by breathing air which has alrendy paesed through the lungs of either brates or haman beings, or air that is deficient in oxygen. If we assume the quantity of air in the chest at aboat 230 oubic inches, and that from twenty to thirty cubio inches are changed and romoved during each respiration, about ten breathings will saffice to renew or exchange the gaseous eontents of the chest carity. At each inspiration from 4 to 5 per cent: of the oxygen inhaled is, or should be, replaced by about the same quantity of earbonic acid, an amount which in a few hours world be represented by an appreciable weight of solid carbon. If any portion of the inhaled air be prebreathed air, says Dr. Mac Cormac, the dead metamorphic carbon will be retained
pro rata unoxidised within the organism. This effete unoxidised carbon - this "detritus of degradation" being retained-speedily becomes "tabercle." It is not to be supposed that the unoxidised carbon left after two, twenty, or a humdred inspirations of pre-breathed air, or in in which there is insufficient oxygen, will result in the deposition of tubercle; bat "one condition
of things, to wit, the habitual respiration of already breathed air, having began, the sequence of the other, namely the deposit of tuberale, follows as a mattor of necessity." Suck, in
${ }^{\bullet}$ Oonsumption and the Breath Rebreathed. By

which he bases it being ably gathered together, and brought to bear from his point of rier. Our anthor, naturally enough, is opposed to the idea that consumption is hereditary. He holds that the same causes which prodaced it in the father may produce it in the son, but that those In several places in his book ho asks pertinently What is taberale? if not the dead carbon which has been left anoxidised by impure air; and as yet he has certainly not received a satisfactory answer.
Dr. Mac Cormec says that without adequato ventilation we cannot possibly get rid of the ten or twelve hundred cabic inches of carbonic acid whioh the lungs eliminate hourly. No sir-at least no respired air-ought to contain a larger smount of this poisonous gas than the infinitesimal proportion of one or two parts ner ten thousand. Now, as a matter of fact, it will be a diffioult matter, we think, to find air so free from carbonic acid as Dr. Mao Cormac reqnires, for De Saussure found near the Lake of Geneva an average of five parts in 10,000 , and Dr. Angus Smith fonnd a mean of 332 parts in a million on the tops of sach mountains as Ben Nevis and Ben Lomond. But this is a detail. Dr. Mao Cormac appears to have left no stone onturned to find facts to support his theory, as is evidenced by the opinions of eminent foreiga medical men gnoted by him. Ho has also been at some pains to obtain the average desth rate from consumption in varions parts of the world. We learn from him that in the Austrisn capital phthisis prevails to sach an extent as to have been named morbus Viennmsis; bnt he traces the cause readily enough to close stoves in stuffy chambers, to doably-glazed and padded windows, which are never opened, ventilation being entirely unthought of. A similar state of things he finds to oxist nearly everywhere, the deaths being from 28 per cent. in some parts of America to 10 per 28 per cent. in some parts of America to 10 per
cent. in Paris, while in S . Petersbarg, out of 5,000 deaths, 1,900 are occasioned by phthisis! "Double doors and windows, every interstice being carefully closed with wadded cloth or voilok, exclude the current, and, along with the close stove or petch, renders stagnant atterly the stinted breath-fonded atmoophere, effectively hindering itg replacement from without, and, in fine, entail:
ing the dirofal scourge of tuberole, from whioh no class or condition of the commanity finds escape.' Ory the others heod. the North American Indian nact the Peomien, who as frequently sleep in the open air as in their rude cabins, enjoy an immunity from consamption which in civilised quarters is only exhibited by the inhabitants of the West
Highlands and the Hebrides, amongst whom tubercle is unknown. And yet Scotland as a whole is decimated by consumption. Every laxury that wealth oan parchase, the most nutritions food, and the most carefal nurtare fail to keep it at bay; bat in the Hebrides, where the
gcanty fare, the wretched hate, and the hard life wonld, popalarly and medically, be considered productive of phthisis, "no scrofula, no consumption, in short, no tabercle-ongendered malady whatever is to be seen." How account for these andoubted facts, save on the theory of Dr. Mac Cormac? He ridicules the idea which has been mooted that the West Highlanders obtain immanity from the disease by the inhalation of peat smoke, which, he points out, is abundant onough all over Scotland without awarding a like immunity elsowhere. The Hebrideams, in fact, livo in ceilingless, partitionless hovels, each provided with a hearth on
whioh a fre is continually barning. There a hole in the roof answers at once as a ohimney and as a most efticient ventilator, and as the door of the hovel is rarely shat the sir of the "room" is never stagnant and is never fonled. To imitate this state of things is the preventive means which Dr. Mac Cormac recommends to avoid creating the terrible disease ; for if his theory is right it is certainly oreated. Therefore draughts and open windows are to be encouraged, especially at night, for if the body is well covered no harm will accrue; he speaks of entering his boy's bedroom and finding a fringe of snow on the coverlet, while the sleeper slept the sleep of health, all uninjared by the cold. The closely-curtained bedstead of our forefathers is a thing of the past how long before it becomes the rule and not the exception to sleep with the windows open! "The respiration of unpolluted air by night will even go some way to neutralise." says Dr. Mac Cormac, the evil influence of any vile pernicious atmo spheric environment when we are constrained, as we too aften are constrained, to breathe it by
day." There is, however, one flaw in the doctor's theory which will occur to most of our readers, and that is that consumption does not come with "equal foot" to all our doors. True, it visits all classes tolerably equally, but of two men, working and living ander exactly the same influencer of "pre-breathed" air, one may fall an early rictim while the other may live to the allotted span. It is true Dr. Mac Cormac acknowledges that, " once deposited, supposing only that there are no additions to it, taberole may subaist long years latent; it may be eliminated speedily, or it may become cretaceous ;" but this does not meet the case ; for if the hypothesis is not baseless every one who continually breathes pre-breathed air for any leagth of time nust contract tubercle. Is it so?

The subject of the present volume is one that is of nore or less importance to every family in the kingdom, and readers of all classes will find mach to interest them, even if they fail to profit by the teachings of a man so evidently in earnest as Dr. Mac Corma. We regret to see the eccentricities of printing which, some will probably consider, distigure the volume ; because a man who exhibits crotchets in spelling and punctaation renders himself liable to be summed up as crotchety altogether. O late years medical men hare been great offenders in this respect.

NOTES OF FRENCH SCLENCE.

D^{F}R. BEDOIN recently examined a load Chessćpot bullet taken from the body of a suiclde. A!ter passing through the softer parts it had been stopped by the vertebral column, and its vis viva changed into heat. As it showed signs of fusion, the temperature must have reached 315°.
M. Cailletet has investigated the influence of pressure on the speotra of gases. He fized two platinum wires in the end of a thick glass tube. into which the gases were passed. The spark from an induction coil connected with three Bunsen elements passed between the wires. At ordinary pressure, the bright lines of the spectra of the gases appeared on a slightly illuminated ground; and as pressure was increased they grew brighter, but they by and by became merged in a continuous spectrum, whose Brightness also increased with the pressure. At a certain pressare
(between 40 and 50 atmospheres) (between 40 and 50 atmospheres) the discharge suddealy censed; and thongh the battery power was increased, and the distance between the platinum wires reduced to $\frac{1}{2}$ millimetre it was not possible to obtain the spark beyoud this point. It is thas seen that a spark which passes easily in the rarefied gas of Geissler tubes, or the electric egg, mects with considerable resistance in compressed gas. The brightness of the spark at the point beyond which the discharge is anobtainable is 200 times greater than at ordinary pressure.
Palmieri states, in communication to the Paris Academy of Sciences, that on the night of April 26 a fissure opened on the sonth-west side of Vesurias, the lava from which raised the seorim of previous years, and made a sort of hillock about 60 metres high. At the base of this the lava flowed with wonderful tranquillity, withont noise or projections. None of the usual eccentric or adventitious cones were formed at the side of the fissure. Another curions fact is that the lava in the Fossa della Vetrana, flowing with a bresdth of 800 millimetres, made successively three veritable eruptions, throwing ont globes of vapour and incandescent scorim. The smoke from these was darker than that from the lava. Each of the eraptions lasted half an hour. The Professor made electrometric observations on the clond of vapour, cinders, and lapilli which was carried over the Observatory. The vapour alone, without cinders, showed positive electricity; the cinders alone, negative ; when mixed, they gave various results. Lightning flashes appear only when the rapour is largely mixed with cinders; and it is not true that the lightaings are without thander, as some historians of Vesuvias relate.
M. Dufour has made observations as to the rate of growth of the nails. Here are some of his results: The nails of the little fingers grow more slowly. than those of the other fingers and the
thambs. The difference is about ove-ninth. The mean rate of these (exoluding the little fingers) is. abont one millimetre (100 th part of an inch) in ten days. The rate of growth on the thumbs is probably greater than that on the six louger fingers. There is little difference betweon the rates of growth in different aniugals. The nails grow at about the aspae cste on both hands. The rate of
growth is not constant throughout the length of the nail; it is greator near the base. The rate of growth at the side parts is probably the same as in the middle part. The substance of the nail selvances equally throughout its breadth. The
rate of nail growth in an individual at intervale of neveral yoers showe sensible difiorences.
A. B. M.

CRYSTALIISED IRON.

I^{N}N oppone in to a commonly-received idea that wrought in in becomes orystalline and brittle when subjected to vibration, M. Oaron recently branght before the Paris Academry the result of observations he fal made on certain railways, which showed that the fracture of aviles had in every case been ocoasioned either by the bad form of the pieces, or the fanlty nature of the iron bofore it had been ased. He contests the assertion that bar iron becomes crystalline and brittle under the influence of winter cold. This idea has arisen from the crystalline appearance of iron pieces that had been broken in such low temperaturen. It is undoabted that there is more breakage of raitway axles, and more breakage in the bones of mex and beasts in winter than in summer, but the mean and beasts in winterts is to be found in the canse of such accidents is to be hardness of the ground, the stiffness of joints, and the greater riolepice of knooks and shakes to which the pieces are subjected; and the faot of a arystallised appearance in the broken parts does not necessarily show that such crystallisstion arises from the lowering of temperature. To prove this aatisfactorily it woold be necessary to show that a bar of iron which was crystalline at (say) -20°, resumed its fibrous structure when the temperature was raised to $+20^{\circ} \mathrm{C}$.

In order to test the influence of cold on iron, 1. Caron experimented as follows:--Several pieces of good bar iron were exposed for four pieces of in the ice factory of M. Tellier at Antenil, t) temperatures varying from 0° to -18°. Others were allowed to remain throughout the cold of last winder at a temperature of about 20° in the open air. M. Caron then eaused the pieces to be broken, both in their cold state, and after the temparature had been raised several degrees above sero. In no case was there any appearance of crystallisation. Of course, he had assured himself of the good quality of the iron beforehand. Irxin of inferior quality acts differently; its brittleness is perceptibly increased through cold.
The experiments of M. Caron seem to prove that when a bar of iron breaks, through vibration er ahoeks, and the fraoture presents a crystalline appearance, this erystallised state was that in whioh the iron was. previously to its being used; and it is to be attributed to fanlty manufacture, not to usage or cold after the piece was comploted. From this it follows that the testing of cig., 4 or 5 per cont. of a large number of pieces of wrought iron does not supply a proper guarantee of the good quality of the remaining pieces, beeasae of the Farying care bestowed on the pieces, and various treatment of them as regard
temperature and other points.
A. B. M. temperature and other points.

NEW MATERLAL FOR BBICKS.

${ }^{\square}$URING the leat few years experiments have from time to time beem made with the view to ndilise in some way the mounds of shale (the seffee of the coal-mines) Which cover an area of
ceveral thousands of acres in South Stafiordshire, by coverarting them into bricks. Several enterprising converting them into bricks. Several enterprising Atable busibess. When properly pulverised the shale is foumd to be an excellent material for the purpose the bricks produced being hard and durable, resembling in colour the fire-clay bricks of the Stourlidige district, although for fornace and suoh bike parposes they are not so valuable. For ordinary mallaing, however, they are found to be of equal Enactioal zekne to the ordinary red bricks, the only gosaible objection to the former being their colour, which is somewhat too light for a smoky district like south Staffordshire. This objection, however, could enly apply to their use for buildings of architectural pretensions, and such buildings in the black country thet this mominate. There is every reacon to believe hillocks which disfigure the Sonnumerable dusky hadscage will gradually develop into an industry apdscape will gradually develop into an industry
of some importance. The material is to be had in any quantity for a mere nominal sum, and its oxharation in those parts of the district where the collieries are worked out would be donbtless followed Iy a restoration of the landscape to a much nearer semmblaroe than it no bears to its former beauty.

NEW SLIDING SEAT FOR RACING BOÁTS. THE principal features of the new sliding seat for ontriggers and racing boats generally, which is believed to have contributed in no alight degree to the sncoess of cortain orews in recent matches on the Thares and elsowhere, will be readily understood from the accompanying illustration of the form recently registered by Messrs. Searle and Sons, the eminent boat-brilders. This device has formed the sabject of muoh discussion pro and con. amongst the "knowing ones" of the aquatic world, and the advantages whioh one side alaims are fieroely dispated by the other side. Be this as it may, aliding seats have been used by many winning orews lately, and in the race between the Atalantas and the London Rowing Olub, both boats were fitted with them. Rowing Olab, both boats wese fitted with thom. builder, was the first to make the euggestion of constructing the seat to slide, and he probably derived the ides from our North-country rowing men, who formerly construeted their boats with broad neats, which they liberally anointed with grease. By this means they considered that the woight of the body could be thrown into the stroke with more facility, and that the muscles of the lege could be brought into greater play and the stretoher utilised to the full extent. It is asserted for the new sliding seat, whioh is really only the meohanioal adaptation of the prinoiple underlying the Tynesiders' use of "grease," that it enables the rower to get farther forward, and by atilising more effectively the museles of the legs, equalises the effort from the beginning to the end of the stroke, at the same time relieving to a great extent the strain upon the arms. In the design registered by Messrs. Searlo the seat is hollowed out to suit the conformation of the body, and is
and with a view to explain and demonstrate the various operations Mr. Houghton himself has established a small worting plant at No. 40, Borough-road, where we were invited to inspect the very simple machinery.
To begin with the wood itself-the pine wood of Norway, Sweden, Amorice, and varions parts of the world. It may be premised that the cuitings from the esds of planks, misshapen portions of trunks and limbs, miagrown timber, and what may be termed forestal waste, are completely adapted for the purpose. The cutting is effected by means of simple purpose. The cutting is enfected by means of simple
machinery, worlding a series of knives, which sifoe the timber in a diagonal direction, so that the fibeo easily separates by the oplitting of the grain. These slices are broken with the ntmost facility into small pieces, and are then delivered to the factory as the material to be rapidly converted into paper palp.
To this end they are frat consigned to a patent boiler, so constructed as to endare great pressure, being composed entirely of welded rings apon welded rings double riveted together transversely. They are heated entirely by hot water circulating in pipes which travarse them in sections throughout their length, and in which the heat can be so regulated from the external apparatus as to raise or lower the temperature to a single degree. The pressure employed in the process of treating the preseure employed in the process of treating the the square inch. The wood is introduced into the the square inch. The wood is introduced into the
botler in wire cages running apon a set of rails, 00 boiler in wire cages running upon a set of rails, 80
that while one batch is being removed another is that while one batch is being remored another is
ready for disintegration. When the boiling is completed, the small piecos of wood-whioh may be called fasces of wood-fibre-are quite soft, and of a dingy colous not dissimilar in appearance to a piece of rather coarse field rhabarb after it has been cut up and baked in a pie. The material is now ready for bleaching in a vak, where it is treated with chlorine, pumped into the liquor in such quantity as not to injure the fibre; and the operation is afterwards completed by the use of permanganate of soda. The condition of the material is that of a

attached to two hard-wood runners, which travel with a minimam of friction in grooves lined with brass or other metal in the under seat. The President of the Cambridge University Boat Clab is said to have thoroughly tested the new contrivance, and to have highly approved of it, while many other noted scullers have also expressed many other noted sculers have also expressed
the same opinion. The illustration, which shows the device applied to a scaller's outrigger, explains itself.

PAPER FROM WOOD.

TN a case placed in the section of the International Exhibition deroted to paper mannfactures, Mr. Honghton displays the results of his processes for converting wood into pulp for paper. It appears that he has sncceeded in overcoming the diffculties which have hitherto beset the employment of wood. We learn, from the Paper Makers' Jourrial, that the ohief of these difficulties, hitherto regarded as little less than insuperable, has been the necessity for using such large quantities of alkali, in the progress of disintegration by boiling, as to make the cost too great to bring the material into the market in suoh quantities and of such quality as to satisfy the requirements of English makers. In other words, the evaporation and waste of the alkaline liquor, and the necessity for using such large quantities of canstic soda or soda ash for every a high ininegration, made the cost of prodachan o admit of its adoption as a cheap substitute for higher-priced material. This necessity Mr. Houghtou has superseded, and that by a process which also tou has superseeded, danger from the heat or pressure required in the preparation of the fibre by pome orter methods. Patents for the requisite machinery and processes have been taken out, and a company is, or will shortly be, formed for working them, or granting licenses for them, in England, Smedon, and Norway. They are now boing placed in oporation on a large scaly in Eranoe, Austria, and Belgiam;
soft, palpy, highly-fibrous mass, which haring boen subjected to the action of a hydro-extractor, or, more simply, a "wringer," comes forth in the shape
of a damp, feecy mass, in which only a microecopic eye could detect the pristine wood fibre
In point of fact, one of the constituents which oxisted in the wood has been so completely removed that it affords a separate operation in the process of treating the alkaline liquor, a process which is, we
understand, the achievement by which this astem claims to inangarate a new era for wood pulp.
When takken from the boiler, the liquor witio Which the fibre has been treated is of a dark colour, and somewhat resembles "double brown stout." In this state it is pamped into a vat, where it is subjected to the infinence of carbonic acid gas, which has the effect of ooagalating, or, to some oxtent solidifying, the resinous particles ; so that it obanges in appearance from brown stout to muddy coriea In appearance ir in brown stout to muday coses
In this state it is transferred to a coppor, where it is heated exactly to boiling point, the result of is heated exactiy to boiling point, the result of is at onoe precipitated, or, in plain English, falls to the bottom, in large masses, not anlike great flates of peat. For this resin, donbtless, some commercial or manufacturing ase will soon be found ; and at any rate, it cannot fail to be a source of proft. The liquor is now of a clear brown colour, about the tint of moderatoly strong tom, and is destined not to be thrown away as waste, but to be nsed again. after the balance of the alkali absorbed by the fibre has been restored to it. This is effected by the use of sulphate of soda, so treated with coal as to prodace a combined substance capable of restoring the necessary constituents. The material restoring this necessary constituents. The material
used for this purpose costs less than 5.5 per ton. and asea for this parpose costs less than 5.5 per ton, and
ebout 10 per cent. of it will restore the lost alliali. for which it is substituted weight for weight-a trifling cost when compared with that of making up the deficiency with either caustic or carbonete of soda at the prosent pricos. By this procesa the liqnor is made fit for re-introduction to the baiker. and on being removed is treated as before, sa that it may be said to be constantty renewable.

ALLEN'S PATENT GOVERNOR.

ALLEN'S PATENT GOVERNOR.

' ${ }^{\prime}$ HE improved form of governor shown in the Mr. R. K. Huntoon, of Boston Mossachnsetts, ond has been employed for the last three or four years in America, where, under different circumstances, it has given equally good results, and earned in it has given equally good results, and earned in
actual practice the high encomiums passed upon it actual practice the high encomiums passed upon it
by the principal mechanicians of the United States. In this country it is known as the Allen governor, from the name of the proprietor of the English patent, and forms one of the exhibits in the International Exhibition of Whitley Partners, Leeds, Who are the sole licensees and makers in Europe. Very few of these governors have been fixed in this country at present, but those that are in operation have given unqualified satisfaction. In the United States, however, the Allen (Huntoon) governor has had an extended trial on various descriptions of engines and in different kinds of work, and has been awarded a high character by firms so competent to judge as those of Messrs. Sellers and Co., of Philadelphia, and Messrs. Baird, of the Baldwin Locomotive Works, besides others too numerous to mention. The Allen governor, the construction of which will be tolerably well understood on inspecting the accompanying engravings, consists essentially in a revolving paddle-wheel working in a chamber partially filled with oil. The chamber is a corragated cylinder with small projecting ribs on its interior periphery. Within this chamber is a paddle wheel carried on a spindle, to which a rapidly revolving mevement is imparted by means of a belt on the fly-wheel shaft. The tendency of the revolving paddle-wheel throwing particles of oil against the internal ribs of the cylinder is to cause he latter to revolve in the same direction, a motion which is partially checked by means of a weighted lever attached to a trunnion on the cylinder spindle. Connected to the trannion, but moving in an opposite direction to the weighted lever is a short lever which by means of connecting rods opens and closes the throttle-valve according to she load on the engine。 The peculiar action
of this governor enables a valve of large area to be used, by which means the greatest possible boiler pressure can be brought to bear on each stroke of the piston. The governor valve is also of peculiar construction, and is perfectly balanced. In Figs. $2,3,5, A$ is a cylindrical drum, having on its inner periphery a series of flanges or ribs a a arranged pert or about equal distances apart. This drum at or about equal distances apart. This drum
moves around the shaft b, which enters throngh the end $d d$, but is fixed to the shaft c at the end the end d, but is fixed to the shaft c at the end
$e e$. Attached to shaft b, within the drum, are a $e e$. Attached to shaft b, within the drum, are a
number of paddles, or flat wings, $g g$. The two number of paddles, or flat wings, $g g$. The two
shafts are supported in bearings h in a standard shafts are supported in bearings $h h$ in a standard
B, mounted on the valve-case, C. To the shaft c, which moves with the drum. a lever with an adjustable weight l is connected by the trannion mentioned above, and the shaft is also connected by a short arm and the rod m to a lever fastened on the shaft o, which enters the valve-case C through stuffing-box p into the induct E. An arm q (shown in Fig. 6) carries an anti-friction wheel r, and projects from the portion of the shatt within the steam-passage E of the valve-case, entering a slot $r 1$, made in the shank s, connecting the two valves $t u$. These valves are arranged as shown, with the ports or openings $v v$ made in opposite sides of the tubular induct E, which is closed at its inner end. F is the educt, leading out of the lower part of the the edu
case C.
The drum A being filled about two-thirds with best sperm oil, a driving-belt is passed from a pulley on the fly-wheel shaft to the pulley W on the shaft b, so as to insure a speed of the paddlewheel of about 400 revolutions per minute, by which means the oil is thrown against the flanges or ribs a, causing the drum to turn in the same direction as the paddles. By this action the weighted lever is raised, and the shaft o turned whrough the action of the connecting.rod m the valves being, consequently, held in a position valves being, consequently, held in a position governed by the amount of work or load on the course, resisted by the weighted lever l. By operating the valves by the $\operatorname{arm} q$ applied to the connect-
ing piece there is no pressure on them like that experienced when a stem extends through a stnfing. box, and they are in reality "balanced" and easily moved by the governor.
Fig. 7 shows the application of the invention to engines with variable "cut off." Here the lever and weight are replaced by a fusee or scroll, 4 and a weight, 2, suspended from the periphery thereof by means of a chain, 3. A pinion, 6, fixed en the shaft C, works into a toothed sector, 7 , sneving
freely on the stad, 4 , but secured by freely on the stad, 4 , but secured by the nut 5 The stud, 4, is screwed tight into pplate, 8 , which is fastened to any convenient part of the engine bs bolts, 9 . In the arm, 10, of the sector 7 , is a slot, 11, for adjusting the connection of the valve gear. The weights suspended to the scroll have 2 tendency to roll the pinion, 6 , to the right, actasting the secter, 7, from right to left, whilst the paddle-wheel in the drum A actuates it from left to right, causing thereby the arm, crank, or otber device fixed to the slot-hole, 11, to move in these opposite directions, according to the prevalence of the power of the paddle-wheel upon the weights, ar inversely; and giving the means of a self-actiog motion ou the cut-off valves, according to the veristions of speed of the engine shaft. In this governor the resistance to the action of the revolying paddle increases with its speed in a masmer calculated to open the partially closed valves as rapidly as possible when speed falls down, becsase of the scroll cansing the weights to act upon increasing radii as they are lifted up.
The Allen governor is also adapted for mamine engines, in which case, however, it is, of course modified, as shown in Fig. 8; for it is necessary to dispense with all levers and weights liable to be moved by the motion of the vessel. These are replaced by a strong spiral spring, 1 , one end of which is bolted at 2 , to the arm B, and the other fixed to loose socket provided with six wings, 3. Gme loose socket provided with six wings, 3. One of the wings carries a catch piece, 4, which acta space a pinion, 5 , fixed to the shait C. A smaller piasisa sector 7, with an arm, 8, fixed by a friction seclest
to the spindle, 0 , of the valve G, which it regulates. The spring, 1 , baning been tightened to the required speed by torning the wings, 3, from right to left, is oomured tight by the catch piece, 4, its ten-
 as eoon ras itherspeed of the paddle wheel in the asum 4 :becomesigrester: than required, its zetion
drami the interier ribs of the druan A will overeome the reaistanee of. the spriag 'and cause the ohaft C and pinion 'Ato rovolve strom right to left, thereby causing the raek, 7 , to move from left to right, and to close partially or totally the valve G, acoording to the grestar or lesser speed of the engine. On to the greater or lesser speed of the engine. On of the paddleswheel in the dram A, and consequently of the engine-shaft, becomes less than re quired, the action of the spring overcomes that of the paiffle wheel, and the valve G opens wide. In this governor the resiatanoe to the action of the revolving padale incrabes with its speed in a manner caldulated to open the partially closed
valves as rapidly as pocible when speed fails down, beeause of the grivior vemietance of the spring as it gots tightened.
Such is a description off a form of governor which is comparativety mow to this country, only one or is, that in no single instance has an Allen (or How toon) governor been removed from an engine, and oon) governor been removed from an engine, and no eng Of the been found which it canno Govern. Of the various forms shown in our engravings, it is probable that Fig. 7 will be found the
one in greatest demand, as well as most useful; one in greatest demand, as well as most useful;
thongh of coarse that will not detract from the equal thongh of oourse that will not detract from the equal
merits of thesothers in positions and circumstances merits of the:others in positions and \mathbf{c}

WALLMPAPERS AND JTatherr.

AThsfrater arawity reaowed attentionsto the recently in the Pall Mall Gazette, from which wand gather that, fasherephion of the writer, the evil is much more widely spread then is generally imagined. Thereits but little donbt that very many of with pigments which covering walls are colount ties of arsenic, which finds its way to the lungs in the shape of dust, it may be in infinitesimal amounts but still suffiviantito exercise unpleasant, if not dan gerous, imfuences. The writer of the letter referred gerons, imfuences. The writer of the letter referred are poisontageer popalation wholesale. The dangers of owor geshave deservedly attracted much atten tionshad ingaty in consequence of the alarming of arsenical mill-coverings remains unnoticed; althnugh, aff stwe"truth wre known, their ill effects would be foand to rival those of servergas. There
is a pecultind ciose smell, rightly described as is a pecutiak chose smell, rightly described as the writer called attention especially to that very point in an article published in the British Medical Journal of September 30, 1871. This smell appears to be due to the evolution of arseniaretted hydrogen gas, and may be easily detected by most persons possessing sensitive olfactory nerves in nearly al but is more distinctly observable after the paper has been soaked previous to removal. As a rule, has been soaked previous to removal. As a rule, nical wall-coverings suffer severely from doing so nical wall-coverings suffer severely from doing so, but their livelihood depends on their powers of endarance, and their employers endeavour to conceal the danger and make light of it for reasons of their OWn.
It is also naid that in paper manufactories the sickness and mortality among the workmen is very great ; bat the trith in this matter appears to be studionsly concealed from the public becanse, as arsenic yields a preat Fariety of brilliant coloars, and is exceedingly cheap, it is the interest of the says he has scen workmen in his honse sick and faint from working a few hours at removing a single paper from the walls, and it is easy to understand how far more dangerons the work must be where how iar more dangerons the work must be where papers piled one over the other have to be removed,
and where consequently the amomnt of arsenic would be much grenter; while, owing to the accumalabe much greater ; while, owing to the accumaia
tion of papers on the walls, the nsual precaution of tion of papers on the walls, the nsual precaution of
soaking the papers cannot be effectually carried out.
If medical officers would exerelise close observation as to the colouring of the papers removed in the various houses where there has been sickness, valuable information might be obtained ; for althongh arsenic is used more or less in papers of all colours, those with green in the pattern generally contain larger quantities than other papers, and, the arsenic bing combined with eopper to produce green, the
dust of copper as well as arsenic is inhnled, thus involving n doable soarce of poisoning. Blue pspers also appear to be espocially injurions, whether they contain arsenic or not, some being covered with used very extensively in distemper wash for walls
and cornices), both of which appear to have very injurious effects. There is also a blue pigment in use for such purposes, whioh contains a great dea of arsenic. As all anglazed papers and distemper washes give off more or less dust into the atmosphere, thongh often impereeptible to the naked eye, it requires no very great etretch of the imagination to realise that potisonden Nutct ants inhaled cannot fail to do harm ; and prybientis dite well aware
 it) that poisons ate atilr more deletefibus when in haled than when swithowed, being mere Mapidly taken up.by"the 'blood. Conserupenty, ts'a variety of poisonensirnit medroinal ingrellents fremsed for colotring will-panets and washes, it womh 4eppear that our whole system of wall-coverings (stityobably one of the most giganificerfors in thygherfe that has ben committed in morion times.
 rience he is convincell that diseates of various types haunt thore roomsenit houses whete the wall coverings antain ersentc or other potsouts; and he affirms, as the result of obstrvition thid inquiry, that arsenic when inhaled, cither as dust or in a gaseous form, poisons the blooknnd seriously affects its circulation, weakening the action of the heart and producing general tha loonl congestions; that it produces inflammation of the entire mucous membrane (thereby affecting every organ of the body by degrees), and notably of the stomach and intestines, giving rise in many cases to gastric or enteric fever, but that its action is so subtle and uncertain that the effects may vary to an almost inconceivable extent according to coustitution and temperament ; that this mode of poisoning, which dates from the commencement of this century, may account for many of the mysterions ailments of the present day especially among women, frovn which the past gene ration was exempt. Further, it is well known tha arsenic produces eruptiess of varions kinds, and it appears to be the case that persons occupying
rooms where there is arsenionase especially liable to rooms where there is ansemionse especially liable to
attacks resembling aphthorm, also to eruptive attacks resembling arphthoria, wind also measles, scar latina, and chickre-pox, that thes are frequently called by the same names, and yet aozaot appear to
 rom whooniug oongh, is also produced by the same canse. Is it mot, then, highly probable that the apparently Trequert rearrrence nowedays in the samesindividual of aisorders called by the abovementioned -a recurrence oomaratively rare antil the present contary-ming be, rat-least in some measure, attribntable to the fact:tintt our walls are reeking with poiscn? If we regrethepidemic disease as the result of some poison in the blood, of which eraptions are but the outward itwen-the effort of nature to expel the poison-what can be more natural than that arsenic, a subtle blood कpisoner (and one, moreover, which is acknowledged to produce orup-
tions, whilg it also cures them in some cases). should tions, whils it also cures them in some cases). shonld have this effect? Every medical man in the king dom is treating day after day numerous cases of disease originating in irritation of the macous membrane, which simulate almost every morbid condition 'arsenical poisoning.

ON EARTHQUAKES AND VOLCANOES.* By Augustes Le Plongeox, M.D.

(Concluded from p. 348.)

8.-Cataolymens of the 18th and 18th of August, 1808

THESE cataclysms are some of the most terrible known in the bistory of mankind, as mach for the ravages they have occasioned as for their dura-
tion and the extent of country they have visited tion and the extent of country they hrve visited,
spreadion dismay and consternation, death and rnin spreadion dismay and consternation, death and rnin popnlated cities havo been levelled to the groand, flourishing seaports swallowed by the sea, whole towns, together with their dwellers, have disnppenred into the bowls of the carth. In lera the shock Fas feit over a radins of 1,670 miles. In Ecnador the eye. The centre of the earthquake of the 13th appears to have been the volcanic zone comprised between Arequipa, Tacna, and Noquegua, where are sitnated six volcanoes-the Cailloma, the Misti, the Ubinas, the Huaina-putina, which made an eruption on the 13th of Febrnary, 1600 ; the Tutupaca and
the Candarare. The focus of the second, that of the the Candarare. The focas of the second, that of the
10ith, in Ecuador, was in the volcanic fields of Ocampo, surrounded by the three volcanoes, the Cotacschi, the Imbabara, the Pasto.
The prefect of Arequipa, Dr. Francivco Chocano in his report to the Seoretary of State, says:-That on the 13 th of Angust, at 5.15 p.m., a very severe sliock of eartbquake was felt in Arequipa. When the gronnd. The oscllations, from S. to N.E., shook the soil with tremendous violence during seven minntes; they onme accompanied by gushes of air
clarged witi electricity; the motion of the earth
was such as to make it next to impossible to keep a firm footing or remain standing. The zoil heave up and fell as the surface of the sea during a gale A sudden obscurity spread over the city, adding to
the horrors of the event. The waters became madds the horrors of the event. The waters became maddy
in an instant. Dutring the night of the 13th, thirty in an instant. Dding the night of the 13th, thirly thinonstmetem. Eupird detonations were heard every instent and in rapia succession, like the rattling of musketry during a battle. Rents were opened in the earth; sources sprang forth throngh them so abondant as to inundate manty places; others have cunk and disappeared. The shocks continued at intervals. The Misti sent forth enormous coltums of smote in the midst of horrid detonations. Snch wero the events of that memorable afternorn of August 13th 1868, that were witnessed by the inhabitants of Arequipa. All these phenomena I have reviewed and tried to explain are effects of volcanic action. Arequipa is built on the slope, nay, at the very foot been destroye has at perioas nearly equidistan oxtremely severe earthquako suook thit city to its very foundations; another, equally terific, occtirred in 1587 ; then another, in 1590, chat latd to the ground the city of Camaria, int fmmense the ware invading the ground, inundatfify the Perarian
shores, again, on the 18th of Jãitriry, 1600 , when shores; again, on the 18th of Jaziniry, 1600, Then
the volcano Huaym-patina sume an eruption again, on the 25 th of November, 1604 ; again, in 1605 , when the city of Arica was destroyed; again on the 13th of May, 1647-the shock was that time felt along the whole coast ; again, on the 22nd of Augnst, 1715; again, on the 6th of Febraary, 1716 -day of the destraction of the city of Torats agnin, on the 27 th of Maroh, 17:5-this earthquale sallao was submerged by the sea ; amath, on the lath Callao was submergeal
of Mry, 1781. I meraly mention theoe and the lakes as athoy rae the woat truportent, prssiary in aiteoce intervals lave occurred, warning the intibitants of these regions that under thoir feet wasin fecus of
electro-chemioal action, whose livixy radivity conelectro chemioal action, whose threatened their existence.
Commandant Thomas Layseca, of the forces tationed at Torata, informs us that the earthquake was felt at 5 p.m., lasted twelve minutes; and that from the 13 th to the 15 th, date of his official report 00 shocks had taken place.
In Tacna, on the 13th of Augut, zannein oscills tory motion of the earth occurred at \ddagger p.m., lasting five minutes. At that place, for several days previons to the 13th, subterranean noises were heard, and some light shocks felt. When the eapthquitie occurred the day was cloudy, and shortly tifter tt began to ain (a strange phenomenon in awnumy where it never rains), to the 16th of Acgust, that is, diuring three days 64 vibrations, acooupanied with subterranean noises, were felt; large and deep rents
openen on the surface, and gushing through the opened on the surface, and gushing through the
openings. In Palea and La Portade, on the road to Bolivia, the shocks were most violent. Large por tions of hills became detached, and rolled down the ralleys-the mountains being split open with frightal noise.
I will call your attention to the fact, that in this place the motion of the earth was difierent from thst at Arequipa, being oscillatory, instead of undulsting, as it was at the latter place; notwithotanding its violence at both places, being suoh that mea could carcaly keep their footing, the results were quit different. The stronglystone-brilt city of Arequips
was levalled to the ground, while in Taona only 40 Was levaled to the ground, While in Troma ony th
houses were destroyed. This faot would tend to show that the oscillatory motion causes less ravage then the undulating. Again, the premonitory symptoms of the impending castrophe were distinet
but passed unheeded. Electro-magnetic distur but passed unheeded. Electro-magnetic distar-
bances took place also in the atmosphere, cansing rain to fall-an ocourrence which neltom or eres takes place in this part of the conntry. In Chow ento, a village in the valley of Acari, the earthquake ralley place at 4.30 , destroying all the houses in the succession; the ses roce monntaing high, and ran in land one and a half miles; all the witerrourse became dry; the ground opened in many pleces and water gushed up through the fissures in larre bubbles; continuous noises, reserabling the rogring of cannons in a battle-ficld, were henrd incessent! f It would seem that the phenomenon manifest tself at this place thirty minutes in adrance of the ather localities; bnt this is evidently an ernor of computation of time on the part of the observer
for this valley is in close proximity to the other In
In Moquequa, the earth began to shaze at 4 p.m., fre minutes in advance of Arequipa and Arirs There thes to the south weet electric discharges, londer than the heaviest es nonading; were from east to west, alternsting wit vertical shooks, and succeeded each other frightfnl rapidity daring tive to six minates bills of limestone were split, the rocks rent in sruas pieces. The soil opened, and throngh the openir With stroams of blackish and pestiferons water that which hes suffered the most. §itamtea
the ses-coest 40 miles to the sonth-west of Taena, it is the most important port of Peru, next to Callao. At 5 p.m., a very severe earthquake was felk' on
shore, asys the commandant of the ill-fated frigate Americay which was stranded that day. "All the houses in the city surged, and with nn ominous
crash fell to pieces; then the earth was seen to open, crash fell to pieces; then the earth was seen to open,
a rolling, rumbling noise was heard, and gases, stifling gases, emanating from the fiseares, soon filled the afmosphere, severely oppressing all living creatures, cansing them a sonsation of suffocation, The shocks lasted ten minutes, and succoeded each other at short intervals, and were accompanied with subterraneau explosions. The hills themselves were soen to stagger like intoxicated beings. their slopes. while their sides were seen to give up the dead bodies of the Aynarcis, that for centuries had been intrusted to their safe keeping, and had so long peacefuly slept in their solitary resting-place, have emerged from their graves, as if to witness the have emerged from their graves, and their lifeless months appeared to langh, exhibiting gumlese rows of white teeth, at the terror of the living seeking
refuge in open places, and flying to the top of the refuge in open places, and fling to the top of the
high lands for their lives. The shocks came from the south; the skies were storma, a very light wind
blew from a sontherly direction. The whole soil of blew from a sontherly direction. The whole soil of the country, as far as it could be seen, wes moving;
first like a mave, from north to south, then it tremblod, and at last upheared hearity.
Daring that time a very strong ourrent from the south set in in the bay. The current was so strong as to set alrift the boat of the frigate America, sent to shore for the commandant, notwithatanding the efforts of the crew. It meagured $5 \$$ miles an bour, lasting five minutes. Then came a seoond ourren rom the opposite uireotion; this leit the bay nearly
dry. Currents, now from the north; then from the ry. Currents. now from the norh, then from the
south, succeed ed each other with great frequenoy, south, saccoedod oach other with great. irequenoy,
aud became so rapid as to make it impossible to aud becamo so rapid as to make it impossinle to ing on the palisade and imploring halp. The frigate hegan to drag her chains and asohors. At 6.45 p.m. the currants increased to 91 miles, their duration
being from five to ten minutes ; at 7.5 p.m. ecument being frome five to ten minates ; ut 7.5 p.m. Ecarrent
came from the sosth, its rate 101 miles. Then the came from the soath, its rate $10 \frac{1}{2}$ miles. Then the sea began to retire slowly from the shoves, leaving the boats dry. It receded about to the line of extreme low tide, when at once it rosh of 34 ft . above high-water mark, overflowed the town, and destroyed everything that the earthquais cean, and rose again to the same height as before, Sereral times did the adrancing waves wash over the doomed city; several times the force of the waters carried all the débris of the rained habitations of men, until at last, retreating about t wo miles, it returned as an immense ware 50 oft. high, carrying the frigate imerica more than a mile and the American ship Wateree aboat m mile further up the beach.
Eleven tldal waves ocourred ; the intervening time betwoen each invasive wave was three minntes, the
third invasion having eccurred soon after the first, aud the last and largest twenty minutes after the first. At Iquique the carthquake lastod five minates, the som rose 30ft. above its ordinary high-water mark, apd covered the town to the extension: of tooft. At Ilo, north of Arica, the sea retired,leaving wave 40 ft . high washed away all the houges and overything else. At Islay the waves obtained also an altitude of $40 f t$. over their matural level, and coverod three times the wharf without doing mach injary. The town, being bailt on the summit of a very high cliff, escepped desiraction. Caracas a
small landing place near Jisco, was swallowed by stnall landing place near Jiseo, was swallowed by the sea, and the toats that wero in to In and callao the earthquate was felt at 4.40 p ms . It carne with an oscillatory motion-a motion similar to that of a
boat in calm weather; it lasted ten minutes; at boat in calm weather; it lasted tea minutes; at
6.30 pm . another shook was felt, of five maintes duration. A few minutes before seren'high water was to take place. The water, instead, begmen to recede; 10.90 , for the ffrat time, the water reached higher lovel than it was ever known to have attrined before, within the mecnory of mana at eloven a tremandons wave 18 ft. high, invaded
the land to upwaris of Gooft. from the beadh: corrents set in from opposite ditreotionss at a velocity of three to fonr miles an bonr; at the time a eoft brecze from the sonth: west blew; the atmosphere was perfectly clear.
Theme are, in as fow words mossible, the phe nomens that were noticed during the terrible cateolygm of the 18th of Augnak, 1868 ; the greatest.
pertiaps, on reoord, with that of the 18 th of the partiaps; on reoord, with that of the $10 t h$ of the
same nonth, which visited the province of Imsams month, which risited the p
babrura during our historioal period.
Following the great tidal were which origingted on the coast of Pera, on ite ray across the Yaciac, and taking into account that the difference
in longitude ietween Arica and New Zealand is approximatively 9 hours, we shall find that the
wave having rcachud tha Nom Zealand coant at

6 a.m. of the 15th has employed 29 hours to travel 6,1:2 miles. Its velocity may, therefore, be compatod at 211 milos per hour. Its violence, even then, was extreordinary. The Island of Chatham to the eastwazd in it pered greatly, for the wave that straok it was of such magnitude as to completel
destroy the colony of Tupinge on the The thidal wave reached Hokdedi North
The tidal wave reached Hokodadi (Japan) at 10 a.m. on the 15 th, presenting itself by a series of waves that caused the sea to recedo and be doprossed until 3 p.m. under its level, and rise again abeve it with great velooity. Daring 10 minates per wetoh a differance of 5 ft . Was measured; the constant elevation and depression of the tide a that place being only 2_{f} it. to 3 th. It reached the Sandwich Islands on the 1th at 8.46 p.m., and continned to manifest itself doring the lith, 15 th , and 16th, by a series of waves, rising and receding 3 ft . to 4 ft . every 10 minates.
From these iata a comparative table showing the time employed by the tidal wave to reach the different placee may be thas formod

Fifty-six hours aftar the rnin of Arequipa and other cities of Pera, ancther terrible cataclysm visited the northern provinces of Ecuador. The volcanic fields of Ocampo seemed to have been the locns of the electro-ohemical action whose effects couminated is the destraction of $40,0 \mathrm{w} 0$ haman ives, and the rain of the cities of Otabala, Ibarra, Atmilaqui, Catacechi, Perucho, San Antouio, San Pablo, and many smaller towns and villages, jesides part of the city of Quito, the ancient capital of the Seyris, or Kings that governed the Empire of Quito, before its conquest by Husyna-Capac, and the modern capital of the Repablic of Ecnador Quito, built on the alopes of the volcano Pichincha, is elevated 9,50it. above the level of tho ooean. the Pichinche since the conquest, the most remark able being those that occurred in 1575,1587 , and 1660. The cataclysm of the 16 th of August seems, however, to have beon the most disastrous that has aftlicted these regions, the most voleanic known on the globe. Here are found grouped on a platean aboat 200 miles long by 80 broad, a great many volcances, which, for the most part, at different epochs since the conquest, have giver the most unmistakable proofs of activity. The Chimborazo, the Ootopaxi, the Piohincher the Altar; the Llinaza the Corason, the Cayambo, the Riobamba, the Snngai, and many minor ones, ere here gathered neariy within sight of each other. The eart hquakes that viait Ohili, Pera, Ecnaior, and Ualifornia, within the five days that elapsed between the 13th and 19 th of August, notwithstandiag their synchro nism, did not originate from the same contre of sism, Un. Each had a distinct focus, to which a aetion. Each had a distinct focus, to which a
greater activity was commanicated by coming in contact with some of the points of the voltaic arch formed, in those days, by the relative positions of the san, moon, and earth. In Quito moteorologic distarbanoes oocarred on the 15th: heary showers of rain and hail, and heary thander; at $1.20 \mathrm{a} . \mathrm{m}$. of the 16 th a severe shock of shake at indervale to the 14th. All the principal churches were levelled to the ground.
In the distriet of Catncbai iswo towne weme totally destrojed without loaving a traco of havingexisted. The town of Atmitaqui was destroyed; in that of Ibarra, the capital of the province of Imbaburi. 13,000 persons parished; rents wore opened and closed, hage pieces of rooks were seen tumbling down the sides of the mountaing hills mank, carrying. with them sugar cane plantationa, houses, and averything on them That where thecity of Otalavo was built sank and was replaced by alake. Where cotscachi once stood is now a swamp; large
quantities of stone were harled from the Cotacachi; frome the Imbabara issued a torreat of mad, the flow of which was followed by that of water from the araterr of the Ocampo ware ejected large qumatities of butiminons matter. The Sangai. wee seen in a state of constant eraption. Dark clouds of dust mad a heary rain of tine powdered earthy matiers fell; a total darkness preveliled and covered the country as a pall, the obseurity of which was illaminated at intervals by flashes of light from the roleanoes, amidat continuous detonations that resembled the roaring of a diotant cannonading.
Resuming all these date I came to the conchasion that the production of these phenomana had its origin in four different centre of action. Those Moquequa, Arequipa, and Arica, encirulod by the four volcanoes-the Nisti, at the foot of which is situated Ariquipa ; the Hasyna-putiua, the Ubinas, and the Tatapaca forming part of the chain of Cordilleras immediately behind Moqucqua
The earthquake that shook the greatest part of Chili seems to have originated in the volcano of Leallalloo, sitasted 240 miles from Copiapo. It was
reported to have broken out in a violent eruption,
its orater vomiting lava, ejeeting large atones; the groand at the base of the mountain opuned in numerous places, and through the rents spouted forth currents of water impregnated rith sal phuretted hydrogen gas; these occurred ou the 14th The orthugas
The earthquakes that destroyed the northern parts of Ecuadar had their centres of action in the
ielde of Ocampo, and in some of the numerous active volcances that are strowed all platean of Quito. They took place on the 16 th of August.

The oarthquakes that oceurred the 16 th of Augnst in San Franciseo ann, various other places in Cali fornia had probably thair origin among the numerons voloanic fields that are so frequentiy me with in that country; and their contre of action ray have been the same that has producod latel ho earthquakes of Sacramento, Inyo, and other places.

MFOEANISM.•

TN the spring of the year 1869, a course of Cantor lectures was delivered by John Anderson, Esq., of Woolwich. The subject was "Applied Mechanics," and the complete course will be found in Vols. 1x. anded tho the Enalisil Mrerainic ing sentence :-"It will be found that so long as any of Nature's secret laws remain unexplored, well-directed irrepressible thought will alight on new discoveries one after another; and to the endless variations of mechanical combinations there is practically no limit." To some of the elementary forms of "these endless variations of mechanical combinations" our attention in the present course of Cantor lectures is to be directed. It may appear disheartening to enter upon an inquiry which at the outset is said to consist of "endless variations;" bat by classification and division, not only all the inhabitants of the world, but all of which the world itself is made, and even the very universe, has been brought under careful and minate examination. The words-animal, vegctable, and mineral-com prehend the world and its inhabitants. Division with similar distinctive features are soon classified side by side
A digression upon these words for a few minutes, even thus early, will not be out of place. To Aristotle, who was born aboat 384 years befere the Ohristian era. (he died 322 B.c.), we owe mach in respect of a development of the system of classifcation and division. When Aristotle was classifying natural history, and seeking for some distinctive feature by which to distingaish men from every other animal placed in the, same class, he selected for hima name appropriate at this day-he called man a toal.making animal; for man was his own special parposes. Had Aristotle lived now, how much more appropriately would this characteristio have applied, and yet our surroundings might have deprived us of the man; for Aristotle was appointed tutor to a youth then fourteen years of age that yonth is afterwards known in history as Alexander, the Great; but Lord Bacon, in his "Advancement of Learning," writing of Alexander the Great, says "that he does not choose to con-
sider him Alexader the Great, but prefers to call him "Aristotlo's pupil.'" In these days, andin this country, more indebted as it is than any other in the old homisphere to the scientific development of the tool-producing faculty, and to many other science faculties, we may look in vain for such encouragement. Alexander did not forget his saience tutor, for history records that he allowed Aristotle 800 talents per annum (a large sum, however the talent may be estimated) with which to prosecute is stndios in nataral history. Hay tho Aristotles becanse thore are no Alexanders?
By alike law of broad classification we may say of our present subject there are two marked gropps, ander one or other of which may be arranged all our meohanistic contrivances. These groupings are compreheaded in the words structures and maybines. The considerations which present themselves vary considerably, aecording as one or other of these divisions is ander notica, and meobamios in the fall aoceptation of the term mechanics modern usage has disjoined what should lways have been united. The dass of men whose bnsiness requires that they shonld attend to the buineh rille stractares disregard the branch called branoh oalled 'structures disrepard the branch anind of'the man who thinks of struotures is ever dwelling of the man who thinks of struotarestaber for securing stability and parupon contrivances for securing stab the mechanical pentid rest, whereas contrivances for securing motion, sud he sometimes dreams of making motion, and not rest, perpetual. Althongh each of these men look to mechanical aids for accomplishing his
parpose, they look at them from two very difierent
dendpoints, and in very different coloured lights. The man who deals with structures is always thinkine of struts, tensions, pressares, and frictions, and ho adopts those means which seem most likely to Cher man considers that to put the machine in a state of rest, to so proportion the powers as that each chrocetary part of that machine shall be in equililesiana, is to put a machine in a state of absolute idesess Now, idle machines, like idle people, do us as good; they destroy themselves, they rust, they in fact decay, and, to borrow the phrase from live workshop, we may say of idle machines that
tlery really "eat their heads off." The true state as machine, as those who are concerned with them know well, is a state of motion. So completely is this ikes of motion impressed upon mechanists, that rest 88 accomplished by struts, and stays, and rods cirmars ne part of the mental employment of the mechanician. A mechanician has no faith in th mochime requiring rest. If a mechanician wants a thas another part of that machine may go through exme operation or other, he accomplishes it by Uhe motions of the respective parts as shall produce the result he requires. As two waves of light or of acound in opposite phases produce, by coalescing, derkness or silence, so two motions can be $s o m e$ chanically combined as to produce absolute rest. The owner of a machine considers a machine wortby of room on the floor of his factory only so loogg as it can move and is moving ; and, indeed, and owners of machinery Machines aro expected to be not only diligent when they are at work. but tago back, when they haye done their work, with speed which no employer has ever yet considered so great. There is no law upon a labourer to return times the speed with which he lifts a full one. Δ reachine, however, is oxpected to do this. It is expeeted when it has done one stroke of work, Eserally without turning round, to run backwards
a twice or thrice the velocity at which it does its at twice or thrice the velocity at which it does its wark in order to start and do another stroke. Nor in it in readiness to return to its work at an increased syeed that any great trinmph of mechanistic skill is mosiced. There is hardly a plan or device for the aving of bodily labour, nay, there is hardly a abeine for saving mental thought, that mechanism is not both expected and requested to undertake. Mechanism burrows in the earth, it bailds our bonses, it conveys us by land and by water, it elof hes ns, it supplies us with teeth, it will even do © large portion of the work of digestion if we wish, fod sitvar coins as, in its mechanical judgment, it deems best; and, to erown all, it thinks for us; it calculates, it sets np its own type, it prints its own calculations, and and if by any accident it makes a mistake, it rings a bell and tells us it has done so

Thas, not only English society, but all society depends upon meehanism, and it is, therefore, sugular that educational books, and even treatises upon mechanics, lay the foundation of all the infermation and instruction that they give, not
in states of motion, but in states of rest. To in states of motion, but in states of rest. To serews in states of perfect equilibrium, to demonstrate by tedious and complicated reasoning what is called the parallelogram of forces, to be poring over problems for establishing equalities by both E large portion of the so-called scientitic mechaniosl howledge contained in our treatises upon machipery for students-at least for those who are ciecaentary knowledge, they are generally confronted iy srill more complicated and uninviting discussions ypou the laws which have much to do with zawtions in the universe, but little or nothing to do with motions on the earth or in our machines.
7. 1788, when Lagrange published a great and fine example of analysis, he wrote in the preface of
the book (it was upon machinery):- "The reader WI fad no figures in this work; the methods which a dediver do not require either instruments or geosetrical or mechanical reasoning, but only alge-
banical operations." Lagrange herein made nechanies subservient to analysis. Analysis ought have been made eubservient to mechanics. Our hiefy of rest or of celestial motion only; hence the man who wants a machine for a given purpose, who wauts to combine certain motions, turns in culasions and irom Bo far as power, and so far se strength of materials are ooncerned, he is satisfied that these are ample for all his requirements. Until he can obtain such a combination as shall eefare a special ond, questions of constraction and
equilibrium are not felt by him as matters really \& even momentary consideration. He knows that if the motions he needs are won, he will To mudify coutrol, and regulate the motions of cemected of study with those who hope by machinery
to improve upon manal labour. This study is clearly independent of the building of the machine ; is clearly independent of all those parts of the "structure." It is also equally independent of the ource whence the machine derives its power ; and, urther, it is quite independent of the work to be done by that power, after it has passed through the machine. What it does involve, however, are any mechanistic contrivances by which motions may be changed, or constrained, or diverted, and that, appearing in one form, existing for a speciflc purpose, they may be transformed into another exactly adapted to the parpose required. Thus it will be for a pre-arranged object, and to follow a predetermined law. This is that which is comprehended under the word mechanism, and it is in consequence of the development of this aptitude in the few minds given to the special study-and they have been but few-that England owes all her resent manufacturing industries.
Having thas explained what is comprehended under the word mechanism, it may be well to regard what it is that is excluded. All our experience ells us that motion is a consequence of force. So sure are we of this, that we say that whenever force acts motion ensues. If, however, it is wished to arrest an ensuing motion, it is usually done by the introduction of an opposing force. Thas, even in this aspect, rest, ob
The branch of mechanical studies which thus considers force as compelling rest, or preventing a change of motion, is called statics; and states of rest produced by opposing forces, except when the mechanism is called upon in the interval to perform some special operation, do not concern us, and aside.

But force may produce change, either in the mount or direction of motion, and the branch of mechanical studies which comprehends this is called dynamics. The term dynamics is mar operation that it is a dynamical one, gives just about as much information of the operation as to say of a substance that it belongs either to
the animal or vegetable kingdom. Division and sub-division must enter, in order to an accurato and instructive investigation of questions of a dynamical character. TH0 of these divisions are $s 0$ intimately related in the branch of dynamics to be treated of in this course of lectures that a distinction must be drawn between names much alike. M. Ampere, in the year 1834 (for that is about the time when this subject first began to attain specia consideration), wrote:-" Long before I emploved myself upon the present work, I had remarked that it is usual to omit, in the beginning of al books treating of sciences which regard motion and orce, cortain considerations, which, duly deven proceeds to describe the science, and calls it kinematics, from \& Greek word, xunpex, which signifies motion. Further, ho makes a proposal which Was taken up by others, and the progress of the ides is interesting. He (M. Ampere) defined a machine, not as it had hitherto been considered-an instrument "by means of which me may change the intensity and direction of a given iorce," but as an instrument "by means of which we may change the direction and velocity of a given motion," hereby excluding Willis, to whom I shall heve occasion to refer again proposes another definition, namely, to consider a machine as an instrument "by which to produce, not motion simply, but relations of motion between parts, thus setting aside M. Ampere's definition that a machine is an instrument to ohange the direction and velocity of a given motion dretire Sciences" in the firgt of the In ductive sciences," in the first volume, page and he was well competent to write a long one on the subject. He wrote in that ohapter, in 1840 :-" Motion should be considered quite independent of its canse-force. The science migh be termed 'pure mechanism,' in contradistinction to 'mechanios proper, or ' machinery,' in which force is taken into consideration. Sach a science is the science of mechanism independent of force and I consider it to be the solution of a problem whioh may be expressed in these words :- 'To commanicate any given motion from a first mover to given body:' The necessity of this separation (says Dr. Whewell) has been seen by those who have taken a philosophical view of the sciences." Dr Whewell, it will be observed, excluded force, and in this respect he follows m.
just six years previously.

Thus has arisen the distinction between two very similar terms, kinetics and kinematics. Each term involves considerations of motion, but in two very different aspects. In kinetics it is not mere motion which is considered, bat the relations that motions bear to forces. Hence questions in which the expenditure and nature of force, and the motions pro duced, are considered belong to kinetics. Kine tics comprehend the laws of energies, and the modes by which mon may best avail themsalves of thege
laws. We are too prone as a people to generalise laws; and what we find to be trae ander one set of energies, we assume to hold. good under another set. Such is not the case. The energies of gravity, electricity, vitality, affinity, light and heat, require different treatments, in order that each may be most advantageonsly utilised.
An example or two may make clear the diatinction now insisted on.
The velocity and penetrative or destructive effects of a cannon ball, in relation to the character and explosive consequences of the energies of guncotton, gunpowder, nitro-glycerine, dynemite, or whatever other elements are used, would be a question in kinetics.

Again, that singular calculation, that if a man were engaged in producing a certain motion, as, for example, drawing water from \& well, by tho expenditure of his muscular energies through the period of his manhood, he would raise by the mechanism of his bodily frame no more by the mechanism of his bodiy frame no more Wallsend coal, hence completing the parallelism, and reducing it to the form of money value-and it and reducing it to the form of money valio-and it
is wonderfal how mach more we appreciate these is wonderfal how mach more we appreciate these
things when they are put in a money value-the life energy of a man acting through the mechanism of his mascrlar system does not exceed the energy of a load of coals employed through the mechanism of a scientifically-made engine. In other words, given the two mechanisms, the life of a man anot worth more than about 60s. Had man been created for no higher destination than this, we may depend upon it he would have been pat together as a piece of mechanism very different from that on which he is now constituted.
In kinematics these elements of force occupy no attention whatever. Neither the force that produces the motion, nor the forces impending the motion, nor the forces that these two mouns call into action, none of these belong to the division of the subject with which these Cantor lecturea have to
deal. Kinematics, therefore, is a scieuce of mere deal. Kinematics, thereiore, is a scieuce of mere motion; even elements of strength are not consi-
dered in it. The galloping tortoise which we 800 advertised in the windows in the streets of London, and that tricky little mouse that yon see creeping up the hands of men in Oxford-street or Lombardstreet, claim from mechanicians quite as much attention, and involve questions of mechanism perhaps quite $2 s$ curious as Babbage's calculating machine, or those singular things, the orreries of the last century. It is, therefore, the division of the subject called kinematics with which the present course of Oantor lectures is chiely concerned.
(To be continued.)

HEATING STEEL

W
E believe that overheating has condemned splendid steel more frequently than anything so. common saying, and sounds well in the shop but when heating steel, don't follow the adrice, for although it may seem to work easier when orer heated, the error committed thereby will soon become apparent. All cast steel (excepting the comparatively new article, "chrome cast steel." which has properties entirely its own) requiren the most careful heating. The fire must be regaleted by the size of the work; and in heating the steel beat the coals aronnd the outside of the fre as soon as the fimmes begin to break out in order to preven the heat from escaping. To save fuel, damp the coal and throw water on the fire if it extends beyond its proper limits.
To ascertain the heat of the steal, sass The $\Pi u b$ (U.S.), draw it out of the fire, and thet often; for requires to be well watched to heat it properls and if not hot errough, thrust it in quicky again but be careful not to use a higher degree of bea than is absolutely necessary to effect the desired
purpose, and to use as few heats as possible. Steel is essentially iron with a larger ingredient of carbon; therefore, too frequent heating or overheating burn out the carbon, and thas spoils its valuable charac ter. Many smiths have the idea that 80 long as the steel does not fly to pieces when they strike it with the hammer it is not too hot; but this is an erroneous iden, and easily proved when it comes to be hardened, and when it is brought into use. We therefore say again, that no forger can be too care ful in the heating process, and when he takes the heats. The practical eye will soon learn when it admit that they spoiled the work by overbeating and yet this is unfortanately most frequently the case.
For welding cast steel, a flux is required in ordex to provent oxidation of the surfaces to be joined. For this purpose, use a composition consisting of airtern parts of borax and one of sal ammoniso, which hae been boiled together over a slow hre for an bour. and when cold, ground into a powder. The steel is first heated a little, then dipped in the fax, and the heating continued until the metal has attained the proper heat. The finx is then fased over the sur. faces, and has dissolved any oxide of iron which mes have formed. The two surfaces to be joined are laid togethar and strack continnously, Forking
toward the edges in order to expel the finx and insure a perfeot union of the metal. Shear steel is joined to wrought iron without difficulty; but when
cast atoel is to bo welded to wrought iron, the grestest care is reauired, or else no soand weldin wrill be effected. By nsing the above mentioned flax, it can be done i but in all casess where atoel is to be joined to iron, the steal-no matter What hind -shonld never be heated to so high a degree of temparature as the iron.

MMPROVED SCREWS FOR WOODWORK

THERE are bat few persons who have not expe-
rienced the difficulty of driving home a screw into hard wood. This difficulty is overcome by an im. proved form of screw recently patented in the Unilad States by Mr. E. S. Willis, o Philadelphis. The first part of hi invention relates to a spoon-shape point to the screw for forming boring and tapping derice, so as to dispense with the necessity of boring soft wood previous to the insertion of the screw. The second part relate to a central bore in the screw fron the concavity of the point throughout its whole length for the passage of the borings. The accompanying engrav ing fully explains the device. This screw will not split the wood, as fibres, and the central bore allow ample space for the chips. Machine screws made on this principle ar found to operate well. They ar made with a square head instead o the slotted head represented in the illnstration. In patting ordinary screws into hard wood, the friction
attendent upon the thread crowin attendent upon the thread crowding the fibres out of place is very great, and it is hard work to drive the screw. With the improved screw, the fibres are cat through by the tapping point sufficiently to remove a portion of the friction and to secure easy driving, but not enough to provent the screwretain ng a tight hold on the wood.

USEFOL AND SOIENTIFIO NOTES.

Precerving the Polish of Steel Instruments. -F'or this parpose the Lancet conAdently recommend 8 mixtare of equal parts of carbolic acid and olive oill, smoarod ovor the surface of the indtramonta. The play is much used by medical officors in the nary, and is found to proserve the polish and brightness of
hovever moist and warm the climate may be.

Washing out Looomotive Bollers. - The "Report of the Committeo on Boillery and Boiler Materials," on page 17, of Fourth Annaral Roport Amorican Railway M. M. Aceociation, containe the
objections to blowing of boilers, and allowing them to objections to blowing off boilers, and allowing them to cool batore walahing out. As the heat rokined in the boiler after blowing out bakes or hardens the mad or other deponit, a proper mothod is to blow ofl steam, and, artor the prossare is ouf tho boibr, to ran in cold watar, While hot and impare water is run off, thas gradually cooshing out with cold water will not injure it.
Improvement in Fraotional Dintiliation.Linnemann han succosafully appliod to leboratory purposeas the principles of a method largely used in tho arta, in the constraotion of the so-called dephlogmatorn. This principle condete in partially condoming locally the rapour whioh rises from a boiling liquid, in such a
manner that the vapours which sabsoquently rieo shall manner that the rapours which sabsequently riee ahall tain meanare be wached. The apparatua employed consists simply of a vertical tabe, attached to the fiask in which the liquid boils, and containing aix or eight other by emall intervals.
Marida Ioncees.-A lecture experiment adopted by Profeacor Hanry Morton illastratios very forcibly the aetion of rofraction. A magic lantern is arrangod vertically in conneotion with suitable mirrore to throw the utitated for the uneal objeotive lens. If now we introduce anobject, me, for oxamplo, a photgraph on glase, of course, no image will be produced ol the screen, bat only a nobulous patch of light. On poaring wator into daced. On roplacing the water by alcohol mariato of tinced. or other more highly refracting liquid, a lens of tin, or other more higbly
higher power is obtained.
Eubmarine Rallway.-The railroed bridge whioh has been planned to extond acrose Ban Francieco Bay, from the mainland to Goont Inland, is of a sabmarine charaotor. It is an iramense iron tabe intended to be cank lrom 288t. to 80tt. bolow the surfaco, and held in ite placol by its own buoyancy and by cables and manhroom anchors. The tube is to be 20tt. in diamotar, and made of boiler iron, atrengthened by an in.
ternal framework of iron beams. The invention is baced apon the idos that the broyancy of the tabe will be equal to the waight of a train of cars. Anchors are

SOIENTIFIO SOOIETIES.

ROYAL ASTRONOMTCAL SOCIETY.

Tlast meeting of the Session was held on Fridey, Jane 14, the President, Professor Cayley, in the chair. The meeting was well attended,
and there was a considerable inflax of valuable and there was a

Photocraphic Irradiation,
by Lord Lindsay, attracted mach attention. His lordship-after having remarked that in the photographs taken on the oocasions of the late eclipses the dark limb of the moon is caten into, and tha the image of a luminous object is surrounded by a
border of light which it is difficalt to separate from border of light Which it is difficalt to separate from
the edge of the image, and beyond which there is an the edge of the imsge, and beyond which there is an
outer fringe of light, the separation between the two fringes being more definito-deecribed at some length the experiments which he had instituted for illustrating the phenomena, principally with a view of eliminating the effects on the apparent diameters of the heavenly bodies produced by irradiation. A plate of zino having been prepared of about a foot square, with an aparture of a trianguiar form in the ener to acrose which a wire was slifeing place behind it so as to entirely fill the aperture with light, the triangle of light thos prodaced was photo graphed in the usual way. \triangle large number of photographs were taken, the normal time of exposure being one minute, but extending, for comparison, in some cases to twenty minates. After an exposare of one minute, the image on plain white glass was sharp and well defined, but with an exposure of ten minutes, Lord Lindsay found the image to be sur rounded by a halo-in fact, the appearance wa that of a round spot of light, and not a triangular spot. Experiments were made with a great variety of surfaces, glass ground on one or both sides, or backed so that the image conld be seen by refiected light only, and some photographic impreasions wer taken on alate. The best substance, that which gave the least extension of the image with the longest time of exposure, was found to be the yellow glass ordinarily used for glazing dark rooms. The greatest extension of the image occurred when and where the light was strongest. It thus appear that, by taling cartain precantions, these effects of irradiation may, to a great extent, be eliminated.
Dr. De Le Rre, in commenting on Lord Lindsay's experiments, said that it would be difficult to overrate the value of them : they were of the greates importance, especially at the present time.

Planotary Markinga.

Juprtrr.-Mr. Browning exhibited drawings of Jupiter selected from a collection which he had made during the late apparition of the planet. The specimens selected represented the most striking intensifications of colour.
Vexus.-A very interesting communication rela tive to the markings on the plenet Venas was read by Mr. Langdon, a "station-mester" on one of our lines of railway. It appeared that the anthor, wish ing to devote some portion of his leisure to astro nomy, became possessed of a 6 in . silvered glass reflector with which he observed the planet Venu from May to November, 1871. At first he had som difflculty in obtaining good views of the planet, bu by inserting a diaphragm of card perforated with a fine hole by means of a red-hot neodle, in the eye piece, and thas shatting ofl all extraneous light, he bronght the planet into perfect subjeotion, and pursued his observations with ease and comfort Having read some time last spring that doubts had been cast on the existence of markings on the planet, he refarred to his notes and sketohes and compiled from them the paper now commanicated In May, 1871, he noticed a dull clondy mark on Venua, Venua, which was soen bo showed the pianet. One ol them, a mason, declared that the object he was looking at was the " moon, and he knew it to be so, because of the dark mark apon it. On one occasion Mr. Langdon saw the southern horn rounded off, the northern horn being quite sharp, and ending in a fine needle-like point On another occasion both horns were sharp and pointed, and once the northern horn appeared bent. and turned inwards towards the centre of the dise of the planet. The appearance of the terminator is described as being jagged, very like the moon, but sometimes hazy; the author comparing the moon' terminator to net-wrork, he sald that of Venus sppears like fine lace. Near the time of inferio conjunction the dark body of the planet was wel seen. In concluding his paper, Mr. Langion re tarned his thanks to Meesrs. Proctor Normen Lockjer Browning and otherg for hering sown Lockyer, Browning, and others, for having sown he had picked up, and endeavoured to turn to account.

Tubles of Uranus.

Mr. Dunkin announced that Professor Neweomb had nearly completed his "Theory of Uranas.' There were but a fow Greenwich observations to well represented by the theory, and that the errors will be very emall.

New Planot
The discovery of a now minor planet (121) by Professor Watson, on May 12, was amounced.

Jupiter'm Satellites.

The Rov. R. Main, Radaliffe Observer, Oxford, commanioated obsarrations of the eckipres o Jipiter's aatellites. As comparod with the times follows:-1st Satellite nil; 2nd satellito oroenty follows :-1st Satellite nil $;$ 2nd satellito thoenty
seconds ; 3rd satellite one minute ; 4th eatallito three minutes.
Italian astronomers having succeeded in observing several meteors last November, on the 14 th and 15th, Mr. Prootor considered it deairable that a
careful watch should be maintained in November of the prosent year.
A paper was communicated by Mr. Greg, in which he had colleeted and arranged all the eximting observations of radiant points of meteors, and found the arrangement very satisfactory and iastrnctive This paper was characterised by Mr. Glainher as a "very valuable and important paper." The details wery so nomerons, and the tablis so oxtensive, that the papar was not read, and we are consequently unable to give that analysis of it which we could unabl.
wish.

Orbit of the Double Btar Oamtor.
An intereetiag and valuable paper on the orbi of Castor was read by Mr. Wilson, trom which it appeared that the orbit of the companion star is hyperbolic, and not olliptic. In the year 1845, Mr. Hind compated the orbit, and found that the elements differed entirely from those previously computed by Sir John Herschel and Dr. Mudler, and attribated the difference to the effect of the then recent measures by Mr. Dawes, made at Mr Bishop's observatory. Mr. Hind's period came out 632.27 years. Herschel heving found a pariod o 253 years, and Smyth one of 240 years. In 1846 Capt. Jacob compated the orbit, his period being $658 \cdot 1$ years. By the assistance of Mr. Gledhill Mr. Wilson became possessed of a list of measaree from 1740 to the present time, from which he obtained eleven points of the orbit, ranging from 1740 to 1866. These points lie neariy on a hyper bols of eccentricity of $2 \cdot 2$. This result is exceedingly interesting. The component stars are nearly of the same magnitude (3 and 3.5), and the companion star appears to have approached the primary from the depths of epace in a hyperbolic path, and will recede further and further from it in a similar path, never again to reviait it. Castor is the only star known to have a companion moving in such a path; the components cannot, therefore, be regarded as forming a binary system. [Instances of hyperbolic motion are very rare, two comets only-those of 1771 and 1824-are known to have moved in hyperbolas, and we believe the last to be doubtful.-Kgporter.]

Stellar Motions.

Dr. Haggins gave a viva voce acoount of the subjects treated in his paper lately communicatod to the Royal Society. In one portion of the paper the Doctor gave the results of his researches with his large instrument, bearing on the motions of cortain stars. He had re-examined apectroscopically the motion of Sirius, and found ducing ite rate of recess from the enn of 25 milen per mecond to 18 , or, at rost, 22 miles per second Dr. Huggins mentioned the names of several other stars, the motions of which he had examined some were receding from the sun and others were approaching him. The velocities mostly quoted of the receding stars were about 18 or 22 mile per second; and amongst the approaching stars, Arcturas, with a velocity of 55 miles per seoond, and - Lyree moving at the rate of 54 miles per second were specified. In explaining these motions, the Doctor called attention to three ciroumstances capable of modilying them. A portion of the motion results from the transferenoe of the Solar system in space, this occesions an apparent proper motion of each star; the motion of groups of stars in given directions 28 set forth by Mr. Prootor; and the actual motion of ench utar in space. In referring to the motions of groaps of stars, Dr. Haggins took eccasion to notice the confirmation of Mr. Proctor's views by means of speotroscopic observations, and mentioned that he had found five of the seven principal stars of Ursa Major exhibiting motion precisely as indioatod by Mr. Proctor. In illustra tion of these remarks of Dr. Haggins, Procto exhibited a map on which he had drawn arrows, by the directions and extents of which the direction and extent of the proper motions ware indicated, and he hoped that Dr. Huggins would honour him by using the map in salecting his stars for absorvamap being pablished. Dr. Huggins's paper appear to be opening oat to us a most interesting field of stellar astronomy of equal, if not of greater, im portance in the study of the physios of the heavera portance in of binary stars so intimately conneoted with the name of Hersolial
Constitution and Distribution of Nobaleo.
A portion of Dr. Huggins's paper before alladed
of Nebule，particulariy the Nebula of Orion．In adapting his large instrument to these special ob－ servitions，the Doctor found it necessary to produce the light，giving the comparison lines，within the in obtaining it in the axis of the telescope，so that the light from the Nebala under aramination and that from the geseons element with whioh it was compared traversed the tabe．The three bright lines of the Nebula were referred to the hydrogen lines， of mhick the brightest is well known to be double； but Dr．Haggtos could not succeod in doubling the brightest line of the Nebula，so that the real
charaoter of the brightest line of the Nobuia is still nncertain．
Mr．Proctor read a paper＂on the distribution of the Nebrule in the rich region of Virgo and Coms Berenices，inwhich be directed attention to relations that appeared to oxist between the gathering of stars and the soaseity，or otherwise of Nebule in
their naighbonwhood，indicating the exiatence of a connection between the stars and the Nebulpo．

Tmprovement of Tripod Stands．

Mr．Lecky exhibited and explained an improved tripod，to which，by the addition of certain cross braces forming ties and a brace in front of the nature of a stive．a remarkable ffrmnees was given． It conh be used for a variety of purposes．Before oxplaining the pripeiples of his improvement，Mr． Lecky ex

The large number and important charneter of the commmioations read contributed to render this，the last meeting，one of the most interesting of the Session．

THE CHEMICAL SOCIETY
 The Fraraday Lecture．

THE Fareday lecture founded by the Chemical Society．was recently delivered by Professor Cennizzaro，of Palermo；whe chose for his subject the form whioh the theory of chemistry，should take at the present time．Whilst giving a broad sketch of the progress of modern ohemistry，he showed that the atomic theory had become more and more intimately interlaced with the fabric of chemistry． so that it is no longer possible to separato them without rending the tissue，as it were，of the science，
and that np to the present time we have been and that np to the present time we have been chemioal proportion independently of that theory； for those who employ the term＂equivalent＂in the sense that Wallaston did，commit an anachronism． Consequently，in the exposition of the value and use of symbola，formules，and chomical equations，not only are we uasble to do withont the atomic and molecalar theory，bat it is inoonveniant to follow ap to it．By one of those bold flights of the human mind we can at once reach the height whence we diecern at a glance the relations between facts．
He then went ory to show＇that the solid basis，the cormer－stone of the modern moleoalar and atomic laid the foundatione－is the theory of Avoch Dallion lain tue founakions－is the theory of Avogadro and perfect gases，to whide chemists，unknown to them－ perfect gases，to Which chemists，unknown to them－
selfes，have been ied in the progress of thoir soience． He thought the thme had arrived for reversing the order which had hitherto been followed in teaching cbemistry，that instead of setting orat from the criteria for determining the weight of the molecalea， and then to show their ratio to the vapour densities， trey ought，on the contrary，to commenoe with the latter，with the theory of Avogadro and Clansina， demonstrating it from physieal considerations；to fonnd upon that the proof of the divisibility of simple bodies－that is to say，the exintence of atoms ；and of the molecales and the numbers of the atoms dedaced by the application of this theory ane in accordance Mhin those which are dednced from clemical oriteria．By this menns we can measure the degree of oonfficenee to be placod in the latter criteria，since so－calied compornd equivalente de not siffice to determine the weight of moleoules，or oven to prove their existenoe，although they many be
derluced from a single primeiple－the theory of the deruced front single primciple－the theory of the
constitation of gaees：thie is the natural tramsition constitation of gases：
from physics to chemistry．
Tho Professor then stated tho the applied in detall the princip te he had laid before them．He intro－ duced his papils to the stady of chemistry，in endeavouring to place them on the same level as the contemporaries of Liavoisier，and to teach them to apprecinte the importance of the prinotple of the conservation of the meight of matter，showing them
that this is quits independent of any idea of its nature or constitution；they are thus led to examine the ponderable composition of substances，so that the student passes．rapidy from the epoch of
Lavoisier to that of Proust，and then to that of Berreilus，at the time when he commenced his re－ searches on propertions．At this stage the same impulse is given to the pupil as Berzeliae reeeived
on becoming acquainted with the hypothesis of on becoming acquainted with the hypothesis of
Dalton．The latter is laid before him without any accessory，the use of symbols and formule being introducod dogmatically．There will now arise in
his mind the same doubts and difficulties that assailed Berthollet，Sir Humphry Davy，and Wollaston in the application of Dalton＇s theory，and at the same time a desire for an explanation of the simple rela－ tion which exists between the vapour volumes of bodies which react on one anotber，and of the pro－
dacts which are obtained．Now is the moment to state or recall to mind the physical theory of the state or recall to mind tbe physical theory of the
constitution of the perfect gases，commencing with arapid glanct at their general and special characters． arapid glanct at their general and special characters． He insisted that in this part of the instruction the
mind of the stadent should not be diverted from the mind of the stadent shonid not be diverted from the of the variations cansed by changes of temperatare and pressure．In applying the theory of the con－ stitution of gases，it will be perceived that the molecules of simple bodies are not always the atoms of Dalton，and a certain confasion wil thus be pro－ duced in the mind of the beginner in the conception of the ideas of atoms and molecales．The hypothesis of Dalton can now be laid aside，substitutivg，as a starting point，the theory of the relation of moleoalar weights to the vapour densities．A table must be prepared of the vapour density compared with that of holecules compared with say，the weights of their molecale of hydrogen taken as unity．We must then compare the composition of the molecules contain－ ing the same element－inclading，or not，the moleoule of the element itself－and thence deduce the law of the existence of atoms，that is to say，the amount of each element which always enters by whole maltiples into the molecnles which centains them．We here have the atoms of Dalton，which in the present state
of the science，express not only all that Dalton dis－ of the science，express not only all that Dalton dis－
oovered，bnt also the composition of equal volumes of their vapours，and in the choice of which those doubts can no longer arise which embarrassed Dary and Wollaston．The ideas of molecules and atoms suggested to the student by this law are devoid of
all considerations of form，size，continuity，or dis－ continuity ；the only property indissolably connected with thiem is that of ponderability，the very．defini－ tion of matter．
Recollecting that wo physioal theory of the consti－ tution of matter had yet been advanced which thoroughly conformed to chemical ideas，he insisted apon the advisability in teaching the molecalar and atomic theory to lreep it free from all that is not
absolutely essential，so that it may preserve suff－ cient plasticity to adapt itself to the progress of our physical and mathematical kuowledge．For this purpose he thought it nseful to allow the student，in the first place，to glance at the changes in the hypo－ thesis of the constitution of matier，and then to
canse him to estimate the degree of confidence they canse him to estimate the degree of confidence they merit in the actual state of our knowledge．Having thus placed upon a solid basis the fandamental notions of atoms and molecules by the comparison of the composition of equal valumes of the bodies in the gaseous state，it becomes necessary to considor the difficulties which arise in the application of these notions when the rapour densities are wanting．He explained and justified the use of various anciliary oriteria to which wo have recourse in these cases， proving them，in the first instance，by the touch－
stone of the theory of Arogadis and Clausius by stone of the theory of Arogadis and Clansius by
showing that they geve resalts in accordance with showing that they geve resalts in accordance with
that theory whenever the two methods can be em－ ployed sinyultaneously．

He believed that we should never lose sight of the starting point，nor give the formaleo of all com－ pounds as of equal probability．＂It is not by con－ cealing the obscarity of these questions that we shall enlighten the stadent；on the contrary，we should estimato each fact at its true value by showing him that our science does not merit an equal degree of confidence on all points．＂This forms the introduc－ tion，the preparation for the study of the transfor－ and aim of our scienco．
The comparison of the atomic composition of molecules has led chemists to the law of substitution， to the theary of types of Dumas，then to that of Williamson and Gerhardt，and，lastly，to the theory of the different mobility of atoms and their modes of union，or the so－called theory of atomicity，which
inclados the former．Although at present it is im． includos the former．Although at present it is im．
possible in teaching chemistry entirely to eliminate possible in teaching chemisiry entiraly to eliminate
this latter theory，which gives a summary of several laws，and guides us ordinarily in the co－ordination and even prevision of a large number of facts，yet
it is diffioult to keep it within just bounds，so as to it is diffioult to keep it within just boands，so as to
avoid infusing into the mind of the beginner illusions whioh are daugerous for their intelligent education． In order to aroid this，it is advisable to bear in mind of development which it has at present reached．It is still far from being a complete and well established theory，but it is in a state of transition，for although doubtless，it embraces a large number of facts，as yet representation of the reality，and that from a re－ stricted point of view，slowing but little relation to our views of the constitution of matter，for it is the result of a comparison of diverse facts expressed by means of the atomic and molecular theory．It is
convenient，therefore，to consider each point of this doctrine exclusively in relation to the group of facts which has suggested it．

It is unaddisable to defne the valency of atoms as as property inderent in them，and then to deduce as a corollary their different modes of umion；on the this doctrine preferahle to regard each portication apd comparison of detorminate gronp of facts． until an opportanity offers to unite these＇fregmants into one whole；not forgating，trowever；to notice the gaps which exist；never goling beyord what the facts themselven suggest，and never applying to all bodies indiscriminately the laws which suit only a single groupx For instance we mnst not pass over in silence the fact that whilst certain elements are bi－tetra or even hexa－valent，others are tri and penta－valent；but the papil should be prevented
from acquiring mechanical and geowetrical from acquiring mechanical and geometrical ideas from the ceanse and effect of the valency of atoms by frequandfreminding him that chemical facts show nothingaboat the size，form，continuity，or relative dispostition of atoms．If we are sometimes obliged to empliay the expression＂relative position of atoms in the molecules，＂and even to represent them graphidally we must warn the student that these and thy awtifices to express certain transiormations， tion offthe atoms either in space or in the mitusl action the different portions of matter．With these reserveltoles，it is possible in teaching to darive con－ sideramb advantage from the theory of atomicity， and atithersame time aroid its inconveniences． In ther stady of the transiormations which attentlowinat only to the ponderable changes in the compoethan of molecules，but also to the electrical and oudrifc phenomens which accompany theso
transfernations．．Even from Lavoigicr＇s time it has been recognised that we cannot separate the study of matter from thermic considerations，and every dey the connection which exists betweer chemical and thermic phenomena becomes more apparent．As in the study of ponderable changes we were gaided by the law of the conservation of dsnamical phenamens we are guided by the law of the conservation of force ；the two stadies matanlly supplementing and illastrating one another；and not only will the atomic and molecuher theory and phenomeng，but the study of dynamical phonoma phen mona，bull chemical actions which would not be observed in the ponderable equations．We shonld，therefore， which we at prosent ponsess concerning thermis Which wo at prosent pousess concorning thermio mind the fandamental notion of a mechanioal equi－ valent，and the manner of comparing it with chemical action，as expressed by the atomic theory： In this we should be aided by the previous or simnitaneons inatrustion of the stadent in．physios， under th
The lecturer concladed by obsorving，that－in the choice of macthods and of matter．for a course of whemetry，ibshouk always be bornce iomind that it the time of its most rapid development．The stedeat should start not only with a knowledge of cortats defuite and Axed principles，but with an aptitede and sufficient preparation to enable him to follow the science in its unceasing transformation snd progress；whother he intende to exprasaly ooltivate
chemistry，or has only learnt the elemente of the soience as am auxiliary to other sdidise or pro fessione；moreover，the end of ohemioal instruction for both these alasmes of stadents is not obly to fix in their menoory a cortain amount of knowiodge， this，chemitur of all scianses is on of the best offering，both in verbal and practical instruotiote， excellent occasions for the exercise and harmonious development of all the faculties of the traman mind． Dr．Williamson said that there was soarcely any－ thing of greater moment in the scientific ednoation of youth thau the rightly setting breowe them thoos wonderful transformations of mattean whichit is the prowing tratho－for，as the lectiver had graid，they Were growing traths－－should be set before yo such a manner as to form a cohereat whole．
Professor Tyndell said he had heard the discocarse with deep interest，for it showed that the lecturer knew the importance of a teacher＇s rocation，ard that his province was not merely to commanicate knowledge，but to do it in such a manner as to arouse an interest in and love of the sabject in the pupil，by presenting it in its proper relations．He even had he come to tear in pieces the notiona which be cherished regarding atomesad n How pleasant it was，then，to had sueh a broad halt at equivatent proportions，he must ask himealf whence they arise gut the ine itable ask himsels some form of the atomic theory．This theory，how－ ever，cannot be confined to chemical phenomeras． The motions of those atoms and molecules anderlie all our explanations of the physical canse of light and hoat，and it is already taking up the field of
magnetiam and electricity．Consider，for example
 tranclation of tho moleoaleop which prodnce temparatrure and tho motitiono of rotation and vibration ot their oonstituent stome, whioh, thoogh they to not
 portion of the heat. The lectirer had deao aroerrod to atome of the wame kind ecmening together, so as compoesd of molacules, ieaci cont ining is poir of atoma, has certainty mimplified the revilis. But it atomst met be forgotien nhat thim combination of Wike atoms is comerally difirsant from'shat of unilize atore. The mien of ofygen' with ozygen or iftrogen with nitrogon produces no 'suoh afleots upon the luminiferous ether as the union of $04 y \mathrm{cen}$ Whit nitrogen. With the same quantity of matter may be angmented a thousandfold -perhaps a may be agmented a thousandfold-perhaps a
millionfola-by the act of diverse combination. millionfold-by the act of diverse combination.
This act seems to carry with it a condensation of This act seems to carry with it a condensation of In the same wey the diverge atoms vibrating in the donser atmopphere formed on combination, show their vast arpariocity as radiators over like atoms, whioh, exeopt in such speaial-gases as ozone, \&o, ers incongetentito praiuce similar comdensation.

THE METIOROLOGICAL SOCERTY

A^{T}
the ordinary meeting, the last of the Sespion, hald on Wednesday, June 19, the President, Dr. Tripe, in the chair, Captain Toynibee, Marine
Saperintandant of the Meteorological Ofice, exSuperintandant of the Metoorological Office, ex-
plained the systam of procedure in conatructing the planed the systam of procedure in conatructing the series of oceanic wind and woathor oharts now. in progrees in his department of the offioe. Four whinh ibhe Jamary chart is lithographed. It is intended to odrounte this chbart among meteorelogists with the viow of eliciting nexprenileas cof o inion provious toithe pabitantion of the "pottion of the four ohatts exhibited eminucos 10° of lati. tude rad longitude so thosen as to illustrate the best longitude 'for crossing the equator. Fseh iatitude and longitade, im which are arranged the resuits of all trie records in each sub-squere of results of all the records in each sub-square of
wind, direction and force; barometrio heights; temparsture of air, dry and damp thermometers, also the temperature of the surface of the sea; direction and rates of currents and specific gravity of sea watar. In each sub-square concentric circles are dromn, within which certain results are recorded, the contrial apace containing arrows indicatipg the Winde mot with in the particular latitude and arrow, ipepmenting the hurgast nnmber of wind obvarvations, axtanding to the centre, whows the 'pacrailing wind in the reabrequace. The 'ratio of of the mame ratido to the whele cirole. In sdidtion to the sub-tquares are marginal squares which contater the sums of ten' sub squares raming in the zame degree of' latitude or longitudde. 'Phey ziso contain:the percentage of wind and its mean force ar ezch quarter of the compass-N.W., N.E., S.E., and the percentage anid mean rate of currents, and also the percentage and mean rent. In addition to this information the marginal squares include the summings-up of weather and cloud for ten subequares.
The explanation of Captain Toynbee was very locid. Having aniled orver the looslity, he very abby pointed out the bost rome for salling vomely, checifying with great discinetnees the mabrequares with the largestr mamber of onkme-asid the ehowed on:the chart for April that on the imest eatetery shinp of longitude oalms wern much morre frequent shan on the most westerty; livo shat the wind east to weat, so'that a ship in the more westerly longitudes would meet with greater wind propulsion than one further east. The Captain also pointed ont the differences oxinting tbetween tthe. Jhenary und April charts. In coonnection wish the eir and ionther temperatumea, thom laying down the was invariably 1° warmer than the air above it.
Mr. Glaisher spoke in very high terms of the great value of the charts now in progress, and con-
gratulated the countey conezally, and the maritime gratuhated the countery goneratly, and the maritime community in particalar, not onfy on the eatablishhighly important oharacter of the results which it had produced-results enabling the aeaman to chooss his route, for with mioh charts in his ponsession, exteading over the thelve roonths, of
the yeer, he had conrse so as to aroed detertion or the ome hand, and avail himsolf of advantageons winds on the ether. If the Moteorologival Oflies had produced nothing beyond the four charts now before the metting, if had fulbilled its misaion and hand fally enswered the expectations of its promoters.
Towards the conctusion of the meeting, the rewnential adircoswas read; it was ordered to be
may probably return to it on'a future oecetion
This being the ennual meating, the Fallown presen This being the annnal meating, the Fellowe apresen balloted lax officers and council to serve darint the ansuing year. Upon the report of the sarutineers, the fellowing gentlemen were dealarad to be Pecto
Frestomet.-John W. Tripe, M.D.
Fige-Presidents.-Arthar Brewin, F.R.A.S.; Robert H. Scott, M.A., F.R.S.; Gearge Jame Symons; Charles Vincent Walker, F.R.S.
Thangunar,-menry Parigel, F.R.A.G.
Trustress.-Sir Antonio Brady, F.G.S.; Stephen William Silver.
Bechitantre.-Charles Brooke, M.A., F.R.S., F.R.C.S. ; James Glaisher, F.R.S.

Fomeras 8bocirany: - Lieat.-Col. Alexander Strange, F.R.S
Covscin.-Charites - O. T: Cator, M.A.; ' 'teorge Dines; Henry Storks Fraton, M.A.; Rogers Field B.A., Asooc. Inet. C.E.i Frederic Gaster; Bobert Nash; Thomas Sopwith, M.A., F.R.S., M. Ingt. C.E.; Rov. Pemoilk W, Atow, M:A.: Captain Henry Toynbee. F.R.A:N.; Samauel C. Whitbread,
F.R.S.; E. O. Willaman Whritehouse, Assoc. Inst. C.E.
The names given in italias are those of new members of the Council.

USBFOL AND SCIENTIEIC NOTES

Improved ITethod of Laying Footwalics-

 A new process of laying footwalks is being teated on a portion of the footway in front of the MunioipalOmces, DaleOmaces, Dale-dtreet, Liverpool. On a foundation of
gravel, grouted with oomposition coment, is laid, by gravel, grouted with oomposition coment, is laid, by means of selfacting maohine (having a roller with a prossure of about 40 b . to the square inch), a layor of
coment, thich forms the footwalk. The rollar has coment, which forms the footwalk. The roller has
projectiog ridges, mid these produce a number of
 footmlis being al maya-diry. The componition gradually

 not in the lemet lieble to chip or break ap. There is
 seotions. Theppocens can berepplied to roadinus, bat
 provert:hereophyphag. Thercostinplavilutho con-

Revithenonceshis Paper Ylaktes.-It is maid a timereet his allt, En Knginh
 dention lot a blopiteg fall, dito ase of the rats of

 spoiled. After thing the houne moam
 "For that it inlletoh!" enid themagent, misonderstanding the mery; "mall, it coftinly is a novelty, whole st ia considentle advance mpon the market price, and wrote tontive mills for as mach naore as he coosdicsat. Theenarprive of Mr. Enetrmay be imagined. He hintemak sto tell his wife, wholfound courexe to

 the dempond fer ereeolet thesimpty and othor matiers, discovertng the menas useid, mippeted with him.
The Deepeat Well in the World.-Twenty miles from Berlin is elthated the viliage of Bperconbeng, notba for he doepeor wal rial hat ovar been rumb curred to the Government tuthoritioe in aharge of the mines to attempt to obtain a eupply of reok galt With this ond in viow thoulaking of a chint or well 1ot in dismetor was commeneedisome five years: ago, and at a depth of 2804 . the willt war reshod. The:berias wan eontinued to wifurtbor depth of 900 ft . the diameter of this bore being redeced to about 13ta. The operations were sebsequentyy probeonted by the aid of ateam the boring was aiscontinsed, the ibover or bit being still in the salt deposit, which thus exhibits the ener mous thictinees of 8,0074t. The boking woald mave beer vontinued in order to disoover what desorfytion of deposit lay under the salt but for the mechanioal diff operationa. Dntion the progreas of this intoresting operkilioneated and amraful oboarrations ware made of the tomperatare at varions deptha. The reenltas oonArm rery alosely thono which havo boen alresdy errived at ander aimilar círqumanteacos.
How to Dentwoy shistices, White giving
 Garions, itated that on inferable inty. to dectroy thistien mak, jast before the badd ibegraccto formo, to wa
 the sarface wis an after waste of both mesey and

LETYHRS TO THE FDITOR.

PWe do not hold, ownolowe raponoible for the aphiome
 pamble:]
 of the Exalisi Maciario, 81, Taptesoekestreet, Oovent Gardon, F.C.
All Cheques and Post Ontee Ondose to be made apqualto , CAEBMORE FDDTARD.
"I would have every one write whit ha known, and as much as he knows, but no more; snd that not in thi only, bat in all other subjeats: For such a person may have some perticalar knowletive and experience of the neture of suek a pereon or streh a fountain, that es to and yet to Feep a olatter mith this little pittance of his, Will undertake to Write the whole body of phydiana:

** Is ordor to facilitetoreforanop, Dorroypondionto when meahing pf any Letter grociomaly marted, molll oblige by en wivialbe equers.

HGEFT SCIETKCE-a DRLCONDS GNT TREESSION - TESTING A TELESGOOPE - TEMENTEED \rightarrow IND POBCBACE OF \triangle RBFUROROR
[4404.]-I $\triangle \mathrm{M}$ sure that "W. H. S." (query 12180) oen only want a candid anower to his question; and will not, therefore, be offended with me if I say that thare is not eren the ghost of "a shadow of probsbility" in his "theory:" Before replying to the con alnding part of the query Which he puts, it would be necessary to have his definition pracnum. Perhaps what is oalled the "Torticouian vacuam" (or apace abova the mercury in a barometor) is as perfoc
 haight of the barometter.
Will "J. X. T." (query 18186, p. 840) permit me to point oat that he is now, patting a vary, vary, different quastion to that. which he asked on p. 169. If he wil rofer to his original quany there (un716) and re-read
it, It think that he will and that, upon the face of it, it it, Ithink that he will and that, apon the face of it,
is an inquiry is an inquiry (Whethar a Deaconis, haring beon atil cortain epoch returned to the eame position 600 year aftarwards. Iny answer to that was (1et. 4047, p. 171) that 25,800 years must olapge from the date or its ocot pation of the position of the Pole Star-when, bear in mind, it was only some 10 from the N rth Pole of the
Heavens-antil its return to the rame place. Now, however, he is asking aboat a wholy different matter He has, apparently, beon oxercising himaelf severoly With some of 'Profescor Piaszi TBmyth's pyramid vagaries, and wishes, soomingly, to know how $8^{\circ} 42^{\prime}$ fromithe Pole, it flowifl, after the lapes of 1200 8° 42' from the Pole, 1 , haritha, alme elongation from it? years, have been foumuative to.this in is that the pheno memeer ot precention is produced by the ravolation of the pole of the earth round the pole of the coliptio (s rorotartion coonpying, 'as I have asid, 25,800 yearn) at distance of some 23, from such ecliptic pole. A mast, shan, bo prein pole of the ealiptio, the pole of the Eot aciueay. in pproeloit, cot to ift mearest, and then equabor mant apprand then at equal times bofore and after it in at its grement proximity to anr
 Irveo il glar Atlee"-or, fattiog that, zo might make thirit ith, the arealler tene-and atndy the arrangement of the procememal arsome in Map 1 in oonnection with The very ithar aboat , Which ho is inquiring. Ho will got a bour he ol whire tom ent any imoun-of map than ie ooall sive mpanied by Diegrams. He Terill, of conma, and the pole of the ectiptic marlod on the Eoletitial Colure. Into the phycical reasona of precesaion, and into its camplication by natation, it it
 not theee ehings rriten is the
In rephy to Dr. Blenklock (lot M897, p. 857) I would observo ing the separating peweroizivenoapeor anat, vith arnot reet limitoun vecy rmment rith regardito whioh ith rigid applioability incmamer profionted. Meccerer,. in teating an objeotcilas or pimimor to ha zimit of its theoretical separating powes, wo quesuppoee a combinalion of tio moon armanines the etamita be divoroed-onia colm eraning in trilights, with ar pomer not. mach lews than that. oL 100 to every inch of apertare, and to giveithe teloserpe. riening ehoold be clmant, or quite, equal, and of a viouing ehoodd be amocit, or patio, equal, mat, of a extremely libely, that Dr. Bicakiocte did see the eamspanion to a Oyimi on the ocemion to whioh he relarr, and for thic mencon, that the ohiof dimenty with hhs roxy aonoano rant arices loom tho dier tion ring. ring which would be obliterated by menk a hase as yoar
correspondent mpeaks of. Dr. Blecklock's ideas as to the probable, or possible, bacre of the diasppearance of vary faint itara under increaced amplifoation seem to me to be very suggestive ones, and I think that it zinght be deairable to zistitate some experiments ior one or two of the points mooted in his intereating letter.
I may toll "C. B." (let. 4366, p. 858) that objectglasses are not balsamod to shorten the focns, bat to provent intornal refieotions, and to preserve the funer curfaces of the lenses from decomponition. I coniess my inability to anderstand how, if the lenses of have been-in contact, he shortened its foens onothird (i) by interposing balsam. This, by the way, induces me to remarry that this method oo comenting lenses in onily applicable when the radii of the two internal surfaces arro identical, ard that, consequently, it is quito unesitable in a large proportion of astro'nomioal talencopes.
And, white on the subjoct of cemented objeot-glasges, I may inform "Albireo" (query 12224, p. 886) that I rofers almont alway has its origin in a blow or jar of nome sort; at least I know that the tumble of a pocket teleseope of my own was incontinently followed by this resuth. With reference to the second part of his query, I ahould cortainly eay that a cemented objoctglass was the more dorable of the two, and I may answar his conclading quention by adrisiag him to have nothing to do with a panaratio oyepieco for dolicate colestial purposes. What with the great loss of light, and the annoying riatbility of the dirt and dust on it component lensca, it is about an worrying a pieco of apparatus an the observer can employ. Nothing equals
the Hayghenian eyopiece for astronomical parpones. ". Countryman " (query 12227, p. 867) asks a question la by no means perfect, no determination being mach more difficult than that of the exmet inclination of the axis of a planet to Its orbit. With the reservation then, that the data I am aboat to give are only approximate, I may tell your querist that Bessel pat the inclination of Mercurr's sxis from a per-
pendicalar to ite orbit at 20°, that de Vico imagined the inclination of the axis' of Venus to be no less than $58^{\circ} 11^{\prime} 26^{\prime \prime}$ (1) that Sir William Herachel concoived the axis of Mars to have an inclination of $28^{\circ} 42^{\prime}$, and that Jupiter's axis is almont perpendicalar to the plane of its orbit, or, at all ovents, inclined to it loss than 8°. If the object of"Canis Minor " (query 12229, p. 867) We (as it ostensibly is) to examine the physical aspect of the objects aboat which he reads in books on
astronomy ; or, ohould he wiah to devote himself-as he astronomy; or, ohould ho wiah to devote himsell-as he
would further seem to indioste-to selenography, he Would further soem to indiosto-to selenography, he
conld in no other way get so muoh for hig money, as conld in no other way get so muoh for his money, as
in the purchase of the ingtrument to which he refers. in the purchase of the instrument to which he refers. I shoala however, atrongly recommend him to apend
a little more money and have an equatorial mounting. a little more money and have an equatorial mounting. to drive anybody mad.
A Fbllow of the Royal Abtronomical Society.

CONCERANING OERTATN (OR UNCDERTAIN) CBITICS.

[4405.]-Mr. J.M. G. Broorwood (let. 4857, p. 852) is hind enough to attempt to sot me right; bat, perhaps, it might hare been as well it, in limine, he had made himsolf acoquainted with what I said, before attempting to criticise it.
I am wholly unaware that I ever penned any auch noncense as an asaertion that "the semi-barbarous Hobrewn ' wrote' the acoount of the Dolage." Δ dmitting, for argument's sake (for we have nothing appromahing Go prool of it), that Moses did writo the scoomint Which we poscops, I aesame that he only gave what la ryers oall secondary oridonoe on the point (an I can tioarcely conoeive even Mr. Brookwood contonding for his bodily prosence in the ark); and, euch being the cace, he must have been indobted to the foating legonds to the diotum of my critio, that "whether the Hebrews themmedves can be properly styled remi-barbarous is doumbefrol, if we comprope them rotith the other nations of their time "I Just to. "Inter indootos etiam corydus conat;" but the quention here is not their relative The their absolate, knowlodge.
The conclading paragraph of the lettor wnder dis. cumsion is doliciona. How woild it read paraphrased to ignore, the oristonce of King Arthur, what ronson to ignore, the edictonce of King Arthur, what renson
has he to beliove in the existonce of George the Third, has he to believe in the existence of
or of any one else in particolar"?
I am excoedingly ouriona to know on whoee authority Mr. Brookwood, in his proceding lottor ((1458, p. 852), and I and I fait nittorly to 100 What he moans by the "teatiphilomopher aesignis 100,000 yearn as a moderate estiphate. It might be worth your correspondont's whilo to ro-eramine the eridence on this point, and to make a theory to fit the facta, insiond of trying to force the faots to at his theory.
I should not have condecoended to notioe the reply to quary 11991 , on p. 808, coming 23 it does from a porson Who, apparently hnowing nothing, $200 m s$ so barningly ennouas to impart it to his brother reeders, but for the hot himself blundered hopeolesaly. He to correat me he hee himself blundered hopelosaly. He never ponned a orcor sentence in his dife than that in which he diacoing all knomiodge of fourpenny cateohiams, or he justify his enrolment in the category adrorted to in

Romans i., 22. I repeat to "Anon." that the plate i placed in the focus of a camera lens, since in everyShing worthy of that name the chemical and visual foci are made aboolately coincident. I yiold to "Philo" the fall crodis of the ascortion, or inginastion, that it is a fucture there.) Moreover, if we were to employ a single lens, the plate holder would not have to be placed "at a considerably greater (2) distance" from such lens than its optical image was formed at, but at a less one-the actinic rays residing at the violet, and consequently more rafrangible, ond of the spectrum. What the "eongregate focus of diverging rays" means "Philo" knows best. I fancy that this would bother the Astronomer Royal and Professor Stokes (our two first living anthorities on light) a little. With the atmoat deference to "Fhilo "I think that the atudy of a fourpenny eatechiem would have obriated this soleciam, at all eventa.
A Fellow of the Royal Abtzoxomacal Socibty.
mproved machine for making arrated DRENES.
[4406.]-Havisg seen from time to time inquiries in "ours" as to the bent machine for this purpose, which were not gatisfactorily answered, I herewith submit a sketch of a machine capable of producing from 600 to 1,500 bottles a day, which will suit the querists. It will be at once seen that this maohine has the advantage of combining in iteelf a bottling and corking machine, alco a flling machine for siphong, and by this means does away with all dificulty in filling siphoide vesselg. The bottling part is so well made

other botties without the leant cianger of breakage. It can be nsed for any serated drinke, coda water, lamonade, ginger beer, ohampagne, cc.; it takes ap but little space, about a yard and a half equare being with great atrongth and solidity, wean be worked with eace, and not at all liable to get ont of order. The gas is produced by means of suiphurio acid and common whiting; the gas compreseen itnolf, becoming perfeotly wheshed and pare before eaturating the watar. The raturation is made in 25 minuter' time by turning an sgitator. It has a manometer to indicate the preesure of gan: I would recommend this to the notice the queation. Anything further I shall be most happy to explain, and I can give the price.
H. B. स.

A SEAROHER AFTER TRUTH.

[4407.]-Wrat a strange thing it is that people so generally lose all sense of common jutioce, civility, and good fealing, thoth opponential in any matier which thoongh thoy arer very different mattora. That being so whoagh shey are rery dineront mathor. reamonable, and the weather having taken so warm a turn, with considerable eleotecical distarbance, I am not diaposed to be too hard upon "F. L. G.," who appears to be a enbjeot rathor for aympathy rinder the attack of rabios,
which has eot him snapping and biting (letter 4360 , which h
p. 852).
mit me to may that " E. I. G." states " the thing Whioh is not," and boars talno witnees againat his noigh.
bow. As to his good tamto in making a direot pernonal
attack apon me becanse I think differently from him, I say nothing, because I care nothing; but I will not allow him to set forth what is absolutely false, and consequences.
I am not going to discuss either the Bible or my own theological opinions, Whieh conoern no one; I woukd do so faithfully and fearlesaly, ai I have often done in other pages. This is no place for such topios. It Wan imposaible to diacuss the Daluge withoat some wach reforence as I alightly made on troo oocceions, but I ask any one of common senue if there is a shadow of trath in the remart, "What aingle paragreph thercon has 'Sigma, written withont naming or referring to the Bible ?" I farthor ank whether even that limited honeaty which dispatants of "E. L. G.'A" calibso nsually feel binding on them is exercised when, withhe ingeniously but indirectly contrives to class me with Voltaire and Bradlangh.
I have not read any of the works of either of those writers, except Voltaire's poem, "The Henriade," which I thought wrefchedly dall staff. Of Bradiangh's opinions I know nothing but the probably false statomenta nomotimes given in the paperis; if they are trro, I entirely discont from them. In feot, I have formod this nort of pictare of him :- \mathbf{A} tolerably wide reader, with an intensely bigoted and narrow-minded way of looking at things ; an absolato inoapacity for soeing anything of abilos not suit his ideas; a considerablo amoant conviotion, with a vastly exce日sive eatimato ofly; him is certainly a any one who thinks arwa or a hypoarito: immeasarablo and proin, and therefore a beliof that, coming from him, assortion is evidence, and abrase argument. That is the sort of conception I have of Mr. Bradlaugh ; it may be entirely wrong, as it is baved on the reports mainly of his opponents, but if carroot, What fan it would be to hear a discusalon betweem hlm
and "E. L. G." That would be a case of When Greek moets Greek,: 40.
It was cortainly my improsion that my remarkis were aimed at the puroly phycieal quostion of whether there had ever been a onivarsal Delnge, and even that only in the second place, the lints boing given to "E. L. G.'s" absurd oomet as the oanceo of tho "Eposed Doluge ; at all oventa, 1 dietinclly dany Bible, or that I ondearoured to single out two popalar errors sbout it and thrust them forth as facta. To use "E. L. G.'s", words (he fornishes one with a complote armoury), "I fatly deny that any 'sinoore searchar after trath' of any kind " would so grataitounly falaify the object, nay, the actual words of his opponent: does in the letter I same thing ahe cays they are errors, that them discuming; real meaning of the writors, only it pleeceas him to except the Doluge from the list. That is what I said and may : they are errore, misconcoptions, and popular delacions ; and I frither said and cey that it is a misohiorous error to indiat on our socepting thean, or to link them ap in any way whth religions ideak. It is a grons calamny, and I can scarooly bolieve an unintontional one, to may that I usod them "exnetty as
Voltaire and Bradlaugh;" on the contrary, I may thay are dengerone Boaiangh;" on the eontang and onght to be rocognised as snch instend of boing bittarly defended as Secred trutha, (Ploese give the his S Which "E. L. G." so raluan) "E. L. G.s"
talk aboat the account of the san and moon standing still is pare twaddle, an any one may see who will reed the scoount itself; in fenot, he atterly falaifies it, for the battle was setually fought in defence of the Gibeonites, who had sarrendered themselves as serfs : the Israelites had not bound theosselves not to deatroy the Gibeonito religion in any way, and the writer does not tall us that the "superik tions legends are from no sacred book." Thore is a sort of parenthecis or marginal note by some ishar copyist, remarking that there in a nimilar socoant in the book of Jecher, which may be a novel, as R. It. G. sayg, for all I know about it, bat whioh, I beliove, the and considere a greatar G. thatical tradition handed down from the pariod of the evonte, and such an are repeated to this day among the Areb tribes.
[After "E. L. G.'s" attack on "gigma" we zeol bound to insert the above letter. We are, however so hoartily siok of the anbject, and the manner in Whiok line on it, come from what quarter it may.-TD.

THE ANOIENT CONSTELLATIONB.

[4408.]-Tms steam-comet is dropped by coinis, and your readers broathe again. Without winint ito matter raised by "E. L. G." He gives an interpretstion (lettor 4854, pp. 851, 852) of the origin of Aquaring Caprioornus, Argo, and Sagittariungin Now, I thint Coprioornus, argo, and sagittarian. Now, I thint
theris is very strong ovidence to ohow that overy one of these constollations got its name from its appect. But setting that, on one aide, I noald ask on what evideme En. It G." seserts that "only we westerns hare onarged the Bow of Promiee into Sagittariun." In the zodico of Dendera, Sagittarios is a bow-armed Contanar representation of the constallation.

Rrohard A. Peootor.

- The original is when Greek joins Greek, doins

SYCOSIS.

[4409.]-Various sufferers have asked at different times advice on this subject. After ten years' saffering from this disease, I adopted, with the most complete success, the practice recommended by Dr. Erasmus Wilson, of placking out the hairs, which can be easily done with a pair of tweezers, when the pimples are abont one or two days past their height. I have well satisfied myself that the romoval of the disease is
effected by removing the roots of the hairs. M. N.

WIRE-COVERING MACHINES
[4410]-I nNCLOSE diagrams of machines for coverng copper wire with guttapercha or insulating materials, the machines being identical in motive

power with those which furnished the great Atlantic and Red Sea cables. I do not think a description of these machines has ever appeared, and therefore, probably, it may interest many of your readers. I shall not enter into lengtay details, as the diagrams will explain Themselves : -A , the driving power; B , the plunger; C, tue doable steam oylinders; D, the stop-cocks for tarning off or on the gattapercha; E , the slide bearings; F, the die; G, the water-tank $; H$, the creel of covered wire ; 1, creel of copper wire ; K, naphtha pad. No. 1, side section; No. 2, top section ; No. 3, enlarged section of eylinders; No. 4, enlarged section of die ; No. 5 , cog. wheels for screw plunger; No. 6, enlarged section of stop-cocks ; No. 7, naphtha pad. It will be planger. Only half or mid section of bearings is shown planger. cog-wheels being inclosed.

Joseph Whllay Fennell.

SPINNING TOPS AND GYROSCOPES. [4411.]-"E. H.'s" surprise (let. 4368, p. 853) at my anguage is due partly to his misunderstanding me, and ${ }^{\text {partly }} \mathrm{I}$ to his misapprehending his snbject. He writes, change, and is in reality always changing the change, and is in reality always changing the tion is, at what rate \& Moreover, we want rather to have reasoning than to hear what "E. Ha." or have reasoning than to hear what "E. H." or
any one else may say without showing canse why. He confounds A.'s incorrect reasoning on one snbject with my totally distinct line of reasoning subject with my totally distinct line of reasoning on another. It is, of course, perfectly true that gravity raws down the most swiftly travelling bullet-fired as a ball dropped from rest at eame height. But it is
not true that gravity changes the direction of a bullet fired horizontally as quickly as it would change the direction of a ball thrown horizontally by hand. The velocity of a moving body set travelling horizontally has no effect whatever in preventing the body from being brought to the ground; but it has effect in giving the body greater or less power to resist change in the direction of its motion. In the case of a rapidly rotating body, whether the axis be vertical or inclined, the question of the effect of velocity is all important. But "E. H." has ntterly misunderstood me if he supposes I intended (as he says) to give a popular explanation of the subject of spinning bodies. I only took one case and one feature of that case. The subject is one for the mathematician. I have never seen a popular explanation that was worth reading. I would remark that nutation is not an action, but the
modification of an action. Lunar precession is the
action; and this action proceeds more or less rapidly according as the moon's path is more or less inclined to the earth's equator. Solar precession is subject to a similar variation, having a year for its period. The resulting variation in the rate of the lunisolar precession is called nutation. ("E. H." speaks as though the matter were a vexata questio, asking what is at present the explanation accepted; but the whole matter has long since been disposed of. "It is hardly necessary to state," says Sir J. Herschel, "that a rigorous analysis of this great problem, by an exact estimation of all the acting forces and summation of their dynamical effects, leads to the precise value of the coefficient of precession and nutation which observation nssigns to them.") The explanation given in Airy's "Popular Astronomy" is (somewhat maltreated) in Mr. Lnow of. It is reprodnced Lessons;" where Mr. Airy's woodcuts reappear, thongh (through some infortnnate accident) reference to Mr Airy has been omitted. Righard A. Proctor.

THUNDERSTORM OF JUNE 18, 1872.

[4412.] - On the 18th June, 1872, between the hours of 4 and 7 p.m., an interesting phenomenon presented itself. The early part of this period was bright and clear, the sun shining strongly. Suddenly the san became obscured by a dense mass of cumnlus, which filled the north-west portion of the sky. The cumalus, the edges of which was exceedingly well defined, gradnally and slowly advanced eastward, bnt scarcely passed the zenith of this place (Walthamstow) the sky to the east remaining clear. About $5 \mathrm{p} . \mathrm{m}$. distant thunder was heard, increasing in intensity and rapidity, accompanied with every appearance of a severe thanderstorm coming up from the north-west. This, however, did not teke place. Towards 6 p.m., or, perhaps, earlier, the thunder place. Towards 6 p.m., or, perhaps, earlier, the thander eastward, gradually retreated westward so that the sky became clear about 7 p.m., except that shortly after masses of cirro-cumulus formed, which at 7.15 p.m. were finely polarised nearly in the direction of the magnetic meridian. Was this an instance of condensstion and evaporation of a stationary clond? No lightning was seen, nor did rain fall. The above remarks may assist in determining the area of the storm. From the numerous instances of severe thunderstorms on the 18th and 19th, reported in the daily papers from the provinces, it would appear that the atmosphere, being strongly charged with electricity, the towns were so many points which determined the disruptive discharge.

W, R, BIRT,

LUNÁR OBJECTS FOR OBSERVATION,
 \section*{JULY, 1872.}

[4413.]-July 8, Oriani, Apollonius, Firmicus ; July 9, Cepheus, Franklin, Oersted; July 10, Piccolomini, Riccius, Stiborius; July 11, Littrow, Vitraving, Jansen; July 18, Theophilus, Cyrillus, Catharina ; July 13, Rhoticus, Stöfler, Alfraganus; Jaly 14, The Apennines,Aristillus, Antolycas; July 15, Hell, Maginus, Gassen; july 16, Helicon, Leverrier, Luler, them; July 18, Sirsalis, Crüger, Fontana.
A correspondent of a cotemporary calls attention to the colour of the shadows which covered up the level plain of the Sinus Iridam, on March 19, 11h. 17m., Greenwich mean time. He described it as unlike the ordinary lunar shadow, being of a light gray, through which he saw dimly the sarface below, indicating the existence of some ethereal matter overghadowing it.
W. R. Birt.

ARTIFICIAL MANURES.

[4414.]-Probably at some future time I may have something to say on the subject of artificial manures generally. In the mean time I beg to lay a trifle of information before your readers, and pat one or two queries, which some of your correspondents may be able to answer at once, or after experiment. In the first place, I want to know what it is that is understood by the term "stone ". coal? In a specification of a
 patet his diseorery coneist in the employment of that his discovery consists in the employment of from one ho tive part This misture is rediced to vary fine powder, and may be applied in either the dyy or lignid powder, and may be applied in either the dry or "quia state. When read this 1 imaginea that stone coal might be a printer's mistake for "bone" coal-animal charcoal-but the Rerue Harticole. In this the writer manication to the recue Horticole. In usefal to many gives some information which may be asernl to many of your readers, and have, hat it may be worth. He says cat he purchased a very fine rosebush, falloring and andions when this took place, to find the flowers small, insigniwhen this took place, to find the Howers small, insigniicanl in appearance, and of a all, raded colour. In cited by the suggestion of a friend, he then tried the experiment of filling in the top of the pot, around the bush, to a depth of halr an inch with inely palverised stone coal. In the course of a few days, he was as brilliant and livels as he conld desire. He tried the as brilliant and ively as he coald desire. He tried the same experiment upon a pot of petanias, and soon of ani the pale andinde mite coloured ones wer rariegnted with beantifol red stripes. Some of the $151 / 0$ pariegios became a fine dark blpe, Other fowers experio perienced sined insensible to the infinence of the copptys wous Now, will any one tell mo what is "stone coal ctgot empee tit

Salphate of ammocim in atrongly rocommondod as an mrtifoial mannue, to bo applied in a liquid form to planta, erpecially in pota; and I onn quite understand
that it may be of rery greatservice in the congervatory, the stove, or the greenhouse, Whare necessarily the plants do not obtain aery smmonia from rain. Bat and vergetables in the "open." It is very certhin that by some meams or other plants do obtain the requisite amount of nitrogen, and it appears to me that sulphate of ammonta can do no -more than onoourage the the qasatity or improve the quality of the prod uoe. I Hifo- limat which it oannot obtain for itsell-is phosphorio acid, and I am under the impression that if this of aptifioial we need not go any further is the dirootion require wpectal subthaness, suoh an the potito, which cannot be grown withort potash. If I am right, the one manure in greatest demand would be "superphosphate," stituents of the chemeal ingredicate, and of which the soll is sound deficient. Frarmers are threatened With a great seareity of guano-one of the most phortio ncid nuia ammonta ; but the price has risen rapidly of lato yoars, apd is now 816 . por ton for the beet quallyy. If the price contimues to rive it will be economical and profitable reenit; and connequently eme other matetrial mast be emploved to eapply the vecedeary figgredients to the soil. A littie disonasaion may help to throw light on the subject, and I have, therefore, etarted it fitt the proposition that selphate of ammonia and krano at e23 and 216 a ton are not phomphate" at 28 .
cannot doubt andible sounds will be generated, although we may donbt if their londneas will exceed those generated in pianoiortes strung in the ordinary manner, because each bar being glued on the soundboard mast become in relation to it a "belly bar," imparting its stifines 3 or rigidity to the soundboard. Now, excessive stiffness in a soundboard is not found to condace to the production of lond sounds-" quite the contrary." and we may reasonably donbt if the additional extent of surface in vibration-to wit, that of the harmonis bar-can compensate for the rigidity it maet indace in the soundboard. I fear the vibrations of the latter will be deficient of amplitude and its soands of power. Mr. Robertson, in his patent of November, 1858, No. 9587, price 4d., proposes to angment the surfaces
of soundboards by making them of thicker wood, and of soundboards by making them of thicker wood, and romoving, or as he expresses it, "grooring ont" the soft white portion, learing only the hard part, i.e., the "beat" of the wood. He atates "from this process the instraments (violin, piano, \&ce.) derive very superior richness and power of tone compared with common instrumente." Possibly so, brt-like the 20,000 Cornish men when the late lamented Mr. Trevanion condescended to die-I shonld much like "to know the reasou why." If it
be what George Canning called a "true fact "-doabtbe what George Canning called a "true fact"- doabt-
less he has experienced many "false factu"一that less he has experienced many "false facta "-that soundboard sarfaces thas corragatod do (when pat in motion by a given force applied throush the media of drumsticks, directly, or indirectly, by 'bows and hammere notaating atrings) ytold more poworfal sonnds, it certainly is a "true fact "well worth knowing, even if it quite apsets the theory of the soundboard put forth to the English Mrchanic by ay late friend and fellow correspondent "W. T.," who regarded a sotuadbodrid as being, for all practicill parposes, a mere wooden aram head (without its wosion), whith way, to judge from the performances of some pianiats, the "aticks" are not tavariably abeont.
Probably, Mr. Schncht, who produces what I may term artifcial belly wood by glueing alternato thiol-. sesses of soft and hard wood together, thereby insuring an eqnivalent to the "beet" of the natural belly wood, and has thought much on the materials and construction of sonndboards, ahoo come others of onr eminently "practical" (7) corresporidents, will bring the force of their powerfal brains to bear on the subject of corragated soandboards and-in the absence of that experience a pound of which is far more valuable ior practioe than a ton of theory-lavour my fellow readers with the result of their cogitations.

The Hantorrous Blaomerizh.
P.S.-Bat for the terrible "chaffing" I lately received from "F.R.A.S.," Then I requested his opinion on my iddle, Imight hare been tempted to reguest his attention to this mattor, especially in milation to the

FIVE-OCTAVE PIANOFORTES.
[4417.]-IT is quite true that mote of the music that is "best worth playing" can be performed on an instrumach, Handel Morart, Haydn Beothoren works of Bach, Handel, Mozart, Haydn, Beethoven, and, in rixty years ; but is going beack to a smaller keyboard, an. recommended in letter 4343, a step in the right an recimmended in letter 4842, a step in the right
diraction? A piano in the house should be of use not direction? A piano in the house should be or nse not
only to the owner, but aleo be available for bringing only to the owner, bat aleo we available for bringing
oat the abilities of his friends; and if his visitors shonld prefer Sydney Smith to Beethoven, or Thalberg shonld preter Sydney Smith to Beethoven, or Thalberg
to Mompt, what ooild thiog do oon a Areootive inatje. - "litite waic"' is proposed, a'tasne of Brach'a, or a tong somena by Beethoven or Mosart, is not exaetiv the Kind of masic wanted. The great majority of those Who bay "thay are "very fond of masic" are :anderly
unable to "appreciate sooselled thalasical " eocepositions ; num, tr addition, It may be tadd that theoee who can 'qley the works of Beethorvo, dc., as they require to befontormed, aro (and perhaps always will bo)thon-a Great mamority with regard to the majority of players. Wainet by gainea by the extasion of the key-boand; bat, making things as they are, iI trink the purabavor of a wivegiven/e fow more poands for a few more keys. fuch givense raw more poands for a lew more keys. Anoh
an inntrament woald also be valueless in case of sale or exthates being desired.
F. F.:C.

THE CONSTRUCTION OF PLANOFORTES.

[4418.]-Having read with considerable interest the many articles npon pisnoforte constraction that havo appeared in your valuable periodical for bome time past, and baring seen nothing roferring to Ruist and Co.'s Patent Tabalar Opright Pianos, "cottage grands" as they are called, I should like to ask "The Harmonions Blacksmith "If he haf ever seen any of them, and if so, whether he wonld kindly give your readers the beneat of his thoaghts about them. Rüst's soandboards are strengthened by means of hollow bars of wood (called "tabes") in place of the solid pieces in general nse, and the soundboard is bored through in several places to admit the air into these tabes. The eflects of this arrangement are (so the makers bay): 1 , to more offectally strengthen the soundboard itself; 2 , and prin. cipally, to produce a greater volume of tone than any planos made on the old plan. The tone is also of a more mellow and brilliant quality, and much better
sustained. I bare examined a few of them myself, and sustained. I bare exnmined a few of them myselt, and
consider the method a decided improrement in piano-
forte constraction, the tone resalting from them being
clearer, deeper, and more expansire than anjthing i clearer, deeper, and more expansive than anything 1 greater than arything I have ever mit with, but I woald like to have the superior jndament of ourr friend as above stated. I belicire this method of mating soundboards involves a ecientiftc or acoastic principle, and there is nothing like working on princtple.
H.J.

THE PILNOFORTE.

[4419.] - Aurow me to pat one or two questions to The Harmonions Blacksmith " with reference to some observations in his letters on the piano. In letter
4351, p. 835, last number, he says, "It would seeme that every eugrentation of the mass of the bricige must, like increasing the thickness of the belly-bars, obatruct the commanication of the impalses of the vibrating strings to the soundboard, and we ought to by the former." Am_{m} I to onderstand by this thet site by the former." Am I to understand by this that supposing the whole, or nearly the whole, of these incam-orances-viz., the heary bridge and thiak bark-were swept aray from the gounding-board, the sound of the piano wonld be thereby greatly increased, or improved, or both, providing that the communication of the impulses of the vibrating strings to the soundbositi can
be cecured as intimstely as it is under the imeeant syatem, the as hind of action and atrings boing retaing
In lettor 4850 , p. 275, he observee, "It (thedulecimer) was far louder than any grand piano then mado ; both its bridges were fixed on its sounding board, which must, I think, have cansed it to produce loader sounds at least in the baes." Should such a theorr be current, may I ask what is the reason why pianofortes casnof also be made with both bridges on the sounding-board
Scionter.

THE ORGAN.

[4420.]-Ir you have money, bay your pipes rather you have patience and perseverance, malis them. Many seem to make themrelves acquainted with the fancy names of stopa, and build np ludicrons fancies. If readers would searreh the last seven volumes, they would not be at a loss how to proceed. I will give a fow more hints. Subjoined are a fow measurementa solected from

Teror (c)

flaves	Pipbs (Woo	
(C)	20in. $\times 2 \underline{1}$	
(C) shatp	19in. $\times 2 \frac{1}{4}$	
(D)	17 yin . $\times 2 \mathrm{~L}$	
(${ }_{(1)}$	14in. $\times 13$	
	121 in. $\times 17$ 11 in. $\times 11$	dhamfored lip
(B)	103 in	

The next are broader in front than aides :-A sharp, 11,in. $\times 1$ sin. ; B, Ilin. x linin; 2nd G from tenor

 stopped pipe, and D in treble, bin. X lin. ; small stopped CC , bin \times zin. ; chamfered pipe inside C
sharp, $9 \mathrm{~s} \times \mathrm{in}$; semicircalar opening, and cham. sharp, 9 . $\times 1$ in. ; semicircalar opening, and cham-
fered inside, 2 nd G sharp, 6 tin. \times lin. It will be seen there are slight differences of width and length ; each pipe liag a somewhat different twne. I shall, at an early opportuadty, tom on reeds
her the descending male, from tener to tocCo, the Wivest note, as the result of my exporteree

Josmpl Wrisiait'
 OELEO COMBINED.

 asked by, yourtieoticus amd good-iread
dent, "The Fimmonies Blacksmith,": fanny fiddo Amati, Guarnctus, aud Strad., will nise agmentimis, I cannot say, bat on his lievoted head be thercomequences. Joldag apart, "The Harmonivas iBlack-
smith has dembed two ibas whieh.I wonlider ine

 As to the flutt point taling "The Farmentarisiacksmith's" fignre not to represent: a seotion ate 'a bor or body, but areeries of six open soundboards connected by a jointed soandapost, I conceive that the reatit of such a oonstruction would afford little force of somad beyond that of a -atring stretched as is that of an archery bow. for I must think that the resonance of s hollow box or body is necessary to produce power of
tone. Witnoss the effect of a masion box when placed tone. Witness the effect of a masionl box when placed
apon a table, particularly if the eame table has a hollo apon a table, particularly if the eame table has a hollow
drawer. Compnre a tambonrine with a drum. Aloo drawer. Comprare a tambonrine with a drum. Also
the fact that old Lindley nsually monnted himmolf the fact that old Lindley nsually monnted himmolf apan a hollow box (not that I mean to insinuate that he ma I monnding-post), to increase his power.
I mast agree with "The Harmonions Bleokemith " that soundboards ribrate syuchronouely (and simal taneonsly also) with the string which starts them playwhich a fddle is bnilt, and which glaed together form the body, sounded its own note, what a "jolly row" there woald be. It is often laid down in theorsitica instructions for fiddle making that the beak soould vibrate so many times to another namber of vibrationa for the belly; but this only indicates a oortain thick
ness or test of suoh thickness of wood as will semd to ness or test of suoh thickness of wood as will sema to
give a good tone, and noither baok nor belly drenn of
sounding thoir own independent noto, nor does the glued-ap body, which possesses a note of its own, act
otherwise. It may be laid down as a rule that if two otherwise. It may be laid down as a rule that if two or more pieces of mood are giued together, their pitch
will be the same (lllowing for non-vibration of glue) as will be the same (hllowing for non-ribration of gias) as originally one piece of same dimenaions. if they were originaly one piece of same domenionas. are (as it would seem by "The Harmonions Blacksmith's' 'Igure) fastened to the thick outor frame, the thiokness of such fresme would be likely to deaden the vibsation.
Now, at to the second point-the union of 'the riolth tribe in one instrument.' I am apable to see how the stringe can be ingered. The mastery of double noter on the violin alone is suficiently dimeara, and 'notitug short of a Briareas (a mythic gentleman, wth one handred hands and afty eyes) would apparentiy be saficient to play a concerto on the proposed instramont. Neither do I think that soundboprds At for a violin string would do for the stratgg of a violoncello.
Suppose our worthy friend "The Harmoniona his instrument and try its action. This he might ahin and gave his rooden leg. I see no apparent reacon why the vibratory action of ac atring ghonld not be "returned with interrast" "haterer may be its position (dietance excopted) to the resonant body.

Subtoli Axatreur

Abstract

THE BELL PLANETTE.-To MR. BOTTONE. [492.]-I An gready obliged to Mr. Botlone for recating may attention to Dr. Olegrett's patent, and thereby convinaing me yet more atrongly the wiedom of our law courta' practice of refuring secondery when primary eridence is obtainable. Althonghi I possemed Dr. Deggatt's patent, I wes ramble to refor to it at the tima I wrote the artiole on the boll pianotto and the to the "A bridgment of Specifications Rolating to Musio and Musical Instraments from A.D. 1694 to A.D. 1866 in ofe of the cheapest boohs, oontainiag over 500 ginge in existence sormed the "ridiculorsly small sum Didder, Esq. her Majesty's Commissioners of Patent at orye ofilies of ye gaid Commissioners, over against ye Birkbeek Institation in Soathampton Buildings, nere anto Holoosne. The aforesaid work is generalty pretty have been bettar drafted; but in this they fail in have been better drantod; but in this they fail in not to mention our last tresty Fith Uncle Agment, corning hif Alabams claims. Boing, however, bat an abridgment, it occasjonally is guilty of ains of omimion amonRot whioh are Dr. Cleggatis proposais to employ hord " for or jacizs as in the pland ord or vibrating his tuming-ioris whers arranged Botcone for onabing me to correot the erros. I inadrer Botcone for enabing me to correot the erros. Insadvero have mared mo-bo wit, exocenive faith in offli cocurvery.

AURORA.

[49PB.]-Mr. W. Hatyisld, of Bell's Hill, Stoke aear gloagh, a roader of the Enelliz Mecranio, ob sorved the Aurara of Jane 3, 1872, and noticed atreamers from the magratio to the trae north of a rod, features that I missed. W. R. Bigx.

COLOURED SUNS-BALSAMED OBJEOT-GLASS. [448.]-TanNss to "Linea" (let. 4894, p. 858). The erratum ho points out very fincly illastratos the Whole eabject of auch errors. Not only had I, as he mentions, given the magnitades of the components of e Bootin rightly in my "Half Hoars with the Tolescope ;" not only hare I a distinot mental conception of thein sopeot; bat positively at the very time the sheet containing the erratam was going throngh the tare of the pair, rightly drawn and properly desoribed. How on earth suoh mistakes oroep in, and escape Roting tarned ont, panaes ma. My reviewer too. How did he fail to notioe the arror

It may intereat "C. B." (let. 4866, $\mathrm{P}, 858$) to know that Dr. Huggins'r 16in. object-phans; now boing used for speetroscupio work, is balsemed. Dr. Hugging consiciora that the asving of light is aboat equal to the
erfoct of an increase of apertare-aroa by the area of a 5 -in. object-glass. Balsaming ought not to have shortened focus, if the two gleases were properly shaped. were a third lens.

Richerad A. Proctor

COLOURED SUNS.

[4425.]-Ix conneotion with the oxcollent oungy by Mr. Prootor, ingartod on p. 296, perhaps your remdera mighe in inceated in a hat of tho tarmas ampioyed by conval their impreasions of tints in the worde whioh sollow. The majority are from Smpth's "Wordi Whioh sollow. The majority are from smyth's "Oyoje," but eloren othar observers have contribatod to the list (Whek i have had in private nibe for some time), whose

 in ginler. The principal anthority for these is that in zaller. The principal anthority for these is that

In the foregoing list only a rough classification has been attempted, and that more one of terms than exact chromatic significance. Descriptions are frequently of equivalent meaning, though differing in words; and of others it can only be said that a general idea is converyed, the terms being too indefinite. Notthe majority of them indicate pretty clearly the impression made on the observer. T. H. BUTFHAM.

OOLOURS OF THE CLOUDS

[4426.] WHL some of our meteorologioal friende kindly favour me with their opinion as to what condition of the atmosphere or of its vapours do the varions colours of the clonds arise from? I have not met with any meteorological work that furnishes such informa-
tion. Why are the clonds at varions times of the tollowing colours-dark clouds at various times of the following colours-dark gray, ruddy brown, blnish brown, brown gray, intense white, yellow white, bltie gray, and other colours? The subject is important
meteorologically, and one to which I have devoted caremeteorologically, and one to which I have devoted careful attention during many years, and, by the experience thus acquired, I can readily, and I say without hesitation, successfully, describe for months beforehand the colours which the clouds will display at certain times. I know that the idea or possibility of doing this will be met by profound scepticism by thotversy, which would prove nothing oxce versy, which would prove nothing, but to put the matter to the test at once by submitfing it to direet observation. Before attempting this I shonld like to learn something of what other persons know of the subject, to it latur or after all, might be qnite as well after all, might be quite as well known to others.
T. W.

DR. CARPENTER AND PERSPECTIVE.

 [4427.]-(Lest. 4820, p. 328.)-I wish merely to add that the pane of glass will not exhibit the horizontal and vertical lines which are required in a perspective drawing. I have tried it, and fact seems to agree with theory. It may be necessary for artistic purposes to gnore this convergency, but why; then, should ald be similar to what would be seen by tracing on a sheet of glass ?M. PAris.

PERSPECTIVE

[4428.] - We cannot, I think, lay down the laws of pictorial perspective by mathematical demonstration and Mr. Proctor's remaris that the perspective of a pictara (by which anderstand the incar perspective) or mation ther in in to o much modification that I am rather inclined to agree with M. Paris that pictures are, as to perspective a compromise. By pictorial perspective I mean that representation on a flat surface which truthfully repre Form and colonr inclnding shade therneated Form and colour, in ludich mare means which the picture is produced. The question is, must one or both of these be identical with the form and ot be the same: Mr. Proctor admits that as to color shade, and so on, there must always be some degree of shade, and so on, there must always be some degree o compromise. This being the case, there would seem picture to be identical. The object of the painter is to picture to be identical. The object of the painter is to sprce of three dimensions by means of pigments and pat surface. If he does not seek to popy the andont ith pigments of the identical hre in order to colour the effect he desires, mmeh less is he bont to mate 'exact' the solid opject The differe points or lines which the solid object. The difierent points or lines which ander different conditions, and prodnce- different im ander different conditions, and produce different im: pressions, to that of their projection on the picture; modified in the same way that the colour was designeds varied by the painter. It is for this rasson, I belieye, that positions of what I may call "yiolent perspectiye' that positions ave to bo avo picture, the sudden convergences of hines have to be ffect Distgnt monntains, also, which (if ruwn in erspective) would loot diminutive and ingignifioant perspective pocald to be drawn two or three times thist height in order to gire a natural ider of their eleation Fer the mountgins, though their height subtends at For the mountains, though their height subtends at elevated ontline in the picture, are, through the stereoecopic functions of the organ of sight, which sngrest to the mind their distance snd consequent magnitude, magnified in comparison to the pictare of these objects on a flat surface, which, not being viewed stareoscopically is not subject to this effect. However this may be, there exists an apparent disproportion between distant and near objects (as may be seen in photographs and in the coloured pictures on the photographs and in the coloured pictures on the sary in some cases to modify the perspective, or in the words of M. Paris, calls for' a compromise in the piotare.
There is no doubt that the nearer objects are the darker they are, and hence arises the blackness observable in the foreground of photographs ; but if in painter were to make his foreground always dark, the offect would be unreal, for the broad lights and the detail of near objects give them apparently-a greater brilanally comes from the $A^{2-a n t i o n ~ o f ~ d i s t a n t ~ o b j e c t ~}$ produces. Here, also " ms a compre produces. Hat and fictic-

a giant planet.

[4429.]-IN the artiole (p. 244) bearing the above title, Which you have repabliched from the Cornhill Mragazine, there appears so much loose reasoning that I think it vill not be amiss to call the attention of your readars "As Jupiter and Satarn hold an intermodiate poaition between the san and the minor planets in respect of size, so those giant orbs hold a correepording poaltion in respect of inherent heat. Roughly epponding, the and Japiter, with his diameter of 82,000 milea, comen midway between these orbs." Coming, is it does, from an astronomer, this is a remarkable statoment, for most people suppose askronomers to be very aract in reckless than the assertion that 82,000 miles is midway between 8,000 and 840,000 miles. If we maltiply Jupiter's diameter by 5 , it will then be very nearly midway between that of the sun's and the earth's. Bus it is not the diameter, it is the "gize" that the writer gun's balk is more than a thousand times greater than Jupiter's, we shall easily see how little he is entitled to hold the place the writer assigus to him. In continus. tion, he says, "Now the san is at a white heat, and the earth gives out only what is called obscure heat; and way betreen the sun and the earth." White heat is a very elastic term, embraoing every degree of temperature, from that of a candle fiame upwards; admittiog, however, that radiant heat decreases in the proportion of the square of the increased diatance from the radiating body, then the white heat of the sun must be some thousands of times hottar then red heat. Let ns admit, for the sake of argament, Japiter to be red will be atill greater than the enormons disparity in their balk. When the writer of the article thinks at with insufficient regard to facte, to placo Jupiter mid. way between the man and earth, in reapect of bulk and tomperature, it looks very much like struggling to find If Jupitar has masses of clouds so great as to require his surface to be at a red heat to produce them, how could the light and heat of a red-hot body penetrate through these dense and voluminous clouds. According to Dr. Tyndall, a small amount of aqueove will very materially retard the pasaage of radiant heat and in this country we get evidence, almost every day, that a moderate thickness of cloud will shat out the sun from our view, and intercept a large part of his light and heat. Now, if Japiter is at a red heat, his clonds must be as dense and impervious as a Nowfoundland fog bank; in fect, they must partake more of the clouds, for if clouds are generated by thin red-hot sur face rain must fall on it, and directly rain foll it would be sent hisuing back in the form of steam. If we eve suppose the whole of Japiter's marface to be and the clouds to hare no effect whaterer in retarding the tranemission of heat and light, than giving to the writer's arguments a tonfold greater force than they natarally poesess in this divection, then the planet Wonld be totally incapable of materially adding, from his own inherent beat, to the light and heat of his gastallites, or to the light of his own surface that which he receives from the ann. The amount by which Japiter, under these supponititious circumstances of atrict oalculation. Patting his temperature as high as that of iron red hot in daylight, it will be 120 and his furthast moon must receive leas than would source; so, as far as heat is concerned, Jupiter would cut a very sorry figure when playing the part of light, calcalation ahows him to be a still more ineff cient performer; for if not illamined by the sun, an shining only as a red-hot planet, he would be invisible to any dwollers in his most distant satellite, if they
did not possess any optical power greater than our did not possegs

Aocording to Dr. Züllner, Thom the writar refers to, Jupiter ahines three or four times as brightly as a globe of his size should, if reflecting the sun's light only. If such is really the case it certainly is not owing to the planet being red hot. The light of the sun at Jupiter is sbout $1 / 87$ th of what it is on the earth, and sunshine here is hundreds of times brighter than the light emitted from a body heated to rednese. Now, if Jupiter absorbatwo-thirds of the san's light, and refiects only one-third, he will then shine as brilliantly as if he refected the whole of a light equal to the $1 / 81$ st part of sunshine; therefore, if his brilliancy is increased threefold by his globe boing red hot, then light emitted from s substance at red-heat must be equal to the $1 /$ gth part of bright sunshine.

I hare not in these calculations taken into account the eflect of absorption due to the dense aqueous vapour surrounding Jupiter; but if we do, how hopalasaly weak does the theory of his being a secondary ann appear!

SIGLENOGRAPEY.

[4480.]-Lettea 4881, p. 856, No. 878, by "E.B.F.," calls for a remark or two from mo. "E. B. F." is quite right in conaidering that malenographical sketches, neally shaded, are of general intereat provided they are perfectly sccurate, and convey to the mind an exact representation of the objeet aketahed. They must also be with the hour and minute Greenwich mean time of the Julian period ; the selenographic latitude and
have the earth's and the sun's centres in the zenith and the position of the torminator at 60 north latitude, the equator, and 00 south latitude. These quantities are given monthly in the Astronomical Reyister for Greenwioh midnight. The value of the sapplement of the angle c - O, or the difference of longitudes of the moon and sun at midnight are aiso necemary as giving the angle of reflection of the sun'm light from the moon. In nine cases ont of ton slaced skelches are rar irom being scourato in those dotails which aro really of importanco, especially when the objects aro
near the terminator, as then the shadows change rapidly. We have had from some of our correspondents rapidiy. We have had trom some of our correspondents moon's surface, and such, as they appear now and moon's surface, and such, a they appear now and again in our columns, give a plosing and useinl ides
of the objeots represented. If "E. B. F." be the possemer of a amall telescope he does not require possemar of amall tolescope he does not require acquaint him with the appearance of lunar objects as acquaint him with the appearance of lunar objects as
seen in the larger instruments. The tine crater "Copernious "is a magnificent object in a three-inch "Copernicus" il a magnificent object in a three-inch
telemoope. Of courne it appears a still finer object When viewed through a larger apertare; but the real value of increased aperture in the object-gless or ralue of increased aperture in the object-glass or sists in the increased perception of minute detail. Without exception, the ENGLIsH Mrcianic is, 20 far as I sm sware, the only serial which notices to any extent malenographical matters, and it oontains the two kinds of eelenographs, the shaded sketeh, giving "sppearance," and the diagrammatio aketoh, giving ralapearance," and the diagrammatio aketoh, giving rala- is "E. B. F." usee a small telescope frequently, he will often find diagrammatic sketches useful in identifying objects more readily than shaded aketches, as he is confined in naing sach to the epochs at which they were drawn.

In reference to query 12229, "Canis Minor" will find for general lanar scenery 3in. or 4 in. aperture ample. Fhould be reed. spots, and ationes not
W. R. BIRT.

plato.

[4481.]-I beg to inclose a sketch of the lunar erater, Pleto, taken June 14, 1878, 10h. p.m., Greenmatic power 90

Can Mr. Birt inform me whether there is a heap of If failed to perceive any trace of any whatever
T. H. F.
ancient musical instruments at south KENSINGTON MUSEUM
[4432.]-Iv his interesting paper on the above subject, printed in No. 877 of our " journal, Mr spondent he may be, is, I fear, not qnite "read up" way, he says he is specially "well up" in fiddles), mentions what he terms a leyed dalcimer (query, what chord, apinet, harpischord, and pianoforte, under the genaral title of children and grandchildren of that rather "ancyente instramente of manick," the dalcimer.
In his (query, illegitimate) family he confounds tro cesontially direrent classes of musical instramentsvis., those atruck by hammers, and thone whose striag are palled. He oould hardly have done this had he provoauy "read ap" more diligently. The harp apinot, and happuichord are all treatod jant as Mr.
Roado would bo wero ho to " oame np" for his before inatructed judges. They bolong to the latter clese-in other words, their strings are "placked," and no amount of "pluck" Mr. Reade possesces could save him from the same fate with that oonspionous aboence of knowlodge he exhibite. On the contrary, the dram, gong, harmonicon, and belle, the dulaimer, and it olaes-i.e., thery are more or lose foroibly "gtrack," as in trath the writer was also by Mr. Reade oonfonnding of percoaraion." What Mr. Reado moans by a " koyed dulcimer," unless it be the pianoforto, I have yet to leara.

Mr. Reade laments that the complex Weleh harp with ite very practically inconvenient throe rows of strings, has survived all the exeortants. I see but litle in this oregrel, becazes at not ware of an thint Worth doing which can be done on this I thin deasarvedy obsolete instrament which osn't be done at loast abwall-il nol bettor, cortainily wita far more eaco somewhat complax mechanism of which greatly faoillsomerwhat complax
tates performance.
Mr. Reade also mentions certain harpsieherde, ospecially the Rucker, said to have belonged to Handol, the statements concorning which much be taken cum grano salis, for its history is rather "fishy." alco one bearing the honoured names of "Abrailam of Jomephus Kirkman, fecit," and the very unusuany modern date 1798. The tones of the latter he says are "fall of sweotness and tenderness," which may be quite true on the same principle that it ras logically proved that a vary untindly man must be fall of aweet and tonder feolings because he never suffered any outward manilestation thereof to escape him. My fellow readere mast long since have percoived the writer has an old fachioned "tendernesa" for his favourite harpsichords, bat he avers that his-porhaps not very masioal-ears have never yet been regaled by "sweet " sounds obtained from any harpsichord furnished eithor with hard leather or quill plectra, whatover the timbre of those which he obtained by the employment of plectra coated with eoft leather on their apper sarfeces. The tones of a quilled harpaichord may, to Mr. Reade, be "fall of sweatnoss and tenderness." D gustious, do. Probably-as it is my intention to visit the collection as soon as I am able to prooure the forthooming en. larged edition of the oatalogae-when I hear this instrument both " sweetness and light" may be voach. saled unto me, for whioh I hope to be daly thankfal, but until I do hear it I may be permitted to christon
its sounds and most of those of its brethren -after its sounds-nid mo."
my old dog " Smap."

Ties Habmoniots Blactsartic.
THE USE OF COMPRESSED AIR FOR STORING AND TRANBMITTING FORCE.
[4488.]-Brnva dosirona of collooting information on the above subject I shonld be greatly obliged by new information thereon, also instructions where to obtsin what
has been printed concerning the perhaps unavoidable has been printed concerning the perhaps unavoidable
waste of foree which results from the conversion into waste of force which results from the conversion into
heat of a portion of that employed to compress air, heat of a portion of compression is carried as far as especially when its compres.
from 50 to 100 atmospheres.
I should also be glad to learn if there has been any economical application of compressed air for propelling small boats or private land carriages in which steam boilers and coal are decided nuisances. For this pur.
pose a fellow correspondent once suggested coiled springs-query, a legion thereof-which you may (if you can) wind ap "just as you do your watch," and
run up Highgate-hill at the rate of ten miles per hour. Now, as steel springs whose reaction wenld be suff.
cient for such "up-hill " work as this would be rathes cient for such " "p-hill" work as this would be rathes
costly to make, "let alone" the winding them up "likg your watch "-a thing, perhaps, possible by a Brobdig.
nagian horologist for a Liliputian bieyclist-it might be rather more economical to employ compressed air even if it did cost something more than the fuel of a
steam boiler in a boat or railway locomotive. I suspec compressed air would cost considerably less than horso keep, for the fuel-I mean food-those animals con-
sume is rather more costly than coal ; indeed, horsel are animals of such extravagant habits that I have known instances of their continuing to eat their
provender even when they did no work. Perhaps, how provender even when they did no work. Perhaps, how-
ever, considering the sad (query, jolly) examples wa hamans set them in the matter of eating and drinking
too (without working), it will be wiser for ns not to too (withont working), it will be wiser for n3 not to
complain within their hearing, for possibly they might retort "small blame to as equines for that same," of
even say to their drivers " Yon're another." Now, tul quoque (especially when true) is not exactly gratilying to our feelings.

The Habmonious Blagssmite.
P.S.-The above-or rather another letter on tha same subject-was written aboat a fortnight ago, and articie on the choice and best mothods of woriting cine for cutting tools and scrow-drivers aro loot.

THE BEARING REIN.

[4484.]-PERHApg if you print there remarka it elll be thought (by some of our readera) that the subject is out of plece in a pablication profeasedly dovoted to the adranooment of science. I know, however, that you for one are on my side. Your worde on one occanion were: "We shadder as we write the word " (vivisection) I do the same, and dismiss the last-named practice to call attontion to something less horrible-vis., to a most unnecosaary cruelty daily and hourly preotised on thousands of noble and, notwithstanding their suffer ings, affectionate animals. This apocial aot appears to be without the pale of the law; and when I remon atrato with a man ($($), I am generally told to mind my orn buainese. If I venture to address my rade un-
gracious colf to s ledy, she thinks it may bo wrong bat gracious sols to
likes to see it.
How many would shadder at such an announcoment as this placarded on walls of our towns-"Gratis 1 Undar distingaished patronage. An invention for the may be soen in operation daily. Sundaje 11 to $1 ; \cdots$ te.

Those who shuddered may, perhaps, smile when I state my beliel that what is hnown as the bearing roin used on horses is one of the mont diabolical engines ever invented by demons in haman form. If carrofal attantion is given to the fact I contend that it Ls indispatably what I have stated; and who is to blame? I oannot think that thowe delicate ladies who longge in the open barouche oarcacing their pet dogn, have the leact uiea of what the magnificent animals in front of them are at that moment endaring. Look at the poodtion of the ears, the abortive oflort to throw out the chin, the lather on the morth and breant, the patoh of weat on the aatin neak, the quivering noder lip, and other exprestions of euffering known only to the initiated. What powerfal vialder of the pen will undertake to writo down the insane use of this horrible ingtrumest of tortare ? I can mupply some matarials " "The Harmonious Blackemith" or any other talented triend to dumb animals (by-tho-by some animale make a aad use of the faculty of speeah) will put them into shepe.

OLd Plodghmak.

OUR COAL BTORES AND TEE ATMOSPEFRE. [4485.]-I 8EOOLD like to make a few observations on letter 4849 with the above title. Take the atmoopherio preasure as 16lb. on the inch we have a precaure of $144 \times 15=2,1601 \mathrm{~b}$. nearly a ton on the equare foof, or about $87,000,000$ tong on the square mile ; since a square mile containa $5,880^{\circ}$ equare feot, acauming England and Bcotland to contain, say, 80,000 aquare mile, we get 2,160,000,000,000 tons as the weight of the atmosphere. Now, if 2 per cent. of this wore converted into carbonic acid, it would be nnitit for reapiration; 2 per cent. of the last amount is
$48,200,000,000$ fons. $48,200,000,000$ tons.
I think there is a misprint or error in the letter. In the 15 th line it is said that "England alone is raising to the surface one hundred and twelve million tons of coal annually, and further on that we have "One this were so our coal supply would not last much over a year.
Now, 8 tons of carbon produce 11 tons of carbonic scid, therefore it would require nearly $12,000,000,000$ coms of coals, if we had them, to render our atmosphere poisonous with carbonic acid, even supposing it not to diffase iteelf over the world; of course a much smaller quantity of carbonic acid in the atmorphere would make very unhealthy; bat I am of opinion that our atmophere will last longer than our coal, beaides, if 2 per cont. by volume is meant, the woight of the carbonic soid would be half as mach again, its specifo gravity
being $1: 5286$, or so.
Prinurtionopist.

BOOT AND SHOEMAKING.

[4356.]-Nzven did one man express the experionco of another more pithily than doees "Irich Mechanic ${ }^{\text {r }}$ express mine in lettar 4850, p. 885, on this subjeot. We differ only in this, he has not mastered the diffeculty. I havo, and shall rejoice if be benefts, as I have done, from the following experiment. I' drew plane of my leot on a sheet of paper, purchacod lants, 0 good size too hirge, and a rasp trom an ironmare shop, and in half an hoor sreceoded in rodacing the leate to the nize and form required, with nothing but the racp. No technical knowledge of the leat-tmanting or ahoemaking tradee is required for suoh a very dimple operation. I gave them to 2 bootmaker, mhom I enginged to work $m y$ boots acoording to these lasts in every way. The resall is entirely mailsfactory.

M. N.

[4487.]-Tris recent rafleringe and experionce of "Irish Mechanic" are nearly identional with my own of ton years since. My recollections of them are as vivid long toe that was always in dificalty. The amall of new leather made me foel faint. The sight of an anl induced pricking eoneations in my foet. I longed to administor my ehoemaker's wax to his own back. The acles bencath me and the coul within me were worn out. My artist muggested that his "uppers" were soft and plinble. I vitered, half unconscionaly, "limp." for me. It was enough I remarked, "Halt I" My
 hended me soard of introduction to the last new profeesor, romarking "Clever man, eir. Btudied the foot taking a ground plan and olevation of my foot, he tating a ground plan and elevation of my fook, he delusion that there was "Balm in Gilead, for me, even me." The ultimate resulte did not, however, conduce either to ease or elegance. These two men, sir, if I can call them so, had conspired to place my great toe I defeated them, air, and thet throngh their own bat machination, by doing to the lasta what the profeasor wanted to do to my foot, making a diagonal pectionthat is, mawing or the great too and ball of the foot and axing on a pioce somewhat wider, which, rasped down to about fis. thick, has left me as the story book cays, "happy ever aftor," and this is a true story, sir.
T. B. Usborine.

ON THE RIfling OF GREAT GUNE.
[A88.]-Tures is great difference of opinion on the arbject ; we may, indeed, call it "the battle of the tists." I, myself, don't like the syatem of studded
aif of with increasing twiet, but profor ribbed ahot with unitorm twist. There is this to be enill in favoar of the equas with increasing twint: their rents have not been
worn so large as those with nniform twist after firing. The increacing twiat guns have to all appearances been rery unfortunate of late ; in fact, it would be a dieaster 0 us of no small magnitude if auch "accidonts" Tere to happen to our hears gana in time of need. I was told by a gentleman connected with the Whitworth Ordnance Company the cont of "tooling" their 121b. thot; it was rory small indoed, I think about three farthings ach. I don't think the Woolwioh gans with increasing wist could be altared to uniform twist without haring aow inner fabes, or eleo being borea out to a larger calibro. I shall be giad to furnith any information in my power for the beneat of sueh an estoemed corro-
spondent es The Harmonious Blacksmith" and our spondent as "The Harmonions Blacksmith" and our
readers generally. ABTLLLERY OAPTAns.

BABOMETERS AT SEA.

[4489.]-Sir J. Alderson seomg to have fallen into the old error of supposing heary bodies begin to fall more slowly than light, socording to a paper on "Soa Bichneas," quoted at p. 898, and Dr. Pollard has fol-
lowed him with another old and equall fale theory. lowed him with another old and equally falee theory.
The reason why the mercury does not fall nor rieo The reason why the mercury does not fall nor rico oxactly with the tube is ainply becauno, being a Iquid, it is to a certain extont independent of the ahip. It is like a paseonger in a railway carriage, whan the oarbeing Axed to his seat, suffers in consequence.
M. Paris.

ELLECTRO-MAGNETIC GABLIGHTLING

 APPARATUS.[440.]-In your isme of the 14 th inat I observe a Lketoh of an olectric gealighting apparatas by Prof. Klinkerfues, University of Göttingen. If you refor to the Builder, October 8, 1864, page 748, yon will find a
degeription of a similar invention for which I took

"provisional protection" in July of thaf year-viz. : Tho invention may be applied to any deecription of gac-lamp withont requiring alteration; the apparatas
is about three times the size of a lady's thimble, asd very muoh like an ordinary gac-barner. The prinoiples upon which it is based are stated as follows:An ordinary tolegraph wire commanicating with a galvanio batter. is conneeted with the "Electromagnetic burnern" in succeasion, 2000rding to the namber of is conduoted bequired, and the bettory, extremity of the ouit is complete. Therofore, to light and extinguieh the lighta it in only requinite to connect or disconnect one of the poles of the battery. Immediately the clectric current enters the "electro-magnetio burner" it paresesthrough as innalated wire, Which is lapped round two pieces of noft iron, which immodiately bocomes a powerful magnet, and attracts a soft iron plato the gas to occope through the burner. At the same time that the gas valive is openod, the current pacees through a pioce of platinam wire clote to the barner Whioh tarne red hot, and lights the gas. This offeot This invention was exhibited in Darham eight gearm ago with suocess, to the extant of a quarter of a mile of wire and half'a dozen lights.
The following is an oxtract from a letter written apon the subject by Prof. Faraday, dated Aug. 10, 1864:-" No battory haring a wire three miles long and at it extrome end a piece of platinum vire affrod would ignite the gas."
I had the experiment tried with a powerfal 12 -cell battery, uning the North-Eactora Railway Company's althoagh where between Leamaide and Darham, and valre, it proved Prof. Faraday's statement to be oorreot The cont of the "eloctro-magnetic gat-burnar" (oxcluadre of battery and viro) was 7s. 6d. each. After
the burners are lighted the battery power is reduced to one oell, which keope the gee ralive opan during the
time required. A, innulated wire ; B, coft iron (mag. time required. Δ, innulated wire ; B, eoft iron (mag-
 closing insulated wire; K, gac-pipe.
Sanderland, Jane 17. T. C. Ebdy, F.R.I.B.A.

PATRIARCEAL WRITING.

[4s11.]-Trovar it may be bad policy to dofend my enomy, "P. Santalinus," againat my fellow soldior Mr. Broorwood, I mast sabmit, in anaver to the latter, that thongh the Book of Genenis may not ex-
presely state thice or that portion to be copied from presely state thic or that portion to be copied from journale of the Patriarcha, it cortainly implies as much. Chap. F. professes to be "the book of the generatione of Adam," and the particulars contained,
involving about thirty exsot nomerical statements, involving aboat thirty exeot nomerioal statementa, each in handreds, tens, and unite, Mr. Brookwood will hardly sappose could be handed down otherwite than in a book of some nort. It neod not be alphabetical. Conaldering the oace of the Chinese, who, with the oldeat writing known, have not even yot learnt an aphabet, it roems more probable that they retain (in Hobrow, Sanakrit, and Greek, improvod upon it, than that our facthern in the Ark Wrote alphabetically, and the Chinese lost the alphabetic principle vithout locing, like sarages, writing altogether. Morcovar, if loaing, like sarages, writing altogetier. Moreovar, if deocondants would have retained, though not the game alphabet, the same direction of writing, snd if in horizontal hines, then most probably, all from lett to right,
Which is certainly more natoral and convenient than the Bhemito way, at least for right-handed peoplo, and the Shemite way at least for right-handed people, and
seems euggestod by the daily courrse of the sun, in our hemisphere. Indeed, the undoubtodly greator antiquity hemisphere. Indeed, the undoubtodyy groator antiquity
of the Shemite way than ours, and the fact of the columns and pages of Chineso going from right to loft, would anggest, it it ware really Noab's way, a probability that not only might his original coankry have been soul, and he or has the majority of overy tribe docconded from them. At any rate, there in good evidence that the Egyptians At any rale, teticall (and perhape on papyri etill to be
wrote alphabetice wrote alphabetically (and perhaps on papyri atill " 1600
handled add read ?) long before Mr. Brookrood's 150 B. ..," and if he holda the Bible to be anything but forgery, it implies Books, we nee-they need not bo iorgory, it impine Books, we neo-khe
alphabetioal-in the lifotime of Adam.
As for Geneait, the Shemite reoorde of Adamite and diluvial times, whence it was compiled, must have come in writing either from one who had been in the Ark, or one who pretenced to have been kere. Whioh ($p .850$, let. 4858, par. 8), "to all that conaidar the neventh chaptor of Gonovis impartially, it will paes for the remains of a mach faller acoount," derived in writing from Noah's mon, not grandson. And Sir Iseac Newton, in kis "Obsearrations apou Prophecies of Holy Writ," the unfinished posthomous fragment that his editors tay he had recopied oftener than any other manascript, and for the latter half of his life had given more time to, than to all his diecoveries. Sir Inaac, in the arst ohapter thereof, shows as well as he ever proved anything, that the man who firut translated from these patriarohal writioga, the remains that we call the Pentaterch, and editod them in the Canaanite language (now called or misoalled "Hebrew") could only be the prophet Samael ; and they are probably the docoment prentioned at 1 Sam. x. 25 . They are also rightly called the "Books of Moses"-i.e., Books about Mones, and mainly derived from him, bat he mant have legis. lated in Egyptian ; and Samuol muat have compiled from private or ftumily extrants of the great legialator's worke, becenase the national copy had been lost during Bemuel's youth, iv. 11 ; never to be recovered (1 Kinge riil. 9), not meroly these 5, bat the firat 7 Hebrer books form plainly one connectod work, pab liahed by the authority of Bamael, or the college he doubtloss implying, the iniariority of papile, bat no doubient implying the hanas or its opapia, bat no The paenage, Gen. Xxxi. 81, Axed the pablication that pook to to no eartier than genlis pornation ond Jadges i. 91, fixes that to be before the Jebacites loen
 (2 Sam. v. ©-10). The whole of this earlient oxtant (2 sam. V. 8-10). The whole of this earrient ortant Hebrew hirtory limits tharefore its pablioation within
 linus" meant (P .277) by the fonny expresaion "Aret of his race" Op. be artant in Job end boow than his, however, may lattar (numbered in Engliah 14 and '58) coem plainly two Hebraists' rival tranalations from one original poem.
E. I. G.

Erpatuy.-In p. 852, end of fart lettor, lest line bat ten: the paranthetioal word beginning thin line
ahould be "lanar."-E. L. G.
"J. C." AND DARWIN.
[4442]-Ir " J. C." (let. 4888, p. 356) would look at the letter he is oriticising, ho would soe that no lacta date for the Doluge, bnt aimply as thinga phich the eminent obborver, by hin own showing, while too honest to deny or oblitarato, has been glaringly nuable to explain. and does not pretend to have explained; while a freat. Tater Delage phether at the time all national traditons and old recorde plece it, or at any other taime explains thom perteotly. Where is the "impliod mis-
representation "q If Darwin has prodaced a.shadow of "explanation" for his greatgoneral facts that freshland ones, and that sea and land species are lose freely spread than fresh-water ones, why does'not "J. C." prodnce or quote the explanation, ingtead of mierepresenting Darwin's hypothesis as expl
"E. L. G.'s" explanstion as hypothesis?
But his last two centences are utterly beyond me. I ask why, on Darwin's hypothesis, mammals have not been developed on inlands that Darwh insists ate "ancient enough," and in his own words have had that "n mach greater length of time thess ' E. L. G.'s" cears hare to is needed t What on earth can thy 5,000 time has not suffeed, not why mine has noti
G. I. G.

OBIORIDE OF LIMM.
 4281), I beg to stato that chlorine in bleaching powdes ime, it is in roality a mirtare of hydrate of lime, chloride of lime, and hypochlorito of lime: Mr. Bots tone must have adopted an indifferent system of analysig in estimating the arailable chlorine in this product, or his asmples mast have been rather long made if he has not found over 30 per cent. in the com mercial article. I' regularly find up to 80 per cent, aside some days I have found tes Iblle ate 15 per cent.

Un Irlandais.
GOLAIL OR INDIAN PELIIET-BOW.
[4444.]-LETTRE 4809, p. 265.-HI A tabe or barrei (breech-lowing if you please) Were wettached to the middle of an ordinary ingle string arohory bow, such and having a projection on ites end, upto which the bow should be [idrawn previously to the "loose," it would sare the "rap o' the kranckles," erra probably increaee to a bolk

Soffolis Amiteur.

GAMBOGR.

[4445:]-ME. L. G." (let 12050, p. 339) meations the singular fact that gamboge, slightly transparent when dry, tarns opaque when wetted. The fact is singular as being at rarinpoe with the general rale that somitransparent sabstances become rather more transparent when wetted. May not this opacity reant from the motion of the particles of the moiatoned camboge breaking ap small the reflootigg surfoco? Can be or any other contributor say whethere this lifolike motion of the particlee, well known to meat microscopiste, has been matisfactorlly accoumted for?

Вово.

To Kask the Taste of Oastor Oil.-Acooreing to a correspondent of the Boston Mcicical and Surgical completely disgnieing castor oil :-Of glycerine and completely disgaieing castor oil:-OR glycerine and
ol. ricini, two taid ounces each; ol. clonam, four mininms. The essential oil should be rabbed np with the glycerine, the castor oil added, and the mixtare weit method of hiding the taste of the castor oil.
Regralating the Flatohing of 8illyworm Bges: -M. Duolaux, after a carcial obsarvation of the ex: ternal conditions which favour and inflaence the hatohing of the eggs of silkworms, has prepared the following rules, by atteution to which it is maid that the develop-
ment of the cgas can be regulated at will. Firat, to ment of the cggs can be regulated at will. Firat, to
provent an ega from being hatched at the usual time, provent an ega from being hatched at the usual timo, temperature betreen 59° and 68° Fahr., and then exposed fourteen days to oold, three mentha before the time at which the hatohing is deaired, being sabsequantly trested in the usual mamnos. To carso an ege to hatoh before the usual time, it minat be exposed to cold twanty days after beisg laid, and kept in that condition for two months, and ther removed. Six weeks later it will be in the asme condution mordinary egge, and can be treated in the same manmer. In this way it is ponible to have si
any season of the jear.

Ozone.-From the anduress of Mr. Blanchand, at the re-union of Delegates from the Learned Sooletles, recently held at the Sorbonne, re learn that M ,
Houzeau, of Rouer, has conniderably erterded oorr knowledgo of ozone. By a simple apparatas, he has obtained in about a ouart of conamon oxygen from sixty to 180 milligrammes of the odorons oxygen, or ozone. In this concentrated state. it is dangerons for respiration, it burns organic tissues rapidly, attacks gold and silver, and has bleaching properties mperior to chlorine itself. In the Journal
of the Scottist Mcteorological Society for January and April 1872, in addition to the ntral records of temperature, pressare, rain, se., is a report on ozone observstions, which appears to be of convider whe value. The following conclusions are new and interesting:-"When the air had a pleasant eharpness to the feelings, exer. cising, as it were, a stimulating influence on the spirits, the largest quantities of ozone were obtained. On the other haud, when the air was close, and seemed to exercise a slightlr depressing influence, little, if any, ozone
was detected.?

BERLIES TO QUERTES.

:: In-their answers, Correspondents are respeotfully requessed to mention, in each instance, the tėte and number of the query aoked.

HITTS TO CORRESPONDENTS.

1. Writhon one sfle of the papez only, and put draw ngs for illastration on separato plecees or paper. 2 Put numbers as well as the titles of the queries to which the replies refer. 8. No charge is made for inserting letters, queries, or replies. 4. Commerciall letters, or queries, or
replies, are not insurtad. 5 . No question asking for edncational or solentifo informatios is answered through the post. © Letters sont to oorrospondents,
nader cover to the Editor, are not forwarded; and the nader coter to the Editor, are not forwarded; and
names of correspondents are not given to inquirers.
[I1275.]-Darkening Wainut (V. Q.). -Try chromate of potash bolation-SUFfole Amatedr.
[11564.]-Bhokberry and Furgwberry.-The raspberry is onderbtedty what is called indigemons in England, as it is in. Switseriand, Germany, and like temperate climates. It may be found, aocording to a
farming friemd, growing wild in the woods in Kent; farming frierd, growing wild in the woods in Kent; bat, of conrse, birds may have carried the seeds irom
gardens. All "indigenous" plants, however, may have gardens. As propagated. Some of the finest wild frait I have fonnd daring a number of pedestrian tours cocerred to the woods clothing tho polanic on the Bifel. On the Grimsel pass in Switzerland they are very bne, and not only as plenty as biaekberrisa,
but much nicer. The blaokberry seems to require a but much nicer. The blackberry seems to require a read a very good variety exists.-M. Paris.
[11589.]-Dry Steam.-Steam of a given pressare, say 3lb. per inch, in contact with water, is saturated steam or wet ateam of that pressure, and can be neither above nor below the corresponding temperstare, as given in Regnanalt'i, Renkine's, or other tables. If it cool one degree, a part:will condense, and the rest be still wet steam of a lower pressare, and coutaining less water in a given balk.- If it be sabjected to more than 3lb. pressure, a part will also condense, bat the ing to the higher elasticity-otherwise, with no rise of temperatare, the condensation wonld go on till the whole became water. If the steam have its temperatare raised ont of contact with water, it immediatels becomes " superhemten"-i.e., dry or: drying stenmsteam in which water whil evaporate, of wet bodies can be dried. It may be of no highez pressare than when it was wet steam, and in that caso it must occapy more space. If coutined to the same apace as when wet, it
will be of higher pressare. Thug, high and low preswill be of higher pressare. Thas, high and low pressure steam, indeed, of azy two preasuree, may have the very same quantity of water per oubic loot; or the lower pressure nuty have, as "A." supposes, " more
water than in the seme relamer of: hish pressure," if their temperatures are equal. But when wo compare wo wet steams, or two of any fixet degree of dryners, the more elastic will always contain the more water, or be the denser, as well as the hotter. I cannot see any carpiog at terms" in denying that a hand can possibly be placed in high pressure steam. The steam issaing from a high pressure boiler shows its instant resolntion into cload and low pressare steam, by becoming visible cload at the very lips of the outlet. Not so the steam from the tea-kettle. That remains for some inches invisible, and in the invisible atate will scald severely. But visible clond will not scald, at least, When deoidedly white and opaque, whether coming case coatain high pressure steam, nor, probably, any
[11589.]-Dry stieam.-It appears that "E. L. G:" deems this a "very eary query;" but it does not aption of it than those who hape preceded him in the attempt; he assumes premises inconsistent with ob served faets, and hazards various assertions' and opinions without any evidence to eupport them. The remarks of "E. IV. G." on high pressure steam; whethe in accordance with ascertaised facts or not matters little, high pressure steam having no relation whatever to the subject of this query, and whether he adopts to the sabject of this query, and whether he adopts
overheated or stibsaturated as improved aynonyms for dry stemm is immatorial. Atmospheric iteam, he says, dry stesma is immatorial. Atmospheric titeam, he sayy,
is dry except in s rain clond-which in, perhaps, questionable-at all events, steam is rather a new torm to apply to the hygrometrio state of the atmosphere, and why he introduces the imaginary cornposition of easy query "" Comet of the Delage" into soch "an easy query" as this I don't krow, and won't attempt and specnlation, which is the less necessary having no and specalation, which is the less necessary having no bearing whatever on the present query. The incondensible steam referred to in the query, "E. L. G." says was no longer steam at all, but decomposed as all combastibles ; bat not into orygen or hydrogen or is not combastibles ; but not into oxygen or hydrogen; if not, then says that in passing over the iron, zinc, or coal, the oxygen remains; but in that case the hydrogen must sarely be set free, and discharged at the open end of in practice not to be the case. He mentions that in the case of the steam being passed over cosl the orygen remsins with the carbon, forming carbonie
acid, which, no doubt, is in sufferions' quatitity, would
tend to provent the intiasomabtlity of the hydroger, Unfortunately, however, for "E. L. G.," this assumption does not appiy to tho preeent quary, for in no in. stance on which the query is founded was the stame brought into contact wilh carbon at all, with the exeeption of the 2 or 8 per cent. contained in the inner snes face of the cast-iron pipe when that metal whe ueed. Zine is far too ospily fused to be saitable for gaper-
heating steam. The lite Mr. T. V. Leen who wits patentee for the appliontion of axperneaced on diy steam to various coomotrical. parposea, and among others to that of baying brem, btacuits, to., for which purpose tre fittea up ovonem Wapping, Plymorth, and other places, in which he used caet-iron pipes for the superheating coll; bitt in consequence of the frequent ractaring of these pipes by contractica from the alternato heating and cooling. he on e'subsequent occasion subytituted copper pipen when fitting np'a kiln at Dulpich for an extensive joint-stoet company or drying and burning bricks; but the copper he found melted with the hieat reqnired to superheat the steam, and was abandoned. Now, in none of thoes cases was any discharge of inflammable gas observed, or any mixture of hydrogen and arrbon dotected. Fromit the above it seemerpretty ovident that "E. L. G.!" ass not yet bit on a true solation of this." very eady aery, ad if bo condaers it worth his lartier notioe at some other metwod of eatring it nore is meonrdanco. Whth the resalts of praction obsorvition and experieneo.-CaLoric.
[11589.]-Dry Eteam.-" E. L. G." While seouning all your correspondents on this sabject of masing ladicroas errors, falls into the queer mistaike himmels of civing a supposed explanation, but one wholly insafis-
cient, of the fact that steam of high pressure enceping rapidly into the air does not scald. Ho is quite correct rapidly into the air does not scald. Ho is quito correot in saying that as soon as high pressare stean eacapes it expanda, and its temperature is redaced; bat ntterly mistaien in sapposing that that is the reason why does not scald, for it expands only as mach at the premperature by expansion alone is only to the boiling pomperature by expansion alone is only to the boining point, at which temperature it would scald just as other
steam does I do not, however, as " Z. I. G." weald. do, do, call such a natural mistake of a hall informed masa a ludicrons orror; it would be not only rade bat foolishy-
to do so, for such is the explanation very commonly to do so, for such is the explanation very commonly given, but it is quite erroneons uevertheless, as a very
little consideration will show. If a oylinder foll of little consideration will show. If a cylinder foll of steam at the ordinary pressare of the atmosphere be
compressed to one quarter of its bulk, its tempernture will rise to about 296°, snd if high presmars steam at That temperatare filling one quarter of a crlinder be that temperatare filling one quarter of a cylinder be allowed to expand so as to fill the whole of the cylinder its temperature will fall to 212° but no lower, from expansion alone to that extent, and the expanded steam will scald just as much as it did bofore it was compressed, or as if it issued from a boiling rettle.
If, however, steam at 296° be allowed to blow of into If, however, steam at 296° be allowed to blow of into the air it does not scald, though its temperature by differsence is reduced no more. The resson of the quietly from boiling water, it carries littlon sir with it, ses quietiy from boiling water, it carries littlealr with it, and retains its bcalding heat, but when high pressure stearr
issaes very rapidly from a narrow opening, it carriod issues very rapidy from a narrow opening, it carrice much air with it, as in the steam blast of a locometire, and the mixture of air and steam being cool does not
scald. It is very easy to test the correotuess of this scald. It is very easy to test the correotuess of this explanation. If high pressure steam escaptrg frome a amall hole be made to blow through a tube of larger
diameter, held near but not close to the hole, it whi diameter, held near but not close to the hole, it wit aot like a steam blast, carrying air with it throngb the tabe, which will get as warm only as the mixtare of ateam and air, but if the tabe be held close to the
boller, so as to allow steam only to enter the tope it boller, so as to allow steam ony to eater the tabe, it
will soen get mebearably hot, though the steam will expead alize in both cases. A similar explanation renders it clear why breath blown strongly againet olowly feels whrm... The breath itself, is of ouvee, at the:gane temperakture, but the breath alone is wrimer driven arin, while tho mixtare of breath and aif cool begense it ie cool. When we blow strongly feels was so good as to explais thig to me when I liko of inote was pureled to nexprgin thin to wher I, lize others, atemn mader atmospheric pressure conld reduce itz temperature below that of stears formed nader the amase pressure, and I never met with the trae explana underatood, though so simple.- Phumo.
[11656.]-Boller for Small Steamboat.-I beg f to thank "P. W. H. J." for the trouble, and yon M-. query; although, being pretty well ap in enginee ait matters generally, I thought before making the bo to take advantage of the brotherly advice so freekis given in "ours" apon all matters. Upon oarsfall, reading the answer from "P.W. H. J.," I find the it ied formation scarcely so reliable as I conld have wishp For instance, the space occupied by boller and ergit is given as $2!$ cabic feet, which I And, taking his Agared find thet 8 cabic feet for the boiler alone; theppri only as one tube $2 f i n$. bore, which, with the firo-reng must be sadly too small for a 2 hurse-power boind The fear of others being misled mnst be my exouso de its the onpardovable oflence of looting a gift horse in AK. I mouth. - L M M. F.
[11743.]-Painting Iron Bedrbend (U,Q), Here is a question how to gild withont gold leaf 1 anc ing
recipe for a white paint that will not in the shet as te degree turn prllow! The frat might be explaimed biat ad
priocute the "gonuine" white loed, trot the threopesny prod topopenny stafi, made without a particle of white lend in ft, and mix mith varrish, thie will give yoar bedetend the best effect, but I will not Wrrrant its not taraing yellow. Try peme of the gold paint for the gilding portion. If the querist means ithe knobs,
centron, dc., they mast be lacquered, not git.-H.B. E.
[11748.]-Humea Eleganm.-The correspondent Who inquired aboat the oultore of thin plant will find the foflowing reliable. I out it from the Journal of Hortionture:- Sow the seed at the end of May or early in June in a pot or pan of two parts turfy loam, and one of leaty soil, with one part of sand. Just cover the seed with ane soil. Place the pota in' $\begin{gathered}\text { frambe with a } \\ \text { a }\end{gathered}$ gentle heat, and keep them near the ghase, avd jast moist. When the plants are up wamit idir freely, and as soon as they are large enough to handie prics them out in pans at abont an inch apart, und reftrn them to the framo. When they are itt to pot ofl uingly in 8 ma . pots do so waing the compent before named; plaoe them in a cold frame, and wator them overhoed poots show at the riden of the pote, and bofore they are very clocoly matted, uhift the phants into 41 in . pots, and ag on until autumn, when thoy will require 7 in . pots. They caninot have too moch'air after thoy are establinhed in amall pots, nor, indeed, at any time, especially in winter, so long an they are seoure from
frost. The main thing is to teep them alowly growing, and to shilt them into larger pots as those they ate in Alr with roots. They hourd onsiogood drainges and of old mous of two parts tarfy lomm, one of loap noil, one of old manure, and a aixth of abarp sand. They may
6 put into 9 in. pots in Febraary, and have 1lin. or on . ater are required, but do not give eny until the moil is dry, ${ }^{\text {mat }}$
[11754.] - Polishing Diamond (U.Q.).-Diamorde were formorty polisped by rebbthg thom esoinst Ten not till the midde of the Aftemeth cortury the Tar grtading and shaptng thom, with dicurond powter, and grtading and shaping then whit athanona powarithan ahape wis discovered.-H. B. E.
[11772] - Black Laequer. - Simply Branswick bhok. Oonall beok numbera.-H. B. E.
[11778.]-Cleaning Plain Blue silk (U.Q.)My wife finds benzine collas a very useful fluid for the remoral of grease, dirt, and wine and other'stains from
her ailk dresges. "A Mechanic's Wife" has better try her aill dresses. "A Mechanic's Wife" had bettor try it, and report progrein. IIs it dods not naswer, I will
 other menbers of "o
"tatr nex."-H. B. E.
[1177B.]-Commeralal Geography (U.a.)Dr. Cornwall's "Advanced Geography" well disousses the imports and exports.-H. B. E.
[11891.]-EFolly.-Holly, if left arposed to wet or lyiag on damp ground after felling will become black and otained.-Surfole Anatrion.
[11865.]-Fish.-Cholmondeley Pennell tays 'that In his experience, flavourings, wheiher of atgar, honey, or essential oils, are aseless or misehitiour additions to parto brith, and I vover heard of io "go
[110e7.]-Blepenntang Tar from Wool.-Tar will mix with grenes or oil, and soap remove the mixTEUR
[11878.]-Magic Lenterns.-"A. B." will find information on jappanning in $\overline{\text { Fol }}$. XIF., No. 350, and an illalitration of "Jack-of All Trades'" japarmer's atove.in Vol. XIII., No. 834. The proper
[11874.]-Bryant and Xay'm Itatohes.-I tefink there must be something wrong about this query. Is "Mipparchns" aure that he tried Bryant and May's matches on linoleum? In faot, in whe sure that they ware not ordinary matches, or that he did not rab
them on the prepared phoephorus paper p-8ADL Rhem on
[11874.] - Bryant and May's Matches.-I have tried to igaite Bryant and May's matches apon linotried to and failed.-L. M. F.
[11875.]-Spectrum Colours.-If "H. P. H." (whom I had no intention to critioies) will look again, he will not and anything in my reply about "white light." I was speaking of maling a coloured spinner appoar in white one. you may easily make it refiect
white light, bat not the quantity necessary to entitle Thite light, but not the quantity neceessary to entitle gray object, light or dark, may be oqually whito, i.e, equaly neatral light, and the dark gray object in san. that does not entilio it to be called a white object. Of courne, with thanks for "H. P. H.''"" invitation, there can be as many kinds of white undistingaishable by the oye, bat distingaishable by the prlem, as there are hues of colours distingrishable or many more.-E. L.G.

[11808.]-Tampering Oast Eteel Ohlsole.-

 "U. V. G." wants to know how to harden amd temper "old ale " myeals, I oan sympathise with my folow old Ales, and mast protent againat their boing pat to zoce sor which thetr mattorial wae not denigned, mond in aroally quito ansaitable ; to instend of inatroetione for tually, I repeat Puneh'c adrice to (aily) parsons aboutto marry, "Don't attempt it "- I mean temipering, not that trial of temper, marriage. No doubt many chisela and screw-drivers ate made out of my brethron-I
mean old files-but our nature is, alas 1 generally very mean old files-bit our nature is, alas 1 generally very cosarse; and unless of much iner qualify than abaal,
our employment for such tools is but "s delusion and our employment for such tools is bnt "s delasion and
a snare," most of us being composed of very inforior a snare," most of us being composed of very inforior material (eapecially such of ns as are rrativer of
8heffeld) to that mich ought to bo (and by good Bhofifeld) to that Thich ought to be (and by good
makers is) omployed for cold chisels and turning tools. makers is) enuployed for cold chisels and tarning tools.
Ocomalozally \& tolerable tool may be made out of one of us. erpecially if a native of Harrington, and rejoicing in the honoured, if not very ariotocratic, name ol "Stabbs;" bet the old file who writes this oan avor trom long and coetly experienoe, that it don't pay to make eatutag tools of any ohher material than hirst-
clase clase oast shoel. When they were made of oraznary inofied files (tome of which aro very queer edgen ortmbled away.in uen, their metarial boing weak and britule thon hard onough. This defeot renders files ospecially enpaitable for sorem-drivors. Althoagh nol required to retain a outting edge like a razor or chisel, a sorem.artiver is sabjectoa to eonsiariabie forve when in nse, and to romit that force properly it requires Other wie very tough I mon deoidedly of opiniond mat totibe intear itel rore, profermble for ordimary nese for morew.drivers, pannotl, and othor forls which are onbjectiod to suaden nd nolent mithia. I have, howover, found the dane cast (tool) bteol waich ho orumariny sarployod for
 orged at a low heat, hardened at the towbet teaniperatare it will harden, and tempered rather low, say to a doep or oven a pale bitue. No serat.driver stroula be left so hard that a good second cot file will not operate
on it if pressed forclbly and moved slowly. In fuct, on it if pressed forelbly and moved slowiy. In fact, you cannot finiah a sorem-driver properly on the grinatone ; it chould be fled tmasparaly, to as to form shallow grouven on the surfaces which ach agingreaty droove in the hoad of the sorem, and thereby greaty lippling out. Now yon can't do this if the sorew-driver bo cempered too hard to be filod.-The Harmonious Blackengity.
[11916.]-Ootavo Ootpler:-Bee p. 800, Vol. IX., tration. $-\mathrm{K} . \mathrm{T}$. L
[11017.]-Organ Oonstrućtion.-If you mean ooks containing detailed instractions how to make an ongan, there are not; but you will find whit you want in the Englasi Mecraxic.-K. T. L.
11048.]-A.Ban 'Sleoper.-"N. K. R." ehoula reure of amnking tpitits or atmoking before bohime. Liet his hast mivel be st sevon, probuming ho refirtes to bed betwoen ten and eleven; do yot talke arrawroot or

[11096.]-Deainess Arising from Cola. -This often arises from awollen tonsils. It may be ascertained
by looking into the back of the month, leepiog down by looking into the back of the month, leoping down
the tongue with the handle of a spoon, when, if the tongue with, the tonsils will be eeen looking like two yed balls on eaoh side of the throat, sometimes ahmost closing the passage. The homecopathic remedy is mercaring iod. The allopathic trastment coushista of tonios and astringent gargles.-H. C. M.
[11098.]-Deatneas Arlaing fromn Cold.-Let
R. C. Y." drop two or three drops of warm into waioh our morning and night. (Proved).-B. S.
[11997.]- Warming Greerihotreys Fith Gwis; (May 31, p. 288) in the hope that Imiry of "H.B.E." May 81, p. 288) in able to give him the information he asks ury 'lor, bat
regret that at present I oan only partinlly do to. I regret that at prosent I oan only partiamy who owns the greenhouse refarred to in my letter of 'Septomber 29, 1871, that it has fully answered his expectationa, and stood the test of haly winter, but am not at prosent in a poitios to furish trative or a tuller decintition of the plan I lladed to The cost of ges conermed dring the Y alladed to. dning han I 1 I
 for " by B E." wiar endeavour, 1 ject int prevented my following tp invostigations as to the prevenction of mixed gas and air for heating parpoese I find, however, it if now becomtng very general.Houblor.
[12000,]-Ineects in Tables and Chairs of English woods, beeah and syaumore, are mont liable to worm, oak or melaut onty in the sap; but the gap of walyat in easity stained like the heart wood, hance meoh walnut farniture coon retarns to dust. Comstant mo is the beat chook, atillness, especially if a little drump and dark, fovoars the wood rorm. I have ceon furniture eation ap through not being need. Similar conditione mightily favour moth. Fair ase is the best for orarage then acorn apholisiary and modem to look at coldom mo it, zeevor brash it (eapecially parta not reen), pat on the eovers, koop down the blinde, shat the doors, and you will woon hare moth frat and then morm, no metor what the phoming is, is the corer is of woalion wouldiput Amerienan binch infiond of Eaglich boeph, and prevent worm, bat not moth. Moth is the efleo of reegligence, or of baying what you do not wart. Bat ohoapnoenirring, and if sour chair is eaten up you havo
the comfort of feeling that you have amred 4 Ad. Bat of
all Englith Whods walnut is most deceptivo, for a tree will sometimes be hald sap, hence the templation to ase it, being so easity wtained like heart wood, and as But worm, it ctin hairdy be soll cheaptrews is bofore they appear. But altor all cheapaters is king - you prodace a
present effeot, wind then both you mind your chairs

[18018]-The First Watch and Olock Hade. - In ancient books there is scarcely any anthority to be depended apon by which the date of the invention of jooks may be traced; of conrse, clocks were invented rarious gatanon. Bockman, in an ingenions analysi ol ventore and period of the Arst clocks made to go by weighte and wheols, ascribes the earliest of them to the eleventh contary, bat does not attempt to say by whom they were invented. Many statemente hiare from time to time been made as to the inventor of clocks. AYchifmedes and Ponidonias, botove the the commencement of the sisth. Pariftas, About the middle of the ninth; Gerbert, at the end of thertenth; Wallinglord, yoar the beginning of the fourteenth, hare emoh, in their tarn, been aseerted to be the inventor of the clock. We have earlier data as to clocks in Englimed thana that of Wallingford, for in 1288 we find hat a etone clock-tower was arected opposite Westmingtor Hall with a alock, the cost of which erection be thon Chiof Jo corankable elooks from'this date have been erected in Gagland and in othor countries, which serve as landmarks to show us the advance we have made to the present time in the art and scienoe of olock-making. From the above rematiss it will be seen that the early history of time measarets, or horologia, is itrolved in mach obsctrity. Mlobatd Harris, an minteligent Engish wotkman, is ratd to have invented the first pendalam clock, in 1643 . Peter Hele, of Naremberg, is said to have invented the irst watch. Johannes Cocelacas, in his commentary on the Oosmographis of Pomptonins Mela, published in Nutremberg, in 1611, makes the following annonudement:-"Ingonioas shings are jabt now being invertod, for Potor Holo, wh yot but a yotng man, hath msie works which oven the most learad mathematicians udmitre, for he fabricates swiall horologes of iron firsd with many whool, which Whithorsoevier they are tutnod, and withoat ony they be carried in the bosom or the poctet." In the yesr, 1658 , Dr. R. Rooke invented the balance apring. with horizontal wheol. In the year 1700 , Nieolas Facio disoovered the anceot jemolsin matches. In the yedre 1760. Thomas Madge inventod what is now universally known 23 the "patent detached lever." In the year 1780, the ohronowotor escapement was in. Thomas Eatnebamponition balance was invented by
[12014.] - Organ. - Consalt "An Adept's" and J. D.'s" letters on the subject before sending queries
iike this. B . E .
[12051.]-Fire Engines.-"A., Liverpool," in mn "Fire ong thin 'query (p. 818), thas got oat of his depth. pipes" only on'the delivert side, the enotion pipe bellag preven ony on wo dion shat galvanised iron. Has "A., Liverpool," overlooked the quotation from Ifontaigne? -LI. II. F.
[12060.]-Glass Blowing.-I am sorry I am not able to give "Emily Jane" direetions how to blow a glase bulb on her tabe. I think she will fard fit mach more prodiabie to bity her bulb tabes rendy-mado. To bond glass tabing introduce the tabe gradually into the 1 nome of the lamp. Move it up and down, so that the neigh bouring parts may be nomewhat hoated, then apply the heat strongly to the part where the bend is to 'be made, turning the tabe roand in the fiame, and when suffociently soft apply gentle pressure rith the hands until it attelins the propar form.-Un InLaNDAEs.
[12061.] - Ohemical. - Dissolve to 'Water. Add no preipitato be prodncos on procis Abseat. no promp prosatit fliter ofl the areoutio oliorito nad mad to the illtrate sodio carbonate, evaporate to drynest, ignite, treat the residue with water, and add to the botution argentio nitrate; a prectipitato proved the presence of a chlorate.-Un IxLandars.
[12072.]-Tegntite: Townent.-Iprosame that in his ropty to thats query "Bigme " refers to the unit of sorve napped in the B. A. dinasard to be a force " oapabio of gemereting in \& mens weinghig one gramme - rolocity of one mise per mocond," and whiah is equal to $\frac{1000}{9811}$ of a grammo $=1.573$ grains. Whil he my how the force of a magnet in tress umita may'be ascertained ? I am mequaintod with the method o determining the strength of magnets by the occillations of a magnetioneedte ; but this given bnty retative resulta. I am rather at a loss to mow what unit o length "Bigma" refors to, unloss it be the metre, which seems rather too long for minill mingnets; and, agatn, as the poles of a magnet aro not at its emat, how may thetr positton'be determined so as to have the correct longth? And now there is another point concorn-
ing which I want some infermation. Forgacon states ing which I mant some informetion. Forgusan states
(p. 192): "Erach pole of the induction coil is the seat of two opposite olectricities, alternating wif nemeh other alike in quantity bat diffaring in tay understand how, When the poining
tngether, both induced carrenta ...p
to the hazy spark whioh is shortly before described : and that when they are farther separatod the direct in duced carrent having the greatest tension rould alone duced carrent having the greatios case the sparks would be clearer and more like those of an electric machine; be clearer and more like those of an electric machina; but a few lines lower down I read that a heyden jar
may be charged by an induction coil, and I cannot bee may be charged by an induction coing that each current would exactly nentralise the effect of the preceding one, being alike in quantity., And in turning to Tyndall's being alike in quantity., And in Ine fles on Electricity," (No. B06), that owing to some action of the extra carrett, which 1 confess I do not understand, in a Rhumkorfs coi we obtain discharges in a single direction only, instoad of discharges alternating in direction." Will "Sigma" hendly say which
[13073.]-Scarlet Runners.-The roots may be taken op and preserved through the winter, just like tulip roots, bat there is nn adrantage gained, as just as good plants are grown from new seed, and in the amme time.-J. T. B.
[12077.]-Pyrethrum Partheniamn.-Thank to "William" for the information kindly given. The flowers which I noticed somewhat oarly were on old plants that survived through the mild winter. They ordinary flowern, nudeach rhite furet of the ray had a green calyx inclosing whito petais; the yellow florets were unaltored. Since the ordinary fiowers have anfolded, these abnormal fowers have dieappeared, ordinary fowers appearing on the same plants.-W. R. Birt.
[18081.]-Chemietry.-There is no really simple method of detecting arsenio in the presence of several metala. If "Molecule" had given a list of the metals likely to be present in the acid solution, one might perhaps be anggestod. The following, from
Galloway's "Analysis," may answer. Pass $\mathrm{H}_{2} 8$ through Galloway's "Analysis," may answer. Pass H2 8 through
the acoid nolution, previously reduced by sodic sulphite. Filtor and well wash the precipitate, then treat with a solution of $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ (1 in 12) for a fow seconds, only, a solution of $\mathrm{NH}_{1} \mathrm{HCO}(1 \mathrm{n} 12)$ for a fow seconds only,
quickly filter and add to altrate HCl in oxcess. If a quickly filter and add to antrate HCl in oxcess. If a
yellow oolour or precipitate be produced, arsenic is yenow colour or precipitate be produced, arsenic is
present. To find whether it exists as $\Delta_{f_{2}} O_{3}$ or as $\mathrm{H}_{3} \mathrm{MaO}_{4}$ add to portion of the original solution KHO
 aniphate, and boill ; if ar red precipitate falls AkO_{3} or aulphate, and boil; if a red precipitate falls $\mathrm{Arg}_{8} \mathrm{O}_{3}$ or
an arsenite is present. To another portion of the solnan arsenite is present. To another portion of the solu-
tion add ammonio-nitrate of silver, a reddish brown precipitate will be formed inipresence of $\mathrm{H}_{3} \mathrm{ABO}_{4}$.-U N iblandars.
[12090.]-Strawberrioes-My experience (p. 814) proves the value of this "wrinkle," whioh I learn from A neighboar whose strawberries were as remarkable as his mania for taking his constitational among them seemed to me. I do not believe in liquid manure of
s strong nature. A dreesing of horse dang from the a strong nature. A dressing of horse dang from the roads thrown, not on, bat amongat the plants just as they are coming into flower is far bettor. The adran. tages of treading down are the cleanlineas from rermin, from splashing of grit, dryness, and, consequently, less chance of monld keeping in the moistare of the ground underneath the upper crant, and the apeody
ripening of the fruit. 1 earneatly advice "Dert Errao" to make a bed of wild strairberries-he will and it pay the troable.-M. PARIS.
[12090.]-8trawberries.-" Derf Errac " eannot trample his strawberry beds too mach.-H. B. E.
[12097.]- Vonetian Blinde. - This query has Will not querists search indioes before occapying apsoo to repeat quoations ?-H. B. E.
[12097.] - Venetian Blinds. - The principal pecaliaritioe in painting these are, to pat the paint on on the next.-B. S .
[12097.] - Fenetian Blinds. - The laths are generally painted on a trough in the shape of a letter atick cut comewhat the shape of the holes, to pick them up when painted, and hanging them on old atair rods driven into a wall until dry. Plain paint, turpentine or Anished vehiale, being used intarnas thished, or Anished off with colour ground in varnish to fancy. Josira Wuru
[12097.]-Venetian Blinde, - The leths mast coat of paint. The beat paint to uns is called enemel green, made for the job, to be had at any paint and varnish warehouse, price about 1 s . 8 d . per lb . If too thick thin with turph ; it is bettor to have the firet cont rather thin, and be careful that the edges are not left
with a mass of paint on them. You must firat make a trough, by nailing two \in. picoes of wood together, so as to form a right angle about the length of the lathe. Then nail two square pieces on the onds so as to form large enough to receive the lathg. Put twenty or thirty laths together and paint all the edgem. This done (no need to wait until dry), place them fiat in the trough so that the edges only torch the sides of trough, then paint away. When done both sides, hang on wires
[12098.]-Dandelion Roote.-Collect the plants that have not flowered, roots and leaves. Braise the roots and out np smail, and put into a wide monthed bottle equal weight of bruised plant and pare spirits of wine (not methylated spirits), digest for a month,
shaking daily. If onoe or twice during the time you
conld pour of the spirit and put the plant ander pressure to inlly extract the virtues it would make the tincture you have tincture Leontodon taraxacum. Dose, ten to twenty drops, in water, fasting twice a day. Slaggish liver is rabbish. Read "Oarselves, Oar Food, and Oar Physic," by Benjamin Ridge, price 1s. 6d., Chapman and Hall, on this point.-WATTB.
[12099.] -To Advanced Ohemiate.-In cases of calculus of the bladder Cannabis satica (hemp plant) or Arbutus ura ursi (bear's berry) have been found curative. In calculus of kidneys, Lycopodium claratum (clab moss) or sarsaparilla. have proved onrative. Cirob" might consult Drs. Carlier or Gandry, Brassels. In chronic cases very amall doses ahould be taken, and the treatment axtend over period. "Cireb" seems an Anglo-Indian ; perhaps he has not investigated the Hindu remedies for calculus. They ase Pdrigdta, Bai ainti, Nimba, Chitraka, Tamarinds, Derba, Catechu, and many otherw. Bee Wise's "Hindu
System of Medicine." 1845. Smith, Elder, and Co. or Thaoker and Co.-Watrs, Chotahakeene.
[12101.]-The Watoh.-"S. H. L.," virtually asks to be tanght the trade through the mediam of the EngLish MEchanic. This will be asking too much, think, besides I have little faith in mateng watch mating. It is a business of which it may be asid that you have but begun to learn after having served an apprenticeship of seven years, and in which the propor-
tion of workmen who are thoroughly competent, both tion of workmen who are thoroughly competent, both
theoretioally and practically, is astonishingly small; theoretioally and practically, is astonishingly small;
how then can an amateur expect to mucceed in it ?how then can an a
WEst Cornwall.
[12106.]-Organ Building.-The same question has been asked, and the answer given to this effect : it has been tried, but proved far from satisfactory. OBEPH WHLLUY FENVELL.
[12106.]-Organ Building.-1. Nichelson, the organ-builder of Worcester, has given instances of as I have open pedal pipe serve for several tones; but plain their my heard, but not seen them, I cesnnot ex 1851 there was a noteworthy invention by Brothers A and M. Dacci, of Florence. They exhibitod \&wo oham ber organs of good tone, and many other merits, bat extremely limited spsce. Rossini had been eurprised on finding in one of their organs 9 stops, or, deducting the halvings of the principale (our diapsson) and the trompette into treble and bass, 7 complete registers (exclusive, it is presumed, of the pedal contrabass) comprised in a space of "1 meitre, 50 cent. cubes.
The platform upon whioh the music-stool stood measured, he gayk, 130 cent. in length by 80 in breadth and that that was the pipe which gave contrabass C of 16tt., and sucoessive ohromatic sounds. If my was such a pipo. in one instrument the munic-s a detached instrument, called a baryatate, of the same construc tion as the aforesaid pedal contrabass, designed to supply in a portable form those undertones for an orcheetra. The chromatic scale of two octares was given by four pipes. The dimensions, of the lowest, giving the tones from FFFF 84ft, was nearly 5ft. 6in.
$\times 2$ 2f. 2in. $\times 10 \mathrm{in}$. The next pipe was 8tt $\times 7$ in. The \times in. The next pipe was 8th. $9 i n . \times-7$ ranged along the front of the pipe, opened inwards, each in thoir depression from outside acting on arms and an iron epindle inside, which passing into the air opened a valve there to give ingress to the current of air. The chial features of their pedal pipes
were, frat, the production of 92 ft tone from an 8 ft pipe, and so onin proportion. Secondly, the utilising of each pipe for six semitones. Thirdly, the oliciting from pipes of that construction two qualitios of tone, the bourdon "timbre," or the rasping quality of the oon-
trabest or violin. These instruments oame farnished with the testimontals of Rossini, De Mayer, \&c "Certes," csya Rossini, "MM. Dacai ont mérite de grandes loanages par cette inventions qui, en honorant lear génie, recule les limites de l'art; par cette déconverte en genre de contrabasse dans un senl tuyan, on pent s'attendre a une suite dinventions micaniques qui fourniront au monde de nonverax effets de oxaminatios socustiques. They stood en ingon machine for anting conjunction what oither a silver medal or "honoarable mention" from the jarora, and yek, in Eingland at least, they have remained unnoticed -like Barker's pneumatio lever-for twenty years 8. The pyramidon, invented by Bir F. A. G. Onseley, quality of tone, is very economical in height, and the pipes can be conveyanced of to odd places or peoked dovetail-wise. The dimensions of C CC 16ft. tone are base base 2it. 7in. square and 8it. perpeadicular firom difficult to mox, morth 8in. $\times 2$ fin. Bat the pipes are I have myself carried ont is by attaching to the nainal pedal reyboard of 2 or $2 \frac{1}{\text { f }}$ octares any leaser number of pipes from a septave of 12 upwards. The duplicate ection is obtained simply by extra arms and trackers from the rollers. In churches and chapels where an organ is wanted almost entirely for ohoral accompaniment and where, to aay the least, the fagnes, solos, and conoerted pieces of the concert-room are not necestwo pedal stops of the sub-rocal or anb-manasl tones ouly, instead of the usnal one stop of 30 pipes or $2 \frac{1}{2}$ octaves, the npper portion of which is prectically useless for church choral purposes. Some will call this heresyI-H. E. H.
[12108.]-Confusion in the Eiead.-No tobeceo little drink, and that little not too near meal times ; no tea; no heary meals; nofood at all near bed or getting up time. This system of negatives proved to be good. -Henry Newman.
[12108.]-Confusion in the Elead.-See my reply to query 10720 ("Singing in the Head"). The recom. mendation proved beneficial. I have no doubt it will do so in "Agent's" case. - Watrs.
[12109.]-Old Looomotive Tubes.-Plag one end and fill the tube with melted resin. When cold, bend as required. The re
[12109.]-01d Looomotive Tubes.-The best plan woald be to fill the tabes ap with soft solder or iusible metal, bending the tabe and then melting it ont. Fusible metal is composed (one recipe) of 1 tin
to it lead. As for soft solder, it can be purchased to $1 \frac{1}{2}$ lead. $\Delta \mathrm{s}$ for soft solder, it can be par
from the tinman's cheap enough.-P. W. H. J.
[12109.]-Old Looomotive Tubes.-I have seen iron pipes bent by mating them red hot in a forge, and gradually bent to the required curve by several heatin locomotive tubes.-Josmpa WinLiay Fs.mizil.
[12109.]-Old Looomotive Tubes. - Anneal your tabes well in coke fire, fll them with load. Yoo will then be able to bend them, by means of pressure
or levers, don't hammer them to bend them; then malt or levers, don't h
out lead.-A. R.
[12110.]-Buver Plating.-I thank "Electcic" for reply; I have tried the porous cell process, it is too slow, the gold also works throngh the porous ooll. I am sorry after your kind offer that 1 do not lire through our Mechanio-Electro.
[12111.]-Fothouse Boller.-No form of boiler can make much difterence in the height that it is to be placed; if the present form cannot be raised, I would adria W. Lo call in a practical greenhouse tion in the arrangement of the pipes so as to admit of them being placed higher np, as withont a drawing of the arrangements of the pipes, I could not judge upon that point. If no other way would do, a aure plan would be to line the ash pit with bricks backed with 2 in. thick of clay, and set in hydranlic lime. I think that upon the whole this would be the best plas, as the same boiler would do. If not suited write again. Hydradic lime or Roman cement is composed of ane bushel lime to one bashel sharp sand and 6t gals. water.-P. W. H. J.
[12112.]-Silvering Mirror for Telescope.-In reply to G. Godfrey, I think he may esfely ailver his 10 fin. apeculum. Its performance ander the teat he proaks of (though from the low power used 1 cannot pronounce positively) seems to be good; and it cartainly such very bad. He must not consider the silvering a oasy a speculum "an ardious afkir;" it reaiy is ray, and and cheap, when not abting a good film on a small ecalitie experionce He shonld nee the process prish such as Browning, which will give oxcellant results. Care ahould be taken that the dis tilled water is really good, and the augar of milk tresh and good also.-H. C. Kry.
[12118.]-Gold Quarts.-Thie specific gravity of the sabstance is $3-25$, and that of gold is 10.84. Thare fore there is $\frac{8 \cdot 25}{19 \cdot 34}$ gold in the eabstance, and, at it veighs 306 graing, \because there is $806 \times \frac{8.25}{19 \cdot 34}$ grains of gold $=51 \cdot 42024$ graing.-P. W. F. J.
[12118.]-Organ Construction. - " Haratboy" asks it reeds can be fixed to meke an organ basa. I hould expect to ind an organ channel too mechanism to sonnd them could be adjusted. I hare mechanism to sound them could be adjusted. I hare above) in pipes no bigger than principal C, modifying the tone by means of a movable perforated tompion such as is used for stopped diapason, only with a hole drilled through it ; and the tone was fair. But wemnet

remember reeds speat in a harmonium on a wider area. I should, therefore, recommend the following six notes on a wind-chest long enough to contain the the six transferred to the treble side, the depth to be three or four inches, socording to the room you have on the organ soundboard; the height may exoeed the width of an ordinary harmoninm. There should be a block ranning along the bottom of this wind oheot and holes pierced to correspond with the holes on the
organ soundboand. These are to take the pipe foet. Cut a slot through the face of the wind-chent down to the pipe-hole. Just above the apper edge of the block fix the note by counter-binking, and eat ancther alot and the slot in the block. Holes must be drilled in the top of the wind-chent to commanicate with the onter air. If possible, procure the Americien notel. I subair. If possible, procure the Amozican noter. I subcap, and has the foot inserted.-T. S. G.
[12124.]-Volce Weaknees.-Thanks to Henry Newman for his answer. I have no ailment with my langs, but have always had (batarally) a weak voioe ever aince I can remember. I can rice rather high in ainging, brit have not the power to carry the cound far. Cond "H. N." offer aby other suggeation than the one
already offered. If so, I shall feel deeply indebted.already offered.
[12127.]-Eierbs.-Robinson's "Family Herbal." W. Nicholson and Sons, Halifax.-S. Coor.
[12187.]-ETerbs.-Calpepper's "Herbel," Newton's " Eerbal," and Paxton's "Botanioal Diotionary," oither of which may be had cheap at a second-hand book-
shop-ZETA. shop-ZETA.
[18138.]-Portable Darly Tent.-In roply to this query I am able to give the reanlt of a dosen years of photographic work, and not a few expariences in these contrivances. There are three varieties of dark tent:-1. Those in which all the materiald for work are arranged in situ ready for operation, and thus transported from place to place. The great objeotion here is the inconvenient ball and additional weight. 2. Those in which nothing is carried but the
belongings to the tent itself (of which Kind Rocch's belongings to the tent itself (of which kind Rouch's stands as a good example). 8. Those capable of oontaining all the impedimenta for a journey, Which are removed prior to commencing oparations. The last is the kind to be preferred, as it obviates the necessity for a separate receptacle for the oamera, chemioala, I ree was constructed for me by a country carpenter in the south of Ireland, during a visit in 1868, under my directions. If is aimply an ordinary trank, or box, having a hole for a screw and nut at the bottom, by Which it is aftached to the head of a atrong tripod. The lid baing lifted there are two angular piecea hinged inside, that fold down against and clowe the end apertures, and rest apon ledges an inch bolow the edge of the box proper. The front (a look part) of the box is hinged and opens down in a line with the bottom. The upper surface has ledges nailed round, forming a dish or trough to catoh the washings, and a small piece of metal tabing through at one corner, to and the real bottom of the box form the operating table. In each upper corner of the raised lid a square groove is out, and corered with a piece of sheet iron.
These take a couple of iron bart (juit long onough to pack diagonally inside the lid), having eyes at the end to take a transverse rod carrying the calico. There should bo three thicknessen of this-two black and one orange. It is nailed round the ledges that form the trongh, and to two upright movable bars at the side, Which in taking down fold into the trongh. Light in obtained from a yellow window in front, and a small criangular one in one of the folang angle piceal al the sravelling. A water-can is hung at one mide, having a flexible tube pasaing into the intarior, the end of which, when not in use, is hept above the water level through
\& ring at the top of the lid. I send a photograph

which may illustrate the foregoing description, and may say in ooncinaion that, tazon "all in all," I have never used or seen anything superior to this arrangefall round the operator, and is eanily tucked under the Faistcoat when light has to be oxcluded. A, tont box B, lid; $\mathrm{O}_{\text {, agle piece hinged on the mpder side of } \mathrm{B} \text {; }}$ D, mell cramp, this ehape inbing let into the pood. E iron rod to wood; E, iron rod to support tho calico; F, lid to
pootect the glase G; H, water-can.-Corncbisnsig.
[12128.]-Portable Darls Tent.-"Occacional Photo" may and the accompanying rough sketoh anawer his purpoce. A is a box mado out of din. deal, 2ft. square (or thareaborta) by tifin. deep; the lid ts flace for tacking the lifht proot corering to is apmes in cat ouf in centro 6in. or 8in. Eguare, and allod in Fith
yollow caliso. D, the bottom of box has a small aink about 8in. by 10 in, , by lin. deep, with a hole for escape of water ; the hole is attel with a cork, which should not is withdrawn until the plate is fixed, and the operator to lid folding alear of the spray. A frame for top hinged two uprights working on pins at front, and fastened when in use to top frame by two iron pins which also answer the purpose of reeping the cloth in its place (800 E E) ; four blocks are strongly fastened at corners for cither plain or screwed pins on top of portable legs being let in to them. Four portable legs about
obverse, or a bronze cast; to obtain a voltaic impres sion from plaster or clay, and to maltiply the number of already engraved oopper-plates.'" The results which ho has obtained are rery beantiful, and some copies of modals are remarkably sharp and distinct, par ticularly the lettara, which have all the appearance of having been struck by a die. For the details of Mr. Spencer's process, see the Athenceum, No. 625, p. 811 My opinion is that the deposit would not be fine or from it mile to give a clean impression when printen for fine shaded engraving I do not think it would

8ft. long, B showa the frame with black waterproof oovering, tacked on three fillots on lid, and three innides of box. The cloth is made with a hem and cord passed through it for tying round waint of operator; the cord manat be long enough to allow expanaion of cloth to rall extent, and not disappear at oithor end. Belore packing be carofal to dry the hande thoroaghly. O ghows tho box with straps and handies ; inside is the black cloth packod along with bottloa, dipping bath, water jng, developing dish, to. D shows the portable lega. F F are holos for ventilation. - 0.
[20129.] - Firebars.-Cast-iron Arebars last longer in Are box with great hoat. Cast bara will sooner melt han wroaght iroz onos, but wroaght iron will band -Piovar.
[12180.]-EHeotricity.-This difference is urually Ulastrated by stating that the eleotrielty developed by the electric machine has greater intensity, but is smaller in quantity, than that obtained by the galvanic battary. Conaidering facts, it gives a a atronger shook than a battery of a few cellis woald do, bat it has mach less eflect as meacared by electro-chomical decompoailion, ench as deoomposing water into its components,
[12181.]-Electricity Applied to Engraving. -There is a patent procoss for copying writing, wo., from 2 plate prepared in precisely the same way as which instead of giving a copper deposit adhering to the plate. give blue copies on a prepared paper laid on the plate. 4 kind of oopying preas is used. If (as I infer) "Philanthropist't" "idea is to bring the engraved parts into relief for printing in the ordinary way, I believe the fleld is quite open to him, and to insure success only two things are necosesary. 1. That the engraving be suffleiently raised above the lowal of the plate. 8. That there be no irregularity in the the plate. a. race of the raised parts. I hope it will not be asking too mach of a "Philanthropitit" to let me know if he succoeds.-Courtry Penrrex.
[12181.]-Eleotricity Applied to Engraving. -I think the principle of the pantelograph, with which no doubt "Philanthropist" is perfectly acquainted, could be atill lurther improved and applied as this contribator auggesta, to the ongraving of metalic plates by electricity. The apparatas, whioh has of hate years not recoived as mach attention as ita ingennity decerves, should come into seneral ase, and many valuable improvements in its application would soon appear. "Philanthropist" says, "suppose a metallic plete, thinly conted with wax, to be anbjeoted to the aotion of a galvanic battery, \&o., is the plate to be entirely immersed in a boiling eolation of wax or rabber, so so to be costod all round? Assaming in such a case that the conting romains inteot, excopt where the stoel point has penetratod, while nuder the action of the battery, whiah is very doabtfal, the deposit of copper would be very alight, and soarcoly of sumbient depth to be printed from. I think, howover, that "Philanthropist" could canily saggest a procoes plates eomething similar to the preparation of hithographic stones.-Rat-Tat.
[12181.]-Eleotrioity Applied to Engraving. -For the benefit of "Philanthropist," I send the follow. mg axtract from the "Year Book of Facte for 1840," Mrich showa the procese was gone into many years since. Mr. Thomas Spencor, of Liverpool, stated in the Athenceum that he had not only sucoeeded in doing all that M. Jacobi had done (producing oopies of copparplate engravinga-in other words, aleotrotyping), bat
had enccesstally overcomo thoes diftculties which had enccoestully ovarcoms thow diftculties Which Mrested spencer says he proposed to effect ware the following! "To engrave in reinas apon a plate or copper ito depoail a rollaic ecopper-plato, haring the lines in
answer. If "Philanthropist " tries the process, I for one should like to know the result.-Zoo ANDRA.
[19188.]-Flard Water.-Mr. Pearoe would do well to construct a cistern of sumfient size, wherain the wator might gain a quioscont stato after some time and deposit some of the hard silicions partioles. A layer of carbon at the bottom will haston the precipitation. An excellent alo-alltoring tap, saggeatod by an electrioian in a back number of the Evalige Mrcinamic, might also be tried wilh success in the manner recommended.-Rat-TAT.
[12184.] - Restoring Brass Wire. - All "Koighley" can do with the braes wire, which has beoome corroded by exposure, is to sell it to a brask-
founder, or remore the rust to the soand core, and either tin or paint it.-RAT-Tat.
[12185.]-Chest Expander.-I enclose a aketoh of a handle of a chest expander, arranged so an to be adjuated to any part of the indiarnbber. It will be seen that A is a ring
 having four short arms eaoh rorking on a ring, with the arms, is to slide a short distanoe in the circular part of the handle, which requires to be of the same shape as engraving. It will be seen that whea the handie is pulled, the parts B press against the arma, and cause them to grip hold of the rabber - more you pall
tighter it holds. The part A is kept in ita place by tighter it holds. The part Δ is kept in its place by
a ring or wheher soreved on the inside. -Zoo $\Delta \times D R A$.
[12187.]-Tiquid and Solid.-Mannder definos solid as "not fluid, Arm, true, compact"-and liquid as "not solid, flaid, firmeolvad." Mompact Mary ahould be as not soind, finid, dicolved." meroary ahoold bo deined as a soid which is faid at ordinary tempera-
tures. Tomlinson sajs: "Meroary becomes solid at -40°, in which stateit is melleablo, fiattens readily muder the hammer, and can even be struck into modals. At a lower temperatare it beoomes brittio," do.Quercus.
[12187.]-Iiquid and Solld.-Na well-marked boundary exista in Nature. If the writor of the book lived at the North Pole, mercary, he might consider, as much a solid se we do battor, whioh, I sappose, ander the line would be a liquid. Ganot, I presame, wrote for temperate latitudes. Ice is a solid, yet, under certain conditions, fows like a viscons fluid. "F. L. G." is, however, the man to tackle this queation. - M. Plais.
[12122.]-Leaky Tubea.-Wind round the onds inside with soft wire as close to the end plate as pos.
[12148.]-Oayenne.-Try oovering the face with fine ganze or muslin.-Drrpla.
[12148.]-Oayenne.-Plag nostrils with cotton wool, or use wool respirator.-Plougr.
[12144.]-Timber Houses.-Build the walls without the carity. Plaster insidennd oat. That the plastor may hold to the ontaide, first drive the nails used up to the heade. Then apply the laths and drive the naile into the boards, bat be carefal to keep all the latha about one-eighth of an inch from the walla. They should not sit closer than this, and be nailed about tro inches apart, and may or may not be covered with the coment. The inside may be treated in the eame way, or the laths to be nailed on the oprigat boams horm. ing the iramowork, so that the plastering stanas oata dond air can be inclosed all round the building an alr-tight and damp-proo! boilding will bety analitag
Rat-Tat.
[18144.]-Timben
ahown if pot to be
timber ont. If "Bee" is weallthy he sinould consalt
an architect, but if he cannot afford to do so, if he will an architect, but it he cannot afford to do so, if he will that might, if sent to the Editor, take ap too much of " onr " space, bat on whioh I beliere he might rely, as I alass of the homes of England.-Ond Plovarmax.
[12146.]-How to Procure a Patent.-Bay "Lawr of Patonts," Wealo's series, 2 sa ; ; call at Patont
Oetboe, Sorthampton-bridinge, and ankz any questions. Ofloo, Sout
[12150.]-Photography.-" Tripod" had better adhere to the old and reliable oollodion process than adopt the new coitodio-bromide method.
latter there is a good deal of nicety of manipulation lattor there is a good doal of nicety of manipulation required, and merience of it is that it is pot so reliable as and my experienco of it is that it is pot so reliable as
the former. I woald adriserman amutour especially to the former. I woild adisisernan amuterur es
be satisfed with the old proven.-E. B. F.
[12152.]-Dyeiteremury Cotton-Try asolation of $\operatorname{logrood}$ and palymate of iron (copgras)--
C. J. B.
[12154.]-Varnith for Frinting Indi.-Tha varnich used in the marnfacture of printius inks in made from linseed oil, boiled in a peculiar mannak printors, ink you er mais tho int manntecterers printers' ink varnigh of any of the ink mannfacturers,
and jou will be supplied with what you wink-Z and you.
[12155.]-The Suspended Shilling.-Another Reason Wanted. - The oscillatione of
the shilling are, I think, prodnced by the action the shilling arre, I think, prodnced by the aotion
of the palme, but the lattor part, I believe, is ontirely a matter of beliel-that in, if the experimen-
talint believes that the shilling will strike the olass the talist believes that the shilling will strike the glase the required number of times ho will find that it. does 80. periment but onoo, when, haring seen mome one else do it, I was oonfident of success. It is the same with mesmerists; if the person operated upon believes that
he is going to be mesmerised, it succeeds, but if he is so atrong minded as to disbelieve the powers of the mesmorist, he cannot be mesmerised. So it may be in thls experiment, that it is not purely mechanical, [12155.]-The Suspended Shilling.-Another Reason Wanted.-The suspended shilling atriking the hour is simply cansed by involuntary mascalar action, the holder knowing or gressing rightly, or
nearly so. Let "H. G. W." wate in the night and try nearly so. Let "H. G. W." wake in the night and try
it, he will find his shilling sadly at faalt.-PLough.
[12166.]-Mrice Eating Peas.-To protect peas or beagas from mice, talke common furze, cat it into
inch lengths, and put it over the seets belose corering incth earth. \rightarrow PLovge.
[18156.]-Mice Eating Peas.-I have found soaking the pear in a very stromg infasion of tobacco a preventative. Perhaps the sparsows did the mischief;
if so, netting, wire or string, or perhaps soot sifted if so, netting, wire or string, or perbap
over them, will protect them. - M. Paris.
[12156.]-Mice Eating Peas.-More likely the sparrow, and I have kept them of this years peas by piecoes of red cloth tied on a piece of string a foot protect any kind of fruit or vegetable from the "ppests of the garden," I recommend all growers to read part
8 of ;Beeton's "Book of Garden Management," to be had through any bookseller.-ZETA.
[13156.]-Mice Eating Peas.-For some years I have been tronbled with mice eating small cropa, and even sparrows get so familiar with a "scarecrow" that
what was not destroyed at night had a poor ohance What was not destroyed at night had a poor ohanoe adjoining farm took np her quartera nnder my garden
geat, and, not being disturbed in her oocupation, she seat, and, not being a ristrbed in her oocapal in, shot has proved herseli a very ugeful tenant. I have not
had any bcarecrow contrivance nor lost any crops by mice or birds.-Thos. A. Bradley
[12157.]-Smell of Paint.-" Sengoe" should try a good handfal of damp hay in each room, or a pan of
water, both of which I have found saccessfal. Tros. A. Bradiex.
[12157.]-Smell of Paint-1. Place a versel fall of lighted charcoal in the midale of ths room or fiace painted, and throw on it two or three handinds of janiper berries; shat the windows, the door, and the chimney alose. Twenty. ion hours atterwards the room may be opened, when will be fonnd that the Another and a simpler method is to plange a handful of hay into a pailful of water, a
nowly-painted room.-H. T. C.
[12157.]-Smell of Paint.-I have heard that standing open vessels of water in the room, do, will
draw the smell. The water will be covered with a draw the smell.
flm.
Durpla.
[12157.]-Smell of Paint.-To remove the amell of nem paint close the rooms at night, cat a large Spanish or some Euglish onions into slices, pat them
into a plate, and place it on the floor ; well ventilate anat cap.-ELECTRO.
[12157.]-Bmell of Paint.-Place a versel fall of painted, and throw on it too or three handfals of paintod, and throw on it two or three handtals of Four and twenty hours afterwards the room may be opened, when the smell will have been extinguishod.

Another plan in to plange a handful of hay into a pall
of water, and let it stand in the room newis paintechH. B. E.
[12158.]-Packing Rings of Piston.-I haye conatructed pistons ap to bin. diametor, which answared well, in the following manner. Let the two rings be cash shape of alketch. If cylinder is made of brass,
rings to be of cast iron, or vice versa. rings to be of cast iron, or vice versa.
First, chuck up and turn inside to int on a mandril very slightly taper. Haring placed on mandril, tarn both aides with
slide-rest, take off, and true up by testing shide-rest, take off, and true up by testing
up on a arrace plate, and soraping the prominesces ; aechate. any grinding Whatever (I am opposed to any grinding of gurfaces in-
tended to move ofterwards). Now, hariag got ready tended to move afterwards). Now, hasriag got ready
the piston-head and cap, piace the rings in position, place a sheet of writing-papar besmeen rings and cap, ant-sorew up tightly; place in lathe, and turn them atrife larger than bore of cylthder ; take out, aud saw through with atenon saw in thinnost pact, and the ring will open silightly larger than When turned. Take a pisce of thin sheet brass and faaten at one side of the asom-crat nicaly, with one rivet or littla scrow, and Alle down to thickness of ring, and when patting piston together place thin side of one ring opposite thick side of the other; the object of these ralve like pieces is to allow the rings to expand or contract freely, according to the inequalities of the bote and the wear. Thus, if to the steam forcos its way thron
other tightly,-A., Liverpool.
[12101.]-Mangle.-American birch stands very well; rollers to be $4 \ddagger$ or 5in. diameter; the length is very common, 2ft. 4iu. long, If the Editor for agree-pressure.-Drvoxsнise.-[Send.-Ed.]
[12162.]-Hiachine Punches. - Some machine panches are actuated like steam hammors. "Try Again" may make a simple punch by forming a sorow on the to it any kind of panch.-RAT.TAT.
[13163.]-MCeersohaum Pipes.-It is possible for an amatear to re-wax his meerscham, first by taking,
off the old wax by rubbing with sand-paper marked 00 , plagging the bowl and stem with oork (the lattor to hold by) and dipping in liquid white wax. When perfeotly dry it is polished and fnished of with shave
grass or crape. The wax will cont six shillings grass or crape. The wax winh cont six shilhings ar
pound. Ho can also remove the colouring matter prom his meerschanm by boiling it a fow minutes in water-but I would recommend him first to remare the amber carefally; then oil the pipe well all over, except that part of the rim he wishes to remain white, then dip the oiled part only in very hot water. Examine
after a few seconds, and dip antil all the colour reafter a lew seconds, and dip until and the colour re-
quired is visible, let the pipe cool and wipe off and polish with a rag. Many pipes are finely restored in this way, bat care and practice is necessary in handling
and experimenting on manufactured meerschanm.Zets.
[12164.]-Temperature of the Planets.-There is, as far as I knor, no scientitic reason why Mars shoald not be inhabited by some animals of a different animals, or rather animalcula, live in sulphoric acid, a liquid destructive to almost all life, why should they not inhabit Nars, the heat of which, to ordinary animals, would be destruction ?-E. Jornson.
[12168.]-Limelight or Eheotric Light for Magio Lantern.-I am pleased to give "Hon. Sec." the best information in my power, and having for many years boen a practitionsr (thongh an amatear one) in I trost it may, and more parlicalariy in lantorn work, a reliable pair of lanterns with achromatic lenses and a reliable pair of lanterns with achromatic lenses and cb; lot him not think of a single lantern unless to part with it for a pair after a little practice. Next comes fised upon he will require two burnera, a dissolving tap, and one or two gas-bage, as he may determine to employ the mixed gae-jet, or the blow-throagh; this
will coat $£ 8$ with two bags, 25 10s. With one. He will find most opticians adviso the blow-throngh system for a novice, as it is devoid of danger. I should adrise him, however, to obrain a liesson or thoy rom a praccome now to the electric light : he will require sustaining lampa, and a powerful battory; the latier for real of forty Groves or fifty Bunsens, and costs from 213 to £15; the snstaining lamps are expensive affairs, the Dabosque and Highley Madden being to my mind the best and cheapest. I cannot, having dae regard to the gentlemes by quoting their prices, bat thene may be gentlemes by quoting optician. Having now told
obtained through any opter "Hon. Sec." what is required, and given him an iden as to the cost, I will give him my opinion as to the value of the two systems; if the apparatus is required simply for purposes of illastration, wis paininge, photo graphe, or prep
moment arger primary cost, hands is liable to get out of focus, and even When burning well a cortain amount of ficker balances the extra brilliancy obtained. If, on the other hand, it is desired to filundrate tho phonomena comparatively neeloes. I analy, howerer, the himelight is that any one asking for the information that "Hon

Soe" doad, conld have it in contempletion to go into
illogsrationa, which, even in the hands of Prolescor illostrations, Which, eten in the hands of Profescor working cost of limolight as goneralls emplosed comes to something like four alillings for an entertainment of two houra. In conclusion, I will give "Hon Sea." one or, twe words of adrice: Have nothing to do with ran dissolvera, almost aure to be offered whereper he goos ; and let him get a practical lesson or tro before
he beging. -M. G. C.
[12168.]- Limanight ax Electrio Iisht for Magia Lantern.-Lat me give "Hon. Sec." the bereft of my expecience, and for this parpose I vill reply to his questions seriatilin. 1. The birst coat of single lantorn with 4 in , condensers and achromatio object-glase would be abont x '3. An electric lamp to be nsod with the lantorn would coast aboat 810 ; and forty cells of Grove's battery mould cost about,1is par cell. It woald be aseless to attempt to prodace satisfactory resalta with a battory having a leas namber of colls than forty. A donble lantern is aevor uned with the eleotrio light. The first cost of e ainglo. leaten for the lime light, with sin. oondensera and achrometh objoet-ghese, would be abont 85 . Tmo gas-baga of the best make would cost about 50s. eaoh, the proware boards about $£ 1$ the pair, and the oxyhydrogan jes would also cost aboat s1. The price of a puir o lanterns varies very much according to the quality and style, but a pair of the best make conld probably be parahased for 820. This ahonld inolade gas jelh, gas limolight for an exhibition that would last two hanrs would not erceed oxubition hat woaldin tho coan the eleatric light would not be less then a gainees 3 and 4. The limelight in incomparably mone aimple, former is appedily preparad, and can readily bo worked by a handy person after a little instraction and practical experienoe. Not se the alectric light, it ne quires some haurs to amalgamate the plate⿻ mir the acide, and all, the cells ; and long practice, anoantiag almont to an apprenticeship, is needed to prodnco goou roauks with tho battery. Even at the bees, the prodico a continnous offeot, an does the limalight It roold be impoasible to oarry out a two houra' entarnaiment relying only on the alectrio light; whilat with the limelight there would be no diffienlty in thin. 5. In England Grove's battary is generaily ased for the pinent Bunsen's battery is proferred. Not leas than forty cells of aither form of battory could be matritageonaly amployed. The irst cost of Grove's battery is greator than that of Bansen's, bat it is oheapar in use. 6. The electric light can be used for the parposo of exhibitipg experimenta in spectram analycig, for prohabls bermaligat in thsaited. Heriving ais decision. The eleotrio light is altogether ananitod for the parpose that he appears to have in viov.-Ax AmAreve Lecturer.
[12172.]-Constipation.-I have been uarscoospolal in my attempt to obtain answers to two queries " Rast in Iron Vats" and "A Cement for Crack bridge Clay Fire-grate Backs "), but am most happy to bridge Clay Fire-grate Backs "), but am most happy to give H. S. A. such information as
from others, or from my own personal esperience I from others, or from mos own personal apporider of cold
have found the greatest benefit from a tumbles have found the greatest benefit from a tumbler of colan
water (Altered noft water), taken before breelfant. water (iltered soft water). tadsen before ben it the
Friction of the body by horse-hair glores, or, skin is too tender, with the Persian gloves (goat's hair) -may be got at Savory and Moore, Regent-street. The tepid or oold showar bath (with feet in warm water), of the spongo bach every mirning. Beforo drying the
skin let H H. A." try triction with the glover. The skin let "FI. 8. A." try friction with the glover.
skin is bot the external continnation of the inper skin is bat the extornal continamion of mpathy be tween then Friction of the ginal column by the hand of another parson until rauch radness is pocipoed is most ueatu. Conatipation in mach
mind is showed to dwoll upon it much vementer for this sefliotion, but

cathartie

andere is nseleso-inileed, an aggravilion 0 r 百 physic are nofn' I peafer the best rhabart to enashing olse (not the compond rhaberb pill). Thes is balance to be prepornd is tha body, and if any one secretion in greatly inergased it will diminish other secretions, to the injury of the health. Moderation in eating-slow eating, and drinking alter eating rather than with the solid food are all aseful, for the digestion is usually defective in these cases. Are "H.
grinders in good working condition $9-\mathbb{R}$. T.
[12172.]-Constipation.-Having been a great gufferer from constipation, I may, perhaps, be allowed to offer a few remarics. However littie is thoughl of by the large namber who are consitationally thor or let whe effect of neglected constipation is sure to bo folt; the effect of neglected constipation is sure to the resalt
believe that a large namber of diseases are the of thet negielarg sumber of treamentin ondenroar ing to regriste the tom or diat to ritable to usual suitable to act as an aperient appear to bemedy and the latter a very uncertain one, as, hoveres carefal some may be of their food, tho bomels will be obetingto. If " H. 8:A." will try eatiog gqs. prones, apples, bread and milk, apd other light artiele of diet, avoiding all indigestiblo subatencec peodive beneft; bet I doubt (if in his asees tho cons tho pation Is hereditary) whethar a regular motion of tho
have efficoted a cure, your humble arrvant would have have effeoted as cure, your humble serrant would have
benefted by it, as mozey and years mere wasted in the benested by it, as mozey and years mere wantod in the
mina reltempt. Chrosic piles mes the result, and aix man rettompt. Chrosic piles nass the rosult, and six eppenced, only to be pronoumed incombia. The ueal thoutho of the method uyed to ; wate the bovels in thougar of the melluod the rame In sows in I losf headacho meand of the enema In a short time I lost headache and heartache and other followers of conek to tho commencement of plain metor neod with the omecrs threo years beck. I now eat ron ything, and am in perfect heeith; it in a pood thing for the medieal proista. I think, with Dr. Eranketior, 4hand it would be - food thing if a bitle phymiotogr wamo loarnt in the sohooln. There is ore thing obutuln, the ExaxdB EReorimo mupplies the wants of all vievisi, no matter on what reblect. -J. W.

IS1789-Cormapation-Ten bread made of flour trour widme ooly the very consentportion of the luma' thas been oxtractod. Got it discot from the mill, sa tho baters will "cook" it by mixing the braz whithour, Which is not so good. This brasd is more. Whototome than bread made entirely from And flour. Drink half a ghanofl of eold water at night and a whole glassing in theitiz.
[12172.]-Constipation-A friend of mine who had suffered for two or three years, and at one time narrowly esoaped with his lile, foand at length a remedy in the following simple proscription: Eat an apple (juioy, if poasible) and drink a tamber of water immodiataly aftar rising in the maraing. If one apple talla, try two, or oven threo. Ho meo adrived. to. try thic by the lant phytieian (cs homeopath, by'tho byo) out of the many to whom bo had apphe prand haring porsovered with it in now scldom ksoatis. Ezercise. shonid, however, soon reider "H. - B. IA!"Indopendent of medietne and mediaine men.-TMX THzar.
[18172.]-Comethpation.-Ather baviag caffered Cor more than two jears from themame of pilaint, kry. ing everything I ocald think of, bat conly obtriming about aix years ago by a madieal garitleman, which aftar having suopted and faithfolly preotieed sinoe aitar having soopted and inithially preotieed. sinoo "After hating eloared the boweld by mplote ratiof: opening medicine, commemes and drink one or two tamblors of cold water crey moming, say hall an
 the day, take a good aharp, halif-zour'a mils, getiting the hool firmly to the ground. "Make these two dinaple ration a mattor of consofonce;"-saft my ad viser, "evid you will find relief." Six years trinl has proved aucthil in my come- G.
 wish "H. S. A."" I adrie him to rea, ws I bavo done for yiars with completo manoeth, an pint - of entmonl meal daily. A "mear of porridgeneedenoptils." Hin. N.
[12172.]-Consti pation.-If "H. A. A." has nbt already tried it, I think the Lollomiag remedy will be of rase:-Take hals a tumbler. of Friedrictachall water ing. This, if perseverod to, yonll ombrinily do good..J.
[19178.] Conatipation-TM. remody, T sot my berker to make me a brown lota now surd then, but of tho bourd ware put in it. I then ordored as kteel mill, like a large coffee-mili, ooeting, I think, 26 ; it grinde vary fine, and has boen in nee cir years without sopairing. We make the braed half ordinary/ white loar whioh we b
[2010,]-Constipationmil. Bip cold watar whon aseasing in the morning; nothecie a dranght, bats heep
 London payaician's recipe, and cared s Iriend bf : mine drtak a Hitio water just beforvogoing to bod. 2. A conple of agg cut open mand tried, or will soaked in olive oll, will oppan the bowele withont. Injuring the mucous membrane (es modicine does), and rishort parging. used myself.-K.
[19172.]-Constipation-It "H. S. A." will habitante himeols to breakforting off pure eatrueal
 the nse of malt and spirituoun hquors and the woed I beirere, from personal oxperience, that ho may otaly
do withont any pregatives, which but aggravito the do ridthont any pargadives,
[22172.]-Constipation-Constipation is oscily carod vithoat mediaine if the safforar try a cold-valit -injection-re common enoma ceni be bonght for toor or Begular habifs, plain food, and out-of.door exercive should be followed, and an occmional done of acotior oll is nevar injuriona; bat the great thing to bo borne
[19173.]-Ooloured Ink-If "E. E. F.n adde, a Hutie lamp sugar to his ink it will make it ahne, or a Hituo gam will do as well.-200 ardin.
[19178.]-Doloured Ink-Add a mall cagatity of gam Axabio.-Qpricous.
[12174.]-Agriculture. -The difference between red clover and cow grass is that one has a hollow and the other a sosid stem. In case of cattle's stomach
beeoming distonded with elover or green food, give becoming distonded Wins diov
[18175.]-Goumdboard-In venfrmation rot what The Harmoaious Biackemith" has said sboat increasing the londmess of tone of piacing tanaical box pn a soundboard. I have placed a amall one on top of a laxge dram, and was astonished at the, londness of tome thats prodzoed. Two or threa instruments appeared to be playing in mont pleaving unien while the masic
lasted. "E.B. F." might tey soandhoard on the sume phen.-Rat-Tat.
[18176.] - Eydrogen Fiame. Thecause of failure many be that the cork is not air-tight. To test this, otop the moxth of the furnol by the mand, and apply suction to the tabe-before pating the radid and. water m, of course-Jas. C. Ahmiker
[12176.]-Hydrogen Flame.- "Whitaker" is not the only amateur who has failed at this experiment by acing too large a pipo-one diapropartioned to the quantity of zino and aulpharic sota reed, ard the monnt of gas generated ; bat if he wil put a nozzle with a mall oritoe on his pipe, he will find the hydrogen to iseace from it in a siteady jet, with anfloiont
proasuro to axpel the atmoepheric air, and prezent it proasure to axpel the atmosphoric air,
from entering the generntor. $-E$ E. B. F.
[12177.]-Algebra.-Errutvas.-The firt anawer to this query, line five, should read minus 1, instead of Cumeds.
[12177.]-Algebra. $-\frac{x}{y}=-\frac{x}{-y}$ Thetwominus
aigns nentralise each other. Similarly
$\frac{a}{(a-b)(a-c)(x-a)}$ for $(c-a)$ is the same as $\frac{(a-b)(a-a)(x-a)}{(a-o), \text { and corresponds to the }-y \text { in the firtt }}$ -xpression.-Philantiriopist.
[18178.]- Fronch Magambe. -The Magazin Pittoresque is an excollont illustrated publication, chanp, and widely drealsted. Pabisahed in Paria.
[22179.]-Vitailty and Eleotriofty. - There aeems comething donbtfal abont this ret of questions. Are they from the real "Rat-Tat", or rome one else? Howavar, acouming them to be bond face, I will anewer as wall.as I can. 1 . Hair is a bad conductor, ana there is not she least probability khat it convery any ottrorial Aridto the baming anleas bo some barber's concootion
 o torco its way \&hrough oap lary. openimga, but there is no olectrio tonsion hign. eno dion of the bloed, thongh it is pensible that the blood in the reins and atertes may.be in difierant aleatric in the voins and aterimsoted throigh the infinitecional conaitions, and bo abe the two preat cangrineona systams 9. Not the least Hkely that any trae life aetion, howerar temporary, could be developed; posribly in many cases death is reont extraustion of nertous, and vital power, and in such oases, sextificial rons.anation, froah blood and eloctricity might revive the respiration, frosa who are otherwiee practically dosd, but in m ham the organio spatam is not deatroyed, but its motivapower.gone; sloo in such cases mesmariam might of one of a mumber throagh whom. © ourrent whs pasosing woald, no doubt, invalve a grat ahook to the reat but nothing eise. Nor is these reason to suppose that an infoctious disesso would be carried on by the carrent, bat the general conditions would be such of groaly facilitate ite oommanicastion irre
[19189.3-Batterg ©ofll-Mr. Tonnes being silent (I hope not for manh longer) I mpty : Smee's almays dimintish din torceo ; the liquid ne baiag eold thould be of ithte consequespoc. Those nisterse ill we explained
in a veek or two in "Eloctro-Metallargy:" 2. With
 but I expect thare is solder ran ap it also. 8. Halse's coils have no secondary, but a great length, or rather aeveral lengths, of primary, and the shock from them is the "extra ourrent" of the primary thails.-Srema.
[12194.] - Bnamelling.-The tanis of all kinda of arramial, io a, peatooty mamparant, and farible glass, whioh is rabeogeemily reandered eaither memi- tramaparent ornamels by the camistare oitmoretio of tin wh the glass, and adding a emall quartity of manganeese to increase the brilliancy of the colour. The ancition of orde of lead or animanyy prodscess a yollow ecammel. and from. Gpeons, violets, mad bives.are peeented by the mixtare of the oxiden of copper, cobalt, and iron, and these then intermized in ctiferent propentions afford a variety of intermediate colours. The propordegree end oonthe ingrecients are aped, assary to their perfection, constitate the secrets of the act. The best amamal wasformerly imparted from ranioo ; bat during beginsing of this contory the importation almost Tholly oeamed. The high price of the artiole menafactare and they ancoepded in producing a hard whito enamal, saperior to the best venotian in whitoaees, and mach move valuable to the diah-piato matera. Soveral yoars bact, Mr Wynn commannioated to the
Sociots of Arts a merion of reoipes for the preparation
of ezamel colours, and for which the mociety awarded him a promium. The following is a int:-Mo. 1. Red
lead, 8 parts ; calcined berax. $1 t$; tive powier, 8 ; fint

 leafl, 91, borax, not calloipod, 5it; finat glace, 8.
 the finxes have bean meitgd they dhoajd be poased on wetted fiagstone, or into a large pan of oban mader, then
mortar, for nae. To make yellow onamel : Tabe red and 8 parts oxide of antimony 1 ; and white oride and, 8 .parts; oxide of antimony, 1 ; and White oxide having pat them on a piece of Datech tile in the muffie, having pat tham on a piece of Datch tile in the muffle,
make it gradually red hot, and anfier it to cool. Take of this mittare 1 part, and fax No. 4, 1t ; and grind them in wator for ust. By varying the proportions of red lead and antimony, difrerent shides of colonr can oad 12 parts. Tol make 1 rang ; ; and fint powder, B. After calcining theso Fithont melt, ng fne 1 part of the componnd fith $2 t$ of fiox No 1 To make dart red enamel, take suiphato of iron . 1. ined dar 1 part onx 1 part; of the two lattor, mixed, thd 8 parta. To make ight red enamel, take gulohate of porn 1 part make No. 1, 8 parte, and whito loed 11 parte To Part, fux namel tata manganese 81 parts, red lead 81 parts. fint powder 4 parts. For enamelling watch dialar the anatiol cenertily oomes from the meters in thall cakes, irom 4 'to 6 in thes in diamiter. Theme ere Arat breken with a hammer and frontl in P mortar rith small quantity of wstar, after which the copper giale to be enamelled are olosued in the picilo, rineed in vatar, and laid face downwards on a emooth maplin and a thin layer of hard enamel called " backin" is sproad over the side with a quill or bone aptate. The coppers are next silgtrity pressed with another. Hoft coppars. are next singriy pressed win suother tort
napkin, which leaves the enemel try enough to be opread mare evenly with a steel epatala. Nract is apread a layer of glase emamel over the bide of the coppers oulled the "flrat coat:" The surface ought to be dusted tith camel's - hair pancil to remore any dast, otherwise the woit consista in melling it, tiedt beoomes one uniform meas on the eartace of the copper. The fring is exeeuted batween a muffe in a small charconl or coke furnace. The plates mast not be over fired, nor mast the heat be suffered to malt the enamel too raplity, but a kind of rotary motion, oalled coddling. muat be given to the work, by holding the loaded planche lightly whth the ongs, and gently drawing the edge of it towntas the month of the muyife, and then returning it to its former ready for polishing toohnically termed asing oft. Mhis in performed by rubbing the surtace of the plate on a spentance is completaly oblitarated, and one aniform and equally rough surface is prodnced. The intention os this prosess is to remope the mottod appearance on the sarface and give a more equal convaxity to the plate. The method of painting in anamel is performed on plates of gola, silirer, and coppar, enamelled with the white onamel; on which are painted with colours which are meltod in the fire by which they moquire a brightnoes and lautre like that of glass. This painting
is the most prized of all for its pecalar brightness and riveity. Whinh is very permanent, the fores of its colours: not being eficoed or sullied by time as in other printing, and continuing always as froeh as when it teft the markman's hand. -WimhuM H. Hey.
[12187.]-Roses. -The great London Hortieultaral Rone 8how taken place on the Fri Jaly, the groat Birmingham Show, 25th to 20th June. Tarner and congidered the top.growarn of the day.-ZETA.
[12207.]-Light.-1. A beam of common light would not be aztiroly tutercepted by one plate of
tourmaline. A beam of plane polarised light would be tonrmaline. A beam of plane polarised light would be
gensibly wholly intercepted by such a plate, when its ribratory plane was at right angles to the plane of vibretion of .the light. 2 Yes. 8. Tourmaline or Nieol priam. Bead Sir John Herrachell' Familiar Leotures on Scientifo Sabjects, " Light."一H. P. H.
[12217.]-Violin Tuzing.-" Jnst as you please, my dear, you paye for your adtio (or oaght to do so) and you takes your choioe" how you may placee to tane it. The big Addle yolept contrabass is ordinarily taned so that the pitch of ite middle string is a forrth abowe shat of ithethird strixg, and its firat atring a
 of the violonocllo, viola, and riolin are usually tuned oach a fifth above the neat string below it, and the ro arpo, or ahould bo, tuad pe in their propar pleces -i.e., to stop in time (by the nay, wery tow do) -the fact that the fitths are porfoot \#fith open strings don't matter, for, of course, it would be quite baneath zny Gddlor's dignity to acknowledge the axistence of so rile a thing as temperament; in a word, his barmpony is sapposed to be perfect, whioh, considering he is axpactor aning we don't ordinarily gathar sweat figs rom prickly thinties. I havo bean tald Paganizi occasionally altered the pitoh rolations of his atrings, probably to facilitate stopping in some of his intrifeate pasaages, bat I am hafdly "fiddier "onough fully to appreaiate this ; probably mo friend "Fiddler "poald
 they tune them in asoh key;" indend, I hardly hnow What the expression "taning in alzey " maeanh. The
piano is commoniy ald to be taned in \mathbf{C}; bat thin
sigaifios no more than that its white keys, or rather signifies no more than that its wre taned to that scalo. It temperament being equal, it might be said to be taned in any key or sonie rrom Croposed in Mr. Ryley's patent (No. 2562, A.D. 1801, proposed in Mr. Ryley's patent (Nod ont, for ite white freys may then be omplojed for performance in any scale,
[12228.] - Wheelbarrow.-I have the plearure of nforming "C. T." that he can see many wheelbarrows informing constracted so that their wheels run in the centre constracted so that daily use if he will just take the troable to "atop over" to the flowery land, alias China. They are not used by lanndresses in that country like the two. whealed ones are in this, both by them and costermongers, for the very sufficient reason that John Chinaman is very conservel on the adrantages of clean linen, so hebeing determined to err on the economical, if not the safo side-prefers wearing his cotton inexpremiblen and whatever it may be which does duty for a shirt among "celentials" until they become, like nuto haman righteousiess, unclean, not to say "fllthy. rags,", would donbtless be his laundress's barrow, which resembles the colebrated one-wheeled velocipede excepting that, being rather more nnder haman control, it don't turn over and eject the rider-a thing which some anreasonable persons of a dissaasil to Locheil" mind might object to. As its it hang carred to me that "C. T." possibly might prefer looking at this one wheel affair nearar home. If I am not miataken, it whe oxhibited by a London firm, then existing (Mesers. Deane, Dray, and Co.) in one of the cattleshows at the Agricultural Hall, Islington, some few years ago, but aci bono. Is this another cropping up of the old idea that it is easier to roll a weight along when supported on one wheel than when sapportod by two ? Cortainly, one wheel is likely to encoun yet large, stones which are placed on our roseds under the fallacions protence or mending our ways; bat to suppose the with two is any lass with only one whpolthesis that a man could "valk" with lees friction and fatigue on one leg than on two. I fear this wonld not faciritate human progreas" muoh. Of this supposed unipedal man it would seem that it might be asid, as it was in the case of "our Mary Hann"s" epistolary correspondence, smirte.
[12225.]-Lead in Sulphouric Actd.-The dark brown anbstance in the acid named by "Touy White" is not lead, but some organic substance, probably a piece of cork or straw. It is of small consequence except in delicate cases of quantitative analysib. II required pare, add to a small portion a fourth, by measure, of water, and filter through paper, then evaporate the water out again in a beaker. If lead present in sulphuric acid it will sette as an by carefol decanting the clear acid may be teemed ofr.-PPrink.
[12255.] - Hair.- Pat one ounce of flowers of sulphar into one quart of cold water, ellow it to stand twenty-four honrs and decant. Wash the beard every night with the snlphar water, taking plenty of time This reeipe, taken from the Δ merican Jollrnal or friends as a tolerably certain oure for dandruff and other minor (?) evils.-H. P. H.

UNANSWERED QUERIES.

The numbers and titice of queries whiok remain wn. anowered for five weeks are incerted in this hios. We trust our readers will look over the lidt, and send what information they anm for the benoft of their fellow oontributore.

Slace our last "Suffolk Amnteur" has snowered 11975 ;

9 Nickel spoonn, p. 296
Deluges, 286
Thermopile, ${ }^{\text {p. }} .287$
Armature, 287
Armature, 287
7
Velociped e to be Driven by Hands, 287
Webs of Cranks for Model Enginag 239 Wabsof Cranks for Model Engines 237 Sastaining Weig
T^{7} ke Lethe, 237
Stal Coms, 287 B. Sci of Londnn, 837 Mamp for Incubator, 287 Making Tomplater or Youldg, 287
Taking Copy of an Engraving, 287 Etching on Glass, 297 Ministare Turbine, 237 Hebrow Music, 237
Drilling Boiler Plates, 287
Lond London Encyoloperifa, 287 Seware Pipe, 287
Beof Pat, 237 Boof Pat, 287
Malleable Iron

QUERIES.

[12256.]-Preserving Garden Produce.-I am an Ringilichman living on the prairie of America, Where the winturs are long and very severe, freaty perery one of our culturated vegetables and flowers which aro exposed to it-parsnipg alone of mine withstood ite severity.
it would oblige me 18 some of yoar able odrespondenits will give me suggostions on the the table, for use daring the long winter, and plants of others, and flowers to pat out in the spring, which is six weokb iater hanin Engand. Frame-houses are out ostly articles. The English here would like to gladden our eyes with familiar perennials and hardy annaals and green vegetables, before or later than midsummer.-Emgonant.
[12257.]-Milking Machines.-Will any of your numerous reamplest milkding machines for millking hard milch cows ?-FARMER.
[12968.]-Old Violin_Can one of " our" readera inorm me whether a vioinn bearing the inbel, TThe inatre Amates, Camonenais, 1640 . 18 indicated, and has a full ment appears to be of
and clear tone.-A. J. L.
[12259.]-Faulty Acetate of Soda Bath.-Will any correspondent let me in to the secret why $m y$ acetate of soda toning baink, just the colour of pink my printa a beadral pink,
[12260.]-Cleaning Back of Teeth. -The tooth. brush onls cleans the fron ba weil to proviab to decay at the back rhan in front? are
BEATTY.
[12361.]- Spirometer.-Will any reader of the Mecrasic be kind enoagh to give me what information they can as to the best method of making a gpirometer?
If with illustrations I should be very glad.-WoxDEIM Whine.
[12262]-Preas for Outting Paper, Oard, \&zo. outting psper, cardboard, \&c. The ordinary press and ploagh is of no uso, as it is required for catting ap and not for trimming. It is important it should ent the paper perfootly square, so as to ole nicel
ono kindly assist a-COUNTRY Pbiver ?
[12263]-Circular Saw Driving.-I should seel obliged by the following information:-I want to drive a
 650 to 700 revolutions. What size pulley should I have on the maln, which 1 should not like to be above 8it. 6in. ? Also stato sise of the palley and drum on the intermediate shaft. The sisg
bench is 9 in-JUABs DATIEs.
[12284.]- Freemasonry. - Till some one kindly Inform me how I may become e momber? What are the fees and periodical payments? I live at a distance from any lodge, and have no opportunity of consalting any one who can supply mout the objects of freemasonry, ec.,
Some information about Some information abou.
[12265.]-Pig Feeding.-I should be much obliged 1 some reader who has had experience in stock feeding Would inform me whether it is bettor to foed pigs with in nbcut equal quantities, would not be better than in nbcut equal qua
barleymeal?
.
[13266.]-Photographic.-Having followed the instructions given in the Mrchamc, under the heading ot Pegatography for the ninitiated, I have sear. The details are, however, woll out. After they have stood for a few hours they fade almost entirely away. Cushail
be obliged if some correspondent will state the cause.hino Cotron.
[12267.]-Cabinet for Birds' Eggs. - Would any reader kindly inform me of the best form of cabinet for
keeping birds' eggs in?-C. T. B.
[12268.]-Strength of Shafts. - What number of horse-power (indtcated) is a bhaft of the onlowing
dimensions capabla of turning with asfety, when run. dimensions capable of turning with safety, when ran
 equally the other hal!. Woald some kind reader please
ens. anawer this, and insert the calculation
fature guidance of Self and Co?-IIIoN.
[12269.] - Btaining Leather. - Can any of the permanent dark brown stain. to stain a plaited leathes watch guard (gionsy, if possible) ?-B. 8.
[12270.]-Charcoal Furnace for Model Boller. Could any reader give me the sizes and descripion of \& charcoal fire guitable for a model boller bin. diameter and 14in. long? I have got a spirit lamp 8in. by 3in. by $1 \mathrm{lin}$. deep, with three jetg din. di
to raise steam enough ?-S. O. LEEs.

[19272]-EHeotrotyping.-Can any reader of the Mzamasio give a description of olectrotyping for printers 1 anderstand ail the battery arrangement. Whnt I want to know is, the substance nged to make the
mould. Is it wax or gattapercha ? How is the plate mould. is trom the monld ? and what ia the process of zeparated irom the monld 7 nnd what is the process of
[12278]-Water Power.-I have \& stream of water from a fin. tap; it has a fall of at least soft Will any of Your numeroas readers tell me how 1 oan natise
[12274.]-Telescopic.-Wil "F. R. A. S." be kind
 Fonoanit speculum that the image will bear magniticaHon? Buppose one of the finest reffeotors by With or other oompotent maker, had qittached to it, in lieu of a
common eyeploce, a complete fall-sized
Powoll apd

Lealand microscope, with a properly formod low engred objective (esy of 25th or 50th inch); if this instrument be now turped on the moon or other objeot, esforaing suffient light, would not some adithomet tried this, with indifferent results, with a tin. microtcopio power, but I congider my mirror altogether insorior, and think be found by trying again with a fine and complete instrument. If the mirror casts a perfeot image, the instruneon. Ill unquestionsbly magnify correctil' that image; if those mirrors do not oast correct forma, I eannot but pleoe some donbt on ril inv
[18975.]-Test for Arsenic. - What is BettendorPs est for arsonio ?-W. H. HEx.
[12278.]-Bolling nonder Pressure.- I have aboat two galloni of allquid which requires to be bolled ander pressure for aboat eight or nine hours. Could any cor-
respondent inform me the best and oaniest way of

[12877.]-Anilline Blaok.-Would Mr. George Daris or eny other of your ohemical correapondents give me a good procis Aleo tell me if there are any other books Thon aniline dyes that are better and more recant than apon aniline dyes tha
[12878.]-Menoury.-I have letely been experimentng with mercury, and I am afraild I have anavoidably nhaled the poisonous fumes given off when meroury is fealing in the throsh and heavioess on the chest. Oan any one say if this is due to may Inhaling polsonoons fames, and what is the best thing to be done in the event of poisoning by mercurial rapours

- Quraces.
[i2279.] - Diminished Action of Battery.power deoreaseg. Is this owing to a ohange taking place th the enupharic or the nitric
[12880]-Winter's Maohine.-How is it that the ring of a Winter singhine incroacor and thin spark? Is it necessary that ine wire puasing brast do -Sема.
[12281.]-Tength of Kileotric Spark-What at

[12282.-Holes in Valve board of Harmonivm. mitting the wind through the vilre-board of an bar mittiog aremade so lone? I cannot get tham wio tight on that zocount. I ghonld like to kncw il I might make them round.-Vasdalx.
[1228s.]-Food Analysis. - Will some one kindy inrorm me the best book on food analyeis, and how to dotect Analygio those for toention sorios), bat some of the proceases -JAKES C. HARIER.
[12384.] - Easence of Phosphoras.-Can any reader inform mo how to make essence of photphoras.
[19885.]-Logarithms. - In the Lable of logarithms 1 have before me, the logs. are given of numbers (not oxceeding four digita) to only five places of decimask. Thus I find log. $6.102=78547$. How oan 1 from this work out log. $6102 \cdot 5$ and log. $6102 \cdot 57$? The table ehow
this part an increase in the loge of oocon.-C. P. E.
[12236] - Moresque Style- Would any reader kindly inform me where I coald procure picturesque designs of the above style? is there not something pablighed in Exgland or elsewhere that contains, among others, designe of the kind:-A MASTEB SUBSCRIBER
[18387.]-Telescopio-Being desirous of obtaining object-glass of 5 ttt. foous, by the younger G nlley, which is often mentioned in "Celestial Objects"" F.RA.s. or any other subscriber wonld greatly oblige by atating
whether Mr. Browning's 4 fin in reflector (the EAnastional), of 5 ft . focus, would be likely to suit my parpose; or whether his amailer instrument of the same apcriare And inetically superior to an achromatio, which has an object-glass of 3in aperture, and 4ft. focus? My "re
mould further oblige by mentioning the spondent" would rarther oblice by, mentioning tbe
pablishers of the "Mem. K. A. S." and by sisim; Whether odd

obtained.-B.

[12388.]-Radius of Object-glass.-I have lately obtained from Chances two discs of optical giass, tin diametor flint and crown. The speoifo gravity of tini (in lnohes) the radius for grinding the glasses, the focts or the combination to be sbont sit, and conver on bith sides 7 have some tools by me
Bin., 17in., and 8ilu-AKATEVR
[18299.]- Electric Bell.-Will some of "our" eloe trical friende kindy expiain and show the mechanism of the above, as worked in connoction with Tyers DCE
blook instrimants? I am given to nnderstand that there are no magnets, bat cannot see as they are inciosed in a olich, onld the hammor and bell hetir nuch ea Arawing would greany ing to. Whall the sbove? I am told that there is no poroas partiti, between the cells. Is there or not? They are chera with bluestono and water each cell. Would not a serie box, asually seen nt telograph oilloe9 9 Woald they 1 box, usuany
be as oheap -J . W. T.
[12290.] - Eydrogen Lamp.-To "Amar Tar."Many heanks to? Is the action of spongy platinaus hydrogen underatood? Can "Analyst" toll ma ma loses its power after a tlme? Washing it ia nitric and hosting in spirit flame revivides it, but only fuz
 hardly to be socounted for by "Analyst's" explanall
I fancy the hydrogen gets "ocolnded" to a great oxis
is the platinum and then goes off. H . H a
[12291.]-Nature Printed Leaves.-I have read the article on p. 298, and should like to know the process give it. 1 Is gam or glue beit to uge with biohromate of potanh in printing ?

[19892.]-Breadth of Stair Stops.-II ing the breadth of spiral ntair atepero.0. IS the Mreandith ghould one at
Min. long be ?-J. G. W
[18998] - Watch 3pander hind enorgh to give instructions to put a maingpring in a lever watoh ? I have been attempting
$-\mathrm{J} . \mathrm{L} . \mathrm{B}$
[19894.]-Larkin's Iron and Brass Founder.Will s. Bottone please give the price of Larkin's "Iro and Bress Foundar," as m
p. 79, query
11857 ?
What progreas ia the graphotypo making? 1 should What progreas in the graphotype making i 1 should
ike some detaile of the prooess, gnd in what respects it in auperior to wood engraving-1 presume in cheapness Would Mr. Bottone kindly Inform me if he thinke such an idea as the following possible:-To take some hard water, vinegar, Ac., and write on it with a fuid which would make the part written on insoluble in the fuid ased, snch as water or vinegar, so that the written parts would atand out in rellet to be engraved on.-Pribaxmeopist.
[13206.]-The Nightingale. - In answer to "Hedera" Cot. Lisen, We have a saylag in the miarand Eastern Otnes hat, ha nigazingaio is not heard north of Peterborough." Can any of your readers inform ug of Riding, and in what looality?-PLovar.
[12207.]-The Tremolo in the Violin.-Will hhere is any way of soquiring the tremolo on the violin? I mean the trembling of
riod oxpressive musio
triend of mine says that it came to him naturally Ththont effort. If any one can give me any information the subject. I shail be very much obliged.-Coreclit [12298.]-Tighthouses.-Will any of "ours" kindly
angwer the above query (p. 107, No. 11591) ?-W. H. HEY,
12289.]-Tar Pavement.-Will some kind reader of the Meceanio inform me how the material is prepared for making the foot walks at the various railway etations near London
peration. It would suit d
to ley a foor of the suit my purpose admirably, as I wish apon. Any reader aoquainted with the subject would confer a favour by giving the information as to materials, and the method of doing the work.-Horti.
[12300.]-Direotion of the Terrestrial Meridian. direction of the orreatrial merme mow to find the areuran the terrestrial meridian-that is, the direction of a line passing through any given place
joinfag the two poles of the earth? -YO
[12s01.]-Unequal Sizes of Cone Pulleys.Required, a rule for finding the diameters of one cene, the dismeter of the other
of their respective contres given also, In one of the early volumes or
by "J. K. P.," but it is necessary to have a knowledge speaking from experic it out, and 1 am convinced, and readers know lithe if any thing of it, hence the necessity of a rule that will not be merely a curiosity,
[12802]-Stains in Oak Plank.-I am using some oak plank that has a quantity of brown streaky stains in it.. They only occur in some of the planks, others, Can any reader inform me how I may remove the stain without injury to the planks; or shall I have to stain the 1 light parts to match
avoid 14 posalble.J. \mathbf{C}. 8 .
[12803]-Small Castings.- 1 do a good 'eal of electrotype and small castings, and want to know the dodge how the same moold is made to give both right and left. I mean, bupposo a medallion with head facing
the! left, how I can got its fellow with head facing the the left, how
right-Robo.
[12304.]-Phrenology.-WII any of "our" jacacars Who are weil up in thia sabject (..a., what is usually unof the individnal's itto the charncterintio bumps are developed? It appears to mb if the brain axarcigen any infuence on the shape of the oraniam it must be hefore the latter has assumed its osseons natare ; honoe If phrinology is anything worth oaling a science it is placed on the horng of a dilemma; for eithor the brain manaeion elepe in or pocilar Edacearion alepe in, or the bones of the hoad are disthe latter and am very dozbtiful about the formerSaul Ryiza
[12806.] - Iocomptives. - The longest barrelled ocomonver in this conntry are, I belleva, to be found geined by a long boilor, and arp thoro not accompanyin gisedyantages whioh might ontwaigh the adrantagos -E. M.
[12908.] - Botanical Names. - Will any corrospondent obige me with the botenical neme of a plant Knnwn as the French willow -s sort of bach about 8tt.
high, with abnodant spikes of pink-coloured bloom ; and high, with abnocant spikes of pink-coloured bloom; and ciently describes its habit beiog like a rose bush with 2 pos-Hke blossom 1-Hortus Bicutur
[12807.]-Korosene.-Wyl "Sigize" explafn to me hbe nature of kerosene and its nses, a.yd what is is pro dnood 8 rom P-A. H.

OHESS

All communications intended for this department to to be sddressed to J. W. ABBotT, 7, Claremont-plece, Loughborough-road, Brixton, B.W.

The Managing Committee of the "Britinh Chess ansocianion" announced that play wonld commena on Monday, June the 24th, at the St. Georgo's, Wostminator, and City of London Clabs, and be continued evary day, 8

The celobrated Prusaian player, Znckertort, has ontered as a competitor in the "Grand Tourney." The foreigner will prove himsell no mean antagoniat, and he has recontly added to his reputation by defoating players muat look well to their matchen. Oar aesaredly an important prize will be carriod to Berlin.
The Problem Tourney in oonnection with the Britiah Chess Astociation is open to the worla without entrance foe. Encoh compotitor will contribato five origina problems; one in two, two in three, and the remaining Tho in not less than three nor more than ire moves. The probiems to be free frem conalions, to be written on diagrams, and to be scoompanied by their solutions. kach oompotitor to send in two coaled inolosures; one distinguishing motto, the other will contain the gamo and address of the compretitor and must be marked by the same motto English oomposers mas end in their problems on or before Jannary 1, 1878 Dontinental composers on or before Febraary 1, 1878 1, 1878. There will be ten general prizes, amounting
 making a total of $£ 82$.

Problem IV.-By J. G. Campbell. Black:

White,
White to play and mate in three moves.

Solution to Problea III.

1. Kt to K^{7} Black.
 2. R to K 2 3. B to Kt 5 dis. ch. and
 2. K takes Kt
 mate

TO CORRESPONDENTS

W. I. J. (Lincoln) - A gubseription of five shilling gonstitutes the contributor a member of tho Aspociation Cor the ourrent year, and entitien him
all the proceodings of the Congreas
8. J. H. (Liverpoop)-Any iriond noquainted with the geme would teanh you the notation of the board in ton minnteg. Hoyle is no anthority on ohoes. Xour sola
tion to No. 2 is wrong.
T. W. J. M. (Brighton)-The variation in problem No. 2, Which you fall to soo through, is alear emough-a.0.

o. H. Yro (Paigntion)- You have oridently overtooked

Argo (Yarmouth)- Yoar problem shan be reported on next week.
ADDrrionary solations to No. 8 have been roceived from Wigas (Dawle
B. H .

Conzeror solutiong to Problem IIL, have beon reoelved from R. A. P. W. N. P.; C. R. Howson (BIrkonheed) Wiseaf (Dulwlob) ; A. R. Mollson (Swansea); C.J. L.
 mouth). All othors are wrong,
"JACK OF ALL TRADES."
Wr have not heard from "Jack of All Trades" since we last went to press. We hope to hear good new before wo appear again. We have transmitted him e21, and the following to a list of the contribatora:-

USEFUL AND SOIENTTIFIO NOTES.

Prehistoric Trees.-An interesting statoment was made by Mr. Fallowist the monthly meeting of the Tees Conservancy. The dredging operationa in the Teos had been vary manch impeded during 1870 Baoy and Jack-in-the-Box, trenty-neven oak trees, of Buoy and Jack-in-the-Box, trenty-neven osk trees, of
sizes varying from 5 ft . to 1 1ft. in circumference, and from $20 f t$. to 55 ft . in length, had beon taken out. Those trees were on the south side of mid-channel, on clay bottom, with about 2ft, of sand around them. The largest tree weighed 11 tons. Mr. Fowler, the ongineer, bolieved the trees had grown in pre-historio times, and had drifted down to some place in the upper inmes,
The Correot Weight of Milk.-Mr. Gail Borden, of White Plains, N. Y., who conduote an establishment or proparing condensed milk, has been mating some oxperiments for the parpoge or dotermining the correct weight of crade nill. Ee took the milk of several cows, and, mingling it together and then thoroughly cooling it, he had it accurately woighed. The result Was thats a quart of milk, so moseared and waighed on
 mat wher bit without malarialy allorlag the weight Mr. Borden milt of fair average quality. Hence, any perion whe buye milk may determine by weight, with aatisfactory bocuracy, whether he receivos \& quart when he is resocuracy, whe her he receitios
quired to pay for that quantity.
Labour and Health.-Ho that is industrious in ate cealing diall stand before kings ; he shall not stand before menn men, is a maxim oonceived in the apirit of trao wisdom, if expressed in the language of Oriontal poetry; is confirmed by the hiphent intelligences of ancient Greece, which animstod its youth to axartion by exhorting them alwaya to atrivo after excellenoe and for the first plece ; is indorsed by the great and eloqnent aposilo of the Geatilios, in the well-kpown worde, "Bo not alothfal in buainess ; farvent in spirit; gerving the Lord." Our great morkera farnish e living oommentary upon these torta. How many oomplain of their mishaps, misfortanes, and want of scecess in life, which is in reality all their own tault in the majority of instances I Minfortuno is oftem only another name for mismanagement. They nse no arduous exertion, they use no proper endearour, as if all the good things of natare ware to be had without toil or labour, and the world itself were to be no theatre of probation. Kind Providence giveth all things to laboar; every reasonable desire is within reach of the indastrious. Viewed strictly within the limits of the sabjoct, the importance of a constant occupation of the time in the parsuit of govd ends by good means will be acknowledged by all who have ever felt the miseries of ingetion and have roused the. asolves rrom this torpor. Whether the wort is of the bras of or the hand, or both, in whatever proportions existin g, the parsait ehoul bo engrosiing, and a lively interest caken in the work; not manadering in the cloade, or in watore under the earth, or the mind occapied with . .omething else whilst scoming to be employed at its real buaineas. It
is this half-mindedness whioh is the bane of labour, in this half-mindedness which is the
and can never sdvance its performer.
Eints as to the Employment of Blas'ting Powder. - "Powder is good servant, bat a back mastar," and too zunch care cannot be taken in handling it, mays an Australian paper. Strict attontion to the following ralen would prevent many an socident:-Firat, only the beet powder and safoty fase should be used; the ittaff used for tamping to be free from quartz, spar, or finty matter-olays, slate finely palverised and dry, will bo found to be the best ; second, ragged holes to be made amooth by claying, or the safety fune to be protected by a tabe of gattapercha or indiarabber, or by being boand in some hempen sabstance; third, no powder ahould be left sbout the walls of the hole; fourth, the charge should be passed down throngh a tabe having a funnal or bell mouth; afth, wet or damp holes should be chargod with a cartridge, or the powder placed in a bag made of some impervious material-a componition of pitch and coal, or wood tar would anawer well. The ramming bar to be copper, or iron tipped or capped with oopper. Sixth, a misAred hole, or hole holding Are, should never be bored oat, the drill or borer always outting deeper than water, reeching the charge first. Holos have wnomin to hold ire for many hours.

THF "ENGLIGE MECEANIC " ILFEBOAT.
No doubt it is a source of grief to meny that the Efrelish Mechanic Lifeboat should make suoh How progress. Wu, however, have not encouraged it, very encegotically, for the beat of all reasong. Thanks to the National Lifeboat Institution and Britich philanthrops, there are but lew available points on our coents whera a new lifeboat is required. Hed we known at the time the fond was anggested that so mash had been done, and so comparatively little had been left andone, we should have hesitated before we indorsad Mr. Lufi's propssal. Tra or three opportunities hape since ocourred, where new boats have beon eapplied to old stations in the place of old ar imperfect boats. Bat no nem atation has recently been eatabliehed. We have proferred, and no doubt the subsoribers agree with ns, that the boat launched by our aid should be oalled "The Englise Mrceasic. Lifeboat." That, howerrer, could not be easily done if we merely supplied a new boat for an old one, as a new boat generally takes the name of the one it has diaplaced. We believe in the courge of a short time a now lifeboat station will be opanod, aud we trust it will be mupplied teth our Hfobont. We therefore renture to callion our frionds to complate the fand; at least 2100 are required for therboat alone and we have nearly $£ 336$ in mana. We ought not to be long reaching the remainfugebs.
-Amount miresidy colleoted e885 16s. 7d.

ANSWERS TO CORRESPOMDENTT.

[^12]Dovcre. BATE.-The controversy
Mr. Proctor Bays, "by coneant."
G. L.-What you say about modern " discoveries prove the inspiration of tho Bible" is good enough. Bat it your letter wore ingerted a dozen correspondents
would commence a diseussion on the pasiages yon would commence a discussion on the pasiages you
quato, and we should be floated on another Delage controversy.
Hooslox.-For a method of clenning felt hats, see
 generally employed.
Baprisg - Would like to see some instraction on biliard playing in the Exolise Mecianio, written by one one who thoroughly anderstands the subjeo.
OO Eos-" H. B. E." says:-"I am aure every subcaction to 'ours' 'will be glad to see agatn communications from" 'Eos,' when it is convenient for him to
write again." Should this reach "Eos" in the depthe of his Africen solitudes, wo shonld like him to know that we thoroughly Indorse the desire of "H. B. E." Mrofakioal Eqdivalent. - You, make a miagtake. We have no deaire to come down on you "rilh a
crash" because you persist in believing in perpetual motion, after many weary years of experimentalising. We afe only sorry to hear of the expenaiture of 80 mnoh nnprodnctive lxbour. Ony imagine what a number ot:onbbages you might have ouluvated during
the time, and so have contributed to the woalth of the world. Try and understand the meaning of the words you write under" "Meohanionl Equivalent."
Brtsy Somanncity.-The disousbion on the " Oometary Delage" is closed, or we should try to find room for
your vcry fanny letter. If, however, you woold like to start gome of the polints mentioned by you, such an the world being once red hot, 89 many rock dietriots prove, or the age, use, and prodirotions of rainbows, bpace is at your disposal. But than the oomic side of Yoar mature must be kept under dae discipline. "E.L. G." "la pro-emidnently serious, and eo, in fact, are in the discuseion. Don't imagine we can't enjoy a good joke because we cartion you about beling too fonny. The reason why we hate bad jotes is beoause we intensely like good ones.
A Three Years' Subboribrr, - Try Gry and Oo.'b soment on front pago. J. Margder, A. D., A Leeds Sabscriber, Bron, J. Pearson, Never Raat, A. Z., W.P., W. K. R, are referred to
lodices to back volumes.
Invertus-Bend the most elementary English History C. J. Rzcondon-Tour amonded oommuniontton arrived too late. Our mathematios correspondents, seem atruse forpanlee, and diagrams which have to be set ap and engraved with great care, and then, when the whole is finished and the paper is at pross, forwarding to na smended renderings of their communiontions, those previonasy sent. This is hardly tair to us or our ithoae preser
jeaders.
T. P. Lallit asd A Poos Smite-For ingtractions on
 Phonoonmptic.-At the Patent Oflice.
E. B. F. -The heamoniam you mention has prily ome row of vibrators
 aludes the insertion of the frost. It ls unmannerly
Horos. - See our answer to your letter a for taight sinco and please not trouble us with any mare letiers
E. "F Gddier" next weok it is Negro in answor to question, and we hope it will be temperately discussed.
The Harmonfous Blacismith.- Yours on the Piano in Canada next week.
J. D., who has sent us so many useful contributions on organ building, seys:-"I am happy to say I am
recovering nicely from the trightol recovering picely from the trightial accident 1 sus-
tained in March last-viz., a broken thigh, dislo oated hip, and injury to the spine -and hope in an we ok or two to resame my articles on the Organ Bailt. The MzcEANIC has been a great source of pleagure t o me daring my long confnement to bed."
Evirard Caltriop.-We know of nothing better suited to your requirements than Leroy's non-conducting composition. Bee advertisement.
C. E. and Tham Bamors.-Tour querion are advertisomanka
Rzv. H. C. KIr. - The controversy was etopped not beonues it was exhausted, but becanes it occupied
more space than wo could devoto to it, and also becanasp it got manocesparily warm.
E. L.D.-Frar not 2 or the Trath, bat tear suther gour own feara for it.

Tmin "Buthping News," No. 911, Jane 2l, Confanws:Sthe Losen Brabibition es Anclent and Modern Jowellory at goveth Konsington; Bulldiag in Conotete; Ohicago; The New Oompats-

 Notes on Earthwork-IX.; Boriog and Mortiling Machine; Architectuml and Archmological Boositicon; Ballding Intelligenco ; Correapondenoe-Mr. Norman ehow and Mr. Jamen MeLaten; ER. Abans Abbey; Oaptain Beddon's Paper on Yeoting Materiala; Competikions ; "To Arebiteets of the Gothio ach AF , Taking Oa Dablin Exhibition; Plagiariam; Intercommanicatian; The Sehool Boards: Paxitumentary Botes; Oar Onco Table; Ohips Tredo Nown-Wasen Movement; Tenders: Illuhtrationv-Hoano Plenniag compolition; Dosign for Beebenono.-Pisoo sdi, pont

THE INVENTOR.

afpifcatione for netters patent duaing the What ENDING JONE $28,1872$.
1753 C.F. Fingat, Fritham, and J. B. Mancharmp, Kensington,
or inprovementu in the manufactaro of ga, and in the apparatas employed therein.
orin 1759 . E. Grilhert, Edinbrargh, for improvements in rignalling on
railway traina, and in the mechanismand applisnces therelor. 1754 J . Dacomet. Paris, for improvements in steam ganges.
1765 J. Pollock, Walbronk. Clty, for improvemonks in the mana
actare of envelopes and postal wrappers. aoture of enveloper and postal wrappers.
3758 W . Cottor, Gloucester-atreet, Bloomsbary, for improvements in bow anws.
1757 g. Cropper, Cheapaido, for improvements in ink sountalis

1759 W. Racoth, Featherstone-baildings. Holborn. for a, new or
improved adrerthing apparatus. A communtcation.

1701 J . Farmer, Salford, for improvements in mavisisery for 1752 J. Blomeleld, Colcbentor, lar improvemente in muing machinses. 1764 P . Ring. Liserpool. for improvemonts in shlos and ap1765 T. White, Birminghem, for improvements in nut-aruekers 1746 W. Firth, Rradford, and P. 8mith. Jun. Kalghioy, for im-
provewent provements in machinery for spinning and doubling moritod, dilk 1767 R. W. Kenson. Acerington, Lanenster, for an improved Lor weaving.
 menie in apparstag
1769 J. Dapont. Liverpoot, for tho application and treatrouat of
certain plante not iutherto ased for the prodaction of alaments and 16 bres.
 sech mannalactasp. 1771 H. Ahanks, Linuthgow. N. B. for fmprovemeata to dawtag 177π J. Plicken, 8tawarton, Ayrehire, for improvermata in the
nanufactare of scetch bonnets or capp. 1778 G. Weit, Glangow, and J. Woir. Liverpool, for lmprovements
in affety and other outlet valvos for steamo botlers. 1774 D. Ballardie, Glangow, for an improred appllance foz 1775 I. Crériener and L. Leoamp, Rholms, Pranoe. for an tmo
proved apperatas for cambering loather, leather eloth, and other fabries.
 other chaln wheels.
177 FF . Biaart, Wolvarhampton, for improvementa in wister. sash fantanert.
 1779 aplas cor the same.
 mployed therefor, parta of which improversente are eapplicable t

 ndependent axios and crank ahafts) rallwar locomotiven, tructiga enginos, and other engines, radway carrlages, vans, and ircecks, as
wail as tramway oarriages. 176s W. B. Lake, Soothaspton-builidings, for improveremata in
 applicable to tho
Acommanication.
1784 J. Heald, Jan., Lancaghire, for improved door theteners for 1785 H. A. Bonneville Piceadily for a noe and
1785 H. A. Bonnevillo, Picendilly. for a now and fmyroved
a commanacellon.
 1787 G. A. Tate, Weat Hartlepool, for improvements ma millathess

1760 J. Browitis, Btrand, for improvomenta in phosoaretien.
 1791 J. H. Johneon. Lncoln's Inn-fielda, for fenprovemont is and in the machinery or apparalus empluyad therein. A ocmanasi: cation.
 or wesming.
1798 6. White, Qoece-dreet, CIty, for an improved mavish

 ton production of a washatie covering for doors, with patmrne 17\% J. Imzay, Sonthampton-buillinge, for fapporameres in manicetion. 1708 E. Korting, Hanover, Germany, for Impromanates it mes 1797 H. Yarrian, Birmingbam, for improvemerta in mackipearticlos of confectionery.
 low lovele.
1799 J. F. Johseon, UMooln'a Inn-ialdn, for fpporemente is 1800 J. H. Johneon, Lincolnis Inn-helda for jupprovergazen te

tharefor. 1 commani:ntinn.

Tht Ctyplish Geftechanic

WORLD OF SCIENCE AND ART.

FRIDAY, JULY E, 1879.

ARTIOLES.

ELECTRO.METALLURGY.-II.

By J. T. Spraque.

EQUIVOLT.-A nait devised by me to oonnect together tension and quantity. It is the force engaged in effecting 1 equivalent of chemical action in a cirsuit of 10 hm resistance, and under the Volt electro-motive force. It is described in No. 351, Vol. XIV., p. 318. Its mechanioal equivalent is 4,673 foot pounds. This unit, when thoroaghly comprehended, will greatly aid in understanding electrioity, and the doctrine of the correlation of forces.

Galfanometer-An instrument for measuring " current" by its magnetic effects in deflecting a magnetic needle. They are not comparable among themselves unless graduated for the parpose. The tangent and sine galvanometers are proportional, so that knowing the value of any one deflection that of all others may be calculated. Any galvanometer may be graduated to give exact measares, by inserting a voltameter in the circuit with various batteries and resistances, and noting the time in seoonds, during which a given measture of gas is produced. The tangent galvanometer was described in No. 283, Vol. X., p. 530 ; the sine in No. 285, Vol. XI., p. 579 ; my universal instrument in No. 287, Vol. XII., p. 1, and one specially adapted for use in electro-metallurgy will be described hereafter.
Insulators.-Bodies possessing high resistance ; all, however, allow some current to escape or rather "charge," to be lost as current. They are called "electrics," because friction develops eleotric excitement in them. Ebonite is the highest "non-conduotor," paraffin, sulphur, and glass follow. A full list was given in No. 245, Vol. X., p. 272. Telegraphic inealators are the porcelain cups, \&co., to which the wires are secured, and whioh prevent eleotrio communication being formed between the wires and the earth through the posts.
Ions.-Faraday's term for the two parts into which an electrolyte breaks up; they may be regarded as "radicals," and may be either single atoms of elements, doubled atoms which still act as one chemically, or they may be compound radicals, like cyanogen, ammonium, and the radicals of acids. They are of two classes, named from the electrode at which they appear, but it must be remembered that the same radical may be an anion at one time and a cation at another, according as it is united with a radical more or less high in the order of affinity. See anions and cations.
Intensity. - The old term for the properties now described as electro-motive force and tension : Batteries were said to be arranged for intensity when the cells are coupled together in serics. The term leads to such confusion that it is best abandoned altogether.
Intensity of Current.-A term sdopted from the French intensite de courant. It means "quantity," and the best writers now use the simple word "current" to avoid the confusion of these conflicting terms.

Measubement.-See Units.

Molecule.-The altimate particles of free or complete sabstances. Modern chemistry draws a strong distinction between atoms, equivalents, and molecales, terms as to which there was formerly much confasion. Conceiving the stom of any elecrent, as the ultimate particle possessed of an attractive force (in a degree more or less great) which is part of its natare, the molecule is formed by the anion of two or more atoms by means of these attractions. In gases and most vapours a single measure being regarded as the atom, 2 such united form a molecale or molecular volume ; it is found that (with a few exceptions), no matter how many elementary atoms may be required to form the complete body, yet (when formed) it only occapies 2 vols., condensing more and moreas each atom is added. Of course the soessure of volume is to be taken at the same
temperature and pressure. Thas, taking the measure of hydrogen as the unit of atomic volume, we get as molecules-

Free hydrogon	H_{2}	2 vols.	2 atoms.
oxygen	$\mathrm{O}_{\mathrm{a}}=$	2	
Water	$\mathrm{H}_{2} \mathrm{O}=$	2	3 "
Ammonia	$\mathrm{NH}_{8}=$	2	4 "
$\text { Ozone } \mathbf{O}_{\mathbf{2}}+\begin{aligned} & \mathbf{O}_{\mathbf{2}} \\ & \mathbf{O}_{\mathbf{a}} \end{aligned}$	$\mathrm{O}_{\mathrm{O}}=$	2	3 3

The last instance illustrates the action of substances in the "nascent state" as well as the nature of molecules, for while the normal molecule of oxygen is 2 atoms, if one such molecule can be broken up, ita constituent atoms can force themselves into 2 other molecales, and then 3 volames condense into 2; but owing to the t6ndency to lapse into true normal molecules, this union of 3 atoms is unstable, and the third atom is held by a feeble bond ; hence the chemical energy of ozone and its many curious properties.
Nascinv. - It is found that substances have - mach greater chemical force at the instant in Which they are being set free from combination than when they are free bodies. They are then called "nascent." Most of the processes of electro-metallargy are considered to be effeoted by secondary electrolysis, through this action of nascent hydrogen. This special energy is supposed to be owing to the substances (or radicals) being then in the atomic instead of the molecular condition, and therefore having all their chemical energy or attractions engaged in seeking a combination. It is commonly the case, also, that a radical cannot be set free at all, unless in the presence of some other bodies with whioh it is oapable of uniting. (See Molecale.)
Nrgative.-In the battery, the copper, oarbon, or platinum plate.
Negative Pole.-Cathode, platinode.
Negative Ions.-Oxygen and acid or chlorous radicals.
Notatiox.-The mode of expressing chemical substances and reactions by their symbols. (See Equivalent.) There are many modes of expressing the same things in different formula acoording to the special theory of constitation adopted, or the particular view of the matter intended to be described; and there are two distinct systems in use.
$=$ the Equivalent. - This system, nsed in all the old books, is based really on oxygen (which was called 100), and the weight of hydrogen which combined with oxygen being called 1, the equivalents of other substances were afterwards reckoned from this. Hence water is in this system called ${ }_{1}^{\mathrm{HO}} 8=9$. This system will, for some reasons of practical convenience, be used in these papers.
$=$ the Atomic. - This, which is called the " New Notation," is generally adopted in all modern chemical books. It is based on the fact that water contains 2 measures of hydrogen to one of oxygen, and this being conceived to show the atomic relations, water becomes $\mathrm{H}_{2} \mathrm{O}$, and H being called 1 as to weight, it becomes necessary to call $0=16$, and in consequence most of the metals have their weights similarly doubled as compared with the equivalent notation, while the number of atoms of those which are unchanged (the monovalent elements) have to be doubled. The following example of the action of salpharic acid upon nitrate of sods exhibits the two systems :-

Equivalent.

Salt.	Acid.	Salt.	Acid.
$\begin{gathered} \mathrm{Na}, \mathrm{NO}_{6} \\ 2 \mathrm{~S}_{62} \end{gathered}$	+ $\mathrm{H}, \mathrm{SO}_{4}$	Na, SO	$\mathrm{H}, \mathrm{NO}_{6}$
	148	2348	162
	Atomic.		
$2 \mathrm{Na}, \mathrm{NO}_{3}+\mathrm{H}_{2}, \mathrm{SO}_{4}=\mathrm{Na}_{2}, \mathrm{SO} \mathrm{S}_{4}+2 \mathrm{H}, \mathrm{NO}_{3}$			
2 Ca	296	4698	162

This means that nitrate of soda on being mixed with sulphurio acid is decomposed into a fresh acid and salt, salphate of soda, and nitric acid.
Orm.-The unit of resistance, called the British Association unit. (See Units.)
Onm's Laws.-These formaly, devised by Ohm, enable us to caloulate from certain data all the information we require. The symbols should represent fired anits (see Units) to obtain definite resalts. Otherwise they are merely comparative.
\mathbf{E} stands for olectro-motive force, \mathbf{R} for resistance, C for current. Any two of these being known we can calculate the third; thus knowing
the force of the batteries to be used and the resistance of airouit, which mainly depands in electro-metallargy on the size of the plite., we can tell how much metal will be deposit ra in a given time, and therefore regulate the rate of deposit by adding to or diminishing the cells of the battery, \&c.
Current $\mathbf{O}=\frac{\mathbf{E}}{\overline{\mathbf{R}}}$
Resistance $\mathbf{R}=\frac{\mathbf{E}}{\overline{\mathbf{C}}}$
Electro-motive Force... $\mathbf{E}=\mathbf{C} \times \mathbf{R}$.

In these formulse the eymbols represent the total forces and resimanoes of the cironit, which are ascertained from their several component parts.
For the details of thene laws, see No. 330, Vol. XIII., p. 423.

Ozone.-See Molecule.

Platinods.-Daniell's term for the cathode, or that plate in any coll whioh does not dissolve.
Polarisation.-The act of arranging the anbstances which form an electric circuit in a polar order or chain of + and - radicals, presentod towards and reacting on each other. It resembles the arrangement whioh takes place in a number of magnetic needles which arrange themselves in an order of NS, NS.

Polarisation of Plates.-This very confasing and absund term is applied to an aotion which occurs whenever the current passes from liquid to solid conductors: there forms on the surface of the latter a film different from the liquid. In the voltameter a coating of oxygen and hydrogen gases condenses on the plates; in the Smee and other single acid cells a coating of hydrogen forms on the negative metal ; in a decomposition cell, ray of sulphate of copper, the cathode is soon surrounded with an soid liquid, while the anode is apt to be coated with orystals of sulphate, owing to the concentrated state of the surrounding liquid. In all these cases not only is a greatar resistance introduced, bat an electromotive force is generated, oppoaing that of the current, so that if suddenly conneoted to a gelvanometer, and the main circuit broken, a reverse current will be maintained for some time. On this principle are constructed, for some purposes, what are called "Secondary Batteries."
Poles.-The wirea, plates, \&c., leading from the buttery ; their name is the opposite of that of the plate they lead from, thus the zinc is the positive metal, plate, or element of the battery, but the wire leading from the zinc is the negative pole.

Positive. In the battery, the zinc plate, in a deoomposition cell, the anode.
Positive Pole; + the anode, the zincode, by which the current enters.
Positive Ions; hydrogen, metals, and basic radicals.
Quantity.-A term based on the idea that electricity is an actually existing element having quantitative relations to chemiosl sotions similar to the atomic weights of the material elements. The definition applicable to existing ideas of the nature of electricity will be found under "Current."

Radicals.-Either elementary atomg, or compound bodies whioh sot like atoms, retaining their completeness and individuality through a series of chemical changes. It is considered that the acids are formed of such radicals, whose attractions are satisfied by hydrogen, while salts are the same radicals satisfied by metals or compound basylous radioals. These radicals are the ions of the theory of electrolysis. Many radicals, indeed most of the acid radicals, are incapable of existence as separate bodies, and the same is the case (at least, in ordinary conditions) with the most important oompound basylous radical-viz., ammonium, NH_{b}, which possesses the reactions of a metal analogous to potessium, bat whenever set free breaks up into ammonia and hydrogen $\mathrm{NH}_{8}+\mathrm{H}$.

Basylous	Chlorous
Electro-positives	Electro-negatives
Cations	Anions
Hydrogen	Oxygen
Metals	
	Chlorine

Acid Radicals
Resistance.-The opposi the areait to the x...limmen
aircait to th
in degr
conduc
oalled non-conductors. Whatever the special substance however, its actual resistance may be expressed in any common unit; thus we may describe the resiatance of a decomposition cell as equal to so many feet of a given wire. The unit of resistance now generally employed is the ohm.
Resistanoe requires to be considered in the varions seations of the circuit as "internal," that of the battery itsalf, and "axtormal," that of the work to be done, the conductors leading to it, and any measuxing apparatus employed.
Resistanoe, when it is not work in some form, always converts the energy of the current into heat.

Bee Ohm's Laws and Units.

Tevsiov.-The strain pat apon the circnit by the electro-motive foree; it may be regarded as a single amoontst, or as + and - equal in opposite directions from the source. At the source it ts eqnal to the electro-motive force; calling this 100, it falls thronghont the circuit in exact proportion to the resistanoe ; it is, in fact, used up in passing the ourrent agsinet the reniatance ; the effect of tension will be explained hereafter.
Unirs.--Any axed measures may be used, but I shall only refer to those employed in these papers; for discussion and comparison with other units see No. 293. Vol. XIL., p. 147, and No. 299, p. 2S", Vol. XII.

- the Absolute are based upon the units of mass, length, and time, 1 gramme, 1 metre, and 1 second; and the fundamental unit is that force which can generate a velocity of one metre per second; gravity being a force of 9.811 such units (or $32 \cdot 2 \mathrm{ft}$. per second). For practical use larger anise have bean devised by the British Association, riz:-
- Electro-motive Force and Tension. - The Volt $=10^{s}$ or 100,000 absolute units. The Dariell's cell, that is the ohemical affinity of zinc displacing copper from its union with sulphario radicel, is 1.079 Volts; and, therefore, for rough purposes may be taken as a Volt.
- Resistance, the $\mathrm{Ohm}=10^{7}$ or $10,000,000$ absolute units ; Ohm ceeasares made of Germansilver wire ean be obteined of scientificinstrument makers, and from them instraments for meaonring resistances can be made as described in No. 305, Vol. XII., p. 435.
- Current.-The Veber, $\frac{10^{5}}{1 \theta^{7}}=10_{2}$ or 01 absolute unit per secoed. 1 Veber docomposes -00142 grains of wator.
- the Chemic.-The unit of oufrent is much more conveniently based apon an equivalent of chemical sction, or quantitative resalt, and the unit I shall use in these papers will be a current effecting one equivalent of chemioal action (in grains) per ten hours. (See Equivulant.) 1 current of 1 Veber per second is equal to $5 \cdot 68$ of these units, therefore in any calculations (see Ohm's lavs) the unit of electro-motive force (the Volt) would have to be multiplied by 5.68 to give the result in chemical units, and a force calculated from these units would be divided by 5.68 to express it in Volts. This unit I will for convenience call a "Chemic." A chemic, therefore, is a rate of current which in a second is equal to 17606 of a Veber, wad would inten hours deposit or set free 1 equivalent in grains of any element or ion.
- Current and Energy.-See Eqaivolt.

Vrber.-See Unite of Carrent.

Vour.-The with of Elentro-motive Force and Tension. (See Units.)
Voxtametern-An apperatas for measuring the current by its chemical action; the term is current by its chemical action; thand limited to a vessel provided with two platinum poles for the decomposition of dilate acid and with tubes for collecting and measuring the gases given off. It is of little practioal use, as it gives great resistance and no more information than a properly graduated galvanometer which has little zesistance. It is, however, useful theoretically, and also for graduating galvanometers to show really quantitative measares instead of mere angles of deflection. (See Galvanometer.) The voltameter and its principles are described in No. 290, Vol. XII., p. 76.
Wire.-For gauges and properties of copper wire ; the resistances and weights of various sizes, see No. 317, Vol. XIII., p. 97.

Zincode.-Daniell's term for the anode.

LESSONS ON CHEMISTRY.*

By Belimo R. Bottone.

(Late of the Istituto Bellino, Novara, Italy.) (Continued from p. 243.)
D. Dithionoub Anhydride. Synonym: Hyposulphitrous anhydride. ${ }^{1}$ Symbol: $\mathrm{S}_{2}{ }^{\prime \prime} \mathrm{O}_{2}{ }^{\prime \prime}$. Molecular and combining weight: 96.

181.-This body is as yet nnknown in the separate state. Combined with the elements of water it forms:-
D2. Ditrionaus Acti. ©ymompm: Hyposulphurous aoid. ${ }^{3}$ Symbol: $\mathrm{H}_{2}{ }^{\prime} \mathrm{S}_{2}{ }^{\prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}$. Molecular and combining weight : 114.
182.-Properties.-This body is soarcely known in the free state, owing to its tendency to decomposition. When a sulphite (see 163) is boiled with salphar, or when sulpharous acid is added in excess to a mixture of sulphar and a soluble base (see 169), sulphur is taken np , and a salt containing this acid is the result. Thus :-
Sodiam Sulphite. Sulphar. Sodium Dithionite.
$2 \overbrace{2 \mathrm{Na}_{2} \mathrm{~S}^{\prime \prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}}+\overbrace{\mathrm{B}_{2}{ }^{\prime \prime}}=2 \mathrm{Na}_{2} \mathrm{~S}_{2}{ }^{\prime \prime} \mathrm{O}_{3}{ }^{\prime \prime}$.
If an aqueous solation of any dithionite be acted on by acetic acid (or, indoed, any acid which does not prodace much hest on admixture with water) it aoquires a fall golden yellow oolour, owing to the liberation of hyposulphurous or dithionous acid. If the mirtare be maintained at a very low temperatare the hyposulphurans acid produced remains machanged for a considerable lapse of time, consequently the yellow liquid remains olear and transparent. If the temperature be allowed to rise above 32° Fahr., the acid is rapidly decamposed, sulphur boing deposited and sulphorous acid eliminated, thas :-

$$
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{8}
$$

Owing to its instability dithionous aoid is of no practical use, as such, but combined with sodiam, as sodium dithionite or hyposulphite, it is lergely employed by photographers to dissolve away the unaltered giver salts used in the various photographic processes. Large quantities of sodium hyposnlphite are prepared at Newcastle-on-Tyno by the following process:-8 parts of orystallised sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, are well mized with 1 part of sablimed sulphar, and the resulting mixture is thrown into a vessel containing 16 parts of rain water. Sulphurous anhydride is now passed through this mixtare until it acquires a distinctly acid reaction. The mixture is then boiled for a short time, filtered, and after conoentration set aside to crystallise. The reactions which take place may be easily understood on examination of the amexed equa-tion:-
$\mathrm{Na}_{2} \mathrm{CO}_{8}+\mathrm{S}+\mathrm{H}_{9} \mathrm{SO}_{3}=\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
183.-Oar knowledge of the hyposulphites is due to Gay-Lassac, who first made them known onder the pame of sulphuretted sulphites.
e. Ditmonic Anhydride. Synonym: Hyposulphuric anhydride. ${ }^{3}$ Symbol: $\mathrm{S}_{2}{ }^{\prime \prime} \mathrm{O}_{6}{ }^{\prime \prime}$. Combining weight: 144.
184.-Unknown in the separate state.
e2. Dirhionic Acid. Synonym : Hyposulphuric acid. ${ }^{4}$ Symbol: $\mathbf{H}_{2}{ }^{\prime} \mathbf{S}_{2}{ }^{\prime \prime} \mathrm{O}_{6}^{\prime \prime}$. Combining weight : 162.
185.-Propreties.-Dithionic acid is a colourless inodorous fluid, having a specific gravity of 1.347. It possesses a strong sour taste, and has all the properties of an acid. By exposare to heat it is decomposed, splitting up into sulphurous anhydride and sulpharic acid, thus :-

$$
\mathrm{H}_{8} \mathrm{~S}_{2} \mathrm{O}_{6}=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2} .
$$

Neither the scid itself nor its salts have found any application in the arts.
186.-Preparation.-When a stream of sulphux dioxide is cansed to pass through ice-cold water, in which is anspended manganese dioxide, this latter gives ap half its oxygen to the sulphar dioxide, being thereby reduced to the state of monoxide, while the sulphur dioxide is transformed into dithionio acid. The following equation will render this clear:-

$$
2 \mathrm{SO}_{2}+\mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{MnO}+\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}
$$

[^13]${ }^{3}$ Dithionic or hyposulphuric acid.
4 Hydrogen dithionate or hyposulphate.

The resulting dithionic acid immediately combines with the manganese monoxide to form manganese dithienate, $\mathrm{MnS}_{\mathbf{2}} \mathrm{O}_{6}$. From the manganese dithionate the acid may easily be obtained by treating the solation with an equivalent of sulpharie acid, evapormeting to eceparate the manganese salphate formed, and concentrating the flaid until it acquires a specific gravity of 1.347 .
F. Trithiontc Axhydrides. Symbol: $\mathrm{B}_{3}{ }^{\mathbf{n}} \mathrm{O}_{5}{ }^{\circ}$. O_{0} Abining weight $: 196$.
187.-Not known excopt in combination.
r2. Trithionic Aoto. Syaonym : Sulphuretted hypooulphuric acid. ${ }^{6}$ Symbol: $\mathrm{H}_{9}{ }^{\prime} \mathrm{S}_{8}{ }^{\prime \prime} \mathrm{O}_{6}{ }^{-}$. Combining weight : 194.
188.-This body is very similar to dithionous scid. It differs from it in being mach marestsble. On boiling the coucentrated solution, it is reselved into salphur, ealphur dioxide, and enlphoric acid. Thas:

$$
\mathrm{H}_{2} \mathrm{~S}_{8} \mathrm{O}_{8}=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{8}+\mathrm{S} .
$$

This aeid is of no pratioal importance.
g. Tetrathionic Anhydbide. ${ }^{7}$ Symbol: $\mathrm{E}_{6}{ }^{\mathbf{N}} \mathrm{O}_{5}{ }^{\prime \prime}$. Combining weight: 208.
189.-This body has never been isolated.
a2. Tetrathionio ActD. Synomym: Bisulphuretted hyposulphuric acid. ${ }^{8}$ Symbol: $\mathrm{H}_{2} \mathbf{B}_{4}{ }^{\prime} \mathbf{O}_{6}{ }^{\prime \prime}$. Combining weight: 226.
190.-Resembles dithionic acid. Its salts may be abtained by acting on a dithionite with iodine, when an iodide of the base is formed simaltaneously with a tetrathionate. In the case of sodinm dithionite (hyposnlphite of sods), the following equation illnstrates the changes which take plaee:-
$2 \mathrm{Na}_{2}{ }^{\prime} \mathrm{S}_{2}{ }^{\prime \prime} \mathrm{O}_{8}{ }^{\prime \prime}+2 \mathrm{I}^{\prime}=2 \mathrm{Na}^{\prime} \mathrm{I}^{\prime}+\mathrm{Na}_{2}{ }^{\prime} \mathrm{S}_{4}{ }^{\prime} \mathrm{O}_{6}{ }^{\prime \prime}$.
From the tetrathionates, the acid may itaelf be obtained by the action of a dilute acid. It is very instable. Owing to the ease with which it loses sulphar, it was formerly employed in photography for sulphur-toning.
h. Peitithionic Ashixdeine. ${ }^{9}$ Symbol: $\mathrm{S}_{6}{ }^{\circ} \mathrm{O}_{3}$ ". Combining weight : 240
191.- Iike the other anhydrides of ita alass, this body has not been isolated.
h2. Pentathionic Acid. Synonym: Trisulpharetted hyposulphuric acid. ${ }^{10}$ Symbol: $\mathrm{H}_{\mathbf{2}} \mathrm{S}_{5}{ }^{*} \mathrm{O}_{8}{ }^{"}$. Combining weight : 258.
192.-This body is prepared by passing a current of hydrogen sulphide into a solation of sulpharous acid. It is a colourless, ioodorous floid, of an acid, bitter taste. By the action of heat it is resolved into sulphar, salphario acid, hydrogen sulphide, and anlphur dioxide, thus:-
$2 \mathrm{H}_{2} \mathrm{~S}_{5} \mathrm{O}_{\mathrm{B}}=\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{S}_{4}+4 \mathrm{SO}_{2}$.
Section 7c.-Compounds op Sulpher wite Chlobine.
a. Chlofiri Monosulphide. Symanym : Protschloride of sulphur. Symbol: $\mathrm{Cl}_{\mathbf{o}}{ }^{\prime} \mathrm{S}^{\prime \prime}$. Combizing weight : 103.
193.-Propreties.-This body appears es a thin, brownish red liquid, having a specific gravity of $1 \cdot 620$. It boils at about 147° Sahr., but is deoomposed on boiling with evolution of chlorine. It has a disagreesble penctrating odour, fumes strongly in the air, and poseseses 2 hot, bitter, and acid taste.
194. - Preparation. - Dry chlorine egs is passed for several days through flowers al snlphar. The resulting liquid is cautionaly dis tilled at a temperature not exceeding $15 j^{\prime}$ Fahr. ${ }^{11}$ A varisble mixture of this subatanee, Fahr. with the next described, is largely used in the preparation of vuloanised indiarabber.
b. Chlonine Disulphide. Synonym: Subehlorde of Sulphur. Symbol: $\mathrm{Cl}_{2}{ }^{\prime} \mathrm{S}_{\mathbf{2}}{ }^{\prime \prime}$. Conabiaind weight: 135.
195.-Propertirs.-A dark yellow oily liquid, having a specific gravity of $1 \cdot 686$, and a boilicy point of 280° Fabr. Its taste and smell are similar to those of the monosulphide. It also fumes on exposure to air.

[^14]196.-Preparation.-By long continued boiling the last described compound gives off chlorine and is resolved into this body, thas:-

$2 \mathrm{Cl}_{2} \mathrm{~B}=\mathrm{Cl}_{5}+\mathrm{Cl}_{2} \mathrm{~S}_{2}$.

Stction 7n.-Compounds of Sulphue witt
Browine. Bhomine.
Sbction 7e.-Compounds or Sulpidi with Iodine.
197.-Compounds similar to those containing sulphar anited to chlorine exist; in which the sulphrar united to ehiorine exist; in whion whe
chloxine is replaoed by bromine, or by iodine. They are of no prectioal nee. No compoond has yet beear deseribed containing sulphur and lioctane.

OUR REOD SUPPLY AND THE SEFWAGE QUESTION.

By Heney Mac Cormac, m.d.

IAM not an agricaltural man, but I take the ntmost interest in agricaltoral progress. The loss of ammoniacal ingredients and phosphates of
transition I have long deplored; and very often have transition I have long deplored, and very often have subject. I have now done so, and describe the
means by which I would parpose to socomplish the important resalt of effectively reseaing the now lost azota, lime, and phosphoras of transition. Without further preface, therefore, I ahall proceed to read
my Eianayon "The Economic and Effective Arrest of the Lime, Phosphoras, and Azote of Traneition, through the medinm of a prepared Humas or Soil, and their application along with that of ordinary
excreta to pupposes of agriculture." The liquid excreta to purposes of agricalture."
phosphate of lime now gells for some £20, and
ammonis sithem ammonia at from $£ 80$ to $£ 100$ per ton. Vast
quansities of these importent substances are imported from abroad, and very largely fabricabed at
homer But whatever be the aotual amount made home But whatever be the aokual amount made
use of, the supply of animal and mineral phosphates and preparations of ammonia falls far short of the
requirements of the soil. Everything, speaking requirements of the soil. Everything, speaking
of alimentary substances, which the earth is made to yield ought to be returned in some shape to the soil. This plain and indubitable
canon is nevertheless violated continually. What canon is nevertheless violated continually. returned to the land. Fluid and solid fecu-
lence, instead of being deposited in the soil, is lence, instead of being deposited in the soil, is terior of human dwellings as well; or gathered in cesspools or trailing sewers, contaminates the atmo-
splera, violating self-respect and haman dignity, eppere, violating self-respect and haman dignity,
and every where promoting discomfort and disease. Agricalture, properly conducted, would enrich the earth, whereas it positively impoverishes it, so that foreign ingredients-apatite from Spain or Amerioa,
and guano from the Cbinche or other islands-are and guano from the Chincha or other islands-are needful to prevent the land from wearing out, a
spectacle which Maryland and Virginia, as I have witnessed, farnish on a large scale. As it is, the yield is vaslly less than are our requirements, and much, very much, less indeed than what with proper management our forty or fifty millions of acres
might be made to afford. The better the soil is treated, the more it will retarn, and the worse and more grudgingly it is treated the less it will return. Bad treatment involves bad and insufficient returns, Whereas good treatment involves copions returns,
abundant corn and green crops, plenty of milk and abundant corn and green arops, plenty of milk and
bntter and eggs, any amount of legs and shoulders of matton, ribs and rounds of beef, flocks of ponltry, fitches of bacon, and well nourished, instead of
half-starred, impoverished men and women. The half starred, imporerisbed men and women. The
food sapply in these islands, thongh rolatively less both in quantity and quality than what it ought to be, is still absolutely very considerable. Taking the returns made in June last year there were then, fractions omitted, some nine millions of horned cattle on hand, thirty-one millions sheep, and four millions swine, irrespective of imported cattle and preserved
meats. And yet of the thirty-one and a half millions constitnting the popalation of the United Kingdom, very considerably more thun one-half almost never taste batchers' meat at all, and of those who do, the meat supply mifht often be most advantageously tho equivalent of spade labour, and house feeding. the corn yield and the meat yield of our acres might be doabled, possibly trebled, at once. Of course stalled animals wonld be the better of a little daily outing, with strict attention to stall ventilation and
stall cleanliness as well. As at present conducted, stall cleanliness as well. As at present conducted,
the feeding of stock, horn cattle, and horses alike is conducted with the greatest possible waste; the land is not adequately utilused, and the manure supplies or possible manare supplies, are in a great measure
dissipated and lost. Now, as maduro is of guite as dissipated and lost. Now, as mapure is of quite as much moment as the soil itself, and as manaring onght to be carriad to as great an extent as the ail
will prositably take it in, it is of the very greatest urgency that no available particle of compost should be wasted. It is quite as important to save manure as to rcap grain or to feed stock. One, in faot, is the needful correlative and complement of the other.
And yet the collection of manure is most imperfect,
and what is actually atored past is exposed to almost every element of waste and decay at once overbead and under foot. In andition to the proper storage and preservation of manure, in respect of which the prootice of the Chinase colonists in Jsva seems to me deserving of special attention and considuration, I propose that the solid and tiand excreta of man and brates should be commingled with a prepared
humas or soil, consisting of the following ingrehumus or soil, consisting of the following ingre--
dients, as well calculated to insure the desired results:-

Pre	lb. or par	
Perfectly dry humas or soil		0
Calained gypeum powdur, from	..	10 to
Common alum, from	...	
Oopperas (green), from	...	
Sulphuric acid, from		1 to

These ingrediente and the proportions hold equally good for a thousand or ten thousand tons as for a single hundredweight, duly comminated and commingled, constitate a very effective disimfectant and
deodoriser and vehicle. The cost of a thousand tons of earth or soll I need not specify, but I may mention that common gypsum may be had at some £1 10s. per ton, sulpharic acid and sulphate of irou at 78. 6 d., and alam at 10 s . per handredweight. The humus or soil has its own great especinl mevits while the three sulphates, along with the sulpharic acid, combine their several atilities and constitate an admixtare well adapted to the objccts in viewnamely, the effective and inoffensive conservation of the products of animal waste and decay until thoy can be returned to the soil. This admixture will grasp the ammonia compounds, whether in esse or in posse, firm and fast, and as for the phosphates, Every farmsteading, according to its dimensions Every farmsteading, according to its dimensions
and requirements, onght, at the ontset of every year, to be provided writh handreds or thousands of tons of this prepared humas, properly stored, and a hand in order to be effectively utilised. The ordinary summer soil, dried and levigated, answers every
purpose as a main ingredient; clays, however, calpurpose as a main ingredient; clays, however, calrefuse of brick and limekilns, road dost, turf, and coal ashes, charred seaweed and charred peat, so fa as the sppply sufficed, might also be had recourse to The foregoing effective and economic compound might further be advantageously employed wherever animal waste was liable to be deposited, as in provision stores, slaughter-houses, sheep-pens, fowl hoases, catgat factorips, knackers-yards, pigstyes, blishments, and the like. The waternow employed in the closet system, leading as it does to extended cesspools beneath the level of the streets, fouling the rivers and foreshores of the sea, onght to be entirely saperseded by sanitary humus instead. The
importance of common soil as a deodoriser and disinfectant, as we find from Roman and Israelitish records, was not unknown to the ancients. By the moderns its utilities have been strangely neglected. The inhabited surfaces of India are dense with trodden-down ordnres. The towns and villages of Europe are in little better case. And yet feculence of whatever dcscription onght to be consigued to ourdwelling. places or a moment suffered to pollate associate with ns. In my treatise entitled "Moral Sanitary Economy," puthlished some twenty years ago, the subject was dwelt upon in the strongest terms. The resultant admixture of sanitary humus and feculence, fluid and solid, might be preserved antil needed in suitable receptacles, slate or brick lined, or dried as in the sample now exhibited, by a moderate temperature in kilns or otherwise. The sooner, however. the procedare here described could
be resorted to, the better would it prove, at least, if we are to realise the greatobjects to be accomplished The recent bones of a horse or ox weigh, let us say, from 80 lb . to 10 lll l ., of a man from 11 lb . to 151b., of a sheep or swiue from 101b. to 15 lb . per cent. of its living weight. Now, all the phosphorus, or if we prefer the expression, all the phosphates of along with all the azotised excrata, or possible ammonia which, gnided by the laws of tissue metamorphobis, I calculate at one-half the amonnt of the phosphates, that is to say, all the boues and all the tlesh of any given auiunal find complete transit from within to without, in about ten weeks or so, mainly through the kiducys and allicd structures and, owing to our present treatment of proportions
almost atterly lost and dissipated. The prop and the time as above stated, though not absolutely are approximately trae. inasunch as tissue change
is mach more rapid with some than others, and with is mach more rapid with some than others, and with
young animals and children at least twice as rapid Otherwise, the calculations are founded on physio losical data, and in the main correct. Suppose we take the horse or ox in illustration. During each and every year of its life, then, this animal, and other animals in proportion, sheds or expends, be dapois of the phosphates, and about five handred weight of nitrogenous compounds, both of which allimportant snlbstunces. human wants and the re tively lost and dissipated as if that phosphoras ani
that nitrogen were actually thrown into the great deep, a destination indeed which, for the most part they positively incur, or as if the anuaad tens of millious sterliug which. the lost phosphates and am monia of transition may be supposed to smount to were squandered similarly. By the jodicious appli cation of sanitary humus, the nitrogenous and phos phatic compounds, the amount formished' by' the individual maltiplied by the grand aggregnte o living heings, might, I believe, be effectively surved and atilised, thus supplying a mine of wealth to which all the Potosis and Golcoudas in existence were the merest tritites in comparison. In effeet animal waste both finid and solid, could be turned to full account, the general health and well-bein prodigiously enhenced, and the yield of the sei multiplied to an extent to which I am quite incompetent to fix a limit.

INSTITCT

THE following is a summary of the Lowell Lecor subject deivered by Proresso Chadbourne, for which we are indebted to the Bostor Journal of Chenistry :-
The nature of Instinct is not defined till its maniestations have been carefully investigated in all their diversity of modifications. It is at length de fined to be " $n n$ impulse to a particular kind of voluntary action which the bemg needs to pariorm as an individual or representaive of a species bat he needs to act." it "includes all the original impulses, excepting the appetites;" and also includes puises, exoepling the appetites; and aso inalades endowed, which experience may call into exercise endowen, which experience may call mive extercise,
but which it does not give." The appetites are regarded as functional and as proper conditions for the activity of certain instincts. The operations of instinct are simulated in inorganio nature, and on a still higher scale in plant life. The catch-lly pour out a sticky fluid whioh holds the amaller ingeots. The Venus's ily-trap puts forth leaves fashinned to act like barbs for holding their prey. The pitcher plant begailes insects down into its deep cavern aloug hairs pointing downward that hinder retreat. The provisions for the fertilisation of plants, for the diffnsion of the seeds, and for the securing of them in places favourable to their germination and development, are in many cases exceedingly like instinct. Plants, like some animals, even becone protectors 'to other species of life: as the onk form a gall or oak-apple which serves as a home and food for the gall-fly. The first connection of Inetino with these instinct-like processes is seen in the provision for the noarishment of the young anima ife. The raising of the head and the opening of the bill to recoive food by the young robin, to which the act of the parent bird in supplying the food is corresponding act of instinct, is an example.
Pare instinct needs no experience. It goes bofore to preserve life until knowledge from experience i possible. It works by a wisdom of which its pee sessor has no appreheasion. The theory of trans mitted skill involves an ancestry oertainly of mar vellons ingenuity. How did they come by it? How did the species survive till these geniuses appearsd The theory of natural selection accounts for the survival of the fittest ; but how does it acoonnt for that characteristic in the anfmal by which it preserves itself? Hibernating animals feed voracionsly in the antamn, when food is abundant, and aconmulate fat to an unwonted degree; instinot then leads them to their winter's retreat, when the whole rital activity is so redoced that ufe is maintaine for months without food. How were the species preserved till the changes in structure and function corresponding to theee hibernating habits wer effected ? Then we find some species of animale dependent for their preservation on other species. The caw-bird lays its eggs in the nests of other birds. The owner of the nest hatohes the eggs and nourishes the young as its own. When mature, the foundling forsakes its home and all the birds it has over known, to soek its own species, hatched in scattered nests, and mates and lives henceforth with them. Darwin tries to gocount for the hesagonal cell of the bee on the principle of economy The bee wishes to save as much as possible of honey from going into war. Bat the question is, how came the bee to be a builder at all? Nor does the existence of the instinct to build such cells tarn on the continuance of bee-life throngh the winter, as Darwin would have it. For some wasps, that perish very fall, leaving only eggs to perpetuate th species, build mathematical cells like honey bees.

The Pianoforte. There are in a good pianofor!e of seren and a hall octaves, when completed, 314 strings, making a total length of 787 ft . of ateol wire, and 500 ft . of white (covered) wire. The total namber of strings, when properly stretched to prodace the righ lurce with which one end of thepianu is drawn towarís the othor end, and it explaing the reasun why good pianos are bailt yo strngely and eo hearils. Such a pian will weigh from 9001 lb . to $1,0001 \mathrm{~b}$., and will last. wit oonstant nge, not abuse, trenty to irenty- iyo year

THE HOLTZ ELECTRICAL MACHINE.
THIS machine, invented by Herr Holtz, of tion of one form of whin illustration and description of one form of which we gave on p. 90 , seems
to be gradually riaing into favour, and obtaining an increased share of the patronage of experimentars and leoturers on electricity. It is one of that oless of maohines the type of which is sees in the well-known electrophorus, in which the eleotrioity is "ganerated" or devaloped by the continuous induotive action of a body already charged, as contradistingnished from that olass in which the effeots are produced by friction. It consists of two thin glass plates, one a trifle larger than the other, the smaller being made to revolve in olose proximity (about an eighth of an inoh) to the larger, whiah is fixed, and has at opposite ends of a diametar two windowt or apertures. Along one of the edges of each of these windows, and partly covering the aperture, a strip of paper is glued, having a point, or tongue, projeoting into the opening and pointing in the opposite direotion to that in which the smaller glass plate is revolving. Opposite the windows, but eeparated from them by the revolving plate, are brass conductors with points, generally denominsted "combs," whioh, being connooted with other rods and insulated, convey the electricity to the discharging knobs. To put the machine in action it is essential that the atmosphere should be dry, and this desideratum being seoured it is only necessary to electrify one of the armatures and put the revolving plate in motion to obtain sparks varying in length from 2 in . to 8 in ., according to the size of the machine, and according to the degree of electrification of the armatures, the latter condition being limited solely by the completeness of the insulation. Thus, as the motion of the revolving plate is oontinued, the armatures become more and more atrongly eleotrified, and the conducting rods being affected in a similar manner, the discharging knobs msy be gradually withdrawn further and farther apart, and the length of the spark inoreased as far as the capabilities of the machine will allow. But the prime neoessity is a dry atmosphere-moisture or dampness in the air boing an effectual bar to the sucoessful operation of the machine. The armature is generally charged, and the electricity induoed, by striking a piece of ebonite or vulcanite, as it is indifferantiy termed, with flannel, or preferably catakin, but a glass cylinder, tube, or plate, excited by friotion with a silk handkerahief, will be found to give almost equally good results. The electrified ebonite or glass being brought near to one of the armatures, and the machine put into motion for a few seconds, the discharging knobs having been patinto contaot previously, eleotricity is speedily developed, which may be known by the strong smell of ozone, the hissing noise, and the increased reaistance experienced by the hand in turning the crank, and in the dark by the fringes of light whioh appear on the points of the conductors and the paper tongues. If the discharging knobs are now gradually withdrawn a oontinnous stream of eparks will pass so long as the machine is continued in motion; bat care must be taken not to separate the knobs by too great a distance, or the action of the machine will coase, and it will be necessary to begin de novo, as will also be the case if the morable plate is allowed to stand still for a few minates.
The Holtz maohine of the original design is cateris paribus more powerful than the ordinary machines ; but it is said to be impossible to obtain sparks of greater length than four or five inches, unless accessories, such as the two condensers, H H ${ }^{1}$, shown in the illustration at p . 90, are employed. These condensers are, in fact, small Leyden jars, and are coated with tinfoil inaide and out for about a fifth of their height. With their assistance sparks of 8 in . or more may be obtained.
It is obvious that the handiest method of srranging the plates is that shown in the figure referred to, but within recont years Holtz has introduced a modifed form of his machine, in which the plates are arranged horizontally, both being made to revolve, but in opposite directions. In this design the "windows" and armatures are dispensed with, bat four "combs" are employed, two sbove the upper plate at the opposite extremities of a diameter, and two below the lower plate at the ends of a diameter orossing the other at right angles. Esoh of the two upper combs is conneoted through the conductors by means of a brass rod with one of the lower combs, and the electricity is induced by holding an electrified -ctor of ebonite orer the apper plate opposite to
one of the lower combs. The action of this modiflastion is exactly similar to that of the original machine, and it is, of course, governed by the same diffioalties as to the duration of its sotion. These difficulties, have, however, been overcome to aconsiderable extent by Poggendorff, who increases the size of the armatures and adds a second pair of combs, connected together somewhat in the fashion of the modifiostion by Herr Holtz, mentioned above. We have no practical aoquaintance with Poggondorffs modification, bat we have reason to believe that a machine which formerly could be induced to yield a spart of only 8 in . or 4 in ., by this simple means can be made to develop sufficient eleotricity to give a spark of 8in. or 9in. ; while, best of all, the maohine remains in action if the knobs are separated to the extreme distance, or the movable plate allowed to remain still not merely for minates bat for hours.* A Mr. Ritohie, a philosophical instrument maker of Boston, Mass., has also improved the Holtz machine, by constructing the fixed plate as shown in the annexed engraring, whioh gives the ordinary deaign (Fig. 1) with windows, and the improved form or Bitchio

sector (Fig. 2). We understand that small instraments on this plan exhibit greater effects than machines double the size of the ordinary construotion. Professor Henry Morton, however, has commanicated to the Journal of the Franklin, Institute a further modifiostion, which is claimed to be a great improvement on the Ritchie design. This has been invented by Mr. C. Van Brunt, who describes his amended Ritohie Holtz as being "evidently near perfection." An inspection of Fig. 2 will show that inatead of a plate with windows Ritohie employs two sectors, and considerably inoreases the size of the armatares. In the experimente made by Mr. Van Brunt he discovered that a series of paper points instead of the one tongue considerably improved the action of the machine ; that short points are as effective as long ones; that the increased eize of the armature was not only a deoided gain, bat that an armature of a good conducting material was better than an ordinary paper one. Under these circumstances he was led to arrange a machine
*We bellieve that several of these Holta maohines are In wee in the colloges of the United 8tates, and it it probsble that some of our correapoodenta there ean give us rellable information on the sabjook.
with an armature of tin-foil and paper, the latter, however, being used as an insulator. The modification is shown in Fig. 8, where \mathbf{A} is the paper and B the tin-foil. The paper A, which mas be the ordinary paper sapplied with the machine, should be about the width of the collecting points; the outer edge being opposite to and level with the edge of the revolving plate indioated by the dotted line. According to Mr. Van Brant, the paper should not hang over the edge of the sector; and in place of the paper tongues he uses a row of oommon hall-inoh pins, outting paper on which they are sold, and panting them down just as they are. The superfluous paper he turns underneath, and places a wedge of cardboard beneath the heads, so as to oanse the points to "oant" over the edge of the seotor towards the revolving plate. After gamming all securely a piece of tin-foil is pested down on the papar, leaving a margin on three cides of half an inch, the other side being brought into connection with the heads of the pins. A strip of paper about an inch wide is then to be pastod round the foil, and covering it for half an inoh. The surface of the strip and the outside edge should be well covered with shellec, bat none is needed ander the foil or anywhers else. By this means the foil is plaood in an insulated pooket, as it were, "the paper tapering off the tension as when used around the inside top of a Lejden jar." The machine arranged in this wsy will, it is said, yield sparks of a length certainly equal to the radius of the revolving plate: it is easily put into action, and produces a "torrent of elootrio discharge," while, if the edge of the paper is well protected with shellac, the machine will not reverse or lose its tension. A large Leyden jar attached to the negative side in place of the amall condenser shown on p. 90, "will increses the length, brightness, and sound of the spark, and the machine will retain its charge twenty-four hours, and perhaps longer, in ordinary winter atmosphere [U.S. westher]. This acts as a large and small ball for passage of sparks on an ordinary electrical machine. There in no danger of breaking the large jar, for the small phial eots as a unity jar, the strain is thrown on the phial: this should be protected by a cork the size of the phial, covered with tin-foil pushed down to the inner coating for the couducting-rod to rest apon: the strain is thus distribated. The upper edge of the coatings of the phial should be covered with strips of paper and shellao, to prevent apontaneous discharge." Mr. Van Brunt also eaja that his machine runs with little friction or noice and makes much less ozone; bat he thinks that an entire modification of the parts will still farther improve it. He discovered, too, that the form of the windows is of no consequence whatevor, a fow holes, a mere slit, or large holes answering the same purpose. In fact, Poggendorff had slready constructed a maohine in which the paper tongres were passed through amall holes, and Töpler, of Riga, had made an arrangement in which the inductive aotion was exerted on tin-foil mounted on revolving gless plates, but it does not soem to have been successful or to have received muolk attention.

IMPROVEMENTS IN GLASS.MAKINQ

FROM the American Manufacturer we gatim the following particulars of the experiments made by Dr. Benrath, director of the glass-works at good qualities of fint guce a gless whe The good qualities of ordinary flint glass are : that it is as clear as crystal; that it has a high specife gravity ; a low fusing point, so that it melts easily: and strong power of refraction and dispersing light: It is, therefore, invaluable for chemical and optical purposes. Its defects, however, are that it is pasily acted on by chemical and mechanical in-fluences-that means its surface cannot stand rain and sunshine, mach less acids or boiling water, and it is so soft that it is most easily scratched. The chemical difference between orilinary and flint glee is that the former consists of silex, lime, and sode or potash, while oxide of lead is added to make tint glass out of it. Chemically speaking, common glase is a silicate of lime and potash, while flint glass conwho aiso silicalo of lead. Diboreiner was the inas who, in 1829, substhtated baryta for lime, making a baryta, of soda, and of potash; but his glass wastoo soft, as it contained too much of the latter two in-gredients- 55 per, cent. of silica. 21 of baryta, and 2 of the alkalies. During the last few years Benrath took the matter up, and attempted to produce - glass with lass alkaline matter and mare silice and baryta. He made one of sand 1,000 parts, hears
apar (sulphate of baryta) 785 parts, Glauber salts spar (sulphate of bar yta) 78 pods) 435 parts; the glass obtained was found by analysis to contain 58 per cent. silicic acid, 30 per cent. beryta, and 12 soda. But the acid, 30 per cent. blaryta, and haw a slight blueish or brownish shade, proglass had a slight bluesoh or brownish shade, pro-
bably from the sulphur redueed from the sulphates, bably from the sulphur reaucea from ordinary glass, had usually a greenish tint and like ordinary glass, had usuanly a greenish inge-
from the iron contained in the sand or other ingrefrom the iron contained in the sand or other ingre-
dients. Splitgerber proved, in 1855, that threetenths of 1 per cent. sulphar is enongh to give to glass a very intense yellowish brown coloar, but Benrath succeeded in overcoming this difficulty by using different forms of baryta, as the carbonate, and now declares that by the substitution of the heary and cheap beryta compounds, in place of the more expensive lead, a very clear, hart, heary, and cheap glass can be made, which in many instances may supersede the more expensive fint or so-called crystal-glass, and will be preferred for some parposes, as it is minfinenced by the weather, as is the case with the softer flint.

THE CULTIVATION OF GRAPES UNDER

 GLASS.THE following method of growing grapes in an economical manner was contributed to the Farmer by Mr. James Dougall, and will doubtless upply many amateur gardeners amongst our ceaders with usefal hints:-
Many persons would be induced to erect a small vinery for the culture of the finer varieties of grapes, were it not for the great trouble attonding thei culture under glass in the ordinary manner, in watering, syringing, ventilating, \&o., requiring the services of professional gardener, or occupying
more time and attention than the generality of more time and attention than the generality of persons can spare. By adopting the following plan in erecting the vinery, they will be relieved of the greater part of this tronble, and have a fine sapply delicions grapes, with no more troable or attenion than is required to grow the natural rine out of doors. The sashes are made stationary, but so that they can be unscrewed and taizen off for repairs at any time. They extend from the front wall to within 1 ft . or 10 in . of the beck wall at the top, leaving an opening of 10 in . wide along the top, to be closed by sheet-iron ventilators in the winter or when requisite, but which is kept constantly open from the time the vines are uncovered in the spring till. they are laid down and covered in the autumn. The principal pecnliarity is in the glazing The glass is laid end to end without lapping or patty, and merely kept in its place by small pieces of tin, and a space of tin. is left open between every third or fourth pane, so that all the rain that falls on the house is distribnted pretty equally over the entire house, very little running off the roof except in very heary thanderstorms. There is no ventilation whatever below, as a draught I have found injarions to the vines. Any air that comes in is by these openings in the glazing, and the heated air finds vent at the top. Last year was a very dry one; but the vines never suffered from the droaght, though they were never watered syringed from the time they were uncovered in spring, when it was done copiously, till again uncovered this spring. Nor were they the least affected either last year or this with mildew or red spider though previous to adopting this plan I was annually troubled with both in spite of syringing copioualy morning and evening.
My present vinery was not erected for that purpose, but for a small conservatory, and the floor was suank about 21 ft. or 3 tt., with a brick wall all round. About twelve jears ago I filled it up level with good compost, and planted the vines all inside there being no opening for their roots to extend to the border outside. It was intended principally for proving the newer seedling vines and varieties, then out, with a fow of the best old varieties, and in a apace of 24 ft . by 14ft. contained for several years thirty-six vines, which were shinned out tains twenty-four; this is still too many, about sixteen being all that could be properly grown in that space. Last year it got a liberal supply of liquid manure in spring; this yoar it got nothing but clear water at frst and rain as it falls, and is doing as well as last year, and vigorous enough for house containing so many vines. The ends of my present vinery are not glazed, having only a
small window and door on each end. Were small window and door on each end. Were I to
erect a new one, I would have the ends glazed to erect a new one, I would have the ends glazed to
within 3 ft. of the ground, and would have openings in the front wall to allow the roots of the front row of vines to extend into a prepared border outside. For those who may wish to try this plan, I would recommend the following varieties as being the most successial with me, and of the finest quainy:Black Hamburg, Mascat Hemburg, Champion Mambarg, Lady Downes, Golden Hamburg, Bowoad Mascat, Backiand 8weet-water, General de la and the last fonr white grapes.
Black Hamburg is by far the most proflatable and beat of the blacks, and Bowood Muscat and Buckland Bweet-watar of the whites. Lady Downes and

Bowood Muscat are the better for artificial impreg nation, 28 they do not set the frait very The principal trouble in following this plan, mor than is required in ont-door cultare of the vine is the necessity of thinning the grapes on the bunches to abont one-half when abont a quarte grown, to give room to the rest of the berries to gwall.

SELF-ACTING REDUCING VALVE.

TE annexed engraving is a seetional illustra tion of what is believed to be the best form of reducing-valve hitherto designed. It has been patented by Messrs. Crossley and Hanson, of the firm of John Crossley and Sons, Halifax, and is another instance of the trath of the old adage that "Necessity is the Mother of Invention." There are many mannfacturing processes which require at some stage or other steam of a low but ateadily maintained pressare, or at all events the temperature whioh oorresponds with the specified pressure. In many cases, indeed, the value of the prooess entirely depends on the success with whioh this result is obtained, and sundry delicate

operations connected with various manufactures would be rendered impossible without a steam or temperature regalator, the accursoy and sensitiveness of which can be relied apon. What is known as a reducing or diminishing valve is, in fact, a necessity in the cotton, flax, silk, and wool manufactures, in spinning and weaving lactories, in dyeing, bleaching, and calico printing works, and in many other industries carried on in the United Kingdom ; for it is simply impossible to obtain a constant and unvarying pressure in the steam boiler, which shall be also suited to the requirements of the processes in operation. For this reason, and owing to the defects of other appliances for secaring similar results, the re-ducing-valve which forms the subjeot of this article was designed by Messrs. Crossley and Hanson, and is made by Messrs. Whitley, partners, of Leeds, who are sole European manufacturers for the patentees. The vertical seotion annexed will, with the following description, serve to explain its action. Steam from the boiler enters at A, passes the equilibrium valve CC, and acts with equal force at the outlet B, within the tube E, and on the float F, whioh latter works in
mercury between the inner oasing E and outer oasing G, and is weighted to yield the required pressure. When the pressure of the steam in the tube \mathbf{E} and at outlet B is not sufficient to support the weight on the spindle D , the valve OC opens, thus permitting the passage of more steam, and in conjunction with a contrary action when the steam pressure is in excess of what is required, insuring an unvarying presesure or corre sponding degree of temperature. If the valve through any casualty to boiler or pipes, or through sosle or sediment resting on its seat (s contingency of rare ocoarrence) is prevented from closing properly, excess of preseare forces the mercury up throagh the holes I in the cover, where impinging against the dome J , it is thrown baok to the receiver K , whence it is easily drawn of by the plag L and returned to its proper plase through the capped elbow M. By this means any loss of mercury is prevented, and the apparatus to which the valve is attached is preserved from the injurious sotion of the excess of pressure In the engraving the valve is shown in the act of olosing, the steam pressure aoting on the meroury in the tabes. It only remains to say that a large number of these valves are in use, yielding resulte whioh have not hitherto boen attained with other forms of diminishing valves. Dial ganges are supplied to indicate the pressure at the outlet \mathbf{B} and by decreasing or inoreasing the weight on the spindle, the pressure or temperature can be varied as desired.

PRESERVING PHOTOGRAPHIC PBNNTS.

A METHOD of preserving photographic printes A. 80 as to retain permanently the beantifu tone they exhibit when in the washing water, is
mentioned by Mr. Satton, the Franch Correspon mentioned by Mr. Satton, the Franch Correspon dent of the Britioh Journal of Photography :-

Every photographer, he says, must have observed how beautiful prints sometimes look in the washing water, and how much they lose of their vigour and beaty on drying. This is especially true of fally toned printe, which, although they show a warm tint of black in the water, dry sometimes of a cold inky tint, besides becoming mealy. It seems im portant, therefore, that prints which are intended o be framed for an exhibition, or which the artist desires to keep for himself as ohoice specimens and desires to keep for himselir as which the negatives will yield, shonld be so printed as to lose none of the beanty which they arhibit in the water-none of the rich warm tin the transparency in the shadows, the clearness of the details, the perfection of surfacu produced by the water acting as the varnish. But the only way to preserve all these excellences is to substitute glass back of a glass the glass it may sppear exactly as it does under water-that is to say, exactly as it would if removed from the water and pressed whilst still wet against the glass plate. The problem, then, is to substitute for the water some find of varnish which, when perfectly dry, will not prodace any change in the eppearance of the print. Imagine for an instent the problem solved and the thing lone, what woald be problem solved and the thing cone, what woald be
easier than to mont all such prints as we intended to be framed and glased against the glass of the o be framed and glased against the glass of the rame instead of upon a cardboard which is pisced
more or less loosely behind it ? or to mount all suoh choice prints as an artist might desire to keep for his own use upon plate glasses, to be pressed in a plate-box like negatives or glass transparencies ?
The problem is a very old one, and it has been aiready solved by means of collodion and gelatine. M. Davanne has recently described the process at a meeting of the French Photographic Society. It is as follows:-Coat the glass plate to which the face of the print is to be applied with plain collodion, and immerse it immediately in a bath of cold watar in order to wash out the ether and alcohol, as in the common wet process with the nitrate bath. Then pour over the film a solution of white gelatine, strength abont eighty grains to the ounce of water. It must be sufficiontiy hot to flow freely, and care must be taken to avoid dust and air-bubbles. Tilt the plate 80 as to let the excess of gelatine run off into another vessel, and then place it apon s horizontal support. The film of gelatine will thus be very thin. Belore waiting until it is quite dry, lay the face of the print down apon it just as it comes wet from the washing water, and press it into close contact with the glass. Wren viewed through the glass it will, of course, look just as it does in the water, and this beautiful appearance it will not lose on becoming dry.

With respect to the white backerround,
any other colonr,
consist
paper applied
the print. Or
paper for a
print will
be trimme
will, of co:
e g
m
the print has become dry against the glass it may be put into a frame with a thin board behind it. Several prints may be moanted together upon the same glass. The only objection to the plan is that If the glass should be broken the print would be
deatroyed; bat this objection is grestly outweighed destroyed; bat this objection is greatly outweighed
by'the increased beanty of the result. I strongly by the increased beanty of the result. I strongly recommend the phan to porsons inteading to send thiak pirte glass the riak of breakage would become very mall indeed. The perfect optical contact between the sarface of a print and that of so splendid and smooth a varnish as a sheet of glass is n advantage not to be underrated or despised. There is no loss of detail, no change of colour, none the rulgarity of albamen. The result is not only techmially but artistically finer than when any other method of enamolling and moanting is 9 m ployed. If, when the print is dry, it be brushed plojed. If, when the print is dry, it be brushed the paper would be so filled with air and water proof material that greater permanency would, no doubt, be secured.

WOODS USED IN SHIPBUILDING: THEIR

 CHARACTERISTICS AND SPECIAL APPLI GATIONS.-I^{N}the article it is intended.to consider briefly and ands of trees used in ships at the present ane, and to notice their characteristios and the parposes to which they are applied. All timber trees increase in bulk by additions to the external surface. Therease in bulk by additions to the external surface. They are divided into two classes-viz., leaf and
cone bearing, which may likewise be distinguished as non-resinous and resinous respectively. The laffor inclades all kinds of frrs and pines; the former all other varieties of the abovo-mentioned tribe. Of the former class, the fellowing trees are thoss chiefly nsed in shipbailding-viz., oak, teak, elm, mahogany, greenheart, sabicn, mora, ash, and lignum-vite. Of cedar, cowdie, Oregon pine, spruce fir, and larch. An examination of the longitudinal and cross sections of the trunt of a tree shows two distinct kinds of tubes, or grain, as it is termed, formed by the fibre the wood. These are a longitudinal or vertical series of tubes, grouped 80 as to form concentric
rings, and a series of tubes radiating from the pith at the heart of the tree. The former are termed rascular tissue, and the latter medullary rays. Berascular sissuc, and the latter medullary rays. Bepyall pores or cells are discovered. These are termed cellular tissuc. The concentric rings of vascular and cellular tissue are divided into groups by the intersoction of the medullary rays, which are in planes bont normal to the surfaces of the tissues. We have remarked that the medullary rays radiate from che pith ; this last is a soft substance, composed of olunlar tissne, and inclosed in the medullary sheath. ermed sap roood. This is rarely used, as, except in a few cases, it is very lialle to decay. Withont entering into the interesting sabject of the manner in which wood graws-a queation which belongs rathar to the province of botany than to that of naval architecture-we may simply say that the growth takes place onder the bark, and that the growth takes place wnder wood is, therefore, nearest the centre of the ree. The concentric rings already referred to are generally ccnsidered to be the growth of a year in a temperste climate; but in the tropics they denote thennumber of wetand dry seasons during which the timber has bepn growing. It is asserted by some that the pith is always, pearer the north side than the other sides of the tree as it grows, the reason given being that the sap flows more readily ander the direct influence of the sun's rays than when shaded. Generally speaking, trees which have these rings olose together yield suparior timber to those
in which they aro wider apart.

Lest-bparing Treeg.

A carefal examination of the sections of leafbayring trees will at once suggest two principal divisions of this tribe:-

1. Trees with distinct medallary rays. 2. Trees with indistinct medullary rays. Of the former, the chiel instences are oak, beech, \&cc. Of the latter elm, teak, greanheart, mahogany, ash, \&c. These are again sub-divided into those in which the rings
sre diatinct and those in which they are not :are diatinct and those in which they are not:-
Firgt division. $\left\{\begin{array}{l}\text { Firat sub-division. } \\ \text { Riggs dintinct. }\end{array}\right.$
Oak, to.
Medullary rays
drininct. $\left\{\begin{array}{c}\text { gecond sub-diviaion. } \\ \text { Ringe indistinct. }\end{array}\right\}$ Beeoh, tc.
Hinct. Ringe indistiact.
geeond diviaion
Meduliary rays
indistinct.
Rirek sub-dinision.
Rings distiact.
Elm, ash, \&c.

Oak.-The oak is fonnd in all Earopenn countrios but chiefly in Great Britain, Italy, Sicily, Spain,
*Ry Samori. Trianize, Fellow of the Royal Sohool of Arumgh of the Bghool.
and Prussia. It is also indigeneus to North Americs. The two chief vaileties of oak found in the British Isles are superior for general shipbuilding purpores pally otbers. These two vurieties are principally distinguished by the manner in which the acorn grows upon them, and are termed the stedk-
fruited oak (Quercus robur) and the cluster-fruited species, or Quercus sessilifiora, respectively. The latter is sometimes known as the Durmast oak, and he former as the true English species. The stalkraited oak is by far the better of the two for shipbailding parposes, although the Darmast oak is very commonly nsed. The Sicilisn and Sardinian oaks are valued chiefly for thoir great curvature, and are therafore, vary guitable for the frames, especially the floor timbers. As, however, the timber cracks, or "shakes," in drying, it is not suited for other purposes. Prussian and Polish oaks (known in the market as Dantzic oaks grow very straight and tall, and the timber is toagh, and dries without shaking it is therefore specially adapted for deck plank, to which purpose it is spplied. It arrives in this country chopped or sawn into planks of various hicknemees. When the tree is earved, thecurvature is out in the plank, which is bent atraight when laid as deck. A considerable quantity of American oak is now eonsumed is shipbailding. The best variety, termed live oak, is very hard, and is used for frame timbers, pillars, \&c. The American white oak grows to a very large size, and is generally straight. It has sometimes been used for stern-posts on accoun of its size ; but it is neither so strong nor so dur able as English oak. Among the deiects to whioh Cup shatics, canood ihn, ingerp freezing under the bark, and sesmaling two of ifhe ring layers, whioh remain thus sepmentorkthresghont the futare growth inner bark, er by galls, prodesed by damaging the inner bark, er by mapeopars ladping the branches; covering it up- Extengivencotwoness from this cause is sometimes found in the interior of a piece of limber whose surfsee is perfectly sound. Foxy stains occur in timber grenn on marshy soils. These are indications of its baing in a state of decay. Oaks from damp oranady woile are very liable to this defect, and are gemerally much softer and lighter than those grown in more suitable situations. Mountain oak is byy far thoninardest and most darable purposes, introdmotion of iron for shipbuilding purposes, besides leseasing the amount of oal has also precladed-ite nee in places where wood is still required, from the fat of its containing gallic acid, which dissolves the simn with which it comes in contact. The prinojpal application of oak in wooden ships is astane atiabers, plank both of side and deck, stems, stera-peate, pillars, topsidd chocks,
and sometimes as mamn. In iron ships, for the and sometimes as ramm. In iron ships, for the and towing-chocks.
Beech.-Beech isnery alstle, if at all, used in the Rojal Navy ; in manohnats ships it is sometimes
 liable to dry mot.
Finn-mins tree is indimpous to, and atains its
 the finve haing in ucocion it ris, horearer very subjact to rhainkacge, waxping, and alderation on orm : besides which it cannot be reed with advan-
 speasty mata. When conetantly under.water it is very durable, and emen coems to be improved by a lengthened period at imaspaion in salt water. It is, therefore, specially angad and generally used for keels, garboards, anf harining of bottom under water. Elm is the chice timather used in boatbuild H. A. Navs mat the diagomabbailt large boats of timber termed Canada rock-elmis nov in very of mon use. It is a light-coloured, giraight, clasegrained, and very flexible wood; it grows to a great ength, and of nearly upiform dimensions throughout. It is mach used for boats, ladders, gratings, planking, and in some cases even for beams.

Ash.-Ash is a wood bat little used in shipbuildonnd of very large dimensions. It is light is often and very elastic and tough, and is chiefly worked into oapstan-bars, handspikes, and other mimilar appliances.
Makogany.-This timber, which but a few year since was used only by the cabinet-maker, nom enters largely into the canstruction of shaps. It is of two kinds, distinguished as Spanigh, or Caba, end Houdures mahogany. The lormer is ohtainea lcom conntries of Central America. Spanish mahogany is cbiefly used for ornamental purposes on account of its greater hardness and its superior appearance Hondaras mahogany has a coarser grain. grows in larger logs, is tougher, and generally far bettor adapted to struotural purpases than the former Great oare is required in its selection, assome hinds, light, sponeir growing in awampy soile are very legavior Houduras mahogany is, the better it is fognd
to be. Caba mahogany nfay be easily distinguahed from Honduras by its hesving the pores or eellaler issue flled with a chalky enbstance, thoes of Hon uras mahogany beiag empty. Gube mahogany ased for catin furniture, stoering-whepls, binasele
 as useini. Honduras mahogany is usanily employed

Teak.-Teak is now the most nseful wood em ployed in shipbailding, both from its great strength oughness, and durability, as well as from it no injuriously affecting iron with which it may be in contact. It is also very free from shakes or ahrinksgo when drying. The best teak is procared from Malabar, although a great daal of infarior wrod is mported from Ceylon, Jera, and the Malayin Peninsala. The chief defects in this timber aro worm-holes, whioh are frequently found to traverse the interior of the \log in all directions, the sarface appearing sound. Great Fraste therafore cocuss in converting it, and much judgment is required in selecting it for parehace. Good teak when freshly cut is usually of a greenish-brown colour, changing o.retidish brewn aitar a 107 minnies. It eontain great quantity of an cily substance, and is, therefore, very inflammsble. At the heart of teak peculiar depnsit is often found, which dalls the edge of carpenters' tools when working it. It has is chalty sppearance, and at first sight one would bo ed to suppose that it came there by artificialmeans: but upon carefal inspeotion it is found that the collular tisunes in the seioforonrhoed of the heart, Dr pith, axe charged with the aubetrace. Ma. J. Sehool of Naval Arohiteoture, has analyond some peoinmens, and found thens to consist of thosphato of lime, forioh hed prowanably baen abetreited from the soil, and seoreted at the cantro of the tree, imilar to cmaphorand othar reains. Teakinebijefly ased for bacting behind srmourpiates, deck-liata, beams, inner and onter side plank, somatimes for trane timbers, also for bulkheale, companions, atylights, coemings, soc. It is aleo frequently chosen in prefevenoe to mahogany for cabin furaiture, as when polished it hasen Eppearance very llye winat, rom whioh wood knowt specimens of beak can harily be distin aished. The shriniage of teat when drying is inconcilerable; hence it ts very chefal for the engine and boiler be

Greenheart.-This wood is obtained from Britich Guians, where it attains 8 groat height. It growt vary straight, but is very lieble to split. Its colour is genarally a greeniah yelow, but in the mot
valued varietien it is black. It is bighly eatonped valued varietien it is black. It is highly astermed
for its durahility noder watar, andits freedom from for its durahility noder water, andits feeedom from the attacks of masine inseots. It is
iways, shelves, plank of bottom, \&cc.
African Oab.-This timber is procured trom Weotern Africa. It grows very etraight and long, and is somewhat similar in appearanos to toan bai heavier, harder, and usually in smaller logs. It is not euited for work nuder water, as it is vory to attack from marine insects. The chief appication of Afrioan oak is for keelsoas, pillars, beans, watervays and irequently for sheerahikes an the hemet. when drying, and to perfomation by inects.
Sabicu.-This is a rary hand kind of timber, samowhat similar to cosrse-grained, deap-coloared mahogany in appearance, bat congidarably hardir and heavier. Its grain is very ghort, and tho abres are nsually very much twisted and intardaced From its great hardness and tonghnats it is rery much used for auch parts of a ship as need anger qualities, and at the same timedo not requar angats prain-for can be obtained. With tolorabats, cc. is a yery durable waed, but is frequentiy fonad shaken at the heart, while the qutaide is parestly sound.
Mora.-This wood has but recentivy been fintodaced into shipbrilding, and as yot has not boens need to a sufficient extent to anable of to to bo arachy of its qualities. It acems, howowr, It darable and tough, and very dificalt to alit. It ohief application, as yet, has boen for side pank it io fand is proorared from British Gaiana, whare it it in great aboudance.
Lignuph-vite.-This is procurad from the Wirot India Islands, and is a very ngefal srood, botiansably rigger and the marine engineer. It is remarioly of coagish, dense, and hosvy, and his the pra glaength along and cring loroes win Hence, being ercessively hard, it is vary nasefol for dead-ayos abaves and rallers. The sap wood is sery much lighter is colour than the heart, the Latter being \& daring 108 while the former is nearly yellow. In enting parallel to the axis of the shesve, and in moting the latter it is usnal to lomere ring of sap woo around the heart wood, in erder to prevept in low splitting by too rapid drying. Tho marine eith

Corobearing Tacon

The coniferous trees are divided into two classes -pinen and firs. The former have needle-like leaves, growing in clasters from the same stalk; the latter have them straight and separate, but many growing on the same leaf-stalk, like the teeth of a comb. In akipbrilating the pines are far more usefult thar the firs, for beries durable and stronger. All the conigencrall more durable and strongor. Atraightness of growth, which, combined with thair lightness' and and spars. They have, however, many other importaret applisations, as will be seen presently.
Red or Riga and Dantzic Pine.-The most useful of all the pines used in shfiporilding is the Pinus sylvestris, commonly known either as' Red, Dantrio, or Rige Pine. That obtained from Riga is'the beat on account of its rize, strength, and fiexibility, making it suitable for the larger spars of shipm such as ing it suitable for the larger spars of shipa, such as coloured wood, the depth of tint varying with the coloured wood, the depth of tint varing wrom mach amount of resin the deak plank of shipa, the outtor cats, free of heart, being termed Dantaic Crowa Deals ; those at the heart are inferior, and sold at a lower price.
Yellow Pine.-This is the largest kind of pine now commonly obtained, and is imported from Canada. It is very mach use and is imported rem can for neither of which poym, armery is it sop well not go olastic, stron, the latter wood are,
 of this weod on accown and and and
dom from knots. It om from knots. It mondry nem nor ombin
 Pine.
Oregon Pinc.-A is now becoming very hrop for lower and topmasts, and as it guve the rize ase the durable, it is a very guoal getcictoter for Rige ytae, which, as has been afiecresy numberl is now ravely obtained of large propowiona. Spurs of this pine 130 ft . in length have beve bevectite to this country, and one of gigantic dhaiverone mas presented to the Quean about four yeave soise by the Colonial Go-
 Waved grain, which is matrh estermed by seamen. The trees brought som the mamband are superor knots. The chief disadvantage its use has at present is its high price, due chiefly to the heary charges for freightage.
Cowdic Pinc.-This is anpoto of pine recently imported in large quantilles fremulow healand. It grows to a very great sizec ardi hise bovii used for
 ghaking. Being very fues farin liwote it is some. ahaking. Being very noe from kwots it is sometimes used for the deciw of pleakure veascis, as,
when planed or cleaned, ity hy neost agreeable when planed or cle
light yellow colour.
Spruce Fir. -The chief variety of the fir wibine regards its use in shipbuilding is the spetion Phols abies, which grows in Norway, Scothnet arid other northern countries. It is used for the minit spars close-grained, and elastic, and also whibent than the pines. As it is very full of large knowseare care is required in the selection. Sprace dentur used for some of the lighter fittings of silfps, but not generally to the ceme extent as yellow pites
Larch. - The larch is common to Nevieny Earope, allhough it has been grown in this coantry only during the past centary. The Duke of Athole was the first to plant it in Scotland on his estate at Blair Athele, about the yeer 1738, since which time it has become very common. It is a timber of great strength, and remarkable for its durability when exposedt to the weather, but it is much harder to work and more liable to warp than Riga pine. The bailtang.
Cedar.-This is a species of fir more frequently used for ornamantal than for useful work, as it is rery wiak. It is, however, almost indestructible
from time, and no inseot will attack it. It is chiedy from time, and no ingeot will attach it. It is chiefly ahips pall where durability and no great strergth may be required.

mechavisy.

(Costrinued from p. 376.)

M: ATPERE appoars to have been the first to Kinematics as a special study. Plato speaks of
astranomy as "the doctrine of the motions of solids;" and to come to recont times-very recent

[^15]indecd-thare is a still velunble wore by Monerson, which we have here, and which contains some nism of a rat-trap, and very well it is done. The nigm of a rat-trap, and very well it is done. The
roason why the book is produced is this. It whes probably first published about 1750; this copy Which is the seoond edition, corrected and very in 1758. The title-page is well worthy of our consideration in connection with the present course of lectures. It is-"The Principles of Mechanics," explaining and demonstrating the General Laws of Motion, the Laws of Gravity, Motion of Descending Bodies, Projectiles, Mechanic Powers, Pendulams Centres of Gravity, Strength and Stress of Tinaber, Hydrostatios, Constraction of Machines: A work very necessary to be known by all gentlemen and others that'desire to havean insight into the works of nature and art; and extremely usefal to all sorts of artifloers, particularly to Architeots, Engineers, that that work in a mechanical way.
Edition, with 43 Coppar Plates. 1758.
The order of Emerson's sabjeots is remarkable. They begin with motion, lead on to equilibrium, and ond with structures. In our days the habit seems to be to begin with structures, descending
through equilibriam, and very seldom proceeding so far as motion is anderstood in mechanism. In

 in the with wors matter and motion?
 in our beds, ren by it wome topnderstand the motions of phe pren of antmal body-the a gones or the ficer mul' wowl medimionty or not work at all, so
 king down towte colblex:"

Although gras moothan innow kinematics has thas been reognalicias an inffretint stady in and by

 M. Ampers buac drum atheation to this sabject. Then Professof Wiltis, the Jowsonfan Professor of Natural and Fipertmemet Phalloseyty in the University of Cambiddgs, puollithed a Folume on "The Principlos of Mithamism. decteraill for the use of studenter iup the Uriversty, now for engineering alladed to meothaniom solucuwtedge areat tiong: In it the subject is treated as a mathematical one, and alltorges in the present course of lectures the pusply madtremantical aspect of the problem mast be quaren. Gume in to reason whaterer subject witratio mily rey thit-ain ulock for them its treasurtin
 this mathumetsiant hay in the quewtion of mecha nism, it is wer the apow tiant pavely mathematical
 terrestrial meofyan mochanism. Mathematiotan boast that they hola the key of the gate ; it le a roilsction upion their good taste that they have the tey. Ife pleasant pastures of bhich become as famifiar with the technicalities and wants of machion and mechanists as they are with the the rifitithand of broth, theod where now men are prowed to say: "Stand back; we do not want fod! There will be no solid progress in the reamemoner and precision of mechanism, either condisuctive or kinematical, until there is less
dissociation between mathematics, physics, kinetics, dissociation between mathematics, physics, kinetics,
and practice. The youth of England are led in the dynamical relations of x and y to calcalate the path of the earth in its orbit, and they can do it to ${ }^{\text {a }}$ second in year. The eame x
and y emable them to tell the periods of the revolution and rotation of the earth; to find the velocity of lizht, and to measare the lergth of its waves to the millionth of an inch ; to calculate the exact curve of the spectroscopic diagrams in the solar corona, and this with an aocuracy that ovan
decimals fail to represent to the mind. Such is condecimals fail to represent to the mind. Such is con
sidered a triamph of mathematicul dyamics. But ask a mathematician to determine the quantity of irregalarity produced by an anbalanced fly-wheel ; to say how a small weight on a large fiy-wheel may produce baoz-lash through a mhels in that mill, or to atabe in what motions or how to adilise the heat that passes away, or to what influenoes a ship is sabject by the rotation of heary macainery wirnia, five alip; and how is that slip in a serew propeller to be avoided. Ask the mathematicians to take a given problem, with given numbers, nnder any of beneath theirnotice-probably it is beyond their skill.
Mechanism, then, is the alphabet; machinery is
the written expression, and that machinery is a
combination of parta. These elementary payte are urnished by the mechamiolen. Hence the stauy of mochanism should preeede the stady of machinery; but it has failed, and atril faile to do 90 .
Apart entirely from the mathematical and soientfic ressons why mechanism does not hold its own as a
branch of well-defined and intellectual study, there are one or two obvious social ones. Mechanism is not directly allied to utilitarianism ; it bears a relation to utilitariauism of a character similar to that which art bears to it. The necessities of life must first bo met, and then may be ontertained improved means or meeting them. Honses, boats, briages, clothing, and food must first be procared, and then, and not until then, need be considered the best way for actractive when they are procured. Henco art and mechanism first succeed, and then preoede, utility. mechanism first succeed, and then preceae, utinly. nature has eo profusely scatiered around, have given man what may be callod an intuitive knowledge of meohaniatic combinations. Men artil themselves of these as they do of books in a library, and rarely give a thought to anything but the branoh that they are themselves at the time wanting.
Mechanivians are only a ramerous olass of thote who do thia T'o the extensive storehouse of naturro's contatvances perhaps every branch of art and science resorts more thary it is wining to allow. the question of a lighthouse to Saneaton for the Eddystone rock, 8meaton, who experienced both as a linotiond and constructive mechanicita: (he was the first to intodace the vise of cast-ironhe was the first to intoiace the use of cathous
teeth in large wheels), did not eontrive wlighthousa, or even consider he was called upon to design one. What he did was to look about through nature's storehouse, and to consider where and how resistances were met similar to the resistances he was callod apor to moet Hence, when he pablished a report, in folio, of the designmy and executing of the present Eddystone' lighthorsse (thrie or four previous ones having been cithor burnt down or washed awisy), he printed, stde by side withe drawing of the strocture he proposed, the trunk nd the brancbes of an oai iree, whisu heten from Smeaton's own acconnt of the Eadystone lighthonse, and showing the peovaliar mode in which he ovetailed the stonge one into the other. The question of the Eddystone lighthouse is quite oreignt to our present parpose, but the diagram shere hows the mode in which the oak branch entert into the stom of the tree; and in the text smetan points ont how beatituly the obsaseangle of the acute angle, and how it strengthens the acate is fied into the ground. what to this natural contrivance he owed his ideas, for from them ho writes:-"I could make a figune not ungracefal; and at the sarae time carrying the idea of great
firmness and solidity " (p. 42). That is sensible contractive mechanism. There may be many in this room who remember the year 1851, when the country was very much perplexed to know what to do with the Exhibition it had summoned, and did not know how to pat it under cover A.rchitects, ngineers, and others, were completely baffed They folt that if they raised a builling. either of brick or stone, damp in the walls wond spoil the treasnres of art to be deposited there. No availgandener came forward. and to him is due the credit of having suggested the design for the building. Sir Joseph Paxtoog who owns he wes no "Nature was the engineer in this case," and be requests those who choose to do so to compare the eaf of the water lily (the "Victoria Regia with he building ereoted in Hyde Park, for he says. fo comprehended in the first iron and glass building that wes ever seen. Let us look-the inquiry hall be as brief as possible-st a few more of similar illastrations. A spider's web across a
arden path suggested the Menai Bridge to Telford parden path suggested the Menai Bridge to tubaler one which carries the railway across the Kenai Straits. The little worm which perforates he wood of ships suggested the Thames Tannel to Branel ; the telescope, the microsoope, and the camera obscura are all clearly seb forth in the oje;it was a lobster shell which gave the idea or curving wrought-iron tubes to Watt ; waspe mase paper, and there are other weisps that make paste-board. Spiders form nets; hail and shot are formed exsiciny alike. Birds' feathers saggested the slates to our houses, and birds' nests are lessons to this day in basket wearing. England, as an islaga, oiser and furnace, and the Gulf Stream is the enoiler and farnaco, huge heating apparatas. In the arged pipe of a he all possess from a mechanical point of riew, it is ovidently one mrore perfeet than the moot ingenious vice the accumalated skill of exginer. posstbly prod, that is to asy, it is a vice of varying
size and form ; it needs no clams; there is no chance of da maging the work pat in it by the serrated edge, as is the case in an ordinary vice, for, as you know, clams of wood, lead, cloth, and other materisls are used to save the work. Lrook at it from any point of view, it is mapproachable. If Jou want to hold a circular piece of metal, how mach more beautifully do jou do it than can be done by any contrivance of enginears. You hold it between two fingers and a thumb. Although this is a question of statics, it is worthy of a few moments' consideration. You observe, many people put things upon four legs ; theodolites ${ }^{\circ}$, jnstruments, tables, \&o., are generally pat upon four legs, but Nature tellis us we should put them upon three. When this pencil is held on three sides by two fingers and one thumb, jou cannot press it any direction without its meeting with resistance, but once pat it between four fingers and there are four places in which it may escape. Another peculiarity of this vice (viz., the hand) is, that you may hold a chisel in it 80 as to be quite steady, and yet it will slide along, and there is no vice known to me which will do this. This vice, then, is not only a very curions one, but, in respects which would draw us very far aside, it is one possessed by no animal except man, Look, again, at the wrist joint. We have vices with balls and sockets, and nniversal joints, but with balis and sockets, and nniversal joints, but is a fortune for anybody who can make a vice to equal it, 80 simple and se universal. Then, again, the stomach is a perfect laboratory. The lungs are a bellows; the skull is an arched vanlt, beautifully pat together; and the teeth! what a complica. tion we have of knives, gaws, wedges, and mill stones; and in the jaws there is an arrangement which has often been tried, but which has never jet been auccesafully attained, called a drawcutting action, the pearest attempt to which is in bread, hay, and paper-cutting machinery. Not only is the eye a telescope and a mioroscone, but there is in its apparatus (viz., in the "iris") a specimen of what engineers have been attempting for a long time-an expanding pulley. No expanding palley hes jet been successful. To adapt such suggestions as these supply, and to combine them with the structural sohemes which ingenuity or necessity furnished, seemed to satisfy all the or necessity furnishod, seemed to satisiy all the wants of men until the steam-engine eniarged its usefalness by giving s rotary motion in addition to a reciprocating rectilineal one. Watt did this
in 1770, and from that time we began to date our mechanical progress. Then it was that men who saw a high scientific and intelloctual study in meohanics were gradually turned from suoh considerations as the mathematioal demonstration of the parallelogram of forces, or the abstract beanties of algebraic analysis, to the more important considerations which these engines producing rotary motion led them to entertain.
When we note how slowly, even in these deys, the direction of men's thoughts change, we must not be surprised that comparatively few minds have left the beaten track, and entered on stadies of pure mechanistm. It is, both in its abstract and practical character, a very fascinating study, and those who promote it render the art of the mechanic less empirioal and far more scien. tific than it is at present. As an arohitect should study engiseering, so mechanic should study mechanism. A mechanic, as the term is applied, means one who mates machinery. This Fiev is just as narow as that which would restrict the term engineer to one who drives an engine. If there is one occapation more than another which shonld in resnect from the required combination of montal knowledge and handicraft arill, it is that of the mechanic; and of mechanics none need these qualifortions more than the smith-

> A mighty man is he, With large and einewy hands, And the muscles of his brawny arma Are strong as iron bands.

For that man car take an uncouth, shapeless mass of cold iron and 80 correotly judge of the volume of that uncouth mass, as to seleot the required quantity, and no more, for s form to which it bears no resem blance, and to which form he ghapes it althongh he is never able to touch it with his fingers. Before you is one of the recent triumphs of skill in wrought iron, and if there is any one present who has taste for work of that kind, it is well worth study. It has been lent by Messrs. Peard, Son, and Peard, and is a pure piece of wrought iron. It is most artistic and graceful in form, and is pat together withont brazing in any part. How far it has been screwed together, or how far it has been simply welded, there are, no doubt, those in the room fully competen: to judge. No one, however, can leave it without admiration, and recognising the truth of the statoment, that of mechanics there are none who more deserve the thanks of the commanity than the class called amiths.
(To be continued next week.)

- The adjusting-sorewe of theodolises, are, as a rale, of a in number-legged instrumentegged stand is the support

EBDY'S PATENT GAS-8TOVE

T^{B}HIS invention is for warming, ventilating, and disinfecting buildings, hested by gas, coke, mineral oils, or other fuels : the stove is so constructed that a current of warm air is continually circulating therein. Esch light or burner is inclosed, or burns within a long tube or chimney, by which means all or nearly all the offensive products of combustion are burned, and by the use of the radiating heaters or gills the air within the stove is thoroughly warmed before making its exit at the top of the stove. Fig. 1 represents the exterior of the stove, Fig. 2 vertical section, Fig. 3 shows a section on line X X; Fig. 4 shows the circular radiating gills or hesters H ; Fig. 5 represents the top of stove I. A A, Fig. 2, chimneys, B B snother tube inolosing chimneys, C outer casing of stove, D D chambers which are formed by placing an inverted cylinder E , having an air-tight cover F, over the tabe B; G is another ohamber ; H shows the radiating gills or heaters. It will thus be seen that each light or burner is inclosed or barns within a long tube or
sir which circulates within the chambers and maintain an even temperature.
When it is intended that cosl should be burne in the stove, the chamber is made larger, a grate is placed at the bottom and a flre-door in the side, and the top of the oylinder is inclosed and carried through the top of stove, and a small tabe or chimney conneoted. The stove may be placed either in another spartment, or may be sank beneath the floor of the bailding with down-cast and up-cast shaft.
The stove is well adapted for disinfeoting rooms and baildings: when so nsed, the disinfeoting fluid is to be placed underneath the stove in a vessel, as shown at Fig. 2. The flaid evaporatos, is taken up by the air which passes into the store, and is given off together with the heated air at the top of the stove. Any number of lighte may be employed, the size of the stove being regulated scoordingly.
Mr. T. C. Ebdy, architect, of Sanderlend, is the inventor and patentee.

chimney, these tabes or chimneys being inclosed within another tabe, which is attaohed to the bottom of the outer case. This tube has airvents cut at the top to allow the air to pass into the chamber D. This chamber is formed by means of an inverted cylinder E, which has an air-tight cover F, over the tabe B, and chimneys, by which means an air space is left between the top of the cylinder and oover of the stove; airvents are also cut at the bottom of the cylinder to allow the descending current to pass into the ohamber G, which is formed by the outer casing of the stove. The spaces thus formed between the outer casing of the stove and the oylinder are flled with radiating heaters or gills of zig-zag form. The stove is raised above the floor upon a stand, so that the atmospheric air may pass up the chimneys and between the air spsoes and thence down the downoast chamber, and from thence into the outcast or gill chamber. As the air circulates in the stove in ascending and descending ourrents it becomes well heated, and is deprived of those noxions qualities which generally accompany the use of gas. The gills Farm the

THE TURNERS AND TURNERY OF KING'S CLIFFE, NORTHAMPTONSHIRE.

Wextract the following interesting information from the Quarterly Journal of the Amateur Mechanical Society, to which it wes comtribated by Mr. J. H. Holdich. For very many years the small town or rather village of King'a Cliffe, about eight miles from Oundle, has been remarksble for the manufacture of various useful articles in soft wood, ohiefly by means of the lathe. I cannot, says Mr. Holdich, tell muoh in the way of history. On making inquiry at Cliffe itself, all I have been able to learn yet is from a man who told me that his grandfather died in 1818, at the age of eights: eight, that he was brought up a turner, and practised it all his days. This takes ns back about 140 years: but probably the trade had been carried on many years previously. There are at this time no fewer than forty men constantly employed in the trade, 00 that it has not decreased since the days of Morton. The woods most in request by the turners of King's Cliffe are maple, sycumore, alder, birch, lime, cheatnut, beech, ash, and whitethorn. Lima, sycamore. and beech are often cut into boards for trencbers when of sufficient size, but the woods in most request are poles from two to six inches in diameter.

It is usually sold in partels, each parcel containing a rood, or half rood, the bayer to cut it down and convey it home. 80 mach of the country having been disforested, there is a comparative scarcity of this material, and it has to be sought at greater distances than formerly, while the workmen complain somewhat of the "Leicester foll," who come to them to bay poles for "bobbins" to wind cotton on, for which they commonly give aboat fi 58 ton, delivered at the nearest station. When the poles are brought home they are stacked out of doors for twelre months, then pat under cover for another twelve months, before they are it for use. Sometimes green wood is boiled to ex tract the sap, and is thus used in a very short time after being cut down, but an experienced turner told me he did not consider this to answer; the wood under such circumstances being very liable to split 2n. salt-cellars and egg-cups are turned out ronghly and left some time before imishing; but if the wood is boiled, as above, a large proportion of them crack nd art useless. The tools employed are simple Heltzaptel-are genarally clumsy, heary-loeking, Heitzaptrel - are generailen wheels, and wooden chucks ringed with with wooden wheels, and wooden usnally come from iron. I find the lathe-heads ussally come from Birmingham, and cost about $£ 1 \mathrm{5s}$. to $2115 s$.
each, the frames being home made. Comeach, the frames being home made. chisels and gouges, with hook tools, are ased with great dexterity, the result of practice in one particular line. The "hooks" are oommonly made by the village blacksmith, under the turner's iirection, for different turners seem to me to have iifferent twists, and each prefers his own. I have had a set of six made for me at 18. 6d. each. They are more substantial than some I have, of Holtzap. ffel's, and of a different shape.
iron, ranning through the post at right angles, on which the workman keeps his feet and so steadios the work or tarns it as may suit his parpose. The batter print is fixed by a thambscrew in a socket in the upper part of the post; napkin rings are first fixed in a holder fitting into the socket. There is no turning about the butter moulds-they consist of two pieces of nood, three or four inches square and trout an inch thick, on each of which one half of the device is carved (a wheat-sheaf, swan, \&e.), the the derice is carved (2 Wheat-sheal,
batter being pressed between them.
The spice box is another article of which many are made. These are divided into amall, middle, large, and large with five lifts, each lift being, in fact, a separate box, the bottom of which forms the top of the one immediately beneath it. There is a sorew for each division, which is cut with a simple sorew for each division, which is cat with a simple V-tool by hand, without any guide. The lathe head right, and it is earious to seo with what facility and right, and it is carions to see with what facility and
accuracy this is done. The insides of the divisions, accuracy this is done. The insides of the divisions,
like the insides of all other boxes, are cut out very quickly with the hook tool (Fig. 2), and the bottoms squared with a similar tool of rectangular shape.
Taps are made of varions sizes-large ones for water-batts and smaller ones for beer and other parposes. Fig. 5 represents a tap in seotion. The screw is cat by hand with the $\nabla \cdot$ tool. To cut the female screw the tap is chuched on a taper irun mandril whioh holds it sufficiently firm for the mandril Whioh holds it summentry frm tor phe partiose. for the spont, which is shaped with the paring knife.
The mouse-trap (Fig. 6) is also made in considerable quantities and is very, effectual for its parpose. It will be sean that there are seven pieces besides

The Holtzapfiel's pattorn, Fig. 1, has a shank of 5 in . and a hande of 9in. ; the King' Cliff patte
It is really very intereeting to woe how cleverly these tools are managed. There is here, as in other places, a division of labour, for though most of the furners can do many things, each one has his own apeciality at which he is most expert. Thus, at one shop are made spice boxes, salt-cellars, \&e., at ono shop are made spice boyes, sar-water and beer taps, at another spoons, and so on.
The articles made are, however, very numerous. I have before me the price list of a man who, with his son, carries on a fair business; it comprises aboat sixty different articles; and these again divided into different sizes, though, it must be observed, he does not himself make all the articles mentioned, but sapplies them. However, he and his son make a great many of them. It would be needless to name them all-let me rather select 2 fow. First on the list we have "batter prints" of four kinds; 1, in cases (Fig. 8); 2, single prints; 3, oval prints ; and 4, moald prints. Those in cases are divided into six sizes, viz. -11 b ., 21 l ., 1 lb ., 1 lb ., 2oz., and common size. The simple prints are divided in like manner, and writh the others there are different sizes and priceas. The turner will readily understand how the ordinary prints and cases are tarned, but there is an ingenious device (Fig. 3) in turned, but there is an ingenious device (Fig. 3) in
connection with the carring which calls for notice. connection with the carriog which calls jor notice. They are, of course, carved with chisels, gouges, \&o. very handy it is for the purpose. It consiats, of an upright post, the bottom formed as a pivot, turning in a hole in the foor usually, the apper part in a wooden collar carried by a bracket projecting from the wall. Near the lower extromity are two bars of
the string, five of these being turned, and all pat togethar for one shilling-less if sold wholesale The principle is very simple ; the wooden block Λ falls on the mouse when, to secure the bait, he ventures his foot on the treadle B.
The turned nutaracker (Fig. 7) may be seen on many stalls at fairs where nuts are sold. It is simple enough, consisting of two pieces only, a wooden box and a screw. The figure will sufficiently show what it is and, I should sappose, the manner of its use.
Salt-cellars and egg -cups are made in large quantities; the wood is cut into proper lengths and roughly pared with the knife. A taper screw, or worm chack, is fixed on the mandril and the piece of wood screwed on with a fow turns and cat out most expeditiously with the hook tool and gouge.
The words "pazzle boxes" and "Chartist whistles," which occur in the list, may excite curiosity; they are, however, very simple articles. The pazzie box is in the form of s ball, ornamented with sets of concentrio circles, two of which, on opposite sides, serve to conceal the ends of a cylin drical box which is fitted in diametrically and capable of being pashed out with the finger, when the proper place is found. We have no Chartists about here that I am aware of, and why the whistle, which by the bye, is not a whistle, should be named after them, I cannot tell. It is a small box with a per forated top, standing on a foot, something like a pepper box in shape, with a cylindrical piece projecting from the top, made to represent a whistle, but whoever attempts to sound it recaives a puff of flour in the froe, throagh the holes, to the discomfiture of the performer and amnsement of the lookers-on
And now let me tarn to the manafactare of spoons, which is peonliar arf has peculiar and ap?
propriate tools. They are made of poplar, alder, and, it may be othar woods-of poplar by preference. The first process is to cut them int σ lengths and give them the rough shape of the article with the sam and paring knife. The bowl is then cat out with a carious instroment called a "fleel" (Fig. 8), if that be the right word, for I have not yet (Fig. 8), if that be the right word, for I have not yet
been able to find it. The blade is in the form of a gouge, about six inches long. The spoon is held by the left hand on a block and the firel in the right when the bowl is ohopped out with oasse and conWhen the bowl is ohopped out with oase and oon-
siderable precision. It is then finished with the "smeething" (Fig. 9), the bowl being hafi in the left hand. With a bit of rag to guard the hand, and the tool in the right, the long handle going under the arm to steady it and give power. The epoore in then put into the lathe (commonly the simplest form of pole or spring-lathe) where, in a fow tarns, the handle is completed with a gonge. The whot is then finished off on the block with a knife of peculiar shape, with a long handle like the smeething, mid used in the same fashion. All these tools are maide by the village blacksmith.
Some few toys are also made hare, as humming tops, small churns, rattles, \&o. The hamming tops are made of four pieces, painted, varnished, and sold at 6 d . and 4 d . each, which seems bat little money. Some rather ornamental watch-stands, cotton-stands, pin-cushions, and npill.caps, also deserve a passing notice, but probably I have alresdy become sufficiently tedious, so will pess on to s few words about the demand for, and the price of, the various articles of which I have apoken. Bearing in mind that not less than forty men are constantly employed in these works, it will be seen at once that the demand is considerable. Wooden spoons are not yet out of fashion, and notwithstanding the great increase of metal spoons and dishes, and the cheap and cleanly crockeryware, there are places where wooden ware is still preferred, and where it holds its head aloft. Large quantitios are sent to
Liverpool for exportation, mostly, I am told, to Liverpool for exportation, mostly, I am told, to
America; and the manufacturing districts of EngAmerica; and the manufacturing districts of EngIand, Yorkshire, Lancashire, \&ce, are ready marketa. I was in a shop the other day where man was turning tobacco boxes, in the form of little barrels, He had an order for a gross from Lancashire; thase are sold at 4s. the dozen (wholesale). An order was once given for filty
alone for America.

Touching the price at which the Ciffe ware is sold it seems marvellously small, and yet an industrious workman will make a very fair living out of it. It is not very easy work, but a man will turn six dozen salt-cellers in a day, which being sold (wholesale) st 18. 6d. per dozen will produce 98.; but then something must be allowed for wood, wear of tools, \&ec., so that probably he will not earn more
than 7s. 6 d . Egg.caps again are sold at 10d. a than 7s. 6d. Egg-caps again are sold at 10d.
dozen, and I was somewhat surprised when a boy about soventean told me, perhaps a year ago, that he had, by way of trial, turned 16 dosen in a day, no less than 192, bat that it was a very hard day's work, lasting from $3 \mathrm{a} . \mathrm{m}$. till dark. He has, however, now outdone himself; I was in his shop a week or two ago, and he told me he had turned 19 dozen in a day, from 7 a.m. to 7 p.m., allowing one hour only for meals, and thas he intended the day after zny visit to turn 21 dozen, for he had an order for 2 gross, of which he had turned 3 dozen only, and 2 gross, of to complete the order next day. Probably he did it, but it seems to me marvellous quantity he did it, but it seems to me a marvelious quantity observe, was cut into lengths of abont two inches, and roughly pared, and each piece had to be screwed on to a taper screw and turned, the inside with hook tool, the oatside with a gouge. Another man told me he had once begum and finished 13 dozen spoons in a day, which, if sold at 10 d . a dozen would prodnoe 10s. 10d., bat these are unasual quantities, and conld not be produced for any length of time in like proportion. Butter prints are variously prioed according to the size. Those in cases for 11b. are sold at 14s. per dozen, for 1 lb . a 10s., and se on. Spice boxes with five lifts are sold at 18s. per dozen, with four lifts at 15s., \&e., which, taking the many pieces into eccount, seems very little. Nutcrackers are sold at 8s. per gross. Puzzle boxes at 18. each, retail; considerably less, probably 8s. par dozen, wholesale, and so on. Croquet sete are also made here, but not many of them. at from e1 to fs the set, and very woll made too. The balls are of crab tree, which is getting somewhat scarce.
There is a pretty method of ornamenting emall boxes and other ware by transferring small pictures from paper to the wood, which are then varnished over. A word about the varnish. It is usually home-made. A very asefal one is composed of 6 ounces of gom sandarach; 1 pint of methylated spirit of wine ; 4 ounces of black resin. Perhaps a quart is made at a time, mixed in a tin can, and se near the fire to melt. The can should be large, as it is liable to boil over if care be not taken. and car mast be taken in this matter. Whet
mixed it is strained into bottle
simply laid on with a camel's-hai
room. Another kind, somewh:
with/Bhelleo.

SOLENTIFIO SOOIETIES.

ROYAL SOCIETY.

Origin of Voloanic Energy. A the last meeting of this Society for the read a paper on "Voleanic Energy;" being an relations. He discovers the true canse of volcanic hest to be derived from a crumbling process going henin the interior of the earth. It is necessary to on in the interior of the earth. oris necessary to prasume a hoter nucleus than orust, so that the rate of contraction is greater for the former than
the latter. Thus, if there was no crushing and dislocation going on, a cavity would be formed botween the nuclens and the crast. The suthor, however, imagines that the solid arust sinks
together after the shriuking nucleus, and the work togother after the shrinking nucleus, and the work
thus expended is transformed into heat, by which, at places where the crushing takes place sufficiently, the material of the rock so crushed and of that adjacent to it are heated, oven to fasion. A volcano is formed by the access of water to such places,
for without water no voloano. It would thas appear that the volcano is our safety-vadve. We get steam up inside by the orquhing of our crast by the outlets and chanhels in commanication With the

$$
T=P\left(\frac{1}{6}+\frac{1}{6}\right)
$$

the author shows that the earth's solid crust, however great its thickness, and even if of materials far more cohentre and rigid than those of which we must sappose it to consist, mast, if even to a very
small extent left unsupported by the shrinking small extent. left unsupported by the shrinking
sway of the nucleas, orush np in places by its own gravity and by the attrantion: of the nucleus. In onder to test the validity of this view by comparison wfh known facts, the author gives in detail two series of exporiments complated by him, the one on the actual amount of heat eapable of
being dovetoped by the orashing of aixteen being doveloped by rocke, chosen so as to be representative of the whole series of known other, on theoco-efficientsof total contraction bet 'reen fusion and solidifioation at existing mean temperature of the atmosphere of basio and acid slags, amalogors to melted roeks. The views are further tested by the date of total manual vulcanity of all sorts of our globe, by known facts of vuleanology and our own satellite. The author submits that if his view willisecount for ah the known facts, leaving none inexplicable, api presenting no irreconcileable comaitians or noogsary deductions, it shoald be acsepted as a true ploture of nature.
A. Voltaic Standerd of Eleotro-motive Force. Mr. Latimer Clark atated that in the year 18612 committee was appointed by the British Association for the Advancement of Science to report on standards of electrical remistance, and sabsequently on other standards of electrical measure ments. The reports handed in recommended the adoption of a systems of electromagnetic reitations of on the metre and the gramme, the electro-motive force acting through the unlt resistance should give the unit current, and that the unit current flowing for the unit time should give the unit quantity. They issued standards of resistance and standarde of eleotro-static capacity, but no material standard of electro-motive force had hitherto been of a battery of pare mercory and pure zinc separated by a pasto mado by boiling mercary sulphate in a thoroughy saturated solntion of zinc sulphate. This
battery is sensibly constant and uniform in its battery is sensibly constant and uniform in its readily made by the pobentiameter. Mr. Clark says that the standard of electric potential is second only in importance to that of the standard of electric resistance, and the uee of such a standard, combined with an auxiliary battery in the mannar above described, admits a of variety of applications, which research.

OHEMTIOAL SOOESTY.

Prepiraticn of Chlorine.
A^{T} a recent meoting of this Society, Mry. Henry Deacon read a paper on his process for the production of chlorine. He said that about two Years ago, at Liverpool, he gave an acconnt of his
process for the preparation of chlorine from a beated current of hydrochloric acid mixed with air, Which aince then had been the subject of a greas amount of research, with the object of ascertaining how this could be effected continuously, readily, and at the smallest cost. This problem may be resolved active or catalytic subetances. 2. Whether suitable or the surface of the substarce
agent. 3. As to the effect of temperature. 4. As
to the best arrangement of the sabstance. 5. As to to the best arrangement of the sabstance. 5. As to
the effects produced by variation in the velocity of the current of gas. 6. As to the effect of variou proportions of air or oxygen and HCl. He had observed that the heated mixtare of hydrochloric
acid and oxygen or air does not yield chlorine acid and oxygen or air does not yield chlorine capable of being attacked by the hydrochloric acid amongst which the copper componnds were eminently active. Sulphate of copper was fixed upon or economic reasons, and almost all the experiments mentioned in his lectare had been made either with the pure sulphate or with pumice-stone or fragments of clay saturated with it. In experimenting, two clay tubes were generally employed of different bores, glazed externally, amd coated in ternally with salphate of copper, placed side by side and passing throngh the cork of a glass tabe sealed at the other end. The mixed gases on entering first traversed the glass tabe, and then passed ont
by the clay tubes. In the more recent experiments this apparatus was placed in a thick, mastive iron tube, heated externally by a furnace, so as to maintain a uniform temperature. This was measured by the change in electrical resistance of a fine platinum wire, and also by a mechanieal pyrometer. The mixed gases were contained in gasholders worked with strong salpharic acid, both the amount of kydrochloric acid passed and the amount of chlorive produced being aseertained by passing the gases into a solution of caustic soda. The leotarer then explained the numerous diagrams and tabulated resulte of experiments with which his discourse was illue crated, from which it would appear that there is a
comparatively small range of temperature between the critical limits of which the percentage of hydrochloric acid decomposed varies greatly, and that this is not the same for the chloride as for the
sulphate of copper, being highor for the latter although it is the same whother solife sulymute o copper be nsed, or merely pieces of brick saturated with it. This shows that the action is essentially a experiments. It is, however, romarmise shat is invariably lower than in the laboratory experiments -usually 100° or 150°; alse, that when the mixed gases are passed throngh a series of parallel tubes an abont one third in the flow of the gas yields only chlorine produced, that an irregalar surface does under like circumstances.
From the results of all the experiments contained in the tables he inferred:-(1) That with the same mixtare of gases at the same temperatare, the amount of hydroohloric acid decomposed by the aid of a molecule of the copper salt in a given time depends upon the number of times the molecules of the mixed gases are passed throngh the sphere of action of the copper salt. (2) That in long tubes of the same diameter the number of opportanities of action in the same time are nearly the same at all velocities. (3) That in long tabes of different diameters the number is the same when the velocities of the currents of gas are in inverse proportion to the square of the diameters. (4) That in porous masses the opportunities of action increase with in That other conditions remaining the same, the percentage of hydroobloric acid decomposed varies with the square root of the proportionate volume of oxygen to hydrochloric acid. (6) That the CaCl_{2} ormed bears no definite proportion to the amount of chlorine produced. (i) That as the sphere of action includes molecules not in contact with the copper salt, therefore hydroohloric acid must be docomposed under circumstances where the unien of aither element with the oopper salt is impossible.
The President (Dr. Frankland) said that the process for preparing chlorine at present used was essentially clamsy and unscientifio ; the hydrochlorio acid given off from the salt cake was first diseolved in water, and then treated with manganic peroxide in order to liberate the chlorine, giving rise at the same time to a large amount of waste prodacts which were thrown into our streams and pollated them. As especially interested in our rivers, he sincerely hoped the process would prove commercial success.
Dr. Williamson said he would like to ask a quesion or two for his own information. He understood that the mixture of air and hydrochloric acid was heated before being passed into the decom posing chamber ; was it cooled again before it went into the chamber containing lime for the preparation of chloride of lime, and was the undecomposed hydrochboric acid previcusly removed by washing? Dr. Debus would like to know whether the galphate of copper was found to be unaltered after having been exposed to the action of the mixed when Mr. Deacon ued straight tabes with the mixed gas passing throngh at different velocities, the gases in both instances had attained the same temperature when it came in contact with the salphate of copper?
Dr. Gladstone observed that many interesting points atarted up in one's mind in conuection with why why the lecturer belioved the sphere of action to as 85,80, and 86 graing.
inclade molecules not in contact, and that the docomposition was not dae to direot chemical action. It appeared to him that it was mnecessary to sappose the cause to be the mechanical striking of the surface in their passaga through the apparatus, and therefore depending on the flow, for it must be remembered that when a gas was mechanically in a state of rest the molecules composing the gas are in a state of motion, and that when we heat that gas this rate of motion of the molecules amongst themselves
Mr. Deacon replied that he thought it would save the time of the Fellows present, and avoid getting over old groand, if they would permit him to put aside all technical questions, and reply ne the whic is the arst place, there is a defnite range of temperid
tore where chlorine is freely formed, but no chloride tore where chlorine is freely formed, but no chleride
of copper, although at a higher temperature the sulphate of copper is partly converted into chloride. This enly applies to pure sulphate of copper, which even after the action had been continned for six monthe, contained bat mere traces of chlorine. In the presence of clay, however, the sulphate of copper is decomposed, and chloride formed, probably wing to its containing some base which combines with the sulpharic acid. In the case whers the exterior glass tube contained two oldy tubes of the copper salt, certainly had the sama temperature althongh moving with different velocities. With regard to kils allusion to chromium ho had expeoted from the well-known oxdising power of abromic cid that it would have been very active, bat, on the contrary, he had found that it was reduced to oxide of chromiam, Which is one of the most ineotive
substances. With reeppect to the theory he had laid substances. With reapect to the theory he hed nas he covisuly tim. 10 wini ing orig may he mew of accounting for the revilitione had obtivere.

USEFUL AND SOIENTIFIO NOTES.

 newly--issaed resalts of this year'e examinative in masical theory and oomposition onder Mearra. Hinn. and G. A. Maofarren, show that of the 87 cortibcatos and three prizes amarded by Mr. Hallah, tonio eol-fa papils have taken the hrst prive, and 68 (more thas threo-loarths) of the cortiticates. Mr. Mofarrea hac awarded two prizes and 86 sertiticescan mad moi-faicio. The Sooiety has now relinquintiod ita marionl examing tons, in which, daring the last aix yeares bet certibicater have beer iasued, more than three-quar ane (449) having
 of masio is etcrictly unsed; in Mr. M ootarren's xeroises may be worked in either new or old no at the candidaters option. The Counof of the Tee Solfe Collere, having triod in rain to ingate the Sormare and Art Department and the Univarsity of Londo to carry on these examinations, has detsrnined, provisicmal measure, to undartake the werk for them jeart at least
Incubator.-A Mr. Hunt has palvafod an improved inoubator or apparatas of aimplo and inexpenthe construction for hatohing egge, and also for rearing of two borees piaced one withtn mother, a cluar mpeos
 The inner box eontains a metal vessel, whioh this is placoed s trey to ooveryin the egge for incabiviout The hoot

the inventa hatohed;

for the hented liquid is placed at the uppor peat of the box, $s 0$ as to leave a meffoient spece to admib the Joen. the appara. sech purposea.
Gan Parifontion-The roport on gas paribintion by the gas refereen, Whioh some time rince van Boand of Works, has been pablished. It announeos that the gas referees have dovised a now mathod of purifoation, by whioh the gas can be almont entiroly at Bow-common and Beckton) whore lime can be uised. But, although the report in datod in Janaary, and the reforees state that they had informed the engineers of the Chartered Gas Company of their new method of usiog limo-purtifers, the omalial teoting for the quarter ouding with Murch sho no improvement whatever in the purity of the gas supplied to the CIty,
either from Beokion or from Bow-comemoz. The monthly arerages of madphar in the Beckton gee stive
 grains per 100t.; Felruary, 4t; Marah, 88; while in
thoee months respectively the tmparity han bees as high as 68,51 , and 58 . In the gen supplied trom Bow

LETMERS TO THE EDITOR.

 of owr oorrespendonts. The Editor respectivily requeste pcoible.]
All oommunioations should be addrased io the Eatiter of the ENGLIBI MEOBANKOA BI, Tavidpok-Atreat Dower Garden, W.O.
dil ONoques mad Pont G/o.
"I would have every one writo fital he knowa, and as suoch os ho knows butt mo mose; and the not in this have some particular knowledge and experiance of the nature of such a person or such a fomatain, that an to
 Fine undortake to Wite she mooto body of phymilas:

 on whichit appano.

a giant plander.

 pleasiog exitio It appears there in "so maok hoose reaconing" is may artielo (I.many an mell admis the of your readers to it." This, hewever, "Hyrab Scen" ouly talks of doing; for he prooeeds to attack part of a seatence which does not belong to my reasoning. all, Let us remember that the theory that Japiter is an intonamb heatod globe-a theory to which we have bren octiok, in its twen, supgeste very satig/actory sxplanations of esher obocrved facts-mould maraly show that [as between the sun and the minor planeta in reapeet of size, to thone giant orbs hold as corresponding position in reqpect of inherent hoaty." The part in breckots is the only part quoted by "Hyrab scen." All my desoribing the geepral charrocter of my inforences, in present as part of my reaconing. Then comes his startling discovery that 82,000 is not the arithmetio mean betreen 8,000 and 840,600. Hies "Hyrab Seen" never heard of a geometrio mean? and moald he betwees 1 amd 4,"becance 2 is not the arthmotic mean Is not 83,000 protty near the trae geomotric mean between 8,000 and 840,000 ; and do I attech the slightert importanoe to the numerioal relation? I "Ho not think any one of my resdors (including meaning of my atatoment. Then he goes on to the question of "size" "\$ distingrished from the emate p; and he sayk. "thom we remember that thas Japitere, we ahall easily see how little he (Japiter) is entitled to hold the place the wrimer aesigna to him." bolt is more then a thousand times greater than the earth's? or that it whe the (rough) correspondence between thic relation and the relation between the larly maltreter that inad in new I Ho then simi. compared with the sun's and the earth'g. And he cery mely oonolades this portion of his argonenat by cening that" "when the writhor of tha artiolo shinher fit, them totrevan the asn and marth, in reapoot of bult and the gelariala. With vhioh to boild atheory at any price." axtmact toom the above qeoted mentrace ?) that the smeterials tor the theary had been alnemp thompd-aeee mot be in the leeet alloeted,
 Gous is if ho han read my artiolo, howe perfectily woll whato of Japitar. It is the rery oseonot of my meonaing that tbe red-het surtece of the planet clond belte which ceem to us the densest. Dr. Tyndell's recearebes about the "nery material retardation" \&donidiless "Hyrab Scom" monen abourption) of radiant beat by aqueoss rapoar relats (in the main) to obJupthar at (in the main) not abiores. "Hyemb Scon" holds that "the clonds of Japiter must be as dease as - Neavfoundiand for bank," and aleo that "they must partalie more of the nature of semi-condensed steam tham of terrestrian clonds." When he has selected between these atterly discordant "must be's" it will be time to discact his inferrepone, which at present forther eppeare that greatipg Japitior to have snoh further eppeare chat granting japiner to have snoh his catolliton" tocepperuture wu be ancerantion, "cadmits ol strive calomiation." Unfortanatoly "Hyrab Scon" doen not give as any illmatrative aalonalation. Ho anly most antellite mant recoive live thean 2^{9} from sach a
source. I thoold very muoh lite to see the calculation hy which this result has boen achieved. I fancy "Hyrab scon" counts de

Amazing, wlso, is the aesertion that if not illumained by the ran and ehining only as a red-hot planet, Japtiter would bo invidible to any dwollers in his most distant catallito. This is almost as bad as Mr Lockyer's mistake aboat Haggins's ingenious oxperiment for testing the Inminosity of cortain nebrime ! "Hyrab Soen" may tate it for grantod that under his supposed oonditions Japitor, as seen from its most distant planet, wordd appoar as a red. hot orb showing a disc 65 timen as large as our moon's. This dige would appoar just as bright as red-hot iron. I conceive that on a dark night a globe of red-hot iron sabtending to the eye an angle of at degrees wonld be discernible withoat "any optioal power greater than our unassisted vision. tanee per se bas an effect in diminishing the apparent rightun os of a la mainous object.
In the third paragraph of his letter "Hyrab Scen" makkes me say that "Japiter shines three or forr times as brighty an a globe of his size uhould if reflecting the aun's light only." He omite the nomewhat important worde, "if conatitated like Mars or the moon." To words, "Japiter ativos, in faot, very nearly as brightuy asthangh he, ware constitatod like one of our terres. trina donds." Thin Fould, however, have znined "Lorab seava" ingean
Of coarse, the argament though ingenious (in a bad senas) is shear nonsenie. What does "Hyrab Scen" mean, for ingtance, by saying that "suashine here is handreds of times brighter than the light amitted by a body hated to redness "? He can hardly mean that a body illaminated by annshine is handreds of times brightor than red-hot iron. If he does, I would asik, "What sort of body?" Does a piece of black cloth, for example, illaminated by fall sunlight, shine handrods of times brighter than red-hot iron? If he moans that the sun's disc as we see it is handreds of times brighter than red-hot iron, then what does he mean by the sun's light at Japiter being one twonty. seronth pert of what it is on the earth? The sun's diso as soen from Japiter is jast as bright as the solat
 of distanco.
Bat "Hyrab Scen" knows perfoctly woll that in my article on Japiter I only weigh actual evidence, and deduce certain probablo inferences as to Japiter's con dition. I do not attach the slightest weight to the questions whether his satellites are inhabited, whether he warms them, and so on. I only toach on these matters in the conolading paragraph of the article. I oxpressiy indicate my beliel that anch considerations arord no valid testimony for the theory embodied in he ossay, adding "that theory must stand or fall socording to the ovidence in its ravour or againat it "Nor oven do I describe the evidence I have gathered to
gether, in the body of the article arkd elsetchere, as in any sense conclasive.
I hoped, when I read the firat sentence of "Hyrab Scen's" letter, that I was coming apon honest criticism, from which I might learn something. To sach critioism I am always glad to listen, and not unfrequentiy I have foand in it good reasona for modifying or abandening opinions of my own. Nor do 1 in Bat "Hast mind how strongly it may be seasonod gat Hyrab Scen's" criticiam is not of this sort. He is either so simple or so ignorant as he represent himself.
To a aritic of another sort, who asked recently Whether there may not after all be living creatures in such a world as I take Japiter to bo, I woald sabmit that Lite on a red-hot globe, if poacible at all, mast be at smbjeot for rengaing or disenssion.

Becined A. Proctor.
[4447.]-"Hfras SCEN" is sadly wrong in his oriticimem of the remark (lot. 4429 , p. 884) that a diametor of 82,000 in " midway" between 8,000 and 840,000 . It could hardly be more soanrately so. The nearat whole number to the mean is 81,975 ; and lather are thken for the earth, Japiter, and the sun, the as Japiter is diamoters of the earth; in surface also as many Jovian carfooes as Japitor would diaplay carsentrial ones; and in baik, the mun would divide into an many Japitors as Japitor would into earihs. Whab naggest as "mider "? Ho remarks rightly, howere that a mere red heat would by no means account fo the feot (if it be a fact) of Japiter and Satarn each emitting a senaibly groater amount af light than can fall on them from the san. It would require a decided f whito heal, as high as that of melted oast iron, to riva the brightnees of a white objoet retlecting even Jovian exneshine (a twenty-seventh part of ours), or perbaps intonaity of ours. This admito of easy proof, evan in London, this Ane weather; for is we lot a gunbeam pans through any concave lens, it will so diverge that an object plecod in the shadow of the lens, and at 4:3 timos its fooal tength, will be jast as mach sunned as Japiter, and one at 9 times the focal length will be in the condition of Satarn. We may thus exactly repreent the annshine of any exterior planet, and with a courex lone that of Venus and Moroary. By patiog from the barning.glusa to its foom, you can judge, in
the former case of Venareal, and in the latter of Mercarial sanshing; and the appearanco of these plepetice. as well as of Mars, very woll agroes with theory, aupgray alato. But not so vith the moon, or a planete Years ago the sight of their inpressed me with the ides that thay far too nearly resembled her deeper-tinted partions, and Japitor ever her bright edge, to be emitting only a twenty-ceventh and a handredth of her ararage light respectively. Their total lights might be very exactly compared, without maoh difficulty, by their imagee in conver mirrors, removed to dififerent diatances from the eye, till they are equalised, by night; and by ding the moon's refectiveneas might similarly be compared with that of white lead, frosted silver, soot, lamp-black, or other standard materiale. This is, I suppose, the way Dr. Zülner arrived at the result of Japiter shiniag "three or four times" as much as he could by manlight, though the "three or four" seems to me vory ragro for serious experiment.
But surely such a result would be conclasively tented whenevar a satallite and its shadow are both seen on the disc and near its centre at once, which is not a rare event. If the planet'a total ught be "three or Amor times" his possible retection, hia independont light mast be at least two or three times the refected, suppos-
ing him as reflective as snow or white lead, and in a greater rasio refective as snow ref wivo at the inferior planets. On the probeble ascumption of the antallitoes having no native laminosity, then the epot shadowed by one wonld be turice or thrice as bright as the sumned satellite itself, so that whenever the two are seen well within the disc, say in the central half of its aroa, the body mast be decidedly the darker of the tro spots. Is his so alcays; or rather, has it ever been observed ? A ate correspondent described a trandit in which, when the shadow entered the disc, he was surprised how ittle darker than the satellite it wa. Bat this must have been at the border, where, by hypoth alk, Jupitor' nonaminous bat reliective envelape is alone risible. His brightness does certisinly docline townrds every border, like the sun's, and contrary in thia reapeot to that ol yons , and notably of the mosa. Bujrity of the diso Wher hypothesis thare muat be a may darker, must be never, in any case, so dark as the satellite casting them, if visible at all. On the other hand, the oommon theory of solar light alone requires then to be alioays darker, aud, indeed, abrotataly black, unless the eatellite casting them have arery groat atmosphere, for nothing else can refloot or rofraot colar light to them in sensible amount. The ot
Again, tho question of Jupitores fempermiture is surely now far more within experimental resch than want of stars. If Mr. Hugxing has detoctod amy gtar's heat raps with his rofractor, how mach more might be expected of the 6 ft. Rosse mirror, with nomo 80 tumosiam grasp, and no pasasge of the raya forough may mediam of Irish Would, indeed, trore Tenerifiear on glase instead of bronze and capsble of befing tarned to receive rays of the miterior plapets or horned moon by night, inatead of only by day; but atill, this thermometry wonld seem the epecial work for a giant mirror, and considering that its image of Japitor muat cover a goodsized pea, so that a thermo-battery need not have more surface than to be nearty corerod by it; surdily the ters peratare of either the giant pianes, or of nobaifo, of comets (all, I believe, jet untried) munt be more accessible (as well as more denirable to know) than that of atars, which fow have ovte doabtod to be hot-

Doubt that the stars are Are, Doubt thint the eun doth movo

No, Hambet, we have quito returned to Molimpalism trom both these donbta, brt we remain in much dorbi sboat nebulm and comete (tho only bodias really in teresting as, as possible and not improbable intrader on our home), and even of our neighbour the moon, what heat she really absorts and re-ralintes in a quortion as yot strangely ill-appromobed. The important distino ion of hor merely refectod heat raye from thowe wen ing her has not beon meade, abk mor hor illumined and dark parte, and speoinlly at har two ceadratures, and between those that have jart loft thoir formight's day and those aboat to entor it. Lul these are experimente that it seems wastolal to grope after with ingtramental powers so pery far bolom the highent as all those on which the duty hae been kitharto thrown.
E. L. G.
[448.]-Rarpande to the article with the above ittle, zeprinted on p. 2tt, and to the reply (let. 4429) of "Hyrab Soan," I may be permilted to sapplement tor latter's objections to the idea of Japitar being a sort of midway sun, by calling attention to the planet' appearance at quadrature. If ho were a light-giving body, there would be eospproach to a gibbous form I am aware that Arago says there is no phase, bat with ath due defarence to the Frenah philosopher, we mont not forget that his aseertion hao boen contradicted by our eminently exact observers, De La Rue and Webb. This fact alone seams to mo to tend greatly to nallity the theory that Japitur gives out unreflected light-anlese, indeed, the writer of the article in ques than considers the inherant light to be so faint, from the heat being of a dull red, as to canse a portion of witla the reflected light. If this be no, the gain to the atallites mast, indeed, be alight.
I may also remark that though Mr. Broxn
previously observed with a smaller aperture, it had been constantly observed at Greenwich.
For my own part I see no reason why we should not allow that planets have atmospheres, differing from our own in such a way that the heat and light rays of our sun are 80 mollified or intensified as to make
Mercury and Venns as habitable as Uranus and Neptune for beings adapted to their respective situations.

AXES OF THE PLANETS

[4449]-There is a slight inaccuracy in the statement made by "F. R. A. S." (letter 4404, p. 380) on his subject, where he says that the equator of Jupiter inclined less than 2° to the plane of its orbit. The inclinstion exceeds 3 . The positions of this planet and of Mars are pictured in my charts of the planetary inclination of Mars at about $1 \frac{1}{2}^{\circ}$ less than Herschel's inclination of Mars at about $1 \frac{1}{2}$. less than Herschel's f Verus, even if their accnracy be not admitted, are carcely spoken of quite justly when "F.R.A. S." scarcely spoken of quite justly when "F.R. A. S." and so. Webb speaks of De Vico's work with some and so. Webb speaks of De Vico's work with some degree of confldence. Admiral Smyth adopts Bianainis estimate of the incic). So does Prof. Grant
quator, plane, and ecliptic). So does Prof. Grant.
English Mechanic give Schröter's estimate? Webb gives it as 70° for inclination of sxis to orbit; but I ives it as complement, for he speaks of the axis of Venus as greatly inclined. Grant says that "the axis of Mercury is greatly inclined to the ecliptic, according to Schroiter." Hind omits all reference to Bessel, saying that only Schröter has seen any signs of rotaion. I have always Mesed's equator and orbit to 70°; but this may be wrong. If the complement of be 70°, but this may be wrong. If the complement of his anendent respecting Mercury's axial pose than is commonly imagined.
I wonder why Mr. Johnson (answer 12164, p. 390) thinks Mars so very warm that its heat " to ordinary animals would be destruction

Richi. A. Proctor.

GASSENDI

[4450.]-Referring to Mr. Birmingham's letter 4241), I think difference of illumination, though ocasioning some difference in the aspect of lonar objects, cannot fully account for the differences found in our respective sketches. The principal canse I believe to be our difference of parpose. Mr. Birmingham has tried to give a general view of the aspect of the north portion of the floor of this crater, while I almost entirely disregarded appearances, my aim being to distinct object seon at the time. Doubtiess, it would e far more pleasing to the eye, and in no way diminish shaded, as desired by your correspondent "E. B. F." haded, as desired by your correspondent E.B. F. ftor 401). Oily, in that case, details would have often to be sacrinced. Now details are certainly what we need the is not, certainly, an viewed through large telescopes," is not, certainly, an unreasonable desire; bat this is not the alimate object one ought to have in view when looking at celestial objects. The telescope is not shows, bat it is a hows, but shows riage 21 (see letter 4076) as extending eastward of orater 18. Y never saw it thus. On the other hand, the position of crater 16 given by him is better than in my sketch, as this crater ought to be nearer cleft 20 han cleft 17.

Jumet-Hainant.

C. Gaudibert.
P.S.-Though late, allow me to tender my thanks to Mr. Knott for his prompt answer to my query about ζ Cancri, and also to the Rev. H. C. Key, who so willingly gave such interesting and very uncommon details abont this donble. It would seem that the companion was about this time at its nearest approach to the primary, as I find (p. 381, Vol. X. of the English Mechanic) in a letter of "F.R.A.S." that according to the latest measures in 1869 it was $00^{\circ} 40^{\prime \prime}$. In May, $1868, \mathrm{Mr}$. Key found it just separated with his 18 in ., or abont $0.25^{\prime \prime}$, or $0.30^{\prime \prime}$, and since then the distance has continually increased. This date, May, 1868, is of importance as the starting point to ascertain the time of the revolation of this star, which time is not yet satisfactorily determined. Mr. Webb, in "Celestial Objects," p. 199, quoting Jacobi gives not much less than 100 years, 128) gives $58 \cdot 23$ years.

МІІк.

[4451.]-The paragraph, p. 393, quoted from American sources, may mislead many, as it is ntterly erroneong. All the world over "a pint of water is a pound and a quarter"-ergo, a quart should be ranges from 1.08 to 1.04 , and, therefore, the lowest weight of a quart of milk, if pure, must be $2 \mathrm{lb} .9 \cdot 6 \mathrm{oz}$. instead of 21 b . 2 foz . I fear Mr. Gail Borden, of White Plains, N.Y., must be a cute Yankee, who employs measures which would make even a London dairyman turn green with envy, though the latter fully adopts the maxim once calmly enunciated to me by a Chinese to whose charges for milk I objected, "You want milk more cheap, I can,-can put more water." SIGMA.

ARISTARCHUS AND HERODOTUS.

[4452.]-ON May 12, 1872, you kindly published one of my sketches of this lunar group. Unfortunately, I did not then follow the excellent advice given by Mr. Birt, of numbering each object seen, so that when new objects are discovered, their position can easily be determined by referring them to other objects in their immediate neighbeurhood. This, and also some other objects not seen by me before, whose positions I could not very well give by referring to that sketch, without a long and doubtless confusing description, is my excuse for soliciting the engraving of another sketch containing the observations of two consecutive evenings, the 17th and 18th of Jane, 1872

1 is the central peak on the floor of Aristarchus ; it was neatly seen on the 18th, very bright, elongated in a seath-west and north-east direction. I think those observers who have large apertures, might successfully look for another small peak on its north-east end. 2 is Browning's peak, which was dall compared to 1. 3 is the peak I saw for the first time on May 30, 1871. It was also dall, but rather easier to see than 2. 4, a shallow craterlet along the castern interior slope, nearer to the top. 5 is an interior ridge, running from crater 4 parallel with the eastern ridge of Aristarchus, which I saw for the first time on May 1, 1871, but which, I believe, had been seen before by Mr. J. Birmingham. 6, 7, and 8, are dark portions of this slope quite in contrast with the rest. The darkness of 6 is narrower from the floor of the crater to ridge 5 , than above. 9 and 10 are two elongated bright peaks on the south-west wall of Aristarchus, but they are not high, I believe, for I scarcely could distinguish their shadows on the 17 th. depressed if compared to the portions marked 14, 24,
cleft 18 cut through this border, or is the darkness cansed by the shadow of the towering hill 23 ? 19 on the south border of Herodotus is a mound on the streak of light seen only on the 17th. 20 and 21 seem to be the remains of an old crater whose south portion has disappeared; 22 a low ridge inside; 23 is a very prominent hill between Herodotus on the east, part of cleft 18 on the south, and valley 17 on the west. On the 17 th its shadow was crossing the east rampart of Herodotus, when it came into light. 24 is another hill, but smaller on the opposite side of valley 17. 25 is a very high hill on the north extremity of the west side of valley 17. At the west foot of this mountain, in the depression, there is a craterlet 26 , seen for the first time on the 17th; no trace of it next evening. 27 is another mountain not so high as 25; and connected with it by a lower range still along the west border of serpentine valley. On the top of 27 I found a craterlet on the 17th, not seen before by me. 28 is Browning's mountain, but I see it still as a crater with the east and west sides higher than the north and south. 29 is a mound at the opening of the large valley where 30 stands. 30 is a cleft running almost diagonally througb this valley. 31 to 84 are mounds forming the sonth border of the large valley. South of these monnds there are others whose positions I had no time to take. South of mounds 38 and 34 there is a cleft followin their contours to some extent. 36 a crater, 37 and 38 are two craters, ore situated just on the border of the table-land west of valley 40 , and the other on the border of the table-land east of 40 , and connected with each other by a cleft 39 , bulging north nearly in the middle 40, a large flat valley ; 41, a crater ; 42, another crater west of which is a low ridge 43, running in the direction of crater $41 ; 44$, a low large mound forked on the south-east; 45, a low mound brighter than its im mediate neighbourhood; 46, portion of this table-land

and 25 , but is very much on the same level as the large flat valley running north-west of Aristarchus, Where 30 stands. I have tried to show this depression as it gives a better idea of this whole locality. In thi gated rida 11 is a cleft, and 12 and 18 are Hwo lon are two other craters which will be described below 14 is a mass of darkish rocks which with cleft 18 penetrate into the streak of light forming the south west border of Herodotus, and divides it into two branches. No drawing made with the hand while the eye is at the telescope, will give an adequate ides of this object. 15 and 16 are two very small craterlets on the sonth border of the eastern portion of cleft 18 These craterlets were seen on the 17 th, when the streak the slig was on the terminator. The next evening no imagination, thongh I knew where they are, and I carefully looked for them. 17 is the large valley cutting the platean which stands between Herodotus somewhat pression east of Aristarchus. It runs. It south-west end opens in the middle of cleft 18 ; its north-east extremity rapidly descends from the towering height where it runs, but it is not cut perpendicular It reaches think, when some shadow remains Just sonth of 17 in the valley there is a small hill seen only on the 17th. 18 is a cleft extending from the east side of Aristarchna into the streak of light. It runs at the foot of rocks 14, bat far above the depression on the north, and before it reaches valley 17 it is stopped in two places as if it had been made of an elongated donble crater whose walls were still standing. Its eastern extremity clearly stopped in the streak of and yet I have seen at other times this portion of the | border of Herodotus quite dark, as if cut. Does
lower than the rest ; 47, an elongated mound along the south border of this table-land; 48, a mound Which as well as 49 and 50 project into the depression of the them; 51 and 52 are two other projection land; 53 and 54 at the north foot of the table-land are two craters; 55 is the great serpentine valley. Thi curions object takes its origin at the north foot of mountain 25 ; it is enlarged at once more than in any olher portion of its course, and encroaches npon the mo the mountain. It follows the eastern slop zag course very opening in the north border of Herodotas, which has been pushed outwards. Within this opening rans a small cleft which connects the great serpentine valley passes across valley 17 berodotus, and along its somer to cut it much in the same way as cleft 18 cuts the opposite end; 57 on the north border of Herodotas is crater; 60 to 66 , monnds. On the sonth-west of Aristarchus are ridges somewhat as shown, but time faile me to examine them with sufficient attention to describe them.

Jumet-Hainant
C. Gaudibhrte

SUN SPOTS.

[4458.] -Possibly Mr. Hart's letter (4398) may serve to explain the natare of sun-spots. May they not be iscrustations on the molten substance of the sun? I a sun-spot break scross in the midde-or he once saw a band of light suddenly appear across one; which would be a phenomeron precisely like that mentioned by Mr. Hart, where he says that the hardened lava at Hawair suddenly splits tp.

NOVEL METHOD OF SAWING TMBER. [4454.]-AN extremoly original method of mawing timber has been recently patented in the United States by Dr. G. Robincon. It oonsists in applying a method human sabjoct to the felling of trees and outting ap of wood. Moot of your readors aro awnre that when a current from a galranie battory is pacsed through a platinam wire the latter becomes red or evon white hot. This red-hot wire is mede to burn tharough remoro, and the idea coggeited itnolf to Dr. Robinson that rood might be divided in a aimilar manner. On trial it is raid that this proved to bo the cace ; for on proming pleces of wood againat a red-hot platinum and imparting to them or the wire a movement imitatory in a way of the action of a san, they were dividod in any required direction. By ftting the wire with handles so as to gaide it in any and every direction the most intricate frotwork oan be done. Some of your readeri, who hare the requaite appliancees, eapecially as to the cost of the procem. G.J. H.

WIRE-COVERING MAOEINES.-II.
[4455.]-Ir reference to diagrama lact sont (let. 4410, p. 881) of the wire-covering machines, I did not mention that the wire has to pase throagh the machines trioo, and sometimes throe times; if more than one wire is roquired two operatione are needed to cover one wire. Bometimen three or tour wires are made to pacis through the samo die, consequently there are as many eeparato carrenta of olectricity; each wire hae a soparate covering Arst before it is mede to pasesthrongh he same die. In order to prepare the material for covering the wire it in necoseary to employ atrong and

THE NEGRO.

[4456.]-"FiddLEr's" dimenlty (let. 4365), whioh unperfeial woald-be critios in every age continue to make, about deriving negroes and other variotios of man from one ancestor, Nonh, overlooks the fact that
no history, Biblical or other, has ever implied the no history, Biblical or other, has ever implied the existonoe of more than a quartor of Nonchian or
Adamite blood in any modern race. Our common Adamite blood in any modern raco. Our common
fathar, Noab, is representod as the last Adamite, or fathar, Nonh, is representod as the last Adamite, or member of that peoaliar, lact-formed, and noblost
human race who lived commonly 900 yours, had haman race who lived commonly 900 years, had
children at the end of ave centaries, and in no eace children at the end of Are centaries, and in no ease
under the age (ecoording to the mont truntworthy under the age (eocording to the mont trustworthy
copiea) of 169 . Such a race must have been, as Procopies) of 162 . Such a race must have been, as Pro-
tossor Owen has latoly pointed out, different enough fonsor Owon hat lotoly pointed out, difforent enough from any now oxikting, to merit, according to any oxtant zoologioel idean, boing classor ap another
opecies, rather than mere eariety. Perhaps the rare bat well-attentod phenomenon, in all historic times, sapecially the mont cirilised, of very old persona ocenrionally cutting new teeth (as old elophants, \&c., regalarly do) may be a ance of atavism, or casanal reappearanoe of an Adamito peculiarity, inheritod throagh our ingle Adamite ancostor, Noah. But did Noah, like his nine patornal anoeators, marry an Adamitoms? The suddenly shortoned life of his mon, baroly threefithe of his own, and still more ahortened in all that mon's ponterity, marely implies that Shem was only a
half-blooded Adamito, and his mother one of the half-blooded Adamito, and his mother one of the "danghtors of mon" mentioned in Gen. vi. 1, 2-i.e.,
of the Nephilim or inforior and ahorter-lived racen, of the Nephilim or inferior and ahortor-lived racen, Wherewith the highar cacte of Adam, who had long
been "oalled by the name of the Lord" (iv. 28, marg.) been "c oalled by the name of the Lord" (iv. 28, marg.),
or had been a mort of Iaraol, or sacred, toenhing and or had been a mort of Iaraol, or sacred, tonohing and raling Brabminical cacte among antedilavian man, began irrot in Noah's time to intermarry. There is not
a word to imply this new cuatom of "the Sons of God" a word to imply this new custom of "the Sons of God"
had been for hidden, or wes. generally wrong, or incon
furthor than present Malays, Mongole, and Nogroes are from Cancasians, these firat-born postdilavians Noald be as difierent at at sambo (or three-quarter Nogro), a threo-quartor Malay, and Mostizo (or areh-quariar dilation of the long-lived Adartito kilaropean). And inoh dulution of the long-lived Adamito elementis plainly implied, in Gen. xi., by the longerity in 8hem's line falling not graducaly, but arst to aboat half the old ntandard, and thon, artor three noarly aniform genera tions, as sudaenly to about half again. Donbtless the of N OR Noph the, had been shortin having the quarter of Adamite blood
"Fiddler " munt suraly allow, then, that our common dencent from Noah does not prevent our supposing the differences coen between haman varieties to be Adem's in origin than adam's. Not only does his story, when examined make suoh differenceas probable, but I maintain it makes for one race boing as apecially marked off from other four or Ave as he says the Negroen are. It plainly reprosents Ham as more diflerent from his brothers than they from each other. Now ovory son of these three muat have married oither a oonain or sistor and as wo road of no law againgt the latter though it mould be naturally the raror eace, there would ariso in the next goneration six varietioe, the parely Semitio, Hamotio, and Japhetio, and the throe sorts of hals cartoe more in number than the throo former. Ham's and his wife's pecaliaritios in their fall intenaity could only desoend in the family of sach of his sons ss married a nister. Now, of his foar cons (Gen. x. 6) there is but one, Phat or Pat, to whom Negroes, or contral and soath Africans appears trace or No-Ammanum ili, 9 , spozen of the city of Thebe or No-Ammon). The other three, Cash, Misraim, and Canaan, are woll identifed, as fathers of the dark but
not bleck nations, they having doabtloes marriod consins, and only Phat a ciator
If Negroes were not Noechides, they would have no traditions or coremonies allading to the Flood, the Ark, the Dove, Noah's Seeritios, to. But suoh they
have, as woll as all other races. The Jonkanoo dance have, as woll as all other races. The Jonkanoo dance was a memorial of the great deliveranoe, which they though their manters, by maling them ropeal it fo their amusement, at any sescon indifiorently, oradicated ita religious and chronological oharactar. In Cynric R. Williamp's "Tour in Jamaica," 1896, it is
noticod. The chiof dancer, though ohosen for noticod. The chiof dancer, though ahowen for activity, veara an aged mack and whito beard worthy of Noah, and the Artin alwaye represented by a model of a roofed vessel. The real marvol, in the variotio the traditions have taken among such soparated tribee as Mexican, Ohinese, Polynevian, is that so many should be recognisable and unmítakeable, when wo consider how the prieste of aivilised anajent Egyt,
for initance, had disgaised the whole subjeot, to foed for inatance, had disgrised the whole subboot, to foed
the national vanity with ideas of their fabalona the national ranity with idean of their fabaloue
antiguity. Noze, probably, could guena that in thoir story, as preserred by Platareh, the killing of Oairis by his brother Typhon, Aoating of his divided body to soen in an ark, to., was the killing of hamanity, or the antedilavian oivilisation, porsonitod as Odris, by the Flood, aleo pernoniliod, as Typhon, co., were it not Yor the ohronological note that "all theere thinge were said to be done on the 17 th day of that month whereid the sun" (in Platarch's time) "enters Soorpio."
If the moat separatod nations had not a common ancestor, it voald be quite inexplicablo how their theogonied eame to agree in the attribates, rolation shipa, and alliances of all their principal and scoondary gode and goddoesces. When Greols or Roman learnt the mythology of any nowly foond distant barbariann, they had no difmeclty in recognidiag thair own deitioc. One nation could almays toll which of another's gode was their Satarn, or Valcan, or Pan, or Silenar, dithor by the oharaotors or hinehip and marriages; for marriages of every nation, however nume rons, aro all rolatod, and married to brothera, sistere, or conains. Bat this would not have beon, aniess the mythe rolated to the same real persona, the childrem and grandobildren of Noah. They are seen through a maltiplying glace, bat raroly aro two confonnded. One man, by the difirerant aides of his charactor, became various gods. Noak, boing father and raler of the golden age, but being aloo invontor of tippling, and thene charactors being too inoongruons to adhere long to one subject, he necossarily beoomes, as the grea Saturn, one deity, but as Bacohas, quite another, among the seoondary Olympiana. So, again, he was in one viow the father of gods and men, but yot wa rather the pait father, old Cronon, superseded, and his dominions taken by his three cons, of whom all nations knew, and how the joangeat and yet mightiest ralec oarth in a apecial seneo, the most continontal and dry regions, another the soa and "inlos of the Gontilea, and a third the hotteat lande and awarthy raoes. Ana all knew of the " war of the gianta," the dirat rebolition of Cashites against Bhem's authority, ${ }^{\text {econn artor } 800-1}$ coeding to hil father's peacoful rale of 850 years agreeing not indoed with the corraptod and absurd numbers of the modern Jown' vorsion and Engliah of Gon. xi., bat perfootly with it genaine reedinge, the Samaritan, and oopies aced by Jocophus and all ancienta ; whioh make Polog's birth, whon
Another coincidence betweon all the oldest nations traditions, inexplicable if it wore not a feot, is the traditions, inoxplicable is it wore not a seot, is the or generations aboat that Polog's time. It is no v memory, obeerve, that a long while ago our anc memory, obecrre, thangar-lived than we. This is totally mi senting the phenomonon, which is an extremely
and peaciee ope-namely, that whatsoever people bave bept records of dated time profeasodly reaching above 24 or 25 centuries n.c. have all written the reigns, throughoat these 43 centaries at least, of mo greater average dength than modern reigos, bat all agree jast as unilarmly in making the preceding two, three, or four neigne, whichever number they record before finat cate, reigus approaching or exoeeding a centary. The Ohinese do this; the Hindoos do it ; the Persians do it; the ancient Ohaldoans, Phoosicians, Egyptians, each did it, as testified by Boronas, Sanchoniatho,
Masetho, to. Now the length of reigas nowise depends, Kametho, te. Now the length of reigns nowise depends,
observe, on length of life, bat only on the time elapsing between a father's birth and his non's birth. The last tan lords of any menor would have had no louger arerage tonare if they had all evjoyed the longevity of
Noah. The ooincidence of histories on this point, then, Noah. The ooincidence of histories on this point, then, is totally diatinct from that of patriarchal pongevity, in Which they equally agree. Thns, apart from length
of life, the reigne attribnted to the first foar Chinese of $\mathrm{IL}(\mathrm{e}$, the reigns attribnted to the first four Chinese
empers from Fo - Hi (the father of the Ark) arerage omperors from Fo. Hi (the father of the Ark) arerage tioas of Shem's line in Gen. xi., as preserved by the Greek and Samaritan copies (not, of course, as they cppear in the Jewish and English, which have for these sixteen centuries been well known to have enfered intentional sacriloge in the shortening these numbera).
E. I. G.
[4457.]-I ay unsble to give "Fiddler" any information ss to the origin of the Negro (letter 4365, p. expor into which he appears to have fallen. The canse of the negro's black skin is not, as he imagines, a distinct " neombrane consisting of minnte veasels oharged with flide of the deopest bues." In onder to mase thematter clear, I will briedy explain the structure of the skin, which is essentially componed of two layers, the deeper being chiefly formed of flbrous tiasse, the surfere of which is raised into a series of minnte clevation; in these the blood-ressels and merves covations; in these the blood-ressels and nerves over the last superscially, flling all the deprossions and earving to protect it; it is called the epidermis or acarl shin: it is entirely composed of colls, which being Bhin : it is entirely composed of colls, which being approach the outer surface. Theoe deener colls are approan the onter burtace These deeper colls are
called the retemacosum; in the Negro they are filled called the retemncosum; in the Negro they are filled with a black pigment, but excepting in the greater or aike, as far as I know, in all races of man. To show that olimate alone does not canse the black colour of the okin in Negroes, it is only necessary to mention the Esquimanx, who, living in the Arctic regions, are, neresthaless, very dark ; moreover, thay differ in celonr from the red Indians, their noxt deor neighbours in necemsity of seeking for some canae, other than olimate, for the variations in the tints of the haman nime
P. Shatalinus.
[4588]-Wrisk in Bombey acod anary years ago, I semamber hearing of (and saeing some of) a tribe Which lived in some of the naighboaring districts. They Fare Jewr, bearing the national atamp nnmistakeable en their coantemances, and thereforo not mere
proenlyter. They retained many of the Iraelitish
eastomn, and hept themselves distinet from the other oustoma, and kept themselves dintinot from the other
inhahitants. All this is nothing nnoommon, bat what inhahitants. All this is nothiog nncommon, bat what is 80, and is the reason I now mention thom, is that
thoy are the same colour as the Hindoos smong whom they are the same colour as the Hindoos among whom
they live, though other Jews of the aame digtrict are they live though other Jows of the game digtrict are
while. If I am not misteten in my memory, varions cireumatances tend to show that theoe are deceendants, not from the last scattering of the Jowe, bat of some not irom the last scatcering of the Jowe, bat of of possibly from the first captirity,

I mention this with the hope that some one who has had better opportanitios of observing these people, and more fall and somurate mamory of tham than myeelf, may farnish particalara. Such circnmetances barn tend towards the type of the Red Indian, give barn tend towards the type of the Red Indian, give
support to the opinion that climato, food, and habits support to the opinion that climato, food, and habits
are the eanses of all the varieties of the human race, though there is much to be maid, also, in favoar of thoir diatinet origin, and that more particalarly as
Slama.

gTONE COAL.

[4459.]-(4414, p. 381.)-Stone coal is so named from its hardness. It can be thrown about like a stone whont bresking. It is a general name for the best parieties of amokeless Welsh cosl used for malting parposes.

AMATEUR.

METEOR.

[460.]-Ox the evening of Saturday, 29th Jane, at abont half-past ten, I observed a large meteor in the
westorn sky. The night vas clear, and there were mearcely any. The night ซas cloar, and chere were the neighbourhood of ζ and s Uzese Majoris, and described a longe curve westwards, sinking below Leo. described a longe carve westwards, sinking below Leo.
Its colenr was an orange red, and was of a dull light. Its colour was an orange red, and was of a dull light.
It much brighter than any star above the horizon; it was much brighter than any star above the horizon;
but might, perbaps, be compared to Regalns, only it Was of maoh greater brilliancy. A long train of eparks followed, but were instantly extinguished. The
daration of ite viaibility was not more than eipht

BRANNAN'S SYSTEM OF MONOLITHIC

 BULLDING.[3461.]-I - ACGEPT the invitation of our "Harmonions" friend to give my views on the sabjeot asked.
It is my tirm belief that doors, window-mashes, ahimney. pieces, and even cart and carriage whoels might all be made in moulds from papier-mâche or same other agclatinative material, and be made as strong as, it not atronger than, wood or even iron. I believe many years ago that a very ingenioas gentleman, by name
Hadden, did take a patent ont for the construction of rail Way wheols in a solid dieo of papier-minché ; whether this Way whools in a solid dieo of papier. miohion; whether this has been adopted I cannot say. What has boen done by Bieletield for fall twenty years in the way of honse decoration, where the great atrength of the material is virtually throwe away, may, I think, be done equally woll in articles of every-day nse, mach as tablea chairs, baokets, water-pang, cc. Considerable taot Will, howevor, be required in the making of the
monlds in auch a form and in suoh annmber of pieces as to unsure perleot casting, and afford facility in detaching the moulds from the oastings. I shall oortainly try and soe what arr. Brannan hae been doing in the may of concrote inors, and seo if
I can get a wriakie. I may, however, state that in the house, or rather wing of a hoose that I have pat up, I have arailed myself of oonerote floors tarned on irgo girders 10ft. Apert, versed aino of arch 13in. I had girders 10. to have ploced wooden floons on alcoppors let into the conorvete, and bought the propared boarding for the purpese; one room alone, however, has been boanded, that is the drawing-room, where, possibly, the other rooms I have bot iato the eonareto ander the skirting a atrip of wood 2 hin. x lin., to whioh the carpote can be nailod level with the floor, and to neoure the wood I have nailod every two or threo feet pieces of iron hoop aboat 15 in . in length, and carried them ander the concrete ; nothing can exceed the strength of my floors. The honse is, in fact, one solid mass. The shell of the arch is at the hannohes about 6in. of the the centre aboat 3tin. If up the spandril of the archcs with dry sand, and over all I pat abou centres ap longer than a week; on the eighte day I
 strike them. Nat stables and farm buillings are also
built of conamate ; in them both flooks and roofs are of conerote withuat rey inwn baces. These
 of the tengile force of iron inside ito retain the arch in the place of a batimess oataide. I plece A pioce of bar iron 5 in . by sin. or tin., the whole leugth in the centre of either wall; at aistances of sht. apart thare
tie rods of fin. or tin. irou, these are attached to the wall plate by means of a atrap with two ejea, :to srioh I bolt my tie rod.

W, wall.plate.
S, strap.
T, tio-rod.
In these baildings my versed sine is 1 fin . to each 1oot of span, or 30is. for an 18tt. span. The most of theee buildinge are tho atoried. My rork has ooat me roofing and flooring. I tind I can pat my roots on roonng and fooring. I tind I can pat my roots on at ground eorered; this iuolades the blotkamith's bill. I have lately been consiraoting dairy and lardor tables. These 1 bave buint on the prineiple of sailway dry areh about fin. to foot span oontained by in. tie rods. Nothing onn be more benatifal. Ong of the dairy tables has been made about six meeks, and is fully at hard as alate. The only objection I have to concrete is that it makes me a prisoner; I dare no The so-called ekilled labour of the Englinh meahanio is so eareless and coll-conecited that it is not enough to show how a thing is to be done, bat one is campolled to sit over the work and aotually 100 it dome. I have had two narrow esonpes: in one oase orring to had Workranaship of the blucksmith, in the other to the properly done I do not hesitate to say that it can be done at 80 to even 40 per coat. oheaper than brick. work, and foar times stronger. The material must be not only of the best and oleaneast sort, bat mast be thoronghly mixed, not too maist, and well rammed Railroad speed in patting flling orer filling mast be alled more than five times in a fortnight, botter if only three times. This, of courne, involves a considerable oullay in framing. I have, or rather had, aboat 600 ranning feet at mork atime. One learra, howaver as one gnes on, and wore 1 to shart again 1 sbould go a man I have done. The eorners bave almaya bork the great difflonlty, and a groat deal of ingenaity patonted corner frames, all of which can be aroided pa a little arrangement of the frames. In eon. crete arohing it is best not to rail the ligens to the ribs; it is also as well to bear in mind that if they
down ; the amell rregularitien in the combol the arch form an excollent key for the plasteres. With refer enoe to the that floor made by Mr. Branman with the aid of a network of wire, I think the same thios can be done equally well and conveniently with good boop iron, provided time be allowed for it to dry. The elder Branel, I beliove, made a tioor 15if. equare mith nothing bat thnee tiers of 1ft. Hat tiles laid in oement on a wooden platiorm, breaking joints in esch tier. beliove there in a raised terrace to a pubic-anal
somewhere near Noting Hill, on which our Londe friends may be meen onjoying their boer and 'becc pretty thick on the ground, of larger dimensions then the above, bat made in the same way. For my part. believe a monolithic stab of foor might be made of any aize self-sapporting, provided the materiats good, and time given to let it harden thoroughly. Bengal, the floors and roots of hooses are all gat, and made of large sal boams, sit. or fit. apart, acroz which are plaoed $8 \frac{1}{2}$ in. $\times 1 \frac{1}{2}$ in. battens, a foot epart on these battens are placed two tiers of tiles, $12 i$ in. oquare, lin. thiok, and on the tiles a mixtare of oroken brick, briot-dast (oalled soorking), and lime, to the thickness of 5in. or 9in., whioh is beation down to abort 4 inin., and plastered with a preparation of jaggery (coarse angar) apd limo. This forms an excellent roon for the reason that in one of the old stendoned factories of the East India Company in Boorbhoom tha natives had cut away all the beams of a room 3apt. by 35tt. or thereaboaks, and the floor made of the materials above mantioned remained like a rast tagstone for years. Oar "Harmonious" friend allades to the denirability o builaing at a cheap rate dwellings for the laborring classes, in which the joung, male and femile, may hav What bettor lodged than the heads of hamilies Werem is pretty strong fever on that sabject just now, and a ramber of architects are planning and contriving all sorts af cottages, and pablishing their derices in all sorts of magazines, joarnals, and pamphlete, Many of their deoigns are no donbt clever. bat I have not seen a aingle plan that accords with my notions of the re in the architoctare, great oonsideration for tho in tended inmates, bat at what cost? I have never sean any of these improved dmellings for the laboaring wapes of the labouring cliseses at a propor rental. dilettanti landowner, memly made, wish an enthrajastic wife and danghters given to Doreas and growd deeds, may stad their sores with model cottages, and lot them at rentals of two shillings a wook, realising a parcentage of $3 . a r 8 \frac{1}{2}$, bat this is not the cerat of baild. ing that will do for the masses, who are left as baily off as orer. What is wanted is a cleas of dwelling, with no external ornamentation, bat es mach internal accommodation as can be given at a moptal. 0 if. id or 6 per cent. to the builder. I can mee other Way of doing this than by building lomer meomed cottages antirely of concrete, inclading roons and

 surtooe of 620 anperfioial feet. All the bedroemas have fireplaces, not pimply for fire, bat for reatilation. This cottage, when completed, glazed. painted, fitted Tith fre apparatas, and a poroh at the antramee, and neesemary outbaildings, I shall bo ablo to do at e coat not oxoeeding e85. This would lot readily in the Deist boarhood for $\mathrm{l}_{\mathrm{s}} \mathrm{s}$. 6 d . a weok. I have pat no greplise in the acullary, simply a ten galton bailor. My xenoss good, the occopents drell in it like pige key in toc good, liring neom as a show plecee. A friend of mina has built a pair of model cottages where be has a aroplace in his back kitoben, consequently the smai rom innever used, but kopt shat up and al maga cracil proaty thick on on eight-dey clock and a bight, lev niohod chout old dramera. My work has boen doee hithera, with conarete made with Portland cament. Within th laat lortuight I have been trying concrete made grit Goperal Soott's melenitic lime and selenitioclay. It wonts beprecustare to draw conolasions; I maystaten por
 if it shonld ans wer expectations, I ehall be eblo by the woo of the eelenitic clay and lime to sare not her thet tropence per foot anbe, notwithstanding that tar th
 plastoring the inside of my honse with this colertsif mormar, and that at loos than half the coal of plenit made with ordinary lian lime, I am getising a beanury
face for aither paint or plaster, withont a veation cis arack to be seon anywhere. So good is
nnown arah eont who asmo
put to my plenterer 0 will satid namerons quar: mo he ahouldinsert its use in the construction of a $z=n$ of hoasee abont to be bailt ander his plans and spoction.
Ifoisixuo. I shall be always happy to give to is the hand makes writing a taut, as the hand can heep pace with the idoe. An artiale that bund a years ago have takon forty-five minatee, ner thel three or four hours. I hase for the teot
are lept a little apart it is mach eakiar to tato them
"U Jack of AlrTrades," "The Harmonioue Blaokemith, "Philo," and others, that I feel it almont a daty, if not a pleasure, to contribute somothing on maltore in
which on experiment I havo either failed or mocoeded.

RHods Bux.

MONOLITHIO BUILDENG

[4162.]-Tan letter of " oar" eetwomed follow wortion The Harmozions Blacksmith", on this sabject is ol groat intarest as adding one mere blow to that assealt
of trath on the barriers of prejadice, igaorance, and of trath on the barriers of prejadice, ignoranoe, and
sell-interest, to which they mast inevitably suceamb soomes or later. That this style of building should meot with much arerpe ariucism and sbage from
membere of the building trade is only what might fairly be expeoted, seoing that its employment tends ma. terially to diminish prices; and cortain of the argnmento employed have, ns is in only reaconabe to
suppowe they would have, cortain right and trath in hem ar, ior instiacea, the very favourite oas that the
 praterony, and hence weak places result. Now, jast for srgompant'e mike, grant the objection to be well foandod, argo let to mee viat reanits. We have to compace the strongth of joint betweon a mass of stone and the like in concrowit he athere with a thin lager of cemention on martias. The concrete is leth with a surtion more or less rough ccording to the size to which the staple material has been brokon, and into every crevice of this sarface the cement of the next course muat ran. Now, I venture to anggeat that no groat affort of mind is reguired to see
that amoh a joint maut be by far the stronger, and grant. that amok e joint mast be by far the stronger, and grant-
ing that the material is not in itteal of equal teancity with atone atill the superiority of joint rendera a mall of concrete superior in point of tenacity to one of stone; of it weakength, so must the value of the wall be measured by the strength of its wearest joints. With sofect to noora, again, I have no heaitation in saying that the plan of open joiat foors as gonerally used in this coantry in a palpable absurdity, whioh, combined with lathe and plastor partitions, renders an English hoase the nearest akin to a sinder-box posaibio to tenda to give to the interior
dramike ofaracter that
children are at play is as a rale alimothamonitof the question: Now, with a truly monolvitinaticetues fire Prance of mating possible. France of makiag all foors and ing for the partitions is sufficient
 may wo sot expeot from a truly moanlithic atruoture, ribbed tegethor and braced where requiaite with iron? I do not heaitats for one moment in saying that soch a struotece is as muoh superion to an ordinary briok
and mortar one as that is to mealheroberd ahenty Ventilutica of: the question camoth but thand to Bpoa,
 palumbie fugerentiona

THE HARP:

 ii to ine tarourrale considertition of every one Ot great

 vas mand for the asme instrament tas wall as tor tho

 Banting tulla it ir Proppecteo of A Genoral Conocetion
 perienoe of the bost masio ot othor conntrios, the perYaer, han boen thil to ocontrol or dimimiish. Theretoro trod coced into our dellinges, und brought mithin in the reach of porory one. Bantion, indeed, is nerer tired

 of treanad. It mas be prodicocod in a ohosp: ned yot

 for the piano, on inatrament whith tho parse

The piane, however aimirable in many rempecte onder existing ciremmstancen is cortainly not fitted for overy man's dwolling. Began with one striag to each Difteralt enongh to bring into tane, or to teep in it the piano in many ways is less denirsble as a popala instrament thah the harp. The harp, if simply conlonger, it is tuned by the player; and, finally, the string of gut or metal is manipalated by tho finger of

menaure, impair the expression, and render the instra ment mose perishable. The pianoforte is a harp in obtain a metls thep mond some respects mers expressive instrament. For as many ahillings the piano nombere poands, we may obtain a cheap, portable, and reasonably effioient instrument that, withont imperehment to the real merits of the pionolorte, wanld suffice to realise most of the atisfectione realimable bo masic which could be taken into the garden or brought down to the sea-shore, and larther grove an excallent ecoompeniment for violin r roios.
I am desirous, then, of turning the attention of the caseral public to the importance of musieal cultare in enera, and of the harp in particalar. I de not think hat masical culture shonld be corefined to masion ilettante thinly seattered here and thore, but extend the youth of the whole community; is fine, that it bould constitute an integral part of general education. rery one should learn to sing, every one to play on wo ingtruments, of which I woald have the harp one. dare ser ent or disinclination should divialify, bat, in other copeot, I would have musical calturo as muea the no as the absance ol it now lound to bo. I shall not onlarge on the excallonco of musia. Every Jne who porusen theso lines is, I dere say, as much persuaded of it ar I am mysell. Masic, in trath, is one of the stop-ping-stonen to a very great enjoyment, and, if not the
only, is at any rato among the most atainless that earth only, is
afforda
The harp has been in use in Engliand itsolf from a very early period. It wes nnder the diaguise of performer on this instrament that King Alfred obtained admission into the Danish camp. In Scotland it was also wall known, and wo learn rrou IIr. Gann, in his history of the instrument, that Q ieen Mary's harp is still preserved in a noble Scottish mansion. The writer of these remarky has had constructed a facsimile of King Brian's harp, as proserved in Trinity Collego, Dablin. This beautifal instrament he woald wish to send to Kensington, bat, beantifal as it is, one of much
simpler constraction would suffice for all ordinary requirements.
The common Irish harp, of come six-and-thirty stringe, or ive ootaves, is stranf with wire, the eigh lowest' strings of wire'No. 18; the rest at No. 20

 the middle G ore the harg now beaide tho whetion, and
 ordinary steol planeforte whin. Bat wraptpali whe reginters. This, howevery is en matter of detall whilem
 anf timo. The French hurpy 90 named, is struaf. with apparatus for altering the key. The Irish harp was andtis plaved in bat the two major keys of G, one harp and C matural ; but the F and C strings could be reised or lowered at disoretion. I have heard the
moat admirable performers, Italian, French, English, Weleh, on the gut harp, a harp perhaps costing a handred gaineas ornero; bat, spearing for myself, fousd the execntion of some poor btind Iristr-player on
the wire harp-that could, I dare say, have been con the wire harp-that could, I dare say, have been con-
trueted for some 30 s . or 40 s . go far more directly so the heart. The wire harp-0in which. Irish trarpers; going on tratitions of more than a thnasand years, always play the treble with the left hand-I earnestly commend, as a sweet, cheap, and most effeotive instrament, to the attention of the readers of the Enaliss Meoranic. and the Rigglish
community generalty. The iustrament, if made of a community generalty. The iustrament, if made of a imple bow and seunding-box, wonld oost the merest
trifte. A strong angle-piece of brass or iron would do trife. A atrong angle.piece of brass or iron would do Wray with the necessity of an apright pillar; Wires, wires at their upper portion are secured and tanedi.e., troned precisely as are the strings of the pianoorte. The lower portion of the string passes throngh hole in the soanding-board and is secared to a loose peg or bit of woed behind. Apertares sufficiently large are made in the baoks of the sounding-box to yield admission to the hand when adjasting and securing the
tring. The holes through which the strings pass in tring. The holes through which the atrings pass in mont are fortifled by little triangular bits of metal, or a perfornted metal plate, properly fastened, cen anbstitated. All difficulties in regard of taning may tuned, I believe, metal reed ootaves, for I am not quite ure, Which he has arranged for the use of pianoforte anera, and the name of whioh I now forget: I believe the maiversal introduetion of the harp, gat or wire, and withoat prejadice to other instraments, woald prove the greateat boon to the lovers of the divine art of
masio that can posaibly be imagined, and in this light I mok earnemtly urge its oniversal adoption

Ixion.

FIDDLES.

[4464.]-Pbaotice is theonly way to decide a theors. Thick strings sound londer, as a contra bass will drown a kit, or, perhaps, a violin-although in the latter case
I donbt it. Some may remark, becanse the tones of esch are different, one bass, the other treble. Very good. But I mean both playing the same tone, say
appar C, or any of the bigher notes; the contra bass appar C, or any of the higher nutes; the contra bass
woald atand a poor chance. You may use the foroe woald atand a poor chance. You may use the forco
necesary to produce the tone on the bass, and apply it to the violin, and (cruel treatment it wonld be) the wo bow too be shriok. Now, it is appareat that if
thick, wo stop the ribrations an though wo putis wetpht the pressure, not to the hemmer of ar the string, alan string is reloased. In the contra bise wo have largu trings, which, whon played on in the upper rogion, bringe, which, when played on in the apper rogion,
become useless map ropresenting riolin tones, and Bottossini or any othor minis could mot play solos with effeet rithoat the ase of harmonien, or by having the inatros. nent strung wiar thinaer trings, which woald be a mistake, as far an tono in concerned, bat oroellent for nempelakion. Than the roason why 8 git siring will bear the pressare or weight suffeient for that purporta. It thitior gat is uned it beoomeo a bers inatroment, fos it will not tome up to the desired pitoh. I do not mene. osay that the presgive of the bow moald break.the nut, bet it would stop the vibration. With reapeet to fddle-string boing taned higher than it is usally, the manipalation woula be ducult bota as to iasamag if the tone, and tingering. Of course, it could be ano The Thas " an noy" broak, whion chey cert laky woula. That "tabby" tone nowioed by The Hanne streising. the gtring mith thiguly can by oves strwiming the string witt the wor of traing, or $e 0$ many more poende preasure pat on is by means of the
peg. Now, Pagwaini numithiostrings buned high, anit produeed a tone equal to a pieno. I think he we right, bat ha tonng, ungeriag, and evarything woal have to be direrent; bat it most imporknt 20 know this, as we take advantage of the present construction without altering it ; rather a sorious matter to do
As to whe racoctors or sor In I Whatr in name . Ival protty condent they will oome in use when knowa. The late M. Jallien would have made whe of them, for in an orohestra ma. entirely new offect oan be made. I prearme the reaserr why a violin sounds loudar in an empty room is, beansea the aonds have a larger plane or cartace to act upon or reacs wiknoat an intarposing medum. May not my reflector ant in the same way, considering that upan?

EIDDLIER.

aMateler obean botlding.

[4465.]-finanks to Jeeoph Willimm, Bennell (lefter 1872. I, howerer, propose to place a harmoniun wrolverucally upon. the boll bat with troing wires: to mapertede thes stopped 8f6. pipee.
The specification is as follows:-Open diapason, 8ft: metal (12 lowest, Green's stopped metal pipes, tuned by the ears), 58 ; dulciana, 8 ft., tenor C (grooved to base of open diapazon), 44 ; Lieblich Godact, 8tt., 56 ; Wad dute, 4ft., 56 ; oboe, 8 ft ., 56 ; principal, 4f., 68 manusle, CC to G, 0 reell-box, 2 octaren pedel stached to keys ; no ooupler ; Bourdon stop shutis ofir wind from harmonium-pin.
Is the organ balanced ? If Wald flate is only taker o tenor C, will it give more scope for solo playing, of will it be a worse organ, having less base? II a har monio fate, Which is a sic. metal pipe overblown hereby giving a 2rt. tono, be substitated, shall I benef by the change ? How is the harmonic fulo made, and what is the acalo wiun rolorance of hin ampas. oes it require a mecing prosan of wind any infor aation te to the coltening of the oboe will oblige. No brilding mattors. I have endearoured to suggent in my querios noch dats an almost all amsteurs mast require queries such dak armost all amaleurs mual requiro least a large eection of readers. Draugetsyas.

WOOD POLP FOR PAPER.MAETNG.

[4468.]-A steadr and considerable adranoe in the price of rage, frum which unsaroury and unwholesome materials our cream-laid note mind other glosey papers re usually manafmotured, has coincided with a lall in he price of paper. The apparent anomaty is onofly xplained. It arises that from time to time very diffo ent materials have been pressed into the service of rom phich a tolerably good paper is menefecturid rom which a tolerably good paper is manufactured. large extent in come of our paper-mills. atilised to mach oo that the sol paper mils, in fact, so poisoned holemle the fool rese an is let in poisoned wholesale by tue loul rofuse Whiolt in' lett in oody fibre of the paper midberty tree (brouseonet tr papritera) is ased grcinately in Japan the onnming adustry of witioh simost nom Japan, the ounning no leas them ninety' alstinct rinde of paper. This I can vorah for, hy aistinet kinde of paper. This I
 70,000 tone of 5 the paper-mitabled the Unitad Ring omportod now, on the Continent, we find that wood ir uced in now, on the Continent, we ind that
Heinrich Voelter, of Heidenheim-on-the-Brean, in the kingdom of Wartemberg, is the inventor of a sucthe kingdom of Wartemberg, is the inventor of a suc-
cessfal method of mannfacturing a tolerably clean whito paper palp from wood at a low price. It does White paper palp irom wond at a low prioe, it does
not require bleaching. He has, I boliove, obtained patenta for his process in almost all Earopean patenta for his process in admost by all the large countries and America. It is adopted by all the large Sinitzerland, Norway, Austris, and Canade. A singlo paper-mill in Germany consumee yearly 500 tons of prood palp end renreots en Gormany which doen not oontain some proportion of Gormany whic

The cont of the paper palp produced from wood is stated to be nowhere more than hall the cost of rag pulp, and conaiderably less where there is a good apply of wood and water-power to drive the machinery. a is tough, buf sorvicenble and well adapted for printing. By mising wood with rag palp in various proportions, papers of different sotis may be produced at moderate trom 80 to 70 par cent. of wood palp is mired with that produced from rag tbre; 85 per eent. of pine-wood pulp gives a common tintod drawing-paper ; from 80 to 50 per cent. of wood pulp eerves for writing-paperi of rarious colours, the latter proportion of pine-wood pulp aing used for an ordinary blue letter-paper, whicn pen. Coloured papers for book-wrappers, tienne-papers paper-hanginga, cardboards, are all prodneed by pamilar instancen in various proportions. No aingle articlo of manufactare can be faken as a more distinet test of the atate of civiliaation then paper. Besides at those enbsidiery purposes of mrapping and packing the direct use of paper for the apread of intolligence or the commanications necesarary to commerce and for the service of literatare need only to bo hinted at. The reduction of cont of this necesany in thus one of the many boons to mankind.
H. B. E.

CONDENSATION OF STEAM IN PIPES. [\$467.]-I AM desirous of conveying ateam of 294 nitial temperatare, 45ib. super pressure per square inch, through 2in. Wrought-iron ges tubes, in all 850 ft underground :-i. e., in the first instance 800ft. hori zontally, then 200ft. vertically downwards, then again 140ft. horizontally, and Anally rertically downwards to engine 210ft. The prenent temperatare within the mine averages 60°. I require to know: -1 . What amount of total condenastion will take place, the steam flowing through the tubes at a velocity corropponding to the requirements of a steam-engine 8 in diameter of piston, and making 250ft. (piston speed) par minute. The tubee to be supposed as non-clothed but otherwise kept dry. 9. Dillerence of initial and terminal presanre of the ateam, i.e., between boiler and velve chest. 8. The beat way to draw off the water resulting from condenation previous to steam entering the oylinder. 4. The waste steam from ongine must be carried away by a 8 in . tabe going ap vertically through s ghast direct to suriace, a height o 450ft. This ahalt has a atrong downward air current, 70ft from wintor it orton ireezen therein to a depth of 70ft. irom ariace. Thero wonld doubtiens, thereiore, be aiso large amount of condensalion in the wasto ateam-pipe as well, which, however, could probably be acoommodated by a proportionately open tap at the bottom. F. If the tomperature within the mine is lively to be rained disagreeably high by steam-hasted tabes and resulting hot water. 6. The probable difference in point of fuel consumption a compared with a close proximity of engine to boiler, all olse boing supposed the amme. 7. It in consideration of there being no dead material, in the shape of rods, cranks, te, to move, this aystem may be regarded fo draining purposes ss equally cheap in point of fuel comsumption with the more usual methods. I should perhaps, mention that the caber would be suspended Preely in the ehsite and levels of the minc. Any information on the foregoing will be gladly received b
Cologne.
A. W. R.

DRAINING MINES OF WATER.
[488.]-I Ax given to underatand that of late com preaced air is being employed for driving pamping machinery fired down in mines at oonrenient point for draining parposes. Would some Ind contribator to "our " journal, who may have had experience in this Way, five me information thareon? I require an allective power of sboat aix horse-power for this purpose, and its applioation to the pamp, 440ft. horizontally and $410 f t$, vertioally away from the point at surface at which the production of the compreased air conld take place. I am, however, nninformed as to the question of cost of power thas obtained. The compreasion would in the frat instance have to be effected by a atoam-engine, aither direct-acting, or air-pump, or otherwise, and the air would heve to be compreased, as atated, to a distance of 850ft. The mest suitable proseare, with a viow to possibly mall engine within the mine, would be 601b. per equare inch above atmesphore, and it would be ceairable to use the air expansively for the aske of coonomy. In order to compare with other pamping arrangements it would be necessary to know what relative power to that given out would be required to compress the air at eurface, and the probable duty obtainable from a bushal of coals thas indirectly congamed in the prodaction of power. The absolate wark to be done is that of ralsing 2,000 gallone of water 410 t. vartical haight per hour.
Oologna.
A. W. E.

TURRET CLOCK LINE.

[4409.] - Whel some of "our "readera kindly give an opinion of the following iden:-In case of tarret clock lines breaking, it has beon saggeatod that a stont Wooden brcket (just large onough to freely admit the woight apright) fixed to the floor directiy ander the weight's position, with three aprings screwed to the bucket ingide, bending to the centre, and a cashion at the bottom, would break the force of the fall, thereby proventing injory to anything benoenth the tower floor.

Tho idea, I think, is remarkably good, providing the weight shall rall exectly perpendioular; bat to anppose it woald in my eatimation is positively abourd, onth aatarally suppose that any sabotanoe whose pherioal greater is eoted on in falling more or lass by the force of gravity and air preseare, oanaing any ench sabstanco to tarn over and tate an indirect couree, the ame as an ordinary rifle bullet fred from a amooth bore mould by no means take a direot line. And a well as the action of gravity and air, a falling cloak voight woald in violently anatchiag the pioce of loose ine throngh ite prley, bo palled on one aide and I thint the probability is that in a fall of 801t, a veight of 2001b. woald reach the ground at quito an unoortain point, and posaibly 2 ft. or more out of a porpendioalar line. A arm hind of mattrest would then be one of the beat meane of checking the foroe of such a fall, and backeta for that parpone, I believe, are useless; bat for matiafaction I shall be obliged to any one that will give an opinion on the bucket ides. Currove.

WATER BELLOWS

[4470.]-Haping often seen inquiriea in your valuable paper about a useful kind of bellows for a smith'a orge, I send the accompanying aketoh, which I truat vill be eacily understood. The machine is callod a rator bellows, and is made of wood-hooped, staved, and headed same as a cask. The taper is to allow hoope to be driven ap tight. There is a division in middle K of wood, and a space about 6 in . left al bottom L for wator to pases through. Two valives B and O of leather are atted (about bin. square) one on each ide of division K. The lower part of oylinder is flled with water P; a pipe H conveyn blat to farnace. When the machine is tarned in direction of arrows A, air enters at \mathbf{C}, valve \mathbf{B} oloaing. When the machine is reverred in motion, ralve C shats and ralve B opens,
and $v i c e ~ v e r s h, ~ t h e ~ a i r ~ b e i n g ~ d i s c h a r g e d ~ a t ~ p i p e ~ H, ~ F i s . ~$
that each stitoh would aleo be the length of tren titohes, unicas every atitch woro separataly fantaned of belore the foed made its next stride. But I am pazalod and give it up. Saraly no Sellah can andar tand it The House calls vebomentiy upon K Tanaley to "Explain, explain !" He has judiciouely mitted to show any treoo of the atitoning and feoding machinery. Aarely the whole thing is a "goat.' to Thich the inventor meotr to add piquaney by the meive nquiry "if thore is such an machine at vork.
"W. H. T." asks (query No. 18247) after a whealrake for the Wheeler and Wilson seowing machine Mr. Mabson, of Nowcastle, nome years ago invanto very uimple and effective one, which, with his other more is applied to that form of the whecier. Wilson called the "Belgravta," but I believe it it patonted. It consiets of a wedgo-like piece of mood aupended on a pivot above and towarda the frout a the fy-wheel to which it offers no rodishen ravelling in the right direction, bat at once wed wis ight if it tries to go wrong. Jir. Meomaric invene vero doccribed or tareo youra aso, buplied to them ere motly rether ince. tapid; for rovin and the other, to prevent anything in general This by way of parrenthecis.
Noither the "Bolgravia," however, with all ite ad antages, nor any other form of the Wheeler-Wribor hat I have eeen, has any means of starting the machime bove the table-s mont important denideratam, which inger's, Thomas's, and many other machines ponem nstead of that, the operator has to leare go of the work with the left hand-the very one that is mort oquirod in gaiding it-in order to give the ay-whela hove ; or olse, vory awhwardly, to orose the righ and over the lap and undar the tabio, and ain auroagt the work. In every other respect the Whoeler-Wibor

Q, which acts mame ac a truanion, the water P al ways koeping ita lovel, bat the spacos on each siac of division K are losconed and increasod as the machine oncillates backwarde and forwards by lever X, or any other contrivance to give the required reoiprocating motion. Tho air in constantly being drawn through ralves B and C, and discharged throagh pipe H to are. The advantagen dorived from this machine are cheapness, that there is a very steady blect, and no loather required excopt for valres B and C, and little power necemeary to work it.
The abore conld be made of metal. I have seen one of these bollows at work for a number of years with good resalt.
Jamaica, W.I., May 28.
Hydro-Vulcar.

SEWING MAOHINES.

[4471.]-Im reference to the Robin Hood sewing machine described and Agured by R. Tansley (letter 4878, page 855), I ghould like to know whether he has used it, as woll as "invented and made " it, as he says, and also what good on earth it can bo to have a soming machine with Lon (or even two) needies cot oloce together in a row. It is sell-evident that the work must pass through the machine either at right avglo to the row of noedies, or in the line of said row. In the former oase you will have ton closely-packed lines or sowing-Cui bonor and in the second aitornative, you will have bat one line of sewing, but done ton times over; and a protty mess it would be. And cui bono again? The ouly way out of the pazzle that I can see, is to suppose the feeder has a monatrons long-stitch motion, and makes the work jump throagh for the length of ton stitches at each go. What an artial dodge ! not very pleasant, though, for the operator; and I cannot suppose that any woman would be indaced to ase sach an alarming apparatas even by the temptation of making 2,000 stitches a minate," or " more stitches in two miuntea than she conld make by
and eapecially in "Belgravia" form-in caroly the mont offective and uncomplicated of all look-atititel machines. It has of late had applied to it an improved foed, called the "Arohimedian," which works by caras on the spindle, giving poaitive motions only, and thas dispencing antirely with epringa. The only springes in the whole mechine, in tact, are those of the tension dises and of the cloth preaser. The latior is adjuntable to the requirements of difrarent fabrics, by an ingemioen contrivance I hope "A Preotical man will give a good oritioal acoount of this machine and all ite parti If he does not, I ahould like to cend you a drawing ead decaription of the "Arohimedian" teed aforesaid.
G. W. I I.

THE PHENOMENON OF ABGOSTOLL.
[4472.]-Is roply to "Sigma'a" quostiona (let 1853 , p. 852). the phenomenon at Argotili haring been nnder my obeorvation lor about hal an hoar ons, and not at ha kime boing provis witl ing as mang the memory and jad near the the cher pal ingrobe of ho wo the, and also 1 reprecented by the lotter U. It will be aboet 58 acrose and 7 ft . in height, with about 3 ft . of water aloos its ontire courne. (I am speaking of the particular onito when I tavi it, of course.) The oha perel 40. The anel cisely what I am desirous of getting at. The water parsues its course through and along an apertare in parse rock, ซhich riees abraptly across the channel, and is apeedily loat in darknoes.
As my guide informed me that the wator is elowy ronning, and there being a depth of 3ft, while the an lovel in the Ionian soo is rarely distarbed to the extumi of more than ebout 2fh, the flow, or rathor derconth. is no doabt, continuous.

Boats can approach the sea barrier close to the point of inrash, bat the channel is too winding for a boat to traverse. There is no appearance of a reef either close inshore or in the offing; indeed, I can speak positively as to this, for I saw nothing of the kind in reality, nor do I find any indication of one in a plan which I have before me of Port Argostoli. As to a race or strong current, so far as my experience went, there was no evidence of either. I have been riding at anchor in varions parts amid the Ionian Islands-once for five vonths between the Islands of Corfa and Vido-and we always rode "head to wind"-i.e., of course, when there was any.
E.L. G." mentions five points at which the sea rushes inland; the probability is, therefore, that this description may not apply to the other forr; however, "E. L. G's" attention, perhaps he will give us his theory, for I am sure he has one. "Sigma," too, and theory, for 1 am sure he has one. "Sigma," too, and
several others, might give their opiuions on this very interesting question. J. W. RodwElL.

THE ANCIENT CONSTELLATIONS

[4473.]-I $\Delta \mathrm{M}$ quite at a loss to imagine what Mr. Proctor means by any one of the constollations (let. 4408, p. 380 haviag "got its name from its named will perhaps enlighten me. He can hardly mean that the stars scattered over the wide-spreading Argo so connect themselves, apart from others, and into a ship-like or canoe-like form, as to have suggested this form (turned in all manner of positions) to the most separated races of men! As little does it seem conceivable that tribes of both hemispheres, regarding the present winter quarter of the ecliptic, would find its stars divide themselves into three groups, and these suggestive of a centaur archer, a goat-fronted walrns or seal, and either a pourer or ponring vessel of water ! Which of the latter (as the same stars make both) does the " aspect" suggest ? The grand fact about the zodiacal signs, we must remember, is that not their figures, but only the ideas-only the meanings of their names, are everywhere identical or connected, some or all. The Chinese, most pecnliar in this as in most other matters of tradition, seem, indeed, to have bat one or two of the twelve identical with ours, and one or two connected in ideas-as dragon for lion, serpent for scorpion, mouse and hare for ram and crab. Bnt, W m . Jones has an essay to prove the independence and antiquity of the Indian zodiacal signs, whose names he translates, beginning at our Aries, as "Ram, Bull, Pair, Crab, Lion, Virgin, Balance, Scorpion, Bow, Sea Monster, Ewer, Fish." The Bow, he farther says, the Sagittary.". Manrice, in his "History of Hindostan," maintains that the oldest authorities make it was a bow, with neither arrow nor archer; and it especially the Ship, the Altar (both, admittedly, of immemorial antiquity, and known to all tribes that had constellations), and the Victim and Sacrificer, which classical anthors allow to have rightly and originally accompanied the latter, thongh the Sacrificer has curioasly turned into a second "Centaur," and the beast in his band, which Ptolemy knew only as a "Beast" undefined, has since become our "Lupus." Besides these seven of the most ancient asterisms, those writers claim to identify with Noah's history at least four or five more; withont going to the length of Jacob Bryant, whose three great quartos of "Analysis of Mythology" ((happily without an index), they admit to have brought "an overwhelming body of evidence," for the Noachic origin and meanings of not only most of the myths, but all the 48 ancient constellations. We may at least admit the "Corvus," so inexplicably placed, to be best acconnted for as one of Noah's birds ; and the zodiacal Fishes, which the son enters next after the Deluge sign, to represent the peculiar condition succeeding to the memorable 40 pecn's' downpour, the two opposed classes of fish, swimming one over the other, in the sea, and its temporary freshwater covering, before their complete mixtore.
As for the zodiac of Dendera, supposing it reallv As for the zodiac of Denders, supposing it really I believe its Roman date is now regarded as settled, I believe fonld have had no bearing on my remark about us "westerns," which the context must surely have implied to include all west of Ararat. However, I find that it was incorrect to say "onhy we westerns" had (even to this day) enlarged the Bow into Sagittarius, as Hindoos have learat (probably from Earope) to make a similar addition to the figure thong the name remains only the Bow. Sir W. Jones, in the above paper, translates a modern Indian account of them thns-" The Ram, Bull, Crab, Lion, and Scorpion have the figures of those five animals respectively; pion have the igures of pair are a damsal playing on a Vina, and a youth the Pair are a damsal playing on a oina, and a youth holding in one hand a lamp, in the other an ear of holding in one hand a lamp, in the other an ear of weight in one hand; the Bow by an archer, whose hinder parts are like those of a horse ; the Sea-monster has the face of an antelope; the Ewer is borne on the shoulders of a man who empties it; the Fish are two, with their heads turned to each other's tails; and all these are supposed to be in such places as suit their several natures." In support of the rainbow origin of the Bow, Manrice cites the classic story of the Centanr's birth (who now holds it) from a cloud; and as tanr's birth (who now holds "it) from a cloud, and as
for Argo, he quotes from "Hyginus" that it is "the for Argo, he quotes from "Hyginus" that it is "the
ship Minerva numbered in the asterisms, as having ship Minerva numbered in the asterisms, as having $22 \cdot 31$), "and the first that ever went on the ocean."
E. L. ocean.

PLATO.-JUPITER.

[4474.]-I inclose a copy of a sketch of Plafo as seen on June 14, 1872, at 9.19 p.m. with my 3 Sin. Thie shadows of the original I adjusted by means of a fine wire stretched across the field of a 120 power eyepiece.
I noticed some markings (shown in my sketoh) on the I noticed some markings (shown in my sketch) on the
floor. I also saw several small craters, or crater-like floor. I also saw several small craters, or crater-like formations, near or on the border. The shadows appeared sharp and well defined. I have also noticed
that the radiating streaks which proceed from Tycho that the radiating streaks which proceed from Tycho, Copernicus, \&c., appear to consist of higher ground, such
as rills, \&c., when near the terminator, and chang as rills, \&c., when near the terminator, and change
into streaks at or near the fall. Is this supposed to be

so? Also, may I ask "our" obliging "F.R.A.S." for a few star tests for my telescope? It will clearly divide 52 Orionis, \& Boötis, and many more. Will Mr Proctor please tell me if his theory of Japiter being red hot will agree with the complete invisibility of the satellites whes in his shadow, and the intense black ness of their shadows when in transit
J. W. Durrad.

COMPARING ELECTRO-MOTIVE FORCES.

[4475.] -The following null arrangement for comparing electro-motive forces is, as far as I am aware, original; at least I have never seen it described any-where:-Join up the two batteries E_{1} and E_{3} with a galvanometer, as in the diagram, so that their currents go through it in opposite directions. Also insert resistances R and r. Let x and y be the unknown resistances of the batteries, and i_{1}, i_{2}, i_{3}, the intensities in the three branches. Then we have-

$$
\begin{aligned}
i_{1}-i_{2} \pm i_{3} & =0, \\
(\mathrm{R}+x) i_{1}+g i_{3} & =\mathbf{E}_{1}, \\
(r+y) i_{2}+g i_{3} & =\mathbf{E}_{2} .
\end{aligned}
$$

Now, by altering the resistance R, bring the needle to zero. Then, is $=0$, and $i_{1}=i_{2}$, therefore-

$$
\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{R}+x}{r+y} .
$$

Here we have the unknown resistances, x and y, in our result; bat, by taking another value of R, say R1, and finding the corresponding value of r, say r^{1}, we get
the simple resultthe simple resalt-

$$
\frac{\mathbf{E}_{1}}{\mathbf{E}_{2}}=\frac{\mathrm{R}-\mathrm{R}^{1}}{r-r^{1}}, \text { or } \frac{d \mathrm{R}}{d r},
$$

the ratio of a difference in the value of R to a difference in the value of r. This method, involving no calculation, as only two differences have to be observed, and being perfectly independent of the resistances of the barteries and galvanometer, gives very good results. parther advantage is that, as $i_{1}=i_{2}$, and no current
passes throngh the galvanometer, each battery is being
worked to exactly the same degree. Thus they are compared under similar conditions which is not the case in Poggendorfi's and other methods. I should like the opinions of "S. T. P." and other practical contributors. In the diagram it appears like a wheatstone's
bridge, but it is quite different in principle.

OUR COAL STORES AND THE ATMOSPHERE. [4476.] - May Iask Mr. Thompson (let. 4349, p. 834) how it is that the rate of mortality is lower in towns where there is a large number of mannfacteries. And in one instance I know of (where the manufacturers threatened to close their works if they were continually prosecated by the inspector of naisances for not consuming their smoke) the inhabitants looked to the death rate, and finding they were more healthy with the smoke than other towns were withont it, they asked the manufacturers to keep their works going ; so that Mr. Thompson's carbonic acid gas must be beneficial in the atmosphere.
W. Allan.

BALSAMED OBJECT-GLASSES.

[4477.] -"F. R.A.S." in letter 4276, p. 300, was quite right in saying, as a rule, only object-glasses for terrestrial telescopes are balsamed, and then only when the proportion of the flint lens is such as requires the crown lens to be ground to the same carve as the flints on the inside surfaces; then they are balsamed to prevent loss of light, \&sc., but principally to enable the makers to burnish them fast in the cell to prevent inexperienced owners from getting the object-glass the wrong way in the cell, because in baisamed objects the two outside surfaces only require cleaning, while those that are not require all the surfaces to be cleaned after they have been in ase any length of time. Some firms notch the edge of the crown and flint lenses on the two sides which go together, which is a very good plan; and these objectglasses are preferred by the great majority of ships' glasses are preferred by the great mad objects, as in using telescopes with balsamed objects they very justly complain of their not being so good when they get out abroad, the balsam slipping with the heat of a tropical climate. The Barlow lens spoken of by ground to may say, requires the inside surfaces io gronciple Bat eaged astronomical object-glasses the least said the better.

William Oldfield.
[4478.]-I Have cemented a large number of achromatic lenses with balsam, and never found it to shorten the focal length. I fancy "C. B." (let. 4366, p. 353) must be mistaken; but if not, then the inner carves of
his object-glass do not coincide. Glasses are balsamed together to rednce not coincide. Glasses ares, thereby saving light. Large-size object-glasses are not balsamed on account of the risk.

Rт. Тномая.
MICROSCOPE CASTINGS. - MOUNTING SMALL OBJECTS IN BALSAM.
[4479.]-If E. B. Fennessy (let. 4369) will refer to the advertisement columns of the English Meohanic a few numbers back he will find mieroseope castings advertised for sale. To the possibility of any workman of average ability fitting up a sound, serviceable instrument, I can testify, having just completed one which will bear comparison with any of the sold in the sho analyser, and cost me less than \&4, exclusive of my labour.

I have no doubt many microscopists have found the same difficalty as I have in keeping small objects, such as starch grains, diatoms, \&c., in the centre of the slide when mounting in balsam-the balsam, if dropped in the centre, or placed at the side, pushing the object before it to the edge of the cell. To prevent this, draw add as much as will fill the cell, the ring will probably add as much as win the centre, but the air-bubble inclosed not meet in the centre, but by using a elip after the therein will be driven out by using a clip after the ring of balsam towards the centre drives in the objects, ring of balsam towards the centre drives in the objects, found.

MICROSCOPE CASTINGS.

[4480.]-I desire to indorse the wish of the writer in a recent number (let. 4369) "that some one would a recent number (let. 4369) that some one woud supply microscope castings at a reasonable price." I
have lately had the greatest difficalty in procuring even a stand, and I went to a great namber of working a stand, and 1 opticians, thor, they must wonld not part with them. However, 1 got an iron one at last, and am now making the models for the stage, ac.; but if I conld get these anywhere I would willingly pay a fair price for them in the roagh, and do so,
J. D. H.

ENTOMOLOGICAL.-V.-ON IMAGOS.
[4481.] -With regard to killing apparatus, I like an ammonia box used with benzole on wool instead of ammonia for stifling insects; and for large moths I use a solution of oxalic acid, piercing the under side of the thorax of the moth with a pen dipped in it, which dispatchos tive insect almost immediately. For suga isg, I think-the best places are the lee side of wo
and therriles and cleurings in them, if the wood is not too thick; but almost any'locality whatever will, in the comon, giold its epeoial variety, and we mant romember that whore there is ore there are generally more, and if a moth is abont a cortian time after dusi it will be out wary probebly the came time bofore deybreak. After catohing moths at sugar. I think it a good plan to prick their abdomans, if at all fall, to let out the sugare, which may be abeorbed by a piece of blotting. paper, or the anger may appear ftar the moth is pat hard to dintinguinh at fint from spiders, though preotice soon enebles us to toll the differenea. Virgin females of mapy sorts will, if put in a ganceroovered box and placed in woods and spah pleces, attract many males. Sallow bloom in the spring and ivy bloom in the antumn are es good, it not better, than sny magne for attracting moths. Street lampa are excellent apots for captaring mothe at, and should occacionally be "swarmed." I aet it be remembered that fow mothe come out mach before midnight. Yew trees are worth beating at night and lay to drive out the moths concealed in them. If insects are not set soon they will become quite rigid, and then they should be put inia zinc box lined with cork and soaked with water, and in a fow days they will como out quite soft.
Though these notes are abort, and might doublless have bean writtion by a more able pen than mine, yet I hopa that they may be of some use to many of the reacors of the Englisy Mreananic, and I comalsde by taiking.

FLIDIVG INTERNAL RESISTANCE OF A

 BATTERY.[1402]-I riavis tried "S. T. P.'s" plan (let 4409), and obthined tolarably acenrate reepits. It oan be further sinplitied by meining g, the galranometar reajiacee, $=\mathbf{B}$; then, to ha
we heve only to telse awny B.
Wo heve only to the away B .
If wr malrs the reinfancey
If wor mates the reintance axplagged in the first equal to twice that momplagset in the second part of the test, oc any $B=2 \mu$, then wo have $\frac{B}{8}$
we oannot-negloct g, unleas it is very mmall compared with r, and if so, our defection will be proportionately man, unless wo have a very delicate inatrument. Having et our command suoh a refived ingrument as the Thomson refecting galvanometer, whose index is withoat welght or frietion, of oourso perfeotly mocurate remalts can be obtained by "8. T. P.'n" plan; but if, as will gonerally be the oace, the experimenter has only a common galvarometar at his disponal, veither very dolioatoly pivoted mer graduated, a null method, by whioh making and breating a drenit produces no alteration in tha defection is very decirable. This want "S. T. P.'s" mothod does not mupily, beesmee We have two operatione to perform-ris., to reduce R to r, and to pation the shant. In the mean time the needle has moved, therefore this mothod cannot be accuratoly callod a null method. The nearest approech to porfoction, that I am acquainted with, is. Ifanoo's method. Even there the needle jorts when the dircuit in made and broken, owing, I presume, to the direotion of the current being changed it one of the bremalr edreaits.

HMDIUS OF BURFACS OF OBJECT-GTABS.

[483.]-Ir reply to Mr. Ceach (let. 4880, p. 855), if the crown glase is free from veing, and if he will the the donsity of both the flint and orown lenses themmelves, and not the iragments, very correctly, I ahall be sble to ascist him in dismising the enrious phenomens he speaks of. Till now I have thought that his crown lons was made from what is called British plate, and not Miesarm. Chance's white crown at all, beeause I heve only seen one or two pieces of the dencity stated in his lettor seme time ago ; bat I think ho will find the crown, when he has taken the denaity of the lems iteolf, to be $\mathbf{8 \cdot 5 5}$. Their vhite crown in sheets is oftener that doncify than any other. Be certain and atate the demity of both very correctly to the fourth decimal number. Soft Jron tools are the best for grinding and moothing objoot-giassen but they must bo made in pairs totrtie each other with. As the object is now, it will pever make a good one, becaase the proportions are not at all mod, and to start afresh will be the best way. I advise Mr. Cash not to make the focus of the objectglass lees than 72in., he will find it short enough for him to work. Bow myneyt lilw the following proportions the beet:-84in. diameter to 50 in . $1000 \mathrm{~m}, \mathrm{iln}$. diamotior to 60 in . foens, 4 in. diameter to 70 in . focus, and Sin. diameter to 80 in . locus. I consider theas good propartions, and have fornd them work well.

Wis Oiderstid.

BYCURRBRT VISION:-ELECTRICTTY.

[4Meuy-Twe intwenting experiment dwaribed by Mr. Potria (p. 888) doee not seem to me to contain a antiafactery explanation of "roourrant vision." The latter phenomenon is ceon as wall with one oye as with \$wo, and is far too rapid to be compared with the Other: indeed, on some ocoasions heve seen, afler the recurrent vinion, persistent spectra, mach like those Which Mr. Potere deceribos, floating before the oye, changivg coloar, appeartog and diamppearting altor. nately in the darkened room, for perhape thirty seoonds aftor the flash-just suoh imengen one may see at any the by looting moedily ati the sun when near the horison, and then dowing the eyesimad turning tomardm
the dando.

That the phenomenom'ir not fortofudi on any apecial peculiarity of my own oje is evident from the faot that I heve shown the oxperiment to at loant fifty difllarent percons, and never found any one who failed to see it. Δt the rame time, I wish to say that I do not consider the idea of a refieoted nerrous impalse It io it raggeatod as at all cortain to prove correot. as oneraith to 800 how it chould take 80 bong a time as one-fith of a mecond for an impreseion to travel
along the neeve lrom the brain to the oye and back again.
I meas add that in my own family I have long been familiar with electrion probomena cinilar to those discussed in come recent letters in your paper.

 undrecinge for tho night lmitiat monalimoer rovelvo

 during the dey. In 1867 I redded in Northern Ohio, and oceupted a etiady heabed by one of the abotation
 boing hoaled in the macue way. In this roone the phenomens: were more thiking then I evor olverved

 BDOREN WATEEGEAENE.[4480.]-50st watch jobbers in menuing es witolschain have to aplit the old link before they oan get the I invented sind have geod for jears (of The tool that aketoh) is most decided improvement on the old

ryatem. Any watchmaker can make one out of a pair of etrong watoh pliers ; you may soften the pliers a the ends, drill a hole at one side, tap it, then at a sorew with a fine point, spring temper, and at the other aide drill a manll hole exactiy opposite, so that when the chain is placed under the panch, the rivet pops out without any further trouble.

Ent Ubraacher.

PERFORHANCE OF TELESCOPE.

[4486.]-Ix reply to Dr. Bleoklook'e query (lat. 4887, p. 857), I may eay that the canditions required for the oxperiment on dividing powar are simply the most favourable; the magnitude of the stars depends on the aperture, the disce increasing in cize inversely as the apertare ; the powar used shonld be sufficient to show roand dise.
This question, hovever, is diatinct from the test of the telesoope'a quality. By chooning twilight a alose pair may be woll divided by an instrament giving mach isles light, which vould'fail on the rame object on a Ane dark night.
The star ∂ Cygni is an admirable tent, owing to the oloseness and faintness of the comes, which becomes
lost in the light surrounding the large star anless the loat in the light surrounding the large star unless the talescope be good. Refectors have scarcely any ohance With it, as, owing to the intervention of the plane, they arhibit more ringe ronnd large atars than do refractor and these ringa, brandighing about as they always will alke it exceedingly diffiealt to perceive the faint comes.
I have very seldom been able to see it at all, and aver well, with my large refector, as ordinarily ased, bat with an excentric aperture of 7 in . or 8 in ., which oscapes the flat, it is almont always visible and measur. able, and as beentiful-as in the finest refractor.
H. C. KEy.

SPINNING-TOPS AND GYROSCOPES.
[4487.]-As a matter of conrse Mr. Proctor (lettor 4il) has experimented upon and experienced the extra ordinary resiatance which a sifily-revolving wheel offors when tarned in any direction contrary to the plane of its motion. Now, I would feel maoh obliged if no will expinin for the beneft of all of un, hom, as he Edyb, that a body moving at various volocitiee and how shork, in a horizontal direction, en, fall to the groand in the same time as if dropped from some hoight and acquiring a oonstantly-ineroaning velocity, What becomes of the resiatance to change in direction I am ?
$12 m$ mateh obliged to J. M. Taylor (lottor 4881, p. 858 for his good temper, an, althougt anwillingly, toll him that having oounted so much apon the now phere in his former lettors, he eppears just as phere in his former letters, he appears just as
or racuo, I deny in toto, wntill he showis me prood yon tive, that a cannon ball or any othar swiftly-monis body in a horfzontal plane is attracted to the earsu in the same time as a boig left to fall' freely from the same height. I am amazed that both "F. F." an. himself can hold euch an opinion, beosure if thoy aintit that the ball travels for any portion of itt fligat in horizontal direotion, then it becomes evident tiat the ball dropped vertionlly with construtily-accelerwised descent must reach the ground firct. Q. E. D.

Will "E. H." hirdly drop making assertions, an just inform un how he proves that is en emnon ball were fired horizontally in vacuo that it weath fill so the ground as soon as if dropped from the sase height
 body exerts agaimst belng moved in any direction out traty to a straight line $?$ If 80, I would recommen him to prooeed to an artillery gromed where bal practice is boling carried on, and to her -revity by catrhing one of the passing balle, and onken aring to drag it to the groond. And, in conclunion not to mif represent me by attribating to me the statement, "that particios rotulis is ai pans cmanot getout of it." What I did say was that they could not fall to -the gronnd if the valocity were tept. up.

EnINiorennat
SPINNETG-TOP.-UPWARD DEFWEOKIOX OFN BULLET.
 of the earth, conequently doen not prim the teg ein hem to the right hand or to the left, to khernork or to the the peg to a lovel cuaface. No diflicelty will pow be experianced in making the top stank, and jet whorean say the conditions under which grevity sots have bean allered? Wo heve imply oxtended the bae throcgh which the veatioal line of grovity metion and theometioally, the top woald stand without tion. Phgricelly it will not doso, becase en amen. require perfectlybsinnoed top, oven rurfece, en ontire abeence of tragor frem. any and ertery comene, any one of which (and not gravity) woall kiok thetop over; some power (bo matior how in Amitocimally meri) must be epplied to tixts ar rapuons tho eontre of ravity It is an artom, and geocrally recolvel, I beliowe imparted to tham, in steat, it seems a natural icm, and they Foald retairi this motion for over if mome efte force interfered. Now, in spinning a top wo impert and conver to it a grating oerevolving motion, preper tioned to the force used in the mploniog. Friction, boik atmorpherio and torroetrial, asa powibly aboy eleotrical, presently extrecte the impartel foree, and the top cames to gyrate, and combequently falls, bet not throagh grwitation. As provioualy statedr in ats gyruting bodien, whether vertioal or harizoatal, the oentres of Eyration and grevitation mont bopoinciant i if otherwiee, "wobbligg" ensues, proportioned to the mount of sach divergence ; when coincident, the top "sloepe." In. all heary, high-apeeding machimes the divergence ancees immense loss o proned is an unbalanoed fly-wheel-or mill-stores.
In the upward doacetion of ballet three poiste requite congideration-(1) The difiereace between the thickaed. attar imprel at breach and magelo. (8) The anroen ponition with. the of retaining the eye in ancot arin the great anmoyance of reflected light from the meine of the barrel. This moald, of coreva, be rienter neareat the eye, sorving to depreess th
so obtain night at the further point. (8) The mertion of igniting charge. Te be acourate in seanlts, thit should take place exably. in the centre' of forenal. probeb, nert the ballet. It is, therafore. hin quection. It can be earily tested by fring the ploee at point blank range in inverted positions. Rperome.

CO-OPERATIVE STORES

 refterates the perpetual complaint now heara, thater cannot get justice by deating anjustiy ; thet incex rules and methods bring confasion and absurd reaches; and he does not gather graper aiter wowing thister? Who maker is nocessary for his shopman or he to "realise"t this per cent, or that per coits or th melling one lb. of stuit in one parcel; and another lb . fo trir parcels, to be paid for onch of these How, esfor tivo equal worke? Is not selling one partel doins obe
thiog? Is not selling ten parcels doing ten thinge $\% ~$ thivg Is not selling ten parcels doing ten thinge $\%$
What possible good can he expeot for the hapherere What possible good can he expeot for the haphacat
injuntioe of paying the same for one job sud for tear?
E. $\boldsymbol{L} . \mathbf{G}$.

THE PLANOLVMOLNS.

[4490.]-T mave just seen your insues of ine sict. 17th, and 81st May (ete. 4074,4165 , and 4289), and ces pleared to ind that the sutjoot of the piatio-Fiolin, of ratrachoraton, is boing anifyer, ass in this member tho value of the' instrument will be clearly gattrored fot orchestral and genernal purposes. I have heard the instrument played, and whs muoh plemed with iet sensitiverces and volume of tone, and I should hithe sll pernons who have a real tasto for musia to cumbrieo
the opportuanity of listening, and, if they choos, pligy the opportunity of listening, and, if they choose, play.
ing it also. One of theve inutrumenta, of M. Banites make, has been publicly porformed upon for montits peat of Theillar's Rooms, Charing-crove 8tation, to Which any person, on promenting his oard, asn obeater
mamintion. W. Maitre, of Paris, purchaned all M.

Bandet's rights and interest in the English, Belgian, and the United Slates patents some three yoars back, the English market npon a large scalo. I regret that 8. Bettone did not better inform himself of this fact before he penned his letter to you, in reply to "The Harmomione Blacksmith," ao M. Bacdot had no patent to aell to Messrs. Stead and Co., to whom he refers. Daudet did try to dispose of the English patent to Mesars. Stead, but the sale was never completed, and an notion is now pending before Vice-Chancellor Wiokona' Court to reetrain Messrs. Stoad from continning the infringement of Maitre's patent rights, which they have been doiag to a large extent
The instrument I sav and heard was like an ordinary cottage piano, only with two pedals beneath, to which an ap-and-down movement whe imparted by the feet of the player for rotating a roller, situated above a seriee of tafts of hair, these being permaneatly attached to, and standing out from, the strings. The Koyg, which were acted apon in the same menner as in
a piano, had each a rod at the inner end, at the top of a piano, had oach a rod at the innor end, at the top of which was astrip of rather hard indiarubber; these, being lifted, pashed the tufts into contaot with the mollar and prodaced a vibration of the -tringa, which
gave out the masical notee, the tone and volume far exoending that whiah can be obtained trom an pesfect ріало.
H. Gabdera.

Calormod Euans.--Erratum-In the lide of colaris on p . 888, trom "soh-coloarsed" to "lanid," ought to

BEPLIES TO QUERTES

- . In their answoers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query acked.

HISTS TO CORRESPONDEATS.

1. Write on one side of the paper only, and pat draw-
 titloe to queries, and when anspering queriee pat the
atembere ne well as the tulles of the queriee to which the

 replicational or scientific information is answored throgigh the ppast. 6. Letters sent to oorrespandents,
under oover to the Editor, are not forwarded; and tho names of correspondents are not given to inquirers.
[01048.]-Pork Diet.-Daes A. H. Cooke know that pork, an an article of diet, has the following delects among others ? - (1) It is leas digostible than most other articles of food; (2) is is more difficale to detect principal rofuge tor in otherg of the tapemorm.
[11581.]-Water. Wheel. In reply to "D. s." I regret to say that time will not allow me to take advantage of his proposal, which, I Will do him the Howerar, I shall be giad to see any other correspondent caking advantage of it. To find the ararage efficiency
woald require a number of trials, exteuding over a ling poald require a number of trials, exteuding over a ling potiod if it time. Consequentiy, any one taking the eaccod it.--P. W. H. J.
[11581.]-Water Wheol.-May I mk "D. S." We give us some iden of the form of bis rotary engine? physical oonditions permitted its oonstruction to "wear which I cenld not st sight soe maequal opeeds and pressures of contact surleoes boand to prodices their all know the even far better expansion ntilising capehilitios of cortain forms of rotary ongines over the "rociprocatory pistons. Bat may reaek hima also for the "shap. And verce" of his figazes, 9,10 , and 30 doee he lay this charge ?-X. M. S.
11354.]-Pedentrian Toup-Bome little experiense in this recreation-its joys and diveomforts-
meade me glad to read "Philo's" suggestion of canvas shoes, with stout, brond aoles. Thoy are the very thing required-that is, if they will stand hard wort. Call you try to make them watorproot the worse they are. I perspiration, and also from the oecaaional sonkings
from rain or wet ground, whioh are inevitable ; and, Then "sot to dry," they, beeome hard and rigid, and mate the feot sore. Farther, thoy look horribly shabby
from perpetanl attrition and dirt. I mema to try the from perpetual attrition and dirt. I mean to try the
omaves boots this antamn; but I cortainly shall not harve eleatic sides. They are very berd for walking in a hilly oonatry, becense they throw a severe etrain and
presesce on the tendon of the heel and anklo, which proeacte on the tendon of the heel and anklo, which
ought to be perfectly frec. I have before suflered
 rags and candals, like the pillirari, now so freqnently sean in our strects. Dont be atraid of gettiog the
feet wet, or the whole body, for that matter. There is not the alightest harm in it, if you don't atand about or ait down in wet clothes or boots. If yon get ever so
wet, walk pourself dry again, if you cma; or if arriving Wet, walk pourself dry again, if you can ; or if arriving
wot at jour halting plece, strip, have a rub down with
rough towel, and put on a change of clothes, or go to bed (between blankete preferable) Whilat yoar wot gar-
ments and boots are being dried. I bave been wet and dry, wet and dry, sereral times in coarse of a day, bat kept "oontinually going ahead," and, though of by no mesns robust constitution, suffered nought ; but, on the contrary, felt a fally jolly at being thas able to dely the elements to do their worst. Another thing, don't invest in a knapgack. A commodions satchel, not too large nor too small, is the beat thing for atowing What your pookets will not contain. It muat have a light strap by which to sling it over your ohoulder. Yon can then wear it either at your baok or under one arm, or carry it in either hand, or sling it to yonr umbrolla "crome" (hooked handle), and carry it pediar's pack fashion. There is an enormoas adrantage
and comfort in being able thas to change and ohange and comport in boing able thas to change and ohange
again the location of your load (be it ever so light a again the location of your load (be it ever so light a
one), which quite contrasts with the irkgomoness of one), which quite contrasts with the irkgome
oven the best possible knapeack.-G. W. K. L.
[11564.]-Bleckberry and Strawberrg. - In anawer to "E، L. G.'b" inquiry on p. 307, I beg to say that the raspberry and blackberry are cortainly distinct speaies ; the former is known to botenists under the name of Rubus idaus, and the latter as R. fruticosus. The raapberry if a native of Britain, and is plentifal in many of our hilly and mountainous districts, as well as in moist sifations. Withering gives eight or nine places where it is to be found growing wild, and in Carnarronwhire Ange Pratt informs us you have only to wander oat about half a mile to gather a banketfol. The bleck and rod carrant are distinct epecies, known as Ribes nigrum and Ribes rubrum, and are both to be found growing wild in many places in Britain.-Avor.
[11589.]-Dry Bteam. - I maintain that my original statement is correct that saperheated steam is merely a higher pressure steam, Which necessarily contains more.heat and le8s mater in a given bulk, and
"E. L. G.'s" lotter (p. 886) fally confrma this-vide, "It may be of no higher pressure than when it was wet steam, and in that case it mnst occapy more wot steam, and in that case it mnst occapy more
apaoo." Now, is not this one way of evading the fact aphoe." Now, is not this one way of evading and lase higher pressure or more hoat and leas Fater in any given volame of less capacity than the this question. Does he really enppose that he can apply additional heat to steam without eonverting it into higher pressure steam? and does he, "E.L.G.," or "Philo" imagine that it a vessel be flled with stoam at 1lb. per inob, or that at 1001b. per inoh, thet when from that at 1 lb . Also, I wonld angeont to "Philo" that although only one hall edreated. I know that if the manhole ony left of the boiler that that would evaporate far quicker than if merely osoapiag through his small vent, which proves that what I avert is correct-ris., that there is less watar encopping from high pressure estonm at the same moment, although there ray be the same altimately; and that although Dr. Arnott's theory has something to do mith it, it musi water isaning from the oritioe. Thns, take any boiler and see how many times it would flll theeylinder before all the metar mea exhansted (having no supply pipe) with steam at a high pressure, and see hom many times less it would take to exhaust it with low pressare steam. -A., Liverpool.
[11589.]-Dry Bteam. - "Phile" has doabtless given, from Dr. Arnott (p. 886) the eorrectest way of explaining the sudden cooling of a sleam jet, but he was, and atill is, wrong in supposing that high presdown to \& proseare balancing the air-the tondenoy is to down to e proserare balancing the air-latyondenoy is it expand til balanoing only the steam ataosphere, asent. Dalton showed that a gas or vapour thus diffasing is a Dalton showed that a gas or rapour
mixture of them, has its ultimate tension limited simply by that of the suid cimilar to itell, quite apart from the diasimilar ones, as if they were non-axistiant steam from a boiler, of sil. por hob, raleaced int an inol (which is about the marimam of natmospheri por inoh (which in about the maximam of atmonpherio ateam) will expand almost instandy sixt. Io a, and sixty-fold whetbor the hall-poand steam be the only resistance present, or whether there be also oxjgen of $8 \cdot 2 \mathrm{lb}$. and nitrogen of $11-21 \mathrm{lb}$. (as nomally happens), or airs of doable or triple these tensions, even equaling
 anorely retare
but do not affect its amount, for the three atmospheres are independent. The presence of air, therefore, is not nooassary to the sadden cooling, at, Arnotte ingtractive experiment seems to lead "Philo" to think forming cload or not) woald be as cool. To produce a scalding cloud the escape mast be into warm and wet steam. Two steams of different temperatures, what ever those temperatares be, and both near saturation become on mixtare, aupersataratod, and therefore form superheated) ptesm, escaping into air also of great dryness, to difase invioibly, and form no clead even Ior a moment. Thia may be what "Caloric " obberved with Mr. Loe's anperhoatod ateam, bat I doubt if it seen a mere momentary clond re-dissolving at a yard or two from the funnel, with eren engine steam neoessarily wet) in the West Indian dry season.
Slightly superheated steam wonld hare spread invisibly Suightly saperheated steam wonid hare spread invisibly,
but met steam, as that of ongines, cannot do thia, I believe, in any natural degree of dronght. Evea on the Egyptian aud Snez railways it must always form
clond for a moment or twr. Thoagh "Calorio" did cloud for a moment or twr. Thoagh "Calorio" did
not see the cunnection, there was a carionsly alose oue
between this opportnne query and the "Comet of the Deluge." In fact, "Sigma's " mistake that water from a cold steam conat mast reach the ground soalding
hot, and that of "Philo," that very hot stoam shonld form a cealding clond, were mataally illustrative, though not identical. Neithor the rain in the frat "Sase nor olond in the second need bo boalding; bat "Sigras'a" was the greener mistake, beocases wholly ignoring our atmosphare's presenco. Donbtless, if
the earth had no more air than the moon, be would the earth had no more air than the moon, be would boiling hot (which would make amall diferanee physiologioally, sooing that, if in drope at all, they would have aboat 20 times the velooity and impact of xille bulletes. Bat oar globe's 40 or 50 mile groat-coat of air formed at once a cushion and fire-boreen, as is does in zee anse of the 11 or 18 times more.rapid (and cherefore 1,331 to 1,723 timen more heating) impact of the Norembar metoors. The apper 80 or 10 miles of air-coat bore, in either case, the brant of the encoanter and ite heat, radiating most of the lattor into espace, basore the umall rosidue could descand by the very show downward aërial oonduction. As for high pres-
sure stoam in its escape forming snow inatend of sure stoam in its escape forming anow inateed ol
mater elond, though I never heard of an instance, it is not an absurd idea, having a olose parallel in the escape of compressod carbonic acid, whioh, from far abore freezing poinh, so as to deposit itself in a anowy form not obtainable, indeed, in any other way.-II. L. G.
[11625.]-Dear Dog (U.Q.).-I would use the cayenne pepper tea nas reoommended for "Deafness be deed, wear thick gloves.-H. O'B.
[11001.]-Question in Trignometry. In reply
 bo) says ", "H. H." (or "W. H.," Whiohever he rasy are sal that both the constraction and calculahion val aintod to the general problem, whatevor bo hain how the the angles sboat P. Bat he coes not explain centres intarsection of the carcles desoribed from the sides of the eqnilateral triargles dasoribes upon diaram of triangle A B (see his divectiona will fx the position of the , the ENGLisi Mechanc does not appear, trom his diagram, that these oircles can intersect each other in D at all. In his leat lettiar (p. 361 of No. 378 of Enalise Mraranic) he says "only the triangles mast be ieosceles," \&c., bat an equilateral trianglo and an isosceles triangle are different things: which statement is correct? It happens in "Nama's" triangle that the angles sabtended by the sidee from P are equal, and that the sides are nearly eo, but this will not ocour in actual practice one time in ten millions, perhaps. What werequire is a rale by which this quention may bo antmared- Whethor atation P bo mear the caakre of triapgle A B C, or iar romoved irom if, 80 long ar angion subtonded by the sides from P be equal ar rery
unequal. Il nobody else daes it, I will one day aend such a rabo-Tabodolita.
[11837.]-Organ Bellows (U.Q.). The gize of a bellows for buch an organ should be 4tt. by 3tt. 6in. with a pressure of 2 din. of wind.-J. D.
F11872.]-Carbonio Aold Gear and the Atmo-sphere.-When I made my andoulation I inalnded Ireland, and, therefore, took the area at one humired and fwenty thousand equare milies. Likewise, ebo or presion one handred and forty milion tons should awe been one hondred and farty thousand miliontona. roay unio that the weight of the whoio cumephers about ive thoagand billion tons and mot thirty-iva his reply.-WmLinar THoиpsoin.
[11960.]-Cochineal.-I bolieve this insect has been reared in this conntry on its food plant and under soitable oonditions bat of course only as a curiosity.E. M.
[11973.]-Magnotic. Faggine.-Does "Glatton" Tant an electric engine or an eleotrorm
[11996.]-Denfness Ariaing from Geld.-A pinch of gonaine cajenne pepper, with boiling weter water, whon half cold used as an ear wash, by poaning in a teaapoonfal at a time, thrice repeatod, that is three sponfols one efter another sa one mash, ond ased two or three times a day as long as the doafness contiones.-Oetin Proted.
[19011.]-argeic Tantern Effoots.-The following is extrietod from " The Magic Lanteca. to buy and how to use it." The alide to give the effect of falling saow consithe of a light framewort of mahogany, between the two sides of which are arranged parallel rollers, one of which, being worked by a winch handle, unwinds a pieoe of black linen, or silk, pierced by namorons pinholen, throngh which the light passes when the fan is lowered, and on tarning the handle in the proper direction the appearance o falling snow is produced. Care mast be taken that the perforated cartain be focased while bringing
down, or the snow will fall invisibly." \mathbf{A} moonlight offect or the snow will fall invisibly. A mooningle slipping side. reproge ina, the soene is frut exling the glase slip a blae tint pastay viow, and on paling the giasasion giving panted on it is thrown orer mo is re presented by a circle soraped oat of the blae tint.c. Brown.
[12012.]-Water Power.-" P. W. H. J.
practically although correct in theory; be states that I hare calculated the natural effect due to all of water, bat that I have not gone any farther. It he
will refer to my letter he will perceive that he is in will refer to my letter he will perceive that he is in
error; I have made a large allowance by putting the error; I have made a large allowance by putting the
velocity $v=10$, instead of 191 , to allow for the effeots of flaid friction and the well known phenomenon of the contracted roin. I stated that I did not know the length of the pipe, and I hinted that the data precinded great accuracy as in most physical problems ; perhaps if the pipe is a very long one, the allowance I made was not enongh; a further deduotion should have been made for the modulus of the wheel employed, but it would vary accordingly as a turbine or other motor was used. "P. W. H. J." states that in the rainy season there might be 2 horse-power, but he previously
estimates the ordinary power at t horse-power; I made estimates the ordinary power at $\frac{1}{4}$ horse-power ; I made my calculation on the aupposition that there was as
much weter as could ran throngh the Sin. pipe. To suppose otherwise would add another element of uncortainty to the calculation. I think it would be asefal if some of our correspondents wonld give us extracts from tables as to the practically observed eifects of finid iriction as depending on the length,
diameter, and inclination of the pipe. At the same time I mast bay that "P. W. H. J." has given practical details which I could not have furnished. I asid almost all I had to say on the
[12018.]-The Frat Watoh and Clock Made. -In answar to "A Glaggow Highlander," Reid's smount of useful and intereating information ; published by Blackio and Son, Glasgow and Edinburgh; as lso E. J. Wood's "Cariosities of Clocks and Watches." There are also a great number of works on watchmaking published in French. Ancient writers difler greatly as to the date at which clocks were first intromachine or sphere for the measurement of time 200 Jears B.c., but the mont ancient of which we have any definite record is the one constructed by Henry de Vick or Wick, a Germen artist, in 1870, of تhich there is a full description and engraving in Reid's work alluded to above ; bat there is no donbt that Vick's clock was the invention of no one manin particalar, as we may fairly infer that diferent men at varions times made additions and improvements to horological machines, before they attai
tion.-Trmpus Fuarr.
[12014.]-Organ.-If "E. C." will refor to No. 859 of ours, article "The Organ Built," he will flad that I have explained how to do what he asks. -J. D.
[12078.] - Magnetic Moment.-I fear that I a annot give "Beacon Lough" the information he seeks withont a greater expenditure of time and labour than I can at present spare. It is not contained in any book I know of, unless buried under a mass of mathematical symbole which I only viry partially comprehend. should think the readiest mode of getting at the magnetic moment in absolnte nuits would be by ascortaining in those unite the current which produces a given deflection to each magnet in the same galvano-
meter (tangent being, of course, most convenient), snd meter (tangent being, of course, most conveniont), and deducting the force used np in the resistance itself; probably a very careful measurement of the extra reaistapce produced by the magnet would also furnish it. As to the coil. I do not mysell anderstand the quotation from Tyndall, and have not the book to refer to. There is an alternating discharge of different tonsions, and, as "B. L." sees, by careful regulation of distance, one of these discharges can be suspended, in which case the "extra current " will be brought into play : is this what Tyndall refors to. It in by the same means that jar is charged; it cannot be done if both terminals are connected to the coatings; a discharger
must be included and opened to the distance at which the one diecharge cannot pass ; then sparke pass to the the one discharge cannot pass ; then sp
jar and gradually oharge it.-Sigua.
[12106.]-Organ Building.-Stopped pipes will not answer well to produce more than one tone, although they can be made to speak two notes by a valve on the top of a "chimney," yet I have alwaye had the idea that a perfect organ of one or two stopa is proferable to one with a dozen imperfect stops, and if every alternate semitone is left out what can be done with e number of the little effects which organists often use, but which pazzle the uninitiated so much ? An
pipe may be used to produce three notes.-J. D.
[12125.]-Cover Plates.-The sorer plate of a girder is that piece of metal added to supply the deficioncy of the joint of the platios at $a b c$, and the rivet holes in same. If each plate were taken singly, it
will be ceen that the joint at a is only spliced, so to

5r

tron clane
speak, by plate b, and the strength is only the strength of likewise of b and c. It shonld be calculated to sapply as nearly as prisible that deticiency, taking the number sary on the bottom fiange of plates are neces. metal is in tension, say four tons to the becanse the metal is in tension, say four tons to the square inch. of calculaticn at top flange of a girder, beanase there the metal is in compression, and the edges batt npon
one another. But the practice is to place thom both at op and bottom of a girder; it makea a good joint, and is something to the good to resist the raried strains hat may not have been taken into the general compression is the practice for mrought iron. compression is the practice for frought iron. onerally strike a parabolic carve from end to ond
of girder, and see that my platen are well beyond girder, and see that my platen are well weyond
the carve (for losd distributed). The formala will give the depth of metal required at a, from which the curve can be calculated. Do not out the metal too fine. Dravortsymay.
[12125.]-Cover Plates.-By cover plates I mean (and I think I have used the oorrect technical term) the plates which are bolted or riveted on each side of a girder, sometimes one side only, where a joint cocurs in the vertionl web.-Excelsior.
[12130.]-Electrioity.-The force which urges the current from a galvanic ourrent or poltaic current, as it may be called, is enormonsiy less than the force with which frictional electricity is urged on. The conse quer or pass obstacles that wonld stop the former ; but by linking cells together the voltaio current is cansed more and more to approach the natare of the frictional current. It, however, requires 1,000 cell bsttery to
make the current leap over a space of $\frac{1}{1000}$ of an inch is air. Bat an electric current of moderate pewer, furnished with a proper condactor, is competent O urge the carrent across an interval ton thousand times as great ; but messured by other standards the rriotional electricity is almost incomparably more feeble then the voltaio electricity. For example, it is not withoat apecial arrangements for maltiplying the oflect that frictional electricity oan be made to deflect a magnetic needle. The difference may be expressed thus: Valtaic alectricity is low in intensity but in great quantity, and friotional electrioity the reverso. The defiection of a magnetic needie and other actions of the
voltaic ourrent depend apon quantity solely, hence superiority of galranio battory in producing anch defection.-P. W. H. J.
[12188.]-Flard Water.-Try Professor Clarke's plan of adding lime-water. Qaantity to be added depends upon degree of hardness. For very hard water you might try proportion of 1 lime-wator to 10 wabor. to let the mixture ran for some distance at considerable velocity. For watar of 10° hardness the process reqnires sixteen hours to render it good serviceable don't see how Condy's Iaid could be profitably don't see how Condy'
employed.-P. W. H. J.
[12138.]-Fiard Water.-Boil, and allow to get cold, all cooking and drinking water. This will precipitate some, if not all, of the solid mattor it contains, and kill any living organisms which may dieport themsparkling appearance and destroy insipidity) porr two or three times from one backet to another from a height of two or three feet.-Henry Newnan.
[12135.]-Chest Expander.-" Jack of All Trades "boing so nuwell I ventare to reply for him. In the diagram a is a tube, say a foot long; of piston and
rod, passing through apiral spring of ateel wire, which

17

is fastened at one end to piston, at the othor to flat ring c, hold at differont distances within the tabe by marked 0 are suited for the greatest etrength. All this gear must fit the tube loosely.-HENBY NEW MAN.
[12186.] -Monkey Nut.-Botanical name Arachis hypogea. Will not live throngh the winter. Used
largely on the Continent for making a first-class oil. largely on the Continent for making a first-cl
Very nice when slightly roasted.-S. Botrons.
[12187.]-Liquid and Solid.-Mercury is liquid at all temperatures above - 40° Fahr., bat solid below that point.-S. Botrone.
[12188.]-Chemicals that Absorb Moisture. -The principal deliqnescent bodies are:-Calciam chloride, zinc chloride, canatio potash, posassiam sulphide, potassiam carbonate, potassinm oyanide,
canstic soda, strontinm chloride, magnesiam chloride, canstic soda,
alnminiantinm chloride, iron perchloride, manganese protoalnminiam chloride, iron perchloride, manganese proto-
ohloride, chromic acid, copper protochloride, do.-S. Bottone.
[12138.]-Chemicals that Absorb Moisture. -Carbonate of potach absorbs so much moistare from the air as to become almost, or quite, liquid in time. -J. C. L.
[12142.]-Teaky Tubes.-Wind round the ends inside with soft wire, as close to the end plate as
[12142.]-Leaky Tubes.-I presame that it is the junction of the tabes with the tabe plate that lesks; if $s o$ the collars that fit in over the tabes want removing, and fresh ones substituting. A good plan wonld be to
get the waste ends of wronght-iron tabing from the get the waste ends of wronght-iron tabing from the
ans-fitter's, and jast ronghly tarn or file the surface. gas-fitter's, and juat ronghly turn or file the surface.
They mast be at least lin. long, and made olightly taper. They must then be geng, driven made the place of the nld ones, not the whole distance at once, bat all be fitted into their places, aud then driven home by
degrees. If the old collars have been long in their places there will be some diffoulty in starting them
without damaging the tubes. One plan would be to withort damaging the tubes. One plan would be to the easiest to loose, and then drive the tobes ort. They can be best driven out by gettivg a tube that will juet can be best driven out br getting a tabe that oill jut The greateat cantion in requisito, or it will result in the The greateat cantion in requivito, or it
fracture of the tube plate.-P. W. H. J.
[Will "P. W. H. J." please favour un with his addrese.-ED.]
[12145.]-Small Steam Boiler.-By the eylinder being 5 lin. depth, I should imagine that it would and pressare. Probable number of revolations $=100$ and pressare 301b. (I Would hore observe that amstears, in asking queations of thin olass, seem to mate a point of omithing both pressurs destred and namber of revolutions, making it almont an imponsibility to answer them correctly). Then the piston speed is $\frac{18}{18}=88.5 \mathrm{ft}$. per min., and pressure upon pisto is 119.28 lb . \therefore Units of work performed $=85.5 \times$ $119-28 \therefore \mathrm{H} \cdot \mathrm{P}=\frac{83.5 \times 119.28}{85400}=\frac{1}{1}$, sbout, taling triotion into account. Then we have to derign a $\frac{1}{}$ horse boiler. A ono-horse boiler requires a aquare foot fregrate, and therefore a $\&$ horse requires 86 square inches. Thus the boiler is to be 18in. long, 6in. diameter, and grate 6 by 6in. Now this boilor has to atand 80lb. pressure. The thiokneas that would eafoly recist this pressure
B. W . For the boiler ther
. Bquare inches. No boller, there will be at most too 9.41 b . per square inch. copper of that thichences weighs of material, at 1s. inch. \therefore Boiler waighs 861 b ; coes 20a. \therefore Total cost $=46 \mathrm{~m}$. Any farther information will bo given if ablo. It may be either brazed or rivoted, but proferably the formor, if a good hand at
it.-P. W. H. J.
[12148.]-Boiler Guary.-From "Maleaworth's" I find the folluwing ralo:-Let $D=$ diameter of the boilor in inohes, $\mathbf{P}=$ tho pressure in pound per equare
inch, $T=$ thickness of boiler plate in inches. Then inch, $T=$ thickness of boiler plate in inches. Then
$T=\frac{P D}{60 W 0}$ for ordinary plates, $\therefore \frac{8}{16}=\frac{x 28}{6000}, \therefore P$ $=511 \mathrm{~b}$. about The tubes I have not taken into considerstion, brit by acting as stays they will probably make the boiler able to stand 601 b . safoly. The ealculation anpposes that the rivets are property distanced and proportioned. In example given, the rirets are too sman, for $3 / 16$ in. piate requires notices than fin. rivela On accoant of the smalluess of the rivela, it readars the thickness of the plates useless, as thoe fin. rivete would yield before the plates. A boiler ought ahwe to be so proportioned 20 that every part woald be equally likely to give way at the barsting pressure. The
rivets should be 2 fin. distance or pitch. The horesrivets should be 2fin. distance or pitch. The horeo-
power I cannot determine without more dets power I cannot determine without more datia I mant horizontal, height of internal fre-box, and hind of fael used.-P. W. H. J.
[12155.]-The Sumpended 8hilling.-Another why mackeral slvays rocight in apost askes, had it not been gravely assorted in a somi-domi-nciontife work some jeare ago that the shilling would so soct, even if the holder were not "up to the time of day." The assertion that an inanimato body will coniorm to, and spontaneously strike the nearest hour, bears a lie oo its face, and another on ite back. (Query: Woald it bolation of the queation is that the holder, consciounly or. nonoonsoionsly, bringe sboat the efloos he douires, steadies his hand, and stops the vibration of the shilling-Herry Newman.
[12158.]-Packing Ring of Piston. - The pistons for model engines, and engines of amall power, other, and the ring or other packing goes between. By this plan the riag can be easily turned true. The way it is done is this. Sappose the ring is a brate casting, then fasten a piece of plank to tho fece-plate and turn in it a recess so that the ring will tighty at for it in the two halves of the piston, and face traly equare both sides. Next place it in ponition on piston square both sides. Next place it in ponition on piston
and screw the two halves together, alasping it tightly Before doing this the piston-rod must be fixed in porition on piston. Then the whole must be pat bet peeen centres in the lathe with carrier on ond of piston-nod The ring must now be turned the mereat trife larger than piston. It is now to be taken of and a sam-cout made at an angle of 45° with a circular ase. The ring onght now to be tin. thick, and fin. to $\frac{1}{i}$ in. broad a difficult thing to get a ring on it. One way of doing a diftult thing to get a ring on it. One way of doing heat it, pass it iato recess, and then quench it witb heat it, pass it into reoess, and then quench it with
cold water. I am afraid that you will hardly malse a good job of it. In this case steol would be the beat material for the ring, as it would yield mare with per manent distortion.-P. W. H. J
[12158.]-Packing Rings of Plston. - Incloed I send you a rough hand sketch of a piaton and packing rings, and herewith append some deacrip piston, all turned trie, $, G, H$ of bottom half a at mast be surfaces D, E, I, J, K, L, M, N, O of appe half B. Piston surfaces H. G, and J, K, tarnca at iprst a shade larger thas cglinder's diameter. 'The $t \pi$

centres), and a cut taken from H through G and J to K till juat atting the oylinder "exact." Then reloase the rings by introacing a anoot of wriling.paper beasd ready for the oylinder. The amonnt of paper introduced should not be more than will permit motion to the ringe without chatter. The paper mast not be omittod, as it not only provente nnsorowing when at sonting in hot water (boiling) to give way currotaly When the piston is required again to pieoes. Piston ringe and oylinder of "oant iron," when if the croses. hoed gaides and staffng-box on rod be true in a piston rings and cylinder, will soon beoome one brilliant barniahed surfece, triotion and wear becoming thereby nearly niL. Mr. M. L. Dodeworth, if he takes oare to produce this barniahing revalt, will be astonishod
[12160.]-sise of Iron Tool, \&o.-I thought "Optical Brioklayer" (p. 341) would have infarred from my last letter that there conld only be one correot adre for the poliahing tool, the diametar of which ohould
be juat so mach larger than the diameter of speoulam
 that anything largor is superfliont, while anything amallers will not give enongh napport to the edge focots.
The performanoe of his mirror ts cortainly very oredi. The porformanoe of hil mirror is cortainly very oredi. and that ecrapalous attention to the aize of tool is not of so mnah oonsequence as perfoct regalarity of pressure betwoen evary part of tool and mirror. Tywre have rabbed together for an hour or two, bat it is in the retonches when parabolising that the diffoulty oocura, and each time the mirror is removed from the
poliaher for the parpose of tostisg it vill be found, on polisher for the parpose of testiag it will be found, on
recommencing work, that they do not work so smoothly recommencing work, that they to not work so smoothly
as bofore, owing undoabtedly to the fact that the pitoh cool has lowt ite fine fgare. To teep this Ane agare on the polisher is, then, the point upon which all the operator's atrill and patience ahould be brought to bear.
I regrot, for the sake of your querist, that what
 tanity of trying, as proesing emgagements have obliged
me to aiscontinue optioal wort for mome time pant, bat me to discontinue optioal work lor nome time pact, but alse a concave tool that has beon ground and polished npon the same tools as the mirrer, should be kept for the exprean purpose of re-agaring the pitoh, whioh ahould be done with precisely the same stroke and motion as that used for the specrlam; and as soon as the concare tool rotates regalarly and amoothly opon the pitch, the rotouching of the apeoulam may then, and not till then, be commenoed. I may add that it soems equally nececcary to figare the pitoh tool polishing, as for thome Anishing touches that only occupy if fow minutet, and on no soconat should the spooaliam be made to do the roagh work of rabbing ap In incorreot poliehor until it acsames ita own figure. roage of the coftest kind. I should be plomed to know the opioion of the Rev. H. C. Key apon this mode of prooedare, as a fow worde from him rould be worth
mare then all I coald say to your quarith although I
have no doubt that if "Optical Brioklayer" will patiently follow it out, he will in the end find hie pains handeomaly rewardod.-W. PUREIBs.
[12165.]-Oream Ohreae.-Tbere is a kind of cheese made by the Germans which I hope no English. men will imitate. I think that the peopie vio could eat that with relish deaerve a prize medal for end ranco. I will therefore desoribe the process of making English cheese as ordinarily carried on. Cream cheose is prepared by mixing an additional quantity of cream with milk previoualy to congolating the whole with rennet. Ronnet is the membrane of the call's stomach, propared in a pecaliar manner, which possosses daring life the property of ooegalating mill, and retains this property to a remarkable oxtent after death. All the object in view, to protect it from andergoing putrofec tion. This is done oither by emoking, zalting, or by both at once, or, lactly, one of the three methode oom. bined with the use of spioes. When rennet is salted in the dry atato it soon prodaces a salt brine, which also erhibita the power of ooagualating milk, and is employed for that parpooe. While in many districts it is the stomeol, oustom mote proesribed in others the nes of the stomenoh, together with its contents, as reanot. In the latter osce the oheose is less easily preserred, the butter in the comgalatiod onntents of the stomeoh having a strong tendenoy to beoome rancid. It is remarkable how powerial an sotion in exertod by a very amal quantity of rennot. Thus, one square inch of rennot, moked and saltod, is raffleiont to coagulato 80 quarts of milk. In Bootland, for inatance, where they do not employ the rannot itself, bat an infusion of whey or antt and wator with rennet, a tablespoonful is enough to coagulate 120 quarts of milk. The infarion employed in the manafactare of the Limburg cheose appeara to ozert a atill more powerfal infinence. It is obtained by allowing salt and water to tricklo throagh the smozed rennet. According to the atatemente of the farmers, from lour to six drops are sumfient to coagalate 24 quarts of milk. Whether the acia property of rennet is the sole canse of this powor has not yel ;oen it is to tae, at leant I have not seen acid parts of vogeased to asciat the ronnet, and that that substance, cocording to all experience, beoomea more active by keoplng. Berzoline foand that 1 part of rennet only loat .08 parta by weight of its sabstanco in ooagulating 1,800 quarts of milk. In Chashire, a portion of this dried atomach is pat into half a pint of lakewarm wator, with es muoh salt as will lio apon a ohilling is allowod to atand ovor night, and in the morning the infusion is poured orver the milk. Dr. Holland anid that for a choese of 601b. weight a piece aboat the aize of halt a orown will ofton be sufficiont, thongh of some skins as much as 10 sq . in. is often required to produce the same effect. The coagralation of the milk is often anciated by means of large aaldrons bailt over a fire. The bent temperature is aboat 104° Fahr. Soft or hard cheose, with proper attention to these ciroamstances, casa be prepared at will. Senson and looality appear to exert great infinence in the amonnt of cheose yroided by milk; 8ib. to 101b. of good milk and
should give 1 lb . of cream chees.- F . H. J.
[12180.]-Seasoning Pear Wood.-A. H. Cooke should out the trank of his pear tree into planks, when it would beoome seasoned muah more quickly, and woald not be injured by aplitting. It wil turn wall, and is a niee
ornamente. E . B. F.
[12185.]-Madnip and Wood Laurel.-Madnip is an old name of the cow paranip, Horaelemm ophondylium L., and a Agare is given in Gerard's the plant theas are onumoratad :- "I 1 a phrentioke or melancholioke man's head be anointed with oil wheroin the loaves and roota have been soddes it holpath him vary much, and auch as be troubled with the headschen, and the lethargie, nr aickness, called the forgotfal evilla." No apecial medicinal virtne is ettributed by modern writera to the 00 marsnip . I have comowhere read that in northern Asia the akinned root is a favonrite morsal with the natives. Wood lanrel io I oonalude, Daphne laureola L eparge laurol e dwar shrab, not ancommon in woods, hedges, and thiokets In most ontalognas of native planta it is named epnrge lanrel ; bat in the excellent "Flora Vectensis," Dr Bromfield gives it the name of copse or wood larrel as well as aparge laurel. I romember when in Sassex the sudden clearance of a wood of every plant of this species by strangers ; on ingairy the cottagera told me that it was taken to market at Chiohester and Portamoath, and sold se a horse medicine, bat I conld not learn in what oless of dieesses it was nsed. The bark is hot and pangant enough. The plant, especially the bark of the roots, has been uaotally epplied in som skin diseases of bipeds. Soe Pharmaceutical Journal, 1 897, and Dr. Callen. I had some reason for believing that the bark of D. laureola was sold as a sabatitate for that of D. meserreon in making compoand deocotion of sarsaparilla. Its qualities, indeed, are similar ; as are those of other apecies, D. Gridium, Pontica, to. See Dr. Lindley on the anbjoot in " Vegetable Kingdom," p. ESi, wocond edition.-GRRARD SMrTE.
[12186.]-Cheap Farming.-Try the Scotch rotation orop aystom, or stall foed all your cattle. Large portions of land are rained by tarning it into pacture or grazing groand for ohoep and cattle. The the surface beoomes hard and barren for the want of
coltiration. A great many things could be caid againat
the grazing aystem, but as it is an easy, indolent, and aristocratic way of farming, it is generally adopted to the impoveribhment of the laboaring elasses.Rat.TAT.
[12196.]-Rendering New Rope Flexible. Ualay it and make it ap soitor, or take the tarns onti.e., trist it partially open, or truat to woathor and wear. White manilia is natarally stiff and unmanage able--Henry Newhan.
[12197.]-Roses.-Gloire de Dijon, Maréchal Neil, Souvenir de Malmainon, Lonis the XIV., and Sénatear Vaisse. These embrace as many colours, and the three sections, Tea-scented, -Hybrid Perpetam, and Boarbon. IRIAR Micianio.
[12199.]-Speeding Pulleys for Gat.-Had Mr. Williams triod a pair of conical palloya p-Rat-Tat.
[12199.] - Epeeding Pulleys for Gut.-If E. Williams will make exectly the same difforence in the diameter of his large cone as small one ho will ind his gut will drive on any speed. Thas, suppose his large wheel is 9 tt. 6 in., and the smaller speed on his cone tin., the noxt on large wheol is 2 in . loes in diameter the next on the cone will require to be 2 in . In diameter larger, and 80 on; and vice versa, 2ft. 6in. $=$ in. apoed; ${ }^{2}$. 8 .
[12199.] - Speeding Pulleys for Gut.-The principle is that the sum of the radii of each apeed hall be oqual. For instance, suppose a driving-wheel groove, then lot diameter of largest speod of palley groove, then let diameter of largost speed of palley
be (say) 14in. Then $36+14=50$, which is a constant to be abided by. Let diametor of palley be required to oo be abided by. Let diamotor of palley be required to
diminish in steps of 2in. Then succosesire diameter $=14,12,10,8, \therefore$ diameter of grooves of driving-wheel $=(50-14)$), $(50-12)$), ($50-10$), ($50-8$), that it $36,38,40$, «2in. respectivoly.-P. W. H. J.
[12300.]-Levelling.-In reply to "Brioklayer'a" question, the figares 50.78 mean 50tt. and $76 \cdot 100$ ths of nother foot, above a fixed datum level. This may be called 50ft. 9in. withoat any greater error than the one-handredth part of a loot, or a little loss than an ighth of an inch, the exaot height in feet of 50ft. gin. boing 50.75 lt . And in all cases of decimals of feet, if thoy be maltiplied twelve times the reanalt will be inches, or inches and parts of anlinch. Thus $76 \times 12=9 \cdot 12$ that is, gin. and 12 -100ths of another inoh. And in the asme manner if the decimal 12 be multiplied eight times the resalt will be oighths of an inch. Thas, c. 8.
12200.]-Levelling.-" Brioklayer " is perfectly correct in his assamption; the levelling staft is divided anto feet and deoimals-than, 50.76 would stand for It and 78-20
[12200.]-Levelling.-"Bricklayer's" idea is no donbt correct, thoagh he has not managed to express himself procisely; the 5078 represents 50ft and 76-100ths of a foot-Excelsior.
[12202.]-Boat Building.-The bost book, in my estimation, on the abore anbject is "The Book of Boata," by W. H. G. Kingaton, price 8a. 6d., to be obtained of any good booksollor in the country. It has vory aloar and conoiso direotions for mating and rigging
models of all deacriptions; it also containg dosoriptions of all ships and boats to be lound floating in any part of the vorid. -A. G. H.
[12204.]-Pansies.-In answer to "Ono Anxions to Loarn" (No. 878), il not alroady anowered, I find the following an eaby mathod of striking slips of pansies:-Got some good loamy soil (i.e., tarfs oat from an old pastare is the best, and tarn the grass side down for about a year, until they are thoroughly rotton and incorporated into one mass), if part of this to \ddagger of dung rotted to mould, and \ddagger part sand. Well mix and run through a wire sieve, having propared a place on a warm border, by taking oat the common soil, and replacing with this composition. Get some outtinge of choice morts, aboat lin. or 1 l in. long, oat juat below a joint, cut the leares close off hals. way up, wator the composition, and with a eharp-pointod atick dibble them in np to the lower leaves- that is, put the outting half way in, sprinklo a little sand round aboat them, and cover with a hand-glees ; shade from the san for a fow days, and in six or eight weeks they will be ready for transplanting ; they may be saved during the winter by sticking a few swiga round them or lightly oovering with a little stram. I have never ancoceded wall with the trame, nor yet tried seed; the following are good ones:-D'Iareali, Whito Sorgeant. Ophir
Aarora, Gem, Qaeen of England, Dake of Norfolk. Pagrix.
[12205.]-Double Rookete.-Best from soed. Sow in the artamn to bloom next sear. Porennials, quite in tardy.-S. Botrone.
[12206.]-Geraniums and Fusohias.-The two following are good fusubias:-Bo-poop, and Warrior The Anest scarlet single geraninm, BonAro: doable cearlet, Madame Lemoine, and Triompe, genorally sold by London floriats aboat 8a. 6d. per dozen.-Puiswix.
[12206]-Geraniums and Faschias-Gers aiuma: Exoollent and Victor Emmanuel, zonale; Mrs. ninmas: Excollont and Calator Emmanail, Zrioolor; Crystal Palace Gom and Bijon, bicolor. Faschies: White Porfoction and Marrelloas.--S. Bottone.
[12206.]-Geraniums and Fuschias.-Clipper, Monster, and Richard Headley, among the former Wave of Life and Cloth of Gold, among the latior.-
Isise Msogaxic.
[12207.]-IIght.-(1) Δ beam of polarised ight can be readily and completely iutercepted by the rotation of the analyser, whether it be a tourmaline, Nlchal's prism, or plate of plasi, or mica, placed at exectly tho right anglet (9) The proportion of polathed to wor polarised light fivereaces very rapidly as. the pontion
of completo polarisation is approsched. In the e.eeof complete polarisation is approsched. In the' ne-
companytug diagram the amovnt of light which will oompanytigg diagrame the amoont of light which will
pass through the analyser in various pouttons is indin pacs throagh the analyser in various poottions is isdin
oated by the distance which the radias of the smallar oated by the distance whioh the radius of the smaller
circle math be prodsocd before it outs the ofroumeirclo mast be prodzocd before it outs the ofroum-
ferenoe of one of the larger circlea. Thas, if the anslycer be arranged so that it may coincide in position with the polariser, and the amount of transmitted light be represented by the length of the line E B, on revoling the andyyor
througtr 40° the light. througtr 45° the light
will be reduced to $D \mathbf{O}$, and at 90° complots darknens will ocous.
On paenisg this point On pacaing this point the light very rapidly
increacea, attaining ite maximana again at 180
 and retaraing to sero st 870°. On this socount in refocting polariscopes when the angles of the glass plates aro not perfeotly accurato, a very sensible amount of light is observed when complete darkneas is
expected. Nfehol's prisms, tourmahines, and Hersexpected. Nifchol's prisms, tourmanines, and Here-
pathite readily give complete darkness-ALrakd H. pathite
ALLsw.
[19907.] -Tight.-Il two similar piates of tourmeline be placed together, so that light polarised in one plame caa. be trapemittod, objeots may be seen diaangles to theother ahoolate on terherning one acourt right the secend plate abtorbe the light trensmitted threngh the first. A ray of plame polerised light med be very conveniently obtained by allowing common light to be incident on a double refracting crystal, as culoite, when it will be divided into two beams polarised at wioh angies to each other; by stioling a wafer or a piece of bleor paper over the point of emargence of on state of isolation. If one of the beams of light ob tained by double rofraction, either by the above method or by some other, be received upon the lower plate of Birt's polariscope, the light will be completely absorbed, provided thatits planes of polarisation be in from glage position and angle. When light is refected entirely of light polarised in one plane, eqnal to nearly one half of the incident light, it refuses to be refiected frome aecond glass plate on which it in imaident at the mane angle, when the plane of refection is at right angles to the plane of polarisation of the ray. Hence as one portion of the incident light only is refteeted from the firat plate, and that being absorbed when the second plane of incidence is at right angles to the frat, it follows that no light ought to bo reflectod from the second plate if the polarisation of the light is complete. The effects thas observed of extinguishing light,
 that part of yourquestion numbered 8 , I an not eractly certhin, but I heve a table of the ofects obereys by turaing the top plate of Birt's polariscope, aHewian a candle to ehine apon the bottom plate. I shoald thint that from that you could get an approximatio.
Inalination of
planes of
rafiection.
refleotion.
Varying brightnees of candle.
$0^{0} 0^{\circ}-90^{\circ}$ Greatest intensity of light. it nearly Light scarcely visible (with tourma-
90^{2}
$180^{\circ}-270^{\circ}$
270°
$270^{\circ}-860^{\circ}$ Same as 0° to 90° vanishes).
Gradually increases as from 90°
to 180°
-P. W. E.J.
[12909.]- First Railway. - The first railway opened for

Daringtoa.

conveyed in a

80n, asd nem

on each inde

pascengers were all jammed into this carriage, and in It parforned a journey daily each with a penny candle It parforned a jour
were used on this line from the date of the opening in yet it was only after the opening of the Liverpool and Manchester Railway, in September, 1830 (the second line opened in England), that thoy were brought into
use for passenger traffe. Mr. Clophan, the editor of use for passenger traffic. Mr. Clephan, the editor of
one of the looal newspapers, decoribee some very amuning scenes that occurred on the line after it opened.-Noathuymery.
[12211.]-Bee Mouse. - The type of the family Aphrodifider Its scientido name is Hadithona or Aphero-
dite (Goddeas of Love and Besaty) aoveata. It is well known on our coaste, and probsbly derives its name of "Bes Mouse " from its abondant covering of silky hairs, which are of a very brilliant matallio lustre,
and may bear comparison with the plamage of the and may bear comparison with the plamage of the
hnmming bird. The back is fnrnished with two rows of membranons scales which inclose the gills, but these are concealed by the hairy covering of the animal; the
lateral setse or bristles display on theif surfacee s beartiful iridescent colouring, which on the movenent: of the hairs is soen to great savinntage. The struetare of the briatles or hairs is admirably adapted for weapons of defence; they have rown of barbs. on eaoh side, not anlike, Then examined through the microscope, the epears used by certain sarage nationg. All the barbed setse can be withdrawn into the body of the animal, but so obriate any ivjury which might arise from that act oach bristle is inclosed in a smooth horny double heath, which closes when retracted into the body and again opens when protruded. Although this animal is andowed with such gorgeous colours, displaying nnder fall supply of light the changing tints of orange scarlot, and asare, yet its dwolling-place is in the mad. Even when kept in an aquariam they appear to avoi the light, and hide themselves among the weeds and stones. They are not unfrequently thrown upon our consta after a gale of wind.-Nortaumbria.
[12211.]-Sea Kouse.-The see movee belonge to the sub-kingdom Articudata, class Anmelide, it is s-sea the sub-kirg allied to an arimal withi whiok "Serutacor," if he is addictod to fishing, is most probably zecyuinted, the rag-worm. The saientilo name of the way moure is Aphrodite acukeata; it lives in the muddy or candy botiom dopodiaeroit is of a long oval shape; fo look or peou which form intered wita bandles or long fota or britucs, chiel peculiarities are, however, thrst; the prepence of expanmions or fiaps, one of which is attached to the upper edze of each foot in suoh a manner that they oover ever the back and overlap each other like tillee on the roof of a hosece. They are capable of beling raimed anto depressed to as to edmit and expel the see. Wher the beot, thereby ëreting the flatde of the boin and are admitted into their intarior throngh an opening the ofter pecrliarity is that the stomsoh sends on numerors prolongations with blind ends which pieree the mascalizr walle of the body and are turned baok alose ander the skin; this structure recals to mind the similar arrangement in some Arachnidians, the mpidere for instance.-P. Bantacinve.
[12212.]- Yacht Building.-Perhaps the way adopted in bailding a aimilar yacht may be of use to you to know. Make a frame of inch stolit the shape you wish the widest part of the boat to be, and fasten up in the place
 where you intend her to be widest ; then take several of what are tech. nioally termed ribands, 1tin. x tin., and stretch, from stem to stern, roomd frame on one side; then take an instrument, which you can make by riveting piece of hoop iron, say about 2 in . long capable of taking any bend. This gives the genaral ontline of the timber, and you can easily ronnd of the angular lines pro-
duceă, by the straight edges of hoop iron.-A., Liverpool.
[12215.]-Coffee.-Perhaps the following Fresch machine will suit "Aggrieved Honseholder." The conskituents of coffee and their reactions clearly indicated that to boil it upon the old plan cannot be judicious, bat must alwajs canse the loss of the greator part of the nroma. The better mode of prepsring it is manipulation whether, with the same proportions of Fator and coflee, an equally strong coluble matter is obtained as by boiling. The following is the contrivarice that has fonsd most satislaction and is represented in the lited tightly into the neak of the lask C, by means of a cork, upon Which a pierced drainer is placed. ir-tight in the boiling vembel, by means of the cork D D. The water poured into A, the ground coltee being pleced in \mathbf{C}, which then lies apon the drainer; Whan the water is boiled by means of the spirit apon, it, forces it to rise through $B B$ into O, pascing on its way through the gronnd coffee. When the lower end of B B is thus left open, the air and steam which is water from the remainder of the C, and soon bring the contents of this vessel to 212° Fahr. the steam condenaing in the first instance, but afterwards pasaing through unchanged. This actaal boiling removed from the lamp The stenm then condenses is A and produces a vacurm; the atmospheric sir conesquently forces the water with considerable pressare throngh the coflee, which, in the mean time, has mettled dewn on the aieve E threogh B B to A, where it collects as atrong infusion. The colleo forms narrow and tall column in the neck of \mathbf{C} above E , which is concequently extraeted rapidly with boiling water under a high pressare. The air rushing throngh after the inIusion has passed forces out what remains in the pores: Attention muat be paid with respect to the size of the sion is desired trom a given quantity of the bean, one
fourth mone extenat is gained from oofloe- reanad to connigtercy of foar than from the ordinary coaric powdor. The
 will not at cor well with bearily adnillernced cerice thoogh it socems to pmechicory beot of all-thy adiltarth tionall-P. W. E. J.
 Book vagos.-Wring yoar boon with hro edzo par
 the your stripe of marbie peper about lit. longur lay the strits or it marble side uparent. soaked lay it or the edge; whioh hee proviouns been damped withr a little wher; then las over : the ditipy piece of old blotting paper, and a pad of old wast paper, tin. thick. Then take your hammer and rest smartly and eveniy alt over, or if wity minker the leares. Bemove the pady and 360 if you have rapped all over, if mot; repeat the operation. Bemove oarefal net to let the spirits touch the glaped sing of
 BENDER.
[12217.] - Violin Tuning.-Violnt axa trued it fifthefrom the A atring, downwards ami npwand an ave thus tured onee for sll, alteration in lien hain made by different fingering, the opezanturning natural notes, being, in extreme aluy aroided altogether. Some players, or sicularly, do not ase the open atringermatureny be the key, the timbe thereof being di
[12917] Tialt
[12217.] - Violf Tuning.-Thne the fitir to G, the 8rd to D, the 9rato A, the 18t to C_{r} by to pietac or good concert finte. Pat your fingert in trertith place at th
[12217.]-Violix Tuning.-Tans rew eroad string to Δ, and the others from it by inv. Do mot tane for each key; the defeots in cadty yournil be bee got over by uaing the fourth finger tring- i.e., use the lourth ingor oldmerns
 on the third atring; for A, open on that ancterg, and the fourth finger on the second
on the first atring.-J. R., Leicester.
[12217.]-Violin Tuning. -With thirty jeare an but to fithe and Deper alter to pley for whatever:-A, Liverpool.
[12218]-Momentum.-Mr. Jagger, may bave noticed that horees are inolined to stop when led slond up a hill with a heary loed. The momentam geined by the upward and beakward tendency of the hoal, and can herdly amount to one-quarter of the addrtione force exerted. Drivers of locomotives homerer, al that they get over inclineg more eacily by, "tething race at it," and the ease of asoent is greatis facilitated race at it," and the ease of asoent is great
by beginaing at argood epeed.-Bat-TAP.

[12219.]-Turning Ivory.-Irory tarpe bencel fully and requires no preparation. Uso-hart wood -D.
[19921.]-Brams Soxpws.-"Taletafirwheravone very ueofal information in No. 835, p. 565, witase the diameter in givon as four and a hall.-J. O. Ir
[12225.] Iead in Suiphuric Acid.-Wie brent colour is not cansed by lead alone, but in some obeet imparity. Water sdded to the acid will preatitine the lead as the sulphate, but you will not be able to tou it for testing, or any purpose requiring pureracien XEKOGRAPHER.
[12205.]-Iead in Sulphuric Aald.-The If: coloration of the aulpharic acid cannot be owing to lead, but is mest probably caused by the contien of some organic matter which has been charred by the aotion of the asid, and has communicated to it the dark brown coleur. If "Tony White" will ooncentrate the soid to speoitio gravity $1-845$ (the strangth of rectitied oil of vitriol) with the addition of a liftle nitrate of coda, he will doubtless obtain a colourless acid. AFALTEI.
[12928] - Wood Engraving Toole-It monl be aimply imposaible to use the preeent handies s bed Yol X Tho Vol. X. They can be bougbt at any shop where shay cata
engruyg tools. Perhepa the tools you have ase moed sarvers" foole-X YLOcrenperse
[12288.] - Wood Engraving Tools.- In renty to "Zoo Andra," the tool handles Agared in p. \&8,
Vol. X (bot p. 288, Fol. IX.), are quite correel. T"

[12282.]-Secret Spring or Look.-The pleen of brass or other motal covering the key-hole corill be easily farnished with a searet ward inside, which cousd be removed if discovered.-RAT-TAT.
[19883]-Red Varainh for Patterne. - If Engiland " experiences as much annoyance with red varnish on patterns as I here had, his ary will be monthy I I suoh stain again. Aboat find some sot of red staff, which I took for red lend mised with patent drier, probably a little oil. It it? not leave coleen morid, the caod stuck t, it and meate mess, and it took come three conts of varnish before Ghe pattern was workabla. The beot varninh I beop

[129s8.]-Rod Varnish for Patterns_-"England" will And the following a vory good varninh rexinting damp, and more than sen obdinary degrue of tomporature. The rocipo is gam ahollac Ilb, methy.
lated aninh 1 qoart. When the aun is thosoughty

[19887.] -The Organ. The fault appeers to be in the aiout rather than the bellowa. Pleace anawer the following queries: -1 . Are the aurfaces of the bars to chickithe pallots bed perfoctly true 9 2. Are thore any ohippings, \&c., on sarface of palleif? ? 3 . Aro they aprank or warped ? 4. Do gridingppine grip pallest
and ppevent their alosing? 5. Aretheir uppor surfaes properly loasberod 9 6. Do thay avilloiently oreriap the mars and front oheok to exchade wind from groeves, expponing epring, co., to exercise the requiaite loree to
proses and keep them home? 7. Are thil pieces at jolnt ond of pallets omitted, or not axed suffciontly arm to proes pallets home withoat etraining, hinge ? 8 Are the grooves from tail end of pallets to book of ohest peoporly oovered in ? 9. Is the joint botmeen mindtar (back of pallet obent), and under side of bars and pallet groores, gade air-tight 9 10. Is the more ment attaching pallets to keys pat in, and if so, doe draw the pallete down, without the presiare of the mager on the heys ? Take off front board of abost, and canmise them. The oscape of wind "all over the soundboard " is a serious mattor, bat the arrt nlep will be to provent its unbidden esospe from the pallet hest.-J. W., Plymonth.
[12237.]-The Organ.-I think I may ventare to oggest that as the wind frem.the. bollows reaches the tookiboarda it munt pacas the pallots, if I read "Aleph" correctly, and consequently there is facalt there. I lan tand the conare addition of a stronger apring is the ralve is defeetive will not mation it wind tight sabjoin the folloving an a matter of theory:-Let the diagram 1 represent-A, a portion of the upper board;

B, the alide; O, the table ; and lot a colvmn of air pass up the hole, not atting tighter than shown. The hole forman kind of case or chimney for the air, which 1 not fores it out as generally eupponed if the hole is bored true send mot reertically as it onght to bo. If the holes do not ooincide, simeat deal of Tind mant bo lont, and, no doubt, thil is the oanes of the loss of that I lose wind, or that a cortain note speakn instead of ite noighbour, I sball try the following: -Bore the hole much larger right through, that in the olide. Make a papar tube to at the hole and insert it as far as the allide. Cat the tobe ofl level, and insert the foot of pipe. I also suggeat another plan whore the atoakboarde are not true. Cat diamonds or washers of leather and giood on to etockboard, one for each pipe. Proride a esah end, Errface all the othens to the atraight-edgo; thlo vill provide a fat boand malthematioally trao, and seve the trouble of extting proover to proveet ruminga. -Dravgetman.
[12287.] -The Organ.-"Aleph" has got into pry com m , paxits and mat axith thiting anstrained sna mant be weil fille windohest to piceen old plan wil be to take the an into whiah plenty of whiting has boen woll warted and try agmin ; memean mill not bo tar of, -J. D
182299.]-Fens Egge. - Gire plenty of room, change of lood, and put a large wheelbarrow full a ore ahort of lime and, grit:--Jos.
[12909.]-Fiens' $\mathrm{E}_{\text {gge }}$.- For laying soft egge give 4 rb . Chanticleer obalk, old mortar, ponnded oyater Thells, te., strawed aboat har abiding plece ; bot not for which complaint try outting hor throat.-Hinkry Nor which
[12241.] -Organ Pipes.-The bleck wants bovalling off at the top and it will epeek correotly. $-J$. D.
[12247.]-Sewing Mrahine.-" W. H. T." ean apply a brake to the Wheoler-Wheon sewing machine in the following mannor:-A, table of machine; B, manal with a pieos of loather over the end to keep the Wheal from slipping. When the wheel is ranning it knoekr the whoel afops the brake falls, and prevents the wheel turning the wrong
 way. A $2 d i n$. atroke whine well fith a good supply of ateam. The undormath the maatop with a conioal friction clatoh.-E. B. B
[1247.]-Bewing Machine.-If "W.H.T." hat an opportunity of inspeeting one of Wilcor and Gibbs' cewiog.machines, he will ind that that machine has an extremely serviceable and simple brake attached to it, تhich prevente the machine working backwards. The brake is attached to the large driving wheel. Thare in an tron guard placed round the near part of this wheel and tomard the lower part of the guard is a oup formed in the casting. in which is pleoed a round rubber hall. Of coarse the grand shonld be dxed not so har on as to, allow any posaibility of the ball falling oat, and get not so close that the ball won't have free ploy in the formard motion of the machine. "W.H.T." will find that if he can apply one of this kind to his Wheeler and Wilson, it will effectually provent any backward motion of the machine, as. when it is inelined to go that way, the rubber ball haring fallen to the bottom of the cup acta as a brake on the wheel and stops the motion onifrely, bat when the machine moves forward in ite pnoper airection the ball is no impedi. ment whatever. I don't know if this pa
[1047.]-Bewing Maohine.-Whoeler and Wilcon's machines are now mondo wich a braba by meant of a ball which chocka fino filmheel. It onn be removed, and I think, excapt. Lor learners, with advan tago-Imini Msabinic.
[12249.]-High-Pressure Fire-box Boller.By the abovetitle I presume that "495" means a Cornish boiler. There is a little vaguameas in his remark that 801b. ateam will be sufficiont for marming and dyehouse ; the prensure in this case has nothing to do with team in woyking the moit economically fhen warming, only ona or troo porends preserve. Fir or mill of 40 by 80 by 20 yards one horie-power would be more than suffecient. I shall suppose that five horse would do all the warming, dyohouse and all. To move the engine I shall allow thirty horse. Then I shall suppose that thirty-ive horse will be large onough. I will now farnioh a rough apecifeation:-The boiler is to be of the olass knomn as Fairbairn's beiler ; it in to be 808t. long and 7ft. diameter, deable riveted throughout; there are two taben that contain the firo, and not as flees, each 9ft. Sin. diemeter ; the tope or crowns of the tabes to be 8 in. below contre line of beilor. They are to be fin. thick, bent Lowmoor iron, with atrengthening ring of 8 in . angle iron riveted on to the tabe at 101t. from each end. There are to be three iron rode lin. diametar for stays, ono pasting throagh the centre line and the oftrers Mt. from it, torming an fit gin long triangle. The length of Aregrate is to be bars, 3 in., distance between them, fin. For each tabe the bars are to be made in three cets, sapported by croasbars \ddagger in. by 2 in . cast iron bolted to the tabes. Erach set is to be made 2tt. 7in. long, and Blin. deep at mirebrick, about 20in. high. Tho. Aro-doors to to of be 18 in . by 18 in ., set in an iron caniag thalted to boiler to be tin. thiak ; the door to have fin. harn plate fantened to it, at aboat 1hin. distent from the door in prinoipe, which is to have a lin. hole in the middle, with a brash slide over it to admit air. The burn plate drilled in it at ing atand out fing. from front plate of bodier, snd to be the
same for both tabes. The dend plate is to be 10 in . long, and the whole midth of the tabe. The manhole is to be oral, with cactiron ring rivetod to top of bole
 by 15 in . The doer, or Hd , in to bo 21 inn . by 17 fin . t two in. bolinareito bo rindud into the coor, and they mout have geed seromena mal. There are to be also
 not be kien than fin. by lin. The piteces ina not be kee than tin. by lin. The neis are gin. aquave is to be an iron oming boliod over a hole
 in the maing; ;tin dowherre to be lese than hin. thiok: ing raistace of walverupon eat is to bo tin. brome. The iog eartace of ravor upon aeat is to be tin. bromd. The ralre is to be tin. thick gan motal, there ase to be
three guiding ribs anat on it in. thick; total dopth of ralve and ribs $=6 \mathrm{in}$. The ralve spindie in to be 1 itin in diameter. Length of lever to be 8 ft., depth $=4$ in. diminighing to 2in. at weight ond, with a amall pro oction jin. high at that ond to prevent weight boing thrown off. Weight required to produce 801 b . $=874 \mathrm{lb}$. and diametar of ball or weight om 18 in ., flattaned itio on both sides Fith screm a aide tin. diameter so 4t by 16 in to 4ft. by 16 in . to be fin. thick sheet iron. Damper countarbalanee woight to be 8in. by 10 in . by Bin., to be connected with damper orer palleys by chain aboat 3in. thick The blow-off is to be $3 \ddagger$ in. diameter at month, and other parts in proportion. There are to oe two large glass water ganges, having a range of 10in. The boiler is to be inclined aboat $\frac{1}{2 n}$. in 10 ft . in setting owards blow-off oook, whioh is to be tixed at the front of boiler, neer the gide at the bottom. The baok prestare valvo in wo be iliod at front at hie bottom between the tabes. These are the prinoipal detaila, and if " 195 " is in a furthar diflocity, ${ }^{\text {if }}$ ablo, I will answor
it.-P. W. H. J.
[12250.] -Ohemical.-Pataesirm and sodiam anite roadily. One part of sodiam forma with from ozethird to tan parts polessiam, a eamponend which remains fluid at 0° Centigrade. Whan $t 00 \mathrm{mach}$ sodiam is added the alloy beocenan brittle and oryataline. In all these alloys the potacrinm bocomes oxidised first. The above is an extraot from Gmolin's "Handbook, with water hydrogen gas is erolved, and the water contoins in soletion a mistare of sodiam and potanting hydrates.-ANadrat.
[12258.]-Organ Conedruotion.-The atopi I would recommend "Amatear" to ube are-Great organ, open diapason, stoppea diapason, bass, claribel trehle, principal, filteonth; swoll Lioblich Gedact (metal) gemshorn, haatboy; pedal, Boardon. In "ours "of Sep tember 8 last "Amateur" mill get foll directions respect ing coaplers.-J. D.
[12255.]-EIair.-Shave tor a conple of months and aroid hair lotions as you would sroid poicon.-D,
[12277.]-Anilline Black. - Leaving Mr. Geo. Davis to give a recipe for the preparation of this ooloar, without acid, I beg to reocommend "Coulears A l'Aniline," one of the manasls in Roret's "Enciclopedie "as being a most exhaustive work on the subject. -S. Bottone.
[12279.]-Diminished Aotion of Battery. Due to exhanstion of aoids, whioh can only be remedie by roplaoing with freath. Great anre ought to be given and very selaom 1 , to ollis so as to secure efficient working and economy.-

[12292.]-Breadth of Stair 8tops.-The breadth of step is not proportioned to the length bat to therise and in such a narrow examplo as that given, ahould be calcuiated at the midale of the stop. It is fonnd thus Breadth $=x-2 h$, in which $x=$ the longth of a step in ordinary walking on lovel ground, generally tate as 24in. Thus, if the rise be 6in., breadth $=94-9 \times$ $=12$. Bat acoount must aleo be taken of the position of the top step in relation to the bottom one. If it be vertically over, the higher it is the greater vill be the rise and the tread less of each stop.-C. F.
[12294.]-Larkin's Iron and Brass Founder -I bought my copy at Batsford's, High Halborn, for
6s.
[12295.]- Fingraving by Graphotype.-Though the mode of otching on asalt, as proposed by that in practice it would be found extremely diffocalt o erecation. Fow salts which would admit of boing prodosed es macoth blockit woald peemesas rumoient hardnees to give a namber of impremiona, beridoe, there wonld be the dimealty of limiting the ephere of aotion of the hardening faid so ss to obtain sharp lines. Again, the sotion of the hardening fuid, if it wore possible so to imitt it, wonld be 80 superficial as to render the reanlting block of rery littla service.-S. Bortonz.
[12297.]-The Tremolo.-The art of playing on the violin is no difficult to acoquire that the learner hat orth great porsovaranco, re hed job then it is the ho is aboat to give it ap as a bad Job, than it io whe propar ano to begin ovar again Yreasing hefore they will ain requro an woul preasing woloco thoy will aing a song ; bat the riolin i squenk out "Aod gere preare Oion it will oven quenik out hod har maio, queen." Oar great Dr of leather and he might ootbblo a shoe, or some and he might mats elothes, or try him in anything and he vould mapage to matia
comohow, bat put a flddle in his hands and he oan do nothing." If the Dootor had only learnt to play on the addle, we should have had the grafest sentimental compositions in the world, and John Ball would have been frst again. With respeot to playing tromalousiy, or in a trembling manner, it is wrong to play tremendonsly, that is, with deter: mination ; hold your fiddle tight round the neck with your thamb, press your fingers down on the strings as hard as you like ; then, after an hour's practice, begin and I think by the time yon cen shake one note after or into another, without changing the position of the hand, you will have learnt a great many curious things (as the spider said to the fly) you never saw before. Fiddus.
[12304.]-Phrenology.-Withont going fully into this I may say that the brain forms its oase, and the brain is derived primarily from the parente and under canses acting daring gestation. That brain, edacation can oniy very partialy modify, and mode than to suppose, as some of our great writers do, that a child's mind is a blank sheet of paper on Which we can write What we please. Even this partial effect of education is limited to the period of life when the brain and the bones are in process of
development, and thas "Saul Rymes's " diffcalty vanishes. I have known one person at least who watched this matter npon himself and declared to me that he fonnd a very distinct alteration in form of his
head after some months of earnest study. -Sioma.
[12306.] - Botanical Names.- The plant de scribed as "French Willow" is in all probability one of the willow-herbe i Latin, Epilobium. Of the aunoustifolium, E. hirsutum, E. parviflorum, E. montaaupustifolum, E. hirstum, E. parvifurum, E. monta-
num, E. rosum, E. tetrayonum, E. palustre, E. alsinifolizm, and E. Alpinum. The individnal possossed by ynomn in the siccus" is probably E. Cresm."' The plant which mpinquirer calls "Rose Pea," I do not Legnminosce, and most likely Ononis arvensis; Anglice " Rest Harrow."-S. Botrone.
[12307.]-Kerosene.-This is the Amerioan name for the illuminating oil (so-called) derived from petroleam. It is, of conrse, a very variable article as to its
constituents and quality, and its enly extenaive use is constituents and quality, and its enly extensive use is various medical properties.-Bioma.

UNANSWERED QUERIES.

The mumbers and titles of querios whioh romain whancwored for five weeks ave ineorted in this tiet. We irmet mation they ean for the bemaft of thoir follow contrt. butore. Binc
11857.

11881	Hydratilio Indicator, p. 268
11893	Botanical Query, 263
11934	Case for V'oloncello, 363
11995	Lncqner for Brasswork of Electrical Machines, 263
11983	Bachhoffor's Lamp, 268
11910	Waterglass as a Preservative of Natural History Sabjects. 263
11941	Chemical Experiments, 203
11942	Steam Volocipede, 263
11944	Fishing Rod, 263
11952	Nettle and Ify Lenves, 239
11955	Traverse Gear for Encines, p. 264
11956	Pill Making for the Millind. 2 ef
11957	Straightening Band Saws, 264
11959	Vandyke Brown, 264
11962	Telegraphy in the United States, 268
11970	Water Regulator, 264
11971	Calcined Ironstone, 264
11974	Arsenic in Salphuric Acid, 264
11975	Silver Plating, 2G4
11976	Curve of Tensions, 264
11977	Whistles, 284
11978	Dreing Mohair Dress, 264
11979	Tinning Iron, 264
11980	Coal in Worcestershire, 204
11983	To Gloss Ribbon, 264

QUERIES.

[12308]-Iron Vats Leaking with One Liquid and not with Another.-Will Mr. Davis or Mr. Bottone, or any other chemist, kindy inform me why
the above do not leak with a beiling solution of Bengal
nitrate of potash, but do leak with a boiling solntion nitrate of potash, but do leak with a boiling solntion of
mariate of potash and nitrate of sods (the artificial mode of making nitrate of potash)? My notion is that mode of making nitrate of potash)
there is often an excess of nitrate of soda in the solution
(canced hy the analysts abroad giving an erroneous (canced hy the analysts abroad giving an erroneous
analysis of the muriate of potash-i.e., it is not so pure as estimated). I presnme that nitrate of soda with
common salt is nmure penctrating solution than nitrate of potash, but, perhars the chemists can suggest cause
and cure. Tbe vats are cast in fire pieces with angles piece of wood being placed between some, but in others reflined nitrate of sodn hy itself, and the solution did not
leak from the vats.- R. J. [123n9.]-Boiled Oil. - Will aome reader tell mo how
the boiled oil used by artists if prepared? Also, how to

12310.]-Professore.-Will some one of the ave itan pablication be kind enongh to tell ore conmopo stitates a professor: I mean who has the right to cell
himself a professor? Professor Haxloy or Professor
 oppory; or Priferior And
[12811]-Hydraulic.- Thave a well on my property itanit aitherto boen salt and brackioh, and totally nuft for going defects, the rupply usually ran short in the summer season. In ordor to angment the supply, and render the water more pure, I was adrised to ospry the rainfall water from the roofs of the promises into the
 copions abowers usually fill tho well to overfowing, at which time the water is suitable for making tea, grog,
so, and remains so, until from 10ft to $15 t$, has been co, and remains so, until from lork. to 1 str. has been pumped out. The pamp pipe is axed to within $12 i n$ oin case, I ghonld be extremely thankfal if ang of yoar subsoribers would solve what to me has been a difficult problem for some months since-riz., why in it that the gravity, lis frst drawn off, the pump pipe being, as before tated, so near the bottom of the weil 9 might alo force pump resching to about midway, finds the same bron.
[12312.]-Brick Faulted Arches.-We have a cover with 9in. hrick segment arches of 8 ft.
ppan. . We wish to know which of the two following methods are considered to possess the grentest amount of strengthriz., two separate rings of bricks, or the arch tarned and bonded with headers and stretchers. We are inclined
to think the last mentioned the strongest, as it would require but one ker. We wish to know if the above has
[ill some]- Portable Gas Cooking Apparatus.Will some correspondent who is practically a equainted
 atmospheric gas rings-informi me whether they are efflcient, and, with gas at bs a thousand, economioal? very much better than those of other makers, and is his mallest size, whioh is only 8in. in dismeter, suffelently large to bo useful in the kitohon of a gmall family, andog, inr instance, the time and froable of lighting the
kitchen fire for breakfast, or cooking a plain dinner, on an emergency, for two or throe personis? If not, what an emergency, for two or three
diameter should be chosen ?-Q.
[12814.]-Bleaching Tanned Goode. - I should be much obiged is Mr. Bottone or any other of your
chemical correspondents would tell me me it is possible to bleach or discharge the brown colour of tanned goods, tanned with oak bark.-TANMM.
[19315.]-Drabroni's Photographio Apparatus. this apparatus inform me if as good negatives can be produced by it as by the nso of nn ordinary camera and
dark room? Also is it liable to got out of order A. P. 8 .
[12316.]-Sceale.-Will some kind friend explain the marks on a boxwood scnile in a cese of mathematica 10 to 50 , asch of which is $12 / 10 i n$. Then one of ten horizontal lines, divided perpendicailarly into nine ob bove reading from right to left, and into oighteen below, from left to right; wlth a sacie of oblinqe lines at each ond. $25 i t h s, 30 t h e, 85 t h s$, nnd $40 t h s$ of an inch. But at the end of this last there is a scale marked C, the divisions of
which diminish from 10 to 90 . What are the values of which diminish from 10 to
the ee geales ?-MATBETEE.
[12317.]-Red Prussiate of Potash. - Will some
chemical friend give the mide of making red from chemical friend pivo the made
jellow prassiate of potash 7-Bob.
[12318]-Artifcial Oils.-Chemists say that oils
of terebinth, bergamot, isvender, and cloves sre isomers or terebinth, bergnmot, invender, and cloves are isomers,
nad can be changed one into the other. I have often heard the abnve statement, as also the artificial pronowhero have I seen the product, or read how it is done Cas some one give the procese, or is it all a ham ? Bob.
[12919.]-Dyeing Pulp for Sugar Paper.-Wil I am very often dseling pulp for parple paper, and can't manage to get siate colour. When nsing logwood
chips I spply a little soda, when bolling after pulp is well washed I apply liquor and alum. Sometimes I ase black or dark blue shade I genorally apply 8ib. of
alnm to 1001 . of pulp. Is it too muoh ? A PAPER alnm to
Maker.
[123320.]-Copper Coins. - A manall copper coin found on the track of the old Roman rond through the parish R D on one side quite visible. Would sny correspondent tell what it is, or it it is worth anything? Also, ${ }^{\text {a }}$ copper coln atout the size of a balfpenny, with a st.
Andrew's cross on the reverse side, date 1780 , with fower an each side of cross; obverse side, a heart in centre
with Sontch thistle. Woald any correspond with Sontch thistle. Would any correspondent say what
it is? [12931.]-Chess
tow the ary reader explain presentexhibited at the Cryatal Palace.-Wrilire Scoaza [12322.]-Bees.-How can 1 keep the wasps away from my new swarms? Last year I had two bives oom
pletely destroyed by the wasps, and all the honey eaten
ont of them- Wer
[12923.1-Scarecrow. - Whith is the most effectual Way try bedg? Every year I lose many quarts by traw. and hare tried every kind of ecarecr
out without naccess.-WILLIE Scorer.
[12324]-Spoiled Hams - Having had a number of hams ap ined itely, I sunil be very glad it some one can
tell me how to cure then as the rill Cunborland bana
are cared, nad Thether in a pickle or not?-J. E P.
[12325.]-Brasing Fine Sawwe.-Wll eome pracnd with what chemicals, I can brase vory fine save, as I And that with borax. epoller, sal ammoniac, \&o, I barn the sams boloro I can got the brass to raa, bat I bolleve
there is a llquid okemioal that makes it ran quick ? . 8.8.
[12328.]-Collodio-Bromide.-Is it praoticable to onvert some bromo-iodised negative collodion (Ma W-
son'e) which I have, into oollodio-bromide to be asod in wot state, chiefy and partly for dry plates, my prin-
ipal object being to got the most I oan!-Tarpod.
[12927.]-FTorn - Wull our friond " Jaok of An Trades," or some otaer subsoriber hany harm ne thors oan and, if so, how P-INquiro.
[12328]-Terra Metallic Tiles.-Can any One terres metaliic tile floor bedded in Porthon coment When the fioor was laid and completed the tulos looked bright, bat now they look so dall and moaldy. Frequent wailing hat had no offect.-PozzLED.
[12829.]-Practical Mechanioz.-Would yoa kindy permitime to inquire from some of your acientitic onnmeohanica? I have Twisden. If papers on thif anbjoct wero 00 mmenced by one of the many abie men con-
neoted with the Ewilish Mectanic, they would bo reoeived with mach pleasure and proit by a large circle
[12880.]-Re sudde Reste. - I ghould foel obliged by your allowing mo to ask "J. K. P." If ho would be kind Onough to sead the drawinge promised on p. 892 of VoL ar the but a
H. E.
[12931]- Geometrical.-Required, to find a point in pointe not in the line.-R. G. G.
$[13933]-.C h e m i c a l$. If an electric ourrent be passed through a solation of hydrochloric acild, will
or the acld or both be decomposed ?-R. G. G.
[12888.]-Purifying Meroury.-Can any readers sive me any information as to the beot method of purlfying moreary? I hare some that I cannot closa by the nsuan method by fitering trough patinto the barometor tobe it falle and cannot riso again, with z thiok black soum atloking to the

[123s4]-EYye Query.-Would "M. R. C. 8." or some ornor talented and oblgiog corrosposital mo what is wrong with my oyes i For a long time any alight fatione, wooh as roadlag a fow pager of the Exaltrin Mrcrissicy has been sufficient to make thom foal hot, dry, and
alepy sometimes they ache palafully and are orfended
 parts of the oyos that are immodiately andor the uppe eyelids ; bat the hotness and smarting erionds antimer
the oyes, oren to the edpes of the lide, whioh nomotimes smart about the roots of the eyelasheo Abont a mooth ago, as I was looking with my left eye at a whitewnhed -a litule to the loft and below the polnt of sight eft eye, but a loser inspoction showed mo that thero was something wrong with the oya, for as I rolled the oye aboat from yide to side, the shadow, or whatorer S, moved along witho, 1 ith. long, like a vertical carred streak, A. A fem days after the appearance of this strask, I sam with my right eyo a uttle shadowy ppot. The more I go to a itight body-like a whitewnshed wall the better I can see these appenrancos, apd the farthe I go from it the more indefinite they bocome. The appearannos are only seen when them the best. Sometimes the spot in the right eye-at other times it is more deinite than streaty in the lert eyo-projects on the san 1 ace of the body looked at. 18 the appearances, no matter how I roll my eyos about ia my ears and roll rond my eyos abont. I coan distinctly hear them make a slight sound, as is they needed nbricating! The power of my eyes it not docreased ir Mecranio at the distance of more than 2 ft . Elthoas optical aid. A few months ago I had a very eever physioian of great skill, Tam not marked Theopanz no pox in my eyee, but I fear that the pox has mose connaction With my presont tronble. Am I rigbt in
thinklag? Will my gight be ondangered if theso ap pearances enlarge and spread over the eyes, or is there any danger of their dolng so? What is the calis of this Which sometimes greatly relleves them, and for a fo minates renders the shadows less apparont Is readiaor tea drinking injurions to me? Would weariug surntes called rickets ix years. Might this bo the canso of these appearancerepies are anxionsly looked for, and will be thankiaily
recelved by-Specrsoscore.
[12935.] - Botanical Phenomenon-Can ery bitnical render kindly favour me with an explanatiof the following:-During the geverity of the win:-
belore last, 1870.71 , a keranium which Ihnre was doario silled with the frost, the terminal branch, howover. st:-] retained its vitality., but in a very low degree, the lowes From that time to the present appearance quite demi months, a succession of new but manill loaves have buprodaced, and within the last fortnight a hlossom $n=$ once a week, not oftener; there has been bat liti: addition to the upper living stem, whith ts very Fen abave also a specimen of Cardamine pratcnsio pioct aquarium; the oarth above the plant is rery dirs it
leaver retain their green colour ; about the
of an inch of water le sappliod every fow daya; atmo-
aphere of globe moist-W. R Brar. sphere of globe moll W.
[19886.]- Vine Root.-Woald any gardener, and shle logion which reads the Exolist Kzoramio kindly give mo a little information on the following subjeota:dug ap a ploce of rine root on a pieco of ground whereon stood an old vinery, and divided it into two ploces and potted them. One diod and the other has grown to ${ }^{2}$ strong plant, sazers trom those suckers, or propagato another plant separatinga, without injary to the vine above menHoned, and, if possible to do no, what time of the year is most eultable 7 The tine, I beliove, is-black Hamburg. -Pracin.
[12387.]-Hellotrope Beed.-I purohnaed a packet of heilotrope seed of a coodeman, and he rold me is hot bed, both in a pot and likewiae on the soil, oovering the dung on the top of the hot bed ; likewise in
 method of raisiog it, or is it, as I nuspect, bad soed method of
[12888.]-Hyacinth Roots.-I turned out nome yd soreral offsote; should they be pottod now, or not antil the latter part of the year, when the old bulbs are planted. The soil has follien from the balbs, and they are now lying in a iehady part of the fowner border. Win
they take any harm there, or ahould they be pat away in boxes in an airy place? Some recommend September, others November, for the time of plantling. I have no dore hat an anaver to the above wre many amatent forists in the MECHiNIC.-PBGNIX.
[" Pbonix" will oblige by observing " Hiats to Correspondente," Nusi 1 and 2.
[12839.]- Veneers.-Will Samuel Smither (iet. 4881, p. 283 dill hatp me out of a hole in gotting some table with emall pioces, and find a great difioulty in getting any bat very common worte-8inasixoton
[12840]-Flowr Paste.-Oan any of your readers tell me how to proserve bookbinders paste from monld and maggote? I make it ap of four, with a intile resin and alum, boiled; and I almays have it mouldy and
maggotty boore I oan get it usod, espocilly in the maggotty boioro I oan
summer.-Boorbindir.
[12841.]-Moths -My (carpotod) parlour is perfootly inferted with moths, and spite or all oriorts (atoy having for darpe), plecing camphor all boont, and muoh physioal endeavpor in the Fay of silling the areatures, no succoses is attalned; but on beating the sois, for instance, hundreds drop ont at any moment, some folly liedged and others agan as graba. Not only is everything being dositroyed by thom, bat it is in overy other sense a perfoot nulance, rendering the room quite unoconpl
able. Perhaps some kind friend who has sucoesafully able. Porhaps some kind ririend whe the information dealt with these peats will give me
[12842]-Pounoing Pattern on Printing Blooks. -Will some kind render tell me how the pattern is

[12348.] - Dresser Top. -I bought a now dreaser sbout aix months ago with a sycamore top, and it has corner than the other, whioh makes it look very ugly. Could any of "our" reiders tell me if I conid remody it? Woald damp cloths put on it do any good 2-J. Grienhalor.
[12344.]-Disappearanioe of Art.-How is the East, such as Egypt, Assyria, dc., best acoounted for ?А. в. м.
[12345.]-Ontario.- Would "our" Canadian friend "Gune 2lam,", 1872, wrote letty gare farther information in reference to Ontario as a hold for emigration ? In what part of the oountry are the extremes of heat and wold
felt the least? What degrees do they register? What is the difrorenco in tomperature botwoen the 8incoe Lake distriet and Toronto? What are the features of the lake distriot-donse foreats or park like; any nnoocupied hand (Govornment) on the margin of the hake or partially cloared farm for sale, and prico ? What parsicular nationality prodominates ? hat obances for a man to go into businoes or farming, with a capital oil turn of mind ? How about mocioty, Ash, game, \&o. ? and turn of mind horman monith be much appreciated byany othor
[12s43]-Gearing Waggon Wheele- Not haring scen anything on gearing iron axle waggong eince I have is any one who woald kindly inform me the proper way to set the arme to make the waggon ran well ? U. V.
[12347.]-Stroke.-Would any brother reader fnform me through the columns of the Mecranio how the stroke of an ongine is ascertained? Also, what means is requisite for an engine, from a ojlinder of given dimen-requisi-J. H .
[12348]-Spanish Pronunciation.-I havo been by my toacher and ting 8panith, and boen taugh to nounce c before e and i, and z whorever found, like the English th sharp. I now hear, however, that this prununciation would, in spain, be considered stinted and
affected, and that the ordinary pronunciation of these affected, and that the ordinary pronancian to know it letters is the omene; is so, to what extoat the two atyles Tary, to what clasges of pooplo they are oonined, and vary,
the mity
Ste
[12s49.]-Tmaigration.-WW any fellow reader be kind enough to wrwer the foll wing questions:- What part of Sounh Amertica to best suit dd for breculing catlue? is thero ny place near Buenos \& Jras whore land is
sbeap or cai be bad by Ooyernment grant? What cort
of an outat would it be beat to take? I want a good alimate for an Engilishman-ALPEA.
[12950]-Sulphurio Aoid-Gan any of your able Dr. Ure complled his coale of uquid, also dry, aulphario ooid in 100 parts? Aleo, if I have 40it. oube of sulphurio acid, speciac gravity 1720, what weight of eold apecifi gravity 1750 ,
[12851]- Onderground Telograph Wires in Oitices-An Amorican traveling in kurope and writing is tine abeonce of air lines in citios-nearly all are under ground, and to this complerion we mast coma." Now, will some English tolegraph engineer or eleotrician kindly give in "ouru" the best method for ranning wires through oftiem, the loostion in etreets longitudinally, and how they crova intersooting atreots; with what substance the wires are covered to inguiate them, and to proteot them from meolenical violence,
and the eotion of water? What provision in made for reaching them for repairs? The ${ }^{2}$ rimabilty to get out of order? What amount of embarakement are the lines sabjeot to from indnotion, and hat there been found any effeotanal remedy thorefore? Finally, throw in moch praotical hinte as will suggest themnelyos for the beneat of n now American subseriber. I have zoarched Calley in raln for such information, and almost the only minormetion have ever come aroas Parla Expogition pablished in Illustrated London Nevos. Paria Exposition, ${ }^{-D}$
[12962]- Centrifugal Pomp.-I should be very, thankial for some ingiruotions irom eome of our meohanical correapondonks.
pump with
power condendig en horse

ginar The gearr nis per
on fy-whool shatt, 28 rovolatione por minute
by pinion 41 to $1 ; ~$
 tions ${ }^{\text {d }}$ d, pulley on diac
anhaft
ajth, makinz 875 revolation, The palleys are conneoted with
patent ohaln 14 st . apart, Thich is coonetantly to put the pinion and large puiley on the right as per dotted lines ? It
would be 81° from per poudjouler Inne. Fould
 10in. brose. The water has to be raibed from 5ri. to 18 , high tion-TzACHABE.
[19883]-Grinding Soythes, Ezo.-Can any one inform me whother maohinery for making or grtiding ocy thes and reaping hooks has ovor boen hvaziod, and
if the same has boen erooted anywhere? The machinery having to bo ereoted in a country where aldilled labour is soaroe ahould be of the simpleot kind.-Sortirn.
[1285t] - Lathe Oonstruction. - WM " J. K. P." or some of the fest boed took of a small lathe 2 fin. contres with oonical mandril and collar, length and size of mandril, and the best angle for same 9 Ought oant-gteel collars to remain hardenod or be tompered? A draving would greatly asaift-C. N. M.
[12965.]-Fermenting Bread With Starah.-I am in a hx. I mant to mako some doagh as light an I posilibly ean. I have fried the ugaal method of fermeni have been thinking if I could got gome nanaulterated atarch \rightarrow-taroh boing the thing after being formented that produces the carbonic seld gas-and knead it into tise. Would it?-DOVGB.
[12356.]-Bmall Malleable Castings.-Could any oorrespondent toll 10 how to make sinal ings mallesble? Oan any sort of oast iron be made so
[12957.]-Stretahing Valcanised Rubber.-Will any of your many oorrespondents kindly inform mo it 18 possible to coavoria 7 h . long 8 it inch thick?-Econow
[12358.]-To "The Earmonious Blaokemith." -Perhaps I ought to have addod to the description of my drawing on p. ©66, No. 381, that the prinoipal reason
why a portion of the wooden brace was cut away at the waok was to ansist tits being sligghtly bent whon driving on the ends of the fiat iron bar at the back. The straight part of the bar in that ease would probably be made aboat \ddagger in. shorter than the brace, so that when the atrain on the atringe was in operation it would, instead of arohing the middde of the braoe backwards, tend to make it perfectly straight, and the forward tenaion of the strings would be reaiated by the iron bar behind.
Perhaps the same end might be gained by leaving the Perhaps the same end might be gained by lozving the
brace whole, and driving a wedge betwoon the braco and the bar ; but that would take np moro room. After having stadiod Mott's system of bracing, described by you a short time ago, 1 am inclined to agree with you that it will be found quits affectaal, af very littio expense, il properly earriod out Can "Tho Harmonioua Blackmilth "tell me whether nny attempt has ovor been made to combine any kind of "rgan pipes with tho upper troble
notes of a plano in one instrument? I sippose g good notes of a plano in one instrument? 1 suppose 8 good
organ-bulldor and voicer would have bat uthe difieuty in makiag a "stop" to inititate the piano. Would the "stop"called "dalleiana" do ? and What would be the probable effect of combining the t wo, so ss to be worked with one keyboard and zet of keys? I apprehend the greatest dificulty would be to keep the two syatems in nnison for any moderate length of time. Would one set of pipes aponk properiy with varying preszaros os witud,
so as to give a little variety of fone and exprosalon?-J. C. ${ }^{\text {L. }}$

OHESS

ALL communications intended for this dopartment to to be addressed to J. W. ABBOTT, 7, Olaromont-plece, Loughborough-road, Brixton, B.W.

the cryetal palace mbeting.

On Tharnday, Joly 18, a blindfold matoh: one playar aguinst ton.-A simaltaneors matoh: one player against twenty-2ivo.-A consultation matioh, by arst claes players only : two playors against two. Play to commence at 2 p.m. in the Concert Hall.
On Friday, July 19, at 8 p.m., a leetare on the "History and Antiquitios of Chess," by Captain H. A Kennedy, in the Opera House
On Saturday, July 20th, blisdfold, nimaltancous, and consultation matohes. Play to oommonce at 2 p.m. Grand matches by tolograph at 8 p.m. in the Concert Full. The players at the Crystal Palace againat Cuifton, Nottingham, and Birmingham. Telograph wires will be lad on to the room.
Players desiroas of entering the lists for any of thowe contests should apply to the Manager, J. Iowenthal 28, Camden-romd, N.W.

Problex V.-By R. A. Proctoa.
Black:

White
White to play and mate in three mover.
Solution to Problem IV.

Whita.	Blaok.
1. R to K Kt 6	1. P moves
2. B to K Kt 4	2. P takes B
8. R takes B P mate	

TO CORRESPONDENTS,
Hixry Turtom.-We acknowledge with pleacure the recelpt of your interenting problem. Worid," Will be wolocmed by many of our readers.
Rota. - We advise you to study some elementary treatise on the game for three months; at the end of
period we shall bo glad to hear from you galn.
J. Priricz-Acoept our best thanks for the exoellont problems you have kindly placed at our diaposal. W. Atary and A. W. Cooptaz - You will obeerve that we pablish two lints of solvers i this
oulty complained of in your lotter.
T. J. Mrnurr.-Try again. We shall at any time be T. J. Mrnara, Try again. Wo render you any asmatanco.
G. Blater and A. W. Coopre.-Problems reooived with thanke. You may expeot a report in cur next. Azoo (Yarmoath). - Your problem is neatly constracted bat it is too easy for publiolty. We hope this will no compoeiton
Bendeiry.- See answer to C. H. Yeo in our last number ADDifional solutiona to Problem IIL. have been received (Drom Wiah)
Correct solutions to Problem IV. have been received (Woraley); A. R. Molison (Bwancoa). Ali others are wrong.

Obituary.-It in with regret that we have to record the death, on the 27th alt., of Mr. Charles Hill, at his residence, Cotham-grove, Briatol. The deoeased gentleman was in his seventy-eighth year, and for a long tme had taken much intereet in astronomical matiors.
 order. He generally ased an 8in. equatorially moanted refleoting teloscope, by Browning, in making his obsorrations, and was, although much adranoed in years, a very assiduous observer. He whs partionlarly inte rested in that department of astronomy rolating to discovery, all the small onges that came within the reach of his instrament. He once stated to the wriler that When on board a vessel, he made an independent dis covery of the magaifcent comet of 1811, and mrute paper, which was read at a socientifio society, on the subjeot. Mr. Charlos Hill was esteemed and respecter br all those who were fortunately soquainted with him and his de ith in muoh reqretted.

THE ENGLISH MPCENARO ITEIBOAT FUND. Cabeartiptiona to be forwarded to the Editor, at the

\author{

 | 0 | 8 | 6 |
| ---: | ---: | ---: |
| 0 | 6 | 0 |
| 2836 | 81 | |

}

ANSWERS TO CORRESPONDENTS.

-a* All commminactions ahould be addrosed to the

 Cowent Garden, W.O.The following axe the initich, fec, of lettans to hand ap to Traeda
F. R. Loyden.-W. L. Nashm-Geo. Awford.-W. G. Roberts-W. Howard.-Thos. Fletcher.-D. H. Good
man.-Rev. R. Kerwin.-E. Greenhoagh.-Frederick Pipers-EE. B. Donkin.-W. E. Nash.-A. Ledger--
Jack of Au Trades.-J. W. D.-E. P. W.-W. M. Collis
 atructor.-Charles Stcinitz.-M. Robinson.-E. J. B.-
A Constant and Benefted Reader.-R. Phipson.-
Vinery. - Wm. Wood.- Pathfinder.-Right Rev. Dr. Gregory.-Alfred Ledward and Co.-J. W. Buck. P. Stoneman.-S. Bottone-Un Francais.-Spero.-
Ajanea-Philo.-J. Gillaird-W. B. Birt-Athas.-
Wholesele.-J. H. Whistle_A. C. G.-W. W. M.-Oio in Tronble- - Hoop Iron.-Ohip.-N. Y. W. M.-W.C.A Young.-A Fidderkine B.-N. T. L.-J. Wutson.-Molnaki.-
Vivian.-E. W.-Sarah.-Excelaior.-Artillery teer.-Edinon.-E. N. D.-A Poor Mnn.-Highlander. -T. B.-Ancoats.-North Deven.-Schoolboy.-A Coal Khetamn.-Wotingham-J.-J. G.'_C. N. Abbott.-G. T.-Thetamn.-Wm. Old field.-Pnounatio Lover.-Veritas. - Henry Mae Cormac, M. D.-R T. S. - John J. Lake Bead.T. C. Ebdy.-O. H. Maggs.-J. M. Withers.-Cormptonsley-Jright and Mann.-G. Wootton.-J. M. Compton.-Wright and Mann.-G. Wootton.-J. M.
Dale.-J. W. Darrad.- R. A. Proctor.-The Harmonious Blacksmith.-Crowauil.-C. 8. Myddleton.-
F. R. A. S.-George Browning.-E. W. B.J. P. W.F. R. A. S.-George Browing.-E. W. B.-J. P. W.-
F. W. R.A Brewer-A Constant Reader.- W. S.J. W. Fepnell.-Bobo.-Parker.-Cornabis.-W. L. B. R. E. W.-A Lancashire Lad.-Priam.-E. H. - BetJoseph Roskell.-E. Johninn.-R. Symington.-Saul Rymea.-Capt. Hans Busk.-J. Y.-L. J. W.-L. H. J. G. L. Nicholl-Webb and Son.-E. Betham.-D Jack of Ale. Trades has written us, but he does not speak in guch good spirits as we should bave liked to Bux," in obedience to an invitation.
E. S. -We shall have some zore information from "Seconds Practical Watohmaker" soon.
Esse. - Your suggestion abont articles on cosch-building is good, and we will try and comply with your request. W. R. Birt.-Next week.
I. B. E.-Yea. We have m
B. E.-Xes. We have more room to spare this time of the year, and are glad for seraps of in
particularly from old correapondents.
Veritag-Yours next week.
Communications which can only appear as advertisements to hand from J. P., Diligence, A Countryman,
J. H. T. M., W.

Jas. Brown, J. A. Hurd, George Thompson and S. E., are referred to back volumes.
J. Ford.-Tbere is no remedy but conetant shaving.
should be enquired for through a respeotable optician The book you ask about was recently reviowed by us and is published by Lookwood and Co. Your other queries have been many times answered in back numbers, to which we refer you.
Yocng Glasgow. - It is your booksellers fnalt. You can bave any number by return of post by forwavding G. L. Grangary mit is a resped
G. L. Grangas-It is a respeotable firm, and the inJ. SLesbex have F. C. D., and Whitesmith.-See" Hints to J. Correspondentg."
J. H. SUTHELLAND.-We have had more than enough discassion from time to time on Squaring the Circle.
We should be glad to hear from seu on some other We should be glad to hear from jou on some other and more useful subjeat.
©. J. Matthews.-Your query is incomplete. It will sll depend on the weight of the cylinder
. S. Lewes.-In the last number. Sce also Indices to manger-Consu
SENEX-Once more we ask why assume se many aliases. The ohief object of your writing at all appears to be tonacuras.-Two or three others have desired to have the last word on the Deluge controversy, but your and W. Watimes.-The first query is
second will appear next week. E. R. J. What appears to be a source of trouble to you is source of satisfaction to us. Yau think the treats ignorant readers with too much respoct. Certainly those who are ignorant, or comparatively so, cannot agree with yon. The "outside subjects" you spenk of are only as fringe after all. The bulk of the jonrnalis intereating to inquirers and thinkers all the
Caractacus.-You aro right. Mr. Bradlangh's name ought not to bave beeu drapged into the Deluge disfor permitting it, zud we truat "E. I. G." will be muic careful in future.
E. B.-Pleaso send description and drawiag.

Planchettx.-There mant have been some "hocus pocns infuence at work. The insertion of your quary we cannot afford space for it just yet.
Eiripatricy, R. W.B., and Balgam.-Your queries are Levvertisements.
ans.-Read Emerson's "Conduct of Life" and Locke on the "Conduct of the Understanding." When yon can be had for 1 s . 6 d ., you will most likely eay ""Thanks, Mr. Pditor, for the adrice.
The Haracomores Bracicgnimi,-Foar-letter on the " "Pisno in Canada" was crowdod ouf.
F. N.-Reply on Asgle of Refeetion: ifon, zeat wroek.

The "Bumpara Nizwg," No. 012, Jwne 28, Companss:-

THF INVENTOR.

APPLICATIONS FOR LETTERS PATENT DURING THE WEEK ENDING JUNE $25,1878$.
1029 H. Peredsy. Bheftesharr-ntreet. Hoxton, for an improved method of and appurutus in tin and othor wetals for "nifting" or JREO R R Boyd, Strand, for improvements in projectiles and in
the manafactnre thereof. 1 1891. R. F. Lawls, Herbert. strret. Midilesex. for improvement
in pen. pencli, and crochet-nerdie holders. bnaquet holders or
dower tobes, needie cases, and other like articles. aower habes. neadio carcs, and owar like articies.
 apparatas or meebanism eonnected therewith, whioh improvementa
are Nno applicsble to motive-power road ongines and carriages. 1888 B. Lowin, Poole, fer improvements in ploughs.
1884 A. M. Clark, Ohaneery.lane, for improvements in rallway lear R, A. Gooding, Manchestor, for improvements in apparatun
for manauring liquide.
 1R87 T. Hnmpton, RAtherham, Yorkshire, for Improvemonts in
the mannufactare of Bes semer atvol ingots.
 1839 E. Unwin and G. Ovens, Ohllworth, Surrey. for impmio.
menta in mperatus for the jelivery of nheets fram menta in mpernitg for the velivery of hheets from printing
machines, paper making machinea, and other machines which
deliver papor or other materfal tu the lorm of sicots. 1840 R. Kubn, Neo Brine
1840 R. Kubn, New Bidge-utroet, Oitr, for an tupproved means
and apoasatus tor tncilitating the repairing and paviug of roads and nether placese, the appasatun beling Nioo applicablo fur yreparling
and dreasiog stone alabs and block. and dressiog stone alabos and blocks.
1841 J . Oross, Mancbonter, for improvements ernnected with
robbera used for washing or cleunsing clothes aud other urticlos. 1841 A. C. Honderson, Charing eross, for timprovements in. the
construction of stereoscones. A commanicition
1943 G. C. Ogle, Riploy, Derbyghire, for improvementa in mowing nod raiping machimes, and in the machinery or apparatus employed
1944 a. Le Mranitar and J. Cochet, Paria, for an improved
syotem of pablicity.
1848 W. Bull, Chanoary.lene, for Lmprowoments in making asit
from brine. Lev8 W. B. Burrow and J. 8. Burrow, Great Maivern, Worcestor-
Rhire. for an improved "bin", or receptacle Lor wine or other
bottles.

 che ter. for 1raprovements in
for sittiag and reclinng upon
1 1499 J. Lenray. Soathampton-bnildings. for Improvementa in
apparatns for working brakes in railway wains and trammay cara Acimpunication.
 1853 W Spance Quilli 1853 W. Sponce. Quality court, Chancery. lane, for tmp
$\mathrm{i}^{\mathrm{n} \text { apparatus for carry ing leather. A comnunicution. }} \mathrm{l}$

 185A A. M. Clark. Chancery.fane, for an improved camp kettle or das6 H. R. Phillipson, Dublla, for a new or tmproved palliass. 196f 6. Lowry, Silford, Lancashire, for improvements in the
construction of radial and other drilug machines and tools. 1957 W. Dawes, Loeds, for imprnvements in locomntive steam
onsinea, parts of which improrezuenta are also applicablo to other onginea,
encines.
${ }^{1 \text { INES }}$ W. D. Brown, Tarta, N.D., for improvements in reaping lesso W. M. Brown. Sonthampton : nillings. for fmprovements
in machines for pricking nnd trimmiag the edgee of huoin of boota 1 nibues. \triangle eommuncallop.

1981 T. Lynch, Enishowen, Ircland. for a new or improved
Frin W. B. Chapin. Southamotan.bnildings, for an Impraved
contrivnnce for becuring dor knobs and othor koobs o: hendles contrivance for secur
upon the is suin

${ }^{86 G 7}$ W. Cotton, for imRNTB BRALED.
 Mi7s I. T. Hnghes, for 1mprovemente in riachiopry for dramine

 Soving or "proofing" fail hatte and for otber purpose

 9
gntcinf or Geognegan, for Improvements in apparatus for master
都

 the maehinery or apparatus omployed therofor.
8412 m T. Grace, for improvemente in apparatia for rainiog

 8517 J. D. Oalantarients, for improved arrangementa for provent
ing pipes or esonels contaning water or Hquil from barato by the

 external bottom of shlps and vessols for the porpoee of cloariag.

1257 W . R. Leike, for Improved procesees of traeting phosphat
rock and other phosphatic subatances for the extractloa of the

 denikn. W. R. Lake. for improvements in the manafacture of
19n1
knited inhica, and in machinery emplove: thorefor.
 compresaion apon matalic articles.
1418 W . R. Lake, for improvements in males fo: spiomitag.

Terms of Subsoription,

PAYABLE IN ADVANCE.

6s. 8a. for Six Months and 11s. for Twalve ERonthe, Post Free to any part of the United Kingdos. Volumes V., VI., VII. VIII, IX, X, XI., XII, XIII, and XIV. bound in cloth, 7s. enoh.

Inderes for each half-yearly volume, \quad (oxcept to Vols. II., V., and X.) inclasive, \&d. Post (oxcept Vols. II., V., and X.) inclasive,
Free, 24d. Oases for Binding, 1s. 6d. eaoh.
** Sabscribers are requested to order Oases and Vola through their booksellers, and not to send diroct. The new regulations of the P
mission through the Post.
To American and Belgian Subscribers.
IFT American and Belgian Snbsaribos, expeciaty requested to advise the Publisher of the transmiasion of the Post-office Order, and the exact amonnt fic: which it is mado payable.
Bnbscribers in the United States and Betzitum oan be mpplied with the ENGLISH MECHANIC post free froc this office, for the sum of 13 s . (3dols. 96 ce gold, we 15 fr . 60c.) per annam, payable in adrance.
The ramitance should be made by International
Post-office Order. Back numbers Post-office Order. Back numbers cannot be aent by : is ordinary newspaper post, but must be rem
the rate of 5 d . each to cover extra postage.

Notice to Subscribers.

Bubsorlbers reooiving their copios direct from ths office, are requested to obsorve that the last number of the term for which their Subscription is paid. Will be
forwarded to them in a colourcd wrapper, as an intim: forwarded to them in a colourcd wrapper, as an intim i-
tion that a fresh remittance is necessary, if it be desi-i tion that a fresh remittance is
to coatinue the Sabscription.

Charges for Advertising.

ALL ADVERTISEMENTS (except in the Exchange $e^{\text {e }}$ Column), per line of Eight Words........................... Every additional line. \qquad
(No advertisement insorted for less than 1a, ADVERTISENENTS in EXCHANGE COLOMN for For every succeeding Eight Words 0

Front Page Advertisoments 9d per Hine. The address is included as part of the gdvertinemez: and charged for
Tuesday to easure ins.surtion in tho followiog Fidiat Tuesday
number.

Oht Ctylish Gitcchanit

viían t, introduce the principle of the lever escapeme $7 t$ to their watches, which has ended chiefly in N: appointment. The foreign watches, therefore, are chiefly of the character termed "horizontal." It will be unnecespary here to expatiate upon the relative merits of English and foreign watches, for wo shall see, in remarks npon "Repairing" what has often to be done to obtain a fair result. This is quite certain, that the horiznntal Geneva watch is a copy from the original invention by Graham; and although Professor Robison examined the escapement very critically, our foreign neighbours have improved very much the angle of the escape-wheel tooth as well as the train of the movements-that is to say, they have increased the numbers of beats per hour, which materially assists in the watch keeping more acourate time than it did in the days of its early invention. Again, our continental neighbours have supplied to their escapement a wheel made of steel instesd of a brass one, which was applied to Graham's escapement, for it was found that unless the cylinder of Graham's watch was jewelled (that is, made of some hard stone) the escapement-wheel, after about four or five years' wear, had out or worn a notoh in both edges of the cylinder; and hence the original plan and design of the escapement became destroyed so soon as the wearing became evident. And I would just remark here that unless a Geneva watch is of a very low type the cylinder is perfect after years of wear, owing, of course, to the steel wheel of the escapement acting apon its similarly constitated neighbour, the oylinder; and watches of a very superior class may be seen with perfect cylinders after twenty years of constant use.

The duplex watoh, invented by Tyrer, and the ohronometer, originally by the French, but perfeoted by our countrymen, stand nurivalled by any other invention, inasmach as tine daplex, under certain circumstances, will keep time wonderfully close, while the ohronometer, when at sea, has been known to return with a rate, after two or three years, so olose that, at the expiration of that period, it has been in error only five-hundredths of a second. See Dent's and Denison's works.
It is intended in the present series to devote most of our space to the encouragement of our youth and amatenrs in connection with watch repairing, for our experience teaches us that there are many moving along in this particular branch of meohanios thoroughly in the dark. It is hoped that the chapters following will be the means of our youth and amateurs walking fairly in the broad light, instead of groping and feeling their way, and not finding that which they seek. It mast be borne in mind that watoh repairing is not to be obtained in an ordinary apprenticeship. Many hundreds require improvement after having served their articled period, and we are hoping, by careful attention and combined action, that the novice in watck repairing will rapidly improve in the general literature as well as in the general manipulation. Tools, matarials, and trade secrets, whenever brought to view, will be dealt with whenever practicable. It will be our aim if possible to vary the subject-matter; thus one chapter will contain remarks upon the "verge" watch, the next one apon the " lever" watch, and then will follow materials for the Geneva jobber, so that throughont the series variety will be studied.
We will adduce an example concerning a Geneva watch which kept excellent time daring the day, but through the night it gained fifteen minutes. Many canses might occesion a similar disaster, bat one that is very common is the following:The watch referred to was a cylinder one; the notch at the bottom of the cylinder was rather narrow, so that for the web of the escape-wheel to pass through freely neither the cylinder nor the escapewheel should have excess of end-shase, and also very necessary that the escape-wheel should be flat. These conditions had been neglected; cylinder and escape-wheel had excessive endshake, and the wheel was out of tiat. When the watoh was lying on the back (dial apwarde), the weight of the balance and its attachmente (cylinder, pendulum collet and spring) preponderated or fell toward the balance cock, and when in that position the part of the escape-wheel ont of flat towards the balance canght the lower part of the impulse side of cylinder, the escapewheel by that means was suddenly checked, so was also the balance in progress, and instead of the balance moving its whole are of motion it was accelerated by the suddenness of the wheel's nction on the cylinder. If that watch had been
escape-wheel observed, it would have been notioed that at every revolution of the escape-wheel a sudden check of that wheel and also the balance would take place, therefore the hastening or gaining of the train which was indicated by the hands. Mode of remedy: Most watoh wheels are made flat by "bamping," as it is termed-that is, 8 hollow punch is fixed in the vice, the wheel laid thereon, and the arm of wheel to be raised or lowered is struck by a smooth thin hammer, after which it is usaal to place it in the calipers, and by a thin straight edge of bone test its flatnass, and thas proceed till correct. But the steel wheel of the horizontal eacapement is very thin and very brittle ; therefore, it is better to try to rivet the wheel to its pinion a little more by placing the pinion face on a hard steel stake, then hold a half-round or crescent-shaped punch on that part of the rivets of the escape-wheel pinion When the wheel has to be lowered; if it requires raising, place the punch on the opposite side, then with a small hammer strike the punch slightly; frequently a very slight blow of the hammer will suffice, but if the wheel be thin at that part it may not yield; should it not, the better plan would be to polish away the lower portion of the cylinder lip which strikes against the rim or web of escape-wheel, which is accomplished in the following manner: Remove the pendalum collet and spring by pressiog it off with a very thin-edged knife, place balance with the oylinder apward apon a piece of flat good cork fixed in the vice; make a steel polisher, rather light, say three-sixteenths of an inch broad, one-sixteenth thick, and about nine inches long, with the end msde nearly pointed and quite knife-like at the edge ; then see ii it can be moved about a quarter of an inah bsokward and forward in the notoh of the oylinder. Having prepared the polisher, provide yourself with some oilstone dust mixed with oil, which may for convenience be placed on a small tin box lid. With this on the steal polisher, and rubbing backward and forward, the oylinder, however hard, may be polished till the wheel is quite free. The pressure of the polisher must be somewhat light, else the oylinder will be in danger of breaking. To clean the oylinder from the oilstone dust, a piece of very small crumb of bread must be ased. After the bread has been made somewhat the consistency of ordinary putty by pressing and partly rolling it between the palms of the hands, and When in the shape of a cone, press it lightly where dirty oil remains, and the bread will remove it. Two or three applications of the same bread will leave the oylinder perfectly olean. It may then be made bright by the usual application of a piece of pointed ont cork.

CHEMICAL PHYSIOLOGY.•

I^{N}the little book which Dr. Thudichum has pablished under the title given below, he has done good service towards the advancement of medicine, and has afforded veluable information to the stadent of ohemistry and physiology. The first portion was written and printed as an introduction to those valuable researches, intended to promote an improved chemical identification of diseases, which he hes contributed to the reports of the medical offlear of the Privy Counoil. Finding it useful in his own tesching, Dr. Thudichum determined to publigh it for the beneflt of medioal students and others, who will find it a concise treatment on physiological or animal chemistry, a subject which is still neglected to a large extent. The second portion is an analytical gaide for the nse of those who may desire to be come practically acquainted with the phenomena and constituents of animal bodies. The import ance of an accurate knowledge of the sabject in all its bearings, more especially to the medica man, cannot well be over-estimated, while an scquaintance with the chemical processes which go on within the haman economy is deserving of study, and may be turned to commercial advantage by chemists and others.

The action of the saliva in turning the starch of the potato intosugar is tolerably woll known to students of popular science; but few amongst the ordinary reading pablic are aware that this saliva consists of a variety of flaids some of which prepare or predispose the food to change, while others merely serve mechanical objects. Of these the saliva secreted by the parotid glands contains a peouliar ferment named ptyaline, and this principle is the only agent in
oint manual of Chemical Phyaloingy, inclinding it

salliva which has the power of transforming starch into sugar. The diastase of malt has a similar action, and a knowledge of this fact led Baron Lic big to employ diastase in the preparation of a food for infants "brought up by hand," which food supplies efficiently the want of ptyaline and alkaline fluids in the digestive jaices. But little is known of the character of saliva in discase ; that it is very materially affected cannot be doubted, and further research will probably throw more light on the subject. It is known that the administration of mercury canses a change in its convtitacuts; several medicinal salts, such as iolide of potassinm, pass very readrly into the saliva from the blood, and, as is well known, the esliva is the bearer of the poison of hydrophobia. From these facts we derive information of a nature probably unthought of by many; for if ptyaline is the only substance in the haman economy which can turn starch into sugar-for the gastric juice cannot, and the pancreatic fluid has only a trifing influence in this direction-we see at onoe how necessary and important it is to thoroughly masticate all food containing starch, not only in order to obtain the full nutritive value of what we eat, but also to prevent overloading the stomach with a mass of food, mach of which is probably indigestible.
The study of the ohemistry of digestion, too, has led to the invention and preparation of sandry semi-medicinal articles of diet. The comminated reaches the stomach excites that organ to both a chemical and mechanical acticn, and a knowledge of this fact shows us that to obtain natural digestion in fall vigonr it is necessary to supply the healthy stomach with a large quantity of matter containing nutriment, rather than with aliments of inappreciable balk; for althongh it would be possible to extract all really nonrishing substances from our food and sapport life with them for a time, healthy digestive action would cease, owing to the inability of the stomach to act mechanically on the small mass which would be sufficient if we could live on essences. This mechanical action of the stomach, so to speak, churns the food, and the chemical action consists
in the discharge from small glands in the walls of the stomach of a fluid termed gastrio jaice Which contains 3.0 per thousand of a substance called pepsine, with minate portions of hydrochlorio acid, possibly lactic acid, and some of the chlorides of the alkalies and phosphates of earths. The gastric jnice possesses the power of dissolving albuminous substances; it transforms the casein, fibrin, glaten, and other portions of the food into a thickish, turbid pap, oalled peptones; and the ptyaline of the saliva, still continuing to act in a moditied degree, forms sagar. The partially. digested food, now called "chyme," mixed with water and a small quantity of air, passes throngh the pylorus into the doodenam, where it is mixed with bile and pancreatic juice, and undergoing further decomposition becomes chyle, passes through the chyle-ducts into the lymphatics, and enters the blond throngh a door in the sub-clavisn, or nuder-the-collar-bone, vein. Such is but a very rudimentary description of the digestive process; but the knowledge we have of the influence of pepsine in preparing food for assimilation has led to the production of an article of dietary medicine which has, we believe, been found servicable in diseased conditions where the natural juices are, on tolerably good grounds, supposed to be deficient. But little is known of the physiology of the liquids which are the active agents in duodenal digestion; the secretory acts and infuences are well understood, but the employment of the secretions has yet to be elucidated in a satisfactory manner. The panoreatic juice, says Dr. Thudichum, has probably three functions, of which one is the complete solution of fragments of meat and albumen, which are invariably present in the chyme when it issues from the stomach, another is the decomposition of fat into glycerine
and fatty acid, and a third the emalging of and fatty acid, and a third the emalging of
neutral fat and its transformation into a condition in which it can pass through the pores of the mucous membrane into the ohyle-duots. The main function of the liver is to secrete bile, and its action is of such intricaoy, connected as it
is with the main features of digestion, that probably a volume might be written on this organ alone. "The quantity of bile secreted in the human body in a day has been estimated at 1,200 grammes, or the bulk which
would till a wine-bottle and a half." It is probably the most or mplicated fuid in the haman body; in
fluencing fat aud fatty acids in the manner of a
soap, communicating to the smsll absorbing tubes an attraction for fat, and excreting cholesterine, which is intimately related to the chemistry of the nerves. In discased conditions the bile is retained, causing jaundice; and by its power of precipitating pepsine it completely stops digestion when regurgitated into the gtomach. The digestive processes carried on in the small intestine are nofortunately bat very imperfectly known, and require, says Dr. Thudicham, particular and great researches; for this part of the body is the principal
seat of snch diseased processes as typhus and typhoid fever, cholera and others, amongst which, but not the least important, are summer and antumn dierrhme, so fatal to many persons, even when sp+cial epidemic influences are absent.

Not the least interesting branch of chemical pbysiology is the study of the action and properties of blood-corpuscles, which carry oxygen from the longs to the most remote and hidden parts of the body, yielding it ap to the mascles or to the oxidisable matters contained in their juices, where it is immediately tsed if required, or is retained and stored np , this being especially the case during sleep.
Blood-corpuscles are not carriers of carbonio acid, althongh it affects their colour and condition; this gas is conveyed in the serum of the blood, being partly dissolved therein, in the same manner as in soda-water, but to a large extent it is combined with alkaline bases, especially sodium. Dr. Thudicham's theory of the excretion of carbonic acid is not generally held or widely known, and We therefore quote the passage bearing on it : When the blood-corpuscies of the venons gone a change which consists in the pargone a change which consists in the par-
tial oxidation of a small quantity of their hematocrystalline, and this is cransformed into an acid which I will call hematic acid. This blood-acid contains nitrogen. It is not similar to any of the acids wo know; it is not volatile, but fixed. It is evolved from the blood-oorpasoles and passes into the serum at the very moment when the former arrive in tho small breathingcells of the lungs. There the blood-acid combines with the sodiam, and the carbonic acid is set free, and is left to take its course, with watervapour, through the lang tissue into the respiratory passage." In a note, Dr. Thadichum eays that the excretion of carbonic acid from the lungs is an act of specific secretion, to which the presence of oxygen (and nitrogen) may be a supplementary advantage (as favouring diffusion), but is not essential.
In his researches on oholera Dr. Thudichum showed that in that disease the serum, being changed in its constitution, refuses to perform its proper functions, bat so acts upon the blood-corpuscles that they cease to oarry oxygen to the tissues of the body; the temperature falls, and what is known as the algid condition in cholera is produced. In other diseases the hematocrystalline of a portion of the bloodcorpascles leaves them, and is decomposed-in yellow fever, e.g., coloaring the skin yellow. Similar decomposition takes place in poisoning by arseniaretted hydrogen, and by the bites of venomons serpents, while such poisons as prassic acid, oarbonic oxide, and sulpharetted hydrogen, kill by decomposing the hematocrystalline, or by combining with it to the exclusion of oxygen. Thus, says Dr. Thadicham, the stady of many diseases requires an intimate knowledge of the constitation of the blood-corpusoles. The value of this we have only jast begun to appreciate, and the ohemioal and optical methods of investigation applied with rigorous accuracy will bring us not only the explanation of normal phenomens at present obscure, but also information on the nature of diseases and the action of poisons, which will point the way to their prevention or cure.

The Analytioal Gaide which forms the latter portion of Dr. Thadioham's valuable little book, is, of course, intended for the use of stadents in the laboratory, and for this parpose it is admirably adapted, being concise yet replete with all that it is necessary to know, directing the experimenter how to proceed in order to obtain a certain resalt, leaving him, as a rule, to appreciate the result of the operation by his own reflection. To the reader Who has not the means of ontering into these there is mach matter for consideration, and much useful information. Thus in the analysis of brainmatter we find corroboration of the German

- Blood orystals; a substance of a red colour, con-
tainlug carbon, bydrngen, nitrogen, iron, sulphur, and
 Flood, aid the one band of ven us blood.
aphorism Ohne Phosphor kein Gedanke, for the ash of mixed brain matter contains $9 \cdot 15$ per cent. of free phosphoric-acid, and large quantities of acid phosphates, eepecially of potassium and sodinm. We learn also that there is more ash in white brain-matter than in gray; that the former contains free phosphoric acid and a large amount of acid phosphates, while the latter is alkaline and contains phosphates.

The latter portion of the book contains woedcuts of the charaoteristio spectra of certsin substances found in the flaids of the body, which will be of great use to the stadent. The whole volume (the result of many years of pationt inquiry) is one of the most valuable contribations to pathology ever pablished, and a great step towards placing therapentios on a thoroughly scientific basis.

NOTES OF FRENCH SCIENCE.

THE production of sounds by oertain fishes has recently been studied by M. Dafosse. There are two kinds of ses scorpion, the Cottus scorpius and the Cottus bubalus-fishes of small size and ngly aspect-Which are put into a state of vibration when seized or touched by the hand, and this is often accompanied by a noise or ary, sometimes a continuous note. The phenomenon may be observed either in air or water. These vibrations, M. Dufosse thinks, are voluntary on the part of the fish, and are caused by the contraction of certain muscles, placed under the craniam, at the sides of the buccal and respiratory cavities. By certain motions, the fish can alter the form of these oavities, and they act as a kind of sounding-board, producing resonance. He traces an analogy between the action of these cavities and that of the thoracic and moathcavities in Vertobrates.

Workers in copper, it would appear, enjoy a certain immunity against attacks of cholera. M. Burg gtates that in Bagdad, where the disease wronght such ravages last year, there were, be-
tween the end of April and the end of Ootober, about 800 victims of cholers in a population of 80,000 . In the bazas there were about 100 shops occupied by nearly 500 individuals engaged in the making or selling of copper articlea, and among these there was not a single victim.
M. Decaisne, in a recent note on "The Progress of Depopalation in Franee," gives some striking statistics as to marrisges and births in that country, as compared with others. In Prusain, the number of births is 460 per cent. of the marriages, in France it is only 300 per cent. The proportion of births annnally, per cent. of the entire population, is in Prussia 3.98; in France only 2.55. The annual excess of births over deaths, calculated per million of the popalation, is 13,300 in Prassia, and only 2,400 in France. According to the above figures it will take 170 years for the whole population of France to be dorbled, as against 42 years in Prussia, 52 in Greast Britain, and 66 in Russia.
A remarkable consequence of the late war has been the spontaneous appearance of certain exotic forage plants in some localities that had been occupied by cavalry. At present many of thees plants (which are mostly Algerian) are flouristring in regions which were formerly very barren, but are now become veritable oases. The phenomence is best seen in the Department of the Loire-et Cher, at Orleans, Blois, Cour Cheveray, and other places. M. Vibaye has counted (in Maroh, 1872) as many as 157 different species. Of these.
abont a third part are about a third part are Leguminosa, while
Gramina and Composite make each about oneffth part. Twelve species of trefoil have been observed, and ten or eleven of medicago. Where the land are not turned to pastarage or frequented by herb gatherers, the plants are being largely propagated. Several species were foand to apperr by the side of a forage dépót in Cour Cheveray, for the first time in May this year. showing that the seeds had remained in the ground sixteen months without germinating. The frost of May last, which injured vines and the young shoots of conifers and other trees, wrought no harm to the exotics. The canse of the abore phenomenon is obviously the importation of forage from abroad, the seeds of which had falleas into the soil.
M. Dumont desoribes to the Paris Academen the mode of supplying Rhose water to Nimes. The water is subjected to nataral fitration in lateral subterranean gallery of 500 metres lengt
and 11 metres internal breadth. This gallery is
the largest known. The water is brought by means of two steam-angines of 200 horse-power each, a distance of 9,960 metres in a pipe 080 metres diameter. Connected with the pipe is a large air ohamber 14 metres high, on which the pumps act, not directly, bat through a number of smaller sir-ohambers joined to it ; by this method, the immense column of water, welghing nearly 5,000 tons, is made more manageable. The steam-engines, which are vertical, with direct motion, only consume $1 \cdot 400$ kilogramme of coal per horse-power per hour. 30,000 oubic metres of water are furnished to Nimes (which is 27 kilometres from the Rhone), at an expenditure (including original cost of works) of not above
$\mathbf{6 , 0 0 0 , 0 0 0}$ francs.
A. B. M.
A. B. M.

ELECTRO-METALLURGY.-III.

By J. T. Sprague.

1. BATMERIES.-In these papers I intend to proceed step by step as though the reader were commencing the subjeot, so as to deal with it systematically. If any one hopes to learn at once how to rival Elkington in the art of electro-plating, or even, having got a Smee cell and half a pint
of gilding solution, to at once proceed to gild his of gilding solution, to as once proceed to gild his
wateh osee or obain, he may ws well reaign fim-
 pathia thoroaghly how to deposit eopper in any requard

 other dopartmpents is aroused, and ouly elight first thing easmatial to be counstiven is the marce of the force, i.e., for presemt parposes, the best form of battory to employ. We require a battery easy of managemeat, giving a lagge earront at moderate cost and of tolcerbble constanoy. Much will depend upom the amorunt of use to be made of the apparateg, for the conditions are very at work, and when it is to be need onjly by fits and starts: in the latter case the common Sraee is to be selocoted belore any other ordinary formviz., a platinied ailzar plate in ermane with two zinc plates heldito:the frime with thas clamp. A fow general pientrias will codit in maleotion.
Large oulls
 speedily 'inert ory melog chared elth sixe malt; they shocid aico be deep, so that this oult 28
formed :my sink by its weight below the level of the phates; if this be attended to, much waste may be aroided by occadionally drawing off the fresh lifaid. From want of attention to this, it is a common occurrence for a heavy dopenit of zinc to form on the lower part of the pegative plate, which then requires to be removed by soak-
ing in dilute acid. This more commonly happens ing in dilute acid. This more commonly happens
in one of a series of cells in which there has been some over action, or change of liquid has been neglected; it then becomes, in fact, a decomposition cell instead of an active one. In some cases, for practical reasons it is best for the elements to be in the form of platee, but in many colls they are oytinders, and then the quoetion ariees, whioh should be the outer one, the zinc or the negative? This question may be put in another form: if the plates differ in size, which should be largest? This has been a good deal discussed, owing to consideration being directed to only a portion of the subjeot. There are two good reasons why the negative metals should be largest. 1. The zine is subjeot to local action or wasto, which contributes nothing to the work, and, therefore, its size shorld be reduced to just that amount which is requisite to maintain the ourrent required. 2. The negative plate is subject to "polarisation" or deposit of hydrogen apon it, and should therefore be as large as possible.

After a great many trials I have come to the conclusion that the best possible arrangement is one in whioh the negative element is a cylinder
fired within the containing vessel, in the middle of which the sinc can be suspended. The next point is the best material for the negative plate.
2. Copper Neative.-This is the oldest form, and still used in many factories. As a rale, it is
bad economy; on the small scale it is mere folly to employ it. The copper speedily becomes covered with a black coating, the current diminishes almost to nothing, and the plates mast be cleaned with acids or made red
hot. If ued at all, the surface should be
thoroughly coated with electrotyped copper to ensure pare metal and a highly granular surface. There is one form in which copper may be usefully employed for regalar continuous working -viz., as a oylinder in a large vessel, with the zinc in porous jar, the outer vessel ohargod with dilute sulphuric acid, eay 1 to 20, and a little nitric acid added occasionally. In the porous cell a half eaturated solution of zinc sulphate or common salt may be used, and the lower part occasionally remored with a siphon and replaced with water: if the cell stands idle the copper is dissolved if free nitric acid is present, or else becomes coated with an insoluble deposit. The cell cannot be recommended except for factory use on a large scale.
3.-Silver Platinised.-This is one of the most valuable negatives known. Smee discovered that hydrogen adhered less strongly to rough than to smooth surfaces, and from this developed the idea of depositing platinum as a fine powder on other metals, selecting silver as best on account of its slight liability to action from acids and its high conducting power. Sabstitutes are frequently proposed, as copper, lead, and an alloy of lead, tin, and antimony; they are all wretchedly bad economy, and it should be remembered that the silver, oven if a little costly at first, has an intrinsio value of its own, even when worn out. Rolled silver can be obtained ready platinised, or ordinary thin sheet can be lightly roughed with fine glass-paper, or by dipping in nitric acid, and the platinum deposited on it thus:-Insert in a vessel with dilute acid, and conneet it by a wire to a small slip of zinc in a porous vessel in the same acid ; in fact, mount it as a battery, but exposing at first only a mere touch of the zino to the liquid; arop in a fer drops of platinio chloride, and stir; gradually a faint colower ferms on the silver; add more platinum salt and inarease the zine surface, and after a good adheseat cosat is formed gradually inorease the action tillithe surface is fairly covered with a black coating, which touch as little as possible. The platinum ealation is made by dissolving saraps of thin platinum in a mixture of two parts of hydrochloric ased ase of nitric acids ; the solation is very slow, and is best effected in a flask with a long nook, in whioh is inserted a test-tabe filled with water, and utood by in a warm place; it is not necessary to shive off acid or to crystallise for this use, ss the free ecids are of no consequence. The most satialeretory single acid battery I have ever had consists of tall glass cylinder, the apper half of which contains a oylinder of platinised sheet ailver seddered to stout copper suspension wires leadiag to the binding screw ; all the copper and solder is carofully covered with marine glue to prevent action upon it; the wires pass ap through a thin eheet paraffin whioh fits firm into the glaes, and the pailror itself fits to the sides to provent motion; in the middle is fixed a porous jar, the apper part of which is soaked in parafin, and passes firmly into a hole in the middle of the cork, in which are also fitted a phial neck for filling at, and a small bent glass tubs for leading off gas if required; all betag thus placed, a mirture of melted resin and Bathbrick-dust, or other similar powder, is panred
upon the oork, the use of which is mainly to canble this to be done; the tep is thens olosed with half an inch of cement, leaving omly the porous call from which any eveporation oan take place ; the top of the glass should be first wermed and coated with melted resin, contwining a little melted oil; this insures adherence and prevents sulphate of zinc forcing its way up. This cell is always ready for action upon placing the zinc rod or plate in the porous cell. The same mode of constraction applics to some other colls I shall mention presently. Of course, earthenware jars will do as well as glass, and the porous cell may be substitated by a glass or earthenware tube,
only reaching the liquid; as described, the arrangement is perfect for every purpose, and may be modified according to the parpose desired. The objects aimed at are a large curreat, comstancy, due to freedom from polarisation, nse as a voltamoter by measuring the gas giveu off, work-
ing for a long time on one cha ge, and remainiay ready at any moment and any intervals without injury or trouble; in some I have sosked the bottom of the porous cell in paratin, led down a protected wire leading from a binding acrew and dipping into a layer of mercury; these only reqnire
a rod of zinc to be planged iuto the mercary, and can be left conpled up, althong the ziven are remored; or they may be as das odds and ends cells to utilise any scraps of old zincs which ealy
require to be cleaned, amalg smated, sud prcked
into the porous cell. The silver is platinised after the cell is completed.
4.- Graphite Negatives may be used in place of silver, and may be platinised in the same way with advantage; connection can be made to them by a clamp with a piece of platinum foil inserted, or a deposit of copper can bo made upon the apper part and a binding screw soldered on ; the carbon must then be warmed and carefully soaked with paraffin from the copper down to the part which will be in the liquid. An excellent cell may be construoted on a plan similar to that jast described; stand a porous cell in the middle of the jar, insert also a plate or rod of graphite carbon, prepared and connootod as described, and also a stout glass tube reaching to the bottom ; crugh upa piece of carbon, as obtsined from the gas retorts, and sift out pieces from the size of a hazel nut to that of a pea, and pack these in the space between the two jars, taking care to have as good contact as possible with the oarbon connection blook; when two thirds fall, fit in the cork cover, and coment as before. This may be used as a singlo acid coll, or if high force is required nitric acid or bichromate of potash solntion may be added to the outer cell. For single acid use a wicker basket or any convenient substitute may replace the porous cell, as its purpose is simply to keep the materials in place. As the graphite contains a good deal of sulphide of iron, the gas given off is very offensive at first, and the cells should be allowed to work some time and be emptied once or twice before they are platinised, which rendars them much more constant in aotion. They are not quite equal in all respects to the silver cell chisfly becaase of the internal resistance at the oarbon contacts, but they are choaper at first, and once peoperty prepared will last for years in perfeot order, working with great economy. As the ourved forces liquid from the zinc cell outwards it is anwell to bore a small hole or two in the posene sell juet below the proper level of the liquid, by which it can return; of course this mant not be dane with colls in which nitric acid is inbeadid to be msed. This same arrangement neike the bent form of manganese cell : all that is necessang is to grind together equal bulks of fine peroxide of manganese and carbon, and pack this 1 to the interatices of the carbon; this is far supenier to the Leolanche form, as it gives somuch more room for the material, and brings the zinc into its proper place, the middle. With this mixture the cell becomes useless for electrotype purposes, bat it.is so convenient formany purposes of testing and expeciment that every eleotrician chould possess one at least ; it is also the most corveriont form known for use with electrio belle and domestic totegraphs.
5. Danielfs Cell is most valusble for experimental purposes, becsuse of its constancy, but for occasional use is too troublesome to be recom mended in electrametallargy. It is also costly, but if the battery is made up of square plates and the negative plates are themselves articles on which deposit is to be made, I believe it would be found the most convenient and cheapest of all For this parpose it would require the negative chamber to be fitted with connecting rods, sce., in the same mamner as the depositing cell to be described; something of the sort is also shown in Fig 88, p. 196, Vol. XI. The chief objeotion to Daniell's cell is the dopesit of copper on the zino frem salt which pasees through by ondosmose; for long continued experiments I have found it advantageous to use large cells with two porous jars or partitions, with a good space between filled with stroag solation of sulphate of zinc, asing the same solution with half water in the inner ziace onll and rasmalgamated zino. By ococasionally drawing off the apper part of the intermediste solution mnoh transfusion of copper salt is avoided (espeoially if a few coils of zino are inserted in the middle colls), and the zinc can be cleaned in moment by brashing. The solution withdrawn sbould be pat in a bottle, or jar, with a few soraps of gine, which will throw the copper down and fit the solution for use again This plan adds to the internal resistance, of course bat that is the anly drawback, while perfect constancy can be maintained. The Grove's and Bichromste cells are not naed (and the latter woald be useleas and expensive) in electro-metal lurgy, beoanse high eleotro-motive force is not required; for some parpoees that even of a eing: Smee is umeoessarily great, bet this can alw be controlled by adding resistance. The batt desoribed are the only aeses of use, and I w
give suoh practical information as to thei
6. Zinc.-The best rolled zinc shoald bo employed ; it gives a higher force than cast zinc, and is more economical, because cast zinc is subject to muoh more local setion, owing to its porous condition. Cast zinc rods may be used with equal advantage in cells where it is only exposed to salphate of zinc, or ohlorides of sodiam or ammonium, because these do not act by themselves on zinc.

Amalgamation. - The coating of zine with mercury prevents the looal action of the acid; it appears to effect this by giving a amooth surface, and so favouring the adhesion of hydrogen, which may be seen covering it in little babbles; therefore, anything whioh tends to roughness of surface tends to increase looal aotion and waste of zine and acid, a point the learner should carefully fix in his memory as an axiom. The practical lesson is, keep your sincs theroughly clean and well amalgemated. Care should be taken to ase only pare meroury ; much of that sold contains lead and tin,' whioh are misohievons. The mercury should be kept for some time in a bottle, with dilate nitric acid over it, and ocoasionally shaken op. To amalgamate zinc, wash it first with strong soda to remove grease; then dip it in a vessel of water containing one-tenth of sulphuric acid, and as soon as atrong sotion takes place transfer it to a dish (such as a soup plate); pour mercary over it, and rab it well till a bright silvar-like film forms ; then set it ap to drain on edge, and before nee rab off any globules which are set free. Whenever the zinc shows a gray granular surface (or rather before this) brush it well and reamalgamate, rememberiag that saving of meroury is no economy, and free use of it no waste-for it may all be recovered with a little oare. Keep a convenient sized jar or vessel solely for washing zincs in, and brush into this the dirty gray powder whioh forms and is an amalgam of mercury with zinc, lead, tin, \&c., and forms roughnesses which reduce the proteotion of amalgamation. Let this powder collect for a time and then transfer it to a bottle, in which wash it with gulphuric acid Girst, and then with dilate nitric acid, and you will recover the meroury. This washing should be done whenever a plate is removed, and nevar less than once a day if in regular use; the fibre brushes sold at 3d. and 4d. as coarse nail-brushes are excellent for these purposes, but of course mast not be left soaking with acids.

NOTES OF COMMUNICATIONS TO THE ACADEMY OF SCIENCES, PARIB.*

F^{1}IREDAMP INDICATOR.-It consists of an slarum put into play by clookwork, the balance of which is held by a scale beam, with arms of an unequal weight; this kept in position by a cotton cord proviously impregnated with purified saltpetre. It is inclosed in a case of wire ganze. The firedamp penetrating into this cage is ignited on reaching the inflammable point by a lamp barning in the inside. This consumes the cotton thread, the olockwork balance is released, and the alarum sounds, warning the miners of danger and indioating the neoessity for more active measures of ventilation.-M. 8. V. Turquan.
Zoologx and Geoloax.-From the examina tion of bones found in recent strate it would appear that the Mauritius have formed part of a large extent of land or groap of islande, whioh have gradually sunk into, or been overwhelmed by, the sea, and these islands are the remains. They have served as the last refage of the terrestrial population of those anciant epoohs. Of these are the dodo, the solitaire, the aphanapterix, Newton's water-hen, large paroquets, \&o. Madagascar had not been in communication with these islands, for when flrst visited by Earopeans they did not find any mammals except some large bats. These did not exist at Maritius. The study of the fossil birds leads to the mame resalt. -M. Alph. Milne-Edwards.
Prehistoric Anthropoloay. -Fiom the reindeer period man has alvays lived amongst the majestic débris of the talus at the station Eysies, in the valley of La Vezere, Dordogne; bat the principal part of the talus was formed in the Palæolithic age. Notwithstanding some levelling that has occurred, more or less, the vestiges of the successive ocoupations show themselves at intervals. Here are traces of the bronze age, with remains of crucibles and of oharming little vases in pottery, black and very fine, with geometrical designs, identical with some of those from Lake
*Tranilated and abstracted for the Exalise

Bourget. In other parts hearths of the polished stone period, with bones of animals, its polishers and panches in bone, its hatchets, and coarser pottery. The last have not yet been found in the undisturbed reindeer strata, but constantly accompanies the remaing of domestic animals. From time to time there have been falls of rocks at this spot, and the people have returned after each fall and profited by the intervals between the blooks to light their fires. Upon an occasion one of them beame a victim to a downfall, having being overwhelmed whilst reclining on the back upon the hearth, and turned in rain to sroid the desconding rocks. The skeleton was found under some of these, about three yards below the surface of the reindeer period. There could be no doubt of its era, and in this it is distinguished from the other skeletons of the polished stone period. Ordiaary sepultare would not explain the circumstances under which it was found. The vertebral column had been crushed by the corner of a heary rock and the pelvis was broken. Shells were found distributed about the skeleton ; amongst them Cyprea pyrum (Gmel) and C. lurida

HARMONIUM CONSTROCTION.

TE improvements in the construetion of harmoniams recently patented by Mr. Scantlebury, of Holloway, consist in a method of coupling the octaves, a new form of pallet bar for opening the valves of several rows of reeds, and a modif. cation of the bellows action. The invention will be readily comprehended from the annexed engravings, in whioh Fig. 1 is a transverse section of the action; Fig. 2, a plan of part of keyboard and couplers; and Fig. 3 a form of pallet bar for opening the valves of 8 rows of reeds. In the conpler action the inventor places what are known as "bsokfalls" or levers F (the fuloram, on rail D of whioh is at the centre of their length, by preference) in connection with the pallet or valve G, by means of a wire eje or other suitable means at one ond, and a screw a from the under side of the finger key acting upon the other end. The conplers are placed diagonally as shown. A sticker is also arranged in connection with the same key to act upon its own pallet or valve G. The "coupler bar" D is raised so as to bring

(Linn.) ; two were on the forehead, two near the humerus, four near the knees, two on each foot. They were pierced with a gash or notch, and would have ornamented a garment. There is no appearance of their having fermed parts of a necklace or bracelets. - M. Alph. Milne-Eidwards.
Applifd Cegemistry: On a New Method for Obtaning the Reproduction of Designg. Trace apon rather stiff glazed paper the design with gummed ink, and scatter over it fine powder of bronze or brass. By this means a kind of plate may be obtained that will admit of the most rarious designs being taken off npon prepared paper. By softening the ink with vapour of alcohol the metallic powder can be renewed when spent by ase. Specimens were submitted to the academy.-M. B. Rerault. Join L. Lake.

Since the eompletion of the Omaha Bridge over the Missoari River, there is an anbroken line of railrosd from Ozkland, California, to Boston, a distance of 3,239 milen.
the levers in contect with the sorews a under the teys by any suitable mechanical motion for oansing the "conpler" to rise and fall without lifting the pallets G from their seats until the key is depressed.

The improved moohanism for actuating the feeder or bellows of harmoniums consists in placing a roller or wheol at the bellows end of the lever, actuated by the foot-boards, which roller works apon a plate of metal placed upon the underside of the feeder, whereby friction as foand in the ordinary bellows is reduced to a minimam and the blowing is performed by the player with much less exertion. By this arrangement the bellows may be placed nearer to the motire power for actuating them.

In adapting the coapler aotion the inventor raises the keys a short distance from the pallets (sbout three or four inches more or less as required) and incloses the space with a frame C as shown at Fig. 1, forming a. strong resoman chamber or sonnding-board C_{2} whereby the tore.
of the instrument is said to be considerably improved. By placing npon one note-board several sets of reeds, the whole of the respective openings in connection with which are under the control of one pallet or valve, only one spring is required to each key, an arrangement which lightens the touch, and simplifies the action and construction of the instrument ; for in ordinary instruments it is usual or only practicable to cover two notes by one pallet or valve, each two notes requiring a pallet spring, thus occasioning heary pressure on the keys, especially if the note-board is large Fig. 3 shows a section of theimproved form of pallet bar J, the pallets K being fastened to it in the nsual manner of fastening a pallet to its stem, by means of a strip of leather, technically called a "strap." The arrangement shown is for an eight row sounding-board or "pan" N, but the pallet bar is suitable for a larger or smaller "pan." The holes for the screws 0 to pass through are bored larger than required, the serews being clothed with two small pitces of cloth or other suitable material, one at the bottom of the hole and the other at the top, an arrangement which imparts a better action than if the cioth passed throngh the holes. Under the head of each sorew 0 a washer of oloth, baize, felt, or other saitable noiseless material is placed, to reoeive or stop the rise of the pallet bar J when released by the key, and raised by the light springs. T, which sre (by preference) spiral springs of brass wire of sufficient strengti to raise the pallet bar J and its pallets K. It will thus be seen that the springs T materially assist in imparting lightness of touch to the action. The spring $\frac{M}{m}$ is made strong enough to keep the pallets down.

THE VEGETABLE BEEF-8TEAK.

THIS fangus (Fistulina hepatica), which resembles a great red tongue protruding from tree stems, when once known, can never be mis dall pale purplish red, but becomes more red, and passes through brown to black as it decays; the anderside is cream-colour, with minute red points occasionally, becoming yellowish red as it grows It generally confines itself to old (and often prostrate) oaks; but in Epping Forent it is not uncommon on the beech, and it has been observed on the ohestnat, walnut, willow, and other trees.
Although such a large fungus, freqnently weighing from four to six ponnds, its growth is very rapid, soon appearing and again disappearing, on ancient tranks in the autumn. When cat. broken, or braised, it diatils a copions red juice like beef gravy. "When grilled," says Dr. Badham, "it is scarcely to be distinguished from broiled meat ;"" and Berkeley describes it as "one of the best things he Berkeley describes it as "one of the best thigs he is a very alight acid flavour in the fangus when cooked, which adds considerable piquancy to the cooked, whish it is extremely tender, succulent, and juicy, and resembles tender steak or tongue in a remark. ble manner, the jaice it distils being in taste and appearance like gravy from an excellent broiled rampsteak. Of coorse it should be gathered when quite young, fresh, aud clean, and at once prepared for the table in the following manner:-Wash and dry, cut into in. slices tin. Wide, soak in scalding water for five minutes, and atew with butter and herbe; yelk of egg may then be added, and eorve ceallion and parsley, salt, and peppor.

RUBBER GRAPHITE PAINT

A NEW paint, which is said to be waterproof, and to possess other advantages, is announced by the Scientific American. 4 waterproof paint, for metal roofs, fences, bridges, ahipa, and every kind of wood stracture, which, at the same time, could be reliod upon to reduce the corrosive infinences of exposare to the atmosphere, is an article for which the demand would appear to be almost without limit
The rabber graphite paint is a molation of pure indiarabber in linseed oil, which is groand with graphite into a thick, elastic, smoothly flowing paint. Compositions of which indiarubber forms a part possess in the most eminent degree the quality of resisting the action of moistare and of corrosivo gases carried in the air. In the graphite, we have a pure form of oarbon; and it appears to be well known that painta containing carbon in any form last longer than other kinds not having it as an ingredient-holding their body and colour when the other paints are totally destroyed. We do not see why this compound, combining as it does these two valasble elements, shculd not form a paint of great durability and highly protective qualities. All hades of colour from black to pray, or and the drabes, can be made as desired.

THE BELL ANEROID.

TIIS instrament (invented and designed by Captain Hans Bask) indicates, by ringing one or other of a series of ten different bells, any change in the atmospheric pressure amonnting to one-tenth of an inch on the barometric scale The mechanism is simple, and is pat in action by a constant battery (one of Leclanche's) composed of twelve cells.
In the annexed woodent (Fig. 1), representing a back view of the case, with the door removed, the position of the bells is shown. They are respectively indicated by the letters A A, and are irre gularly placed round the oentre one. At the back of the contral and smallest bell is seen one of the soft iron magnets, by means of which motion is imparted in the asual way to the hammers CCC. The other magnets are hidden behind or under the bells. F F are insulated wires leading to the binding screws D D. By means of the insulated wires G H, a connection is established with the battery, and this can be broken at will, by means of the lever E.

The dial (Fig. 2) is formed of a disc of ebonite about three-sixteenths of an inch thick. This material was selected for the purpose, becanse it effectually insalates not only the steel index hand,

sea, it is both cnrious and interesting to note the rapidity with which these changes occasionally succeed each other.

The bell aneroid wan completed, under Captain Bask's directions, by Mr. Browning (the wellknown scientific instrument maker), and he is a present alone anthorised to construct aneroids of this partioular kind.

The primary objeot of the inventor was to depise a simple and efficient apparatus which shonld indicate unerringly, on board ahip, or to a person in charge of a lifeboat station, any important approsching alteration in the state of the atmosphere, and the result of his experiments has proved in all respeots most satisfactory. It is not improbable that this form of aneroid would frequently be of material ase to the agricaltarist.

INFLUENCE OF RESPIRATION ON THE CIRCULATION.

TN a paper on this subject by Dr. Ewald Hering are given the resulta of a considerable series of experiments on dogs, undertaken with the view of determining the infaence of respiration on the cir culation. He states that during an examination of the influence of the vagus on the respiratory movements, he foand arti ficial inflation of the langs to exert a remark able influence on the cardiac movements. If air be blown in through a cannla, and its escape prevented by a stopcock the beats of the heart increass in frequency. In his experiments he introduced one end of a T.tabe into the traches and atteched a second orifice to a men second orifice to a manometer, While the third was left tree, so that the animal might breathe by it. or through it insufflation might be carried on: a manometer was also introduced into the carotid. It was found that, when the tersion of the air within the langs was angmented, the pressare of the blood in the arteries fell to un extent increasing in proportion to the pressure of the air in the lungs. This effect is obviously due to the greater resistance the blood experiences on antering the chest, and to the obetacle the exto tied long presents to panded lang presents through its capillaries. the heart's beats increased in frequency at creased in frequency at the same time, and in proportion to the tension of the air in the lang; where the cardiac movements had preometimes rose to three times their previous
bat also the sirteen terminal platinum points of the wires marked K K K. To the inder hand N , a thin strip of platinum foil is attached, marked L on the diagram. The hand, as it traverses -from "one tenth" to another-the face of the instrument, necessarily bringa the platinum foil in contact with some one of the platinum points, thus establishing a connection with one of the soft iron magnets; the bell pertaining to that magnet is instantly rang, and continues ringing as long as the hand remains stationary, or until the lever E is withdrawn (as ehown in Fig. 1) from contect with the sorew D.
There are in Captain Bask's aneroid sixteon platinum points, and their extremities are carefally burnished off so as to cause no friotion, and to offer no resistance to the movement of the foil. As there are only ten bells, six of these points (three at either extremity of the soale), and, consequently, those least frequently sounded, are each conected with two bells. As all the bells hare 2 separate note of their own, it is perfectly easy to tell, even at some distance, whether the barometer is rising or falling: the deeper toned bells give warning, when the hand moves from $29 \cdot 50 \mathrm{in}$. towards 28in., while the higher notes are sounded as it pasese from $29 \cdot 50 \mathrm{in}$. towards 3lin. In variable and unsettled weather, more especially at
number. The animals were always under the influence of opinm. Four questions suggested themsolves in regard to this increased frequency of the beats. 1. Is it due to the greater pressure under which the heart acts? 2. Is it owing to the altared conditions of reaistance to the current of the blood ? 3. Does it arise from disturbances in the exchange of gases; or 4. Is it occasioned by a forcible dislo cation of the heart. He considers the arguments in each onge at length, and finally arrives at the conclusion that the accelaration of the cardiac beats on insuffiation of the lomgs is through the vagi; the action of the centres of the inhibitory fibres of these nerves being lowerod by the excitation of the sensory fibres distributed to the lange.

Another Liquid Glue.-The following is a good recipe for liquid glae:-Take gum of abrlleo three parts indiarubber one part, by weight. Dissolve the canotohonc and sheliac in soparato vessela, in ether free from aloohol, applying a gentle heat. When in aroughy disuoivoa, mix uno two cola honh, and keop in z botule wighyy iopporea. oul glae recint the socion of watar, bo Pieen of cond end most or acides and altaine. Pieces of wood, leather, or other anbinances, joined rogether by 11 , will part at any othar point than at the joint jant made. It the glae bo hinnith to leat her it renders the joint or applim at rarnien to loulder, it renaare the joint or neam water tight, and almont imponsible to separate.

BEVIEW8.

British Rainfall, 1871. By G. J. Symons, F.M.S., F.R.B.S. London: Edward Stanford. 1872. 7 HIS usefal but unpretending annual collection published, its completion having been deleged by publighed, its completion having been delayed by tains the unnal amount of information on an important subject. Among the papers contribnted by portant sabject. Among the papers contribated by
rainfall observers there are two that demand a passing obtice-one "On Rain-gange Experiments at Hswsker, near Whitby, Yorkshire, 1871," by the Rev. F. W. Stow ; the other "On the canse of the Decrease of Rain with Elevation." by G. F. Burder, M.D. A considerable portion of Mr. Stow's paper treats on the same subject as that by Dr. Barder. Mr. Stow's view is of this character.
"that if the whol of a shower were intercepted "that if the whol of a shower were intercepted
10ft. or 20ft. above the ground, there would be just boat as much rainfall at that height as actually falls to the ground within the whole area covered by the shower; but that the fall on the ground is vard carrents of air; the latter prevailing in those places where we generally set our ganges, and cansing, therefore, an excess in the fall at one foot, ver that at a height less affected by the down arrents." On the other hand, Dr. Barder suggests that there is a real increase of rain near the earth, view is fonnded on an analysis of Mr. Chrimes' bbservations with ganges elevated from 1 ft . to 25 ft . at Rotherham, and the Calne observations, 1867, between the surface level and 1ft. above the surface In the Calne observations a gauge 6in. above the surface gave a decrease of 3.3 per cent. as compared with the quantity registered in the gange, the month of which was on a level with the surface, and one at 12in. above compared with the aeme uantity. In the Rotherham observations the decrease between elevations of 1 ft . and 5 ft is 6.0 per cent., while that between 20 ft . and 25 ft . is only
 the following conclusions:-(1) That the formation of rain is not a continuous process. The ball of the rain comes from the clonds; little or none is drawn riom the airnext below the clouds, bat a large addition is derived from the strata in the immediate neigh bourhood of the eartb, the rate of addition being continually and rapidly accelerated nntil the rain reaches the ground. (2) That this rain formation near the earth is simply the effect of temperature There is one circumstance in connection with the subject of decrease of rain-fall with eleration which appears to be anomalons; it is that Colour-Sergean shot camp that two ganges of 5 in . aperture, set at sn angle of 45°, their faces being kept to the wind y vanos, collect as nearly as possible the same tively, while a gauge of sin. aperture elevated 25 ft . gathered aboat 76 per cent. of the quantity collected in the lower gauge. We believe no explanation has as yet been offered of these resalts.
another circamstance not noticed by Mr. Gymons ; it is that the horizonlal gange at 6 ft. of elevation gathered during the three years about 70 par cent. only of the rain collected by the inclined gange at the same height. Similar observations at Rotherham, the elevation being 5 ft ., gave in the four years, 1868 to 1871,71 per cent. in the horizontal gange, as results are so near to each other as to indicate that at an inclination of 45° for the receiving aperture, the greatest quantity ol rain is arrested, or, in other face opposed to the qind, and inalined to the horiman at an angle of 45°. The observations of Sergemnt Arnotd with inclined rotating ganges appear to point to the fact that the strata of atmosphere below an elevation of sis experiments on the other hand with rain, While his experiments on the other hand, at elevaincrease of rain in the lower strats. The close agreement of the Aldershot and Rotherham observations, in showing that at the same elevation in the lower strata a horizontal grage gathers about 30 per cent. less than a gange inclined at 45° kept elevation differences are dependent apon the horizontality of the receiving apertures, and consequently on the angle which those apertures make with the normal angle of 45°. We have dwelt upon these portiona of the "Rainfall" as bearing upon the accuracy of the present mode of measuremont, and we hope that subject. The investigation relative to the duration, subject. The investigation relative to the duration,
hourly frequency, and rate of rinfall, has been continued by Messrs Sawyer and Bruce, with some What similar results to those of 1870 . At Brighton, the greatest number of falls in any one hour oc-
curred betwe 2 and 3 p.m. ; in the next hour, 3 curred betwen 2 and $3 \mathrm{p} . \mathrm{m}$.; in the next hour, 3
to 4 p .m., the number of falls was only one less the result was precisely the same in 1870 . At Bug.
occurred between 3 and 4 p.m. As a practical resul, we kisd mat the perlod from 11 p.m. to of the 24 hours; falls are more frequent between of the 24 hoars; falls are more frequent
3 and 7 a.m., after which they decline antil 11 a.m., increasing from that hour to 3 p.m., and then decreasing to $8 \mathrm{p} . \mathrm{m}$., the reraaining three hours being a period of greater frequenoy. Among the weather proverbs is found the following: "Rain before seven, clear before eleven," which is based upon the hourly frequency of rain. In the last two years and a half Mr. Sawyer foond there was rain before 7 a.m. on 159 days. On 68 of these days, or nearly baif, there was no rain after 11 a.m., and on 100 before 11 a.m., and there wss no rain autil 2 p.m. or after. From these facts Mr. Sawyer conclades that the proverb is well borne out, and it is in accordance with the periods of greater or less frequency alluded to above. In his remarks on the rainfall of certain districts, Mr. Symons calls attention to he discontinuance of the records taken round St Mary's Loch, for the Edinbargh Water Trast, and remarks that "this is to be regretted, not only for scientific reasons, but becanse, sooner or later, the information would have possessed an actual money value far exceeding the cost of registration;" he further adds that "niggardliness in such matters often compels tenfold subsequent outlay." "We have Rainfol" to notice that under the head or "roig having been very remarkable daring 1871: heavy falls in some places, great drought in othors. For mach interesting detail we must refer the reader to he ralume itsalf, which is fally equal to its prode cmacer

Iom as a Laterial of Construction. By W. Pole, F.B.S. London: R and F. N. Spon.

Wrar we may the foundation-stone of this bohoot ef ceries of lectures deivered at the Roya cation of iron in meohenical stractures. These have been carafully revied, and with much additional matter form a text-book that capnot fail to be of ase or to find numerous readers amongst stadents of that branch of the art of constraction which deals principally with iron-a branch which is rapidly spreading and ramifying in an increasing number of directions. Mr. Pole was formerly pro fessor of civil engineering in University College,
London, is a member of the Government Iron London, is a member of the Government Iron
Armour Committee, and with the aid of his forty jears' experience brings no small amonnt of information to bear in writing this handbook for the use of students in engineering - information supplemented by diligent research into, and garnering from, the works of the best and most reliable The beok in cerot different branches of ractical part hough no zach of the theoretical as was thought weve of secrice in enisting the stadent to acquire a frouledge of the mare and properties of iron as arily pointing oustraction that book-learning can never supphy the place of practical observation, is yet conledge is immensely facilitated when practical observation is gaided by previoas atudy. "Many practica angineers have devoted the best years of their lives, he aays, "to its acquisition, but there are many tanity of doing this, and to whom the want of sach knowledge must always be a disadrantage, cansing them to rely on others for jndgment which it ought With their own personal prerogative to apply. ing of en protensions erccted nowadays supplant ing stone in bridges, and timber in housos, it is refreshing to find a practical man like our author saying that "it is questionable whether this substiation is not being carried too far, and whether the new perishable subetance is not frequently adopted or the sake of cheapness, or facility of construction in cases where the more durable bat less tractable
material, stone, would be more appropriate, more noble, and more worthy of the profession.
howerer, is only an "aside." The engineer who wishes to be master of his art mast be thoroughly conversant with the capabilities of iron as a mate rial of constraction, and able to sdapt it to the The book is dirided into chanters headed-the 1rodaction of Pig Iron, Production of Malleable Iron, On the Mechanical Properties of Iron Generally ciples of the malleable Iron, the essential prinindicated, while the properties of the metal as nised in construction are very fully explained.

Practical Plane Geometry. By J. F. Heather London: Lockrood and
Turs rolume forms the first coarse of the "Elements of Mathematical Drawing" in Weale's well-known series, and contains the simplest modes of construct-
for laying out geometrical construotions on the ground. The objects of the work are to give such a course of instraction in practical plane geometry as shall enable students to comprehend the constractions given in the papers at competitive examinecions, and to form a complete introduction to the rolames on Projection and Descriptive Geometry which are to follow. Mr. Heather has adopted the simplest mode of performing the constractions consistent with great accuracy, and as this necessitated variations from the methode of Enclid, as well for those problems which are contsinedin the Elemente as for the numerons deductions therefrom which he makes use of in the book, proofs of the methods employed are given. The theorems are merely tated, howerer, references being given to the pro positions of Enclid in which they are found. The 00t appears to have been carefully pat together and is worthy to take its place in the well-mown and useful "Series" to which it belongs.

Connersations on Natural Philosophy. By Mrs. Marcet, Revised and Edited by the son of the Longmans.
Tris is the fourteenth edition of a woll-known and deservedly popular work, and will donbtlose find its why into the hands of many of the rising genoration, and replace the oldar editions in the "seminaries " and "academies" where it is used as a class-book. In the "advertisement" to the prasem edition we are told that it has been thought desirable to introduce two additional conversations on Spectrum Analysis and Solar Chemistry, and on the title-page we are informed that the book hat been "revised and edited," which we should anderstand to mean in the ordinary course of things that the statements made therein were consonsat with the known facts of science at the present Wo regret to gay, how ina, that wret evision and editing it has undergone has nol been well done; we regret to say thion, bocause a book which, probably, first stirred the mind of the youth fal Faraday to experiment in felds where he after Wards became a most eminent worker, and which,
moreover, has been held in good ropate almost moreover, has been held in good repate almost from the commencement of the present contary, is or the good work done in previous years. The subjects of heat, light, colour, electricity, sre not brought up to our present knowledge, and in several instances incorrect statements are allowed to appear. Thas we find it said that "the ether which produces light cannot be an el. stic fluid." and that non-elastic fluid." Errors, too which might have been avol led by a carefu revision have also escaped the 1 rinter, for we aro nramed into the condenser whil that ebove it drawn into the condenser whil, that elbove it
forces it down." The "not" s oils the whole forces it down." The "not" 8 noils the whole sentence. Such spelling as the "sp sctre of metals
and "alcaline" is decidedly obja ationable, and contradictory statements, like the d stance of the arth from the san being given in one place $95,000,000$ miles and in another "about $91,000,000$," might at least be avoided. Under thea, circam ssue of the "fifteenth and corrected" edition.

Healthy Houses. By Wimhay Easgax, O.E. London : Simpkin, Marshall, and Co.
This is a book with an attractive title, bat we aro afraid that many who take it ap with the idoa of assie, it appeara, whe assistant engineer to Renkioi hospital during the Crimean war, and has here published what he call a handbook to the history, defects, and remedios of draingeg, ventilation, warming, and kindred sabects, with estimates for the best syatems in use and apwards of 300 illastrations. In his preface (wie author says, that at length the sanitery Day (with a capital D) is dawning. Of oourte ${ }^{10}$ ars not know exactly what he means, we bog leare to assert that, so far as the pablic is conoorned, therse is, individually, very little appreciation of the nocse gnorance of the evils of dirt and of the dineases which follow in its wake. Local anthorities, save in some fow exceptional instances, oxhibit an mount of supineness which asnnot long be tole rated: an indifferance, in fact, which evinces the attor contempt with which they regard the eachings of sanitarians. Whether Mrs. Eascio' book will effect an altaration of this ansainfactot tate of things remains to be seen. As an nocemb of hat has been done to improve our dwellinge, and make them healthy: his little book has doubt inventions, patented and otherwise, connected writh Irainage, ventilation, and heating ; but we ventare to hink that tio amatear builder whotakes up this book with a view of discovering the best method of con stracting and itting a house according to the ro qnirements of sanitary laws, will find himsed
endeavouring to ait on more than two stoole
once. Besides, there is naturally a very great sus. picion attached to the opinions of an anthor who
does not hesitnte to advertise the different wares of does not hesitate to advertise the different wares of
which he speaks, by giving their prices and the adwhich he spestas of the nanufacturers. Mr. Eassie considers that the earth and ast-closet systems "have mach good work to perform ;" but when a thorongh "water drainage " is effected they may "wisely be
dispensed with." He thinks that the carbon-closet system is, "withont doubt. the best dry process yet invented." Speaking of the present arrangements for collecting dust, Mr. Eassie suggests what we presume he would call an improvenent, which, in we do not live. He says, "If a person accustomed we do not hive. He says, "I a person accustomed an occasional secident from the exposure of the many-shaped boxes of dust, he may consider himself
lacky; but if he esoape the inhalation of some lucky; but if he esoape the inhalation of some
disease from the well.packed weekly hampers of dirt and offal, he is doubly fortnnate.", We have heard of the "dangers of the streets," bat we were not aware that so many pedestrians are the "doubly
fortunate" individuals which Mr. Eassie makes them. Our author then suggests that the latter evil (the "inhalation of some disease ") is "anquestionably to be remedied by the ase of some deodorising disinfectant." The receptacles for the dust are to be so constrncted that every time the lid of one is opened a q inintity of a disinfecting powder is mixed so placed in the area, "that the pressare of the dustso placed in the area, "that the pressare of the dust-
man's foot woald cause it to rise to the pavement man's foot Would cause it to rose to the parament the requisite simplicity Mr. Eassie does not tell us,
neither does he inform us whose duty it would be to neither does he inform us whose duty it would be to
see that the duet-bin had its proper supply of dissee that the dust-bin had its proper supply of dis-
infecting powder. Nevertheless, his book will be found aseful by those who wish to know what has been done to insure the most healthy conditions in dwelling houses-provided they are capable of judg-
ing for themselves of the relative merits of the articles mentioned.

A Pocket Dictionary of Technical Torms used in Arts and Manufactures: English - German-
French. German - English - French. FrenchFrench. German - English - French. French-
German-English. Abridged from the Technological Dictionary of Rumpf, Mothes, and Unvergical Dictionary of Rump
A trcrixoloarcal dictionary is nowadays so useful, not to say indispensable, a companion of the arohitect, engineer, and mechanic, that we cordially welcome the appearance of these three volumes. It would, it is true, be easy to point oat many errors -in fact to make fun of sundry rather ludicrous misunderstandings of the compilers, but in spite of kind with which we are acquainted. Many words might be omitted with advantage, for it is dimeult the carnalower, can be to technologists, especially as that is the only "meaning" kiven; nor are many
persons likely to reqnire the French or German persons likely to reqnire the French or German
equivalent for "bihydrogaret of carbon," which, with its reference, occupies two lines. In the
dictionary for Frenchmen, the English Term for a dictionary for Frenchmen, the English term for a dame-jeanne is said to be a "glass-balloon put in a
basket," and a "carboy" appears to be known only basket," and a "carboy" appears to be known only are numerons, bnt those who have attempted to translate technical works into a for ign tougue can readily appreciste the difficulties exprrienced by a
lexicographer in giving the correct meaning of the various trade terms and technical phrases, especially when they are not given in the dictionaries of the language spoken by those who use the terms. As a matter of fact, the defnitions of tools, applierroneous in works professing to kive them, while our ordinary, dictionaries omit them as a rule. It
will be seen, therefore, that to collect them for three will be seen, therefore, that to collect them for three mistakes of omission and commission may be expected to abound. The arrangement, as far as typo-
graphy is concerned, is very clear, consistent with graphy is concerned, is very clear, consistent with
great condensation, but nomerous printers' errors great condensation,
disfigure the pages.

We have also recelved New Formulasfor the Loads and Defections of Solied Beams and Girdcrs, ${ }^{\text {by }}$
William Donaldson, M.A. A.I.C.E. (E. and F. N. William Donaldson, M.A. A.I.C.E. (E. and F. N.
Bpon)
formalas being "hioh will interest enginers, the formulas being "strictly based on the assumption" that ut tensio sic vis. Mr. Donaldson hopes to
secare for his essay either a prompt refatation or an acknowledgment of its trath in the altered practice of engineers. He contends that as cest-iron
beams are now constructed the apper flange is repeatedly subjected to its proof stress, andis therefore liable to more frequent failure; and be considars has been hitherto wanted. -The Strains in Trussecs, by Francis A. Renken, M.A., C.E. (Longmans), is an attempt to set in 2 clear light the theory and method of compating by diagrams the strains in examples drawn to acale, and the work is worth the
sttention of engineers and bailders.-The Screct Cutters' Guide, by James Martin, is a handy and
reliable little book for the pocket of the mechanic. It contains tables of 2,165 trains of wheels for dif ferent pitohes of threads, besides sundry other information that is always haudy for reference by the screw-cutter. Every anuteur lathe-worker
sbould parchase the little book. i asse and sbould parchase the little book.-Eisse and
Posse. by H. T. Braithwaite, M.A. (Longmans) Mankind, the ir Origin and Destiny, by an M.A., o Bulliol College (Longmans): An Exposition of
the Fallacies in the IInpothesis of Mrr. Jarmin, by the Fallacies in the H!!pothesis of Mr. Jaarmin, by
C. R. Bree. M.D. (Longmans) ; Michael Faraday, by Dr. Gladstone (Macmillan); Ancient Stone Implements, Weapons, and Oruaments of Great Britain, Arithmetic (fongmans), notices of which we must Arithmetic (Longmens),
postpone for the present.

HOW LUNG DISEASES ARE PRODUCED.
TWENTY years ago the so-called sizing of cotton consisted in usiug fermented flour and tallow to give tenacity to the warp and to lessen friction in the weaving process. Thereafter it came to be seen that the brownish colour given to cotton
cloths by siza made from inferior kinds of flour could be reduced by adding a little china clay to the size ; while this material so far reduced the glatinous quality of the flour that the sized warps would weave easily with less tallow in the size. With the increased price of tallow in tho Crimean War, china clay came to be still further sabstituted; the practice grew more and more general till the cotton famine of 1862 brought into use the poorer shortthan the better sorts. Another practice was introduced by the lack of cotton. "Weight for lungth" being the chief teat of the goodness of yard-wide cloth, a fictitions weight was given to cloths containing less cotton, to make it appear that they contained more; "heavy sizing" became the castom and for this parpose a size, composed mainly.of four chloride of magnesinm, sulphate and chloride of zinc was resorted to. In weaving warps of inferior cotton, maighted with china clay and foor mixed with deliquescent salts, the weaving sheds mast be kept damp, to prevent the brittle compound of clay, flour, and cotton from breaking, and increasing the weight of the cloth by the retained moistare. A it 43° Fabr., with an excess of moisture and a careful avoidance of any draught that could dry the tender warp, were the conditions of work in the weaving-sheds, and were fonnd so aeleterious, say strance to the Privy Council. Dr. Buchanan was accordingly told off to investigate the matter, and found in thirteen sheds a haze caused by fine dast particles. The looms ware in all cases covered with opaque dust, depending as to quantity on the kiud of cloth that was being made. The clothes and
hair of the weavers were white with dust, cansing an intense irritation to the nose and in a less degree o the eyes and throat-an irritation to which the weavers get accustomed, though at the expense of
their langs. To judge of the effects of this mode of their langs. To judge of the effects of this mode of
life on the weavers, Dr. Buchanan first examined ife on the weavers, Dr. Buchanan first examined medical oping statistics, nest made personal examination of the weavers themselves. In Todmorden, for example, Dr. Buchanan found that thare was a considerable excess in the death-rate from lang diseases among parsoas over fifty-five years of age.
All the medical men concurred that lang diseases were greatly provaleut owing to the cotton manafacture, that the cotton worker bequeaths a consumptive habit to his progeny, and that dyspepsia some little divergence of opinion, the local praetitioners agreed that the lungs of weavers suffered more now than formerly and that they were approximating to carders in their lisbility to ohest as to theirincurring shortness of breath, emphysema,
coline as to their incurring shortuess of breath, emphysema,
bronchitis, subacute dyspepsia. snd permanent epistaxis from the conditions they lived underdiseases which disappeared or were relieved by cessation from work. "Fetwer weavers now pass
middle age without getting something the mattor middle age without getting something the mattor
with their lungs," was the remark of an intelligent over-looker to Dr. Buchanan. Experience tells that the diseases due to dnsty occupatione are not rapidly fatal. "Daring the years that their victims are only disabled no record is rept of their prekill, perhaps after having driven the worker to some other occupation, and having made his life miserable for ten or twenty years, then for the first time they get registered." To arrest the incrense in the already exoesaive and heigbtened mortality in the cotton working commanity, important changes in the practice of sizing, or in other ways, must be introduced; and we hope the Local Government tions submitted to it by Dr. Buchanan.

ENGLAND IN RELATION TO MUSIC.

TE Daily News in an article aske: "Are the English a masical people?" and then
rs the question by the following comments. answers the question by the following comments. dinner of the Royal Academy of Music, could have no difficulty in answering the question to thei own satisfaction. We agree with Lord Dadley, the President of the Academy, that the Euglish are a musical people, whatever foreigners masy say or as a masical people, it must be understood in the sense of a people who have an ear for music, and an instinctive affection for the concord of sweet sounds rather than the will and the powar of cultivating the science and the art of music, with all the imaginative andinvetire aning which we devote to machinery and to tarnips, to birguns and iron plates, to horse and to turnips, whirge racing and stiphailug, to the pashese of he sea and the sports of the field. The native love of masic appears in all its freshness and sincerity in a thousand passages of English poetry; and the sister Muses are seldom far apart, if they do not always walk hand in hand. Musicians of the fature have no mercy for a tane; but the old masicians of the past were not ashamed of being tunefal, and of bequeathing to after geverations immortal melodies that, like the airs in Prospero's island, give delight and hurt not. No conntry is richer than our own in we inclade, not Great Britain only, but Ireland, in ballad music. Our sweet and simple minstrels have ent to the sadness and joy of the haman heart a dice which the world will not willingly let die though the minstrel's name may be often forgotten or unknown. Still, as Sir John Coleriage, himsel an enthasiastic lover of the art, had the courage to avow the other day, when he was presiding over a musical and almost professional andience in St James's Hall. there wasalways something provincial about the English school of music, if, indeed, a
school could be said to exist. The catalogne of our composers for the cathedral contains a host of names which, with very few exceptions, can scarcely be called famous, even at home, and have never been pronounced abroad. What do France, Germany, or Italy know of our Purcells and our Arnes, not to mention our Boyces, our Greens, our Blows, our Smiths, our Arnolds, and a hundred other mos respectable writers of Anthems? This provincialism is, perhaps, rather the misfortune than the fault our mastars of island before the seas were bridged by steam, in an isiand before the seas were brigged by stean,
and in ages when very few Englishmen made the Grand Tour, and our intercourse with the Continent Grand Tuar, and our intercourse with the Continent
was confined to soldiers and diplomatists. Still, even in these latter days of incessant intercommani cation, there are scarcely more than one or two names of English composers that have crossed the channel ; and the Anthem which Mr. Headlam heard at the Temple Church on Sunday last, and which he modestly declares was worthy of the beat days of English musio, was composed by perhaps the solitary Englishman whose fame has reaohed Paris, Vienua, and Berlin, if indeed it has passed beyond a select circle of professed masicians in those cities: and perhaps it is as a favourite papil of Mendelssohn that the repatation of Sir Sterndale Bennett has arrived at Leipsic, rather than on accoant of the true and serions merit of his works. Speaking broadly, neither the pablio nor oven the dilectanti of Continental Europe know of English masic or English composers as we on this side of the water kach. Why should we shrink from this confession of comparative obseurity? If England has not given birth to world-renowned masicians, it has been a fond and leloved narsing-mother to the greatest of
them. Handel, who is only just beginning to be known to the Parisians, was an Englishman by adoption, by residence, and by predilection. It is true that he was only a naturalised Anglo-Saxon, and that we have to thank the House of Hanover for his coming among us; bat it was in England that he lived and worked; it was to English institutions and English glories and English oharities that his mighty masical genius was consecrated or aeariy forty years. It was in England that and it is in our was written with his own hand, and it is in our seek his monument and tomb. No doubt it is to our dynastic connection, and to the kinship of the two racea, that we owo the lact of whir is thave the right to boast : that as Germany is the second
country of our Shakespeare, so England has been country of our Shakespeare, so England has been
the second country of her Haydn, her Handel, her Beethoven, her Mozart, and her Mendelssobn. Their works have been more played and sung in Englaud than in all the rest of Europe ; it was by Engliyh audiences that the finest of their works were first heard, and have been heard constantly and habitually, while in the "Capital of Civilisation," fifty years after the London Philharmonic Society
had possessed and performed the masterpieces of Beethoven, that stupendous genins was almost "a barbarian" to the Conservatoire; and a quarter of a century after Mendelssohn had conducted his Elij ch centary after Mendelssohn had conducted his Ety a h popular concerts ventared apon the experiment of belicved that Gluck was a Frenchman and M
beer a native of the Boulevards, and Rossini the swan, not of Pesaro, but of Passy. It is scarcely an swan, not of Pesaro, bat of Passy. It is scarcely an exaggeration to say that even now, to the Parisian public (exclusive of a few connoisseurs), the great German composers are almost as unfamiliar as the
great composers (if any such there be) of China or Japan. However insular and parochial Englishmen may be in their political ideas, in art, and especially in mnsic, they are (if Mr. Disraeli will pardon the word) essentially and admirably cosmopolitan. In some respects we are a "pecaliar people" but in hospitality to Art and Genins we are true Gentilea, of the broadest churoh. Our neighboars are usually regarded as the most sympathotic and assimilative nation of the Weatern World; but nothing like our English faculty of naturalising foreign masical genins (e faculty which is almost genias in itself) can be found out of these islande.

PRESERVING BIRDS' EGGS.

THE following hints on the best method of preparing birds' eggs for preservation are from the pen of Dr. William Wood, and are extracted from
the American Naturalist.
I wish to say a few words for the benefit of those ongaged in collecting oological specimens. Twenty years ago all eggs were blown with two holes-one at eaoi end, and until within ten years most eggs have bide. Very many of the eggs which I now receive in my exchanges are similarly prepared. At the present time no experienced collector over makes but one hole to remove the contents of the egg,
using a blowpipe in some form to accomplish this osing a blowpipe in some form to eccomplish this
object. The following rales should invariably be followed:-

1. Prepare your eggs neat and clean. There is no excuse for baving a dirty set of eggs where water, soap, and a tooth-brush can be found. Some eggs that the charactoristic markings will wash away. There are, however, but few of this class, and I believe this pecaliarity is confined to the waterbirds. You can see it in the eggs of the grebes it you will never mistake it for anything else.
2. Make but one hole, and that a small one in the middle of the egg; cover this hole, when the contents are removed, and the specimen is dry, with gold-beater okin or the paper number indicating the bird. Use an egg drill or a pointed wire of four or six sides to make the opening.
3. If the blowpipe does not readily remove the contents of the egg, inject water and shake the specimen thoroughly, then blow again, and repeat the opera
4. If the embryo is too far advanced to remove through a moderate stred hole, blow out what you can of the liquid part and fll the egg with water, wipe it dry and pat it away in a covered box in some warm plaoe, and every twenty.four or fortyeight hours shake it well and remove what you can, and then re-fill with water. Repeat this operation several times, and after a few days the contents will become aufficiently decomposed to take away.
5. After remoring the contents of any egg, cleanse the shell thoroughly. Fill it with clean water and shake vigorously, blow out the contenta and repeat the operation antil the specimen is perfeotly alean. the operation untal the specimen is perieotly alean.
This particularly desirable in white egge, as black This is particalarly desirable in white eggs, as black
spots will show through the shell after a time if the spots will show through the shell after a time if the
least particle of the egg or blood stains remains inside.
6. Save all your eggs in sets-that is, keep all the eggs each bird lays by themselves. This is the only wuy to form a correct knowledge of the eggs of any species, as a single egg, particularly of the blotched ones, frequently gives a very erroneons ilea of the general markings -a very nnsatisfactory representation of a set. For instance, in my collection are four eggs of the Buteo lineatus, found in the same nest, two of which are pare white and two blotched. It is not very uncommon to find greut variations in markings in the same apecies and in the same nest.
7. Keep a memorandum of the place and date of collecting each set of eggs.
8. Use some kind of blowpipe in preparing your egge for the cabinet. The common blowpipe, with the addition of a fine pointed tip. will answer ; jet it is a severetex on the langs and brain if you have many eggs 4 blow. I bave many a time been dizz, and almost blind from over-taxing my longs in this operation. Within a f fow years Mr. E. W. . Nlsworth,
of East Windsor Hill, Conn., has invented a blow. of East Windsor Hill, Conn, has invented a blow.
pipe which is operated by the thamb and flinger, which works very perfectly and expeditiously which works very perfecty and expeditiousiy, 1 using it for a time, and then letting it remain unnsed nntil the leather packing becomes dry, the
instroment does not work satisfactorily to those instrament does not work satisfactorily to those unsccustomed to it. Tha remedy is simple. Take off the blowpipe and work the instrument sab-
merged in a bowl of warm soapsuds, when the merged in a bowl of warm soapsuds, when the
leather packing beoomes pliable and works as well lesther packing beoomes pliable and works as well
as new. I have used the same instroment for years,
and it works to-day as well as when new, by following the above directions. The printed directions which accompany each instrament are intended to be a sufficient guide in case repairs are needed, and
the marker can be referred to for any further information required.

DYNAMIC REFRIGERATOR.

M.TOSELLI, the inventor of a well-known ice Machine, which is denominated the dyammic refrigerator. It consists of a revolving disc, D, formed of a metallic tabe bent into a complete spiral having one end open, and with the other end com manicating by a hollow shaft or axis of rotation with an external tabe, A, communiching with a worm contained in a separate vessel. C, and terminating in a discharge pipe, B, with outlet into another vessel, E , containing the ravolving disc to which a slow movement of revolation is imparted by a driving palley and belt, G, making (ray) one turn in a second of time. The disc is half immersed in cold water, and as the exterior suriace of the disc above water is continualy wet, it exposes con-
siderable evaporating surface. At the game tine a siderable evaporating surface. it the same tine a
continuous stream of water is forced throngh the hollow spiral, parting with some of its hest under the influence of the external evaporation and radia tion, which is intensifed by the addition of a ven tilator, F. The carrent, being thas lowered in temperatare, refrigerates in its turn the liquid to be cooled is the vessel, C. The lowering of tempera-

ture thus obtained varies according to the hygrometrio condition of the atmosphere ; the minimum effect obtained under the most unfavourable circumstance amounts only to a difference of five to six degrees Fahrenheit; while the maximum difference obtained in sunlight is betwoen 32 and 33 degrees Fahrenheit. The inventor considers that this machine will be of great service in many mannfacturing
processes-such as brewing, distilling, and making processes - such as browing, distilling, and making
effervescent beverages-also in hydro-therapeatic establishments, and probably also on shipboard for the evaporation and distillation of sea-water, and its conversion into a potable Aaid.

MECHANISM.

(Continued from p. 402.)
THE relation which the machinist boars to the mechapist is easily defined. Setting aside the question of structure, the meohanist deals with adapts them to his purposes. For the fitness of the deaigns for an end, they apply, when need be, to the mathematician. The mechanic takes the deductions of the machinist and the mathematician, and prodnces or machine as exactly adapted to the parpose required as the knowledge and experionce of the time enables him to do. The distinction thus drawn between the machinist and the meohanician leads to modes of expression by these respective classes $\begin{gathered}\text { which, un- }\end{gathered}$ fortunately, do not increase the respect of each for the other. For example, the mechanician aims only at a contrivance; the machinist or mechanic aims only at a commercial or manufacturing atility. A meohanician is contented with the most rude skele-
ton design; he does not care for either journals or ton design; he does not care for either journals or plummer blocks being neatly and carefally carved oak-anti-friction carves do not tronble him. On a very rude one of two whoels and a crank-these answer the parpose of the mechanioian. A mechanic woald not be worthy of the name of mechanic if he oxecuted such a piece of work; as a mechanical drawing it is perfectly ridiculous. You see by the side of it some specimens of mechanical dra wing, one a diagrammatical one, and another a most bean-
tifully-fnished draving of a locomotive. which, porhaps, appears to many to be an engraving. It, however, is done entirely by hand. There are also working drawings, suah as are taken into the work-
shop, from which the actaal machines are made. It shop, from which the actual machines are made. It
would certainly be a greatimprovement on scientific books if there were some advance in the illustra. tions they contain, which at present are often even less worthy of commendation than the rade me chanistic skeleton one alluded to.

By the Rev. AbThUn Rrgo, M.A., being the Cantor
Leotures dellivered before the society of Arts.

It is quite possiblo, and it would be even pradent, to make mechanism a strdy altogether apart from mechanics; it would not, however, ba pradeat on the present occasion to do so. Whist, therefore, associatilg mechanism writh moohanics-to which it
is not allied, and mechanism from mathematios-to which it is neesssarily allied, in this course of Cantor Lectures wo approach the subject in a species of bondage, and mast therofore ask that favourable consideration generally extended towards a com paratively strange friend by making nse of our old
friend, mechanies, for a favourable introduction and an occasional help.
With mechanios we are all familiar. We oan neither eat, drink, nor sleep; we can neithor ait, walk, nor talk, except by the exercise of those mechanical arrangements with which natare has endowed us. When, however, in the course of nature the vital energy ceases by which man is enabled to put in action the machinery of his frame, then however beantifal and perfect the mechinery may be, the object for whica it was constructed cannot be performed. At this stage (the power of the machinery having gone-the kinetical eloment having been ramovod) the mechanist takes ap the parts, and may be said to analyse the contrivances by which the vital energies oxercise their various powers. Bat the mechanic cannot operate withort a motive powe. The mechanician cares for none He deals with contrivances in ralation to motion His pecaliar provisce is to devise plans by whioh the motion he has may be changed into the motion he wants, and the reqairements he wants are singularly varied, and they fally warrant Mr. Andorson's expression of "endleas," for to them there is "practically no limitation." Farmers do not make more varied demands apon the weather than machinists do upon meohanists in relation to motion. There is no end to the variety of demands made by the public apon the mechanician. One man comes and says he has motion which he wants accelerated. Another says he has a motion which he wants retarded. A third comes and says his motion is not quite continuons, he would like it to be so; another seys he wants the motion to be intermittent. One man says he wants a circular motion when he hes got a rectilineal; another says ho wants a reotilineal when he has got a circular; another wants it variable; another says he wants it nniform ; one eags it must be alternate, going backwards and forwards ; another says he wants his motion brought to a state of rest. Another says, hore is relocity. convart it into power; and another, here is power, convert it into velocity. None of these, and the list might be wonderfally extended, are out of the province of the mechanician. For oxampio, modes is to be sharpened. There are various modes of doing it. The shelves of the Patent-ofice
have many plans for sharpeniug knives, bat we will take the reprosentative one it revolves. We have an apparatus here for which we are indebted to Messrs. Holtzapfiel. The problem before the mechanist is to convert the perpendicular wotion of the foot up and down about eighty times in a minute into a continuous motion of the stone of about $500 f$. circamferential per minate. The plan adopted here is to have a treadle for the foot, by which the up.and-down motion is transfarred to a wheel, from which there is a band to a amall palley connected with the stone, and by this confrivance we have got the up.and-down motion of the foot converted into the continuous rotary motion of all parposes, not simply for the eharpening of a
a all parposes, not simply for the eharpening of a
knife, or razor, or lancet, but, as a mechanical conknife, or razor, or lancet, bat, as a mechanical con-
trivance, it will do for a hatchet, scythe, or any other edged tool. The machine has left the mechanician's hands as a contrivance, but the mechanic takes it up, and adapts the question of its atructure to the particular nse for which it is required, using snch proportion of treadle, crank, and wheal as he pleases. The meohanist has done with it when the contrivance is prodaced, and it then becomes the property of the mechanic. If, however, the another farm been set belore the mech weight falling. and that had to be converted, or if he got such a matter as the rise and fall of the tide, and that had to be converted, or, if he had got the explosive power of gunpowder, or the intense power at a short distance of electricity, or the elastic power of a steel spring, then clearly these would be new conditions imposed apon the mechanist, and a different piece of mechanism would have You to be designed for each of those craes. You have, therefore, according to the quee-
tions put before the mechanist, variens machines tions pat before the mechenist, various machines,
bat one contrivanoe serving every purpose. In any case theontrivanoe serving every purpose. In any cian, and so arails himself of his omn knowledge of material, and so adapts the amonat of power at his disposal, and of that required to be utilised, as to make the machine.
Now it is clear that to sharpen a razor and a hatchet require from the meobauic two different machines-from the mechanician they require but one mechanistic contrivance
Having thas explained and illustrated the position which mechanism holds in relation to other brapehes
of mechanics with which it is allied, we ahould
restrict ourselves to a consideration of the divisions
and sab-diviaions under whiah it may bo usefally and sub-divisions under which it may be usefally woald be to make the subject not particularly inviting, and we mast sometimes, therefore, overstep the boundaries, and take a short walk into the not very inviting mathematical and prohibited flelds, and perhaps a longer one into the more inviting meperanps a longer one into the more inviting me-
chanical fields. In thus, to some extent, trespassing chanical fields. In thas, to some extent, trespassing
into tempting byepaths from the highway which into tempting bye-paths from the titeral meaning of the title of these leotures preacribes, the Council of the Society, and the adience, who do not despise meolanistic drawings. maust permit action to take place under a precept whelz not axisting in
For what saith the Koran in ohapter the third,
A.consideration of the claesification of mochanisma, as auggested by Profossor Willis, may form an appropriate intradaction to the next lecture.

TEE CONSTITUTION OF NATURE.-

W

 in ima think of apace as finito, for wherever componed to think of space as existing beyond that boundary. Thus, by the incessant dissolution of limits, we axrive at a more or less adequate idea of the infinity of space. But though compalled to think of epace as nobounded, there is no mental necessity to compel us to shink of it either as filled or as empty; whether it is filled or ompty That it is not entirely roid, the starry heavens Teolare, bat the question still remains, are the stars dealare, bat the question still remains, are the starsthemselves hung in vicuo? Are the vast regions which surround them, and scross which their light Which anrround them, and across which their light is propagated, absolutely empty ? century ago particles of light are incessantly shot through space." The reply of modern science is also negathe best possible resent diferent ground It has Inminiferous particles; but in support of the conclusion that the colestial spaces are occupied by matter, it is able to offor proofs almost as cogent an stmosphere ronnd the earth the existence of indeed, rose to a conception of the celestial and universal atmosphere through the stady of the terrestrial and local one. From the phenomena of sotand as displayed in the air, they ascended to the phenomens of light, as dimplayed in the
ether; which is the name given to the intersteller medium.
The notion of this modium must not be oonsidered as a rague or fanciful conception on the part of scientific men. Of ite reality most of them are as convinced as they are of the existence of the sun and moon. The luminiferous ether has definite meohanical properties. It is almost infinitely more are thowe of a solid rather than of a gas. It rosembles jelly rather than air. A body thus constituted may have its boundaries; but, although at all events how that it extends as far as the most distant visible stars. In fact it is the vehicle of their light, and withont it they could not be seen. This all-perveding substance takes ap their molecalar tremors, and conveys them with inconceivable rapidity to our organs of vision. It is the transported shiver of bodies conntless millions of miles distant which translates itself in human conscions. ness into the splendour of the firmament at night.
If the ether have a boundary, masses of ponderable matter might be conceived to exist beyond it, but they conld emit no light. Beyond the ether dark suas might burn; there, under proper conditions, combustion might be carried on ; fuel might consume anseen, and metals be heated to husated there, would continue for ever heated; a sun or planet once molten, would continue for ever molten. For, the loss of heat being simply the abstraction of molecalar motion by the ether, where this medium is absent no cooling conld occur. A this region, woald be conscious of no augmentation of temperature. The gradations of warmth depen-
dent on the laws of radiation would not exist, and dent on the laws of radiation would not exist, and ectual contact woo
Imagine paddle-wheel placed in water and caused to rotate. From it as a centre waves wonld issue in all directions, and a wader as he approached the place of disturbance would be met by stronger
and stronger waves. This gradual angmentation of the impressions made upon the wader's body is exactly annlogons to the angmentation of light When we approach a luminous source. In the one Oase, however, the coarse common nerves of the
body suffice; for the other we must have the finer optic nerve. But suppose the water withdrawn ; the optic nerve. But suppose the water withdrawn ; the far as the sense of touch is concerned, the wader

- By Profoscor Tymdalle
would be first rendered conscious of the motion of the wheel by the actual blow of the paddles. The transference of motion from the paddles to the water is mechanically gimilar to the tranference of molecular motion from the heated body to the ether ; and the propagation of waves through the liquid is mechanically similar to the propagation of ght and radiant hest
As far ss our knowledge of apace extends, we are to conceive it as the holder of the laminiferous ather, through which is interapersed, at enermous distances apart, the ponderous nuclei of the stars Associated with the star that most concerns us we have a gronp of dark planetary massee revolving at various distances round it, each again rotating on its own axis ; and finally, associated with come of these planets we hevedark bodies of minor note-the planetary companions or not is to us a matter of pure conjecture, which may or may not enter into our conception of the nniverse. But probably every thoughtful person believes, with regard to those distant suns, that there is in space something Having thus obtained gonerl ine.
Having thus obtained a general view of the pre-
sent condition of space, and of the bodies contained in it, wo may inquire whether things were so created at the beginning. Was space farnished at once, by the fat of Omnipotence, with these burning orbs? To this question the man of science. if he confine himeelf within his own limits, will give no answer, though it mnst be remarked the materials to guide him than anybody elee. He can clearly show, however, that the present state of things may be derivative. He can even assign reasons which render probable its derivative origin -that it was not originally what it now is. At al events, he can prove that out of common non-
luminous matter this whole pomp of stars might have been evolved.
The law of gravitation enunciated by Newton is, that every particle of matter in the nniverse attracts every other particle with a foree which diminishes as the square of the distance increases Thus the sun and the earth mutually pull each other ; thus the earth and tbe moon are kept in com pany; the force which holds every respective pair of masses together being the integrated force of their component parts. Under the operation of this force a stone falls to the ground and is warmed our ascor of such doubtless fall incessantly apon the sun Acted on by this force, were it stopped in its orbit to-morrow, the earth would rush towards, and finally combine, with the sun. Hest would also be developed by this collision, and Mayer, Helmholtz, and Thompson have calculated its emonnt. It would equal that produced by the combustion of being generated at the instance of collision. In the attraction of gravity, therefore, acting upon non inminous matter, we have a source of heat more powerful than could be derived from any terrestria combustion. And were the matter of the universe cast in, cold detached fragments into space, an there abandoned to the matual gravitation of its own parts, the collision of the fragments would in the end produce the fires of the stars

The action of gravity upon matter originally cold may, in fact, be the origin of all light and powers as are generated by light and heat. But we powers as are generated by is the light and what is the heat thus produced? This question has already the heat thus produced? This question has alroady been answered in a general way. Both light and
heat are modes of motion. Two planets clash and come to rest ; their motion, considered as masses, is destroyed, but it is really continued as a motion o their ultimate particles. It is this motion, taken u_{1} by the ether, and propagated through it
with a velocity of 185,000 miles a second, that comes to $n s$ as the light and heat or suns and stars. The atoms of s hot body swing with inconceivable rapidity, but this power of vibration necessarily implies the operation of ns that while the aloms themselves. If reveals they are kept asander by another, their position at any moment depending on the equilibrium of at traction and repulsion. The atoma are virtually connected by elastic springs, which oppose at the which tolerate the vibration called heat. When two bodies drawn together by the force of gravity strike each other, the intensity of the nltimate vibration, or, in other words, the amount of heat
generated is proportionsble to the vis vina generated is proportionsble to the vis vina
destroyed by the collision. The molecular motion once set up is instantly shared with the ether, and diffused by it throaghout space.

We on the earth's surface live night and day in the midst of ethereal commotion. The medium is never still, the oloud canopy above ns may be thick enongh to shat out the light of the stars, but this motion through the ether. The earth slso is term and sexis its hest pulses incessantly forth. It is and sexis its heat pulses incessantiy forth. It is
chills the earth upon a clear night; it is the return of its motion from the cloude which prevente the earth's temperature on a cloudy night from falling $s 0$ low. To the conception of spece being filled We must, therefore, ald the conception of its being in a state of incessant tremor. The sources 0 vibration are the ponderable massers of the universe Let us take a esmple of these and examine it is detail. When we look to our planet woind it to be an aggregate of solids, liquids, and gases. Whes wo look at any one of these, we generaliy find composed of still more elementary parts. We learn for example, that the water of our rivers is forme by the union, in definite proportions of two geses, oxygen and hydrogen. We know how to bring these constituents together, and to cause ther to form water: we also know how to analyse the water, and recover from it its two constituents. So likewise, as regards the solid proportions of the earth. Our chalk hills, for axample, are formed by a combination of carbon, oxyzen, and calciam These are elements the nnion of which, in definite propartions hes recalted in the formation of chelk The fints within the ohalk m lno- to be a com ponnd of orjcen and silicinm called dilies iend an pornd of oxyger and allein, called alion, and on union of ailioinm, orygen, and the well kriown light matal, alominium. By far the greater portion of the earth's crast is compornded of the somentary snbstances mentioned in these few lines.
(To be continued.)

SOEERTIFIO SOOLETIES.

SOCIETY OF ENGINEERS.

O^{s}Tuesdey week a party of Members and Resociates of the Society of Engineers paid a visitiof ingpeotion to the Royal Arsenal, Woolwich, permission for which had been accorded by Colonel Campbell, R.A., the saperintendent of the Gan Factories. The visitors numbered between sixty and seventy, of the society ; Messrs. B. Latham, F. Colyer, G. Waller, members of connell; Mr. A. Williams, honorary secretary and treasurer ; Mr. P. F. Narsey,
 \&rima They were rocoived at the Gan Factories by Coionel Campbell, Captain Mattland, and Mr. Fraser, by whom they were conducted over the rarions dopartmente of that eatablsumeat, the working details of whioh were inlly explained The first point of interest visited was the forging department, where, as also in the other shope,
Colonel Campbell had made arrangements for illusColonel Campbell had made arrangements for illus trating the processes involved in the manufacture of the Woolwich gans. In the forge the visitorn witnessed the coiling of a bar of iron 195ft. long, for a $10 i n ., 18$ ton gan. Undor a steam hammer close by was a small coil for tubing a cast-iron gun on the Palliser principle, a number of these guns being in course of conversion from mooth-bored to rifled pieces. Near at hand was a 15 ton steam hammer pounding away at a trannion coil for a 10in. gan, a massle coil being wrought at another hammer hard by. From the forge the viaitors proceeded to the rolling mill, where the chief feature was the rolling of the 5in. bars from which the coils are made. The next process illustrated was the shrinking of a breach coil on the steel tabe of a 10 in . gan, the coil being brought up to a dull red heat, and lowered on the tube, within which a stream of water was playing, and upon which the coil shrinks in cooling At this point were shown a number of 35 ton gang in various stages of advancement toward completion Ten of these 30 ton guns have already been finished whilst a number more are in progress. The turneries, the boring department, the pattern room, were successivaly visited, and in each of which the various processes, oarried on by the aid of some of the finest machinery in the world, were inspeoted with interest. Next came the shell fonndry, where were aeen Palliser projectiles in every stage of manufacture, from the moulding to the studaing and finishing. The shells are lacquered inside with a resinous composition, to prevent rast, after whioh each shell is sabjected to a hydraulic test of 100 lb per squara ings izes being made and filled. In another shop, submerged torpedoes of varions kinds were being manafactared; and these incladed por tions of the Whitehead torpedo, which, it is stated hes been made a success. The visitors were finally conducted over the laborstory, and witnessed the series of highly interesting processes connected with
the manufecture of the service cartridges the manufacture of the service cartridges. was of those in charge of the various departments, who antorded the visitors every infor mation. A number of members conciuded the day's proceedings by dining together at the Ship Hotel Greenwich, in the evening.

A NEW drawing-room car on the Vandalic ling has a asinet organ and a handsome writing-deak for the

OHEMOAL NOTES.

The Menntacture of Hydrohnoric Acid.Mr. L. P. S. Stuart remarks that every one who has prepared hydrofuoric acid knows that sulpharic acid and floor spar form an exceedingly hard, rock thise from a plationm retort. The inconvenience may be avoided by mixing with the fluor spar aboat an equal weight of gypsam and the proper quantity of sulpharic acid. After the hydroflooric acid has been expelled by heat, the mass in the retort is found to be of a pasty natura, and is easily removed by water.
Canstio Sode. - A new method of preparing canastic soda is given by M. Tersie da Motay, in Les Mondes. One equivalent of sulpharet of sodinm is mixed and fused with one equivalent each of caastic sods, hydrate of lime, and metallic iron (cast or malleable); when these sabstances are heated to redness, the sulpheret of sodium is completely oonverted into canstic soda, and salpaurst of iro formed. M. du Motey considers that the water of iron, which, becoming oxidised, hydrogen is set free, oxide of sodiam formed, and then salpharet of iron; the soda being separated from the last-named substance by lixiviation with water. In another process the sulpharet of sodium is first converted into a basic phosphate of soda, and then into canstic soda by means of canstic lime.
Scarlet Dye for Wool and silk-Jegel proposes the following method of dyeing wool and silk acarlet by the simaltaneous action of magenta acariet by the simaltaneous action of magenta and dinitromaphinol or naphttaline yellow. The less magenta is employed the better. The method is to heat a dilate aqueous solution of nsphthaline yellow
to near boiling, add so mach magenta as amounts to near boiling, add so mach magenta as amounts
to two per cent. of the naphthaline yellow, and then to two per cent. of the naphthaline yellow, and then
dye. The dye liguor must not be mixed when cold. If thia is done, all the magenta is thrown down in an amorphous floceulent atato. Il this hes taken place, the subsequent application of a boiling tomperature does not remedy the mischief, since a part only of the magenta thrs precipitated is redissolved, the rest malting together into a greenish golden mess. In this state, the liquid is quite unfit for dyeing, and even if filtared gives no good ahades.

Pupe Indigotine.-Acoording to M. Meha, carbolic acid, with the aid of heat, has the power of readily dissolving indigo blue. On cooling, the greator portion is deposited insa crystaline state. In order to provent the carbolic acid from congealing as it cools, a little aloohol may be sdded, which eanses the grester part of the colour to be deposited. Instead of alcohol, camphor may be used to the extent of one-fifteenth, or bensine. By using 500 grammes of carbolic aoid, we can obtain two grammes of pure indigo blue (indigotine) in cryatals which, under the microsoope, appear remarkably regular. Mehu employs indigo which has been previously washed, first with water, then with very dilute hydroothlorio aoid, and then repeatedly extracted with boiling aloohol.

Anthracene. - This hydrocarbon, under the name of "green grease," is sometimes sold as axle grease. It is found among the last products of the distillation of coal-tar, which consist, says Professor Phin, of a heary oil, some naphthaline, and about 20 per cent. of anthracene. In the whole, the amount of anthracene in coal-tar is only from ? to 1 per cent. In order to separate ihe oily products from the solid hydrocarbons, the soft mess is introduoed into a centrifugal machine; the residue left is heated to about $110^{\circ} \mathrm{F}$., and sabjected to the action of an hydraulic press. If the orude material is thin, it is best to employ at once a fllter pross The resalting mass, which contains abont 60 press. cent. of anthracene, is exhansted with benvole or gasoline, again subjected to the centrifugal machine, in order to separate the last portions from the light oils. There remaing a greenish-white, paraffin-like mass, of a beantiful'crystalline fracture, containing mass, of a beautiful'crystaline fracture, conteaining
95 per cent. of anthracene, from which, by gublima95 per cent. of anthracene, from which, by sublima-
tion, a perfectly pure product having a melting. tion, a perffctly pure product having a melting.
point of 420° F. can be obtained. The anthracene point of $420^{\circ} \mathrm{F}$. can be oblained. The anthracene
may be conveniently oblained pure, if by means of a blower a strong ourrent of air is directed into the retort while the anthracene is at the boiling-point.

Fovel Raillway Eignal.-It is stated that a new danger signal has jast beon put in operation on a Maseachasette railroad. The signal consiste of a globe made of rections of red, green, and white glase, apon
Which Agures from one to afteon are pleinty marked Which Agares from one to afteon are plainty marked, ench agare denoting a minate. The aignal in operated by the train, and moves beok to the zero point when the locomotive goes by, and beging to rovolvo when the lest oar passees. It then begina to move like a clock, and the figures, whioh are riaiblo through a single opining in the outalde corering of the glasi, denote the time that has elapsed since the pasagge of the train. The Agures can be roadily moen in day-time, and at night the glabs is illaminatod by a light placed iuside
the globe. In this way the engineer of 2 rear train oun the globe. In this way the engineer of a rear train onn
ascertain the time that has elapued since the package of Recertain the time
the forward truin.

LETTERS TO THE EDITOR.

(Whe do not hold ourrelves responsible for the opinion of our correspondonts. The Editor respectfully request pocsible.]
All eommunications should be eddressed to the Editor of the Evalise Mechunic, 81, Tavietoek-atroch Covent Garden, W.O
All Ohoques and Post Ophee Orders to be made payable to J. Pasgmore Fdwards.
"I would have every one write what he knows, and 88 much as he knows, but no more; and that not in this only, bat in all other subjects: For such a person may
have some particular knowiedge and experience of the ature of suck a person or sueh a fountain, that as to other things knows no more than what everybody does,
and yet to keep a clutter with this little pittance of his and yet to keep a clutter with this little pittance of his, vice from whence great inconveniences derive their originaL."-Montaigne's Escays.
** In order to facilitate reference, Correspondenta whon poaking of any Letter previously insorted, will oblige by montioning the number of the Letter, as well as the page on which it appears.

A MTCROSCOPE AS AN EYEPIECE-TELESCOPE FOR STAR-GAZING-MEMOIRS OF THE ROYAL ASTRONOMICAL BOCIETY - FINDING TEE MERIDIAN-HEAT OF MARS-AXIS OF VENUS - SUN SPOTS - AND TESTS FOR \triangle ssiN. REFRACTOR.
[4491.]-TER Arst part of the query (12274) of "Betsy Sammercity," on p. 892, involves the assump (ion that the image formed by "Foucanit epeoninm will not bear " magnification." What may be the precise signification attached to this word by "Betsy" it is not very easy to bee, since the definition of one of Browning's reffectors is sensibly perfect with a power of 70 to every inch of apertare, and, nnder favourable for my querist's idea of anbstitating a Powell and for my querist's idea of asbstitating a Powell and Lealand microscope, with an object-glass of high power, for the ordinary Hayghenian eyepiece, a that must fail. In the first place, let the original image formed in the focns of the, let the origina mage formed in the focas of the large specalum be ever so perfect, the rays from it mast pass throngh all; and here we have source namber one of indistinotneas. In the next plice, Powell's $\frac{1}{25}$ in. har an angular aperture of 160° (not a very low angle), and, what is more to our present purpose, gives a linear magnifying power with their No. 1 eyepioce of 1350, and with their No. 5 of 7500 diameters ! If "Betsy Bammercity," then will remember that the light from her typioal object the moon, degrades, not directly in proportion to the increase in magnifying powir, but as its square, she Will scee at once why the moon's image must become so exceedingly faint as hopelesaly to counteract any "posible mavantage derivable from its enlargemont Betay" must be quite familiar with the sensible power of 200 limear, and she may thence form some conception as to the excessive dimness of the image when smplified 7500 times linear. A very simpl arithmotioal calculation will ahow her that $\left(\frac{7500}{200}\right)^{9}=$ 1408.5, so that with the higher powers the light of the moon would only have $\frac{1}{1407}$ th of the brilliancy that it would possess with the lower one. After this it is almost needless to notice another source of indistinot ness, the magnitication of the atmosphere itself.

In angwer to "B." (query 12287, p. 892), I would say that, should he have deaided on the purchase of a ro flector, I would by all means recommend him to obtain one of Browning's Edacational ones in preference to hif monaller oue of the bame apertare. The "Educational possesses several edvantages: among others its inthe me crifying to the magnifying to be performed by the eyepieces; and also its mode of monnting, which is, in effect, eqnatorial, and enables the observar to follow a atar by cimply turning one handle. A 4 lin. reflector is, of course, sheoretically suparior to a 8in. achromatic both in light grasping and (conviderably) in separating power. I mast, however, toll "B." (and others) that he must not expect to get the same exquisite disc on a ixed star with any reflector that he would obtain with
a good achrematic, albeit in the former the image a good tehrematic, albeit in the former the image
would be smaller. Although having reference to a different subjeot, I may, perhaps, as well answer the second part of "B.'s" query here, and s8y that the Momoirs of the Royal Astronomical Society" are published by Messra. Williams and Norgate, 14, Henrietta-street, Covent Garden, London; and that While, doubtless, some odd volames are still procurable, I question extremely if he will be able to obtain either
Vols. I., II., or the irst part of Vel. III. separste from a set.
If "Youngster" (qnary 12300, p. 893) will turn to p. 648 of Vol. X. of the Englisi Mbchanic, be will find a description, illastrated by a diagram, of the simplest mode with which I am acquainted of obtaining
the meridian of any given place.

Whe, if it be not a rude question, told Mr. Johnson (reply 12164, p. 890) that the heat of Mars "to ordinary animals would be destruction "?
Let me assure Mr. Proctor (let. 449, 'p. 406) that by no means employed the word imagined," to which he takes excoption, in the esnse of merely fancying or inventing. All I intended to convey was that De Vico supposed from his observations that the acis of Venus was inclined $58^{\circ} 11$ ' 26 " from a perpendioular to
its orbit. Mr. Prootor will scarcely contend that he demonetrated it to be eo. Every obeerver who reade these lines knows perfootly what en excencively difinalt object Venus is, and I chould certainly regerd any alleged determination of the precice inolination of her ris as one to be received with very great anation. I must plead guilty to not havink conk hrod obb betore penning my reply on p. 880 ; bat Mr. Proctor's letter "Celential Objectn for Common Telescopen," I find ite "Celeatial Object for Common Treacoper," I ind its anthor maying in of wants explioftness, and there are strange treoes 8tyle wants expliafoess, andion in the Jesuit College, rendering the momoirs of that date leas satiafactory than those of the present Director, Beechi, aman of than those of the pres
very different morild."
Might I ventare to refer "A." (let. 4458, p. 406) to Mr. Proctor's "San " (a second edition of which has just
been pablished by Longmans and Oo.) for a litte newes sary rudimentary information?
I have much ploanure in responding to the requen of Mr. Durrad (let. 4474, p. 411) for some star teate IEE his 3 ain. object-alace ; and moald adrise him to exncibe - Aquilæ, λ Ophíachi, 73 Ophinohi, 8trawe 2508 Dis oonia, Struve 2878 Pegaci, 20 Pegasi, and 86 Aadro medm, all of which are now convaicatiy an din ζ Boïtis, and a Eqqualai.

A FeLlow of the Botal Agrmonomean boontr.

SOUND COR UNSOUND) THEORY

[4492.]-Invistive, perhuph, the proper coarso en procoeding, and beginning my notion of better cic . 883, by reterencos to tho pomestipt at the coll of it I really mast beg "The Eiarmonious Blachanth " to accept my most carnest susurance that I had mo intice him, in what I prota concerning his suggested silit Is he is wat wrow concorning his eaggesin tem of my sciontific soguirements, I will, if if aill allard him the slightest gratifleation, say that I think it very possible that my soquaintance with actronoty both observational and mathematian, as alco my znowledge of geology and optics, may a litite exoeed hie ; but, having made this moot handsome conoc don. I must ask him to be equally candid, and to abai that I am onty speating the bald literal truth when I say that, while I mow a litule of theorenioal aconchics, I am simply not worthy to hold a ennave for his to oxsmine the internal struoture of any one of those practical knowledge.
Having this I truat, once for all, set mymaif sight bo Blemater, I will may, in reply to The Harmonion Blackmith's " question, that I shonld, decidedty objeo it a corrugated soundboard at all. A soumdboara, as
 is employed to give incressed rigidity to the minearia whioh is so treated. As Tyndall
 part of the vibration commnnionted to it in the frictive not into sound bit into heat. Theory I tmatin to b wholly opposed to this form of constraction.
And, while on the subjeot of musioul instrameate, I an tomptod to advert to a pasagge in the lotter (4491, p. 882) of "Saffolk Amatour." I refor to that in nheh Be appears in doubt wh's" Tonng fidic on "The represents "a section of a box or body," or "a ceries of six open soundboards, connected by a jointed seundpoat ?" With reference to this I wonld remert that notions of the poscible efeot of the combine violin and violoncello were formed on the supppation that the sketoh in question really did reprecami for an alepation assuming it to be imbendea instrument, and that mooh instrument in only propit to consist of an open framework, arch as in chown to the engraving, I mast oertainly modity my orithal espression of opinion as to its procable to repeat with raference to its tone ohat indian en whon they ary-" This is indeed weakneen

THE BEABING REEN.

[4498.]-I AM very glad to notioe the lewer (CuB), af Old Ploughman," on p. 984, with roferonce to then Wholly need oss piooe of bratality, the beating rein it moxase which wo sometimes hoar arged tor ith ity is 2 wholly fallecions ap hir head cod dirplay himenal decent hands, can do thil by judioions ase of the reine without tortaring the animel at all. Moreover, the bearing-rein is not only craol, but it is dangerome lor, it the first place, s horse oannot nse his eyes property with his chin rigidly reined in ; and in the next ahom he make a mistake going down bill, he is already an
tighty borne ap as he oan be, in all probahility come

JULY 12, 1872. ENGLISH MECHANIC AND WORLD OF SCIENCE.-Na. 381.
down "en of a homp," and is not nuliboly to bring hin companion down with him. This last considearation may peeribly operate with some who would regard the
mare pain to which their animall may be nubjected mare pain to which their
AFrulow of the Royal Astronoxical Socisty.
[449S.]-BExse a voterinary margeon, I ean claim some knowledge of the suifering to which that noble animal the horso is sabjected by the neo of the bearing
rein. 1 have long deaired to priblinh A tonching protert rein. I have long deaired to pablinh a tonching protert
on thin subject, and shall be glad to recelive any oommunioation from tho hamane and praieoworthy "Ploughman."
Liverpool.
J. T. Imymin, M.R.C.V.B.

A. GIANT PLANETS.

E4cos.1-Tam objoctions ratied agatnat my viows on the exbljoct of Japltorig condition, and against views Which, though attribatod to me, are not mine, ceem bomed on a cmatoful avoidance of all khat I havo wriuon Hyrnb scoan " injuatioo.
"B."'0" lottor (4408, p. 400) is particalarly open to this objeetion. (O l oonrse I eannot object to his not seading what I hare written, only such reading seems - doairable proliminary befo
" IL" acems alion to have miarraca the remarka of Wobb" and De La Ros on Jupiter'a gibbosity in quad. the phase in Arago's sense. Webb anyi that he has recognied and reoorded "the approach of the ghtasa curn. ${ }^{\circ}$ This darlening is perfeotly obrions to obser. vation in Japiter's cose, and with good tolecoopes in Seturn'h. It is indioated in the frontiapiece of my "Saturn and ite Systom," the viewn in whioh (as statod in the profeceol are ahaded in acoordance with mathethe paper "L." is sapposed to bo oriticieing, in these words-"We would not insist too strongly on this inforence ${ }^{n}$ (namoly, that Japitor's inhereont laminosity forencen nemoly, only to the brightuens of the contral parts of his dinc), "becanse the darkening due to obliqne incidence is, under cortain circumstances, rery ebrioms to direot observation." The parenthesis thrown tre the webb's moaning, is applied to a mistaken view of a theory which ho maistaikenly sugposes mo to entertain. For I hare distinotly said of Jupiter, in the vary papar in
question (as wall as alsowhere), that he idoed not posseses any large dagree of inherent lastro." (This posserse, of courge, not to the lustre of his real surfaco, brat to his lustre as seen from withoat.)
 the orange belt in beced on aniviamotimat erpaination of Mr. Browning's words. Mbreover, so far as my rememaranceaxtaody, the Greesmechreporta(as worded observed, but that it has rever mea netico woup gity of the highest atanding, themenomed thet thase has been a change.
"For my own part," sadis "L." (apropos des bottes, eappananty), "I see no reacon why we ehonla not chow that plenets have atmoapheres differing from Cur fem are 50 moliniod or intensificd an to make Morexy act Vorue as habitable as Uranus and Nep-
 whatever, provtiod vo arre too ille to examine the evidene fore or aguint th. We might oxtim tor erample, that the readers of tho FisaLise Mmorswac are own part seos no rescon for not allowint; bit priotical copperionee ninow that those readert ceve yont
Mif. J. Wh. Durrad alet 4474, p. 411) will and how With my ine invinibility of the satallites in Jupiter's shadow, and how the comparative darkneas of tho satollites and Cheir shacoms in transit is adducod in ite sapport, by reading what I have writton on theee respeotive pointa.
"R. I. G.'A" lottar (4147)-full of escollent mattorwoald by more to the son's varpingular precontation of my riewh .In. .. G." baces a part of his reasoning on or four times " his poesible refiection. This is not the oace, or near it. Japiter's light is three or four timee shat whioh he wonld give if his gemeral reilioctive power beok eompthing over 2 of the light recoived, the moon comothing considerably ehort of this. Jupitar given cateod in my artiolo, Jupitar does not shine quito as brightly as is his whole globe were of snow or if hery tarzeetrial while and protity aniform in lnetre, there Forad bo no occacion to balieve in inherent laminooity at all; though there would be moundant reheon for II Whole reaconing is baved ea his actual aspootobwerred fects, not on ausamptione of any sort. More-

hro hitbarto dealh with my artial crom to opine.
objeots, soems inoomplote. He rays "this mdmits of periment, Now, there is an eatier method of testing the matter than his. Let fall sunlight bo admittod through a tobe into an othorwise dark chamber, and Within that tobe let a piece of white card bo znolined is one-twenty-beventh of what it would be if the coard wore square to those rays, and lot that card be viewned throagh a tabe by one oye. Lhet the other oye bo
diroctid through a similar tabe apon a piece of redhot iron. Under these circumatancen wo are comparing the illamination of \& white object on Juptter with the light of red-hot iron; and any of your roeders who may try the experiment (a 1 affrm that the former is many times greator than the lettor: Bat let them remember that the comparison is not with a white objoot so illaminated, bat with sa objeet rome paper aboat one-third of the light of a womber that a large part of Japitor's light-reflecting surfuoe is presamably cloud oovered, and refleots white light, and they
all soe that' I havo. not theorieod very wildy in pulting forward as a probability the suggestion that the small balance muncoonnted for is dae to Japiter's inherent luminoity. Then let them remember that 1 derive only a subsidiary argument from Japiter' aminosity- that I adduce a complote arestioned, and finally, that my theory is a vory moderato one, having nothing to do with the quention of Japither habitability of his satallites, or like points, -being, in fact, aimply this, that the movements in the Jorian atriosphere exe meninly dre to this own intense heak.

Rigrard A. Proctor

THE ANCIBNT CONSTELLAATIONS.

[4496.]-I mavs not time to disouss this subject (let. 4478, p. 411), but am glad my remark has callod forth "E. L. G.'a" very intoresting lottor. I do, howorvor, mean to say, and that with some dogree of con-
fdence, that the stars of the Argo region suggeat in the fldence, that the stars of the Argo region suggeat in thi most striking manner the agare of the poop of a ship -not of one of our modern shipa, bit rather all ourvod oman of an anoiont galley or or a hrgo and woll oue, bat bacing the molarn maps mar the resomblanco, modige the atars an they aro, and without regaraig, takeable half-ship. The principle on which the ancient comatellations seem to have boen formed is decaribed in the thtroduction to my large atar-atiac. Is the de sceription were shorter I should quote it an it standa.
The streams of stars from the water-jar of $\Delta q u$ weins are too obvious (man seen in snitable latitudes) to escope reoognition. One sach featare would sufice to ${ }^{\text {en }}$
the whole figure, bet the jar also is wall manikel.
I am surprised "R. IL, G." does not nake- any rebforonos to Aratas. Thare in much in Aratas whioh, atan in conjunction mich vie evident aigas atheth ho borrowod from amach ost on ina snoient omencillatiteme.
2. mout in besan rebibumad by that unquestioneblemathority

I hove besa robitrad oy than unquessionabio ef weiget to Bryant's "Analyain of Mythology," in the paper on Achilles' shield and its asimonomional interpresatiom, which closes my "Light Science for Leisure Hours." of fear I am not convinced, mad share a good deal ot labours.
Hydra ooincided with the Celestial Equator in old times, amd all the fish constollations except the Dolphin were originally soath et the eqpatioce only hals the merthergmoet of the pair of Eisme boing north of the
equator. Corvia, the Crow, is I think, very cloarly pictarad in the simers forming the concualiations. Our

mamed A. Proctor.
HOW THE TREBLES OF ORDINARY COTTAGE PIANOS MAY BE CHEAPLY IMPROVED, WITE SOME REMARKS ON METAL BRIDGES, STUDS, AND WREST-PLANKS.
[497.]-I oxce thought my three rather lengthy artioles on the possible improvement of good sonnd
ald pianon, together with sevaral others, printod from time to timo, containing furthor suggestions, mast have well nigh oxprosadd all I oould have to say on thic subjeot, bat it is the anhappy characteristic of my mind further exparionce. So thoughta involuntarily crop up which ocostionally appear to my, perhaps, partia judgment to be worth oommnnioating. one of the ovil
eflects of which is that I now proceed to bore my fellow readers again.
In most cottage and other apright pianos which have boem and are now being made by good manufacturers. from the omployment oxith inforior common action withoat an elfoctive oheok for the hammer, and want of power and parity in their treble soands.. How to remedy the former I have before ahownat conniderable longth, 80 I now procoed to sugged obeap meile onabing the trobith bere and teror, afanlly the beat parta ol ordinary pianofortos.
In mont of such inctraments the only method employed for determining the length of the ribrating
portion of a string is to cameno it to bear sidowayg againat a wire pin dxiven into what is improparily tormed the briago, which is a mere allet gleed on the wrest-plank, beonuse it ia choaper and more convoaiont to do this, than to rebake the wrest-plant balom, and inaline ita surface back ward above whore the string resta. For keppiog the axcing from ohattering on the surfaces on which it is sapported, it is usanlly defieoted in two direntionu-riz, downward and sidoways, the
gaid defectiona baing tachnically termod its mide and down bearinge

A vary utte comeriderntion will enable. ve to perpeive
 real bridgon-are, for proveating the atringe from altpping oil, inclined moze or less (the loes the bettier, followe that the tandenoy of the hemmar's blow muat be to drive the stringe into the wood and amay from tho pin. This, alithoagh of littio or no importanoe whem the hammer steriten the atring from ove sad \& hals to twoinches a wayirom tho pin, booomen a very grent doicot when its blow is delivered from an thon to losestarbs the quartar of an inch from the pin, for it disturbs the string's conneotion with the latter to an oxiesh of the ciont conasidersbly to deterioriato the angle formed by that portion of the string above the bridge-pin the leas. oan the hammer's blow diaturb the atring's sahesion to the pin, simply beoauso the more the atring is defiected the harder it must press against and resist momentary separation from the pin. This feot was and is very well known to all practical pianoforto-makera, and as, coteris paribus, the Armer the connection of the string with its pin or other sapport the clearer and purer will be the wounde obtained by its vibratione, wo more scientitc character than thin wire pins, againat whioh the stringi can only bear sideways, were introduoed-planofortomakers wont on unmercifully increasing the aido bear inge of thin etrings (in other worda, increacing the angle at which stringe were defiecied, too otheir Without proportionally inareaning the poor strings boing pins) until thoy were estop.
broken at the bridge-ping.
This is no imaginary statament. Well I remember that the brealing of sluing irom thic alase very oltea ocourred in inetrumente, eapocially 80 in some cottage picnos and in the graften yours ago. Probably the from thirty-ive the wire might have had something to inforiority of the wire mag muoh bettar than the old German iron-certsinly not atoel-wire it anperseded) our Englich atell masio-wise of a quarter of a centary our Engliah atool masio-wne or to that now commonly produced. As it was the bending of the wire more produced. As it wae bear, and not at all its anbjection sharply than it coald bear, and notsed it to break, the to exoesaive tonsion, which amased it is to rabetitate natural and obeapeat posibio re thiok as ordinary ley thiokar briageepins-yea, even as the stringa more armly pins, Which mast needs support the stringi chattering againat the pin below its centre, the strings chattering against the pin fle a fiat surface altar driving it into the wood, m in Fig. 1.
For bichood notes it would be a yet further improvoment, at an inconsidarable incracce of cost, to empioy bridgo-pins abont two-tealas of ea ingl entingm-Whose more properily deaignated stade for angio ahringi- Wuos top surfacesare filedin the manner ahowa by Fig. 8. Such ping or atede expport the etring notonly sidowaya, batalso of the so-oalled bridge. Sach a pin forms a true stad
 ormotal bridgo, two mings we regarded as many etuds ior a motal bridge meath and npper portions of the top sartace of the ntad or pin (Figh. 8 and 4) mant, of conarne, be alled amay before it in ariven in on whioh the plank, bat I profer to file that portion on whioh the atring reeta or beare downmade sutar drivigg, for eithos mo soronlied woodon brige can
thin or any other of theeo eteride
Considering that the wounds wo ebtain frove the ribrations of pianoforto strings mant (ambirs paribua) increace in clearness the more armily they are supported on their mrent-plank bridgen, it need not war prise us much that oven without any concider bor braothe great facilities meta wreso-pianks andy carly period, ing, they oame into use atis compenstiveil paicuted by Sohweiso, A.D. 1831, although I have a birong recol leotion that the invention is of yot carilier data. Bor horizontal grand pianos, whoso stringe aro abovele to wreat-plenke, motal wrest-phaniti are for prosarabic on those of wood, beckuse not only it motil (eay catst iron) much less linble than wood to be put, into ribration so as to affeot the tumbe of we socmink may what is yot more important, a motal wroet-plazi nam be made safficiently rigid if only one-third the stioke the of a mooden one noar whose the of the hammors to be sedinga. This allows in length above thair shmaks to any extent which will antord apeoe for atteching their foit covers ings, and the ahortor the hammer-hend bo meade the lopit can vibrate sideways on a given lengita of contre vire when it works or '..... an nally tree. and yot greabor ad". 'rom tha the wrect-plank
being thin-
the hammer
within abnr
near as t
sotions.
perpendicalarly (goe No. 853, te.) it is quite need-
leas to repeat why it condaces to the prodaction of lesp to repeat why it condaces to the prodaction of
soands which are at once more powerfal and of aner qualits.
Metal wrest-planks, however desirable for horizontal grand pianos, are hardly worth their additional cont, "hich is considerable, for npright instramenta. Whose wrest-planke of auch instraments, being bohind their atringi, may be made of any required thioknesa without being in the way of either their hammer-bhanks or bammer-centres. Coneeqnently, the latter may be as near thair strings as the noedtal strongth of the material of their batte and the aroidance
of any rist of their etringa tonohing the lattor, when vibrating, allowe. In tho high treble, Whose stringa when vibrating do not, porhaps, move one-bundrodth of an inch, the hammer-0ontros may be within two-tenthe of an inch of the strings, but probably no human ears are "long" enough-however asinine their owners may be-to dintinguich any
difference in the timbre of the counds prodacod when that distanco is increaced to eight-tenthe of an inch.
For the parpose of obtaining a aufleiently Arm upport for the stringa of apright pianot whose actions are in front of their atrings, several contri rances have incer resorme foily deacribed in the oae is he imbedad part of my article on the bracing and bellying of ottage pinnos, printed in No. 878, p. 868), which, by he way, sdivised. Besides this wire bridge, solid continnous
bridges of metal, of glass, and of stone ware or bridges of metal, of glaes, and of stone ware or
porcelain, have been employed, all of which, I porcoinin, have been omployed, an of which, I When properly bedded and firmily secared to the When properly bedded and irmily secared to the wrest-plank. Howevor applicable these contrivances they are, however-unlese thiak pins or some analogous contrivance for gaiding the strings be employed-not sonveniently applicable to pianofortes originally made rith common pinned wrest-plank bridges whose stringe sre defocted sideways. A continaons cast metal bridge might indeed be grooved or notched so as to keep the stringe in their proper positions, ad. though it would be dimeult to do this to an imbedded Nire. Eramplee of anch rotching may be ceen in the treble bracs bridges of some old square pianos, eapeoially in those made by Mesars. W. Rolfe and Sony abont iwenty yeara ago, but after all I greatly doubt if of would artord any improvement in the trebles of upright pianos which could not be obtained by the use of such stads as those represented by Figa. $8,4,5,6$, and 7 , none of which are very expenaive to construct, and all of which are far easier for an have seen.

I have made stads like those represented by Figs. 8 and 4 out of thick brass wire; those represented by Figs. 5 and 6 may be made of cast copper or brass
rods whioh are kept in afock of most mochanical tool rodis whioh are kept in atook of most mochanical tool shops in the locality of Clerkenwell. I have found it cheaper, however, to use Fig. 7, which may be cast from a wooden, or, preferably, a metal pattern. Fig. 7 resembles an ordinary grand pianoforte stud, excepting that-for apright pianow-it don't need to have holes
drilled in it. If made seven-aixteenths of an inch diameter, it may be grooved or notched for four stringa, hat as fow pianofortes have more than three, oven in their high trebles, it need not be more than fin. full diameter. Fig. 7 need not have a serew cut on its shank becanee it is intonded to be driven into the wreat plank; its head is, however, from fin. to fin. thiok, which is greatly in erceses of the thickneas of the collar of a grand pianoforte atad; of course, thie additional mase of metal allords a yet more firm support to the stringe which beardownwards onit, and enables them
to resiat the blow of the hammer far better. Perconally, to resiat the blow of the hammer far better. Pertonally, I migeh prefor such stads as those represented by but the lattor might be easier for amatenre to congtraot and appls, becarace the only thing necesaary woald be to extrinet the old bridge-ping, bore out their holes, and drive in either Figs. 2 or 4, anpposing it be not intonded to alter the scale, which amaterare who are not acoustomed to marking of might and to be a difinculty to them. Bapposing the amatour to poscess mumdinnt ability to make a good pattern of the cantinge for neo. If tue osetinge, monlded (or at lenet poured) with their thoes downards (which they ought to be, for obtaining a perfect and solid face for the stringe to bear 0n), the notches which conture the ctrings might be cati in ready to receive them, and but very little trimming or dreasing of the castings would be needial. Were such studs to come into general use and I don't think anything much betfor will soon be contrived-I beliove they could be manufactared and cald with prodt for dighteenpence per dozen.
Atter what I have written on soalew-1,e., the lengthe, co, of pianoforte atringo-in Nou, 872, 876, snd hardly asy that most existing cottage pianos monld be greatly improved by the enbatitution of longer, if not thicker, stringe in the treble. To effect this with sach bridge-pins as thoee reprecented by Figu 1 and 2, it is needfal to remove the wooden bridge, and, after plagging the bridge-pin holes with cacily done in the workithop, wonld, I foar, be difionit job for an amatour to do eatiafactorily, nuless he vere an expert worker in wood, and well provided with toole. It is one of the adrantages of uaing thicker pins withont altering the soale that any person of ordinary ability ean oxtretot the original bridge-pins, enlarge thoir
holea, and drive in inew ones. Should, however, it be detormined to lengthen the scale, without which no great improvement can be hoped for, I can't conceive any method of doing this which is more within amatear ability than taking off the old wooden bridge -or rather so muoh of its length as aupports the strings of those notes whose length it is determined to increaso-marking the places of, and boring the holes for, atads like those represented by Figs. 8 and 4 -or yet better, such an those representod by Figs. 5, 6, and -and driving them into the wredt-plank. Boing very " onpractios,", I proceed to describe how I do it, snd perhaps some of my practical (2) readers will be kind
enough to describe better methods of efleoting it if enough to
Having removed the old bridge or such portion thereof as may bo needfal, coraped, and fine glasspapered. the surface of the wrest-plank, I merk thereon the positions of the holes for the studs. As
marking off correotly don't invariably compel correct boring, I take a bradawl about one-tenth of an inch diameter, and having previously ground its ond into a conical point about lin. long, I "prick" the plank to the depth of about fin. Aftar pricking all the holes I proceed to bore them with a small common contro-bit, whion mazes a hole aboat one-
twentioth of an inch less diameter than the stad to be
atads shall have firm solid beddinge, whioh is of great importance if tho head of the stad bo made as thin as it asnally is for grand pianofortes, bat less so if
it be from in. to fin. thick, for then ite great mees it be frome sin. to tin. thick, for then ite gres
affords the atrings a sufficiently solid support.
ariords the atrings a anfliciently solid support.
As it is desirable, if only for the loote of the thing, that the holes which receive the atuds shall be upriget. I may as well describe a simple method by whioh I applied the automatic gaide principle-so almost nuivoraally now carried out in mechanioal oparations-for insuring the verticality of those holes.
A hole abont three-ilxteenths of an inch in diameter was bored in a piece of hard wood about En_{a} thick. A wire which fitted the hole, and had previonsly been carefully straightened, was intro-
duced and tried in three directions by the square, daced and tried in three directions by the square, a alip of wood boing planed exeotly to the thictness required to thll the spece between the blede of the square and the wire at the place of greatest departare. The wire was thea turned hall round in the hole, and the square applied in the same three disections as before. Tho deviations boing almost exactly alike, proved the wire to be very nearly straight, for they did not differ the twentieth part of an inch in bin, an amount whioh could not eange any cenaible deviation from verticality in a hole only lin. deep. The wood was planed until its surfece what at a right angle to the wire. and then ganged to unjform thickness. Of courne. the hole wer then perpendicular (insteed of " glantendioular") to both its surfaces; and to insure that the holes in the wreatplank ehoald not be " slantendicular," I fut the point of the same spoon-bit with which the hale in this wooden guide-block was bored, through it; and into the "pricked" hole in the wrest-plank. The grideblock was at firat olamped urmily down on the mrentplank, and it gaided the opoon-bit so perfcotly thet all the etad-holes bored in it ware upright, bot after some trials I found the use of the screv-ciamp quite unneoensary ; for When this gride-block wh hold down Armly by as asit rotant, and the spoon steed ial by a bow, init acted equally dacing a bore which pro quite an upright oharacter, indeed, "the correct thing; thus much time was eaved It necessarily follow that if the sapports of the stringe be at a greator dimdistance above the hammers' heads, the latter must be rained-at leaet in the treblo-to emable them to etrike the strings near enough to their bridgee (studeare but ahort bridgea) to produce clear mounds of pleading quality. Althongh it is often belter not to raice the hammers in the neighbourhood of middle C, and even several notee sbove it (provided the nem longer stringa be also eone aiderably thioker than the original ones), this neeme to be a sine qua now in the treble. I think the cheapet way of doing it is to cast ofl the old hammers, boce ort both them and thais batte-I bored somowhat
inserted, sfterwards finishing each hole to itt correct sise with a apoon bit. A emall brace is preforable to a large one for this kind of work. For such stads as those shown by Fig. 7, a pin bit-litarally a pin drill properly formed for cntting wood-whoee pin, pin aril properiy formed for cutting wood-whoee pia, size by the spoon bit-is employed to enlarge its upper part to tit the thickest portion of the stad. Of conrse part to at collar is nged to provent the recenses which recaire the heads or the enlarged portions of the stads being bored to anequal depths, and, before driving in the studs, don't forget to varnish the newly-soraped surface of the wrest-plank. It is also pradent to anoint esch ated with asemi-fuid cement composed of whito lead ground in oil, whiting, and a little oil gold size, which in a few deys becomes much harder than the beech or other wood employed for wreat-planks, just as the steam boilor maker's "Bearmantique" which ho emploss to stop leake, beoomes, a he aaid "stronger than any iron, sir," which, by the way, I take the liberty of doubting. Now, my " Beaumantique" saves a good deal of mere dotail work, such as facing the shonlders and tarning the sides of tho heads of the atuds to gange in the lathe, for oven if the atud's head be stribe too emell to till the recoss, my "Beanmantique" not onts fils in the trialing empty speoes betreen the heads of the stads and the oull of the recesses, but aleo inanres thet the shoulders of the
thicker shanks may be inserted, all the better-and to subatitute new shanks of anffient length to raice the hammer-headi high onongh to oause them to atrito at the (supposed) proper dintance bolow the bridee or stind. This altaration in very easily efleoted in the workhhop in whioh drilling-lathes and other proper tools aboand, but is hardly a suitable job for the amatorr, who soldom posesses them in abrindance, and as it could be done for a meroly triaing cont by ans small work maker, I should not recommend ametear to attempt it themselres.
While about it I may remark that it would coldiom be required to alter the lengthe of more than about three dozen hammers. As the production of conads of on the quality of haer quality dopend so rery grawiy rato, eron in what are tarmed good instraments ; ino that in most instances this job wald te done to piano which hed been, more or less, used and rorn. I would saggent that instead of naing the old treble hammers, which ordinarlly beoome mnoh more rors by a fow rears' nee than those in the tonor and bors. it would be real coonomy to incur the triting adil: tional cost of arbetituting new hammers of the net best quality for the old onee. I ahould oertainly do this myealf, boing of opinion is is a maid better n in veatment" (in the "lige" of lite aspurancu) to be hanged for a sheop than for a lamb. Baing alvo ond of that
numerons sect who are followers of the celebrated "Josephns Grumbeltonins," in other words a-with common things in general, and especially with common pianoforte actions-very dissatisfied fellow, I "kallsapiate "I should be strongly tempted to substitute one of the actions represented by Figs. 1 and 2 on page 95 of English Mechanic. No. 368. This, again, however desirable, would hardly be work for amateurs, but may I not be allowed to ask, why not have it done, if not by yet for us, secundem artem, by a professional piano-forte-maker for a reasonable monetary consideration? assuming any snch professional can be fonnd whose pecuniary charges are "reasonable," which may be
donbtful. Of conrse, however, we must expect to pay doubtful. Of course, however, we must expect to pay much trouble to workmen.
description of thr figunes.
N.B.-All these figures are drawn abont donble the real size for facilitating the exhibiting of details, and the top surfaces are left unshaded for the same reason.
Figs. 1 and 2 represent the section of an ordinary wooden wrest-plank bridge in situ with a pin about $\frac{1}{6}$ in. diameter inserted, having a fat filed on its surface, so below its centre. N.B.-The string is shown in Fig 1 deflected sideways, in Fig. 2 deflected downwards, and as it would appear, looking at it from the bass towards the treble.

Figs. 8 and 4, a thick bridge-pin, or more correctly, a thin stud about three-eixteenths of an inch in afford sapport for the string not only sideways, like Fig. 1 and all ordinary bridge-pins do. bat also under neath, instead of employing the common wooden bridge for that purpose, which thus becomes quite unnecessary. Of course this pin is a true metal bridge or stud of small diameter, capable of supporting only one string, and a pair will be required for each bichord btring, and a pair wilk be required or each bichord and 7 -which is thick enough to sapport two, three, or even foar strings-be preferred.

Figg. 5 and 6 represent this stud sufficiently enlarged in diameter to receive and support several strings Three are shown, but either two or four might be used if the stad be seven-sixteenths of an inch diameter, and the strings near together. Practically, fonr No. 24 wires need bot occupy more than $\frac{1}{4}$ in. in width, if made to diverge on the long bridge so that they cannot clash. The foar misonous strings of No. 25 wire on
the fidale G of my experimental grand piano only occapy a space $\frac{1}{4} \mathrm{in}$. wide.

Fig. 7 differs from Fig. 6 only in having its shank reduced in diameter for three-fiftha of its length, and might be made ont of Fig. 6 by turning down that por-
tion in the lathe, but is far more cheaply formed by tion in the
fine casting.

Figs. 1, 2, 3, 4, would, of course, be made of drawn brass or copper wire, and my only purpose in designing Fig. 6 was that it may assist those who cannot get fine brass castings executed. It may be made of the cast brass or copper rods, which are commonly kept in stock at some mechanical tool shops, especially those in
which clock materials are sold. The top surfaces of which clock materials are sold. The top surfaces of
Fige. 3,5 , and 7 should be bevelled sufficiently to pre Fige. 3, 5, and 7 should be bevelled sufficiently to prevent the strings from tonching them more than abou one-twentieth of an inch above their lower edges. adjastable, which I very mach prefer, the upper bevi ought to be greater to prevent the strings' contact when
its downward deflection is increased. The sides of the its downward deflection is increased. The sides of the notches are in Fig. 5 shown quite sufficiently bevilled to prevent the strings' contact above the sarface it bears against sideways. For instraments whose strings have no side bearings on their apper bridges, of course,
there can be no need to make notches in the studs similar in form to the teeth of a 88 m . A round-bottomed groove (like the half of a drilled hole, which is about as much larger than the string as steel wire would be,
which is a single size larger than that emplosed for the string) is, in my opinion, the very best possible bed for the string to rest on.
Were it nbt that I have seen amaterrs, and workmen too, do very odd things, I should have refrained from cantioning the intended operator, that all these studs must be driven in with a punch-not by the hammer's
own face-which should bear on the flat surfaces above and below the projecting part, which is grooved or aotched to receive the strings, or those grooves or notches will certainly be disfignred.

The Harmonious Blacksmith.

STEAM-GUNS AND ANTI-NAUSEATING BOATS [4498.]-Rather more than a year ago, Mr. Henry Bessemer annonnced that he had constructed an efficient steam-gun, which imparted the required velocity to the projectile although its barrel was not incon veniently long and the pressare of its steam not in conveniently great. Mr. B. also was said to have a
vessel building in which the passengers were to be hnng on gimbals, and so perfectly insulated from the pitch ing and rolling of the ship that sea sickness would become quite a thing of the barbarous and ignorant past, probably also a basin of mercury in the cabin
might then be employed as an artificial horizon. Can any fellow-reader inform the ignorant blaeksmith i these good things are yet realised, and snffering hamanity not only saved from sea sickness, but also
from the expense of gunpowder when engaged in works of necessity and benevolence to pigeons, par-
tridges, pheasants, and peasants, the latter of whom at least, are our fellow-creatrures, even if military?
the Harmonious Blacesmith.

PLATO.

[4499.]-In letter 4431 (p. 384, No. 379), "T. H. F." asks if I can inform him "whether there is a heap of débris near the centre of the floor of the crater." May rwritten, to the fe has met with a statement, print do so because his query seems to indicate that he has been looking for it in consequence of having heard or read about it. So far as my observations extend I have never seen anything of the kind. I would also ask if be really saw, with $2 i n$. aperture, the two white spots in the hollows of the shadow shown in his sketch, which, Ithink, will satisfy "E. B. F." as it does me.
W. R. Birt.

WIRE-COVERING MACHINES.-III.
[4500.]-In conclading this my last letter on the mannfacture of oceanic telegraph cables, I think, as I is necessary. Such machines, I believe, have never been illustrated before. The diagram No. 1 shows the manufacture of the cable. I have shown only half

[4502.]-I am very sorry that owing to absence at the seaside I did not see Mr. E. T. Grays' letter (4371, p. 354) soon enough to be able to reply to it earlier. I
saw the description and engraving of the so-called "Improved Beehive," otherwise the "Myborg Bee Cabinet" (let. 4187, p. 251), and like Mr. Grays have waited to hear what anybody might have to say about it. and the result is a request for my opinion of it. Without prejudice, as the lawyers say, I am of opinion that there is not one featnre in the so-called improved beehive which is any improveroent at all, and I do not see anything in it worth imitating.
In the first place the comb frames ran parallel with the front of the hive, which is against the nataral habit of bees, or, perhaps, I ought to have said their instinct, and instinct seldom fails, and reason seems to argue that combs which are at right angles with the entrance to the hive must be easier of access then those both light and ventilation. Side-opening hives are both light and ventilation. Side-opening hives are now of the past in America, where bee culture is fore-
most and Myborg Bee Cabinets happily unknown. A most and Myborg Bee Cabinets happily unknown. A new cabinet without any bees in it, like a new theory
will work like a charm, and the frames can be handled will work like a charm, and the frames can be handled and slid about with perfect ease, and as long as there mind rum parallel with the glass windows at back, the whole of the interior of the hive may be seen, and it Whole of the interior of the Would really appear as if bees onght to be quito at home there, but when the thing is filled with combs the matter is very different. By the bye, the expositioner of this wonderful hive does not say how he makes the bees build perfectly straight in the frames, nor how he gets the frames out if the beea propolise or build crosslike, and sometimes bees leel crosswise and baild just We that. That's a bright notion putting a swarm into bottom, and expecting the bees to carry their ideas of bottom, and expecting the bees to carry their ideas of co-operacion form that, as Paddy extent as to form separate gangs, so that, as Paddy says, "they can with hay? Chef wonld be better bat dead air is the with hay ? Chaff would be better, bat dead air is the
best non-conductor of all if it is dry, and the Myborg best non-conductor of all
Bee Cabinet is rather dry

The extraordinary "advantages of this hive" are "always being able to see all going on inside" (got transparent combs as well as windows, I suppose); "able to take any frame ont in a few minutes; exactly, No. 1-i.e., that next front can be taken out after taking out all the others "in a fow minates," if the bees were not crosswise when they builded! "The bees also are not annoyed by the roof of their dwelling being taken off every time one wishes to examine or see to their welfare." Well, perhaps not; perhaps they rather prefer that barglary should be committed by the back way-i.e., by pulling down the back wall of the house, and turning out all the
inmates with their furniture and effects, to enable inmates with their furniture and effects, to en
their self-styled master to get at their front door.

Mr. Grays wants to know how a swarm is to be introduced when the cabinet is completed? I do not know. but I once heard of a cabinet-maser who made a mouse-trap and could not set it. The next question implies that it would be better to insure "dead air space" all round the hive as well as at back and bottom, and this I cordially agree to without hay or chaff. Question No. 8 refers to a former letter of mine. in which also is quoted an opinion of Mr. Langgtroth as to tall hives being very good things when laid down. In that letter I asserted that the Woodbury hive is too small, and I adbere to the statement, althongh to novices in bee matters (do not mean such novices as Mr. Grays) I generally recommend it as good for experimentalising, but for an expert it is hopelessly and ridiculously small, and totally onfit for bee calture for reasons given in the said letter, page 533, Vol. XIV., No. 350 . If the compartment formed by Nos. 2 and 3 of the cabinet was simply laid on its back, it would be what Mr. Langstroth calls "a tall hive laid down," and it is carious to observe how nearly that approaches the hive which I have used for years, and have always found the best for all practical purposea (see letter). The Myborg would be, if laid down about $18 \frac{1}{2} \mathrm{in}$. from front to rear, and 12 in . high, oontaining six frames, whereas the hive I have used and found so good is 17 in . from front to rear, 1lin. high and contains eight frames; bat that which I now recommend is described in p. 533 as aforesaid, sabject to slight deviations.
I may say in passing that I shall shortly submit a photograph of this bive in several "forms" to our Editor, with such a description as a wayfarer need not err in, so that those who run may read, and those who read may make their own hives.

Question No. 4, which Mr. Grays thinks of most importance, refers to wasto ol eras "Can this in any way be obriated?" Yes ! lay the tall hive down.
"Novice," one of the most acnte American bee keepers, writing in the American Bee Journal, says, in the Jnne namber of that invalnable periodical "Well, Mr. Editor, we did examine carefally the thirty tall hives, and then an equal number of the flat ones, and the result was only much more marked [the italics are not mine] than we had sapposed, from observations for the past three or four years. There seems to be a dislike to enlarging the brood circle downward, which they must do, as the brood is invariably in spring near the top bars. In the Langstroth (i.e., the flat hive), the broad circle enlarges horizontally, and the result was to instantly transfer all the combs to the standard Langstroth frames. We have now got it all done
neatly, and draw a long breath of reliel when we
realise that we shall no more be bothered with closeAtting tops and side openors" That Mr. Editorethe opinion of one of the foremost practical bee masters in Amerion, although, like Mr. Grays, he calls Amealf a " Novice," and there are fer people who can
cpeat from larger experioneo. C. N. Absott.

NEWSPAPKR SCIENCE.

[4508.]-In spite of the rabs which certain of our yopular nowspepars contizually receive, they will
persiat in airing their meionce. Not long ago the persiat in airing their acience. Not long ago the - Very unfivourable tostimonial to the intellectual eclibre of ita readors, displayed its ignoranoe by asking, In a manner which would be orlennive if it were not
idiotic, "What is a Joule ? a haman being, and not a regetable-a weapon of aifence, or comething to drink, or a Phantom?" From
a paper in the Nautical Magazine "wo gather that the A paper in the Naztical Magazine "we gather that the
transformations of energy are in their natare similar to the operations of oommerce ; but with this difference, that in thermodynamice the relative values never vary.
This, it seeme, io the oniversal theorem of a Jonle; This, it soema, io the oniversal theorem of a Joule; and a red.hot polker must alwaya bear the same rela.
tion to aixpence as the contents of a tea-kettle at boiltng point bear to a Aro-ponnd note. now dispenastion the novereign,

Under the lorms of energy can be referred,' is to be an (sic) unit of heat. On the obverse is stamped 'Jonle's equivapont, and on the other side ir inseribed 778 foot. raise the temperature of one pound of water one degree, and the equiralent for this ooin to 772 foot-pounds o work-that is, the work required to be expended to raice one pound weight 772 feet. © © Bat what is
the now 'Joule's equiralent' to be made of? eobwebe, leather, or fresh butter? -and who wants to raise a pound weight 7712 ft . ? As a problem of propor Hon, the theory is, of course, philosophical enough ant it monla be just as easy to in a nnit of cold as we Joale anit of heast ; and, undor any circamstances, until Jonle comes into the open and tells as who he is, what ho means, and when his equivalonts are to be pat into odrculation, society, wo fear, will decline to reoognise a arereign as a Joule, or thirty shillings as a Joule and
a halr." hall.
It it ponible that 200,000 Englishmen daily digest cuch nttor inanity as this ? More recently, however,
the same paper delivered a homily on the danger of eating pild plants, and as usual fell into error Thich wonld be ladicrons if they were not dangerons: The occasion of this "leotare on Fleet-street Botany:, Thas the deak of swo lads near Chester, poinone Chronicle has applied the atick very jadiciousiy, though acarcely with sameient severity, and I quote a portion poison as having beor contomporary speaks of the common hemlock, Conium maculatum.' 'Those who have seen a celory bed in foll seed,' says the Daily prootised botanist to distinguish the deadly Conium mpuculaturn from it harmless [?] sister Ombellifer, Apium graveolens. There is a little mistake here, as The writor woald find if he fadulged too froely in the 'ulator Umbellifer' in its wild state. A parallel is then drawn betwoen the case of those poor boys and that of their covertity explained by the fact, that 'hemlock, with ecaree an exception, is the most deadly plant in our Engllish Flors [?]-an opinion backed nip by
quotation from Gerarde's "Herbal."' Oar contemporary probubly menna water hemlock, though he distinctly ays Sontum maculatum, which is poisonoas no donbt but not nearly so mneh so ss the Cicuta or the Enanthe. To give further point to his remarks the leader-writer an the Telegraph goes on to toll us of ladies mistaking ccraga gardeners 'for mistaking the root of 'deadly monkhiood (aconite) for horseradish, a mistake
that has unfortanatoly too often been made, but not that hat unfortanatoly too often been made, but not,
We venture to asert, by any 'gardener.' for, contrary to our oontomporary's aseertion that it woald pazzle Gerarde himsolf to distingaiah the two roots (1)! wo renture to think that to any one at all accustomed to
look at plants no two thinge can well be more dis. dimilar than the root of aconite and the root stock of horne-radish. Certainly no gardener properly so. same strain our contemporary descants on other poisomone Britith plants, izoluding the rood hellebore, 'epring's white rone' (11) 'the sweet riscid pericarps
of the jew, and the bleok deadly white cherries of the Atropos belladonna' ((1), \&c."
The Telegraph goes on to assert that "sll Umbellicors are doedly," Which they probably are in one cath impunity for fourscore paars, yet they will orentually kill him foarsoore years, yet they will proper inquiry, "How long will it be before we recogproper that a Litale knowledge of Nature and her waye is worth all the idle lore with which pedants, learned and unlearned, have encumbered the history of the Hoptarchy and of the early Roman Kings ?" There arefores littlo "evoryday that it will not be long rudimenta, but in the mean time worla it not be ss well Chamen who but in the mean time would it not be as well to obimin a little " knowledge of natare." The Echo, oon, hae rocently been gailty of similar condnct, seizing on iragments of scientitio intolligenoe, and with a ing to turn them to use in paragraphs intended to be

Yanny, but which mast be attarly lont on its readers, cannot anderstand the laboured joke, and those who do, can only pity the ignorance of the scribbler, and regret the waste of " energy" expended in accomplish. ing-nothing.
satl Rymea.
THE INDIAN PELLETT-BOW, CROSS-BOWS-THR MODERN CATAPOLT AND AIR.GUNS.
[4504.]-I AM not quite clear regarding "Sufiolk Amatear's " design for an improved pellet-how. Query is the tabe to be moved by the string? If so, it which would otherwise be cummaniosted to the pellet and if not, how can the pellet be impelled onless the tabe be slotted throughout sach portion of its length as the string moves along, as in some toy cross-bows. If any kind of bow be proferable to elastic india rubber corda or compressed air, which seems to me very donbtfal, would not a cross-bow be best ? Truly you have more stock" to carry, but it gives "more powar to your ed fow, at least, it enables its force powerfal bow, and bend it by a lever or suitable hundred pound to hundred poanas to do so. Now, "drawing the long man if more than 801b. bo needed. Δ croas-bow may have two strings and a cup or ponal between them for which being no heathe mang the for the long bow would not require no largo 2 proportion of the tota force to more it. Croes-bow eliso throw bolts or shor lorce to move it. Croes-bome siso throw boitt or shor help thinking the arrangement of elastic indiarnbber being mnown as the modera calapult, is preierable, being mach inghler thad a cemb witha hoary slee spring, ${ }^{\text {d }}$ la arbalast, bat I Uke 2 good air-gan yot
better; however, the latter is not so convenient to accumalate the forso in, as the etretching of a namber aocumalate the zorse in, as the etre
of olmetic coeds fungly in sucoemsion.

The Fhamoriots Blacismith.

CUCUMBER CULTURE.

[4505.]-YoUr horticultaul readens wholike cacum bers may possibly obtrin a weinkle or two from the fol lowing experience of a cornenpondent of the Horticul
urist:-
I had a narrow border, nof more then 2ift. wide, on the edge of a high fence. I planted three cucumber hills in the border, and laid some bruch (fuch as is used for peas) betweon them and the fomeo. As soon as
they crept np to the brush, I pinohed ofl the onds, they crept up to the brush, I pinched ofl the onds,
whioh thickened rapidly acoand the nooter and in every direction, throwing out the most vigoroos foliage and profusion of flowers. I dhd notallow the cacumbers to grow, but watohed them, and such as I wished to
reserve for the table I piotrad as soon as they becsm reserve for the table I piotrad as soon as they became of proper size; and all the reet were gathered every day
for picklen, every day pinahing ofl the bnd at the ond or picklet, every day pinahing ofl the bud at the end productive until they wore torehed by frost Some judgment can be formed of the value of this practioe when I add that more than a barrel of piatles were made from three hills, besides allowing a mepply for the table. Whenever a leaf began to look rasty or
yellowish, it whe removed, and the cuoumbers mad lesves jellowish, it whe removed, and the cuoumbers and leaves were cat ofr whan large scissors, 30 as not to disturb or
wound the plant. There is an advantage in having wound the plant. There is an advantage in having them run ugon brush instead of trailing over the gronnd, becauee they are much injured by being
trodden on. By being kept low on the burhes they can be easily and thoroughly examined over every day which is essential, becsuse if oucumbers are overlooked and grow very large, it stops the yiold of that plant.

Fh. \bar{Y}.
SETTING OUT BUTTEERFLIES AND MOTHS.
[4506.]-I BAVB read with muoh interent the peper on entomology in recent numbers, and derived some etting butterifies recommended on p. 266 some jears ago, and found it very troublesome and unsatiafeotory. Allow me to deseribe maother method. My setting. boards are flat, made of very soft wood, a groove in the nsect to the cork so that the ainge botrm. Pin the he edges of the groove ; arrange them with eetting needie, and pleos small pieco of glase on asch ming Hold the edge of the wing with the lesting ench wing. pat the glass edgevays near the root of the aecie, and let it fall pently, taking the needle away at the same time. With a iftle practice this can be easily done, not half the time or patience being required as for cardboard setting. Another advantage is that the of the underside is obtained by reversing the butterfy when it is pinned down. No colleotion is complete unless the npper and underside of the male and female of each specimen is shown.
AJUNEA.

ALCOR

[4507.] - I Bave little doubt that this is brighter than it was twelre years ago. To-night (Jaly 5), at
$10 \mathrm{~h} . \mathrm{I}$ I atood 7 ft . from a street lamp-post, so that the $10 \mathrm{~h} . \mathrm{I}$ I atood 7 ft . from a street lamp-post, 60 that the
top of the lamp was projected 5° below Aloor, with the broad aide of the flame shining full in the eyes, and the star was seen without difionlty. This is not a proof of its greater brightness, but points rather
strongly to that view.
T. H. Bury

STREAM OARBIAGES ON OOMMON BOADS AND ON TRAMWAYS.-THEIR RELATIVE ECONOIT.
[4508.]-Ths sdventages of the substitation of irom Wheel-racks for ordicm by horses, are subjects ohich here erercised my mind for come years. I have tried to think ort these anbiect and subjoin my ideas, but fear some of my conclasion are hardly so furoursblo, so far as its exclasive applice tion to tramway-ears, as might be wished by their pro prietors. It is, however, even if unpleasant, wiear to ook at and inveetigate the unfarourable than to gnore it.
The only advantagea, so faras I hnow, of inon, or rather teel, wheel-tracks for tram way-ears, are their encrmon durability, and the saving of rather more then hal that resistance by which the motion of a carriaga it resisted on a macaiamised road kept in good ropedr. It is nothing but this diminution of resistance which onables one large carriage, drawn by only two horses, to oarry double the number of passengers an ordinar omnibus does. This is a olesr saving of half the oof of horse-power ; it also effocts a saving of half the coot of Wages, only one patr of men boing required, howeve needed for two smaller earrisges. There is alo, at believe, aconsiderable saring in the coet of maintria ing tramway carriages in repair compared with that of maintaining ordinary pablic carriages ; the former ar also, I presume, longer lived. I think I have ctated all that can truily be said in their favour.
There can be no doubt that, so long as horres an mployed, the oost 0 Working the trafic on trammay must be vory much less than it can be on any roads . can expect to have construoted of broken stones, a paring the way " is, in the case of a tramway, "protif considerable." I foar we may expeot to find the cost of its maintenance will be "pretty considerable" also at least near London, for I have observed nearly all the ordinary vehicular trafino-which, in some locellitios, is ordinary vehicular tratio-Which, in some localities, tramway pitohing by persons who contribate nething to the cost of " maintenance of way."
I cannot perceive the relative advantagea of tramways over good common roads will be anything like ∞ great as they now are, when some cheap motre porer becomes substitnted for horses. Sceam, perhapa, orsts only one-sixth is much at they do, consequently the resen will be tenpence out of every shilliag of the atter will the traction on the kramway; the common oad, be dioxcepting that the same amoanill cost foarpene on the latter wopence, wheels from 5 ft . to 6 ft . diameter, by 4 in . to 6 in . wide vould run almont as moothly on the common read il on the tramway, were it provided with thiok indierabber packing between its wheel-tires and wheels; it moald be at least as easy, I believe far eavier, to ride in than any tramway-car in nintonce; porhaps, aloo, quite a durable, for the destruotive blows to which orainary wheels are now majected wonld be abeorbed
then extremely elastic hoop-tiren of its wheols.
It seems to me the only practical question in, "Cen noh a carriage be worked oheaply enongh to compet rest adrentage of being propelled for sbont hal the cost of the former; bit propalled lor about hell the saring we are compelled to inonr great erpence this hero not only to matio the hoad great expease. W housende of pounde per mile but also to 0 aver repair for our own use (for which, when onoe well maie the road would probably endure for very meny years slso for the use of all those-their name is logion-why condescend to traval on it. Per contra, onr improral condescend to traval on it. Per contra, onr improrad
common road enlarged omnibus is not hearily weighted by thase expenses, although it would carry just as mary oy thase expenses, although it would carry jugt as mang po more for wages-one pair of honent (?) men being enough for each earriage. A further saring might b effected by constructing and working oarriaguat to ean more pascengers ; but this could hardly be dome in the case of tram way-oars, which must have short theel base, becanse their tracks are necessarily laid in ors existing roads, and therefore only admit of carres of extremely short radil for ohanging their directionby the way, the adoption of the bogie principle migy greatly diminish this evil. Longer carriages woald af being confined to one track, they conld be tarned is much less space-yes, even turned half round - rithes s turn-table, whioh, by the way, oarriage on a tex way conld not be. The engine might, indent by overied

The owners of a carriage which runs on a commo road have the great pecuniary advantage of not hari= to pay for making the rosd. Doubtless they do help pay, becanse, in common with their neighbours, th: contribate to highway rates; but ordinary carrian proprietors, or rather the proprietors of ordinesy car-riages- Whether they be of that colebrated cleas .hick indispatably demonstrates its respectability by keep-3t a gig, or of that, I fear, somowhat less reapeotable che who own "omnibii "-pay nothing additional los the Under our enlightoned commercial system, thich ir gates the making of our highways-railways and trae ways are nothing else-to private entarprise, the gr: prietors defray the cost of construoting them, and is: only obtain their profits by charging higher farea cis Wonld be required, did society make and mend ita of
ways.
THE Humsonions BuMcerentr

gPINNTNG.TOPS AND GYROSOOPES.

[4509.]-"A., Liverpool" (let. 4487, P. 418) apparently wants me to exphain, and wante \& E. H." to recokoned the third). This is a littio unreaconable. In reakened the third). " " mant bo content to tallo a fow things for granted, and amongat these are the lavis of things ior granted, and amongat these aro
motion, which are by no means axiomatio, es come motion, whioh aro

I would invite him to inquire hovo much the direotion of motion of a a wifthy travalling ball brought to the ground by gravity is actaally ehanged. He will find that said direotion of motion is, more or lona, ehangod
during the fall, eccording as the volooity is loes or daring
His aeking "E. H." to drop assertions and catch oannoa balls is amusing, bat it is not reaconing. "E. H."
is quito right on this point ; or the the whole modorn is quite right on this point; or cleo the whale modern solienoe of dynamios is wrong, and aetronomy, too, mant 80 by the board. Bat the colectial bodies persiat
in demonatrating by thoir movenontien what " A." so perciationdy questione. The moon moven (in vacuo) mach moore owiftly than the awifteat cannon bell, and serreotrial gravity is redvoed greatly at her diestance; yot she violda to the earth's attraotion as obedieatly as a pebblo dropped from a ohild'e hand. She not only
falls continually towards the earth from the line sho falle continually towards the earth from the line she is continually being changed, so that in about a week it is ohanged throagh a right angle. I have, as "A." opines "exporionoed the recintance" (not at all " ox.
treordinary," howovar) "whioh a swittly rolating- whoel treordinary"," howovar) "whioh a swiftly rolating. Whoel
ofilors when," dc., to. Bat this resistance is not wholly insuperablo. For instanoe, if it were, our steamehips holen well paddle-wheal an corew-would not answer the
RicsARD A. PBOCTOR
[4510.]-Ip I fally conear with " R. H." in rojecting what "Philo" calls the ordinary explanation of the
aplnning-top, it is not that I hare any ploasare in pull-apinning-top, it is not that I have any ploasare in pall-
ing down established ideas. I desire to servo only the ing down eatablished ideas. I dosire to sorve only the common eheory long sinco foroed iteelf on my observa.
tion. I have aleo a nolution to offer at the end of this tion. I have aleo a volution to offer at the end of this
lottor, whioh τ should like to submit to the critioiam of lotior. Whioh I shonld like to arbmit to tho critioikm of
Mr. Proctor, "Phillo," and other able correupondente Mr. Prootor, "Phillo," and other able correspondente
Who have rindly noticed my previons remarte on this Who have kindly noticed my previons remarte on this question
Fill Mr. Prootor allow me to exggent that the "almoet inanperable difmoalty" exporionoed in clearly of avoilding oontact rith the lawe of moebeniog and plate faets with mhith it cannot harmonice. Theme lorm to many rockn and ahoale whioh the mont atiliftal priotage cannot avoid. If the popalar thoory comese off frome the aseoumter with a comblance of conndnesa, it
is only by the moot doxterous cratit that that agtearanoe can be maintained.
"In the oase of a lop Aung through the atr," hemaya, co act an to change the direotion of filight." The reede matarally truplioe, then, that ts is only acoutrally thant it a measure of espace pacred orer by the projootilo in ite aight, in which its direotion is not altored by gravitation. Carrying thif idee to the apinntag-top, he may over by any particlo in a top"c body in "whinking particle will have no intime to gravitato dova idaric. In magination he may even axtend this space to the whole menoemont of the top's apinning to the ond. Here, however, the fact that a top has apun in raczo one hour and forty minutes affords a measure of apace over the ntmont latitude of imagination to nottle down apon. This, howevar, in the above sentonoe, the reader is loft to imply. I can hardly credit my senses when I Ined the noxt quotation, in which the writer broadly read the noxt quotation, in which the writor broadly
maten that "the weight of the top is insuffient to ehange the direction in an briop interval." Hero, suraly, the rossel runs headlong apon a rock. Oalcalecoos in grinary are, I beliove, groundod on this among
other Axod prinolplea, that grovitation, al other axod primodplee, that gravitation, always aotive,
muat act aimailaneoany with projectile forec. The muat sot amultaneooaly with projectile force. The
motion "eumajeotly" rapid। Mathematician! Will earoly correct the sentopoe, and writo infmidecty; nediber What if tro rifie ballot doee not tink two incher or two Chhthe of an inoh in a handred yarda, it doees not Hit at all. Is the parallologram of foroes to bo set mhought in this colitary coer, which demande that body the consequent direction of the motion of that body muat be a refultant or accommodetion of thoee orginal direotions? thoir shot drop ahort of the mark at any yie tanco if they are not mado, by dovation, to drop into an. Agein. What is the speed neogeenry in order to
maintain ithe apinning motion ? very tow degree maintain ite spinaing motion ? A rery
suiflow degree
 lop soarooly
a low incheo

Mechanical prisciples require, and common-iense requirea, that the particle shall be lower when it ha paced from the one side of the axis to the other, if
phere is nocting to sove it from so falling but want aftime. Its courec, then, based on the prinoiples of velocity and space, is not a horizontal, bat an inclined plane.
plane of deccent very circaitons and long, the ver apeed which mo prolongs it eecares proportionate rapiaity in the descont of the partiole to the grouna. "E. H." hat hit the most glaring blot in the balance theory. The idea of enpporting the centre of gravity by making it spin round the point of support is shown to have no neoemary conneetion with the solf-support of the apinning-top; zor experience proves that the top will not fall, thongh the circle in which the oentre of gravity oircalateg-nay, even the circle whioh an oat. aide partiole of the top desoribee-be wholly outride
the point of sapport, or the vartioal line which represente it.
Mr. Prootor appears to prore his case when, aceuming a momewhat leaning pocition of the axis, the doscont of a partiale an it appromoter the lower aide is Bat the thole he infert, by its gecent to tho apper. tify the force of gravitation with the proiectile force commanionted to the partiole or not? If he does not, then gravitation will acoolerate the downward motion and retard the retarn of the particlo upward. In other worde, it will pall it downwards at every point of ite circuit. If ho doos, then this sammary disposal of gravitation involvos as resalt contradicted by facts, for then would a top sptn with its axisin a horizontal position, withont any noed of a point to stand on, or a plane to support it; for it must not be allowed to plano obsport observation that the value of hic reasoning depends entrely apon the iden thet the evition of em. vitation is wholy abeorbod by amil icemifical with Tho rotary force communicated to the partiolo. If it is not, nothing is proved. Is it is, an impomitritity is proved. The eaggention I have now to offer in this: W W being two particles in a top edjoining the revalving to bo doteched from thatr rigid ommontion Fith tho body of the top, and capable of mortar in obediance to 2 scoond force soting upon then firemer fin viz., cantrifugal force. Let them be muched to ghit point by conneoting links capabyo af motion ta he poal amal the acib. Without anuariag inio tion mochani. forcen nemel tho roeolutiou and compontion ol the foroves namod, the waighto-engive $\frac{W}{W}$ will rise to an intormo-

diate position (t W') between the limits ahown by the dotted vertical and horizontal lines. These particlea or weighte will ries to a higher, or sink to a lower, level acoording we the centrifagal lorce is greater or less. It cannot remch the horizental line (a, a a) anlesa the centrifagal force be inAnite, or gravitation (in other words) nothing in compariton vith it
Centrifagal force then, I infer, hae not the power of rotaining a particle in a horisontal plaze against the action of gravitation. It has, however, the power of raising it from any lower to any highor position ap proximatoly near to the horizontal plane, though with
more and more cont of power as higher levals are more and
The same reaconing which applice to any pals of particlee applies to the whole serles of which the body of the top is composed. Now, hes these particles are all rigidly connceted, and oannot rearrange themselvos at highor lovole in the body of the top, and yot the lifting neoessarily socompanies the exercise of the contrifagal force, the affect will be, I oonolude, to lift the body of the top iteelf: juat as when I pall at a amall trig, the effort whioh deteches it, if dotac
otherwise draw the plant iteols towards mo.
This contrifugal force acting with the greateat ofleot on thone partioles nituated at the greatest diatance from the axis, the point and lower part of the top will be the leant affeoted by it. Hence, while the more bullky part of the body is moet subjeot to the lifting power, the point is moat affected by gravitation. It therofore reate on the table or other supporting sarface, and an the body in lifted higher and higher is, $t 0$ to apeak, dragged undor until the axion is vertional, alded probably as M. Paris saggects, by the chape of the point an by an inolined plane.
The non-propeneity of a top when apinning, even in a vary inolined poaition, to alip and fall even apon the most glanty marfaces, becomes a atrong conarmation that the sapport of the point by the table is not the primary sapport of the top's weight. 4 man ohod with to the difghtent degree from the vertical position.
I should acoume from the facte and phozomens obserrabio from the aotion or lat governor, yal the impossibility of raising the balle to a higher level than the horizonial plane (a a), or evon ap to that loval, amonnta to a demonatration that a rop conatraction on the eame principlos aannot by any mmont of centrifagal foree be litho oill
of its point on the table mast always be ponitive.

The test of this thoory is manifeot, bat I have not at hand the means of applying it. The top should meigh lost when spinning than when at rest, and leas when apinning rapidily than when epinning alowly. In it a nown faot that the lower end of the vertical ohatt of the govornor preaces lost
J. M. TAmoin

Sear Green Vicarage, near Beaconntild.
[4511.]-Mr. Proctor (let. 4411, p. 881) maj, bat does not show, that I misapprehend the subjeot. The question is most cortainly not at what rat ? Mr. Proctor simply oonfaces the question by aayiag I conPonaded " Δ.' A " incorrect reatoning on one anbject Tith hir totally dintinot line of reasoning on reother. Mr. Prootor must havo road my lottor vary aarelonaly "A.'"" ideas about the top Pros" ideas about the top (ideas extremaly like Mr. Prootor'o, whatever he may say), and not to thome aboat the bullet. Mr. Proctor wants reaconing rither than aesortions. I gave him quite enongh reasoning and one feature of that oace", As to anert cane, and one leature ot that oase." As to acsertiona, I admit I have zasdo in your columns a groat many an thie subject, bat the ouce quoted by Mr. Prootor is the expariment of sima of a positive fact varifable by the expariment of aimply spinning a top.
It is quite poweible to correotly and intalligibly esplain the many carious actions obtainable with a cyroceope withoat abatruse mathomation, but it cartainly canonot be done in fow words. It would ano roquire coreral explanatory diegrams. Whenevor the time arrives that the oditor thinke the sebjeet in of cufficient intareat to juctily it, I ahall be willing to grepare a serios of articles explanatory of the atbject.
Mr. Prootor has not given $m o$ the information I dosired about natation; bnt I gather that mothing nee has beon recently broaght forward on the eratjoot, and I can, therefore, refor to the old catboritica. With roveronce to the quotation from Hersohel, I would ronation is dit doen not neocediarily iollow that an exple. ciatod therovith happen to agreo with cortain obmerved data.

Glaggow, June 29.
T. \boldsymbol{E}.

A BRIEF CONTRIBUTION TO TEE EARLY HISTORY OF THE PLANOFORTE.
[4512.]-AT what date the pienoforto's prolemencer, the dulaimer, Arst had a sot of mannale edded to it, and was thereby convertod into a keyed dalemar or "forto piano," wht anger keya, wo hevo no recora. Probebly, the earliest mechaniam emplojed wal a cort of eqright arametiok mank in the Koy, wol anlio the mop or old manj's hond, afterwards yeod to lift a hinged was ar, whioh beions ill mppication for that purpom -amployed to strizo the atring direoky juas an the angent of the darichord does. Indeed, a alariohord (Whion intrument wo have the otrongemt roason to Gerve is ine more anolient than the piano, as beat in Germany and other parts of Wetiern karope) woald vere ton pianoforio asi have sappmea, ifith atring were in ribrating and by corearing the tops of its tangeate vith eome noft material to prevent tho harth olang which woald be alioited by atriking ita atringe wita an unolotbed motalio maricoe, llato the alappor of a boll. Of course, the towah or much an inatrumeat mant have beon very uncatininstory; it would recomble what wo experience whaz we play an x plano whoee hoppers do not escapo, bat blook its hammars doad againat its atrings. Inatead of holing its keys down Armly, whioh must be done when playing on the alarichord in it normal condition, we should be compalied to do whet I wat onco mach amused by ceaing a olover sabouma in a pianoforte warehonse do in the case, or rather instance, of a now unreguated piano whoto hemmers all blocked-riz., allow the key to rise a trife instantly eftor striking the stringe. If this necosenity existod, wo need not be rory much surprised to find that it was naid of the piano that it required a "ppooliar touol." I think, also, the "Peculiar People" muat have been reqaired to play on it.
I have some reason to saspeot the earlient improvomont on thie mere drumetiok atanding ap from, bat Nexd, in the koy was a modifoation of the haspaick. bat not amised topthe then), in sookets was lifted, or refther jorked up, by the lyey, ino latior boing provemtod from decomaing in hrow and seoending at beok far eanough to raice thin atrite higher than within about fin. of the etriag. $A R$, anc atring, it conit not the atrikar mantot therowith blooked, and, therefore, conld not provent its vibre Hienc. By emploging very long parc, and pleoine theeo loaded otrikers aboat Avo or air times mandant from the koy balazeo an the lattor in from the tront end of the key, a tolerably powarfal motion, whioh atriten a blow of cofinciont force to vibrato ardinary apringe, may be constreoted; bat it munt, evea for the been, be inforior to one having hinged hammers.
The earlicat pianoforto of which any authentio yeoord existis is that of Ohristofali, of Padan, L.D. 1911 . In bis aotion nearly all the beet arrangemente now known erist. The hammer mores on a contre wire, it is lifted by a trae hopper, i.e., one that ecospees from nnder the notoh or thoulder in the hammer batt it is provided with a hammer-roes, whioh act boanding. The hopper in anpportod on el
mediate betwoen the hammer and the key, allowing the latter to be taken out without distarbing the remainder of the action. This lever aleo oarrien the (anderneath) damper, and (by the deccent of its hindor arme) removes it from the strings when its front end is reised by the key to enase the hammer to atrike. My prooticar readari will 200 Chriblotalre mechanism wao caniaerably ha mance of wot of those oommonly amployed antil that comparatively late period when come of its pecaliaritios wore adopted by Bebastian The writer of the article " Piannforte," in the fourth adition of the "Encyclopmodia Brittanica," anye the caition of tho "Encyclopmdia Brittanica," anyo the Germana had atcemptod to make what he terms hoyod daleimers, which without apecifying what that wak, he staten were all constructed "on one principlo, Which required a peenilar touch of the Anger dimoulh oo Eequication, Which spoiled is for the harpaichord. by detatohing the mallet (bammer) entiroly from the roy, and giving them only a momontary conneotion." This atatement, if tree, would seom to indicate that the Germanis had conatructed pinanofortos, or, at the Hiter torms them, keyed duloimert, on the syitom above described for convortha a davichor into a plavolorto, vat the itatomont muat be takon oum grano saki. The Germans may have done thif, but thery cortainly went beyond this before Mason did, even il they did not carry improvement so far. I havo been nasbie to ascercain what hind of action was omployod in Farinolli's Tiano made at Florence, A.D. 1780-by tho way, Dr. Barney also atates Farinelli posesessed a transposing harpaichcrd, whioh, I believe, wat far from being the srat of its Hind-very probably it may have been Christofall's action, or come modifioation of it. From its early date, and the yet earlier timo of the pablication of Christofali's invention, we may infer pianos were probebly made in Italy bofore thoy were con. truoted in Germary, although it is related that Silherman made two at some early period which wero not approved by 8. Beoh. I have foand ne reoord of their date or the lind of meehaniem ho employed, but he ceems to have eonstructed several before A.n. 1747. His papil Stain doee not appear to have tarned his attention to the ptano very early, bat was moro known ana maker of harpoichords and olavichords; some of the latter he conatructed with atringe nearly doable the asaal length, and, by causing the tangents to strike them exaotly in their midales, to produce soands an octave above thote they nttored when simply placked. He aleo inventad the is.d-ats harpsichord, literally two harpsichords in one ectangalar cace, with keys at onch end for two or four performers, just like Chickering's double-grand pianoorte in the 1851 Exhibition. When, however, Johan stain did give his attention to pianos, he did so to some good parpose, for he invented the so-called Vienna aotion, which I am told in yet used in Germany, espeofally for ebenp square pianos. Stein also employed levers moved by the performer's knees-like thote aftorwards ased in the claviol by the late J. J. Hawhins, who facetioualy aaid that as they were neitber manuale nor pedale, of course they muat be "needles," rather a abarp and pointed remark-to actaste the many stops then employod in pianofortea. Bimilar levers are now mployed in harmoniams.
The Arst equare pianoforte is said to have been made by John Adem Spaeth, which I take leave to donbt, and the Arat square piano with a soundboard nearly ac large as ite cace (whoce hammers were above ite atriogo) was, it is angertod, conatructod by Hildebrand. As early as A.d. 1760, Hancock patented the organised pianoforte, or combination of organ pipes with the piano, an inntroment aftorwards construoted by 8 . frard, with a shifting keyboard for tranaponition. The des was by no means net, for as if to prove its antiquity, an organised harpaichord is now in the Loan Extribition at South Kenaiogton Museam, bearing the name of Crang, Londine, A.D. 1745 . Vorily there is little or nothing new sub sol." "What is has been, and what will be has gone before," on I will say no more.

The Harmonious Blacegyite.

LUNAR OBJECTS FOR OBSERVATION,

 AOGUST, 1872[4518.]-Avaver 7. Mare Orisiam, the east border, Fith the two promontories at the "paes $;$ " Angast 8 , Gattemberg (see Englisa Mbcravic, No. 323, Jane 2, 1871) ; Narigatori' Nook, containing crators named aftor celebratod navigatora, Magelhaens and othors (soe "Monthly Notices of the Royal Aetronomioal Society," Vol. XXIV., p. 20) ; Augast 9. Tarantian, obecistin ite intorior; Auguat 10, Posidonias and crumar ormer 12. Notices of thom have been given in as in No. 808, p. 516. August 11, Mare Seronitatis with longitade of terminator varying from 24° to 12 on the equator ; the ridges of the Mare may be stadied to advadiage ; Augast 12, Sabine, Ritter, Gurilt Arothers two small erators north-eatt of Ritter, named in oommomoration of the architects Joseph and George Gwilt; \triangle ugast 18, Archytas and the craters botween it and Egede; Augait 14, Short, Nowton, Cabeus; Augusi 18, Ramsden, the valloy and clefte in ite neighbour hood ; Angust 16, Anaximenes and Herrechel II., whiah is the Anest of a ano gronp of eratera near the north asat limb, imperfectly deeoribed by Boer and Madlor 8ee "Roporta of the Britiah Aesociation for the Ad rancement of Soience-Trapenction of Sections," pp 10-19, alno "Monthly Notices of the Royal Astronomi eal Society," Vol. XXIV., p. 20. Augant 17, Schoiner Blancanai, Graemberger; August 18, Crüger, Byrgina and Roser, a large formation between Phocylides and Begrer.
W. R. Biet.
the phenomenon of argostoly.
[4014.]-I car macure Mr. Rodwell (let. 4478, p. 410) that I am qaite contented and able to live without a theory of where the water is rone to. Professor Anuted, in the volume I quoted, gires his theory, but eonfessedly only disposing of tho water, not the calt, and not of oven the water in a way I thoaght worth eopying as mong poatible ones. In that ontegory thero is oerEainly one, proponaded, I believe, by Dr. Frankland, and which mant suggest itself to any reader of Mr. Mallet's earthquake theory opportanely brought ap in p. 404 . Ot course, if intornal strinkage is creating racaities for the exterior to "ornah down " into (which do not believe), there will be abundent room in pores to drink the see dry in time, and for the atmonphore to follow or scoompany it (whether our wisdona have by that time added the "conl-stores" to its weight or not) ; and it would booome a question of some intereat whether a cometfall occasionally might delay this Whard prospeot by bringing some fresh water or air, and whether thil be not rather to be desired than depreantod.
E. IL G.

AN IMPROVED INCUBATOR.

[4515.]-This outride caso A is made of atort wood orvotailed together, wood being less affeotod by change in the temparature of the atmosphere; B is the egg

shamber, the exgs iying apon layers of fiannei next a thin layer of eaviduat. C is the boiler of tin, haring a pipe communicating with the ogg-chamber, whioh appplies the moisture required, avoiding the une of wot bage of simduat, do., Fhich need continually changing. D is a tin plate suapended above the fannel barner F, radiating the hent, and proventing the famme lonohing the boiler. G is the gae.pipe, the barnor lot through the bottom of the oase. H H are holee to oarry off Oal air (the barner omits no smoko). I is the aportare to light and observe tho barnor; J in a glage top moint air into drops.

Turtub.

SUN SPOTS.

[4516.]-Twi whetch I rend herowith shows the appearance of our great laminary the sun at 80 min .
patit 6 p.m. on Baturday evening, Jane 29,1879 . The patt 6 p.m. on satirday erening, Jane 29, 1872. The
low power I usod with terrestrial ejopiece enabled me

to view the apots and note them on paper most satis lectorily, and with higher powers thoy wore exceedingly interesting objecta by themsolves soparatoly. My ike ahape of the darl spota, and in nearly every in tance pointing E. and N.E.

Jayge H. Whigtle.

COLOURED SUNS.

[4517.]-I AX glad to see that this neglected bat in cresting sabject is oropping out in the pages of "our" Mechanic. Mitr. Bafiham's letter, in your last iseue, hown how necessary it is for observert to adopt a more definite nomenclatare, or rather to avoid the ase of merely descriptive terms altogether, and to parane ate ad the vory practical method arst suggested by the compamiral smyth, by employing colourod disce for diaparison. I have for many years used the valamble Chromatica "olours pablished in smyth's 8ideroa to pablish a portion of the results of my obeervations.

Bedfordiensis.

mat guty mpay pabarlat

[4518.]-TEX mean distance of the eun, to matro oomers and matbonaticians, hat boer a crobject of deep interest and adontifo inquiry-in othor worde be diccovery of the sutis menn paraliax, which, alto mroh indopendent researolies and calounationg, ham the two lattor there is only a diference of onotonth of a second of an arc, which, in the diotancer, make $1,082,800$ miles of differenco. Betwoen the two former there is only a diffronence of 01 part of a second of an aro; yet, in the distanco, there in al difforencs of 102,650 milea.

The value 8.86" appears to be the true valut (resy nearly), from the following simple principlen of calenlation, which inolude the appliontion of the eree of a ircle, whose diametar is unity, the grealoat dintance of the sun, that of the mean diatanoe boing regurded oa, ho angalar diamotors oi ho sum and mien, and Ardine of the ration, one resull of whioh has berie the firding of the sun's moan parallax, the angle which the semi-dianotar of the carth makes at the mean distance of the sun, from the centre of the 2 mean distance of the
oarth, at $92,183,210$ milen.

Taking the moon's somi-diametor an given tin the 18. $10^{\prime \prime}$ to the Nautical Almanac of 1888, the greatorat 46, and tho leant 14. 4^{4} ", from which wo obtain th moon m mean anguiar diameter equal to the 80 k both in seconde of as erc the logarithm of the mean dinmetor of the carth 8.898804 , and the are equal to radins being exprested in ceconds, the logarithm 0 which equale B.8144251. The application of the fore going values is as under-rik., 8.27058585: 5814es51: 3-9983604 : 5.94219965, the fourth term or vine the found being arbtracted from radias thas, 10.0000000 $594219965=4.05780035$, the equare of whioh equalis 8.1156007, and this valuo being divided by the loantithma one, kane, 8695089 nnity $:: 8 \cdot 1156007: 8 \cdot 2505108$, the nomerical value of which equals 57 ' 7 ", the moon's mona parallax.

The logarithm of the man's angalar diameter in under-ris., $8.2881141: 5.8144251:: 8 \cdot 8983604$ thus foond and, did in the case of the moonis foarth
 the equare of which equals $8 \cdot 1408572$. O 0144684
$0 \cdot 1198785$:unity : : $2.602063: 2 \cdot 4826860$, and 24630605 anity : : $8 \cdot 1406572: 5 \cdot 6329142$, the namerical raleo of Thioh is equal to $8 \cdot 868074$, the sun's mera parilas nd, subtracting thas, $8.1408572-8 \cdot 1150007=$ 0.0850565 , and taking this valac from the lagaritha $0.1198765^{\circ}-0.0250585=0.0948200$, and 00048200 :
anity : : 2.6020680: 2.5077480, and 2.worr450 : unity $:$ 8-1408572: 5.6829142 , the numorical ralce of wrich equala 8.858074 , the sun's mean parallax es betce found, and $5 \cdot 6329142=10.0000000: 85978304$ $7 \cdot 9641168$, equal to $98,188,210$ milea. By maltiplying the logarithm of the moon's angular diameter by the logarithm of one geond of an aro, thon, $3 \cdot 27058585+$ $4 \cdot 6855749=795616075$, and logarithm 596219965 8.8988804: : 795616075: 59128815. And logarithri
0.0250565 : unity : : $2.6030630: 2.5770003$ an 2.5770065 : unity : : $5.9129215: 8.9369150$, equal to the moon's mean dinmetor $=2164 \cdot 287$ miles. And, is ilke mannor, maltiplying the angular diametor of the sun, we obtain the logarithm 79686890, and 59200714: $8 \cdot 8988604:: 7-0886890: 5-9873780$, the numorical rale of whioh equale 865,721 milea, the sun's mean diameter.

$5-9873780$ 8.8983604	$\begin{aligned} & 8.8988604 \\ & \mathbf{3 . 8 8 5 8 1 5 0} \end{aligned}$
2.399)170	0.5680454

$B=2 \cdot 8030680$
$V=$

A MORNING SUNSET.

[4519.]-Brisa vory fond of witnoesing the Far rmenon of sunrise in fummer, on the mirniag of Jam 61 foand mycolf, with that object in riem, at Cham
 780ft soath Downs, given in the ordnance sarvey mit before 4, and the sight was grand in the extreme. By sboat 4.30, on تalking roand the olump, I sam ecmit thing like a sunset in the wost. Bright rase of liek rere radiating up from a point epparenty about 5 oalow the horizon, varying in breadth and brightee enerally 80° in length. With the points merging inc the sarrounding aky, in lact, as belore atated, prepent og oxactly the appearance of a suncet, when the body of the ann hee dianppoared a fow minates. The ato was eprinkled with amall light clonds thickoning into mass towards the west ; there was slso a littie mish but the Isle of Wight wan distinotly risible, also the sails of a ship moving up Cuicheater Harbour, dister wenty miles. The rays mero visible for two hoare, when they seemed gradually to fado and inally disappoans Δ riend who was with me agrees in this dencription on equally unable to account for it. I thooght some of your scienticic readera would give me ar, -3 planation.

COLOURS OF CLOUDS.

[4520.]-" T. W." (letter 4426, p. 388) aske, "Why re the cloais at varions times of the following ooloors? Ho then ennmerates cortain tints whioh it will be merre convenient to arrange ander three heado| Intense white | Dark gray | $\begin{array}{l}\text { Ruddy brown } \\ \text { Yellow white }\end{array}$ |
| :--- | :--- | :--- |
| Blue gray | Blae brown | |

In the frat placo, those clouds which appear to the eye as most intensely white are, in reality, very very light blue; they are generally high up in the firmament, and have refiected on them some of the blue of the atmo aphere. This very light blue appears so sarpassingly white from the same canse that makey anow look so intensely white when there is a blue sky above, and onr linen so boanatifully white when the lanodress has mixed a jadiolous quantity of blue in her starch; this very light blue is perhaps the near
which we ever 800 in nature.
Yellow white alonds are those which, from their pootthon, refleot to na loss of the azare blie of the aimo. aphere, and more of the direct jellow raya of the san.
Dark gray and blue gray are only coen on the shaded sides of clonds, or on cloade in the shade of other doade intorrening between them and the sun. The bueness of the gray depends on the amonnt oo azure
rofiected on it from the shy. Brown tints in alouds are refiected on it irom the siry. Bromn tinta in alouas are
not ofton seen, but they do somotimes occar, especially not oftan seen, bat they do somotimes occur, especially in the lower surigces of clonds panning over ctice or land of a somewhat russet hae. I suppose that the
rasset hae is reflected apwards, and mixing with the gray of the shaded underside of the cloud produces a gray of the shaded noderside of the cloud prodaces a brownish-looking oloud pasaing over the sea.

These remarke may perhaps in some moasare oxplain the reacon of some of the oolonrs of the clonds in ordinary daylight; bat what shall we say of the osoeptional colours of the clouds at sunrise and gun-
set I mant confesa that hers I am at a loss. Can set 9 I mnat confess that here I am at a loas. Can
any correopondent in "our" journal explain the oanse any correppondent in "onr" joarnal oxplain the oazse far difforent primrose aalmon colour and rose-pink of oarly dawn? And what is the canse of the strange hue af eoms thander clouds-a most peculiar coloar like nothing else nnleas it be barnished oopper ? How
"T. W." can succeasfally predict certain coloared clonds on certain daya passea my conception. I am not profoundly sceptical with regard to meteorological prognostication. I hare no doabt that ero long-

Old experionce will attain
Bat "T. W.'R" colour prediction seems to be something quite now, bat there may be somothing in it. There cortaingly is some diferanoe in the colour of the clouds at
different times of the your. There is a croaminess in theoclonde'on a fine antamn day quite different from the thecclouds'on a fne antamn day quite different from the
aitvery whitoness of some of the oloads of early ativary Whitoness of some of the oloade of early
summer, and in wintor and oarly spring there are still summer, and in wintor and early apring thero are atill
farther differenoes. "T. W." eays bis objoot is not to farther difierences. provoke diacustion, but 1 alweya thoagbt that it was
understood that any ocrreapondent starting a now nab.
jeot invitod dicoaseion thereon.
Boso.

MICROSCOPE CABTINGS.

[4522.]-Pramir mo to rectify an error in my lettor (4479) on the atove subjeot. The objeotives of my microsonpe aro 1łin., lin., fin., tin., and tin. I may condenser ; the coat of the apparatus, which will include a polariaing plate, diaphragm, and mica plates,will not axceed half.a-crown.

I can indorse the statement of "J. D. H." (let. 4480) as to the difficulty in procuring castinge of microsonpes from opticiang. 1 have appliad to overy manafiatarand conld And only one who was willing to supply mo with a sot, for which he asked the very moderato sum of twenty-are shillings, at the asme time informing me
that I shoold only savo about fre shillinga by purchas. that 1 should only sare about five shiltidge by parchas
ing the fittinga, and making the instrament myealf.
I do think thero is a good opening for an enterpriaing man whe wonld sapply not only the nnanished, bat elso the finished parts of optioal instrumonts, at a
moderate chargo. Why, in the namo of common moderate chargo. Why, in the name of common senge,
ahould the thing glase oovers for alides be charged 8 s . 6 d . per onnce by the optician, when the manafeotareri price is about loa. \& faroly a proit of (any) 100 pe
Micros.

COAL AND THE ATMOSPRERE.

[4522.]-Doss "Philenthropist" (p. 385, No. 8791 really inagine that all the carbonic acid daily produced on this earth remains to poison and contami-
nate the nir, and to take up the place of free oxygen \&o., becanse, if so, he has bat a rery peor idea of not acquaintor with the fact that this poicon (if it be a poison) is what veretables live on, and that they, undor the infinence of snnlight, onnaume it as fast as
wo produce it, assimilatiog the carbon and restoring the oxygen for animala to breathe and barn?

I haro not the remotest fear of the effoots of the exhenstion of our stores of oon, for if such a cata.
strophe were mach more imminent then it really in, strophe were mach more imminent than it really in,
should wo not diecover a fresh fuel long before it took
 place (1) have an at any rate, phillantbropiste naed not torment themselves with the foar that the atore of
oxygen in oar atmosphere is going to "give oat," oxygen in oar atmonphere is going to "give out,'
whatover they may think about the coal. Siarval.

GABSENDI.

[4523.]-Mr. Narson has directed my attention to the soath-western part of the floor of Gascondi, whioh he describes as a dark pactch nader high illamination. This, and indeod the whole of the soothern portion of the foor, is interesting on socount of the peoculiar tint Which it exhibite as compared with the reat of the foor. The part to whioh Mr. Neison allades is lower than the
reat of the roat of the loor, and is separalod from it by a ridgo on which the soath-western of Sobrötor'c two araters is
situated. It is aleo lower than the edjecent surface of the Mare Humorana, from which it in separated by a low ridge atrotehing acrose the "pacs" 22 in my sketch of Gacesendi, Vol. XIV., p. 99. In Mr. Elger's sketch, Vol. XIV., p. 288, the soutinorn
part as deseribed as "darker than the floor." On part a ia describod as "darkor than the floor." On
this I remark that " coincident with the darker portion is a depresaion or hollow well seen at sunrise." Mr. Noison, under date ef Jane 29, 1872, writes as follows: The sorath-weat portion at suarieo is porhapa slightly lighter than the reat of the floor, bat we the oun ricea the tint doepent until it beoomes considerably darker
than any portion of the lanar anrlace near. This than any portion of the lanar sarleoe mear. This
apot is also notoworthy as boing free from all ridges or apot is aleo notoworthy as boing free from all ridges or
mounds, and, as far as 1 can remember, free frowis all strealaz at the sun's moridian pasage. The rest of the floor of Gresendi becomes lightor as the ann's altitade increases, and is coen oovered with strakk, and
although it is not eany to obsorve them with prealthough it is not easy to obsorve them with pre-
cision, on acoount of the perplexing and irregular forms cieion, on account of the perplexing and irregalar forms
assumed by the ridges which are of similar colonr, I assumed by the ridges which are of similar oolonr, I
think these etreaks vary slighty in viaibility. The think those streaks rary slighty in viaibility. The
tint of this spot may differ alightly in diferent lanatint of this apot may differ alightly in different lana.
tions from alterations in the moridional nolar altitado, tions from alterations in the moridional nolar altitado,
or loni-molar dealination if 1 may so torm it, but by or luni-solar deolination, if I may so torm it, but by comparing the tint with the rest of the foor or Gabsendi
and the M are Hamoram, whioh mast vary from this and the Mare Hamoram, Whioh mast Vary from this cause in exactly the same manner, thia direrenoe mast be practically oliminated, consequently I kink we may asactly that thin apor is anteotod by solar anlike a very large extont of the lanar sarface by beooming darker instomd of lightor ath tho wan' atikado increases. These remarks by Mr. Neison are highly interesting in eonnection with certain phonomena obsorved int of nolar action.

On Febraary 20, 1872, 7h. 10m. to 10h. 20 m ., the Rev. T. W. Webb specislily stadied the westorn part of the floor of Gascondi, which he aketohed. The sketch panion to that of Mr. Elgor, of March 5, 1888, that I formard a copy of it for pablioation, shoald you (Me Editor) deem it desirable. It is at a lator stage of illnmination than Mr. Elger's or Mr. Birmingham's, in No. 875, May 81, 1872, p. 277. The two projeotions band Mr. Birmingham's, which appears to bo at rather an earlier opoch of illamination than Mr. Elger's, agreoe with it in a larger extent of shadow from a portion of the western border, arlaing oithor prom hollow noar the border or from increased heigat of the warlly in coordance with the onetline sharking periecin in. accordance wr. Birmiagham's draminga. Mr. Webb's siketch shows the retreat of the rhadow from this marking. In his notes, Mr. Webb says: "The outpouring of the contents of the 'Spoon' over the fioor of the larger crater was moat evident; obvions there than in Netare." May I ait Mr Bir mingham if his feature a represente the ontpouring minghame if his featare a represente the ontpouring
mentioned by Mr. Webb? The depressed portion of the N.E. part of the floor of Gassendi is shown more or less in the three engravings ; alee the narrow opening in the 8 W . border of the "'spoon," throngh which ts may be supposed the ejocta placed. Mr. Wubb zaya geratod;" and of the three drawings, Mr. Birming. gera's, being at the earlioat opooh, brings out this fenture with the greateat distinotnese. In glancing at the remote history of Gassendi in nolenologioal time, olevatod moand forming ita S.E. Wall, more or lese in the ponition of Mr. Birmingham'a b_{i} in the narrow
pass of its S.W. botdor, and in the different aspects indicated by a different alyading in Mr. Birmlaghan's aked to tho N.W portion of Gesotion, which, while confined to the N. W. portion of Gassendi, Wat eocompaniod and thas indicating that in studying of the "Bpoon," and thus indicating that in studying the atruoture of
Gassendi wo have to take into accoont, as in other Gasiendi we have to take into acoongt, as in other parts of the monn's surfaco, as woll at on Our own it may bo, from ewoh uther by long intorvals of solenologional time? W. R. Birt.

BALSABMED OBJECT-GLASS.

[4524.]-"C. B." (let. 4866, p. 858) will not and it It anver to balaam two glaeses if the curves differ much. poacible to lot the balane herd or so hom hardly to ahow properly. Where the orres are elike I have lound it properiy. Where the oarver are alko 1 havo lound it vory usofal, and it makes a conniderable difierence to the light It is very enaily done, and should not be hardenod 100 much. Whare this is not done I have not found any eeparation take place. Oi
courne, any rough ucage may prodaoe it, bnt not fair coarse
carc.

RADIUS OF SURFACE OF OBJEOT.GLABS.
[4525.] - Mr. Casz (let. 4880, p. 855) is evidently 20 tor glasis that any suggeation for improvemont muat be reapect I have no dopproa if he porld only ta has tronble to mate it emething lite eohrometio he troabio to mate it momething like mohromatio, he would and 1 do 1 magio. 1 do not fanoy, ither, kat yir. Oldioeld is right in supposing the arown lens io wo worthlosi have been very diffealt indoed for Mr. Oah houll not to hes very Mr. Cash himsall not to have discovored thom, ms they better hastily throw aside his lens, but that he shoold botter has ions antil the has lons, but inat he shoal rected tor colour. If he is dermined to porm rectod ner pleces of ho with now pieces of glass, I should atrongly adriee him on perioct a mallor glace as a model Mor farther opern
tions. With respeot to the tools, Mr. Onat will find soft iron a very good matorial for grinding; bat of sort iron a very good mitorial for grinding; bat on
conrse tools made of this motal are more dificult to finish than thoese made of brask, and thoy are rather apt to rust. It seems a pity whon tools are properly apt to rust. It seme a pity whon thois arn proporby
formed and their radii ascertained that they should bo re-turned; it would be bottor to proserve them for farther nise, as moat probebly if Mr. Cash should ancceed with one objoet-glace he would not be contentod natil he had made another or two, and the tools already Anished might be found useful, the cerious operation of proparing new tools boing thns, after a time, aroided.

Hemet T. Viviar.
GOVERNMENT AND AMATEUR SCIENCE.-III. [4526.]-Is my trat letter I oulled attention to the anbroken serios of tho moon mado ander the anspices of the Government at the Royal Observatory, Green
 Government of a maritime and onlightened nation. In my second letter I glancod at the sources of patronage other than from the Government and addaced the sabject of binary atars at a branch of actronomy left
 the little probability of patronago being extended generally to amatoars engaged in original scientito genorally io amatoars engaged in originan scionduar
recoarch. It is vory rarely indeod that an amateur is possessed of such ample means that he himsolf can provide instraments, forms for registering, recording, and discuasing his obserrations, and then presenting his resalta to the pablio in a printed form. In moit inatances gentlomon of fortane employ assistants to work out their viewn, and it is frequently the case that an ametear in the bambler walks of life onthasiastioally devoted to the pareait of acience succoeds in obtaining an engagement with a gentleman involving datiea in hor direbarge of which be not only sationue hic cratigg or contributes to augment the general shore. Allamatour are, however, not so favourably sitaatoa. With smal
 It puruit acsitaree and that aetiotancel loan or gift of instramenta, bat more efiectaally by grants of money for come especial work. This saggests notioe of the ohanals throagh which such asoistance may be administored. For this parpose there is nothing direct from the Government. Government aid to scionoe is at present confinod to Government eatablishments for working oat definita sciontidic objecta, or to Government expeditions for observing oertain phenomens. It is true that a sum of $\operatorname{ll}, 000$ is annuelly roted It is true that as sum of $\mathrm{fl}, 000$ is annually rotod
to the Royal Society for oncouraging original in the Rogat 8ociety for onconraging it is oonseqnently the Royal society that administors this and ite other donation fands to tho aid of such objeote as may form the sabjects of application, and an amatear to bo a recipient of a por-
tion of these funds mast obtain the sapport of the tion of these funds mast obtain the sapport of the
mejority of the committeo appointed to administer majority of the committee appointed to sedminister
them. Auother ohanael through whioh aciatance is rendered is the British Assooiation Ior the Adrancement of Boience. At its annual gatherings sums varying in amount are voted by the General Committoe to sub. amount are voted by the General committoe soientife commitcees appointed to superintend such scientinc tees of the sections by which the particular branches of knowledge are cultivatod. To obthin asoistance through

astr. No donbt each application is thoroughly and well canvassed in the reapective committees before a grant aiding the object is recommended ; nevertheless,
there is bnt little probability of an application meeting there is bnt littie probability of an application meeting gentlemen of known repatation in the
of science with which it is connected.
Taking into consideration the large army of amatenri, and the very limitod resourcos for aiding desultory. While its trinmphs havo been great, perhaps,
with the exception of the Government work at Greenwith the exception of the Government work at Green-
wich, greater than any achieved by Government aid, wich, greater than any achieved by Government aid,
atill it has beon of a deanltory character, notwithatand still it has been of a desultory character, not ith oultaro. Reterning to the snbjuot of binary stars, manauremente of distance and position auglea are compar ively easy, so that there is little fear of this branch of tine soienoe falling behind, provided there is an early pablication of measures. It is here, at the outset, that we meet with want of syatem. Each observer chooses his own channel of publication, or it may be that he does not pablish his observations at all, and they are nultimately lost. Now, before work in the second department can be efficiently accomplished, from this desultory mode of procedure, mach labour mast necessarily be incurred in looking through several
pablications, as the "Monthly Notices and Memoirs of the Royal Astronomioal Sooiety," and othera, for rocords of meneares. Which might be anved for the futare by a little aystematic arrangement, aided by a
money grant for dofraying the expenses of compiling money grant for defraying the expenses of compiling and printing: the third department, that of compating the orbito or binary stars, reqnires a highor ordar on convenience of gontlomen who are willing to derote their leisure to lt. There oan be no doubt that an matherised reponitory for the reooption of double-atar measures, with a proviaion for the insae of catalogaes tation of orbita, and thas, with a mooderate grant of money, the portion of astronomy devoted to donble atars, While it remains as an amatear parsait, would that of a ayctematised branch of inquiry, a resalt Within the reaoh of amatour astronomers, provided they set themsolves energetically to the work.
W. R. Brat.

ARTIFICLAL MANURES.-STONE.COAL. [4597.]-Stons.coal is a name nsed at Bridgwater for a smokeless coal or anthracite nsed by maltsters and for olose stoves, coming from Wales throngh Cardif, "Sanl Rymea" on artícial manures. Has he any experience of the value of manare prepared on Mr. Moulo's plan 9 I have tried blood manare, bat am
doabtful as to its value. Potash, I believo, exists in large proportion in the liquid manare of the stall and Rymes's "statement of the valine of potash for the potato plant. The frat experiment with this manare decidedy that I heve not in twenty yourn forgotion the lesson. The excellent quality of the orop, the small percentage of diseased tubers and mere than average weight, at a time when the diseace produced its moat digastrous effects, were remarkable. I thought at the time that manare, by promoting moderate bat very healthy growth, gave the plant a powor of resiating the hare grown for many years has confrmed that impresaion.
Superphosphate applied last vear to my failing crop of seedling onions at once rerived the plant, and followed by a dose of house sewage, gave me an excellent and sound crop of onions on land which I am told has
never, in my predecesaor's time, produced a tolerable nevar, in my preaceensor B thme, prodnced
crop, is any crop at all, of this vogetable.
J. M. Taxloz.
seer Green Vicarage, near Beaconaifeld.

THE NEGRO.

[4528.]-In confirmation of "Sigma's" remark (let. 4468), I quote the following from Sir A. Alison's
"History of Earope," c. 47, p. 70 :-" Jewn are to bo "History of Earope," c. 47, p. 70 :-" Jown are to be coming no farther down than the Babylonish cap. aviter indicatos that they have strayed to the east from "The Recoes of the Oid Worla," by Charles M. Brace (Boaton: Scribner and Co.):-"A tribe of Jows is desoribed by Mr. Tristram (quoted by Dr. Beddoe, Ethnological Trans., 1861), living in the oanis Waregla, negroes, without the alightest trace of negro featares. negroes, without the alightest trace of negro foatures. clothen-dealer in Houndsditch. They wore dark as the without being woolly. He conemiders the oolour the olloot of alimgte."
H. J. 0 .
[4529.]-0us learned "E. L. G." has made this question more interesting than I over coold have done, bat the matter in hand-viz., the origin of the negro-
otill remaina in statu guo, unleas, indeed, by the Nephilim is meant a black-akinned people. But then Inm placed in the dilemama of supposing that there earth-men and species of baman heings on the were dewconded from Adam? Jomphas bridgen this
difficulty by stating the sons to be fallen angela. This hee agrees with the ides of heathen mythology term). If Adam wes the father of these fallen angels, who was the father of the Nephilim? I do not deny, but I rather believe, that amony Noah's posterity the Nephilim were continned, although called by other names, me Rephaim, Anikim, and tho Sons of Aaak, or of the Giants. There is no word of their being black. skinned, and, indeed, the fact that a white man conld never produce a black progony (supposing Noah's son to be their continuer) proves that they were not black. Some have questioned whether Adam was a black man, bat his name implies otherwise. However, Josephas writes that Adem's third son, Seth, and his descendants, inhabited a country by themselves, were happy, stadied astronomy, inscribing their discovery on pillars, one of which remained in the land of Syria at the time Josephas lived. This Seth or Sesostris he supposed to be a King of Egypt, and as the Egyptians were a dark, if not black, people, this seems to gire ome insight as to the origio of the negro. I buew hat Josephas is baid to make a mistake in his sappo but considering what may be more of ours than hit); general, and the opportunities he had of obtaining information from manasoripts now, alas! no more, may he not have been right? O course, if we can palm off Soth as the great father of the black raco, the question is so far settled; but how Seth become black himsell we cannot know, although the knowledge of this secret might have been destroyed among rask ask some of "our" correspondente for some proofs years in the lateat estimate) in connection with the origin of the negro. Has he been considered at all ae the maker of fint weapons or apear heada? Has a reritable negro's skall been fonnd with them, for there would be no difficalty in deciding between a negro'e craniam or a monkey's. I write this adrisedly, for might not apes havo had sufficient instinct to be able

PLaNo In Canada.-To "H. D. W." and Others. [4530.]-Weakness is far from being the only canse of pianofortes failing to sar frome I believe that defect oftener resalts from the blows delivered by
their actions (hammers) being too foroible for the weights and tensions of their strings to resiot withont becoming unduly stretched. The nataral remody for this is to sabstitute thicker and longer strings, or, what oomes to about the same thing in practice, to tane the now thicker strings sharper, and thereby practically engthen the scale.
If the instrament in the possession of "H.D. W." be a genaine Holdernesse and Holdernesse, which I rather doubt, I am very onnfident ite complaint cannot be "weakness in the back," for I never yet sam a pianoforte made by that firm-I have examined come handreds-whose back was not excessively strong in proportion to the tensile force of its strings. I possess an instrument of their make mrself whose back has not been atrengthened, the C's oi which were originally of Nos. 21, 17, and 16 wire. I had them restrang with
Nos. 25, 21, and 19 , causing what "H. D. W.'s" Nos. 25,21, and 19, causing what "H. D. W.'s"
Yankee neighbours wonld term a "pretty considerable" increase of teasion. Perhaps, however, they, and my practical friends who mannfacture pianos, may become sarprised indeed when I tell them that besides the additional strain required to bring those nnasnally heary wires ap to pitch, I have since-moro than a year
ago-raised the pitch of the instrament antil the ag-raised originally atruck by hammers moved by the A seys now sound C; in other words, it is a minor third above concert pitoh, and its etrings sonnding middle C are now 26 in. long, of No. 21 wire. Notwithstanding this very severe trial of its poor back, I can discover no
symptoms of spinal weaknesa, and tbe instrument symptoms of spinal weakness, and the instron
stands in tane admirably at its present high pitch.
Shonld "H. D. W.'s" piano really be weak in its back, there is no diffoulty in administering wbat oar respected fellow correspondent, Dr. Useher, woald torm "tonic medicine;" in other words, in making it stronger, and I, being the physician "H. D. W." ha without indulging in unolassical "pharmaceatioal Iatin."
Considering that wood is easily proourable in hin conntry, and the probability that "H. D. W." is more of chopetiok than a blackemith, 1 would anggent the present ones, probably aix or seran in number If the now bracings be made of thick material, any in. or 8 in., perhaps it will be foand needfal to groove project into them: bat, probably, it made of wood from 1 fin. to 2 in. thick, one new brace might be placed in contact with eaoh eide of overy one of the present bracinge, and leave room for the belly-bars between if thick wood be employed. In both eases the ne bracings mast be secarely attached by screws or bolts to the wrest plank, to the bent aide, and to the atring plate, the latter being drilled or bored for the recopnew bracings must be firmily abatted under the wrest plank, and on the bottom, or on the string plate (if the natrument's back be made withoat a wooden bottom, string plate, which is preferable). I think the best

to fit each brace accurately geainst the bottom of the wrest plank, and to insert a heech, or other hard wood ower ond of the brace and the atringht, between the of course the wedges mant be formed correctly to the angle to which the bottom of each brace is cat, or rather a trifle more acate, so as to insure per and thentact between the bottnm of the brace ane atringa, which part is sabjected to by far the greateat force of compression by their tension D. W.' will find some aseful information on article on the cottage pianos in my ralher lengthy article on the improvement of existing pianoforte
Another method-described in the above article-by Which the present wooden bracing may be atrengtbebed sthe application of bars of angle or T irnn 20 thoi backs in the manner practised by the late Thas. Rolfo, boat 1854. (See deacription thereof, in which it is so folly explained that I bave nothing to add.)
Buiug a " blacksmith," I have a rery natural pro-
clivity to resort to iron for bracing pianoforteg. For oottage instraments, especially those not originally designed to be braced in front of their sonndboarda, I oonsider the form thereof designed by Koblman pro ferable to any other I haveseen. "H. D. W." or ans other man "etanding in need " of edditional sapport I mean whose piano stands in need thereol, and there ore don't stand in tane-might introdace two or three ron bracinge on Kohlman's asstem if they be con tructed in the manner shown by Figs. 3, 6, and 7 If deacribed in Nos. 362 and 865 of the Exalise of eachnc, bat probably the space between the ablay is rery onlikely if it be a gennine Haldernesse--is no sufficignt to admit a steel plate, 0 , in. thick. To obtain the requisite strength, it may be made taller and thinner, say 3in. high by three-rixtcenthe of so ating ick. Nessers. Holdernesse (probably for fall strike single sonous strings rather wide apart ; consequenlly, oven in their bichord instrumentg, the space between the ancivered strings of two consecative notes seldam mach exceedn three.tenths of an inch.
Unless "H. D. W." has had considerable experience n the art and mystery of "toning." I woald not adrive him to "meddle and maddle," or rather "noedle" up the coveringa of the hammers of his piano. Strange to 日a,y, althongh not difficolt to do, this is a thing fow taners-or indeed any othor men-do satisfactorijy, and I have observed it is iar easier to most of them to mar by woeful exporience to my cost. Picking ap the lap surface, however mach it mar temporarily imppove the quality of the tone, don't last long, neither doee liass paporing, or brushing the srrifaces of the haenners with wire-card or bristleg. The proper metbodi to insert the needles considerably within the otriking surfeces, and manipulate them secaludum arten, whiab rtistic manipulation, alas 1 is jast the thiag mon correspondent "o w T loner as well as taner, and he learned how to do it properly from a gentleman who then (many vears ago) properly from a gentlenann who then (many rears aps)
was intrusted to "tone" Mesars. Broadmood's grands so we may be certain he had the advaztage of having 0 good instractor I may add that, being a alever collow, he "bettered the instraction " in some detaila
Harshness in the quality of the basc tones is often consequence of difuizncy of tonsion. In moert pianor the striugs of the lomest F -asually the lowest bichard ote-are seldom tight enough to prodace powerfal and arm sounds, and bat too often they will bear their piteh raised to Δ, or even to B. In an instrument whose 18 owest strings did not differ mach in leagth, and the ridges wires of which were rather fur from the bichord covered striags from FF to G, 14 notes, 20 manner following-that is to say, the atringe of -

Two pairs of now atrings corered more hearity whe ased for F : and G.
I disposed of the single strings thas (they were sid oovered on No. 21 wire) :-
The strings of D_{4} and E were oxectly alike, 001 made of them an excellent pair for F
The strings of D and D were ex
The strings of D and D \% were exactly alike, $2 I$ made of them an excellent pair for F.
The atring of C B served for E .
The string of C served for Ds .
The atring of B served for C \%
The atring of \mathbf{A} served for C
Three new strings heavily treble covared on Xa 14 toel wire were made for the three lowest notes, and I need not inform any practical man that I oould not have taken auch liberties with the striugs, had not their tension originally been considerably less than it ouyts o have been. Theincrease of power and improfament in the quality of the tone which resulted wae rery re markable in the two lower octaves, so mach ao that handivort by its sounds.

Shifting stringe is a very ticklish operation, an nless performod in what an old workman I for haris know tormod "judgmatioally," is almogt certain to
breat them at the part nnooiled from the wrest-pin bat I believe akill, pationce, persevarance, and last, not least, money, will, in time, as the late Bir Iease Comn said, acoomplish all possiblo, and many so-called impossible, things. I found by costly experience that the it sidewayn from the pin protty strongly while tarning the wroct-pin bactwara, which it sodam noedral th do mach more than half a revolution (the less the wire is azooiled the better); having done this insert a pointer plooe of ateol-a strong marking $2 m 1$ servoe
admirably-into the top of the ooil, asd prise the enmirably-into the top of the coil ${ }^{\text {asd }}$ prise the The string may then be taken off. Shonld its intended The string may then be taken ofir. Should itlinterad now position require a string the same total length, ort out anything of its longth, but merely slip the coil orer the proviously inserted wrest-pin, by which it will co turned; iasert its bent ond in tae hole thereot, an forget whether a piano string is, in workshop parlanoe forget whether a piano string is, in workshop parianoe,
N.B. -This wrinkle is worth knowing, even by those aminently "praotical" (and of oourse scientific) men, ye taners (who I found Then employed to shift some o roportion thereof than even the "unpractical", hlacksmith himself did, and who, although not exactly What it tormed a "sorev," has a wholesome horror of all waste), for it might save taners some oxpense when shifting the strings of any piano which is their own property. Of coarse, if the piano belongs to a costomer t don't matter how many covered atrings are broken, for by the oustom of the trade, they, lite children, must or paid for. In that case, the case of the piano, I mean the asee of its atrings, beoomes very like the case of the naile which was a sort of "packing" caase, ooncerning Thioh the cate carpenter's apprentice allorded the individual at whose cost the works were being execatod, the very satisfactory information that although awept away with the rabbish thoy would not Hont becanse "you will find them all (packed) in the . Well, 1 suppose, all this kind of thing makes manafectarer and covered atring maker, but it it rather quear palitioal economy.

The Hammontoves Blacismitif.

PERSPECTIVE

[4581.]-I Aarbs with mach that "M. A." saya (lek 4448, p. 888). I was speaking rather of the proportions of individan objects than of the relative doture My and Sheoretioally as well as practionlly, all lines really certical muat be drann parallel in a pictare, and that the convergenoy imagined by Dr. Oarpentor is nimply an absurdity. To reason on the matior soems almest equady absurd, bat the sotanal mathematical prool any two reatical what ail follows :-Le Alane of pro joction also vertioal; P, the ege of observer. Then
lines from P to A lie in e plane (Enclid XI., 3); and this plame P to A lie in a plane (Eaclid Xli, interwects the vertical plane C in a vortical right line (Euclid XI., 19)-that is, the projection of A is a vortiona right line. In like manner the projection of B if a vertioal right line. These projections aro
parallal right lines (Enclid XI, 6). O. E. D.

Ricratid A. Proctor.

DR. CARPENTER AND PERSPECTIVE.
[4639.]-Tr yon are not tired of this subject, I should Mire to ask M. Paris for an explanation of his lotter (4487, p. 888). What if the fact, and with whose meam he has made a drawing en a sheot of glass, and ands it agree with his theory. If so, I am pazzlod to know how he didit, end think ho ought to mond you a the beneft of his discovery.
M. A. ${ }^{w}$ in his lattor (4488, p. 883), introdnces a new subject which is very interesting, bat has nothing to do with perspeetive. If there is any particular
object in the viem which the artist wishes to impress on the mind of the pablic, he may enlarge it as mueb as his conscience will allow him, bat if ho draw it ont of perspeotive, it will cortainly conver a false idea of its form. There is no donbt that photographs of din. tant monntains do not cenvey a correct impression of their magnitude, bat placea pair of them in the ateroo-
scope, and the monatains immediately assume their right proportions, which shows that each photograph right propertiona worreet reprecentation of what naph eye anw. The poaition of "riolent perapective" may
be avoided by the artist, bat if he try to "temper or modify " the perspective, the resalt muas be failare to reproaent the reality. Ae, however, the pablic do not pare with it they do not care 20 long as the piture good in itsolf.
B. D. T.
[4533.] - I AM carious to know whether among artists the attempt of Craikshank to picture a converging, or I woald rather say tapering, giant, is considered suoh To my oge the effeot is not so absurd, and althongh I confess to no great feoling of awe wben looking at the etriding monster, I think that if the picture itself for hime to atride in, the giant would look decidedj
imponing. "E. L. G." (let. 4189) dwells apon the rectinication by the eye of objects or lines on paper course allowing that "at the point of aight perspective is perapective, and aboolately true," I yet and that the eye in some oasos will not snfficiently reotify to set distorted things aright. To take the old case of a
series of columns viewed from the front in so-called series of colamns niewed from the front in so-called paraliel perspective, and drawn within the limit angle
of 60°. As every one knows, the columns either way Prom the centro turn ont thicker, whilet being farther rom the centro tarn out thicker, whill being farther from the point of aight or any other point fally rectify the diatortion. It is a perspective, and perfectly the distortion. It is a perspective, and perfectiy appears in reality. A common thing among draughtsmen is to take part of a oircle for the plane of projoction in order to avoid errors of this kind. On etter 4427 I woald remark that it is time the illustra tion of tracing on a sheet of glass foand in so many books on perspective were dropped. It involvos an
imposibility, since the eye cannot focus the objects beyond the sheet and the points on the sheot at one and the bame time.
A. O. G.

ON THE CATALYTIC ACTION OF SPONGY

 PLATINUM.[4534.]-I tringr I cannot better answer the ques. tions of "H. H. G." addressed to me than by a ahor letter on the above sabject.
That property of platinum of cansing the combuation more or less rapid of combastible gases mixed with air, we oall oatalytic" or "oontach-action," boomuse in question, bat oanases their combination without any in question, bat
ahange in itsall
This property is not pecaliar to pintinum, but oxhibited in a less degree by some other substances chiefly porons bodies or metals in a Ane state of division. Bat the property is more marked in platinam, wire. It a platinumgy oraitib, but when in aneol os over a Bunsen barnor, the gas quiokly extingoishod and tarned on again immediately, the bottom of the craible will continae at a red heat for hours, without ignition of the gas, by its slow combustion. Bat by obtaining it in a apongy state, by heating to redness ammonic platinic chloride, a far greater surface of the motal io exposed to the action of the gas, and a greator oatioytio activity is the consequenco.
This property depends, doabtless, apon the power of platinam to sbsorb or "occlade" these gases, and thas bring them into a stato in which they can more readily unite. It has been thought that this pecaliar the is really an electrio ohange in the condition ol Thatever, it, bo, it depends upon this proparty of "occlasion."
A mixture of hydrogen and air (at in the hydrogen lamp), impinging on the surface of the Anely divided metal, alow combration (i.e., chemioal combination of hydrogen and oxygen) sets in, gradually acoeleratod ae the temperatare of the platinum is raised by the oom. bustion, until eventually (and this is the work of a ew seconds) such a temperatare is reached that the mixture of hydrogen and oxygen betwoen the jet and combines with a slight explooion, an well known that, in course of time, the sponge loses somewhat of its notivity. Whothar this arises from the abeorption of water, or whecher the intense heat to whioh it is sabjected condenses the metal and lessens ito porosity, I am not certain. I have revivified it (eo to speak) by hoating to rodneas, bat generally find it oasior to roplace it with some freshly-propared sponge. I truat that "H. HI. G:" will soe in this an oxplanation ratiafaotory to him. If he wishes to onter into a theo rotical conaideration of the phenomenon, he ahould Aotion," and "Abeorption of Gecee by Motals."

Ashlitst.
Eranatur.-In letter 4481, p. 411, for "fow mothe come oat," rend "few moths come to light maoh befor midnight:"

Obituarg. -The death is annourced of Mr. Ernest Theophron Chapman, a chemist well and favourably known by sundry original investigations presented to po tion with Prof analysis denigued by him in conjancsooepted Protessor Wanklyn. Mr. Chapman had works in the Host of airector of 35 , whilst preparing some explosive compound for the use of miners, an accidont oceurred, which sent a promising and talonted stadent of science to a promatare grave. Mr. Chapman was a contributor to these colamns during his years of age, had alroady attained an honourable position in his profesaion. His untimoly fate will be regretted by many ; for in his death Science loses one
of the brightest ornaments among the ranks of her of the brightest ornaments among the ranks of her younger devotees.
A New Dryer.-M. Mine atates that it 12 parts of beat shollac and 4 of boras are dissolved in 100 parts by heat, and when cool, minglod with turpentine, av dnced. The solation may aloo, he says, be used aro

EXTRAOTS FROM OORRESPONDENOE
The Suspended Shilling (Qy. 12155). -It strikea mo that "another reason" is still wanted to account or a similar phenomenon. How is it that is you careculy out oir the fiower-stalk of a dandelion when the of seede eft ripe, and blow three times, the na parish olock ? Isn't this a scientific faot, known to all the professors of buttercap-gathering in the world ?8aul RyKal.
The Negro. - I hope thove who wite on this quen tion won't lorget the wool. I do not apeak ipositivoly but I believe that no other race of men, black or white have hair possessing the pecalier characteristics of th negro's wool. There is also a pecaliarity, I think, in

Dr. Packman's Steam Engine.-"One" sajs: -" This ongine mast bo a very clever invention, i everything stated be correct. Bat there is an engine very similar to it, which Dr. Packman would, perhapa, like to see. It is constantly at work. There is neither smoke, coals, nor water tank; it has a chimney
though. It is on four wheole, being of the ahape called though. It is on four whools, being of the ahape callec portable, and in out of doors all weathers; and I have not the leant doabt, If Dr. Packman will visit Measra. Howard's Agrioultural Implement Works, Bedford whioh are thrown open to risitors free, with the option of giving something to the sick tand, and iaquire for the above engino, he, will see something whiah, perhaps resembles his own.'
Tannate of Soda as a Preventive of Bóller in No. 878 that - "Tyne Engineer" says :-" I notion used in America for romoving and preponting scale in boilors; slao the remark that none is made or importe into Kngland. I have used this tannate of soda for upwards of $2 \ddagger$ years, which answers all my purposen, and which is now manafaotured largoly on the Tyne for the as,
derfally."
Plano Alliance. - I wish to saggeat that the Piano Allianoe, or Clab, should have a wider range in its objeota, and should be, instead, a Piano. Har moniam, and American Organ Clab.- - :

USEFUL AND SOIENTIFIO NOTES.

A Story of the Sea-American papers state that the Agassiz expedition, at the lateot 2000 ants, wa of bandy Point, Patagonia, and that among the party were immense quantities of kalp. This is the party were immonse quantitioe of kalp. This is the coasts in from 6 to 20 lathoms of water, in vast beds, warning the mariner to beware a noar approash, anlos warning the mariner to beware a noar approach, anlob It wishos to of entom the cocanio dopths stome of im mense length, some of them from 700ft. to 10001 . mense length, some of them freatest development reached by any momber of the vegetable rece no in existence. Patohes of thic geaweeI were passed in open soa, with large cea-lions aeaweel were pabsed in open soa, wratly narigating in lying on its surrace, whe were apparently narigating and afforded much amusement to their sojontifio and aflor
Storing Wheat and other Grain.-M. Lovel has broaght bofore the French Δ cademy a pian o itoring wheat in portable sheot-ron granarion, in whio a vacuam is maintained equal to at loast from 8in. to lin. of mercary, this being found safficient to destroy all inseot lifo (although 2 more porfoct vacuam ls preferred) and to insure the eraporation of any mointare in the grain. The apparatas is of cylindrioal form placed rertically, and with convox topand bottom. The top is provided with an oponing through which the inlet of the grain is led, with a valved pipe through Which the air is exhaustod, and with a gauge by Thich the degree of exhanation is indicated. The grain is removed through an opening in the bottom. in one experiment, where living inseots wore introduced in large quantities with the grain, it was found that thoy were all killed belore doing mischiel, and at the end of
six months the wheat was found to bo in as fne condisix months the whea:
tion as at the octeot.
Brandy from Sawdust.-In the immense lamber districts of the United Statea, where the great indastry is that which goes on in the sam-mills, the savdunt tha accumulates is vorse than of no valne, for some cosi has to be incurred in removing it. The Commineioner of Agricalturo, in his last pablished monthly report, tates that the sawdust can be made to yield, andor iastillation, a good artiole of brandy. Pine and ar imber being the varieties of timber most plentifal in these regions the method of treating thom do cribod, bat it is added that, in all probabuity, many and Ar to the wood would prove bollor The eseminst of and Ar to she produotion of branayd moistened ; then he plo and ar inger la minere aro added 88.7 part of parts of molst parts of hydrochlorio acid, so as to make 49.7 parts in all. These are boilod ander stoem presecure for 11 hours, when it is found that 19 per oent. of the mass is grape sugar. The acid is noutra. lised with lime, and the manh is napplied with yeast. Atter 96 hourn' fermentation the disthlation proceeds, and the brandy that rans off is porfoetly free ir om the mol or hato sarpontine. The Ciicago Triwune Agriculture that the proparation of apirit from rasto samdust is sctually easier than from valuable gmain.

REPLIES TO QUERIES.

\because In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat drawIngs for illustration on separate pieces of paper. \& Put
titles to quaries, and when snswering queries put the titles to quartes, and the tilles of the queries to which the repiles refer. 8. Nocharge is mede for inserting letters, queries, or replios. 4 . Commercialletters, or quaries, or replics, are not inserted. 6. No question asking for educational or moientifo information is answered throagh the poat. 6. Letters sent to correspondents, names of correspondents are not given to inquirors.
[10644.]-Angle of Incidenca and Reffection. - At the request of "Jack the Flakoman," I hare of M. Athanase Dapre. I chall be happy to send more, but I am afraid the room they would oconpy would be objected to. As the fow I have nent are sufficient to establiah the principle that the co-efficient of restitution diminishos with the increase of velocity and weight of ball, and as they are not, in so far as I am
aware, to bo found in any work in the English language, arare, to be found in any work in the English langaage, they may be acceptable to some of the readera of the
Enolise Mzcravic. With regard to "Billiardist's" Enolish MzcBanic. With regard to "Billiardiat's"
problem, I did not pretond to solvo it-in the firut problem, I did not pretond to solve it-in the firut
placo, I am sorry to eny, I know little or nothing of place, I am sorry to say, I know littio or nothing of I aimply atated that it was a mistake to attribato the canse of the particular motions indicated to an increased momentum of ball, cansing an increased co-efficient of restitution, as all experiment proved the contrary. I hinted at what I thought might be one canse, bat not being sufficient of a billiard player to know the effects of the varions ways of hitting the balls, the amount of rotary motion thereby communioated to tbem, the effect of the friction of the table, the amoant of rolling motion thas commanicated, the effeet of the solt elaotic cushion as compared with a hard elactic hody in varying the ratio of angles of incidence and roflection, do., I hoped that some one more qualifed would take the matter tp, bat I have not yet seen a proper explanation given.
Extracts from Experiments made by M. Athanase Dupre on the Collision of IDory Balle
Balls employed in the experiments:-

| No. | 1 | 2 | 8 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Aloo a black marble slab 87in. $\times 18 \mathrm{in}$. $\times 2$ 2in.

Firgt Set of Experiments.-The marble alab being borizontal, the balls wero let fall from varions heights h, rebounding to the heights h, given in
milimetres, carelally measured by means of catheto-meter:-

-	S5- \%
	z12 \#\%\%\%
	z1e ¢¢
-	51 ¢-
	こ1e
	=

 $-000268 h^{2}$ Ball No. 7, $h^{1}=-68575 h-000880 h^{2}$.
Sbcond Serres of Exprrinants. - Same marbio slab, placed vertical, and balls auspended from ceiling
by threads 10ft. 2in. long, so that when at reat they by threade 10ft. 2in. long, so that when at reat they jast roaohed the marblo; the balla were lot go at varicus angles v, and the angles or, to which they
rebonded, carefally meanured with the following
realte reallts:-

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { 号 } \\ & \text { Hed } \\ & \text { Han } \end{aligned}$	
	$\therefore \quad$ O.
	I $\quad \underset{\sim}{0} \dot{0} \dot{0}$
	- \&ia

v and $v 1$ are tbe lengtha in millimetres of the ares of appronch and reboand, and consequently are proporatrite and are reflected.-F. N.
[11589.]-Dry Steam.-" Superheatod steam" (as our engineers term itt-i.e. "dry" or drying ntonmannnot be deifined as "meroly a higher presure steam ;" the leat, or he woald not say that the "saperheated" necessarily "contains more heat and less water in a given balk," but would tnow that either wet or anper. heated steam may be of any denaity, any tompraporand and any presance. His new queation is whether I suppose additional heat can be applied to steam
"without converting it into higher pressure stamm." Yos, to steam apart from water, it coartainly can, provided the steam have room to expand; bat to stomm in contact with water it cannot. Thic is the eacential oontact with wafer it cannot. Thin is the escential ans never be superheated atoam, raise the tomporature as high as you will, so long as there is any water; for as high as you will, so long as there is any water; for
steam, to be superheated, must be heated away from steam, to be superneared, mast po heatod away from Water. 8appose now you havo a bolier and its steam. chest, but at any moment you dois an connection between them, tha ateam in each being of course identical, say of 250 remperalaro, and therofore sol. pressure (against racuam). No its, steam at twice this pressure, or 601 l . (against vacanm), which will happen preesure, or 80 h. (against racaum), which will happen, ncoording to "Philo," p. 886, by heating it 46°. What heated steam-chest? It will be under 881b. instead of 60. The same heating that has doubled the elasticity of the wot steam has not added a tenth to that of the steam having no acoess to water, which it has made "superhented " or dry steam; indeed, in the language of metoorologists, steam "of 46° of dryness," or about the ntmost dryness over measured in the atmosphere of doserts, either under African sun or Siberian frost. Atmorpheric steam (which "Calorio" will find by no Atmonpuerio storm ", bat the correct and only name for the air's condensible part, urod by Herichel, Glaisher, to.) is alway, unless in a rainaloud, superhentod one or a fow degreen ; that is, it has a fow "dogrees of dryness," rarely 10° in Eagland, bat there is no limit to the degreen of dryness possible in stoem, as thus oxpressed, or the degrees of "saperheating"" as engineera say. There is another mode in which drought and moisture, indeed, are sometimes donoted, by percentage of sataration, so that 30 of drought means the same as 70 of moistare-namely, that there io only 79 per cent. of the pressure of steam that monld be posidible at the actual tomperature ; bat statemente of this kind are very uncertain, and though Glaisher has pablished an elaborate set of tables for estimating thom, the real percentage, or the weight of ateam present beall oot, are really hypothetionl till more shall bo known is rery diferent from that of olastiolty, or from the geoons le prevailing approximatoly in orteam arporgacoous lam prevailing approximatoly in ateam supor-
heatod more than 10°, and more nearly the drier it is. The only reliable way as yot of deflning dryness is by the thermomotric degrees the steam is suporheated, or how many dogrees its zotanal temperatare exceeds its con-point coolod to course the femperatare he have sinpoeed 296°, bat the stoam is no donear than when it whes at 250°, and the cheat or part theroof would have to cool to 250° before any woridd condense into wator or dem. It is, therefore, at 296°, rightly said to be $46^{\circ} \mathrm{dry}$. But It is, therefore, ab 206, righly said no bo of drypess. If cooled to 295^{\prime}, some would condense It is eimply not stom, Atmonphorio ateam, whers it is not raining, is dry steam (and asually some fow degrees dry), eyen if resting on the sea, because it is not in equilibriam therewith, or doesjnot prevent tho ces ovaporating. But the water in a olose boiler, at long as ita temporature is constant, in not ovaporatice the reat is water. Not another particle of the antar can beoome steam till aither steam is lot oat or the atemm oan fall as liquid till either the partiontars in
less or the boiler's oapsoity rednced. "Caloric " and "A." mast therefore observe that wet steam and dry or "superhested" steam may each be of any pressare, any temperatare, and any density; but in wet otoem these three are so connected that when one is given both the others are fixed, while in dry there is no auch fixity. Thas, wet stoam, to have doable the atmospheric preaeure, must be of 250° Fabr., and weigh a cartain namber of grains per cube foot. But steam woighing less than those graina may have that same doable atmosphere force if it be hotter than 250°. It will not then be wet, bat dry or superheated stonm, and the degrees above 250° bo its degrees of drynoss or suparheating. On the other hand, no steam, below 250^{3} oan have this elasticity, nor the dencity of the wet 350° steam, though it may hare that of dry duable atmosphere steam of a certain degree of dryneme. All wet steam (and, therefore, boiler steam) is the coldeat that oan be eithor so dense or co olastic, and the densest that can exist with no greater heat, and the moat elaetic with no greater heat. Dry stoam of the rame pressure will necesaarily be both hotter and lose dense. but dry ateam need not have the same preasure, nor any axed pressare, or temperatare, or density. In the cace above sapposed, the boiler stonm and that of the stonm-cheat, both at 206°, would have thi ir densities at 2 to 1 , bat pressures only as 60 to 38. Again, in the steam-chost, as originally ohat onf, at 250°, and as heated to 296°, the wet and dry atosm are necossarily of the very anme donsity, but the latter one-tenth more elastic, from containing more heat and no lose matter. If allowed to expand one-tonkh, wresont loss of temperatare, it would be ats heat and less water in a cabic foot, boing still superhented ateam of 296°, and 46° of dryness. It might expand also to the low density and prescure correaponding to wot stoam of 100° or of 0°, and woald then bo 190 ary, or 296° dry. 8o, if the stoam in the of 82°, but its setanal tomparstare be 40°, it is said by moteorologists to be $8^{\circ} \mathrm{dry}$, which is the same that engineers mean by f° of superhenting. Now, when the atmosphario steam is a fow degrees dry (as it nsually is eren in England), high pressura stesm superheatod meny dogrees (as Mr. Leo's appears to haro boen) would eveape rithout forming visible oload, which in all that " Celor
phenomenon (p.
[11650.]-Black Varniah for Mioromoopio Objects (J.Q.). - In anawor to this query, which soems to have been overlooked by "oar" more able micronoopiate, the beat varnich I know of, for gevaral Wee, is asphalte and gold-size in eqnal quantatem When made rather thiakor it may bo naed ait a rocreat for shallow colls for dry mounta, and has very nemb appearance. Asphalto is sometimer acod alone lor mas
 with gold-size. For matring colls of any kina cemcrat, ${ }^{a}$ tarntable is indispensable, an it it it is thats
imposible to baild a neat coll withotit it. imposaible to build a neat coll withost it. Moantine deecribed by Davien: "On Preparing and Moantiag Microsoopic Objeots.-At oue ond of a smalt piceo prohard wood is fixed an iren pivot aboat tin. thiots peo jecting itin. from the wood, which gerves wh cantre upon which a round brass sable, 8in. in diameter, revolves. On the surfece of this aro tro springe, aboat 1 i in. apart, undor which the alide is forced and so kept in position, whilat the contral part is left open to be worked apon." Two or more ringa are engreved on the table, which aro usefal in determining the sire of any aircle to be drawn. A fow asmel'-hair pencils and
a litto practice are all that in then required. C . W.
[11742.]-Painting Iron Bedstead.-For the firat cont reduce whito lead to a working conaicteney by addition of equal parts of turpentine and boiled linceed oil; for second and third costs, nese tarpentino alone as a vehicle, the amall quantity of oil with which the Leal paint for groand will be sameciont to to dry wall betere the next is pat on. A small quantity of blae is come times added to provent the fondenoy to tara yellow. The paint mixed and appliod as abovo will bo beentifolly phitt and fat that is without gloes ; shoold glosey surfece be decired, it may be varaished witb alear sarial rargich. Instructions for gilding amd bronzing will be found at p. 168 of thin volume, and gold.pomder hich mast bo applied as directed for bronze can be abthined of Measra. Brodie and Middte ton, ho edvartice in the game number. This powder
 of the finer deecriptions of peper-hanginge To preveat the and be geahed orer with dilated albamen before the appication of the aid -size. the abomen and enpertionem gold is remored then the cilding is Aniahed by the ai of a sponge and clean wator.-Edurov.
[11768.]-Piano in Canada (0.Q.).-A reply troue "The Harmonious Bleckumith" apponrs among the lottort.-ED.
[11778.]-Cleaning Plain Blue Bilk (U.Q)Wah and pare sumo potatooe, out them into small pieceah and cover with celd water. Lot them stand fire or eir hours, pour the water into another veesel, and with it aponge the ailk on the right aide, rabbing briskly till clean; then, when not quite dry, amooth on the trons dde with a hot iron.-AJANEL
[11879.]-Thermoplle (U.Q.).-I would advie A. C. Lowe to try bars or wires of German oilver and
iron for his pile instoad of biomuth and antimons. iron for his pile ingtoad of biemath and antimong.
They will bo mach oheaper and eanior to work, and they prodace a current of conaiderable power.-8ikrve
[11888.]-Sustaining Weight of Oant Eron Column (O. Q.).-A nolid columan of the give
dimensions will rafoly bear 165 tons. A hollow one,
having the metal tin. thick, will malely bear 84.5 tong. -Excklstor.
[11s99)-Steel Combs (U. Q.).-I beg to inform "Dosty Miller " that they are made with steel pins or lead and tin. The pins or teoth are placed in a mould, and the mistare ran on them afterwards. They are dressed with a fle. As "Dasty Millor" is not very explicit reepecting how many teeth he wishes to pat in his combs, or That longtu he wishes to mate them, I
am ansblo to inform him as to size of wire, co. - R. H . (l1898.]-B. So. of London (D.Q.)-Profeesor Olivor's "Botany"" (Macmillan), thoroaghly got op, Botany," are suficient for the pasa examination. The tro plante given havo to be described only, and Lind ley's will do this woll. Haxiey's "Introduction to the
Clasification of Animals" will saffor for the znology Clacaification of Animals " will saffice lor the znology;
hat if thoaght too concise and dry, Nioholeon's "Zoology" is excellont. 1 littie phyciology must be stadied too, and for this Haxler's little book is by far the best.-AIErus.
[11910.]-The London Enoyolopedia ($\mathrm{U} . Q$.).Thio valuablo wori, pablished by Thomes Togr, was com plotod Anguat, 1829 , in 22 rolumoe, price f18, and was
obtainable at the pabliaheri, 78 , Cheapoide, London, at it probably in now.一Thertixu, Horaham.
[11984.]-Tea Teating.-As no one has replied to this query up to the time of writing, I venture to send That I knuw of the matter. The only method, then, of testiag tea is by the taste, in the ordinary manner of the brozers or "toan-tanters". I do not see how any the queation. The value of tea is governed by itt,
favour, and men are paid good salaries for "tasting" gavorr, and men are paid good salaries for "tasting"
it provious to baying for the firms employing them. Of coarse, "stomach" or " month" out of order, the "teataster"; can't do his work, and it is partly in con-
sequence of the self-denial ho has to pat in force that sequence of the self-denial ho has to put in
such large malariee are paid.-SAUL RYMEL.
[11990.]-Ice Making. -There aro sevaral mechines
rited to the requirements of "Annon." Many of theme cuited to the requirements of "Anon." Many of them have beon noticed in the Enalise Mrchanic, and to tirther apecity them wolld be very mach like adverand serviceable machines.-EG. M.

C11997.1-Warming Greenhouses with Gas. -To "Houblow."-I am ozeeedingly obliged to "Hoabloz" for his reply to my query in the number
for Jane 28th; and as the cost of gas appears to be so for Jane 28th; and as the cost of gas appears to be ao
low, I am indined to try his plan, which I will do next antamn. If he can favour mo with 2 draving within the next two months or so, he will confer a favoar on -H. B. E.
[12007.]-Purification of Iron.-How does Mr. Buot ex peot to atilise the superbeated steam in parifying iron ? The hydrogen might combine with the She process has never been ased. -MidDLEsBro.
[12018.]-The First Watah apd Clock Made. - It seems to be rather difflcult to prove when the first Watch and clook was made, although we have some
aocounts of old dates on many watohes. I have heard ancounts of old dates on many watohes. I have heard
many talos of how time man muasrred provions to watches or clocka being hoard of. It is said that some of the ancient kings had candlos made to measure time, by means of tigures placed on the outaide, which indicatod the hours as the candle barnt down; and 1 have heard of time being measured by means of a jar
of water. The jar had a small hole in the bottom, and Agures running down from the top to the bo.tom inside) from the small hole, which of courso lowered and indicated the hours from the gigares inside. Another very ancient method was the sand glass, the sun and moon dials, \&c. by have heard it said that thing like our conntry mills at the present day.-A Glasgow Higblander.
[12017.]-Electro Iron-Does not the article on P. 64 supply the information required ? If not, specity
What is required, and I will try to explain.-ANODE.
[12033.]-Waterproof Fishing Socks. - Get some alleet indiarubbor-that with a canvas or linen backing. Cat oat the socks, stitch the edges, and
coment all down with rabber dissolved in naphtha. coment an bay the solation ready prepared. If you do not comprehend, write again. Rabber solation laid on ganvas woald not be "too aticky," but the prepared sheot is mach boll
12054.] - The Needle Lock. - No very detailed esescripion of thiq luck can be required. It consiats needles 80 arranged on the bolt, that when the proper key is put in they are lifted so as to enter
holes in a plate, and allow the bolt to be shot back. A namber of depressions or dummy holes are made lock is foiled by the springs or lever bars entering the dummy holes, and ao rendering it impossible to got the bolt beck. It is one of the best locks ever inirmasa.
[12090.]-Strawberries.-I think that the cbief reason for consolidating the soil in which this plant is grown consists in the suitability to the reqnirements of
the roots thas attained. Stone fraits in the roots thas attained. Stone fruits in like manner roota, highly conducive to health and fraildalaens. It
is an important part of the gardener's art to atudy the requirements of different plants in thin particalar. Potatoos like a comparatively open oondition of the groand, yot if too open a total failare of the crop may
resalt potato-ground incladed the site of an old hayrick, and the rabblsh dag in prevented a proper settlement of the
soil. Nothing could look more promising than the soil. Nothing could look more promiaing than the 8teme half an inch thiek; roots long and tough, with a very arm hold of the soil; potatoes the aize of pens or beans, dintorted in shape. These wore the eingalas featares of the case, and the same thing has been ox. perienced in this neighbourhood by noing abandance oi amount of ronistance is necessary for the swolling of the tabers. Mr. T. D. Fioh hat, on thic principle, adrocated the ase of the garden-roller and paviour't rammer on the seed-bed intended for onions. I have ased an iron rammer to consolidato the soil in boxes ior stone fraits with very encouraging resalts. I have found that digging between the rows of potatoes daring che early period of their grewth faroars shat growth
greaty, but I intend to try the offect this year of hard reading close to the stems on a small plot of late potatoes aboat the time of the swelling of the tobers. diatortion of sneh torts as Satton's red-skin. It is worth a trial. Porhaps some of your correspondents will try the same experiment.-Rev. J. M. Tayloz, Seor Green Vicarage, near Bemoonasold.
[12002.]-Curl in Peach.-"Derf Errao" will And hie trees look rery different if, jast before the sulphar boiled a fow minutes in water; use cold; and every now and then givo them a syringing with a reak solation of sulpharet of lime. I make mine myself, but I dare say it is earily bought, though I never asked if it was kept. In this way ho will keep his trees clean, and froe from aphides.-E. T. S.
[12094.]-Preserving Caterpillars.-The Rev. J. T. Wood rocommends hot sand as the best substance with which to fill preserved caterpillare.-AJANBA.
[12180.]-Enectricity.-I am obliged to "Sigma" for his notice of my question, bat what I meant was how far might it be possible to imitate the effects of a Ralranic battery by means of common electricity? cambo fraraday's experimente in electro-magn nick
can be done by it, and the same effect of a very quick saccession of shocks; and the magnetising and the contrary of a needle by the mere stream of it from the condactor without contact with the needle ; and then the best way of Aring ganpowder brings it nearer to galvanism. I made some experiments once aboat this bat have not soen similar ones mentioned. E. T. \mathbf{S}.
[12131.] - Zhectricity Applied to Engraving. -I have tried the thinly coated plate basiness, bat it it in impossible to draw on it.-Xylographer.
[12144.]-Timber Houses.-" Rat-Tat," at p. 389, adrisen the raluable precantion of inclosing a layer proof, and he might have added nearly onld proof also. I wish he would inform as if he has tested the diff er ence in effect of a thick and thin layer of inclosed air, for 1 saspect the difference is very slight. and it may be in favour of a thin layer, for air when nearly motionloss carries heat very slomly, and a thin layer of inclosed nir mast be more nearly motionless than When it has more room to move in.-PHilo.
[12156.]-Mice Eating Peas.-I see varions plans given to prevent this. I think the most effectaal is to pat the peas iuto a deep and widish drill, and
then to cover them with dry sand, and rake the earth
 over all. If the mice come the sand keeps falling down, and so baffles them. I have never peas are jast up the birda
do the misehief, and to seep them away fix a
stick slanting into the ground, $a ;$ fx another
movable, and fix a string c from e; hang a string with two sticks, f crossed. To tho four onds hang eome piecos of bright tin. The wind moives these in all directions. They rellect the sanbea.
offectually keop aray the birds.-E. T. S.
[12172.]-Constipation.-An insatiate devouror of books and a greedy seeker after knowledge in overy shape and furm, I still, in the midst of many and pressing arocations, find time for the perasal of the
delightfal and proftable columns of the Engisu Mrchanic, and am deairons of ahowing my gratitude accordingly. Constipation is the malady of civilised savage life, and I never (speaking of savage life) came across anything of the kind. Under natural
anditions the bowele act like "clockwork." Their periodic and regnalar evacuation is jaut as needful O animal life as is the motion of the stars to life, or at least being, in the filence is not fity discharged, the more faid portions thereof are nbsorbed, the breath is ritiated, the secretions are tainted, the hemorhoidal vessels become pressed apon and obstracted; in short.
the whole syatem is disordered and deranged. A habit of periodicity ought to be established, aud this may be realised periodty ought to be established, auc his may be
convenient poriod, perhaps, is after the Arat meal of the day, or atter breakfagt. This meal conoladed, the individual ought to rise and not assame again the is more readily solicited in the ereat the actod. Nature postare readily solicited in the ereot than in the silting oxcopted. period of the diacharge, of courto, only warm-blooded animal in which one ovaonation of the bowels anfices within the twenty-foar hoars. All ther creatares ovaouato thoir bowels more or loss repoatedly during the day and night. Had this boon the case with man, it would havo greatly militated against his dignity and comfort. When Natare asks so 1 ittle, and when the periodicity of the fanction is so very very important, haman befing ought surely to prove oompliant. If wo tarn laxy and inattentive, the
bowels become lazy and inattentive alco, and the bowels become lazy and inattentive also, and the
holesome economy of our material oxistonce is ont wholesome economy of our material existence is outpation in oivilised life in the habitual nes of white bread. Oar food is too concentrated. There is not a sutifient abondanco of coaree neatral material. Green regetable food is not adequately resortad to. The inferior animale that browse on green food, as the ox tribe, know nothing of oonstipation. We cannot thas
browse, it is trne, still we might eat more green food browse, it is trne, still we might eat more green food than we do. Bat in any ease the excessive resort to
white bread shoald be avoided. The yello Indias corn bread should be avoided. The yellow Indian pinch of salt and a pinoh of angar, makes beantifal and most wholesome bread, either as cakes or loaves, taking care only to batter the tin rim or pan in which the dongh is placed. Rice bread and rye bread are excellent, and so are barley scones and oaten cakes. All these, being eaten, tend less to constipation than does white bread. Bat, in any cease, the certain and unfailing remedy for constipation is the employment of the entire Wheak. Let people ouly consume the furmity or frumenty, that for generations was the food of our forefathers, and constipation will become a thing unknown. Frumenty consists of the whole grain of Wheat, kept jast ooverod with water, and simmered for a matter of foar hours or so beside the are. Farmity may be eaten cola or warm, with milk, sonp, preserves, nugar, or, simply, a littlo aalt. It may bo eaton before, mast vessel. Whe in an airy place and in an nncovered porridge ordit orushed or cracked, well boiled into plao ge, ordinary meal porridge, whole meal paddings, tate rery good food, bat I find the entire mhost, well cooked and plentifully eaten (and if there were adiquate demand people wonld propare it for sale) a por-
fectly eftlient and entirely roliable remedy for conatipation.-A Prysician.
[13176.]-Hydrogen Flame. -The oasiest way to aroid explosion is to nse a bottle or tabe in which to orm the hydrogen, which has a hole at the bottom as I
described at p. 899 in reply to query 11835 . If "Whitaker" has not got a emall tabe with a stopcock he can use a bit of tobaceo-pipe closed with a piece of soft wax, but a still smallor opening is better, and a stopcock is co
flame.-PHIL
[12182.]-Roses-Run a sharp penknife through the shoot to be layered, slightly twisting it so as to open the bark. The incision mast be made at a joint. Secare it with a hooked peg and tread the soil hrmly abont it. It will soon form roots, and oan then be
removed. This works very well for moss roses, and I do not see why it shonld not do for others.-SARAB.
[12197.]-Rosen.-Baroness Rothsohild, Dake of Edinbargh, Priuce C. de Rohan, La Franoe, La Belle Lajounaise, Comtesse d'Oxford, Emilie Hamsbarg, Gluire de Dijon.-Sabar.
[12197.]-Roses. - Very Selert Roses. Proved. Eugene Appert, Prince Camille de Rohan, Souvenir de Count Cavoar, Jean Cherpon, all very dark; Senateur Vaisse, Mad. Victor Verdier, Princess of Wales, Alfred Coloub, mediam; John Hopper, Anne Alexicif, Centi
folia Rosea, Comtesse Chabrilliant, blash; Buron Mas nard, Belinden Kerr, White Provence, Mrs. Busanquet, white.-Cornubl
[12214.] -The Game of Quoits.-Il the quoit does not allow the whole of the place where the peg onght to be to be seen, itdnes not connt as a ringer, bht if it shonld go over one hall of the stick and leare enough for the thickness of the otber hall to go between the quoit and broken part of atick it is a fair ringer. Yon must measure the nearest part in aight, but are no allowed to move the clay from the top of the quat, ba but it is often plared never seen the rules in print, but have plaged a good deal myself. -J . G.
[12326.]-The Portuguese Language.-Your correspondent need not continue a veedleys bearch arther for any system upon Portugnese, for two reasons. the erection of some machinery, and endeavoured to procnre a Portuguese grammar, but was informed by Ir. Stunford, ol Charing-cross, that there was not one this I had very seldom recourss to since the langnage poken in Brazil is not pare Portaguese ; the best way actual acquaintance with the patives. If your corre. pondent hasa a good knowledge of Latin he can readily pick it up. Spanish is only a source of troable in acquiring it, thongh similar apart, bnt diferent when
heard together ; this I know from experience, sidice I ras formerly and am now arquainted with the Spanish language. Renpecting the latter part of jour querist's
request for information aboat Braxil, there are many things necessary to know prior to sapidg or recommending any pectiar locality. The principal thinga intentions as regards pursaits, married or single. If your correapondent can furnish a general, if not a detailed, idea of the above, I will endeavour to answar for his and others information, I having been in the Empire some five yeara.-J. GILLALRD.
[12287.]-The Organ. - The defect may be caused by the pallets not bedding properly on the bars, or by the key action boing screwed ap too tight, thereby opening the pallets, or by the openings of the bars behind the pallets not being covered. The first canse is the most serious, and would necessitate taling down the sonndboard and bedding the pallets and re-leather--PNETKATIC LABVE.
[12258.]-Organ Oonstruction.-Several sketohes of couplers have appeared in former numbers. The following woald be a good seleotion of stops for a small chamber organ of eight speaking stopa:-

Grat Organ.

1. Lieblich Gedacht 8tt. wood and metal.
$\begin{array}{ll}\text { 2. Drleianas 8t. metal. } \\ \text { 8. Principal } & \text { 4t. metal }\end{array}$
Small Organ.
$\begin{array}{ll}\text { 1. Salicional } & \text { 8tt. metal. } \\ \text { 2. Vox Celeatis } & \text { 8t. metal. } \\ \text { 8. Gemshorn } & \text { 4ft. Metal. } \\ \text { 4. Fiute } & \text { 4ft. wood. }\end{array}$
2. Boardon Pedal Obons.

- Preveratic Levgr.
[12255.]-Elair. - My beard, of aboat the same age as C. Watsanis, inficted opon me at one time the same annoyance as that allided to, with the addition "knots like nits" that C. Watson alludes to The nothing, I think, bat the broken and frajed ende of the hair, which seems to break without eeparatiog, as a tongh, atiok would do. I cured my beard by applying "brilliantine" overy other morning-muoh againat my eonrietiono. I suppose any good oil of a nondying charactor would do at wall. Iod think it is dryness, but scarcoly a "diconee." - Hell. H. G .
[12256.] - Preserving Garden Produce. - I think the most likely thing to sait "Emigrant" would be a gardon pit. Considering the cold of Canada it should be a goed depth. The pots shonld be set in of straw or fern for the covering. Take goore to nivithes of straw or fern for the covering. Take care to give
an litule water as postible. In the same place, carrots and persnips might be kopt buried in sand. The pit is the bent where experse is concerned, and vary effectanl.-E.T. 8 .
[12260.]-Cleaning Baok of Teeth.-"Bearty" he will get a complote first respectable chemias, and course he suggests is common to most cleanly people.Hatce.
[122660.]-Cleaning Back of Teoth.-As a dentirrice charcoal in the atate of an impalpable powder is anrivalled, at once whitoning the sound teoth and sweetening the breath, by neatralising the fotor that arises from those which are carious or from a scorbatic state of the gams. Therefore, if "Beanty" takes a small quantity of charconl, powdered, and applies it w week she will need no other remedy. Triod.Woodmans.
[12260.]-Cleaning Back of Teeth. -"Bearty" all the work of a tooth braen during the masication, does If the teeth are irregular, vhich cannot be supposed of such a fair querist, a pecaliar form of tooth-brash is nsed, one in whioh the baok ia bent at the middle to a certain angle, so that the teeth in brashing are inclosed in the angle formed, and the back and front brashed at the same time. I have never seen theoe brashes in ase, and the saggestion, which "Boanty" may find aseful for some of her friends, may be original.-RAT-
Tır.
[12202.]-Prese for Cutting Paper, Card, \&oc. -An ordinary machine in which books or other articles are submitted to pressure would do for "Country
Printer's" parpose. The catting edges may be set in saitable form, and soldereding to the top or bor bottom of the working parts of the presp, and made to descend on the paper or cardboard. Descriptions of contriv.
ances for cattiog paper and envelopes have been given ances for catting paper and an
in back numbers.-RAT-TAT.
[12263.]-Ciroular Saw Driving.-If Mr. Daries does not like using a drum or palley on his main shaft termediate shaft, and attach onty 9 in. palley on the insaw, which would not work well. He mast, therefore, ase a fly-wheel or dram of larger diametor on the main, say bit., fin., and sin., or $8 \mathrm{ft} ., 8 \mathrm{ft}$. , and $4 \frac{1}{4} \mathrm{in}$: palleys on respective ehafte- -Rat-TAT.
[12263.] - Ciroular Baw Driving.- Palley on main shaft 48in., driving palley of 16 in. on conter
shaft; on last-named shaft, $\&$ palley of 60 in., driving shaft; on last-named shaft, a palley of $60 \mathrm{in} .$, driving
palley of 9 in on on ant spindle, will give 700 revolations palley of 9in. on and
[12263.]-Circular Baw Drifing.-James Davies
by patting a 48inu. drum on his main ohaft, and a 13in. palloy and 48in. dram on the intermediate shaft. Thus 40 revolations $\times 42 \mathrm{in} . \times 48 \mathrm{in}$. dram $=488$ revolutions 9in. $\times 13 i n$. palleyg.

-WOODMAK.

[12264.]-Freemasonry.-Let "Edgar " purchase "An Authentic Key to Freemasonry Revealed," 1s. 3s. 6d., Cartile's "Manaal of Freamasonry""-U, Francals.
[12265.]-Pig Feeding.-If "C. R." wants his pig for his own eating after he is fed, I would adrise him to ase barley meal in preference to bran and Indian oorn, as the later does not make the teeh so soand or well
favoured as the former; and, so far as my experienco davoured as the former ; and, so far as my ex
geos, barley meal is the oheaper. -WoodMAN.
[12266.]-Photographio. - The canse of your negatives fading away on expesare to light most likely is that your fixing solation is not strong onongh. This
cannot be too strong. Fill a large glass bottle as fall as possible with hyposulphite of goda, leaving room for a amall quantity of water, as the solution is need add more wator. Thas you will get different strengths, the best of which, of coarse, yon will nse. The whole of the creamy film which is on the plate after developing must be dissolved,
distinct. J. H. H.
[12288.]-Strengths of Wrought-Iron Shafte. $\frac{\text { (Diameter in inchen) } \times \text { rev. por min. }}{200}=$ horso-power. $\frac{(2 \ell)^{8} \times 170}{200}=1828$ hqree-power.-S. J.
[12270.]-Charcoal Furnace for Model Bolier. -It would be beat to allow the boiler to sit in a cast-iron ressel somewhat larger, with a small opening at top for the smoke and blast stoam to escape. By this arrangument the spirit lamp mentioned coald be used,
leaving a space at the bottom for either lamp or leaving a space at the bottom for either lamp or char-
coal, with furnace door and draft holes andernoath con, with farnace door and draft holes andernoath.
A lamp of the dimensions given, with three jots, ought A lamp of the dimensions given, with
to raise steam enough.-RAT-TAT.
[12278.]- Water Power.- "Boatis" may allow the water to deacend throngh a wide tabe far aboat 19ft. from his mill. There will be a considerable rush of air and water throngh the bottom of the pipe by which he can utilise by employing a fan wheel.-Rat.TAT.
[12273.]-Water Power.-As "Boetis" neglects to give the mensare of water that flowe in any given time throngh his fin. tap, no practical reply can be
given to his quary.-8. T. iven to his quary.-B. I
[12275.] - Tent for Areania-The following is V. 492). When a solation of stannoas ohlorido in faming bydrochlorio acid is added to an molution of arsenious or arsenic oxide in the same anid, a brown precipitate is formed, which, aftor proper washing and drying, condists of motallic arsenio mixed with a omall quantity of stannio oxide. In an aqueons solution of arsenions or arsenic acid, stannoas chloride prodaces no precipitate; bat on adding atrong hydrooblorio placo. Araeniferous bydrochlorio acid of speailo gravity 1-182 to 1.185 gives an immediato precipitate: the same dilated to specifc gravity $1 \cdot 100$ no preaipitation takes place. From this it may be inferred that the renotion occarl only between stannous chloride and arsenions chloride; further, that in a solation of arse nious acid in hydrochloric acid of epecifio gravity 1.115 part of the arsenic is present as ohloride, but that hydrochloric acid of specific gravity $1 \cdot 100$ dissolves arsenious acid as such, without converting it moto chloride. The reaction above described is extremely delicate and capable of detecting one part of arsenic in a million parts of solation. On antimony compounds stannons chloride exerts no redacing action, even after prolonged heating; hence, the above described reaction may be need to detect arsanic in antimony componads. the solntion having been previoasly saturated with hydrochloric acid. Another nseful application of the same resction is to the proparation of hydrochloric acid free from arsenic, 412 grammes of specific gravity $1 \cdot 164$ were mixed with a separatelad by fitration stannous ohioride, the precipitate hydrochloric acid distilled, the receiver being changed after the first tenth had passed over, and the remainder distilled nearly to dryness. The acid thas obtained gave not the slightest indications of arsenic, either by marsh's test or by precipitation with bydrogen sul. the delicaoy of the reaction is impaired by the soto, bility of ailver arsenate, not only in free nitric acid and free ammonia, bat also in ammonia nitrato According to C. Avery (Sill. Am. J. [2] slviii., 25), the reaction is greatly facilitated by adding to the solation of arsenic acid in nitric acid E fow drops of a atrong solation of an alkaline acontate, and then a drop or two of ammoniacal silver nitrate. Another very good mode of testing is to drop the nitric ecid solation of areenic on recently prepared silver carbonate, the red silver arsenate thon showing itsell very conspicnous on the white groand. Motallic arsenic and arsenions acid are easily oxidised by a mixture of potassiam ohlorate and nitric acid to arsenic acid, which may then be ostimated as ammonio-megnesian araenate. - Watts - Dictionary of Chemistry."-R. E. W.
[12277.]-Aniline Black.-The following is from Watta' "Dictionary of Chemiatry:"-Boil together 1 . itres of Wher, 2 kingg. of starch, 8 kilogs. of ronsted starch, 2 kilogs. of aniline, 1 kilog. of al ammoniac,
and 1 kilog. of potassic chlorato. When the mixtare
has cooled, and immediately before printing, add 1 kilog. of capric sulphide and 2 kiloge. of tartaric actid. The capric sulphide may be conveniently prepared by dissolving 1 kilog. of flowers of sulphar withoat the adding this liquid to a solation of 5 killoga. of ouprio salphate, in 120 litres of watar, the solution beificg heated to 180°. Also by mixing 100 grman of ligat aniline (heavy aniline gives brown instead of bleck) with 80 grms. of hydrochloric acid, 10 grmas . of manganese oride, and 1,000 grms. of water. The preciplm is washod by decantation, and then mized with ammonia, whereupon ite colour changes from groen to ascisted by due agitation, the colour becomes deraloped asbisted by due agitation, the colour beco
throaghout the entire mass.-R. E. W.
[12284.]-Fwsonce of Phosphoras.-Essence of phosphorus is made by disolving one praname of phosphorus in then be dilatod in the roctited ether. This of the solation to ten of reatifled spirits of vine, and one drop is a sufflient dose.-R. M. Harce.
[12285.]-Logarithms.-See answers to query 0898 towards the close of last volume--Exoslesier.
[12294.] - Ingraving by GraphotypenGraphotype is not superior to wood engraving at an
In the graphotype process, if the linee of tint ane inder a certain width apart, the branh will not olent it sufficiently, and, consequently, it will priat dixty.

[12296.)-The Nightingale.-I bave raited a weok, expecting some of our frionds in the Eat
Riding to roply to this query, to whioh I can reply fi the affirmative. There has been two nighty ing heard nightly in Aketon wood, aboat two milen frome Oaetloford, daring the whole of the spring months of the present year. They were so near together tinat I myself only wont on one occasion, and thee only heard one of them, but two of my cons whom I hea behind heard them both the same night; as did scores of my
time.-Bod.
[12800.]-Direotion of the Terreetrial Iters, dian-If "Youngster" will take the troabjo to
 nine, which I suppose is the line he wanta. I ame too mach engaged apose is the line bo wanta. I am too mach engaged at present, or 1 would refar to the
volumes for him. Try aboat May, Jame, and Jaly. 1870.-W. R. Biat.
[12304.]-Phrenology. - The pertod of deareteristic development differs very much in disureuts
individuals, and I should recommend " gan , to go into his garden, make a fow obeorvation is writing respecting the period of development of hit plants indoor and outdoor, apply the carme or synonymons terms to the haman plants he sees every query some charrive at a correct solution of ho qualitios at chilaren manifest their charmoctaristic developed too osrly, a diseased condition, oftem saperiinduced by parental vanity-the sequel, early death. Others arrive at thirty years of age before they ehowe. spark of intellectaality, others are idiotle and nevers influenco on Rymes " (aays "is "the brain exarcises any that all growth is from vithin, and would ait epres the bark of a tree obstruot ite growth ? And no the horns of the dilemma. "Sanal By anean now for correctly in supposing the brain cap able of inf the shape of the oraninm before the latior hasement its osseons natare, bat "8sal Rymes" meat hea that edacation, as he applies the term, is quite misnomer, for ho seems tolebour ander tho font orror of regarding it as a oramming
completemogy, of the word itself furninhere fact is sonntion of our friend's difinealty.
Bat to be brief, and not lar meotore our bithe charge of monopolising apece I concilato by to the "Saul Rymea'a" attention to the following =- -10 The pro-natal infirences are nearly ovarything-to prove it read biography. (2) The coft and impreceibls
 kething, often preduces death, by shattoring ite perves siong. (8) The satures of the craninm, which Natore has not forgotten to provide, to facilitate the syncbronous growth of brain and oraniam. "Eaal Bymeen should ask any old woman about this point. (4) As regards edncation, I now refer, of course, to post-mata? infuences ; it is a fact that every look, smile, tremp ohild; bat "Saul Rymea" will And it necosaary, in an his inquiries to remember thet in aech of thios in aences Lord Bacon's concise remark, "it feedet it findeth," applies with incontestable forco年", "Bavil lightost degremeinted with materialiom fotalion tho ss the viows I have expressed are perfeotly concieterat ith a progressive spirit; and since no ohild is comit will be born, neithor can it eradicate aftor its birth any of its powers ; the only thing it, or "Saul Rymean " marine.
[12304.] - Phrenology. - Phronalogista mill not allow that they are in the dilomma san Rymeno: sapposes, for they allege that the bones of tho atronl
that they continue to grow long after oducation commencos, and that if the intellectual faculties and mora zentiments be more educated by exercise than what they call the animal propensitios, the fore and oppor part of the head gives more and becomee larger in proportion than the hind part of the hema. They farther sidarably, though more slowly in adulte, and does alter sidarably, though more slowiy in adalte, and does allor is mome organs of the mind, sa they call cortain portion conaider what is called phrenology cither precise conangh or proved onough to rank with establiched
celonoo, bot it is far more like acienco than ita opponents woald represent it, and a great doal of unofal mowledge is tanght by phrenologiota, along with not a little that has but little foundation in true obmervation. $-\mathrm{Pmino}$
[12304.]-Phrenology.-" Sanl Rymea" akks at what period of life the organa are deraloped. Δ_{B} our motto is Res non verba quaceso, I will anawer him ae briety ${ }^{2 s}$ possible. Thero is no period of life at
Whioh the organs mill not grow is vigoroany exercised. Thieh the organs will not grow if rigoroaaly exercised. intellect beeomee devaloped, and next the moral feoulties. There is no defnite time for the developmeat of organisation aftor birth ; cironmatances tond greatly to Warde devoloping particalar organs. II "Sanal Rymea" is at all convoreant with anatomy ho muet know that the brain is Arat formed before the boney partioles are aid down, conseqnently the bones of the skall adap hemselves to the brain, and are not completely ossiled for geveral yeara alter birth. Now for the dilemma into which he presumes phrenology to be piacod-viz., that the organs cannot grow after the stall becomes caliced. Iwo processes are continually at work in the haman frame-riz., absorption and deposition. Preaming an organ to bo molivel exercied, there is a considerable frietion between the convolations in colion and the corrceponding interior part of the oranium, and as a matier or courto the waito matter carriod oil by the absorbents. So active is this that in many casen of madness tio sirall bocomes quite worn through. I possess the skall of a drankard Worn in this manner in the region of the templen. Let "ganl" take a skall of any person (if known all the bettor), and place a higat whal it, and ho will see the motive orgapa whare the light shines through. As to號 the eame, and we can say with Gall, This is trath, Caisp.
[12304.]-Phrenology.-" Sanl Rymea " appeara to think that the organs of the brain, acoording to phrenology, are indicated by "bumps" on the skall, footly smooth, and it is only when an organ is developed in excees of the neighbouring organs that an elevation or protuberance is presented. The brain of a child at birth woighs about 100 z ., and that of an adult from 2 4 lb . to 8ilb. (Cavier's weighed 4lb. 10oz.); and as the brain or a quence, be considerably expanded and onlarged to contain the additional volume of brain when it reache matarity. Any anatomist, without appoaling to phre nology will satisfy "Sanl Rymea" on this point. of the aknull, which it alls exactly is such mannor that knowledge of the bony part gives us information at leant of the form of the exterior of the brain. It in patent to overy one that the brain and skall of a ohild are considerably emallor than that of an adalt, and hence both of them must be enlarged to a considorable extent before they arrive at maturity. How could this ocour if the bones of the heme are not "distortod by the coft mass of the brain "? The stall is not an adi-
mantine barrier conaning the brain within speoitio mantine barrier conining the brain within speaice boundaries. Although a atrong, it in a ahangeable covoriog, avd will arway socommodete iteait to the dovalopment of the brain during its growth. There are
many instances on record where in cortain diseaces of the brain the bead has been enlarged to twice ite normal dimensions. How could this happen if the normal dimensions. How could this happen if the akall did not expand to meet the requiremente of the onlarged brain 9 I hardy know what "Sanal kymoa meane whon he extares ita peculiar development before ednceation stops in," 4o. Saroly, he does not euppose that edacation in," to saraly, he does not cappose that edocation oither cretion or dovesop organa. rit only intonaitea horself gives the tools, and eduontion only applios them horself given the toir legitimato nee.- Nortioncbath.
[12805.]-Locomotiven.-The principal edrantage in that the hoat is more fally atipised in a long-ber. relled 1000 motive than in a short one, and, as a con hequenco more nieam genoratod by the gron fantages; a greater mate of boiler tabea by the blat cinders and cost of repairs: bat come engineors think that the one or iwo edvaniages of long-barrolled looomotiven RAT-TAT
[12806.] - Botanical ITamen. - The botanical name of the Persian ar Fronch villow is Epplobitum angustyoum, the fowern, whiok are parplo, grow on all Hrow wont everywhere, even in the conined air o chowy plant, with large roso-colourod fow
ehrives woll in damp sitationg-W. R. Birt.
[12806.] - Botanical Names. - The French illow to Epiflobium angucifolism, sataral order, Ona raceic. I cannot And nuch a name ac roso-pea in any
of my books. It may be Ononis campestris, a plant with pee-lito, roso-coloured Iowera, and leaven accom panied by spines and prickles.-Coznvbia. exiel
[12811.]-Eydraulio.-The woll being 25ft. in diph, containing 10tt, of brackiah weior, there aro dir. of rala wabor added to it, Which, boing intimataly nized, renders it tolarably palakable, and an long ns the Tacs ls above ha spris lovel, of courab, no mare rraokiah witor will o be that ho imagines that the two hinds of wator onghi to keop soparato. Now, boer and wator, diriering congiderably in apeoinc gravity, can ony bo alled into tumbior and caceed to reop separato by interpoaiag asil handikerchief, and to silghest distarbanco, such an pamping, woald inovitably cause inatant oomninglumg. I very mach doath the possibility of any two sorte of wator boink introducod into one rooep-
tecle without instantly intarmixing. Also, it mast be tacle without inatantly intarmixing. Also, it mast be aken into acooant that when the nataral apring lovel it added to, that it will flow back oat of the
the one balances the other.-A., Liverpool.
[12811]-Eydraullo.-The light water is on the
 top not only in the woll bat also in the tabe, and therefore the light water comes out of the tabo and the top of the trbe is immodiataly again filled np with light water. The water moves round as the dotted line show. The wator moves like the air in this respeot. If you open a barrel of beer, wine, sec., in the lower part you will got the liaid from the top.-H. Mxize.
[12817.]-Red Prusaiate of Potach may be prepared by acting on a solution of yello prasiate
with chlorine till it no longer gives a blue precipitate with iron per selts, oraporating and arystallising.

-S. Botroxs.

[12818.]-Artificial Oils.-The oils mentioned ure isomers, but have not as yot been converted into ane anothor. Oil of cinnamon and oll of winter green 1871 edition.-S. Botrone.
[12819.]-Dyeing Pulp for Eugar Paper.-Add a emall quantity of green copperac. You oan got it a dark as you like by increasing the dose.-8. Botrons
[12321.]-Chess Player.-I bave atatod in my chers columne in the Gentleman's Journal, and aleo in the Echo Americanso, that the antomaton ohess player at the Orystal Palace is moved and vorked by a man who is concealed in the igare. I wrote a longer artiale on it about three or lour yoarit aco, which appeared in $\mathbf{t w o}$ or more German papers and wad H. METBB.
[12888.]-Scareorown. -Try a cot of modal vindmills, ourrying pioces of looking-ghes on the arms Proved.-S. Botrone
[12381.]-Geometrical-Let the given points be called \triangle and B; join them. It the lize $A B$ be at right angles to the given line it is impoesible to colve the problom, unless the points Δ and B be equidistant from the given line. If A B be not at right anglea, bisect it, and through the point of bicootion draw ${ }^{2}$ nill une at right nagien to A B. Prodan Prote by Euclid'e "Elements," Book I., Prop. 4.-Crivos.
[12381.]-Creometrical.-With any rediral exceodIng half the distance between the points (thoir fall
distance is a good radius to take) strite arco from eanh dietance is a good radius to take) atrike aros from eaco of them intersocting; and a straight line throagh thair wo intarseotions has any point in it equidistant from the two contres ; concequentiy will
line at the point required.-E. L. G.
[18881.]-Geometrioal.- $\mathrm{L} \mathrm{L}^{1}=$ the given straight
 tino. P and Q are the
 [12886.]- $\overline{\text { Ine Root. }}$ -Cuttings from the the early apring montha, under glass.-8. Bot
TONs. [12888.]-Eypainth Bulber are dried ahd atored in paper bage hang up. Plant out in -s. воттомs.
12840.] - Flour

Paste.-A few drope of carbollo acid, or a fow graini of corrosive sublimato, added to each pound of pane made, will provent moaldiness. Ees
12848.]-Spanieh Pronunciation.-The "th" ound is the only correot pronanaintion; the " es " it lovenly.-f. Bortore.
[18948.] - Epaniah Pronunoiation - I wiah sore compotent travoller would anowor one part of of overy z, or every theta (as Spaniards call it) roally appliee to that lettor when Anal, as in the words wrz, poz, crus ? I have heard nativea of Spanish America. axcept when deoidedly ralgar, so constantly give the th cound (eharp as in thinki) to both ce, ci, and the initial
and medial z, at to leave no doabt of ite correetnens and also give the Ansl d, mof Verded, Madrid, very noar our fat th, as in the; but a final z I havo only know whether this is an Amoricaniom ?-E. L. G.
[12348.]-8paniah Pronunoiation.-I beg to aceure "Onat Steel" that the Oactilians and inhabi ants generally of the Northern provinces of Spain do most cortainly pronoance the c before e or i, and the beforo any rowal, as th (hard), and not ac is. They talk of Zaragoza, which they pronounee 26 if writton Tharagothe, and thoy ray Cioncia (pronounced Theenthic), moanipg scionce. Those pooaliaritios I mysolf have heard in North Spain, oapocially in Old Castilo bat I was tald that in the eouthern provinoes, eapeoinlly in Andausia, the sounds given above are obanged to tha a sharp, and saon words woald be pronounced Baragoas, and sebnila. Thongh the Castiman is the puront form of prozanciaition, I am inclined to think hat the Andalusian form is of wider use, and it is the one which is almost invariably used in South America and the Spanish settlementa.-Wm. Wrat

UNANSWERED QUERIES.

The mumbers and titles of quories whioh ramain m. ancoored for fwo woeks are imsortied in thio blist. We cruse mation they cem for the bemeft of thoir follow comert butora.
since our last "C. W." has ancwered 11650; "The
 "Siriane" " 11879, 11898;
"1892; "Thetama," 11910.
1986 Chemical Propertios of Tee Loaves, p. 988
Extract of Trea, 288
Edward' Graphogenlc Apparatus, 288
Dry Solder, 288
Chat ${ }^{288}$ Hating White.-To "Auld Rooldie," 288
Keeping Duat from Turret Olooks, 98
ulquor
Mhe Gyro Pigeon, p. 289
Ban Screen, 289^{\prime}
Fiahing Nets, 280
MIning Query, 280
Boller, 289
Pooltry Broeding, 280
Ronin Oreace
Roeln Greaet, 290
Aérated Watar Mehinee, 280
Aératod Wator
Onnarien, 280

QUERIES.
[18850.]-Sulphurous smell after Thunder torma. - A gontloman maked me the other day 1 Iknow what was the cause of the salphuroan amell Which sucoeodse thunderitorm. I repliod that it was gonerally attribated to the formatiom or osona But he In China (cocording to the usual teats), and yet the game pocaliar amell is notioed. If any of your correspondonts can verify or explatin the dircumstanco, I shall be greatly obliged-B. \mathbf{U}
[19900.]- Pivota. - Will any brother inform me the beat way to harden amall drills for putting plrota tmo farts, do. 9-No Bory Bonden.
[12381.]- Oarbon or Oharooal Plpes.-I Wish to mate come tobacoo pipes of the zbove mater
any reader desoribe the procesa ? -W. ALLAx.
[12se2] - Formula.-What is the formala for Anding the content
[19888] - Reoovering Indigo. - I zhould feel obiliged if any of "our" ohemical correspondente woula inform me how to recovor indigo from othor blues, groaee, and dirt, I havo a areat quantity, a.
thould oontalin about 25 par cont of indigo.
[18806] - Fioint. - I havo made a holet from a akotoh by. R. Gwabta, givon in your vory relaabie jouraah, Fob. 9, 1872, reply 10561 . Fiverything is attod up in the

 other obliging correapondent toil me through your
 [19ess.]- EHder Flower Wine.-To enoh gallon of of ralslne The raining are to bo pioked. ohopped, and pat into the oalk; bofl the sugar and water, and pouir it over the odder inowarn, and when now mile warm, pat uttile yeast, and for cenoh gallon of Hquar pat haf a plit of older flowers, Thioh muat be ploked orir Fhen ast romdy to fall ofl the troes; plok thom olear from
talke, then lot all wort in the tab a day or two, then turn into the calk on the ruising, and whondone worting bung up and koep for two montha. The above is an exoollont recipe with this exception, the wine is never briek and gparkling as is ought to bo Oan any of your
romdors inlorm me whorain I fall to make it co ?-

[12368]-Pianoforto without Btringg-1 am kind ottontion to my Harmonions Blackemith for hif 12175). In hio roply (p. 857) ho allades to a plano with out atringe, the patont of Mr. Goldsworthy, and aleo to one which he poesensos, formod with ribrating apring
 loen, as "The Harmonlore Blackamith" is a most ingenious and solentico meobanio, this piano of his is not
only ourioas but harmonions-aven an improvement on Mr. Golds worthy's instrument, and, therefore, e descrip-
tion of it could not fail to be highly intoresting to the tion of it could not fall to be highly intoresting to the regard it in this light, and be indoced to givo his follow mechanics such a practioal necoont of it as will set them all either constructing or thinkiug. A piano of this class hus the pleasing peculiarity of remaining conUnally in tune, never requiring hat the Argt toning, a
quality emtnentig desirable on shipboard. Ithink, too, quality emtnonty desirable on shipboard. I think, too, Instrumont-E. B. Frxurses.
[2367.]-Oval Turning. - I requiro to tarn a number or pleces of hard wood an oval form abou in. in thickneas, and 8yin. length of oval-having nuly
imple lathe I am confined to circles. Can any of "our simple inthe 1 am conined oo circles. Can any of our
correapondents kindy inform me if any spectal form of lathe ls required for ovals, or oun it be managed by a
 rolixnezs.
П2838.]-Imitation Bronze.-I am exceedingly obiged to M. W. Bolton for the Imitation bronze recipe,
the offeot of which is excellent. 1 , however, fad a great dimealty in dissolving the corrosive snblimato. Ought It to bo boiled in the vinegar, or would it
dissolve it in some kind of acid ?-J. W. C.
[12809.]-Water Powder.-I want to get an instrament to make water powder (Fronch poudre d'eau). On indiarubber of Engliah make and patent, mach cheapor and working nearly as well. Oan any subscriber givo me some information, as the makers I I have as
it do not know such instrament $-L$. J. V. G.
[12877.]-Liquid Roain. Will "Fiddler" allow me
 [22371.]-Trues. - I shanl be mach obliged to any of
yoar reader wh ccan inform me where I can get a trans your readers who can inform me where I can get a truss
for rupture, that can be worn when bathing or whether there is anything, of the sort made specially for the parpose. The sufforing is so intense when swimming unless I can get rolief. - Nosbor.
[12372]-German Conoertina.-I have been ropairing a German ooncertina of my own at home, and me how to get out of my trouble, for I havo made a set of foar plates of tonguee in stoel instead of metal, hat
I cannot make them speak. I have tried every way, bat I cannot make them fpeal
I havo failed. $-\triangle Y A T Z O R$.
[22978.]-Softening Spring Water:-I havo a doep well of excellent spring water, hut unfortunatoly tod Fell is 8 ft. 6 in . diameter. with an averago dopth of 9 it. In water, which does not dow over at any time, nor faii is some chemical production cannot be periodioally put into the well, in proportion to the daily consumption of
water, and thereby render the same more soft and erfoctanal for its many services. As each bucket of Water dipped from the well would probably weaken the action of any chemical infuence throngh the continued
sapply from the spring, would tion be more effectual is sapply from the spring fonid it be more effectual is
oontained in tank for dily uso? Perhaps your IIII favour me with his sugreations for reliof in this dimenlty.-Gmexw, Ontario.
[12374]-Anolent Wrought Iron.-We are told by Mr. Forbes, F.R.S. in his report on the progress of the sntiquity of iron smetting in Indis, and also of the largo Gorgings in wrought iron which conld be exeonted
by a people who now appenr to have eatirely lost the art, the fact that Mr. Mallet hat direoted attention to a wrought.iron pillar situated at the mosque of the Kutab, nas old as 1500 , years; yet is as large as the screw shaft of some of our largest stoamships; that part of the
column above the level of the soil belng 48tt. higb, with a dimmeter of 14 ft 4in. at the base, and 12in. at the crop immediately below the elsborately chiselled capital. Are there nny angong your obliging correspondents who
oan throw more light apon this evential period of early can throw more light upon this eventril period of early,
handicoraft v. the present age of machinery ?-GrLLEM, Ontario.
[12875.]- Metallio Stain for Wood.- I have heard of anch; giving a very dark-almost biack appearance to deal; afterwards to be varnished. Will one of our
correspondonts obligo me with name and mode of pre-

[12876.]-To "The Harmonions Blackemith." request contuined in the postsoript to lettor silh; but desired. It our friend will kindly lighten my derkness on this subject, he will oblige-BEACON Lovori.
[12977.]- Fall of a Bullet.- I was aboat sending a question on the following suhject. When I happened to scopes" in your last issue. In this letter he says:- It is, of course, perfectly true that gravity drama down the most it wirfy traveling builet-fired horizontally-so that it reaches the ground as yuickly as a ball dropped
from rest from the same height.i. In a book on practical mechanice a similar sentence to thin is modified by the words "rrom the top of a high tower," being ndded to ballet fired, and a ball or ballot aimultaneoualr dropped. from the top of a tower 200th. high reaching the ground eimultaneously; but it seems to me impossible that 2
ball dropped from the height of 4 it. from the ground should take as long in falling as a buillot ared korizon. if ifr. Proctor woald make thia matter mach obliged clear-by diagrame if necessary-now that he has performed a similar operation for the apward deflection of bullets.-PuzzLid.
[1237R]-Bat Making. - What tool does a bat maker use in smoothing; and how do they make them hard io that they will not dent with the ballt Which is the
heort glue for ginlng in bandles? Where can I get cane for handles? -Tre
[12s79.)-Packing Piston Rings, - Reforring to
auery 14158 , concerning pucking rings oi piston, I would
like to know whether "A., Livorpool " intends the piece
 orsi gun metalwould do for rings, as I
[12980.]-LIght. - Let thero bo a darkened room with no entrance bave a door faeing the son; in that door let
a bole be bored, and a ray of ligbt cames in cocer the Y SiIP.
[12981.]-Education.-In common with many othor down to sny part of the country, I know what towns offer the preatost advantages. I wan an edocation to at them elther for professional or hasineas life, and it must he cheap. There are, I believe, view to the royal and merchant navy; also a college
 or the neighbourhood of London, bat this is not essential. Any
[12989.]- Flectrical.-I shoald foel gratefal to $\mathbf{M r}$ Tonkes or any other electricisn, 1 , teral resistance of a battery by means of a tangen gaivanometer, the power of the two celle, amonat of external resistance brought in by the Jntroduction o
 either entirely onitted or else skimmea over. Accord ingly. ir Mr. Tonkis is in ome book in which it is so done, 1 should be most doeply from the tangent in constraction. In reading a work on electricity, I saw it mentioned that a machine entirely made of guttaperoha with rubbers of hareskin was both less expensive and also more powerfal than a piate ghas machine of the same gize. I should be obiliged if any ol
your contribators that have tried it would state their ex perience, and also the cost as compared to an avorag故e mechine-E. N. D
[12389]-Working Perfect Plane Surfacee.-Will any reader kindly describe a pood mothod of arinding perfect ple
Robzers.
[12384.]-Coppering Carbon.-Wul some reader of easient easieat way of preparing earton, so
may be soldered to it $9-F$. J. WaLL.
[123s5]]-Sulphar in Wall P
[12335]-Sulphor in Wall Papers.-I bave re cently had an air-tight, glase case papered with an viltra
marine paper, and and vilver poods pat in it diacolous very rapidly, and as this stallifies the object of a glass case, I should be obliged if any "mechanic" would enggest a remedy to me. My inen is that there is snlphar in the colour, from the character of the tarnisb. If ao, I sappose there is no remady
now one. Gave.
[12888.]-The Prevention of Incrustation in Bteam Boilers. - Having proved that the use of a few preces of onk (he greener ho beller) a aleam bolle proventh ind nase of the onk, Which hall an hour's work pill remove from the boiler, whereas formerly it ocoupied teo my workmen for two daya, at intervals of a month, to chip off the inorastation with hammers, this be
a hot, arduous, and irksome task.-J. D. K.
[12387.]-Amateur Organ Building. Thanks to I did not mention at the time that the only room I hav available is $18 / \mathrm{h}$. long br 38 t . 61 n . wido, so that 1 shall,
under these circumatances, have to elongate the dimen under these oircumstances, have to elongate the dimen-
sions given, making the same area-via, 7ft. by $2 f$,
 back. Will bellows of these dimnnions he more difficult to make, and will double fecders be advisable to make
do its work woll? Would it be better to make the Boardon on a larger scale than bin. by byin. CCC. for the organ in the above montioned query, or will it be powertal enough on a 23 in . wind? Which is best, a
Bourdon of small scale, well blown up, or one on a large Boardon of small scale, well blown ap, or one on a large
scale. moderately winded ? Of course, where room the grestent consideration, the former is best, bat which is really most effolent? I am glad to see that "J. D. interesting papera, as no donbt a great many besides myself are at a standstill for further instructions.- Y. Z.
[128888.]-Onions.- Will any reader tell me which is the best kind of onion seed to now st the ond of July, in order to have very larke onions for exhibition next I have irred the Tripolian onion. hat it does not koep very well after it is taken ap.-A Coal Miner.
[12389.$]$-Dirty Mercury.-I have a lot of meroury other combastible. Will any kind reader of the Evolibu Mroganio please to give some information as to the best way of cleaning ont the adniteration? Also, hnw
is a barometer tube cleaned after being flled wilh the is a barometer tube
above - C-C., Glasgow.
[12990.]-Chemical.-T be writer woald be obliged to any of your roaders who can inform him of one of
the best works on elementary chemidtry suitable for a he best works on

- Hoxr 8rudx
[12991.]-National Losses. - Havo any political economigts formed any estimate of the absolnte loss
under all heads which we, ns a nation, are called on to ander all heada Which Fe, ns a nati.
make good annually ${ }^{2}$-ExCristor.
[12s32]-Bee Sanagement.-In Novemher last hivea, I know nothing of bee menagemet and the result was rhat two out of the three stocks died in Mayy the remaining stock is very light. In taking ap the hives I fonnd on the floor bcard a number of maggots
din. long, and protected with taking out the oomb I found that the maggots had inade maggots on the foor bnard of my remaining hive. I have made a wooden hive 1lin. aquare. My wivh is to how to do so I know not, as the straw and wooden bive are not tho snme size nad shape.
to trangfer them, and when. $-W$.
[12393]-To Steady a Bketching Board.-Msy a trable a correspondent to advise me abont stendying ment, such as a camera lucida, In any place? I suppoee tripod stand is the most likely thing, bat even tha pazzios mo in endeavoaring to steady in. on stope pave
ment, for instance, and how about tho wind ?-PoLoskr [12394] - Frot Saw. - I hnve a frot earr, whioh makee making the least noise?
[12995.]-Extracting Wax from Old Comb.ried boilligg and straining I have been tarning out some nid hives, and want to do
omething with the comb, which is montly bleck with something with th
age. W . HAWrixs.
[i2996.]-Rouge. - Will any kind friend toll me the practical method of proparing roago or plate powder as made in factorier (ronge sod
sulphate of iron 9-L. T. W.
[12397.] - Boatbuilding.- Will some reader kinoty inform me what sort of wood the ribs and planking of onats are made of, whether the ribs are bent or cat to
the required fhape Also, what shepe tho plank are the required rhape ? Also, what shepe the planka are
cut no as to pet a straipht ganwale a are they cat fapering on both sides or only one $9-W$. 8
[12398.]-Bilver and Gilt Articles-Can sorm of the numerons readers of this jural give me a fec ita original colnur old gilh. parcel gilh, Rad silver articles, wilhont injuring the articles? Also, tell ase thero nay work on this subifoct from which I could get
 [12399]-Organ Building-Will any of "oar readers intereated in orkan constraction hiodly gire
description of the viol d'amour stop? Also gap if tber description of the riol dramour atop? Aluo aspit there
is any diferonce between the Wald and Claribel Iutes is any nifferonee between the Wand ava Clarinel ante end with is the best way to arrango the peda Boardon
when the room in only stt. high: to lay the pipes down and have verticnil windechest
are sometimes done? Z .
[12400.]-Parrots. - Canany reader tell me the name of a pair of parrots that 1 have? Branken and topa of
heads bright scarlet, throats blae, backs red and black lower parts of wings green and blae, tails light bloo underneath and very dark hlue on top, slate coloured feet, horn coloured bills. They kre nbout 18in. or 13 le . io length, half of which is tail. I nlen want to knowik
they are likely to breed, for they foed eech other tike pigeons,-F. 8 Y W
[12401.]- House Painting.-I am aboot to do some painting. Will sny of "oar" readere inform me what
proportions of white lead, tarps, boilled oll, and driars ω
[12402.]-Grease on Leather Bands.-Cas ar fellow subscriber inform me it it is possible to take on Wholesale.
[12103.]-Brass Moulding. - Can 2ny rasdor to Porm me what process lead has to nidergo bofore it wil
mix with copper and zino I have been told that it cas mix with copper and zino ? havo been tol
be killed by boune chemical-Nortingeram.
[12404.] - Trigonometrical Theoreme. - Tho III, pr. 18, or from Eaclid VI., 8.-

Sec. $2 \mathrm{~A}=\frac{\tan .2 \mathrm{~A}-\tan . \mathrm{A}}{\tan . \mathbf{A}}:(1)$
$\tan A-\tan \frac{A}{9}$
Soc. $\Lambda=\frac{\underline{1}}{\tan \boldsymbol{\Lambda}}:$ (2)
tan. $\frac{\mathrm{A}}{\mathbf{2}}$
Will rome mathematiclan furnigh the doduoliona, ellhcr
from Euclid or Legendre, and prove the same by trigefrom Euclid or Legendre, and pro
nometry?-THETAMO (Horsham).
[12405.]-Boller for Model Steamboat.-Cian ast
subscriber tell me what sluuld be tioe shape and sire c^{\prime} subscriber tell me what elluuld be tije shape and size co
a boiler I should want for a model padifle steanib.2it 31 in . depth of hold, 4 fin . beam. and git. sin. lone? the sixe of my cylinders are four tifths of an inch diannet
[12406.]-Worm-Eraten Violin-1 hare an old vilin, rather badly worm eaten, can any ose tall tase
[12407.]-Checkering Tool-Can any corresseclieckering bard wood or irory; nian how to mako otel

[12409]-Quill Pens.- Hnw are quille propared to $t: ~$ rem
[12409.]-Transforting Pencl Drawings on Yaper to Boxwood for Engraving.- tan ant:A zencil dra
game.-E. B.
[12410.]-Chemical.-Will nny of your subacritare
 which would have the power of proventing meris: animal, and vepetable maiter from adbering to inem, b nt the same time free from auy damaging
effects on iron? The suhstuce I inquire rot possess adhesivo qualities. I want to apply $1:=$
coujanction with a composition which bss tho
[19411.]-Expansion Jointe - Win give descrintion of one or two of the baty mberer joints for a loug castiron guttor? state how far sta -ExCELuros.
[2419.]-Skew Bridge-In a akew bridge shon:
counterforts be placed at rivht anglos to abatmeute

[12418.]-Harmonium -Will "Proumatic Low

[12414]-Cleaning Feathers- Will noy one
me know how to clean white fostherl on the skmer er
grease and blojd stain?.-3. S.
[12416] - Provision for Child, What it the present ralue for fro shillings per week to be paia old ? A obild twolve monthe old unth thirtoen yoars or the
How cen I calculate thle, or what matlow for

[12416]-Spinning.- How many rovolations per minute does the aplidie make in spinnigg hato how many twista are there per inch answer be partioulariy for wotton, but engwora for other materials will be gratefally ootion, but s.
coopte...
[1217.]-Hardening Spiral Springan-II some brotber reader woula kindy ingrm them in water and letting them blaxe off with tallow, bat I And them sometimen too hard, and more often too sort; thoy are thom in., and tin. steel wire. I have trod pating tho In oll withont letting down, bat they gire boo soin cannot springs you bay are hardeno. -6parros.
[18418]-Registance of Stool Plate to Air Pressure- Will any one let me know, what
 plate chamber woen has ever been tried on a railiwas ?-A Staxer
[12419.]-Photography.-Will some one kindly toll me what is the fixing solution for pictures taken on the bichromate of polash and gelatine, or grm mixturo; and also desscribe the What
at all pecaliar in it q-A.
[12450.]-American Chucks.-Conld you, or some of " onr" gabsoribers to the RNOLIsB MrcEANIC, givo mysolf and others detail plans of tho Amerck, also the chack, the Warwick chack, Excolily expendive to puroeaio for nome of us hamble mechanica, and we might ohase for some of us mat our lelsure th we had detail posans. Not required to scalo; we could make our own proportions. If this request conld have attention it propld greatly oblige mytiall and other friends. Conid We aleo bo favoured with the mode of cutting the apira fote on
[19481.] - Enlarging Photographe. - Can any reader kindly inform me how photographs may be en-
largod by the aid of magnosiam ught ?-IMDOSTanour
rixl.
[1202.]-Steam Power.-Would any competent portable eteam engino driving a machine making 1000 porointions per minnta, and Ifind it very diflicuit to keep up ateam, the engine crank shart naking lic revo utions per minate, siroze 13in., diamelar of oylinder sin. Would it be better to introduce a counter shaft with an sdaitional fiy-whoel and redine? Pat. angine ? - Par.
[12483.]-More Light Wanted.-In a rango of shope three stories are built along two yices or a plece of ground. How is it possible in a oheap way to give more light to the corners where the property edjolving rill not allow any windows to ovarlook them so that there is a considerable space in each ahop that cannot be ised. -AMTE Loorl.
[12494]-Preserving Green Peas and Goose-berries-Ag green peas and goosoberries worrespondont woald give us the method adopted for prenerving them fresh in tins for winter use.-J. N.
[19425.]-The Belgtan Glass Trade-Can any reador of the Mrchanic give any information aboat the Belgian glase trade, when it was established, Who by, and mhere, its present extent, snd any othor p
of its history and development q-E. Howncis
[12426.]-Piano.-Having parehacod a plano a fow weoks bince, when on ti Imar surprised to hear a terrib to proceod from a Fires, which, on examining, I found to proceoed the and and part of the soandbuard harith ber readers tell me the Gavece, and a remody ?-A Suzsosraze.
[12487.]-Entomological.-Can any of your entomologioal readers tou me or what is the larva? The maggot can ofter be fonnd in the mid rib of the lower leaves when they have turned yoliow, as seems to bore itt way upwards from the stem, travolling along the natural canals or passages in the substance of the lonf-etem. The same or similar harve may be the lower
 how they got there. - Mriosh.
[12-28.]-Air Vessel for Pump.-How can I ascertain what aize to make an air veasel for an ordinary force pamp? The pamp has a zin. barrel and deivers a pint at each atroke, the water being forcod out through a ralve at the top part of the barrel. Is it fmmaterial What sized air-chamber it asea, so ong as anensions of the pump If the latter, what is the best material and shape of which to make it? it is wanted to deliver a conatant atream through isin. rubber hose with iln. delivery jet. fitted with tap to regulate the quantsty of water.-F. B.
[12499.] - An Fngincering Inquiry. - I zm twonty-one years of ago, and hape alway had a kaste for onglneering, bat unfortunately, novar had an opportunity of learalng that particular businers unil now. What would yon recomruend mo to loarn so at 1 may be fitted for a situation as engineer on board a seamer,
also how long ahould 1 serre in a foundry or machino-shop.-J. A. P. BpEnce.
"Flint Jaok" Again. -The notorioua forger of antiquities (who gives the name of Edward Simpon, of Whitby) has, it appears, being very aetive of lato. He has tarned ap at Stamford, where it is stated ho has boen basy manufacturing rings, monastic seala, and fint arrow heads. Mr. A. C. Elliott, of stamiord, sete eopies, that the yonng colleotore muy recognise the fabricator on his int visit.

OHES

arr commanications intended for this department to on madressed to J. W. ABBOTT, F, Claremont-placo, Loughborough-road, Brixton, S.W.

Tha "Wentumgtre Papres."-The Westminater Papers is now reoognised as the lending exponent of Britinh choes, and for racinoss and general ability nothing like it has ever appeared in the periodion iterature of the game. None of the alole of ite learning and resoarch which characiorisal moet io prodocescors is to be found in ite pages ; ite news is not "ancient history," and its probiems and games are neithor "ourious reprinto" aor, as tho phres con "seleotod from varioas soarcos. Elo the iretemit tains a sammary of the procecaings of the math in all parts of the world daring the pabit month, tore latost games of tho best Eaglish and ioreign playerp cocompanied by jadicious noterand instruciso pala and at leant thirteen problems of more chan rerf of morit. We may ada, although the sabock a teo tho our provinoe, that the Westminster Papers conteining received anthority upon whist, each namber the finet three or four gemes from setual play by the fanest on croquet and other games of shill.

Problex VI.-By Hemby Tubton. Black

White.
White to play and mate in two moves.

Solution to Pbobley V.	
White.	Black.
1. B to K Kt 5	1. P takes B
2. B to K I	2. Angthing
8. B or Kt mates 200	

TO CORRESTONDENTIS,

E. L. G.-Wn should like to re-pabish the article on "Repablican Chess," bat to do so woina lead to many inquiries which conid not be satisfactorily replied to.
E. T. Gbarg- We shall, in an eerly number, commence pablishing positions in the form of enirmas. In you will send un your name and
mention shali be forwarded.
A. W. Coopra_-Problem I. is easy. Problem II. is a good problem, and it it sta
W. ArREY.-Problems of more than four moves doep are not faroarably received by the majorit
Wo propose to give youra as an enigma.
C. Sratis-Problem I. admits of a solution in two a. 8LATri
(1) $\frac{\mathrm{Q} \text { to } \mathrm{R} \text { sq. (oh.) }}{\mathrm{Q} \text { interposes }}$ (8) B mater.

The other is an interesting
be pablubed in due courso.
. P. (Bedford).-The problem in four moves can be solved thus-

correct and protis, and it shail sped problem. We ahal C. Hrywoop.- Sond the promiced pro.

Wertpicid and A. L. (Dalwioh).-Problems eafoly to G. Wand.
S. M. Banizr.- Your communication not relatiag to S. M. BANxRe.- Your cherd has beon forwarde the proper quarter. Solutions to Problem IV. (continued)-Wisonf (Daiwich); Hermes ; J. Beresford (Vaxhall); C.
Crascr solations to Prohlom V. have been received from W. N. P. $;$ H. Dyer (Cardiff); J. Wareham ; A. W. Coopor; W. Airey (Worsloy); C. Yoo (Paignton); Inductorium; E. St Gray ; Whitheld (Atford); S. M.
Grand (Nowcastie); G. Grand
Bapker ; A. L.
others are wroug.

USEFUL AND SOIENTIFIO HOTES

Trrese is but little doubt that many broken wheols result from expanaion at the hab camed by heated journala. Since the American railroad companic whoels adopted a strict Aystem or intpection of oels.

Drinting Fountains.-Some information an to Dose of these pablic conveniences was dicelosed at the cost of these pubic Metropolitan Drinking Fountain the meoting or the Cattle Troakh Ascociation held lately. These and Caila than 800 troaghe and fountains under tho are more thaiety, and all are viaited, cleaned, sapplied care of the acion reported at the onfee every weak. The with onpe, and ropains for repair and wator rapply conl of the cost of the arerages ans jarios with their size and locality. The anttle troughs varios we unplied ontirely with the wacte mail ang the fonntains, bat for the larger trough Thlor the wathe more than 1,200 horsea, benides other por anals frequantily drinking at one trough in twentyfour hourh
A Novelty in the Brillding Trade-An Exater correspondent writes:-" A twonty-roomed houis, complete with grater, atoves, and attings, has just been brought by ahip to Exmoath, Devon). The sion by rail to North Tarton (North Dovon). North honse was bailt in Norway for a geniceman at North Tamion named Vicary. and, it is said, can eacily bo taken to pieoce and pat ap again in any locality denired. The house will be unohipped at Exmouth, and con oreantion. Groat inand Sonth Weatorn hino to ls asilat alike by omterost is boing taken in this novel cargo alike by omployors and employed in the an inhabited eny opinion however, the house is put up and in the structare must upon the stability or suitability that men have boen be withheld. It should be stated that mon the owner brought from Norway to put it ap, so that iho
will be altogether independen Potteries. -The Sohoole
sohools of Art in the Pottories.- Tho sownis of Art in the Potteries have tris your to South Kencessfal in the examination ot works not reached the inglon. dignity of a goid oy Hanley, and the othor by Stoke been taiken-oag modal for Hanley is arrarded to School. Thi gor modelling; and that for 8toke to Joseph Kilin, for modolinting from natare. Hanloy Robert Abrainam, tor pilver medals and throe Queen's Sohool als saren papila have free stadontshipe, berides prize日, and seven papil trelve stadents are soleoted for which the wortition. Nearly doable the namber of antional compoing. atadoents Bavides the gald medal, Stoko Sohooz wita labil has bera In the asco of Stoke, also, there is a great ooptsipa. prizes over last year. The monolary resuila of ore in adrance of last year.
Teating Inflammable Oils.-A method of rastiog petroloum and other infammabio and and also of determining their specific gravity, has boen patonted in the United States. The apparatas 000 piste of an upright glase eflinder sapportoa in the wo of a ohamber formed in the apper part of a base or stand. A lamp is pleced in the base, the heat from which is tranamitted through the chamber to the lower part of the glase oglinder, and the chamber mas be part of to contain air, water, \&cc, wo required to regilato its intensity. The glace oflindor contains a thermometor, whioh is fixed theroin, and is olosed at the top meter, wrass cover. The barning faid to be teated in made to completoly all the glase oclinder, so that the made to compler is entirely submerged, and cannot be aflected by the aurrounding atmosphere. An oriace in the bracs cover is opened to allow the escape or rapour from the flaid under test, and, when noceasary, the themp is lighted. A damo is held over the orfioe, anderatere moment the ovolvod vapour is ignited the tomperature of the fluid is correctly indicated by the tharmometor. In ascertaining spocite grarties by this oglindar in hy drometer is also placed within the gless aypor in such a manner that its scale tabe is tree to move apor down throagh a hole in the brass oover. The the gless of the flaid testod is plainly visible through
cylinder, and the acale may be accuratoly r

Tbe " Building News," No. 913, July 5, Comtans: The Prince Consort Nutional Momortal; Bir Rlehard Walleceic Collection at the Bethnal-green Musoum; Fine Art at the Inlernatlonal Exhibition ; Architectural Association; 8. Alban's Abbey; othoir of Tournay Gathedral; Holdenty Howe ; Wirer The 8ehool Boards; Modern Axcmitects and College; Bullding The Btrike and Look-Out ; Prizen at Uaivernity Intelligence; Architectaral achools of Art; Corroopoedonce:Institation of Civil Engind ine Conference: 8. Austell Cantral The Bittish Archisdern scottioh Ecelealastion Archiltostars; Schoola; "On 3rodern scillion; Parlsmen School Planntag Compelitioa; InLerso tary Notes; Ott Omea Table; Chis-Chols of Toaraty Oathedral Drawn by A. N Bromior: Holienby Hoase; W. Bletor and B. II Carpenter, ar bromioy, Tarntoekrestroet, Covent-gurlen, W.C.
fhe englibi mbchamio liteboat fots. enmertpatone to be forwarded to the Eattor, at the 0mos, a1,

Amount provioualy acknowledged

ANSWERS TO CORRESPONDENTS.

*) All sommmenicetione should be addressed to the EDrtor of the Englise Mechario, 81, Tavistock-stroot, Covent Gerden, W.C.

The following are the initials, dce, of letters to hand np to Treaday morning, July 9, and unaoknowledgod
 Petty.-Thomas Scully.-F. R.A. S. - Paper Maker.-
8. Botione.-M. B. Adams.-Gillem.-Collier and Son. 8. Botfone.-M. B. Adams.- Millem.-Collier and Son.
 Whitley Partners.- Whiteman and Mann.-C. Hodges.

 H. Ward, Surgeon. - A Patternmaker. - Jikger. A. A. F.-Tol. Eng.-Conatus.-Zakynthos.-Constant Subscriber.-8. R. S. G. B.-G. H. A.-E. Johnson.Jno - 495.-G. M.-Wm. Thompson.-Üpholsterer.Aftornoon. - Paperhanger.-Jonathan Turner.-Bob. -J. E. Lines.-Inquirer.-J. Belwin.-C. Watson.Z. H. - P. S. T. - Subscriber.-Caer Glou -Tom-Tit.-
Iron Ore.- H. G. B. Private Studont.-C. Gaudibert.-T. W.-Alfred H. Allon-P. W. H. J.-Georg' Wright. J. W. Fenvenl.-Womewood.-W. J. Ball.-John Yeoman.-Rev. A.
 R. A. H.-D. C.-Clinhoy.-Zarich. - Barah.-J. D.
X.
-W. T. David W. Brald.-Wm. MeCnlloch.-J. W. Hoakins.-J. H. Whistle.-Marcus W. T. R. R.A. Hoakins. J. H. Whistle-Marcus grapher. - Rat-Tat.-W. E:LL.-H. B. E.-T. H. M. Johan.-Georgo Henshaw.- Joe. - Saxum.- Seed Grower.- Horti.- R. R Mmith. Aleph.- McGregor.--Jhilla-Bbott- - Bo Jo.- Banker.- Bottone.-C. B.-Inquirer. Arthar Rogera-Sigma-Xenophon.-Pembroke - R. Cramley.-Three Yeari' Subscriber.-Brickmaker.Stoil Collector.-E. Burnside. -G. H. G.-W. P.Sheot Anchor. - Utile-E. M. - W. G. Roberts-Rev. A. Jarrow.-A Surgeon.-J. B. Yonge-E. B. Moyser. Robert Hartley.-C. P. Stannard.-John Franae.8mithsonian Institation_M. B. Admms.-Secretary of Bociety of Engineers-A. Williams-R. B.tterill.
East End Mechanic. - T. W. T. W. L. Warren.-G. W. Bacon and Co-Orlando Hanks.-James Largon.J. H. W.
C. F. C., Holborn 1 dmiror, Young Snip. and J. P. James. - Your querioe are advertisements. See "Hints to

. J. - Not praoticable.
 T. J. - Not praotioablo. E. B. J. - See first article this week.

Jacx of ALx Tradss has given us a call on his way bome after passing npwards of four weekg at Matlock,
and a week with "Khods Bux." He promises a letier for the next number.
8rave- - Your letter, as you will see, was superseded by
ono from Mr. Proctor and one srom "E . ${ }^{\text {G." }}$
Zoo Anden.- Your query would be of no service to any one bat yoursell.
2. 8.- Yes, it came to hand, and was found unsuitable. Pamerr.- Your frst query is an advertisement, and panyre- Your irst query is an adve
your second is only useful to yourself.
W. Hi Flizit. - Wo do not know the address, and if we
W. B.-We do not know why Mr. Tonkes is silent.
W. Wibis.-An American publication, and American pablications are vary trequently echoes of English H H .
T. N. H. abks, "Why does not the Exoursh Mrchanio dorote as omall portion of its space to legal as well as ariaing on which light minght be thrown by sowne of ariaing on which light might be thrown by some of
our correspondenta."
John Matthawe.-Yo
after they are mannfactured. The soft rubber is after they are mannfactured. The soft rubber is and pressure-the latter process being the valcanising.
Jonf Mankinner. - The date are insufficient to advise upon You eay the wall is "slightly damp" in, one the dampness is oonflied to a spot it might probably be easily remedied. Bee Vol. XIV, pp. 813, 337, \&c.
Amcoars, T. B., Atling, E. N. D. (Arst query), Hoop Iron,
W. Watson, A Working B. are referred to back volumes
\triangle Poon Man. - The mothod given on p. 886 to mask the hasto of oastor oll will do very well. Millk, sherry, or
lomon-juice are also good.
A. O. G.-For musio-raling pens soe pp. 50, 104, 159, and

Exczision-We do not understand your third query on Politioal Economy.
Commanications which can only appoar as advertise-
g. Jonkeon - It is ailt Y., H. Elfes, Drum Maker. discassed in back volumos. Sce indices. . Strabsix.-Soe "Hints to Correspondeats."
G. Richardsos.-AEI form the Greek words meaning "For ever."
J. Gillasrd, - Your reply only promises the informatior bat really containg none. If you like to send sketch
and details wo will insert them. Your other proposal and details wo will insert them. Your other proposal
does not seem at all practical, or one lkely to be does not
entertained.
Ionoravies-The oompass was known and ased by the Chinese. The phrase used by St. Panul does not apply to a comp
direction.
Simpre Sprapms,-Your suggestion about perpetual motion is not worth the paper on which it is writien
R. P. says:-"I quite agree with your querist (12329) that a series of good papers on mechanios for beginnors would, in these days of science examinations, be very do for atatios and dynamics what Messri. ©pragua and do for statios and dynamics what siessrs. spragua and Bottone are doing or eneir respective subjects,

THE INVENTOR.

APPLICATIONB FOR LETTERS PATENT DURING THB

Teg4 w WREE ENDING JULI 8. 1872

 1894 W. E. Kocha, MAnchon cer, for Improvementa in piers, jettios.
 1 1866 J. T. Fitzmaurice, Porthpean, Cornwall, for Improvementa
 and J. x rliwhimm. Ola.
indiog yarn or throad.

 1977 J . Culrert, oldham, for an improved hamp for moulders or

 1937 G. T. Bonnfold, Loughbornngh - park, Brixton, for improvo-
 apparatus employod therein.
1875 E. Tarnor, Lolcoster, for improvomenta in door appringes. 1878 S. B. Smith, Birmingham, 2nd J. W. Willana, Middiles.
 parposes.
187 a Burge, Jon. Rochenter. Kent. for Improvemente in kilins
tor buraing cement. iime, and other substancer

 apruatan for extracting ammonia in the formof
trom crude ammoulacal liquors. A commancation.

 kilios for burnink tiche, potitery, ard lime. 12e4 J. Arthar, Sand ycroft, Fintablire, for improvemante in serout 18ss J. For lepy. Chelteaham, for an improvement in the mann-
facture of nn explonive compound and a now modo of friag oxplo1880

 or tr 路
 designod for une on rallways and stoemboste. A communication. 1890. L. D. Newell, Alderagato-stroet, City, for improvements in - 1891 B. B. Brlefgh, Adelpht.place, Camborwell, for improved lever 1e9 G. A. Dorotet. Rotherhhthe. for Improvementa in obtaning
anthracine from heary oile and in apparatos emplosed therein. 1 1ras W. Beale . Brdgwater, for improvemento in apparatas for
1894 T. Redmayne, Bhenfeld, for improvementa in the constrac.
Hou of dienke, nen's, and masic athuds, applicuble to the use of chools and other purposes.
12035 J. F. 8winburn, Birmingham, for Improvementa in breech1908 O. Davidoon, Aberdeen. for improvemente in machinery 1007 H. P. F. Palmer, Carnarron, for fimprovemonts to cates or crntes for contaning rootng siater while tin transit and othar
articies requiting packing cases w preserve thom from injary.

 enginot wain
paip or paper $"$ stuff:
 1mans B. Hont, serle atreet, Lincoin's. Inn, for improvements in andimata. Acommuntication.

1908 J. Woode and E. Woode, Warrington, for improvemento is
apparatia omployod tin drawing wiro.

 ments in bolleay
1911 J. L. Norton, Ludgate-hill. and J. H. Carter, Mark lane
 paratus employed for such parposee.
 appratana to be asod far throce parpones. pritiag surncon aico ts 1918 A. M. Clark, Chancerr. Inno. for an Improvod distreas reddere
 contadning carbon.
 1318 W. Macrone and W. Me Kanzie, Olangow, for Improverente
 barrolled gun by one trikger.
 $1019 \mathrm{C} . \mathrm{W}_{1}$ siemens. Great George street. Went minater, sur tr

 bs saws. 1231 J. Merrylees: Glespowr for improve
ornamental
IAbrica, and in apparatus therolor.

1932 T. Gibon. Stam! or cutting lump iaxar.

 1024 E. G. Brower, Chancerry lane, tor improvements in tue
 omannication.
 ther ite mbencice
 1.27 W. Corney and S. S. Tumer, Weatborongh, v.E, tar tor1939 P. Porgit Coliego-stroet, Ohelean. Ror an tmperond mathilety adapted for indactrial and othor parposes. 4 com
 subbtancol
 11931 J. S. Chritappher and J. F. Leckerticen, Lombard tea

 193i A. M. Olark, Chanoerrylapo, for an tmpored apperatue fic

1995. R. A. Parkidic Chenm, Burrey, for tmprovomeate tim the mode ${ }^{12986}$ W. H. Denham. Southoon, P. F. Donhsm. mad A. A. Deahber
 other parpolese.
 1938 andition.
1933 A. Hookhom, Boathwark-bridge-rond, for fraprowement 19 Ma M. Pa

 1999 J. W. Ward and J. C. Bonse, Halifar, for tmprorement in sary or apparatula
 other tibrouas subatancest in the hank or akein.
 ${ }^{1948} \mathrm{~J}$ sill ward, Birmingham, for improvements in hydant

 1048 F. J. Gheesbroakh, Liverpool, ifr improvementi is iso

123s A. C. Kifk, Glazgow, for improvemonte in reoertor ap
 ${ }^{1958}$ H. Oirroud, Paric for a now or ímproved ayotem of tho metrio regulator abod with a has burner only.

Ohi Ctuglish Jflechanit

 FORLD OF SCIENC热 AND ART.

 FORLD OF SCIENC热 AND ART.
 FRIDAY, JULY 19, 1872.

ARTIOLES.

ON GELF-DECEPTION IN OBSERVATION.
By Rrciard A. Proctor, B.A. (Cambridge).
Honorary Sceretary of the Royal detronomical Society.

MOST of those who have at any time had occasion to make observations in connection with astrongly entertained theory must have been led to notice the readiness with which the mind lends itself to such a view of observeder's theory When a series of measurements is being made, which should run in certain way if a certain theory is correct, it will unquestionably run more nearly in that way if the observer looks with favour on the theory than if he is opposed to it. If colour-tests, light-tests, or estimates of shape be in question, then still the predominant theory will exert its influence. No matter how con scientions the observer may be, he finds it almos impossible to avoid falling into an error of the sort, unless in his esgerness to be strictly impartial he avoids Soylla to fall into Charybdis, actually favouring the evidence against his theory rather than do aught in its support not strictly jastified by the facts.
Let it not be supposed that the self-deception here spoken of is practised only by inferior observers, or that it is of the nature of "a mistake made on purpose." The very best observers have repeatedly found themselvas going astray in this particular
way; and by their readiness to admit that they have done so have shown that no desire unfairly to advance their theories has been in question. The longer an observer's career has been, the more clearly does he recognise the necessity of watchfulness over himself, unless he can devise some arrangement by which he will be rendered unconscions of the bearing of his observations on his theories. The worst of the matter is, that obser rations ought to be made in subservience to some theory, since otherwise they will almost certainly be wanting in precision and system. The bes observations ever yet made have been conducted in connection with theory, and in every instance where observations have bean made by those who boast that they have no theory at all on the subject under observation, the results have been of ittle value. Indeed, I may notice in passing, that those make a great mistake who attach exceptiona weight to observations made by persons who have no special views on the subject of observation. Though the object of this paper is to dwell apon the ecrors made by observers strongly prepossessed in favour of a particular theory, I should be sorry indeed to seem to give any support to the notion that the best observations will be made by persons having no theory at all. To say that as that either he knows very little abont the subject, or that he has no brains worth mentioning. No man who has a respectablesupply of reasoning faculties cen fail to form opinions as the facts relating to any subject are brought to his know ledge. It would, indeed, be very anwise for him to arrive at conclusions at an early stage of his study of the anbject. He should be prepared to modify his opinions; and he may regard hereafter as unlikely the riews which he had at first enter tained as probable. But we may be well assured
that one who forma no opinions as his stady of a subject proceeds, who is not ready to form hypo theses explanatory of the facts brought to his knowledge, who is continuelly waiting to know more be fore entertaining any theory at all, will never have an opinion worth listening to. Not only is it true, th ase Sir W. Herschel's words, that to observe with. out theorising is to "depart from the very purpos vations themselves ane aro made, but the obser out in so purposeless a way.

My object, then, is to indicate the necessity for the devisal of methods for freeing the mind from the influence of preconceived opinions, not, assuredly, to advooate such an avoidance of theory as can only be attained by the weak-minded. It is for the former purpose that I adduce som
instances which seem to throw light on the subject of self-deception in observation. They are at once interesting and instructive.

In the first place, I will cite a series of instances relating to as single anbjeot.

It is well known that the family and sohool of Cassini maintained that the polar diameter of the earth is longer than the equatorial diameter, while Newton and his followers maintained the contrary opinion.* Originally, Cassini had believed the earth to be oblate, snd from a passage in the article, "Figure de la Terre," by D'Alembert, in the original "Encyolopédie," it appears that Cassini inferred that in consequence of this oblateness the length of a degree would decrease from the equator to the pole. Starting with this erroneous assumption, the school of Cassin 'arrived at the same result by observation and measurement." When it was shown that the sssumption was erroneous the Cassinians maintained the accuracy of their observations, and thas necessarily adopted the theory that the earth is a prolate spheroid, the polar axis being the greatest diameter. But "there can be no doubt," says Mr. Todhunter, " that at least Maupertins and Clairaut, who were the most eminent of the French party sent to measure the Lapland arc in 1736, "held the correct Newtonian theory as to the figure of the earth; and their resul was rather too decided in its confirmation of this theory. Now the geodetical angles could scarcely be influenced by the opinions of the observers becanse it would not be obvious in what way the result would be affected by an error in the angle. Bnt on measuring the base it would of coarse be obvious that the larger was the value obtained the stronger was the evidence for the oblate form. Similarly, in estimating the amplitude of the aro, the smaller the value obtained the stronger was the evidence for an oblate form In these two parts of the survey, then, it would be necessary to be on the watch lest the conviction of what the result ought to be should infinence the impression of what the observation really gives. It is curious that Manpertias and his party seem to have thonght at first that their success was too decided, snd, therefore, their amplitude too small, and that on their second determination they should have made it between three and four seconds larger than at first." Svanberg was sent to Lapland with a strong expectation that he wonld obtain a less value of a degree of the meridian than that of Maupertius and according to the best estimstes of the valu of a degree for the part of Lapland where the arc was measured, Svanberg's value was below the true value.
Striking as are these facts, however, the eclipse observations of last December afforded yet more remarkable evidence of the self-deception which may arise from the effect of a preconceived opinion.
It may be remembered that Dr. Oademans had expressed the opinion that the solar corona is due to the illumination of matter close by the moon. This theory is mathematically defensible so far as the shapes of the coronal rays and rifts are concerned, \dagger if only certain phenomena are observed during totality. It is perfeotly clear, since the theory explaing the rays and rifte as due to the passage of the solar rays past valleys and mountains on the moon's limb, that as the moon passes athwart the sun's face the rays and rift should ohange in position, ahape, length, and so on
Now, as a matter of fact, the evidence obtained during the eclipse of December, 1870, had completely disposed of Ondemans' theory. It is perfectly well known that the doubts expressed as to the sgreement between the photographs taken by Willard, at Xerez, and by Brothers, a Syraonse, were based on imperfect drawings of these photographs, and though these donbts were not ostensibly withdrawn, the photographs themselves completely disposed of them. But to Oudemans, at Batavia, this news did not penetrate He set forth to view the total eclipse of las December with anshaken faith in his lonar cormi cal dust theory, and with a perfeetly olear recog-

${ }^{1}$ quote from a most raluable paper, by Mr. Tod hanter, "On the Arc of the Meridian Mensured in Lapland "-Transactions Society, Vol. XU., Part I
 + It is completely answered, I conceive, by the objections 1 have arged saeingt it on acconant of the received from the reqion in question, as compared with the quantity received-aceording to the theory itself when

 all its consequences are considered-from matter beyondthe moon. \mathbf{I} submitted this objection to Sir John Herschel, and in hid reply he expressed his perfec agreenent with what I had urged on the anbjoot.
nition of the phenomens whioh should make thair
Farance if the theory were true. stationed Mr. Lockyer, at Baicull. To him the theory still remained dear, that the corona is, in the main, a phenomenon of our atmosphere. What were the particular appearances which he expected to $s e 0$ in demonstration of this hypothesis deponent sayeth not-probably we shall never know. But that he did expect to see such appearances-nay, that whatever they were he did actnslly see them, will appear in the seqnel.

At Baicull, also, and at Dodsbetta, 8,000ft. above the sea-level, were stationed certain inanimate, but very efficient, observers, who were certainly not prepossessed in favour of any theory, and who possessed to a very remarkable extent that quality which has been called by Doré "collodion in the eye :" I refer to the photographic apparatus set up by Mr. Davis at Baicull, and by Col. Tennant at Dodabetta.

The moon's shadow came and went, and the observers, animate and inanimate, did their work ; the results are most instructive.
The totality was scarcely over when there went forth from Mr. Lockyer, at Baicull, to the observers at Jaffos (just preparing for totality) this startling telegraphic message, "The corona is almost wholly an atmospheric phenomenon." In some unknown way the atmospheric glare theory which had possession of his mind oansed the observed appearances to seem demonstrative of its correctness.
Dr. Ondemans, in the east, was similarly favoured. He writes to Mr. Lockyer, "My ob servations and those of my party" (inoculated, we may fairly imagine, with the lanar theory) " have given me the conviction of the existence of an optical phenomenon besides the purely solar phenomena ; not of an atmospheric origin (there is no question whatever of this), but of rays variable during the totality, too variable to be attributed to solar matter emerging from the body of the sun itself. I could follow the rays and rifts as lar as the moon's edge."
But alas for the rival theories which had thus so completely demonstrated themselves and disposed of each other! the inanimate photographic observers had been at work, and had done their work in such a way as to dispose of both the rival theories at once. At each station five photographs had been taken (not counting one imperfeot one at Dodabetta). Each photograph of each set shows a maltitude of rays and rifts very peculiar in form. I suppose that upwards of a handred well-marked features can be counted in each picture. These features are absolutely identical in all the five pictures of either set. The pictures of one set are absolutely identical with those of the other set. Comparing the pictures of either set of five, we see the moon measurably traversing the corona as the eclipse progressed thus definitively disposing of the lonar theory ; while, comparing the two sets, we find the features photographed at Baicall, on the west coast of India, close by the sea-level, absolutely identica with those photographed at Dodabetta, on the Neilgherries, $8,000 \mathrm{ft}$. above the level-thus definitively disposing of the atmospheric theory.

In passing, it may be remarked that perhaps it was a little hard of Mr. Lookyer to publish the parts of Dr. Oudemans' letter which relate to the lanar theory of the corona. Ondemans wrote in complete unconsciousness of the photographic evidence which has been so long in the hands of European men of science ; had he heard of the photographs he would doubtless have wished to withdraw his remarks on the lunar hypothesis. Still, the lessor derived from these matters is so

* Dr. De La Rue (once, by the way, an adyocate of Oademann's theory) informs me that in Col. Tenuant' negative the featares of the corona oan be seen (and and
and one-seventh diameters of the san. In Lord pleasare procisely an for eatures can be traced very nearly as far. They are no by any means mere straight rifte or rays, but of most an irrogularly-shaped obelisk of 1 ghty , l_{n} another place a long ray of donble currature, in yet another a compli cated knot of streaks-altogether the most marvellona antronomical pioture my oyes have yol restace on Jansbeni desoription, whit is marked rith on special shapes altogether irreconcic theory," is strongly recalled and fully justifed. Yet the photographs show but a portion of the extension of these strange figures. That excellent observer, Capt. Tapman, who drew a capital picture o the corons, agreeing well with the photographs, could trace these featares much tarther.
By the way, when are the -eports of the eclipge expe dition to be availablo for stady? What ocoult
if preventing us from hoaring what was done?
instractive that perhaps Mr. Lookyer did well in bringing it before us. We cannot be taught too emphatioally that in observation extreme caation is required lest preconceived opinions should mislead us; and this lesson may now be said to have boen anforoed by example as well as by precept.
In conolusion, I may remark that I formerly took atrong exception to the assertion that one who theorised respeoting the corona, in that btage of the inquiry whioh we had reaohed two years ago, " simply made himself ridiculons." It may be (such is human weakness) that it was the application of this remark to myself whioh led me to take exception to it. Bat I think I may now not nufairly point to the results recently obtained as affording strong evidence in favour of my view, that no man can make himself ridiculons by announcing carefully-considered views, even though those views ahould prove to be erroneons. It is a mero matter of detail that my ideas respecting the corona have been justified, and are now scoepted by all whose opinion is of any weight. - But I would ventnre to express a hope that at the present time Mr. Lockyer no longer regards the enunciation of possibly erroneons views respecting the corona as altogether so ridioulous a proceeding as it once appeared to him. If so, the recent eclipse observations will have had this pleasing result, that while they have enabled Mr. Lockyer to illustrate (unconsciously) a tesohing which is of the highest importance and value to all observers, they have convejed to him self a not uninstructive lesson.

THE WATCH, AND HOW TO REPAIR IT.

By "Seconds' Practical Watcemaker."

(Contiaued from page 421.)

THE Kittle box of wheels oalled a watoh seldom at first sight has bestowed apon it much thought, and when it is thought abont, it more frequently happens than otherwise that that thought arises out of its apparent nuwillingness to register time with its aconstomed regularity; and shonld the watch be one the regularity of whose general performance is prized by its possessor, the thought then, in the majority of instances which have fallen under my notioe, is this: "My watch never requires alteration. He must have been a very olever person who invented the watoh." And with this kind of soliloqny the watch is returned to its place of keeping.
The series of artioles on the above-mamed subject will be designed with the intention of attracting attention to a common fact, that the watoh deservos a great deal more oare and thought from the general wearer than is usually allotted to it, for the readers will have plaoed before them some facts relating to the care and management necessary for each kind of watch, as well as a description of each particular construction, for this " little monitor of our daily engagements" has connected with it a host of soientific conneotions, for from its commencement to completion its associations with the sciences entitle it to more eareful attention from persons who profess a love for philosophic inquiry than has come under my notice after several years of observation on the subjeot.

The history of the watch will be traced from the earliest existing models, and when the connecting link by model fails, quotations from the most reliable authorities will be made nse of. By these means it is intended to trace the history of the watch from fte earliest period to the present -time. This seotion of the subject, I am inclined to think, is a very important one, for we can look back on an age, not long departed, when the subject (watohwork and watchmaking) was considered of such importance that the most influential and the wisest men of that time deemed it an honour to be connected with the art. Thas, oat of their united energies, was the "toy-watoh" made a acientific wonder. So that in these days of mechanical and scientific progress, by a knowledge of the past with the preent improvements, many additions may yet come before the world from those who, without the knowledge of the gradual improvements of the watch, woold not think of turning their thoughts to the subjeot. Mr. Charles Frodsham has thas stated, referring to the subject: "Indeed, I think there is little doubt that there has been more timo spent by great minds upon elocks and watches than upon any other art or science, and they may be truly said to have been the nursery of engineoring and mechanical skill." history of the watoh is a combination of several years' incessant application among those who
may with fairness be termed its pioneers, becanse, 28 previonsly stated, prior to the year 1720 there was but one kind of watch, and the special arrangement of its parts was the eame as we now term the verge watch. Other arrangements were adopted as the watch became improved from its origina. tors-although in the present day we might, with a degree of truth, term such instruments "pocket clocks," for they were six or seven inches in diameter and two and a half inches thick, several of which may be seen at the South Kensington Musenm, Section 34, from Nos. 7445 to 7461, including seventeen ohoice specimens ; and although they are catalogued as "Clocks," their constraction is identicsl, with respeot to their time-keeping arrangements, to the original watch referred to; and although these ponderous instraments, from their dimensions, may surprise some readers, many among us can remember the ponderous watch when removed from the fob of our relative or neighbour. Many watches are at the present day in use weighing about eight ounces.
The watch continued for several years without much marked improvement, but when the era in watchwork dawned, especially among the English, there was no effort dormant. As I have stated the subject was of such importance that it attracted the attention and the persevering stady of the best mechanics, mathematicians, astronomers, and divines, out of whose combined assiduity the problem of time-measuring, to parposes the most useful, came - namely, the carpenter Harrison's timepiece for determining the longitude at sea, by which means vessels were not only more safely conducted across the ocean, bat with more speed and precision directed to their destinations. This wonderful piece of mechanism was nothing more than an improved large watch of that dato-namely, A.D., 1736, and no wonder that the production of such a marvellous instrument shonld have gained the Parliamentary reward of $£ 20,000$. Bat, then, we mast not forget that Harrison laboured at his idol machine nearly all his life-about forty years. This identioal instrument is now at the Royal Observatory, Greenwich, and is treasured by the officers of that institation. It was the production of this wonderIal antomaton which cansed men of genias to direct their attention towards improving the pocket watch, and from sach emulation came another marvel - namely, the horizontal one, commenced by Tompion and completed by Graham, as previously stated.

It is more than probable that few persons are a ware that the different terms applied to watches by whioh they are distingaished, such as vertical, horizontal, duplex, and chronometer, refer to the tind of escapement applied; nor is it generally known, even among working watchmakers, that all the escapements introduced to good watches, whether at home or abroad, were invented by Englishmen. It is true that many ingenioun contrivances have been introduced at different times by French and other artists ; but they themselves have ceased to apply them, and with the exception of the vertical escapement, they generally adopt those principles only which were devised by English watohmakers.
In this first chapter it is intended ohiefly to introduce the watch in its popular form, leaving details to follow, and thas, while we have someWhat before us the borizontal or first improved watch, a few words more ooncerning the foreign one will be neoessary.

The foreign watch is frequently denominated a Genera by persons who do not know that there is any difference between the two terms, Geneva and 8 wiss, which of late years have become so familiar amongst the English.

The Geneva watch is, in many instances, miscalled, for it more frequently happens that the so-called Genera watch is a Swiss one; which latter watches have been imported in such vast quantities as to cause no little astonishment concerning their disposal. This statement probably may require some explanation.
The watches made in Geneva are usually of saperior make and finish, and are, therefore, high in price. Few, comparatively, are made there, which may probably be acconnted for by the faot that in many instances an Engish watch can be obtained for very little more than has to be oharged for the Geneva one. Swiss watches, on the omtrary, are produced in great quantities. They are made with great rapidity by maohinery, to facilitate which most of the parts are left very soft, and are less carefully finished than those of the Geneva kind; and further,
the watch made at the latter place is examined
and oompleted with more oare then the B wiss one. Thas the difference in pries of the Geners is double that of the other. Bat the casual parohaser, or wearer, cannot judge of the relative qualities of the two kinds, and not unfrequently pays for the Swiss watoh a price equal to ths: which would be charged for the Geneva made one. This fact is before ug, that the Geners watch is very durable, while the Sviss one wears out quickly. There is an unecing rab by Which the one may be selected from the othernamely, by opening the back of the case and examining the stamp. The Geneva ene will have the inner part of the back of the case stamped, and in the inolosure of such stamp will be seen the letter G., without moh no watah is of Geneva manufacture. On the other hand, the Swiss watch-case will frequently-but mark, not always-have a stamp resembling zig-zag of two lines, bat all Swiss watoh-cases do not besr the stamp. Therefore, any watoh-oace haring no siamp is not of Geneva manafactura. Is closing this introductory chaptas I am indeoed to quote a few lines writton by that painotaking anta quarian, Mr. E. J. Wood, in a volume entitlei "Curiosities of Clooks and Watohes from th Earliest Times." He thus proceeds: "How many of the folk who so often, in the course of a daj, pull out their watches to see the hoar, give thought to the history of those meehanical con trivanoes for measuring the flight of moments. Very few, we think. It is sufficient for most people if their watches keep correot time, and whatever historical interest may be appertaininz to the little maohines, lies shat up and unobeerred among the wheels and springs which the cases inclose. Let as take our timekeeper. out of our pookst, and to the tane of its unceasing merroch voioe-like an audible theme-wo will jot down some gathered notes from its soattered historg, with the ambitions hope that he or she who mis pernse our collectanea and notands may the more prize, for doar memory's sake, the large odd. fashioned family silver watob, with the riubor and pinohbeck seals, whioh now lies negleoted and almost forgotten in his or her relio-drawer; but which was a highly-ralued part of the persons effects of grandfather before he went iato that land .Wherein timo-measurers are not noedel Only a little sketoh of imagination is required is order to give to the emall edmonitory moratir which lies on the table before us an articulate utterance, so pregnant in its 'tiok, tiok,' $\mathbf{a m} \neq$ were connting old grandsire Timo'sgains of goldes moments into heapa, one by oas, as each leli sounding into the paet."
(To be continaed)

LESSONS ON CHEMESTRY.*

 By Bexnio R. Bortorie.(Late of the Istituto Bellino, Novara, Rala) (Oontinued from p. 297.)
198. - Being now ha pesition to nodectead briefly laid before him at the commerection at the lessons, the stadent with do well to follos as in the reviow whioh we propose makiog of me! in the reviow Whioh we propose makiog of mep
of the compounds which we have stadid, ope cially with relation to the ancient and reeerron theories, nomenclature, \&o.

We have pointed out the feot at paragript 9 and 10 that all bodies, in oombining with each other, unite in certain defnite proper tions; or, if one body can unite with socib: in several proportions, yet the numbers rt presenting these proportions will invariably maltiples or submaltiples of the number retre senting the proportion in which the firat coestion tion took place. As a mowledge of this is: is of the highest importance to the ohemist, is student is particularly advised to bear it oonatan:in mind, and to commit to memory theen ar bining proportions. By so doing be will enabled to caloalate, without dificolty. E quantity of certain given elements required form a given compoand; or, vice versa, he wn in a position to specify the exant amonent 8 given compound requigite to eliminate two more given elements. The oomponnds of cbictwith hydrogen, with oxygen, and with anlpha: also those of sulphur with oxygen and hydroe furnish ns with numerous oramples of the laf. combining proportions.

Hydrogen (36) baing the lightent body korar and ontering into combination with almost ev
known element, has been generally* accepted as the standard or unity of comparison for determining the combining weights of bodies. Hence it is customary to give its combining weight as 1.00. Now, we have seen, at paragraph 53, that chlorive combines with bydrogen, and at paragraph 54 we have learnt that one volume of hydrogen requires exactly one volume of chlorine to satarate it. $\mathbf{O n}$ weighing the volumes of chlorine and hydrogen employed, we find that the valume of chlorine is 35.5 times as heary as the equal volume of bydrogen : hence we are juetified io stating that the combining weight of hydrogen beiny 1.00 , that of chlorine is $35 \cdot 5$. In other words, hydroohloric acid contains, by weight, 35.5 parts of chlorine united to 1 part of bydrogen.
199.-Both ohlorine and hydrogen combine with oxygen, the former in several, the latter in only two proportinns. Thas, taking a given volume of hydrogen, weighing, for example, 1 gramme, we shall find that the quantity, by weight, of oxygen required to form with it the first compoand, water, is exactly 8 grammes, while to form the second compound 16 grammes of oxygen are requisite. Chlorine forms several oxiden (see Section 6B), and the quantities of oxygen in grammes required to form these oxides, with 35.5 grammes of oxygen, is tabalated below:

Cblorine. Oxygen.

Chlorine monoxide $=35.5$
Chlorine trioxide $=35.5$ $\begin{array}{ll}\text { Chlorine tetroxide } & =35.5 \\ & -24=8 \times 3 \\ & 32=8 \times 4\end{array}$ Chlorine pentoxide $=35.5 \quad 40=8 \times 5$ Chlorine heptoxide $=35.5$
From the composition of these compounds we ire led to infer that the relative combining weights of oxygen, hydrogen, and chlorine, are respectively $8,1 \cdot 00$, and $35 \cdot 5$. So far we have sept ourselves withis the strict boundary of fact, put the mind of man is so constituted as to ender him desirous of being able to see or magine s cause for every effect that comes under is notice. Hence several theories have been roponnded, with the intention of explaining bese invariable "combining proportions" of the lements. These theories, though plausible and ossibly correct, do not seem to admit of direct roof, therefore the student must always bear in aind that though the law of "Alxed" and multiple" combiuing proportions is a physical act, yet the theories deduced therefrom are only ypothesis, Which may at any moment be dis. roved on the discovery of new and antagonistic 200.-The first general attempt to explain the w of combining proportions was made by Dalton, 1804. This oelebrated chemist applied an les which had been held by eeveral Greek ailosophers to chemistry, and the reanlt of this pplication was the "Atomic Theory."
The atomic theory supposes all matter to be nstituted of congeries of infinitesimally small, divisible particlea, called atoms. The stom of ch element possesses uniformly the same size d weight, though the stoms of different ements differ from each other both in size and ight. In order to understand this more clearly us represent the atoms of the elemerts under nsideration by circles, thas :-

Hydrogen
Oxygen \bigoplus
Chlorine

Carbon \qquad
According to the theory, eaoh of these different ms has a constant weight, different for each ment, and we can represent the difference in 1 point out the relative π eight of each atom,

Hydrogen ... (1)
Oxygen -8
Chlorine
Carbon......... 6

Granting the above suppositions to be correct, it is easy to urderstand why combination can only take place in certain fixed proportions. Let us suppose that hydrogen be abont to unite with oxygen. It will be at once evident that less than one atom cannot enter into combination at a time, the atom being indivisible. Hence the aimplest compound which can possibly exist will be one consisting of 1 atom of hydrogen anited to 1 atom of oxygen, thus :-
(1)-8)

It also becomes evident that if other compounds containing hydrogen and oxygen oan exist, the proportions in which these two elements will unite must always be multiples of the weight of their atoms, id est, multiples of 1 and of 8 . Such, in fact, is found to be the oase. We have, therefore, water-

$$
(1)-3
$$

And hydrogen dioxide-

$$
(1-3)
$$

Hydrochloric aoid.............(1)-125)
Sulphar monoxide............ (8)
Sułphur dioxide (18)-(8) (8)
Sulphur trioxide (8) (8) (8)
Carbon monoxide 8-8)
Carbon dioxide (8) (8)
201.-This theory is so consistent with observed facts, and gives so satisfactory an explanation of the reason for which combination can only take place in definite proportions (differing, however, for each element), that it was almost universally adopted by chemists. Consequently, it became oustomary to designate the weights in which elements combined with each other by the term "stomic weights." Some chemists, while admitting the plausibility of the theory, were adverse to considering the theory as fully proved, and consequently preferred giving the name of "equivalents" to the weights in which elements combine with each other.
202.-Another theory which modified considerably the one just described soon arose. This, the " molecular theory," was based on observations made by Avogadro, Boyle, Mariotte, GayLadeao, Ampère, Dulong, Petit, \&c. The principal facts brought to light by these observations were the following :-
1 st . When two elements (in the gaseous state) anite in equal volumes, the volume of the resalting oompound is equal to the sum of the volumes employed; in other words, no contraction takes place. To render this olearer, the following graphic illustration of the result of the action of one volume of ohlorine on one volume of hydrogen, may be of service:-
$\mathrm{Cl}+\mathrm{H}=\mathrm{H}$

2nd. When two elements (in the gaseons state) unite in unequal volames, the volume of the resulting componnd is less than the sum of the volumes employed, and in all known cases is equal to two volumes only; id est, contraction takes place. The following illastration of the result of the action of one volume of oxygen, on two volumes of hydrogen, will alucidate this :-

Here we see that when two volumes of bydrogen unite with only one volume of oxygen, only two volumes of water gas are produced, and not three volumes, as might at tirst sight be expeoted.
We will give another example of this case, as is well to fix the fact in the reader's mind. One volume of nitrogen unites with three volumes of hydrogen to form two volumes of ammonia, thus:
$[\mathrm{N}+\mathrm{II}+\mathrm{II}+\mathrm{I}=\mathrm{N}$

Making these facts his starting point, A vogadro devised the following theory, which, with some slight modification, is the socepted thoory of the day :-
203.-Matter is constituted of indivisible particles, termed atoms. These atoms being gifted with the power of attraction, cannot exist separately for any appreciable space of time, but tend to unite in littie gronpe of two or more atoms, termed molecules.*
The molecules, though infinitesimally small, and indistinguishable by the most powerful means at our disposel, can exist separately. All bodies when brought to the state of gas, contain in equal volnmes an equal number of molecales, t in other words, the size of the molecule of all gases is the same at equal temperatures. The molecule of all gases is constitated of two atoms. Hence the relative weight of equal volumes of any simple gases will be the relative weight of their respective atoms.
204. -This in, briefly stated, the theory of molecules, as proposed by Avogedro. Lat us now see how far it is in zecordance with feote. We weigh a given volume (say 11.2 titren) of hydrogen gas, and we find it to weigh exsetty oae gramme. On weighing equal volumes of the following gases, we obtain the results tabulated below :-

If then, the above theory be correct, these numbers represent the relative weights of the atome of these seven bodies, and we find that they agree perfectly with the resalte obtained by experiment. We observe, howevar, a peouliarity with regard to the ralative weights of the volumes of hydrogen and oxygen, which, taken in conjunotion with the weight of oxygen neoessary to satnrate the weight of one volume of hydrogen, seems at firgt blogh at variance with the experiment.
We have seen (200), that 1 gramme of hydrogen mites with 8 grammee of oxygen to form 9 grammes of water. This would lead us to auppose that the relative weights of the atoms of hydrogen and oxygem were reepeotively 1 and 8.

We have also seen (204) that the weights of two equal volumes, one of hydrogen, and the other of oxygen, are as 1 to 16. According to Avogadro's theory, the inference would natarally be that 1 and 16, and not 1 and 8, are the true atomic weights of these two elements. Both these theories cannot be right; the question then is, Whioh is correct? Without further evidenoe, it wou!d be very difficult to decide; but on applying other tests with which subsequent disooveries have furnished us, the balance of probabilities seems to point in favour of Avogadro's view-riz., that the atomic weight of hydrogen being 1 , that of oxygen is 16.
In the first place, granting that condensation takes place during combination between an unequal number of atoms, we find an additional reason for believing that the above numbers represent the true atomic weights of hydrogen and oxygen in the fact that when hydrogen and oxygen unite, contraction does take place, exactly

* It is not inconisitont with sound reasoning to believe that these stoms are spherea, and that in tho
molecules they perform revolations round a oommon centre, which may either be one of the atoma or else the common centre of attractive force. To illantrate this let the annexed outs represent the molecale of
hydrogen. We can imagive frat, that one atom performs a revalution round the other thas:-

Or, secondiy, that both atoms ase sevolving around a common eantre, thus:-

Elthor of these yiews adapts itself to the explamation of the behavivur of gases during comblimation.
to the amount indicated by the theory. Thus, let us take two volumes of hydrogen-

each weighing one gramme, and one volume of oxygen-

0

weighing 16 grammes, and we shall find that after combination the product will occupy only two volumes, while weighing 18 grammes.
We therefore conclude that the constitution of this compound (water) is $\stackrel{1}{4}_{8}{ }^{16}$, and not $\stackrel{18}{\mathrm{H}}$.
205.-So far either theory explains the fact of "combination in definite proportions," while Avogadro's theory goes a step further, and gives us the probable reascn of the contraction which takes place in the volume of gases when combination ensues between unequal volumes. Several facts have conduced to render this latter theory more probable ; none have had so much influence as the experiments of Messrs. Dulong, Petit, and Regnault on the specific heat of the elements.

WEATHER MAPS.

their characteristics and teachings-an dnofficlal weather heport.
By W. R. Birt, F.R.A.S., F.M.S.

AFEW words will suffice for the first part of this subject. Lines of equsl pressare and temperature, the prevailing winds and weather, as clouds, rain, hail, or snow, and the ronghness of the sea, are the principal features of these maps. We see at a glance the distribution of "weather elements" over Great Britain and Ireland. France, Belpinm, Denmark, and Norway, and we have, in addition, the numerical values of these elements given on the opposite page.
A word or two in addition on these characteristics. The lines of equal tempersture show us the distribation of heat over the countries mentioned, and mark out the direction of the zones of warm and cold air. The lines of equal pressure exhibit regions of high and low barometers, and combined with the wind make ns acquainted with localities of storm and calm. The isotherms, or equal temperature lines, need no comment, but as regards the isobars, or equal pressure lines, it is necessary to mention that they do not represent the existence of any one given phenomenon, per se. And on this we are the more disposed to insist, as we have reason to believe that the " laws", alroady ascertained of the motions of vast bodies of air, to which the designation "atmospheric waves" has been giveu, have not been recognised. As the barometric corve at any one station is a compound effect of several co-existent phenomena expressed as to succession in time, so the izobar is merely the effect of the same co-existent phonomena expressed as to geographical distribution. To read the one requires as much study as to read the other, but when read each contributes to elucidate the phenomena which give rise to them.
There is uothing of greater atility in reading natural phenomena than theory; ceven if the theory employed be worthless it cnables the theorist to connect and classify faots. In order to set forth a portion of the "teachings" of the weather maps we siall make use of a theory which, we apprehend, will connect many of the facts recorded, and to elncidate these facts the more fully we shall present the reader with a series of barometric corves projected from readings at eight distinct stations, viz., Tharso and Cbristiansund, on the extreme north-west of the area embraced by the weather maps. Plymouth and Valencia on the south-west, Rochefort and Biarritz on the soath, and Brussels and Dover towards the eastern part of the same area. The theory is that of "Atmospheric Waves," already given in "our" joursal, Vol. XIIL., Nos. 323, 329, and 331, pp. 248,398 , and 449. To exhibit the passage of these waves with greater distinctncss, we shall examine the barometric effects on three lines-(1) Biarritz, near the south-east angle of the Bay of Biscay, Plymonth, and Thurso ; (2) Biarritz, Dover, and Christisnsund ; (3) Valencis, Dover, and Brassels. The waves from the north-west with north-east and south-west winds will be designated by large Roman characters, A, B, and so on, and those from the south-west with northwest and sonth-east winds, by smull Italic charnct. re, a, b, fe.

Although the movements of the barometer are very complex on account of the simultaneous progression of the two sets of waves, socompanied in some cases with waves of amaller dimensions riding on their slopes, it is quite possible to determine the elements of pessing waves by noting the connection between the barometer, the wind, and the weather. From the 18th to the 30th of March inclusive a well marked wave of the N.W. system (B) transited the Board of Trade ares; its anterior trough impinged on our shores on the 18 th ; its anterior slope, characterised by keen north-easterly winds, accompanied
north-west to south-east, or, in other words, the crest lingered over the north. West portion of the area, passing Plymoath on the 28th, the barometer meanwhile falling. The wind, however, continued northerly until the 27th, When the sontherly and sonth-westerly winds became established as the posterior slope paseed and as the posterior trough approached. On and after the 27th until the 30th, the isotherms of 40° and 50° extended northerly and north-easterly, correspondent with the establishment of the south-westerly wind. The posterior trough passed Thurso on the 28th, barometer 29.16;

FIG.I

FIG.4

FIC. 5

FIG. 6

valencia
by hard frosts in some parts, and by showers of snow and hail, mingled with rain, in others, ocenpied four days in its passage; on the 23rd its crest extended in the direction, Christiansund, $30 \cdot 27$; Thurso, 30.21 ; and Valencia, $30 \cdot 10$, risiug at Thurso and Valencia, wind north-east, temperature from 30° to 40° Fabrenheit, cloudy, with snow showers, thunder, and hail. From the 23rd to the 27 th the barometer fell at nearly all the selected stations, yet the posterior slope had not made its appearance, for the relative geographical distribution remained the same, i.e., the groslients of its anterior slope extended from

Christiansund and Valencis on the 29th, barometer reading st Christiansund 2906 , anc Valencia 29.02; Plymonth and Dovar on : 30th, barometer at Plymouth 29•26, and at 1 29.33.

The close connection so very clearly shown the aid of the weather maps between the k meter, wind and weather generally, and in : particular instance the contemporaneity of progression of the weather with the transit of waves, are importsnt features for stady. The late Si

metrical movements, refers to those which arise from barometric oscillation, and which are connected with auch oscillation in a direot and intimate manner. Every wave-like movement in a fluid consists of two distinct things-an advancing form and a molecular movement. Now the advancing form is indicated to us by the barometer, the molecular movement by the wind, and between these two phenomena there subsists of necessity a close and parely dynamical connection. "It would," says Sir John Herschel, " be no small meteorological discovery, if by the study of the charaoters and progress of barometrical fuctuations, we could either make out any law of the greater ones which would enable us even roughly to predict them or any peculiarity in their physiognomy by which we could recognise them in their earlier stages, as by this we might possibly be led to the prediction of great storms."

The theory employed supposes that the barometric movements of the sixteen days from March 15 to 30 inclusive were due to two sets of oppositely directed winds; one blowing from northeast, which were compensated by south-west winds, the other from north-west with south-east compensating winds. These winds, advancing laterally and simultaneously from north. west and south-west, occasioned muoh complexity in the
treated more as simple than complex exponents of phenomens, and the question has been put, "Is the statical force-i.e., the excess of barometric readings at one station, as compared with another, an exponent of the existent wind?" We shall not enter apon the mathematical treatment of this question, but aimply remark, as it appears to us, that the difficulty of arriving at any definite conclusions as to weather forecasts or storm previsions, for which purposes statical force has been employed, mainly resalts from the nonrecognition of the existence of the two simal taneous sets of waves, of which we find abundant evidence in the weather maps.

Illustrations.

Fig. 1.-Barometric Sections.-Biarrite, Dover, and Christiansund, March 18,23 , and 29. The dotted lines (18th and 29th) show the dips towards the north.

Fig. 2.-Baiometric Sections.-Biarritz, Plymoath, and Tharso, March 18, 23, and 28. The dotted lines (18th and 28th) skow the dips towards the depression near Thurso.

Figs. 3 and 4.-Barometric curves at the northern stations, Tharso, and Christignsund, showing the minimum of the 18 th , produced by the anterior trough of wave b.

In order to exhibit the barometric affections resulting from the transits of the two waves B and b, eight ourves, arranged in paira, have bcen selected; these are so given as to show the gra.ual diminution of range from the north-west towards Brassels, the curves of greater range being placed on the left, with the largest range of each pair below its fellow. The localities are Fig. 8, Thurso and Christiansund on the extreme north-west of the area; Fig. 9, Plymouth and Valencia on the soath-west; Fig. 10, Rochefort and Biarritz on the sonthern part; and Fig. 11, Brussels and Dover towards the eastern part of ares. A mere glance at these curves is snfficient to show that the greatest range occurs in the north-west, the least in the neighbourhood of Brassels; also that during the thirteen days from the 18th to the 30th, inclusive, the movements of the barometer at each pair of stations selected were such as to lead to the expectation that the entire area may be divided into barometric districts of specific types, such as the Hyperborean, including the north of Scotland, the North Sea, and Norway ; the Atlantic, referring principally to the western shores of Ireland and the entrance to the Cbannel ; the Biscayan, as the north of Spain and the west of France ; the Mediterranean, comprising the sonth of France, and the Nodal,

phenomens and also in the maps; bat by the help of sections and curves it is possible to unravel this complexity. Taking as a principle that the winds are regularly disposed on each side of a line of barometric maxima or minima, north-east winds require, according to "Buy's Ballot's Law," that a maximum should exist to the right, or in the north-west, and south-west winds require that the same maximum should be found also to the right or in the soath-east. The same principle applies to the north-west and south-east winds, so that with the weather maps before us the direction of the wind in most cases points out the quarters in Which we may look for high or low barometers. As just noticed, the simaltaneous existence of these winds render the maps very complex, some days the north-east winds being predominant, on others the north-west or sonth-east, but if sections be drawn, as, for example, that from Biarritz to Tharso on the 18th (see Fig. 2), when the crest of wave b passed the southern station and the troughs of waves B and a intersected not far from Tharso, we shall gain a clearer idea of the distribution of pressure than from the isobars alone, and if these sections be accompanied with curves, as, for example, the eight herewith given, we may be able still more distinctly to trace the passages of the crests and troughs across the area. Up to the prezent time isobars have been

Fig. 5.-Barometric curves at the eastern stations, Biarritz, Dover, and Brussels, showing the maxima of the 17th and 18 th, arising from the orest of wave A, and those of he 20th from the orest of wave b. The opposition of the maximum at Biarritz, to the minima at Tharso and Christiansuad (Figs. 3 and 4, and 5), indicates approximately the semi-amplitude of wave b, but the area is too small for the determination of the amplitude.

Fig. 6.-Barometric curves at Plymouth and Valencis, showing the maxima, forming the orest of wave b, and the minima of the 21st produced as the anterior slope of wave B passed over.
Fig. 7.-Barometric Seotions, Biarritz, Plymouth, and Thurso, March 24 and 25 , showing the anterior slope of wave B, the higher readinge occurring at Tharso, wind north-east, and at Plymouth wind north north-east, which is quite in accordance with "Buy's Ballot's Law." The section on the 26th shows a crest passing Plymonth, which although not sufficiently prononnced to raise the barometer, is, nevertheless, apparent on the Plymonth curve as a slight bulge (see Fig. 9). The section of the 27th (dotted line) shows that the posterior slope of wave B had passed on to Biarritz, wind at Plymouth south-west accordant with "Buy's Ballot's Law."
of which Brussels may be regarded as the centre. From the data supplied by the Meteorological Office, the laws of barometric sequence and range in each of these regions may be determined.

It will be seen from the curves that at the southern and eastern stations raxima of the barometer occurred on the 27th and 28th of March, and on consulting the weather tables for these days it will be found that at Paris the barometer attained a maximum on the 27 th, but it was not antil the 28th that maxims passed Lyons and Toulon. Sections from Toalon to Tharso on these days show that these maxima were the crest of wave B passing off towards the south-east. The sections are as follows :-

Stations.	March 27.		March 28.
Toulon.........	29.91	...	30.14
Lyons	$\cdot 90$...	3000
Paris	$\cdot 82$...	29.73
Dover	-71	...	$\cdot 46$
London	-66	...	-41
Liverpool......	$\cdot 59$.	-30
Leith	-46	...	$\cdot 20$
Nairn	-38	.	-20
Thurso.........	-23	\cdots	-16

On the 28th the posterior trough of wave \mathbf{B} passed Tharso, so that the amplitade of the posterior slope, or semi-amplitade of the wave, was
represented by the apace between Toulon and Thurso, and this was abont the extent of the amplitude of the anterior slope. It is probsble the entire wave extended over double the distance of Thurso trom Toulon.

MICHAEL FARADAY.*

T^{B}1HE life-siory of Michsel Faraday is one of the fer which cannot be told too frequently. The son of a journeyman blacksmith, by the foroe af his innate genius he made his name known in avery part of the globe, and by a limited circle
of friends he was loved and revered, not so mach for his soientific sttaiaments as for his moral worth and kindly good-nature. For this reason we cordially welcome the appearance of the little book by Dr, Gladstone ; for although Dr. Tyndall has written the life of Faraday from a scientific point of riew, and Dr. Bence Jones has published a biography, hitherto there has been no volume Which ahowed us Faraday as a man as well as a philosopher. Dr. Gladstone, however, has sucrecord of his life with much of those inner and, as presented to the general pablio, unseen features of his character. It appears that in a review of the "Life and Letters," Dr. Gladstone mentioned that he thought of giving to the public his own reminiscences of the great philosopher, and urged by his friends he has pat the ides into shape, the resalt being this little book, deaigaed for those of Faraday's "fellow-countrymen who venerate his noble oharacter without being able to follow his scientifio researches." For the various facts raentioned in this volume Dr. Gladstone is indebted in some instances of Prof. Tyndall and Dr. Bence Jones the works of Prof. Tyndall and Dr. Bence Jones, several friends, and to his own personal recollootions; but where practicable he has preferred to illustrate the character of Furadey by documents or incidents not previously published. The book is divided into five sections, under the following heads-the Story of his Life, Stady of his Character, Fruits of his Experience, his Method of Working, and the Value of his Discoveries. The character in which Michael Faraday is first introduced to us is as an "inquisitive boy," minding his baby sister, playing at marbles, learning the three R's at a day-school, and residing at Jacob's Well-mews in the neighboarhood of Man-ohester-square. He was the third child of James and Margaret Faraday, and was born in Newing. ton Butts, on September 22.1791. His parents being only poor, hard-working people, young Michael was sent to work as soon as he was
able and an opportunity offered, his first situable and an opportanity offered, his first situ.
ation being as errand boy to a bookseller named Rieban, an intelligent. man, with a "leaning named Riebau, an intelligent. man, with a leaning wards took him as an apprentice without a premium. Once in the shop, with permission to look
at the books on the shelves, Faraday made every at the books on the shelves, Faraday made every
nse of his position, devouring such works as Mrs. Maroet's "Conversations on Chemistry," and Watts's "Improvement of the Mind," and carefully reading, as well as binding, the various scientific books which found their way to Mr_{6}
Rieban's premises. At this early period of his Riebau's premises. At this early period of his
career of scientific researoh we find the ruling characteristio of his treatment of natural phenomena strongly developed, for, althongh doubtless be accepted the statements of Mra. Marcet as correct, he was not satistied till he had demonstratad their trath-at least of thosefor which his limited means permitted the necessary expendi-
ture. Thas he made an electrioal machine with ture. Thas he made an electrioal unchine with a pbial, but afterwards obtained a "real cylinder," and constracted other electrical apparatus in a similar rudimentary manncr-a manner which
served him through after life, even for some of his most accurate investigations.
The most importnnt feature of this period of his life, which probibly formed a turning point or a starting-point in his career, was his attendance at the lectures on Natural Philosophy delivered
by Mr. Tatum, the needful shillings being furby Mr. Tatum, the needful shillings being fur-
nished by his elder brother Robert, an "investmeat" " the latter could never have regretted. Here Faraday made his first acquaintance with scientitic lectures, and at the same time, with other earnest students, with some of whom a lif-long friendship was formed-notably with
Banjamin Abbot, who was well educated, Banjumin Abbot, who was well educated, and held a responsible post in the city. It was in Mr. Abbotl's house-in the kitchen, and from the

* Michnal Faraday. By J. H. Gladstoxe, Ph.D.,
R.S. London: Macmillan.
ond of the kitchen-tablo-that Faraday made his early experiments and delivered his first locture. The leotares delivered by Tatum fell on no careless or inappreciative ears: his words found no nnprepared seed-ground in the brain of Faradey who took copions notes, and afterwards wrote oat 2 cloar copy, with descriptions of the experiments and neat drawings of the apparatus,
binding the whole afterwards in four volames, binding the whole afterwards in four volumes, his master, Mr. Riebsa, as evidence that the permission to examine the books in the shcp had not been used for idle purposes. At this time there was a lodger at his master's, M. Masquerier, a French emigré and distinguished artist, who, struck with the intelligence of the lad, lent him his books and tanght him perspective ; and among the visitors to the shop was a Mr. Dance who took Faraday to hear some of the lectures of
Sir Humphry Davg, which he followed with eager and intense interest, taking copious notes, whioh he afterwards wrote out in the same manner as he had done with Tatum's. Soon after this Sir H. Dary injured his eves by an explosion of chioride of nitrogen, and Faraday was fortanate enough to obtain the post of amanaensis, probably, asys Dr. Gladstone, through the introduction of his artist friend, Masquerier. This, however, lasted a very short time, but the appointment was so far fortunate for the youthfal philosopher that it appears to have determined him to write to Sir H. Dary, telling him his desire to stady Scienoe, and forwarding the notes of his lectures. Davy wrote an snswer, and in the personal interview which followed, advised the bookseller to stick to his business, promising him the work of the Institation and his own besides. Soon after this however, the laboratory assistant at the Roya Institation was discharged, and Sir Hamphry remembered Faraday, who was thus installed in the post on March 1, 1813, at a salary of 25s. a week and a room in the house. His duties were to assist and attend the lecturers and professors, to keop the models and instruments free from dust, and to take oharge of the apparatus and furniture of the laboratory and lecture-room generally. From the very first Faraday began experimenting; for a few days after the appointment he was extracting sugar from beet, and before the middle of April had been exposed to terrible risks in assisting Sir Humphry with his investigation of chloride of nitrogen, no fewer than four separate explosions occurring, in one of which he was saddenly stanned and rather severely wounded.
About this time he joined the "City Philosophical Society," consisting of some thirty or forty members, composed of the middle and lower classes, who met together for matual instruction and improvement; hall a dozen of these would meet to criticise the work of each other with results which Farsday describes as "most valuable," from the "discipline being very atardy and the remarks very plain and open." Seven months after his appointment, Bir Humphry Fishing to travel, took him as an amanuensis, aud for a year and a half, in the company of that great philosopher, he wandered about France, Italy, Switzerland, and passed through Germany the Tyrol, and Holland, keeping a journal, the most interesting and valuable portions of which are reproduced by Dr. Bence Jones in the "Life and Letters." "This year and a half," says Dr. Gladstone, " may be considered as the time of Faraday's education ; it was the periud of his life that best corresponds with the collegiate coarse of other men who have attained high diatinction in the world of thought. But his university was Earope ; his professors the master whom he served, and those illastrious men to whom the renown of Davy introduced the travellers. It made him personally known, also, to foreign savants, at a time when there was little intercoarse between Great Britain and the Continent; and thus he was associated with the French Academy of Sciences while still young, his works fonnd a welcome all over Europe, and some of the best representstives of foreign science became his most intimate friends.'
In 1815 heobtained a "somewhat bigher position" and an increase of salary, which was further angmented to $£ 100$ per annum in the following ycur. It was in September, 1815, that he took the position formerly occupied by Brande, as the change of hand writing in the laboratory note-book shows. His first lecture was given on January 17, 1816, at tha City Piilosophical Society, aud
in the same year his furst papor was published in the Quarteriy Journal of Science. Just beforo his marriage to Sarah Barnard, the danghter of a
silversmith in Paternostor-row, which took place in 1821, he was appointed auperintendent of the honse and laborstory, and in February, 1825, became director, a position of greater responsibility and influence. One of the first innorations consequent on this was an invitation to the members to spend a scientific erening in the laboratory, and thas arose the well-known "Friday eveniags," which in his hands and in those of his successors, have done much to popularise sciance. "Dp to 1833 Faraday was bringing the forces of nature in sabjection to man on a salary of only £100 per annum ;" then John Faller founded a
Professorship of Chemistry, and appointed Faraday to the post with the endowment of nearly 1100 a year for life. Bat during the earliar part of his career Faraday mado commercial analyees, and did other professional work, which in 1830 and 1831 brought in an income of oertainly $£ 1,000$ a jear, bat just then he discovered the evolation of electriaity from magnetism, and the choice had to be made between science alone and a himitad parse, or prolessional work, a full parse, and an abeadonment of those investigations whioh were to lead to groat discoveries. "The ahoice was dalibesately made: Nature revealed to him more and more of her seorets, but his professional gains sank in 1832 to $£ 1559 \mathrm{~s}$., and daring no subsequent year did they amount even to that." In 1836 he acoepted the appointment of soientifio adviser to the Trinity House, which made a slight increase in his income ; but the story of his life shows that the talents which he brought to bear on soientifio research would, trurned in other directions, have enabled him to retire in middle age on a large fortune. To Faraday, however, the parsait af science was the summum bonum of earthly existence; to him science brought a reward which be could have found in no other direotion; and as he frequently expresses it, his life was all he desired. Honours were showered apon him in all directions, bat he refused the highest honour in the power of science to conferthe presidentship of the Roysl Bociety, saying to the friend who so worthily follows him, 'Tyndall, I must remain plain Michsel Faraday to the last; and let me now tell you that if I accepted the honour which the Royal Society desires to confer apon me, I would not answer for the integrity of my intellect for a single year." In 1835 he accepted a pension from the Government, and in 1858 the Qaeer offered him a house at Hampton Court, where be spent the greater portion of his remaining years and died on the 25th of Augast, 1867. He was buried in Highgate Cemetery, and the world moarned the "prince of investigators," the blacksmith's son, who was decorated with no fewer than ninety-five titles and marks of merit, and was a member of so many learned bodies that M . Riess, the celebrated Berlin electrician, once addressed a letter to him as "Professor Michaed Faraday, Member of all Academies of Scienca. London.'
These are a few of the salient points in the career of the "great philosopher," the atory of whose life is a grandly-shining bescon to gaide the toiling followers of his footsteps, and Euglisis mechanics and stadents of scienoe will do well to carefully read aud commit to memory the words of Dr. Gledstone's little book. The volune teems with anecdotes which exbibit the chareoter of the man, and "his method of working" is s ohapter that cannot be too frequently stadize.
His opinions on those questions of pablic im. portance which it has become more imperativel? necessary to solve at the preseut day, whea the full effect of his work is beginning to bo folt, ar marked by clear common-senge. He was examis-J on the soientific education question belore the Pablic Schools Commission in 1862, and bis opinion was emphatio-" That the natural krow. ledge which has been given to the world in exeth abundance during the last fifty years shonld remasit untouched, and that no suticient attempt shon
be made to convey it to the young mind growir: ap and obtaining its first views of those thiocs. to me a matter so strange that 1 find it dijh-ato understand. Though I thiak I see the sition breaking away, it is jet a very hard ode : overcome. That it ought to be overcome I har not the least doubt in the world.
sge. are. He would teach "all those things ㄴ: London Une classics in the programme of t draulics, pneumatics, acuastics, sud optics I are very simple and easily understood when tis are louked at with attention by both man and
intelligent instructor might teach optios in a very short time ; and so with chemistry." Faraday, the prince of leotarers himself, naturally saw that lectures alone "wonld give a very poor
knowledge of natural thinge,", the student mast Enowledge of natural things, the student must
experiment for himself. This was his own habit: be aocepted nothing on trust that it was pnasihle for him to verify. Mr. R. Mallet, F.R.S., gives a remarkable instance of this. On one of his viaits to the philosopher he took some slips of Mantz's yellow metal, and showed him that, thongh flexible and tongh, they were made instantaveously brittle and rigid when dipped into solation of par-nitrate of mercury. Farsday, however, "took one of the slipe, bent it forwards and baokwards, dipped it, and broke it up into short bits between his own fingers. Ha had not before spoken. Then he said,
'Yes, it is plisble, and it does become instantly brittle." This method of convinoing himself was the natural habit of the man, and it cannot be doubted that to it much of his success as an investigator was due. Many of Faraday's most important experiments, toa, were
made with the simpleat means, and his skill in devising the necessary apparatus for elaborate investigations was unparalleled. An instance is given by Sir Frederick Arrow, the occasion being an expedition of the Elder Brethren to witness "Be trial of the electric light at Dangeness "Before we left Dover," he says, "Faraday, with little common peper box, and said, 'I must take care of this; it's my special photometer-and hen, opening it, produced a lady's orthary hen holdiog it a little or way off the candle showed ne the image very distinct; and then, putting it little further off, placed another candle near it, and the relative distance was shown by the size f the image." We must give one more aneodote, and take leave of this interesting and trnly slaable book. "An artist was once maintaining ta down, and high and low, were fixed, indubiable realities ; but Faraday told him that they vere merely conventional sooeptetions, based on tandards often arbitary. The disputent could tot be convinced that ideas which he had hitherto lever donbted hed such shiftiog foundations
Well,' said Fernday, 'hold a walking-atick beween your ohin and your great toe ; look alone and say which is the apper ond.' The experiaent was tried and the artist found his idea of erspective at complete varianoe with his sense of
eality; either end of the stick might be called pper-pictorially it was one, physically it was other."
The life of Faradsy should be as familiar to or youth as "household words," for he was an rnament and a benefactor to the whole human see-not the hero of one natioh and the soourge another.

OCAL LENGTH AND MAGNIFYING POWER OF OBJECT-GLASSES.
THE following paper was read by Dr. RoystonPigote before the mernbers of the Quekett lab. and is extraceed from their joarnal :-
Though strange, it is novertheless true, that two oservers, with the same eyepiece and objective, do ot always see an ohject magnifed to the same
nplitude. A change of focns may be necesary. short sighted person sees the virtual image of the agnifed object at a distance of perhapa 6 in. ; the ng sighted adjusts it perhaps at $12 i n$ or even 18 in ;
ie distinot plane of vision, called the feld of view variably placed according to the foeal length of te eye of the observer, and therefore at distances censiderable variety. Under these circumstances, t wo observers, the one very short, and the other ry long.sighted, both agree to observe together,
eir powers of vision proportionably vary. It is cessary, then, to fix a atandard for estimation. ost persons can see distinctly at 10in. distance.
this case the power of any lens at this distance found by dividing ten by the focal length f or

Magnifying power $=10 \div$ focal leagth f

$$
\text { or }=\frac{10}{f} \text { or } 10 \div f
$$

o perseess utaread in optical principles, there ap ars some iltile difficulty in onderatanding the ariatio foo introducing the following, perhaps, be
cnsed for own. I believe, to very few working opticians:We take a lens (say 3in. focus), and form the anll perforation in a brass plate placed before it) sou a sheet of white paper, it is well-known that
you move the candle from the leas you mant
move op the paper towards it, in order to obtain a clrar image. Now, the special point which I wish to bring out is this, that exactly at the position where the image is formed clearly at the same dis tance from the paper as the cande is, the diatance between the candleand image is the least possible or a minimum. A most usefal result is now obtained; in every case this minimum diatance is exactly four times the focal length of the lens. In the case of a 3in. lens this minimum image distance will be fonnd to be exactly 12 in .
We will now snppose that instead of the 3in. lens a 2 in . objective is used in precisely the same way. The minimam image distance between a candle and its image will be cond much less than Sin., so that the real focal length* is $13 / 96$ or rather less than 1 lin. There are two or three preliminary points which mey not be uninteresting. To find the focul length of a plano-convex lens, turn the
flat side to the sun, and measure the exact distance flat side to the sun, and measure the exact distance from the sharpest image on a card to the convex
surface. If the leus be eqniconvex, half the thick surface. If the lens be equiconvex, half the thick ness must be added. If the lens be used as a con-vexo-plane, and the plane side is towards theimage when the aberration is redaced, two-thirds of the thickness must be added. The minimum imagedistance avoids these inconveniences of measurement altogether. In every case the true focal length will be more accurately determined by nsing ouly a small central aperture applied to the lens in question.
I have designed an instrument of considerable accuracy for measuring the focal length of ordinary lenses. consisting of a perforated metal plate, and a white screen, or piece of ground glass, with a carrier for the object-glass or lens. By means of a long screw, tapped with similar right-hauded and left-handed dies, the perforated plate and lamp and the screen are simultaneonsly made to approach or recede from the lens, which is thus kept always exactly equidistant from the plate and from the screen. The lens to be measared being fixed, the screw is turned, until an exact image is formed upon the screen, of the perforations; one-fourth of the distance between them is exaotly the focal length required. I term this instrament a Focimeter. But in the case of very minate lenses, considerable difficalty is experienced in finding their exact focal ength by measurement of their curves. In tbis case, the focal length can be obtained most readily by the following artifice :-If the magnifying power be great, a stage micrometer is to be placed exactly at 10in. distance from the ground-glass screen. If 2 microscope be used, by taking out the field and eye-glasses of the eyepieces, an ordinary circular 1-100th micrometer may be inserted; then replacing the eye lens only, the image of the stage
micrometer mast be accurately observed, and the micrometer mast be accurately observed, and the magnitude of a 1-100th nicely determined in the divisions of the eyepiece micrometer. Sappose this to be (m), the actual focal length of the lens in question
Divide ten by this number (m), increased by wo. Larger lenses will required a correction to be hereafter explained.
Exemple.-A small lens is found to magnify a bundredth of an inch apon the stage to measure thirty-five handredths at 10 in . distance from the its fild lone Find the focal lenec, deprived of its field lens. Find the ocal lenth; also for a
plano convex find the curvature of the tool to grind plano co
the lens.

$$
\begin{aligned}
\mathbf{N}=35 . f & =10 \div(\mathrm{M}+\mathbf{2})=10 \div 87 \\
& =0^{\prime} \cdot 2 \dot{2} 027 \text { nearly. }
\end{aligned}
$$

In a plano-convex lens radius of carvature for fint-
$=1$ focal length $=0 " \cdot 18513$ in.
Example 2.-A compound lens forming an objectglass of great power enlarges the thousandth of an inch to 158 divisions in 1000ths, as before at 10 in . Find the approximate focal length. Here
$f=10 \div(158+2)=10 \div 160=\frac{1}{61}$
From this it appears that an exact sixteenth should produce an inage precisely 158 times as large when the object is exactly 10 in . from the field of the eye-lens at the stop of the eyepiece.
For practical parposes, therefore, an eye-lens magnifying ten times would enlarge the oljject in this case 1.580 times. Now a C eyepiece of Powell and Lealand is just equivalent to an lin. lens; therefore, when these makers annoance their sixteenth to mapuify 1,600 times with a C eyepiece, this objective is nrarly the onc-sixteenth of an inch focal length within a small decimal.
The magnifying power employed at any moment is often so great a desideratum, and yet so unattainable (when one is closely engaged in some delicato investigation, and aving a variety of objectives), without great loss of time, that the following observations upon a simple method exhibited at a meeting of the Fellows of the Royal Microscopical
Suciety recently may, it is hoped, prove acceptSuciety recently may it is hoped, prove accept-
able. Haviug met with many pursons and some

* Focal point of a lens is generally known to be the focu
opticinns who experienced a difficulty in understanding the reason of the thing, I trust that the preceding remarks will clear the diffoulty away.
If we settle it as an axiom for very high powers, snoh as the one-eishth and oue-sizteenth, that at 10in. distance of the stop of an eyepiece, without the field-glass, the enlargement of thousandths on the stage will give the focal length simply by dividing ten by the amplification increased by two then it is evident that by using a single lens of in. focal length magnifring ten times, if we count how many handredths of an inoh in the stop correspond to a handredth on the stage micrometer, ten times that amount with an inch or eyepiece is the magnifying power. Now replace the field-lens (usually of 3 in . focus) for an eycepiece of 2 in . focal length, having an eye-lens of 1 in., the magnifying power will be redaced considerably in the proportion shown by the new reading. Whatever object-glass is now used, and whatever length of tabe happens to be in use, so ong as the eye-lens is lin. focal length, ten times the apparent amplification of the stage micrometer will give the power under employment.
I Leep an eyepiece (2in.) with lin. eye-lens, armed with a glass micrometer, ready for use. Every microscopist should demand that the optician mark the focal length of each of his eyepiecos. Powell and Lealand's C eyepiece is exactly lin. focal length; and at the usual distance of 10in. the power of any object-glass with it in at once fonnd by mnltiplying the reciprocal of the focal lpngth (eight is the reciprocal of one-eighth) by one huadred.
The standard role by which nominal "inches," quarters," " eighths." " sixteenths," and "twentietlus" are construoted is, therefore, most properly taken, so that with a 0 eyepiece of lin. focal leugth and the stop of the eyepiece being exactly 10in. from the etage, their respective magnifying powers shall be:-
(Objectives) Inch Qnaxtar Eighth Sixteenth Twentieth
I have found Nobert's lines to form very beantiiul stage miorometers; bat as they are fraotions of the Paris line, observations with them reqnire laborions reduction to the English standard. Bat I wish to acknowledge here the kindness of Mr. Baker, the optician, in placing at myidisposal Jackson's awn beantifally ruled micrometer lines, 2.000 to the isoch. With the aid of this, and a micrometer in the stop of the evepiece. I found the power of Powell and Lealand's new tin., with a 1 in . Kellnar of Browning'smake and searohar (with a fine definition), to be 5,250 diametere.

Without searcher and lin. ejo-piece:-
Andrew Rose. . 1851 . . "qnarter". . power, $540=$ nemenilth. Wray..........1870... one-Atth ..ppower, 540*

Reanma

1.-The focal length of a lens in one-fourth the least distance between image and object at whinh it can be distinctly formed.
2.-If a distance of 10 in . between object and image be taken (to simplify the calculation), and the amplitication measured for a division, then in the case of small lenses, the focal length is found by dividing ten by the divisor increased by two.
3. - The magnifying powar of an objoet-glass for any length of tube can be ascertained by using an eye-lens of lin. foeal length, with or without a fleldlens, by measuring the amplification of a atage micrometer upon another placed in the stop of the eyepiece, and then multiplying it by ten.
4.-Different eyepieces boing compared by the Camera Lacida, or marked in focal length by the maker, all other powers are immediately ascertained by the simple rule of proportion. t

POOR MAN'S PROVENDER.

A MARKED, bat unfortanate trait, in the chathe Food Jo of the average Briton, consists, says rejects and repudiates every unaccustomed article of food introduced to his notice, if it happens to be cheap; and the lower in the rocial scale the individual happens to be, the more strenuous is his opposition. Although preserved Anstralian beef and opposition. Although preserved Ablic now for a conmutton have been before the pubsined admittance sulerable time, Rnd have even gained admittander
into one of the leading Weat-end clabs, we wonder into one of the leading West-end clabs, we wonder such is the slow progress of a really delicious and cheap preparation, we fear our adrocacy of an inerpensive aud nourishing German viand can scarcely hope for more favour. Nevertheless, ${ }^{2 s}$ food journalists, it seems to be our duty to make known everything likely to beneft the son of toil as well as his master. Sauer-krant, an efficacious preservative agaiust scarry, is thus prepared:-When cabbage
 lanth
fith.
\dagger A tin. eyepiece will, of course, be twice the power of
has arrived at maturity, and is compact and hard, it is divested of its outer leaves, the stalk cut away and the remainder shred finely and packed in layers and the remainder shred finely and packed in layers
in large earthenware pots or barrels. Between each in large earthenware pots or barrels. Between each layer salt is sprinkled, along with carraway seeds
and juniper berries. When full, the vessels are and juniper berries. When fulh, the vessels are covered each with a heavy weight, and in a month
the contents are fit, after four hours' boiling, for use. After the Sauer-kraut is ready for cooking, it will keep sound for years if the stock is always covered with brine. With Anstralian beef as a basis, this as a vegetable, and a little brown bread or potatoes, as accessories, we venture to think that even the poorest might extemporise a good dinner within his means.

STUB-END FOR CONNECTING ROD.

T
strengexed illustration of method of extracted from the Journal of the Franklin Institute end may be foond nseful in some cases. In thi and tal boak stub the block a, strap , and boxes $c c$, are made in the usual way. The key k, bas a lag, through which the bolt n, an extension of the gib, passes, a slot hole being provided to allow for draft of key, and nuts i i, to hold key secarely in place. The head a of gib holds the strap in the nsual way, bat on the other end a nut h is placed, resting on a circular washer e, notched at the key. The diameter of this part of the gib is made more than the thickness of the gib, to gain strength, but the extensiou n may

be made less. This plan may be resorted to with advantage to strangthen existing stabs, giving the bolt to the strap and screw adjustment and holding to the key.

THE BARRON STEEL PROCESS.

THE Barron Steel Process is attracting considerable attention in the United States, and judging by the results which are said to be obtained, it mast be a very satisfactory method of making steel as well as the most economical. According to the Iron Age it was invented by Mr. Thomas J. Barron, in 1868, who associated himself with others, and a company was formed to introduce tools of steel made by this process. After devoting two years to carefol experiments and study of the conditions of success, the mannfactory began operations on the lat of March last, and now employs forty hands. Thus far the success is reported to be very hands. Thas far the success is reported to be very encouraging, and enlargement of the establishment is in contemplation. From an article in the Louis.
ville Commercial, we obtain the following particuville Commercial, we obtain the following partica-
lars respecting the process:-Tools, sach as axes, lars respecting the process:-Tools, such as axes, hatchets, hoes, and adzes, to the manufacture of which
chief attention has been paid, are first fashioned chief attention has been paid, are first fashioned
of iron by the usual methods. They are then placed in revolving drumb, where the roughness and Poreign substances which belong to them when they come from the moulds are worn off by attrition. They are then packed in layers in iron boxes, closely covered with clay and subjected to the ection of oxide of iron and ahemioal snbstances, which ot carbonise the iron of which they are, which deHerein is the secret of the process. In thesposed. Herein is the secret of the process. In these boxes the tools are subjected to an annealing process, Which lasts for from three to six days, when, being decarbonised, parified, and malleable, they are ready to be changed into steel. A retort holding abont a ton of the tools, occupies the centre of a large oven, Which is kept at a temperatare just bolow the point of fasion. In this they absorb gasoline, introduced from a tank near by, and pare obarcoal gas, genorated in a retort on the top of the farnace. The
iron becomes steel in from eight to ten minutes, when the tools are removed to be tempered, ground and polished for the market. It is claimed that this process is the quickest and the best yet discovered. The company is now melting about a ton and a half of Iron a day, and ab soon as proper facilities are provided will begin the manufacture of steel rails. Professor Newberry, of Columbia College, New York, makes the following report of a practical tast of the steel produced in this way:"With tailor's shears cast in shape, made malleable, and then converted by the Barron process, I have cat Florence silk so nicely as to prove the edge perfect ; then, with the same shears, have cut ap aheets of tin and natempered steel ; and retaraing to the silk, have found the edge wholly unimpaired, and this after a repetition of more tham twenty times." Arrangements are making to start a large establishment at Pittsburg for the manufacture o tools by this process.

LOCK NUTS AND WASHERS.

ANEW arrangement of locking nut and washer, with a spanner adapted to the special requirements of the arrangement, has been patented by Messrs. Blakemore, Sherring, and Horstman. The invention consists essentially in the employment of a washer, having a cut or slit in it whereby the washer or a portion thereol is oaused to act as a spring. This washer fits over the bolt, which is grooved or cut away longitudinally throughout the sorewed portion thereof, the hole in the washer being formed correspondingly to prevent it from tarning; the underside of the nut is notched or made with ratchet teeth, so that when the nut is sorewed down, the slotted out or slit portion of the washer springs up and takes into one or other of the notches or ratchet teeth. These notches or teeth may be over the whole or only partially scross the face of the underaide of the nut ; and the slit or cat in the washer may be made in any desired direction, as practioe may suggest. By another arrangement, and when using a nut with a plain inside face, the washer may be cut or a slit made therein at one side thereof so as to form a tongue; the washer being placed over the bolt, as the nat is screwed home the cut or tongue portion of the washer springs np and stops against one of the sides, or in saccession agginst two or more of the sides of the nut, thus preventing the latter from nnsorewing. Another form likewise used with a plain faced nut is where the out portion of the washer is turned up at right angles to the face of the washer, and so springs against the edges of the nat, thns offering a certain amount of resistance to unscrewing. The washer may be of any irregular or other form suitable for preventing it from turning; in many cases this may be accomplished by tarning a portion of the same over the edge of the work to be fixed to prevent its tarning on the bolt. The inventors prefer, however, to make the nuts bevilled on their edges and to nse a spanner bevilled on its edges to adapt itself and to correspond with the bevil or bevils on the nut, and thereby to press down the apring portion of the washer when it is required to anscrew the nut. The nut may be made with a projecting collar at or near its outside surface ; but in that case the inventors use a spapner of a tapering thiokness, so that when the spanner is fully inserted between the collar and the washer the spring tongue or tongues of the latter are pressed down, and the nut is released from the washer and may be unsorewed. For fish plates and other parposes where the bolt holes are suffleiently close together, they employ a double or compound washer having two or several holes therein with cuts in the metal to secure the several bolts as before described.
Fig. 1 is a plan of the form of washer which the patentees prefer, and Fig. 2 exhibits so much of a rail in section with nut and wesher applied as may be required to comprehend the constraction. In these figures a is the slit or cut in the washer, b is the bolt, c is the groove or cut therein, and d is the corresponding projection on the washer which takes into the groove c to prevent the washer from turning on its bolt; e is the nat bevilled on its sides and notched on the underside, as seen at Fig. 2. To secure the nut place the washer on the bolt b with the projection d, taking into the groce a, sorew the nut down on the washer, when

the spring portion formed by the slit a rises and takes into one or other of the notches, and thereby prevents the nut e from becoming loose. In order to unsorew the nut, a spanner made to correepend with the bevil of the nut is pushed on, forcing down the spring-portion of the washer and releasing the nat.

TEST FOR ALUM IN BREAD.

Wgenerall detecting alom in accepled as the best method of the author, Mr. Horsley, to the Ohemical News, and is as follows:-

1. Make a tincture of logwood by digesting for ight hours 2 drachms of freshly-cat logwood chipt in 50z. of methylated spirit in a wide-mouthed phial, and filter.
2. Make a saturated solution of carbonate of mmonia in distilled water.
Δ teaspoenfol of each solution mixed with a wineglassful of water in a white-ware digh forms a pink coloared liquid. Bread containing alum immersed in it for five minates or 80, and stood apon a plate to drain, will in an hour or two go blue on drying bat, if no alum is present, the pink colour fades sway. If, on drying, a greenish tinge appears, that is an indication of copper, as carbonate of ammoni produces that colour, bat never a blue. As counter-check for iron, a piece of the mois blae-coloured bread may be drenched with a fev drops of glacial acetic acid, when that containin iron will be bleached of a dirty-white oolour, but with alum a rose-pink or slight buff colour will be observed.
Or it may be tried another way, thas:-Take a piece of the bread in its plain stato, and having digestod it in dilate acetic acid for an hour or co, press ont the liquor and filter; then pat in a lamp a oarbonate of ammonia, and, when all eflerrescence ceases, add to the clear liquor a few drops of solation of salphide of potassiam or sodiam. If irom is preseut, it will be indicated by a dark coloar,
there being no colour produced with slam ; but the addition of a little tincture of logwood immediately reveals it. I might even go turther, and eay that, if necessary, you may quantitatively eatimate the alumina thus:-Take (gay) $\{l \mathrm{~b}$., of crumb bread, digest it in a clean basin with some dilate acetic acid, and allow it to stand a few hours ; then brear up the mass and pass the liquor through a ginse percolator, the rim being covered with calica, repeating the percolation two or three times until the liquor is clear. Throw in carbonate of ammonis to sstoration and add tincture of logwood in areese when if alnm is present sart blae colone produced, with a floccalent blue precipitate an producea, with s foccalent blae preciptate an
standing awhile. Collect this precipitate on atanding awhil. intole a dish with dilute nitione acid and evaporate the red liguor to drjnese. Calleot and evaporate the red liqnor to drjnesa. Cofied
the residue in a small Berlin oracible and iente it the residue in as small Berlin oracible and ignite is at a red heat, when a white powder obtained, consisting of alumina, with possilts a little lime; treat this with liquor potages to dissolve out the alumina, mix with a litile water, filter, and boil with carbonate of ammonis to obenis the pure alumina.

Our Coal Stores.-Professor Rembay. F.G.S, member of the Coal Commission, in a recent address to the Dadloy Geological Society, oxpreesed a strones and encouraging opinion as to the prosence at en beneath the Now Red and Permian. He believes thas the majority of the coal-fields of this conntry have been joined together in one largo area, and that by downthrow and othor fanite, the holda soparated; bat that the intervening spaces covered the coal, vhick. still farther baried by the forcos, brought about th separation. Some had, no donbt, been too deent baried to pay for getting, and some was too thin lar remanerative resalta, though at workable depthe He calculated that more coal iay at workable depthe thax appeared in the fields. The 8outh Stafordehire anti was supposed to contain $3,201,672,216$ tons of coel, bed beneath the Permian attached were $10,880,000,000$ tons ; the Warwiokshire Aeld contained $\$ 58,659,71$ tons, bat that conoealed should be pat down at 2,494,000,000 tons ; and the Leicosterahiro conl-fils contained 838,799,734 tons, bat beneath the Permir: were 1,790,000,000 tons of coal.

MECBANISM.*

(Continued from p. 429.)
A IL machinery can be roduced to a classified list of elementary combinations in mechanism, the character of any portion being assigned to it from its general features, and not from any minute detail. For instance, all those pieces of moch from in motion is mainly commanicontect," where the principal moving parts are in contact, where the prinopal moving parts are in be classified under such division as that of "rolling." The next division might inclade those contri rences by which one moving part in actual contact with another communicatos motion through a procoss of "sliding." Cams and screws communicate motion by "siliding." The Archimedean drill, generally used for light work, is an example of this ind of communicated motion.
Another mode of commanicating motion results rom the wrapping or folding of cords or chains over bodies, rigid, and generally circular, although they masy be of any form; straps or bands over of contrivances in which Again, there are nu pioce to piece by means of bent or straight rods and bars. Very perplexing, though very useful notions, result from these. The grouping of them diatingaished by the name of "links." There are contrivances which depend chiefly apon the
olding over, again and again, of cords or straps; folding ever, again and again, of cords or straps; to the class comprehending these the name communication of motion by "resuplication" is
given. It is illustrated in the case of double and reble zete of palleys.
Another is the transmission of motion by means of an intervening fluid. Sir William Armstrong's hydraulic machine, with its accumulator, is an example. Motion ocmmanicated by an intervening fluid has bean adapted to facilitate tolegraphic delivery in London. T'elegrams received in Tele-graph-street are put into little oylindrical "carpetby air Which are placed in tabes and moved car by air at high pressure, and so shot to the post-omico laid. The messages are taken out of the carpetbage, put into envelopes, and sent to their destinabags, pat into envelopes, and sent to their destina-
tion. The speaking-tubes in this building and in tion. The speaking-tabes in this brilding and in anids.

Under each of these, six heads there may be arranged three and even more classes of motion. A tabalar view of these divisional characteristics of modes of communioating motion, and a classification in reference to the relations of direction, and the ratios of the valocities, may be neeful for fatare reference :-

On Monday last, after the lecture was over, a gentleman remarked, "You said that meohanothing sboat plammer-blocks and anti-friction curves." He anked, what is an anti-friction carve? An anti-friction ourve has nothing to the workshop, and it may be permitted, although beride the exact title of these lectures, to produc an anti-friction pen for the purpose of forming an onti-friction curve. Some years ago-a great many jears ago-there was a discassion in great many matical papers raspecting the curve of least friction or rotating sharts. At he lower end of a vertica ahat the irichion apon the bearing is a proportiona part of the pressure. The question was how should that bearing be formed, and the mode in which it should be formed is given by this pen. Any skilled mechanic may maie the per. It is a piece of brass wire 6 in . long, freely movable abont a pin pat into a piece of wood, 2in. long, and fin. broad, and tin. thick. There is bent over the wire a small piece of steel broaght down so as to allow ink to be ingerted between the two jaws; the ink will therefore flow as from a pen. The mode in which the pen is used is this. Sapposing a bearing to be of a certain size in the lower diamoter, and of a known dimension in the upper, the question is, to ascertain the curve to ongles to a straight line, set off the two radii at their proper distance apart. Parallel to this straight line place a btrapart. Pdgarallel to thainst this edge, where it erosses the larger radius, place the
$\stackrel{\bullet}{\circ}$ By the Rev. Aztain Rioe, M.A., being the Cantor Leotures dellyered before the Boolety of Arth.

Wood, to which the wire of the pen is attached. Slide the steel pen along the wire until it is at the extremity of the radias. Then adjust the straight edge, and draw the wood along it until the pen path of the extremily of the shorter radius. anti riction carve, and the bearing of a shaft made with that vertical section is the one of least friction. To return to the tabular characteristics mechanism. It hes perbaps been truly said that if here were no exceptions there need be no rules. There are before you, in illastration of this, two pieces of mechanism which cannot be arranged ander the tabulated heads. One is called Atwood's machine-a machine designed about the close of the last century, and to which we are indebted for or knowledge of the influence of gravity on falling bodies. The free motion of falling bodies becomes so rapid that the velocity cannot be observed. Mr. Atwood suggested and carried out the idea that if, whilst permitting gravity to exercise its full and usual influence, that influence conld be distribated through a balanced mass, then, although the velocity were retarded, yet the law of that velocity woald remain, and might be ascertained.
The arrangement of mechanism by which he accomplished this is here. Two equal weights are attached to the ends of a very flexible silk cord, aboat twelve feet long. This cord being laid over a pulley, the weights being equal, they might be placed in any posilion, an woald so remsin. Mr Atwood reasoned that is he conld reduce to the smallest possible quantity the friction on the bear ings of the polley, he might determine the lawe of falling bodies. Thas to reduce it, led to the contrivance of placing the bearings of the pulley npon the rims of four other palleys-in fact. as far as possible, he converted a sliding into a rolling contact.
The silken cord was placed with one of the equal weights near the ground and the other near the pulley. 4 small and known woight being placed upon the upper one, cansed a motion in the mass of the two connected weights, and dependent npon the relations of the small weight and the mass so the velocity of descent was retarded. By means of a vertical scale the rate of descent could be observed, and the laws of gravity be thence doduced. As a piece of mechanism, this instrument cannot well be placed under any of the heads specified in the table.
Here is another illustration of a machine which cannot be classed. It is one in which we are all
interested, becanse by means of it coals are prepared interested, because by means of it coals are prepared
for Londou free from slack. Δ waggon of cosla for Londou free from slack. A waggon of coals, as and the question is how are those apecial saie, sereened and made fit for the markets to be market, at anr made it for the market, such manner in which the slack is to be separated is not our business at present; we have simply to do with the motion, not the separation. On the table is a model of a railway waggon into which the larger lumps will be shot. Here is another into which what we may call the first class of slack will be shot, and, here is another into which will be shot the dust, or that which is really little better than dust, out of which artificial fuel is made This waggon of mixed coal direct from the pit is ran withdrawal of the hand from the break. The apparatus gentily rotates-the coais are sid and not
thrown on the screens, and the work being done the apparatus returns to its original position. To accomplish these reverse actions no special contrivance of mechanism is required. It is done by a change of the centre of gravity of the moving machinery, consequent upon the discharge of the coals from the pit waggon. When the conls are in the waggon, the centre of gravity is at one side o
-
Atwood's machine for the purpose named in the lecture may be of interest to some readerl. Lot M be the mase triction, te., of the machine. Now the moring force $=$ matas maltiplied by scceleration, expressed algebraioally that: $\mathbf{P}=\mathbf{M} . f$. Therefore in the experiment-

$(M+\overline{M+m}+R) . f=m .0$

 (1)where (g) is the required force of grarity. Again, if we then
Then

$$
\left(M 1+\overline{M^{1}+m^{1}}+R\right) f 1=m^{1} . g
$$

(2)
combining equations (1) and (8)

$$
\theta=\left\{\frac{2(M-M 1)+(m-m 1)}{m \cdot f^{2}-m^{1} \cdot f}\right\} f \cdot f 1
$$

In this equation all is known except f and $f 1$, and by Atwood's manohino these can be obtainod thas:- First rrange M and M + mon the machine, and sllow the
beavier to fall from one polnt to another at a known iatance from the starting-puint Observe moat careally and aocurately the time vocupied by itn motion.

$$
z=\frac{1}{2} f \cdot t \quad \text { And therefore } f=\frac{2 a}{n}
$$

Now, from this oxperlment, and t are known, and therefore in (3) all ia known except (g). Therefore ((9) can be found, and it is fornd to be $=323$ itt.

Which the mixed coels are discharged. Then the centre of gravity is at the other side, and so causes an apparatus to retarn to its original position. abolated divisions.
The subject of the leoture more especially intended for this evening is on the commanication of motion by rolling contact. The necessity for getting shafts to rotate so that one should cause the gether to move mast have arises in very early days. Yoa remémber even so recently as Jewish times we read that "Two women should be grinding at the mill," so that it seemed to need two people to canse one shaft to rotate, for the millistous was driven by two people. To fold a cord round one shaft and then roand enother so as to commnnioate a motion, would not be a dificult matter, but to bring these shafts into a relation that needed no cords at all, that would then have seemed to bo the perfection of mechanism. We have an example here of such rolling contact. On these two wheels there are no teeth, but they roll on one another only. It would be very desirable to dispense with teeth, bat it is quite clear that mechanios have not yet attained to such perfoction that two wheels shall traly roll with regard to each other whilst scting on shafts in fixed bearings. The one wheel here on the upper shaft drops, and so contact of the circamferences is preserved. This was one contrivance to keep mp conteot. It is found in the blower we have so constantly in use where on wheel is held by a spring against the other. In another case, one wheel is covered with leather in ordar to secure rolling contact. Other modes prior to the introduction of teeth, have been adopted in order to preserve this rolling contact. Perhaps none is better than that of covering each of the rollers with brushos of hair. We are thu led to the origin of toeth upon wheels. We all wheel in teeth are gonerally pincod acroas the is eecnra way you seo here, so that the contact tion of some persons have adopted the sugges direotion parallel the plane of the wheel. This is the case in Robertson's friction gearing, a plan maoh mapled lor the com manication of motion by means of pulleys, grooved parale tothe Wheels used as de soribed are generally
called "palleys." In ordinary cases, teeth run parallel to the shaft; in this case, at right angles to the pose of throwing in and out of gear the free from the objection which the ordinary teeth hare-namely, the great liability to be broken if sadden strain comes apon them. These wheels are still manufactared by the Patent Gearing Company model before you, of which Fig. 1 is a diagram.
In other cases, one palley is pat into a swing frame. The upper palley in this model, sliding in a groove, is then merely hang upon a hinged frame which allows weight to be borne by it, and so in orense is given to the pressure apon the lower palley. That is another contrivance for getting hhis motion by rolling contact. Others are formed
by loading the axles with weights. These practioes by loading the axles with weights. These practioes, however, have been sbandoned where the communi have taten their are objectionable, because they fail to communicato or keep ap a true velocity ratio, and still fail where definite relations of motion must be established. If it is essential that motion should take place in the ratlo of one to twelve, or one of pure rolling can acoomplish it, but it is simply of high velocity, and for the parpose of converting high volocity into power, it has of late years bean high velociky into power, it has of Mr. Ramsbottom, at Crawe.

We are much indebted to the authorities at Crewe for the mechinery now on the table. Heary weights are at Crewo lifted by the agency of a cord cravelling
at a very high velocity. at a very high velocity." Here are pieces of the cord
used for that purpose. One, an old piece, has done its work, and the other, a new piece, had it not been cut off, would have had to do ite work. It is a cotion cord, made very pliable, and cansed to move at the rate of $5,000 \mathrm{ft}$ a minate, and, as $5,280 \mathrm{ft}$. are a mile, we may say it travels at the rate of a mile a minate. This spoed is converted into power, and that is done by pure rolling contact. It is accom The On the table were two plain broad wheold of woud The one was rotated in a vortioal plane, by belog placod on a woodon axle in a horisontal plana The other
whoel was aloo on a horisontal axle, which wai guided in a vortical shide above the former axle, and conse quently the circumference of this latter wheol wa anways in contact with that of the lower whoel
plished thus. At the top of the vertical part of a crane there is a pulley on a shaft which passes down through the crane in a vertical direction, and the pulley being driven commanicates motion to this vertical shaft. Let us for the present rest content rapidly. The mode in which that motion is communicated is this. That grooved palley on the table is at the top of the shaft. It is one of the actual pulleys. The it is velocity cordsed acinst round means of two other grooved palleys, one on each side, and thus is cansed to bear upon a portion of the grooved circumference. You may judge, there fore, that assuming there was no loss of motion, the fore, that assuming there was on the vertical shaft would travel at the rate of a circumferential velocity of a mile per minute. Of course, there is a certain amount of slip which reduces this velocity. Now
let us see what is done by this motion. Remember we deal with it only as a question of rolling contact, independent of the teeth of wheels, to show what can be done by rolling contact only. This shaft with the pulley at the top descends to the lower part of the crane, and there it comes npon the gearing now on the table. You have then a descending shaft. At the end of that descending shaft is a cone pulley which is made of pasteboard.
It consists of two cast iron faces with pieces or sheets of pasteboard strongly clamped between them, and that is turned in a lathe to the shape required. On one casting there are two cone wheels, with such a distance that they only just do not touch this paste board one when it is placed as in the figure between them. Sup-
pose that \mathbf{C} (Fig. 2) is the vertical shaft and the bevel wheel upon it is the pasteboard one. The bevel wheels, A and B, are upon n
 horizontalshaft, which is capable of an end-long motion. If the wheel B be in contact with the rotating wheel, motion will
be communicated to the horizontal shaft in one direction. Give now the end-long motion that shall bring A into contact, then the horizontal sh be cansed to rotate in the other direction. is a handle, by the motion of which either of the two cone pulleys may be brought isto contact wit the pasteboard one, and therefore, whatever motis is being given to the pasteboard one, can be communicated to one of the two. The actual gearing of one of these cranes was on the table. As a piece of mechanism it might have been made of wood, but as a piece of machinery it is made of castiron, and was sent from Crewe for the purpose of the lecture. This cardboard pulley is driven direct, being keyed upon the vertical shaft, and therefore rotating with a very high velocity. When contact is made with the pulley on one side of it, the horizontal shaft rotates, and with it a worm-wheel at the end. If the contact is made with the second cone the worm-wheel is driven in the other direction. That is sufficient for our present purpose. With the machine, of which a part is pieces of machinery are lifted and moved from place o place ; by similar arrangements even locomotives themselves are raised.
The exact velocity of these pulleys can be given. The speed of the cord passing round the top pulley is 5.000 ft . per minate, and the pulley itself makes 1,958 rotations per minate. Therefore the cone below also makes 1,958 rotations, and as it is not larger, upon the law of reduction of these pnlleys the pulley on the horizontal shaft makes 2,238 rotations per minute. Therefore the worm at the end tions per minute. Therefore the worm at the end
moves at the rate of 2,238 retations per minute, moves at the rate of 2,238 rotations per minute,
and then by the worm arrangement a very rapid and then by the worm arrangement a bery raps which loads are raised and carried from place to place, move with a circumferential velocity of only 79 ft . per minute. so that the velocity of one mile is reduced to 79 ft . as a question of travelling, for the smaller class of these cranes travel along lines, and so convey from place to place the heavy weights they may have lifted. It is also rednoed to about 79ft. as a question of lifting, the two motions being kept distinct. This illustration will be sufficient for an example of the commnnication of motion by rolling coutact where there are no teeth.
Althungh "rolliag contact" is the especial purpose of this evening, yet it will be essential to say a few words in refereuce to a machine, of which an elementary portion is before you. The Registrar General, with great kindness-a kindness which has met us on every hand in reference to illustrations for these lectures-has supplied these parts of the
calculating machine made by Messrs. Scheutz.
Before deseribing the simple and durable appa ratne, it may be well to explain the objects contemd by those who have given their minds to the
petion of calculating machines.

Perhaps Mr. Babbage was the first to direct attenion to a peculiar mathematical relationship existing
in almost all tables of numbers in sequence. He bad observed that, if a consecutive series of these numbers were taken, and each subtracted from the next higher number, a deduced table of smaller numbers could be obtained. Performing a similar operation of subtraction upon the lines in this second table, a third table of still smaller figures resulted. Proceeding thas, he found that generally there resulted a series of the same, or nearly the same, numbers. For example, take the squares of the first nine digits; these squares are:-
$\begin{array}{llllllllll}\text { Square Numbers } & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81\end{array}$ $\begin{array}{llllllllll}\text { First Differences } & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17\end{array}$ Second Differences $\quad \begin{array}{lllllll}2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$
If, now, mechanism were so contrived that the lower line was constantly added to the one above, to the first, a series of figures would be obtained which, in the illustration given, would constitute a series of square numbers.
Such was the foundation of the scheme which Mr. Babbage laid as that on which to rear the superstructure of a calculating machine. Mr. Babbage's views, so far as they have received "body,
form, and fashion," are now in the Museum at form, and fashion," are now in the Museum a
Sonth Kensington. Two gentlemen-one a Mr Scheutz, of Stockbolm, the other a gentleman of England-partly from the published intentions and
views of Mr. Babbage, and partly following out views of Mr. Babbage, and partly following out
their own ideas, devised mechanism to do the work of calculation. Two machines on the plan of Messrs. Schentz and his son have been made. One is at the Observatory af Albany, in America, the other at Somerset House.
The woodcut, Fig. 3, represents the general appearance of the machine. In each of the small may more correctly be called slice, about $\frac{1}{3}$ in. deep

regarded as the figures which are to enter into the calculations.
The lecturer, by enlarged working models, explained the action of other parts of the machine so far as related to the calculating mechanism. The combined action of these parts conveyed to the upper line of the machine, shown in Fig. 3, thie various additions indicated by the laws of differences as previonsly illustrated.
It will be observed that hitherto no meehanism has been described for the operation of carrying. For example-if the two lines ${ }_{473}^{362}$ were to be added, the figures indicated would be 735 instead of 835 . Messrs. Schentz had, therefore, to provide for this carrying. In Fig. 3, it will be observed there is an upright marked B, this is called a Traveller. By a
mangle wheel arrangement at the left-hand side of mangle wheel arrangement at the left-hand side of
the figure, and a chain, aeted upon by a toothed wheel, into the links of which the teeth enter, this Traveller passes in front of the recesses. It will be observed that the Traveller has two projecting arms. By means of these arms he is enabled to advance one figure on any wheel where the mechanism indicates that such an advance must be made. A similar traveller at the back does the same for the rows of wheels not operated npon by the front one. Thus, after each complete revolution of the wheel-work, the upper row of figures indicates the successive lines in the series being calcalated.
It remains to state briefly how the figares thas made apparent are to be transferred to the type wheels and so impressed, either upon sterea-metal
or upon a matrix of paper pulp, from which typemetul casts may be taken.
To say that it is done by a series of stepped esms something similar to the suail cami, by which the number of strokes made by the hammer of a clock is determined, would be a brief but not very sufficient explanation. This much must, however suffice for the present, and those who wish for furher information can obtain it on reference to the patent of Mesars. Seheutz.
Now that the mechanism of calculating machines is before us, it may rithmetical mechines arthmetical for performing the ordinary operations of addition, subtraction, multiplica. tion, and division, and not for the calculations of series by a law of
differences. The one now produced is simple in constructien, compact in arrangement, and satisfactory in use. Similar ones are made by Mr. Thomas, of Colmar, and are used in many parts of Europe and England.
Exclusive of the progressive parts,
of a metal cylinder, resting, as it were, in a groove und having ten short pieces or legs projecting below. The woodcat (Fig. 4) may serve to show the general arrangement in two of the stenall recesses. These cylinder slices are not attached to the vertical shafts which pass through each recess. Attached, however, to the shafts are contrivances which not only are carried round with the shaft, but have upon them pins or studs capable of a vertical motion. This pin can be seen a
It may be observed that as the shaft rotates, a projecting trigger or pin D will be tripped up by the inclined plane \mathbf{E}, attached to the lower cylinderslice. Thas tripped up, the pin G, previously
 referred to, will be
lifted out of the bellcrank K H. This bellcrank is loaded at K, and that end, therefore, falls. The con-
sequence is that the sequence is that the
$\operatorname{pin} G$ is supported upon the other arm H of the bell-crank, when
the trigger D has passed over theinclined plane E, and so held between what we have called the legs of the apper cylinder-slice. So long, therefore, as the shaft moves the The rotation, however, brings the bell-crank small inclined plane, not visible in Fig. A, and tripping $u p$ the end K of the bell-crank releases G, which falls down, and so disconeliance
the rotation of the cylinder-slice. This rel upon the influence of gravity is a peculiar feature in this mechanisn, and is not found in other machines dealing with calculations. It will be ob served that around the cylinder slices, or rings, the
figures from 0 to 9 are engraved. Any one of these figures may be brought by the hand or by the me-
which are similar to those of coint-
ing, or numbering, or paging machinery, there is a very ingenious and simple arrangement for committing to the machinery any number that the operator may desire. By directing small pointers to the figures on which an operation (say) of multiplication is to be performed, and tarn-
ing a handle, these maches appear in the niswn for this is what We must now look at. The pointer to which made moves a smalltoothed wheel along a square bar or shaft B. In gear with this cylinder or pinion A. Ten of such long teeth surround about half
of the cylinder. If, therefore, the cylinder A made one revolation, the wheel B vould be advanced ten teeth. Now, an inspuction of Fig. 5 will show that a portion of each woth is eut off. so that the position of the wheel B upon the small squared shaft determines the number of teeth it may be advanced, and therefore enables any figure to be introduced into the machine. Althoagh between the small shafts, A and B, the communication of motion is by cylinders of circular section, zet the amount of motion communicated is variable, being dependent upon the position of the wheel on B.
(To be continued.)
Professor Gunning claimg that the Niagare river has been in existence aboat 200,000 years-that z barrier 3oft. high at the head Mi the
The Glentield Patent Starch Case. Sherift Davidson has rejected the appral agaiast Sterift Campbell's decision in the case of Wothertpoon agaiost J. C. Arderson, grocer, Ediuhargh, by wich the latter
was fined E2l and expenses, for selling an imitation of was fined £21 and expenses, for selling an imitation of
the Glientield Starch, and has granted the additional the Glenti
expenses.

THE CONSTITUTION OF NATURE.
 (Continued from p. 429.)

T Tine principle of gratitation has been alresdy doscribed as an attraction whioh every partiele of matter, however small, has for every other particle. With gravity there in no solection; no particular atoms cboose, by preference, other partioalar stoms as objects of sttraction; the attraction of gravitation is proportional to the quantity of the attracting matter, regardless of its quality. But in the molecular world which wo havo now entered atoms between which a strong attraction is exercised, and also atome between which a weak attrac. tion is exercised. One atom can jostle another out of its place in virtue of a superior foree of attraction. But though'the amount of foroe exerted varies thon. But thomg atom to atom, it is still an attraction of the same mechanical quality, if I may use the torm, the same mechanical quality it intensity might be measared in the same way-namely, by the amount of motion which it can impart in a certain time. Thas the attraction of gravity at the earth's surface is expressed by the number 32, hecause, when acting freoly on a body for a second of time, it imparts to
the body a valocity of $32 f t$. a second. In like the body a ralocity of $32 f \mathrm{ft}$. a second. In like gen might be meatured by the veloctey impattod to the atoms in thetr rushing together. Of conrse such a unit of time as a second is ndt here to be to cross the minnte spaces which separate them not amonoting probably to more than an inconceivably small fraction of a second.

It has been stated that when a body falls to the earth it is warmed by the shook. Here we have What wo may call a mechanical combination of the earth sud the body. suafinathor toling bory and the and for the attraction of gravity substitate that of chomical aftnity, whioh is the name given to the molecular attraction, we have then what is called a chemical combination. The effect of the mion in this case also is the development of heat, and from the amount of heat geverated we can infer the intensity of the atomic pull. Measured by ordinary mochanical standara, through the mixtare ; the gases instantly combine, their atoms rashing over the little distances bet ween of $1,000 \mathrm{ft}$. above the earth's aurface and let it fall: the energy with which it would strike the earth would not exceed that of the 8lb. of oxygen atoms as they dash against llb. of hydrogen atoms to form water.

It is sometimes stated that the force of gravity is distingaished from all other forces by the fact of its resisting conversion into any other. Chemical affinity, it is said, can be converted into beat and light, and these again into magnetism and electricity. But gravity refases to be so converted; it is a force Whioh maintains itself under all circumstances, and is not capable of disappearing to give place to another. II by this is meant that a particle of matter can never be deprived of its weight, the assertion is of nstaral forces was never meant, in the minds of thone who nuderstood it, to affirm that such a conversion as that here implied occurs in any case Whatever. As regards convertibity into heat, grasame footing. The aftraction in the one case is as indestractible as in the other. Nobody affirms that When a stone rests upon the surface of the earth the mutual attraction of the earth and stone is sbolished; nobody means to affirm that the matual
attraction of oxygen for hydrogen ceases after the attraction of oxygen for hydrogen ceases after the
atoms have combined to form water. What is meant in the oase of chemical aminity is, that the pull of that aflinity, acting through a certain space, imparts a motion of translation of the one atom towards the other. This motion of translation is not heat, nor
is the force that produces it heat. But when the atoms atrike and recoil, the motion of translation is converted into a motion of vibration, and this latter motion is beat. But the vibration, so farf from in part carried on by that attraction. The atoms recoil in virtae of the elastic force which opposes actual back. The orfinal attraction then trinmphs over the force of recoil. and urges the atoms ouce more together. Thns, like a pendalam, they oscillate, until their motion is imparted to the surround-
ing etber; or, in othar words, until their heat being etber; or, in ot
In this sense, and this sense only, is chemical affinity converted into heat. There is, first of all, space between them. Across this space the attrac-
tion nrges them. They collide, they recoil, they tion prges them. They collide, they recoil, they
oscillate. There is a change in the form of the oscillate. There is a change in the form of the
motion, but there is no real loss. It is so with the attraction of gravity. Toproduce motion here space mast also intervene between the attracting bodies:
When they atrike motion is apparently destroyed,
but in reality there is no destruction. Their atoms are suddenly urged together by the shock ; by their own perfect elasticity theee atoms recoil; and tnus is set ap the molecular oscill
itself to the norves as heat.
It was formerly universally suppoted that by the collision of unelastic bodies forco was destroyed Men sam, for oxample, when two spheres of clay, or painter's patty, or lead, ware urged together, that the motion possessed by the masses prior to impact was more or less annihilated. They believed in an absolate destruction of the force of impact. Unti recent times, indeed, no difflculty was experienced in believing this, whereas, st present, the ideas of force and its destruction rafuse to be united in most philosophio minds. In the collision of elastic bodies, on the contrary, it was observed that the motion with which they clashed together was in great part restored by the resiliency of the masses, the more perfect the elasticity the more complete being the pestitation. This led to the idea of perfectly elastio bodies-bodies competent to restore by their recoll the whole of the motion which they possessed before the Who
impact.

Hence the idea of the conservation of forea, as opposed to the destruction of force, which was supposed to occur when inelestic bodies met in colLision.
We now how that the prinoiple of conservation holdo equally good with elastic and inelastic bodies. Perfeotly elastic bodies develop no heat on collision.
They retain thoir motion after wards, thongh ite direction may heir motion alt it is only when sensible motion is, in whole or in patt, destroyed that heat is generated. This always occurs in inelastic collision, the heat developed beling the exact equivelent of the motion extinguished. This heat virtually declares that the property of elasticity, denied to the masses, exiets among their atoms, and by their recoil and oscillation the prinaiple of conservation recoil and osc
But ambiguity in the use of the term "force" has been for some time more and more creeping upon us. We called the attraction of gravity a force
withoat any reference to motion. Δ body reating withont any reference to motion. A body resting on a shelf is as much pulled by gravity as when,
after having been pushed of the ehalf, it falls to after having been pushed off the shalf, it falls to-
wards the earth. We applied the term force also to wards the earth. We applied the term affinity. When, however, we spoke of the conservation of force in the case of olastic collision, we meant neither a pull nor a push, which as just indicated, might be exerted apon inert matter, but we meant the moring force, il I may use the term, of the colliding masses.
What I have oalled moving force has a definite mechanical measure in the amount of work that it can perform. The simplest form of work is the raisiug of a weight. A man walking ap-hill or upstairs with a ponnd weight in his hand, to an eleva-
tion (eay) of 16 ft ., performs a certain amount tion (eay) of 16ft., performs ${ }^{2}$ certain amount of
work over and above the lifting of his own body. work over and above the lifting of his own body. work; if to a height of 40 ft . he does three times the work; if to 64ft. he does four times the work, and so on. If, moreover, he carries up 21b. instead of llb., other things being equal, he does twice the work; if 81 lb ., 4lb., or 5ib., he does three, foar, or five times the work. In fact, it is plain that the work end the height to which it is raised. It is oxpressed by the prodnct of these two factors.
But a body may be caused to reach a cortain elevation in opposition to the force of gravity without being actually carried up to the elevation. If a hodman, for example, wished to land a brick at an elevation of 16/f. above the place where he stands, he woald probnbly pitch it up to the bricklayer. He
would thus impart. by a suddon effort, a velocity to would thas impart. by a suddon effort, a velocity to
the brick sufficient to raise it to the required beight; the work accomplished by that effort being precisely the eame as it he had slowly carried up the jrick. The initial velocity which must bd impurted in the case here assumed is well known. To reach a height of 16 ft ., the brick must quit the man's hand with a velocity of 82itt. a second. It is needless to say that a body starting with any velocity would, if wholly nnopposed or unaided, continue to move for ever
with the same velocity. Bat when, in the case before us, the body is thrown apwards, it moves in opposition to gravity, which incessantly retards its mution, and finally brings it to rest at an elevation of 16 ft. If not here canght by the bricklayer, it would return to the hodman with an accelerated it posessed on quitting it. Supposing the man competent to impart to the
brick, at starting, a epeed of 6 fift. a secoud, or twioe brick, at starting, a speed of $6 \neq \mathrm{ft}$. a secoud, or twios
its furmer speed, would the amonnt of work performed in this effort be ouly twice what it was in the frrst instance ? No; it would be foar times that quantity. A body starting with twice the velocity
of anutuer, will rise to four times the beight: in of anutiuer, will rise to four times the height; in
like manner, I turee fold velocity will give a ninefold elevation, a four-fold velocity will give a sixteen fold eleration, and so on. 'the heigitt at. tained then, or the work done, is not propurtional before, the work is also proportional to the woight elevated. Hence, the work which any moving
masses whatever are competent to perform, by the motion whioh thay at any moment poseens, is jointly
 Here we simply tranalate the idee of height into its equivalent idea of motion
In mechanics, the prodact of the mass of a moving body into the square of its velocity expresses whe is called the ris viva, or living force. It is aleo sometimes called the "mooharical effect." If, for example, we point a oannon upwards, and start a
ball with twice the velocity impartod by a second cannod, the ball will rise to four times the heigh The speedior ball, if directed againat a target, will also do four times the execution. Hence the importance of imparting a high valoaity to projectiles in war. Having thas oleared our wiy to parfectly clear conception of the vis viva of moving meceas We are prepared for the anncencement that the heat generated by the collision of a falling body agninat In earth is proportional to the vis viva annithinted. In point of lect, it is not an aunihilation at all, but a transierence of vis viva from the mase to its
altimate particles. This, as we now learn, is proportional to the square of the velocity. In the case therofore, of two eannon balls of equal weight, i one atrike a target winh twice the velocity of the other, it will generate four times the heat; if with three times the velucity it will generate nine times the heat, and 00 on.
Dr. Joule has shown that in falling from s height body will generate an amount of hoat gufficient to raise its own weight of water 1° Fahr. in temperature. We have here the meohunical height of 772 ft has, opon striting the earth a height of 728 ft . asecond, and if this velocity ware velocity of 2288 . s second; and if this velocity were impartied to a body, by any other means, the quantity of heat genarated by the atoppage of ita velooity, or $1,338 \mathrm{ft}$., would be an inordinate one for a cannon ball as it quits the gan; but if enimatod by six times the velocity, thirty-mix times the heat will be genarated by the stoppage of its motion. Henco, a cannon ball moving with a velocity of 1,338it. a second, would, by collision, genarate an amount of heat competent to raise its own weight of water 86° Fahr. in temperatare. If composed of iron, and is all the heat generated were concentrated in the ball itself, its temperatare would be raised aboat 360° Fahr. ; beoause 1° in the case of water is equivalent to about 10° in the case of iron. In artillery practice the heat generated is usually conoentrated upon the front of the bolt, and on the portion of the target first struck. By this concen tration the heat developed may become sufficiently intense to raise the dast of the metal to incan-
degoence, a flash of light often accompanying colli-sion with the target

Let ns now fix our attention for a moment on the gaupowder which urges the cannon ball. This is composed of combustible matter, which if barnt in the open air would yield a certain amount of beat. It will not yield this amosnt if it performs the work of urging a ball. The heat then genorated by the guppowder will fall short of that produced in the open air, by an amonnt equivalent to the vis vioa of the ball ; and this exact amount is restored by the ball on its oollision with the target. In this perfeat way are heat and mechanical motion oonnected.
Broadly enunciated, the principle of the conservation of force asserts that the quantity of force in the universe is as nadterable as the quantity of matter ; that it is impossible to create force and to annibilate it. Bat in what sense are we to understand this assertion? It would be manifestly in applicable to the force of gravity as Nowton detined square of the distanoe, and to affirm the constancy of a varying force would be self-contradictory. Yet, when the question is properly understood, grarity formas no exception to the law of conservation.
Following the method puraued by Helmholtz, I will here attempt an elementary exposition of this law. which, though destined in its applications to prodnce momentous changes in human thought, is not diffcult of comprehension.
For the sake of simplicity, we will consider a particle of matter, which we may call F, aud a second movable particle, D, placed at a distance from F. We will assume that these two particles attract each other according to the Newtouian law. At a certain distance the attraction is of a certain definite amount, which might be determined by this attraction would be angmeated four times; a third of the distance it would be angmented nine times; at one-fourth of the distance sixteen times, and so on. In every case the attraction might be
measured by determining, with the spriag balance, the amount of tension which is just sufficient to prevent D from moving towards F. Thus far we bave nothing whatever to do with motion; we deal with stasics, not with dynamics. Wo simply tak exerted by gravity at that distance.
It is customary in mechanios to represen magnitude of a force by a line of a certaiu line of doable lengagnitude being represel
particle D at a distance from F, we can in the imagination draw e straight line from D to F, and at D erect a perpendicular to this line, which shall represent the amount of the attraction exerted on D
in this position. If D be at a very great distance in this position. If D be at a very great distance
from F the attraction will be very small, and the parpendicular consequantly very short. Let us now suppese that at every point in the line joining F and D a perpendicular is erected proportional in length to the attraction exerted at that point; we should thus obtain an infinite namber of perpendiculars of gradually increasing length as D ap proaches F. Uniting the ends of all these perpen ourve and the straight line joining F and D we ourve and the straight hent joining Fent and we pleced side by side. Each one of this intivite series placed side by side. Each one of this intivite series tension, as it is sometimes called, the area just referred to represents the total effort capable of being exerted by the temsions upon the particle D, during its passage from its first position up to F.
(To be continued.)

ACOUSTIC ILLOETRATIONS OF THE METHOD BY WHICH STELLAR MOTIONS ARE DE TERMINED WITH THE SPECTROSCOPE.*
WHE fourth of the series of lectures known as in the large hall of the Sheffield Scientific School, apon the abore subject, the lecturer being Prof A. M. Mayer, of the
logy, United 8tates.
Prof. Mayer began by calling the attention of his andience to the character of vibrations, instancing the pendalum as one of the best oxamples of risible mass-vibration, and saying that the carve representing its motion was that representing ell other vibratory motions of whatever kind. This
carve he had obtained experimentally by means of an carve he had obtained experimentally by means of an
ingenious apparatus which he described. Besides these, there are molecalar vibrations, due to elasticity, the action of which was very clearly illugtrated apon the black.board. A water-wave is a massvibration, as is shown admirably by Prof. Lyman's wave apparatus. The progressive character of a long which an impulse wes transmitted ses risible undulation or ware. As an example of a molecular vibration due to elasticity, the vibration of a Brown and Bharp's straight-edge, fastened firmly at one end, was given, and a series of beautiful curves drawn upon smoked glass by a wire attached to such n on the screen.
The lecturer then passed to the theories of light, describing the emission theory and the andulatory tion, and dispersion conld be equally well accounted for by either; but certain others, such as those of for by either; but certain others, such as those of
interference, could be explained only by s wave or interference, could be explained only by a wave or
undulatory theory. This latter theory supposes a undulatory theory. This latter theory supposes a trembling of the particles either of air or of the matter filing space, Which trembling, so far as but the phenomens of polarisation of light indicate hat these vibrations are transverse to the direction of propagation of the ray. In sonnd, the vibration is longitndinal ; in heat and light, lateral. Hence, sonnd-wares may interfere and produce silence; light-waves may interfere and produce darkness; ear is so conatituted that it takes cognisance only of the longitadinal vibrations of the air, though the air vibrates in all directions; the eye takes notice only of lateral ether-vibrations, though the ether-vibrates in all directions. Interference was hen described and illustrated on the board, and overlapping of waves in sheqn to result from the overlapping of waves in nnequal phases, which could be consequence only of andulations. The practical use of suoh knowledge as this was illus-
irated by a description of Newton's rings, and the method by means of which these rings may be made to indicate a distance as small as a millioneth of inch. Another instance of the practical application of these facts is Arngo's Differential
Refractometer, which will show a difference of Refractometer, which will show a difference of
density in the air of one-eight thousandth part, and by which the refraction of the air has been measured, and tables constructed, by whose use the mariner may find the true altitude of the sun.
The effect of lengthening aud of shortening a rave-moving explained. In the case of a sound-length-if the length be diminished more vibrations enter the ear in the same time, and the pitch rises; if it be increased, less vibrations enter, and he pitch lowers. Light-waves are strictly analogous; whenever any one of the coloured waves
which form white light is lengthened, its colour which form white light is lengthened, its colour when it is shortened, towards the violet. Hence chance of pitch in the case of sound, or of colour in he case of light, is evidence of motion, either to from the observer; which it is, depends on
ther the wave is lengthened or shortened. Now,

While the motion of a star at right angles to the line of sight is easily detected and measured by the telescope, motion in the direction of this line is capable of measarement only by the spectroscope ; if the motion be diagonal, then by both of these in struments together. Hence the motion of a fixed star in space, or of a whirlwind on the sun, may be measured by the change in refrangibility whicl certain lines in the spectram nodergo.
To illastrate this point by meaus of sound-waves was the object of the evening. With the lantern the image of a taning-fork beating 256 times a second-and giving the note Ut_{s}-was thrown on the screen. By the side of one of the prongs, and just touching it, was a carefully rounded and varnished cork ball, suspended by a filament of silk. On sonnding a second fork placed on its case and tuned in accurate unison with the first (by an ingenious method devised by Prof. Mayer) anywhere in the room, even 30ft. distant, the flrst was thrown into vibration and the image of the cork ball was projected a foot or two away from the prong. When, however, the second fork was sonnded, and the lecturer walked rapidly - at the rate of 8ft. a second-towards or from the first,
tonching the case only when in motion, no motion tonching the case only when in motion, no motion of the cork was observed; the wave being in this
way shortened or lengthened by an amount suffiWay shortened or lengthened by an amount sufficient to throw it ont of unison with the lanternfork. Again, a third fork, vibrating 254 times a second, produced no effect on the ball; but when soundod and placed on its case. as this was swang rapidly towards the first fork, the wave-length was thereby so shortened as to bring it into anison with this, and the ball promptly responded. A fonrth fork, vibrating 258 times. showed the same phenomenon, When placed on its case as this was swung why from int irst fork, the wave thus being shost complete and satisfactory. Prof. Mayer stated that he parposed making some quantitative experiments with the apparatus, which will be of the highest value to science
The lecturer closed with an application of this sonnd demonstration to the phenomena of light. It and was listened to with the closest attention.

HISTORICAL NOTES ON POISONING.

T^{1}HE following remarks formed a portion of the introductory lectare to the conrae of Forensic Medicine delivered at King's College by Dr. Daria Ferriar, and are abstracted
British Medical Journal :-
I have chosen, said Dr. Ferrier, to illastrate the development of Forensic Medicine in one of its dranches more particularly, by bringing before you the results-possibly more carious than valuablenot an inquiry into the uses of poisons, and the notions that have prevailed st different periads in
the history of medicine on the subject of poisoning. This has always been a matter of curiosity and interest, not more to the medical profession than to people generally; and, on account of the ideas asso ciated with the word poison, it has always proved The earliest nse to writers of fiction.
The earliest use of poisons seems to have been for the parpose of anointing arrows; and the word which is used to denote poison (toxikon) derives its origin from the word signifying bow (toxon). This castom dates from the most remote antiquity-from the time when men earned their means of subsistence (bfos) by the bow (bios). It is almost universally prevalent at the present day among the most primi tive and savage tribes ; and to this custom we owr our knowledge of one of the most powerful poisons that exists. We find frequent allasions to it in the classical writers. Homer represents Ulysses as sending to Ephyra for poison wherewith to anoint his arrows. The story of Hercules dipping his arrows in the venom of the Lernæan hydra, thei deady effects, and the dreadful accidents which befe Chiron and Philoctetes, are familiar to you all.
This story is an indication of the nature of the poison employed; and we have it on the anthority of numerous writers that snake-poison was fre quently used for this parpose. Sucu was the custom of the encient Scythiaus, who likewise mixed the venom with human blood, of itself regarded as a viralent poison, in order to intensify the effects. Even at that early period. they had discovered the fact. though its explanation by the physiological relation between absorption and excretion is only of recent date, that, when taken naturally, the poison was innocuous, and was only fatal when wound.

Another very ancient nse of poisons was for the purpose of the ordeal-a method of judicial investigation which also obtains among many tribes at the present day. With this castom we generally asso It is supposed that it was a poison of some kind Which constituted the maar, or bitter water, of Which we read in the book of Numbers, and which
was used as a judicial test of was used as a accused of infidelity by jealous husbands. Harmless
to one who was innocent, the effects in the case of
a guilty woman were dire enough, cansing the belly to swell, and the thigh to rot. It is very doabtful whether this were really a poison. It is more
likely that the dreadful invocations of the imposing likely that the dreadful invocations of the imposing
preliminary ceremony were sufficient to deter any but an innocent woman from draining the contents of the cap.

One of the most curious chapters in the litarature of poisoning is that which relates to the use af poisonous substances in the preparation of phittres, or love-potions, which were administered under the idea that the affections of the person so practised on would be gained by the individual who employed culous. Though the means adopted were orten ris of sorcery and incantation, yet in many cases they were not of the same harmless nature, and the evil effects which frequently resulted assamed such an importance in the eve of the law, that, even at an early period, the administration of such philtres was looked upon in the same light as more serioas altempts at poisoning, and was panished as a capital offence.
Among the Greeks and Romans, Medes was unsversally regarded as the greatest adept in the art of preparing philtres; and hence the term Medeides herine was used by Horace and Ovid to derignate such substances generally. Nert in reputation stand the Thessalian women, who may be supposed to have learnt the art from Meden, and who attained great celebrity in all that related to poisoning, sor cery, and incantation. Hence "Thessalian arts" and "Thessalian poisons" are frequently omployed to all classical writers as generic terms, applicable by Ovid and of poisoning. Phitrest are causing a phrensy which sometimes terminated fatally. Lncretirs, the great philosophical poet of \because On ceronian era, is said to have written his poom On the Nature of Things "in the intervals of de administered to him by his wife or mistress, Lacilis and Lacallas, the Roman general, is stated to have died in a state of deliriam from a simillar canse The laws of the Twelve Tables contained specia provisions against this form of poisoning. Though it would appear, therefore, both from the account we have received and from the necessity of special enactments against it, that the administration of philtres often led to results far more serious tha
were contemplated hy those who used them can bardly regard otherwise than as a subject af amusement the credulity, which prevailed even up to a very lato period with respoct to many sab stances held in hiph repate, and sapposed to be possessed of marvellous proparties. Most of thes substances would hardly come under the bead of poisons, or even noxious substances, as wo undea stand them ; but yet in most coantries their adminis tration was forbidden, as coming under the head a sorcery and witchcraft.
It is a curious circumstance, and one which wo merely general was universally the blood of animale in ancient times ; and that this bolief should have been shared by medical writers op to a comparativaly recent period. We read in Herodotus that Pram menitus, King of Egypt, was put to death by Cam byses by being made to drink bullock's blood. Suoh also, according to the popular belief, was the mode in whick Themistocles committod saicide. Un goblet of the bloodiof a sacrificial ox, and expire almost immediately. Even ap to the time of Bla menbach, in the middle of the last contury, the belief that blood was poisonous was general, and if was treated of as such in many learned works on poisons and legal medicine. Zacutus Lasitanna writing in 1657 , relatos many instances of dreaden offects resulting from the drinking of blood. It it worth while quoting one of these. Δ stadent emi mated by the spirit of practical joking. gave to an other, instead of wine, 20z. of the blood of a red this joke did not experience any immediate bed effects, but afier a day or two he passed into a raring state, and becamenltimately a confirmed idiot. One is tempted to remark that the individual in quee tion cannot at best have been far removed from this state it be could mistake for the nenceans mixtare offered to him. And, in the opinion of Andreas Cesalpinus, who nearly anticipatod Barvey in the discovery of the circulation, it is to hamen blood that we owe the origin of one of the most rirnlent contagious diseases. He traces the origin of syphilis to the fact that the Spaniards, in abandonng the small town of Somma, at the foot of Mount Vesuvius, mixed all the wine of the place with tho blood of the pationts in the hoepital of St. Lazeras
Blumenbsch, in his lectures, recommanded his students to make experiments in order to clear np One student experimented on himself, and drank seven ounces of warm bullook's blood withont experiencing any evil effects. Another proforred to oxperiment on a dog, which likewise sarvired the

Returning from this digression on blood opee
belief in them was strong even as late as the time of Van Helmont，in the middle of the seventeenth century．Van Halmont himself was fally persuaded of their efficacy，and perhaps the most remarkable statement in regard to them occars in one of his writings．Here is a translation of it：＂I know a
plant of common occurrence，which，if you rab and plant of common occurrence，which，if you rab and
cherish in the hand till it becomes warm，and then cherish in the hand till it becomes warm，and then
take the hand of another and hold it till it also take the hand of another and hold it that person will forthwith be stimu－ lated with love for you，and continue so for several
days．＂There were not a few，however，even in days．＂There were not a few，however，even in
ancient times，who were sceptical as to philtres． Ovid，who speaks so mach in them，had his donbts； and，in a letter to a young lady，he recommends，as by far the most preferable prescription，＂ut ameris， amabilis esto．＂From these and similar truths，the influence of philtres gradually ceased to be believed in，and disappeared from medical literatare by the
middle of the eighteenth centary．Closely connected middle of the eighteenth centary．Closely connected
with the practice of brewing love－drinks was the still more pernicions and dangerous one of dealing in abortifacients．What we now call the crime of abortion was not in early times regarded as such． False political and social doctrines had much to do With the prevalence of the practice before the dawn of Cliristianity，and it was not till the time of the
early Christian ewperors that legislative measures early Christian ewperors that legislative measures
were enacted to check it．The agents who pandered were enacted to check it．The agents who pandered
to the licentionsess and vice of this period［the Roman Empire］were numerous，and well skilled in the knowledge of almost all the mechanical and
oxytoxic means of procuring abortion with which oxytoxic means of procuring abortion with which we are at the present day acquainted．Then，as consequences．

It is，however，with the use of poisons for the express purpose of taking away life that we mod it is on this that so much has been written， and，at the same time，so mach has been fabled．It was but natural that men should turn to some account the knowledge of the deadly
effects of many substances with which they could not help becoming acquainted，and to employ them for ridding themselves of objects of jealouay，hate， envy，or revenge，especially as this could so often be
done secretly and securely；and it was also natural done secretly and securely；and it was also natural that the same means should recommend themselves were also employed for state purposes，as a means of execution．The most colebrated instance of this which has derived its chief interest in connection with the death of Socrates．The description given by Plato of its mode of action has given rise to con－ its name，which woald be no satisfactory guide，it has been generally identified with the Conium maculatum or bemlock．Some have doubled whether that it mast have had other ingredients．Whatever it was，it does not appear to have been very powerfal or rapid in its action；for we are told that mental excitement was apt greatly to interfere with its effect，and sometimes more than a single dose was
necessary．The carrying out of the sentenca of necessary．The carrying out of the sentenca of
capital punishment by means of poison whe not， however，confined to the Athenians，and we have numerous instances in other conntries where the special mark of favour in some oases ；and in later days，when scientific men were eager to study the mitted by the State，and criminals were quite willing to submit themselves to be experimented on with poisons，rather than undergo the horrors of a public execution．The mode of execution by poison was
strungly advocated ly many medical witers of the gtrungly advocated
last century．Celtes，a German writer，thought it Was a mark of very great simplicity and atnpidity in
his conntrymen not to have adopted it；and Gruner his conntrymen not to have adopted it；and Graner， in a very eloqnent and foeling manner，extois the the way，without becoming，under the bands of the executioner，a borrible and bloody spectacle in the eyes of a aruel mob．
It was a strange custom that prevailed among the inhabitants of the island of Ceos．The old men， when they found that they were no longer of service to the State，and felt themselves a burden to their children aseembled together at a banquet of death， and，with their heads crowned with chaplets，joy－
fully drank a happy despatch in caps of hemlock． more sensible custom obtained among the ancient inhabitants of Marseilles－one which might with advantage be revived at the present day，if only those most interented would subscribe to its provi－
sions．Valerius Maximns relates that the inhabi－ tants of that town kept a public poison，intended for the special use of those who wistued to commit suicide．Before，however，the applicant was sup． plied he had to go before a jury of six handred－ he Timurchi－and satisfy them that he was miser． ablo enough to be allowed to put an end to his
troubles by poison．The kings of Persia were also troubles by poison．The kidgs of Persia were also in possession of a poison which cansed a speedy and paiuless death．Which they carefuly prese

In times of troable，and in ages of barbarous cruelty，men who took an important part in public nations and thus exposed themselves to the machi persons a sufficient euemies，often carried on their persons sumcient quantity of some desdly poison， tortures worse than death．I might cite numerous instances of this practice in various ages，but onie or two well－known examples will suffice．I have or two well－known examples will sufice． was popalarly set down to the effects of blood，but which，in all probability，was due to some poison which he carried on his person．Demosthenes，when all hopes of escape from his enemies，the Mace donians，were gone，committed suicide by taking a dose of poison，which he is said always to have carried about with him in a quill．The story of being ibal is likewise familiar to you all．After lentless ed about from place to place by his re sacrifice himself，in order to save his protector Prasias．He is said to have carried the means of death in a ring which he constantly wore．Though we can admit the possibility of this，we have no means of ascertaining the nature of the poison，nor the method in which it was introduced into the system．Perhaps the most celebrated instance is the cording to accounts，quite an adept in toxicology and left behind hime a work on that subject，which however，has nufortanately been lost．Mithridates like some oriental mouarchs of the present day，lived in constant fear of being poisoued．To guard against this，he invented an antidote，which became so famous that the name Mithridatium wes applied to antidotes generally．Of this，however，we shall have to speak by－and－by．By the use of this antidote，
but more probsbly by the habitual use，in smali doses，of the poison which he feared，he is said to have rendered his system insusceptible to the action of poison；so that，when he came to require its aid it proved faithless to him，and he wes obliged to have recourse to his sword．The story of Mithri dates would seem to show that it was one poison only，or at most very few，which were known，or at least had recourse to，by poisoners of that time．
It is，however，to the seoret crime of poisoning that we attach the chief interest，hoth in a popular and medico－legal sense．It is often dificult to arrive at the real truin in many of the narrated accounts， surrounded as it is，and mixed up with，so much that is ovidently mythicul．It is romarkable that this crime should have prevailed in some countries to a much greater extent than in others，and that so many women should havo acquired a notoriety in this art．A great many of the accounts，however， which we have received regarding the proficiency which so many women are said to have attained especially in the art of preparing slow and secrei poisons，must be estimated at the same value us the were supposed to be specially addicted to these black arts，so they got a similar amonal of credit or the art of secret poisoning；and，in ancien stasd to signify poisoner．Most of the old statutes regardeded sercory as a veneficium，and punished it with the same penalties．In the laws of the Twelve Tables already alluded to，persons who administered poisons，or attered an incantation against the life of another，were panished with death；and，in the ficted on those who by odions arts，whether by poison or by＂magical whispers，＂took away the life of another．
The crime of poisoning does not appear to have been common among the ancient Egyptians or Jews judging from the absence of any special legislation against it．The existence and character of the law
againgt this crime afford a fair indication of its against this crime afford a fair indication of its
frequency，for in ancient times it was those who made the low that had ofton the most renson t fear．The crime was very common among the Persians．This we have on the direct testimony o as iphon：and certainly the punishment was such who were found guilty of poisoning were laid with their heads on 2 flat stone，and then beaten about the head and face with another stone till the skull was smashed in pieces．And，judging from the story of able dexterity in the art of preparing and adminis tering secret poisons．It is related that Parysatis wife of Darius，wishing to get rid of Statiru，the the knife with which she carved a fowl．She sent the poisoned side to Statirs，while she ate the other herself；so that Statira died apparently from canses which left no room for suspicion．
The crime was not common among the Greeks． When it did occur，the malefactors were condemned to death by the Areopagus．The Romans are said In have learnt the art of poisoniug from the Persians almost every other nation．The tirst great outbreak of the crime is reported by Liry，which occurred about the year b．c． 330 ．At this period，the morals of the upper classes of society had become so scan－
bers of the Senate set themselves to stem the torren of vice．Soon afterwards，the frequent occurrence of sudden death among the illustrious senator Glled the city with alarm，and led to an investiga tion．By the evidence of a slave，who had been privy to their conncils，a secret society of patrician women was discovered，whose avowed object was to get rid of the obnoxious senators by means of poison They vehemently deuied the charge；asserting that their preparations，which were found，were only medicines for the poor．As a test，they were com
pelled to drink their medicines，which proved fatal to them all．Their accomplices，to the number of oue handred and seventy，were thrown into prison where they perished．Two hundred years after this occurrence，secret poisoning again became ex
tremely frequent，and led to the tremely frequent，and led to the passing of the famous law＂de veneficiis et sicariis＂by the preserved in the Institutes of Justinian．By it the crime of poisoning is held as more heimous than any other form of homicide，and was punished with corresponding severity．Under the Roman emperors，particularly about the time of Naro poisoning was so frightfully common that few o any note were safe．The chief instrument in the perpetration of the nomerons villanies which cha racterised the life and times of Nero was the famout Locusts．So necessary did this women appear to the success of the schemen of Nero，that she wa maintained by him as an instrumentum regni，and had papils intrusted to her，that the valuable art should not become lost．It was Locusta who pre－ pared the poison by which Agrippins despatched he位s，Nero despatched his brat Britan nicus．In the writings of Tacituc，Suetonius，and other writers of that epoch，there is much curioa and interesting information regarding the experi－ ments of Locusta，the nature of the poisons used， and what were considered at that time as the symp－ toms and signs of their administration．The poisone were cbiely derived from the vegetable and animal world，mineral poisons not having become known till a later period．
requently employed．
is also probable that aconite or some equally powerfol poison formed the realiy active ingredien in many of the compounds which were by populare rumour supposed to owe their deadiness
stances which we now know to be wholly or almost stances which we now know to be wholly or almost
wholly inactive．It was the popalar belief that the wholly inactive．It was the popalar beliet that the poison which carried off Cladius was prepared from
and administered to him in a dish of mashrooms and administered to him in a dish or mashrooms been stated that he was poisoned by toadstools，th poisonous properties of which were well known．It has，however，long been a vulgar beliof that tosds are poisonous－an idea probably originating from their repulsive appearance，and from the fact that llands Moder an acrid haid in firmed this notion ；and there is reason to believe that as many toads as frogs are eaten by epioures． That toads are poisonous，will in all likelihood con－ tinue to be believed as long as Shakeapeare is read Probsbly the same method of reasoning led to the belief in the poisonons natare of the aplysia，or sea－ hare．Farther than having a disgasting appearance and fetid odour，and haris the 1 a colonred liquid when irritated，it does not seom to possess any specially poisonous qualities，though the subject might perhaps be worthy of further in
vestigation．Nero is said to have frequently used
． vestigation．Nero is said to have frequently used
this as a poison，and it is with this that Domitian is said to have poisoned his brother Titus．
（To be concluded．）

A．Valuable Telesoope．－An equatorial telecoope was sold by anction，by Me．J．C．Stevens，on Friday， It is thus deseribed in the catalogne the parohasor telescope，complete，by T．Cooke and Sons，Yurk；ob ject－glass， 10 io ．clear apertare，and about 12kt focal jength；finder，with object－glase 2 ！in．aperture；nine Haygienian eyepiecon，powere from 56 to 800 ；foum for viewing the san；tranit ejopicce；dochle parallal or vire more thades in polished matogeny bor，ne⿴囗十y prismetio illominatiog tora ith tis diaphragm for regra lating the ing apparaty of the ligh，and discs of coloned lase for ohanging its colour，sensitive lorel seinging on pirote atteched to coul ing the borizontal of the declination axis，in orler shat the line of oollimation may sweep the plane of the meridian，enabling transite to be taken；large poaition oircle at the eye－end of the tube，graduated upon silver，and read with two rerniers and micro－ scopen ；large declination circle on the axis，graduated aposes；also a small anpplement verniers and miaro with levels，at the oye－end of the tabe for qaiok not． ting；hour oircle graduated apon ailver，having two orepes equatorial motion comme and reading miaro－ and additionsal tangent corem motione in richt wock，
 brought down the tabe and axia．

LETTERS TO THE EDITOR.

TWe do not hold owroloces repponewhle for the opimions minet all communicationo chould be dreser en an brighy as peostbi.]
 ardon, T.e.
 An Chequen and Poof Oghec Ordero to be mach payablo co J. Pabimori Rowada.

 only, but in all other subjects: For such a porson may
mive some partioulur knowledge and experience of the meture of sueh a person or seah a fountain, that as to
 Whll andertake to writo the whoto body of physickn: a Hice trom Whonce great. Inoonvenionces dorivo thatr
original"- Yontaligmis Ancages.
-
** In order lo facilitate voferonoo, Corregpondento whicm equantion of any Liotter previounly incortod, bill oblige by an wheh if appeors.

AXIS OF VENOS.

[4585.]-T 941 , share the opinton of "F.R.A.S." the procise inclination of Venua's axis can be accopted with contidence. But it reomed to me that his use of
ment the word " fmagived" might mialead, as not suggesting 8hat De Vieo in estimato was in any way based on shas De Vieorn estimato was in any way based on
obyation. Bofore throwing oat my sagkeation, I looked up Wehb, and though I noticod the paceage quoted by F.R.A.8." Yrom p. 60 , it did not seem to codid hy work well," but that " the moot affeotive rare, mino. Better than moll meens at least not bed. The note quoted by "F.R. R.s." appoars to rofer to Do Vieo's atylo of writing, and to inexperience about other moters; for saroly Wobb knew hic own mind when What he said an p. 49. I lay no strems on this point, however.
the question ${ }^{\text {will, }} \mathrm{I}$ know, excuse my raising as near the trath in these mattors wish is to got coeme pretty fairy in thablithed matters as may be. What abont 281 houre and a great axial tilt. Δ_{s} to belioving in Do Vioo hoars minates and seconds of tilt, I can as well believe in hie reconds, tenthe of seconde, and hantredths of seconds of rotation-period, which imply that med that Bianchini's observations and Do Vioo's timed the arrival of the spobs in cortain positions, within a fow minutee-whieh is abrord.
Can anvone give me De Vioo's estimato of the position of Venne's rernsl equinox? The way in which our So far mo observation is oince is simply diecreditable. tilt vithout the place of varpal equinoz is the axial able as it would be to of vernal equinor is as reasonmantioning its distanco.
micalard A. Proctor.

AXES OF THE PLANETS.

[4588.]-In answer to Mr Prnctor (letter 4449, p. of Schrötor eastimated the angle which the equator of Meroury mates with the plane of his orbit at
about 20 .
W.T.R.

SPINNINE-TOPB AND GYROBCOPES.

[4587.] - I AX quite nasble to spare the time necessary or point proper aicenssion of this sabject. I wrote only analysie affords a completed fact that mathematical mena of the gyrosoope. What I remarked farther on
the on the anhject of popalar explanation was said altogether What I anid on the insafficiener of onnnection with Bat though I wrote insurfente calamo, I did not thint it Was in the power of any reader so thoroaghly to mis. apprehend my remarks as J. M. Taylor and "E. H." particular way. Tbe p poseibilities of misapprehension are mot eaily gaaged, howover.
A_{8} to "E. E. H.," 1 shall be very brief. His remark "A.'s," is, of conrye, say ory ideas are extremely like thints it juatifed by facto : therefore; bat he probably coption to it. I thould have thought he conld perceive, howover, that whereas "A." appliod a mistaken idea, appliod a known faot to illastrate the samas matter, ithe fent, namely, that the direction of motion of a 8 wiftly moving bodv ohanges slowly under the infaence of
gravity. E . H ." aserts
 particalarly kind of him to tell, me what rate "" It is oonsideripg, but I mnat repeat that Ihat question I was riom. It is an andonbted fact that the shift of poose of an inclined top takes place more or less quickly act
cording as the rotation is loes or more rapid cording as the rotation is loes or more rapin.
"E. H." propoeses to give por gyroscope montiona with repreral explar explanation of When you, Mr. Editor, think ot. My adrice to bim is, even an the edrice of Mr. Panah to pergons aboat to
marry-don't. Wo had ennagh on the sabject, and s good deal to apare (especially in the way of explanatory man anxious to enlighton the world form a gentlo about the gyroncopa; ideme, unfortanatoly, rather more now than true. If my recollocition eerves me aright that gontleman nsed the initiale " E . H .;" but I arm not
ation sare. Parhapa the "E. H." of lettor 4411 can tell ns aboat the gyroscope.
"E. H." is obvionsly in labour, or eager to be in Labour, with a new theory abont natation. I fear our wishes for a "eafo delivery" chould be limitod to J. M. T
J. M. Taylors supposition that "the centrifugal Porce lifts the body of the top itcelf," Wonld hardly have
resalted from his disenacion of centrifagal motione, if resalted from his disensaion of centrifagal motions, it
be had not been quite so carofal to avoid "entering be had not been quite so carofal to aroid "entering
into the mechanical analyais of the resolation and composition of the forces." The riaing nf a governor ball, or of a weight swinging as a conical pendalum When the rolocity is increased, if in perfect accordanoe with those acoepted lawi of motion which Mr. Taylor ceems ao eager to invalidate (mistaking his failare to
underatand them, I imagine, for new lights). He would anderall to remember the law (though it inbours under the disadrantage of being an acoepted one) that Mr. Tarlor "
Mr. Taylor "oould hardly oredit hio sonses," when he found mo broadly stating that the weight of the top is insoffleiont to obange the direction in a briof interval.
Paesing over the fect that bis reforenoe to his sencea is not particalarly polito lot me be perenoe to his senises co not particalarly polite, let me be permitted to point
ont that the weight of the top is the weight n? its particies; that its particles top is the woight ni its partiones; that its particles are movidR in dinieront in a given dircetion is a vory briel interval indoed, being "no time at all;" that if one considers the notion of a given partiole at any momenh one mast tree to move without the top: not the whole top, nor motion of thin partiole nuder the action of gravity wonld tond (if the particle were free) to shift the plano of the particle's rotation in one particular way, the motion of the particle directly opposite (i.e., the
particle so placed that the line joining the two is bisected by and perpandicalar to the axis of rotatton) Would tend to abift the same plane of rotation in procisely the opposite way. The oonsideration of a fow suoh facts as theee, combined with a recollection of the
circomatianee that I was profersedly oniy skotehing out circermsianee that I was professedly oniy skotehing out A cortain method of reaconing, may perhaps enable Mr.
Taylor to rocovar the reliance whioh he has bean Taylor to recover the relianco
nocenstomed to place in his senses.
" Pazzied " (quary 12377) may be satiefed that the height of the tower has nothing to do with the fact whioh pazales him.

Riceand A. Pboctor.
[4538.]-T THENTE the suggestion of "F.R.A.B." at to the advisability of certain of our correspondent stadging " fourpenay eatechisma " is a good one. "A." (let. 44A7) eannot underetand how a cannon ball, fred time as if it had been dropped perpendienlarly from ball mazzle of the gan. He seems to imagine that the direotion. This is some distance in a horizontal wonld not travel in asere he is in error. The bell horizontal direction for the space of a single inch. The momant it leaves the monath of the gan grarity begize to sot, and draws it elementary treatise on mecknnics, and atady the "parallelogram of forcos." He will then see that a
body acted on by two forces, represented by two sidea of a parallelogram, will take a direction ans wering to of a paralielogram, will take a direction answering to
the diagonal of the parallelogram, and that it will srrive at the end of the diag. in precisely the same arrive at ithe end of the diag. in precisel of the siden, is acted on only by the corresponding single foroe. Example. - If a cannon be trained horizontally, with the mazzle 16 ft from the ground,
and a shot be afred from it-say, at the rate of $1,400 \mathrm{ft}$. per aecond, then, leariog out the resiotance of the air, the sides of the parallelogram will be 16ft. and $1,400 \mathrm{ft}$. ond of one y, and the ball will strike the groand at the ond of one Becond, and at the distance of 1,4001t. from ho vertioal line to the month of the gan. Owing, acting force, the ball will not pass in a straight line over the diagonal of the parallelogram, its conrse will be a curve; bat it will arrive at the other extremity in the same time as if it had described the diagonal. "A." is right in saying that a swiftly moving body direction of its motion force seeking to change the pelled from the month of the gan the the ball is proit offers to the deflocting force of gravity, consequance the angle which is formed at the month of consequently the line of 1 re, and the direction the ball tannoa by in the case of the more aittly words, the ball goen farther before atriking the In other but the time of night is the game. If "A." cannot onderstand this, I hope he will follow the adrice given 2bove.

The onge of "A." differs from that in which as.R.A.S. rocommended the "fourpenny." ivasmnch as the querist in the latter case merely asked for infor-
mation on a certain point, while "A" mation on a certain point, while "A." makes sahjects about which he writes, and at the same time informed corres pond information given him by better Looe oorres pondents.
Looe.
G. M.
[4539.]-T would ruggent to "A." (not. 4887, p. 419) oorreotness of bis own, rather than mentiona and atating obvious and recognised trathe. I did not misreprosent him aboat "particles rotating in a plane, and anable to get out of it." My letter reforred to other eorrespondents hesides him, and if he will read the odber letiers carefally, he will perhaps see what I
alladed to. He acsumes it to be admittod that the ball slladed to. He absumes it to be admittod that the ball
travels for some portion of its elight in a borizontal travels for some portion of its fight in a borizonta
direction, bat that is juat what is not admitted, for the direction, bat that is jast what is not ndmitted, for tho
ball begins to deriate from the horizontal the instant it is free for gravity to sct on it It in qaite clear the it is freit for gravity to act on it it is quite elenr that
itarity does not act the fret instant, it is not say grarity does not act the Aret instant, it is not say more likely to do so st any enbseqnent instant. . What. in a direction contrary to the plane of its motion," er "moved in avy direction contrary to a straight line"' ho expres in ance is ance is erroneosaly imagined to exict, becance, frem of the of conaideration, a mrong oxpeotation is formed of the effect of an impaleo, tarding to produen change of direction. In the oace of reotillaear mations oc movisg forcea, it is well known that wo matat apply the parallelogrram of forcoas" to obtain the now direction a body will move in when tro foroen, neting in dilifereat directions, are combinod. The body offera no resistance than it 0 motion in the now direction, ans soert fluance of to moring in a straight ino under the in. fraence of a ningle force. And it is just the same with a rotating body like a top or gyroscope. The "paral.
Iologram of forces" applies equally to this case, and lologram of forces" applies equally to this case, and
in a more direot and aimplo mannor than in commoont supposed
"Epailon" (let. 4488, p. 412) coems to be unaware that a top will gyrate without falling and withott wobbling, even when its axts has a considerable inolsnation ; when, in fact, his proposed procens of outting the pog leved would not apply. Ho ceogese aleo to bo unamere in what eense the torm gyratiog is applici to a top or syroncope. A top hae a motion of rolatien hat sleo a maxha, bar in nor paricctiy vertical its an support being stationary its ontor ond mores in circle. "Epailon" introduces an entiraly now viow into the mattor when he aays ". the top coases to grrato, Glangow, July 6.

THE NEGRO.

[4540.]-Tas darknens of Jowe long setiled in certain conntrien, as India, Ohina, Abyscinia, and Waregla, is any effect of olimate on hamen oar chief marrast for any oirect of olimate on human colour; bat a far mose
 by the late Dr. Wolf (himsolf a Jow). that all bis
brethren in the Levant, includiag Byria, vere tcirs light-haired and blue-eyed, or the most frequently oo of any race in those regions, while here, in western Europe, a light-hairod Jew is hardy known. As for the resemblance of the eastern " black Jewn ${ }^{n}$, Negroes, it can be no nearer in colour thas thet Hindoos, and in form not at all, the latter being fus
 puzzles about Josophas, zapoate his the visy gratateons puzzles ebout Josephus, as if the latter mare the moat
ancient anthority on these matters, or the ohief documente nesed by him, or whit wo had mo case with any other ancient) Thoe doepme no the ormy throg otber ancieat). Thowe docomench ami(or in Greek. Ethiopians) as remarkatho tor dashite "Can the Oashito change his ekin or the derk abio spota ?" And they enamerate cain, or the leopard his of Cham, whose name, acoording to mone Or the 8000 meant hlaek, being the root of one old name of Egyp? as the land of black soil, and of our words alchenny and chemistry, as "black art," or Egyptian ark It is in incorrect then to say with "Fiddler," we have no eng It is nearly as much any Nogro in Noah's Art. rative conld imply, that Ham, or hie briet a natr. nearly black, and yot not neceacher chificren) oare race known even to the Hebrem. For while Ouah and two other sons are dociared to beve beocene notorionaly dark racos (and ono, Oam, geographically, again named, he or his until, I believe, that singto vares of the getemalegy. they appear only in eonn-ction with the conalis. Finerot city, and nearest to Negroland of any ever named is the Bible, and which is itself namod bat that onee to describe antedilavian Nephilim, there wes no reacon qualities, and not a mord to imply ther any of them) White ; nor that Adam ther wore all (or white as Japhet, Sinem, or ourselves ; bat in Ade as case rather the roverse. As for Ader'e bat in adaris is nowise implied to be hie "third his thirtioth) ho is olearly medo an encentor dian Noah, not merely of Neeroes, bat ancoutor throzagh world. None of as can olaim lat of the modern from this Seth. The name, of cenes or more do oent Sesostris, do., beosme comenan, but the conf, selhi. him with any Egyptian is absurd. Moreorer, of al Negras, the anciont Egyptians were the lemet lito doabtless, nearer than any or auything ioe, saough not so near as Melaneeians and Anotrelianopaca, bas not a trace of any one "palming oft Beth", (ary Eetk that I can hear of) as "father of the black raot," or any wise black himself. Tbere is this connection af the name with Chamor Khen, that both beoame name
of an ongecene idnl, the rame as Baal-Penr, Peor-Apis, or Priapus; and this is the "Bheth" named in Balanm'e prophesy, whnee workhip the Mesniah wan to annihilate.
As for the pronfe "Fiddler" asks for, "of the ereat antiqnity of man (one hondred thonsand yeara)", he will find, by searching Lyell's "Antiquity of Man," that there is no ahalow of groond, as yet, for any such estimate. The only valid Reon-ebronoweters are thnse
farninhed by delta deposition, peat-growth, waterfall receesion, and dithrie of pooopices, all discorered by De Luo (the frot coiner, by the Way, of the term "Renlogy"; bnt be added, mistakenly, one from the growth of glaciers and monntain anow, which has been
proved nosonnd, as these advance and recedo for come proved nosound, as these advance and recedo for some
yeare, oren balf a centary at a time, advancing in wet jears, and reefdink in dry ones. One more chronometer than hir, however. necnrs in anch eaves as that
of fettle, described (p. 323), where thechipa, detached by of fettle, dercribed (p. 823), where the chipa detached hy
frost from the roof, had made a 9 ft. covering in 12 t frost from the roof, had made a 9 ft . covering in 12,
centarien, over the R centarion, over the Ruman Wolchmen's relica, and jnst
thrico as much between the tlint folk's time and theirs, thne earrying back the sudden end of the fint workers to exactly the reoorded centory of Noah. Bo it is with all these independont ohronometors, in every continent alike, the 50 oentaries, neither more nor leess, are
oniformily attosted aince the great change; and men had been before it, on the whole globo, with the mam. moth and mantodon; bat whether for one, or two, or three thonasnd vehra, there is nothing as yet to show.
The deltas of the Ganges and Misesissippi seem far older. The deltas of the Ganges and Miesissippi seeces far older, perhape ten times; bat they each have a gravel
stratam at the exact depto stratum at the exact depth, eceordiug to Lyell's data, corresponding to the Nosochian interraption, and the sudden extinction of great animals and inferior men every where attested. As for his new. fangled and atterly
fallacione protezoe of a chronometer, the only one ever mentioned in his "Antiquity of Man," based on the idea that land rises so many inches in so many cen turies, one really pannnt stoop to refate it seriouslr when all readers have his own acconnts before them, it not in the very same rolnmes, of Chili and New Zea. land being thrast ap 10 ft. with a jerk, and the naw Alentian Inle rising $8,000 \mathrm{ft}$. in a year. All ariters and
publishers of big booke mast necessarily make for their publishers of big books mast necessarily make for their market. What they themsel
dajs a very difereat mattor.
E. I. G.
[6041.$]$ - I mave read "E. L. G.'s" letter (4456, p. 40) with great attention, but has he not overlooked
the A most conclasive evidence in Gen. vi. 1,2 that the deseondants of Adam were negroes, and the danghtera of men children of a white race; for if the reverse, suraly a white man would not consider a negrese as
fair Them, again. With reference to the genealogy of the patriarebs in chap. v. تhat period of time is there deacribed as a year? Conaidering thoir ignorance of atronomy, I thiok the patriarots monld reckon time by the day and lamar month, which gives neventy eight as the age uf metuuseluh, a more probable length of hite than nine hapdrod and sixty-nine of cur years. As to the genealogy of Bhem in chap. Xi., I consider
here is ovidenoe of a change in the mode of reokonings here is ovidenoe of a change in the mode of reokonings probably, inntead of lunar, seasonal changoh anoh as
seed-time and harrest, aro the periods there givan. It seed -time and harvest, ase the periods there given. It
will be noderstood that the first argament in thls lettor is foonded apon "E. L. G.''s" sapposition that the
Adamite and Nophilim reces are of different ortgin.
T. 4

CONDENSATION OF BTEAM IN PIPES.

[4542.]-As I have had practical experience in a
milar cace to that of 4 A. W. E." (let. 4167 , p. 410), similar cones to that of "A. W. E." (lot. 4467, p. 410), I think that porhaps the most satiafactory way of
answering bis seren queries relative to the condens. answering his seven queries relative to the condensa.
tion of stoam, do., will be to state what I have already sccomplished.
about fifteen yoars ago I tonk steam down a pit throngh a total length of pipe of 310 yarde. The boiler pressare was 451 b . por square inch, and the Lotal lose
of pressure, as near as I coald ascertain, aboat 1lb. per of pressure, as near as I conld ascertain, aboat llb. per
square inch merely. The pipes wero \&in., and were well covered with two wraps of hay. band through their entire length, and this plastered with coment, and then covered with tarpanlin to keop out the wot, as the pit
was damp and contivnally dripping. The enkine had was dasop and oontinally dripping. The engine had an 8 inn. cylinder, 960 ft . per minute ppiston speed, and
ran for foar minates at a tume with intervale between. ran for four minatea at a time with intorvale botween.
Close to the ongine I placed as atcemen recervir, also well lagged, of ton timus the onbio cappecity of the cylinder, and all the system of pipes was made to
siope towards it in order to separate the condensed slope towards it in order to separate the condensed
water. This vessel had a oock at the bottom to dram off the water when reqnired, and I foand that leaving the stoam in the pipes for ton hoara, with the en enine standing atill, only produced half a backet of condensed water, whowing the great value of well olothing the
pipes, and the great eonnomy reanalting therefrom. What the differonce woold here beon with naked pipee I do not know, but thoy would have formed a bage condenser; and seeing how ohesply and eanily thoy may doing so. By treating the exhanat pipes is the same way for a cortain diatmace, the mine will not be apore
ciably heated. There is no doubt that this ayatem presente grest advantages for draining parposes, aroid ing heavy crankge, apear-rods, \&C., providing the pompe are properly designed to maintain a nniform flow, bo
as not to bave to stop and atart a heavy ooluma of as not hy bave to stop and atert a heary onlumn o
water nt ench etroke. With rospeot to the emplosmen of compressed air for convegiog power, I may add thet all wethods hitherto employed are oxpenoive, both in
frst cost aud in sabsequent working, the ouly excepirst cont aud in sabsequent working, the only excop
tion being io those cases mhere there io safficient water power arailable for driving the pampa. The problem
is to oonvert high pressare stesm into high presanre air with the least poasible loas by friction of machiuerv, nary compression pnmp does next to nothing for at leant half
every form
It has ocenrred to me lately that possibly the prin ciple of the injector might solve the difticuity satisfac torily, and I will endeavour to explain how withnat the aid of a diagram. Sappose we have a large boiler, or air reaervoir, nnder water to keep it cool, and a high pressare steam boiler near to, would not a jet of steam blowing into a long trumpet-shaped pipe, whose amall end commanicated with the reservoir, ameep a qnanlity of air along with it into the reserpoir, which air the praccamulate till it nearir, if not quite, equalied of course, condense on the sides, and leave ouly air and this separation of the two nonld also ho facilitated by taking off the air wherever it is reqnired throagh a coil of pipes ander water, such pipes to slope towards sionally eavily tried, and thottom. This experiment is very portant and applicable to "A. W. E.'s" requirements that I suggest it may be worth hia while to constraot a small apparatus to teat the principle, nome existing stoam briler boing uaed. A 9in. pipe closed at each end, and pressure gauke attached, would do for the air vessel, and care should be taken after the indox bae moved as far as it will go to shat a oock to keep in the air, as the gange might deceive as to the real quantity of air present while the ateam was actaally blowing in. There is nothing contrary to mechanical law in one force resoining itself into another of equal degree, and theoretically any given number of cabic feet of steam feet prodace procively the same numher of cabio bered air at the seme pressure. It shonld be rememcan be that the pefnciple of expanaion in a cylinder air than with stoam, even when it is enperheated, and this circamatance mill no donbt compenyate to a great degree for any little extra expenditure of steam necessary to obtain it
If " A . W. R.". shoald experiment in this direction, I hope he will commanicate fall particalara to the Bath, Jaly 9

Henry Turton, Engineer.

" OUR" LIFEBOAT.

[4548.]-T bro leare to propose for diecussion what onght to be the priaciple of conutruction of the versel
ohich is to be called "The Englisu Mbceanic Life Which is to be called "The Englise Mbceanic Lifo.
boat," which we all, of coarse, wish to be a mudel of boat," which we all, of oourse, wish to be a mudel of
excollonce, and I oommence it by offering my guinea excellonce, and I oommence it by offering my quinea
towerds its completion, whatever the final decision ae towards its completion, whatevar the final docision ae
to its form may be. This is, I anbmit, a far more usefnl queotion to settle rightly than that of the Delnge which has lately occupied so large a portion of your pagen, and I trast it will be condaoted with 24 mach ability and animation ; bnt withoat resort to ingalting exprestions, whioh, however suitable to quasi.thonlogion
disputation, wonld be quite out of place when mok ing to loarn the best mode of saring life in dire poril. In arod vessel for saving lifo in storm mast poseses in a high degree several qualitiee not enay to oom-
bine. She ahould drew vory littel water, and be very bine. She ahould drew vory heale water, sail; she should be very light, but very atrong; sbe shouid have all the npeed of a vory narrow boat, and all to roomluear, and sally of a wide one so mast be as tigat at a botule, and at eady to enter as
a barge; she mate be imposibie to sink or npset or break; quick to sail; easy to row ; handy to ateer. It Is oaky enongh to get a vessel that will fultil one or two of these conditions; bat tin contrive one that will
combine them all is rery difficnlt, and unless all of them be fulalled to a very considerable degree " oar" boat will not be one to be prond of. The mnst
promicing attempt I have heard of was made by a Mr. promicing attempt Mancheater, who, abont twentr yeart ago, patented a lifeboat he called the Challenger, becance be challenged any otrer lysenat to beat her.
This boat was, perhapa, not atrictly peaking an invention; it seems rather an adaptstion of the principle of the तouble canoe, which has been in immemorisl ase in the Pacifle. but was far more atropgly constraoted. It
consiated of two long air- tightiron pontoona (divided and consioted of two long air tightiron pontoona (divided and
strangthened by plates into air-tight compartmenta)
 and botwoen them a dook protected by a ganwale for he orew, a very ample grating being provided for the
immediato esoape of any water shipped. It is evident immediato osoape of any water shipped. if provided with a dropping keel would make bat little lee way; that if the tabes were conatracted with fine waterlines, eech in form like the half of a long ressel, she would make nearily as good hoadway as nae suob veasel would, while erable distance apart would be very sto idy, just as a siderable distance apart would be very sto idy, just as a
man atanding on two feet is more steady than be who stando on one. It is also clear that such a vossol monld noed no ballaet, and coold hardly oapaize. Neither conld sho aint, for no walor can entor her celosed, tarangre her trim, for each tabe boing divided iotio derange her trim, for oach part of it ouly could all. I do not know either the weikht or the aize of Mr Richardson's boat (or raft, as some may prefor h)
call it), bat think it might be made very light in propor tion to its size and atrongth, especinlly it made of steol, with trassed beams for thwarts to hold the tabes i., position and snppart the ganwales. It may be rower the oonld safely carry far more sail thai one of her weight of common build.

I do not know Mr. Richardsno, or whether he be bel alise; hint his patont, which was tnkna out in or helore isis. has, I presame, expired. Indued, a meana can baving hife is hardly at for a mouopoly; but we anly jnstiy blame inventor for resorting to the incar in experiments and constradion, bat mast regret fatora is provided.
honolithic buildings.-To " Rada Bux." [4544.]-ThRBE is no novelty to employing the tonsile strength of metal (any iron or stoel) for sap-
 pleasnre of hearing that amisble masioal onthusiast, oof of a monstar masic hall, I don't knoe hne meny feet lons and wide, withont internal pillars. Not boing acquainted with monolithio bailding, Mr. Hathab proposed to baild it with bricks and mortar, and atteaoh the tio-rods, which eapported the great weight of ita vast roof, to the cornera of its walls. This is, no doabts the way to avail ourselvos of thoir groatost power to resint a horizontal pall; bat hoing only an iganrant to perceive any advantage Mr. Halluh's mothod of sapporting a roof had over allowing it to rest on the walle, which woald, if the beams of the ront be complotoly tices, thrast could then exid.
I believa Mr. Brannan -whose address is 8, Boavericatreet, EC.- - Bill send "Khoda Bax," or nay other patent wire concrete on applioation. Of coarse, like
 oonsiders it the pr.ferable material for all buildings, prom laboarers cuttag ss to mansions, broakwators, piers, and even military forticoctions. It cortainh strength with a minimam of incombastible matorial. If not exactly papier-maché, seeing it contains nothing of which, papor oonld be made; it is eminently tazce whether the "ifbre" be round or flat, and at present rolled iron or atoel ribsads, aliss heop trom, may he chesper than wire; but consideriag that cold drawiug imparta wonderful tonaeity to stoel, I ean't help thiuking a mach lese weight of wire than of hoop sistance; besides, hard drawn ateel wire is mach lose capable of permaneint extention than hoop iron, conce qnently floors strengthened by it would bo mnoh lese qnebty to "sag "-i.e., sink in the middle. Whioh of the two may be fonnd to be oheapest is only to be determined by trial.

Thi Fhryoniode Bhomemite.
[4545.]-Tannks to "Khoda Bax" for his letter (44B1). I trast the subject will have Pnll diseussion th your pages I am interested in. Wianld Hite to sitopt
the metbod by the prncess referred to. Wuald "Khods Bax" permit inapection of his buildings, if they are within reach, and give detaile of worting ?
J. T. Holmiouls.

"J. O." AND DABmTN.

[4546.]-THE ordinary idea of creation, is existence produced by the sole will of the oreator, and in entirely diatinct from the idea of origination from development, thet L. G." meane as to sappose that Dar min lasiats allowed of mammalia boing devolopod apon them, I should like to know where he does so. The more ancient lands, indeed, socording as they are more or lesd separated by barriers, are inhabited by thoir pecaliar races of animals and plants, and to jadge by the remains fonnd in the earth, predecessors to thene can frequeatly be traced, having a aimilarity of conformation. Islands of comparatively recont date, on the contrary, sccording as their commanioation with other land is cat off, are foand deficient, saficient ticno not haridg elapsel to a
development to have taken place.

THE ROBIN HOOD SEWING MACEINTS. [4547.]-In answer to R. Tarsloy (let. 4878, P. 355), allow me to inform him that toa yoars cince,
When skirt quilting was all the rage, I mado a maohiab Thon skirt quiling was all the rago, I made a mathice that woald work with from one to twolvo zeediea, at worked most astisfactorily at oither quilting or teoking,

 with so mang poedles whioh make it anower betive to ase the ordioary maohines, thast present themoelves in practiog and are not notived in theory. My maching voald ioed either at right angle or diagonal to the fally ? if mo, I will answer any question pat to me.
"G. W. K. L.," (let. 4471, p. 410) knows little about this antject, or he roald not make snch romarks as sre contuined in his letior. Ho should know that the eed wuald not be in a llao with the needlos, as no good nougle or dingonal to the needles, and if te knows anythiug about re ving. machives ho will know that such a machine moald not be of any ane in the domentio
eirale, but in the manafactory.
H. J. R.

DOUBLE STARE.

[1548]-On July 5th from 10h. to 12h. p.m., the air boing pretty good, I examined the following stars :-

1. μ° Boítis was at 1. μ^{*} Boïtis was at once meparated with power 550 , and on increasing the power ap to aboat power 5500 with a
Barlow lens, it was well Bariow lens, it was well open, but the sight lose
ploaning, on acoount of the loas of light and pleaning, on account of the loss of light, and the
doefocts of the atmoaphere, whioh, of courre, virible. I estimated the position of the companion to be between 170° and 180°. Donbtless, this donble is beyond the reach of Mr, Knott's Instrument bat porhaps Mr. Koy may have obtained some recent woald give thems, I would feel mach obliged if be this doable them. 9. ζ Hercules. The companion of balgen about twoll geen with power 350. I find it frat ring of the primary, ita diameter outaide the double more definite eren th 8. Cygni. I lound this coe the moredeanite even than μ^{2} Bointis. I could not when the campanion of the primary, in only now, and then, learing it for an instant. Therr it mas quits ant, were beantiful 4. an instant. Therr it was quite clean and colty at all. It is certainly the monsen with no diffAllow me to correct the last mont easy of the fonr. ecript of my lettor (4450) on Gaseendi, as I of the post. ing it now, that it is worded in andi, as I soe, in rcadto the supposition that the only means wa ta lead trowing the revolution of a starly means we have of of years that elapse between two perinatrons number how oonld wo know anything swo perinatrons. If no, yeara to which require handreds and thousands of menares takomplish? Every one knows that three ereffient to calculate that rerent parts of the orbit are Jemet it alth hat orbit.
Jumet-Hainaat, Jaly 6.
C. Gaudibert.

NEW DOUBLE STARS.

[4549.]-I mave found a considerable number o now donble atara recently with my bin. refractor, and
celoct the following Were llowing, to which I would call attention :-
 Ophiuchi (2 2096). The distance is about $1^{\prime \prime}$.
 1 from Valpoenles sf. A pair of 8 mag . ${ }^{1} 7$. About cencos in the inder; the f atar is the donble. Scorpro, 15h, and magnitades 8 and $9 \hat{1}$, or 10.

 Lalande $29186,15 \mathrm{~h} .55 \mathrm{~m}$. 8 s ., 8, $84^{\circ}{ }^{\circ} 89^{\circ}$, of thís, is last; maga., 7,11 ; distance, $4^{\prime \prime}$.
other starr in Scorpio ettontion to the duplicity of are 2 and 12 Scorpii, the former anson, smong which pair, the components being separated abont $8^{\prime \prime}$, ta still another pair, nearly $1^{\circ} n$ of 12 Scorpii, The tance of which is about the sames $4^{\prime \prime}$. The the disthin is: 18h. 8 mm . 51 s ., 8. $27^{\circ} 18{ }^{\prime}$. Some Shern place of sonthern objects mas hare beon observed before, ane none of them are difficult with the apertare used. If any one is a ware of earlior observations, I aponld Ind to have it noted.
I am sorry that among the numerous astronomical ecrrepondents of the Mrcrinkio there is mo little interest taken in this dopartmont of practical nettropartionlarly refiecting) apozen to hear toleseopes (more to twelve inchea apertare, and of from seven or eight coen an inatrom aportare, and opwarde. I have never is claimed their dividing poind, bat anderatand that it refractor of the dividing power is equal to that of a reiractor of the same apertare, and the illaminating power only a little leas. If this is co, no one with an apertare of 7in. or more (if the ingtrument is good for anything) is likely to eall in Anding at least one now domble on every good night, and a muct smaller glaw Mr. Bird's large exper many objecte. Notwithatanding agree with him in thinking th this matter, I cannot to be done in the discorerg that there is very little left coeme about as good as it of new objecte. The feld seome aboat as good as it over was, and in one respect the mont part, sufficiently hitherto unnoticed are, for tion mont part, suffleiently difficult to make their deteoand catalogaine interesting to the observer than Anding fourthe of thang the easy doables, of which fully threeo very fow, in any of the composed. I have met with boit oin. Alran. Clark the catalogues, too difficalt for my most dimicalt in the coctor, and some hnodreds of the re-disoovered in searching for of the Struves I have of a great many of them for now paira, the diotanco found the other night heem being lose than 0.5 ". One I had expected to recoive given an $0.8^{\prime \prime}$ by Otto Struve. extent, of the obeerrations and in reforence more partiond notes ot other observera donbles, that being the onlv reacon, and the only excueve for ocoupying so muoh onproce with, and this sabject. It itrone, this will suffionently explain the rather numect. I trast manioations heretofore pablished.
Chicago, June 25.
B. W. Burmpay.

NEW DOUBLE STAR 11 SCORPII.
[4550.]-A Mrait or two aince I noticed a small companion to 11 scorpii, which seema to have beon at I can learn. Thres, and by other observers, so far nag., and precedes 4" or 5 ". This perhaps, $10 \pm$ or 11 for a bin. apertaro, and is is diffical is an easy object omianion from lists of donble atare, if it has orer for its examiogd with anything above tin. This is reand, been it round, as it is the nearest naked-eye atar to the readily
 should be glad to have Mr. Knott. mens., 8. $1 \mathrm{I}^{\circ} 24^{2}$. I and particularly a closer and more miffcalt this pair, recently, 6 Serpentis. This last is a very beantifol
doable. Chic
Chicago, Jane 25.
S. W. Burnhiy.
\triangle CHEAP SUPER FOR COTTAGE HIVES. seribes a common flower-pot (letter 4501. p. 483), docheap appar In wowr-pot, with plate of glass, as warned not in a bee book I have read, we are bees aro apt to ase putty abont a hive, as it is said books toll as thet it is this true? Two of these narrow opening guen bees will not pase through a three-sixteenthe, the one sayis it shoald not exceod in width. Whiok is the says one third, of an inch working boes and to the right width to admit the rom the honey-storing plece ine queen and the drones

Репо.

ROTARY ENGINE.

[4559.]-I nvolosh a seotion, oxtornal and internal, pactuess, cannot bat giv, from its simplicity and compaciness, cannot but give satisfaction to many of your
readers. It has been said that power, if it is not above shat it is equal to 4 horseporer, it it is not above, and yet the cylinder is little interior section; the ordinary hat-box. No. 1 is an and is tarned by the slide ralvo B altorngh the pipe A,
out of 100 hornes in vohicles of varions sorta, 80 ooly that gentlemen's carriages; mat them on the horves af gent-men's carriages ; bat a fem, I regrot to ass, on
oart-horsen, cab-drivers Comohmen are too vall, contormongers, and omnibuce. bearing-raing, wich eancated (abont horses) to ano tight as to produce any offect, hastion aselens; and, if so arary prodace any effect, hartfal and dangerous. shonld ride kanws, Who knows aaything, that ho bores freedom drive with a light hand, and allow his acoording to ohto change the position of his head hand he lowers his head, when ranning fast he phring forward, to get greater freedom for breathing han When going gently he moves his head from side to and to soe and, 1 suppose, enjoy the scenory at in side horse looks as it he did, and I hope he doen; bat mo can he do any of those shings if his chin is prat hor nearly to his breast? As to the smart look is ip him, a horse's natural attitude both is and looke give beat; it in as bad tasto to alter it as it is to at ter till the beanaiful agure by squeezing op her min many mous into watp. Of course, some horee lite many mon, get into loose going waye, and wat training to carry themeilver natarally; bat thia, en PRA名 propery asys, may be done by the jedicioas ase a bat the wheal tortang. It is not only the mercital Bline wise man who in meroiful to his beact.
Blinkers for horses are, I am glad to geo, being gives ap. It is asid a horse without them will bo frightereed horses fith wheols following him. Wo do not rid the wheele they pass alongeide. A horse is seldom

Wourses right and left in the direction of the arrown. We will suppone the steam to bo now admitted into pioton D, and force it would net apon the arm of the at tho same time the exhanation in going on in the chamber F F, throngh the aportare going on in the point of the piston \mathbf{H} has reached the end of then the , that valve is closed, as shown by the doted valvo but the inatant it has passed the point of dotied linea, this ralve sliden ap the face of the piston D, valre E , toam boing then admitted at I, renown the and the on the sarinoe D, at the same time the exhanestion the piember J is going on through the opening K , of the piaton is arged on in the direction of the valie where the steam is again admitted. This procese it wheel. at either side at evory revolution of the is Wheol. The waste stenm pascos of through the fyopponite side of fy. Wheol. No. 2 is a small a pide on anowing the fly-whool and ecoentric for working fide valve, the eccentrio being betwoon the plummer ailoand eylindor; N, the fy -whoel; O , driving pollegr for machinery ; P, the stop cook for tarning palleys for of water or steam. No. 1, cock for draining oylinder

THE BEARING-REIN AND BLINKERS.

[4553.]-I HOPE the excellent and hamane letter quicken the "Old Plonghman," at p. 884, may help to Which is, I think, almost confined to what are called the educated and refined classes. I oounted the other day,
friphtened by anything he seos dietinotly; it is mans peotod things that atartio him, and ho in logs litrasy to be startled if ho has no blinkera to provent him cosizt diatinotly. The only use of blinkera to a horme is to sare his eyes from the whip, but a well-trained an most on harse does not noed the Whip at all, or, at mastar, and to make him anderaiand who is to to nome than force, gonerally better to conquar by genthe

TO "OUR" ENTOMOLOGTCAL READERS - NET AND EXCELLENT FIXATIVE FOR THE DOW OF LEPIDOPTERA.
[4554]-I BAVE some good news for all our entore loginta. No donbt the majority of "our" readors have inga, known as Ronget's preparation for Axing drat. those who have not I will desoribe for the benest of flask is aupplied with a ministare do it 4 gmall giae that when the solation is ponred intowpipe, so adjontea be blown out in the formed into the reesel it ean held at a diatance of lorm of apray. The drawing is or two through the of 12in. from the fank, and a pait on the almost instantan corors it with a jot of vaporar. draving is porfectly Ared.
Woll, it Tas ouls the
a lady cntomologint-had the day nome ono-I believe a battority in the spray blown happ thoaght of batheving described. The insect looked for the Reakt I have drowned and spoiled. After two or a fow minnetee
the un the appetrance of vapone had diasppeared. Not to the rirtoe of the process. Actually the Finge would bear rubbing between the thamb and
finger withont loring a portion of their scales. One very important advantage is at once apparent. The large space, to say nothing of expense, occupied by glass cases for the procerration of Lepidoplera mar be saved by this proceas. I do not, of course, spost of ceses monnted for display, but of the preservation of specimens for referevce. This may readily be done Thith books, the leares of Which are made of cork, with slipa of rather thicker cork oomented or sewn to the eagen and at the back, in Which the insecte can bed arranged directly they are capt
The value of this simplification in the mode of keeping epecimens, especially sbroad, to the scientifo that thergiat, canpot be overrated. I venture to state that interesting, sud so accessible as entomology ; none that is 80 generally, pationtly, silently, and so onjoyably purn not aware of the world-spread dominance of this landable passion. No donbs this new discovery is landable passion. No donbs this new discovery is
already widely known, and will carry joy to many colleotors and many havale homes ; so that it will be he meana of eafiching our maseuna with thousands of epecimens of these aërial plame-bearers, so difficalt to preserve in the original freshness of their rainbaw maes. In orfering go valuable a boon to the dranghtsman M. Ronget little thought how far he was anperseding the labours of the entnmologist, by giving per-
manence to the down of Lepidoptera.
P.S.-I take this opportanity of thanking "Ento for his interesting bits on the subject.-H. B. E.

FIDDLES.-To "FrodLer."
[\$555.] -Hoxsz says Jove occadionally nods. If the father of gods and mon, in the elogant words of the late lamented James Crow, Esq., does "jast so," we need not be "very muoh surprised "to find that a "Piddlar" is oocanionally not quite "wide awake." When I read the statement of my friend (who has so
long been acoustomed to "bowing and scraping " that long been acoustomed to "bowing and scraping " that he has become the very pink of politeness) that Pagawonder, oven as "Wondoring Willie" once wondered What manner of man the "Blacksmith" might be. Shades of Correlli, Paganini, Sivori, and Co., to think a Addler, manjpulator of the king of musical instruments, only producing sonnds eqnal to those of that comparativoly poor affair the piano-an instrument which all geauine fiddlors sbhor for its untunableness, at loast its necesaity for that fiddler's horror, temprement. Of course violinists were never yet heard to play out of tane, no, not even one "comma," however " Fany" stops" they employ.

Fiddler " asye the bow remains on the string. If he uses the word remains in the sense of continuous
contact, very little tone indeed would remain. If the contact, very little tone indeed would remain. If the etring never departed from the bow, how conld the atring vibrate "at all, at all." It would, indeed, be very "melancholy remaing," for then the string wonld
be constantly palled in only one direction-a condition be constantly palled in only one direction-a condition
quite incompatible with vibration. I "rather guess" quite incompatible with vibration. I "rather guess hairs-aot just as plectra do on the staring; that is to eay, they commanioate to the string not a continuous impalse in one dircetion, buth rapid succession of such revolving conged wheol do, or as my rather odd fiddleaticz (which had a long row of quill plectra inserted in it) did. I foel very conident the bowno more remaing does which don't " bloct" "or the repenting of piano does which don't "thock," or the repeativg hammers On shat rery pleasing instrament, the melopiano, do. strings- Whether effeoted by a bow applied directly to them, by rubber whioh rabs some olastic material, ituch as silk or hair, whioh commanioaten the impulses it reoerved to the striags, as in the case of Mott's costinente pianoforte, and its modern rival the tetrachordon, or the melopiano, whioh has hammers which the ear to detect, just as the eye fails to distinguish the the ear to detect, just as the eye fails to distinguish the -then one thing needial is a rapid saccession of impulses, for a really continuous impulse would prodice oxactly the same resalt as pailing your iadio string on one side with tae anger, under which oiroumatances there cannot be much vibration and vory little
tone. Such violin practioe could not offend the most tone. 8uch violin practice eonld not offend the most reined ear, and woold be more gratifying to our friends than that "bowing and scraping" sbominsbly out of tane Which, however polite, don't exactly

Harmoniode Blacegmitr.

P.8.-There is nothing oocult in the canse of a violin, a voice, or a piano sonnding loajer in an empty (O) furnitare) room. It is not the larger flat anffaces of the wall, foor, and ceiling (whioh, by the way, don't usually beoome much angmented by remoring our "sticks"), bat because the acial warss generated by our swreet voices, and by the soundboarda of our
nddlee, de., are not so much broken up and partially Hadee, de., are not so much broken up and partially
destrosed as they were by the aforeasid "gitiks," Thich greatly obstruct their transmission. I don't chink reflection from the walis, tec, can have any infuence, becanse refecting a soand can no more increase its intensity-naless it be refected from a conbecomes merely local, like that of light or heat-than becomen meroly local, like that of light or heat-than
from the side of the table can inorease the volocity of its motion. No doubt effeots (which are not farnitare) can be produced by the refiection of sounde-echoes, to wit-eisher in the orchestra or oleowhere (wo do it in churches to the voice of the promoher), snd that some of thoes "errecta" are very surpriaing to those persons Who are not lamiliar therewith, but 1 can conceive no pleasing musioal "ofect "sound refeotors behind an orchestra conld produce; on the contrary, I foar wo sho helf hear a very disagreeablo ecac (not worth the halipenny the alever newapaper of that name costa me) If the reieoting sarisce be dibiant, as it is in sore concert rooms in whioh the concave roof acts vory enectualy, if not very pieasingly, as a sound retcotor. The root of the Albert Hall did so nntil General Boots provented it from "publiohing te renlections," Which I mean the preme for admittance to the Peoplo's Concerts.

ECONOMY IN USING COALS.

[4556.]-SEEING the present great adrance in the price of coals, eapecially in Londen, and the probebility of a still further advance, will yoa allow me to ask my follow subsoribers if thoy can (any of them) describe the methods in use on the continent and in our country places for coonomising coal for domestio use i I have beon told that in comp parts of France people use conl-dust or alack mired with wot clay into the mistare barns tell I or neal the fre, and that thing like this in Staffordshire. Will ang of the thing like this in Stafiordshire. Will any of the
artificial fuals do for open frepleces? I can highly articial fuels do for open fireplaces? I can highly
recomreend the weo of arire shovel, whioh sifte the recomreend the une of wire shova, whioh aita the
cinders beantifully. I bnrn all mine in the parlour. cinders beantifally. I bnrn all mine in the parloar.
Of coarse, cervants oan't be made to do the same in the Of conrse, servants can't be made to do the same in th
kitchen.
W. Browss.

SUN 8POTS.

[1557.]-Last weok I sent you sketoh of the ann as viewed through telescope, with low power and terres-

han oven wo do now, whiok is saying a great deal for goodness sake let unmusical people alone. Plaving without expreagion tasto or tonoh, singing without time, tane, or feeling:-anch are the resalts of trying to those tho are not borm natural love for it.

Vertumxus.

PIANOFORTE CONETROCTION.

[4560.]-THE " Harmonious Bleokemith " (let. 4415, p. 882) hononrs ne by asking for my opinion on or ing pears reso as he has done, the extension of th ing, question question when if portended is ho set vibration enectagily if we extended it, my thonghta woro it irnot so limited space. Bnt I mngt confess I oonld never see limited space. Bat 1 mus conless I oonld never see the mallos adratare in doing so, and, thereiore made only the experment desoribed farther on When we depart irom a straight line we gain just as
muoh more stifiness in proportion to the greater gurface much more stinness in proportion to the greater gurface
$s 0$ gained. This will be seen eren if we make the so gained. This will be seen even if we make the experiment with a sheot of paper. Then we reqnire
more power in proportion to the grester surface, just more power in proportion to the greater suriace, jus as much, or more, as if the sorndboard had been extonded in a straight line. I Bat, having made no experimenta in that direction, I am bound to say that I do not fea Thinking that most likely the hard grain in the pine Thinking that most likely the hard grain in the pine Wood is sonorous, and the soft grain between them acting partiy as dampers, I did not scratoh it ont (as I nov soe some one has the patent for), but oonstructed twe soundboards, one of beech wood and one of glass strip of an inch thick. These strips I glaed edgemaye on to of an inch thick. These strips I glaed odgemaye on to pieces of Wood with thoir extreme ends, 30 that thoy Were exacly like soundboard made of swies pin quarter of an inoh thiok, the soft grain tation out and the bridge on the front as uanal. The advantage the bridge on the front as usual. The advantage that the ribration shorid that the vibration should ran along the hard grain more ireely, not being checked by the coft grain, and baving nemriy double the surisce (3atr. inatead of 1ott.) causing the production of neariy doable the quantity I ton out I can pat the tuning-iork almont anywhere and a certain amocat of hone salwaya Noard, but on bofore my inrention for whioh re took the patont, and with ont poing into detaile I will only eny thi the hard ont going into details I will only gay this, the har grain with nothing bat the air between, produced notone; the hard grain with matorial equally hard betweon, when would be 1 solld beeoh board produces no tone. I ooncinde thas, taking the solidity of air as 0 , the solidity of the hard grain $=1,000$, 1 material betweon must be solidity $=$ = 500 . took strips of beeoh-wood, s. 1,000, and popiar, s. glued them together altornately, and found the sonndbuard perfect as far as the material is concerned. By to find oven one inch wide in : whole soundboard to bnd even one inch wide in a whole soandboard proportion of the solidity of the hard and soft grain it seldom 500 to 1,000 , I found my conclusion \quad gas right at least I gained the same praction reanlt. I have the opinion, and it is incladed in the patent, that two opifionst material of diferent herduens or rigidity specifo gravity, and alaticity may vibrate rather speoifo gravity, and olaaticity, may vibrato rather orapliy againat each other; and I am now preparing a violin breat of three diferent materials, rosewoon, mahogany, and Virginia pine, and will report the respeots to corrngated soundboarde. Itook the inside of the sonndboard onk, learing only the two faces a full of the soandboard ouk, learing only the two faces a fal sixteenth of an inch shiok, and sapportod them by giaebrit find it no good, which I expeoted.
J. H. Somuart.

ON TUNING PIANOFOBTES AND OTEER STRINGED MUSICAL INSTRUMENTB.-I.
[4561.] -Probably the vary earliest method of altar. og the tension of the etring of nasioal instruments or the purpose of altering thoir pitones, or what is ermed "uning them, is that employed in the Nango or nan Marm and is Agred on page 18 of the illac aington Museam, and is Dgared on page 18 of the illustrated ostalogne of munical ingtramonts. If am not mintaken the Egyptian lyre in the Florence Museum the Egsptian harp in the Masenm at Berlin, and also the two Egyptian harpe (copiod from paintinge in tombs) figared in Bir Gardener Wilkinson's great work on the "Ancient Egyptians," are all tanod by (see page 81 in catalogue). I mean by aliding the loop (see page 21 in catalogae). I mean br aliding the loop to which one and of each atring is attached ap or
down an inolined ber, and thereby increaning or down an inolined bar,
Another probably very ancient method of tuning is to vary the vibratiog length of a string by shifting one of its aupports or bridges instead of altering the tenaile force to which it is subjeoted. I suspeot the strings of the tatio goto are taned thns, although they are so grranged that the former method also soems possible. Those of the santir or Oriental duloimer, figared on page 82, are aleo exsmples of this method of tuning, page 82, are aleo exsmples of the proctice of which was probably anggested by "stopping" the strings of instramente of the late "stopping" the strings of instramente of the late,
gaitar, sind viol class for producing sounds of varions pitohes, all sach instraments being provided with a neck, and its fingerboard nsually divided by transverse
low bridgen, technically termed "Prets," which determine the length of the vibratiog part of the string.
(N.B. Thees "peta" are exceedingly asefal for deter. mining the intonation, and the writer has ofton been compelled to "fret," or rather to lament, that the fiddle was deprived of them, for, if properly placed, they insure many Addlers' Angers- bhich are not invariably placod on the fingerboard-do, in practice, afford can play the diatonic scale with fow fear an approach to correct intonation as it is rendered said addlers may choose, habitually. to elevate their nasal organs at tomporament notwithatanding. By the way, the verieties of stringed masical ingtraJapanese biva, the Chinese pepa, the rebab, alias reheck, the vjnk, the Indian tambara, the Italiun chitarrone, or theorbo, the mandoline, Inte, pandarina, whole family of viols and violins inclinded, are examples Whole family of viois and vionins incinded, are examples
of this clase ; yes. even that ting of modern musical instromente; ye fiddle, which-I trast my clever friend "Fiddler" and his fellow-fldders won't be offendedis, after all, bat a late or gaitar with its anandboard
"bellied," or arched, to resist that downward pressare of its strings which necessarily resalts from the employment of a high arched bridge, needfal for
facilitating the bowing of single strings, slso deprived of its frets, a deprivation occe-ionally to be lamented by those blessed-or carsed-with masical ears, and hoire strings aro bnwed, alias "sawed," with horsohair, instead of being "plucted like the nnsuccess. Hon. Bob Lowe and other kind and benevolent gentlemen who sorrow-not as those without hope-lor the customary in-efficiency of the said candidates.
It neems prohnhle the simple method of altering the tension of a atring by winding it rouod a peg mnst have been in nee verr early. I have heard the specimen of ancieut Egyp ian harp-not the late-is taned by this means, which has been employed fron time often in a very primitive form indeed, compared
with the Deatly.torned and well. 0 iniehed boxpegs of a modern rolin or the pet more refined oteel pegs of a modern volin, or the yet more retined steel in a slide lathe, probably the very highest oxamples of the wrest-pin family in ordinary use. I have often Wished those of the pianoforte were anbjected to the ame process-those of rome of Erard's grands made
boat fhirty years agn, and the wrest-ping of Mr. Nosworthy's very pecaliar pianos were-for then we might hope to be free from the annoyance of "jnmpers."
Perhaps, $h o w e v e r, ~ t h e ~ w r e s t-p l a n k ~ a n d ~ b a d ~ b o r i n g ~$ are often as much in fanlt as the pins.
As the weight of masical strings became increased the resisting power of their wrest-pins had to be angmented strain. If the reader will compare the wreat-pins of ye ancient clarichordis, yo virginala, je spinetts, and ye harpischordis, ce., in Sonth Kensington Masenm, pisno, he will be onsbled to form some ides of the change time has bronght abont in this matter Large and powerful as the wrest-pins of a modern grand piano are the writer foand them insumfient to resist the strain of the strings of his experimental instrument, and was in No. 211 to resort to the means described and Gigared ite wrest-pins to resist the pnll of the atrings, some of Which (of No. 40 wire) require a atraining force of nearly seven hundred poands esch.
Taning by wrest-pins with a simple aross handleWhether that bandle be the fiat hesd of a fadle peg, or the more powerfal taning hammer of the harp or piano. trivance, whose results are anaatisfactory unleas great practical skill bas been aoquired by long practice ; it is very rapid and cheap, aloo nasty. Many attempts at machine heads of the gnitar sad contrabese rably the the most successfal of them. Contrivances for apply. ing the principle of the machine head to the ordinary pianoforte taning hammer have not yet come into to the prejadices of that remarkably intellectas class, ycelpt pianoforte tanera, who are remarkably defect in them. I mis, than from any inharon trivance which I have seen necensitates either the employment of two handa to the apparatas-one to bold onlese you here an aseistant to hold it beys, lor instance, which afforde an ansed stop and prevents
late the aseless rotation of the handle (sees the patents of Nemton, A.D. 1854, and Johnson, 18is), I have some times thonght I could got over this difitority by employright angle to and gearing into an obliqna.toothed Wheel on the pipe, in ehich case the atem of the havdle force. This hat not, that I am amare of, been carried ont, so I invite the denigos of my olever fellow-render for dring what would be a roal blessing to amatear Of
Of conrne, the thicker the plank the longer the pin may be that is inaerted in it; bat in grand pianos,
whone strings are above their wrest-planks, it would be very objectionahle to increase the thickness of the latier hecanne every soch increase mnst enmpel the are below the stringg the more ""ont of the square" are berow the strings the more "out of the square"
with the latter mant the hammers path become, at the
instant it strikes them. It was prohahly a sense thïr evil (which is of considerable practical importance opicially for obtaining clear bonady in the trebio thin stringed some of the earlier piano-makers to place pletely gets ander the wrest-plank, doing whioh comp -see his putent, No. 6u49-who proferred contianing wreat-plan position of the strings), to constract their wrest-plank only half-an-inch thick oould not retain a wrest-pin subjected to the furce of (eas) three hnndred pounda tending to tarn it bachwards, unleas, indeed, it was driven into ite hole much too tight to be tarned with anv nicety-tnning reqnires nicety -by any ordinary tniing hammer. A little reflection will teach ns that good bard wood, probably beecb, is the best tiud in ase-is, from its capacity of resisting compression, its elasticity, which enables it to hold the pin firmly without the necessity of driving it into itg hole objectionably tight, and its non-lisuility to adhere dangeronaly to the metal pin-far preferable or metal for a wreat-plank, so long ay the pins are only
held by the adheaion of the surronnding material. Whon anything like a wrest-pin is employed in oon junction with a metal wreat-plank, some contrivance sach as the introduction of saitable elastio materia besides their surfaces, becomes an absolnte necessity contact with the pin in so thin a wrest-plank woald be too small to resist the strain withuat risk of destructive adhesion, some means of increasing the surface of the parts in contact is also a practical necesaitr. Prohably price 6 d , "in that case made and provided," as our legal friende expreas it, the very anme thing, or at least oomething hardly distingaishable from it, except perhaps that it is inferior, was patented over agnin in Ad. 1870 Anotuer arrangement of the motal wreat. plank wa sarfaces which retain the pin are divided jast es they are in the violin, bat the strings, instead of boing between those srfeces as ther ars in the Addle, aro soove both which renders pntting thom on more con venient. His arrangement, however, neems open to the same objections as a moderately thick mooden wrest plank for grande, in melloh the hatnmers atrike apward and here their stcinga ebove their wrea-plank, for the onleranast-planks are about as distant from each other as those of an ordinary wonden wrest-plank. I will gay more on thts subject next week.
Tus Hanmonious Blacesamith

EARTHQUAKES and volcanoes.

[4302.]-I nNow I bave not the pleasire of being one of your most respected correspondents, bat I think vonr hove of fact and philosophy is snfficiently great to
find ame excuse for my drawing rour attention to some fod sua excuse for my drawing your attention
little matters which are of rital importance.
ittle matters which are of vital importance
Yon mar remember that some time ago
ftention of your readera to a by me azo I drew the antention of your readers to a (by me) presumed oonnection betwoen the attraction of planetary position earthquapect, volcanoes, mining explosions, \&cc. This did more particnlarly in a letter on "aotmno Meteorology and Magnetism," in Nn. 215, p. 151, of
the Engliay Mrobanic, of May 7,1869 , with serenal facts illastrative of such presumed infnenco. Like most new ideas, the principle was ridicnled, and I an a pretty kood share of abnse for my paina. Bnt there were no facts or arguments to the contrary. Lntely I
have been reading an article in "onrs" on "Earth. have been reading an article in "onrs" on "Esth
quakes and Volcannes." by A. Le Plonzenv, M D., and amonget the "conclnsions" he has arrived at (p. 348,
June 21, 1872) I find the following nearly gimilar june 21, 18 as myown:-"4. That the sun's immense reservoir of electro-maguetism, and the other celestin bodies, which are likevise reservirs of the amme agent,
increases the action of the electro-magnetic ourrents increases the action of the electro-magnetic ourrenti
that traverse the earth, according to their respective positions with regard to this, and hasten the effect the chemical operations," \&c. On reading this, I think yon will say the agreoment is principle between us is as near as possible perfect. The only departure is,
that I went beyond the learned anthor, and gave the that I went beyond the learned anthor, and pave the
exact "positiong" for such disturbancea. For instance, in the last Mrchasic (p. 874, Jane 28), he devotes his article to a long deucription of the "Cataclysms of the
18th and 16th Angnat, 1868," giving most valuable and 19th and 16th Angnst, 1868, " giving most raluable and copions details of the great Sunth American earth.
quakes of that period. Now, as both I and the learned quakes of that period. Nom, as both I and the learned
anthor seem to agree that the positions of the other anthor seem to agree that the positions of the other
celestial bodien are the causes, it may be usefnl to text celostial bodier are the canses, it may be usefnl to tert
this period. Taking the positions from Raphael's "Ephemeris," I fiud them as follows:-

$$
\begin{array}{cccccccc}
J & \text { H } & \text { V } & \text { N } & (x) & \text { S } & x & (M y) \\
\hline 6 & 7 & 8 & y & 10 & 23 & 26 & 28
\end{array}
$$

Letting the line represent the orbit of the earth during Angnst, 1868 , it will be seen that the earth was exposed,
in four days, to the influence of as many planets in the in four days, to the influence of as many planets in the
eame degrees of different signa, including the irregalar position of the planet Venns-one so romarkable as the canae of earthnakes. shncks, inndatinns, ac. Frnm
the details of M. Le Plougeon, it will be seen that within three dars the effects of this compound inflnence wer in operation, thnngh at "Jacna, for several days pre-
vinasly to the 13 th, sabterranean noises were heard, and some light shocks felt." It is also worthy of remark that this disturbance should again intensify the attractive infuence of a fresh position-of Satarn The month closed with another position of great interatity-that of Mercury in conjunction with the
ann-the commencement of the period being marked by a shook at Pan, in France, on the 28th: Baoceodod
by an "alarming shock" at Jabbereny, in Hangary, an the 28 th.
Connected with rainfall, M. Lre Plongoon states that shortly aftor the obook at Jacra, of the 13 th " "it began to rain (a strange phennmenon in a onontry Where it vever rains). In ooincidonco, I mar sda trat lour hoay, on the 9th, the fall wes $18 i n$. in tio iwoalgsive and general do previons. On the 12 th , the fall at Aberdeen rogistered 2. 88 in . ; Ardrossan, 222 in . ; Green wich, 1.401 n . : Nairn, 1.36 in . On the 18 th , fearial thanderstorma wept over France, and Italy was visitod by an extras of a fearful dowapour of hail and raia at Natal in Africa, which lasted two davs, destroying an imanonse amonnt of prope
costing $\& 150,000$.
In contrimation of the thenry, I may give nnothar denotod by the fullowing diagram :-

$$
\begin{array}{ccccccc}
\mathrm{Ma} & \mathrm{H} & {[\mathrm{~J} .]} & \mathrm{V} & (\mathrm{Mr}) & \mathrm{B} & \mathrm{~N} \\
\hline 4 & 7 & 1: 2 & 15 & 20 & 21 & 24
\end{array}
$$

By this it will be seen that there were positions of Mare and Herschel on the $4-7$ th, followed by the earth's pussage between the san and Japiter on the 18th, the positions of Vonng, on the 15th, and, Anally, the solar corijnoction of Mercary on the 20th, with cloce positiont of Saturn and Neptane. It was thas a month with rardiart intensity of positio, avd was allorthwanke rmarkshle phenomena, inclaning the great earth. a delnge of rain, mired with hailstones of an extraordinary size, laid waste the district of Maary (E. Pyrenees), over a sarface of 9,000 acres. The gronnd in some places to the depth of 18 in ." Oa the 14th a premonitury shock was felt at Rhodes; bat on the 22 nd , aboat $10.30 \mathrm{p} . \mathrm{m} .$, " a series of short undalatory monementa took place, followed by a contionoar ahxcy. Whin quivered throaghoat the ialand for neariy in Rhodes, 400 nearly destroyed, 240 persons wero killed. and a grent many wounded, 12 oat of 44 villages mare ntterly dentroyed, and the others greatly injared. 25th a riolent storm of wind, hail, and rain threm dowa mire of the partially-rained hoases, and on the 30th a farther strong shock took pla
an ther in an hour and a half.
Such was the fatal experience of the island of Rhoder In England there were violent storms, and mach magnetic distarbence generating, on the 23 of "dariight anrore" ever witnessed, thas renliwiog another of M. Ine Plongena's "oonclusinne" (MxCHamic, P. 8t8, sphere suddenly taking place, and without any appareat causes, manifeited by the loses of power of magrets." I cannot follom all the numeroas ahocks given by I. Le Plongeon, becanse mnat of them aro ni woo rom the ime There get the data for the por for atady in the details of the one of Aagast, 1868, giver. I conld add sooh feots by dozens.
Bat I am glad to see the principle growing, aod macb more so to see sn many offrhoots striting oat in the noow tha I was not one of the least valasble of gour correspondents. We shall conquer some day, and it nay then, parhaps--ar now-be as saliaraotion Lo you to mach as was supposed.
July 6.
Fpederic Prast.
[4563.]-To-day's paper farnishes me with another of that I have jnst written, that I amer in roference pardon my troabling yon by adding it. The positione of the period-April 14, 1872-are these :-

This terrible twin-event, an you see, is the reealt of the onmbiued inflaenoes of Noptane with the nan, on the 18th. falling ont on the transition print. The 14 th
 in conjanotion with the sua).
rinarkable faot, I may state that on the 19th of Maroh, 1861, a similar oartbquake colamity fell ponn the cily of Mix tante to a heap of rnins not 36t. high, doestroying 19,000 persons. The positions then were:-

This is marked by two solar oonjanctions within three ass, and hence the greater magnetic, ato, distarbance.
The storms of Enrope at the time were of the greatent intansitr, and were the history of the period.
You will, perhapa, tell me the immenee distance of N-ptnne wand preclude the notion of any sach inthence. Well, some months ago, in the Engurg urning phenometer Zarffi, writing on the tabloNijection, Wisy gnoted As anying that a billion of Uranas distances monld diminiah in no wiee sho force ol magnetio attraction.

At the utterances of a moientific man, I noticed it as a singular opposition to the negativee of "F. R. A. S.," who denied any suoh jufuence or action. "I Wo shall decide when doctors disagree ?" When I find my opinion roltoratod in the Mrechaxic, ann you wonder I acostill obatinato enongh to bo a oo-holder
Protcceor of the dootrine? -and to apply it ?

Friderioz pratt.
P. S. We have nome meteorology this month. The sallowing are the ponitions :-

We have three solar conjnnctions, a somowhat dingalar and rare ocoorrence. I think the eventa will be equally so. I think you will probahly hear of some covere earthquaker, tce. at that major pointe. At present wo certaindy fool that the snn has borrowed
come intensity somewhere. I registered 90° in the ahade yeoterday, and they have it equally hat in New ahade yeoterday, and thay have it equally hat in New
York, having ovar 200 deathe from sungtroke in the Woek.
Stadied by planeta and periods, this month ought to Stadied by pianeta and periods, this month ought to
teach something of weather soionce, if its professors tench something of weather soionce, it its professors
were not ton acared by the cuckoo ery of AstroMeteorology, and too ignorant of the trao workings of Natore.

A MORNING SUNGET.

[4564.] - (Luet. 4519, p. 436.)-Tyis is an sppearance infrequent in Epgland, but not uroommon in the East, boing cansed, perhapa, in the same way ast the Pillar
of Fire at sunsol. 1 once saw an oveting nuarise at
 Wimblioden. In my Metanrologioal Notes "Inda the
followg taken from Dr. Hookers travels in India :Soln the oloar dry morninges of theoes reglona (the Kymore Hillif) a curious option phereemenon may be obsorved of a sanrice in the weak, and cuncet in tho rise to the zenith, often crosaing to the opposite horizon. It is a beantifal foatare in the irmament, clear, the white beams being projeoted indirerantly clear, the white beams being projected indiforontly
againgt a dark vapour or the blue (sky ?)." In the againgi a dart vapour or the bloe (aky f)." In the It mast be remembered that a glow in the Eant at san. cot in a vory common oocarrence. M. PARIB.

ARTIFICTAL MANURES.

[4565.]-In answer to "Sanl Rymea" (lat. 4414, 881), stone coal is the popolar name for the variety of conl known to scientifo men as anthracite. It is
generally considered as the nitimate product of the pecaliar change whioh vegetable matter undergoes ander the inflnence of moistare, heat, and pressare. It ie pretty nearly pare carbon, containing over 90 per cont. of that eloment. It is very diffealt of combustion, and barne withont flame. It bas no tendency to coke or to snil the flogers. It is worked largely in Sonth Wales and Pennsylvania. How it coald prove valuable ata manare I am at a lose to imagine, and shorld have been inclined to fancy with "Band Rymea" that it was a misprint for bone-coul.
With regard to the reoent invention of manare conaisting of a mixtare of stone.coal and salphate of
iron. I think it was unneceseary to patent the com. iron. I think it wae anneceseary to patent the com-
pooition, for no one would be likely to use it, at least, poeition, for no one
not a socond time.
I know a district in the Weat of Ireland where the oil is impregnated with a small quantity of sulphate of iron (donbtless derived from the oxidation of pyrites), and the land is perfectly barren. Before "Sanl considerable scale, let him make a small experiment on some reed he is anxious to get rid of.
If regetables in the open do not require more nitrogen chan thoy oan obtain from the atmanpherio ammonis, how is it that manaring a crop with a nitrogeneous
sabotance is foand so greatly to increase the produce. sabetance is found so greatly to increase the produce.
That it doee so, is a matter of fact which no farmer That it thion of diapating.
The canse of the present high price of ammoniacal componads is, that they meet with such an extensive application es menares. There in no fact better anthenticated than that oovisined nitrogen is a most
valuable manurial agent. Most elaborate and accarate axperimenta have been made upon this sabject, both in the laboratory and in the ficld.
As to the comparstive manarial value of enlphate of ammonia and pitrate of sode, it mast be remembered
chat G6lb. of the former coutains mes mach nitrogen, and therofore can do an much work $\mathrm{a} \times 85 \mathrm{lb}$. of the latter substance. Tbis is considering both as pare, bat as
the sulphatd of ammonin of commerce is often the salphate of ammonin of commerce is often
practically prese, while onmmercial nitrate of soina often contains is per cent. of water and imparities, it wonld be fairer in praction to say that BBib. of salphate of ammonia have the same fertilining power as 100 lb . of
nitrate of soda, that is , that tro of the former do as nitrate of soda, that is, that tro of the former do as
mnch wnrk as three of the latter. Conseqnently, it mill mork as three of the latter. Conseqnently, it at fi4t a tnn, as nitrate of nons at £18, and cheaper,
if the latter manare cost $£ 17$, as assumed by " Saul if the latt
Eymea." In addition to being richer in nitrogen than nitrate of roda, the ealphate of ammonia snpplies snlphate, a neceseary cous ithent of plants, while sods is ouly onnd in very exceptional caxas.
When the farmer pass $£ 18$ fo
When the farmer pays $£ 18$ for a ton of the best puano, he does not give a fanov price, bnt merely paya
the market value for the contained phosphates and nitrogen.

M. PARIS AND PERBPECTIVE.

[4568.]-M. Parrs (let. 4487) has not quite mantered his porupeotive, althongh Mr. Procter and other eorresponiente bave given him vory good information
Now, M. Paris says, "Why should all books apon perNow, M. Parin says, "Why should all booke apon per.
speotive teach that the drawing ohould be similar to What would be seen by tracing on a sheot of glases ${ }^{\text {p" }}$
Just so. In fact, the draming oaght to be the same Juat so. In fact, the drawing onght to be the same
as that seen on the sheet of glist, provided the drawing as that seen on the sheet of glust, provided the drawing
is within the cone of vinion. As the oone of visign was explained by former contribators, we will not may nny more about it. Now, as all books on perspective tonch that the drawing ougat to bo the samo ast that on, or pacsing througb, the glass plate, Why do onr arbe the glasa plate ander all circumatances?
nise ase the glass plate ander all circumbiat bes ased in
answer is simplo ; the alass plato cannot bo five canes out of six. When, for instance, the sabject is a large or high building, the glase plate mate be removed so far that the arm and hand ounld not reaoh it. in other cases it istimposible to ax a giass pikto.
How, then, can an artigt accompliah his object p How How, then, can an artist accomplidh his object priding
can he draw a correct representation of his baiding can be draw a correct representation of his bailding
or landscape? The only way is to learn the science or landseape? The only way is to loarn the seience
of perspective, which demonstrates that all lines passing from baildings, de., throngh the glass plate, can be produced apon papar, withont the glass plate, by dortain mathematical rules. Thoes rules are the deductions from the obnervations made apon the glase plato. All oatlines of architecture and inanimate sabjeots ought to be drawn by mathematical rules only, of the first rales is this: All horizontal and vertionl of the frst rules is this: Alt horizontal and vortical
lines behind and parallel to the glase plate remain the same in the drawing. Secondly, all other lines
then not parallel to the glass plate must converge to the same paint. which point oan be found by demonstra lines, or he save lines outside the cone of vision. We
line have been investigating the linear portion of perapeo tive, bat now lot ua go a step farther and look at the aërinl perapective relating to coloar.
"M. A." (letter 4428) is "rather inelined to agree with M. Paris that pictares are, as to perspeetive, a
compromise ${ }^{\prime \prime}$ he also thinke, "is is agreod that the the oolour need not be the same." Allow meto gay diffealt than to reprosent trathiolly porhape more which we soe bofore us. It requirce practice and great Which wo coe before us. It requires pratice and grant
stady to portray apon a flat aurface that whiah is pread out in apmee before our eyes. The more true the artist wo nalure, the less he thinks of oompromise, the more perfoct will be his piotares, the more they will be a source of pleasure $\frac{10}{}$ orcry one. Thare is an lamase cill monntains "drawn two or throe times their porspeotive hoight" belong to the latter clase. The best adrioe rudiments of radimente of linoar and aërial porspeotiva, and you
will neo nature to better adrantage."

Thi Welen Bhiphand.

" FIDDLER'G" VIOLIN REFLECTOR.

[4587.]-" Fiddler," in letter 4226, p. 27t, asks for my opinion respecting what he terms a sound reflector, Which he thinks might be advantageously appliod to a violin. I do not sappose that he meana a sonad rofootor nimilar to a light retioctor, whioh woald only soep the coand out of one place and hrow into
 fore oome to the loss of the original quandis. that when the strings vibrate the breast is set in excessive vibra. tion to prodace the fallest amount of tone possible, and over and above that a small quantits of power woald still be lost. Then he wants to pat a board or breant on to take up that small quantity of power and produce tone. Now, if we take it as a fact that some violins are in existence which prodace the fall amonnt of tone possible, and ahove that have some amall power to spare, which might be translerred to another board or breast, where could we fasten it on the riolin if According to a law of which I have apoken before, if we pat a piece on the instrnmant on one pleoe or other, it will shifted the specitic gravity, its contre of entirely new proportions, and I venture to say in most cases not for
J. H . Sceucme the better.
J. H . Schucht.

SEWING MACEINES.

[4568.]-The Wheeler and Wilson has the defect mentioned by "G. W. K. L." in 4471, p. 410, bat that is only a grievance to a learner. 1 do aymputhise with his strictares on "A Practical Man," bat sarely he bay never seen a practical woman driving the
Wheeler and Wilson. I have one at work in my own houge at prosent, and I beg to toll him the operator han not prosent, and I ber to tell him the operator order to start the machine, bnt, emplos ing both hands with the threads and fabrio, starta the meohine ontirely with the feet.
latse Mzoranic.

FRUIT PUDDINGS.

[4569.]-I would like to tell you and your readers how to make a black cnerant or any other frnit pudding, and to have it turned out of its basin and bronght to
table a real success, and not a miwerable afterthought. as many an ill-made heary pudding proves itsull to be. This is from experienco. aud I woald lise those wives und mothers who do not feel sare of theirs to try mine.
First, gather your frait fresh from the garden, say
enengh for a pint badin, take tour enough to aill that basin three parts fill, use no baking powder or auat, as I believe suet to be the indigestible part of a padding,
but nee instead a tencupfal of the fat from the top of australian matton. Break this loosoly into the flour, not rabbing it ane upon any wocomnt. Add juth enough oold wator to mix into a moderatoly atill peote. Groase the bacin, and lay in the paste, then the fruit, with a little sugar, out roand the basin and at a cover. Tie a dry, clean, and floured cloth mather loose over the top, but whatever yoa do, do quickly. Boil in a gondsized pan with only saficient wator to rieo one-third the height of the bacin, kosping the water to that height. Boil one hour aud a half, and see that the pan has a tight-Atting lid. The cruat of the padding myrap inside.
ghbal.

C0.OPERATIVE BTORES.

[4570.]-Ir "E. L. G." will go with me through the following everyday transaotion in a retail store sach as wo have beon considering (oither co-operative or not), pertispe, if not himsoli, yet other rescert of the Rvelita Mroganio may seo a meason for the retail atore oharging an adrance of 10 por ceat. upon the wholerale price. The atore baye tobacce at 8e. 8d. per pound, and the ativendert, whea ho has time, woighs the poand of tobneco into 89 hell-omnoce-die., if he oan make it hald out, which it will not do, and the lagt half-ounce has probsbly to bo obvinined trom a treah supply. To the firat cont han nom to be adicad kee cost of a sheot of paper ouk into thirty-two picom, and the sapply the part-iour's ithe his welily half-oanco moiher hark-hour is coosurumed in acllithy and reveiving paymont of the

Now each of these parcele is in the regular way of trude Wid for leas than half a farthing upon the trat oost,
 allowing htm to ctarge man mbrasee of 10 or 18 per coat. apon the cont prieo ? The whole exbjoet hice in a vary mall compeos. The axcesaive compentition botreon and obter oustom has onatiod the pabio to domea oredit and axp maen eolitig and deliresing ceode that the truder oonid not afiord wo moll at a reanonable rate of proat. The co-operative mocee rofased to give crodit avd rould not inour the heary expenses tradera hed cabmitted to in the delivery of goode, the resalt wes that in many instances the trador was mapplanted.
B. R. Sytre.

REVOLVING BRUBHES.
[4571.]-A study of the woodorte of "Allen's Pationt Governor "' (page 878, Jane 2R), has given me the Idea that something like the top part of Fig. 7 (only vary hairdreasers' revolving brouhen, it contrivended trom the ceiling by an indiarrabbor band to tot it rise and fall and unhuot when not in ace. We nee the woight, dram A and arm Wh (on which the brash coald be plooed), and I should be thankial to be shown the boit way of ob taining or fittivg either spring ougwheels or bands and weight to obtain samciont opeod incido the drem The whole reed not be of any great woight, the amallar the better, and the two or tireo whoold maltiplying each other would give plenty of spoed.
B. A. H.

Dugong Oll-Attention bas been reonlled, by the oontents of the Queensland Anneze at the Intermationa Exbibition to the medical uses of dugong ail. They titioner following Dy moise Brisbane to possess al the nutritive qualitios of cod-liver oil, and to be eqaally useful in all the forms of saberculone and wasting cod-liver which are benefled by the administration of able flurour, to be pleasant as an article of food, and to be accoptable to those whose stomachs rojeot eodliver oil. At a recent meeting in the Aprese, the pastry wee
Temperature of the Bun,-Great diference of opinion exists as to the temperatare of the ann. As an instauce of this it may be said that Father Secchi maintains this temperatare to be about ton million degrees Centigrade. At a recent seance of the Fronoh academy, in deladig ais owr ugares of Ericsan, Zoller, and in ingestinaing Deville asserted that he was engaged in invostikating the subjeot, and that his resulss axed tio tomporatare at abuatitaree or foar timds the melting temperataro
of platinam, aboat $6,000^{\prime}$ to $8,000^{2} \mathrm{C}$. Mr. Vauile also annoanced an ingenious theory npon the same sabject, fixing the debated fgare at $10,000^{2}$ C. Finally sabject, fixing the debated figareat 10,0
II. Fizean stated that, haring compared the solar light I. Fizean stated that, haring compared the solar hight
with that of the carbon points of the elootric light, ine with that of the carbon points of the fostimate that the former was abuat three tives as intense as the latter, and hence, assaming the relative caloritic inteusity to be in prupurtion to the luaninoas iutensity, he had arrired at the figure of $8,000^{\circ} \mathrm{C}$. as the oorrect one.

REPLIES TO QUERIES.

- In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query aoked.

HINTS TO CORRESPONDENTS.

 1. Write on one edde of the paper only, and pat draw.

 educatlonal not incortod. 5. No queetion anking for
or through the post. \& Letters sent to is ansurered nnder cover to the Editor, are not forwarded; and the
names of correspondents are not
[10478.]-Pork Diet.-Mr. Nowman, at 113 , correetly atatod some of the objectionable qualities of
port as an artiele of diet. He might port as an artiele of diet. He might have sided
others, indoed sereral others. Among these mention the following:-Persons who eat muah may aro particularly liablo to skin diseases, often of the most disgusting and obstinato oharaoter. Scrofola is mally of a very bad type amon among them, and is genesometimes tracesble. Consumption (triberonlonis) is aggravated by it. Intositinal worms (rondd and graetly
and are also more than nsually common among pork teaters I might langthen the lin), mentioned by Mr. Newman. the is delocta" noticed by Mr. Newman, and ant, bat mented by mo (above), I regard, aftera long life of think the prohibltion of pork as an artiale of diet by the great Jowish and Mohammedan antiogivers shows that they wore philanthropints poasoasiog profound pork diot among the British ravages caaced by a of our readera. In warm and hot weather pork is more objectionable an food than in temperate and cold
weather.-Azotzs.
[11554.]-Pedestrian Tour. - "Aron" (p. 48)
noed be under no anxiety as to shoos made need be under no anxiety as to shoos made of ivo. 8
cenvab standing a reasonable amount of wear; indoed it think No. 8 canvas thioker than noceseary; indoed, supplied with nails, needed for comfort and molea, woll climbing olippery, moantain alopes. As the anoty for weare mont jupery mountain allopes. As the canvae leathar or of indiarubber may be fixed, releching an take care that the, and over the toe. Above all thinge than the foot-the sole is out a little longer and wider lot him. Make him underutand that it less if you doess not object, not to look faehionable. If "Avon" (whioh should be mado high), he beed nof hacing shoes but if those are made to at easy they cance no ingics, renienco. There mast be no compreasion or no inconof the foot or ankle for thocompreasion or who wish to walk with There is monem to be ser, canvas shrinks when wet. poeal to kive up any attempt to treep dry, and roly
selaly wet. Wet does no harm, of ang any clothes that get comiont to those who keep warm with exercise dis. cloak or pe decided on, inatead of a repellant cloth unlese the pedeatrian can return at must be carried, from which he starta, as in the late distriot he place may do without difioulty. A ohange of olothes noed an alpaca coatitor-a pair of thin jean trowers and and they will be but little hervier than the olonk that may be left behind. Let meaver most earnestly warn the damp clother nevar to ait so long as to get chillod in attack of rhoumatism, is the not unfrequent penalty of such imprudenco. Let them beware aloo of damp sheets, not aneommon in the moist lake district, os. ervants can properly have more vivitors tban the the slightest degree damp, take. If the sheets feal in the blanket. Agrand protection agoing and aleep on is washicg all orer with cold water. Evory bedroomg of a docent ing ohould hare its shor. Evor baty bedroom
might have, and cortainly mand eatily might have, and oertainly would, if common, and easily
not so extremely not so extremely uncommon. "Avom" is quite.right
in preferring a satchel to a haversack terrible plagna to those not uned haversack, which is a
jacket pith
a prefer a shooting jacket with capaoions pocketo, and if I mprefer ashooting
than I can stow mway in thers to wrap my traps ap in a large sheot of thirowsers) proof cloth as a pact, which can be carried
various ways varions ways as a satchel. Tte cloth is usefriad in to lie
down apon when the grase is on the floor with the corners in iod quite dry; and laid sponge bath to be nued before and apiter makes a capital
way, co not forget to in tho way, con not forget to inclade a large aponge ammongst a
pedestrisn's outat, though a towel solerably good sabstitate. Do not be sparing it is a water. Let the inoxperienced avoid hard work during young, and enjoy the cool air ; see the miants the day is and the san clearing them oir, with touch on the brae Rest doring the heat of the as if by magician's wand. Rtrength and apirits for the day, and reaerve woar
ind two good meala a daj amply sufficient, not connt
ing a bit of bread with a onp of mif ing a hit of bread with a onp of milk on frat gotting for breakfast, with chops, or minch, whichever young in to call it, at ton or elevens, or lonch, whicherer you like till the fierce heat of the day is past, and be ready resd another walk, bringing yon to yoar resting-place early you have secared a bed, as, perchance, poarly, minloss to go further than you intend. Avoid, if possible, auy
hard wasking ate hard waking after yoar second meal, whioh may be and ohops, especially, of son please. I prefer cocos moantain districts. I like to finigh off as you get in ale, just before going early to bed, but think it would mowner to do withoat. When among lovely lakes and cover over the ambrelle stimulas is needed. A white tion it gives againat heat, and adds asers the protecweight. I have tried a great many different kinds of head-coverings, and find the many differeat kinds of
worst, and an worst, and an Indian felt hat the best, of any I have
tried. This is made of hard the more in each diameter hard felt, is about an inch encircled by a soft band attached to strips of cork.
The hat is lined climate gets hot insidg. Therk. It never in thin between the hat and its lining, which passage for air holes at the top. I have the proteotion of a hard and thick hat, with the comfort of a soft one. It cost and 16 s , and seems, after three summers' wear, as good as nems, except the band and the lining. I asm told that a straw hat with a white linen cover protects sumfiently rom the enn, bat I hare not tried one. Δ white
handzerchie! tied over the hat behind the ineck, is geve the hat, and hanging down or when that is wanted for a stick. I do not used, gaitars, but some like them to protect their loge from thorns, and to enable them to woar the trousera knickerbocker fashion, which they say relieves the
knees. It is worth trying, bot though I have often wished fare have not tried it thorns were not quite so sharp, or that I was better
protected from them.
[11554.]
probably And advantage in Tour.-"G.W. K.L." woald many years' favorantable in a dodge of which I have had foet. It in had the slightest blister or aoreness of the or (say) three holes about a quartar oot by boring two, meter in the apper leather-by prof orence in the rained parts of the wrinkles betweon the toe and instep. Any fort than may get into the boot is then rather a comcoming in the stookings will is aseon eraporated. On be fonnd dry, not sonkod with condensed perapiration, and the boots nat bo Kopt oomfortably soft by a daily groasing. Canvas shoes would donbtless do well for road tramping; bat of his trips by Anding his owabit of making the most an ordnance mending his Where his feet would suffer without himsell in places than oanves, say, for instance, wat bettor protection grown with heather. To obtain the fall advanterge rom the holos the boots shoald be of strong leather an easy at at first, with plenty of width for the toes, nails in the boltor. Δ fair aprinkling of projecting p. B. T.
[11589.]-Dry 8team.-I wish "E. L. G." would oxplain why he thiuks that when high pressure sould All much more sires than low pressure itoso as to Why should it expand instantly pixtyfold ? What does. periment proves that it does no expand instantly into vacuam, and that it does graduaily if it escaped into air, is no doubt true; bat go far as If it escapes see, the pressare of the air mast provent in at pronent oxpansion of high pressure steam beyond that of tiate pressare steam; and if so, its redaction of temperatare in air or in a oylinder se the same whether it expand panaion from (asy) the so enlarged as to allow its exat 290° to that of one at 212°. in England, on a one at and warm day, the vantly soen locomotive steam jet dissolve almost immediately. Tha quickness of snoh disappearance of visible steam is in familiar indication of a coming fine day ; it shows a
lo more rapid on the Snect the disappearance is still quick here. I believe the naility of but it is often very is to secure a reserve of heat to of superheating steam of water when part of the heat prevent condensation force, and for the same reason it is transformed into keep the oglinders of a locomotive hot, to provent conprol," that if them. I vessel be not agree with "A., Liver1001b. pressare, more water will be condensed from that at 1 lb . ; it will be just the reverse. But perheps " that
has not means exprossed his meaning quite fally. Possibly he if that be possible. In that case, heat only to 100lb., of water condensed would be equal. Iner, the quantity What connection the rate of evaporation from an open or a closed boiler has with the question, though it is no doabt faster from an open vessel with equal fire and
beated surface the heated surface, the reason of which is eqasy to ander-
stand withont anpposing the stand withont anpposing that each cubic foot of low
pressare equal bulk of that anina more or as mach water as an Water being really in proportion to the quantity of
hanted in heated in contact with wroportion to the pressare if of contact with wathr, its ellasticity is increased jast as
that of air or gas is.-P
[11692.]-Debility.-To E. Panezr.-1 friend in bat dealers refage to give it without the permit of doctor. Can E. Parker kiodly state the reacoa ? Cordwainer.
[11787.]-Electric Signal Bell.-Allow mo to correct my assartion that your magaot is incarable. I
had forgotten for the moment the fact that had forgotten for the moment the fact that vhen the
armature of an electro-ment armatare of an eloctro.meguet toachen its poles,
portion of its magnetism is retained for This contact may piece of paper on the side of the armature whioh is
next to the magnet. [11702] manel.-Glatros.
[11793.]-Compound Engine.-Whist I am tho componand engine. Stewart for his information on nanaswered. I wish to know the proportion the quigh pressure cylinder bears to the low pressance oglinder. Mr. Stewart tells me that depends on the pressare and
distribntion of steam. Perbaps Mr Ster distribntion of steam. Perhaps. Mr. Stevart or some other of our correspondents will bo good enough to
give us gome more information on the also like to moo the merite and dementits of theooli ponnd engine freely miscassed in therise columas.-
Falstar.
[11874.]-Bryant and May's yatoher assare "Sanl Rymea" that my atatement concerciop "Sanal Rymea "find a piece of hard mo error. Le then let him take hold of the mard, well-worn linolerm, and rab it briskly, and I think be will have no difficulty in gotting it to ignite. I have just succoeded in lighting six matchos in anocession apon succosded in
linoleam which had of Very new linoleam is been well warmed in the nan. Very newlinoleam is too soft for the parpose. The mand Mas's. - Hipase are obtained direct from Bryant and May's.- Hipparcides.
[11874.]-Bryant and May's Matches.-Two matches in succescion of Bryant and May's eafety ignited. The linoleam was hinolenm; all of them loot square. I don't think it had sad worn, aboat oore a asfoty-boz. - Fredreric H. Ward, Bargeon.
[We have tried and failed. The linoleam, howevar, [11010 ${ }^{\text {w }}$ Watively now.-ED.]
Natural Eistory Subjects a Premervative of Natural History Sabjects (U.Q.).-Althoresh of
never tried waterglass for the never tried waterglass for the above parpose, it it ims.
possible that it will sasmer. it mase possibie that it will answer ; it mast dostroy such thing
as wings of buttorflies, and would by degres as wings of butterfies, and would by degroes forma Welsil SHEPHERD.
[11059]
[11959.]-Vandyke Brown(ס.Q.).-This pigmen Cologne's earth, found near Colognt; there it is called Gassel earth, is foand near Cassel in The darker mort it is gronnd in water and weshed. Therge quantitios light and bright sort prepared by calcining a rey earth (terre vert). The treparrad by calcining groen
sold in Eughe sold in Eugland ander their respective names, bat now
they are only they are only known by the one name, vandyio brosil
-The Welse Smepiezd.
[11963.]-Telegraphy
(U.Q.).-The Weatern Union Telegraph Cod 8tatea he largest ommpany in the United Staph Company in

[11970.]-Water Regulator.-The water regaator consists of a tabe of glass, tin. bore, brase-capped
at both ends. The bottom has both onds. The bottom cap in solid, the npper ose rod aliding in it into which is Atted exaetly a brase 8in. long, and nilled with water to within abore aboot the top. This regalator is intorposed in the cinc. of connections being made with the brase caps.-Arirer
[11978.]-Magnetio Engine.-In reply to 'I.C.,' wish to make an olectric engine, magnots with which I [12056.]-ENoho.-Concarity is the care
Remove the cause, convert it into converity of ehbe. resalt will be the reverse-perfect freedom trom the are larishod on ornamentation, regardiosh what amoemts If an acquaintazce with science regardions of econstias and rewarded as is ornamentation abill it apprearasa practicable I to nsefalness and comfort. If quite roof being screened over by perforated zing of the ralted in the form of a conver lens at front widening the disperse the scand-waves, and thes, by to their recarrent of dispersion, destroy all tendenery as to be remorable ior It might be ittod ap so chapel. The perforation is to a aleansing of eto would be naeleas without some to aid rontilation, and the open air above the zinc. (Soe "Tyndall on Soand.")
-J. BARWICE
[12070.]-Flectric Kite.-"A Ardtannes" will end. in Franois's "Electrical Experimonts,"p. 89, foll par ceoded several times), and fall cantions, too. The sacclond some jears ago ao awed me by a summer the bert cloud passing over and cansing flashes, any sume which, if it acoidentally had passed through the batie of myself or friends, mast have canaed instant death) ject.-X. M. B. [12102.]-Lightning.-Forgamon aags that to of 288,000 miles por second; greatar than the rele rate of light, which is only 194,000 miles per emocond.
Glattox.
[12111.]-Hothouse Boller.-If "W. F." has convenianee to raice his sapply cistern (eay) 12ft. or
14f. sbove his boiler top, ho may raise the boiler antil 1uft. above his boilar top, he may raise the boiler until
the bottom of the boiler is level with his pipes ; bat I the bottom of the boiler is level with his pipes; bat I
would warn him the alotety of his apparatua dopends moold warn him the gafoty of hic apparatan dopende
eatiroly on heoping his ditern wall supplied with entiroly on keping his distorn wall supplied with watar, on his pipes would not form a reserve in cace his cintern got empty, as they won
below the pipes.-Ax Enansers.
[12151.]-Conorete Engine Bede.-I have pat oreral concrete ongine beds down, and in my opinion mhlar pillar that over wal mado. And if your material ingood you can start with safoty whon it is soven deys old. I use a cast-iron plate for bottom, holed to rocoive holding down bolta. I prefer the plate in one pioce; coparately, but mind and have one plate to take two baparat-Liely brra.
[12100.]-8iso of Iron Tool, \&o.-At Mr. Parkise' request, I send you a fow lives on this subject. I agree with him in all he says, with one excoption-riz., the use of a daplioate eppeculam, or conoare tool, for figur.
ing the pitch poliching tool. This I have found to be ing the pitch poliching tool. This I have found to be praotiosble. When the glase spooulum is ready for polishing (having a good ephorioal iguro), nothing more In necomary to paive tie pitoh tool the right ourre than
alighly to softon it by hoat, place the speculam, maistened with roage and wator, upon it, and move it about gently by hand, ontil each of the pitch faoeta is
obeorred (looking through the glass) to bo in actual, obetred (looking throigh the giast) to be in actanal, When thin is found to be the oase the work may prooeed, bat not before. It is always well, when work is to be reamed the folloowing day, to warm the pitch I mant ooniess I have often proseeded mysell withont this procantion, and with no bed consequences. Ineed ecarooly remark that perioct contact on the polisher
before work is commenced is absolutaly easential to a good resalt. I hare never found any additional reifnegood resati. Thare never found any aditional reanenocessary in practico.-H. C. KEY.
[12172.]- Constipation. - The commanication from " J J. W." (roply 12172, p. 390) is interesting and
ralakble, and many, 1 am sure, would be glad if he valuable, and many, I am sure, woold be glad if he
vonld give a few particnlara regarding his method of would give a few particnlars regarding his method of
curing constipation. Will he kindly state (1) if he used and still continues to use the enema daily? If not, how often should it be used, and mast it always be continued after once beginning its ase? (2) Has it
entirely cared him of his "old friend" who retarned entirely cured him of his "old friend" who returned
aix months after the operation ? (8) What quantity of water should be injected, and does he recommend pure cold water, or; would it not be better tepid and medioated? Lastly. will he kindly state the best form of apparatus
for sellf.application, and where it can be parchased ?for self.
$8 \Delta x \forall x$.
[12192,] - Conarete. - To dencribe the whole process of concreting vonld be taking ap more of your apace
than I am juatifed in doing; beoides, it is a thing that almost any builder knowa all abont; at the same time atables with conarete all exoept the stalla, which are pared with firebrict (I was afraid it would be too elippery for the horse to get np on) ; the mangers were concrete too, and a more efficient and cheaper job I never saw done. They are kept sweet with littlo or no tronble, and they are a thing that no crib-sucker can possibly íjure.-LuTYRa.
[12199.] - Speeding Pulleys for Gat. - E. Williams had belter not make his palloys according to the dimensinns given him by "E. S. S. S." or sbout in. to change fr m quickest to slowest speeds. The diferent angles arade by the gat when running in by "E. S. S." and "P. W. H. J." Cone pallege to work well should be calculated and made for the dietanco between centres they have to work at. The following are dimensions for a pair of palleys for a treadle shaft and lathe spindle is 2 ft . The diameters of pulley on spindle are 10 in ., $8 \mathrm{in} ., 6 \mathrm{in}$., 4 in., and the 2ft. 3fin., 2ft. 2fin. The palloys should be turned that they measure the given diameters at the centre of the gut when tight in ite plaoe. The ralue of the overy one would be carofal to see that he sends right onswers or send none at all.-G. M.
[12904.]-Pangies, - The sifting in the proparation of the earth for pansies is quite anneceseary, even [12204.]-Paneiee
[12204.] - Panalean.-Experience of yoars has proved
the advantages of atritcing pangy euttings in a cold

frame. Fill the frame with ashes or cinders np to ten 495.
the ashes lay four inchen of carefully-sifted and worm- frec tart, mixed with a little sand. In this plant
the strongoat ripest cotting you can obtain, and leave the strongout ripest outtings you can obtain, and leave
six inches above for the plants to grow in. Do not lot the soil be more than vix inches from the glass. Koop the plants hardy, covering only with the glase, and letting in plenty of air in ine weathor, water to bo given occanionally and moderately. In Δ pril transfer the plante to your border, preferring a position shaded from the sonth and west, so far as the roots are ooncerned, the soil being well rotted manare mixed with loam below ; and light rich soil the apper three inches. -Grpard Byith.
[12208.] - Geraniums and Fuohnian "Phonix" and S. Bettone in their replios seem to have overlooked the following points in the querya The foliage, and were to be noarat, the fuschias bematiful few years. In my roply I kept atriotly to aingle scarlot zonalos and variegatod fachaias. I have apponded a list of good groving, free flowering, moderato-prioed varieties, embracing the prinolpal ohades of ooloar from which an anthtear may make a ane selection without the trouble and exponse it has cost me to not be min present atock. I may here add I should tendered in the Meckanic-fiz., to leave the seleotion to a nurseryman. It is not a nurseryman's interest to puth the prottient varieties, bat rathor those that are enaily radsed; and although such catalognes as thoso both of Fh . Woolwion, and G. Poulton, Edmonton boon to growers far from London), are generally protity reliable, I often And the descriptions overooloured, and am indaced to parohase new variotios indlatingaish. able from old ones. My plan is to obtain Hibberd's "Gardon Oracle." and the catalognoss of some of the best nurserioe anaually, and having oarefally gone over those, to send to the narneries for yoang plants of o rethin, and Whan thene are in bloon Besides the selcotion I now append, I chall be able in a few woeks, when new stook is better tested, to giva yoar readers, if deaired, farther lists of desirable hinds. List:-Single zonales, from orimson-soarlet through the ahailes of asimon and roee to pare white: James Cratt, Richard Headley, Monster, Shakespeare, Mrs. Spencor, Rossmond, Benate do Saresnos, Rose of dandale, Parity. Doables: Victoire de Lyon, Gloire ro Nancy, Triomphe, Madame Lemoine. Goldon Silver : Sophia Damaresqua, Florence, Lady Callam. bicer Uricolors: Italia Unita or Msbol Morria. dicolors (dars): Model, Counteas of Kelli. WhiteFachsias (dark): Try ma O: Light: Arabolla Light (very darf): Merry Maid White corolla (doable): Vaaquer de Paebla; (aingle) Paritani. Doable (dark): Lord of the Manor, Heroules. Not to
trespess, I abridge the list of fuchaiss. trespass,
MgCEANIC.
[12218.]-Coffee.-The beat machine for making good cofleo is a common jag. It mast be very clean, and perfootly dry. Bay the best coffee, grinding at home, and if posaible jast belore making. Measare
five tenapoonfuls to a quart of watar. Let the jug etand five teaspooniuls to a quart of water. Let the jag stand
before the fire to get hot, and be sure that the witor be actually boiling belore pouriag over the coffee. Begin by pouring alowly; when full, slightly stir the sariace, and let stand a few minates to aettle. That as this teeps the boiling and the jug hot is important, as this roeps the aroma from taktng fight. Why this knows how essential to the enjoyment of an. Everybody is the presence of its arome If the well- kno cup of coriee is wanting (and one wonders whether it over oxisted at all in some rarieties of the decoction) take the railway refreshmont-room kind-dark, sweet, and fisbby. The highly chicorised and the weak solation-a sort af coffoe broth made in a harry withont care.-SARAF.
[13217.]-Violin Tuning.-Errata No. 380, p. 416).-The tirst string should be taned to E, not C.
[12217.]-Violin Tuning. - I notice several anawers on violin taning, bat none of them mention sometimes tuned to playing the fourth or G string is means making otherwise difficalt pasaages comparatively oasy, the reat of the stringe remaining perfoct fifthe masual.-HoNE Ko To.
[12221.]-Brass Screws. - The article which "J. C. L." speaks of in No. 335, p. 555, seems to me to relate to mallesble iron screws, tables of which can be got in almost any mechanical book. It is universally screm thas in one of malleable iron. I have never yet seen a table for brass screws, and would like very mach if some of our readers could supply one.-Falstapp.
[13249.]-Eigh Pressure Fire-Box Boiler.1 am extremely obliged to "P. W. H. J." for the information received from him through your valaable journal, and if I may tronble him farther I should be pleased to know the thickness of platos for the sholl
and ends of boiler, and whether it woald be adrisable to have some of Galloway's conioal tribes in each fice, and how many? As to the safety-ralre, nothing bat
Hopkinon's patent cooms to go down in this district. Hopkinson's patent cooms to go down in this district.
[12955.]-Hair. -"H. P. H." ouggesta a lotion of 1 ounce tlowers of sulphar and 1 quart of water, but I on the top. It think he must hare omitted something in the direotions,-C. Watsox.
[12958.]-O1d Violin.-No such maker as that mentioned by "A. J. L." evar attained any eminence in rioin-making. I am of opinion that the label is an awkward and blandering coanterfoit ρ the inscriptions ased by the Amati family, as the date correspond whit bue time at whioh sovoral of the mont eminent of those makert iouriahed. The labol, howerer, is bat a mallor or minor importanes, as . . Will find some of the vilest produations bearing oorged labels of the finest makers. He ought wo noud the instrument in quesiion to an experienced connoiseer, who woula anthor of "The Violin."
[12263.]-Oiroular Saw Driving.-If James Davis wiehee to have 700 revolutions of sam, he will require a larger driving- wheal than 42 in . The formala for such oases is this: Let Δ be diametar of driving. palloy in inchos; B, diametor of driven palley in nellos, B, epeed of driver; and V, spoed of driven B V. Thas the Anding of any eomponent with the other three given is a mere matter of sabstitation. In this inctance Δ is anknown, and $B=9, S=40, V=700$;
$\Delta \times 4=9 \times 70 ; \therefore \Delta=\frac{650}{4}$ in., or $\frac{680}{4 \times 12} \mathrm{ft}=$
3ift. With the diametar of driver given 13fft. With the diametar of driver given the speed ar ariven palley would only be 195 b.etha par minnte. driving polley being made of greator diameter than statod it vonid be adrisable to nee a countaribaft A ood cotmbination to eflect dedired parpoee would bo to have 44in. ซheol on frat driver, the bell going to 9 in. whoel on connterehaft. On countorshaft there is to be s8in. Wheel belted to 9in. Wheel on sae apindlo. This mould give about 700 revolationa. It woald have boen bottor if possible to have pat larger than 9in. whool on countorthatt, bat I have takon 4 sing an the maximam for the drivers. I think that with hears work on rith so amall diametar of drivan wheold that the belt will be liable to slip.-P. W. H. J.
[12268.]-Strength of Shafts.-The strength of any material is estimated by the strength of its weakest part, so that in "Irion's" example there is no need to taike into consideration the diameters 2y and diamoter. It woald not be any stronger if the whole of the shaft (exceptiog the 2in. part) wore 12in. dismeter. The following is the formale, in aning it take the smallost diameter of the shaft ont of boarings es the diameter: Let $\mathrm{D}=$ diaraeter of shaft in inches, H, the indicated horee-power, and N , the number of revolutions per minate. Then $D=\sqrt[8]{\frac{88 H}{N}}$ in crank. shafte and prime movars, and $D=\sqrt[8]{\frac{65 \mathrm{H}}{N}}$ in ordi. nary ahafting. Applying it to this oase, $D=2 i n ., N=$ $170 ; \therefore(2)^{3}=\frac{65 \mathrm{H}}{170} ; \therefore 18 \mathrm{H}=272 ; \therefore$ H.P. $=90 \frac{12}{18}$ or (eay) 20 horso-power.-P. W. H. J.
[12270.]-Charcoal Furnace for Xodel Boller. - I think that three jets of the size mentioned will hardly be enough. To obtain the full power there ought to be a light every 1 inin. or 2in. It would be beat to have the lamp 12in. long, with six jots of diameter of the boiler, it wonld without knowing what is required requisite number of jets, bat I believe that this would develop the fall power. The diametar of boiler is racher too bmall for a charcoal fire to be employed fre, and it will be liable to go ont anless it hasing tond dranght. The grate is to be 7 in . long, anpported at the back end by a bit of frebriok. It is to be stin. from botom of boiler. The Gre. jars are to be made of bits ixta. toiler plato, ana a betrin. Tho, Th boile is to be set in a frame made of tin. plate, vith the chimney going ap ane ond of boiler. The chimnery is to be 8fL long and 2 in. diameter, made in 1ft. lengthe for convenience of packing. In some models the boiler to square, and removea to some onstance from beneath the bed plate through a rectangular tabe This looks well when the chimney it painted white and red in imitation of brickwork.-P. W. H. J.
[12278.]-Water Power. - Sapposing that the length of pipe is one-tenth more than the fall, there would be 5.78 gallons sapplied per minate $=9168$
 $=255 \mathrm{~d}$ lb. raised one foot high per minnte. Thi would drive a moderato-sized machine, one that could be worked by a boy. For so amall a tarbine it is hardly worth while to give detaile, 20 I shall ony give a fow particulars. The best diameter woald be (ot eacing wheel from ontaide to oatside of buckets to be about 7 in . The number of backets in larger examples is 36, but I think 20 would do hers, as a large num. ecoture braes should be used as largoly as possible to heoture, brases should be nied as largoly as pos.
aroid being alogged ap with rast.-P. W. H. J.
[12279.]-Diminished Action of Battery.The nitric moid is soonest arfooted. Its change is a roal deatraction and deoxydation of the acid by the hadrogon, whioh in ita absence would be ovalved at the surfaces ol the platinum. It cannot be parited or restored. The salphuric acid undergoes a gradual change, being altimately convarted iato salphate of zinc.-Alygin H. Alhbx.
[12283.]-Food Analysis.-Dr. Hassall's "Food
and its Adalterations "is the most complete worls ou
the minject; bot, onfortonately, is out of print. If
 alubid il aluzm.
72285-Logerithms.-"C. P. w.w has made a
 the number with a decimal Nowint he will nerer nidd becanae tableo arae not made point to it in the table,

 juat a matier of simplo proportion, the matiter beocomen

difl. of $1=000007$
 ${ }^{1}=00008$ $0000 \cdot 8=878950$

${ }^{-P}$. W. B.J.

[12899.]-Tar Pavement-I had occanion some years since to inquire as to the expedioncy of raning need in all weathect, ohonld bo in they bare to be Whether it be wot or not. I wes informed chan when by the eman or the rais, apd, if woll noot get solt wither lept in good condition for a very long titer, can be omal cont. The fonndation manst bo firm and dry, and,
if not naterally, artifoialy not anaturally, artificially drainod. It is beat, though, and tile parta, and to thicken it with pite its more volstarne, ainders, or graval, nuant be mixed jithe broken If there is not tarar emomph the ees of the hard material bind mell, and if thero is too monnh, it will beolt will not in mot weathor. The proper mixing of the meome soft tronblo, and is often bady, requiring both attontion and matarial is spread 2 in . or \sin, When well done, the sticking sinicing. It improves the appearance of the work to
eprinkle imhedded in the fragments of sparkliog ap the work to make it look like grianite of the nearly bleck asphalt, make it look like granite. Great care mast be taken and every apring any hollow in which water can lodge, mast bery capring any hollowis that may have formed unlon treat oomdation be good and dase be done, and [12301] up.-PEmo.
T12301.]- Unequal Sizee of Cone Pulleys.any formale for Anding length of beondion of piving formalay, as the book with them in is a I I don't like home, like the Dotchman's anchor, juat when at
 there is a goomtrical calcalation in VoL IV., No. 103, correct on trial. In Val. VIII., No. 203, p. 460 , I
a way a Way of making a set of palleys to and thit the band Thich bas already been atted to oneys poir stit the set, and calculating the may be dedugth of band in this manyer. way of
point d, which all tho point d, which all the bands pase throngh, of course
sioits two equal as mell as tor fore, if wo drasa wall as two anequal palleys; theredone in the diagram on p. 460, Vol. VIII., that aives you the diameter of the pulleys when equai. Now, Now the
calculation of the calculation of the band for these is equani. Now, the it in only twice the longth $A B$ sided to twice the of the palley, which is on by the whole circunference
by $3 \cdot 1415$. Now, havisy by 3.1415. Now, having obtained the length of the band for equal pallepg, which aleo suits the pair of other lines through d, which we oan go on and draw of unequal onos that may be desired, all atting the same band. If the belt has to be crossed, all atting the
to make the sum of only to make the sum of diameter of esery you have only
e.o., 20 and 6,16 and 10 alike, as When added togother, and this holds, all eqral to 28
distance distance of the centres from one another.
 P. 415), whioh show that "E. S. S." and (No. 12199, on
either don't nnderntand the either don't niderstand the query or forgot. Wh. H. J." crossed, nalese the palleys arer. Gut bands are never they would wear 'hemeolves out in and "in winding,", as and it is only in the cace of crossed bands that the time, drop on the Al -wheel of same ace abovas that the sam
 drop of 1ft. fin. on the palliy, which proportion will
be found to hold good for any ordinary is venry to hold good for any ordinary froportion will answern pat forward.-J. K. P. the above-mentioned
[12304.]-Phrenology. -"
that no greator mistake mact over made "(pan to ina) bays as some of our great writers do, that the mind is a
blank sheet of paper blank sheet of praper on which we, that the mind is as an write what we
please, but he is as complety out he was abont the oloctrio sperte mistanen as it turned Locke and other great writare apke, as to what John tanght. They tanght (dooe "Btigma " deny ?) that a
new-born child known sothing and new-born child knows aothing, and chany ?) that a
knows it has to learn, and that in the is life a theet of papor. But different minds, like
different papera, Locke nor any other groat writar quality, and neither can write equally wall apon wity mind any more than that we
that we can write eqnally easily and equally clearl
upon any cort of paper. Upon some bome paper, every impression is distinds as apon manent, while apon other minds every impression is like writing on blotting-paper, blarred, confased, and as uparks was, and his tarned my knowledge aboat electrio gista tell na that fow minds are of equal quality throngh
ont, that preesions better thene and retain certaiu sorts of im. mpressions better; that one and other different oxcel in drawing form, another in depor examplo, will they profess to be able to foretell in which each will
most excel with equal coltire relative ascel with equal coltivation, by observing the cated by the width between the of the brain as indiTalness over part of the eyebrow for colorm, and by a frither alloge that the size of erach coloar, and they brain will be inoroased if the facalty be of the
oultivated erinivated. Whetber those allogationa aro anusually
by suffleient evidenee is ontiabod by gifticient evidenee is one question, but that the
notion is per Doion is per seabsurd oan hardly bo maintained.-
Pailo.
[12304.]-Phrenology.- In proof of the statement to atato the follor part of "Sigma's" anower, I wish during his university career had his hoad examinedine an eminent phrenologist. Shorthy head examined by to read for a mathematical soholarship, and he began shape months of this a marked change was viable in the little and little till he aiad this after wards increaned by cabject.-E. JoInsson.
[12304.]-Phrenol
has been pushed too fory.-Phremology may be and the orge oase must be ruodified by is some trath in it gatho, biliona, well so by temporament, nervoas, ananor interited tendencios, all ahiohn by early training. acoount. When phrenolog whioh mast be tation into oame for a timen phrenology was more in vogue it bo came ior th time a favourite hobby, and wague ride be
domath. In entimatiog any nore usanify woll to remembery novel doctrine or facto, it it oppoounterectiog weight of other mast be taiken with oppoct of wo then diceovor that the trath lies not in the phrenology lands you in the place of both: so that if responnible, I shail be glad to thear when mane not [12809.]-Boiled Oil " matlers there-Artirsoon. in a glass jar nome bmi fide G. W. C. H." should place preasing works, not the shops), pressed from fine Eactorn seed, in the anlight on the thesed from fine
with a piece of theet lead sorsen with a piece of aheet lead scraped bright, ingerted part Cover over with glass the mouthosphere of the jo to admit air and light freely to circulata, but not the rain to enter,
In a fow weeks the ail bleat t Imoen wind and water a mass of mand to the lead beWhich is withdrawn by gently of makinas attaohes itself ocraping, and again inserting antil the the lead, rewater white nearry tint. By November it ghould be lead hat been nearly, if the proportion of surface of He will find that this oil carries an to the oil unod. called drying (to a non-oracking or blistering wat is fith even a dry oxide tint) without any farther power, action of the oil is not a a "drying of, thoagh the that pure thense, bat one of "xidryivg one", at all in that poro sonse, bat oge of oxidation, which proceeds
in a peonliarly inoreasing ratio at its finish in
sitition atitation of the toragh glase-like rarnish ing in the constato. He will, by this glass-like rarnish of its complete and primary portions of this oxidation in his jer blowar help of the sunshing, leaving the latter portions jat
occur in his pigment ocar in his pigment nuder his bragh py oxtended to
surface, withont any addition of oanstia
or cooking to or cooking to heat (ie., boiling), oangtic obemicals
painter of some while travelling in that country mo a fow years back, enongh to ingaire into his jars of being inquisitive like croatares proserved in spirits on that to me looked piotures of the old maetara, and the staying power of the pietares, to which, if so, and the ornoking of modern
and
 tion with mes his address, and thas obtain common, let lump of tranirect, at I have had vessels get ome hear and make a splendid rarni, which I dissolve in tarps, for experimental mork.-X. M. 8 . [12310.]-Profemsore, -" P .
fickligh query: "Who has the D." aoks a somewhat 'Profecer ? '". Like the controversy about himself nition of "engineer" which raged same abot the def.
title title can't be fixed within deanite some time ago the
those who claim it those Who claim it as a bort of appondage at least names. We have college professors of
masic, science, to their masic, science, as Tyndall and Haxley, of languages, thonsand other things too numarones to mention, Pro and foesor originally meant one who had gone to on. Propablic institute and taken out certain tolloge or
degrees; nor any name ซho excels man may proix oer append it orary ever, looks to the man profession. The pablio, howwith porm what he profeases, and his dieompetency with eharlatanry.-Rat-Tat.
[12912.]-Briok Vaulted Arches.-Brict vanlted brick made to strongest built with the wedge-shaped hemdern. (Proved.)-W. HinL.
[12812.] - Brick Faulted Arohes. - Nothing
illustrate the vanity, for prection
"seientifle progrese," while one whole ines, of any tem in rotion and in galloping whow induatrial asf. wrotobed oxpediont for gualoping deeline, these this sive this lajers, bogar in the harry of the Arut enil whs worke. It is troe the Romana hed oceneaiontlity mes an arch in two "rings," bat thoy vero ench at foi bait to more, and in largo thin brioke, aboat oqual is remoral of the excise retridigracetai that, vicoes the bonded arohes are to bo had hons, no wodpe briake for that noed be wanted are about three aptordar. An four to six headers (I mean by the former thohera, and their langth wedged, and by headers thoee ed haring breadth). If those of each kind formed a rediad in or alice throagh an areh of tha groatoit a radial la for emalloat innor radiay over likely to ocanr thans and inner radius and three bricks thick, they, woald a coo alice, arohes whatever, by variously allernating ench radial coarse of comm, with another part, or with sueh ooursens to one wedged courre, or with two or three cally any imnor radius, from one foot to twee of precti. thas be turned, with no jnint of perceptibly naegmal thicknees. Agnin, evoh weiges might bave aboot hal their weight savod by proper perforationar in the dirce. tion of the ceutro battems. Onfy the faces of the sreb (where either mas be exposed) need be of solid bricter and the key course, if perforatod thronghout sod hans ing ita lowest strotchers not quito in conteont eod min rising to sive and oonvey awar all the fome or bot sir rising to any part of the vault (ol coarse into a hot sir chimnoy if at hand, or come chimney, or, what is bether a special due inclosed between chimnoy. Luen), and thean such a raalt woold always be a far healthice coiting than any fat one, or may now in ase. If "Boiling instead of any roforenco to sanitary asd poblio becosit the insurance to regalate riaks for the promention of poneible). to bo bailt withont one extimneys woara be alownd or ireplaces, thfs foul-air fino extending er required the irnt-ioor to a termination lite thit on whan smoke-flaes, and being placed beteren the of all the or most unod smoke-fines; bat its ares ned herace any dwolling, exceed that of a briek area need hardly, it croading apwards by hale a briak neore at emeh
story.-E. I. G.
12315.]-Dubroni's Photographio Appare apparatne great dramback in the use of Dotronio you have to remote the camera from thed yoar ebjeot through certain manipulations botom the atand and go the stand previous to exposure of the replacing it am meanawhilo a handred things may he plate. In the distarb your sitter or whatever may have happoned to photograph, in which case you hare may bo aboat to work ag in, and you may hare to do this all ovor your ore you are successofal. There are do ther meny times mountable. Qus, bat the one I have mentloned is inecto Tesid.-QUEECus.
hundrodithe of ale.The Arat eanle deucribed is of $1-2 \mathrm{in}$. The tox horizontal of which are obriunsly of ones near eech end, afford an old by nine obliquo more so theompasses (eupposing the lines rery was of more so than they are nanally on wood), any namber of 2,000 , without hat, ap to 1,000; or of 400th'e, up to or a doth inch. Oan the other nider togothar thar a 200 th nr a dith inch. On the other side, tho ecale of anequal mark off any namber of derords, and will servo to struck with the chord of 60° greas on an aro yon have 60 of the scale, as radias 60° or distance from the 0 to the mark off by ing numbers of half degrees nines of mark oif by one step any half degroe no to 45°. -
E. G .
[12317.]-Red Prusaiate of Potanh.-Diseoive the yollow prossiate of potash in water, then pase chlorine gas through it alowly, shaking or agitatisg in some manner the whole times, till the liquid nicatiog in
greenish brown greenish brown colour. The end of the procesen man an
be known by takig ond be known by takiog out a foind drops of the sotation from time to time, and costing it it wits a melation of
perchloride of iron perchloride of iron, the chloring being passed till the
solution fails to prodnce Acoording to the produce a precipitate with this reagreat $\mathrm{K}_{3} \mathrm{~F}_{\bullet} \mathrm{C}_{6} \mathrm{~N}_{6}+8 \mathrm{BA}_{q}+\mathrm{KCl}, \mathrm{K}_{4} \mathrm{Fe}_{6} \mathrm{C}_{6} \mathrm{~N}_{6}+8 \mathrm{BA}_{q}+\mathrm{Cl}=$
pratained weight of prasiate woald require $1: 850$ and of chight of the yol 120 obtained trom either 7 pre, and this weight migbt bo obtained from either 70s. of commervial hydrooblo be [12318.] foz. of common aalt, nearly.-J.W. G. of terebinth, bergamot, oloves, By saying that the of meant that they can be chan, de., are inomers is not other, so that oil of ctoreo ahall boeolatoly into each borgamot, bat that om aneoshall become (any) oit of found to contain exactly the same each of these oils is the anme proportions-namely. $\mathrm{C}_{10} \mathrm{H}_{16}$, the difed in characters of each oil being prodocod the difereat arrangement of the atoms of C prodocidd by a difforeat men. In orive to proparas oil of wind \mathbf{H} in ench spesi"Bob" muet Arot prepare oil of winter green articiciallyBnlicylol by distizing wita Mchatrone thenange thia into sulpharic mais, or he wifthe Moltromate of potach and by passiag cartomis mida into phicol migliemid at onoe
 Phonol or earbofic wintar Ruver or mothyI sellivilate
 hydrogen by means of throngh an atmona power
produeed; heat this acolylene to a tamperature below
 nitrio scid and you procare nitrobenzine ; this, again, by diotillation with iron alinge and acetio acid pro duces aniline, and by treating this with nitrous acid it is poesible to produce phenol or carbolic acid, so that wo see the steps in the production of oil of rinter Cr_{6} gren aynthetically to be: Prodaction of sootylene, $\mathrm{C}_{2} \mathrm{H}_{2}$; benzino, $\mathrm{C}_{6} \mathrm{H}_{6}$; nitro-benzia0, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Nog}_{2}$ s si-

[12818.]-Artificial Olle. "c Bob" will not Apd the isomerio eomponents of torchinth, berpamot. lavender, "o., to posgese the semeable qualitiee of "tante," "appearance," or "gmell,"" of the nataral
prodacta from these cources. Thant (ou his part) tion in "flam," bat pot their atomic componeate or chamieal atomes an demonstrated by analynis. Exact isomoriam of phyoleel and ohemical component nover ean bo hoped to be arrived at exeept by the inverpoaition though process of vogotable life in she planis.
[18819.] - Dyeing Puip for Eackar Paper."A Papar Maker" might try a little Freneh ninte or
[19321.]-Ohena Player. -The antomatoz chesspayar is sthi exbiblod al ue Cryal Palabring is Is a soll description of the method of working in Browater's "Nataral Maric." "Willie Soorer " max not suppose that the viaible mechanism
the infalligent action.-ALIRED ALLEN.
[12821.]-Ohem Player.-This anbject is treated of at length and moot fally in "Lretteye on Natoral Magia," by the late Sir David Browater, LLL.D., F.B.S. -W. M. Colles.
[19821.]-Ohens Player.-I can further ivform "Whlie Scorer" that he will ind an interosting accomnt of the "Aatomaton Cheas Plaver" in the April and
May numbera of the Chess World for 1868.-J. W. May num
[12328.]-Soareorow.-The beet coarrectow I ever made for small birde wes formed of tho phoion of a of the pision, and tio the remainder on to the appe aide of a large potato, leanving a long atring attached to easpend it; then atiok the lowg foathera into the to cospend it; then shick triblolog eo to form a torriblooking lird of prey, poteshown at Fig. . Whan ousponded from a high bough, or the end of a long rod, it dashes abont in the Wind, ameoptog ovor or neart the croped maspect that

even wioglen bipeds wonder. No. 9 is a small looking-
 cornatid. It flashes forth lightniog all over the shop,
end aren rooks will not faco it. When the san doen and oren rooks will not tace it. When the san doee not mhine, it showe overything refected "on the zrove; ${ }^{\prime \prime}$ but the sun's rays refeoted from it are a
canation. Binds ooming within one of the lightning cantion. Birds ooming within one of thisghtning theoher dodge and deeture of it is that its field of rofraction is alwaje ohenging, no that itself meema endued with life. Its fieshee may be distinotly coer for a mille. -C. M. Aszotr.
[12825.]-Braving Fine Sawn.-Get a pair of tongs made with rery heary jaws. Fix the sam careruly to a board so that the ends may lie correctly and wharely together, outting away a piece of the board renient manner, and prepare the place for brazing in the asual was. Hare the tongs at a white heat and pinch the prepared splice with then, the brazing will be done well and neakiy in a moment.-Q. Yorme.
[12898.]-Terra Motallic Tiles. - "Pazzled" may again renow the brightness of the tiles by die solving alum in the water ased, or hand-brash the floor naiug the brash for black-leading the grates, or one
formed of cat steel wires.-RAT-TAT.
[12829.] - Praotioal Mochanios. I do not think there is any thoroughly good mork whioh complotely ombraces the subjeot. I have ofton been in sore want of one myeelf, and bave hed many mopiul morks on the anbjeot path through my hands but have novor ye meen one that does fall jastion to the sciezce of app pos eo, I would utroagly recommend bis reading the Oantor Lectares on Applied Mechanios, delivered by

They appeared in the Exalise Mrozinno, and are aleo to be mad in a meparate form on applioation to the Secretary, Bociety of Arts, London. I beg to indorse "An Irioh Sabsertberfs" anggestion, and think that a eeries of papers on apphed mechanios would be pladly read by many of oar anbecribera, especially if they wore written, as nn doabt they woald be, by one who is thoroaghly acqualated with thic interesting and proeminently aseful anbjeot.-Casz Gzov.
[12829.] - Praotical Mechanica. - The three ollowing are the best on the subjeot:-Goodeve's "Applied Moohanics," Rankine's "Applied Mee
Willie's " Principles" of Mechanica."-S. M. B.
[18380.]-Re silide-Rests.-In reply to "H. E.," let me ask him if he expects mo to sit down and spend a whole day in writing drawings of the reats he wanta. I hare none by me, and they wonld take quite that time to make particularly as one of them to read the Gwasibe Mrcta late. Thy the dra wings "H. E." warts drawing of a certain instrament went to the troable of making been assured by the persor been aby bated the porson asking for prothat ho it up for himsole. A sight of thent and intended to fit of at once: all he did was to return it, having carefully tuken a tracing of it for himself. I don't get served so again if I know it-.J. K. P.
[18882.]-Chremical.-If the roid be weak, both it and the water saffer docompoition. With an aeld of specite gravity 1.11 no deoomponition of the water occura, the gaces oomaisting (When the action has continued some time) of equal measures of hydrogen and on ezine, which will sown but completentancounly if expnard to stroog sunligit or burning magnoeiam. Alfied in. Alliky.
[12382.]-Chemical. -The acid only will be decomposed by the action of the ourrent; chlorine boing given off at the anode or positive poie, and an equa
volame of hydrogen at the eathode. In the cuse of sulpharic acid and water, the water is decomposed by socondary action, owing to the liberated radical SO4 not betng 'able to exist in a free state, but
doen not apply in the case of ohlortne.-SIaros.
[12338.]-Purifying Mercury.- Yoar mercury muat be distilled in an iron retort, at a low red heatDAVID W. BRAID.
[12888.]-Purifying Meroury, -Shake up woll in a bottle with anely-powdered trump regar. The bothle abcald uet be more thas ore-quartor fall. Blow air into the bottle with a pair of bellows, and shato up aghin, repeating the operation a fow timos. Then altar throagh a cone of emooth Writing-papor with
 mereury through wash-leather, and then digest in cold ditete nitrio acid in a shallow dish for a day or troa etirriog from time to time. The nitric acid will act bet alighelly ou the mervary is qoraign motale be preeent.-ALIPPI.
[12333.]-Purifying Maroury.-The meroury reznires to be ovaporated and condensed in diatillod raler-Rat-Tat.
[12833]-Purifying Mercury.-Treat the meroury with very dilato nitrio adid, and then dry it ; is thite does not frese it from the maturss which "Barometer" complains of, he muat rodietil ti, Whioh can be seaciity done in en iron ueb tram oap paceing into a tabe sorewed on, the tabe rom onp paesing anil a water is orfer to condense the mercury.J. W. G.
[12834.]- Bye Query.-When the oye losen the powar of nocommodating itsell to near objocth, such as omall print at from 10in. to 12 in. distanoe, the perion is called longaighted. This change, which gonorally showa iteoll by a diffeulty in reading amall print by gas or oandle light, commonly takes piace botweon tue agos of 80 to 50 , which is anlled longsightaoss, because objocts are best ecen at a distanco, and arises from a ohange in the atate of the cryatalline lens by which its donalty and refrective power, as well as its form, is altered. It frequantly begins at the margin of the lens, aud takes moatha to complete its cirale, and it is oiten accompanied with a partial geparation of the lamina,
and even of the abres of the lens. The variation of and even of the abres of the lens. The variation of density takes place most frequently at a particalar point in the margin of the lens, and at its commencement vision is considerably injared, if the hrman oye ia not managed with peonliar care at this period. The change in the condition of the lens often rans into eataracta, or torminates in a dorangom opacity, occaWhich, thoagh not indicatiod whit whit often mistaken vions imperfeetione af rision that are olten mikthang or amaurovis and ofhor divend the margin of the lens, the beoome efrmmetriail roun convex loas enables the are to the retina raye fiowing from near abjeots, which the onausiated eje refractad in such a manner that they would moet at pointo beyond the reting. And the best adrice I can give our quariat will bo dhis: Alo azoessive tea drinking, and as much as poasible drinking liquars or apirits. Il a amoker, glve np tobacoo at onoe, as there is nothing bot regalar and moderate living rithoat excesies that will do any good. Wanh the eyen in clean cold mator two or thres timos a day, piacing have face in the water whetroneope" will And great rolief.

It $24 i \mathrm{in}$. is the point at which querist oan read amall priut, he will require a pair of convex opeotsolos to read in of 16 in . foous, to emable him to roed at the propor distance; and rould sarise him to got them ngmoze colour, the rind called blaish smoze, Whioh will produce a natural effect, and thoy will be bettor to will do good service.-WminM OLDrisid, Shemeld.
[19836.]- Vine.- You can do both, and row is the time, hent and water both required. -Ond Boots.
[18887.]-Seed.-Alome jeare ago, when I sould not aflord the luxury of a trame, or a bot-house, I raiced the seeds of panaion nowar, eanna, and some other difficult moeds in the following manaer. I took a large pot a, and a amallor one b; botween the two I stafited nowly-ant grace c as light as I could pack it. I mowed the geode in the pot d,
 pioce of glace a, on the appor side of whioh was parted a pieco of blue istue paper. (1 had no lue glaseat hand.) Then nalored and covered he larger pot with glase. planged the large pot noeds wero up in no time. On remoring the thases to $80 e$ how they
thas been so grest got on, the heat of the inner po has been so grate as
ob be unbearable to the hand. I beliere any tropteal soeds might be to raised. As soon at they are ap, air should be given, and when forward enough they ahould be plantod out as wanted.-Oud Boors.
[12880.] - Eryainth Rootes.- When they have lowesed let the pote be placed in a coel, dry shantion, or the balbe taken up and planted in fmit, mad oo pleoed. When tho ap the baibs, ont oar the ofd row ard acales and oiseta (he aifsers shoala be planiod by themesolvee, to grow up into che eovering stale), wid Soave tho bolb in a cool dry place sor a weet, to maras the Them plant is in the borcar where it is lo blow next year. If baibe are parchace, plan them gop soon wo you bill por plantcomber. Thoy win zot blom cat be mach lereor ing, bat tho plani and blonsoms wil The eot that clevert ber is compothird emoh, the two mocita, ingredienta being prepared long belore plantiog first ingrodients being proparod long beiore placting timo Gire six inaino
[12s40.]-Flour Paste.-When your parte is nestiy cold, add a Bolation of about two draches of Water in which has been dissolvod 10 gra. of corro sive sublimate to each pound of pasto, also aboat 10 drops of escentisl otl of larender. Stir it well ap wa kepp oovered. Yoi whit tad it a good pian to ary the paste in an oven till it is fike horn, take ont an mach as you want at a
water.-OTD Boors.
[12840.]-Tlour Paeto-All pate winl get moulty; make it in emaller quantidion; it meape monin a venal of rood, not prinled

place.-Parseblanerr.

[12340.]-Flour Puste.-Ada a livile brown sugar and a fow grains of corroadro subtimato to the pasco it will keep maoh longes
carbolic acid.-J. W. G.
[12340.]-Hlour Pasta-A litise comronire sublimato, or camphor, diveolved is it may keop it freeh for some time.-Rit.Tat
[12941.]- Trothm.-Try aprtullang the infeetod places with a mixtare of powdered arrosio and ommphor, or mix angar with areonio and sot it in conrenient plecee. Oover the floory and furnitare vith damp grabe for ore might,
next morning. -RAT-TAT.
[12341]-Moths.-The evil is in year mofa; your boat plan is to coll it for angthing you oan ; oure your carpot by thoroagh bruahing and bealing. If you bay another sofa keep it in constant mea, and the sarlase well brashed, enpeoially the parts lanst seen. If you only want the sofa to look at let the cover be ootton or linen, not woolien-better still, no
[1234B.]-Dremser Top.-I your syeamore top had not gose " winding" the worm would soon eat it up. There is no remody bat to have a now top of olean pine.-CABITRT-MAKER
[12s4\%]-Dreasar Top.-Remove fire aycamore top, stesen it, and leave it andar wedghts until it much nee nuleses at the mame dothe woula not presure

[12844.]-Diseppearance of Art.-Ancient art, both mechanical and fina, depended mainly apon idolatry, which was by no moans a ohoap rollgion. We can hardly oonceive the intense hatrod of the earlient Christians to everything tainted in the least degree with idolatry-and everything was tainted with it-henoe, as one provailed the other declined, and in a few centaries Mahomedaniom finished what Christianity began. I can readily believe that Chris imas
for at least 800 yoars, oarofally shanned for thair for at least 800 yoars, carofully shanned for
children all that we call " art edacation."-E. G.
[12346.]-Geartag Waggon Wheele- Bring
be gin., hall the diametor $25 i n$, langth of arm or
Then 25 : : 2 : 10 (arm
25) $\overline{200}$ (8in. ont of straight line.

Bear in mind I am vorking from centre of arm or axle. Another way-and by far the best-is to make fall-aized drawing of wheels in their right position. Make the face of spokes in bottom part of wheels parallel to each other.-LurTRA.
[12847.]-Stroke. - The stroke of an engine varies according to circumstances, which the designer must kake into consideration, but the general rale is to cylinder. The diameter of the fy-wheel shoald be sibout foar times the stroke of the engine, and the Falgtafr.
[12348.]-Spanimh Pronunciation.-In answer to our learned contribator "E. L. G." I beg to say hat all good epeazers of the Castilian tongue pro-
nounce the final z as theta (the hard th); and the words he quotes rcz, paz, cruz, are pronounced by good difference between the Spanigh b and n - little, if any nounced with very nearly the same pressure of the nounced With very nearly the same pressure of the
lips as our Rnglish b; they write vino (wine) pronounced béno, and they say blancho (white) pronounced as we shonld do. The final d, which is erroneously classed as d mnite, is a muoh more difficnit sonnd to get, it is our boft th very aighty. At Mradrid its sound is preOld Castile it is so nearly silent that many forejgoers completely neglect it, and the words quoted by our riend "E. L. G." are prononnced by them verp nearly
Berdd and Madri (apelt Verdad and Madrid). The true Berda and Madri (spelt Verdacl and Madrid). The true
sound, however, show the faint presence of a finsl sound, however, showi the faint presence of a finsl
soft th, when heard from the mouth of a native of Old soft th, when heard from the mouth of a native of Old
Castile. Fon the beneft of "Cast Steel "I wish to say Chatile. For the beneft of "Cast steel I wish to say Inal, have the iarariable soand of the hard guttural German ch. "Cast Bteol," after he has mastered the vorbs, will and Castilian one of the easiest el modern
languages. If he will write to me privately I phall be happy to filologicos," by Morentin, 1857. This contains atull axamination of, and settles all knotty points in, the Castilisn tongue, besides giving examples from the best Spanish antho
Highgate Hill.
[12351.]-Underground Telegraph Wires in Cities.-Porhapa the following information from the "Eleotric Tolegraph," by Bright, may be of service to "Drnem." "The wires are carried in iron pipes under the foot parements, along the sides of the streeta, and
are thus conducted to the terminal etations of the are thus conducted to the terminal etations of the made at intervals of a quarter of a mile along the street, by which any failare or acoidental irregalarity in the buried wires can be ascertained, and the place of such defect always known within a quarter of a mile.
Some of the wirea of the Britigh and Irish Magoetic Some of the wiren of the Britiah and Irish Magoetic
Telegraph Company vere at first laid and proteoted in the following manner. Ten oonducting wires are on veloped in a covering of guttapercha, so as to be oom-
pletely separated from one another. Thus prepared, pletely separated from one another. Thus prepared, they are deposited in a square creosoted weoden trough, measuring three inches in the side, so that nearly a
square inch of its cross section is allowed for each of square inch of its cross section is allowed for esch of
the wires. This trough is deposited on the bottom of the wires. This trough is deposited on the bottom of
a trench eut two feet deep along the side of the oommon coach road. A galranised iron lid, of about an eighth of an inch thick, is then faetened on by clamps
or small tenter hooks, and the trench flled in. The or small tonter hooks, and the trench flled in. The method of laying the wires in the streets adopted by this company is a little different. In this case iron pipes are laid, bat they are aplit longitadinally. The
ander halres are laid down in the trench, and the guttaperchs covered wires being deposited, the upper halves of the piper are laid on and secured in their places by mense of screws throngh fianges left ontside for the parpose. To deposit the rope of gattapercha coversd wires in the trough, it is at first coiled npon a large
drum. which being rolled along slowly and nniformly drum. which being rolled along slowly and aniformly
over the trench, the rope of wires is paid off easily and over the trench, the rope of wire
ovenly into its bed."-C. N. W.
[12851.]-Underground Telegraph Wires in Cities.-In answer to "Dynam, Chicago," I beg to give him a short resumé of the best syntem used by telegraph ongineers in running anderground or "cable" wires through large cities or great centres of traffic
The wires through Chespside, the Strand, OxfordThe wires through Chespside, the Strand, Oxford street, so., are all laid on this plan. The frst thing necessary is to obtain the consent of the Local Board to opengh is is sometimes obtained with great diffloulty. (It is much to be regretted that the Government are so complotely at the merey of Local and Highway
Board Sarveyors in this respeot.) Throngh busy strects Board Sarveyors in this respeot.) Throngh basy streets
the outside edge of the foot pavement is nanall the outside edge of the foot pavement is ngually
selected. Iron pipes with an inside diameter of 8in., selected. Iron pipes with an inside diameter of 8in.of the same kind as ased for gas or water, are laid
about 18 in . deep; as each pipe is put down a stout iron about 18 in . deep; as each pipe is put down a stont iron
wire, No. 8 gange, is threaded throngh it, and at Wire, No. 8 gange, is throaded through it, and at is placed. This box is simply sn oblong cast-iron box,
2 ft . long, 10 in . wide, 18 in . deep, with movable stone 2ft. long, 10 in . Wide, $18 i n$. deep, with movable stone
lid laid ${ }^{\text {nash }}$ with the pavement; the pipes are brought lid laid insh with the pavement; the pipes are brought
into ench end of the box, and the iron wire terminsted into earch end of the box, and the irn wire terminsted st cack hoy and the ends secared. The pipes are then or water leaking in, and the ground flled in as jougo
on. All is now ready for drawing in the cable. The wire most used is "No. 8 prepared guttaperchs wire." This is apper conduotor of about No. 18 genge. hickiy covered with a coating of guttapercha, and Stookholm tar (ane tar munt be specially avoided for this purpose, as it injures the gattaperchs). The wire and coating is now sbout the thickness of an ordinary lead pencil. The 3in. pipes vill conveniently hold about thirty-two wires. The wires are wound aide by side round " dram barrow" and conveyed to the first flash box, the end of each wire is stripped of its guttapercha covering for about a foot, and the copper conductor carefully and firmly attached to the iron wire, the end of which is looped up and twisted ronnd itself. Great care should be taken that each oint is then well wrapped with hemp or yarn made as mooth as possible, and woll greased. .Three or four men now go to the next box and ateadily pull the iron wire (with cable attached) throngh. Of course, pays ont properly and rithont kinking. Abont 6 ft. should be left slack in each box to allow for testing parposes in case of faulte. Δ box must alvays be put in at every set of joints or any aharp curves.
Thd wire is usaally supplied in lengths of 800 or 400 yards. If good supervision has been exercised, stendy workmen employed, and every pipe thoroughly oxamined to see that no rough jagged pieces of iron fect when laid as before. If there is any incline in the level of the pipes it is a good plan to pour in a pail or two of water when drawing the cable through. As repairs to wires laid by this system are very difficalt t is unal to ran in several spare wires; if twenty-five wires are wanted thirty to thirty-five should be aid. The most fruitful canses of fants sre-gas or water men smashing the pipes with a pickaxe when digging in the neighbourhood, and so cntting into the wires; rough pipes not being rejected, and careless drawing throagh, and bad joints. The inductive embarassment from one current flowing into another is nil, or at any rate so amall that no account need be taken of it. I shall be happy to give " Dynam " any ingther
Oxford.
12352.]-Centrifugel Pump.-There seems to be a little complication in "'reachable's" diagram of pearing wheel : of in the drawing is, I presame, the pith another pinion wheel between the spar-wheel and dise, so as to do sway with driving chain or bend 9 By patting the large palley and pinion on the right side of spar wheel a longer belt is necessary, and the question Whether any bolt is strong enongh for a 16 horsepower engine, except one longitudinally interiaced with and not liable to breakage. By the arrangement slinded to the amall wheel or friction roller e might be removed, as the belt from the grestar diatance of the palley on diec and pinion polley would work better hint in in part original? A oid mheols lad whoh I higk -a part origin 4 a pressnre in the boiler, let it be condncted st once into pamp with amall feed-pipe and cut-ofl valve. The opper portion of the promp where the steam enters may be made oflarger diameter than the lower or water portion and left ancovered. The feed pipe is to be bent and pointed upwards. This arrangement is similar to the blast pipe in locomotive, and by it water onold beight, as amoke is inducted through the boiler tubes and into the smoke box, and driven out through the chimnes.-RAT-TaT.

[12352.] - Centri-
fugal Pump. - If strap driving in the direcreqnor arrow, ke will not
require the palley e (leftreqnire the pnlley e (left-
hand side of strap downhand side of strep down
wards). As he does not wards). As he does not
state what kind of centrifagal pamp (that is, pitch) I cannot tell him the data he gives, hi disc-shaft will travel 126
> $\frac{2}{0}=302 \frac{1}{15}$, instea

of
G. W. S.
[12356.] - Small Lalleable Castings from a hard, me mite crystalline iron. They crystaline iron. in pal-
must be packed in
verised red iron ore, and ander cherry red for a week, when they will be found mixed malleable. The red ore may be used over again [12857] Throtohing [12857.]-Stretching Vulcanised Rubber.Not by any process known at present. It might be
spresd out in a faid state to the required dimensions but the rabber would remain riscid.-Rat-TAT.
[12362.]-Formala.-Soe No. 295, p. 203, first formula. The last formula (for nllage)
correoted in No. 298 , p. 283 .- E. L. G.
[12363.]-Recovering Indigo.-Treat the mixture with s weak solution of green copperss (3 per
cent.), let it boil for an hour, filter, or btrain through
fanned baps. Aftor atanding tome tima, the jelionith
solntion will doposit the indigo nearly pare.-8. Bottose.
[12878.]-80ftening Spring Water.-The hario ness of wator derives from the presence either of calcic carbonato, or calcic sulphate. This latter form of hardness is irremediable. That caused by the of lime to the vater. But it wonld be useless to pat it in the well. The mode of procedure to be adopted in the well. The mode of procedure to be adopled the amonnt of oaloio carbonste contained in the gallon of inater. place the quantity of water required for daily wher, place she quantity of water required for dialy carbonate, which the water contains, add threequarters of a part of fresh slaked lime. Allow the quarters of a part of iresh siaked lime. Ahetank rill require cleansing from time to time to remore the require cleansing from time to time to remo
deposit of chalk which will form. $-\mathbf{S}$. Botrone.
[12380.] -Iight.-That ortside the room will be kept ort, that inside the room will be dissipated and become heat. The querist mnst not forget that light in not an
H. H .
[12880.] - Iisht.-Light is carsed by rapid vibsetions; anything which lessens the rapidity of the vibrations, or stops them altogether, lowers tho intensity of the light, or prodaces total darkuess te an exemplification, let us suppose that two adjeining tanks, full of water, communicato with one avother by means of an aperture. Let the water in one tank other in agitation by stirring ac. The water in lise ns now close the aperture. The motion of the mater in the second tank soon ceases. The same is the case with light, though, of course, at the light wares are inconceiveably shorter, so the duration of the light, after the commnnication bas been cut or, in almost inappreciable. Still, the undnlations do continue, as may be proved by the fact that on exposing a scarlet geraniom to the full glare of the sun, and suddenly placing it in total darkness, it is still visible for a short space of timo; id est, it etill commonicates vibrations to the eye.-S. Bottone.
[13380.]-Idght.-If the stopper of the rays be black or dark it absorbs them, so that they become heat. If white or palie, it or glittering. tnrus them in all directions and if dall or glittering, tnrus them in all directions, quantity to the sky (if there be any clear sky) so en to quantity to the sky (if there be any clear sky) so an to if the (except the little that it absorbs) will be this eant oat of our world, which will, on the whole, be to mach of our world, which will, on the whole, be so mach
the cooler than if these rays had fallen on any other the cooler than if these rays had falleo on any other
material. See my reply to query 11809, p. 857.E. L. G.
[12381.]-Fducation.-Let " Paterfamilias" write to the Provost, 8 . Nicolas College, Lancing. Susser, think one of them will suit him.-Baceistas.
[12385.]-Sulphur in Wall Papers.-Ultramarine contains a considersble quantity of suiphur, hence is not adapted to colouring sach p
to be nsed by jewellers, sc.-S. Botron.
[12389.]-Dirty Mercurg-Tie the mercury into piece of wash-leather, and force it hhrough the pores年 pressure between two boards. If the imptil the mercury in an earthenware retort ome also, distil the mercury in an earthenware retort, stain a barometer tube; a fonl tabe can generally be stain a baronater tabe; a fori tabe can gonaral
cleaned with warm hydrochloric acid.-Priam.
[12390.] - Chemical. - Roscae's "Lessons on Elementary Chemistry", will meet "Home Stadent's" reqnirements. 1871 edition.-S. Bortons.
[12393.]-Bee Management.-The only safo tay I can recommend "W.T. L." is to take the bees by tupefying them as he woold do at "taking-ap" time but as the bees and not the honey seem to be the
object "W.T. L." is desirous of eaving, I should object "W.T. L." is desirous of saring, I shoal advise him to try chloroform and not brimstone, as the Intter generally destroys life. "W. T. L." will ftal fall instructions how to proceed with chloroform is No. 375 (answers to query 11762). After being placed in the box-hive, I should recommend constant foeding whenever it is dull or wet, as the season is retting on and it is doabtfal if they would get enough to keep them through the winter. It they are protty strong. should wait till end of this month, and then more abont half or (say) 10lb. of comb into the box-hire with them for a winter supply; the combs may be ens pended in the box by passing a atont bit of wire or small rod of iron throngh the middle of the box, unleas it is a bar frame hive. This should, of course,
he done while the bees arein a stapeted atate. Bemes he done
Farmar.
[12398.]-To Steady a Skotohing Board.- In answer to "Poloski," I presume that portability is the arst thing to be desired. It is quite posaible to get
frmness if the supports to the drawing board gre stout enongh, such as a heary tripod stand, like thom ased for levels, which, when closed, is about the thickness of a scaffold pole. Haring been in a similar ditiloulty, I garo np the idea of perfect steadiness ont ot-doors, portability being the first thing to be attained ordinary tripod camera stand; the top portion above ordinary tripod camera stand; the top portion ebove with another a, fitted on the centre of under nide of with another a, , 1 thed on the centre of under nide of
drawing-board b. This screw arrangement, it nice! fitted, will give all the needed firmness, sapponing th: board is not too large. Mine is 12in. by 16 in. Theo board is not too large. Mine is 12in. by 16io. Theo
concerniag the legs: tho thambscrews e will. if
uerewed tightly before uning, with the spikee at bottom, give frmpeat eaongh for all ordinary purposea. The other security that oceure to me is to have light iron Wire atays to connect the legs at lower portion by cerews and nuts, to take out and doable up when not wanted (see amal diagram), or the sarne parpoes wonld

Eithar of these contrivances will prevent the outward alipping. I do not believe that the camert luoida could be used with any kind of atand with much wind. An arrapgement like thie could be mado more portable by donbling np at centre of lege by hinges, made frm for use by ringe aimilar to thome made for parasol
handles.- 4 Woring B.

UTAN®WERED QUERIES.

The numbert and tilies of quarios whiot ramain unancwered for foe waceks are tmoorted in thio liot. We trust our readers will look over the liet, and sond what information they eam for the bematt of their follow oontributore.
 11940, 11259; " S. M. B." 11808.
12057 Defoctive Sewing Machine, p. 81
12059 Watoh Oonversion, 818
12004 Diameter of Screm, 818
19007 Portable Force-pamp, 818
12071 American Drill Chucks, 818
$\begin{array}{ll}12074 & \text { Hollis Observatory } \\ 12075 & \text { Fruit Syrup, } 818 \\ 19076 & \text { Polishing 8lats Clo }\end{array}$
12076 Polishing Blate Clooka, 818
12083 Tarning Toole nged for Metale, 818
12088 Polinhing the Edges of Glate 818
12084 Tools with Swisa Mandrll, 818
12085 Cricket Bate, 818
12087 Violin, 818
12091 Plums, p. $81 /$
12998 Budding or Grafting, 814
12095 Hardoning Steal Shatte, 314
12108 Staining Glaes, 814
18107 Spring Curves, 814 18
19117 Restoring Coloar of Watoh-plate, 814
12119 Pump for Colliery, 814
12121 Chomical Preparation of Fruit Kisemoes, 814

QUERIES.

[12490.] - Automaton Chess Player.-WM Mr. Meyer be good enough to eend a oopy of the article he put in the Gentleman's Journal, se it eannot fail to inScorer
[18481.]-Been.-Would some one be kind enough to tell me the beat way to take a hive without destroying of barning sulphare, in former years, been in the hablt bees, bat gare the honey a bsd taite. Alao, whether I mnst take all the honey out of the hive, and whether a second or third swarm would be likely to Live ovor
[1988,] - Teating Beer and Bpirita, -Win some corresp-ndent inform me how to teat the strongth of apirita and beers properly ; and the prioe of the
apparatas need for that purpose i-J. W. F.
[18488]- Pie Eleater. - I have got a tin case to make tindly resder give me such ingtructions as will suriet mo, any if hot water is used, and how the ateam escapes, and if the wat
Copperalite.
[12484]-Castings.-Has there been a heavior oastIng cast at Bolton than at Shemeld or Nowoactle $?$ or can where the next heaviost was oast, and whit purpose they Where the next heavieat
were for? -J. Watson.
[12485]-The Dragon-fiy -A Iow particulars concerning the natural history of the dragon-ay, in a mioroseopioal point of view, would be of interast to the subacriber, and no doubt to many other readers. I have bexptifal object for the microscopa. Bealder other features worthy of notice, there are two pairs of aswa,
show very beantifully when carefully prepared and
 asge on the nurface of water. The atructure of the end of the male dragon. fiy's body ta also very curionk Any information or referenoe to anthors who have writeon
on the dragon-fly woald be noceptable.-J. Fosd, On the
Btard.
[12486]- Ohromo-INthography.-Can any one great many subscribers ?-H. B. E.
[12457.]-Brickmaking Machine.-In No 280 of "oars" there was an extract from an American papor Will some one kindiy eay if tho machine has been intro. duced to this coantry, and if it hat come ap to the merits claimed for it in the sbove mentiened artiale 8-
[12488]-Oheas.-Would some reador hindly give me a solntion of the knight's move over the whole chese-
board, beginning on one of the four centre equares ?board, begi
[12499.]-Working Plane Surtaces.-Will some reader deseribe the method for grinding and pollahing mont that requires perfoot arifacen for refleotion I have suoceeded only partially. Δ reply will greatly oblige-R. Roberts
[12440.]-A New Oil Light.-I noticed sbout five wrillianoy was introduced by a German gent intense the Inventorn' Society, London, being only inferior to the eleotric light. Can any of "our" readers enltghten me on the subject 7-P. K. S.
[19441.]-Ants.-Can any of your resders inform me how I oan destroy ants, which have taken up thelr abode
under the ground floor of my house, and, Uke thi under the ground floor of my house, and, like thie
ohildren, they get to cupboards where any sweets are ohildren, they get to oupb
kept?-THOE. LETCHFORD.
[18412.] -Indigestion.-I am troubled with indiges. hon and, like "Aroma," Itried the Busyuehanna remedy bnt did not derive much beneft. I also, by the sdvice
of a doctor, tried eninine. Oonid any of "our"" correspondents give me a remedy ? - Pupin Teaciza.
[12443]- The Tremolo.-I am much obliged to molo on the siolin; but I thint he has misapprehended my question, as it was not the shake or trill I wanted information abont, but the tremolo, marked by Spohr with a wavy line. It is produced by the trembling or quivering of the single inger which stops the note, not by beats of the next inger. It is, In effect, something
Mike the "vibrato" in singing. What I want to know is how to get the inger to tremble or quiver on the note, as my ingers obstinately refuse to move in the required way.-Coreler.
[12444]-Day and Night Teleacope.-What is there speoial in the construction of a day and night tolo-
scope, and what advantage has it over an ordinary tele-soopet?-Video.
[18445.]-Rotten Bilk-Being s silk smallware manufaoturer, and having had a strike in the trade, I have had some looms etanding some time with a tittle
silk in. Now we begin to wark them the silk is quite silk in. Now we begin to wark them the silk is quite
rotten and breaks bady, and my foreman tolle me it is rotten and breaks badly, and my foreman tols me it is
the dust that rots the sily, he has seen anch oases before. Oould you inform me if that is the case throagh your papor, so that in future I can guard against it. The silit quite covered with daat-AMxIous.
[12446.] - Manganese Battery.-I should feel
obliged if your esteemed correspondents "Sigma" or Mr. Tonkes would give me eome information as to the following :-A throe cell manganese battery, whioh has been in action since March, 1871, saddenly atopped on Monday lati. On examining the battery, I found that the binding sorew attached to the carbon of the middle which I had to fle off; the others were comparatively clean ; it was donbtloss this which stopped the current, as when the connections were cleaned the battery tosted well. Now, would the fact of the battery being put to earth at each end canse the connections to corrode In this way, as until I added another circuit to the battery (from the house to the stable in Fhich I ased the earth for the retarn wire) I had no trouble at all, the battery being in a dry place the connections were kept
clean. The connections are made as follows :-A stout copper wire is soldered to the zincs, coated with sealing. wax varnish to within an inch of the ond; the binding screvis let into a lead casting at the top of the oarbon stiok, and ocated about an inch all round with melted rosin.-EDDARD Hemer.
[1247.]-Eimployment for a Rotired Trades-
man-Having soguired aboat as mach of the "flithy man-Having soquired about as mach of the "flithy luore" as will keep me out of the workhouse, I want something to do. Can any of your correapondents or
readors asdat me , The change from an active business He to one of idleness won't do, and to frustrate his satanio majenty from Inding mo m job, I should like a fow anggestions as to what is best to amuse, instruct, and interest. My taste is juat a bit scientific. Mechanics might develop by practioe if I got a lathe. As I know nothing abouk one, which is the best ? One adapted (if any) for poliehing stones as woll as ordinary turniog; and abont what ahould I give for one? A fow joiners tools. Eo., which are most in use, in raot, 17 I dodicate farninh it? This query wlil perhaps fit other poor dovils in a similar plight to myself, or who may be some time-A RETIRED TRADEASAR.
[12448.]-Wall Papers.-In "ours" "of 28th ult. there is an excellent artiale on poisonous wall papers, in which, I think, all colours are condemned. I should contribators would kindly let ua know with what we chould decorate our walls, and if all papors be poisonoris What coloars are the loast dangarous il sm sure that many besides raysar woud be
on the above point.-Jiogra.
[12449]-Gnats, -Any of your able correspondents columne what is the bent remedy ior me through four the best proventative to being bittan at all by those noxions creaturem-Ooxstant Stascriage
[12450.]-Beehivea. - I think all who are interestod in the management of bees aro oertainly very mach in good information he gives in yoar valuable oolamne about bees. There is a disgram of a hive in No. 850 P. 808 I want juat to ask a qeestion or two about. (1) It this the kind of hive Mr. Abbott now rases in proforence to all others, as he nagy he eelle his old hives for a mere eong 9 (9) Do the blooks or distance-pieces between the
innor and innor and outer case reach from bottom to top of htve,
or only a blook at the bottom and another at the top? (8) Are the notohes at the top for the reception of the onds of bar trames out out through both canes, or only the finer one? (4) How does he manage when ho takes of the top of the hive to prevent the beos getting
down betweon the tuner and onter case ?-S. R. B. B. G
[12461.]-Engirish Concertina.-1 have an Engian conoertina by Proase, braks vibratora, and screwed; threo notes are gone fati. Will some clever correspondent ol "onra" kindly toll me how to pat it in tane ? and how can 1 got at
[1458]-Building on Sand. - should be glad to recoive a saggention as to the beat mode of soocaring a good sonncation for a houed I intend bailding, tho of a bod of sand? Would it be gafe to baild npon the sand, or should some provision be made in the way of conorote foundation P-ImqURERE.
[19458.] - Tanganese Cell-I have made a memgoldering a piece of platinum foll on the end of a plecoen copper wire, and soldering the whole into a hole in the carbon, and well covering with wax, both the top of the oarbon and about fin. of the wire. I Ind (after four
weeka) that the wire is now eaten in two. How can I weeka) that the wire is now eaten in two. How oan remedy this? Will olectro-plating a coppor wire and
soldoring it into the oarbon be sumeient as in a series solid pletinum चire woald be too expensive, as also woald bindiog sorewa. Ithould be obliged by a desorip tion of a joint that conld be made by an amaterr, and is not too expensive? The battery is the boit I have over used? How does it answer for plating? ${ }^{\text {D }}$. J.
[12454]- Southern States of Amerioa.- Will any mate, modo, and oost of living in soaport towna of tho 8onthern States-say in Savannab, Pensacola, or Now Orleans-or name any work giving roliablo information on the subject ?-Jamis Largox.
[12455.]-Water Bupply. -Where can 1 find the ohariered terms on whioh the East London Wator
Company supply wator to consumera, if throngh meter Company sapply wator to oonsumers, if throngh metor
to private hoases as well an manuffectories, prioe for quanilities, pressure of supply, what control they (the company)' may have over thelr? water after it has paseed the minute ferales they place in their atreet main Where the conemont branch leads ont and there is no motor, and if there is any statement of uses to whioh such tonemont's water may be appliod while paying the unaal
household rates?
[12156, -Fuel for Steam Engino.-Wil come reader of the ENoLish MrCRANMO inform me if the ordinary gas house coke saturated with coal har woull
increase in value for heatiag purposes sufinelontly to ropince oonl? It is required for a 4 horse-power steam engine. Woald it be superior to equal proportione of amall coal and ouke ? Ordinary house coals are selling here at 80s. per ton, whlch makes working a stoamengline rather expensive.-Hozri.
[12457.]-Geometry.-In a given triangle insoribe a rhombua which shall have one of its angular pointe
cotncident with a point in the base, and a aide on that coincident with a poin
base.-W. M. Coll
[12458]-Blowing Apparatue.-Wanted an ap. paratus for blowing air (wimilar to the "Begsemer" process
moter. Material, hot gyrup. if any of our readers would kindly advise what is enitable, whethor fan or air-pamp, and what size, they will confer a very great favour mpan-8icplex.
[18459.]-Bending Lathe. - Would "Jack of Al
 wide \times titi. thiok? -R . M.
[1940]-Four-valved Cornet.-W111 some correapondent be so kind as to give
fagolhorn with four koyt P-H.
[24481.]-Threads in Gas-pipe. - Wil sny of your contained contase in an inch of gas-pipe from tn. to gin diathroad $7^{n}-A$ Sobscarber.
[12402.]-Rloctrotyping.-I have sovaral plaeter-of-Paris oasts, takicn rom modak, aboat a quarter of an
inch thick. Will some one klodly tell me how to make gattapercha or wax moulds from them for electrotyping ? runging ofri. Shuald the preater be olled belore pouring the wax on? Also, I should be glad to know how to lay the blaoklead on my wax and guttapercha moulds. I genornally nee a soft camel'a-hair bruah for the parpose, in others.-GLatrox.
[12468.]-Viaion-Can "M.R.O.8." or some other oorrespondent explnin to me the most probsble cause of
the inversion of the images depicted on the rotina? It the inversion of the images depicted on the rotina? 1 It
is clear that after the rays paso ithrough the orystalline in inverted imare is thrown on ths retinc, and yet we soe objeots in their right poation. I know or two roasons Tamal impresslon being vorrected by touch, ©c. ((2), that at we ace ovorything in verted, nothing appoarsi invertod, as there are no terms of comparieon. It should like to
know whioh of these theories fo the beat, or it there is know whioh of these the
any other.-H. SCIENCE.
[12464.]-Aquarium.-Can any triend say what is the canse of the water becoming mito in a glas globe In Which I have a goldash ? One day the water in nearly
White; the next day whiter still, buit just the same as if I had put water in a dirty milk.jug; on the third day 1 I and the Aeh doad.-E. Fowher.
[124B5.]-Compound Eyepieoes.-I return many Mr. Pbotor Follow orthe Royainatrunomian 8ocioty, their kiudnese in seplying to my querios. if I might
traipase a hitle mare on thoir good natura, 1 should like to know the way to aecertain the maznify ing power of componnd eyepieces. I know that with a stugle less
eyeplece the power is as many times as the object- lias eyeplece the pnwer is as masy times as the object-glass
exceeds the oyepiece in focus, thus a 11 ln . exeplece $a _8 \mathrm{in}$. object-glage win hyom how to tell the power with 48 times, But I do not Haygertian or Ramedow wita compound, such as the glass, or a terrestrinal with four lensen, by what rale is
through "The "ine Harp. -Would "Ixion" (lettor 4468) octave string; diagram of atring plate, and deacription of soavdboard, of bis wire-Etrung harp ?-EAST-GKD меоваmic.
[141e7.1-Nitrate of Soda- WIII "Sods" be kind bnough to inform mee the obeapest way and beat tme to bay a laggo quantity of niltratio of sode, gay a mmall ciateil prioo has bow be a good time to do 10 ? The
 phin inarmer can bry.-as. Brows.
[1848.]-Trhibited Inventiong-I have heard the firat tife that invertions about to be oxhibited for ean, on payment of a reqietration fee of a fewhibltions be protected for the portod the oxhibition lante. Will any brother reader oblige by giviag some raliablo informulla sboat zhis -ZDREH.
[1940.]-Been-Blow to Get a Bwarm.-I there
 for thin last month, but do not caset a geoond swarm. One
of our friends some tlme aro told ns throngh the Of our frjends some time ako told ns (through the
Mrecrasic) to turn up the stook hive and place another oper it and drum them up. I ahoald like to hear Mr. oper it and drum them up. I should like to hear Mr.
Abbotte oploion on this plan before I try it, as I oan't understand how the new stock thes formed gots on for a queon.-F. J. GodDEn.
T12470] - Separating Salts Produced from correspondenta, inform mr. 8. Bottone, or any of your various salte produced from kelp? The salts I wish to eeparate are chloride of potasedrm, carbonate of soda, and sulplate off sode, which are prndzced in the irat eva. poritation of the kolp liquor. I believe that the sulphate Ifme were added to the liguor, would ohe cold. If canstic preaigered, oandio the liquor, would ehloride of lime be produoed, and if eo, cordd they be geperate of moda be cormation relating to the above will oblige - A Tyno in
[19771.] - Wheels.- Could any one of "our" reader
tall mo whieh are calied the "face arms" and which the
"back arma" of a wheel i-FAxstarp.
[12472]- FHectrical - Wonid some kind reader answer the following queries ? -1 . What is the reason that an ordinary "shooking coll", does not deflect a grajranometer? 2. What coll is the best to ase for modioal parposes, and how do they differ from the "ahooking coln"? Ape the "thagmeto-electric machines" of greatar modical miue than the varlous coils in nse ? they are required to be left for to use for coils where aleeration or puiling to pieces, that is al days without action $9-$ M pulling to ploces, that is, always ready for
[12473.]-Printere' Rolleas.-I shall feel extremoly will be kind enoagh to inform printing profession who ing soliora-A Trio.
-In lettor - T400hine for Making Aerated Drinks. -In letter 4806, p. 880, "H. B. E." aubmits a sketch of a machine for making aërated drinke. I like the plan Very macb-the botting and oorking machine attached, and the generator which is attached to it. "G working, will obite by amswering the following questions: B. (i) How is the machine woring the following questions:-(1) (2) Is the materine work gas pumped into the condencer to gether by one pamp or plange i (8) What will be the

[1A45.] - Removing Whitowash -Will reader of your columns sindiyinform me .-Will some Whitemach from the taoe of atomework and woodmore Withont ecraping or reduoing the earfecen, portiong of
whioh are oarved 7-S., Colombo, Ceglon.

OHES8.

AtL communicutions foftended for this department to to be addrossed to J. W. A sboTr, 7, Claremont-place
Inoughborough-romd, Brixton, S.W.

The teedal age appeare to have been the high and

 cidered an indisponemble to the formation of to sconplished huight so still in arma. In later an accom-poftiont minds of their dey oftieat minds of their day, inclading kings, statesmen and philosophera, bave not disdained to resort to it as a rolaration from grave carea. The scroll of history, rich as it is in instances, can point out no strongor or more eloquant moral to that pin by "which atrongor angels," than the stern Corsioan boand to his desolate rook, and plasing obese for the dear life, to stan the gnawings of bis twin devouring valtores-falles pride and bleoted ambition. The genina of chess, moreover is escentially oatbolic and nniversal, taking no acconn, of roligion, politios, or country. Mankind from India ot the far North-the a wartby Hindoo and the pale-foced Scandianvian-alite practise it with the same teoed relioh and enthusiasm. Its resourcon, indoed, o inexhanatibio a custom cannot "atale their in in nite variety." Like tho kNoidosoopp, it oontinually rivee amatoar, who bat grown gray in ity ; the vetaran pranategoras, exporiancing as much intereat in the mores.-Captain Kennedy.

$\underset{\text { Problem Vit.--By J. Pleckes. }}{\text { Blach. }}$

White to play and mate in three movea

Solutiar to	Probles VI.
	- Blaok.
1. Q to K 4 2. Maten, 200 .	1. Anything

TO CORRESPONDEANTE

T. J. Milize (Faversham.)-In a problem the mate mast be effeoted in the sippulated number of moves Ifgainst the bent defence Btack has at his oommand. the problem is a onition io a
tion (Graga) - Philidor's "Legaoy" is a woll-known poaition, but hardly of anffloient intorest for reprodnotion R. A. Proctor ondas.
ably improved, both in desiga and cond, is considershall shorly appenr. in design and construction. It G. SLATER- In order
have the goodness to prevent any farther mistakes yna have favoured us W. Coopri. -We have misiaid ys.

Yorward it again, as we wish to commanicate pieng
J. ${ }^{\text {youn }}$
positlon. The problem in four moves is an elegant com. but doubtless they are two we have not yet examined, aroo (Yarmusth) - are eqqany good.
ce. Problem III. is aleo wrong- solved by 1 R to R8, (1) $\frac{Q \text { to } Q \text { sq. }}{P R \&} \frac{Q \text { takes } P}{P Q}$ (8) $\frac{P Q 3}{\text { anything }}$ (s) mater. Problem II. is seemin zly oorrect, and rather a neat
idea. In order
ward it afresh on at dit may be forther axamined, forWard it afresh on a diagram.
G. Whirpirid. - A yeportnext weok.
J. NKFLLLER and S. N. BARIER, Woen.
sompare the pabliehed

Marsor aolationa to Problom V. (continued)-M. I
 Oorabct
from E T. (Grays): R. A. Proctiri haven reoelved (Lincoln): Rorie: G. Keller Proctor; G. Slater;J. E. (Woraley); C. Yoo (Paignton); A. Cunnlagton (D. Alrey

 sett (Loondon); Fillinm Cook (Penge); A. W. Coopar.
All others are wrong.
All others are wrong.

TEE ENOLIAR MEOHANRO LTPBBOAT TUS

AKBWERS TO CORRESPONDENTA.

. 411 commondeations showld of addresced to the Editon of the ENGILBE MEOEANIO, 81, Tavistook-atreet
Covent Gacdem, W.O. Com Gacdin, 7.0 .

The following are the initials, te., of letters to hend ap to Tuesday morning, July 16, and unaknowedged G. L. R.-F. R. Leyden.-H. Hicks.-Alex. MrKinley:Dr. J. H. Whentley.-J. H. Biggs.-A Tolheveen.R. Haseall.-Francia Land.-D. P.-R O. Berry.-
R. Barinw.-O. B. M.-G. W. Roylo.-R A. Prootor.W. Waghorna, I. Whitesmith.-Rev. F. D. BooversEdward ADdergon-P. H. Holland.-A. Ironcide -Wm Grogrenor, - Wm. Lnbley.-March and Pattecon.-
J. W. Hngg. G. H. Hurat-T. C. Ebdy.-E. R. B, J. Estohbg.-G. H. Harat-T. C. Ebdy, -E. R, B.二 Snell - J. R. Symons.-Wisencre.-A Builder. - Khoda -Thomas Fletcher.-A. W. Pashird.- Benry Jackson. Col. Cottan.-W. H. Cook. -T. O. Ebdy.-John Rement. - Harmonlone Blalired H. Allon.-Hyrab Scen.-The Harmnolons Blaoksmith.-Rat-Tat.-E. H.-Photo.Mechanioal Pablican. - H. D. E.-W. S. E.-Vrlcanite.

- Foivo-Hone Ko Io.-W. H. H. C.-J. E. P.-Ne Trowvo-Hove Ko Io.-W. H. H. C.-J. E. P.-New Young Hopefal.-Gy.-J. S.-Conversion.-E. B. H.-
Xenophon.-G. Pennington.-Whitesmith Saruh.-Cnttager. - iberdeen Watoh Jobber-E. D.R. P.-E. Meyer.-Erdeen Watoh Jobber.-F. G.E.
F. A. R.Anxous.-H. O'B.-Oid W.A.-F. F. C.
 Wm. Meak. Irwoll. - W. E.- M. Paria,Thomas Art.-M. P.-Criterion.-Q. Yorke.-O. P.-W. 8. B.-
 Baokmaster.-F. \& B. W.-N. M. John Boptine. Squivaleat-A B. W.-J. Broadhuratinohn Chanicel Fitneen,-J. B. Whitatier,-Tnetap--Upsilon.-Tyro. -Neaniscos,-Abert Stone. - Nanm. - Fred Eamilton.

 -Ftw Years' Subsoriber.-B. An wootor.-Olinchey.
二Book-Keeper.-J. T. Routh --Book-Keeper.-J. T. Routh - -Commanicator.-W. H. H. Com.
A Reader, Tonbridge, and "Ir ipop." advertise
Vfrtuknus. Your lettein mat paccessors, would haf Seah, hto predecomors woversy. Itg insertion meald give $u E$. In G." O. B. M.-Rather too more than cane lettea
O. B. M.-Rather too fantastimal
Jorn Mitcreric
 serting illustrations and deroejpitions of patented inany charge for anything thing gean into the body of the J. paper.
J. W. Dawson.-Consult a pladeran.

Charles Collins akd G. E. Fu-Iome commoniontions J. Benelvarove oxpre
J. Brellgrove exprosees a hope that come papers on elementary mechanios will soon appear in the Englisy MECBANIC. Is J. Snellgrove aware that a series of papers on this subjeot appeared in the
Engrisi Megenkro-by the Eek w. Kernan abont eightean monthe sinco ?
J. M. B.-You advance too tar on torblddon ground for our columne. Shodld be glad to hear from you en eome more practioal subjeot
AMATEOE PBOTOORAPEER, IL Newton, J. W. E., W. I. Warren, A Jones, A. 8. Lewes, Orladdo Eank, T. M'Gregor, Geo Frarnghem. Johan, B. Owen, Zakynthos,
and Subscrlber are referred to in R. TansLiny. -Anether correspondent to indek volacmes, poses of " \mathbf{G}. W. K \mathbf{D}.'si momandeal estivinctorily dia poses of "G. W. K D.'s" remarkes se there is no need sketchand desoription of the other machine you reoeive Commonicanions whioh oun only appesp as adrecticements to hand from Prirate studeot, T. H. (Ceouberwell) Zing, A. A. F., W. Ward.
Imgoirgr-Consult a gurgeon.
A Patterneaker-Wagh ther dell
A Mexgre. - Both matters for a modioal man
J. W. (Leeds). For your frrst query try carbolic adid
8. B. Ap.-Thankg. See "Eints to Correspondonta" Jorn Gavin. - Recipes for maling blecting have been frequentily given. The only way of competing with "proft," unless indeed, you digeover a new proens by which you can mike bleckingoherer a mew process It which you can maise biacking cteaper than they ean. scale, where all he ingedinanufuctare on the cra soale, where all the ingrediente are bonght at fart
 AB INITIO.-For "silk colventa" see p. 938, Tal. XL silvoring, and plating informatiom on eleatro-gotithg, 869, 898, 471, 496, 498, 540, to
mild - Your letter headed "Bude Persomalities" meald and highly the fire. You acouse ceveral well-troorn "cowardice." Can you not wee thet il maha motten and inserted it would inevitably cais no etioging reime You osmplain that we do not freart your reveral replies to pernonal attacke If wo dla, the ofli foa
complain of weuld be materially agravelod say "I have no objection to beling attioked 4 allowed oo reply, and wonld far rather be laughed at them have It not best to go to the root of the matter, and, if pot sible, say what you have to eay in ench a manaor pos to give no one an opportualty of attacking you or
inghing at you at all Rzadering Tip. You et all?
Reader, Tip. O., R A., andJames White.-Your quacies
dc., are advertisements. G. W. Baicon and Ca. Wi.
G. W. Bagon AWD Co. Wo have already desoribed the
Beokwlth 80wing Mahine and have bookwith seling Msohine, and have no more apeoe as to boing "permanent advortimers" sre respeciloills repudinted. Brratum. In the artiole on Chemioal Phyalology,
"lymphatics " $(\mathrm{p}, 492)$, by a slip of the pen, was waites
for "laotealg A. W. J. C.- You will ind your query about an alcotelo Kite answered on p. 884-so recently si Jane 91 it
gave in the intter part of letter 4510 needs correotion The theory presented itself to 8510 needs correotion before I noted down the roesonings in that hoars These are therefore bat oradely etatel, and rich yoer permiasion I will forward a oencise and correeted platoment for next weok's issue.
p. 111) your engrad sarys "In my drawing (leh 4eps p. 4il) your engraver has inserted a apot in the inve cortainily did not gee ote pat ane in my akotela, and cortainly did not see one. Noither, is the ahedinis an teat I I will oxnmine them on tha.8.' for his excellan and (with your permission) send resulte." oppectanity, Jack of all Trades.-Yoars next week
E. J. T.-Your letter is too dialoctionl. Why not discans in moderate apace the essence of thinga, and not vee John Barnes-8e "Norde.
 hands of the police, as we ere conat the matter in the complaitute pe yours. We will not let receiving ench complain of advertise in our colnmes, bit pereon you prevent him answering sdvertisern. Correspoactan and edvertisers should be more partlogiar in partine with goode or moneg. Wo have repeatedy cavilloges
them.

The explist gitlerfunic

 WORLD OF SCIENCE AND ART.FRIDAY, JULY 26, 1872.

ARTIOLES.

OCEANIC CIRCULATION.

In Two Parts.

By Richard A. Proctor, B.A., Hon. Sec. R. A. S. Author of "The Sun," "Light Science," "Essays on Astronomy," \&ec.

Part I.

THERE are some questions, seemingly innocent enough, which yet appear fated to rouse to unusual warmth all who take part in their discussion. One cannot, for instance, find anything obviously tending to warmth of temper in the telescopic study of a planet; yet the elder Cassini was moved to passionate invective by certain observations of Mars not perfectly according with bis own; and Sir W. Herschel, usually so philosophic, was roused by Schröter's recognition of nountains in Venus to deliver himself of a sriticism justly described by Arago as "fort ive, et, er apparence da moins, quelque pea passionnée." The question, again, whether the "Eozoon Canadense" is a true "Rhizopod," though not altogether removed from the region of hard words, might appear to be unlikely to excite wseinke emotions; yet there has been some very pretty fighting over it. The solar corona has in like manner given occasion for rather strong writing; and if, on the one hand, the supporters of a lately-abandoned theory said of their oppoaents that "they made themselves ridiculous," :hese, in their turn, at times used a tone remindng one of the scholar who said of a rival, "May Fod confound him for his theory of the Irregular Verbs :" yet the corons seems at a first view rather calculated to produce a sedative effect than to excite unphilosophic wrath. The subject of oceanic circulation would appear to belong to the class of questions here considered. The very name of the Gulf Stream is to some physical geographers as a red cloth is to a bull. Even Sir John Herschel, usually placidity itself, was moved when he spoke on this point. But, though he and Maury grew warm enough in its discussion, their warmth was ice-cold compared with the fire of more recent disputants. We have before us the latest contribation to the subject, a rather ponđerous essay in one of our leading quarterlies; and herein we find pleasing references to the "stupidities" of one set of opponents, the "shallow nonsense" of a second, "the wrongheadedness" of a third, with other similar smenities. More than once during the progress of this controversy the gentle public has been seminded of Bret Harte's remarks
about the row
That broke up the Society upon the Stanislow; and has been inclined to urge with "Truthful James," that they
Hold it is not decent for a scientific gent
To say another is an ass, - at lenst to all intent;
Nor shonld the individual who happens to be meant,
Reply by heaving rocks at him to any great extent.
The controversy has not, indeed, reached this list stage of development, and we trust it never will ; but it has gone so near to it as to suggest tlat the disputants have wished to demonstrate, by example, the justice of Darwin's theory about thy human "snarling musoles." *
*"He who rejects with soorn the belief that the shape of ais own canine teeth, and their occasional great devdopment in other men, are due to our early pro-
geni:ors having been provided with these formidable geni:ors having been provided with these formidable
weapons, will probably reveal by sneering the line of his own cescent. For though he no longer intends. nor has
one
the the p(wer, to use these teeth as weapons, he will uncon-
sciousy retract his 'snarling muscles' (this named by scious y retract his 'snarling muscles' (thys named by
Sir Chirles Bell), so as to expose them ready for action, Sir Charlos Bell), so as to expose them ready for action,
like a dog prepared to fight."-Darwin's. "Descent of like a dog prepared to fight."-Darwin's "Descont ont
Man," iol. I, p. 76 . We may mention, by the way, that an instares has reeently occurred, in which the human an eeth were used to some purpose against one of the recoonise masters in the art of biting. A man, pro-
rect ceeding it company with several others through a woon,
was attacced by a byena (usually one of the most cowardly d beasts). His companions fled, and having no weapon be was reduced to the necessity of showing tooth for tooth, and taking a good grip of the hyenn's nose, he comjelled that gentleman to homi with anguisb. beat the hyens to death.

I propose to inquire into the subject which has been thus warmly discussed, trusting not to be myself inveigled by it into any warmth of expression. Indeed, but for the fate of others, I should feel no anxiety on this point, though I have myself a favourite theory to uphold respecting one branch of the subject. As it is, I share something of the feeling of the Red Cross Knight when he was approaching "Foal Error's den," and his monitress ssid to him "The perils of this
place I better wot than thou; therefore I rede, Beware." I am not without hope, however, that I may be able to keep my snarling muscles quiescent.
I shall direct attention chiefly to the Atlantic currents, as being those whose real direction and extent are best known, and those, moreover, whose characteristics are most important to European nations.
Let us begin with the surface currents, and though the system of surface circulation can scarcely be said to have a real beginning, let us start with the great equatorial currents which
dimensions of the various currents. I wonld, however, invite the student who wishes to familiarise himself with the true nature of the Atlantic cnrrents to construct other maps; for instance, a polar map on the first method of equal-surface projection described in that essay, and a map of the whole Atlantio on the second plan, taking the meridian 40° west of Greenwich as the central one.
Of the water carried westwards by the great equatorial movement, the most important portion after reaching Brazil is carried northwards towards the West Indies. The reason of this is obviously to be found in the fact that Cape Ban Roque, forming the jutting angle of Brazil, lies several degrees south of the equator. The portion carried southward forms the Brazil Carrent, and after travelling along the shores of South America almost as far as the mouth of the La Plata, acquires gradually an eastwardly motion which eventually carries it back across the Atlantic towards the Cape of Good Hope, there to pass northwards and so again to traverse the Bight of Biafra. The

flow westwards from the Gulf of Guinea, ${ }^{\text {, }}$ or more correctly from the Bight of Biafra. We speak of the westwardly equatorial currents, because not unfrequently there is an equatorial eastward current running between two much more important tropical westward currents. Yet ordinarily there is one great westward current running in an unbroken stream from equatorial Africa to the shores of Brazil, and even when this great current is divided into two by an eastward current this last is only to be regarded as a sort of "backwater." The water moving westwards is relatively cold, more especially on the African side of the Atlantic.

The accompanying map exhibits the nature of the surface circulation of the North Atlantic. It is constructed on one of the forms of equal sur-face-projection described in my "Eisays on Astronomy," and has the advantage over the ordinary Mercator's charts of exhibiting the true

* Along the shores of the Gulf of Guines there flow equatorial current.
surface-circulation in the south Atlantic is thas seen to be comparatively simple
The larger portion of the equatorial current is carried less quickly northwards, because the northern shore-line of Brazil and Guiana is inclined at a much smaller angle than the southeastern to the westwardly course of the great equatorial currents. Thus the water which is carried towards the West Indies has time to acquire under the tropical sun a much higher temperature than it had fossessed when traversing the Gulf of Gainea. It is divided into two parts by the quasi-barrier which the West Indian Islands (or rather the semi-submerged mountains of which they form the creste) oppose to its progress. A comparatively small portion finds its way into the Caribbean Sea, and making the circuit of the Gulf of M3xico, passes out eastwards round the peninsula of Florida. We may fairly assume that this portion is comparatively small; imply because this true gulf stream, passing between Caba and Florida ou an eastern course
spibera continue so to move for at least some conchorabed. But it actually tarns almost dae north. mads after passing throngh the Balama Sea, tranariog the Bemini narrows on this coarse, and so comaris towards Hatteras. This would seem to nowils by the true Gulf Stream is pressed north. Thetor which has travelled outside the West Indieg In true that the diversion of the Gulf Stream. Burtbwarde may be really canused by the Great Bakharas Bank. But this would equally establish Krejive in diverting the whole of thank is thus maving ourrent, the Windward Isles may be awamed to be corrcespondingly effective in in divertang aho greater portion of the sluggish equatorial mandy take their oripin remember how ehoals comvery existence of the Bin, we may consider that the the former encounter of the two important hod eiroled the equatorial ourrent-the part which whicis had travelled outside the west the part Tors, the northerly course finally taken by the Gaid stream implies that the latter portion had preThened over the considerabler, and, therefore, that it is beverer, that the portion. I must mention, the part which enters the Caribbean Seas to belde repor.
To this as it may, the Gaif Stream proper has moncicred, during its oirceait, oharacteristics perfectly the Caribbean Soa, or from tho had when entering manining portion when approsching the Bed by the It the first place, having traversed a mane bamas. Gurse ander the same intense tropioal heat, the Cuth stivanim has beoome mnch warmer than the fram barring traversed theond place (probably mipici and so carrying vith it the of the Missiscuation brought down by that the fively-divided Exvear brought down by that river), the Gualf ndax resembling that recoogised ine colour, someEvine laies. Thirdly, its rised in most of the it into narrow channels, it hes reqe having oarried mipid rate of outfor, insomach that the surface two the enarrent on its ontward passage throngh to narrows of Bemini, takes place at a the enffoce not miles por hour. Its width here is at zte trimfune not more than about 25 miles, its maximum depth rather more than a quarter of a dexth), and its menan rate of flow probably anom st mides per day.
1 ghall not follow the Edinbergh Reviewer in Stromes from the Naft the progress of the Gulf Shreme from the Narrows of Bemini to Cape
Finteras, becouese, thoogh in thement隹 tavew no upecial light on the gemeral sabject of Hanaic civcumation. flatioo it that as fort of Weniosable, and tbat oven off Bandy Hotitly roYouk) it surface tomperstare tondy Hook (New Mod hour. Off Nan amounts to wbout roduced, mile zurrent is about 410 miteo its braedth of the zmperature only 10° bolow that whiter surface tie Florido Ohannel, and its whioh it had in pestry one siile per horm lits rate of flow still ios coarse soquired a good deal of essting part of cxsetanoe whioh mast (unquestionably , a ciraive) be asoribed to the fact that it bringe frommemementes the more rapid easterly rotation momament of the earth. The same would, of carrea, apply to the less oharaoteristio bot larger mithout wircoitiong arrived at the same batiturdes mithout cironiting the Galf of Mexico.
Now here we
Nhjoct. It is admitted by all that of part of our - This explanation of the colour of the Golf Stream Pisinourgh reviewer thas hitherto been offered. The toraringie blineness whioh diatiognishes the :- "The a tow may bo drom the oceanic water through whioh
snote of the sedime retaining in suspension the river, the coarsor bentary partioles brought down by the wirer's] month; just as the inteposited near its ithe whers of Lake ; just as the intense blueness of insest eedimentary particles brought down by the of the 2 the uppor part of its course, while that of the Rhone particles brought down due to its pervasion by the like swin, and by the Narge themselver into its western unvebered that Prof. Tyndall, by researel it will be redaring the return of the Urjent from the eclipied on prition of 1870 , was enabled to throw the ensiderable light ex. th Sreater or less depth and shades of colcur in sight "Roport of Researches in the Mediterranean," Din the world :'"
land the Galf Stream loses its special characteristics. As Dr. Hayes remarkg, "its strength temperatnre down to tinat of the Nort brings its temperatare down to tiat of the North Atlantic
generally" (not, howevar, withont temperature of the North Athont raising the extent); "the water loses all its G in to some character as to oonrse, warmth, and flow (and as to oolour also) ; and it dies away into the slaggish Atlantic drift which sets from a westerly to an easterly direotion." It is not so generally noticed
bat will scarcely. I bat will scaroely, I sappose, be dispated, that the Galf Stream water strengthens, and that appreciably, this slaggish Atlantic drift. Then it is outside the wy the portion which has travelled assame (without giving rise to objections) may the general prevalence of sonth-westerly) that will farther strengthen the esstward motion the combined mass. At any rate, let the canses be what they may (and presently, we shall have y all cause to take into account), it is admitted slow carrent, or drift, does that a great, though siow carrent, or drift, does pass eastwards from
the neighbourhood of Newfoundland. it is admitted by all that the sond. Moreover, this varrent (whioh the Edinburgh Reviewer actually regards as identiAable with the Gal! Stream ${ }^{*}$) traverses the Atlantico antil, nearing the
Azores, it joins the soathwardly Azores, it joins the soath wardly Gainea current ;
while the northern part paseal While the northern part passes on a north-easterly conrse, which carries it between Britain and
Iceland, between Sweden and onwards, even as far as the vory neighbourhood of Nova Zembla. Lastly, it is admitted by all that, directly or indirectly, this great by ant
easterly
carrent oances easterly corrent canses the climate of Great
Britain, and of the north. generally, to be milder than that of Europe Amoricon regions in corresponding latitudes. being admitted, no question of anl these things remains so far as the actual facts any importance remains so far as the actual facts of the oceanio
surface-ciroulation are in presface-ciroulation are in question. We shall presently see that a question bas arisen as to the cause of the observed facts; bat as to their all appears to be satisfactorily digposed orsing at Let those readers who in thisposed of. adopted this notion wasten to disposseess thame selves of it by reading some remarks by Dr. Haymthe Amerioan explorer, quoted with epproval by repeated from " Reviewer. The latter having nonsense whioh has been talked sbout the Gull Stream, and at the exaggeratod estimater of its potency which have been put forward by men (as well 28 women) who ought to have known better, these are the reviewar's words, not Mr. Disraeli's proceeds as follows: "As Dr. Hayes truly lannohed Weather prediotors without end have gists have delaged the world (sic) meteorologista have delaged the world (vic) with their
assumptions respecting it $;$ theorist assamptions respecting it ; theorists of all kinds have flosted their notions apon it. One whirls it away into the arotic ragioge, and opens a paseage to the pole with it ; another complis it to give ε olimate to countries where otherwise there would be no olimate worth mentioning; while still another spins it round the Atlantic Ooean, and it Throagh means such as upon a stagnant gea. Throagh means suoh as these mankind has to look apon the Gull Stream with \& certain degree of ame. It is a "breeder of storms ;" the piver Will it it might become the father of pestilence. hitherto? or will it start of do its duty as some nem fancy, and parsaing some sumly with upset the physical and moral statose of the
worta ?
Now we have geen that the writar who thus who hold thes Hayes's diatribe, is among thmse Who hold that a sonthern offeet from the Galf Stream oircles round the Sargasso Sea to join the
Gainea carrent. "entirely carrent. He says farther on that he the meteorococist " with the opinion of Buchan above referred to prodnces ""anth-easterly curren brought to the British Isles by the water that laves our western cossts." H_{e} proceeds, "T Ther is ample evidenoe that the cold of some parts of the north polar area is greatly mitigated by an warmth of temperating with it the comparative that cocos-nuts, tropical seeds, trunks of tropioal trees, timbers and spars of ships wrecked far to the sonth, and sometimes portious of their cargo, are
found on the shores of the Wester found on the shores of the Western Hebrides, the sapplisd "by the retura of a portion of current is pals isty ream."

Orkney, Shetland, and Faroe Islands, the bort of Norway, and even Spitzbergen; and sici their transport has taken ploce just in the cime of the Galf Stream if prolonged to the north. their arrival has been aocepted almost withon question as evidence of its agency. The evidenc farnished by the surface-temperature of north-eastern portion of the Atlantic Ocean whi intervenes between Iodland and the North Can and then stretches away to the eastward betwis Spitzbergen and Nova Zembla, seem at firs ight conclusive to the like effect. A birs amount of additional thermometric evidence bas boen oolleoted of late years; and this has baen mis: ably digested by the eminent German geograph Dr. Petermann, who has recently put formard series of maps for different periods of the yeard Which these observations aro embodied, year, results made obvious to the eye by the coarse the "lines of equal temperatare," Which in Islands, a little toen Iceland and the Shetir Spitzbergen, and thence with of north towar bend even beyond the with more of an easter? north latitude. The existence of ifth degrea in this direction has been of a warm stres recently by two adventarous officers-Lienteng Jalins Payer, of the Austrian army, and Lien ensnt Weyprecht, of the German army-wh ressel hired by thet summer in a sman sailin rossel hired by themselves, and state that the ound open water from east longitade 42° to es paralle 60 , even beyond the seventy-eigat arched of north latitude, the higheat point the tude 43°. A Roing north lastitude 79 ${ }^{\circ}$, in east lonrs Alexis Alexandrovitch, of which th under Priac savant, Von Mildendorf, had the the distinguishe was about the same time exploring the Poisr Se between Nova Zombla and Ioeland; nad Fo Mildendorf has stated to the Imperial Academ. of St. Petersbarg that is the corretto Traja has proved the extension of the Galf Stranm find west coast of Nova Zembla, and that w longit on the meridian of Banin Noss (in eas longitude $43 \frac{1}{2}^{\circ}$) still of a width equal to $t w$ our des or latude, and of a temperature of ifty six degrees at depths of thirty and fity foly fowr As if to remope of thirty and fifty fathoms. As if to remove all question as to his res optaion the reviewer immedistely adds that ally accepts, not only the great body of facts industriously correlated by Dr. Petormann, be he inference Dr. Petermann draws from the that an attempt to penetrate the polar ice-wall the north-east of Spitzbergen is more likely to o successfal than the search for a passage in an other direction.'

So that (1) Dr. Petermann, regarded by oo Mildendorf, whom eminent geographer; (2) \boldsymbol{V}_{0} sarant; and (3) the revards as a distingpishe sarant; and (3) the reviewer himself, who a doabt does not regard himself as either shallo or stapid, seem all agreed as to the very point which the reviewer has spoken of as involrin all all agree as to the only points which sear
in the least worthy of discussion. What, then, the of discussion.
o dispate? Over reader will ask, is the math. the angry words what momentons question hav
After diligent quoted above been bandied?
the stadent of search for the apple of discon clasion that it is neither more nor toss the 001 name "Gulf Stream." We have teen than th Mildendorf oalls the warm ourrent whioh passi by Nove Zembla the Galf Stream. In the appears, he has shown shallowness ai atupidity. Dr. Petermann has equally serions offer, or, rather, has committed a me serious offence. For Von Mildendorf miti have used the offensive epithet onls throrix uses it, bat has the Petermann not out almost say the cruelty) to maintain that " inp: revion or no conqence." Moreover, as ce: graphers "agree with Dr. "other physioal ge graphers " agree with Dr. Petermann.
The reviewer is so grieved by the defeoromi grapher," and "the savant, the eminert R that for a moment his confidence deserta limpora astead of applying afresh to them, direotl, lash which has indireot!y reached the na, he shall presently explain the grounds, of which Stream has no more to do with the infow in $G a!i^{3}$ polar area, than with the ripening of orantes the Romes, so that, even if its corrent Colicisua
entirely diverted by the catting of a wide channel hrough the Isthmas of Panama, not only would he climate of the British Islands suffer very little, at a north-easterly stream of warm wate rould still mollify the severity of polar cold, and jelp to render Spitzbergen and Nova Zemble aczessible to arctio voyagers." This belief, in whioh I cordially oonour, would seem to afiord excellent reasoa for rejecting the name Gulf Stresm whenever the course of the stream shall thas have
been divertod, hat scaroely seems to justify the disuse of the name nnder the aetanal circumstances; still less would it appear to afford good grounds for using such hard words as "shallow nonsense" and "stupidity." If the course of the Danabe жеге intercepted in Baden, it is tolerably certain hat a mighty strer would continue to flow past Vienna, Belgrade, and Ismail to the Black Sea; lor would the noble river whioh flows northward hrongh Germany be mach reduced though the Rhine ware diverted in the Grisons: yet georraphers are satisfied to call these rivers the janube and the Bhine, not adopting new names at every stage where some new influx ohanges the
ize and oharaoter of either. And the title "Gulf Stream" has, in like manner, edrantages n point of convenience, which are likely to prerent geographers from rejecting it yet awhile. It nay mislead some few into sapposing that the vhole of the great north-easterly ourrent has essed through the Gulf of Mexioo, just is we can concoive thst some few stadents ows past Cologne, or Coblentz, to have come from he Grisons, or all that flows past Nikopolis to tave come from Baden. Almost every convenient 1ame however, is open to some such disadranshe finds he has been to some degree misled by a ısme must not mistake the detection of hid error ir a great geographical discovery. Majora canamus.
We have hitherto considered surface-currents nly. We have not, indeed, considered all the nrface-carrents which traverse the North tlandio; bat, the principal atreams have been adicated. We magt nam direct our attantion to abmarine currents.
(To be continued.)

THE MOSEUMS OP LONDON.-I.

The Museum of Pracitanch Giboloar.

THIS institation is situatedin Jermyn-streot,
S. James's ; and incorporated. with it in the ame building are the Royal School of. Mines, the Office of the Geological Survey, and the Mining Zecord Office. It originated in a suggestion made o tho Government by Sir H. T. De Ls Beche, in 835 , that in the newly-instituted Geologiosl 3arvey lay the means of collecting fossils, rockpecimens, \&o., in illastration of the maps and publications of the Survey, and also the opporunity of bringing together praoticsl illastrations of the arts and manufactures more or less conrected with geology. The snggestion was adopted, and offices first set ap at 6, Craig's-court, which, iowever, were speedily outgrown, and the present , ailding was erected by Mr. J. Pennethorne, and pened in May, 1851, by H.R.H. the Prince Consort. The School and the Record Offioe are subsequent ratgrowths of De La Beche's idea; it has lately leen proposed by the Royal Science Commission o separate the School and Museum, bat no
frther action has yet been taken. The instituton, as well as the survey, was first placed under t.e direction of De Le Beche, the founder, at wose death they passed to the late Sir R. Marclison. Professor Ramsay has sucoeeded Sir Rderiok as Direotor General of the Geological Survey, snd the poest of direotor of this inatitution is ittrobed to that office.
Vith regard to the School, the names of such mel as Owen, Tyndall, Husley, Frankland, Rasbay, Peroy, \&c., who are, of have been, pro-
fessce, are sufficient proof of its high standard. The Musam aims at setting before the pablio the econonio value of geological knowledge, the princi) es of obtaining and atilising those mineral prodncions which are so important to us, and also of afforing to the atudent as complete an illus. irntion a possible of the geology of the United Kiogdon Doder these circamstances, it is sarprising tat the Museum is 80 little known, oven among th people of London, while it is raroly found on he list of interesting places to be seen oy conntryvisitors. Many who hear of it regard
this impression neglect the many objects of general interest which it contains. We recommend to all our readers who have the opportunity, and who have never yet visited it, to do so, and if usefal carious; or instructive nataral objects have any
interest for them they will not be disappointed. The Maseum is opened gratnitously every day in the week except Sandays and Fridays ; on Monday and Satarday from $10 \mathrm{a} . \mathrm{m}$. to 10 p.m., on other days from 10 a .m. to 4 or 5 p.m., according to the season. It is also closed for a month from August 10th to September 10th.

The Maseam itself may be described as consist ing of one large oval room, lighted by means of a glass roof, and at night by gas-jets near the roof. The entrance leads first into a hall, connected with which. is the lecture theatre, capable of seating about 600 persons. Having ascended to the principal floor, we see how the whole of the wall space is ntilised by means of two narrow projecting galleries ranning round the greater part of the building, and having upright wall cases on the one hand and fat table-cases on the other The palmontological specimens are, with one or two exoeptions, confined to these galleries.
The bailding is a practioal illastration of the application of geology to the arts, the materials being selected with a view to this end. The front in Piccadilly (being, however, without an entrance there) is of dolomite or magnesian limestone from Yorkshire, similar to that employed for the Houses of Parliament, bat the difference in the state of preservation of the two buildings is very instructive. The front in Jermyn-street, where is the only entranca, is partly of the above stone and partly of red Suffole brioks. The steps at the ontrameasere of gromite, from Peterhead, and at the doenwigy in andet of state froce Ponrhyn. The paremeatrand abepe leadiof into the hall is ghine alebecter; while in the hill colameng and slabe of serpecitine are inoleled in the welle. The
 polished granite:
To the stadent of geology the Mheome affords an opportmity (too often wanting: to the town student) of seeing for himself speoimpers of the varions rooke which form the cristrof the earth, and of the fossils which they contain: Although the specimens archibited. are nainjs suoh. as ace typical that they max. mell seave ancapchimeos of universal geology. Ats ac collotioni of Britiah fossils this stands unrivadied; and as this depart ment. is in the hands of P子ofbsoor Harley, we bey rest assured of ites arranged to the beondy clagified in stratigremhical ordar, 00 m mencing with the Cambriam foseil in the end lenwer-gallery case on the lefthased of the visitor the enters the principal floor Oa the floor of the room is a fine block of serpentineas limestone with remains of the Eozoön-the eertieat known fossil-from the Lanrentian distriet of: Canada, and in a case near will be found a longitudinal section of the fossil, showing its arrangement in cell layers. There is a very fine colleotion of trilobites from the Silurian and Devonian rooks and the oarboniferous fossils (the vegetable remains being placed in the wall cases) are well represented. In each of the formational divisions there is a sub-classification into families and genera, and the majority of the specimens are marked not only with the generical and specifio name, bat also with the name of the bed and the locality where it occurs. In the recesses of the upper gallery will be found a fine collection of rook specimens, inolading an interesting collection of specimens exhibiting traces of glaoiality, e.g. strix, so., some of which, from the Permian beds are adduced by Ramsay as proofs of the recur rence of glacial epoohs. There is also a oollection of voloanic products from Etna and Vesuvins, and a second oollection of speoimans (together with a model) from the district of the oxtinct voloanoes of Auvergne in France, affords an opportunity of convincing ourselves of the similarity of these products in (geologioally) anciont and modorn times. In this appor gallery is shown a small series of photographs of portions of the sonth coast of England, and wo cannot bat express our opinion as to the desirability of obtaining a complete series for the whole conat.
In the borseshoe series of cases on the principal flobr is a splendid and showy colleotion of minerals arranged under the heads of the principal elements-carbon, sulphur, \&c. This is, of coarse, not comparable for ite completeness to
bably, for that very reanon, more likely to atfrad the attention of the general visitor. Extrearely interesting in a metallargical point of view is the very large collection of specimens of ores of the varions metals, and in the table cases will be found numerous illustrations of the various processes connected with these, as well as the pro perties and uses of the products. Some articien, as swords, gun-barrels, de., are shown in the different stages of manufacture, as are also cura and bottles in another portion of the bailding One case is devoted to electrotype reproductiona, including costings of lesves, tubes of the pitemer plant, fossils, beetles, \&co, with copper by thim process.
Bat the economic value of the Musease is, perhapa, most strikingly displayed in tho ceramis series. First of all there is a very complets collection of speaimens of clay suitable fare pottery from the parious geological formstionat, and the manufaoture in varioas stages of ith pregress is well illastrated. The series extends froont the date of a Babylonish brick and Egyptise ofjects, through the Roman productions inour islman, chielly from Caistor, near Peterborough (where anoient kilns have been found), throsgk the varieties of majolica and Palisay wares to the Staffordahire and Wedgwood productions of reosat times. The institution is fortanate in presemeside a good representative colleotion of Wedgmoedre mannfactures, inolading the copy of anartiqus vase. In two rooms at the opposite ead of this floor will be found models of implements and machines used in mining and metatimerical operations.
On the floor of the hall are several asses cosetaining oubical specimens (about 6 in .) of tha building stones found in this country, which wese collected for the parposes of the oommitteo appointed to select materials for the Hoeces al Parliament. A gigantic figare of Heroules is ecsecuted in stone from the same quarry whoace wes taken the stone for the Houses. Large polisted pedestals of marble, and table inlaid with manthen in varions patterns are also placed hera

Such is a brief desoription of the main features of this Museam, and we think the aime of the projectors expressed in their addreas on the opeeming coremony were not too high, that thees colleotions might be made and "arranged with ever reference to instraction, so that those intoratas mineral wealth might be rendered availebio for sny undertaking they might be required to direet, or were snxious to promote, for the good or orpe ment of their country."
W. H. W. E.

ASTRONOMICAL NOTES FOR ADGUET

 THE right asoension of the San at Greenwiel mean noon on August 1 is 8 b .47 m .37 .3 s and his deolination north $17^{\circ} 53^{\prime} 50 \cdot 7^{\prime \prime}$. He whi, therefore, be situated to the east-sorth-enent of δ Canari, and pretty near to the star in questicen He rises in London on the 1st at 4 h .26 m . ancm, and sets at $7 \mathrm{~h} .45 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. ; his rising and ectivas. in the same locality, taking place on the slet at 5h. 12 m . a.m. and 6 h .47 m. p.m. renpectivels. The equation of time is additive (but rapidty diminishing) during the entire month. On tho lox, $6 \mathrm{~m} .1 \cdot 14 \mathrm{~s}$. must be added to the time of apparent noon to obtain that whioh a properly regutated olock ahonld show, and this, 28 wo have seid, decreases, so that on the 31st, mean noon is ooly 1.58s. in edvance of spperent. The semi-diameter of the san at the instent of his appotes to the Greenwich meridian on August let is $15^{\prime} 47.9^{\prime \prime}$, and this will ocoupy 1 m .6 .59 s of sidereal time (whioh is equivalent to 0.18 a tees or mean time) in its trangit. On the 31 at the solar somi-diameter will have inoreased to 15 ' $53 \cdot \frac{5}{5}$. but this will only oocapy 1 m .4 .42 s . of sidered time (convertible, as before, into mean timo by the subtraotion of 0.18 s .) in its passage over tho meridian. The sidereal time at Green wioh mana noon on the 1 st is $8 \mathrm{~h} .41 \mathrm{~m}, 36-14 \mathrm{~s}$. ; and oa the $31 \mathrm{st}, 10 \mathrm{~h} .39 \mathrm{~m} .52 .79 \mathrm{~s}$; the mean time at aidereal noon, or mean time of transit of the fret paint of Aries being $15 \mathrm{~h} .15 \mathrm{~m} .53 \cdot 40 \mathrm{~s}$. and 18 h . $17 \mathrm{~m} .56 \cdot 1 \mathrm{sc}$ on those days respectively. Before diemireng this portion of our "Notes," we woald isvits attention to the curious fact that altbocigh Sohwabe's period (for the present cycle) of marimum freqnency of sun'ppots has oerteinty peoped. a supplementary maximam-if we may sospeatiseems to be in progrees just now, extent, and beanty rewand en

The Moon will be New at 9 h .45 .6 m . a.m. on the 4 th ; will enter her first quarter at 5 h .52 .3 m . a.m. on the 12 th ; be full at 8 h .53 .3 m . in the evening of the 18th; and enter her last quarter at 8 h .34 .8 m . on that of the 25 th . She is 26.7 days old at Greenwich mean noon on the 1st, and 28.7 days old at the same hour on the 3rd. Then at noon on the 4th her age will be 0.1 day, and so on until the 31st, when it will, of course, be $27 \cdot 1$ days. At 2 o'clock in the afternoon of the 11th, Libration will bring an additional portion of her south-east quadrant into view, while at 8 in the evening of the 23rd the same canse will operate in the exhibition of more of her sonth-west limb. The Moon will be in conjunction with Mars at 10 h .36 m . a.m. on the 2nd ; with Uranus 10 minutes before noon on the 3rd; with Jupiter at 5 h .39 m . a.m. the next day; with Venus at 7 h .15 m . in the evening of the 4 th ; with Mercury at 2 h .10 m . on the afternoon of the 6 th ; with Saturn at 3 h .50 m . a.m. on the 16th; again with Uranus at 9 h .12 m . on the night of the 30 th ; again, too, with Mars at 5 h . 29 m . on the early morning of the 31st ; and, lastly, once more with Jupiter at 11 h .41 m . the same night. Our notices of the separate planets will, however, show why these conjanctions will all be invisible.
Five actual occultations of, and four close approaches to, fixed stars by the Moon will occur during the month of Angust. Firstly, on the night of the 10 th, at 9 h .43 m ., the Moon will pass quite close to 96 Virginis. Then, on that of the 12th, at 9 h .47 m ., λ Libre will disappear at her dark limb, to reappear at her bright one (after the Mosn has set) at 10 h .52 m . On the evening of the 15 th , at 7 h .50 m ., σ Sagittarii will disappear at the Moon's dark limb, reappearing at her bright limb at 8 h .53 m . Again, on the 20 th , just as 30 Piscinm is rising, at 8 h . 31 m . p.m., it will be occulted by the bright limb of the Moon, reappearing afterwards at the dark limb at 9 h .28 m . Snbsequently, on the same night, at 10h. $8 \mathrm{~m} ., 33$ Piscium will disappear at the bright limb; to reappear at the dark one at 11 h .11 m . The Moon will pass quite close to B.A.C. 17 at 1 h .22 m . in the garly morning of the 21st. Daring that of the 22 nd, at 2 h .5 m ., 26 Ceti will disappear at her bright limb, reappearing at the dark one at 3 h . 1 m . Lastly, at 2 a .43 m . a.m. on the 24 th , and 2 h .55 m . a.m. on the 28 th , she will be almost in contact (as viewed frem Greenwich) with 38 Arietis and 5 Geminorum respectively.
Mercury is an evening star at the beginning of this month, setting on the 1st about 50 minutes after the Sun, from which he attains his greatest eastern elongation, $27^{\circ} 19$, at 2 h .46 m . a.m. on the 3rd, very evidently below our horizon. After this he of course appreaches the Son again, and sets sooser and sooner every evening, until he becomes invisible from his proximity to it. He will actually be in inferior conjaction with the Sun at 7 h .51 m . in the evening of the 30th. His conjanction with the Moon at 2 h .10 m . p.m. on the 6 th has been already spoken of; and we may add that he will also be in conjunction with Venus at 2 h . 53 m . on the afternoon of the 23 rd . His diameter will increase from abont $7^{\prime \prime}$ at the begioning of August, to nearly $10^{\prime \prime}$ during the middle third of it; and during the commencement of the last half of the month he will be pretty favourably situated for observation in daylight. It is almost needless to add that an equatoreal is indispensable forfinding the planet under these circumstances.

Venus having (as stated last month) passed her superior conjunction on the 16 th of July, is now travelling eastward, and is an evening star. She, however, only subtends an angle of some $10^{\prime \prime}$, is very nearly round, and is, altogether, a very unsatisfactory telescopic object. She sets on 1st only 20 minutes after the Sun, and half an hour after him on the 31st. Her conjunction with the Moon at $7.15 \mathrm{p} . \mathrm{m}$. on the 4 th, and with Mercury at 2 h .53 m . in the afternoon of the 23rd, have been noticed above.

Mars is a morning star. Rising on the 1st at about 2 h .27 m . a.m., and on the 31 st at 2 h . 14 m . He travels during August from a barren region to the north-east of δ Geminorum, to a point to the north-east of δ Cancri. His southing takes place on the 1st at 10 h . 4 mm . a.m., and on the 31 st at 10 h .3 m . a.m. and his setting, of course, in bright sunligbt daring the whole month. His diameter is still under $5^{\prime \prime}$, and he is therefore absolutely destitnte of any interest whatever for the observer with the telescope, merely preaenting the aspect (of which we bave spoken on former occasions) of a large red fixed star. We bave noticed nuder another head his coujunction with the Mgon at

10 h .36 m . a.m. on the 2 nd , and at 5 h .29 m. a.m. on the 31st. He will also be in covjunction with Uranus 57 minutes after midnight on the 23 rd.

Japiter will be in conjunction with the Sun at 4 h .5 m . a.m. on the 3 rd , and will, consequently, be absolutely invisible during the earlier part of the month. He will, however, later, become a morning star, rising some two hours before the Sun at the end of August. He is travelling towards the east, throngh a particularly void region of the heavens, in the constellation Cancer. We have previously spoken of his conjunction with the Moon at 5 h .39 m . a.m. on the 4 th, and at 11 h .41 m . on the last night of the month.

It is possible that the reappearance of satellite 4 from occultation at 3 h .17 m . a.m. on the 30 th , and the dissppearance of satellite 1 in eclipse at 4 h .51 m .39 s . a.m. on the 31 st , may be canght; while at 4 b .18 m . after midnight on the same day (i.e., at 4 h .18 m . in the early morning of September 1), the egress of the first satellite from Jupiter's face will be visible.
Saturn is now the leading object in the night sky, but is still too close to the horizon, even at its culmination, for satisfactory observation. It might be worth while, however, in observing Saturn at present, for the amateur to try the effect of the exceedingly ingenions eyepiece invented by the Astronomer Royal, for the correction of that chromatic aberration which tends, inter alia, to render a planet at so small an alti tude indistinct. Saturn rises on the 1st of
morning about 4 h .59 m ., and setting, of course, in sunlight. At the end of the month he will rise a little after 8 o'clock in the evening, and be on the meridian aboat 3 in the early morning of the succeeding day. He may be fished for very slightly to the north-east of o Piscium during the early part of August ; just to the east of that star about the 16 th ; and, later in the month, to the south of east of it. It requires, as we have before intimated in these columns, a thoroughly good telescope to satisfy the young observer of the planetary nature of this distant member of our system.

The famous shower of shooting stars, annusily visible on a night, or nights, from the 9th to the 11th of August (chiefly on that of the 10th, S. Lawrence's day), must be familiar to every observer who reads these lines. All, then, that is necessary is to remind the student to wateh, on all three of the nights named, for a spectacle which must certainly well reward his vigils.

TENONING MACHINE.

AMACHINE for catting tenons, by what is claimed to be an improved method, has been recently patented by Mr. C. M. Lloyd. The arrangement of the saws diagonally on the shaft is the principal peculiarity of the invention, which will be understood from the accompanying engraving. By_{y} this means the inventor claims that a clean and perfectly true tenon and shoulder is formed; that

August, about half-past six o'clock in the evening is on the meridian at $10 \mathrm{~h} .27 \cdot 4 \mathrm{~m}$., and sets about 2 h .23 m . the next morning; his rising, southing. and setting on the 31st taking place at 4 h .25 m . in the afternoon, $8 \mathrm{~h} .23 \cdot 4 \mathrm{~m}$. in the evening, and 21 minutes after midnight respectively. He remains in Sagittarius during the whole of August, and is travelling slowly towards (and a little to the south of) the star π in that constellation. The part of the sky through which he is passing is almost a blank. We have mentioned above his conjunction with the Moon at 3 h .50 m . a.m. on the 16th ; but this will obviously happen after he has set.
Uranus is a morning star, rising on the 1st about 3 h .39 m . a.m. ; and on the 31 st 1 h .50 m after midnight. As he souths and sets in broad daylight during the earlier part of the month, and sets in strong twilight at the end of it, he must be looked for before sunrise. He is situated in a barren space in Cancer, and may be fished for on a line joining 20 and η in that constellation. This is, though, only a very rough direction for finding him; as, at the beginning of Angust, he will be slightly above such an imaginary line; and below it towards the end of it. The conjunctions of this planet with the Moon at 11 h .50 m , a.m. on the 3 rd , and at $9 \mathrm{~b} .12 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. on the 30 th ; as also his coujunction with Mars at $12 \mathrm{~b}, 57 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. on the 23rd have been referred to under other heads.

Neptune is now coming intc view in the nigh sky ; rising on the 1 st at $10 \mathrm{~h}, 8 \mathrm{~m}$, southingthengext
the snws are readily adjusted to cut any desire thickuess of tenon witheut loss of time, snd tha the saws can be sharpened whilst in position fo working. Instead of placing the saws to run trm on the shaft they are attached to "ran zig-zan" on the shaft, they are attached their pun zig-zag, that their peripheries cut over the surlace of tenon in widths of $3 \frac{1}{2} i n$. more or less as may desired. The saws are kept in position by bevell collars, and are secured to the shafts by keys an screw nuts. The inventor says that it is obriot
that a circular saw set at an angle on a shaft will that a circular saw set at an angle on a shaft will
each revolution present all segments of its circuiv each revolution present all segments of its circup
ference to a different portion of the faee of the woe and will travel the exact distance between the low position of the saw, at any given moment, ani perpendicular line drawn from the oppermast of the saw at such moment. Upon this prineipleb saws are applied to the shaft, fixed by cols and keys, and, according to the angle at which sey are thus fixed, so will their proportionate trase for catting the tenon be regulated.

In the figure, whioh is partly in section, $\mathbf{A} ; 8$ the apper and lower shafts set in gun metal jornalh the shafts rotasing at a very great speed, according to the oharacter or the woo
shafts carry the four circular saws E, F, \&o diagonal grooves, in the collars I I, the being equal, although in reversed directios; lower shaft being in section, the arranament fixing the saws is cleariy shown, the keyir feath fixing the saws is cleariy shown, the keyor feather
0 in dotted lines serving to keep the collis in a ofr position. Provision is made for removin the colls position. Provision subs, and for substituting others \& requirm by means of screw nuts, whereby the listance 10 by means of screw nuts, whereby the istance is
tween the sawh may be changed thentermediat
washers K K, or others maintaining such intervening space between them, and the position of the saws on the shafts may be altered in order to form the shoulder further from the edge of the wood or timber, or vice versa, by means of the nuts seen in the engraving. The depth of tenon is regulated by shifting the position of the upper shaft A by the screw gear M, and by regulating the height of the table \mathbf{T} corresponding.
For the feeding arrangement N is a bracket, capable of sliding vertically in gaides, its elevation being regulated by the endless screw P; this bracket carries the transverse sliding table T, in the bed of which the wood is set and adjusted to the saws exactly as desired, and fixed by any means, the bed and table boing made to travel in the bracket by mannal or other power. The operation bracket by manual or other power.
of the machine is as follows:--Let the part r of the of the machine is as follows:- Let the part r of the
wood be the tenon supposed to have been cut by wood be the tenon supposed to have been cut by the saws $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, then the saw E will have cut
from the point E , to the point F , and the saw F will from the point E, to the point F, and the saw F will
have cut from F to the shoulder of the tenon; the have cat from F to the shoulder of the tenon; the
teeth of the respective saws thus having travelled teeth of the respective saws thus having travelled
longitndinally along the tenon from those points longitndinally along the tenon from those points
exactly in accordance with the diagonals. The saws are, of course, run with great rapidity; the chief value of the machine, however, appears to be the facility with which it can be arranged to cut different sized tenons. It is not apparent on an inspection of the drawing how a "perfectly true shoulder' is obtained.

NOVEL METHOD OF DESTROYING VERMIN

A
MEETING of scientific gentlemen and others interested in farming and horticulture was recently held at South Kensington to witness some experiments with a patent vermin asphyxiator,
quired to drive out rabbits from their burrows The deodorising effects of sulphurous acid gas are well known, and there is no doubt that this machine would be very valuable to disinfect honses after infectious diseases. Its application to shrubs in the open air can only be but partial, but in greenhouses it might be quite certain, and those shrnbs sabjected to the smoke were quickly cleared of their aphides.

PHOTOGRAPHIC LABORATORIES.

H^{1}THERTO it is has been the custom for amateur photographers to purchase the various articles they require separately, and from time to time, or else to obtain in the first instance a box of apparatas and chemicals, neatly and closely packed in their case, but by no means conveniently arranged, if the containing box is afterwards to be used as a receptacle for the apparatus when in use.
Mr. Stanley's laboratories, as he calls them, are so arranged that every article has its place, and can be taken out or pat back without displacing anything else ; indeed, it is easier to return the article ased to its proper compartment than to place it elsewhere. Another advantage is that when the operations are concluded, the whole affair can be closed in a minute.
Oar illustration will give an idea of the general arrangement. When the lid is raised and the front turned down, the whole of the interior is exposed; the larger parts of the apparatus are contained in the back, each having its own division, while the chemicals and smaller articles appear in front, arranged just as they might be in a chemist's shop. ranged front, which has proper means of support when The front, which has proper means of
open, serves as a table to work upon.
for the insertion of the iron rods, and the panelling round the entire structure can be raised with great ease as the building advances. When operations are to be commenced, a quantity of packing, which may consist of rough stones of any shape, the more ragged the better, which forms the first layer of the building is thrown in, care being taken to keep the packing lin. from the face of the work, so that it may not show through it. When the 18in. of packing are filled up, the concrete, which is in a semi-liquid state, like mud, is poured into the box, and percolates down through the stones, thoroughly filling all cavities, and binding the stones and rubble together so tightly that the whole forms one solid mass. For a day the portion of wall thus made lies encased within the panelling. By that time it has become quite dry, and the panelling or frame is taken off and lifted up other 18in., the frame is taken off and ifted up other 18in., the botfom of the frame resting where the top was
before. Thus another box is formed above the piece of finished wall, and identically the same piece of finished wall, and identically the same
process which we have described is repeated, stones process which we have described is repeated, stones and rabble being thrown in, and the liquid cement being poured over them. In this way 18 in . of building are finished each day if the weather be good, so that in the course of a week the walls of a cottage 8 ft . or 9 ft . high are strongly and firmly built.
When the panelling is screwed together to the separating posts, it is so mathematically exact, owing to its careful structure, that the wall is built as straight as if tested with a plumb line. Indeed, it cannot fail to be so, and it is interesting to note that the whole bailding is finished without the aid of a plumb line, which is quite unnecessary.
A noteworthy feature in connection with the building of these concrete houses is that the usual cumbrous and often dangerous scaffoldings which are used in erecting ordinary buildings is superseded

which claims to be a disinfector, vaporiser, and universal fumigator as well. The experiments were conducted under the superintendence of Mr. Frank Buckland, who, in an introductory speech, pointed out the advantages of some reliable destroyer for the insects that infest our gardens and fields, and also the larger vermin, like rats and snakes, that in some countries are even greater pests than the insect world. The rabbit question, which Mr. Buckland jocosely stated had become a political claptrap, was shown to be effectually solved by this new machine. The process is simple, and though not new, either in its effects or means of application, is, however, so effectually concentrated and made practicable in this machine as to be to all intents a novel affair. By means of a fan, turned by hand, sulphuaffair. By means of a fan, turned by hand, suiphurous acid gas can be driven through a nozzle into
drains, rat, rabbit, and snake holes, and the gas drains, rat, rabbit, and snake holes, and the gas
either drives the vermin out, so that they can be either drives the vermin out, so that they can be killed outside, or it suffocates them in the holes. Some amusement was cansed by a rat that was to se smoked out of a burrow made for the purpose, scaping and biting two of the bystanders who ttempted to catch him. However, when canght nd put into the burrow, the asphyxiator soon drove lm out again. Some snakes were almost smoked ad killed. A piece of stinking and maggotty meat wa exposed to the action of the gas, and at once th maggots were killed, and the meat lost its bad odur. To people who have large granaries, maters, and others, the asphyxiator will be very valuble. An experiment with some weevils in a jar (corn killed them all in a few seconds. The pan itached to the fan can be filled either with the compand to produce sulphurous gas (merely pieces compand to produce sulphurous gas (merely pieces
of brwn paper dipped in hot sulphur), when it is of brun paper dipped in hot sulpbur), when it is
requird to famigate thoroughly and destroy life, or requir to famigate thoroughly and destroy life, or
ordinas smoke from grass can be used if it is re-

In the larger eets of apparatus shown in the second illustration, there are two wings which turn outwards when the front is open, these contain th reserve stock of chemicals, the solutions in use for the time being occupying the central part of the case.

CONCRETE BUILDING.

Tin following particulars of concrete building in Scotlasd, taken from the Aberdeen Journal will interest several of our readers; the cottages referred to are in course of erection on the property of Mr. Lumsden of Pitcaple, a gentleman who is one of the directurs of a concrete company in London:-
The whole process of building houses of concrete is so exceedingly simple that the employment of skilled labour is quite unnecessary, and indeed the four labourers who were employed in the con struction of the cottages referred to had never seen anything of the kind before, and yet they performed their allotted work without the slightest difficulty. A foundation having been laid, a double framework of wood, or panelling, 9 in . apart and 18 in . high, is placed above the foundations round the entire building, forming a kind of box. This panelling consists of pieces of wood, varying in breadth from 3 in . or $4 \mathrm{in}_{\text {e }}$ to over lft ., with a bead on the upper edge having an aperture by which the pieces are slid on to an iron rod. Being thas telescopic in construction, the pieces of wood can be lengthened or shortened according to the extent of the building. At intervals between the panels are placed upright At intervais betweentig pasts are plal fot throngh called separating posts, several feet high pass and are sit ascending upwards, there are apertures in the posts
by a mach better, more secure, and much less unwieldy arrangement; by which ropes are entirely dispensed with. Little hollow iron tubes, called cores, are placed in the walls, through which iron rods are inserted, connected with brackets, which are securely attached to the wall, being firmly screwed through the building with nuts. The brackets are just similar in form to supports used for shelving, and on the top of the brackets are laid the planks for the scaffolding, forming altogether a neat and strong support.
The two cottages, which are built as one, are 32 ft ., in length, by 22 ft ., and 8 ft . high. In each cottage there are three rooms, those in the front being about 12 ft . square, and the back rooms messuring about 7 ft . by 12 ft . The cottages are lighted by two windows in the front and four in ighted by two windows in the rete, which, being the back. The fooring is of concrete, which, being thoroughly impervious to moisture, makes the apartments very dry and comfortable. It is intended to have the roof bailt in the ordinary way with rafters and slating, but it is not uncommon for concrete to be used as a rooing material, for which purpose it answers very well. The outside walls,
when built, are finished with a coating of concrete, when built, are finished with a coating of concrete, about a quarter of an inch thick, a little tiner in the quality than that used for the ordinary building, which gives a smooth finished appearance to the structure. No supports are requisite for the lintels of the doors or windows, because after the concrete is hardened it is stronger than any support of wood or stone. When the building is in progress, spaces are left for the joists, and are temporarily filled with sand, which is easily removable at any time with a trowel. The spaces for the joists are made, alternately 3 in. and 6in. in depth on each side of the building, which diminishes the pressure on the walls considerably.
zemoes finiched in the way we have described wry the saving being from 35 to 40 the ordinary Far, she saving being from 35 to 40 per cent. The ceazase being impervions to moisture conf thertable the evememer. The dry in winter, and cool during comener. The rooms oan be papered over the meonting of plath or plaster being required, tho tho whe Beonting of plast
itit is is preferred.

THE "FOSSIL" MAN.

1.E disoovery of the so-called "fogsil" man lakian frontier, is likely to giventone, on amanted discussion in likely to give rise to an thean, or more correotly, perhaps, we shonld ow the foor of was found buried several yards ey eaksing from Mentone to Vintimille. Owing dity to the nature of the earth and partly to odryness of the elevated oarth and partiy to Wery fime preservation, and with the exkeleton is lying materials, is said to the weight of the Fabtration of the " Troglodite de Menton" A makinhed in the Courier of that town in the hoon reprodncod in a recent issue of the G, and has Cagarive. It represents the ekoleton Geological praition whioh might have been expeoted if it had antinaown that the body had been interred in the to lonees, and the arme folded about the bent at mif the man had died sloeping, and had beed meafols cimilar to over with earth. A nad been the sean around the neighbonrhon living animals in coee to the skall, togetarhood were discovered cear's toeth, all of which were pieroed with a hole, 3 if they had formod, pard of arroed with a hole, wee worked into mhentse which appear to have mendes, were found in craperg se well as bone the beoce of animule in abnndanoe, together with lower jawbones of soveral "herb-eating"

The discoverer off theromemains, whioh may or may zot be of mnoch imppostanse in forming or correct antinate of geolopioal time, torming a
 the pulsontolagy of the neigitibourhood, ing nowhion tod teeth of rariong ant a large colleation of bone ndinecestof rarions animals, principally of imypenas chielfy from, quars, and gigantic stags, Hobtained Tharries tolerably completely ha has now the the inding of this skeleton, and of first result is the Peagelly, who has had great be believe that Mr. Pangelly, who has had great experience in Mr. mome jenrs direoted the cares, and who has for Rolo mendertaken by the explorations at Kent's the Adranertament by the Britiah Association for A the diecomery, and his report, gone to the site that of Dr. Riviere, will be read by together with maler interest. In the mean time, two gentlemen toierubly well known in the ecientitio world have thair opioions on the partioulars, and expressed seam that the rock in which the From these we fis Dolitic or Jarassic limestone orve is situated Inll of cararns. The osve in , whioh is naturally and jofty, as well as are in question is narrow entrace being some 9ft. above the bottom, while jis the interior the depth is considerably greater bear (Ursus extinot animals anch as the cave streleton ; and the appearere found above the with the surrounding oharge of the place, taken to the belief that it wasteristio faots, leads neot daring the stone age, but not interthat of a period-the skeleton being, probably, Mr. Nicholl, corrobocates this opinion, examined the cavern appobecrates to be a case of barial eays that to him it thet and front of of barial, the stones at the this, for they were evidently placed by deaign as if to mark the place of sepalture. M. Riviere, thim fact, for ho removed have thonght much of the sheteton was photographed the stones before ace sheteton was photographed. If the man was co-crivitent with the extine might not have been Those booes were extinot animals so many of
93. atcileton. Close by, in front of the carte, therer

Was, Mr. Nicholl thinks, irresistible evidence that man lived in these caves at the same time neighbourhood. For in front of the exting in the talus, formed of breccia fallen from eave is a above. The stones forming this brem the oliff sharp and angular as when they fell frocia are a and are cemented by lime and oxide of the oliff a hard conglomerste. It appears thet iron into ago this conglomerate was cut into to some years for the railway works, and womerong some depth ments, suoh as knives, spes sumerous fliat implebones of extinct and exigting arrow heads, and brought to light and exiating animals, were the stones forming these facts, considering that sharp and angular, seem to Mr. Nicholl to affory very conclusion evidence that not only are the
 and flints are also just where they were thrown 5 inhabitants of the caves above.
It will be readily noderstood that discoveries of them, throw the conclusions to be drawn from has been matter of diepute for on a sabjeot that the antiquity of man. Formerly it years-viz, believed that man Formerly it was generally earth only after the appeared on the face of the called the extinct masppearance of what are after those phriogal mamia, and oonsequently cataolysms, or whatever else they may be termed, whioh, in times gone by, certainly bef termed, surface of our planet. In more recent days, however, the belief pas gradually gained ground that earth than was ancient inhabitant of the belief having arisen from from imagined, this his remaing and works intime discovery of with those of extinct animelely :evicobinted sence of fint implements animale. The proexhibit undonbted evidench whelioved to work of man, in hesps of cof the hand; animals is com, in heaps of bones iof revetinut which human remains have but the ingtances in deposits are far more have been foundin vimilar finding of this "fossil " man is condeaquently, fhe and whatever evidence it man dappostut point, antiquity of man will it may diford wa the the antiquity of man will be extenatvily discosesed Buckland dy criticised. So long backias 1824 ibr . Buckland discovered a large portion of thewtedlocommonly known the Paviland oeva, Clemerongan, but as it was ouly thindly queversed, mind inwilland,
 elephant and thinoceros, Whase sbures were tiomad
 not oontemporary wifh the havens this lady was Whose bones had, also tount-a resting-place bear, same spot. About one mile from this plaee in fhe ever, is another known as Long Hole, in which flint implements, unquestionsbly fashionsd by haman hands, were found along with the iewsil remains of the cave bear and hyrena, \&e. Anothier discovered by the Rev. W. S. Symplements wnes Arthar's cave, near Whitcharah Ryonds in King would appear to afford indabitsble Ross, and this antiquity of the flint fadabitable evidence of the found in connection with and cores of ohert cave mammals; for in one part of the cave beneath a thick layer of stalagmites which was itath oovered by what is beligred to be a portion itself old river-bed, flint implements were found mingled with the bones and teeth of the same species of extinot animals. Similar evidence has been obFrance from caves in various parts of Belgium and France, as well as in America. Dr. Schmerling
found in the Engi of man, worked flints, and boaves the bones indiscriminately mixed with bone implements, rhinoceros, horse, elephant the remains of the while M. Lartet, whenant, bear, and hymna Aurignac cave, concludes that not only was man contemporary with the mammoth, but that he We have said rhinoceros as food.
of this "fossil" enongh to show that the finding of this "fossil" man, from the bearing which it anoe, and farther diecories, is of some importbonrhood may er disooveries in the same neighdonbtless eagerly fairly antisipated, and will be sented by the explorations of osves evidence prequires the greatest circumspeotion in ther, revelling of the rather tangled skein in the unrs the mere statement that bones of man have been not mend mingled with those of extinct animals does poraneity of ty require a belief in the contem-belonged-rather the contrary to whom the bones oan hardly hare beon tenant of a coif for man

Was at the rame time inhabited by the cire beas hymna, and lion-bat the sarroundiog circum stances and the characteristic features of th earth in whioh they were baried are points which asnnot the negleobed in solving the problem in the olimate of great ohanges have taken place In the olimate of these iolands cince the care mammals lived and floarished in them, and these ound in periods are well marked in the deposits shown, out of forty-eight woll- Boyd Dawkina has living in the Palmolithio or "1 period only thirty-ane were "anciont atone" into the Neolithio, "new stoma," or Prehistoric period, while of these thirty-aes all bat sir art still liviag in Britain; therevead be:no dorbt, too certsing "limate during the Neollthio period was certainly "less severe" than the Palmolithic But all these considerations cannot be broagh: postponed till thess of one article, avd mast co-called "fossil" man is in the hands of gealogists

THE CONSTITUTLON OF NATURE. (Concluded from p. 458.)

J^{P}to the present point we have been dealing far vis viva has been entirely woraigotion. Thas templation of D and F. Let noreign to our conplacod at a practically infinite distance from ${ }^{n 0}$; beras the pall of gravity woald be nothing, and the pers ${ }^{\text {pr }}$ Pendicular representing it would dwindle to a point. being exerted on D sum of the tansions capable now begin to move in obld be a maximam. Let exayted apen st. Move obedience to the attrectio idea of vis viou arises. In moving towards the the particle D conames, 8 it monigg towards P thd us Hx our attention on D were, the tensions. over whth.itt is renoving Betmy point of the path 5 Fhere in te ramatity of nnused ten that poiat and but proint the tensions have been all consunad sis oiva. vefty inair place an equivalent quantity provionuly inirt whthout hywing mated that point disappeara, bot not whont buring medded, daring the infinitely smal atureation of Aterwotion, a due amount of amotion to
 toweo; tho
lindorg torce.
 Witen 4apaxthy, nor yet the conatenay of the vis vimo velue of the ermen bot the elabsalate constancy of the wina whasoro and the tension aree beginning the ri tension arthe vis viva is a merimum, while the work-prodacing power of the pry other point the part of vis viva and in par phate D consists in If gravity, inste? of tring ansions.
sion, when dhe particles are in contect, were ropaltherdenstons between two materiantact, the sum of F would be a maximum, matarial particles Disad D in obedience to tham, and the vis viva sera. If. F, vis viva would be reparsion, moved away from retreated from F the greater wonld be farther D for producing the amonnt of tension still arailebis. for producing motion. Taking repalsion into conservation of force affirm, the priuciple of the value of the tensions and rims that the mechanieal aniverse is a constant quantity. To tie materia short, possesses two kinds of propertyiverse, in matually oonvertible at an unvarying rato. Tre diminution of either carries with it the enhancoment of the other, the total value of the property re.
maining nuchanged. The anchanged.
gravity apply equally to we have here applied to mixture of oxygen end to ohemioed affinity. In e apart, but by the application of the atoms exis may be caused to application of proper measas the: that separates them. Whither acrose the spac as long as the them. While this space oxists, an towards each the atoms have not begon to mor else. During ther, we have tensions and nothir else. During their motion towards each other t tensions, as in the case of gravity, are eonverd
into vis riea. After ther into wis tiva. After they clash we have still wis ris, tion. It was moleculer trastranslation, it is ris: same considerations apply to mers. it is hest io and chlorine. Whs apply to a mixture of hydrea dark they remain separate, bat if a sugled in: apon the misture the atoms rush sanbeanfa detonation. Here also we have togiotherri:s into molecular translation, and moleculartranation into heat and sound.
It is possible to reverse these processes, tanlect first positions. But to acomplish this as mom thest - By Per Br London Aroo. Trndacle fopriated from the Jowel of the
ald be required as was genorated by their union. 3h revarsals occur daily and hourly in nature. the solar waves, the oxygen of water is divorced m its hydrogen in the leaves of plants. As og they re-endow the atoms of oxygen and hydro. with tension. The atoms are thas ensbled to cise amount of heat consumed in their separation e same remarks apply to the componnd of carbon oxygen, called carbonic acid, which is exhaled m our lungs, prodaced by our fires, and found uringly diffased everywhere throughout the air.
the leaves of plants the sunbeams also wrench the leaves of plants the sunheams also wrench ; act: bat when the plants are burnt the amoun heat consumed in their production is restored. Chis, then, is the rbythmic play of natare as
gards her forces. Throughout all ber regions she ards her forces. saion. We have the same plav in the planetary them. The earth's orbit is an ellipse, one of the
i of which is occupied by the san. Imagine the th at the most distant part of the orbit. Her tion, and consequently ber vis viva, is then a nimam. The planet rounds the curve, and begins approach the san. In front it has a store of ten-
ing, whioh is gradually consumed, an equivalent ing, whioh is gradually consumed, an equivalent
iount of vis viva being generated. When nearest tount of vis viva being generated. When nearest
the sun the motion, and consequently the vis a, is a maximam. But here the available tensions ve been used np. The oarth rounds this portion
the curve and retreats from the sun. Tensions 3 now stored up, bat vis viva is lost, to be again stored at the expense of the complementary force the opposite side of the curve. Thus beats the
art of the universe, but without. increase or art of the universe, but without
ninntion of its total stock of force.
I have thas far tried to steer clear amid confusion fixing the mind of the reader apon things rather an upon names. But good names are essential d here, as yet, we are not provided with such. - atterls distinct things. We have had palls and naions; and we might have had the force of heat, e Yorce of light, the force of magnetism, or the rce of electricity-al of which terms have been us confusion is happily s ovoided by the introducjn of the torm "energy," embracing ander it both nsion and vis viva. Energy is posesessed by bodies ready in motion; it is then actual, and we agree
call it actual ur dynamio energy. It is our old call it actual ur dynamio energy. It is our old
s viva. On the other hand, energy is possible to dies not in metion, bat which, in rirtue of attracon or ropalaion, possess a power of motion which ould realige itself if all hiudrances were removed. ooking, for example, at gravity, a body on the 11 to a lower one possesses no energy. It has ither motion nor power of motion. Bat the same dy suspended at a height above the earth has a wer of motion though it may not have exeroised Energy is possible to such a body, and we agree nsions. We, moreovar, speak of the conservation energy instead of the conservation of force; and I that the sum of the potential and dynsmic
eergies of the material nuiverss is a constant santity.
A body oest upwards consumes the motual energy projection, and lays ap potential energy. When reachos ito ntmotsheig oiergy being then a maxi-

When it returns, there is a reoonversion of
obeetial into the cotual A. pendulum at the it of ite swing puscomes potentiel energy ; at the west point of ita ave its energy is all aotual. A tentiel emorgy ; loosened, and shooting down as aralanche, it posecsees dynamic energy. The no-teeen grawing on the Alpa, have potential ergy: bat runhing down the Holsrinne of the true of the mountains themelven. As long as 10 roola which compose thom can fall to a.lowe vel, thay pomeos potential anergy, whioh is con hesion and hands them over to the act ihoir lavity. The hammor of the great bell of Weatptential energy when it falls striking, possesses djamic ; and alter the strale, te henergy becomen ply of potential and dynamic in the vibrations of osclations of same halds good' for the moleoala agenst its nai ghbour, ad reooils. But the ultimato amitude of the recoil is soon attained, the motion instat its energy is all potential. It is then drawn towals its noighbour with acceleratod spoed, thue, by ataction, converting ita potencial into dynamio energ. Its, motion in this direotion is also finally
chectit and, for an instant, again its energy is all potenth. It again retreats, converting, by repal. sion, it potential iuto dynamic energy, till the obangod ito potontial energy. Thus, what in true of the ch, al she swipgs to and fro in her yearly
journey $r_{\text {md }}$ the sum, in aloo true of hor minuteot
atom. We have wheels within wheels, and rhythm Within rhythm.
When a body is heated, a change of molecular arrangement aimays occurs, and to produce this change hest is consamod. Hence, a portion only of rynmic energy. Iooking thack on remains as statements made at the beginning of this article, now that our knowledge is more extensive, we see the necessity of qualifying them. When, for example, two bodies clash, heat is generated; but the beat, or molecular dynamic energy, developed at the moment of collision, is not the equivalent of the sensible dynamic onergy destroyed. The true equivalent is this heat, plas the potential energy conferred upon the molecules by the placing of greater distances between them. This molecular potential energy is afterwards, on the cooling of the body, converted into heat.
Wherever two atoms capable of uniting together by their matual attraotions exist separatels, thiey form a store of potontial energy. Thus our wooda forests, and coal-fields on the one hand, and our atmospleric oxygen on the other, constitute a vast store of energy of this kind-vast, bat far from infinite. We have, besides our coal-fields, bodies in the metallic condition more or less sparsely dis. tributed in the earth's crust. These bodies can be oxidised. and hence are, so far as they go, stores of potential energy. But the attractions of the great mass of the earth's crust are already satisfied, and rom them no further energy can possibly be obtained. Ages ago the elementary constituents of our rocks clashed together and produced the.motion of heat, which was taken up by the ether and carried away through stellar space. It is lost for aver as far as we are concerned. In those ages the hot conflict of carbon, oxygen, and calciam produced the chalk and limentone bills which are now cold; and from this carbon, oxygen, and oalciam, no farthoe energy can be derived. And so it is with almost all the other constituents of the earth's crust. They toot thoir present form in obedience to molecular force; they turned their potential energy into dynamio, and gave it to the universe ages before man appoared opon this planet. For him a residue of potential energy remains, vast truly in relation to the life and wants of an individual, but oxceedingly minute in comparison with the earth's primitive store.
To sum ru. The whole atook of anergy or work-on-power in the world consistr of attractions, repalsions, and motions. If the attractions and repalsions are so circumatanced as to be able to produce motion they are sourees of working-power, bat not otherwise. As stated a moment ago, the attraction exerted between tue earth and a body at distance from the earth's surface is a sodrces of working-power; becanse the body can be moved by the attriction, and in falling to the earth oan perform work. When it resta apon the earth's surface it is not a source of power or energy, because it oan fall no farther. But though it has ceased to be a source of energy, the attraction of gravity still acts as a force, which holds the earth and weight togethar.
The same remarks apply to attracting atoms and mowouies. As long as distance separates them, they can move acroes tion, and the motion thas produced may, is proper appliances, be caused to periorm mechancal work When, for example, two atoms of hydrogen unit with one of oxygen to form water, the alomes are arst drawn towards ench other-they move, they clash, and then by virtue of their resiliency, they recoil and quiver. To this quivering motion we give the name of heat. Now this atomic vibration
s merely the redistribation of the motion produce by the chemical afflity; and this is the only sense in whioh cheacical aflinity can be said to be converted into heat. We must not imagine the ohemical attraction destrojed, or converted into snything else. For the atoms when mataally alasped to form molecule of water, are heli together by the very attradion which first drew them towards each other. That which has really boen expended is the pull exerted through the space by which the distance between the atoms has been diminished.
If this be understood it will be at once seen that gravity may in this sense be said to be convertible into heat ; that it is in reality no more an outstanding and inconvertible agent, as it is sometimes stated to be, than ohemical affiuity. By the exertion of a certain pall through a cortain space a body is cansed to clash with a certain definite velocity againgt the earth. gravity can be sadd to be convertod into heat. In no oase is the force which prodaces the motion annibilated or ohavged into anything else. The matual attraction of the earth and weight existo when they are in contaot as when they were separats : but the ability of that attraction to employ iteell in the prodiction of motion does not exist.

The transformation, in this case, is easily followed by the mind's eye. First, the weight as a whole in sot in motion by the attraction of gravity. This
owrth, being broken up into molecalar tremacay fo which we give the name of heat.
And when we revarse the process, and amile those tremors of heat to raise a weight, as is trae throagh the intermediation of an elastio filid in the a certain deanite portion ol molecular motion is destroyed in raising the was In this sense, and this nense only, can sad to be converted into gravity, or more correcess into potential energy of grevity of the heat has created a, but simply that the old attraction he a power conferred upon if, of exarting a eorkia point of the falling weight and ite collision et the earth.
When, therefore, writers on the conservation at energy speak of tensions being "consemed" and generated, they do not meam thereby that ch bractons havo ban abilinkiah, sad. now smes brought into eacistonee, bat that, in the one cema the power of tie attrection to procteoc motion the been duminished by the shortanivg of the distune between the attrenting bodies, gelithat in the case the powar of prodacing motioz hae augmented by theimoreace of the remarks appis to all bodia Of the imace quality that onables exmmite attract mattor wo know nothing; and thelara quality. It talbos the facte of adtrection as they
 power. That power mase encistr in the fecme motion; or it may erisisis the fcrm of forea,
distance to act throumh The formar is distance to ach throw energy, the later is. pownitial osorgy, the eas law of conservation. The convertibitity of mitment forces consists sololy in tranaformations of dyme into potential, and of potential into dynamic emer has the convertibility of forco, at prement and scientifio meaning.

mbobanism.*

(Oomtinued from p. 466.)
WW now return to the questlon of rever rotate, it is easy to see that the carven mand have corresponding surficos. Dariy meotaninane adopted a plan of which there is an exarmplo themen viz., driving pins round the edge of the wheet, and these pins worked between pins on the face ef em other wheel, and thas continuon obtained in shafts at right angles in early days to ntilise the in earily days to utiliso the power of werer fere purpose of grinding corn. The water foll verticention and the watar-wheel, ther or, moved vertienting

required to rotato mat zontally. The troctive therefore, was, bew ath
we with verthell of water get a bortzene
motion. It was ent Es pins driven in wheels exist to in Datch clock were mave as machinery That are they forme or lentern-wheels. Fize. saneranpleofatres. rlantern-wheel Im? machinery the an ough hard wood firmis fred at each coll : light machinery the stave Bred only at one end.

The reason why wheels in mill mschimers wox made so broad, in all respeots so hoavy, and to ueyes so inconvenient and clumsy, arcee frem fect that the sharts were wooden onee, equare-capped at the end with an iron reop-a inon pin being driven into the wood for a beering Millwrights then had not means for these mogdom shats wh that care whioh me Pe lish duvolopment of the "tool-making" fecel"y given us, bad which we 80 succesoraily eppr iron shafts. these oartior wheele, with its ahait and woisee, ald of a morlern wheel, with its turned saaft and key-way, from whioh you will at the dificulties which beset meohenios in osee en centory. It wae needful that the wheols choull colve traly with one enother, but this was veryil calt with mooden wheele, wooden shafts, and weane pin-teeth. Remember that il was not until 8 wee pors time (A.D. 1769 that oastiron teeth rees and for wheels.

Another difficulty with a square wooden shaft was to make the wheel "run" traly. Aboat sisteen wedgos were used, driven in on opposite sides, bat, with all the driving, the wheel could not be made to ran true. An inspection of Fig. 7 will satisfy

any one of the difficulties alluded to. Now, bowovar, with Mr. Whitworth's ganges for shafts, wheels can be fixed so as to run true. Thut was one of the earlier difficulties, and when removed there was no difficulty in dieposing of these thick heary lantern-wheels, and machinists began to adopt mathomatically correct teeth, as well as true circular shafts and circular holes. There is no dificalty in making olear, without the aid of mathemation, the principles upon which these teeth should be constructed. There are diagrams on the wall intended for the purpose, but the subject belongs more properly to the next lecture.
But it was not only to shafts rotating at right angles to each other, as in the grinding of corn by water-wheels, that motion had to be communicated through rolling conthrough rolling conextended, the directions of 'shafte to be thus
driven became more driven became more and more varied. Hence for two shafts neither parallel nor at rightangles, but meeting, meahanicians were re. quired to provide a con. trivance. Fig. 8 will

this, and it also suggents how the true cones, or "bevela" as they are called, for such wheels are deduced.

Much will have more, and demand came for shafts not parallel and not moeting, hence has resulted a large class of wheels called "skew bevals." These are deducod from principles graphs of hyperboloids of revolution.

The teeth, then, being correotly constructed; the quention was, how can varying motions be communicated from one whoel to the other, or, rather, Itom one ohaft to the other. It can be done by taking different ourves, for it is the fact that, given one curve, another can always be found that will roll by a tooth arrangement in contact with it. Lobe wheels, and wheels formed npon the rims of equares, will work in gear wheels. Hers is an examplo and it will be found that and it will be found that these wheels work as traly togetber as if they were
circular. Here is another dircular. Here is another form, a heart, or cam, or obe-shaped tooth-wheel, for which we are indebted to the
 authorities at South Kensington, and these rotate as truthfully as if the terth wers formed upon the rim of a circular whetl. \mathbf{A} variable motion, cherefore, has been obtolned from a nuiform
formly, yet the velocity of the other shaft is not unirorm. There are many cases in which such arranging the velocities with in none more than in arranging the velocities with which the tool or work
travels in different travels in different machines. The mechanism for accomplishing that is devised in various ways. As an example of communication by rolling contaot, it has been done by elliptical wheels.
The history of elliptical wheels is very curious; and if there are any here who are interested in mechanism apart from mechanics, the thoughtful "planetary mechanism" in Rees's "Cyclopsadia" "planetary mechanism" in Rees's "Cyclopsedia" will repay the time given to it. The wonders of
those orreries, contrived at the latter part of the those orreries, contrived at the lalter part of the
last century, are quite sufficient to excite the astolast century, are quite sufficient to excite the asto-
nishment of mechanicians at the present day. Here is one of the plates in Rees's "Cyclopsedia"-viz. is one of the plates in Rees's "Cyclopsedia"-viz.,
one-under "Planetary Mechanism," showing an orrery moved by a small handle, but containing an immense number of wheels, probably more than 100 These orreries are very curious indeed, and we are indebted to them for two very important construc. tions, one being the elliptical wheel, the other the crown wheel. Astronomers wished very mach to communicate a clear ides of the motions of the heavenly bodies, and they attempted to do it by machinery, not the machinery we have, but by contrivances, although, in our eyes, clumsy, yet in those days very beantifal. The orbit of the earth being elliptical, their object. Was to get an elliptical notion. About the Jear 1695 an attempt was made y Haygheas to form what we now call crown wheels. He then called them contrate wheels, becanse the teeth were in the contrary position to the
usual one. He attempted to gat at the requisite usual one. He attempted to get at the requisite elliptical path by taking a contrate wheel, fixing its axis ont of the contre, and putting a pinion to drive it ; the wheel, therefore, went roand with a 10 illustrates this Fig.
10 illastrates this arrangement. $D \mathrm{C}$ is a long pinion, F the contrate wheel, A B the centre of the wheel F If, now, the pinion C D moves nniformly, the axis A B will have a variable velocity, mov-
 ing most rapidly when the distance from B to the driving portion of the pinion is the least. Roemer about 1710 , thought to accomplish the same object by a very ingenious contrivance, which is to be tound in the cabinets of the mechanically curious to this day. He took a cone, and knowing that an ellipes is a section of a cone, he thought he could not do better then take two cones, mating one grooved, and putting teeth ronnd the elliptice section of the other, so as to fit into the elliptical Thus he got a velocity which he took to grooves representation of the path of the earth round the sun. There is a model of it here. Then a gontleman, Dr. Desanglier, who was the first to deliver pablic lectures on science in London, came forward about the jear 1744. He attempted to accomplish about the Jear 1744. He attempted to accomplish elliptical form, nailing a string to each, so that one palled the other round.
Then Adam Walker tried so accomplish this variable motion by using epicycloidal inclined plane wheals, for more particular description of whioh see the "Encyclopædia." Joseph Priestly, in 1801, accomplished the same by a contrivance which was very ingenions, and which may now be sometimes available. He did that which no meahanic who had a character to lose would venture to do-he made wheels of which the large wheel haring mar, that is to say, he made a large wheel having more teeth on one half of it than on the other, and the teeth of both the wheel and the pinion being large, they worlzed together, though in a somewhat loose way, and thus one half Of the wheel travelled more quickly than the other. By this means a pretty faithfal representation of the path of the earth round the sun way obtained.
Then Pearson, about the Jear 1808, undertook to make, for the Royal Institution, one of the finest orreries, and one of the most extraordinary pieces of mechanism probably made in that day. He not only introduced wheels such as have been described, but attempted to get varions velocitios and varying distances by means of elliptical wheels ; and he, for the frrst time, introduced an epioyeloidal train, of whioh more in a future lectare.

Those of jou who are curious in the matter of "rolling contacts" will look with interest at a olock now in the Patent Maseum at Bouth Kensington. It was made by a man named Harrison, about the year 1715, at Barrow, in Lincolnshire. It is going to this day, and keeping good time. It strites the hour, indicates the das of the month, and with one exception, namely the escapement, all the wheels, all the teeth, and all the shafts are made of wood The olock is well worth inspection. The same Harrison gained the reward of $\mathbf{£ 2 0 , 0 0 0}$, which was time-piece. The key of that clock is not a key-as we underntand if-but is a pinion whioh drope into

a wheel. The clock is made with a Frenoh-com

 wheel, and not a snail, such as is commonly used in modern English clocks.Elliptical wheels are very good for rolliag, so long ss the driving wheel follows the driven one, but as soon as ever the reverse action takes place you will very soon see, by this specimen, that after a cortain portion of the revolation is accomplished, they cease to roll in contack. Up to a certain point they roll very fairly, but as soon as the one ceases to gain on the other the rolling action ceases.
An inspection of Fig. 11 may explain this action, or what would give an experimental illustration might be more convincing. The latter may two ellipses in candboard, and placing them on a drawing board Put pins through them at H and S, the foci Let the ellipse APM be the driver. It will be found that when the driven ellipse a \mathbf{P} m is in the position in which
A and (a) coincide, and A and (a) coincide, and
therefore M S and a $s h m$ ars in one cause the driving ellipse A. PM is ratiring from the contect is not preserved.
This difficulty was partially obviated by varions devices nntil now, in ellipses as in the more complicated forms of cam and lobe-wheels, the rims are prepared with teeth, and the theoretical rolling aotion if attained.
Messrs. Mair, of Manchester, use these elliptical wheels to obtain a quick return motion in their wheeis to obtain a quick return motion in their
planing machines, \&c. They have kindly sent the planing machines, \&c. They have kindly sent the model on which they made their calenlations, and you will see from it what is the property of an elliptical wheel. Each rotates about ils focas, and these ares are such that the distance from the oae to the other is always the same. It is quite clear that the distance must be constant or the shafts could not be fixed. Two equal ollipses rotating as described satisfy this condition. Observe in connection with the rotation of these wheels that the driven elhpse travels with a varying volocity, although the rotation of the shaft of the driving one is constant. This varying velocity has been $s 0$ arranged that when a machine is doing wort the outting instrament may be moved slowly. When the work is done, and the cutting instrument hes to return in order to commence another cat, then in quick motion is imparted to it. Assume that ing it is doing nothing. In the large model before ing it is doing nothing. In the large model before
you the cutting instrument comes back at three you the cutting instrument comes back at three that when there is nothing to do its indugtery is changed inte ranning instoad of labouring.
The class of rolling motions comprehended reder the term " mangle wheels" must be notioed. This contrivance, illastrated in its most simple form in Fig. 18, is capable of
 preserving conytant fic Fith a varing direotional relation The principle alone can not be dealt with. The end be doalt With. Kbe ead of a shaft, on which is keyed a pinion, is grided in agroove, as
shown in Hig. 18. Is shown in Eig. 18 Is will be obeerved that
this grooveretern into the inner part of the wheel, and therafore, as the pinion is passed trom the external to the internal teeth, the direction of motion of the wheel will be reversud. Now, as this groove may be of other than a true circular form, a
varying velocity ratio can be commanicated Then wheels sometimen falinl very important onoen in relation to the oommunication of motion by ralling contact.

(Tb be continuad)

House Dratns.:

THE Literaturo of the sewage and drainage atece Woos is gradually assuming gigantic propor and atiliealues have been written on the dieprese able have proc of sewage, and pemphlete inneme for all the ills of defective drains and draino syatems. The latest publicetion on and drains. which, however, is con pablication on the eabje. with the vier, the pin M. the pen of Mr. Osborne Roynolds, the profeescet ongineering at Owen's Colloge, Manchester, er as might be expected, unlike the majority of the sowage brochures and letters to the dailies, conitis

* Sewer Gas, and how to keop it odt of Hecing

Osnormer BezNoMns, M.A. Lomdon: Man of Hed
a really senaible and cortainly practicable plas for keeping out the sawer gas from our houses. This desirable object is not attained by employing any wonderfally constructed trap-a contrivance sundry epecies of which the inventora seem to think are capable of subverting the natural laws of fluids and gases, and of ouring Nature of her abhorrence of a vacuam. On the contrary, Professor Reynolds abolishes all house traps, and simply places
an ordinary siphon pipe between the house an ordinary siphon pipe between the house to conneot the bend in the esiphon-the trap, in fact, with the external air. The object of this is, of course, to carry of any gas that may
be forced through the trap before it can enter the house drains. He has applied this principle on the larger scale to his own house, and fond it to answer perfectly; and in order that our readers may comprehend this simple and efficient plan, we copy the illastration of the man-hole and trap in vertical longitudinal section. All the drains in the house are siphon trough T at the bottom of the man-hole, the latter being constructed as near the house as may latter being constracted as near the house as may above the bottom of the drain, which passes through above the bottom of the drain, which passes through
it in the shape of an open trough 7 2ft. deep and it in the shape of an open rough the of the pipes, the sides being rendered in the width of the pipes, the sides being readered in cement. inch above the orifice on the sowar side 8 , and an inch on the house side H, while to provent scum forming on the sarface, the pipe R brings rainwater from the roof and discharges it at the apper part of the trough T. Of course, in most cases a much simpler arrangement than this will suffice for the sanitary requirements of the house, for a siphon trap, Fig. 2, with a pipe commanicating with the surface and connected with the rainwater pipe, will be found to prevent all inflax of gas into the house. In this way,
FIC.

formed which effectually closes both the house and the sewer from the man-hole, and doubly closes the house from the sower; and if care is taken to arrange the orifices of the pipes in the man-hole as to be suncked out of the trap [even] should the pipe to be sucked out of the trap ceven] shonld the pipe
run full." The little book also oontains a dear run filt." The littie book siso commins fallecies of drainage doctors together with the saientific prinof drainge doctors together with the sciontiac prin-
ciples which should govern this portion of the sanitary arrangemente of our houses. It is a very useful book, with the contente of which every householder should make himsolf familiar.

THE IGNITING PONNT OF EXPLOSIVES. HXPERTMENTS have boen recently made by -1 Mesars. Leygue and Champion to ascertain the temperature of which cortein oxplosives ignite. They used for this parpose a bar of copper,
which was heated at one end only. It was provided with small grooves, placed 10 contimetres apart from each other, and providod with metallio alloys of different fusibility, so that the temporature of each part of the bar was eacily accortained. The substance under trial was then strown apon the bar in small quantitios, and the pleoe Where it whited gavo that to explode the different substances the following temperatures were required :-

Deg. Der.
Chassepot percussion-cap powder Fulminate of mercury.................... qual parte of sula
of potassium
Gun-cotton......
Nitro-plyoerine
Chase powder
Cannon powder
Picrates of mercury, lead and iron... Picrate powder for torpedoes
muaket
cannon …........

Proressoz Aanssiz and party at leat acoounts were It Patagonia. They have found a "dovert where even thlotilen will not grow," bat as componmatlon, have aleo dibcovered "oysters a foot in diameter."

MPROVED AUGERB.

THE improvement in angers and bits shown in the annexed illastration was patented by Mr James Swan, of Connecticat, bat the "letters" are roid through neglect on his part to file a specifica. tion. He claims to have improved the well-known "Cook" bit, which was patented in this country in 1854, by a modification of the catting edge. In that bit the catting edge, commencing at the sorow, falls beck, so that the most advanced catting poin is at the extreme edge. The object of the moals and act as a shave from that point to the extreme edge, whereby the "tearing" often experienced in edge, whereby the "tearing often experienced in the use of the "Cook int is avoided. the improve ment consists in starting the out of the fioor lip at
nearly the opposite side of the screw point to that nearly the opposite side of the screw point to that
in which the foor lip terminatea, and making the in which the foor lip terminates, and making the site side, then reversing the carve, and carrying it forward up to the termination of the gouge lip.

Fig. 1 is a side viow of the improved bit ; Fig. 2 an end viow; and Fig. 3 is an end view of the is formed in the usual manner. In the "Cook" bit the floor lip oommences at the point i, on the same side and nearly in the same radial line as its termiside and nearly in the same radial line as its termi-
nation n, whereby the cut is practically a square cat, the extreme edge being, if anything, a little in adthe extreme edge being, if anything, atione in ad.
vance. In the Swan form the finor lip commences at the point a. From this point the cutter curves at the point a. From this point the cutter curves
around to about the point b, or half-way from the aronad to about the point b, or hali- Way from the
centre to the edge, which last-named point is nearly opposite to the point of starting. From the point b the carve is reversed and made concave up to the completion of the gouge lip d, hence the cut acts as a shave to gradually cut from the point a towarde the extreme edge, the centre being always in advance. As the letters patent are roided, it is open to any one to make angers on this plan, and test
their advantages (if any) over the form in common use.

THE INOROSTATION OF STEAM-BOHERS.

A LLI natural waters contain more or less mineral 1 matter, consisting principally of carbonates of lime and magnesia, sulphate of lime, and chloride of sodium, in solation, and clay, sand, and vegetable matter, in suspension. The many other saline in gredients found in various waters exist in very mall proportions, are generally very soluble, and have no relation to the atility of wators in boilers. Of the above-mentioned salts, the carbonates of lime and magnesia are only soluble when the water contains free carbonic acid-oonsequently the waters of rivers, lakes, \&o., contain them in less quantities than those of wolls, springs, and creeks, owing to the procipitation cansed by the spontancous evolation of the solvent on exposure to air, heat, and light. American rivera contain from 2 to 6 grains of saline matter in the gallon, in solation, and a varying quantity in sus pension, generally exceeding 10 grains. Well and
spring waters hold but litte in saspension, but a spring waters hold but lithe in saspension, but a
quantity of the dissolved salts, varying from 10 to 650 grains in the gallon. Whon such watar is boiled the carbonic acid is driven on, and the carbonates deprived of their solvent, are rapidly precipitated in a inely orgstalised form, tenacionsiy adherent to whatever they may first fall apon. Bniphate of lime requires 500 parts of water for its solution, and as the water evaporates supersataralion occurs, and the salt is procipitated in the same form and with the same adherent quality 28 the carbonates. calte are or ceipitated by the same process of anpar eaturation, bat, owing to their greater solubility, much more evaporation is required. All suspendod matter gradually tends to subside. This combined deporit, of which the oarbonate of lime usaally forme the greator part, remains adherent to the hner sur face of the thicker, till it is as dense comes hardar and thicker, sul at length may obtain such a thickness as the water by any fire that can bo placed in the

- Abetrate of a papor resd before the Amerionn A usio oiation for the Adranoement of Soience at Indlanapolte
ig7, by Dr. J. G. Roonke.
farnace. The high heats, sometimes necesmary to heat water through thiok soale, will sometimes convert the scale into absolate glass by combining the sand with the alkaline salts composing it; consequently more fual is required to heat water in an incrasted boiler than in the same boiler if clean. A scale one-sixteanth of an inch thick will require the extra expenditure of 15 per eent. more fuel. This ratio increases as the scale is thicker. Thas, when it is tin., 60 per cent. more fual is needed ; țin., 150 per cent., \&c. To raise water in a boiler to any givan heat, the fire-surface of that boiler must be heated to a tomperature according with the thickness of the incrastation in an increasing ratio. Thas to raise steam to a pressure of 90lb., the water must be heated to about 820° Fahr. In a olean boiler of fin. iron this may be done by heating the external aurface of the shall to about 325°. If tin. of scale intervenes botween the shell and the water, such is its non-conduction that it will be necessary to heat the firesurface to about 700°, almost low red-beat. Now the higher the temperature at which iron is kept, the more rapidly it oxidises, and at any heat above 600° it very soon becomes granular and brittle, and is liable to buige, crack, or otherwise give way to the internal pressure. This condition predisposes the boiler to explosions, and makes expensive repairs boiler to explosions, and makes expensive repairs
necessary. Again, it is readily seen that the presence of scale is extremely wasteful of fuel, and a hindrance to the proper working of the boiler.
Many methods have been derised to prevent and remove incrustation. Picking, sorraping, cleaning, sco., are very generally resorted to. Sach is its toughness and tenacity, however, that this only partially succoeds, and is moreover expensive both in time and money, since it is generally neoessary to lose a working day in the operation. Various mechanical contrivances have been introduced, intended to intercept the precipitated saline matter from the supply water on its passage through the heating apparatus. Thoy consiot essentially of a series ou been hans trost to boiling by the exhanet steam, the oarbonates are precipitated, and subaide upon the shelves, stram, and other obstractions, over which the wator flows. This plan, however, only partially falals the purpose, since it only intercepte a portion of the carbonates and suspended matter. The soluble salta all pass into the boiler, and a great portion of the dissolved carbonates also, which cannot be precipitated during the short passage through the heater. The scales, it is trae, form more
slowiy, but as surely. It is impossible to male guch contrivances completely efficacions ; no meraly mochanical arrangemeat will suffice. To chemistry alone must we look for the desired means. For a long time simple chemioal means have been used in an empirioal way with some sucoess. The modus operandi of some of these I will notioe.
Starchy matters-such as Indian corn, potatoes, oil Starchy mattars-much as Indian corn, potatoes, oil cate, \&o.-prevent scale only by enveloping the procipitates with gelatinous matter, thus lessonimg their weight, causing thom to float, and obviating their agglatination into solid masses. This appliostion, however, tends to oanse foaming or frothing of the water, matiog it imposeible to determino the quantity in the bo dor, and hence is objectionablo Molasses, iraits, ciaer, alops, vinegar, cane-juice, loss acotic acid, placed in the boiler, convert the oarbonates into solable acotates. The sulphato of lime comaine 1 naltered horer and the phan being as remains unaltered, howover, and the iron being as mattor, the boiler is alowly, but, euroly, damaged.
Oak, hemlock, and other barks and woods operate by means of the tannio zoid therein. Various extracts, such as oateohn, logwood, so., very rich in cannin, are also used. Tannio soid decomposes the ourbonates, but, unlike the moetates, the resulting tannates are insolablo. Thair specifio gravity, ton end having no tondenay to sadhere, do not agglatinate into a mass, and cannot form a soale. the sulphates and oblorides are not aotod upon at all by the tannic acid, and will inorustato notwithtanding its presenco. Tannin, as offered in the abovo-named agente, is left free to aot upos the iron and will, after a time, exhibit its damaging effeots on the boiler.
The fixed alkalies aro much nsed for this purpose; in the various forms of lyo, ashes, oarbonato of soda, cauntio soda, potash, \&o. These agents decompose the sulphate of lime, sulphate of sods or potash, and carbonate of lime being the recults. The arset in held in solation, the latter is precipitated, bat in larger orystals, which do not form 30 refractory a sonle as ordinarily. The carbonates of lime and magnevia are also precipitated by these agente, the free carbonio acid being taken to form carbonates or bioarbonates of soda or potash; the ohloridee are not affected. This method simply modifies the form of the precipitato, and consequently the quality of the coalo, without aftording any moans for its provention, and therefore desorves but little attention. Ammonia and its carbonato have a procisely similar action, and the same objection stands against them. These alkalies have no chemioal action on the boiler, but rather tend to preserve it, inasmuch as they prevent the free carbonic reid from combining with pro insoluble crent of oxide of inon (formed by cos
tact with the water) to form a solable carbonate of
iron. which, being dissolved wonld which, being dissolved away from the iron, woulion. Chloride of ammonium is anped to fresh action. Chloride of ammonium is another means bonates of lime and magnesia. The reaction car duces carbonate of ammonia, which, being volatile passes off with the steam, and chlorides of volatile, and magnesinm, both very soluble. This is an eftlis the ammoniacal odour of the esorped stobjection The foregoing are methods in which steam. is used. They are frequently which a single agent of obviating the mentioned objeotions. Starch tannin, and soda, constitute the basis of Starch, these combinations. Crude petrolenm is also nsed With reported partial success. The rationale of it action is not well understos. The rationcle of its
plexity of its many of its chemical constitution. There are posed essentially of these els at present in use com ever, with the addition of othents, generally, however, with the addition of other things, introduced
for the parpose of disgaising thir Besides these many disgaising their composition. the public which many otber preparations are before general resemblance, been patented, all having a and sode are the principal ingch as tannin, starch, and sode are the principal ingredients. in some form. body catechu is most generally the tannin-bearing body; sal sods, the alkali; and flax-seed, oil-seed cakg, of tho or coarse flour the starchy element. In most of those which I have examined these very useful agents have been simply mixed empirically, withont regard to ohemioal laws, and they generally contain more or less free tannio asid, and a considerable tende to produce insolabie vegetable metter, which Besides these methods, in gi berias being useless are introduced directly into the boiler, others have been devised, in which the waters are depurated have chemical means, before entrance into thrated, by Clark's process consiats in trane precipitation of the carbonates with milk of limes, the froe carbonic scid solution and ap the salphate of lime remaing in conation. Another method, proposed by myself, solable on converting the earthy carbonates iuto lising the oxcess of acid by filtric acid, and neutrabonate of baryts (witherite) in coation through carsoluble chloride of barivia thas forse powder. The the sulphate of lime, chloride of calmed decomposes in solution, and the sulahate of calciam being kept in solution, and the sulphate of baryta being dept
posited insoluble. This method porited insoluble. This mathod recommends itself ness and simplicity. Oxalio acid mat of its cheap. efficiently for the complete precipitey be ased very lime salts as insoluble oxalates, bat on all the might be a bar to its use. Tannic and scetio expense the excess being properly neutralised by oarbonats, of soda, may also be used for tank depuration. any great methods, however, cannot inflaence to the removal of this is as neale already formed; and as it is palpable that that method is best fror general application which secures the oomplete removal, as well as prevention, by ohesical means operating Hathe boiler
Having this end in view, Dr. Rogers proposes two into the boiler of a sufflcient quantity of the oxalion of soda to cause the imment quantity of the oxalate scale-forming salte as they enter the boiler con of the ing them ing salis as they enter the boiler, convertpitated as a mushy sedimenta 0 form scalo, and whiah may, which has no tendency mud-receiver, or otherwise voided. In from the process tannate of soda is the agent, kept constantly present in the boiler in solution; it decompostanthy carbonates of line and magnesia as thesyes enter, tannates being precipitated in a light, focculent, amorphoze form, so that they do not subside at all boiling carrents antil they find sheir peion by the same receiver, when they fettle their way into the mass, which may be easily blown ont loose, mushy time. The carbonate of eny is retained in solntion, becoming a in the reaction appropriation of the free carbonic acid in the water This decomposes the sulphate of lime in the water. sulphate of sodo beiog retained in solntion resalting carbonate of lime being rected upon by fresh portions of the tannate of sodag as above. The constont prions enence of the alkali protects the iron from ellant preeither of the carbonio or tasnic acids all action, reactions talse place between the tannate of some more slowly some exing soale with like resalts, but in praotice, in removing the deposit, if it exisired, in prootice, in removing the depoait, if it exists in Portions of conie quantity.
which may of scale are detached, from time to time, Which may be removed at the usual eleanings, which should be made at short intervals, When possible. antil the boiler is entirely alear of all inorustation, arter Which this will not be necessary. Extensive monstrated its utility for all varieties of boilers deis economical, easy of application, ond boilers. It adaptable. It may be ased in merine and generally as those using fresh water, since the boilers as well ordinary wateral with that formed in boilerg naing ordinary waterg, conaisting almont entirely of the
lime. The chlonime and magnesia, and sulphate of bnt is only incorporated in the scale to a slight. extent.

LETTERS TO THE EDITOR

USEFOL AND SOIENTIFIO NOTES.

A Yew Dryer.-M. Mine states that if 12 parts of best shellac and 4 of borax are dissolved in 100 parts o an excell beat, and when cool, mingled with turpentine an excellent and rapid dryer for oil paints will be pro-
duced. The solution may also, bo says, be used as a
varnish. varnish.
Testing Coffee-Many adulterations in coffee index. If a teaspoonful of genulne ground coffee bure upon the a a tumblerful of cold water, it will fion cofiee will sink at once.
SDontaneous Combustion of silk.We learn rom Dingler's Journim that it has been found that silk koods containing picrate of lead frequently catch fire
in transit by railway. Experimento uence show that a very slight amount of in conse sufficient to iguite samples of such silk fabutos.
Proposed Large Steamship.-It is stated that Clyde shipbuilders for a new vessel for the National
Steamaip Cleamship Company. She is to ressel for the National
Ste tween Liverpool and New York. and is to be of gigantic propordimensensions only to those of the Great Eastern. The of beam, soft. ; depth of hold, 35 ft . 57 It ft : ; breadth
the that this great steamship will make the royage from port to port in seven days.
Aluminium Coinage. - It has beetr a question in Paris of replacing the present brouze money by an
alloy of aluminium. The a alloy of aluminium. The adoption was supported by
M. Salnte-Clair-Deville, but opposed by Marcotte do Quiviêres, the director of the Mint. de Pelifand, chemist and assayer of coin. The resend pro and con. are not yet made public, but the Govens ment is recommended by the commission of the Mint
to continue the experimen to continue the experiments with aluminium.
Cleaning Greasy Wool.-A large number Wednesday week at Clegg Hall Milla assembled on to witness a new process of Hall Mills, near Rochdale method and without the use of alkali. wool by a cold ployed is fasel oil, and a large bale of wool greasy emdirty as possible, was subrgitted to experiment. wand underetand that the opinions expressed were faveurabe to the process, which is that of Messrs. Paul Toepler
and Co.
Utilisation of a Waste Material -It pears that large quantitios of grease fund their way Board of Wewers of Bermitted its. Seven years ago the the underground channels in the sewer men to explore the result was the collection of grease or faod, and when sold, and after paying liberalls or fat, which, collection, left a balance of $£ 104$. This sum is to of devoted to puilic imirovements. This is anothorin"waste products." of what are generally termed
The Cholera.-Anthentic nomertical returas of the progress of cholera in Russia he before us (British Medimay be anticipated. In the that most imminent danger slaw there had been, on Jube 12th. In the of Ekaterino terinoslaw, 316 cases, with 195 recoveries town of EkaIn the Government of Kiew there liad beand 109 deatha of Klew, on June 21st, 2105 caseas, with 7 , in the town and 1001 deaths; and in Oumane, on Juns recoveries cases, with 74 recoveries and 43 deaths. In On Oth, 196 June 2ard, there had been 173 casos, with 60 dessa. on and in Kherson there had been, ou June $218 t, 301$ cases With 70 recoveries and 60 deaths. In Kane 180 Podolia) on June 10th, there had been In Kamenets 6 deathis. Cholera has also broken out tn cases with
London Association of Foremen Joeseph Newton, The mecting on Saturday, the cth inst., Mr yearly meeting. The auditors' report show a halfbalance sheet correct, which left some cash and the not incousiderably, which left some cash and some treasurer. The total value of ordinary funds amounts 11,294 178. 1d., stock'(The superannnation fund to orphan fund also leaves a small sum in in the widow and
the the treasurer. The report is signed by Messrs. W.
H. Sissons and Joseph Newton, president, and auditors; by Mr Jones, treasuren. Tresident; and by Mr. Meredith 187 ordinary and 74 honorary mounts altogether former and sis of the latter class maving beon added to the list since January. At the last meeting Mr. Charios Lafare an honorary member: Mr. and Mr. Alphonse put into nomination. On the Mr. James Halket was members (Messrs. Keid. Coates, and Sithy of three senior to the statute three junior mes, and Sulmen), according Gibbon, and Bulleagh) stepped into (Messrs. Haughton, three now members of committee elected werc, Messrs Virtue, Caruaby, and Grantham. Mr. Scott was a summer outing audtor. The meeting resolved to have to Epping Forcest, the detail arrangements to be left in
the hande of the committee.

[We do not hold owresives reoponaible for the opinione of our correspondente. The Editlor respectfully ruquarth poeible.]
 Garden, W.O.
 4ll Cheques and Post Offec Ordors to bo mado peyedio
 minch as he knows but no moro; and that not in this only, but in all other mobjects: For nach a poron tis ongy, but in all othor subjects: For anch a porson may havo some particular knowledso and oxporionce of th othre thingach kows no mor such a fountain that an to and yet to keep

** Ir order to faollitate reforonoe, Oorrenpondenter in speaking of any Lettor proviowily incortod, will oblife is on whioh te appeare. of the Letter, at well at the pago

AXES OP THE PLANETS.

[4578.]-I AM obliged to "W. T. R." for his conver (let. 4356, p. 460) to my question on this subjeot He does not, however, say whethor he takes his informe
tion directly from Schridter tion directly froin Schrïtor. I have good remorn for bat if only that "W. T. R.'s" information is correct; but if only taken from some work on actronomy it doee "S ronnensyatem" the doubts I expreseal. In Klein's "Sofornensystom," the only German work I beve which refers to the matter, it is stated plainly enough, "Nach
Schröter soll der Fe Schröter soll der Fqquator des Morkny mit der Ebeap der Bahn einen Winkel von 20° bilden." Bat I have is inclined 20° stot the as plainly, "the arto of Mercury Why I ask fore some inform of the ecliptic." That is why I ask for zome information ee defaitinn roferer conld, of correwn account as to reapo ads thombl 1 Maseum, or, cal Society, bit jut now I am pmanticeliarly buys.

Bracemo A. Procran

A GIAATI PLANETR:

 his, I can assure him I had no exomh incelien, my onily motive for the omiasion was the denire to same mopace. I ased all the tangible part and sumcient to give the sense withoat alteration. His asks, have I never beard of a geometric mean ? I haro heard of such a thing.
but did not see the moat diat article. Mee the most diatant allasion to it in his mean, he did not ham why, li he meant the geometric " midway "? which, it now appeara, maing the word Bomething quite different to what he waithed to sam Midway means the part equaily dietant from to cas. ginning and the end : 8,000 miloe io the from the bo In this oase and 840,000 milos the evd, mod Jupituret
diameter of 82,000 milas mren diameter of 82,000 milea mitren multipilted by tive is In his artiole he does not oppat of tbe tomen of eny number, distance, size, or quantity, nor do I mention to be told that Jap!ter's bulr is more than Do I need times greater than tho earth's $?$ or that it wasand relatiocorrespondence between thie relation wasd the riew 3" I do not require the information he ho hed to me why he did not say Jopiter do wish ho woald ten greater then th not any Japiter was as many timee than Japiteri, if that was the tun was timos gracter eaging Japiter was "maid what" he meant, ingtoad of sun and earth 9 Was "Jaldaray" in sizo between the
 to be orer six handred thonsand times as large require earth, instead "of more than a thousand time as." By no posible moans can he make the onde of his erge-
ment meet, for il Japitor wee "mide

Ho tolle as cornible red-hot surface of the planet him reacenafis cernible, perhaps even through the clond balts be dic defnition of the pith of his argg given us his owd poscible to grapple pith of him argement, it ie at lant that essence of his reakonidg" congists of yis bowevar past the imponaibility mightocoar. Daring eoveral ders haring hid the bright inviaible at noon day, the cice clonds oan thas hide the almost rartion our aighe. If our thounands of times brighter the vartional ean. Which is would the (to use his own wordg) is red.hot body. What olond susponded in the atmordishare of Jopitermaces of he visibilt of a red al plapuare of Japitar" do with Mr. Proctor obserrer planet ?
heat of Jupitor as (in the main) not obocare" prosentes the particalar, then, his theory is fon obocare." In atele by I red-hot body are chieffy obserte het rayn amiltared aceasione to which I hare alloded, whea the coos

Tas inviatble, the equeous rapour (need I may by abeorption) 10 matarinlly retarded the paseage of his
radlant heat that the temperatare was fally one-third radiant heat chat the temperatare was fully one-third
lower than it would have been had the air been free lower than it would havo been had the ar boen If I have read his artiole be sayo, I know perfectly well
that "ho does not regard the ollond envelope as coverthat "ho does not regard the olond envelope as cover-
ing the whole of Japitor." I am aware he doee nit ing the whole of Japiter." I am amare he doen nit
view the whole of the planet as clopd oovered ; bnt jadging from his own langagege, he certainly considers the red-hot portion to be in that condition. In that
paragraph of his article wheroin wo are Arst introduced paragraph of his article wheroin wo are arst introd
to his idea
id heat is the only form of foree which conald scoonnt for
the enormous macsea of aloud suspended in the atmothe enormous massean of doud sumpended in the atmo-
sphere of Jopiter. An it seems dimealt to conceive that the domis covid bo mintined at a great beight abore intencely hot, of hot, pariappe, se red-hot iron. If me sapposed thic to bo the ceso, wo should fivd at belts." Hera, then, he says, 'tho . redhot portion is
 thom at ${ }^{2}$ greet height; in fect, it is cais gratat olood meed-hot phaphar fro opermons olocds, and the peantiarity of thetr polions, provest his fioning thom heat that hae produced themen-he wese portions of the
 compols him to boliove Ja piter ito to iatonsoly hosaled, woald provent the plavot moins to vitithlo however rod. hot ho might bo. To have mmio. Whats theory oven elighty plaraible be thoetd bave givon Jopiter at through a vary moderate tataknoses of, alowd ace e red-
 a red faco.

Is it not olear Japiter manoot to red hot, for it he Wroe we aboald see no red balth, they would be hiddon trow our whiw bythe caormose tamese of oloud"' In
 In my lottor I aala, "Nom, if Japlitar io at a red heat foundland fog bant; in faet, they marriont, partake more of the naturo of somi-coosdensed detme thane of terresof trial clonde], for if clowds ere gencrated by the red. it wourld be soant hiesing back in the ferma of sleam." He givee caly that part of the scotcece . Thich I have pat in brackots, thue making mo sppearito sayy ahaon the rimas holding the optaion that Japiters aleede are like semi-eondensed ateam, and be maangod to do this, by omittipg the morid "il Japitor it at a rod houk, in a red-hot Japiter, it is equally epporeat I cannot in a red-hot Japiter, it is equaly eppareat I cansot like mature I sapposed they would be if he were rou hot The conolading portion of the sentence rom by italios, he ignoros entiroly; he doess not oven atiompt to naswer it; and seo it is pertinent to tho queation anable to polut thie portion of my argamonts, Which is cortainly direotod to the intoseocy-heated give an illantrative onloalation in preof of my meser-

 astonishos him so greally that ho petalantly tolle me I,
 If I do it as wall as that I am indiected, Por coboolboys coant for I will give him with pleapare ; bat may I nek adin for I will give him with ploagetre; bat may I mak supplied a caloalation, proviog that the amtallito in quention oould reoeive amy oonalderable amount of hast from a red-hot Japitor; and eo rolating me instead of
 thing, whilot ho hardly altomptas to anower at all, apd thronghout the whole of his letter proves nothing. The mothod of calcalation I employed is similar to that Which Sir John Horaohel ased in eatimating the moon ($1,244,619$ milos) Japiter'c rays are by radiation spreed over a bollow rphero of the hearoas, whoce sur.
 tor's arriaco. Now, en hio rayn have, at chat diat, thee, temperatare ofll, from this oanae, be redaced to the 600th part of What they had at Japiter's surface; therefore, if Japtitr's hoeat is equalto red hot iron, then $1200+600$ as mat bo the amount of heat he roold impart to hie ortor satellito. He is amazed at my asserfartheat moon, if he shove only as a sed hot body, and "diso moald appear jant as bright as red-hot iron." Aleo, I am informed that I shane in the common orror that distance pets se has an effeot in dimiuishing the apparent brightnoes of a laminoas objoot", With all
dae deferenco to eo great an anthority I deoline dae
taking his acesertion for granted, and althoagh 1
know it is the orthodor coiontilie riem that distance does not diminish brillingoy, I shall alill pereiot in believiag it does. shine the moon mbich reanders the darkor part af the moon juat vinible, on a dear aight, when the moon
in a fow days ofd. The earth, owing to greater size, sheds on the moon eloven timea as mach light as the
moon aheds on ne, therefore, oarth-ahine on the moon moon abeds on ne, therefore, earth-ahine on the moon
mast be eleven times brighter than moonghine is here mast be eleven times brighter than moonshine is here,
and if distance does not diminish brillisincy the earth and if distance does not diminioh brillisacy the earth illamined part of the moon shonld appear to us very
much brighter then the moonlit earth. Now, is this the case ? I mak any of your reaidera if, on A cloar moonthe case ? 1 ask any of your reaniera if, on a cloar mood
lipht night, a brick wall, which is not a very good reflector, does not appear many times brighter than the earth-lit moon ? Of coarca, the depth of atmoaphere through which we cee the moon has considorable
effect in dolling the brillianey of the earthahine, bat making all due allowance for this it is evident that distangee is the oanase of the great diminution of bright. ness we no plainly see. I shoald like to ask Mr.
Prootor why, if dietance does not reduce the apparent brightress of a imeinose objeot, the stars-buns at bright as our awn-do not appenr co brilliant as the an ? tharo are no atmospheric affeots to intorfere in this oase. I Mrab arraid so groat and potent an astronomer as Mr. Prooior woald not be satiofied with potty tarrestrial evidenoes, or I might have offerod him many experimental proots showing that ditance doos
diminish brightness.
He oomplains that I make him seg, "Japiter shines three or four times an brightly as onls," and his shate shoald, if refteoting the san's light only," and that I omitted the "importent vords" conatitated like Mars or the moon." Then he goes on "To remove all miaspprehenaion, I aotanlly added the words, ' Japitor ahino, in faot, vary nearly as brightly at though, bo ware constitated like ope of oar terres.
trial cloude : This woald, however, have zuined trial cloondo ${ }^{1}$, This moald, howover, have zained
Hyrab Soppe
ingonione argament, and in, acoordingly not admitted." To all this I reply: "It he will refor to my lettor he will fand it was Dr. Zülnner, and
not him, whom I made eay this ; bat I wrote on the not him, whom I made cay this ; bat I Wrote on the
actumption that he had edoptod Dr. Zöllner's estimate of the planet's brillianoy, and as there is no reason for supposing Japiter to bo a bettor refleotor of light
than Mars, the words "if conatitated like Mars" do than Mars, the words "if constitatod like Mars" do
not altor the eace. II my ingenious (1) argnments wonld not altor the cace. If my ingenious (1) argnments wonla
have beon ruined by the fact of Japiter's ohining nearly as brightly as if conatituted like one of our Correstrial oloads, why does ho not show us how they would have been ruined ? why does he not meet argamont with argamont inetond of merely making an insidions acsortion of no rakee? What do I mean he abks, by saying that sanohise here is hundred of times brightor than the light enaittel from a body of nocuratoly measuring light es to have of measuring of acouratoly measuriag light as wo have of measuring
heat-in faot, we cannot meacrase it.at-all, wo oan only eatimato it by the improeman it matros on our senses. I will give the method I and of estimating the li hit of a red-hot body med leave it to others to jadge of ite ralue. Let ua take a page of printed matter (say of the same sized type as 'his articlomas printed in)-and
hold it within a foot of a large red coke fre in a darkened room, we ean then juat noe it sufficiently clear do rend it , and the distanco is so small there is hardly any loss by radialion; them let ns thate the same page moon, and we shall and it as easy or cesier to read it there than by the light of red-hot eoter, however close we hold it. From this I infer that moonlight is as hot body, and sunlight is demonstrably thousands of times brighter than moonlight; therefore, if the light emitted by ar red-hot body wat oven ten thenes as bright as moonlight, sansbioe woald still bo hamdrods of times rednoes.

THE FERPEIIIM TN YORKYHIRE.

[4574.]-Tre aconnnt of the Sottle Cave discoveries, copied from'the Pall Mall Gazelte into p. 823 of the magamaio, had originaly appeared in the former
paper the very same day I noted, that your number of Jane 7 enme forth, with the moat contemptaone domands sor ony widence, eithor of the occourrence or about to notice the aingalar opportaneness of the anower, had you not ouved me the troable by reprodacing it entire, and 20 Mr . Brookrood, the noxt weak (let. 4356, p. 853) pointed out the not write this, of the remarkable godeond, I should print in yoar copy that pazzled me for a minate prink ha yoar copy that pazzled me for a minate,
and may therefore oither pozzle or quite doprive nome readers of the gist of the eridenoe. A little bolow the middle of lant oolamn (p. 328) a line bexing, "Bat obore wore ovidenoes of a very much older Roman oo most ronders to infor that "Roman " is a misprint for human, the argument being that as the two foot of frost obipe, above the newor haman relios have taken roandly 12 centariee to secamalate, the six feet of eimilar chips botween the two classes of relics may probably have taken the provious 86 centarise rovivo the sabject, 1 would larther romark that the apper Romano-Celtic rolics really date themselves more precisely than the Pall Jfull writer ventared to Ax them. He says "there are two ontremos between
which the date of this occupation of the cave mast -the fifth contary, as shown by tho barbaric of and the fret quartor of the eeventh oentary, witn n the by the Northumbrian Angles." Now ooipo aquered ciroulated in suob limes (ae they do nam, cons'antly Wore made; bnt surely these Rano two alter they

dwolling till their coantry mas setocaly invaded by poar ascestors the English, which was not the case in that
very westerly part of modern Yorkshire (bat ancient very westerly part of modern Yorkshire (bat ancient
Cambria) till well into the seronth oentary. The Anglos, unader Fa, had sotitiod the eactorn watershed in the middle of the sixith, bat To read of no wariare
by them weat of the Penine ohain till under Bod A.D. 616, and Edwin of Northumbria, who, in 628 , A.D. inco and Edinn of Norinambria, who, in 6288 redaced Cambris into porranaent sabjection; so that
the quarter of that ecentury is rightly fired by the P all

 comer acon of tho ration $1: 8$, botwoen the upper and
 oxat "50 coataries," the ". K. L. G.'s' 5000 yeara," mantiog merry maniog morry. "dah,
 restions of Genonis, the period and such, my tho dider lant in the carth, and "the corth wen liliel" (ans ware quanty Yorkhifo) "A eith rielemice thiont (and oonsoquan kuow that thisic only the eld atory. fitanimed times up: fore and oloowherre, in divere ways moeting na. The comparicon of tho depthe of peot, shove and below the Roman anaceway through the Pelerborovgh tone; the deted Egyptian morer Roman diptian monameonta ; tho pro-Roman and post. modes of teatimony, as Oarior, Bectimand, and Mantoll ahowed, all coscar an colobly aetteo abovo little man. Noither in Earopo, Acien nor Amorion, it these eny clash of evidenco. The Sottle Cave brought no newn; brit the thing to note it, you having issued "Bigma's" pall (p. 808) ormee thic
H. If G.

EBDY'S CAS STOVE.

[4575.]-I AB at a lowe to poscetve the ritity of thic
 to rarm, that provionaly in, to be minoled ofth tho modacte of combontion. The stove woald orme a meme ocem fortably if the openinge at the top were olosed and the hoated air made to eceape at the bettom, for thon the lowor part, of the \quad room woak $b 0$ better warmed ; moreover, theshall of the atove would become
 is the beot emed ploseantont torm of heat sor warming us. The total quantity of heat wonld ba proportionato to the ges barned in elther cace. Bat it will be anked, "What, then, is the ace of the rathor coraplionted internal arrangementa $r^{\prime \prime}$ and that is exactir what I I want to knom. It neoma that thoy will hare no ofloet at all axcept to mix the prodnota of combuntion with air. If, indeed, those prodacte meere convejed amay oat of the roam nsogethor, in providing arrangomentargo mighat be of semo for warmivg air; bat the heat might be more a eofally omployed in warming a largo surfaco, frem whioh hast may bo radiated, for radiant heat warms the bolies on which itshines above the temperatare of the air surroanding them, and it is both pleaseat and wholecome for un to be so warmed, cooling has been more needod.
Pritio.

MONOLIFEIO BUILDERG.
[4578.]-T0 "W. G. C." \rightarrow I am ghad to seethe sabject of menolithic bailding brought for wardia " oara," boing mvaell a hrm advocate of tho aystem. Your iotier (No 4482) is a soarce of actonisiment to me, mith facts which the "adverse critios" of the systom can with facts whichta " the weak points of the "Poly lithic" syatem (if you will nosept the term) are not, as you soem to suppose, from thin mortar jointa, nor yel from "smooth-tooled sarfacos," being bad holdera, bat quite the reverse. Neither is the rough surfece of the concrete the canse of better holling, and consequent strength in the monoilthic system, bat rathor in the
ase of good cement newly prepared and used before ase of good coment nemiy prepared and used betre with being well oompaoted by ramming the material, which is thas brought tata closer contact
In all oementing. procescos the ensditiony of a guod holding joint are close contact of the substances cemented and consegrent thib cess of the cementing material. The reacon is atorident, there being no polylithio syatam the after shrinkene is very consider ahle, and when at adow and door frames interrene, as yield mand ic in hoase ballding, and these cannob sinfloiaq canse to acoount for ruptares and weakness. Fartler rmore, the pratice of making beds of mortar , lie for weeks before being ased mast be destracof its cementing proporties. Anothor serions ovid. lies in the rapidly absorbing nature of dry brick. The watar it a had time to complete itself, and though alterwards given np in part, still it can never restore it to good sound mortar; hence, in setting the arches of doors and windowe the bricks are arst wettod to connteract
this tondency. Such parts are, therefore, invariably this tondency. 80ch parts are, therefore,
found to be the extrongest in the bailding, the extreme thinness of the mortar jointo notwithatanding.

THE NEGBO,
[4577.]-Tare pan of "T. A." (not, 4541, p. 461) opon
 orght roally to bo embenmed so a speoimen of thic cione all may shine alike, ovon "T. A.," equally with a blehop. If he had happened to be a Greok or Rusdian, it might havo beon pointed oot in his Beptasding, that in Solomon's Song, i. 5, a verve, where, (f anywohere an moteal negro (and that, a lady) is introdnoed, the givos herroli this vary same epithot 1 "I am black, but oomely (nadi), 0 disughterni" In Goncois, the Adamites " asar the deaghters of men, that thay waro Solomen, that no noerroes oan bo aunt, thin vould not olach with my cupponition that amoang the non-Adamite perthed reces wee one black one. Hes he not meen chat I mocumentleast threedibtinot reces, how many more is anknowable, but one reoe to aloord the mather mod the wife of Japhot, another thone of Ham and there nom, wad a whir alfo of their oun rece; without meing that the atory does plainly indionto a remeon, that may in all prob. ability have amonnted to necomity. Conaider the force of the ntetement that "all feall (humanity) had corrapted his way apon the earth." In the romote sarago taribes, whoe relice alone To find, the "Flint-foll" or "A Yen of the Drift;" the corraption coneisted in mere "violenco." In the divilised dition, and the Adamite sweo above all, it was more redned; and what do we now fnd in ruoh racee that havo moat corrupted thoir Way? No gride bat solf.intereat, hence infanticide, eapeoially of femalo childron (as in China), and it beling no one's interent in partionlar to bring ap danghtorn rather than kill them, imminent or rotaal dying oat of the reoo for want of fomalee to conitinge when "al fiesh had corrupted his way upon the earth." It would dimply contrudict this sentence to assume that after the Adamites had taken to marrying the inferior, chort-lived "daughtors of men" (as Gen. vi. implies) for nome centaries; there remained any daughters of Adamitosa broaght ap (especially as they were doubtleas of slower growth) for Noah to marry, mach less for his sons ; and en, in all probability, the reduction of Hre wae bocome inevitable whether any Delnge happoned or not, and Noah would, in any case, had there or rabher, at the same canses would have extinguished the mixed and short-lived races too, the Flood was neceecary to preverve any human. species on the earth (se propheciod) be, aocording to all present social appearances, equally necessary. Even it the females of the long-Uived race were not extinet, this cause must have made them too searce and precions to be within the means of Noab and his sons to purchase ; for everything implies they were a poor and anknown familythat of a "jast man," and "preacher of righteous-
ness ness, ${ }^{n}$ in soch times, could not be otherwise; and no
weallhy or powerfal man would have needed anything Wealithy or powerfal man would have needed anything
like a century for boilding and provisioning the Arls. like a contury for boilding and provisioning the Ark. A German fanatio of Luther's time, having persnaded himself of now Deluge, built an ark of equal dimencions, wo roed, in a year or two, though so far from that ho samw it fall to pieces before the time anticipated for its uso.
In connection with longevity, and especially whether, aftor the food, it was as great in the women,
it ahoald be noted that the Bible gives but one femalo's ago, Sarah's, and ahe lived barely two-thirds of her only son's Iff. Again, in Job (who was probably earliger), the death of a wife, mother of ten grown-up
ohildren, and taking of anothor, who bears ton more (as Abraham's last did eilix), appear mattera of common courne. Bat the facts that thoagh Shem (and presumably hia brothera) lived altar marriage five conturies, his wife bose bat ave sons, Ham's bat leur, and Japhet's bat neven, eurely imply these women to have been of very diferent longerity irom their husbands. If of tho game raoe, Why ahoald thoy not have had (es tradilion attribated to Eve and antedilarian women),
ifty or more sons apicoe, when they ware so greatly afty or more sons apiece, when thoy ware so greatly

Ae for "T. A.'s" notion that mon who, for ten generations, lived (by his own showing) the respeotable ago of abovo 900 months, never discovored the oxiotonee of a nataral poriod longer than montha 1 and oalled them "years" indifarently, it is really neceseary hy reckonisg" the gencealogy of Shem givan "evidence of." At loant, ho or any reader equally hary may be alked to tako the emall trouble (which I object to do unlest foroed) of oopying out thees rerceo, Gen. $7 i$
 giving to the "years" what ho concidars their modern meanings, and explaining at, what laisr verse the "ohange in the mode" comes in. If the ingreat antoUfe of Abraham or I Iaceo to hava boen, longer or abortar. and for what reacona? I mean natural and admitiod phyniologioal reasona. And eapecially the "for ano ovil" yours of Jacob, when he naid they had not athained to those of his fathera, xlvii. 9 ; what were
The "T. A." sort of mind being commoner is this zubjeot than in othors, lot me add for him that if nd three rives, Mongol, Negro, and Gothic 2aces, the angles of the trianglo that inclodes all other modern ones, thon the long-Livod race, whose lat pare apecimen was Noah,
were, of courve, difierent from all these ; and, in colour, may (or rather munt) have approached what we ind Rod lite them reparatoly at presont-namoly, the than colour Hence, Hebrop tradition would be no likelier to eive them and their father any epithot than "Adam." We are not to guppose any of the patri archa bore in life the names we know them by or that Chinece, Phonicians Hindoos, or any nation hat known them, by. Al theso aro deacriptive epithets, made agoe later ; and in the Biblo, rather translations of auch opithets into the Caneenito tongre of Bamad' time.
E.L. G.
\triangle NEW METHOD OF CHANGING RECIPROCATING INTO ROTARY MOTION.
[4678.]-Ter following slight skotoh of a proposed meana for oflocting the above purpose will, I venturo to think, interest nome of your mechanical reeders. Thoir opinione as to its practical atility are requestod.

In the acoompanying diagram Δ is a ared oylinder, B the piston rod, C an arm atteched to the ohaft, this arm in doable from E to O, and carrien tro toothed wheols E and D ; F is a fixed tooth wheol oither oast on or otherwise seeared to sapport H H H., the shaft to whioh arm Oin attached paoses through the centro of F, and hat ita bearinge in it and through into \mathbf{H}; to the axle of amall wheel E (indionted by dotted cirolos) rod. ${ }^{2}$ and an arm G. which is conneoted with piato rod. Tho motion of piston rod is commanicaba by the whool D in motion, and this whool being geared With the fixed one F travela roand the eame oarrying arm 0 roind at same time thus sivinge rotary motion to the shaft to which C is atteched The rariations in power and speed at different parts of the atroke are rery similar to those of the ordinary orank, and the al power glven out is the same. The proportions of

the wheals are, D and $F=1, \mathrm{E}=1$. The wheold can, of courne, be uned of any breadth, and sete carriod on each nide the piston rod, in order to distribate the work over a greator aurface of teoth. This motion has boen tricd on a moderato poalo (with two bin. and one 8in. Whool, atroke 8ft. Gin.), and foand to anaver antic. fectorily as regarde the motion of the piston rod being pomer giren a perfootly atraigat lino, and as to the ordinary arank, but it has not jot been tried in a atoam-engine. It has the great dinedrantage of being a combination of toothed wheele, bat it has the faslowing ad vantages, which may perhape countarbalavee all in this motion to throw any aide thrant on the piston rod, and consequently the neceedity for connecting rods, coross heade, parallel motiona, slides, and guides, is done away with; it worka in as litilo room as sum oocinating engine and has a axed cylindor. To oanced in ongines by meohinery, umed to oountornot the side thrast on pistion rod, whioh to alwaya precent in overy ongine torning an ordinary orank. If theee sarantages are sumbiant to ovoroome the objootion to My own op inion . with engines of long stroke, this motion with axed oslinders would be profarable to cither trank, beam, or oadilating ongines, and porhape more especially for coly one half the length of an ordinary orank for same longth of stroke. I believe engines of long atroke are denidsurated; if mo, this motion is eapecialily nuited for them, asd some of the disedrantagos connectod witb the nee oi toothed wheele would be overcome by the fact that the are the parts that would be most atfocted by wear and toar, and aro aleo the very parta which quired. Drat realiny renewod wheneror arms \dot{a} and 0 (if antic as compared with the asaal
cranks and conneotions might be obriatod by working instead of the two cylindora as ordinarily used, four of ing the the namo aggregal
ing the atrain to required. drawing is only contrived to give a general notion a the idea. It the subject shoald prove of sameiont in torest I will giadly furnich more detaile in a futare number, in the moas time soliaiting the opinioa praotoal mechanics.
G. Pennisator.

AN OPDIION WANTED ON 4 NEW MATERTAT IN ORGAN BUILDING.

[4579.]-Wric " Harmonions Bleckemith," " J. D.o" or other amatoar builder kindly give thoir capdid opinion on the adaptability of papar for organ pipea,
I mean such as are oircular. Ido not concider myeal I mean such as are oircoulat. I do not conaidor myeah oven an amatour; but I do claim to bo an enthuriat, of organ mildight aoquaintance with tho prinojpha othgai builaing, and, khorelore, willing to givo 2 caeganta itsell Sapos morght whenover naplain roller of wood, say, 2 n . in diameleri and $2 f$ It in leageth be tarned perieoky straight, and a ahoet ol pepar bo coilod round it as tight sapomibla, patting glue or thicknoes, eay fre or ix tmes rocind, boing wire the
 formed may be alipped of and pat acide to set hard, aftor which it may have como suilably decoratol paper pood ind oataide. Then tato a piece of dry, ban to admit of turn a soot or boot in such a may and a round rap blook or languid being pat inaido the spoating cap oateide, loaving a pacargo loc of wood and tarn is ant ion Now, taio another piace oaffoiont langth it out zo se to form a short tabe oh apper and of the form that part of a pipe irone th mouth, at which poot to (caj) two inance aboro the rectivo the paper tabe alremdy mede, and so complete the pipo. And now for what I consider the greateot dimealty, which I think may be emaly overcome by thoes who are modaratiy handy at the lethe, and that is the apper lip or feathar edgo, which ake be tarnel like all the rest, bat in two pieces; thic I will explain at another timo, and, if poanible, with rough drawiog. My aimplo argamonta in favour of papor are, that an the various partioniars of pipo matiog are within the management of all amatoars, and not contly. And again, the pipes being oovered vith fancy paper, many bo arranged on the soundboard on the schadamore plan, so se to have a vary nice appoaranoo, and so do without cact. Tho largost rank may hare ite talleet pipe in the midalo, the others docreaning to each side the next rank smallor may have ita talleat piper at ceot side, the othert decreasing to the middle, and so with the rest of the various stopa. I believe it posesible with one large and one small mandril to mato all the pipen, however narrow, wide or long, inoroating from oae to the other with the greatost regalarity noeded for any coalo.

Byome.
THE BEARING REIN AND BLINKERRS.
[4580.] - I nmporss the remarke of "Philo " at 4558) entiraly, both so to bearing roins and blimhtas lor horsea, bat how are tho lattor to be pat amay whem horses have boen rua in thom for yeari ? I ueo a pouy withoat blinkers with mach plocesure, bat he wo broken without, and the for timen I ran hin is blinkern gave me reacon to think the would ahy a goo deal; without them be doee not ahy at all, ama gill bear an umbralla or paracol ap bohind him withoes teing any hooc. In navo a vory ino mare, quilib bed cannot ray lghoold ite to runghe risk of now breetint her to ran withost ; have others done so with racenen ? While on the subject of horwet, the above mare hat a vory aht loot and thin 2010, asaily hart rith miars doren, and the solo gromi very Hitio. Will "Plito ment of or Whe whoelior afr. Flomming's or the Goodenough pians a onn the modus operandi of these cova obtained?
c. \AA C

SPINALNG TOPS AND GYROSOOPES.

[4581.]-I mave always underatood that when a top is apan the axic loans more and more trom the perges. dicnlar nntil it fulla, howevar great the volocity ; bat trom at ant, the increase of tha inaination of the axio tion ine porpendioular is mpercoptible, the inckina deareace. It more rapiajy ne the valocity of the ko conthu. to be inolined at Arat ? Taring ont of coocount fric tion and the reaistance of the air, Woald the Polocity
of a top or gyrosoope remain andiminished?

HOPS AND BLOPS.

[1582.]-A ylaming friend, a hop grower, thimb taroarably of the plan I saggosted to him for gettiog rid of the iy from the binos-namoly, syrioging win coap and walar. I uto this romedy to gor sia of applionblo to theans, co., and it appeara to me to manure, ho warmly recommezde it for almost evert thing. Its modus operamdl is, perhapa, not quif clear as manare; it is, howevar, a doadly ecoms is wiro-worm and the tribe of garden or tarm plequa in general
M. Parich

GOUNDS OF THE MUSCLES AND THE EARS. [4588.]-Ir 1809 Dr . Wollacton oalled attontion to the zonand, or susurrus, produced by the mascles when in a satar of contraction. The soand many be obsorved and bringing the muscles of the hand and forearm into atrong contreotion; or by applying a atethoscope to a contracted musolo. It la life that of carriages at a great dittance, pacaing rapidly over a paveroent, or,
like the deep hum from a jarge foundry. Wollation like the deep hum from a large foundry. Wollaston
tried to estimate the pitoh of the note by putting his tomb in his ear, while his elbow rented on a horizon. al board, on which ho had out a namber of equal notchas, aboat Jin. auander. Againgt these notchea he rabbed a pencil, more or loss quickly, till the sonnd he thas prodnced roemed to coincide with that from the muacnlar contraction. Then ho attempted roughly to estimate the number of notches passed in a second. They appeared to bo in general betroen twonty and thirty in a secoud. HF . Haughton has also experimented on this subjoch to be got a number of rir sourarrus, by comparing this with the pitch of their sonnrras, by comparing of the ob notes in a piano. The resid was , found it COC; and servers (two of three wore ladies), found it DDD; thene notes corresponding respectively to thirty-two and hirty-vix vibrations per second. His own suaurrua coed to him to bo CCC.
Considering the sound very like that of eab-wheols in London, heard in the vilence of the night, when the treots boing quiet, the cabmen are sble to drive fast, Haughton mecoarred the intervale of the Grernesy ranite parement, and found them to be about four nehes, making therefore three knocks or impacta in a loot traversed by the cab-wheels. Sapposing the oabs to rive aight miles an hour, the number of impaots per cocond will be
$\underline{5280 \times 8 \times 8}$
85.2

Considering the sumurras note as D D D, giving thirty. six ribrations par second, its resemblanoe to the of the asb. Wheals ceaces to be mattor of surprice
phopomenon not unirequenty observed is the bhich prodet be attributed to an extargel eareande which are not borlly percoired only in one carse, 3 s thy the eiort, probil in parte of armen and other countrics an in pical parts or is atteched to countrios an ethical meang aitionged to such scoording as they cocur in the right or the or coar. The acoording as they oocur in the right or the left ear. The acongtioal propertics of these nounds are dieoussed by Mr. Oppel in a recent number of Poggendoripe Annalem. anddenty whas pretty atrong, and of mall-de日ned pitah suddenjp, was protty atrong, and of vell-deined pitoh, like the sonid from the bell of a clook little veftar the hamer bes etract is The inteneity differt or ar lond lond, at another it is soft and scarcoly andible. It generally continues aboat from ten to twoive noconds, and to of longer continnance, and has periode of greator or loss intenuity.
"Haring at one time," Mr. Oppel statoo, "peroeived this tingling in the eara to recur more frequently than ubual, and for seroral euccesaive evenings, I foand it to And ont hether or no now D. It cocurred to me rame pitah, and whether the noto in the one ear rate of the eapme pitch ws that in the other." Ho then gives a list of 9 casen in which the gound was in the right ear, and 18 in which it wan in the loft, with the piteh of the nots in onch case. From thie it appenre thet the pitoh 14 not aleasg the same. It ranges in thees 277 eximplea it not simays the mame. It ranges in these 27 examples of an octare mere percoived. In one instance intherral of an ooftre wore persoatty in detarmining whether the boing G) in the rimbt or the loft ear It whieared to sonnd wha in the right or khe lott ear. 18 appeared to long time (earen minutes), and pas repeatod abonts quarter of an hour latar, iten it lated five minutes. In quarier of an hour har, when insiod ive minutee. In cone other oact the pitch wat extromely high, and ho on a heated atone.
There is another anbjeotive phenomenon, Mr. Oppel remarks, to be distingaished from these. It is a kind of eracking in the ears, often percoived when one hat oold in the head, and apecially noticeable in aneozing at the beginning and ond of the encezo. It is a very high in which it did not appear to vary minoh from ca The abore socount of some of the nounds in the human body may furnish material for eans esperiment to the carious.
A. B. M.

THE STAR ANTARES OR ALPHA BCORPIONIS. [4584.]-ALLOW me to oall the attention of wuch of your readers as take an interest in matiors astrogroen companion to 100 p.m., torning my tyin. achromatio (by Cooke) on comis very aplendid objoot, I sam, to my anyprice, the cipal star itnoll. With a magnifying power of 281 the disce, roand and sharp, appearod to be almost in contaot; whilat the colourt of tho two components, rod and green, were poaitively gorgeons. Having had no previons expectation that an instrament of such vory
 at all, much lens to shom it sith sach distinotnese and case, I was quito delighted with the apectacte
prosentod, and equal graticication, I fool aspured, will be experienoed by other amatears who ehall take star.
July 21, 1872.
J. I.

THE CENTRAL HILLS IN GASSENDI.
[4585.]-SEveral observers have of lete contribated "our "colamns drawings of the great lanar walled-
plain, Gescondi. On oomparing thene otrotches Fith plain, Gassendi. On oomparing thene skotches with great difforences which existed betwoen them, oven vith regard to the more conspicuous markings. Amonget these is the central group of hille, in which the Rov. T. Webb tells us Sobröter noticed soveral changes. Rot this group I have colleoted stetehes from different soarces, and cend three, which, is placed alongaide hose oontained in other numbers of the Exaliss Crcranic, will exhibit "the strapge diveraity of the lrawings by different hands." These are ench as porcibly to suggest extonaivo chavgen, even within lato years; and with every allowance for differences in illamination, and for roughnens or inaccaracy in hetohing, I cannot but think that nome great distarbing agenoy has recently been at work on this part of the moon's surface. The experience of the observers, and the olase of instraments omployed by them, iteoll is too conapicuons to admit of mistakes, such as roald serve to ncoount for the great differences in published drave to
The Arat drawing which I send is taken from the cocond volume of Fergason's "Astronomy," into which it was copied from one of Schröter's plates. Farguson remarks of it, "This monntaic has three topa, one of Thich appears like a bright apot in the shedow of the
other, when the sun is on its horizon." In this reapect other, when the sun is on iss horizon." In this reapect
it egrees very well with Mr. Loder's drawings (letters it agrees very went with Mr. Loder sis rawings (iettors
1924 and 8747 , bat the closenees and the relative sizes of the two westorn mountaine (in Fig. 1) are at variance with both of Mr. Loder's igaree, yot are borne out by ing (Fig. 2) made with the help of the Dorpat teleing (Fig. feataran, and all appear to agree in the sitantion of

experienced observers with the ald of powerfal teloacopes, rary as to the formation of a conapicaons them in contrary waya, we cannot, I think, overoome the diffloulty except on the eupposition of a real change on the lanar surface. W. Beown.

SPOTS ON THE SUN.

[4586.]-Durnse the past fow days I have observed the ann on serveral oocanions with an old 4 in . metallio mirror refleoting tolescope, and have noticed the partial paceage norone the dice of a large scattered groap of macola, which contained one apot of considerable dimensiong. On Jaly 12, at 2h., this groap was situatod in the north-eastern quadrant, and was constitatod of tmenty-ceven individual spots, sevoral of which wore immeruod in penambre. The largoat apot, which was situated in the eastern portion of the gronp, contained three well-defined ambra and a large irregalar penumbra, which, on the east side, was very dark, and on the exterior edge pierced with a train of minute dark apotu. In the ofther quadrants I noticed four gronps, and one isolated epot samrronded with pennumbra in the north- western quadrant. These gronpp, though omall, ware composed of twonty-one apota in all, eo that, inolading the largo claster bofore roferred to, thero were forty-eight dare spors moen aldogother. 1
ahould have obtained a protty corroct oetimato as to the dimentions of the largo spot, but clouds coming over effectally precladed the poasibility of my doing so. I aleo observed ceveral groups of fcoulw; these wero
seen, as is usally the case, near or in the ricinity of soen, as is usailly the case, near or in the vicinity of the margin of the disc. at sboat the time of observe-
tion, cumalas cloads were continually passing over the tion, camalas cloads were conkinualy passiog over
solar surface, bat it was only partially obscured.
I haye thought it approprinte to forward you the foregoing particulara for publication, because mach interest has, daring recont years, boen manifoated in aun-spot obearvations, and many of the ecientito readers of your excollent joarnal may be ploncod to learn that the apota have again become nameroas, the more oapecially ${ }^{20}$ as we aro now appromehing the minimam degree of intonsity of theee phenomena. vatory of the British Ausociation th Ko the oume vatory of the British Ausociation at Kow the number of groups (271) observed in 1871 was less than the number reoorded in the preceding year, although in
1871 the ann's photosphere was cousiderably distarbed, 1871 the ann's photosphere wan oonasiderabry distarbed,
and at times especially violent convalaions were and at time
noticeable.
The large and interesting group of spots to which I have called the attention of your readers will bave disappeared from thg western edge of the solar diso bafore these lines are prislea, bal may expoclod to re appear on the eastern side at the begining or
ensuing month, if, indoed, it is not disaipnted before ensaing month, it, indoed, it is nou disiphen
that time.
plato.
[4587.]-In answer to Mr. Birt (let. 4499, p. 183, No. 881), I beg to inform him that I relied more on hearsay than on anything seen in print, that "a heap, of débrie was near the oentre of the floor of Plato., With regard to the seoond part of hic reply. I mast say that I thought I peroeived the two white apots in the hollow of the shadow, 28 very faint oloud-like specks, not nearly so dietinct as in the aketoh. Bat being such faint objocts, I may have been mintakea, and promise Mr . Birt that for the fature I will be more particular in recording what I really saw, and not what I thought I gaw. And whilo on this subject I woutd ack Mr. Birt if he would kindly give me a fow hinta for skotohing the lunar arstera, de. Becmase in a ghort time I hope to become the possessor of a larger instru ment, and then intend to make the moon apecial
object of etudy.
T. H. F.

TRIPLE STARS.

[4588.]-Ow searching for the doable atar P. XVIII. 263 Aquilis (which is deaigated by Smyth me: "handsome rest-object"), on whe data gtiven in Webb"
 Wae nuable to identify it ; but in the pleoe there indicated as "following a a third magnitode atar, bat far sonth in a ine geld," I found a triplo star. Mragnitades of compononic aboat 9t, 10t, and 10; poiltions (say) $260^{\circ}, 110^{\circ}$; distances about $0^{\prime \prime}$ and $14^{\prime \prime}$. all by oatimation, as I have no micrometor; powar
used 185. The two alocer componenta were diffoult to observe from the atrong twilight which existod, and almost as dimealt as the doable 9th magnitade o the triple star ψ Onasiopeia observed on the same evening -11 th Jaly. This objeot-plase aleo ahowod Anely the oloser components of P. II. 72 triplo in Cassiopeia nuder the same atmospherio conditioni. I may remark the objoet-glams atows the "debilinaims of Herschel" betwoen il and a Lyrw.
I would foel obliged by " our" "F.R.A.S." examining the first-named object with his 1tin. Dallmever, and stating whether it is the ono giren by Mr. Wobb at abovo. The position angle of the cloner components does not agree with it.

EPGILON.

DOUBLE STARS.

[4589.]-WILL some of our astronomical correpondents kindly say whether the following double stara have been recorded ? I do not and them in Proctor's emaller athas :-
Sxapens.-Preceding 5, about 50" of time, nearly. mame deolination, and in the same Aold, with an oje-
pieco magnity ing abort 150 . Seen only once, Jame 80 ,
2872, in bad wean ber. 2879, in bad woul ber.

Lrra. About 18h. 85 m . N $28^{\circ} 40^{\circ}$. Porition be freen 810° to 800°. Distance aboat $8^{\prime \prime}$, mapnitede 8 or 9, and each atar much aboat the same. Daiky yollow. Thero is a larger star in the same fold, 8. To find it, place Voga in the eentre of the field and move the telesoope woat aboatt 8^{\prime} and the three stara will bo to the rold. Been only onee, Jaly 11, 1872.
Jamet-Hainanat.
C. Gatdibert.

A MORNING GUNAET.

[4800.]-Tra phenomenon that your two correspon. dente (p. 186, 185) describe by this singular name is a
mere offeot of perspective, and therefore, of coarse, mere efieot of perspective, and therefore, of coarse,
myaterions to M. Paris ; but fgured under the name myaterions to M. Paris ; but fgured under the name
"Converging Beame," in Brewters "Optics" (Lardner's "Cabinet Cyolopædia") and other optical manuals. The benms, which are canced by clonds dividing the broad glare of sunlight, intercepting some and letting sepa. rate portions paes, are, of conrse, in fact parrallel, as mach so as the horizontal eornices or courses of the moat regularly built streot or cathedral nave. But etandiag in the middio of srah a nare, and looking
cither way, M. Paris will tee all these lines conver θ to a vanishing point or pole, eastward and also west-
ward. So it is with the sunbeams, when they are long Ward. Bo it is with the sunbeams, when they are long
enoagh to be viaible for some miles esch way, towards the nan and away from him. One pole is necensarily the ann himeelf, and the other, being his nadir, or exact apposite, cannot be above the horizos unless he is below it, and never presents any notable appearanoe, che beams marely dying oft towards it, like anaroral
treamers towarde the zenith. Occasionally these atreamers towarda the zenith. Occasionally thene beams are less risible where broadest, overhead or tratee them towarda hia nadir ; bat I have commonly loand the reverne the oaso. The phenomenon is so mach cornmoner in morning than evening that 1 have
 Approeahing Barbadoes from. the east, I have seen it on many succesaive mornings, and sometimes with no alond visible, those that cast their shadowa across our
[4691.]-Notronsa "W. W. M.n" lotior (4519, p. 488), "A Morning Sausot," foroibly bronght to mind a very similar oircumatance which happened to me
whilat in New Zealand. Ono nae ovening I was Whilst in New Zealand. One nne ovening I was
 the aun set, showing those aplendid direrging raye so frequently coen in floe weather, when I noticed a preciecly simillar appearance in the eastern aky, and otood nome time to watch it, and it had not disappeared When I reached a patoh of dense bash, of a mile and a half, throagh which I had to pass, on emerging from which I was no low in a deep and
I would also add that on the evening of Sunday, Jane 80, I som the eame appearance, thoagh not nearly so bright, in the east, over the hoases, as I malked down the Old Kent-road. I onn't eay the exact Ima, bat poople were juat learing charoh.
In the same hope that " W. W. M." expresses I have taken this somewhat long liberty, and bat for a fear of being disboliered ahould bave asked for an explaaation before.

Home Ko Io.
THE GYROSCOPE, \&C.
[4592.]-ThrRe is a phenomenon which I noticed some years ago which belongs to tie order of things oow nnder discassion, which ought to be considered. There is a little toy often seen and ased for lottery purposes, in laot, an enlarged teetntam which spins in
scentral tabe, and hao its table divided and numbered. I found that if this is cet apinning vigorously, the whole found that is this is sot apinning vigorousiy, the wholo will not fall out until its notion is nearly ended. Here is something much mere like gravity overoome anan arything yet noticod, and the lact is one worthy of explanation. I confens ioan give no satisfactory
one, but I saspect friction within the central tube to one, bat I suspect riction within the
Gome of our correspondents maem to have very hazy notions of the lews of motion and of projectiles.
" G. M. ${ }^{\prime \prime}$ (let. 4538, p. 460) is right in his correction of "G. M." (let. 4588, p. 460) is right in his correction of some absurdities,
ball Ared horizontally would not q quite cercanthe kronad at the same inatant as it moald it falling from the mazzle, because part of the force of the powder is
employed in lifting the ahot, for a ball tred horizontally employed in licting theshot, beosose its line of unotion is on a tangent with the oarth's surface, and therefore
rises, and this prolongs the time of falling; of coarse. rises, and this prolongs the time of falling; of coarse I am ignoring the resiatance of the air, which is a separate element of the calculation, Ander anding vertical velocity dae to gravity in convertizg the path of the
shot into a parabolic ourve.
SIGMA.
[4593.]-Apter some little consideration I fancy hare discovered the hey to the curious contradictione in
J. M. Taylor'e letter (4510, p. 435). In oriticiaing Mr. J. M. Taylor'e letter (4510, p. 435). In oriticiaing Mr.
Proctor in his third to alxth paragraphs, inclusive, he Writes for himself; whilst in other parts he mast
writing for some friend with whom he is diseassing the
aubjeet, and whose ideas he wonld rather leave to the tender morcies of others in preference to treating his
friend to his own views on them. Not less amasing friend to his own views on them. Not less amnsing
is the triangalar combat between (or rather amongst) is the triangalar combat between (or rather
"A.," of Liverpool, Mr Proctor, and mgeal.
To retarn to J. M. Taglor, let me assare him we are oot "palling down established ideas" When rejecting "hat "Philo" and others term the "ordinary explans tion," for that oxplanation nover was by any moans "cotablished." Is J. M. Taslor tryiog sareasm, when in bia sooodd paragraph he apeaks of the "impossibility of aroiding oontact with the laws of mechanics and phain hols, with mhioh it cannot harmonise $P^{\prime \prime}$ The problom to be molvod (Which has been solvod) is, with the lawe of meohanict.
Mr. J. Y. Taslor is himeoll in erthoising Me. Proctor, and I bave not maoh doabt Mr. Proctor will virtaally admill ite force and ohange his front to some other "one onee or lestare of that cone, or, posaibly, back to
general featares of spinning motion "(let. 4310).
As to J. M. Taylor's friend's "governor "theors, I Woald point out that the lifting aetion, in an ordinary atesm-engine governor is not directly due to the oentrifagal tendency. It is a secondary action, arising from the balle being connected to the vertion spindle by links or levers, which will not admit of any ontWard motion, excepting what is accompanied by some opward motion. A carefal consideration of the conditions involved will also show that when the balls are in the act of rising the spindle must have an increased downard pressare. In the sngrested explanation, it is first assumed that two particles are detached from their rigid connection, and are connected by linka. Then, after desoribing what might happen under aneh circumstances, the conclasion is jamped to, that the asme results must happon even with all the particles rigidly connected, and no attempt is made to show that the movable link arrangemont is not essential. It is suggoated that the pressure of the peg point on the table mast always be positive, bat it is ansumed that it mast rary with the velocity of the spinning motion. I really think the experiment I have more than onoe before referred to in conclagive on this point if fally
atndied. (See p. 411 of the MEcEunic for Janamy 7 1870.)

Many who attempt to explain the action of a top or gyrnscope are not aware that the instrument can be sight seem quite different from the ordinary uxperi ment. I have formerly explained how the centre of gravity of the gyrosenpe may be mado to trace a series of spherical epicyoloids instead of a plais circle ; and it is obvioas that uny complete theory mast inclade theae and other cases. Can "J. M. T." (or his friend), or "Philo," or " A.," show how their explanations can be rendered applionble to the oase of the epicycloids ?
Glaggow, Jane 16.
E. \mathbf{H}.
[4594.]-Wirt the greatest reapect for Mr. Proctor, (let. 4509), I mast observe that in my opinion his an 8 wer is most unsatisfactory, and reminds one of the usaal melhod of dealing with children when they asky
us questions which we don't quite underatand ourselves. Of conrse, he is not bonud to answer any questiou unless agreeable to himeolf, and if I am to be forced to take anything for granted withont having nay prood ohown, that would end the matter at once. The quesenown, that wonn end ball be fired horizontally, bow is
tion is, "If a eannon bal the refintance to change of plane of motion so nallifed that it becomes of no offect whaterer, and the ball reaches the groand as quiokly as it droppod freely from the tame height? ? Now sarely this can bo answered in languags that all may nnderstand if it is oorreot. As for the moon, it only strengthens my argument ; she yielde a certain amonat to the attraction of the earth, bat the superior impelling foree provents her from yielding altogother. Neither is the speed of paddle or screw suticient to call this foree into visible action. I woald like an explanstion of the following axperiment. Take a maight and swing it round with cotatory motion in a herizontal plane as long as the rotatory motion in a herizonal plane as long as the
power is kept np. Non, it is evident that if the onrd wore gradaatly let out and the power increased as well, this meight woald not full to the earth, bat would maintain the same distanoe from the groand as at
first ; the cord has nothiag to do with holding it ap except that it restrains it from flying away. This can be tried by any one ; whethor the cord be short or long the weight maintains ite porition as long as the
velocity is keot ap, and pray how are the conditions changed, if any other force, sas ganporder, is subatitated for the cord?
J. M. Taylor (let. 4510) is clearly in orror when he says that centrifagal force has ho the power of recan easily prove for himuoll by squinging a weight attached to a cord ronnd bis head. Neither is it correct, in my opiuion, to say that centrifugal orce bas hall which yielde to its force, and in the case of the Rovernor of an engine it neceasarily raises the ball, bat were the levers arranged horizontully, then they would Ay out withoat any lifting of the balle, aud it is quite less upon its bearing, or the top to weigh one particle lighter when in motion, beonase thern is no cendency to move in any dirention but at a tangent
to the plane of motion, aud were such the case then to the plane of motion, and were such the case then woald ty upwards.

ON TUNING PIANOFORTES AND OTHEB STRINGED MUSICAL INSTRUMENTS.-I.
[4595.]-Brsides the geared tading-hammars before mentioned, many contrivances for taning pisno-string -ith greater accaracy zad edinary wrest-pin and tonipe done by amatoars wila the ordinary wrest-pinand tanipg. applied to the atringa of harpoichords, wha scren applied to the strings of harpoichords, who secror. bears the date of 1771 . I think this is the earlientemi ployment of a ecrem for this parpose of which we have ploy record, this es he did in the emplorment of secara aim in to strain to the required extent ench of the gut wing of his celebrated lyriohord, which in coneequeno of his celebrated hyriohord, which in consequenco
(acoording to the handbill recently repriated in this (aocording to the handiul recently repriated in this
journal) nover vent of tane. In the employment of joarnal) nover wont of tane. In the employment
sorewa for taning-I don't moan equise corems, they sorowa for taning-I don't moan equige soremb, they their riders "out of tane "-Wakafield was folloned by Enatine (1800). Smith and Todd (1801), Thander (1805), Daakin (1823). Pape (1845), Erard (1850), Gordon 1852), Greinar (1859), and others "antil this day." Hawting, Loescbmann, Kirkman, and others appliad the acrov by atteohing one and of the wire atring to a pin or pog in a nat which travalled along the meront, Jast liza the plate of a oommon alide-rest is made to wars. On the contrary, Koblman attached his stringa ways. Oa the contrary, Koblman attached his striags to hooke formed at one ond of his acromb, and applited the pipe of tho taning hammer. S_{0} littlo mascalar oxartion wea required that the latter, instend of the ordinary oroes-handle, had only a ronud knob like that of the handle of a large bradowl. The same mothod Tr a afterwarda proposed by Moody, 1884. Not contant With taning one string at a tima, some rather crat. ohetty folk have attempted to tane many stringe a
once. J. J. Hawkina, as early an 1800 , propoed to once. J. J. Hawing, se earty se 1800 , propoled
make all the atrings of the piaso the same total longth anke all the atrings of the picso the same now onig by making the lengths of their vibreuag poun the bridges difier, and atior kaniog theoa io vary
 raising hin taniog trames, one of whioh ceriod aill ha the same thing in grand pianos which had stodartoor rather Thom and Allon's-patent tabaiar bracing, by moans of sorews at the ends of their tabes, bai how ha got orar-il he evor did, which I arealiy doopt-hen difnculties which muat have reaved fram ho hol lengthes of the atrings of grand piamos difering 1 eanook concoive. Mr. F. Greener thad an "enbibit" in 1801 of sn odd.looking pianoforto, the sides of whion bad openiggs lite the bell mouths of trampets-probably to " let the sound oat of tho bos." In thia inatrament the two atrings of each note were provided milh an ingenious oontrivance for cansing thece to fibrata in aninon, and they being attached to a siagle lisch-pin, which was fxed in a slide moved by a.sarer, the pitc of both might be raised or lowered simaltionail This contrivanoe, howover "ewfully dovar" it migh have been, wes anything but oheap, and therofore come it more nsefal than it appears, not rery litely to con
into general nse. In trath, "Ire jeu ne rent pas h into general nse. In trath, "Ire jed ne rent pas him
chandelle "" and the same may be said of Pope's coe chandelle;" and the same may be asid of Pope's evo
trivance for altering the pitch of sir anisonons string at once

Probsbly the very best method of "fine" taning is defecting the string, either down wards or sidenays This was the method employed by Mesars. Wheatelome and Green for tuning the one or two flat etrings of their patent mnsical instrament-aee thair palam No. 7154, A.D. 1836 -in which what I may donomi nate a "string reed" preduces not only the ordiand reed tones of the harmonimm, bat niso thons rived from a sonnding-board, with whioh it is cons nected, very valasble contriveace, enormoonid angmenting the londness and improving the timbre of tho sonnds. Taning by detieotion is at onco tat ommed and most delicato mothod of ine taning I hoin all experience of, and by emplaying it we can rethin al the adrantages of using wrost-pins-a prscticul pos forte-maker and taner wonld be sorry to part windy, but advantages-combined with the meads ol ing or lorer-
 ing the pitck of a atring withoat diatarbing is mportano or turning it backward, which is of groal imporection for a voiding injary to the etring. Taniag by deice (1D 1826), after mards by Stampir (18397, Mpers (1889), Pape, 1826), afterwards by Stampit (1883), M.
Barkingyoang, Brooman, and others.

Barkingyonng, Brooman, and others. most oonveniea I hare found the cheapest and most oon ordiant cottage and bichord grand pianos is to nese sereos which press on the wires between the wrest-plan bridge and the wrest-pins. If these sarambers, thes with heada which ft ordinary tanin 3 -hammara, in re most convenient in praotice, becanse wrest-pins; bo strament serves for both them and the wresi-pias difi ach bcrews are rather costly, althoag of wreat-pias hioh more not drilled by tarning down the part to bo hioh were not drilled, by tarning No. 12 wrod.serev. and od to about the diameter of No. seren, aboul loarteenias a shallow core No doal oarteen to the inch, on the redaced part mere such scrows in demand, the puald make them mary chienty, considerion the lettor are manalschom by cheaply, consideriag hilfa-crown per sot of 170 ; bot as the a con only -if he don's make mon himell apeoial order, they will oost moueg. I need hardy al pooial oren through the nasal organ at tienot.

Althengh a screw with a moderately largo head will nerre withoot, it it preferablot to patt a metal, a hard
leather, or an obonite weaher between the head of the loather, or an ebonite washer between the head of the acrow and the string. This protecta the latter from brass, copper, or zino), A groove close to, bus not quite ranning into, its hole be formed in its ander surface. This groove effectually prevents the waher from tarn. ing with the screw, and, if its ende be roandod off, also
preventa any sudden bending of the wire. preventa any sudden bending of the wire.
As some of my very economical fellow-readera may object to the cors of a set uf taning-sorows with heads to ft their tnuing.hammers-N.B., that coot is by no molerahle snbetitate is the ordinary patent wood screv, tolerahle snbetitnte is the ordinary patent wood serew,
abont No. 10 or 19. Ay hind of head will do if you omploy a suitable washor under it; bat I profer either rose or cylindrical heads, eepecially the latter, techni-
cally termed "cheege" heada-probably because they are the "cheese" for our parpope; both of these heads have their under sarfaces lat and square with their shauks, which is fer proferable to a conical sarface it the laiw wat ene string. Ot course, if motal coantersank, in which case the conical form of the hend becomes animportant. It is, perhaps, preferable slightly to roand the uuder edges of both rose and cheose hoads, especinlly it ureed withoat washers, which I don't reocmmend ; but when a very hard sole leasther I don't reoommend; but when a rery hard sole leasther
washer is interposed the wire formsa groove for itself, the ecds of which are natarally rounded by the presander edges of the sorews be left quite sharp.
The greatest objection to the quite sharp
ood screms is the difficalty of employment of common ordinary screwdriver is omployed, without the liability of its glipping off and disogaring the front of the wrest-plagt, not to any injaring the wires. A screm. driver fin. Wider then the diamoter of the head of the acrew may have its centre filed away, leaving two prongs aboat one-tenth of an inch long, which receive risk of its slipping ofl the screw. I find this angwor admirably; bat then I consider myself rather a careful person, and am apt to consider most other persons " arent,""consequently something suited for the careless is almost a necesity. The best contrivanoe I have been able to devise is a nort of taning hammer graver. The cross handle, or a hande or is hared to receive easily-but not too loosely-the heads of the defleoting screws. It is samn lor aboat 4 in of its depth, snd a steol plate, which its the grooves in the heads of the sarews, is rivettod theroin. This plate does not extend within one-sixteenth of an inch of the and of pipeso that it cannot enter the grooves antil almost the whole thickness of the oheese head of the sarew is within the pipe. Of conrse, alipping off is rendered almost inganything beyond that I don't believe it to be my miasion to provide, althongh I cannot deny such arreater provi-
sion to be a great social want in this onlightened (2) aze.
As the purpose of thie contrivance is to slightly in. crease or diminish the tennions of strings, and thereby alighty alter their pitchos without the necessity of torning the wrist-pin bookward, which injures the mast be made for doing both. In other worde, the defiecting screws ought to bo screwed in antill they deflect the string about half the distance betweon its original position and the wreat-plank, before commencing to tane the instrament. Thic will enabie ye taner not only to sharpen, but also to fatten, the pitch of a atring shoald he have the misfortane to "pall it up" pelled to turn the wrest-pin back or "press the string down," by no means a devirable thing to do, although tear toners to which theme canatioms apply. It is quito notorions no profeacional tunor wae erer hnown to "pull up" a string too sharp, unless, indoed, the both the act and its emphatic "oondemnation" is quite excussble. The unpractical [?] blacksmith, to whom, perhaps, more thas lorty years' oxperienco has tanght nothipg, hambly trasta proleacional taners will not be offended by this attempt of his to onable amach teurs to tane thair, pianos when they are "upthe country "and out of the teneres reach.

Teb Hhbmontove Blacksmita.

SOUNDBOARDS OF PIANOFOBTES.-To

 "Bciolist."[4598.] - "Sorolist" (low 4419, p. 882) wiabos to be informed if the removal of the long bridge and the belly.
bars wouk improve or cagment the someds of a pievo-

 cansot inform him, haring had litarally no oxporionce of nat instrament so cosatroctod, but I will toll him this matter.
If the soandboard be very moch too rigid for the atrings to comamunionte anfficiently ample motions to it, the sounds produced are bat weak. This error-which, one in pininos made by persons who very landibly aim ono in pianoa neade by persons who very landibly aim tion of tone Fhich almost invariably, onsuee When the soapdboard sinks at nn eorly period from ite doficiency of aikeng th to eapport the preasire cazaed by the down
bearingo of ite mitringe. In making their soundboards somenhat too rigit the intertions of manafocturers are honest, but like all good thingo-aren talling the trath
-it may in practice be carried farther than prodnces pleasant resnlts. This fanlt is, however, one on the
right side-viz., that of safety, aud may easijy be roright side-viz., that of safets, aud may easily be ro-
medied by removing a portion of the depth of each medied by removing a portion of the depth of each
belly-bar with a chisel and a small thamb plane until you belly-bar with a chisel and a small thomb plane notil you
obtain the qualits and degree of loaduess of soand you want, especially in the tenor and bass, the soandboard being very seldom too rigid for the treble. N.B.-The loudness of the base and tonor sonnds of many moder
pianofortes may be greatly increased by this meang. pianoforter may be greatly increased by this means.
It seems very probable there mast be some impe ft seems very probable there mast be some imperfectly ascertained proportion between the size and
rifidity of a sanndboard and the atrings which move, rikidity of a sonndboard and the strings which move,
and canes it to generate sounds, which induces the proand canse it to generate sounds, Which induces the pro-
daction of sonnds of the greatestintensity combined with daction of sonnds of the greatestintennity combined with
pleasing timbre. Perhaps some slight diminution of pleasing timbre. Perhaps some slight dimination ol
rigidity below this proportion increases the londnees at the cost of some deterioration of the quality of the sonnds so produced; also, if the strings press on the sounds so produced; also, if the strings press on the brige-i.e., bare what is termed down bearing-of
darability. Whether it now is, or even will be by the darainity. Whether it now is, or even will be by the
employment of means saperior to any now known, employment of means saperior to any now known,
possible to obtain eqnally loud sonnde by the vibrations poss anondboard whose striggs do not press on it - whioh, of a siondeord whose
by the way, was the plan proposed by the ingenious by the way, was the plan proposed by the ingenioa
barpsichord-maker Plenias-bat are simply clamped to what might then be a comparatively low and flexible bridge (either by side bearinga or otherwise), I am quite
unable to say, being "ignoramas." Not having any very distinct thoory of the soandboard, I decline ventaring to prophesy resilte, which, hy the way, your ventaring to proptesy remils, which, hy the way, jour
confident theorist is asually mach addicted to doing. far more so than those who possess the advantage of having had their very confident theoretical opinions carry them out practically. It think, however, a care fally condactod course of oxperiment: with sach sound-boards-whioh, as there wonld be no reason for bellying or arching them, might be made as "flat" as the writer-would be well worth the tronble of earrying out, for they seem to promise that desideratum more prolonged soands, becanse the less risid fat soundmove sufficiently to generate andible aérial maves for move sumicienty to generate andible nerial wives
longer time thau they can now move a rigid arched longer time thay thoy can now move a rigid arched
belly. Probably, however, this syatem, and moat others, may barb already been tried and jodged by Messrs. Broad wood and other first-class old firms ; for I often suapect the late " W. T." Was not very far wrong when he said he believed nore knowledge was hiddon in their archives than he and myself woald ever live to diccover ing experimental investigation. He added, in his snear-
 kindly to publish their failares as well as their successes," he also remarked that, as a rule, it was only those successes which afforded them pecaniary proat which they did make known by adopting them in the manafacture of their instruments.
Scioliat " aiso inquires what is the reason piano. Sortos can't be made with both their bridgos on their sanudboards. I really was not arrare of the fact that they conld not, and, eeeing that it has been done ropeakedy, cant help doabting the alleged fact. Aa ponly done, exceptiag that, ae it is rery easy to nomke the base of all pianos whose strings are from 3 ftt. to 4 ft long more than powerfal enongh for any trebles yel rodaced, it is not morth the small additional tronble of doing it. For very ahort basa atringe I have already suggested its adoption. Both bridges of the pinno were placed onits sonndboard as early as A.D. 1827. by Dodd; bat as he carried it ont in the treble as well as in the bass, I "kalkalate" the tones produced mast have greauly resembled the sentimental professions of some yonng persons "aboat to marry," inasmuch as it mast
have beea "werry holler," yea, even like nuto ye sounds generated in an empty tab when we drive in its bang.

This Habmontoub Blacismite.

ON FIDDLES, HARPS, AND MUSIC.
[4597.]-I pBel an explanation neoessary so that oar " masical readers may really know what I mean by a sound refector. I am not certain that I have iren it the right name, so is open to any oue to call If wou bow a violin, first noder the ohin, and after. wards with the back of the violin pleoed againat a dosi door with long panele, an increase of soand will bo the door with long panois, an increase of sound will bo the
result. Short panels show no resalt, bat a piece of
 onderneath the violin while playing gives the best realk. If I had never triod this, 1 bould think it the same reason that a mosioal-box sounds much londer on a board. I agree with Mr. Sehucht that it would not do to attach or in pormenently any addiwould not do to attech or in pormanonity any adiplay, with the reflector tied loosely againat the baok of the instrament, by its two ends if cut to fit the iostrament. A ploce of gat looped on the same nat as the fector for one end, the other secared in like manner round the end of the neck, either end of the bark may be made to tonch, as a alight oonjnuction is all that io necessary. I am pleased to hear of the now soundboard or breast that Mr. Schucht is making, and lung to hear the resalt. I hope he will remember the base bar; but I would not recommend a bar between each section-perbaps, however, he will do withont any bar at all after the experience he had with the sapporting strips of wood. I think the contre of the breast ahould bo at loast ono-ighth of an inch thiok if the
violin is to be strang in the usual way. as I am of opinion that the weight of the strings interferes with he tone oren in the best mane vilina
I can assuro my friend "The Harmonions Blacksmith" that I never hoard Paganiai play; but I hare
heard that it was always an extreordinary perform heard that it was aways an extriordinary perform-
ance, so much so that he was caricatured. Where is ance, , to much so that he was caricatared. Where is
the idder that has so mach notice taken of him now. adays: Where is the trompet tone of Tartini, who composed the "Devil's Sonata" under the old gentleman's inflaenoe? Bat I have never heard violin sound londer than a piano, bat only a a dishat lono rom it; and 1 have pand in a general way of pleasing. that eharp best. Notice the appendid efleot produced by the voice pressibly charming. I wiah'I knew as mach aboat the harp as "Vertumnas" infers (lot. 4559); bat I have naver toucbed one, although the day may come when I shall add it to my orchestra. "We " have ofton adkod after effect: will "Irion" oblige? I think wires wonle do for the short or treble end, bat woald be too twangy for the beas ; bat this depends entirely on the atrength and proportion of the soundboard. Wonld it be able to bear the weight or pall ? Perhaps Mr. Schacht's invention may do or the harp, mo well aid or piano or
violin. With respect to the hints on masical education, I have seldom met with an ordinary amatour player who folt that masic is a science. So long as thoy can rattle oat a polka, or mocompany a song in their way, that will do. Ask them to play one of Mozart's ronates for the piano, or one of old fathor Hadyn's, and they will in in the that melodios of the prosent day. I have a word of advice to all who can play a little (an it is noually atyled) on the piano. Bny Beethoven's sonstas, and learn the in ; aspecially stady the materly way in which a melody is obanged or transposed from one tey into another. This one principal stady is lost sight of monong our teachers of nansic, and yet once known, places the learner on the frist roand of that ladder that leads to I begtion, as far as attainable by geniai ana pill do as I desire his wishas as to the tremolo vill ultimately be gratited. Can he imitate the roll of a dram with five fingers (foar one hand, one of the other) tattooing on a table? For this is a good exeroise without a Jaok

Tar's asaistanco.

Fudiza.

THE TREMOLO ON THE FIOLIN,-VIOLIN TUNING AND FIDDLEANA.

[4598.] -" Piddure " ($p .417$) seems scarcely to have apprehended the soope of "Corelli's " question, avd
indeed, this it hardly to be wondered at, for I concoive the latter does not mean tremolo at all, this being that sort of agitation that occara in the masio aocompanying the ghost scenes in the "Corsioan Brothern," as performed at the Princess's Theatre, and is prodaced merely by very short and rapidy repeated atrokes of
the bew. Bat what is really reqaired is, I think, the manner of producing a thrill (not trill) apon a particular note analogoas to what is oalled expression apon the harmoninm. This is not a very difficult affair, bat still it rcquires a little attention to a few pointe.
Firstly, the instrument must be properly held, with the neck of the giddle reating on the left thamb, and on no account to be allowed to the bottom of the fork formed by the junction of the thamb with the first finger. Then the elbow must be well ander the baok of the violin, quite to ite middle or rather besond, th
violin being, of course, held horizontally. Ali this wl enable the very tips of the fingers to fall perpendicalarly on the strings, even on the fourth, at the top of the angerboard if required. No more than one finger
ghould be on a string at a time ; when the necond falle ghould be on a string at a time ; when the second falls
the frat ohould be raised, and so on. This necessitates rery firm stopping, and great dexterity of hand, and I may inform the aninitiated that the Angers do not fall at aniform distances in the prodaction of sue seedicg notes, for every note for the whole longth of the tinger-
board. Now, if Co Cocelli," harlig athended to thees points, znd stending apright, will stop a note with (nay) the midate Anger, ala thake his wrist, ho will tud he cen produce the efireet he deaires. The boat wey to tane a diale is to havo an A taning-iork whiot can be scring i lit bal from the not then the thamb, taree or loar incha afthe in the neal mener It hes can bo luned by toned copratily from tho . If tho atriso torla to bo
 better to 1 than a single note. When a soalo is played apon the piano, all the notes, relatively to oech other, are out of tane, and an this acoount art-olaks singers, in practioing, are gaided by a riolin, which, in competent hands, is alraja in tang, whatever may be the key. Unless rory considerable improvemente have been made in the organ since I deroted more attention to musio than I do now, thia latter instroment is otill more lamentably detcient than the piano, for so little is, or wat, done in the way of that ahocking compromice. called temperament, that it was, or is, in vory fow reve that it can, or conld, bo played withoat being it has been mantioned in these pagen thet thoveriog violin is spoken of as being in the key of G, there in no particalar reacon for this being so. This is an no particular reacon ior in that koing boce. Thise the lowes Dote is a G, bat because that acele is played in the nataral arst ponition of the hand, vithoat any shift

When the F sharp on the Arstatring falls naturally under the firat finger, while the F nataral requires oither the half shift downwards on the first string, or the exten. gion of the little fnger on the second string. If "Corelli" is desiroas of rractising some difflicalt achiserc. mente on the fidde, let him, for one, place his little
Anger lighty on the donble high E on the Arst siting, po as to produce a harmonic, then prees the onger down in order to bave the ordinary note, when he shong ran the littie anger down the string so as to dintinetly mark ench note, till he arrives at the B , and anish the
donble octere with the remaining fingers and open string. Wive regard to the bow, he matt begin at the point, and give it an impalse that shall make it hop so as to come down afresh on the string for each ancceed. ing note, that it may be a ataccato passage. When he
can do this neatly and perfeotlv, say 30 or 40 times in cando this neatly and perfectiv, asy 30 or 40 times in
a minate, he can bepin it at the G above, and then proa minate, he can begin it at the G above, and thon pro-
ceed till he gets to D in the ledger lines, and proceed ceed till he gets to D in the ledger lines, and proceed
with the fingers on the geceessive strings till he comes to the end of three octaves on the open G on the fourth string. When perfect in all this he can try to do it
with a draving bow instead of a pushing one-that is with a drawing bow instead of a pushing one-that is Thear, beginning at the heel instian on the point.
 or the devis shate. Stop a note on one of the three
lower stringe with the frst finger, place the third
finger on the next hisher string on the note where it finger on the next highor string on the note where it it would naturally fall, and then produce a donble
ahake with the second ann lithe fidgers. And now a ahake with the second and little fingers. And nnw
word apent the fnnoy fidde of our exellent "Har.
 tion of a psoudonym an ho is in that of the anbjects on
Which he writes. This instrument is of so simple a Thich he writes. This instrument is of so simple a made one at once, and thus have saved us mach apecrolation; bat I oannot help remarking that I do not
thing it would succoed, ard, to say the least, it in not waidod. Snpposiog all these seven sonabboards to bo Wanod. Sppposing all these neven sound boarda to bo it5 to make so tarrible a noise? No one oan assert
that a good violin, in proper bands, is weak or inthat a good riolin, in proper hands, in weak or in-
capable of falling any reasonably sized building; aapable of alling any reasonably sized building;
and, moreover, wa have here a combination of two anstrumentarer, whe have here a oombination of two instrumente of which the fingering is ossontially
ent, for in the violoncollo it irequently beomes neces:eary to stop vith the side of the thamb, which in broaght to the front of the fingerboard frr that par-
poee. Then there would be the very wide intervals poetween the ingers in atopping the notei on one part of the instrament, and the andden transition in their great approximation on the other part; the bow requiaite for the one would not do for the other. Then the manner in which this inatrament would have to bo
hold is againat it, for although the fldde can be played hold is against it, for althongh the fiddie can be played wany thing performed in this way oqual to the brillianoy that is obtainable from the old-fashioned manner of holding it, and where should we bo when the thamb is brought to the front \& Indeed, I am wall persuaded that with all the efforts to invent a not, and improve
apon the old, fiddle, we shall never hit upon anything tupote the ola, fidali, wo shall never hit upon anything and ecalpture, wo may, perhape, rise to the lovel of the old masters, bat we ahall never trapsoend them. I havo a fadile, with a pedigree, made at Padaa in 1704 , by Anthony of Vicenza, tbat I should be very sorry to obange for any modern ingtromont, M. Vallianme's
imitations included. It is difficalt to imagine whatoan imitations included. It is difficult to imagine what oan of required when wo have an instrument that admits of true legato as' woll shataccato plasing, of the thrill
above deceribed, of gliding from one note to another abore deseribed, of gliding from one note to another Without break for two ootavoe if necessary, of a awell longth, of the production of chords, double notes, cimallaneons ootaves, and arpeggioe, with a wole goale of harmonica, and a ponitive chanke of quality by moan three and a half ootaves, and succeptible of being good throe and a hall octaves, and suscoptible of being
playod in any key. What other instrament combines
all these advantages?
F.R.C.s.

THES VIOLIN.-TO "SUTFOLE AMATEOR" AND

 "Beacor Lovge." hail it, however unfarourable, and I thank "Snffoly
Amateur n for his in lotter 1481 ; bet, with all due deforence to his far greator authority, I bog to make a fow remarks thereon.
"Suffolk Amatonr" is quite correot in sapporing 1 had no intontion of inclosing my maltituainoun mound. boarda in a box, the only efiect of dolng this with Which I ame aognainted being practioally to reduce
shoir number to one. The ordinary vilin is aald to have two soundloards- Ik., ito breart and back-but, is I am not groatly mistaken, only one of the surfacee of each oan, in practice, gen erato andible aierial waves the oxternal atmosphere. It is quite trae their inner curfeces are not quite "shut ap," for aportares exist, yelopt sound-holes-query holos to let out that odd kind of entity or noun erbatantive the sound-I suppose to and external air; bat so long as these eo-callied soandholes are very small, and thog ordinarily have bat a very minute area compared with the sarfaces of the baci-
and breant, it eeems to the writer that the oommanication they eastablish must be very imperfeot so he once suggested making many sound. holes in the aides of the iddle, for whilh suggention bo was duly anubbed by an expert.

My saggostion, howevar absard it may reom to ox the conditions neoesamiry for the production of
soand, was aimply intended for rendering the inner snrfaces of breast and back efficient for the generation generated waves neceasariy synchronnas wh the for converting the ordinary violis into an instrument having four sound-generating sarfaces instoad of only two. which I then and yet believe to be, for all prac. tical purposes, the limit of their number. I havo been national Exbibition, A.D. 1862, which-as my Hiber. nian inforpant expressod the faot- 'had no backs at all, at alf, excepting their wooden back banes." wooden bar beneath the belly, which connected the tail-piece with the neck and renisted the tension of the atringa. Sach a wooden bar existed in the late Mr. J. J. Hawkins's violin withont a back which I have escribed, also the demoralising eflects theroof on one know. I really know no reason why these iddles, althongh nasupported by backs, shoald not have been a loud as a and for sll practical parposes it woald seem to be so, Whether formed by onter surfaces of the lid and bottem of a box (I mean a Addle, which, as nsually constracted, is bat a shallow box) or by the apper and lower surfaces of the lid of the box-in other words, the two surfaces of the Addle'a bolly.
"Saffolk Amatear " thinks the resonarce of a hollow box necessary to produce "power of tone." Ho is by no means singnlar in entertaining that faith in hollowness. I believe that formorly nearly all the mekers of
stringed masioal instraments were of the sect I might stringed masioal instraments were of the sect I might
take the liberty of designating "Hollowtonians." take the liberty of designating "Hollowtonians."
Until a comparatively recent time they, almost without Until a comparatively recent time they, almost withont
exception, seemed to rogard moand as a substantive exception, seemed to regard cound as a substantive,
something like Jack, to be shat vp, is not generated, iomething like Jack, to be shat op, if not generated,
in a box. Henoo, it need not surprise ns much that in a box. Henoo, it need not surprise nk mach that
baving, as Mre. Glass advises, first caught their "asir" I moan their tane-in the box, that they shonld, if only for respiration, provide air, alise sound, holes, to lot him ont piecemeal. Lotting him out all at once maat manilestly have been impossible Then we come to look at the amall means of oscape provided in the form of soond-holes in the soandboarda of fiddles, lates. guitars, and harpsiohords. Nay, even the old grand
pianoforte-maters tried bard to "box ap" the sounds pianoforte-makers tried hard to "box ap" the sounds
of that instrament, and the subsequent manafacturers of that instrament, and the sabsequent manafactarers of the earrier cabinet and cottage pianos made them
with solid wooden back lininga, until oxperience oonWith solid mooden back linitga, nutil oxperience ounrinced the makers of both that a piano whose soundboard was exposed to the atmosphere on both its sides like that of a Addle withoot a beck-yielded mach londer sounds than it did When its sonndboard formed
the lid of a nearly close box. I "kalkalato " it woold the lid of a nearly close box. I "kalkalate " it wonld
require a long search nowadays to find a piano, small require a long search nowadays to find a piano, small
or great, with a alose back or bottom lining. Modern ingreat, with a alose back or bottom lining; modera boxes or tabse are tube with their bottoms' oat, concoquently the box, alize tab theory, cann't " hold water."
That a box is necessary to produce "power of tone" can hardly be believed when she notorious fact that the counde of a harp are not only swolled by opening Its back doors, bat that thoee nounde generated during the Whole time thoee doors remain open are muoh loader than when they are shat, is talion into conideration. Were a nearly close box neoemary for the generation of lond moande, we should indeod experience inareace of loadnens when the baok doors of the harp are opened, but-as the box would then beoome one nuoed atter opaning the swell woald be reaker. Juat the same thing might be expeoted when I open the Vonetian awall of a harpsichord; bat the very reverne happens.

Suffolk Amatear" says, "Compare a tambourine with a dram." Now, tamboarine is literally lithe tamboar or dram. The Fronch call it "tamboarette," jast as wo call a amall poker a "ppokerotto." Jant ad well might we compare a ohild with a man.

I am not quite eure that patting two mombranes on one oylinder sensibly increases aither the rolame or
intencity of the sond predacec when one of them is atrack. We don't uee two mombranes in a hettiodrum, and jet its soands are snything bat deticient in loud. neas, nor can I thint thoir power be caused by their being "boxed rp." A. Baxe, who is generally supposed to know his trade "indifferent woll," made them without the " kettle," and his baes drams without cylinders, alias "barrels," of any length to speak of. I am inmentioned Hiberninn friend torms "stool" membranes sach dram having but one. He says the quality of the tone is very fine and their power romarkably great -quite equal to shoepskin. If I am not very moch mistaken, the lootle tembourette, about 7 ft . diameter, which I both man and heard at the late Alired Mallon's promenade concerts, had but one-not sheep-shin, probably formerly the outicular property of some distant African relative of the bereaved Mrs. 'Pottamus. Had it been born in this iron age it woald have pro. bably poesessed an iron hide.
The help I requested of "Beacon Iough " was either records of the sooustic " facts "-which are foand to sbtain when the sonndboards of musical instraments are corrugated-or the opinions of those who, like
"Beacon Lough," are better mequainted than I am "Beacon Loogh," are better mequainted than 1 con seqnences of forming them in the Ways proposed by
M. Pape and Mr. Robertson. I thought I made this M. Pape and Mr. B
alear when I wrote.

Tha Haryontove Buacrgyitra.

CTENODUS.

[4600]-In the English Mechanic. Vol. XIT., No. 291, p. 112 (letter 630). I diracted the atteotion of yoar readers to a carions form of bone which bas been recognised as a sphenoid of ctenodut. The pphenord
bones that aro discovered in the Northamberland coas bones that are discovared in the Northomberiand cosjmeasures vary vory malerially in aize, ranging from
in. to about isin. in longth. The average length of those discovered is about 5 in., bat a fer days ago I had those discovered is about bin., bat a few dars ago I had the pleasure or ingpeeting one of consider the broed or anterior extremity is perfoct. The length of the frag. anterior extremity is periect of the rhombidal extremity from angle to anzle is sin. The widths of the hhomboidal plates bear a somewhat naiform proporhon to the lengths of the sphenoidal shafte, and one perfoct sphenoid now before me has a plate 2in. Wide,
the length of the entire bone being 6in. Infer, therefore, that as the plato of the largo sphenoid before referred to is 4 in ., the total longth of the bone could not have been leas than $12 i_{i n} \mathrm{in}$.
Some of the fat, ridged, pelate teeth of the Clenodi are 4 in . long and 2in. broad, and many of the head-bones display considerable strength; it may.
therefore, be fuirly inferred that aome of the Ctenodi therefore, be fairly itforred that some of the
were of great magnitude, and that their dental erastiag were of great magnitude, and that their dental crastiag
powers were very great. Whether the carboniferoan pnwers were very greal. Whether the carboniferoan
Ctenodi, like the modern Auctralian Ceratodi, described Ctenodi, like the modern anctralian Ceratodi, described
by Dr. Guinther. were regotable feeders hen not jet been eotablished ; bat whatever they fed opoo. it appoars to have been something not vory hard and not
difiealt to crash, as the vast majority of the toeth diffealt to crash, as the vant majority of the toeth fonnd aro as perroced anly for arashing comparativaly soft food.
Newcastio-on-Tyne. T. P. Barkas, F.G.S.

THE INDUCTION COIL.

[4601.]-I HAVE met with certain difmeallied in the construction of this instrament, and finding that sovaral of my friends and some of yoar corrosponthought I might renture to request vou to insert the following, since the replies to it (if it is fortanate enoagh to olicit any) can hardly fall to bo of aet to any of your readers who may be engeged in conetrooting a similar machine. I have mede my description as bhort 38 I could consistently with clearnoss :-Lough moter lin., 22 B. W. G. Primary onil, sbout 50 jarts of No. 18 copper wirs, cottos covered and conted with a composition of pitch, renin, and gattapercha. The primary is ingnlated from the ecoondary by a thick coat of the same composition, and two or throe thickneeoondary is divided into three apaces, of which only the contral space is wound as yet. It consists of about 500 yards of No. 85 onpper wire, covered with tro layers of cotion (i atrands in each layer), woond on in oppoito directions, nud farther insolated by being pacced throngh melted parafinn, the diameter being in creased by these procesces to abont -08in. The layers are separated by ivo thickneases of papor sonked is parafin. facoionlas. The tabe on ซhioh the primary is woand is of paper, aboat one-rixteenth of an liooh thick or a little more. The condensar conniots of 18 sheete of tinfoil, 8łin.

From a battory condeting of three pint Buagume
 a epark of scaroely more than one-eighth of an ineb

 a apark oo scaroely more than ono-aighth of an inch the sparki will soarcely paes over any appreciable istoryal.Tho queetions that I more partioniarly with to eck respocting this ooil, are:-1. Is thore any olhanoe of of cill covored wire ? 2. What longth of spark can I of silk covored wiro 9 2. What lopath of spark cas 1 of cocondary wire ingulatod as abovo demoribod is 8 Is the wire of my primary 0011 (18 B. W. G.) maoin toe ane

I may add that I have oarofully read the whole of "Bigma's " raluable papora on oleotricits, and I thint that I have anderatood them prefty well. The folloe. ing paceage, howovar, paxcles mo, and I oannot and diffonth "A of one unit of sinc till depoait exally the ption quantity of copper, viz., one anit whethor it mane directly to the coppering ooll, or whother a long fine vire in thic copporing coll, or wholnor a long fibe the cironit, the oll direrenpe ill also interposed in mach longer ebont it" (Tol XII 77 No tat It erems to athat this hented sire matt radino. 177. to noems to mo that healod wire matr radiafo bee thereby doing cortain namber of foot ponade portare Wheny is thi Woposite is anit mere heating of the fire 70 ald not diminich ohat ta provided no of the heet ceceped by rediofioro prover. I 14 ol coures to be inderstand or I aet thie quention ontirely for the mate of information and not to prodicee a disenarion, or cant a donbt on en lact as stated by "8igma." T. R.

REFLECTION.

[4602.]-Ir we take a long bolt of cilvored motal, or out a atrip off a mirror, we ond, by bending it, cenco focre aftor the manner of an ordinary concover apuse locus aftor the manner of an ordinary concove spose.
lam. Under thome oireamantancen a diotorted image of

JuLY 26, 1872. ENGLISH MECHANIC AND WORLD OF SOIENCE.-No. 383.
an object will be formed at the point of convergence; is it possible so to fashion a second mirror, or grind a lens, whieh, receiving and transmitting the first image, will rectily its deformity, and afford a correct pioture of the object? If this conld be done probably we might purchase refleoting telescopes for as many pence as we
now pay shilliggs, and for its scientilfo and pecuniary now pay shillings, and for its scientifico and peenuiary interest,
readers.
E.B. F.

PERSPECTIVE.

[4603.]- I cannot bat think that the laws of per spective which are true for different objects in a pioture apply also to the portions of individual objects, and that if what I term pictorial perspective requires a modification, for instance, in the linear perspective of
distant objects, such asmountains, a good case is made distant objects, such asmountains, a good case is made
out for a similar modification being requisite in the out for a similar modification being requisite in the
proportions of a single object. If "B. D. T." (let. 4532, proportions of a single object. If "B. D. T." (let. 4532,
will refer to my definition of perspective, he will find that the, remarks I made were closely connected with the sabject. "B.D. T." remarks if a picture be drawn out of (linear) perspective it will convey a false im. pression of its form ; bat in the next sentence we read, convey a correct impression of their magoitude-so convey a correct impression of their magoitade-so
that out of perspective or in perspective the mountains that out of perspective or in perspective the mountains
seem in bad case, and the only remedy proposed is the seem in bad case, and the only remedy proposed is the
impossible one, so far as a pictare is concerned, of impossible one, so far as a pictare is concerned, of
riewing it stereoscopically. Now, it is just becanse a victare cannot be so viewed that pictorial perspective steps in and modifies the linear perspective, which vowedly fails in accomplishing that which it is the nission of perspective to effect.
At the risk of some repetition allow me to add : True linear perspective being the exact projection of the form of external objects on the plane of the pictare annot bat place on the retina the same image that别 place parallel to that of the picture; bat, as this is not give rise to different impressions on the mind and give rise to different impressions on the mind, one
being of depth the other of flatness ; the fermer being being of depth the other of flatness; the fermer being perieved by the stereoscopic power of binocalar vision,
while the latter can only be transmitted by the indeWhile the atter can only be transmitted by the independent action of the eyes, and is equally well appre-
ciated by one. It must be borne in mivd that we do not see the images on the retina bat by means of them see the images on the retina but by means of them;
that vertical, horizontal, or parallel straight lines in a picture are not always, I might almost say seldom, vertical, horizontal, straight, or parallel in the corre sponding image on the retina, though by means of these curved, divergent, \&c., lines we judge with the greatest accuracy as to their atraightness, parallelism,
\&c., so that we may readily conceive why an image, which is deficient in exact linear accuracy, may for certain visual" reasons convey to the mind a true perception of the object to be delineated.
M. A.
[4604.]-Mr. Procror (let. 4531, p. 439), cum multis aliis, seems unable to grapple with the real difficulty Which is this :-Given, a high tower of equal breadth, is the top farther from the sketcher than the base or
not? If it is, it must be optically narrower, and therefore the lines definirg the side viewed will not be parallel to a suspended plumb-line. Mr. Proctor, in his demonstration, simply begs the question. We are not dealing with vertical lines, and therefore the mathematical proof does not apply. The only vertical line is one exactly opposite the spectator; in the
tower, therefore, one at least must incline, very little indeed, but I assert its inclination is capable of instrumental observation.
M. Paris.
[4605.]-MAY I be allowed to add yet one more letter to the cepions eorrespondence on the sabject of per-
spective, in angwer to the "Welsh Shepherd's " last spective, in answer to the "Welsh Shepherd's" last letter (4566, p. 465)? He states that the rule in perspective that all vertical lines shonld be drawn parallel
is a dednction from observations made on the glass plate. This is not so-for if a sufficiently accurate plate. This is not so-for if a sufficiently accurate
outline could be made upon the glass plate it would give a result at variance to the rule, notwithstanding that the rule is practically correct. The real reason why that the rule is practically correct. The real reason why
artists draw all. vertical objects with vertical and artirallel lines, is that the convergence of vertical objects parallel lines, is that the convergence of vertical objects
within the cone of vision is so slight as to be imperceptible, bat the convergence does exist for all that The fact being that all vertical lines do converge to a varishing point, whioh is the zenith, and this convergence exists whether the object be within the oone of vision or not. Bat this convergence being so slight as perspective which says that all vertical rale of artistic perspective which says that all vertical lines in nature It appears to me that some of those writers whe one. convergency, ime that some of those writers who opposs supposed to be equal in ratio to the ence spoken of is supposed to be equal in ratio to the convergence of
horizontal lines, but the fact is the vertical lines within the cone of vision is only a fraction of the convergence of horizontal lines, and that fraction ever diminishing according to the increase of does exist even within the cone of vision can be pronce as follows-Draw a horizontal line vision can be proved and perpendicalar to it, draw a shorter line; let this, and parpendicular to it, draw a shorter line; let this
line represent the height of a parallel columa ; let A be its summit and B the base. Then on the horizontal sufficiently a spot for the speotator; let this point be line drawn from the point to the summit will be at an angle fairly within the cone of vision. Let us call this point $C_{\text {; }}$ from C draw aline to A_{1} bot the compasses at

C, and from the base B draw an arc cutting the line CA. The point at which the are cats the line give of the erence of distance slightly m mit and the base; the su 'the reand to be speaking more distant, and the able to recognise the difference. [We are unable to devote any more space to this
discussion.-ED.] discussion.-ED.]

THE PENDULUM.

[4606.]-I HAVE recently been reading Sir J. Herschel's "Treatise on Astronomy." My attention was particnlarly strack with that part on geography, diameters of the earth are the equatorial and polar calculations, from meridional ares previonsly measured. Sir John says that the resnlts, as given by him, were taken from a paper by Professor Airy, "On the Figure of the Earth." He would be considered a bold and presumptuons man to doubt or call in question the accuracy of such resalts, viz.:-Equatorial diameter at 7,925,648 miles ; polar diameter at $7,899,170$ miles. The only cause of donbt as to the accuracy of these values is the "uneven and monntainous sarface of the earth." Does the measorement of meridional ares include the aneven surface of the earth? If not, how is the case to be met? Answer, by the pendulum. Shakespeare asks the question, "How wags the time ?" It is not necessary to erect a pendulum on some suitable place, such as the month of a coal-pit, and another some thousands of feet below the surface, and at each of those stations to, watch and count the wags the pendalum, for the parpose of ascertaining the difference of the force of gravity.
We have, by the industry, care, and precision of number of wass exact values required-namely, the the moon's mation ronnd the earth from made during the same star again, which is termed the monn's sidereal motion, equal to logarithm $\quad 6 \cdot 3730208$

And 86400 s . in time log. $4 \cdot 9365187$
11•3095345
$5280 \div 16=830=\log . \Rightarrow 2 \cdot 5185189$

$$
\checkmark 8.7910206
$$

$0.4971499 \div 0.00072332=$
4.39551030

Equatorial diameter, 7926.54 miles $=$
3.89908872 000144664

Polar diameter, $7900 \cdot 18$ miles $=$
Equatorial log. $=8 \cdot 89908372$
, 779672080
Mean diameter, 7913•35 miles = 3.8983604
By changing this method of calculation in the separation of the values, we shall obtain the same resalts. Thus :- $\quad 4.9365137$
B.8780208

$\begin{array}{r} 98730274 \\ \times 2.5185189 \end{array}$	$\begin{array}{r} 12 \cdot 7460416 \\ 2.5185189 \end{array}$
$\checkmark 73545185 \sim$	10-2275877
8.67725675	$5 \cdot 11376385$ 367725675
$0 \cdot 4971499{ }^{2}=$	$\begin{aligned} & 1 \cdot 48650710 \\ & 0.9942998 \end{aligned}$
	$\begin{array}{r} 2 \cdot 4308069 \\ 10 \cdot 2275277 \end{array}$
Mean diameter	, 77967208
	$\text { r } \begin{aligned} & 3.89836604 \\ & 0.00072332 \end{aligned}$
aatorial diameter	\% 8.8990837

Veritas.
SOUND (OR UNSOUND) THEORY.-To "F.R.A.S."
[4607.]-I pRBL highly flattered by the opinion F.R.A.S." expresses that my acguaintance with the interior construction of some old and new stringed musical instruments may possibly be a trifle more familar than his own, also by the "handsom concession" he is pleased to make that his scientific acquirements may a leetle exceed my own. His opinion of the probable effect of corragating a thick soundboard is exaetly identical with my own, which, indeed, was (substantially) expressed in my letter, No. 4416, althongh it did not occar to me that the motion of such a soundboard' molecules might be developed in the form of heat. No donbt, corrugation is usually employed for increasing rigidity, and excess thereot can hardly conduce to the prodnction of londer sounds; but that "theory is wholly opposed to this form of canstraction "does not seem to me quite self-evident, because a corrngated soundboard whose rigidity is a given quantity may be made of less weight than one whose sarfaces are nearly paraile. Now the string will, cateris paribus, move the lightest soundboard farthest, and thereby generate ampler aërial waves, just as it acts more powerfally on
the thin soundboard of a piano whose needfal amouat
of rigidity is obtained by glaing wooden bars on it, than it does on one whose thickness is sufficient to resist the
downward pressure of the string Although pressure of the strings which rest on it. necessarily rigid opposed to making soundboards unleast in the pigino must admit that in practice-at necessary amano what woald appear to be a very unbtained by bynt of rigidity seems-so long as it is not rather conducive to the production of monads of be timbre without sensibly diminishing their loudness when rigidity is not carried to an absurd extent. See my reply to "Sciolist."
One word about my unlucky first fiddle. Will F.R.A.S." kindly communioate any fact which induces m lice that aërial waves, generated by the vibraions of one or more sonndboards, can have their amplitade increased, and affect us as sounds of greater londness, when one or more of the surfaces of the said soundboards form the top and bottom of a box? So ignorant am I of theoretical aconstics that I can't even conceive how any thing in motion, or any form of energy -no, not even a sound-wave-can be made any bigger by being treated like "Jack," and "shat up" in a box any more than I can conceive the light waves, or undulations, transmitted by "F.R.A.S.'s" "aplanatic objective" can be angmented by being "shat up" "Suffolk Amatear"" his telescope. See my reply to

The Harmonious Blacesmith.

"ANOTHER LIQUID GLUE."

[4608.]-I Have tried the recipe given in p. 425 for "liquid ether glae" (No. 1: nitric ether glae and indiarnbber), and if the nitric ether supplied by my chemist be the veritable article, I denounce the recipe as a delusion and a snare. As in "Another Liquid Glue" a similar solvent (?) is advised, permit me to ask some of "our" chemists to enlighten my ignorance by gaying what is ether, nitric either, "ether free from aloohol," and whether either will dissolve gum (shellac), glae, and indiarubber? In the mean time these recipes will be confidently copied into newspapers as coming from a reliable source (I inclose a catting rom the Weekly Dispatch), and no donbt many persons, as in my case, will find their time and money thrown a way in endeavouring to produce what would be a very
handy article if the formana coald be relied on. The handy article if the formala coald be relied on. The circamstantiality of the details as to how this parti-
cular glae will resist hot and cold water, \&c., adds to cular glue will resist hot and cold water, \&c., adds to the mortification of having followed what appears to tha freak of imagination rather than the result of
that experience which we expect always to find in the pages of the English Mecranic.
F. F. C.
P.S.-My nitric ether rendered the glae and indiarubber rather more insoluble than before its application.

Copy of Cutting
Ethes Glur.-An excellent liquid glue is made by dissolving glae in nitrie ether. The ether will only dissolve a certain ansount of glue, consequently, the solation cannot be made too thick. The glae thus made is aboat the thickness of treacle, and is doubly as tenacions as that made with hot water. If a few bits of indiarabber ent into scraps the size of a buekshot be added, and the solution be allowed to stand a few days, being stirred frequently, it will be all the better, and will resist the dampness twice as well as glae made with water.

WATCH REPAIRING.

[4609.]-In the article on the above in No. 381, is. 421, by "Seconds Practical Watchmaker," reference with the particular wheel in question-Geners. Now, with the particular wheel in question-Geneva escape-
wheel- "Seconds'" does not make it quite clear how wheel-"Seconds'" does not make it qui
to "bump it," so as to aroid a "smash."
I have found out, by experience, never to risk laying a Geneva escape-wheel entirely on to a hollow punch to bump it, but nse instead an ordinary flat panch with a small hole drilled up to the centre, or a small steel-piped watch-key. Lay only the arm to be hammered aoross the hole in the punoh, and hammer
as lightly as possible, at the same time shifting the arm of the wheel a litile after each blow.
If the wheel is tight, and resting equally on the shonlder of the pinion, I would certainly not advise "trueing" by the method "Seconds'" recommends, as it has a tendency to bulge the ends of the pinion leaves, Fhich would interfere with the foarth wheel pitch. This would not happen if the pinion was hardened; bat unfortunately by far the greater number of Geneva watches imported of late years have none of their pinions hard. I would suggest, with "Seconds"" kind permission, that if he would devote as much of the space in his articles as he conveniently can to "causes of stoppage" of the varions "movements" apon which he treats, he will confer a boon possibly on many professionals as well as amateurs. I Would also and as many of our really able" brother "pirots" as are willing, would contribate theic experience as the sabjects are being treated, I am sure, Mr. Editor, that aubseribers would not have to complain again for some time to come-as one did a few weeks ago-that there was so little information to be derived from the English Mbchanio in our particalar branch of industry, bat it would also tend very much to enlighten those who are "moving along in the dark," anent

ON THE MEASUREMENTS OF THE ELECTRO. MOTIVE FORCE AND INTERNAL RESISTANCE OF A GALVANIC Battery.
[4610.]-(1.) Tbe Electro-motivb Force. - The process described by " 0 ." (p. 411) is ingenions, capable of considerable acouracy, and, so far an I am aware, novel; but his reasoning in support of it is, I thint, erroneons. His second and third equations are not generally true, bot only in the particalar oase Then he erm g is $_{3}$ vanishes; and, as no a priori proot ol argament without that term is aiforded, be to tak the eqnations convecting the intensities in the different portions of the conductors for each cell independently, and to equate the ralues of the two componente of i_{3} As this process is a little complicated, I offor the fol. lowing pirfple proof. Since the resistances have, by " 0 . "s" hypothesis, been adjasted, so that no carrent fows through G, the value of g is inmaterial, and may affecting the carrent flowing through the other parts of the arrangement. If $g=0$, then-

$$
\begin{aligned}
& i_{1}=\frac{E_{1}}{x+E_{k}} \\
& i_{2}=\frac{E_{2}}{y+r} .
\end{aligned}
$$

If $g=\infty, i_{1}=i_{2} ; \therefore$ Whatever be the value of g. i_{1} and i_{y} are equal.

$$
\frac{\mathbf{E}_{1}}{x+\mathbf{R}}=\frac{\mathrm{E}_{3}}{y+r},
$$

the resalt obtained by " 0 .," whose argament beyond this point is correct.
(2.) Internal Rbatbtancr. - With all dae deference to "Sigma " (p. 301), I ventare to prefer Manco" (a) The former requires only the following reasoas: which overy electrician possesses-riz., set of resistance coils with the bridge and miltiple coils combined, a key, and a galvanometer, which last may the nse of appecial shant made for that purpose (and
 nems (b) The employment of nometer and condaction wires. (b) The employ mon oh be attained by getting a result 100 times too large, and marking of the decimal places than by the nse of frections of an Obm directly and surely "Sigms" of fractions cannit consider the placing of a decimal point a.
It is far easier to see it a galrnometer is deflected hen a key is depressed, than to adjust the peedie Then exsctly the same amount of deflection in two oxperimente (d) By the former process the resalti is oxperimesta. (d) Be moment when the reading is accurale at ife variation ocenrs from time to time, it can be at once measured, whereas a rapid comparison of the deflection with the two different arrangemente of the deflection with the two difierent arrangement switches would rith a variable resistance be at leas switches, woald, wing a variable ithet "Sigms," has rery difficult. I cannot bat zaink that is igma has never tried Mance's method, becanse if he had he
would, like myself, have been charmed with its vonld, like mysel?,
The plan saggested by "g. T. P." (p. 359) is a moditication only of Mr. Fitzgerald's, and is open to the rame objoetione (with the exception of the special shance ; bat a new one in introduced, becanse the resis tance of the external eircait, inolacing the galvanobers, and therefore it would be difficalt to redace the bersist suncer the rect the -8. T. P., to try Mence's procese and ith e prona arrangemeat of controlling magnets and other acees ancies which ill donlogs he will. I think, and it evergthing he can desire

BLOWING EGGS OF SMAJL BIRDS.

[4611.]-Perbaps some of the readers of the Engligu Mbceanic have found it difficult to blow very small birds' egge with a blowpipe. I always nae, for wrens, titmice, and suoh sized egga, a glass tabo way up its length into a balb. I insert the fine end carefully into the hole in the egg, and, placing the larger end in my moath, nuck up the whole of the contents of the ogg at once into the balb of the tabe, then inject water into the egg and auck ap again with a fresh tabe till all is clean.

REDUCTION OP DECLINATION:-RTGET ASCENSION.-EQUATION OF TTME.
[4612.]-WEENEVEB I hare had oceasion to reduce the dealination, right ascension, or equation of time for required mean time I, like many observers, have resorted to the logarithm table, given in ell nantical works, for the necessary eid, since they are stated to cently, however, I heve also compated these reduction socording to the rule ennociated in the explenations in the Nuatical Almanac, on its Ephomeris, in page 1 and I find their resalts differ by some seconds, both in time and in are-greater when the hourly diferencee are large, and scarcely appreciable for ordinary require. ments when the registored differencen are simply doci mals of a second.
I To place this quention olearly before your readera I give my compatations of the examples set out in
pp. 639 and 540 of the Nautical Aknanac for 1872 , according to the Naulical Alwanac rale, and by means of the logerithm table.

Required the sun's declination on January 16, 1872, at apparent noon, in longitude 60° West of Greenwich the lougitade in time is fh .
Junary 16, Oh., the registered difference of declination for lh . (increasing)..............
declination for the registered difference of
Dividing this by $\frac{2 \mathrm{~h}}{24}$
Propartion of the diference equixalent to Widway time
rence for $16 d .0$ registered hourly diffe

Multiply by the given time
Proportional increase in declination in 4h... $1^{\prime} 53.5300^{\prime \prime}$
12) 0090
00.0825
28.30

283825

As the deolination is decreasing, snbtract
the above prodnct from the registered
declination on 16d. 0h............................ 210040.4
153.5

The reqaired declination for Janmary 16, 4h. 20 58 46.9
Which corresponds with the answer.in the Nautical Alinanac.

By the Logaritlsm Table.

$17,0 \mathrm{~h} . . .204909 .9$
Diflarence
$\begin{array}{ccc}\text { d. m. } \\ 0 & 11 & 81\end{array}$
$.001131 \cdot 1$
$\begin{array}{ll}11 & 8198\end{array}$
$\begin{array}{llll}\text { h. m. } \\ 400 & 00 & -7781\end{array}$
Proportional difforence $\quad 157=\overline{1.0979}$
Declination on Jannary 16, 0h., (decreasing) $\begin{array}{cccc}\text { d. } & \text { m. } & 81 \\ 00 & 40.4\end{array}$ Sabtract proportional diffurence 157
The required deolination for Jan. 16, 4h... 405848.4
Required the eqration of time on January 16, 3 h . (2pparent time), for the reduction of the latter to Greenwich moan time.

January 16, Oh., registered difference for 1 lb . Jannary 17, 0h., registered difforence for h . | 8. |
| :---: |
| 0.864 |
| 0.884 | 1.5h. $\overline{16) 0.030}$

0.002

January $16,0 \mathrm{~h}$., registered diference for lh . Sabtract the above quotiont.
0.864

Proportional equivalent for midway time
Malliply by the given time ..
0.862
\rightarrow
As the daily equation is increasing, add the above prodnct to the registered equation on
Janamey 16, 0h....................................... 954.43
The required equation on Janaary 16, 3h...... 957.03
Dy the Logarithen Table.
Jan. 16, Ob., registered equation (increasing) 954.43 17, 0h.,
h. m. s.
020.38

00020 \qquad
Jenaary 16, 0h., registered equation........... 9 s
 9569
As farther illustrations, I parposed farnishing you with a set of conapatations of the declination for overy 3 mm . in 1 h. , and for each hour in a day; but these pa pers would, I fear, ocenpy too moch valuable apace in the magazine. I shall, therefore, reatrict mgself to a few extracts from them, which will show that differences do exist in the resaltes obtained by the Nautical Almanac rale, ard by the logarithm table.

December 5, 1872.
By Nuitical Almance
By Log. Table
Difference of hog. Tale fromNautical Almanac.

Here it may be proper for me to note thet I have tested the accaracy of the compatations by rade to the
Srd differences a 000 3rd differences a 000
I put this paper forth in the hope that some of yoor namerons correspondents and contribators vill explain which of the two methods of compatation is to bo Abizs.

POWERFUL GALVANIC BATTERY.

[4613.]-TnE following form of battary is very cheap and simple, and has a potential aboat 80 per cent. higber than a Grove or Bunsen, and more than 150 per cent. higher than a Daniell. For positive, zine in a solation of canstic potash or sods; for negative carbon in a porous cell packed with precipitated saland filled up with dilate anlphnric acid. The internal resistance is rathar large, bat is common salt be nea instuad of canstic potash, the revistance in much less, but the potential sinks to rather more than 10 pee cont. higher than a Grove. On the whole, I think this is the cheapest and best battery that can be nsed for genera prrposes, and has no noxious fames or other inconvo niences.
2, The Cedars, Patney.
H. HLemor.

REPTIES TO QUERLBS

. In their answers, Correspondents are reppectfully requested to mention, in each instance, the tille and number of the query asked.

HINTS TO CORRESPONDENTS

1. Write on one aide of the paper oridy, and ped drav. Ings for illastration on separate pieces of papas. 2. Pai titiles to queries, and when anaworing quories pat the numbere as well as the titlos of the quaries to which the replies refer. 8. No oharge is made for insertinglotiers, queries, or replies. S. Commercial letters, or querrios, or
replics, are not inserted. 5 . No question saking for
 through the post. a. Letters beat to correepondents nnder cover to the Editor, are not forwarded; and the names of costrapondende are not given to inquirera
[11554.]-Pedeatrian Towr.- One of the greatent plagnen to travelera, bat eapecially to thoee on foot, is the unoertainty of obtaining sleeping scoommodation at the pleces they desire to stop at. Oltan haro I been obliged to go on when already tirad, and to leave a more for a less interesting stopping place. It wonld not pay to build inns big enough to sapply bedreoms for the largest namber that over want them, and 00 long as the numbers wanting bedrooms ranien as muoh and m nnexpectediy mit now doek, thit sarious evil mast be endured. I have often wondered that the following very simple mode of removing, or at least greatly diminishing, the evil has nover, 10 far as I know, even been tried-namely, that of ereoting large marquees, and alinging in them hemmoctra lor travel. lers who may be is exce日s of the bedrooms provided. A tired man worid iar prefer sleeping in a hammoot to seeking a bed hall a dozen miles ofl, with no car. tainty of finding one anoccupied; indeed, I do not think it would be thought any hardohip at all. Tho cost of providing hammocks would be pery small, is in warm weather, in the teuriat's season, hardly any bed. ding would be wanted, while the marques voald le usefal in the daytime as a refreahment-room, unies the inn had ample accommodation of that sort, and in if had the hammoctes might be alang in them, of ander the wheds of railway stations, where thare is pi places no night trafine, as is generally the cact ar piond pedeatrion than I am says I am quite wrong in ourrying anything nousual in my pockots, He sage a rory light coat that will not bear hearily loaded poonets is best for walking in, and that baggage should not wo a pack, bat divided isea, or knaptachio may be astried in verious ways, e. a, hanging by straps over be rid in varioas ways, e. g., hanging by straps oras each arm, or one in each hand, or both in 000 hand He sert cerry no more than you will went, and do nol carry yourmelf what you can get come ove to carry lat you. Ofton you may get your trape sont on by soms conveyaree to yore intanded slooping pleces, and recare a bed there too. The peaks may be either wrapped in light malerproot clothis, or mach, used to shellit bots them and you-PHKLO.
[11589.]-Dry Bteanm.-In maying tura alintyo pound steam, escaping into sis with only malf poond atesm in it, would expand "instanty sutyiad,
did not mean quite so instantis an if no air, bat coll did not thean quite so instantly as if no air, bat colly
the half-pound steam, were prenent. Dees "Pha," the hali-pound steam, were prenent. Does Mo and ol a cylindor, the other ond opistor reats at one if solk. (or donble the other end open to the air, sad in sim jor doable atmosphere) steam be admiltted to drivo just a quarter the cylinder's leogth, and then cat out the piston will go no further tham hall- wiy ? If wil ing not morely fwofotd, but nearly fourfohi, and becoming, for a moment, enis orb, atatim or thereniont reaction, and again robounding, sill sfter some osaitlatinns the piston rests netdway. Now, whit an ceespo into air, Withont rose pioton, the same frot overghooting of the mere balance takes place, wits thin disfersao
an the two diasimilar Anidu interpenetrate, and eannot be brongat to oppose one another, bat any diffasion once gained is oxtended farther. Indeed, the higher the stenm's origional prosmare the quicker will it expand, not meroly down to atmospheric pressure, but to far less $;$ and the hotter its origlnal temperatare the quicker
mant it cool, and the greater the chance of forming
 is totally wrong about high pressure ateam haring less is tetalty wrong about high pressure atosm haring less
water than low. On the contrary, among all such wheam as ongines unchice, wet steam betwoen the
 is nearly in proportion to the procenre, which is pro-
bably what "Phile "wrote in his leet contence bat one (p. 466), and the printer has ohanged nearly into

[11689.]-Dry Eterm.-I am not stiflicientiy read ap as to the recoived optnions relative to the formation of steam of rarioas prossures, to hnow whether my
ideas aro novel or erroneoua. But riow it in thic light, ideas aro novel or orroneova. But Fiow it in thia light,
that if we have uteam of any given pressure in a boiler, that if we have utemm of any given pressure in a boiler,
by the applifution of more heat we increase the by the applitition of more heat we increase the
provsure, not merely by conveying additional water prousare, not merely by convoging additional water
into atoam, but eleo by coavroing more hoat to that
which is already faramed, and thereby obtaining Which is already forzeed, and thereby obtaining
 mardly by the addition of a number of, ohall I may, partiones to these ahoudy formed. This appears to me ef correoted if wrove. It appears to mpe that without the aid of the othomint he wee so deairouse to that maperbeated stomm is aimply a hiphor presmare
 hoak and locs water, as ho admita that it. will ocoppy sore spece.-2., Liverpool.
[11773.]-Oleaning 8ilk.-I nse potalo-water for all coloura and kinds, but I mus tangbt to grate them into cold apring wator, eay a large potatio to overy quart of welor, of whioh Aive er six will do for 'ha conple if any way dark, merely wach them palean. Tha pan of watar muth not be etirrod in the loest for forty oight hourn ; than, vory alowly and stendily poar eactere closr
liquor, but not a particio of the sedimeat, into an opan reasel-at bath, or arch liko-dip the piecos of eilk into creaning them; then wipe, os ant hate with a alonn to row, arpot one dido, then the other. It it good to hang each one as dipped upon a. Meo to allow the drope to drain efle aistie bofore wipigg. Have a
damp odoth to cover them in till allise done; then iron one way, on the eoiled aide. It astoniabos one to nee how atifl and nico a drems looks done in this mannar. Any matorial, silk, woollon, moarning cotiona, co., never torned a drese without it-HiH. O'B.
[11892.]-steel Combs (U.Q.)-I beg to thank "R. H." tor the very kind manner in which he hat notioed my query, and I wish to inform him that I ing about airty pins or teoth.-DUsTY KIILER
[11884.]-Tea Teating.-"Sanal Rymea" is right so far as he goes, but he has omitted the faot that the very necessity for thas tasting teas injares the healit
(the nervea), and many a mau has boer compelled to (the narvea), and many a mau has boer compelled to and they deserve good salaties for the riok.-B.
[12001.]-Fiair Tarntng White (V. Q).-I had my hair go red all round my head; with the nee of soap my face got spots npon it. I took to washing in warm bolic acid; in ary ime mbout nix drops of pare oar a coal and ourly. I nevor nue hair oil or fat, oil and fat otop hair from being silky and ourly. Finding this happen, an old gostleman with white hair, alwass
wiahing for bleok, need the carbolic acid. He now has jet bract hair. There are two sorts of earbolic aoid, pare and impare, tha pure is white, the impare jast the
colour of bad treada, or bleck rel, alse a oryatal, all coloar of bad treade, or bleck re 1, alse a arystal, all made from coal tar. Beware, and not nee too much
of it, it will make the skin amart and come off. piece of cotton wool jait wetted with it and pat to a tooth will stop toothache in one minate.-OuTOENIOUs Whitsamith.
[12001.]-Eiafr Turning White (U.Q.). - As "Auld R.A." to try pare glyeerine as let me endrise lotion for the try pure glycerine as at strengthening brown with cold water and drying thoroughly, a little diluted, or in a mild form, foay be applied with a piece of cloth or fiesh-brush. The Bcalp will soon re-
gein a healthy tone, and on the skin assaming a red gain a healthy tone, and on the kkin assuming a red tinued. Cold bathing mast, however, be still resorted to. No oils or "pomados," so called, are to be nsed, or lavender ecoanionally. " J. A. A." may miso find it neceessary to remove the hair by ahaving, and, as a pro-
bability into obeerfal society, and if tronbled vith an exousable melancholy, try to lorget yourself.-Rat-Tat.
[12002.]-Aquarium.-It is of very little oonsequonce whether this or that water need be placed balance is attingly preservad botrees the vegetable
and the animal life. Experience will moon show thisif too mach of the plants, they will overran; if too ittle, they will dwindle. Slicklebacks (Jack Sharps) similar delicataced with gold flab, nor with any or the fiercely. Neither be so cruel as to collect eels or other ranning water animale, because such will not, oannot be ropt alive in still water. Neither put in large newts; a "Triton among the minnow"" makes and haroo.-H. O'B. [18009.]-Kooping Duat from Clodis (U.Q.) - Fixas smoll fan, oither of mood merdrea, in a convenient phaoe mader the olock, theve a reight and
chain to it, and a little wheel geariog, so that you can chain to it, asd a little wheel gearing, to that you can mind ap.at eceriain times; or havo a vind grinder al
 Whitramaris.
[12083.]-Dhasolving Bonea (U.Q.).-By digestIng bones for reveral days in dilato hydrachloric acid required shape. - Yourg 8 sirp.
[12058.]-Canariee (U.Q).-Your ennaries' eggs are rotten, bocanse the birde did not patr soon enongh The wheering you speak of is canased by giving them too haatipg food; take away the oggs and maw seed,
and confine them to oanary seed, which is the proper food. Man teed is too fattoning for them; hang out in the air every day and give pleaty of green food; scoh as lettuce, endive, ehickweed, watereross, or T. B. $\mathrm{B}^{\text {gronnd }}$
[12054.]-The Needle Look-The description of this lock by "Saal Rymen" (Vol. XV., p. 441) is very clear, bat his last seztenoe misleading, inasmuch as he sags, "It is one of the best looke ever invented, Yor only a key made for it will open it." I take it
that it is absurd to call any lock "anpiokable," that it is 2 bsurd to call any lock "anpiokable," oor oxis undo. Now, the neodio lock, besides being by no means dimodit to pick, is open to the falal objeotion of yielding easily to force, whieh, I think, any burglar of note wouk resort to before wating his time over the todious operation of pioking, or of manu-
facturing a false koy. "Saul Rymea' ${ }^{\text {and enlogiam woald }}$ hacturing a false tey. "Sanl Rymea's" enlogiom wonla lock or to Cbubb's, for the needle lock hat again lock or to Chabb's, for the needie lock hat akain
another gmall defeot, in readily getting out of order, and refasing to open with its own key, and whils being very tingenions has not comonp to ile inventor's expectations.-Q. Yorke.
[12074.]-Magnetic Moment.-As far as I andorkend the formula for anotrtaining the atrength of 2 current by means of the tangent compasa, it is inde. pendent of the strength of the needle becanse althongh the earth magoetinm oxerts a groater foroo over a of the ring than iver a weak oue, yel the strength of the magnet does not enter into the final expression which is $\mathrm{B}=\frac{r \times \mathrm{T}}{62088} \times \tan d$. Wherer $=$ radins of the ring, $T=$ horizontal intensity of the earth's magnotiem, $d=$ angle of defoction, and 8 sirength of carrent. The magnotio moment of the noedie is in mo way in. eatimets and bo " 1 do not see how "Sigma propones to Thich prodaces a given deflection to each magnet in the same gatranomeler." With respect to the second method mentioned, namely, measuring "the extra roif "Sigma" would furnigh me with details of the proooss, or rather the formale to bo used. As regards the ooil question, I may as well give the "note "irom
Tyadall, whioh rune as follows : "The primary circuit in ite turn oan, when oomplete, roant apon the eocondary. It is complete whenever contact is made by the sutomatic contact bresker. A great onfeebleWhen the primary cironit is interrapted the reaotion does not exist ; there is no onfeeblement, the fall power of the secondary boing devoloped. It is on this acount that in Rhumkor's coil wo obtain discharges in a singie direction only, instend of discharges alferthe thote is that somehow the inverse indaced carrent is pat out by the extra carrent, and that, therefore, Whatever be the diatance between the poles of an indaction coil, only the direot induced crrrent passes; and this is, as I have before said, at variance with
Ferguson; and I shonld like to bear more from "Brguson; and I shonld like to bear more from " igigan" on the sabject, aud at the arme time beg to
thank hip for the truable he bas already taken. By thank him "or the truable he has aiready ta ascertain the position of the poles of a maguet.-BEAcon Lovar.
[12091.] - Plume (U.Q).-As no one else has replied to "Derf Errac's" query-I think he will find his plumes affected with disease- Whather animaloalar or fangoid, he should te able to diseover by meana of a microscope. The tree may also have more frait than it ann briag to perfection, bat as hedoes not bay so, I
can only form the opinion expressed. SADL Rymes. [12093.]-Budding or Grafting (U.Q.).-A good work on this sabject is Battet's "LArt de Grefler," Parif," contains mnch iuformation on the sobjeot ; there is also a book by glenny or edited by him, but I forget the title now. I do not grow my frait-trees, but I know that the sorta mentioned are generally budded.-SAUL Rymea.
[13108.]-Staining Glass (U.Q.).-A very Ane rod may be obtained from rast of iron, glass of anti-
mony, yellow glass of lead (or litharge), each in eqaal mony, jellow glass of lead (or litharge), each in equal
quantity, to which a litule sulphuret of ailver in added.

This composition, well gronnd, produces a very fine red oolour on glape. Black : 8 parts of aryntal glace, 8 parts these ingreatenta together fith trong tineger Groin 202 of brass calcimed into en oride soz of Grean and 802 of chite mand. Redoce them to an poram which is to be inclosed in a well lated crncible, and heated strongly in an air fornacc for an hour; when the mixtare is cold, grind it in a brass mortar. Green may, however, be advantageoualy prodnced by a yellow on one aide, and a blae on the other. Oxide of chrome has been aloo employed to stain glass green. Yollow A fine yellow by taring toe silrer lamioated, then diaeolve in nitric acid (HNN_{3}), dilate with abandance of water, and precipitate with molution of ses salt. Mix this chlorlde of silver in a dry powter, with 3 times it weight of pipe clay, well barnt and poranded. Violet 1 part of calloined black oxide of manganese, 1 of saifre lased, and groand. ${ }^{\text {Convincher }}$.
[18117.]-Eentorias the Colour of Watoh Plate (U.Q). -Thers are no eflaient means of The best plan if to have the plate regilt ; this you can get done at any of the gilders in Olerkenwall for a very gmall amoont. - ELECTRO.
[12156.] TKice Frating Peas.- When putting in the seeds, cover them 2in. overy way with ane cona ashee. Mice will not take the troable to soratoh go deep. To keep ofl birds from the young bads, make a network of mhite darning cotton, or fine twine, twisted roand bits of stiok a fow inghes bigh, N.B.I have not yot discovered a plan for keeping away cata. Has any reader of "ours "? Cats may be soared, bat mast not be injared in the proposed phat
[18167.] 18 mmoll of Paint.-It is true onoggh that a vessel of cold wator left in the room will shom a scum next morning, but as an intelligent worman筑d me that the glone dieappears from the paintod patieneo. \&nitend of eny of the methods apoten of, and the smell will gradually yield to the in fiaence of drying in a nataral manner,
open wivdow.-H. $0^{\prime} \mathbf{B}$.
[12172] - Constipation. - (" H. S. A." AKD Others.)-I know a great many folk of different sges and sexes ourr themsel by drinking a tamblerfol of hot water (not mermptom warm, bat comfortably bot water) last thing going to bed for a fow nights ; one, two, or hall a dozen, going to bed for a ownigne sizes place, and nature acta natarally: Kneading the feek in any manner, so as to stir nataralions aluggish museles, is an admirable assistant ;
 that "reddening the skin," which is recommended by one correspondent, will care the malady withont risk. ing the prodacing of a new allment in an irritated akin, which might prove painful and tronblesome. The skin ds given as a protection for the extremely delicato tissuea of nerver, perspiratory pores, bloodvesseld, \&o., with which the Almighty has gifted his areatare, man. We cannot with impanity du violence to these organs; the akin is given to man to take good oare of; it needs to be daily cleansed by daily washing and wiping; bat does not require irritation. Wonld any but a madman try to clean a fine kid glove by means of a hard brush or a coarse towel? Nay, nay Why, then, should we bo told to scrab and rab till it Wecomes "well feddened,", so marvellously' beantifn1 bocomes "wel redened," so marreilonely
thing as our akin; finer, and moretenderly to be cared for than the most aristocratically deliceate ledy's glove Sponge it, wash it, soap it, cleanse it, love it bat do it no mischiol by rongh usage, else yon shall surely saffer. And perfoct cleandiness of skin is compatible with perfeo requines, and a gentle daily cleansing is wal health. Thoepoint now ander consideration, conslipa tion, often arises from too dry a state of the internal organs, and this too dry state may be prodaced by smoking, which canses a maste of the saliva, which is required to assist in labricating the macous membrane; that is, the internal skin, which lines the throat, chest, stomach, bowels, dc., and, as some learned folks assert, to also assiat in the process of digeetion; or, by the use of intoxicating liquors, which parch up the stomach and rendar all the secretions anhealthy - (to those who are nulearned I mast explain that big word. The "se cretions" consist of a method of nourishing oar bodies by moans of the oiroalation of the blood, conveying a renorating power to the different portions of the body as is required by each one; as, for instance, the secretion of the oyelide is oalled "toars," and every other "meoretion" has ite distinct name. The phlegm, so troablesome to those who suifier from colds or congh, is an unhealthy searetion)-or, by the non-use of and other at dunuer and other times, beoaase being very parts of our fieshy laber a large anpply o watery diet to or water, reqnire a dinner of our middling and comfortable people consiats too much of meat and white bread, and these whole some articles have not in them enongh of the vegotable or refasey natare. And why shoald mankind not eat green and root vegetables regularly as diet? Whodoes not relish a nice juicy beof-steak 9 The beast from Whose carcase it is out was most likely fed pleutifally
on (amongat other articles) caboage, tarnip, oarrot, and on (amongat other articles) cabbage, tarnip, carrot, and such. like good thivgs; these the
and tarned into meat (desh). May I ask why we should and tarned into meat (desh). May I ask why we should not eat and assimilato the vegetables oarselves instead
of employing the com to do it for as ? Why shoald not the of employing the cow to do it for as ? Why shoald not the
flesh grow from the cabbage and tarnip directly a pon oar flesh grow from the cab bage and tarnip directly upon our
bosesinatead of coming to was second-hand? And, chiefy,

Why phould not we arail ourselves of the good gilts of Providenco, bestowed for food upon the race ol man? It wonld be wiee to do so, and far fower people woald

[12184.]-Roses.-Pegging down roses must be resorted to early in the spring, before the buda come out, lest they be brokon away in the process.
Δ few atrong forked pega, 8in. to $12 i n$. long, or oren more, lor the larger stems, so 26 to koep them well in placo, tightening them oloser down,
weok after week, as the stom yields to the now pooition. As the young shoots grow, they may bo
pastesed down mocording to the tasto and skill of the rulidg spirit of the gardener with hair-pina. Yos: hair-ping. You buy a thoumand for a for penco, any size reqaired. -H. O'B.
[12217.]- Violin Tuning. - I am rary mach obliged to "The Harmonioas Blenkamith" for his reply on page 891 to my quary on page 866. The subjeot of IVolin tuning is a complicatod one, and on this acconnt I Wished to know from some one who could apoak positively on it an to what violinists of high repute are in the habit of doing in reapect of it. It seems that if violin may be taned in perfect afths in the key of D, or that hey which is founded on the third string as an open note, ard that in the hoy of G the Arst atring
requires fattening by anma. In the key of C the requires fattening by a comma. In the key of C the
first string remaing in in tho key of G, and the second first string remains as in the hey of G, and the second
string requires Aatteniag by a comma. In the key of string requires fattening by a comma. In the key of
F the firat avd gecond stringe romain as in the key of C, and the third string requires flattening by a commas In the hoy of Bh, the Arst, cocond, and third atrings remain as in the key of F, and the lourth string requires Alatiening by a comma. It will now be soen they all the strings are fatior by a comans than when intervals from socond to firat etring, from third to intervals from seoond to frat string, from third to
coeond otring, and from fourth to third atring, has beon ceoond string, and from foarin to third aring, has is on operi atringed notes are not made ase of, the equiva. lenta to Asttoning the firet, mocond, and third strings may be obtained on the recond, third, and foarth atrings; batil the G on the open atring be required, it can only be anctioned by taning or aitering the tension of the soartsting by athe, the open notes sonnded on the atrings Ecending and G become $E L, \Delta R$, $D h$, and $G 2$ one after the other, and this lowering in pitch by a semitone is in addition to that by comma goiken of above; bat here, again, any alteralion in tho tension of the strings may tef aroided excepting in the oase of the open note
on the fourth atring, which now becomes lowered in pith pitch by a semitove, as well ar by a comme hs mentioned the open the opea ne become Gg. Dg, Ag, and Es, one after the other, or are raised by a semitone ; and in modulating still farther. these notes become raicod morer it mill readily exe of a comma, one after the other. It will readily be seen that when the notes beoome sharpor through modula. lation, this sharpening can be accomplinhed on the anger-board withoat altering the tension or taning of
any of the strings. Howerer, there can be no doabt bus that, to obtain the full resonance of the inatru mant, and to obtain the best quality of notas, the inment, and to obtain the beat quality of notos, the instrament should bo tunoa tor ench zoy, according ao perfect Itths as the open stringa will then resound of perfectiven if they are not coundod, and it monld seem from "The Hermonione Bleckemith's" reply that Pagenini alteral the pitch ralation of his atrings cometime nini alterea the pitch radalion or his atrings manetimes to facilitate atopping in hir dimenit pacsages. By this play in or modulato into. By asking the meantion play in or modulato into. By asking the quention, violinista tune the open strings in perfect fiftha for vilinista tane the open strings in perfect aftha for
Whaterar toy thoy may be playing in. Of course, Whaterar hoy thoy may be playing in. inf course, ber of notes on which to found an infinite number of major or minor ccales; bat when I auked the guestion, I oupposed the modalation to be by parteot Githa. -Wx. MeEI.
[12236.]-The Portaguese Language.-I am very mach obliged to J. Gillaird for his answer to the above aubject, and beg to soquaint him with that I am an optician, and used to make machinery in goperal. 1 am married, and have two ohildren. The health of all
of na is good. My means aro rathar limited.-CARL.
[12926.]-The Portuguece Language.-Grammars and dictionarios in Portagaese and English have existed for yeara. The beet known are thone by Vieyra. A Portuguese papar publiched in Londun is the Echo
Americano, 66, Ludgate-hill.-H. MyyB, Sydenham.
[12289.]-Soft Egge. - Hens may bo given eggshella, in all seacons, with great sdrantage to the "hen-wife," prorided that the latter, alter letting them dry for a fer days, breaky them vory small, and misea
them into the soft food.-Proved.
[12260.]-Cleaning Back of Teoth.-What a beanty Mise "Beants" must be to bo actually able to Trite a letier that journal, and not jet to have onough to admit of her putting a tooth.brash inside the teeth, both above and below, aud scrabbing at them as long as she likes. Bhe needs no pecaliar shape of tool; and ohe ought (by rights) to ase her brush and cold water alter evory meal, and at the very least, night and morning regnlarly. This is good sonne warniog
and advice from-A Toothebs Ond Hog.

[12261.]-8pirometer.-I pieco of apparatas a friend called a spirometer, to meneare the amoont of air discharged from the lunge nt one expiration. I preseme this is what
our friond requires. A is a ressel containing mater, ianide of whioh is the metor, $B_{\text {, with }}$ a stopcook at the top to discharge the air when it becomes clovated, a oord or obain with moight altieched server as a ing over the wheal G indicatos upon the dial the amount of tabe from the month pasees through the outer vessel at the into the little dome at the top. This provonts the babbling noise which wonld be the result of the pipe onding at
the bottom of the oatar vessel. -JoHs Hoprivs.
[12265.]-Pig Foeding.-II "C. R.," or any one elso, wants the best of sood pig moat, let him feed the animal opon good boiled paranips. 'Tis trae this diet fonnd oheaper in the end. Teat it-iry it-as othera haro done.-A READER.
[12272.]-Fileotrotyping.-The best substancos for making monids for electrotyping are gattapercha and plastor of Paris. Gutteporcha is the better one, bocanse the outlines are sharp and well deined. the oimplest which the catt in to be tatita is me tavible alloy, consioting of ive parts of lead, oight of biemath and three of tin. The object is pleced in a shallow box, and the molted alloy poared oror it. \triangle alight ahook will disengage the cant from the monla. corortapercha bo used, the object should arst and th wita graphite (bicakiezd) tion watar, is progitaparoha, alter belag sat the object This cast mast bo conduct and connected with the negative pole of the battory, I am rather at a loss to know what "Zoo Andra" means by the "process of illing np at the ased, be covered entirely with the deponit?W. H. H. C
[12207.]-The Tremolo.-See letter by "F.R.C.S."
[12801.]-Unequal Sisess of Cone Pulleys.In my angwer on P. 468, for 1 ft. 1.16in. and 1ft. fin. respectively read 1 1.16in. and 17 in . The "drop" menn difference of radian, and in the case of my lathe-palley the drop of 1 in. in from the largent to the amallost of
four grooreo, or three equal drops of fin. ach, corresponding to three equal drops of bare sin. each on the fy-wheol. -J. K. P.
[12304.]-Phrenology.-" Philo," who appoara to grambio becanse peoplo langh at him, mighe now cont giving them oceasion to do 30 . Why oanaot bo (and oceavional misinformation)? Can he not talk about what he knows gr known nothing abeat vithoat snarling at others, and by miareprosonting them comspelling anpleasant attention, which might net other wise be called lorth 9 Why choald "o Phillo" tronble himeolf to toll me that I am "oompletoly miotaken as to That John Looke and other great writors maintained ? phrase origingted by him, I believe. I rofarred to a distinet mistake mede by many, bat I did not eharge it to John Locke, nor do I know or much arare whether he held it or no. That mistake is, that edracation is the chief or sole agent in forming disponitions, while I mainiain that it is only capable of monlding to come us. "They tanght (does "Sigme" deny ?) that an new born child knows nothing." Well, as to mere fects, child of coarse knows nothing till it lays in a stock of Information by observation; bat 1 very decided ly deny up these two chilaren have the name powarrotion. On the other hand, I may very distinotly that a child a month old manifente very decidedly the loading feataren of the diapoadtion and powers it will possens through life, and that oducation can only mapk and modify, not ontraly chango this diaposition and powars; ; this Now hy old and trae anying, Pocta nascitur, non fa. to do with this gabjoet I an of eloctrio sparks may have to drag it in-very soolighly, I think, becanse he onls shows how incapable he is of underatanding eithor what he reade or writes. The opark queation was a moro dotall' as I said at the timo ; he may have boon ostablished, that is notbing; but what was of consequence was that "Philo" talked anthoritatively and ciplee. Il he does not like being told thit, ho has only himeolf to thank.-Sioki.
[12809.]-Bolled Oll-Boiled oil is generally prepared by boiling a mixtare of linseed oil and for printers' inf it is generally set on Are towards the Which in bailing proces.

Powdered aephaltum, litharge, or red load, and barat amber or manganese, each one ounce, are well stirred ito one pint of linseed oil, and the mistare is gen ty
 and the faid thickent on cooling. If the oil ahould be adrantageonaly added; it greaily aucista the ecom to rise, and sleo olears the oil by its subaidence. Gold size is generally made of boilod oil and Oxford ochre The best vehicles for oil paintlog are linceed ail, poppy oil, boiled ail, and nut oil.-Fredremca Humilox.
[12811.]-Eydrealio.-H. Moyer is incorrect, is my opinion, in stating that Raids extractod by pomp tap, or othervise, from the lower part of a reace descond from the surfeoo in the Arst plece to enter the orifice. It is the flaid immediatoly above the aperture Whioh gooe to supply that which is abstracted. If his Hier was correal, a Lap or siphon iniortod in the lowar part of a muddy oask of beor, for instanco, ought t draw the clear Raid from the sarfaco, whioh clearly it doos not, bat if pleced (eay) half-way np, wo chall obtain it tolarably clear; if at aurfaco, quito so-A. Liverpool.
[12918.]-Gas Oooklng.-Accurato experimente to decide the real cont of oooking with gat are mech wanced. The late eminent gas engineer. Bamze Clegg (often called Gas Clegg), eatimalod that the exat cost of cooking with gas at 4a. per 1,000 feot: bat en cooking has improved dince Mr. Clegg told me this, and coal is dearer than it then was, some twenty yeare exn. The quantity of lael generally reetod in cookize is The quanity of haed goneralith wat than with coni, is with that, needlessly great, as may be easily proved. I hure succoeded in Enving three-afthe of the coal bofore burnt in cooking, and have improved the cooking also by substitatiog a hale fopen stove with large hot-plat for a common open fire ranga. The cosi of taol it and in likely to be, so high, that it has beceme a dnty for all, and a necossity for many, to diminioh ite eos aumption. Fortonately, that is rery eacy to do by thoee who know hom. or are not too projadiced in farour of old ways to learn. - PHilio.
[12821.]-Chems Player. - For the benent of "Willie Soorer," I send the following, and although is is not expotly what he wants, it in, 1 think. connected with the ono montioned:-x. Woilfgang do K em polen, a Hangarian gentloman, and Aulic Conocillor af the Royal Chamber of the domaine of the Emperor is Hangary, oalled in that year [1769] to Vienns by the daties of his station, this gentleman was present at some experimenta on magnetiom, made beriore tbe Empress Maria Theresa, whon he vontured to han that he could construct for ber Majonty a piecs of meobaniam far saperior to any of those minioh had beat axhibited. His manner of remarking this excited th attontion of the Empress, Who, encoaraging bim 2 maite the elfort, the atomaton chens-player, which ba aince been exhibited in all the capitals of Europer, ma within six monthe altar this period, presentod at the Imperial Court. It is a presumption in lavoar of the protensions of this contrivance to be a mesterpiecs of mere mochaniom, that the original artist, after hasia gratited his exalted patronets and her Court with the exhibition of it, appoared for many yeare indiffereal oo ita fame. He engaged himbNif in other mecbasica parsuite with equal ardonr, and is said to hare no tw nogloctod this al to have takien it partly to pieces, fas he parpose of making other experimenta. Bat the risit of the Rasiian Grand Dake Paul to the Cuert at Joseph II. again oalled our antomaton to lifa. It wo ropaired and pat in ordor in a leon weoks ; and from this period (1785] has been oxhibitod at fatirrais throaghoat Germany, at Paris, and in Loondon; Arm by M. de Kempelon, and lattorly by a parchacer of the property from his eon, de Kempolon havioz died is 1808. I hare also in my possoncion an cocsant of $ᄂ$ antomaton Aato-player, win
[12892.]-Boce.-"Willio Searor" is in erroe in war poring that weaps dectroyed his bees last your. Wrem are not aggreceive, in from into a doindling condition, and the bees are rot etin dofond themeolves, waps will help themealices, at dien anta and carvige. "Willia" need bere car for hin grarma, nnlome they be mecond chich have lost thair queans or Artt emarme tos which maiden surms have iseod in thieh cish cria he ead fret emarmo, might ateo becone preato dindling Wasps are not enemies of beec, bat they lite ticer and will ateal it wherever opportunity offers, sed sneak aboat a hive for hours in the hope of oblei=a antry, and often their pernistency meots ita rerard. by long trying at the entrance thoy attain the odon: noderstood perhaps from imperfoct obeerration napps never fight with been ander any condition $=$ never attompt to use their stioga againgt them. Por in "conscience doth make cowarde of them all." Purif Аввотт.
[12322.]-Bees, -Make the opening into 120 上 narrower, the been can then defend
koep the whaps at bay.-Strstrox.
[12830.]-Re sulde Rest.-My frieod is J. $\mathbf{2}$ requinitioned me tome monthas ago to reliero lizz
task of making the promised dravioge for arana side rest ; they have been done, bai got pert wa

n2es80.] - Ro sillde Reats.-To ac J. K. P.""-I ber to thank "J. K. P." for his anowar to my quers, and at the samo time montion that I am sorry ho ahould not bave acked for tho drawinga, bat that, I boliere, wiohiog to make their own apparatian, as in my ace0, and I should have cortainly pat theme to betior ane than tracing them,-H. G.
[12892,]-Ohemical-Both.-Cunverer.
[12840.]-Flour Panto.-A litile areosoto or carbelic aoid, mixed with pacte, will precerve it from
moald and ma geota for a long tume ; rery litte is cufle mould and maggota for a long timo ; very litto is sum-
cient. A fow drope of olovo odl, and probebly of any essential oil, havo a aimilar bat leen powerfal alleot, as also have tarpentine and eamphor.-Prilo.
[12841.]-M Mothe.-I beliere the beet way to dentroy mothe and thair grabs in a aarpot is to stove it, and thon aprinke is with a0jakion of croosoto in lime but ita amall is unploceant, at leant to most persone.Phiolo.
[12860.]-Pivots.-To harden small drills make them red hot, cool in wator, grind or rab bright, hold over bright fire, or over gat or aandle, or got hold about inin. of ond with pair of old smith'a tongs, heat
till point of drill is jast blae, than oool in wator. till point of drill is jaat bl
[12860.]-Pivots.- "No Soft Solder" will ind good stan steel beat to make drills of, which can bo -bought at any good tool shop. Rednoe atoel to aize, maire blade of drill rathor thiok, hardon either in oil is more workmanlike and can be done in lesa time in many cases.-Convergion.
[12860.]-Pivots.-" No Soft Solder" mast be prepared Grstly with a large amount of patience to atart with, becanse it frequently happens that when a made from very highly tempered ateal; and that a made required for that mall kind of work will soldom drill required for that smail kind of work will seidom Bat to the reply. When drill is ready for prardening have a very emall aandle lighted, hold the blade of drill therein antil jant blood-red, immodiately plange it into the fat of the candle; it will then be hard, and after trimming it ap apon the oil stone will be ready
for ase. If made a white red by heat before immerfor ase. If made a white red by heat bofore immer-
ging in the tallow, the drill and steel are perished and eing in the tallow, the drill and stoel are perished and
useless. Use tarpentine with the drill instend of oil. useless.
[12361.]-Carbon or Charooal Pipes.-One process is to cat them from the solid carbon with a paring knifo, and to monld them into required form with a pecaliar kind of gonge and anitable instraments; another, to pulverize the carbon, mix with boiled linseed oil, and pass throngr monlds in the
ordinary way. The pipes made by the latter process ordinary way. The pipes made by the latter process
are not so light and porous ac those made by the other. are not 80.
RAt-Tat.
[1296?.] - Formula - To find the onntent of middle frustum of a circolar gpindle: (1) Find the oentre of the circle. (2) Find the area of a segment of a circle, the chord of which is equal to the length of the frustam and height hall the distanco between its greatest and least diameter, to whioh add the rectangle of the longth of the frastum and generating surface (3) From the square of the radias aubtract the square of the central distance the square root of the remainder will give hali half the length of the ppindlo take one-third of the square of hats the length of the middle frastom, and mintiply the remaisder by the said half length. (5) Maltiply the contral distance by the generating sarface, and sabtract this product from the preceding, the remainder, maltiplied by 6.2832 , will give the solidity.-Rat'Tat.
[12365.]-Elder Flower Wine. - When the wine is jast ready for bnnging np, before you pat the bang
 sinety.
[12367.]-Oval Turning.- It is very pessible to attach an oval chnck to any lathe whether it was over intended or not. I hare two lathes, ordinary shaped
heads, with oval chacke atteched by a simple srrangeheads, with oval chackg atteched by a simple arrangoment, doing away with the clamay fanges on onch bed I will give fall information for adapting his lathe bed I will give fall information for
for oval-tarning.- W . B. Wincu.
or oval-tarning.- W. B. Winkis.
[12368.] - Imitation Bronze. - Corrosive sublimate will dieeolre readily in hot water, espeoially if there be a litule hydrochlorio acid added.-A. Stank.
[13869.]-Wator Powder.-It "L. J. J. V. G." a apray producer, he will obtain what he requirec. There are neveral varietiem-F.R.C.S.
[12971.]-Trues,-It is a groat miatake to make traten with bat a aingle ligamont. They abould form a perfect sapport for the abdominal regiong, and this can only be acoomplished by forming a kind of india. rary apertaree to be supported by spring or elantio arary apertaree, to be supportod by sprinR or elantic
pressure, or soltable bande from the shoulders. With pressure, or soitabie bande from the shoniders. With "Nonbor" eondd indalge withont inconvenience in his favourito pantime of animming, and attond his ordinary dolices-RAT-TAT.
[12872.]-German Conoertina. The steol is too otill and rigid, and requires
by a coitor metal.-RAT-Tat.
[12875.]-Metallic Stain Ior Wood.-Sonking the wood in a moak solation of nitrate of dilver, and then expoaing it to tho light, will
black colour.-ALFRED H. ALLEx.
[12875.]-Motallio Btain for Wood.-I mppose you wish to atain rood bleck, if so, boil some chips of logwood in wator for aboat a quarter of an hoar. Then
wash the picoe of wool with if ehree or lour timen, Wach the piece of wood with it ehree or lour times,
allowing it to dry after cach wmehipg. Lacty, wanh the wood by means of a common palnting-brabh, with a mixture propared as follows :-Pat one ondoe of stool or Iron alinga into two ounces of rinegar, koep the
phial near the phial near the tre so an to be gently hented for sboat
two houra, then decant the vinegar, and keop 1 f for ano. tro hoara, then dee

- Jorr
Hopross.
[12877.]-Fall ofa Bullet.-In order to increaso the rango of the ballet, a rifle (on leval ground) is almaya ired at a alight indination apwarde. Wo 200 sbar the sifhte are raiced above the barrol,
horisontally on a hred
horizontal plane, the elovition of the gun belog Aft, ilbove the ground, a ball let drop from the hand will fall ift. in half a geoond, the ball frod from the rife leaven the mazrlo at a volocity of abont $1,000 r t$. per seoond, bat this ralocity deoreaces
rapidly
from atmorpherio resistance. rapiat 850ft., rougisly entimatod.- PHinartizRopiet.
[12379.] - Paoking Piston Ringe. In answer to "Dandalk," I beg to say that the piece of thin shoot brass maut of courmo be inside, and atted as per rough sketoh, and as the piston hoad described by
" X . M. S." appears annecoasarily complicated and X. M. S." appears anneoessarily complicated and
objeotionable, as liable to unscrew, Fig. 2 is a rough

oketch of what I have found to work well. The abaded part represents the solid bead into which piston rod is loose, caper as shown, snd securet bje Of oonse this piaton head must be tarned after the rod is secured in place. "Dandalk" cannot do bettor, in my odinion, than to makeithe rings of gan metal.-A., Liverpool.
[12s80.]-Lisht.-The diffoulty has arisen by supposing light a material substance. It the nudulatory theory be adopted the answer is ovident. The laminiforons ether withoat is thrown into vibration by the san; hose ribrations are trazgmitted to the ether that This inside the room, prodnces prodaces the sensation of What Now, when all accose ceasos, what happens,
natural
consequence also ceases (the sonrce being cut off), there is nothing to excite the optic nerro, and darkness is the resalt.-Cexsmor.
[12380.]-Light.-If we euppose "Dai Broch y Ship" to be inside his darkened room he will see the reflocted rass of light from the wall opposite the hole. The rays of light from the sun travel in straight lines, and will continue ius straight courso anloss retectod straight line to the door, and is there reflected baok or absorbed, all bat noe portion ; this portion meets with no opposition at tho door for the reason that a part of the door is missing. Therefore the light passes on, and it falle to the lot of the wall opposite the hole to reflect the ray. Sappose a man outside directing a jot of water againat the door and hole, all the water that struck the bnlo wonld pasa throagh and atrike upon the aye of "Dai Bach, it he was peoptng; he would
then, Ithink, see it. All that did not hit the hole, bat the door, would bounce of. If I might nse a Hibernian expression. I would say that this ia jast the
[12380.]-Light. - Acoording to the andulatory theory of the origin of light, all bodios and the celes. called laminiterona ather The laminoity of modym, due to \& rapid vibratory motion of its molecalea, which, when oommaniostod to the other, is propagated in all directions in the form of spherical wavos, there being no progressive motion of the particlee themselves, bat only of the atate of distarbance which was eommaniontod by the luminous body. When, to pasa into a dark room, is closed, the state of dis. tarbance is arrocted, and the wavoe inside come into a ntato of rest, and darkneen is the consoquonoe. . B. H.
[12380.]-IIght. - According to the andulatory theory of modern writer, light has no material existence at all, bat its effecte are prodaced by vibrations is content with these vibrations. It "Dat Bachy saip is content to accept this theory, he will f.
ourions quastlon answored. $-W$. H. H. C.
[18881.]-Fducation.-Mroch would dopend on the
gge of the hoys, Bulfant is cheap to live ip. There
are protty good schools. Ten scholarahips are given every yoar to Arst yoar atudents, also ton to seoond and foorth yoar asudents, benides sonior sololarahips to matica. The soholaginoering and medioine are alco encourngod.
 Belfent (at it 20). Cork is dearer to live in than
 monto in India have beon obtalined by Belfact atadonta. -Philaythoopiet (Ez. Int Saience Soholar, Q. O. B.) [12384.]-Coppering Oarbon.-Try galvanizing Mr. Wall will aucceod, as the sabstanco is too trinble to retaln the conating. If thif does not sucoese fix the plato to it with tingan's colder, ving spirite of esta plato to it with tinman's solder, aning spiriss of ealita, aponged in with a rag to make the molted solder and to satarato the juection with the noid, or no conneotion can be formed.-RAT.TAT.
[18885.]-Eulphur in Wall Papers.-It is a faet familiar to chemista that altramarino contain salphar, and no donbt the farnich notiood on the silver is doe to its preecence. As the salphar is an essential constitaent of nitramarine, it cennot be got rid of without destroying the coloar. "Ggar" had better ase another paper, say a bright jollow one which tarns green when wettod and hold over burning sulphur. Such a paper is coloured with ohromo-sellow, which has a tondenoy to absorb and decompose snipharetted
hydrogen, and would so keep the silver brighthydrogen, and moal
ALrabd H. ALLEK.
[12385.]-Sulphur in Wall Papera.-If "Ggar" doee not like to remove the paper from his glase case, -hich is the most effectaal remedy, if the paper really contains anlphar, the diffasion of the anlpharoses partioles san be provented for a time by coating with size, boiled oil, water-glase, or apirit-rarnish. This maat be again repeated when the paper loses ite glonay appear-anco.-Rat.TAT.
[12386.] -The Prevention of Incrastation in Steam Bollers.-The astringent property of the annin contulued in the timbor of the oak 26 well as in the bark, though not in the same proportion, no doabt xeroises a coanter attraction on the particles held in saggests in the boilor, incrastation may bo partly prorented, by weakening or deatroying by an opposito amnity the inherent tondency of the partioles to assimilato, or rendering lose tonacions their adhesion to the sides of the vessel. The dart coloar of the preci. pitate.or sediment is derived from the oak, as "J. D. K." ndireotly remarks,-Rat-Tat.
[12388.] - Onionse - Sow "Giant Roocs" in Angast and transplant in the apring. I have nome
now (Jaly 15) orer a foot in circumference.-M. W. G.
[12389.]-Dirtg Meroury.-Dissolve amall quantity of the mercary in hot nitric acid. Shake the解 of the metal with the solation so prodacod till it with nitric acid, wash with water and then with alcohol and dry thoroaghly.-ALPBED H. AxLEN.
[12389.]-Dirty Mercury.-I presume that "C. Glasgow," has not more than two or three ponnds of meroory to parily. Let him do as Regnanalt did when he required pare mercary, riz., agitate the metal with
dilated nitric acid, naing one oance and a half of acid to two of wator for every two pounds of mercary. This will oliminate a goodly portion of the imparity, Then pour the solation ofl and digest $\begin{aligned} & \text { ith stroug nitric }\end{aligned}$ cid, until nine-tenths have dissolved in the acid. Take this solation, which is aitrate of mercary. ovaporato it to drynes, and then heat it strongly in a retort ; it thus becomes oonverted, arst into oxide of meroary, and alterwards this bocomes decomposed into oxygea, a gas, and meroury, which distils over and is condensed in the neok of the retort, and may here be collected. Traces of oxide may be removed by agitating it with salpharic acid, and aftervards well ashing with pure water repentedly, and aftorwards drying at a very gentle and moderate heat. The barometer tabe may be cleaned by poaring in alightly the flm, and the tabe should then be carrefully and rehontaly and then carrefally dried ; previons to illing the ac. the mercary and tabe should be slightly warmed to dry them. If "C. Glaggo " requires angthing more I ahall be glad to help him. By the bye lead and tio are not ombastiblos, sare under exceptional conditions, riz. great heat in pare oxygen.-4. 8tons.
[12389.]-Dirty Keroury. - It "C. Glasgow," puts his meroary in a cap, and pours a littie aqnafortis on it, be will and it tarn what he torma the adalterahion to a white pomdor. Make a fuanel of writing paper, and poar through to dry th, and stand the onp an the top of his kitchen stove till he cannoot bear his nger in the mercury. Poar some of the clean meroury in the tube, ran it ap and down in fow times, clean the mame way as before, but by no means pat anythiog wot in the tube.-Q.
[13390.]-Chemioal -Let "Home Stadent" obtain Miller's "Chemistry," 8 Vals., Longmans and Co., or if this bo too mech for him, try Williamson or Roscoe Macmillan). These are roally usoful and atandard for stadente' nee that I have over seen. Bat if ho wanta merely to look ap ohemioal theary for the Science and Art Department Examiuations ha had better read and Art Department Examiuations ba had better read
Frankladde "Lectaro Noten for Chemical 8tadents" Fran Voorath, or Valontin's "Practical Cbemiatry," or

anked for in the Examinations, and they will give him
an advanobd idea of the frantic and daraling syatem (?) an advanodd idea of the frantic and dar
of motation now in rogue.-A. STONR.
[18890.]-Onemical.-Miller'g "Chemistry for Btadente," Horghton's "Gill's Ohemietry." Rnecoe's "Blementary Obemidtry." Gallow
Chemintry."-AEred H. AlL
[19800.]-Chemical-Boncon-Cunaroz.
[18890]-Ohemical." Elome Stadent," if he is beginaing his obemical stadien, Fould do well to get Barare "Introdaction to Scientific Chemiatry," JarAnalyais," and he will hare there as mnch as he ogn Analyais" and ho will have there as much as he can
mactar in twelve monthe. Total cont, 6s. He should get up the definitions and formales in the ohemical tables at the outeet, and he should carefully answer the questions at the end of Barf's Chapters, on paper, or on slate. He should go through all the experiments, if ponce. Mr. Botione's chaptern in the beok numbers of the EnGLIsE MECEAMEIC will mesist him vert maen in his earlier difficulties.-R. P.
[12891.]-National 工osses.- It is evident that we mast hare anumber of charges on the debit side of our national ledger corresponding to those put
down by the mannfacturer for "depreciation of buildinge," "wear and tear of mechinory," do. These are the oharges I mean by absolute annual national loss. At an inatance, suppose a person living ap to a salary
of $£ 200$ per annum, very probsbly at the ond of the of $£ 200$ per annum, very probsbly at the end of the
yoar out of the $£ 200$ he has apent he will not poscess year out of the 2200 he hes epent he will not poseess
What will reallise 240 or 850 , perhape not $\mathbf{2 s 0}$, the remainder haring been opent in food, olothes, tobeceo, cigars, de., whose altimato, 25 compared with their primary, value is, if not absolutoly nil, at all ovente ultimate value, capitalised, reprecente what I require. In connection with this queation perhaps some reador
oan inform me what is the eatimated annual capital production of this country, leas cont of production.mancarom.
[12891]-INational Tovaen.-The only ectimate colnior might roly on an lonen induiged in by preconcerted arrasgements is the amount of taxes raised annually. When ingtitutions are made eols-supporting, and. useles ofmees and directly traced, are abolished, Bngland, ss a nation will bo saved from danger and decay. Englishmen in general are brave, energetic, and intelligent; but the clorgh of dormant contontment with oxiating sooial arrangeaments, thrown aroand thom by a prerile and It noeds no dabbling politioisen to eee thivend to all benble-satisfied and "red tape" governed conntries. It can be seen in the lamentable ignorance of the Inwer alaces and the ohafiling attempts at education. lasses, England cecular and military education oi als ion, snd to the enlightonment and beneft of the world through her colonies and possessions, by the unroatrained energies of her peoplo.-RAT-TAT.
[12892.]-Bee Tranagement. -The magrote or grabs which "W. T. I." found on the floors of his hive are in all probability young moths, which are about the greatent destraction to honeyoombe and bees in existence. The bees can be transferred to the new hive
late in the avening, which is considered the best time. late in the avening, which is considered the best time.
There are various plans for doing this. The one generally adopted is to frst stapefy the bees by chloroform. An excellent way to do this has been given lately in a baak namber, but I would advise "W. T. L." not to have anything to do with chloroform: itn enervating effecte are felt by the bees for days after tit applion ion, and come, when they ally out for honey and are returning with their loads, fall from sheor orhanstion
into ponds and pooln. Tobacoo amoke in far bettor to ase than this powerfal drug. It oan be driven in by a ew paifs from an ordinary bellows, to the noszle of Which is attached a tabe oontaining a fow leaver of lighted tobsoco. The bees, half smothered with the she table or stand. All remaining strapglers oan be brushed or stand. All remaining stragglers can be brashed ont with a feather. While lying on the table
the new hive, previonaly rabbed roand with honey and few bite of promb attached to the top, is pleoed over them; they will ascend after recovering from their stapefaction; but oare must be taken, by stopping up hours, or they will immediately commence depredehours, or they will immediately commence deprede-
tione. Tha old hire meat be removed far out of their reech, to a collar andergroand it ponible, where its ocione wil not rewh them; of they Til tortare the may be bottomed, the plan recemmended mas not be praotiosbla. It would, in that oace, be bettor for him eatramee to the other, or the hives may itand so olose ogether that none of the bees ann esompe. In either oace a amall pastoboard trap-door, pieroed with holes, that when each bee ene entrapce of the new hire, so and does not allow of his going beck. "W. T. L. hi" by and does not allow of his going back. "W. T. L. ${ }^{\text {"" }}$ by looking at a mouse-trap, may mee how the trap-door is
to be oonstructed. When all is ready, he can com. monoe operations by beating the straw, hive regalarly all round from top to bottom, and the bees will immediately come onf to do battle with the distarber if as posaitile, and "W. T. In", to be aroided as much very little troable, in his now hive after a quartor of an hoarra beating. He mant, howover, meo beforehand
that the paper, board, or lesther trap-door is not too heary to be raised by a single bee.-Rar.Tat.
[12392.]-Bee MLanagement.-If W. T. L." will take two pieces of cluth (any sort) about a yard aquare, diameter, sni gtitoh the cloths together round the edges of the hole 40 cut, it will answer his parpose very wall, by the finit cloth baing tied over the bottom of the woodea bor, keeping the " hole " in cloth aboat the centre; then turn the hire and bees apaide down and place the box on it, the other oloth falling over the hive, which must be tied immedintoly. The been are now secured, and a fow gentlo tape on the hive will drive them into the box. Bhould the bex be emaller tban the hive a couple of atioke placed aoroen the strat. hive between the olbths win eapport-it,-Novisg.
[12992.]-Bee IIenagement.-" W. T. Is." might have prodted by my hints on feeding in March last. It he had followed the instrncttons there given (No. 865, p. 14), he need not hare loot his two stoclee of bees in
(ay. My hints were for exch as he bat they seem May. My hinte were for each as ha bit they seem havo truvereed his combe are the leqreo of the wax moth, which depoaits its \&egs in, on, on hear anything wayy in or about the hive; the larve hatoh ont and foed on the said wax and attain the combs if poacible Otten when hives are improparly gaarded, the moth, like the wap, will gain admiaeton, and depoed eggo in the 00 mbs In witich omeo itis bad for the stocks, for theriarve ancase thomacolvea in wool, and leave-s woolly tunnal or trail behind tham as they proceed in thoir work of devantetion. They love the base of the cells, and, of conreo, in dovouring that they render useless all the colls through which they have pased on both siden of the comb, and the worat feature of all is, that the been are unable to remove the woolly case, tannel, or trail which the wax worma have lalt in their track, and consequently cannot repair the mischief. What beneat "W. T. L." expects to obtain by transferring his light took to a wooden hive I cannot maze out I wee a "Berks Farmer", gives 4 W. T. L." a reply, bat the "Berks Farmer" ovidently does not ninderatand "W. T. To" or his beee MY advice to "W. T. L.." as to transforring is-don't; bis stock is woak, and tho ohances are that his now hive, which he says is 11 in. quare, but whioh, perheps, meand lin. cube, is sboni it be expeoted that his weak atook will fill it? "W. T. L." should first accertain if his boen are healthy, and il they are not, he had better take "Berks Farmer's" adrice, and "stupely them," taking oare that none recover, for as he has only the one alook, if oeighbons it th; Yankees say. If they are, healthy, and simply weak from want, " W. T. L." had better foed them where they aro, 50 so to give them a ohance, and in the moentime "Hire and He mat to do next spriag.-C. N. ABBotr.
[12898.]-To Eteady A Betohing Board. A heary weight must be maspended from the contre of ucide is Arminetohing board to which the camers wien, by means of a hooked iron rod, or cord, 0 as to bo weighty enough to reaist the action of the mind. The weight may tonck the groand, or a nail to which it is tied might be driven between the paring ntomes. In fact,a coaple of spikes driren into the ground to which the legs are tied would hold it eecurely in any ponition. - Rat-Tat.
[12895]-Fxtracting Wax from Old Oomb. -To extract wax from comb, arush the whole into the amallest compass, and put into a canras bag. Boil it in a large anncepan or oopper, and when done, i.e., When the fre is down, press it with a woight, or
board and stiak while ander water, mad the wax will float on the surface. Very old eomb is seldom worth the trouble, as there is $s 0$ much balk and solittic wax -O. N. ABBotT.
[12895.]-Fictracting Was from Old Comb.Before boiling it breat it up into little pieces, thon boll, and the dirt and scum will float on the top, and the waz will rantogether.-Strerton.
[12895.]-Retraoting Warsfrom Old CombiIf he bees never filled the celle Withihoney, there.is no wax in the old
fact. - H . $\mathrm{O}^{\prime} \mathrm{B}$.
[12395.]-Enxtracting Wax from Old Comb.Try this. Pat the comb into a small pan, or pio-dieh will do, and let it stand in the kitchen rangs oven, Then there is not much fire (baker's oven won't do) The waz will then gradually melt, and can bo atrained "more plague then proft." Yon had bettor break it ap in smell pieces, and ceatter it on the ground near jour fall hiven, and yoar beo
[18895.]-Entracting W
[12895.] - in traoting Was Irou Old Comb. The following method, after years of teetion, I have never known to fail :一Nate bag of coarse straining cloth (sbout 4d. per yard), and all it as fall as you can
with comb, or a piece large encugh to tio the comb will With comb, or a piece large eneugh to tie the comb will
do without the bag-does not matter how old or dirty the comb may bo-prt this into a pot or copper with onough water to cover it; let it boil, and keep it boiling and you will soap see the wax floating on the water keep this skimmed oll into a pan of cold water as long
as any risen; when done, take it from the water, molt as any rises; when done, take it from the water, melt it in a sancepan carofally, and pour into mona or
pan ; you will find only refase in the cloth. I oan

[18898.] -TOuge.-Lrord Bowe (in the Fhiroppiniol Themsadioms) thus describes his procest, of prepecing y prening powder. I prepare tha parosta at perm dilute eolation of salphate of iron. The precipitate is washed, preesed in a sarew prean till meady dry, and xpesed to a heat whioh, in the dark appears dell ow red. The only points of importance are, that the anlphate of iron shonld be pure, and the racee of ammonia should be decidedly in exsess, and the beet hoold not exceed that I have deacribed. The colour will be a bright arimeon inclining to yellow. Jewellers rouge is, however, frequently propared in Lomdon by precipitating salphato of inon with potach, woll wortios
the yellow oxido, and omloining it meth it aequires a the yellow ozide, and oeloi
ucarlet colour.-OLmoriny.

[12896.]-Rouge.-Rnage is got by heating mulphate of iron irst to about 549 F., alterwarde to redncea, in a retort of refraotory material. Nordhanera sulphario acid it given oil, and the resides is roage. Eymony: | A. Btome |
| :--- |

[12897.]-Bont Building.-It would taice more room then the Editor would allow to deseribe fally the art of boat bailding, but it may be of some ree to
"W. 8." to know that therearo two wags of doing thit W. S." to know thet there are two ways of dolag thisone called aarvel beilding, in whioh the stam, sterne post, keol, and ribe oallad timbers, are atret ereeved.
and the planking alterwarde applied, theee fisbert and the planking alterwarde spplied, theee hiabert
being nepally oat to the required, ahepe fint. The being ngeally oat to the requined, dhepe fint The other called alingher, in whioh, mothod, after eructias atem, eternpost, heel, and one or more frames, as desoribed by me in reply 18812, we proceed to It the garboerd staen, or first board to keel, stom and starne. shape by means of sticks bearing aquinat a stont scantling extending from atom to atern; it boing nuderatood that keel is secured to a horisontal piece of timber, and stom and stornpost to a frm upright at each ead When in required ahapo, mark a horizontal line along the upper edge, which will be fonmed to be a peouliar ourve; ont board for opponite side exeolhy similar, and then nail on bath; then take pext ditto; Ax tempo rarily to frat by means of what are termed cleme, and having dravn pencil line inside along top of trat board, ont acoordingly both sides al ways together; allow thea to overlap (eay) fith. socording to size of boat, and rivet together evary 6in. with nails and rooghs, al ways keep-
ing appar edge of board se nearly horizontal man be ing appor edge of board as nearly horizontal ne may bo deaired. I prefor a slight shoar. When the top it heir pleces aith one or two nalle while hot and plinet and afterwards siveted whon all are in place, the genwale the same. The disianence is that the disecter in muoh the lithter beak, as the boards mer be of (cio) oven tio. in thioknest, nhesean the oarvel requiras that
 farther indervetions, and the Fiditor can sod room en planking may be of any deeired timber, if darabilit is not an objeot, bat for steaming timbers, onk in reanls employed.-A, Liverpool.
[12400.]-Parrotanm I have one maid to be on Australian Inory," similar to that deceribed by "Peanant'e Parmaceots" Thay are not litrats to heed M. W. G
[12401.]-ETouse Painting.-White load, It patent dryers, ${ }^{2}$ oz; $;$ gill of boiled oil; riben for coloar of the above is white.-F. S. M. W.
[19404.]-THIEOnomatrion Theoreme - Wion Thioit
$\mathrm{FE}=\mathrm{FA}+\Delta 0$ and $\frac{\mathrm{BG}}{\mathrm{AG}}=\frac{\mathrm{CF}}{\mathrm{AF}}-\frac{\mathrm{OF}}{\mathrm{BF}} \cdot \frac{\mathrm{FA}+\Delta 0}{\Delta \mathrm{~F}}$

That is, Sea. $2 A=\frac{\tan .84-t a c . ~ A ~(2) ~}{\text { An }}$
Whare angle $84=$ angle BAC. Formain (D) foviotaty ohanging A inte $\frac{\Delta}{2}$. By trigeonmeny
$\operatorname{Sec} 2 \Lambda=\frac{1+\tan \cdot 2 A}{1-\tan \cdot 2 A}=\frac{8}{1-\tan \cdot 2 A}-1=$ Ansp. $\frac{\tan .2 A}{\tan -1}-1=\frac{\tan .2 A-\tan A}{\tan A}$.
[1240.]-Trigometrical Theorems.-The fallowing is a solation to "Thetama's" equation: With A as conkre, and AO as radias, desoribe a circle; and draw a straight line, making an anglo with $A C=2 A, ~$
and moeting the tangent $O \cdot B$ in B. Bisect $B A C B$ by A D, conting $C B$ in D. Then, by Eaclid VI. B, by D, catting C B in D. Then, by Eaclid Vi. B,
$\frac{A B}{A C}=\frac{B D}{C D}$: bat B D $=\mathbf{B C - D C = t a n . ~ 9 . A -}$ $\underset{\tan , ~}{A} ; \operatorname{CandCD}=\tan . \Delta \times \Delta O$.

Therefore $\frac{\Delta B}{\Delta C}=\frac{\tan .2 \Delta-\tan . \Delta}{\tan . \Delta \times \Delta \mathbf{D}}$
That is, sec. $2 A=\frac{\tan .2 A-\tan . \Delta}{\tan . \Delta}$
If we now subelitate A for 2Δ (as this formale is perfeotly general).we obtrin-

$$
\text { Sec. } A=\frac{\tan \cdot A-\operatorname{tas} \cdot \frac{A}{2}}{\tan \cdot \frac{A}{2}}
$$

-N. H. H. C.
[H. Majer, G. B., Xenophon, E. W. XI., and J. Sargill have aloo enewered this quary.-Thin]
[18406] - Worm eaten Violin.-Use tarpentiae; take a littlo of the seaond etring, dip in the tarps, and drop in the holes. It you are no player, and the violin a rery good one, give it to nome one that can play and
that will stop it.-E. W.
[18406.]-Worm-aten Fiolin.-Take 1 IFrohm of corrouive sabnmato (poison), pat it into a 202 . botile of epirits of cine, let stand all night. Apply the sola
tion to the interior of the violin by menns of s amall brash, fastened to a piece of oopper wire, which aman be bent and pased through the holes of the violin.S \triangle x 1 an.
[12407:]-Oheckering Tool.-The raga ean be out with a panoh formed of two concentric ring eattars
of hard oteel, attached to suitable handle. "A of hard inteel, sttached to suitable handle. " Δ,
Trimmer " can oesily construct and arrange the rings Trimmer "oan oesily construct and arrange the rings must be in plates and red hot when the punch is applied.-Rat-Tat.
[12408.]-Quill Pens. -Thay are paseod throagh hot aches to parify themen and remove the groasor fat and molistare, mod render them trangparenat, Arother solution of alum in hot witer, and then place them by till they are hard.-C. P. E.
[12408.]-Quill Pons.-Get a bakert to let you pat your qaills on the top of his oven for three or four oplit them; you will know when they are done by oplit thom; you will know when they are
trying to make a pea with one.-SACBrarax.
[19409.]-Tranaforring Penoll Drawings on paper to Boxwood for mignering. The boxwood block mast have a nniform whito surtace, which is got by rabbing over with flake whito, wotted with water or alivan and allowed to dry. If the draving is to bo reversed for printing, it must be done upon blacklead mast bo placed apon the white surface of the block, then the drawing. Go over the linos with a steel point, and the reanit is A clear akotoh left apon the boxwood. Drawings for wood angravars are generally done apon thin whito paper, and it is asual
to gam them roond the edges while tracing.- SAMAF .
[12409.]-Tranaferring Pencil Drawings on praper to boxwood on thin peper, then tarape a
[12412.]-Skew Bridge. The coanterforts of all skew briages that have come under my notioo have been parallel with the face of the bridgo, and this is at least a oonvenient arrangement, bat Wheiher in that poition brooght to bear upon them depeuds, I imagine, npon the naturg of upon them depends, I imagine, npon abatment is built, for if baill so smndily that it may be abaiment is bailt, for if built so somndy that it may that a thrust against it has the efiroct of tomding to overtarn it bodily on its outar footing, then the conatarforts would react with the groatest eflect if placed at right angles to the line of abutment; bat if it is acsumed that the materials of the abatrient oamnot be oemented together into one solid mases, then, to prereat rackare, the line of the ojanteriorta shoald be the line of face of the bridge, and is the chireotion in Whioh they have been placed, an far as my expertence has gone.-O. ©.
[12412.]-Skew Bridge.-The corner buttresser orght cortainly to diverge, and it is usual to make one parallel to the face of arch, the other perpendicular to its side wall, so that there may be no acate angle in the plan, but two of the jambs be right and two obtnse anglet. Intermediate buttresses woald be best set in an intermediate direetion.-E. I. G.
[1414.]-Cleaning Feathere.-Use raw abarch blended in cold wator to the consistonce of eream; cover the whole sartmoo with this, tal be oaresal no to layit on so heary os that the parto will drop oif. In hatdened; knook it oft gently, and the fenthers will bo alonn; and "plumed," too, if you begin at the rifht end.-A NATURAList.
[12415.]-Provision for Chila.-This very im. portant class of quary, which I marval has not occurred Irequently, coald hardhy be answered at all, even now. bat for a valaabie onntribation to the last aamber of the Journal of Society of Actuarles (April, p. 80), on child mortality, a branch of atatistics hitherto most
neglected. The following are the data necessary for neglected. The following are the data necessary for
"J. R.'s" oaloulation:-Oat of 100,000 born there die "J. R.
in the

First year. . 8,099 leaving 90,901 (disoounted $=88,253$) Beoond $\ldots .8_{8,498}^{8} \quad$ " $87,403 \quad$ " $\quad 82,386$ Third … 1,791 " $851,612 \quad$ " $\quad 78,847$ $\begin{array}{lllll}\text { Fourth } \ldots . .1,118 & \text { " } & 84,499 & \text { " } & 75,076 \\ \text { Fifth } \ldots . . & 927 & \text { 83,572 } & \text { " } & 72,090\end{array}$ $\begin{array}{llllll}\text { Fifth } & 927 & \text { ") } & 83,572 & \text { " } & 72,090 \\ \text { Sixth...... } & 779 & \text { " } 82,798 & \text { " } & 69,838\end{array}$ \begin{tabular}{llllll}
Serenth \&.. \& 655 \& $"$ \& 82,188 \& "

\hline 189,188 \& 69,786

 $\begin{array}{llllll}\text { Eighth } \ldots . & 559 & " & 81,679 & " & 64,899 \\ \text { Ninth } & \text { 490 } & \text { 81, } & 81089 & " & 62,148\end{array}$

Ninth \& \cdots \& 490 \& "1 \& 81,089 \& " \& 62,148

Tenth \& \cdots \& 448 \& \& 80 \& 6043 \& $"$

\hline

Elerenth... \& 480 \& " \& 80,218 \& $"$

\hline 10 \& 57.947
\end{tabular} $\begin{array}{lllll}\text { Twelfth.... } 480 & \text { " } & 79,798 \quad \text { " } & \text { " } 5,965\end{array}$ Thirteenth.. 896 " 79,897 " 54,065

The numbers in the last column are those of the second, ench diecomated for Goverament intereat at 3 per cent. second in the ratio $\left(\frac{100}{109}\right)^{2}$, the third in the ratio $\left(\frac{100}{108}\right)^{8}$, and 20 on to $\left(\frac{100}{108}\right)^{18}$; by taking the logarithm of each number in col. 2, rubtracting as many times the log. of 1.08 as the line is from the top of the Thas, of 100,000 children born to-d ay if we ongage to pay il for esoh living this day twolvemonth, the poand phy to to be paid will be 90,901 , bat the sam now peane ren to protide this is on, 288 258. Hence the of col. 8 are present values of a promise of $£ 100,000$,
would have the present ralue of similar annuity, the Arat paymext certimin to.day, the others contingent, bet reem hast thase dia day doven yoars. Now, a mean between these two camas will be very nearly the 18 pears if ita Hence he will, by amazal amonat were 8100,000 . Hence he will, by airoplo proportion, and ite valace corNo. 848 ing to 0 . $\&$ woek, or 218 12. por annum. Soe No. 848, p. 248, especially p. 249, paragraphs numbered "-14. P.S.-By ino above datia, the valac for which J. R. abzs comes out. 2120 12a 2td. The "Eagliah by the Sap y the Svedinh caloulatiag ongime, amd pablished ton years ago, allords kimular daia; and is this query variation from before birth to evary three months of a variation irom belore
ahild's aga-E. L . G.
[12416.]-Spinning.-Speed of epinale about 8000 revolutions per minate for mediam coants on maleg. "J J. R." will And the following very usefal for finding the twist per inch, for either twist or weft:Take 50 's for the standard, say 26 revolutions for twist, and 28 weft. Now we have 26 revolations por minate for 50^{\prime} s twist, what abeall me requine 10 r, say, 60 's twist.
Then we have-

$$
\frac{28^{2} \times 60}{60}=\sqrt{ } 10580=28 \cdot 49
$$

-0. M .
[12417.]-Hardening Bpiral Springs.-I have made handreds of spiral springs ant of 1.16 in . t in., and tin. iron, not tompered. I had atraight pioces of ronnd iron and steel which I axed in hathe, I fixed my driver on one end, I had a small hole at the other to pat end of wire through; these aprings are
lapped close. Some of them have worked now for lapped olose. Some of them hare worked now for aboat ton years and are good yet ; they atand a pull and spring beok ; for steel springs of wire to remain open, to make them quick, you want screms for your lathe the proper pitch, with a hole at one end and ariver at the other. Pat wire through hole hard as you get it. Make jour springe as fast as you oan count them ; don't do anything at them, only cat them the proper length.-Ottgesious Weitismithe.
[12419.]-Photography.-The fixing solation for piotares taten on golatine and bichromate of potans is simply water alightly warmed, which reanoves that portion of the ilm which has not been acted upom by folloma He prooest a anitable papor, it is conted by means of a harge flat browh with a warm eolation of gelatine, in which is diecolved some pigment, of the coloar required in the Anicked piotare; the pepor boing contod With the coloured gelatine is pat saide till dry, and is then rendered sensitive to light by being fosted on a colation of biohromate of potmane. When dry it may be exposed under a nogative in a printing trame, as in ondinary diver printing. After oxposing tor a sufficient time, tho paper is taken from the frame, and planged in a drop of elighty marm walar, thewe portions of the Alm unsoted apan by the light being Wanhed away, and loaving maprocentation of the negative in coloured golatige. If "A." requires faller defaile of the procens he had better parahase "A Manual on Carboan Printing," pabliched by Mawson and Sran, Nowcastio-on-Tyne. I have omitted to state that the operations ahonid bo carried on in a vellow light as in the ordinary silver printing.-Proto. Bzistolinersis.
[12420.]-American Ohrioks.-As an inatalment in reply to this query, I cond draving in detail of the the Bis

little red chalk on the back of it, and rab it rell all over with the angers. Lay this on the prepared blook, and go over it with a style. When this is done, you have got it on the wood in red, then pencil it over. Another way is to burnish it on to a propared blockXflograpibi
[12409.]-Transforring Pencil Drawings on Paper to Boxwood for Engrafing. - Place a Eheet of bleck tranifor paper orer the face of the wood, ran over the pencil marks with a dall pointod instra ment. I have taken onpies of pencil drawing upon other sheets of paper, and I doabt not the plan will ancceed in your case. Joun Hopinss.
to be paid this day year, 2 years, 8 yeara, de., on condition that a child born to day is then living. If "J. R." then adds the 18 ap , he has the present value of an annuity of 8100,000 , the frst pasment this day twelvomonth, the latest posilible this day thirtoen yeara, but all contingent on the life of the child born to-day. If he omits the first line, and angments the sam of the last 12 in the ratio of 88253 : 100000, he will have the present valne of similar annaity, the Arst pajment a year hence (the ohild boing then supposed swo jeare old), and the Last this day 12 years (all 12 contingent on lifo). If he ${ }_{88,259}$ (whe last line, 54,085 and sabatitated the first, 88,253 (which on angmentation becomes 100,000), he
chack. The Exeoletor appeare from a draving I have aeon to be only an enlarged type of the Becher. Another kind, working with a hey at the side, bnt in other respeote like the Warwiok, is shown in the advertising sheets of this journal, batil have never meon one of them. 1 is seotion through the chack on line $a b$, Fig. 2, which is a plan of the oap piece C, Fig. 1, seen from the inside, and Fig. 8 is plas of same soen ontside, showing one of the dies a, in poiltion when open to fallest extent, b, the position of die when closed on centre, and c the size of gap through the front plate for the pasaage of dies. It will pe seen that this chack consiste mainly of three pieces-the body A haring the hollow at one end, and the seroll at the
other, B a collar atting over \triangle and socrowing into the other, B a collar fitting over Δ and sorowing into the
cap \mathbf{C}, which carries the dice. Thia cap has an olid ooncentric block whioh is recensed out radially to gaide
the dies, which when in place ocoupy the space left unthe dies, Which when in place oocupy the spmoe left un-
ahaded in Fig. 1, 4, 5 and 6 are side view, plan as seen shaded in Fig. 1, 4, 5 and 6 are side view, plan as seen
from inside, and plan seen from outside of one of the from inside, and plan seen from outside of one of the
dies. The pitch of the seroll is one-eighth of an ineh, and the thread of collar and cap loft-handed, to preand the thread of coular and cap poilled towards you in releasing a drill.-Wakenank.
[12481.]-Finlarging Photographs,-Does "In. duatrious Will" partioularly want to nes the magne ninm light for onlarging, or can he be contonted to work by daylight ? if the lattor, I can doscribe a small contrivanoe conting but a fow pence, by the aid of
whioh, with a quarter plato lens, carto negatives may whioh, with a quarter plato lens, carto negatives may
be enlarged to 10 by 12, or still larger. Tho magnesiam light is both exponive and tronblesome to manage; daylight in at our command and costs nothing. If "Indnatrious Will" will say if daplight will do, and the Editor can insert a emall engraving, I will forward drawing and description.-Proto. Bristorigngrs.
[12428.]- Yore Iight Wantod. I ahould think the best way woald be to whitownesh, or paint white, the
fronts of the angle houses. You don't mention what aspect they have.-LOMEN.
[12428.]-More Iight Wantod.-If there be a thick angalar pier or post, it might be replaced by two thinner, with a diagonal ight botween them; and it the general posts be above a fow inohea deep from exterior to interior, lining their sides next the corner
with tin or silvered glass will aesist, especially if in with tin or silvered giass will assiat, especially if in
short pieces tilted out from the post nome degrees at short pieces tilted out from the post some degrees at their bottoms. Of the sheps have a atory above th
[12424.]-Preserving Green Peas, Groose-
berries, \&o.-Pat your gooseborries in botiles (having berries, seo.- Pat yoar gooseborries in botiles (having
picked off the tops and tails), then fil ap the space picked of the tops and tails), then all ap the space
between them with powdered lamp sagar. Place these bottles in a boiler, having in it an mach cold water at
it will hold withont floating the bottles ; place the boiler on the fire and let it remain there till the sugar is diesolved by the heat. Then cork them down, and is dissolved by the heat. ihen cort them dow, ana
if they are air-tight they weep for yeari. Be very
carefal that no water gets into the botlles. This is carefal that no water gets into the bothes. This is oalled is to pat the frait into bottloes and then cork and seal them, and bary them about inree feet in the gronnd. I havo never tried peas, bat I ahould think they would keep, if treated in this way, French beans may be
preserved as follows:-Wash, cat, and prepare for preserved as follows:-Wash, cat, and propare for
cooking some young beane, then procare a largemouthed glazed jar, and put a layor of salt at the
bottom about an inch thick, then wipe your beans botiom aboat an inch thick, then wipe your beans
quite dry, and pat a layer of them in, then some more sait, and so on. Tie your jar down and keep it in a dry place, soak them in cold water for six or oight hours
before you use them, and you will be able to have frenh beore you ase them, and you wil be sble to have frenh
French beans for your Christrase dinner.-SAcaistan.
[12424.]- Preserving Green Peas and Goose-
berries.-I have always seen gooseberries, \&c., pre-berries.-I have always seen kooseberrios, ce., pre-
served during the winter in bottles. Take some dry bottles and cork them down tightly, then place a seal over the cork and bary them in the earth in your garden.-Ton-Trr.
[12427.]-Entomological. - Will "Mimosa Is it atifr and yellow? "Mimosa" speaks as if there Was but one inseot pecaliar to decaring cabbages. How 1 wish it was so - OLD AYATEUR GARDENER
[12431.]-Bees.-" Willie Scorer" in trouble again;
but "Willio" shonid give more partionlars. He ahonld but "Willio" ehoald give more partioulars. He should say what kind of hive he wants to deprive, what it
weighs, and whether the weight is made ap of brood or weighs, and whether the weight is made ap of brood or
honey. If he takes all the honej, What does he propose to do with the bees and the brood ? II he has only one hive he might as well smother them at once ss expect them to live withoat combe or honey. If third swarms, he surely ought to be content with, them as proft for one year, withoat seeking to deprive the
old stook still farther. "Willie" old stook still farther. "Willie" eannot transfer the
 the honey from his original hive, he might all one or two frames with the brood combs, and add them with the bees to his second or third swarm. I cannot say Whether second or third swarmis will stand the winter
without knowing more about them. If they came in Withoat knowing more about them. If they came in
May and wore tickled with a fow pounds of syrap May and were tickied with a eow ponnds of syrap
at intervals they woald probably outatrip the first swarma. provided they did not lose their queens. One reason for this lies in the fact that eacond and third
gwarms always havo young queeng, and are very gwarms always have you
vigoroas.-C. N. AbBott.
[12441.]-Ants.-If Thomas Letchford will lay a for pieces ol camphor in their tracts, he will find that they will coase their depredations.-Clinchey.
[12446 and 12458.] - Manganese Battery.madward Henry's " difficalty arose from damp facilitating the capillary rise of the liquid. He mast not oonwill rapidly work itsolf to exhanation, bat this has nothing to do with the injary to the connection. ahould be used with the platinum, bat simply a sielder should be used with the platinum, bat simply a piece
of foil inserted at the contact. The best connection is made by depositing copper on the top and parranghly soaking the apper part of the cailon with
phext best is pat the top of the carbon purnina. The next best is put the top of the carbon in a moald and run lead over it, also saturatiog the
nppor part afterwards with parathin to prevent the nppor pert afterwards with paralin to prevent the
oresping ap of the solation.-Siom.
[12469.]-Beos: How to get a Swarm.-" G. F. Goddeen $"$ does not understand the driving or dram.
ming process evidently. When a swarm is drummed up as described by Mr. Godden, the queen should be with it, and unlens it is ascortained from actual obsorvatidered the queen is thero, the swarm ownol be conaidered perfoct. The great myatery as to queens is in ine mode of transiorming the ordinary workar egg
into queen bee instend of a worker bee. The socallod quman's reanon, "Coa it in," in not suffloient for scientific bee-keepers; but all their resoarch and observation have not onabled the beat of them as yot to give a better, so it is still a question under discas Dri. 1 wil bo lor the old tom to ralo a now qaera Driving ia simple and oany enough; bat the question of its desirability at this time of year in another matior, Which depends, of courne, on circanatances of Which the minatiw are not given. Boes hanging
out is an indication of overcrowding, but not alwayn of out is an indicalion of overarowding, but not alwayn of
intended awarming, and Mr . Godden would have been intended swarming, and Mr. Godden would have been
wiser, if, instead of wailing for a second swarm, he misor, if, instoad of waiking for a second swarm, he
had given his bees more room. Is Mr. Godden quite sure that his bese are not queenless? Qacenlesences will induce apparent laziness in bees after a short time for the simple reason that aftor a swarm has left the occupants of the hive all each cell with hongy at it is vacated by the young bee, and the failure of the yonng queen on her woading trip renders it impossible either to send out another awarm. Concequantly, they fill ap to send out anotizer awarm. Consequanty, they all ap the calle at fast as they arg Vaented, and themedves
are crowded out for the time being. If Mr. Godden are crowded out for the time being. It Mr. Godden intends to drive out a swarm, he shonld do it quicky, at if long delayed the swarm will not only be habio ro perish in winter for want of stores, but the old stoak
may perish for lack of drones to fertilise the young queen. I cannot recommend driving at this Iate period. If Mr. Godden has lost his ohance of a super while waiting for a second swarm, he had bettor accept the position, and be wiser next time. Perhaps he conld cut out the side corabs of his hive, which are almost sure to be filled with honey, and there will yot bo time for his bees, if they are strong, to replace it; but for the information of all those who intend to cut out honeycomb from their stook hive日, it may be well to
stato how that, as a rule, all new comb built now for storing purposes will be drone comb. -C. N. ABBotr.

UNANSWERED QUERIES.

The numbers and titles of queries whioh romain wnansoored for five weeks are inserted in this list. We truot our readere will look over the list, and oend what inforbutors.

Since our last "Dasty Miller" has answered 11992

 12117.

12189 Mochanical Education, p. 341
12140 Chemioal, 341
12141 Watchmakiking, 841

${ }_{12186}^{19159}$ Limefuice, 841
181876 Dry Soap, 841
$70 \begin{aligned} & \text { Dry } \\ & \text { Dyeing, } 841\end{aligned}$

QUERIES.

[12476.]-Bee Keeping:- Oan any beekeepers inform we the best mode of transforring the bees from a straw skip to a wooden bar hive? I oannot suoceed in
driving or fumigation, as in two driving or fumigation, as in two cases they have amal. "Myborg oabinot" in operation for a month, and the onmbs arre all built in the keoond compartment, and diangon
B. H.
J.
[12477.] - Water-glass.- Will any reader inform me of the best method of construoting a mater-glass, and What is the groatest depth that I might expect to get a
view of the bottom of the sea, the water being clear at Vhew of the botlom of
the time?-L Z. J. B.
[12478.] - Sour Ale,-Heats of Kashing.-I have a brewing of ale over twelve months old, which has an
opal colour and a peculiar sweet- sour taste. Can any of opal coloar and a pecaliar sweet-sour taste. Can any of
yonr numerous correspondents give me a reniedy for it. your numerous correspondents give me a remedy for it.
so that it may be sold for mashing two mashes? - Yoonco Brewer.
[12479.]-Soouring and Bleaching Flannels.Would some correspondents inform mo how to scour nnd bleach fiannels a very, pure white (stating the
chemicals and their quantitios), snd name work on the subject and its author 9 -OLD FoLLEs.
[12483.]-8ilk Working,-A portion of our ailk to thread, and, by standing, it has raited them, making them too rough for the silk. What is the begm thing for tuking the rust of without injuriag the thread attached?

[12481.]-Wax Moth. - It would grestly oblige me if destroy the eqg or muggot of the wax moth in some empty combs that I wish to saree, and what is the best wap to keep brood combe free from thia destructive
littie moth?-R. A. the moth ?-R. A.
[12182]-Intregral and Differential Caloulus.
What is the practical sientifo use of the integral and differential calculus? With what branches of mathe.
matics is an zoquaintance necessary before ontering
upon this one? Whiah is the beat radimentary treallse? Exanthison
[18483.]-Rewiring Old Piano.-I have an old square piano, octavos, it has very thin wires, some of onee Will some brother reader tiody inform me what numbers of mire I ought to pat fo, stating where oseh number breaks ofr and the next boging? Also, it it
will do to pat plain wire for the bottom notes, inatoad of wlll do to pat plai
covered $7-\mathrm{B}$. W .
[19884]-Inorganic Chemistry.-WIl any of your readers indily inform me whath book or books wo atady. in order to pass first class in the third stage for homoars. in the next examinations of the Bcience end Art Dopart moniet of houd for the the mation on the above will be thanifolly roceivedSOITMOS AND ART.
[12495.] - Filectrotype Casting.- Having a ceart in load of the Lords sapper, and wishing to obtain sn obliged if any of your resders could inform me the ongiest way of doing it-AM ADMRER or THR ART:
[19438]-Machine for Oleaning Boots-WFIM cleaning boots ? if mo, please give a deacription of itB. J. R.
[12187.] - Annealing Spring Stoel.-Will $8 \pi y$ brother reader kiudly describe a simplo method of annoaling spring steel, so that it may be weldod as a
inom Also tempering oliptic apringa. -BLaze.
[14888]-Zinc for Hot-water Tank. 1 am about to build a hot water tank for cacumber growing. Will sinc stand hot water? I have been told that it will not
Will some kind friends give me their experience or Will some kind friends give me their experience or
opinion of it? 1 have tried galvanied iron, bat that opinion of it?
Boon rusts.-F. G. C.
[12489.1-Lacquering Brasswork.- I have been lacquering some brasswork, the colour of Whieh is
hardy deep enough. Will any of our" readora inform hardy deep enough. Will any of oar readore inform me if brass-anishers evar apply more than one cost of
lacquer-if mo, must the work be re-heated or how?-Requer-
[12490.]-Grape Culture. - Will some hind reeder inform me of a good practioal book of instructions an
the culture of grapes and greenhouse plants of the comthe calture of grapes and greenhouse plants olthe co.
mozer speciee-viz., bedding planta, to. -Horatio.
[12192]-Overgraining.-Can 2ny of your correspondents recommend a good substitnto for boer.
largely a newly grained door, even after two good coals of varnioh bave been applied, go quite dead on those plarees orergrained, while the remainder hal kept bright. This,
I think, shows that the beer used atteris dostroys tice I think, shows that the beer used atterlf destroys the throw a light on the subject.-HARBY G. NXwTox.
[12492.] - Bhow-stand. - I shall be obliged if some one of "our" kind readers will give me a hiat or tivo for being placed in the window of a draper. I want to work abonts or 4 revolutions per minnte. The ritand is 24 in. diameter and 614 . tall, intonded to be fillod will ught srticles.-Ownes.
[12498]- Grove's Gas Battory; -Would same kind electrioal correspondent to "ours", glive a deastip
tion of "Grove's gas battery, and tell how mauy equare tion of "Grove's gas battery," and tell how mauy equare
feet of platinum it would require to mako 20 cubte feot of the mixed gases at the pressure of the atrnosphere combine and form water; also, how many wires to ourI dect the electrioity away would be ranted; and mach less of the mixed geses would be mado then i has

[12491]-Hardening Teeth.-Last winter I bad : severo altack bince then I hare repeatedly had piect is
 [18405.] - Watchmaking, To "Brcospro PracTICAL WATCHMAKER."-Referring to the article on - Tio
 if "seconds Practioal Watohmakor, I whith to ask provements effected by our foreign netghboars in iso ment. I may at the same time ask him Why tad doing which I would werter hime than a siow trais:
 Vol. XV., p. 492. - Webt Cornwald.
[12498]-Stained Soarlet Tunic. Wiu coms $=$ kindly tell me what will take stains oot of a ect-ax
tunic? tunic? The gtains have boen caused by
sword rubbing against the cloth.-E. B. H.
[12497.]-Horizontal Escapement.-I woald ai why it is in the horizontal eycapement that it
deepen the escape-wheel depth in the oylincter the of free vibration is lessened, although the balanc to move throagh a greater arc to obtain the cacap the wheel from tooth to toith fhave my oorn exptr

[12498.]-Grecn Shade.-Can I pat anything is the rat along with lime, indigo, and sniphite of iron, ma
 koep the greenshade as it is when it comes ont oit val-0nnss.
[18499.]-Trigonometrical.-The hrpothonase of a right-angled triangle is divided
to $B D$ as $C B$ is to $C A$ Bhow that-
$\tan \cdot \operatorname{tCD}=\frac{a^{3}}{b s}$
$C D=\sqrt{\frac{a^{4}+b 4}{c+b}}$
 [12500.]-Land Burveyor.- Vill Eunn $x \cdots$.as,

[12501.]-A Cheap Gass.-I would feal mach obliged to any of "Oorr" chemiats for the information es to the Cheapest materiale and how to use them in order to proinflammable, but must, not be heariar than air, and to stete probable oost of producing any givon quantity of same.-A., Liverpool.
[12502.]-Neville's Bread. - Will some one inform [12503.]-Teating Tartario Aoid:-I am uaing a arge quantity or barturated with alam. Ir iod omin any reader givo mo a almple tost to and alum, and obligoArpatid Watre
[12504]-sketohing from Nature. - Would some correspondent inform nie of an apparatas (cheap and portable) to got in the proportions of a viow from natare,
or tell ma how to make it 4 drawing of it would or tell ma how to make it 9
greatly oblige-TroMas Kiva.
[12505.]-Plating Steolwork of Bioyoles.-Oan some one tell me har process of nioke or uilver piating bicycles; ine arid bloyale ?-EDDr.
[12508]-Powar of Engine.-Would some one tell Cginder pin twathirde of atroke 100 rovolutions per minate, 401 b . proseure of steam in bolles.-Hzche.
[12507.] - Criaket-bat Making. - I would fool obliged if any person woald give mo some partionlara concerning the ma
wood used. $-W$. .
[12508]-Eloby.-Will one zoquaintod with the Weet Conat of Africa say where a place called Etoby is, and What is the oharaoter of the ollimate there? I Innoy it is a trading port on one of the coant rivers.-T. Buxchais.
[12509.]-Ohemical.-Will "sigma" Rdndly say 18 thore are any, aiks of oarboilo acid which aro insolablo
in salt water ?-T. Brickarz.
[18510]-Camera Obscura. - I am wishful to con-
 Exolisi Micesinic, No. sis2, p. 404. Will some kind
friend oblige me with the dimensions of the necessary friend oblige me with the dimensions of the neceasary
oblong and aldelag toxes? 1 hardly understand the plan
given with respoct to the gquare K . L , out a way at the given with respoct to the square K. L, cut away at the
top of the box in which the ground-glass is inserted. Is it inserted fiat or is it placed in a raisod position?-G. F. Fornise.
[18511.]-Gas.- Will some one kindily state about how many cabio feot of gea gan be producod from a ton of
[12512.]-Spotted Kid Gloves.-Can any of your resders inform me whether any remedy is nown for glover (coloured kld) which have beon spotted through exposure to damp, as I have a lerge stock of them and wish to avoid lose if posaible? -W. S. B.
[12518.]-Astronomical.-Would "F. R. A. 8." or some other correspondent kindly inform me what aro the corresponding numbers in the B. A. catalogne to
Btrave's 73 Ophituchi, 2408 Draconia, 2878 Pogaed, 26 Strave's 73 Ophluchi, 9408 Dr
Pegasi, and 86 Andromede.-C.
[12514.]-Elder Flower Water.-Will any one kindly give me directions how to make elder fowor
[12515.]-Mowing Machine.-I have a mowing machine by Burgeas and Rey, the knives of which are conshanif breaking. They arodriven by a very short rod, and its breaking? The machine is very good if we could get over that difinculty.-A Coumtarman.

$$
\begin{aligned}
& \text { [22516.]-Mathematioal.-It is known that- } \\
& \begin{aligned}
& \text { thematical. - It is known that- } \\
& \cdot 1=\frac{1}{10}=100 \\
& \cdot 11=\frac{11}{1000}=\frac{110}{1000} \\
& \cdot 111=\frac{111}{1000}
\end{aligned}
\end{aligned}
$$

i. a, as the number of figures in the dooimal is increasod, the numerator of the Praotion formod diffirs less and
less
from the denominator. Therofore, 10 whioh is $\cdot i$, will not the numerator be theoretionlly equal to the denominator, and il equal to 1 inatead of $\frac{1}{9}$?-Neaniscos.
[18517.]-Mathematical Kachines and Tablos. - Some rime aince I saw Babbago 1 caloulating machine understand the oxact objoct the inventor had in vew, and althongh I have read soreral popalar desoriptions of it, still they do not dosoribe it as I could wish.
Porhaps some of "our" mathemationl friendas will kindiy explain the matter, or tell me in what book a clear and full account of the machlne is given. The information 1 am anxions for $\mathrm{Is}:-1$. Are the Nautical Almanac tables calculated by sach a machine? 2 Aresuch tables ormed in regalar progreasional numbers, or are they diferential? \& If diffarential, in the ratio regalar, or do the tables consist of combinatious of ratios differen-
tial or regalar? 4. Did the machine in question ever tisl or regalar 7 4. Did the machine in question ever
realise the expectations of its invantor and become of use, or has any other machine supplanted it? Amer. ample of the tubles, to 11 lag arute them, would no donbt interest many beenides-A. B. W.
[12518]-The Inlend of Elayti.-I whall be mach present form of government and who is ruler? Does Bpain still possess a part of it? What langrage is in use, and is there any commerce oarriod on with Groat Britain? Closely connected dith the daland in tho name of "Toussaint L'Oaverture," the great Negro ohiof, who I should like to know how and where he died, and what became of hif family p-J. L. Wharacke
[12519.]-Acarus Cromail-Many years since tho ments contlaned for a lengtheved period by meanoriments continned for a lengtheved period, by means ot
which bo prodaced the uving electrical acarus. Can any of your correapondents give me any instruotions as to the detalle of apparatas roquired 9 Theae courious oxperiments no doabt have beon repeated by ofters,

[19259.]-FIuid Lens for Photography.-Will any one toll me if troula be possibre to constract rays of light fowing from the objoot O, are br the series of mirrors $M M^{\prime} M^{\prime \prime}$ and $M^{\prime \prime \prime}$ gent throarh the lenses
L snd L, L and L, which I propose to make of watch-gianoed, in
to bo fllod with water, and L with sulpharlo acid, in order to have them of diferent denaitios and thuas make

$*_{0}{ }^{*}$

them achromatic. P is the prepared plate on which the know how to find the focus. Sappose it found, woald moving the object noarar to or fatither away from ${ }^{\text {M }}$ altar ilt? Would the focal longth be fron L to the plate, or only from Li to the mirror Mr"?-TMATAP.
[12521.]-Value of Locomotives.-Can any one inform me what is the ralue of goodi and passenger locomotive日, such re the London and North Woflern
Company aro now buillaing, according to present stato of

[12592.]-Length of Pendulum.-Will some kind ss to the length of pendalum springs me his opinion as to from 8 to 12 tarne, the more coile the less affected by change of tomperature P-Coxveranon.
[12588.]-Laoquer.-How oan I make a blue laoquer suitsble for gan furnd
applied 9 -WALsLL.
[1254.]-ERoltz Electrioal Maohine.-Do you think it Would be poasible to sabstitute a disc of tin cororod wilh sealing wax varitgh in the plees of the spoller
TkETAP
g
[12525.]-TO "F.R.A S."-In using "Boasel's Tables" and making the necessary correotions for refraction, how is the obserrer to calculate or ancertain the ap parent altitude" of a star sbove the horizon at the parHioular moment of observation, so as to determine the oxact allowance to be made in seting the ciroles of his
equatorials A fow lines in explanation of this mattor would greatly obHge a puzzled-Trzo.
[1252a]-Camera Lucida.- Will any reader kindly the mioroscope ?-ALIF.
[12597.]-Kounting Ohalk for the Mioroscope. chalk as an object for the microsoope P-ALr.
$[29528$]- Hay Asthma.-I shall foel extremely obilged to some of our correspondents if they could
 months with what is called the hay aithma. I am under seventeen.-Katr.
[12029] - Improved Machine for Maldng Aprated Drinks-In the latter of Hi, B. E." (4ated drinks is made from sulpharic acid and common Whiting. Woald he kindly let me know the proportions, pounds?--96.
[12580.]-Name of Plant.- Will some one tell me the namo of a plant or herb that grows by the side of Whence rises up a stalk branching out into four or five branches with leaves at the bottom, and a fower spike at the top nearly a foot in length almost like agrimony, but the flowera are of a green colour, after which come four or dive emall green soeds.-T. B. S.
[12581.]-Flatting. - Haring a uttle knowledge of house painting I havo paintod the walle of my room 7\%t. high, and should be glad if some kind friend would let mo know if there is any method of koeping the last coal
called fitting allive gumciently long, so that I may do fank at a time by mysell, and with due care have e doad colour. I have heard of a fow drops of olive oll being appliod, butit has gone orr and partis lett shiny.-Purtr.
[12582]-Ropublioan Months.-Can any reader inlorm me the names of the months according to the idean of the Fronch Repabllo and their English equiva-lenta?-J. L. Whitarig.
[12688.]-Magnetio Machine-Wil "Sigma " or any reader toll ue how he conneotions of the wiras in powert (gay 1, $2,3,4$ powers) ? I havo thought of insulating the primary coil from the secondary by guttapercha tissue; and in winding on the secondary wire powor, inanlate again, wind on another portion and ingulate agnin, and cali that the second power, and wind and again insulato for the third power? A diagram of the conneotions will greatly agsish.-Certiarox.
[125sh.]-Spring Furnace - Would any brother reseder obige with drawiag of farnace, nsed to tomper
the leaves of bearing springs for rallway truck ?-A. E .
[12635.]-Spots on Whitechapel - What is the canse of water-stains on my "Whiteclappel." When the weather, the the frap, no matier whother dry or amp and no amonat of drying with loathor or aponge will sake them out, bat I have found that when it has not been naed at long intervala of (say) a lortaight, they cause and provention of this? - J. W.
[12536.] - Bpeonlum Grinding. - Would Mr. Purkien kindly answer the following queries? Sappose a on. spacalum placed on the centre of a grinding tool
does the strole (s diameter, or $2 i \operatorname{lin}$.) mean 2in. over ide of the tool, or only Iln. over each aide? and if the slde motion (diameler or 1 y ln. masas 4 fin . jver each ilde, or only fin. over? Dopa the 2 in . stroko mean 9in. over one stde only, and the specalam broaght back
again to the centre $i=W, 8, S$,

OHES8.

Ari communications intondod for this department to be addrened to J. W. Abbott, 7, Claremont-place, Loughborough-road, Briston, S.W.

The conteat for the "Challenge Cap." opon to English playars only, has torminated in favour of Mr. Wiakar, Who, haring won the oup twice in suocosaion, La, acoording to the conditions of the competition, ontilled to ite posesession. The cap was prosentod by the "Association" in 1868, on which occaaion it wa won by Mr. de Vere. In 1868 Mr. de Vere and Mr. Blackburne tied, bat allimatoly the lattor was declared the victor. In 1870 Mr. Wisker won the cup. Thia year he and Mr. de Vare tied, bat in playing the retains the chote championship of the counkry.

Probley VIII-By R. B. Wormald. Black.

White.
White to play and mate in three mores

TO CORRESPONDEMNTS,

IndOCSORIOM AND HEaMra.-The reply to the mover you suggeat in Problem VI. aro respootivoly (2) R to Kt
sq. dis. oh. and mate, and (2.) Bto R2 dis. ch. and mate. 1. La (Dalwiob). -The Weatminster Papera can be obtained through W. Kent and Co., Paternozter-row.
M. Manxs (Swansea)-The best way of marking the podition of the mon on blank diagrams is by ingoribing knight, \&c.
W. H. Whitpield. - Your problom is correot, and ghall appear as an enigma.
Problems recoived with thanks from H. Mejer, G. Heywood, and Induotoriam.

Oorrect solations to Problem VI. (conthaued) -J. Beresford (Vauxhall), T. M. T., S. H. H., York.
Correot solations to Problem VII. havo been rocoived from A. W. Oooper, R. A. Proctor, C. J. L. (Portemouth), H. Oharry, J. Berosford, G. Heywood (Great Torring-
ton), and H. A. Hall, Choster. All others are wroag.

Mr. H. H. Cropt, of Toronto, has discovered that the air over crystallising iodic acid becomes ozonised na striking manner.
Embalming Bodies by Injeotion.-Les Mondes reports that the system of M. Gannal, of embalming bodies by injection, which was effected by opening the jugular vein or the carotid artery, will probably be superseded by M. Audigier's plan, iu which the proserving fuld is introduced through the mouth and the laryax. About six ounces of the fluid is sufficient for the purpose, and the body should be covered with some vegetable powder soaked in the same liquid. The body is by those means completely preserved, and is ontirely "mummifled;" it requires a durablity equal to that of wood or stone, and the tacial colour remains as it was at the moment of decease. The most eminent physicians, surgeons, and anatomists in France have, it is sald, testlied to the effeacy of the system. Whioh has, in addition to the advantages already mentiouod that of perfect innocuousaess and completo disinfoc, tion. The liquid is believed to be carbolic actd, and
the modo of application is the same as that devised by the mode of application is the same as that devised by
Professor C. A Secley. of New York, and by him very Professor C. A Secley. of New York, and by him very
successilly appllod to the preservation of bodios at successiully applided
the hoopitals tinere.
the english mactanio hifeboat tund.

Amonank profloanly coknowtedgce ©. M. B. Dien, Rö̈noch, "Vaud ":		

AHSWERS TO CORRESPONDENTY.

** 41 ll opmmunications should be addrecese to tho EDrror of the Enali
Covonh Garden, W.O.

The following are tho taltings, acc, of lettors to hand ap to Treesday morntiag, July 23, and annoknowiodged
L. de Fontalnemorenu aud Oo.-Wm. N. Roberts. Meochanic. Jack of All Tradeg.-Win. Coleman.-Wm. Plper.-8. Bottnne.-J. J. Pyno.-Exhibitor.-W. H. P. -An Englieh Mechanic.-Majloo.-E. S. T.-Templar. - Woodhead. - Mrs. Ethell.-Ailrod W. Alles.-Wm. Woodhead. - Mrs. Ethell.- Alfred W. Allen.-Wm.
Brown.-R. Middleton.-Enquirer.-W. J. V. Gerard.-Brown.-R. Miduleton.-Enquirer. - W.J. J. Gerard. عood.-Ignorant-C.J. C.-Joseph Hudson.-P.E. M.
 Anxioss -Ont of Pocket.- Colonist. - Rodgrer.Distressed One.-W. A. G.-S. Sel Fyn.-Shamrock.-Pegasus.-A Samney.-Non Science.-Landsend.-G.
Moalder.-Green Drake.-C. N. Abbott-J. T. Cal-
 epper.-W. R Bird-G. W. K. L.-inquirer.-Gy.
B. Paris.-C. J. Hindie.-A Young Astronomerer.-J. Gillingionm. Delta-W.Clarke-W. H. Noal-Willam Len. - X. Y. Z. - A Five Years' Babscriber. - Bernardin. - Wm. Tipper.-R. K. Joqes.-R. A. Proctor.-Albert 8. Bradlep.- James Hill. March and Pattigon.-
 Thomas Fletcher. The Harmonlous Blacksmilth. geconds' Protioal Watchmaker.-M. A. - Banjo.-
R. N. S.-Violinist.-Analyak-W. H. H. C. - M. A.B.Francis Lewis.-Oneina Fix.- - E. Parker.-G. W. C. H .

 -H. G. W.-F. F. C.- Tuoodolite.-A County Book BropEwood.-Drpjox.-Glattoa.
W. H. H. C.-Quite in order. The query next week tisemont.
Disippointid Subscarbize-It is not our fault Try C. H. WATERs.-Seee "Hinta to Correspondenta," No. 6. E. 8. - No. It would be a bed precedent.
J. F. Thompson.-We know nothing more about tho

Lswrs Hutcrins. - See "Hints" Correspondents," No. 6 Liver.-mach columne Good medical advice.
coung MgCEANIO, A Carpenter, L. W. L., Irwell Bufforer, F. A. R, Gy., Yoeng Hopeful, Now' Trowell,

Commanioations which oan only appear ${ }^{\text {as }}$ advertiseA Sabscriber. the propoed arto
CBAs. Lassoz. - Wo do not know ; suppose you write W. S. O. TYou mast obe the

businest

bo anpron to the tronomy la rather too Imaginative for pas Yean lond off in this style: " What are thene brilliant eeintille. Whence and wherefore their oternal fres? Are hoy the dirtant lamps of celestial palzoes, kindied on the floor of heaven (i) and showering down their nighty radiance on the soul of the sleepless gazer, for the subilme parpose of exnalting his anpirations to some pobler atate of being ${ }^{\text {? " cc. ac. We. We do notknow, }} \mathrm{bat}$ "F. R. A. B." would doubtiess at once give the required information.
ctage, - Your plan of leying oat a garden would take a mach larger engraving than we could affurd w. E. - Your able letter on Lingaistio Theories in answer to "E. L. G."" Wonld ineritably lannec us on a sea of theologioal dicoussion, and we therefore cannot inBert it.
. Eraph headed "A New Dryer," "pater" in the paragraph headed "A New Dryer," p. 499, renders it uge-
lesk. Wo reproduce it in a oorrected form this week Thank.
FilsaliL-For information how to make emery wheola, ${ }^{\text {see }}$ Vol. XIII., pp. 292, 366, 520.
 Thoggh your subseription liyt seems closed, may I ask you to allot me a share in the contribution to your
clever and obliging correspondent Jack of All Trudes for whom I inclose my cheque for 53 . I dare say i will not bo a bad investment." Wo have forwarded the monep, to "Jaek,". and in hia nawe thank "Suffulk Amatear."

ThE " Bullding Nbeg," No. 915, Jely 19, Contains:-

THE INVENTOR.

applications for ietters matrint muring the Lean J Rahnnn, Birmingham, for tornmormeots in spirt levots

 tor on ther parpneceill, Brandon, saffolk, for tmprovemonts in

 int comporarly dividad
riling macbinery. A inmmunewinaton, for improvemonts in
 panionj. Vino, sen. J. Vine, Jon. J. Brown, and J. A. skianar. Enin E. Now boda, Notung ham, tor improvements in tarace 20iz P. Nowwll and J. Barker. Wartington, for improvementa in

 tomns and and parntus oonnocted tharewith.
2014 J. T. Parluar, Rutland street. Pimiseo, for imorovementa in

 ling nurposes, and for coking, carbontang, or calcening other
 2019 D. Cunninxham, Dandee, Cor improvements in the con

in breech. Varassour, Roathamplon-streot, s.E., for improvemonts

 Whewis, eapocially applitabie to tractlon ensinos, in whnowtig o

zoss J. Millor, Aberdeon, ler impruremento to purts ing and 2us. R. H. Alien. Emesex, for improvemento in the construction coniliea.
zois
B. Todd, Nemontla apon-Tyne, for Improvemente in the

2u7 J. Crolt win Re Diwan, Iec fe. for Improvomonte in

 2DSB J. Downan. Handswortb. Rtaforidohirt, for tmprovamenta

 20;

 thar apparatan hot the control of whar and prevaniag wash

 9093 J. R. Canhay. Newrann stret, Oxtiord strect pror an tmpromed

 disa A communicatinn. Ming Lynn, sod W. Mitcheit, Erass -

©hat etnglish siflechanit

WORLD OF SCIENCE AND ART.

FRIDAY, AUGUST 2, 1872

OCEANIC CIRCULATION.

In Two Parts.

By Richard A. Proctor, B.A., Hon. Sec. R. A. S. Author of "The Sun," "Light Science,"
"Essays on Astronomy," d゙c.
Part II.

I^{T}T is impossible to consider carefully the nature and distribution of the surface circulation without recognising the fact that there must be currents beneath the surface. It is true that one

Stream and the United States, is in places completely lost sight of (the Gulf Stream touching the American shores), and reappears farther on. It is clear that it must have passed under the Gulf Stream in such cases.
Now, the study of the submarine currents has of late years thrown considerable light on the whole question of oceanic circulation, and has supplied the solution of some problems which had formerly appeared altogether perplexing.

We owe to Drs. Carpenter and Wyville Thomson some of the most important facts recently ascertained. Others, however, have shared in the work. I would, indeed, particularly invite attention to the fact that I do not here pretend to give anything like a complete history of recent investigations into the subject. I select only those facts which bear most significantly on the wider rela-tions-the more marked features-of oceanic circulation.
In the first place, a result which had long perplexed physical geographers has been shown to be

can conceive the existence of a complete system of oceanic circulation without any movement in the depths of the sea; but when we examine the actual surface-currents we find that either the commencement or the prolongation of some currents must necessarily be submarine. For instance, the quantity of water carried by the great north-easterly drift into the Arctic Ocean is very much greater than that which flows out of the Arctic Ocean, by the so-called Arctic current, past Greenland. Examining, indeed, the ordinary current charts, always drawn on Mercator's projection (seemingly because this projection is the very worst that could be devised for the purpose), we ${ }^{4}$ might suppose that this arctic stream was much more extensive than it really is. Bnt what can be expected of a projection which makes Greenland (whose real area is not much greater than that of the Scandinavian peninsula) actually as large as South America. The arctic current, however, affords yet better evidence of the occurrence of submarine streams, for the extension which passes between the Gulf
erroneous. It had been supposed that the temperature of sea-water below a certain depth is in all latitudes constant, and about seven degrees above the temperature at which fresh water freezes. Sir John Herschel, in his "Physical Geography,' adopted this supposed discovery as well established. Now, let one consequence of such a relation be carefully noted. The surface water in the tropics is warmer than this supposed constant bottom-temperature ; the surface water in arctic regions is cooler; at some intermediate latitude the surface water has the same temperature as the water at the bottom. Hence in this intermediate latitude the water is uniformly warm (according to the supposed relation) from the sur face to the bottom. We may, therefore, regard the water in this latitude as constituting, in effect, a constant barrier between the tropical waters and the arctic waters. Without regarding it as absolutely immovable we should yet be compelled to regard it as so far steadfast as to negative the theory of the existence of submarine corrrents of an importance corresponding to that of the sur-
face currents. Accordingly, the theory put for ward by Humboldt and Pouillet to the effect tha there is an interchange of waters between polar and equatorial regions was discredited by this supposed discovery.

Drs. Carpenter and Wyville Thomson, however, have been able to show that no such relation exists. Thereare vast submarine regions of the Atlantic where the temperature of the water is ar lower than the constant and uniform temperature believed in by Sir John Herschel. The temperature is, indeed, in places as low, or very nearly so, as the freezing point of fresh water, under a surface-tempersture 20 degrees or so higher. But in other regions having the same surfacetemperature the depths are 10,12 , or 14 degrees higher than that of freezing fresh water. Moreover these relations are constant, so far as the deep water is concerned.

Now, there can be only one interpretation of the circumstances here mentioned. If the depths of the ocean were unmoved by any process of submarine circulation there can be no question that a general uniformity of deep sea temperature would prevail in given latitudes. We should not find the bottom water in one region 13 or 14 degrees warmer than the water in a closely adjacent region. We have only to inquire what is the case in inland seas where no great influx of water of alien temperature can take place, to see that this must bo so. Take, for instance, the Mediterranean. Here we learn from Dr. Carpenter's recent researches that "the temperature at every depth beneath 100 fathoms is found to be uniform, even down to a bottom of 1,900 fathoms; as had, indeed, been previously ascertained by Captain Spratt, although his observations, made with thermometers not protected against pressure, set this uniform temperature too high. In the western basin of the Mediterranean, as shown by the Porcupine observations of 1870, the uniform temperature is 54 or 55 degrees ; being, in fact, the wiater temperature of the entire con'ents of the basin, from the surface downwards ; and being also, it would appear, the mean temperature of the crust of the earth in that region." We learn, then, two things-viz., first, that where extensive submarine motions are impossible, a constant submarine temperature may be expected to prevail in the same latitudes; and secondly, that in the latitude of the Mediterranean, the submarine temperature is about 54 or 55 degrees Fahr. Thas, it is clear, in the first place, that the varieties of temperature observed in the depths of the Atlantic must be due to the continual arrival of water of the observed temperatures, at a rate great enough to prevent the deep water from acquiring a constant temperature; and in the second place, it becomes possible to tell whence the submarine currents are flowing. If they are cooler than they should be, supposing latitude alone in question, then they are travelling from arctic towards tropical regions ; and vice verâ. On this last point no doubt remains. In a latitude corresponding to that of the Mediterranean basin, the depths of the Atlantic are far colder, even in their warmest portions, than they would be if latitude alone were in question. "In regard to surface-temperature," says Dr. Carpenter, "there is no indication of any essential difference between the Mediterranean and the Eastern Atlantic " in the same latitudes; "and the thickness of the stratum that undergoes superheating during the summer is abont the same.

At the depth of a hundred fathoms, in the Atlantic as in the Mediterranean, the effect of the superheating seems extinct, the thermometer standing at about 53 degrees ; and beneath this" (in the Atlantic only), "there is a slow and tolerably uniform reduction at the rate of about two-thirds of a degree for every fathom, down to 700 , at which depth the thermometer registers 49 degrees. But the rate of reduction then suddenly changes in the most marked manner; the thermometer ahowing a fall of no less than nine degrees in the next 200 fathoms, so that at 900 fathoms it stands at 40 degrees. Beneath this depth the rednction again becomes very gradual; the temperatures shown at $1,500,2,000$, and 2,435 fathoms (the last being the deepest reliable temperature-sounding yet obtained) being, respectively, 38, 37, and $36 \frac{1}{2}$ degrees."

Thas, there can be no possible question that the depths of the Atlantic are occupied by a vast current much colder than the deep sea temperature due to the latitude, and, therefore, necessarily flowing from the arctic towards the tropical syeas. $O \bigcirc 0$

Such are the broad facts of the Allantio circulatinn. We have a surface ciroulation whose general features are such as have been described, and are generally admitted, though a dispate has arisen as to a question of nomenclature; and then we have a general submarine "set" of water from the arctic regions towards the tropios, the existence of which is slso generally admitted.

But now we again approach a subject of controversy. and one which is certainly better worthy of discussion than that which we considered above. It relates, in fact, to the question hov this wonderful system of oceanic circulation is brought about.

Passing over several crude theories which have long since been disposed of, we come first to the theory that the syatem of oceanic circulation is due to the action of the trade-winds. This theory has been maintained by Frankljin and others in former times, by Sir John Hersohel in our own, and is warmly advocated in the present day, by many whose opinions are not to be rashly contradicted.

Against this theory it has been arged by Captain Manry - "with singular wrongheaderness" according to the Edinburgh Reviewer, bat as it seems to me with no small degree of reasonthat the trade-winds are neither powerfal enough nor persistent enough to socount for the great equatorial ourrents, or therefore for the Gulf Stream. Manry says, "with the view of ascertaining the average number of days during the year that the northeast trade-winds of the Atlantic operate apon the water between the equator and 25 degrees north latitude, log-books containing no less than 380,284 observations on the force and direation of the wind in that ocean were examined. The data thas afficrded were carefally compared and discussed. The results show that within these latitndes-and on the averagefrom the sonth-west only 111 days out of the 366 . Now, can the north-east trades, by blowing for less than one-third of the time, canse the Gulf Stream to run all the time, and without varying its velocity either to their force or prevalence." Oar reviewer not only dwells on the wrongheadedness of this argument-wholly irresistible asit appearsbut asserts that " the trade-wind origin of the Gulf Stream is about as certain as the rotundity of the earth." It could have been wished that in place of abasing Captain Maury for wrongheadedness, the reviewer would have devoted a fow lines to the demolition of Manry's argument.

Manry himself advanced the relative lightness of the equatorial water as the true reason of the oceanic circulation. But granting that the expansion of the equatorial water under the cun's heat, as well as the resulting baoyancy, would canse an overflow of equatorial water polewards, this overflow would be an exceedingly slow movement, and it would result in an eastwardly instead of a westwardly flow, for the very same reason that the counter trade-winds travelling polewards assume sn eastwardly direction.
In the Student for July, 1868, I-advanced another explanation. I urged that the cun's action on the equatorial and tropioal regions of the Atlantic, raising immense quantities of weter by evaporstion, canses an influx of water from below. "There can be no qnestion," I then wrote, "that under-ourrents arriving in this manner, Whether from the north or from the sonth"(tbatis from arctic or from antarctio regions) " would aequise a strong westerly motion (just as the trade-winds do). Thus they would generate from below the great equatorial westerly current. In this apftom of cool carrents having a strong westeriy motion, we find the mainspring of the series of metions. The water thas pouring in towards the equatior is withdrawn from beneath the temperate and aratio zones, so that room is continually being made for that north-easterly surface-stream which is the neoessary consequence of the contimal flow of the grest western equatorial eurrent againgt the barrier formed by the American earrent.

- Captain Maury's views seem only to require the mainspring or startingforce towards the weat which has been here suggested, to supply a complete, efficient, and natural explanation of the whole series of phe-
nomena presented by the great ocean carrente." nomena presented by the great ocean currents."
Four or five months later, and while the resalts On which Dr. Carpenter subsequently based his theory of the oceanic airculation were as yet anpablished, I drew attention in the columns of the Daily News to the comparatively limited extent
of the influences due to polar cold. This canse,

I pointed out, "scarcely has any influence in latitudes lower than the parallel of 50 degrees.'
In the year 1869 Dr. Carpenter wes first led to advocate the theory that the continual descent of oold water in the Arotic Seas is the mainspring of the system of oceanic circulation. He reasoned that the Arctic Sess being exposed to great cold, the surface water "descends in virtue of its roduction in temperature and increase of density, its place being taken, not by the rising up of water from beneath, bat by an inflow of water from the neighbouring area; and since sea-water becomes continually heavier in proportion to its reduction of temperature, this cooling action will go on without the check which is interposed in the case of fresh water." Thns, the water becoming denser and heavier will descend, and "there will be a continual tendency to the flowing off of its deepest portion into the warmer araa by which the polar basin is surrounded; producing a reduction in the level of the polar area, whioh must oreate a fresh in-draught of surface-water from the warmer area around to supply its place. This, in its turn, being subjected to the same cooling action, will descend and flow off at the bottom, producing a fresh reductionsof level and a renewed in-dranght at the surface.'

Dr. Carpanter illustrated this theory, ar rather the combined action of polar oold and equatorial heat, by an experiment, the plan of which had occurred also to myself, mind been desoribed by me in conversation somewhat earlier. "A long narrow trough having glass sides was filled with water, and a pieos of ioe was wedged in at one end between its side plates just beneath the top, whilst the surface of the water at the other end was warmed by a piece of metal, of whioh a part projeoted beyond the trough, and was heated by a spirit lamp placed beneath it; thus representing the relative thermal conditions of the polar and equatorisl beains. A.colouring liquid viscid enough to hold togetker in the water, while mixing with it sufficiently to move as it moves, being then introduoed, the liquid as it impinged on the ice was seen to sink rapidly to the bottom, then to flow slowly along the floor of the trough towards the opposite extremity, then gradually to rise beneath the heated plate, and then to flow slowly along the surface towards the glacial end, repeating the same movement until the ioe had melted."
It will be observed that in this experiment the effect of oold is not exerted alone, so that it by no means proves that the aratio oold is the ohief agent in producing the syetem of oceanio circalation. Moreover, the conditions of the polar and equatorial basins are-in one respect not acourately (or even noarly) reproduced, for the real arctio area is very much amaller, 00 mpared with the real equatorial area, than in the oase of the experiment. Indeed, it appears to me that Dr . Carpenter paid far too little attention to the relative smallness of the arctioneas. This may have been partly due to the erroneous idens suggested by the ordinary maps on Mercator's Projection, in which, as I have already mentioned, the arotic in which, as I have already mentioned, the arotio
regions are enormously exaggerated. It is almost impossible to study such a map as that which illastrates this paper (see part I., p. 473) withont feeling that the theory presented by Dr. Carpenter will scarcely hold water, or rather-if this way of presenting the argament be permitted-that the arctio area does not hold water enough to produce the effecte desoribed by Dr. Carpenter. For in that map the whole area of the Arctic Ocean is presented; \dagger and from out of that area, be it noted, must come the northern supply of descending water, not only for the Atlantic equatorial ourrent, but for the maoh larger equatorial current of the Pacific, if Dr. Carpenter's theory be sound.
The following letter, written by Sir John Herschel only a fow woeks before his lamented decease, has been very widely quoted in favour of Dr. Carpenter's theory; yet if oarefully studied it will be found rather to set forth the strength of the theory advocated a year earlier by the present writer. In this letter, at least. Sir John Herschel appears to be disposed, in so
far as he concedes the efficiency of heat, cold, and cvaporation, to inoline to the equatoria sotion as the most important. Answering

- Fresh water expands with reduction of termparature noar the freazing point, and hence, bioomiag herher,
tha descendiug inotion above described is interfored with in the case of fresh water.
${ }^{\dagger}$ The bounding lines drawn from the pole on tho the same meridian.

Dr. Oarpenter, who had addreased a letter to him on the rabjeot, he seys: "After wall considering all you say, as well as the common-sense of the matter, and the experience of our hot water ciroulation pipes in our green-honees, \&c. there is no refusing to admit that an oceanic ciroulation of some sort mast arise from mere heat. oold, and evaporation, as vere causa; and you have brought forward with singular emphagis the more powerful action of the poler cold, or rather, the more intense action, 9 its maximam effect is limited to a much smaller area than that of the maximum of equetorisl heat. The action of the trade and connter-trade winds, in like manner, cannot be ignored; and henceforvard the question of ocean-carrents will have to be considered under a two-fold point of view."
It appears to us that not only is the equatorial or rather tropical action much wider in range, bu it is also more intense than the polar action. For let us consider what happens during the heat of the day over the tropicel Atlantic. Here, over an area enormously exceeding the whole Arctic basin (we mre considering, te it understood, only the northern part of the symem of airculation) a pro cess of evaporation is taking place at so rapid a rate as to farnich almoet the whole of that rainsupply whence the rivers of Warope and North Amerion (east of the Rooky Mountains), take their origin. There is thras produced a continal defect of pressure, not merely along an equstorial strip, but so far as 20 oreven 30 degrees of north latitude, while the downfall of rain which taking one part with another of the temperate and sab-arctic Atlantic, may be regarded as incessant, continually adds to the pressure in these last-mentioned regions. That on the whole there must result a most effective excess of presure over the temperate zone of the Atlantio, as compared with the tropical and equatorial portion, seeme to me indisputeble. Now, if we compare this with the effects of refrigeration over the relatively in signifionnt arotio area, which, as I have said, has to sapply the North Pacifio submarine circalatioc (if Dr. Carpenter's theory be:true), as woll as that of the North Atlantic, we can masreely donbt, as it seems to me, whioh cance is the more effective I would venture to prediat thet if Dr. Carpenter's experiment were tried first with the ice elone to produce circulation, and secondly with the hea alone, the superior efficiency of the latter canse would be at once recognised; tut I much more confidently predict that if, as in the experiment I myself proposed, the relative areas of the equatorial and arctic basins were rupresented, there would be found to be soarcely any comparizos between the effects of arctic oold and equatorial heat, so largely wonld the latter, predominate.

It is necessary to mention, however, that the principle itself of the experiment has been ob jected to, on the ground that the gradation of temperature must always be much more rapid in such an experiment than in the actual case of the Atlantio Ocean. This objection, however, is, in reality, bssed on a misapprehension. It is cufnoient that the difference of temperature at the tro ends of the trough ehould correspond to the difference between the temperature of the Aretio and equatorisl seas ; and it is a matter of no importance whatever that.the real rate of gradation should be represented. The case may be com pared to the illastration of the desoent of wate to form springs or the like. Hepe an experiment would be valid in which the outfow of the illustrative spring was obtained by cansing the vent to be so mach below the level of the reser voir, though the slope from the reservoir to tho vent were very much greater than in the cace of any natural spring. Just as in the oase of a sprinf it is the difference of level, and not the rase: slope, which is effective in causing the rate of outllow, so in the case of the ocoanic vertica circulation, it is the actual difference of tempers ture, and not the rate of gradation, which pro duces the activity of the oircalation.
Another objection has been urged againat the heat and cold theory" by a vary akilfal mathe matician, Mr. Croll. He reasons on this wize Since the water which is carried from the eqas tor to the latitude of England + (gay) mast han partaken, when at the equator, of the cartli rotation there, which has a velooity of more thas

[^16]1,000 miles per hour eastwards, whereas, when it reaches our latitudes, it partakes of a retationmovement reduced to about 620 miles per hour, it follows that, neglecting the drift motions as relatively quite insignificant, friction has deprived the water which bas thas travelled from the equator to our latitudes of a velocity amounting to no less than 380 miles per hour. If friction is thas effective, howntterly inconceivable is it, says Mr. Croll, that the descending currents of Dr. Carpenter's theory (or the ascending carrents of the evapcration theory) shonld maintain their motion. Hence, Mr. Croll is an earnest advocate of the trade-wind theory.

The worst of this reasoning is that it proves too much. If friction is so effective, then when the trade-winds flag, as we have seen that they do, the ocean corrents ought to be brought to a standstill. Moreover, the submarine currents exist, and the wind theory leares them unexplained. The fact really is that Mr. Croll's reasoning bas no application to a system of fluid ciroulation, where the advance of one part of the finid is always made room for, so to speak, by the removal of that which it replaces. We might equally well apply Mr. Croll's reasoning to prove that a river cannot flow because of the friction long its banks, as to show that ocean currents cannot flow within their liquid banks. Indeed, many of the points in dispute in this matter of oceanic circulation may be excellently illustrated by considering the case of a river. I propose to draw this paper to a conclusion by setting forth such an illastration. My readers will not fail to recognise the opinions here severally parodied, so 0 speak, and so to infer the theory which I regard as affording, on the whole, the best explanation of the observed relations.
" Shallow persons," might one say, "have lannched all sorts of stupidities npon the Mississippi River. Physical qeographers have delaged the world with their assumptions respecting it; theorists of all kinds have floated their notions upon it. One says that it brings down, past Baton Rouge and New Orleans, the drainage of half the United States; others ascribe to it the delritus around the delta of that great river which flows into the Gulf of Nexico; yet others consider that it breeds the fogs infesting the path of the great stream which flows from Vicksbarg to Placquemines. All this is atter nonsense. The Mississippi has no more to do with the great stream flowing through Lonisiana than with the Thames at London. The real Mississippi is a stream of singular purity, and presents other characteristics olearly recognisable as far as its junotion with the Missoari; bat in the stream Which runs past St. Louis none of the characteristics of the Mississippi can be traced. Here, to all intents and purposes, the Mississippi comes to an end. As for the cause of the motion of the great stream itself there can be little question. Some have urged that it is due to the gradual slope of the land; but' in all the experimental illustrations of the effects of sach slope which we have yet seen, the inclination has been monstroualy exaggerated. If slope were the cause of the river's flow, then anquestionably the effective part of the action must reside in the Rocky Mountains, and not in the great reaobes of the river. We admit that the chief bulk of the river lies in the great reaches; bat this fact has no bearing. we assert, on the question at issue. However, it is demonstrable that no canse of this sort can be in question. For let the following reasoning be carefully marked. In Wisconsin, in 40 degrees north latitude, the river partakes of the earth's rotation motion, there equal in rate to about 800 miles per hour ; in Louisians, in 30 degrees north latitude, the river still partakes of the earth's rotation movement, here equal to about 900 miles per hour. Hence, were it not for the friction exerted by the banks, the water of the river in Louisiana would be flowing at the rate of 100 miles per hour westwards. If, then, friotion deprives the river of this enormous velocity-ss it obvionsly does-how much more must it deprive the river of the minate velocity of four or five miles per
hour due to slope or inolination. It is certain, hour due to slope or inolination. It is certain, prevalent northerly winds of the so-called Mississippi valloy. There are not wanting those, indecd, who aesert that this ceandot bo the orse because northerly winds are not prevalent in this region. But the singular wronghemdedness of this ressoning renders reply unneoessary. That the is as certain!as the rotundity of the earth.'

electro-metallubgy.-IV.

By J. T. Sprague.

7. Sulphuric Acid.-This is the most im portant article used in ordinery batteries and as it varies very much in quality and strengtb, it is desirable that its properties should be understood. Real O.V. oil of vitriol has a specific gravity of $1 \cdot 845$, and contains about 99 per oent. of the true acid $\mathrm{HSO}_{1}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$, new notation) ; it is of a olear colour, and has an oily appearance this is the acid always meant when sulphuric acid is spoken of. Brown oil of vitriol is the ordinary product of the chambers, or this boiled down in lead pans, and contains variable quantities of acid; this is a question of price only, but this acid often contains imparities of serious consequence.
Broxn colour may be due to dissolved organic matter, straw, \&e., and is of no moment.

Arsenic is often present, and mast be strictly avoided, as it unites with the hydrogen given off forming a deadly poison when strong, and being in any case injarions to health. It is detected by diluting the acid, and, passing a stream of sulpharetted bydrogen ; arsenic forms a yellow precipitate; another plan is to pat the dilute aoid in flask with scrap zinc, olosing the flask with a cork in which is fitted a small glass tube bent at right angles ; a Bunsen's gas-barnar or spirit lamp is so placed as to make a part of this tube ed hot ; the gas carries off the sraenic and deposits it as a bleck film in the neighbourhood of this spot.
Lead is often present as sulphate and must be oarefully removed, or it will deposit on the negative metal ; it is only necessary to dilate the acid in a separate vessel, allow it to cool, and filter it off before use.
Nitrous acid is often present and wastes the zinc, bat is otherwise of no conseqnence. It is detected by mixing the acid in a test tabe with two or three parts water; when cool drep in a crystal of sulphate of iron, if, as it dissolves, a brown oolour is prodnced there is nitrons acid present.

The strength of acid used in batteries may vary from one-twentieth to one-tenth by measure of acid to water.

Specific Gravity of Sulphicic Acd.

One-twentieth..	$1 \cdot 055$	\ldots	70°	..	1.598	
On-tenth.....	1.100	\ldots.	80°	\ldots	1.708	
One-third $\ldots .$.	1.259	\ldots.	90°	\ldots	1.807	
50	per cent....	1.388	\ldots	100°	\ldots	1.846
$60 \quad \#$	\ldots.	1.486				

The third line is that strength of acid whioh has least resistance to the passage of current, and contains one-third by weight of HSO_{4} following ratios are percentages by weight.
8. Galvanometcrs.-In order to obtain real definite knowledge, experiment is necessary, and to make experiment intelligently, careful measurement is essential. I therefore advise every one who makes experiments in ourrent electricity always to have a galvanometer in circait, and to watch its indications. Galvanometers as usually made do not convey that exact knowledge the importance of which I ampressing on my readers; they are invariably marked in degrees of the circle, and the indications of one tell nothing as to those of others. The deflection of a maguet is due wholly to the surrent passing, and for any one deflection a given and tixed chemical action occurs in each cell, de., no matter whether one or 100 cells are generating the corrent, and no matter what the resistance is. It is obvious, therefore, that what we really require to know is, not the degrees deflected, but the real current in some definite measure, which canses this deflection. This is easy with a tangent or sine galvanometer becanse we need only to obtain any constant deflection for a few hours while depositing copper or silver, and from this we can calculate the value of every other deffection on that one galvanometer. I explained this fully in No. 283, Vol. X. p. 530, and therefore need not go into it here.

Having once obtained the real value for any one instrument, it is easy to graduate others from it by inclading them in the same circuit ; and further, if a number of instraments are made upon the same plan and with needles of the same size all these instruments will indicate alike; at al events, sufficiently nearly so for all practical parposes. I therefore intend now to describe an in strament devised by me to suit all ordinary
parposes eo that readers can construct it. I have purposes eo that readers can construct it. I have
also, for the convenience of those unable to make it themselves, given the description to an instramant makor, Mr. Baker, 244, High Holborn,

London, from whom it can be obtained. A few words first on general principlea. If a magnetic needle be saspended over and parallel with a wire conveying a ourrent entering at the north end, ite north end will be turned to the left a certain number of degrees; if it is placed under the same wire, st the same distance, it will turn the same number of degrees to the right. If the direction of the current is reversed, so will the direction of the deflections. If now the wire is doubled back upon itself, and the needle placed between the two parts, it is evident that the direction of the current is thas reversed in the lower part, and that consequently each part aots upon the needle in the same direction, and, therefore, with donbled energy; in fact, the deflection will be doubled, not in the actual number of degrees, but in the value of the deflection itself. If we now take the effect of one complete turn of the wire as the anit, and pass another turn and then ten turns we shall increase the action on the needle doable and ten fold : The distance of the wire from the needle does not affoct the result, as the greater length of wire in the more distant turns compensates for the distance, exactly in circular wires and nearly 80 in the ordinary flat coils: thus, if we know the value of the defleotions produced by different currents apon the needle in one turn and graduate the dial to this, we know that these same deflections produced by means of ten turns are oansed by currents of onty one-tenth in amount, bat acting ten times on the needle. On this principle I have constructed what may be called a "universal galvanometer" as applioable to so many parposes, and giving its information in exact measures, not in mere degrees.

A reference to No. 287, Vol. XII., p. 1, will assist greatly in the construction. On a piece of wood or iron 2 in . Fide and $\frac{1}{4} \mathrm{in}$. thick, is formed a sheath of thin copper about 5in. long, with an opening fin. wide out across its apper face; this forms the chamber in which the magnet will play in the middle of the coils ; a pieoe of hard wood $\frac{1}{2}$ in. thick, $3 \frac{1}{2} \mathrm{in}$. long, and $1 \frac{1}{4} \mathrm{in}$. high, with a mortice across the middle 2 in. by fin!, is fixed across the middle of the sheath, and another piece $\frac{3}{4} i n$. thick on esch side of it $\frac{1}{2} \mathrm{in}$ distant, the copper ends being then turned up and cemented to the outsider; this forms two channels $\frac{3}{4}$ in. wide, and deep, in which the wires are to be laid, the part of the middle piece corresponding to the opening in the face of the copper is to be removed when the instrament is completed, forming a passage through the face and body by which the magnet is placed in its chamber.

The laying on of the wire must begin in the middle, and each end mast be connected so as to complete an exact turn at the middle, otherwise the indications will be inaconrate. First lay on 80 turns of No. 20 cotton covered copper wire, leaving six inches of the end for conneotion; the sizes given will allow exactly 10 turns to be placed in each channel, and thas four layers on each side will cemplete the 80 turns. Solder the end of the No. 20 (ty the exsot turn) to a length of No. 16, leaving 2. or 5in. of this last to come out for the connection, and hy on five turns in each channel, whioh in beat done by two layars of 3 and 2 olose up to the middle; at the tenth turn solder on a piece of the same, or stouter wire, to come out for a connection, and continue winding 8 mare turns, 4 on each side, in two layers, whioh will fill op the space left in the outer part of the channols in the former layers Now cat two strips $\frac{1}{2} \mathrm{in}$. wide of soft sheet copper 15 in . long, and solder their ends to the 16 wire leaving a projeeting end of this for a connection take one turn with these strips, one in each side ohannel, so that the ourrent will divide itself betwean the two. At the exsot point which completes a turn moldar across the two a stout wire for a connection, and make one turn more, bringing the ends of the strips ont. These last ends will be the beginning of the instrument, and when mounted are to be conneoted to the binding screw of the stand direct ; the other wires will be conneotions by which the different coils can be thrown in circait, and the effect Fill be thns :

Wire.		Tarng.	Total tarns			Rosistance.	
1	...	1	...	1	...	-005	Ohm.
2	.	1	...	2	...	-008	"
8	\ldots	8	...	10	...	015	"
4	...	10	...	20	\cdot	-025	"
5	...	80	...	100	...	$\cdot 440$,

These ends are to be led to a commutator, such as is commonly used on medical coils, a central epring traversing over fire studs. I prefer to use mercury cups thas-a block of hard wood an inch thiok has a contral and five radial holes zin.
deep by fin. bored in it, and when fixed on a stand, holes are bored through juat large enough to pass a No. 12 copper wire, on which a head has been hammered up. These heads are well amalgamated, and a piece of wire bent twioe at right angles passes from the central oup to the one desired to be used; the resistances are thus kept very small, and those of my own instrument are given above in the last column; they are so small that when used for moasuring batteries, \&co., they may be ignored.
The aoil as desoribed and the commatator are mounted on a stand 8 in . wide, fitted with three levelling screws, and the diagram will make it plain.

The binding screws are so placed that the varions curronts, not forming part of the coils, balnnce each other, a source of error often overluoked. The ends of the two strips are to be connooted direct to either + or - according to the way the coils are wound, so that the needle turns to the side to which the positive pole is connected. The other screw is joined to the centre of the commntator, and the studs, or oups, of the commntator are joined to the wires as numbered above. These connections are, of course, made below the stand. On the top of the coils is fixedse thin piece of wood, or metal, with an opening 2 in . by $\frac{1}{4}$ in. in it, and on thie is placed the dial of card to be described.

A small hole is to be bored in the middle of this opening, and into the middle wood through the bottom of the copper ohamber, in which is to be inserted a steel needle, with its point rising nomewhat above the dial: on this the magnetio needle turns. Tho needle itsell is $17 \frac{1}{8} \mathrm{in}$. long; my own is made of four strips of watch spring, $s \therefore$ nred upou a piece of very fine $\frac{1}{8}$ in. tubing $1 \frac{1}{2}$ in. long, in the top of which is an agate centre, and on which is also secured an indicator of thin brass or aluminiom, $3 \frac{1}{1} \mathrm{in}$. Joug, vith its points exactly corresponding with those of he magnet itself, so that while the latter plays in the inner ohamber the indicator marks its position on the dial. A round or square case, the top of which is glass, slipg over the coil frame and protects the needle from disturbance.
9. The Graduation.-This is effected by placing the instrument in circuit with my tangent galvanometer, the value of which is known, with several large Daniell's cells coupled "for qudntity" and a set of resistances. The dial is warked off in degrees as usual, and caroful readings taken of the deflections produced when the tangent galvanometer marks the-several currents required. I found that the instrument itself is roughly a tangential one, and, rather strangely, the single tarn corresponds nearly in degrees of deflection with those of the four turns on the tangent ingtrament. The lower figares arc easily marked off with No. 1 in circuit, bat it is not casy to get beyond 10 Chemics. However, having done this, if we bring the tangent back to 1 Chemic and pat No. 3 in circuit the instrament marks 10, while No. 5 will indicate 100. So that usiog this means of maltiplying the readings of the tangent the whole dial is easily graduated. I thus constructed the following teble, which will enable any one making an instrument on my directions to graduste it so that it will show pretty exectly the work any current is equivalent to, snd if used while electrotyping, to ascortain exactly the weight of metal deposited in any time. I should think it well to mark one quadsant from this table and the opposite one, with half the values to read off for Nos. 2 and 4, and to mark the other quadrants eimilarly, bat with

Vebers, to work with the common British Association units; of course, also, it is as well to mark the ordinary degrses on an onter aircle. Those who have efficient resistance instramente can readily graduate any galvanometar by the formala $\mathbf{C}=\frac{\mathbf{E}}{\mathbf{R}}$, for the Daniell being 1.079 Volt, a total resistance of 1.079 marks 1 Veber, or, oalling it $1.079 \times 5.68=6.129$, and introdncing that reaistance in Ohm's $\frac{6 \cdot 129}{6 \cdot 129}$
$=1$ Chemic corrent, and all others are readily deduced by maltiples of these figures-
Chemics.
Degrees.
$11 \cdot 3$
22
31
38
43
47.5
52
55.5

Degrees

$\ldots . .$.	58
$\ldots \ldots .$.	60
$\ldots \ldots .$.	69
$\ldots \ldots$.	79
$\ldots \ldots$.	83.5
$\ldots .$.	86.5

Thns, maltiplying the figares by the equivalents of the sabstances, if, while coppering, the veedle pointed to 79° or 30 Chemics, $31.75 \times 30 \div 10$ shows a deposit of 95 grains per hour; if it were silvering, then $108 \times 30 \div 10=324$ grains per hour. Galvanometers for use in practical operations could, of course, be as easily graduated to show how many ounces per hour of a metal were being deposited. As will be seen hereafter, it is quite easy to measure thas, even when several operations are going on in one vessel, and from one anode, while any irregularity which may and does frequently happen is instantly pointed out.
I give here a quadrant of the dial complete and full size.

All figares given in experiments or laws, in the papers to follow, will represent the actual readings from this instrament.

INFLUENCE OF ELECTRICITY ON LIQUIDS.*

P
DROFESSOR FUCHS, in 1856, sought to explain the following striking phenomenon : When a jet of water rises from the narrow orifice of a glass tabe it divides into drops, which describe separate parabolas of small parameter. If an electrified body (positive or negative) is brought near, the stream contracts into a single nudivided column. If the electrified body is approzohed still nearer, the jet again divides, and into mach smaller drops, which describe wider parabolas than the former did. To explain this Professor Fuchs asked first: Why does the stream in its normal state divide into drops? and gives the quite correct answer, that it is due to the adhesion of the water to the sides of the orifice, so that the division ceased when the mouth of the tube was greased internal/y. He further supposed that when an elcetrified body is brought jear, the electric tension produced in the liquid and in the mouth of the tabe destroyed the adhesion, so that, as from the greased month, the stream rose in a coherent form. How this conld happen with such slight tension was unexplained.

More recently Professor Reitlinger has taken up the subject. He foand that an oil of tarpentine jet, which, like water, was broken into drops, was not altered on approach of the electrified body; and that a quicksilver jet from a glass tube rose in a coherent state; while from a copper month it divided into drops as soon as the copper had

* Abstract of a recent paper in Poggondorffs Annalean
undergone a certain amalgamation, but that then. as with oil of turpentine, the electrified body had no effect on it. He supposed that the removal of the adhesion (in the case of water) was due to the production, eleotrolytically, of a thin layer of gas-a somewhat bold supposition, eapecially whare the mouthpiece is of glass, as it is not easy to see how the gas could arise in that oase.
But this sapposed removal of adhesion may be put aside from the question. The experiment which led Professor Fuohs to suppose that electricity produced its effeot by action on the monthpieoe was, that when he surrounded the monthpiece with another tube, he did not obtain a oontraction of the jet, but when the jet was so surrounded, and the month-piece free, he obtained it readily. The observation is not strictly correot : it is not the moathpiece that must be put into the electrified "shedow" (in order to prevent contraction of the stream), but the lower coherent part of the stream itsell. Let the matter be broaght to the test of experiment as follows:A glass vessel filled with water is placed on an insulating stand. From its lower part proceeds a glass tube, which is bent downwards, then npwards, terminating in a fine point. A jet is in this way thrown up about 20 contimetres in height, and in a direction slightls out of the vertical. From the moath of the tube to a height of three centimetres the stream is perfeotly coherent, then it breaks ap into drops, which form the parsbolic "branches." For the sake of brevity we may call the coherent part the stem, the divided part the branches. (That the stem is quite coluerent may bo proved by means of an electroscope.) A tin plate with a oircular hole in its central part (of five millimetres diameter) is placed horizontally, so that the jet passes through the hole. The falling drops pass just outside of this screen. A wire ring connected with an insulated conductor also surrounds the jet. Sappose it, once for all, negatively electrified. If, now, the screen is placed at the lower part of the stem, while the ring encircles the jet, say 12 centimetres above the orifice, the jet is contracbed. Raise the screen so that the stem is quite in the eleotric shadow, then no contraction takes place. It recars, however, if the ring is brought under the soreen. While these things are being done let a wire connected with an electroscope be dipped into the water in the vessel, and another, connected with a second electroscope, be brought into the upper part of the jet. It the stem of the jet is shaded by the soreen from the eleotricity of the ring the water in the vessel remains unolectrified, whilo the jet shows little or no negative electricity. exoept in the neighboarhood of the riug, where it is strongly negative; drops first attracted by the ring are then repelled, and so carry the negatito electricity direct to the electroscope. If, however, the stem is not in the electric shadow, the water in the vessel becomes negative, and continues so even when the ring is discharged by being toneked. The positive electricity carried away by the drope is commanioated to the second electroscope, which, in this case, is charged positively. If as insulating liquid, as petroleum, be substituted for the water, the electroscopes give no indications of electricity, and the jet undergoes no alteration in form. The same insusceptibility was notioed by Professor Reitlinger in the osse of oil of tarpentine.

The foregoing experiment will enable us to anderstand what takes place when the jet is 000 tracted. The outer part of the stem consists α particles which have received an eccentric impalse through friction at the mouth of the tube. They, therefore gradually separate from the central part of the stem to parsue thair parabolio coarses. When the stem is positively electrified by indection, the separated drops asrry with them some af the positive electricity of the sarface. The inner, unelectrified drops, are thus surronaded by electrified drops, which are thas turned back from their divergent course, and brought nearer to the axis. The jet in its further course does not become perfectly coherent; the end of the sten is only carried somewhat higher than before.
The drops desoribe parabolas of small para meter. If the electric influence is very stroag the mutual repulsion of the drope proves supariar to their attraction to the axis, and a finer and wider dispeftaion takes place. It appears, thea, that the influence causiag contraction of the jes acts at the end of the stem, not at the month of the tabe, and the theory of adhesion being ohanged by electrio influance may, therafora, be Inid asido.
 By "Seconds' Practical Watchmaker."

No. 1 represents the hook for the barrel. These links and hooks are very thin and small, there being in some watch-chains of old make as many ${ }^{2} 300$ pieces.
Attached to the lower part of the fusee is a wheel termed the great wheel, being that one which imparts motion to the train of wheels, and we must not omit one very important circumstance conneated with the barrel and fusee prior to the description of the train itself.

The form of the fusee is seen in Fig. 2, B; its surface is out into a spiral flat groove, wide enoagh to admit the ohain, and deep enough to prevent it from slipping out of it. A key being applied to the squared steel arbor, the fusee by this means is turned round and round till the ohain is wound on it, and thas fills the groove from bottom to top; this motion turns the barrel with it, and therefore coils up the mainspring so as to cause it to exert its greatest force. The mainspring by its elasticity produces most force when first wound up, and this force gradually diminishes as the spring ancoils ; when, therefore, the watch is nearly down, and all the ohain nearly off the fusee and wrapped round the barrel, the train will be tarned slower and slower until quite down, because the mainspring gradually loses its power. The fusee is a means adopted to remedy this progressive dimination in the strength or power of the mainspring.

As this power gradually diminishes by the watch going down, the spiral groove of the fusee is so shaped as to canse the mainspring, when it is at its greatest force, to pull the fusee round from a point nearest to its axis. The imaginary straight line from this point, where the ohain leaves the groove to the axis of the fusee is a lever, which the spiral groove canses to lengthen gradually as the spring diminishes in force; and from the well-known principle of that mechanical power, as this lever lengthens, a gradually lessening force applied at one end will produce a constant effect, or overoome a constant resistance at the other end of the lever, so that the fusee will be slways turned with the same constant motion, though turned by a gradually diminishing force of the mainspring. Bat although general theory directs the form of the fusee it is found in practice that each watch must haveits fusee edjusted to its mainspring. No two mainsprings of different watches can be relied upon to suit the fusee of another watch. To make adjastment of the mainspring and fusee correct, the outline of the fusee mast not be strictly conioal, for if it were the lever above alluded to would lengthen equally after equal portions of motion in the fusee ; therefore, to counteract the inequality in the diminishing force of the mainspring, the leverage of the fusee must increase exactly as the force of the mainspring decreases. In connection with the foregoing we quote the following from Hatton's "Nrathematical Dictionary :"-"To correct theinequality of the spring it was very happily contrived to have the spring applied to the arms of levers, which are continually longer as the force of the spring is weaker; this foreign assistance, always increasing as it is most needed,
maintains the action and effect of the spring in an equality."

The first procedure, therefore, in the examination of watch before finally patting it together, will be to see if this adjustment of the mainspring is correot, because, if not, no watch oan keep good time, for this reason: If the force of mainspring be greater at the first part, after having been fally wound ap, than it is at its intermediate periods, the wheels will be accelerated in their motions, and hence the watch will gain time when first wound, and lose time when going down; and just the contrary will be the case if these conditions of the mainspring and fasee be reversed, for although the fusee and mainspring may be in exact correspondence to each other, either gaining or losing time at the commencement of action can be effected by a workman who understands the mode of adjusting the mainspring. In the next paper we intend devoting a mall space to this important and interesting subjeat.
(To be continued.)

ARTIFICIAL SO.CALLED ORGANIC

 CONCRETIONS.EARLY in the present year I gave in my Microscopical Notes" an abstract of an interesting paper on "Molecular Coalescence," published in the Quarterly Journal of Microscopical Science for January, 1872. The current (July) number of the Quarterly Journal contains a lengthy article on the same sabject by W. M. Orb, M.B., in which several new points are brought out, and mach fuller details given of the processes followed.
Mr. Orb, I think vory justly, calls attention to the fact, well known to British microscopists, that Mr. Rainey pablished some notes on the sabject as far baok as 1858, and in the same year published a book "On the Mode of Formation of Shells of Animals, of Bone, and of several other structares by a procens of Molecular Coalescence demonstrable by certain artifically formed products." Mr. Rainey makes calcium carbonate the starting point in his investigations. The following is Mr. Rainey's desoription of the method of obtaining the globular form (Calcospherites. See Enalisi Mectianic, January, 1872) of carbonate of lime.* "It consists in introducing into a two-ounce phial, about three inches in height, with a mouth about one inch and a quarter in width, half an ounce by measure of a solution of gam arabic saturated with carbonate of potash. The specific gravity of the compound solation shonld be $1 \cdot 4068$, when loz. will weigh 672 grs . This solution must be perfectly clear ; all the carbonate of lime which had been formed by the decomposition of the malate of lime contained in the gam, and also all the triple phosphate set free by the alksli, must have been allowed completely to subside. Next, two clean elides of the ordinary dimensions ($3^{\prime \prime} \times 1^{\prime \prime}$) are to be introduced with the upper end of one slide resting against that of the other, and with their lower ends separated as far as the width of the phial will permit ; and, lastly, the bottle ts to be filled up with a solntion of gam arabio in common water, of specifio gravity $1.0844,1 \mathrm{loz}$. of which will weigh 520 grs. This solation also must be perfectly clear, having been strained throngh cloth and then left to stand some days to allow of the subsidence of all the floating vegetable matter. It must be carefully added to the alkaline lation that the two may be mixed as little 2s possible in this part of the process. The bottle mast now be kept perfectly still, covered with a piece of paper to prevent the admission of dust, for three weeks or a month. The soluble salts of limo to be decomposed by the carbonate of potash are contained in the gum in combination with malic acid, and also in the common water Ammonisco-magnesian, or triple phosphate, is also contained in the gam and is set free by the alkali. Mariate of lime, dissolved in a solution of gum from which all the lime had been previously separated, would answer a similar parpose, provided the mariate were not in too great excess for the gnm, in which cease crystals of car bonate would be formed together with the globules and the surface of the slide woald be covered with coalescing patches of the latter. Also muriate of barytes, and mariate of strontia, when reated in the same manner as muriate of lime furnish each a globular carbonate, the spherical

[^17]form of the latter being particularly perfect and beantiful. Bat muriate of magnesia, when decomposed in the same manner and under precisely the same conditions, does not furnish globules, bat crystals of carbonate of magnesia evincing no tendency to become globular."
Mr. Rainey, working out step by step each new condition and appearance indaced by variation in the composition of the fluid decomposed, and by the modifying infuences of the introduction of additional matter as certain phosphates, proceeded to point out "that simple physical laws are capable of leading to the construction of many stractural forms found in living bodies." He demonstrated this in the globular calculi, observed by him in the urine of the horse as early as 1849 ; in the shells of Crustaces and Mollusca; in bone, tooth, in the half-bony tendons of birds ; and he is not stopped after exhansting those formations in which earthy matter takes a part, but he boldly applies his principles to the structure of the sclerops tissue of vegetables, of starch globules, pigment colls, glomerali, and of the lens of the eye.
Mr. Orb remarks that in 1870 he, himself, showed that the "great variety of forms assumed by uric acid in urine might, at least in part, be explained by the mature of the associated constituents in each case. It was found by experiment, for instance, that where uric acid was deposited in the presence of albumen it took the form of either small orystals with rounded angles, of dumb-bells, of sub-spherical bodies, or oven of spheres.* (See Fig.)

"On the other hand, in the presence of sugar, starch, and glycogen, the aric acid took a more or less regular lamellar form with sharp angles, and in the presence of gelatine ths forms were intermediate between the two. [Soe Fig.] In albuminous urine the acid was fonnd always taking the form of short, stont, barrel-like crystals, with rounded sides and angles, or making approach to dumb-bell shape."

In face of these observations it occurred to Mr . Orb to apply a modification of Mr. Rsiney's plan of experiment to the determination of some of the conditions nuder which dumb-bells might be formed, to fix with more certainty the relations between the ootahedron and the dnmb-bell of oxalate of lime; to try, in fact, to turn the one into the other.
"Some perfectly clear jelly propared from isinglass was melted in a flat-bottomed jar in quantity enough to form a layer $\frac{3}{3} \mathrm{in}$. deep. In this, whilst still liquid, a number of glass tubes, each aboat 4 in . long, $\frac{1}{2}$ in. in diameter, and open at both ends, were placed upright, so that each tube was immersed to the depth of nearly ${ }^{3}$ iu. Aiter cooling the tubes were removed, and each was found plagged with firm oloar jelly, so as to be thoroughly watertight. Six of these tubes were filled with a slightly alkaline solation of potassium oxalate, and placed in a weak solntion (6jrs. to loz.) of chloride of calcium, the level of the solution in the tabes being mnch higher than the level of the calcinm fluid. The plug of jelly was thus interposed between the two solntions in the hope that diffusion slowly occurriug, the results of the matual decomposition of the oxalate and calcium salt might be found after a time in the jelly. The experiment was performed in a room of the average temperatare of 57 Fuhr." The intention being to imitate as far as possible the conditions nuder which certain concretions are formed in the renal tabes. At
the expiration of three months transverse sections of the plug were made at thirteen difforent

The two latter I obtained in small quantlies during
anme expriments on albuminous nring somir mantic
 obtaturd in presence of semi-decomposed epitheilial
matter. $-\mathrm{H} . \mathrm{H}_{0}$
points, the sections transferred to glass slides, she jelly melted with the slightest possible heat, and examined with a \ddagger in. objective. For the full results of the examination I have not space. It
was found that the forms existing on the side of was found that the forms existing on the side of the ozalate were very different from those on the
side of the calcium salt, and a semarkable series of gradations led easily from the one sories to the other. Dr. Orb gires an excessively interesting eries of drawings, too numerous to reproduce here, which will be found worthy of the most careful examination, and in themselves amply remanerate the student of biology for the oost of the number. The most interesting forms, perhaps, were produced noder a variation of the experiment just described. "Acetic acid was added in considerable excess to the solution of oxalate of potash, and all the carbonic acid expelled. The solution was now used as before, and the plug was fonnd, at the end of five days, white snd opaque, with deposit in its lower portion adjoining the calcium solation. Above this it was almost cloar, the acetio acid having, apparently in virtue of its greater diffusibility, driven back as it were-outstripped (?)-the calciam salt. At the calcic and were whest sheaves, and the crystalline kind of damb-bell, mixed with long, narrow-pointed, and very regular tablets; the octohedra were very fow and small." Further experiments were performed, using in the tubes solation of oxalic soid (a), the calcinm salt being as before, and (b) the calcium salt largely in excess of the omelic eaid. Solutions of oxalate of ammeninm a asefully parified, and of calciam chloride of known strength were also maed. The formula of ammonium oxalate is given in Miller's "Elements of Owesistry" es-
$\left(\mathrm{H}_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2} \mathrm{O}=142$.
Of calcium chloride, in the insible form, as follows:-

$$
\mathrm{CaCl}_{3}, 6 \mathrm{H}_{2} \mathrm{O}=210
$$

From which it can be calculated that 100 parts of calciam ohloride will be decomposed by 65 parts of smmoninm oxalate. The soletions were, therefore, made to eontain respeatively 100 grs . of calcinm chloride and diogrs. of time amoniam oxslate in sess. of distilled water.

Experiments ware carried on-

1. With equiralents of the salts.
2. With 4 equiralents of oxalate to 1 equivalent of the chionile.
3. With 1 equiralent of oxalate to 4 equivalents of the chloride.

The results obtained were exceedingly interesting. In No. 3 the "wheat sheaves" were replaced by smaller, rounded, homogeneous dumb-bells of great beanty, and there were several other beautiful forms, as well as others more interesting than beautiful.
Further sets of experiments, involving the modifying intluences of electricity, magnetism, and heat, were entered upon. Common horseshoe magnets of moderate power were at firat made use of. "In some expriments. the plugged tubes being arranged as in the first experiment, the magnets were so placed that tho lines of greatest deposit would run between their poles, in other caser, so that the length of the plug would be parallel to the line joining the poles. In other experiments little jars were partly filled with gelative imbued with chloride of calciam, the poles being thrust into the gelatine whilst warm, and the jars on cooling filled up with solution of oralate of ammonia. The general resalt was that there was an extraordinary iucrease in the size of all the forms where the plug or gelatine was sabjected to the action of mugnetism, but that there was no production of new germs or greater tendency to sphericity."

The intionce of tempersture was beantifulls evident in tubes placed in the kitchen (temp. 55^{\prime} to 65° Fibhr.), the coalescence forms were three to four times as numerons as the crystalline. In the garden (27° to 45^{\prime} Fahr.) this coadition was more than reversed.

For notice of the experiments of the greatest biological interest there is now little space left.

In these experiments tubes atopped with albnmen were used. The mode of stopping was very simplo. "Buakers wero filled to the depth of fia. with fresh white of an egg, the tubes were introduced and heat gradually applied by means of a water bath till the albumen was thoroughly out with a temperatnre not exceeding 200° Fabr., the plugs were firm. humngenenus, and water tight, no leakage occursing after the tubes bad bue
filled with water, and left for twenty-four hours Oxalate of calcinm deposited in these tabes at 50° to 60° Fahr., took almost entirely the coslescence form.
"When a plag was osrefolly examined, it was found firm and blueish in colour at the oralic end, soft and yellow at the oaloic. In the third next, the oxalate, no Yorms whatover of orystalline or conlescence order existed, but the albumen was remarkably fibrillated.* Below this appeared, in smallnambers, large, perfect homogeneons spheres, isolated, refracting light energetioally, and polarising with one perfeot oross."

Out of these arose a wider field of inquiry, which I oan only very briefly summarise.

Phosphate of lime was taken:

64.4 Phosphate, 7.03 carb. calcium, as in bones of hawk.
$59 \cdot 6$ phosphate, $7 \cdot 3$ carb. caloinm, $2 s$ in bones of man.
52.6 phosphate, 12.53 carb. calciom, $2 s$ in tortoise.
57.3 phosphate, 4.9 oarb. calainm, as in cod.

The first two were placed in hot-beds of different degrees of temperature, the hawk quentities being in the warmer; the others were left in a cool room, so that the temperature of sbout $85^{\circ}, 75^{\circ}, 60^{\circ}$ Fe hr. were severally obtained. It followed that in warmth or in cald, phosphate of lime was evenly distribated through the albamen in definite strata not forming orysuals or spheres, but comenting the albumen to great hardnees, partioularly at the line of greatest density. Carbonate of lime, on the other hand, never failed te form epheres at the highest temperature used.

In the bone salt experiments a nearly nniform result was obtained. The oarbonate of lime was sabdued, as it were, by the phosphate, and an even sub-orystalline but continuous deposit was produced. The use of the phosphate as a cement and manipulator of the less traotable carbonate was well indicated. The relations betwoen the
mean temperature of the organism and the relative proportions of phosphate and carbonate were investigated, and, with the question of theinflaenco of certain mineral medicinea zpon partionlar tissue, are deserving the farther investigation they will donbtless receivo.
H. P. H.

HISTORICAL NOTES ON POISONING.

(Concluded from page 4i5.)

T
He symptoms and signs Whieh were acceptel poisouing are interasting in a medico legal point of poisoning are interasting in a medico legal point of view. They were, as may be supposed, sutheiently
crude to inspire us with considerable donbt as to the reliability of many of the narrated cases of the relinbility of many of the varrated cases of
poisoning. Thit there were certain post-mortem poisoniug. Thit there were certain post-mortem
appearances which were generally considered as evidences of denth by poison, appears from the writings of Cicero, Tacitus, and others. Cioero speaks of "ea ques solent esse indicis et vestigis vencui;" and in the account given by Suetonias of the death of Germanicus, who was poisoned by Piso. at the instigation of Tiberias, we find them enamerated as livill spots on the face and body, foam at the month, and the fact that the heart remained unconsumed when the rest of the body was barnt. It was also believed that worms did not beooms generated in the bodies of persons who died of poison. There were no julicial past-mortem exsminstions; aid, in such inspections as were mede, medical men were not speciully employed. The body was siunply exposed to the people, who were bapposed to bu able to form a saticiently accarato supposed to bo able to form a sutucientiy accarate judguent for themselves as to the canse of death-
It is related hy Dion Cassius that Nero, fearing leat It is related oy Ditan Cassias that Nero, fearing lest his murder of Britannicas might be discovered, con-
cealed the lividity of the face by a coating of chatk; but that a shower of rain washed away the chati and displareid to the people the evidencess of his fratricidal crime. It was not till the time of the Emperor Justinina, about the midullo of the sisth conturs, that the aid of medical men was specially required in the judicial investigation of the gaestious which now fall to the proviuce of the medical jurist. Even then, little room was left for the arpression of an ind peutent opiuion, as the casad were for the most pirt decided on the anthority of the learned Hippocrates.

The provisious of the Jastinian eode were inear porsted in the capitularias of Charlemagne, aun the foundations of state Medicine were land T ocy were not yet, however, descined to ber buit npon.
At the breaking ap of the empire, there was a lapse into darinness worse than the first, and for rany long years all progress was in a backward directwo

- Mr. Orb flot-notes a query-"Did thla indicaid
combinalía
+Similar but gunll spheres occar in ecrtain alta
minous urige with calcium oxalate temp. 60 wo sor

What little had been gained in medicine was carried off to Arabia or shat ap in the monasteries. Much more might have been done by the monks, bat the of the oscumenical conncils of the twelfth centary, as cansing too great distraction from their religious duties. Superstition, bred of ipnorance, was rampant, and led to results often far more disastrons than the worst of crimes. The art of poisoning
had not been lost, however, as we have sufficient had not been lost, however, as we have sufficient often saw it where it did not really exist. The his-
tory of the Italian republics in the middle ages is tory of the Italian republics in the middle ages is
replete with instances of poisoning and assassination
aEvery one is acquainted with the history of the Borgias, and the long catalogue of crines, in which poisoning figured conspicnously, which have been
laid at the door of Pope Alesander VI. and his son Cresar Borgia. Perbaps many of these have been considerably embellished by traditipn, and many of the diabolical artifices to which they are said to have resorted may have only an apocryphal existence. Cæsar Borgia is said to have worn a ring containing a concealed point tipped with deadly
poison; and a particnlarly cordial shake of the hand, poison ; and a particnlarly cordial shake of the hand,
onder the guise of the warmest friendship, was, to the person so bighly favoured, the grasp of death. That there is nothing inherently impossible in sach an artifice what we know at the present day regard-
ing poisons would give us many reasons to believe, ing poisons would give us many reasons to believe,
however much we may doubt the credibility of the narratives. In Jater times, Philip II. of numerous villauies which he perpetrated by means of a poison which he called his "requiescat in pace." Pope sixtus V., who ultimately fell a victim to this, nsed to say to the Epanish ambassador that
Philip's "requiescat in pace" was the only thing he feared. The right of sanetuary (jus asyli), whioh was strenuonely maintained by the, Church, did much to shelter criminals both clerical and lay, and to render nall and void the statutes enacted to check
the frightful frequency of poisoning. Henry II. of England was one of the first to break through this privilege, and to bring to justice criminals of whatever class and from whatever place they had fled to
for refage. Burning alive aud othencruel modes of death were the penalty of those convicted of this crime. While, therefore, real cases of poisoning were common and frequent, falsely impated ones were not less so, and were productive of even greater evil.
The open neglect of all hygienic measures, the deluded reliance on absurd charms as prophylactic against all kinds of disease, and the mistaken ideas
of mortifying the flesh, bad mach to do with the origination and propagation of those deadly epidemics which decimated the nations of the Middle Ages. The people, ignorant alike and superstitious, in most cases attributed these to wilful poisoning
of the wells; and the occurrence of an epidemie was the signal for a murderous attack on the anWas the signal for a murderons attack on the uncrime. Many thousands of them were thas
massacred. Even as late as 1831 , when cholera massacred. Even as late as 1831 , when cholera
broke out at St. Petersburg. a similar idea of poisoning the wells was ontertained by the people. A profound faith in universal antidotes against poisen was characteristic of this age of the marvellons. This idea, however, did not originate with them, for it forms no inconsiderable part of the works of Nicander, Dioscorides, Galen, and others, and it continued to be spoken and treated of in many learned works up to a comparatirely
recent period in the history of medicine. One of the moat celebrated of the ancient antidotes was that invented by Mithridates, and which was named after him. Theee Mithridatia and Theriaca, different periods. They consisted for the most part of an immetse namber of vegetable extracts
and resins; and many works were written, specially and resins; and many works were written, specially
devoted to the exact description and modes of com. pounding the various ingredients of these highlyprized alexipharmics. So late as the middle of the showing their uselessness, and advocating their banishment from the pharasoopoias. More prized in the Middle Ages were the Bezoar Stones, first introduced by the Arabian physicians. So much were they valued, that they sold for ten times their
weight in gold. These wouderful stones, of which there were two varieties-che oriental and the occi-dental-were nothing but the biliary calculi of different species of antelopes, goats, and oamels. which blusbed or turned pale when poison approached them; rings that became too hot poured into them; and such when poison whe poured into them; and such-iike, ware equally
relied on. Many other agents were emploged, based on the ides of curing hise by like, or on the equally scientific doctrine of Signatures, which saw, form or appaarance, the proper antidote against it. The prowalgation of the "Constitutio Criminalis Carolins," in 1533, by the Emperor Cbarles V.,
was the dawn of a new era, and marks the commencement of the science of forensic medicine.

The relations of medicine to jarisprudence were distinctly established, and medico-legal investigation by competent men was rendered imperative in affecting the life and property of indiriduals. Numerous statates were passed by various states, regulating and restricting the possession and sale of poisons, and stringent enactments were made against the poisonous adulteration of food and
drink. Thing.

The use of poisons as medicinal remedies was also strongly condemned by many writers and teaohers. Antimony was especially prohibited by the Universities of Paris and Heidelberg, and candidates for the degree of Doctor of Medicine were, abont the middle of the sixteenth centary, required to swear that they would never employ this substance in the treatment of disease. These regnwere ostensibly for the purpose of preventiog poisoning, but they were chiefly directed against the followers of Puracelsus, who used the mineral poisons largely as remedies. The attention of medical men now became directed to the scientific investigation of the nature and action of poisons, and of the means of detecting and checking their employment. Numerous memoirs on poisons and on subjects of legai medicine were written by dis-
tinguished men; and works specially treating of forensic medicine were written by Fortunstus Fidelis (1598), Pand Zacchias (about 1630), and others whom we regard as the fathers of the sciense.
The foundation of a new physiology, chemistry, and allied sciences, led to a gradual emancipation from many absurd ideas regarding poisons.

Namerous exact experiments were made on the lower animals, and aisa are condemned criminals. A sense of hamanity gradeally puta stop to this latter mode of experimentation ; but we, whe heve derived much valuable knowledge, though: othen obscured by sbsurd theorias, from these amperimenters, mast not be too ready to find faus with them. In connection with this mode of esperi-
mentation, a name occurs which we commonis aecomentation, a nifferent employment; namely, that of Sir Christopher Wren

Notwithstanding the general tendency to shake off mere tradition and sabject everything to the canons of indactive research, yet many strange things retained their place in the works on forensic medicine is the seventeenth and eighteenth centurics It was a very common belief, and accepted on the most slender evidenco, that there were poisons in nse so subtle that they might be conveyed in a letter which would prove fatal to the reader, or inhaled in the fragrance of a bouquet.
We might to some extent credit these accounts, if we had grounds for supposing that the poisoners of old were akilful enough to isolate the zymotic poisons -the only poisons we know which can be carried in such a way. Prince Eugene is said to have received such a way. Prince Eugene is said to have received a poisoned letter, which, however, he from him. To ascertain whether immediately threw from him. To ascertain whether given to a dog, which was moreover fortified by an antidote. Notwithstanding this, the dog died. Marx, who relates the story, naively asks "Was not
the dog poisoned by the antidote?" We migbt the dog poisoned by the antidote?" We migbt
believe in poisoned gloves, bnt hardly in poisoned boots, poisoned saddles, and the like.

Pope Clement VIII. was said to have been killed by the fumes of a poisoned candle which was placed in his bedroom. Those who attributed his death to this canse, forgot, or did not know, that at the same time a brazier of burning charcoal was likewise placed in his holiness's apariment.
A belief in the existence of slow and secret poisons which could be prepared with such skill, und the dose calculated to such a degree of precision, as to cause death at any given period, according to the will of the poisoner, was more prevalent, and has not altogether passed away at the present day. It has descended from very ancient times. Theophras-
tus speaks of such a poison prepared from aconite which would produce its eftects after two, three, or six months, or even alter one or two years. The Carthaginians were said to have administered such a poison to Regulus, so that, whether he returned
from his mission to Rome or not, he might not from his mission to Rome or not, he might not
altogether escape. And it is related by Platarch, that one of the Philips of Macedon caused such a poison to be adminissered to Aratus, King of Sicyon. This is said to have produced a gradual Wasting of one occasion, when he spat blood, Aratus, who believed he had been poisoned, exclaimed "This is a mark of the King's friendship !
In more modern times the iden was founded on apparently better grounds, vir., on the effectsatpoison dorived its name from Tophana, a woman who resided at Naples in the latter part of the six teenth century. It was rold in phials, Which, in
order to escape the scrutiny of the Government officials, were labelled "Manna of \mathbf{S}. Nicholas, purporting to be an oily liquid of reputed super natural virtues which was said to flow from underneath the tomb of S. Nicholas of Bari. The name "Manna of S. Nicholas" is familiar to all readers
of "Kenilworth," though its mention there is some-

What of an anachronism. From four to six drops of this aqua or acquetta were said to be a fatal dose, and it was asserted that the dose could be so proafter its administration. Tophane tho wee convioted in 1707, and subsequently strangled by the orders of Charles VI., confessed to having been the means of destroying 600 lives. The wonderfal effects ascribed to this poison led to many attempts to discover its composition. It was said to be 8 in all kinds of food and drink. Halle a miter on poisons, who was gifted with a marvellous amount of credulity, thought that it was a proparation from the foam of men tortured to death; and remarks, that if Italy could have been the parent of snch wiekedness, "then truly a seed of the forbidden fruit mast have fallen in this garden of the devil! The most probable of the many suppositions advanced regarding the composition of the aqua Tophana is that it was an arsenical solution. In sapport of his, which he asserts that he was informed by the Emperor himself (to whom Tophans confessed the secret of her preparation) that it was a solution of The Abbe Gagliani and Ozanem assert that at least some of the preparations called aqua Tophana contained opium and cantharides. This, howover, is not likely, if the aqua Tophana were really tasteless and odourless, as it was generally said to be. The acconnts we have reoeived of the effects which fol-
lowed the administration of this poison woald agree, in so far as they are trustwortis, with thesymptoms of arsenical poisoning. Tho most likely explanation of the slow and subtle action ascribed to it, is that it was due to chronic poisoning cansed by frequent administration. A similar erplanation must be given the Marchion equail colebiled and the poudres de succession of La Voisin and Le Vigoureax.
The aqua miralilis of the Marchioness of Brinvilliers was probably of a similar composition to the aqua Tophana. The career of this woman was one She carried on an intrigue with a young officer called S. Croix, which created sach scandal that the father of the Marchioness caased S. Croix to be incarce-
rated in the Bastille. There he fell in with an Italian called Exili, from whom he learnt the art of secret poisoning. S. Croix, when liberated, instructed the Marchioness in the art which she afterwards practised with so little scruple. She is said to have assumed the character of a sister of mercy in order to try her nefarions mixtares on the unfortunate patients in the Hötel Dien. She subsequently made away with her father and brother. burnt at Paris in 1676 . The symptoms recorded in the case of her father and brother would confirm the opinion that arsenic was the chief constituent of her poisonons compounds. Closely connected with the Marchioness of Brinvilliers were two infamous women, named La Voisin and Le Vigouranx, the former of whom was a midwife in Paris. These women attained a grest repatstion as fortane-tellers,
and were consulted by many eminent personages of both sexes regarding the probable time of death of their husbands or wives, or other obnoxions individuals. Their predictions were often marvellously verified, and no wonder, seeing that they had the fates in their own hand, and drores wholesale trade burnisons. They were ultmately condemned and burnt alive by order of the Chambre de Pnison or poisons they made use of were called poudres de was ascen. To these, also, a slow and socret action constituont. From what wo know, however, regarding acute and chronic lead-poisoning, we should be inclined to attribute the fatal effects to some more active agent, or possibly to the means employed to core them. susceptible of such an explanation as given above. With the exception of the zymotic poisons and the hydrophobia-virus, which may long lie dormant in the system before producing their effects, but which we have no reason to believe were ever isolated or employed by the most 8 killed poisoners of old, we slow poisons ever existed except in the minds of the credalons. The existence, however, and frequent use of such poisons oven at the presebt day, is maintained by a recent writer in a medioal joarnal. He states that the Thugs of India possess and employ a slow poison called tophayne. And that poisons the reader is considered probable, from the recent sudden death of two individuals after reading anonymons letters-one of these cases occurring in Canada, and the other, that of Ceneral Cagia, at the last Carnival in Rome
Unless better evidence be brought forward than examples like these, we mint regard conclasions from snch data as manifestly worthless. Thanks to the knowledge which we now possess of the natural history of disease, and to the perfection of the means
of deteoting poisoning, together with the restrictions
that are put on the sale of poisons, the crime is b coming more and more rare, and cannot, even in the most skilful shands, long remain ondetected. Fortunately, tho who have it most in their power rre those who have been least gnilty of it, with some
fair noted and universally execrated exceptions. frir noted and universally execrated exceptions. M. dical men have been in general trae to their Hippocratic oath, and are ready to echo the sentim.nuts of the surgeon in the army of Napoleon, who, wheu requested to poison 500 unfortunate invalid
soldiers whom it was inconvenient to take with the soldiers whom it was inconvenient to take with the army or to leave behind, indignantly exclaimed, fession allow me to become an assassin!"

THE MANUFACTURE OF TEXTILE FABRICS AT POMPEII.
QOME interesting particulars of the ancient method of cleansing and finishing woven fnbrics, as revealed by the ruins of Pompeii, are
Liven by M. Benle, who inspected the remains of Liven by M. Beule, who inspected the remains of a fulling and bleaching establishment in the
buried city. The bouse in question was unearthed some time back. but the descriptions of its contents serm to have been confined to the pictures.

The largest and best execated paintings representative of the art were discovered in 1820 , in
the honse of a fuller, opening on one side on the street of Mercary, and on the other on a street called after him, Fullonica. In the court a pillar covered with pictures was standing alongside a fonntain. This pillar has been removed and depasited in the Naples Museum. In the lowest division, a woman, siting, hands a piece of oloth
to n little female sleve. A workman, whose tanic to n little female sleve. A workman, whose tanic is closely tied around the body, is looking at them, purple border, suspended from a stick. Another workman is in the act of sitting down alongside a
crate of wicker-work on which the cloth is to be crate of wicker-work on which the cloth is to be
spread out ; in one hand he holds a vase on which spread out ; in one hand he holds a vase on which sulphar thrown on barning charcosl will develop a gas capable of bleaching the cloak. This is the same method, says M. Beuie, which is used to-day. On another race of the pillar arched niches contain large vats where the goods are soaked. Slaves stauding in those vats trample the fabric with their bare feet in the same mauner as Arabian women wash their liuen by trampling them against the rocky bed of a stream; this is what the ancients called "the faller's dance" (saltus fullonicus). with its two nprights, its two enormous screws which were turned by means of cranks, in order to flatten the cloth beneath the planks which im parted the necessary fiuish. Finally, the drying chamber is shown trom the coiling. The lingen is spread out on them
frem a slave hands to a young woman an open fabric while the wife of the fuller makes a note of it on her tablats. I have visited with particular curiosity the houses in Pompeii where these pictures had been gathered. I counted there in a court twentytwo tanks constructed of stone, and at different levels, so that the water could run from one into the other. Little benches in fromt of them served
for the reception of the goods. At the other end for the reception of the goods. At the other end
of the coart, seven smaller tanks served for fulling. The store-room, with traces of the planks, which were laid like rays radiating from a centre, the hearths, the drying chamber, may still be recognised. In other fullers' establishments, I have seen very thick sheet-lead lining the interior of vats made of cement. Sometimes, also, we find earth of which Pliny speaks, and which contributed as much to the whiteness of the goods as the fumias much to the whiteness of the goods as the fumi-
gation with sulphur or the arine which was collected gation with sulphur or the arine which was collected
in vases placed at the corners of the streets. Thus, in vases placed at the corners of the streets. Thas, despite the differences of hime and processes, it has but little inventive, or, rather, that the ancients hud already discovered all that was essential, rational, and suited to the requirements of the art.

DRAWING FROM THE MICROSCOPE.

A
N easy method of making accurate drawings of
objects seen in the microscope is almost a necessity for the student who wishes to make himself proficient in the use of his instrument, and is of the first importance to the beginner who desires io acquire a kuowledge of the objects he examines. the scieuce hangs upon the multiplication and circnlation of accurate representations of the forms and phenomena disclosed by the microscope to the eyre of skilled observers, the tyro, who may
possibly be cat off from all cominanication with possibly be cat off from all cominanication with bave his dificulties explained by oral and ocular a drawing of an object exactly as seen will be of the a dratest value to him in his ondeavours to acquire a kuowledsc of what has been already accomplished, aud a creat assistance in his attempts to explore
new ficlls; for a drawiog is easily transmitted
through the post, and coming into the hands of a microscopist who has already passed along the same road and through similar difficulties, he is enabled to remove the obstacle and explain away the perplexity of the stadent with a far larger amount of assurance and consciousness of correctness than would be possible from the most elaborate verbal description. In his treatise on "How to Work with the Microscope," Dr. Beale justly observes, "It may be truly said that no real advance in our knowledge of the minute structure of animal or vegetable tissues can be communicated to others, unless accurate drawings are made." Yet, as a matter of fact, how very few amougst even earnest students of the microscope can draw at all, and what a very small number have acquired tho valuable art of drawing accurately. There are several "acces. sories" to the microscope, which are more or less useful in enabling the observer to make a truthfal useful in enabling the observer to make a trutifin
copy of what he sees, not the least valuable of copy of what he sees, not the least valusble of
which is Dr. Beale's neutral tint refector, some which is Dr. Beale's neutral tint refector, some
pariculars of which will be found at p. 331, Vol. XIII., and an in proved method of using it at p. 386 of the same volume.
One of the latest inventions for rendering the copying of an object as seen in the microscope both accurate and easy, was recently described by Mr.
Isasc Roberts, F. G. S., to the Royal Microscopical Society, and an illustration was published in their Journal, from the pages of which we reproduce 8 diagram of the littlo " micro-pantograph" he has

designed. With the appliances hitherto in use, it is questionable whether in many instances they do not increase the difficulty of making an accurate reproduction; but with this "accessory," almost
any one can, after \& few hours' practice, make an any one can, after a few hours' practice, make an
accurate copy of the most elaborate object, accom accurate copy of the most elaborate object, accom-
plishing this, moreover, with facility. The instraplishing shis, moreover, with facility. The instrument consists essentially of two parallelograms,
having their major and minor sides and angles respectively proportioned in all positions in which the instrament can be placed. The major and minor sides rotate freely about the common centre or fulcrum, which is fixed to the eyepiece of the microscope in the focus of the eye-lens. A pencil is attached to the major end-joint of the instrnment, and a smal glass disc ruled with a micrometer-lined.cross is the position where pointers are placed. To see both cross and object at the same time similar focussing is necessary to that which is employed to see an object and a pointer. When drawing the hand merely moves a pencil over the paper, and at the same time and by the same action guides the
micrometer cross-lines over the field where the object appears in the microscope. The drawing paper should, of conrse, be laid on an inclined table capable of adjustment to the height of the microscope employed, the top being also made movable to suit the angle at which the microscope is being
used. In the illustration Fig. 1 reprosents the micro-pantograph, and Fig. 2 the form and ap-
proximate position of the slit into which the minor end of the micro-pantograph and its support shown
at the top of Fig. 1 are inserted. In Fig. 1 E is a glass disc with micrometer cross-lines ruled upon it. It is cemented over a small hole drilled througis the ccutre of the rivet forming the joint at the minor extremity. A is $\&$ centre, or fulcrum, around which the parts of the instrument freely move. N is a holder for a drawing pencil, placed over a hole drilled through the rivet forming the joint of the major end of the instrament. In Fig. 2 M is a slit for the insertion of the minor ond of the micro-pantograph withits support shown behind $\mathbf{E} \mathbf{A}$ in Fig. 1. The instrument being firmly fixed in position in the eycpiece to draw any object, it is only necessary to place the eyepiece in the microscope, adjust the drawing table to the height and inclination of the plane of the pantograph, and with the right-hand forefinger and thumb guide the pencil with slight pressure over the paper, at the same timo looking through the eyepiece at the object and buiding the centre of ther micrometer crose-lines over the respective parts of it; an accurate draw-
ing of the object will thas be traced upon the paper. Mr. Koberts has not patented this usefal contrivance but freely presentsit to all workers with, and students of, the microscope. Many of our readers will be able to construct the instrument for themselves, but, doubtless, our opticians will soon be in a position to supply it and adapt it to any form of microscope. For those, however, who may desire to make for themselves, it is only necessary to say that the length of the minor sides of the parallelo 5 jin., the instrument when extended to the fall length measaring 12才in.

NOTES OF COMMUNICATIONS TO THE

ACADEMY OF SCIENCES, PARIS.

INDNDUSTRIAL CHEMISTRY. - Decobative Paikting on Tin.-Tinfoil is spread out opona smooth surface, such as glass, the latter having been
first moistened to aid the laying out of the foil and first moistened to aid the laying out of the foil and
to maintain it in its position. The painting is then executed apon it in oil. This painting on tin, when dried and varnished, can be rolled np like ordinary paper-hangings, from which it essentially differs in possessing all the variety of tones and colouring that oil-paintings admit of. The tin groundwork constitutes a waterproof protection, and, on account of its great fexibility, wil soun the various monidings aud contours of the object to bo hydrofuge mixture, when it will be ready for the hydrofuge mixture, when it will be ready for tie
decorator. This method can replace ordinary gilding, as the gold can be applied in the workishop and the gilt tin fixed afterwards. The adrantago of gilt tin over gilding on other metals is that it is inimical to oxidation; whereas it is known thet gilding upon other metals, and notably upon zinc, deteriorates rapidly.-M. C. Daniel.
[M. Dumas, one of the Commissaries appointed to report to the Academy on the above communi cation, Was, Fith all who saw the remarkable specimens submitted, highly interested. He conindustry of this kind develop itself, as it has the sanction of long practice under a somewhat different sanction of long practice under a somewhat different
form. The Chinese, in fact, employ painting opon form. The Chinese, in fact, employ painting apon
tin for their furnitare and lacquer work, and that tin for their furniture and lacquer work, and that
which one commonly takes for gold on these objects is nothing but leat tin covered with a jellow varnish.]
Physics.-Light of the Vapour of Todine.Vapour of iodine presents a number of curions properties. The following is one that does not appear perties. The following is one that does not appear
to have be en previonsly noticed. This vapour at a high temperature gives ont rays but little refraugible. furnishing a continued spectrum. Place in a tube of Bohemian glass a small crystal of iodine, and eat the tube strongly at a certain distance from the ragment ; when sufficiently red, leave it to cool antil almost invisible in the dark, the iodine then vaporizes rapidly. The colonred vapour, on arriving at the heated part, burus red in a very nice manner. By admitting an absorbing medium, the incandescence of this vapour can be produced in a very brilliunt style. Seal in the interior of a glass tabe a fine platinum spiral, which can be raised to a red heat by the electric pile; then introduce pure iodine into the tabe, and seal the same after having expelled the sir ; volatilise the iodine, and establish the electrical commanication. The incandescent platinum becomes surrounded with a vacillating flame, of which the colour is moditied by absorption. It is a very rich red, and gives a fluted spectram. The author expects to draw from these facts some in teresting conclusions, but, before publishing them parposes to submit them anew to experimenta veritication.-M. G. S.hlet.

Meteonology.-Rain of Sand in Italy,-A fresh rain of sand fell in Italy on the nights of the 19th and 20th of April last. The same meteoric circara stances attended this as accompanied the show ir of luth March last. A heavy and sudden storm bigan
on the 15th April on the coasts of Scotland and Norway, attended with a grest angmentation of heat an over Earope. The tempest traversed one the mest anm crntre on the 16 th, and Italy on the 17 th
and 18th, directing itself towards Africa. On the sad 18 th , directing itself towards Africa. On the
night of the $19-20 t h$, it returned npon Italy charged with sand from the deserts of Africa, mixed rith organic matter.-M. P. Dexza.
[We once witneseed a fall of blue clay and sand noder sinnilar circumstances at Zante, which laid busbes, and was abont an inch thick on the deck of a man.of-war then in the harbour.-J. J. L.]
Chemistry.-Effects Produced by a Ciassepor ball in a Case op Suicide.- The leaions and absence of other evidence, they might have been attributed to an explosible ball. The projectile presented a puffed up apperrance, indicating a parparts that it enconntered without sensible loss of parts that to enconntered without sensibple loss of
speed, and to have been bronght up sharply by the speed, and to have been bronght up sharply by the
vertebral column, where its impetus had been convertebral colamn, Where its impetus had been con-
verted into heat. The anthor considers that we find realised herein the conditions pointed out by M. Melsens as necessary for lead to attain a temperatore of 315°, its normal point of fusion.-Mr.
Arvould Tersisd. Abnould Ternard.
Physics--Optical Phexomena obserted durina A Balloon Ascent.-During a balloon voyage on
the 8th June last, the abcent taking place from the establishment of M. Flaud, near the Champ-deMars, Paris, the following phenomena analogous to the Spectre of Ulloa, were ebserved. At 5.35 p.m. the balloon had passed the white cumali that extended horizontally at the height of 1,900 metres. The sun was hot, and the expansion of the gas (hydrogen) determined the ascent towards more elevated regions; but as these coald not be attained without danger, owing to the limited anpply of ballast provided. the valves were used to descend. At this moment the geironauts were sailing above a vast cloud, on which the sun projected a confused shadow of the balloon, which appeared to ibe surrounded by an aureola or Rlory, exhibiting the seven colours of the rainbow.
Hardly had they time to look at the first pbenomenon when they descended about 50 metres. They then passed very near the cumulas, which extended itself near the car and formed a screen of dazzling whiteness, of which the height was certainly not less than 70 to 80 metres. The shadow of the
balloon now appeared near, very dark, and with balloon now appeared near, very dark, and with great distinctness. The lenst details were visible,
and the silhouettes of the voyagers were regularly displayed upon the silvery cloud, and when they raised their arms the movement appeared in the shadow. Theshadow of the balloon was surronniled by a rather pale elliptic aureola, in which the seven colours of the spectram distinctly appeared. Thermometer 14° Cent. Altitade nearly 1,900 metres. wall of which the apparition was produced, was of considerable volume, and resembled a great block of snow brilliantly illuminated. There was a certain nebulosity surroanding the voyagers.-M G. Tissandirr.

John J. Lake.

THE MEDICINAL USE OF CARBOLIC ACID. CARBOLIC ACID is very largely employed in of all deseriptions; but hitherto few experiments have been made with it as an internal remedy. There is good ground, ha wever, for believing that in certain cases it will be found a very valnable therapeatic agent, and onder these circumstances the Lancet describes some experiments which have
been made by twa French savants to ascertain in what doses it may be poisonous.
MM. Panl Bert and Jolyet, of Paris, have undertaken experiments to make out this point. Between forty.five and sixty grains will kill a dog of large
size; nor should it be conclnded that a man could mear a dose in proportion to his weight compared to that of the dog, as thirty grains of hydrochlorate of morphia have been injected into the jugular vein of a dog without killing him. Of course one-fourth of
this dose would kill a mau. The above-mentioned this dose would kill a mau. The above-mentioned
anthors state that carbolic ncid is a powerful poison, which, very imprudently, is left in the hands of anybody, either in solation or in the solid state. The former is the most dangerons, as some weak strong ones intended for external use. Thas mistakes may easily occur. MM. Bert and Jolyet find that carbolic acid acts like strychnine on the excita-
bility of the spinal marrow. It increases its seusibility, like atrychnine, at first; but it diminishes that sensibilite, or completely abolishes it, when the convnlsive stago has exhausted the medulla. The phenomenn resniting from carbolic acid are
said hy our anthors to be quite similar to those prosaid hy our anthors to be qnite similar to those pro-
dnced by chloroform, chloral, ether, woorara, and the section of a motor nerve.

MECEANISM.

(Continued from p. 480.)

IF we refer to what may be deemed an ever-present characteristic of continuous motion commnnicated by rolling, it will be seen in this-viz., turnod into themselves. They are, in fact, completed curves, or portions of carves that may be completed, oheying a decided and a clearly expressed law of formation as well as relation to each other. And we may notice further, that the shafts or axles on which these rolling curves are fixed, rotate. There is no other motion transferred by pure rolling than
nach as is expressed by the word "rotation." Snme may say that motion communicated to a straight rack is a case of rolling, and that is not rotation. Practically it is not rotation; theoretically it is for a rack is a straight line, and in the theory of mechanism straight lines are assumed to be the circamferences of circles with centres at infinite infinity for a radins. Further, if " rolling' mechanism he examined, it will be noticed that the driver and follower are so connected that the precise extent of motion of the driver is of necessity transferred
to the follower. In perfect rolling contact there is no escape from that law. The angular velocity, or the velocity of the shafte, may vary, but the length of the path of a point in the circamference of one wheel mast be exactly equal to the length of the path of a point in the circumference of the other wheel. Bear in mind that there is a distinction between the angular velocity or the velocity of the shafts and the extent of travel of a point in the circumference of a wheel keyed on a shaft.
Farther, the pathway in which the motion may be said to be transmitted is always in the line joining the two centres of rotation. The carves in contact move, but the pathway of commanicated motion does not move. Remember, we are speaking of pure rolling contact. In this example of two wheels in rolling oontact, the pathway in which motion a communicated is a line aljoining the two centres. As soon as the touching parts of the circumferences
have left that line, they have left the pathway of have left that line, they have left the pathway of
communicated motion and ceased to communicate cominunicated motion and ceased to commanicate motion from the driver to the follower. The point move. It the centres of motion of the shafts, as in elliptic and eccentric wheels, or it may be fixed, as in circular wheels. But in all instances of pure rolling contact motion, eqnal lengths of the two
Now, however, that motion is to be commonicated by sliding, the relations between the noving pieces are very materially modified. Not only may the direction of the pathway in which the point of of peripheries or circumferences rotating about the centres to which they are related, by sume reentering law of curvature, vanishes. In rolling contact motions there are always peripheries; in sliding contact motions one or both of those peripheries disappear.
Let ns see, then, how this preliminary alteration of affairs affects the mechanician in the case of
rolling circles, ellipses, and lobe-wheels-by lobewheels are meant wheels based upon such figures as squares. with curves and teeth npon them (see Fig. 9. p .480). of which there are some very beautiful photographs on the wall, well worth close inmechanism appreciated as a study in England, that neithar private enterprise nor the anthorities in scientific muscums have either exhibited or are scientific muscums have either exhisited or are
possessed of copies of the originals from which many of the numerous photographs of mechanism many of the numerous photo
in this room have been taken.

In the case of rolling circles, ellipses, and lobewheels. the velocities commonicated depend on the
ratio into which the point of contact divides the ratio into which the point of contact divides the
line connecting the centres of motion. This prinline connecting the centres of motion. This prin-
ciple is applicable in all motions of pure mechanism. ciple is applicable in all motions of pure mechanism.
And there is a second condition. The freedom, perfection, and accuracy with which motion can be transferred are dependent upon the permanence of the line of direction in which the contact surfaces convey it. If the line of direction by which the motion is commnnicated varies, then acouracy in regard to the relations of the motions ceases. If line, then th alwass in the same position instant, that is if, for example, one shaft makes ten revolutions, the other will make twenty; but if that point moves, the proportion of ten to twenty, or constant moves, the proportio
You will tind in this model (subject to the irregularities attendant upon all practical illustrations of pure rolling mechanism) there is on each wheel a piece of coloured paper, and as the wheels are
turned round you see that these pieces come together again as at the first. The velocity ratio hetween the two is therefore constant. That point does not move. If. howevcr, we take the case of
these elliptical whels (Fig. 11, p. 480) and

- By the Rep. Arraun Rrag, M.A., boing the Cantor
bring them into contact at one point, you will observe that whilst the communication of motion by the rolling of the ellipses is perfect, the space passed throngh in that circumference and this circumference is the same. Equal travels have taken place in these elliptical wheels as regards the cirplace in these elliptical wheels as regards the cir
cumferences, but variable velocities in the shafts on cumferences, bat variable velocities in the sharts on
which the wheels are seyed. Take, for example, which the wheels are seyed. Take, for example
these elliptical wheels, and see how the velocities of these elliptical wheels, and see how the velocities o section of the shaft divided into thirty parts. At the present moment the pointer is pointing to zero. While the wheel has gone half round, the shaft onght, according to the ordinary lem, to have completed one half of a rotation, but you will find it is not so. The shaft has passed flurough twenty porthe wheel takes the shaft through only ten portions.
Now, in these elliptic wheels without teeth, so ong as pure rolling takes place, however varied may be the velncities of the circnmferences of the cylindrical shafts, the circumaferences of the wheels passed are equal. There is no evasion of that law;
but assume they are in such circamstances that bat assume they are in such circamstances that
they are anequal, then one of the surfaces must have slid past the other. A sliding motion has entered into the mechanism which was not provided or at all. Perfection of wcrkmanship and indeatructibility of material can alone prevent a partial sliding in the very best of illastrative rolling contacts. What, therefore, cannot be averted inast be accepted. Hence we must recognise rolling contact motions in connection with the motions consequent upon sliding, and we must therefore endeavour, as far as possible, to enlist the necessary sliding contact motions to aid in the promotion of rolling contact motions, the object being to inpose an immatable law apon two pieces where one canses the of clock-hands; if the minnte hand did not move of clock-hands; if the minate hand did not move
by an invariable connection with the hour hand, the by an invariable connection with the hour hand, the
clock would be very delusive. Sinee there is to be an immutable law between the two pieces, there fore, the ancertainties of sliding mast be eliminated, whilst the presence of sliding must be recognised.
Now, pat a piece of wood upon this rolling circle, and a pin or tracing pencil on the other; let the circles roll as before, and the pin mark a line upon the wood. Cat the wood to this line, and instead of the wheels rolling let arms from the centres carry the pencil-traced curve and a pin against its edge. The pressing and sliding action of the carve on the pin will canse the shafts to move as the roll-
ing of the wheels did. Mathematicians can show ing of the wheels did. Mathematicians can show
the identity of the motions, and that they are the the identity of the motions, and that they are the
same as thongh communicated at the point in the same as though communicated at the point in the
line joining the centres. Were it not so, the preorline joining the centres. Were it not so, the p.
dained law of velocity-ratio would be broken.
The condition to be satisfied is that the motion be communicated exactly at the required point, and at no other.
The mechanician, or rather the mathematicianfor we are now entering into that province which
is forbidden ground, since the problem in this phase is forbidden ground, since the problem in this phase
belongs to the mathematician-mast determine the belongs to the mathematician-must determine the shapes of curves which may replace these rolling circles, the oircles being entirely taken away ; Which of pressure shall always intersect the line joining the centres of motion in the same point, or in a point whose law has been previously ordsined. In the case of those elliptical wheels there is a law, and the point is continually varying. In the case of the circular wheels there is another law, and the
point is constant. Although now trenching rather point is constant. Although now trenching rather ginally intended, the conclusions to be drawn are go essential to the perfection of mechenism that a description of the principles which govern these conclasions mast here be introdaced.
Let us see why to nse pure rolling contact for the communication of power is little more than theory, who were here on Monday last can testify. We had then the case of pure rolling contact for raising heary weighta; and if any of you go into theroom at the Arsenal at Woolwich where large timber is sawn, and ask to be taken below where the driving machisery is, you will see a large circular saw-to the best of my recollection 4 ft . or 5 ft . in diameter-the rotation of whichis accomplished by pare rolling contact. The saw is supported upon a
simple shaft resting on two bearings. It is driven by two cones pressing against it. The cones have leather surfaces, with which they grip the saw,
causing it to rotate, and in this case a high velocity causing it to rotate, and in this case a high velocity
is accomplished by pare rolling contact, and is utilised in the cross-cntting of banlks of timber.
Teeth on carves, or, as we usually call them, on wheels (although all curves can be made into wheels), are now the accepted mode for the communication of such motion as would take place if the rolling was perfect
Let us see what should be the form of the tecth on curves, and how these teeth act and re-act upou each other.

LETTERS TO THE EDITOR.
[Wi do not hold owreslves reoponsible for the opinione of our correspondente. The Editor respeotfully requeste pessible.]
4ll commanications should be addraseed to the Editc 5 of the Englise Meceamio, 81, Tavistock-street, Cowat Garden, W.C.
All Ohaques and Port Oploc Ordore to be made payable
do Nackion EdDwands.
"I would have every one write what he know, and as mnch as he knows, but no more; and that not in this only, but in all other subjects: For such a person may have some particular knowledge and experience of the nature of suoh a person or such a f juntain, that as to
other thinge, knows no more than what everybody doas, other things, knows no more than what everybody doas, and yet to kenp a clatter with this little pittance of his,
will undertake to writa the whole body of physicks: a vice from whence greht inconveniences dorive their original"-Montaigne's Essays.
** In ovidr to faetlitate reforence, Correopondents whon opeaking of any Letter previously ineerted, woill oblige by
mentioning the number of the Letter, at well as the page on which it appears.

HARK BACK $1-$ B. A. C. STARS-AND GTAR ALTITUDES AND BEFRACTION.
[4614.]-" VidFo" (query 12444, p. 471) should tara to Vol. XIII., p. 229, letter 1983; "H. SciAnce""
(query 18403, p. 471) to Vol. XI., p. 277 ; and "C. B." (quary 12465, gamo page) either to Vol. III., p. 194, or to Vol. XIII., p. 153, letter 1839. "Exeelsior," too ill find a carionsly simple exposition of the calculaf, tary principles of the ditierential calcalns an applications, in Vol. XII., pp. 861, 409, and 481, in a series of artioles by Mr. Prootor. He will hence derive a notion of ithe extonsive class of problems to the solation of which it is applied. $\Delta \mathrm{s}$ for the integral calculus, t is indispensable in the higher geometry, and is em. ployed largely in dealing with the recondite sabject of pertarbations, te., as also in certain branches o optics, and physios generally. If "Excelsior" will horonghly master the ideas involved in Mr. Proctor's capital papers, he can go on to Todhunter's two books, "Trestise on on the Integral Caloalas" Daloulas" and "Treatise on the Integral Caloalas," pablishei by
Macmillan and Co. He, however, will soarcely got on withont a tator.
I may answer "O." (query 12518, p. 497) by tolling him that 78 Ophiactr is namber 6155 in the Britioh Association Catalogue ; but that it is not 73 Slruve Ophinchi, as it is numbered 2281 in his list. Fnrther, that Struve 2403 Draconis is B. A. C. 6410; that Struve 2878 Pegasi is not in the B. A. Catalogne at all; that
28 Pegasi is B. A. O. 7728 ; and, finally, thet 36 Andro28 Pegasi is B. A. O. 7728 ; and, finally, that 86 Andromeds is B. A. C. 250.
"Tyro" (query 12525, p. 497) asks a question which to answer in anything like detail woald involve an employmont of space searcely permiasible in a letter, n the ontset, explain that refraction tables are chictly ased in fixed nbservatories for the reduction of the observed meridian altitades of objects to their trae altitudes; and in a oase of this sert we shonld, of course, for a star between the sonth point of the horizon and the zenith, add its declination to the colatitude of the place of observation if such declination be north, or sabtract it if it be sonth, to obtain ita altitude at the instant of its transit. For example, what will be the meridian altitude of : Pegasi at the time of itn passage over the meridisn, as seen from the Liverpool Observatory on the night of Augast 8 ?
The latitade of our bupposed observatory is $53^{\circ} 24^{\circ} 4^{\prime \prime}$ and its cu-latitude, therelore, $36^{\prime} 85^{\prime} 50^{\prime}$. If, then, to
wo add $\begin{array}{cccc} & 36^{\circ} & 35^{\prime} & 56^{\prime \prime} \\ 9 & 17 & 29, \text { the star's declination north, }\end{array}$
we get $45^{\circ} 53^{\prime} \mathbf{2 5 \prime \prime}$ a its actual meridian altitude. The quantity to be added to this, from Bessel's tables, to obtain the apparaut altitude "Tyro" can, of coarse, find for himself. He will do well to compate this correction for some mean height of the barometer for
every degree from 0° to 90^{\prime}, and then tabnlate it every degree from 0° to 90^{\prime}, and then tabulato it
againgt the degrees of north and aonth declination corresponding ' $"$ particular ones of altitude for his own latitude. This is exceedingly simple. If, however, the star be at some distance from the moridian ite altitade may be oompated by the following formalan,
$\tan . y=\cos . \mathrm{P}$ cot. δ
cos. $z=\frac{\sin .8 \sin .(y}{\operatorname{cov} . y}$
where \because is the zenith distance of the star, P its hour angle from the meridian, δ its deolination, and of the latitude of the place. I need scarcely add that 90° zenith distance = altitude. If "Tyro "possesses the tables, he will have no difficulty in computing an example from the above easy formula; bat as for attempting to get "the exact allowance to be made in setting the circles of his equatoreal," that is waste of time never perpetrated by the practical observer. As lon? as a star is suffliently near the centre of the
field for identitication, it is the merest pedentio ment and supererogation to insist apon its being sbso

Intely in the line of collimation of the telescope. Besides, I question much if any ordinery equatorial
mounting will admit of such hair-splittiog acouracy. A Fellow of ters Royal Abtronomical Society.

SOUND (OR UNSOUND) THEORY.

[4615.]-Wirn reforence to the qnery with which the letter (4607) of "The Hurmonious Blacksmith" on p. fact that a confined column, or mase of air of known length, vibrates rhythmically) I am unable to offer any gatisfactory theoretioal roason why a partly closed box shonld give greater resonance in connection with ployed as a sounding-board; bat I heve alvese on employed as a sonnding-board; bat I have always understood and believed, that, as a matter of practioe, it
does. Of consse, "The Harmonions Blacksmith" is familiar with the lecture table experiment of increasing the soand emitted by a tuning-fork or boll by bringing it over the opening of a tube closed at the other end; and knows how enormonsly loader the resonant vibrations of the confined nir cause the andible note of the fork to be. With his very great experience with stringed instraments, too, he must of quality in the tone of a gaitar, which, like a diffence of quality in the tone of a gaitar, which, like a violin, has no back atall. Hx and a banjo, which, I fanco, has no back at all. However, after all, ars probat arti-
ticom. "The prool of the pudding is in the eating:" ficom. "The prool of the pudding is in the eating;"
and I cannot help wishing with "F. R. C. S." (let. and I cannot help wishing with "F. R. C. S." (let.
4598 , p. 488), that our great musical contribntor wonld have his fanny fiddle oonstracted and played on, and Inrnish us with a fall, true, and particalar account of the result. It would be safer to theorise in the light
of the knowledge thus acquired. of the knowledge thue eequired
A Figlow of the Royal Astroxomical Society.

A GIANT PLANET.

[4616.]-"Hyras Ben" (let. 4573, p. 482) altogether misspprebends his positinn and my own. My theory is in no sence on trial, merely because some on sent to erplaingine objections to it, or because I con moreover, that in his remeris. I woald point out, great an enthority"" remarks about my being "so an astronomer." he overlooks 80 great and potent desirons of so escertion myolf I shor that wore I making sny explanstory remarks whould refrain from respondence colames or theories I have adranced. It is becarse I adving the moch greater degree of frankness than is at present nsual smong the greater readiness to meet doubts and consider objec tions, though urged by the tyro, that I mysell adopt course so different from that which is commonly pur sued. Such laters "Hyrab Son's," make me donbt whother, after all the better coarse woald not be to yield to my natural tastes, and adopt the reticence of my fellow stadents of science. Certainly, that is the course which the consideration of my parsonal interests and convenience wonid anggest, and which I have long been arged to adopt by many for whose opinion I entertain a very Let me at
Let me at the outset point out that I should not be carefal to defond my theory against "Hrab Sen," oven if he had attacked it. As a matter of fact, he is, for the most part, attacking points which do not
belong to my theory at all, and have only been incidentally introdaced into my essay on the sabject.
As to the " midwey" question in on the suhject.
expression midway rather than the reply that I used the mpression midway rather than the technical tarm "geoterms in a popalar essag. Again-having given thenam bers, I did not proceed to explain in what sense I used the word, becanse it is not proper to insalt ono's readern. If it had occurred to me that any one woald take mid. cay to be synnnymons with half way, or fail to 06 that 82,000 is not half way botween 8,000 and 840,000, I should have explained the matter for his particular be
my readars.

I sappose it is quite useless to tell "Hyrab Sen" that When I speak of the light of Jupiter being seen hrough the cloadbelts which seem to ut the densest that, from the cloads may not be olose-packed, and eenn betucen the clikes, Japiter's real aurface may be through the cloads (through the cload-belta, not through the cloads themselves). I montion in my
article that the best telescopes show a maltitnde of minute cload-lizo objects ever the ruddy equatorial minute
As to a number of other ideas in "Hyrab Sen's" paper, ho is as free to entertain them as I am to uphold the onntrary-freer, indeed, a good deal-since I find mysolf fettered by some degree of acquaintance with the
known facts of the case, whereas "Hyrab Sen" is known facts of the case, whereas "Hyrab
apparently very little shackled in this way.

There was no petalance whatever in my remark that "I fancy' Hyrab Sen ' connts degrees Fahrenheit much as a schoolboy connts marbles." It is precisely of hent may be conntrab sen docs think that degrees of hent may be connted up, multiplied, and divided, as 600th part of a temperature of 1200° Finces the ooth part of a temperature of 1200° Fahrenheit mounts, he imagines, to a temperature of 8° FahrenFahrenheit marreapond to 6489° Centigrade 1200° Fahrentioit correapond to 6489° Centigrade; and
according to his marble-counting method the 600 th part of this temperature is 1.08° Centigrade, or nearly temperature temperature may by the marble-counting method tibe
shown to be either 2° or 84° Fahreabeit. I mbait therefore, that the method is open to objection.
Hin remark, that the method is gimilar to that which Sir John Hersohel nsed in estimating the actanal heed of the sun, is exquisite. For cool audecity, and rioh though nnconacions absurdity, it oan only be paralloled by that astonnding remark in the prefece to a certain elomentary compilation on astronomy, which announces that "the altogether admirable 'Popular Astronemy" masterpiece of popalar as a sequal" to a book resembling the Astronomer Royal's work only in certain chaptors which onght to be (bnt ara not) adorned profusely with quotation marks. Sir John Herschel was a master on the goject "Hyeb Son" is trying his "'prontis hand" npon-c Ooliath where "Hyrab Sen" is not eren a Derid Coliath tomplating the great man's armoar, he does not perceive that " usum non habet," and cannot even make a happy shot with his little aling and his well-oomited marbles.
It is unfortmate that " Hrrab Sen's" method had not been thought of when Faye, Fizear, Bk. Claire maintaining before the Paris Academy of Baience (ee they rtill maintain) that the smo's hat does not exceed $10,000^{\circ}$ Centigrade. "Hyrab Sen" might have come is trinmphently, first of all, with his known fact thet the sun's heat is demonstrably thongands of times greatex then that of red-hot iron, say $1,200^{\circ}$ FabrenbeitFamonatrably, therefore, sonse millions of degrees Academy he conld have applied his math the Paris metiod to demolish tho unhappy Frenolimen just as ho supposes he has demolished me with it. Thus, the nan's hest. nccording to these benighted beings, is lese than $18,000^{\circ}$ Fahrenheit; bat "the sun's rays at the earth's distance are spread over a sphere of the heavens which, roughly speaking, has a surfico 47,000 or less than 2/sths of a degres Fishrenhoit mant 0 . amount of heat the sun imparts to the eartho actually less, by "Hyrab Sen's" very own marblecounting method, than the heet which, by the same method, Japiter is ahown to gupply to his outer satellite!

Now, perhaps, " Hyrab Sez" cas gress why I "asked him the question" instead of "supplying a calculation mysall. I gave him rope, 80 to apesk, knowing how pleasingly he would nee it. Ho had been so very could not find it in ms heart to pall him mo, the had thoroughly shown his paces. With this desirnble end in view I was quite willing to " bide a wee.
"With dae deference to so great an anthority," says "Hyrab Sen," "I deeline to take Mr. Proctore asear tion." about laminons objects, " for granted, and though I know it is the orthodox scientific view that distance does not diminish brilliancy, I shall still persist in probsbly "Hyrab Sen" anderstands the seotence : Bat probably "Hyrab Sen anderstands the facts on which which he urges ageingt it. As ittle as he does thoes which ro me mer after all, be conIn trying to prove that "sunshing here is hgan. of times briphter then the sunstizo here is hundrede redness " Hyrab than" the light of a body heated ts " sunlight is demonatrably thonges in the remarks ibat than moonlight" I tate it.thet " of times brighier pretty nearly the same as sunshine at the moon, so that in comparing the luminosity of red-hot coke with that of the moon's disc, "Hyrab Sen" was comparing the former Inminosity with sunshine hers and not with its thousandth part. I da not expeot him to see this, Iquit
I quite nuderstood "Hyrab Sen "to refer to Zölloer's resulta, which I cortainly accept, in my essay, as the He is all in a maddle on that wart of he eapposes. He is all in maddie on that part of his sabject ight. [r have al realy have not leisure to cet him right. [t have always pitied poor Sisyphus.] Oalr is no reason for supposing Japiter to be "there reflector of light than MIars"'(1), my case is proved ; for we certainly get from Japiter much more light than a blobe of his size, constituted like Mars, would sond us refiexion. Of courne, if Japiter is a mach better redector of light then Mert, 60 muoh the smalleris the But of far as instre
But so far as "Hyrab Sen" is concarned, all thia expisantory matter is thrown away. I cannot write
further on the sabjoct.

Richard A. Proctor.
REDUCTIONS BY NAUTICAL ALAFANACMETHOD AND BY PROPORTIONAL LOGARITHMES
[4617.1-In answer to "Aries" (let. 4612, p- 490). exaot. The method given in nanticel book is baned on the assumption that the hoarly change of declina ion is constant from one noon to the next. Tio Nautical Almanac method is based on the manmption that the chanye in the hourly change is constant.
Thns the sun's declination ohanges from $81^{\circ} 0^{\circ} \leq 0.4^{\circ}$ to $20^{\circ} 49^{\prime} 93^{\prime \prime}$ between Jan. 16, poon, and Jan. 17, noor. 1872, the obange being - $11^{\prime} 81 \cdot 1^{\prime \prime}$. The rule in rantieal bnoks, when applied to And the declination at $4 \mathrm{H}_{-0}$ Janasry 16 (or at noon, in longitude 60° weat of Creenwich), amonnte to taking $1 / 2$ sths or $1 / 6$ th of this
difference, or $1^{\circ} 559^{\prime}$, and anbtracting it froe $21^{\circ} 0^{\prime} 40 \cdot 4 .{ }^{\circ}$
(By the way, "Aries" either ham very inseourate tablen, or is unfortupate in their use: for the diurnal
cerrepponding to 1.0979 in 1^{\prime} b5", not 1^{\prime} b7" The are
 regqiired. Agalio. in taking oot the prop. log. of 20:4, "Arice "has added,
Now, in the Nautical Almanac mothod, instend of acnaming that the difrerenoo for 24 h . or - $11^{\prime} 31 \cdot 1^{\prime \prime}$, is equally divided amoug the 2 th., which would give an hoarly difference of - $28 \mathrm{~B}^{\mathrm{s}}$, wo aro given the honrly difforenoo - $28 \cdot 30^{\prime \prime}$ at the berinning ${ }^{-2}$ the 24 h ., and - $29.90^{\prime \prime}$ at the and. The dififrence between those or

 Wo tank the Avornge for tho beginning and and of anah
of the Arst four hoars ator noom Janary 16 , and take Chet sat the change daring the hoor, we get-
For the first hour, - 1 (28.80"
For the eecond hour, $-\left(28.34125^{\prime \prime}+2884120^{\prime \prime}\right)$
F'or the third hour, - $\left(28.38250^{\prime \prime \prime}+28.42875^{\prime \prime}\right)$
For the fourth hour, $-1\left(28 \cdot 12575^{\prime \prime}+\right.$
$28.88250^{\prime \prime}$)
$\left.28.48875^{\prime \prime}\right)$
$\left.28.46500^{\prime \prime}\right)$
Adding which, we
have, tor the four $\}$
-2 (2880"
as'by the Nounical Altnanac rale, which is imply the just mathematical way of dodecing the value of the jubove mammation.

It will be obvious firat we thes oblain a mach neeror approximation to the trae valee than by a rale which rate of change.

So with the other eases.

[I would strongly wrig' "Aries" and othors to use the mymbols \circ, asid , for degrees, minates, and socosds of aro. The symboly m. and s. for arcs are as perplexing ah the symbols 'and ior thac. Captain eqo ty dwelling on this matter in-a paper read belore the R.A.S.]

Rrohird. A. Proctor.

TEE GYRO8COPR.

[4018.]-Tr "A., Liverpool" (let. 4894, p. 486), means that i do not understsud winy the second law of motion holds good, he is quite right. If, however, he
means that I do not nuderatand what the law means, means that I do not naderetand What
I mast simply say that ho is mistaken.

His question "If a cannon bail be fired horisontally, how is the reaistance to a change of plane of motion so
nnilined that it becomes of no effect whaterer is is nallifed that it becomes of no enfect whatever," is easity answered by a form of Wordn Which seems
get ting very much out of fashion, I don ${ }^{\circ} t$ know. (Par parenthese, I may remark that the plane of motion is not changed. "A." doubtleas masns "line motion:" still my reply is, I've not the least idea.)
Parkinson, the eminent mathematician, remarks of the second law of motion that anly be proved by ahowing it to be true for conld only be proved by ahowing it to bery individaal case that ogn occur, which is maniieatly impracticablo. But when the resulte of numerous and intricate caloalations based npon it are in-- moral conviction of its truth."

- moral coneiction of its truth."

Professor Nichol remarks, "There is, perhaps, no principle in philosophy on which 10 much vain logio has been expended, so that it might appear beced on mathematical reasoning."
A." is quite mistaken
can be qwang by a string in a horisontal plape can be swang by s stting in a horisontal plape high as the point of support. It is no more possibie
to do this than to stretah setring so that it shall be atrictly horizontal throughout ita length.
frochad A. Pboctor.
[4619.] - Ir Mr. Prootor (let. 4857, p. 160) is "nnable to spare the time for the proper disonasion of this sabject," Fould it not be botter for him to lot it alone altogether? I have that confidence in his intelligence and candoar which acoures me that if he could apare the time for the due consideration and diccuasion of the eabject he would either at once admit that ho has been in error or pat forward a convincing demonstration of his accuracy. He is quito right as to the fact stated in the last santence of his eecond paragraph, but meither I nor may one olee has disputed that fact in the ourrent diecuesion. The quention wea not Whetber the top
With reference to Mr. Proetor's third paragraph, I would recall to his recollection thet at the former time ho refors to, he himself pat forward an explana. tion with diaframs. I hare as yet oontributod no
explanation to the Erocise Mecrasic. I cortainly contributed several letters on the former occasion, but all I claim to have done in thom is to have shown that varions proponed explanations, and arzongst them Mr. Proctor's, were fanlty. It strikea me as boing a little cool lor Mr. Proctor not be pabliched after he has himents man should not be pabliched astor he has himeoll made
two attempts, which, fo say the leant, have not astiafied two attompt
Mr. Prootor's tourth paragraph is a random ahot, which does not tall, for I here no new theory about antation to bring forward. Mr. Proetor more than once reminds ns that ho has no doubt mathematical analyais sifords a completo socount of all the phenomens of the gyroscope." I very much doubt, however, I he has been able to spare the time for the proper atudy of the analyais ho refers to, for I oannot understand how, if he really had stadied it, he could asy as he doen in reply to J. M. Taylor, that the motion of
one partiole under the sotion of gravity would tend to
shift tho.plane in one direction and that of the opposite particle in precisely the opposite way, whereas the
faot is that gravity tends to make both particles shift fact is that gravity tends to make both partioles shift in procisoly the same way-namely, in circular arcs haring the point of support for their contro. The very firat atop towards an explamation is to point ort that
oven if the top were not spinning, gravity would not mako the coveral partioles move vortically downards but in ciroulareros round the point of support. In other words, gravity tends to produce rotation or turn. ing abeat a horisontal axis parsing throngh the point of eupport, and it is the effoet of the combingtion of thin rotation, or tendency to rotmation, with the spinning metion of the top which is the sabject of inventigation. Glaggow.
E. H.
[4620.]-If you ean apare room for larther disongsion on this anbject, I trust you will consider the following worthy of ineertion.

Bince reading Mr. Taylor's letter (4510, p. 485), I hare experimentod on the weight of tope at rest, and whon apining vertically or at different angles, and I need hard sighte detect the slightest difference in waight. I would, to detect the slightest difference in waight. I would, notioe of Mr. Taylor and others interested. I
mill frat take the ase of top A B sinning in will firet take the ase of a top A B spinning in mappert A E, and concequently ealling to the e ground. Each particle
 fas by the. conkrifugal move in the direction of the plane C D, at right angles to the axis $A B$, and having this tendency it mast regnire a cortain amount of force the angle of the plane C D can be altored; und, therefore, supposing the top to be spinning with snfficiont rapidity, the sxis must mame or parallel plane to thet in which it comsmenced to fall, theare being mo other force oxcopt the slight resistanee of the air to change ite direction. Bat now apin the top and place it on thy
sapport A B, at any angle, and it will remain in that sapport A B, at any angio, and it will remain in that position as long as the rotation in quick onongh to
supply centrifagel force in the plane OD sufficidnt to supply centrifugal force in the plane is D sume the top withatand the enfect of granity, as it is erian withont altering the anglo of C.D. The Whole of the weight te therefore borme hy the anpport
A. E .

PERBPEOTIVE.

[4021.]-Axthougr you have decifed to thelve this subject (rather early, by the way), I think you will admit that, as M. Paris (let. A604, p. 489) charges me with begging the quastion, I am entitled to a reply. It shall be briel, however.
First, I by mo means begged the quetien. The word vertioal in my demonstration meant simply (as usmal) perpanatioalar to the plane of the horizon-not
lines appanmels en, but lines actually so, like the lines apparently so, bat lin

Secendly, it ic not trae that I am unsble to grapple with Carpenter's dilicality; bat that I am nnabie to admit that there is any diffenky in the matter. Of course the top of a tower (of equal breadth throughoat) is farther from the sketabar than the base is ; and, oqually of conrso, it subteris a smallor visual angle,

be represented by parallel lines. Thus, let CA, DB be lines dofining the aide viewed, and $A B$ parallel to CD. That $\overline{2}$. Paris may not unppose I am hore begging the quasion, let me point out that AB and OD the paralleliam siten of is the real par and that the paraleliam apozen of is the real paralielinta of oye. Than obrionaly the plane ni projection, E the angle DRC. Nevertheloss, if $a b$ Cd be the projection of $\triangle B C D$, wo have-
$\begin{aligned} a b: A B: & : b E: B E \\ : & : d E: D E\end{aligned}$ $: b \mathrm{E}: \mathrm{BE}$
$:: d \mathrm{E}: \mathrm{DE}$
$: d c: \mathrm{DC}$.
Hence $a b: d c:: \mathbf{A B}: D C: 1: 1$. That in, $a b=d c$. This method of proof can obviously be extended to the case where the tower is not looked at fall front. But my former prool is neater and more complete. II may just add, as another and complote proof that the ranishing-point of the sides of the tower (or of
any plamb-lines) in the zenith, and that a line from
the observer's eye to the zenith, boing also vertical, oannot meet the vertical plane of projection. Hence
there is no point on that plane (indeanitoly extended) to which the projections of the tomer's sidee convergein other worde, they are parallel. Q.E.D.]

Richind A. Proctor.
[4692.]-Thrs enlerged sppearance of the moon When on the horizon offers an oxample of piotorial perapective. What is callod a harreat moon looks, perhaps, larger ntill, which may be owing to the colour
with which the vapours provalont on the surfece of the with which the vapours provalont on the surface of the
earth at that seacon tipge it. However, at all times, earth at that seacon tinge it. However, at all times,
whether white or red, the moon on the horison appears Whether whito or red, the moon on the horison appears
considerably larger than what is sometimes oalled its conaiderably larger than what is sometimes oalled its nataral aize when aeen at a oonsiderable hoight in the
hearans, and though it actually sabtends no larger an hearans, and though it actanlly sabtends no larger an
angle, yot to produce the same efloet in a piotare, it mast not be drawn in trae (or linear) parapeotive, but conalderably larger, i.e., in piotorial perapective, to produce the effeet of nature. It appears to me that this oase is the same as that of distant mountaina, thoogh, from difference of coloar, dintance and the proportion of onlargement would be difforent. I bolieve that in any position, high or low, the moon is in a piotare drawn considerably larger than ito actanl dizo sabtended at the oye. This sizo in aboat 80°, and in a pietare embrading an anglo of 45°, sud 18in. in width, this laminary in a moonlight zoenc should be about tin. in diameter. I think an artist would portray a full moon connidorably larger than this, and a creacent moon largor still, in a pictare of this aize; and a harreat moon larger again. Piotorial perapeotive would demand this dopartare from oxact linear perspeotive, and in a degreo it would depend, perhaps, on the nature of the pigments used. It may be a question whether we shoald call the zataral aize of the moon that which we viom on the harizon or at a high altitude. In favour of the latter view it may be said that the natural size is that whioh wo porceive when the moon is in the mont naual ponition, i. e., considerably above the horizon. In support of the former we may say that the natural size would be that which we perceive when looking in a horizontal diroction, this being the most nasal way of looking at distant objects, and I am inclined to think that this is the more correct mode of considering the question of the different apparent magnitudes of the moon, and also of the sun. I am, of coarse, spesking of their horizontal diamefors, and not the vertical, which aro more or leas affected by refraction.
I once noticod a carious oxample of this apparent onlargement, in the ease of a weathercock 4tt. long, Which had beon takon from tho top of a ateople 2001t. high, and was reating against the foot of the tower, from which I was aboat 100 yards distant. In that ditantion it looked immenso-at loset three times ite apparent length, when in its naasl place on the steeple, which would then have boen 120 ynrds diatant from me , and ought, acoording to the strict ralos of perspective, to have made it appearr only 9 in. short of the 4ft. instoad of tho apparent 88in. This is a very rough calculation, bat the appearance was suffloiently etriking to establish the fact I hare mentioned.
While I am rambling, allow me to add a remark on let. 4588: While Mr. R. A. Proctor is, I noed hardly say, correct in atating that the direotion of motion of a swiftly-moring body changes slowly ander the inflaonce of gravity, the remarks of "G. M.," perhaps, to the same eflect, are liable to an erroneous interpretation, which is of some importance, as they are in-;
tended to explain the matter to another. "G. M." tended to explain the matter to another. "G. M." writes: "' A.' is right in saying that a swifly-moring body offers rosistance to any force soeking to change
the direction of ita motien." The words "swittly the direction of ita motien." The words swition were the carse of the resiatanco, which would be equally great in a alowig-moving body or a body at rest; and in the sucoeeding portion of the paragraph the mode in which the term "defecting force of gravity" is ased is liable to an erroneous interpretation, which the reparation of the deliection from the force of gravity (which is the canse of defleotion, while the variable horizontal velooity of the body is the onuse of its rariable amounta) would have obriated.
M. A.
[4003.]-OOR Areedian friend, "The Wolsh Shephara, in 1ot. 450, p. 406, quiluing his plpe an aroly, a perspectiva pas. I donbt whother in these dayn of only a porapeenr mand foot-and-moath diseeno our shepherd is jastionod in learing his fooks to wander at their own is jaskicil apon the breosy mountain with an imposaible avoot will apon the breozy mountain witom my faith in Brewntar. I do not ever aweur in the words of any mantor, and I would have raceumbed to (not conquare by) the Laputans oheortally, had I not to my own antis Bretion proved by exparinal the Brewsiorts opinion, that 19 wo do the the top of oquaro towor to bo tan tr poatble bat not probablo that optioni "The Welah Shepherd" mas be that our friend, in optiol mattopa then Sir Derid groaler wa thorfy le ppleting me in the perspeotis bat nince his lout platil 8 mo piltory, vies Dr. Oarp pacer 1ot oin, revowis brigina nor vien now ortalion br in to pass hic cosaratickon the rorst of a teht to take sdipantace of his patromess' nebalons eonveyance, and to retire from the contost noblloa ander a cload. I baro no whi 10 matal rom Sir Darid in this stralegic movement, 1 l quato

illations rolating to the rision of forme, anch as plane surfaces and lines, mentioning the experimenta of Boagner, and appliee the resalts to the architectaral irregalarities of the Parthenon and Theseam-apon Which subject I ahonld like our "E.I.G." to say momething-adding, "The bearty and apparent symmetry of architectural forms mast therofore depend on a certain class of optical illasions, which have not yot been snfficiently studied eithor by the architect or the man of science." I take the bearing of this to be thet the Greeks bailt to coanteract or increase, as required, the illasions of the eye. Sir David then proceeds to another clase of ocular illasione called the Inversion of Perspective, and ho writes as I quoted in my first lettor: "This tendency of the ese to invert the perspective of rectangle prevente or diminishes that appoarance of
convergency on the plane face of a lofty
gqare tower convergency on the plane face of a lofty square tower When we are standing not vory far from the bace. A photograph of the tower taken from the same spot
would exhibit a painfal convergenoy apwards, which is not seen by the eye;" but, as I have proved, may be detected in a moment by means of a plammet held at a ahort distance from the eye. And it must be so, for the whole of perspective is based npon the simple fact that all bodies appear to diminiah in size as they recode, and the top of a building being more distant than the base, the gide mast narrow as it rises. I am at presont residing in a rather lofty house offering
tolerable facilitios for trying this question. Before the tolerable facilitios for trying this question. Before the
pane of a window raking a street I hang a plummet, pane of a window raking a street I hang a plammet, converged as required. That the so coalled horizontal lines, excepting the horizontal line, rose or dipped was too evident to need experimental verifying. The side of the house well represents the side of a aquare to wer, and a plummot at a suitable distance (a aketching dis: tance showed very clearly the eame thing. Mr.
Proetor's demonstration begged the whole quention. Oi Prootor's domonatration begged the whole quaention. Oi coarse, we all know the glases plate will ahow the rass
in the cone or pyramid of vision to be vertical if they in the cone or pyramid of vision to be rertioal if they
start rertical, and that ia jait what is denied by the anti-Lappatans. As for "the ralos of perspective being dednctions from observations made apon the glass plate," that is shoer nonnenens. Perapoctive rules were acted apon before a shoet of glase was mado; and what
is more, I very much doabt whether any body ever did use a sheet of glase to verify or exemplify the rules. The fect is, the only true and ploasing perspective is oblique perapeotive. So mach for lines; now let natake figares. picture ombrace an angle of aboat 45°. Place; maintain, then, oven on the same horizontal line the figures choold differ in height, and any riffeman will seo that at once ; for as the Afgres at the point of sight must be nearer thay mast be bigger, a little, certainly, bat atill percoptibly bigger, or your pictare will not look
trae. An angular measurement would show that they true. An angular measurement would show that they
are tive we mast in most coses disregard oonvergency although when wiahing to convey the appearance of great height I strongly advise it.
Now as to the compromise question. There is no illusion better known than that respecting the alope of moantaing, and few people who look at steep monatain sides ars aware how muioh less the inclination is than it appoars to bo. In painting moantain scones the artiot is justitied in giving the apparent and not the real slope. Then as to colour : it is absolutaly imposaible to imitate the calonrs seen in natare, for they are the children of light, and we have only a dart surface for our brightest light, and dirty paints for the colours of the ppectram. If we can match a colour tolerably well, to must not do it, becanse to match one and not all wruld be to introdnce a false note. Having no light, no decent oolours, and what is still worse, never the trin complementary coloura, we can only produce someling gaggesting what is seen in nature by never rerusenting any one thing very trathfally. Whenever this rale is forgotten, we receive a shock to our pictorial nerves, as we do when an artist paints to the "life"a cold round of beef on a tablecloth apread upon "anggeated" graeg.
[The above letter was in type belore the note at foot of let. 4605, p. 489; sppeared.]

UPWARD DEFLECTION OF BULLETS, \&c. [4624.]-None of your correspondents appear to have hit the nail on the head. I, therofore, send the ollowing extract from a work by General Hay:gard to the range of elongated projectilea. It is aeserted by Sir W. Armatrong and others that at certain low olevations the range of an elongatod projectile is olevations the range of an elongatod projectile is
greater in the atmonphere than in vacno, and the fol. greater in the atmonphere than in racuo, and the fol-
lowing is the explanation giren by the former of this apparent paradox: 'In a vecunm the trajeotory woild apparent paradox: 'In a vecuam the trajeotory wonld apherical, so long as the anglo of olevation and the initial velocity were conntant; bat the preeence of a resisting atmonphere makes this remarkable dirference, that while it greatly ahortens the range of the round shot, it actually prolongs that of the elongated ahot, provided the angle of eloration does not oxceed a cortain limit-riz., abont 6°. This appears at frat vary paradoxioa, bat it may be eabily oxplained. The olongated shot, if properly formed, and having anfmborizontal plane throughoutits light, and consequently acquires a continually increasing obliquity to the ourve of its aight. Now, the effect of this obliquity is that the projectile is in a measure suatained upon the sir just as a kite is sopported by the carrent of air moeting the inclined surfaco, and the result is that its degreater distance.';" . T. S. UsBorne.

EDIBLE MUSHROOMS OF ITAIY.

[4625.]-In England, though fangi are abundant and various, only two are used as artioles of fcod, and these two are, porhape, the leatt saroury of the edible mashrooms. The reason of this excluaivenese appears mon depend pripcipally on the ease with which the comfrom thoir poiryng mashrooms can be diatinguished and especially in Italy, varions kinds of Calicious muahrooms are conatantily to be found in the market and form a piecee do resiatanco in all the fare bills of the restanranta, be they of the better or of the lo alese. The beat and most ensily recogniable fanges is cortainly the porcino (Boletus edulis) rery com pact, full-fiavoured, and nourishirg muchroom. When fall grown it is about 8 in . in diameter, with a brown cap, and pale sulphur-coloured gills (resembling in textare ine brain coral). The stem is very firm, and measares 8ins in circumference. Rew, the smell is like codar wood; cooked, the tante and amoll are like the tinest paté do foies gras. The usual mode of cooking is to slice the porcino very ine, stem for a short time in butter or oil, and then add parsloy and garlio (ohopped), salt and peppor, to liking. Bo " meaty" is potatoes, rico, tc., ms arell as that it serves to flayour The next in the order of culinary merit is the "reale" (Amanita Cesarea). This curious fongus at its flrst appearance on the ground looks exactly like an egg. In twenty-four hours the white top eplits open and discloses the bright orange cap, which then presents the

appearance of the yoll of an egg (boiled hard) laying in its white. In another twents-four heurs the stalk has ahot up, carrying with it the yellow cap, which expands until its diamoter is about 6in. Fried, the tasto ingulariy beantifal mushroom is almostis an he former irom that of a good egg. Both thats and Italian pickles. Thoy are also preserved for winter nise by immertion in strong brine. Besides these, the ninc), are pulso mach nsed.
Most of these are found in England. I heve myaolf eaten the Boletus edulis, gathered at Wimbledon, in the strip of wooded land which now forms the Wim bledon Wood. Puil balls are also abundant there.
The annexed fikures give an ides of the peculiar forms of these Italian fungii. Fig. 1 is the porcino;

THE HARP.

[4626.]-MANY beantital things perish that it would be desirable to preserve. The piano, whioh, artor all is a harp in a box, in fact, an improved dalcimer in its
best forms, is indeod a miracle of haman ingennity and ability. I do not at all parpose to set ap the harp in opposition to it. I want the harp to live as woll me the piano, and it has merita which commend it to that histinotion. For the price of one good piano you may
familien and as many performers. A well-mado herp will last four times as long as $\%$ woll-made piano. It can be carried sbout. It can be tairen into tia garden. or from one chamber to another. The harper begine
by tuning his instrument, which, thorofore, is al by tuning his instrument, which, thorofore, is al raye in tune when played upon. The pianoforto player, however, unhappily does not know how to tane his ingtrament. Fancy, then, the effoct in a piece of musio of even one string ont of tunc. Bat offentimes thare aro many strings so; in the conutry or in a colony. therefore, the instrament (spesting of the piano) too often falls far ahort of being the oomfort which it onght to be, which, nnder like circamatanoes, a harp would prove. But even in towns the piano is very often out of tane. The player, let uis only refeet, is not taght to tune his instrament. In other respects tunors are not always at hand. Economy keops many pertons from sending for them, and learners are too often condemned to play on diecordsnt instead of accordant inatramente. The reanlt is painial to the listener, and tonds to injure the learner's ear, as no periormance can poceibly prove ankifactory on a tareless or partially taneless instrament; in fact, the money paid to pianoforto taners, too often noeded afreah when their backs are just tarned, woald do more than meet the interest on the money that s herp might cost. A good performance on a good pieno in the harp. Which I would beepeat in especisl for dwollings which cannot antord a good piano-and any other ianot worth having-is capable of yielding reanlts which the piano, whatever may be it perfoctions otherwise, cannot realise.
On the thirty-nix string harp the rulo is to take the key-note, ring, counting from the top down, se the Leat the wires ahould not bear this tencion in the emper octaves, the fourteonth string may be taned as G in the frat inatance, thereby reducing the tension throeghout. When the harp, however, is ntrang with erin. ciently fine and well-tempered wire, it will bear the fall concert pitch, the more 80 at I believe this pitch hat of late been rediceed. And I may here mention at once that the dight lowest strings consiat of No. 18 wire, the next six of 20 wire, the next seven of 22 mire, the next seven of 24 wire, and all the rest of 25 rire brass or stoel. The etringe are secared at one end to a common turned perforated wire pin, with eqaars shoulders to yiold a purchase to the key, and s socond pin with a notch on it to serve as a bridge, for all the world like an Erard harp, that may be seen in any
music-shop window. The lower end of the sccared to a bit of wood about an inch long and: quarter inch wide, is first attached.
The advantage of taking the fifteenth atring as the keynote is that the highest note at tho top is G and the last note in the bass is also G. In mome of Egens improved harps, however, two additional stringe below lof
G were added, making thirty-eight in all, and thas rendering the ingtrament more complete. I have one of Egan's harps. Egan himself is now no more, bat I found one of his workmen in York-street, Dablin. Eis danghters were seamstresses, and this workman resided with them. He orfered to supply s superior harp lec £10. An equally eflective but not so handeome an isstrument may be conatracted for a considerable tas might borrow mang hints as to the ping and general arrangement. The wire striogs at their lower endese passed through holes which must either be mado in 8 metal plate, else triangalar bits of tin must be thrut into the wood above the aperture, to bear the imme diate stress of the atring. Apertares also mast mabains in the back of the sonnding box to permit the fatroduction of the hand and the proper adjustment, Thich is easily managed, of the lower end of the etring. The key of G with ane aharp-riz., Fg, is the oaly key in which the Irish wire harp, in fact, is played.
Poesibly the Welsh arrangement of multiplo atrims might suit. I do not mysolf think it woald gait aed, $2 s$ for pedsls, they are out of the queation along with wire strings. In tuning the Irish or wire harp the octaves are first tuned in unison, beginnipg with $\mathbf{G}_{\text {. }}$ down correotly. The fifths mast then be arranged, then the thirds. The FY, howevar, it must be reoollected, only accords with the ifth below. But any tyro in the art of music and, a fortiori, any profeneor of manic, can set this mattor right. Tbo manio roald lways piey theged for the key of G. Irinh perfers ith the right 0 ireble with tho Lort hand, with the right hand, ts on the piano. But this is of no particular moment. Any harp muaic in the les of G will suit the wiro harp, and any profeariond man in competent to instruct playert. The Angering, eo far as I know, is the same in reapeot to all harpa.
In regard to the Irish or wire-harp, the length of the pole or pillar is some 5 ft. or $s 0$ from base to anmicit box, and that again on the length and carvatare af the comb. The loweat G string in 4ft. 6 in . long the and G in 8 ft., the next G ift. 8 in in the 6 in. long, the sergt next G 7in., and the highest G 8in. The length of the next G 7in., and the higheat G 8in. The length of the
coundbox is about 4ft., its breadth below 18ia.. tind depth $7 \frac{1}{f i n}$.; above its breadth is 81 in ., its depth 24 m The comb is 2ft. in direct length; but if has a rertioel as well as lateral curvature or alow, which adds to the abolute length. Ita depth is from 8 jin . to lin., acil its thickness abont lifin. It is, furthermare, bailt tm its thickness about lain. It is, furthermare, bailt tm
vertical sections, breaking.joint (say) of onk er mahogany, so as to add to its atrength and permanocea The pillar mas be of oak, the soandboard or bor of pine. The soundbox is tapered from bottom so cop pine. The soundbox is tapered from bottom to top copy which I have of King Brian's harp, and in the
must have been jewelled at the end of the comb, the back is rectangalar as well as the front. The wholo, speaking of Brian's harp (the belly excepted), is richly carved, and all the harpe have an ovolo or chamefer running along the upper odge on both aides. On the Whole, the Irish or wire harp is capable of rery iveet
offeots ; of quick as well as slow masic, diminuendo and crescendo passages alike; of shakes, arpeggios, and harmonica; and eren in the key of G, that in which it is commonly (I might say always) played, it is capable of producing almost every sweet and gracions cadence so, the heart of man.
Ixion.
[4627.] - I May add to "Vertamnus'n" reasons for 11 harp (ancient or modern) having fullen into diense. the following:-A person harigg learnt to play on that employ a man to convey it for him, if ho ever wanted to exhibit his skill in other honses than his own. I began to learn the harp, bat discortinued doing so for thic reason, none of my friends possessed such an instrament, while no one was withont a pianoforte.
It'e not " convajnient !" F. F.C.
F.F.C.

AN IMPROVED BEEHIVE.

[4628.]-In continuation of my letter (4187, p. 251, (4371, p. 854). I herowith give answers to his queations, and comply with his desire as regards the promised aecessaries.

1. If the bees are in a hive, procure an empty thew hive or box, turn in upaide down and plees in upnide down, and place
the empty one over ; then by a continuons orer ; then or anocking on the unor enocking on the undermont hive the bees will at once ancend into the this has taken place, and you are satistied that the goueen has aecended the queen has ascended, regently, at the game time putting a cloth over to proid letting the bees ont again. Set the hive in an apright position in an you prepare as follows. If possible cut fome of the combs out of the old hive, and ast near as old hive, and as near as pos-
sible fit them into the now irames then the six frames in the place room (three orerand three noomer) procure aniece of oileloth (tsy 24 t by 8ft) lay this on the by 8 ft .), lay behind the groand hive, then bring the hive or box with the bees in, and quickly and care fally and quicely avdcartially the erme moment strike the hive sharp down on the hive sharp down on oxcopt a dozen or as rill lay on the oil-clotr Take hold of the two sides of the oil oloth of the meas of bees into thoir new honse. Place and close the door. learo them to and door; loave in abont arrange themselves quielly, looking at them you will most likely find them clastored and building you will moat likely ind them clustored and building
now combs. When a swarm is obtained the pronew combe. When a swarm is
ceedinge are the mame, only easior.
ceedings are the mamo, only oasior.
2. It might be an improvement, though not zeces-
sary, and would be more expenaive; my bees have sary, and would be more oxpensive; my bees have
wintered over when there has been 10° below zero of wintered over when there has be
frost, in hives of wood lin. thick.
irost, in hives of wood lin. thick.
3. There is no adrantage in having longer frames. In the improved hive there is ample space for brood; In the improved hive there is ample space for brood;
better have more hives in better order than larger ones better have
in disorder. As regards loas of heat, I have not noticed anything of this sort ; bat in Woodbury low, broad hives I hare had my bees destroyed, and lote of honey in the hive, inc area having been 600 great for them to travel
over in the severe cold. In the improved hire the par. over in the serere cold. In the improved hire the par-
tition boards boing closed, and the honey-room flled tition boards boing closed, and the
With warm materia, is sumiont. by referring to draming (Fige. 1 and 2), showing aide and ond eloration. A is a rovolving, upright ohait, worked by meani of the bevel wheels E, and handle D, or imply by hanale F, where wheels cannot be procured B is the can in which the honey is canght When drizen ont by the centrifugal force as shown. The can is 8in. deep. The frame, with comb and honey in, is laid fiat on a perforated plate, which is supported by smal angies of the platr distance-picces pas throngh holes made to correapond, so that the comb reste ine on the perforated plate. The holes in the plate are fire-is perloratod plat. in hiencter, and the seren-thirty second part of an inch from centre to cantre. C is a
uliding woight to balance the can and honey on the pin or centre H ; the dotted lines show the can in repose when not revolving. The speed is about 100 to 150 revolutions for the can; this drains the combs choroughly, and the frame and comb can at once be repleced in the hive to be flled again.
suit others, for diminishing or closing the, which may suit others, for diminishing or closing the entrance of hives as the winter approaches. I in a revolving square shown downs , ixed the linaing door K , which is bee to down, or covering to the entrance, except for one lots I vill allo 1 three sires of opening or in rinter can an of the three alzes of opening, or in wincer can bo closed en
 saves all tro borind K. This aimple contrivance of stones, great annoyance of the bees. The whole slide is of grest annoyance of the bees.
zinc, and is neat and ofrectasi.

Figa. 5 and 6 show a frame fork for taking out and sotting frames into the improved hire, and the mode of using will be easily understood by looking carefully aretches.
Fig. 7 is a very usefol little tool. I call it a gaide layer. It is used as follows:-8man pleces of clean wax are put in at P, antil hali sall, it in then held over cate side, thas she bees to and better taild by. This I have hoand mach simpler ard belter than gnmmiog or glaeing strips of old comb mach more accurate from this mode, and profer frames

with this mort of foundation. In a hive where I tried Throe frames (one propared thas, a ceoond with a strip of comb carofally glned on, and a third with a thi atrip of wood one-aixteenth of an inch square glued on. On the dras they bait a beantilal comb at once morsel or . and the third they toots no notioe of, and on morsal or, wa tho prepared by the guide lajer, they commenced and built preparea by
It may interest some, and, perhapa, encourage others
Tho have silent donbt about the improved hives, when I state thet op to the middle of Jaly there hes heen I 9 lb of honey teten from one hive this sear. I have little doubt that before the season is over the same hive will gield 101b. more, and 251b. will then be left for winter nso. Thus the hive will in one season yield 1051b. saleable honey, or a total of 1801 b . col. ectod in one season.
It would be interenting if our friend Mr. Abbott would gire us a fow lines on the best mode of aupefy ing bees by means of chloroform.
Also, can any beo-keeper say or explain why been are so vicious at the time of colleoting honey from back wheat? At all other times I can trmble them about as I like, but while buckwhest is in season there is no going near them without a head-dreas.
Nyborg, Denmark.
Bex-Kiepper.

LIGURIAN BEES.

[1029.]-Havina become a reader of the Enclisi Mechanic, and anding that the saljjeot of boo-keoping widely intoresting to your readeri, 1 vor bear

Having kept black bees in Woodbary hives for four aars with but indifforent results, as good, though, as I supposed our locality admitted of, I saddenly became igarianised, and eariy in the opring appliod to Mr^{2} Abooth of crawol on April 28. Wretoled weathor rollowed, when Hood Hood says, but their palates with soothing byrap, and hope till brighter times. As seop asem and hope till brigater tor. returaed; noty wit nity I leit them to shift for thomcalven. It was not long beiore the hive wh well in conteraplation ohioh to have an emigration coneme in conlow plation whis, young bees, soon after I had placed on Woodbney young beas, coon al I had placed on a wory more super, tional space was flled by about Jaly 10, when the boes commenced hanging ontaide very thichly. On the 15th the supor was removed, containing oight splondid comba, thick, white, and all sealed, and woighing 441 b . without the honey board. Tare about 41 lb . I now tried the weight of the hive (atram Woodbury, but you may guess my dismay, not unmingled with satialaotion, st Inding my weighing apparatue not equal to the occation-601b. being its limit, and my hive weighing more. No need to feed, clearly, and thinking that perhaps moro could be done, a boll-glass, 7in. in dinmeter and 7in. high, was placed on next morning. This contained a good-sized piece ot now but dirty onpty comb. This auper to-day (July 26) is filled finished it will seigh and nearly halr-maled. 101 b , knished it will weigh 101b. net. The aweets of beekeeping ought to be honey and sagar. If all awarma
behaved like this one, bee-keopera would get a little of both.
Arenue Houre, Acton, W.
F. Cheshinz.

CO-OPERATIVE STORES.

[4630.]-Me. R. R. Syite prodaces (in letter 4570, p. 465) excellent ressons, though not new to me, for calling thinge by their own names, and againat calling them by other things' names, and against the ondlesi mutaal delanions, superstitions, and knareries, and pollatiog debasementa of sonl thence bred. If a tenth of 3s. 8d. be assumed, as he assumes it to be, in this particular case, the jnst remnneration for the work described, then this neither denotes 10 per cent., nor 5 , nor 15, nor any partionlar percentage to be more proper than another, or proper at all, to be charged "apon the cost price." It would simply denote, if his facts erere a trie arerage epecimen of the business (which of course they are not), that a farthing a parcel (was o shopman's jnst die-the same for a hall-ounce parcel as for a half-atone, or half-quarter. Of course this is not the oase, and whoever gets a parcel, large or small from the shopmen for a farthing over the wholesale value of its contenta, robs him. Bat to be robbed is what one who reasons no better, and has no worthier aims, is made for; and what wo must alweys, while he is such, hope and pray, for God's and man's sake, and soal's and bodies', and society's, and ererything's sake, may contince to be his lot till its lesson is learnt.

As for his difficulty about coinage, if he could get and read an American pamphlet called "Equitable Commerce," or some others by its anthor, Joaiah Warren, of Massachusette, he would find that any coinage difficulty has been and would be soon solved, wherever there are laboarers reasonably sober and in earnest, by their leaving the metal coin to those who desire it. None can make it necessary to 00 m merce or life, where labourers are wise and in earnest. It is one of the grossest of superatitions, though tanght oven in nniversities, that coined money was either invented to facilitate, or ever did facilitate, exchanges. It was invented with no such sim, but solely for paying taxes; and its use in commerce anywhere has been parely accidental, secondary, and unneeded. The parels of Mr. James Taylor, and oven his small pamphlet entitled " Political Economy Illustrated by Sacred History" (Seeleys, 1852), establish this very clearly. Indeed, great commercial nations, as Egypt, Assyria, China, attained their highest reflnement and power without asing coin. The two former had no coin till their conquerors, the Persians (its firat in rentorn), imposed it; and in all anciont lands it was he badge of conquest. The Old Tentament sheteb was the captivity.
While the most mischierons anperstitions, as this of the atility of coin ars laft antoached, attempts are made on overy side to dab as " naparstitions," and 50 to hide ary the arsential detlement in the toroh of all "trade" a nom andarstood ; that is, all remuneration by percontsges on anything or rather, by unficed, unpublished profte, instend of dufnite and publicly known feen or prages, s ared see for a fired service. It is the height of at once absurdity and immorality to eet forth (as I hare seen the Examiner newspaper do) that there can be any trader, as the word is now taken, any of the claes Adam Smith defined (Book I., chap. 6) as receiving "profts of wealthiest in England, who is not a lower creature than any not so receiving-any profescional man or labourer, the poorest. He is as easentially a lower order of creature, as a for is lower than a S. Bernard's dog; nay, more so beonuse he is not, qui trader, a arestare of God. The Crestor hes madu men, mape them to be labourers, and profersional men, and even, in a more limited sense, made kings, aud with atil more limitation we mey say, slaves, slaveowners and
evea lemedowners ; but He has mado none a trader (i.e., "profte-of-stock" receiver, or of dcald stoak, in she senses so earefally defined by Adam Snith in the above
chapter), nor moywhere made it necosary there chapter), nor moynhere made it necossary there
shoald bo any ench persion; oupecially not any with dark recoipt thereof-that is, in concealed or unpublic
amounts, great or stoall. That is the black pollating amounts, preat or shall. That is the biack pollating otement arieoting the shop and all connectod with it, the darkness of the opaque till, niot trasparenbelyohooning derknese rather than light-is what constitates the "trader" escentially a beser being; not detled by what entereth into the man, bat by what
cometh out of the man, his choice. This is why we eometh ont of the man, his choice. This is why we haven degraded casto, not in the raguer sense the word
may be applied to the outwardly ragged, but degraded may be applied to the outmardly ragged, but degraded
in sonl, pollated and poltating - trath it is worse than veoless to hide, since it mast survive and rale both the rise and dentruction of trenty "nations of ohopkeepera." And a degraded class moans, observe, a elack that ought not to exist-one whose existonce all godyy mon must seot to make more and more diffealt, till, by God's blosing, it is made impossible. Thi
is why I hold, and have always held since being an ege to oron look at Adam Smith's book or it snd for the restraint of "trade" as now defned, is the only religious zot poasible to na English of these
days, the onily wornhip of the Almighty; becanse the days, the only worship of the Almighty; becanse the In all other so-called philanthropies, and godinesses, and faithy old or new, from an "Order of 8 . Benedict" to one of Comto, the 85 "Chrigtianities," the prient hoods, dumb on all living miquity as bees alighted on honey, beatiog the air, mond prodding only at doad Satani, I oan see only the live Satan'e lane, hing-3tooks and rory welcome allies. Show me a body of mert that are making less "profits of stock" poseiblo-an
Antonio of whose acts a Shylook might complain " he Antonio of whose acts a Shylook might complain " he
doth bring down the rate of nasance hore in Venice," ction that tends to a lensening the gross soarce of "Schedale D"'income-tax, or, in shott, makes bat one penny of " profits of stock" grow where tropenee grew
before-and there, I bold, is Divino Service, bat nohere olse in this many-altared land and day of ours Every workman who is combining with no fellows to propare any such union as I describod in let. 8044
(No. 848), bat looking to have always an "employer" (or worse, to be ona) or lazily swallowing, as oreed respectability's fundamental assumption, that one man's capital paust employ other men with none, and that employer and laboarer must be two men, is by very dasy, Whether of work or "strike," only riveting the chains of his brethren, and children if any, enemies of mankind, "ghostly and bodily," as our catochism saith, and farthering, to the ntmost that in
him lies, the reign of all inionity and misary. And very one, workman or not, who is combining with no others to sapersede the batocher, the baksir, and every adventure-shop in succession, by establighing shops property and hired servant) in some such way as I described in let. 4080 , is one who, hitherto, I hold, had better for mankiod not have b
God's servant Etienne Leclaire is gone, and acenrding to the Pall Mall Gazette some officer from Versailles appointed to sacceed him, and so the "Maison
Leclaire," to be stereotyped, probably as a kind of almshonse, at the point to which he had brought it with a permanent " Devil bribe "" (let. 8044, rule 8 of 25 per oent. Now, of course, wherever there shall be a competition of divers Maisons Leclaire, which
there mast be in ench trade or manufactare, in every plaoe that is to become anything but a social hell and permanent trap.door to hell below-the frst factory of men good enongh to keep their capital together by a 20 per cent. bribe will nndersell those that need 25 , and thas, competition in righteonsness, instead of in "rate of nasince," which gradanally bring down the and adrancing all good. The writer (let. 4570) com plains of a wrong mode of competition making traders worno
compotition?

ARTIFICIAL MANURES.

[4331.]-I A3r much obliged to Mr. Allon (let. 4565, p. 465), for the notice he has taken of my letter on this "abject (p. 881) ; bat I beg to assare him that the "heresies " it contains were pat forth for a purposea parpose which will be partly served, if I can obtain to oxperiment on the question whether plants require nitrogenous manares. Ithink one of the Arat "facts" appreciste, was that the most raluable manares at pre sent known are those containing nitrogen -and that for cheapness and ease of application the salts of ammonis were the best. Since then, howerer, many fact, have been brought to my notice, Which, thong of which has been proved over and over again in practice, suggest the idea that by some means or other, yet to be discovered, plants may be made or indaced to obtain all the nitrogen they reqniro from the abandance of the atmosphere. An interesting article from contans the partienlars of some experiments in this ccnnection and a clear atatement of the hypothesis. I presnme that ho has been too bnay of late to make much time. M. Deberian (see p. 314, antc) also pro. pounds a theory to account for the fact that plants do
contein more nitrogen than mas conteined in the manared earth; bat Mr. Daris's paper is the more
complete, and I commend it to the attention of Mr. complete, and I commend
Allez and others interested.

I expeoted to be severely censured for the heresies in nay letter, but at present they seem to have fallen on anprepared ground. The one idea which anderlies "the vagne notions I have bitherto formed, is that some "manare" may possibly be disooverod, which will enable the plant to absorb nitrogen from the atmosphere; if any one can tarn on a little "light" or knock the idea on the head, I shall be obliged.
In roply to Mr. J. M. Taplor (let. 4537, p. 438), I have had no experience with the manare obtained by Monle's system; bat I have seen the extraordinary resuits obtained by the nge of the sewage tank. Blood manare seems an excellent thing for roses, at all
evente. Bat I commend to his attention the artiole on p. 219 ante on the experimente at Blennerbassett farm p. 29 ante on the experimenta at Blennerbassett farm,
and the reports of those carried on by the pablic spirited enterprise of Mr. Lames at Rothamsted. At the latter place, plots of groand have been fertilised with various manares, and orops of oorn grown npon them fur twenty-eight years in sucaession. In the Lable pabliahed in the Gardeners' Chronicle the average with the of the grain per bashel is (the $28 t h$ season). The momen here, where epece is an that the highest weight (Colb. per bashol) was obtained only from corn grown on land fertilised with farm. yard manare (14 tons per acre). The best yield from artificial manures during the twenty jears average was ob tained from a compoand of the sulphten of potasb, soda, magnesia (2001b., 1001b., 1001b.), 3 ctwt. of super phosphate, and 6001b. of ammonia-salts (sulphate and mariate equal parts), per acre. This manare produced on an average of twenty years 38 bughels of corn per mant, as opposed to 36 y bnshels cotained from an sim placed by 5501b. of nitrate of soda. The other in gredienta of the two manares more extectly the same be it undaratood, so that the anmonia manure gave $1 \ddagger$ baskol move than the nitrato of aoda manare ; bat here itmast be pointed ont that:the 550tb. of nitrate of soda is eqtivalent to only 4001b. of mmonearaaits. and on looki ${ }^{\circ}$ to the exporimeat in which only tha quantity of ammonia-salls was employed the ohner inonly $85 t$ buahele, or oxactly 1f bashel less than the soda manare. Bat now comes the clincher. In the 28th season the yield from the mannre containing 4001b. OLammonia salts had frilan to 2.24, thint from manare had only fallen to $3 \pm \nmid$ buchels, giving the latter an advantage of $12 \ddagger$ bushels per acre ($21 b$. extra per bushel as well) over the manare contsining an equal amount of nitrogen in the shape of 4001b. ammonia mans, and an advantage over even the bolb. ammonia manare of 7 bashels. Nor is this all. Nhe yisid ge of 85 and 418 corte 6001b. ammonia-salts, and $41 \frac{1}{2}$ for the 5501 lb . niteate of soda mannre, had fallen in the 23 th season to 371 and croasit to asi foria manureb, bab had aclang in evon is this all? When 5601b. of nitrate of sxiualore was tried against its equivaleat, as far as nitrogen is 36 bushels agaiust $22 \pm$ from the latter-the average r salt for twonty years ; bat when the $2 s t$ season is reached the nitrate of soda gives 17 g bashels to 10 d from the ammonis salts. On another plot, however ammonia.salts (4001b.) equalled the 550lb. nitrate of sidn (taking into consideration the weight of the grain the 2 sth eeason. The weight of straw produced by the nitrate of soda also had the advantage daring the nitrate of soda also had the advantage daring the
twenty years, and was about doable that from the amenty years, and was abo
Those old-fashioned farmers who look to the manare heap for fertilising materials, and keep oattle in suffcient number, will "take haart gaain" When they
fnd that tho plot manared vith "farm rate of 14 tons per acre yielded $8 \overline{0}$? bushels (601 b) race (\% more than the componnd containing 4001b. of ammonia salts), and was not merely the only manure which kept ap its average to the 28 th season, bat stands out prominently as the one manure which gave an increase over the 20 -gear average, the $\mathrm{f}_{\mathrm{gar}}$ ares being for last year 39 baslels of 611 l . corn with $40 t$ owt. of straw. This letter is however, ranning to a greater length than the editor will like, bat I must mention manared continaonsly" for 28 years actanally yielded Inat rear $10 \ddagger$ busbels per acre, or theremeighths of a supplied with 4001 h . of ammonis salts gave daring the 28th seasnn. The difference was actoally greater, for the corn from the unmanured plot weighed $91 b$. standings, I mention again that the 28th season meaus standings, Imention again that the $38 t h$ beassn means
last jear, whilit the averake has been strack for the 20 years ending 1871. I shall be glad of any information on the snliject, but I have said enongh for the present and only wish to observe that my "heresy" has at least as good a fonndation as many of the dogmas we bave recently had in the Englibi Mecranic
sadl byeera.

THE COMNG STRCGGLE

[4632.]-Tue editor of the Metmrolonical Mognsinr has jast annonnced the fenr that signs aro impending of a "cominy strngale" between the anthoritios of this
obsurvatories at Greenwich and Kev, which, if fipened
into actaal hostilitios, wanld aerionsly impede the pro. gress of Science: The Astronomer Rosal has, if
appears, prononnced the masnetioal and meteorological appears, prononnced the masnetionl and meteorologit $: 2$
observationgat G reenwich to be "the best in the morld :" oberrationgat (Hres nich to be the best in the worla:
while of the Kgw olservations the editor of the While of the K9w observations the editor of the
Meteorological Magazine remarks that "practioally it has no paulished resalts by which it can be jadgod." If so graat a disparity exists betweon tho two observa cories, we ask in the name of Science, where is there room for straggle ? puta stop to the continuous and syatematic course of moloorological obserrations carriod on al whe far older observatory, or will the elder sister suek to render nugatory the efforts of the more recent establishment ?
"To sum up the whole argument." says the editor of the Networolonical Alcyatiue "10 consider the two obiervatories have essontially divergent ohjocta : Groen. wich, the continuity of observation and information respecting secular changes; Kow, the verifoction of instramonts and original physical research.
The most important sabject for consideration is tho serious impediment to the progress of moteoralogical science likely to resalt from a strugale botween the two obsorvatories. May we not ast oarnelios the following question: What it the authorities at Greenwich and $k e w$ be at issue with each other, are we to consider that meteorology will suffer to the extert sap posed ? If Greenwich be the model meteorological establishmont, which it undonbtedly is, can it sapp!y the data, extrpl , one station, lor elncidating thase questions in metonrology which have led to the appointment of the Moteorological Committee and the establishment of the Meteorological Offee? The ecience of meteorology needs a broader bacis than either the observations at Greenwich or Kew cas supply; and even with regard to the secular chanjes which Greenwich from its loug-continued series of observations is best able to elucidato it is neceseary to remark that ynoh olncidation oan only have roforenes to the spot on the earth's anrlace on which the instramenta are planted. With the machinory in daily wort at the Moteorologioal Office the most spleadid resales may be realised. There may be and donbtleas is room for great improvement, bat if over motearology as avar adinc as sciance of induction aad proviaing. ployment of aliser astronomy, it masiters at distant stations forwarding heir observalions to head-quartary three or fear timen ar day. So far as observation is Meteorological ostadishmeat of lol natare of the ing the motoorolig if a contey than an isolated seriea of observations at,aingle atation. Nevertholess, fios determining the memorical valuos of the meteorological elements the Greenvioh observations are untivnled. It is generally admitted that meteorology is bat in its infanog. Now, an infant needs narsiag, and it is a sorry sight to see the narses leaving the infant to do the best it can while they sethe their diferences as to the best mode of nursiag it. It is to bo hoped that no difference will arise between two of the principh meteorological establisthments of the coantry; bat, ts will give "a strong pall and a long pall, and will pall altosethor," to advance the scienoe ivpich, aiad coltisule.
W. R. Bigt.

PIGS, RABBITB, AND SHEILL-FISE.
[4633.]-I mave been waiting with somo degree of impatienee, huping to see this question twien ap aid readoza; bat save the bhort roply of yonr medica which gave what I may esll the ahomical riem of the question, we have had not tiong more thau sho hac of wed phreoes which hava beannsed almost from time 1 wner: rasi in condemnation of pigd, rabbits, and atiell-tath. confens that.I mas slightly astonished when I rwad that remarks of "Sarah" on p. 283, becinuso, althoesp 1 shell. Ash, I had no ides that besides boing "" and impure diet" they exercised a "rile and lozerits intinence on the mind," and coasequently are theres of moch "crime and micary" amuig the lo tor crame Looking through spectalos of a dilforent tiot w "Sarah's" one might be inclined to anspoot that most of the "orime and misery" was origiuated by iass? cient supplies of food, which oheap rabbits and shet tish vould go a long way to conoteract Bo shia a may, however, "loustur" hac had to answer fur a gre mauy evily throwdy laid at its door, and 30 saimon, the king of hish; but how eate intlaence on the mind I do not anderstand wa quite appreciate the force of Byron's lines-

Who'd pique themsetves on intellect, whase 200
Depends so mioh apou the gastric iuica.
Δ great point seems to be made of the wisdoce ohtis mend the juma to partake of pork, while otber aper ignored-lor instance, the blood question. Bat a matter of fact, man was permitted to ast ai animal food which he lauted after for some seara fore the laws detailed in Deateronomy were proe: gated; aud besides, the pig is loukod apon ay an mo nations (was this wisdom, too?), bat was dertivis in in Pulastine for some purpose or other but maish and A.D. 29. Bat iuto this "widedum" part question a, affects the Jews I du nut care to E , not saited for food in hot conantries ; for it 2 a vary vi: northern and cold regions. The canse of chit ceart nurthern and cold regions. The casue of thit gesze
favourilism is the rery simple fact that of alf donie
animalf, the hog (Sus acrefulostrs) is able to accommodate himself to circumatances, and to put ap with the very "narroweat" of these withont becoming thin and melanchols. He will live and thrive on all kinde of melanchols. He wimetable; his stomach will digest What other and probably olther withoat danrer. He is very prolific, and readily fattras on good food; and from China to the western piairies of America be forms a girdle ronnd the most dinnsed of nations. By what process a pig can turn barlermeal into un wholesome flesh is for his opponents to explain; for given a henitis pig fod on
wholefome materials, and can any one ay that he is more linhlie to disease than the domentic ox or sherp? pork diet in the Crimean army were? I think the ill. the nmnirorous disposition of a half.starved pis will lead him to partake of garbage which will do him no
 month, and even the Tronia does him less harm than "flokes " do sheep. Bat piggy is acoused of canaing.
conanmption (1), skin-diseases, scrofula; ho in said to furnish ns with ronnd and threed-worma, pond the tape. bnt cine spocies of Trenia. I do not feel oompolled to ofler evidence in refutation of the frst three charges at present, becanse I think the boot is on the other
leg and evidence shonld first be offered in support. But as regarde the charge relating to intestiual worms I beg to point out that a very unnecessary degree of haps, a highly necessuryt degree, if the pablic will only
make their alarm foit ; for so lona as pork is alone credited with the oripin of "worms" the alarm is mischierous, bat if all the likely soarces of that and similar noieancea are taken into consideration it
cannot fail to be productive of pood. Many of your correspondents who woald shudder at the idea of contracting tapeworm from eating pork, drink a glass of Dr. Cobbold says. He has been speaking of the Rnssian Cossacka. who to a man act as hosts to the bret tapeWorm (Trraia mediocancllata), and he proceeds: "For jory to the bearer ; bat the larvm of some of these tapeworms are dangernas, and it is against thean, therefore, that we shoold be especially on our Raard.
Thas, if jon or I were to drink a glass of water contain. ing two or three egge of the Trenia *olium, whose larvm rexide in the pig (and we might very well do that, for wonld not see the slightest traze of them with the naked nre) ther wonld become transformed in our interior into cysticerci; and, as they have an awkward habit of betaking themselives to the vital organy,
especinlly the brain, it neessarily follows that they
wonld wonld uive rise to serions symptoman.". Now, although wonld prefer to play host to the ndalt, than be a de-velopinge-place for ita eggs and the hahitat of its larra.
Besides the T. soliun and T. mediocuncllata. thero is Besines the T, erdiun and T, medionancllata, there is
the T. echinooocus and T. crenurus. The T. echino ouccuss resides in its adnalt atate in the dog, bat in its larral crindition inhabits the ox, sheep. the deer tribe, the horse, the asa, and man, to whome it is really of surpruss-
ing inter est (Dr. Cohbold), nceasioning the death of some hindreds of our fellow suhjects every year. "I take leave to assert, on evidence which I have been at some
pains to obtain, that every yenr 200 or 800 persons die in Enylund in consequence of their having swallowed
The T. canurus, the larva of which is found in the brain of the "staggery" sheep, becomes adnit in the
alimentary canal of the dog, and is propagated by alimentary canal of the dog, and is propagatod by
thonsands. The rabbitalso acts ng host the crenurrs.
But But enongh is as good as a fenct. I should not have
deroted so mneh space to Mr. Pig, wero it not for an announcement that large quantities of pork are coming from America, which will onable dealers to retail it at 6d. a poand, at which prico it will doabtless meet with cook thoronghly ; to guard against numittingly hatmhing
ang egre, mix alcohol with that glass of pare (1) water drawn from anv soarce into which sewage or the drain. age water of felds can flow. Thas ends piggy: a great
deal of bad meat can be found at market, bat no more in proportios than of boef and mutton, and anless your already pablisbed, I think pork will still be an article of diot in this country.

- Bat what shall we say of tho rabbit? What hat he dona or what can he do? Well, the rabbit is no worse
oft than the hare-though the clomkstic rabbit is, probably, like all other animals which man has brought into sabjection, more lisble to disease than the hare.
The flesh of the rabbit is certainly digestible, and thongh I have heard that it is at times poisonoun, in consequence of the animal eating some herb, I beg
leave to doobt whether any serious reanals can be leave to doabt whether any serious resalt
traced to the employment of rabbite as food.

Shell-fish are rightly or wrongly looked apon by many with anspicion; but large numbers of lobsters and crabs, and immense quantitios of massels and
periwinkles, aro annually ounsumed without the conperiminkles, are annally conssmed withont the con-
sumers oxhibiting any ill effeote. It is true that per. Rons have been poisoned through eating the longs of
both oraband lobster; bnt aurely that fact should not condemn their nee as food, any more than an attempt
to dikent a bullock's bide woald pat a veto on beef.
it the laber If the lobster is condemned, why not the shrimp? basiols are also socased of oansing dangerons illnesses.
bat it is rery certain that millions of tons are con-
samed for food. Probahly when apawning, in May Jane, and Jnly, they are unwholesome, and the bysaun looked aijon as a be removed. Oseters have been al ways are largely eaten, and so are whelks. Shell-Ash live on wholesomp food, and why their flesh shonid not be wholesome too I really do not know. The Italians call them the "fruit of the sea ;" and, after all, the choice of fish to eat and to reject depends entirely on the flavour
of the flesh. Salmon itself is nnwholeanome, if not positively deleterions itsell is nnwholesome, if no althongh that has the requisite fins and acaleg which the eel (the most delicste fleshed fish) is supposed not to pos:ess. Why does not "Sarah " coudemn the eel What shall we kay of the ordinas "vilo and lowering? the latter of which will eat almost, and the duck, verg nice with groen peas I thick, "Sarah ?" And yet lot the duck have a "fishy" taste, and oh, what nnstomach is "diet. Depenacting nnurishment from ather fleeh and other fish and other fowl than we wot of. delicacies Wo froggand snails-and consider them differ. That is all:

Sace Rymes.

EYEPIECES.

[4634.]-Witr hia accurtnmed kindness "F.R.A.S." has replied to my note on the sobjectio of eyepieces. I what to my query, the further to elucidate this important sabject. I assume the image from a parapriam ; if this be received throcosh fronar the that or Hayghonian eyopieco, it will; In apprehoud, bo some what distorted, for theorepiece is not aplanatic, ergo the image is imperfoet. If, however, the Harghenian eyepiece is applied to the refractor, the object-glacs, being imperfectly corrected, receives the necessary correction from this oyepiece, hence the comparatively admirable defnition (minus seoondary spectram) of a Dallmeyer inatrument. My idea of anbstitating a complete magnifying instrument in liea of a non-achromatio eyepiece is not new, bat I consider that it has nover been effoiently tried.
To "F. R. A. S.'A" obrious objection of want of light, I submit that a wide-angled objective gives an extra. ordinary amount of light, in spite of the namerons sarfacos (that is, six more than an ordinary eyepiece), and I fancied that if sumfient light came through a narrow alit and the numarous prisms of the spectroscopes from a second or third magnitude star, such a gire snith cient as the sunis oorona or the moon doala conld be more effectually sulved, we might kain some insight into the difficult sabject of the early history of the sphere we live apon. Although I was aware on purpose, the magnification of the atmosphere is a bar in all forms of eycpioces, and is, in my hamblo estina tion, tho fraitfal cause of the many wonderfal dia coverien, sporotroscopic and telescopic, we get in popular gcientitio papers. The late Mr. Ross mas of opinion
that an aohromatio eyepiece Was yet wanting to corathat an achromatio eyepiece was yet wanting to cora-
plete the microscope ; this has not yet been attained plete the microscope ; this has not yet been attained, ame conclucion as ions I have long since discarded B C, and D erepieces for I find the acate carves destroy the defluition of the
finest objectives ntterly. I depend: apon the Δ 's and finest objectives ntterly. I depend: apon the Δ 's and "Faned tabe for amplification.
F. R. A. S." will observe that these view are at variance with his observations se to the power
Browning's mirrors will bear ; he will not, I hope consider this as a contradiction, bat: aimply that my ideas of perfection are unreasonably berond attain-
ment at present.
Bunaercity.

heatina-by hot air.

[4635.]-Trisides of hoating plant honses by means of hot air is not by any moans nem, bat I believe that
Mr. Housman is the first who has carried oat in a Mr. Housman is the first who has carried oat in a
successfal manner. Ho exhibited a model of his successfal manner. Ho exhibited a model of his
apparatag at the recent show at Biriningham, and has apparatag at the recent show at
drawn renemed attention to the subject in a letter to the Journal of Horticulture. I send an extract in order that your readers may understand the principles of the system, and express their opinions on it.
Believing, he says, that the time has now arrived for 2 reconsideration of the question whether hot. air heat. ing may not, in many instances, successfally compete with hot-water heating; and haring daring some years
past practically succeeded with a method of alr-heating. past practically succeeded with a mothod of alr-heating, I waa induced to exhibit a model of my aystem at the
late Royal Horticaltaral Show at Birmingham. I havo late Royal Horticaltaral Show at Birmingham. I havo
reason to think that it received some notice from persons well qualified to give an opinion on its merits, and I write this with a desire that the expression of snoh
opinion shoald be elicited. I sm far from claiming saperiority in every case ; in fact, where a " town" of glass has to be warmed from one soarce of heat, I see no likelinood of the agenoy of water being saperveded. Bat for baildings placed in a range, or heated
separately, I think from the hot-air syatem mauy separately, I think from the hot-air syatem mauy
advantages may be secared which are not obtainable, at advantages may be secared which are not obtainab
least not readily obtainable, from the hot water.
least not readily obtainable, from the hot water.
Conceding that some equivalent must be foand for the large heated anrface of moderate temperature, which is an admitted necessity for successfal cultare,
I sobmit that such an equivalent may be fonad in the I sabmit that suck an equivalent may be fonad in the cooling effecte of rapid carrents of moist air passing
orer a gill stove bighly heated. It is when circam stanoes are favoarable to the inducing of such rapid
hot-air system. If, after constraetingiwnirebox in sach a manner that the fire shall not impinge apnn metal, we shall haver with a hox of wronght iron sarface of 45 square feet. By adding gills, 13 on each side, snd 8in. deep, we incresse the nurface to 185 equaro feet ; and if we can sabject this extended surface to the refrignating effects of a maist corrent of air rashing crer it with many times the velocity of the carrents from the ordinary hot-water pipes, we have the meangs of effeoting our ohjert-viz., the delivery of large qnantities of not ton fervid air. This object onoe
attained, adenntages belonging to the sfster become apparent. The air fae whioh, milike the old emoke flne, requires no special oare in its constraction, delivers its hent throngh slides, which by a nimple adjastment apportion the supply at will, or ther can bo made to shat it off altogether-no mean adrantage whon sun heat meets fre heat on a fickle day. Tho infarnamitted is fresh air, bearing with it the healhifal the velocity of its oncoraing, the acrial pertarbation go gratofnal to plant life, and for every gallon of fresh air admitted a like qnantity is expellod, Bo, assuming the area of inlet to be 4 equare feet, a like, area of ontlet will be required, and this is necossarily equiralent in a honse boft. long to din. of top air al mayn left on. thon in a small way, it will be jast the thing for amatenrs growing stove-plants, or for serrioe in the greenhouse on occasions.
E. O. G.

" JACE OF ALL TRADES."

[4636.]-Having retarned to old quartors, I think a have of hanks is due to the many kind friends who a fast sinking craft, and have done thoir best to make me say "Jack's" alive again. I wish I ooold any "Jack's " himself again, bat that is a question of time, and I here take the opportanity to say to all who have done so, May they ind friends as kind in that of need I I cannot wish that it mirbt bo so, for for experimenting ; bat ghoald they ever suffer any of these ills that feeth is hair to, I have every reason to believe the Smedior syatem recommendable both from more pirgely and officacy, and shonld be plad to soe it apon the nelf-holp prinoiple
"Domestic Hydropathy," by T. Praston ; Cassell Petter, and Galpin). It conld be arranged at little expense, and I should be gled to assist any who may give my ideal plan of how this may be carried oat. Not wishing to oocapy ton mach of our valasblo space, I again tender my
Mechanic frienda. \qquad Jank of all Trades.

NEW MATERIAL IN ORGAN BUILDING.

[4637.]-Estarsisst to the ntmost limit I will well "Sacram" (let. 4579) to be; bat it is cruel as How conld a pipe of such material be taned or voiced? The Harmonioas Blacksmith" long ago mooted the question that a cylinder of any other material than inetal wonld annwer. With all respect to him, I am a doabter: the different proportions of metal oomposition maxe all the difference in the ring of the pipe, and all the enthasiasm in the world won't bring that quality out or paper. You might get a mediam as good as be as good as the king; bnt, with all the crowning of might and mystory, she still will be the cat. I have said beforo that pipe-making cannot be done by the ordinary ran of amateara; it masat be learned at the bench, and there the amatear mast go for his lessons. Porhaps it woald be worth "Sacram's" while to try ${ }^{2}$ metal top and foot to a wood cylinder. The question is, how will it work? The ase of the cone must sooner or later intorfere with it.

Hekry Ubsier, B.A., M.B.
CONDENSATION OF STEAM IN PIPES.
[4038.]-Mr. Tuaton (let. 4512, p. 461) will find, on preasiry, hat thongh the problem of oonverting high as very largam into high prossire nir is not hally solved pressed air, and by the ordinary compression pamp anitably applied. For a pamp to do next to nothing half its atroke is a serious defect, and how this defect should be inherent in every form of pamp, I woald like Mr. Tarton to show. To solve the problem, Mr. Tarton sapposes an probable the application of the principle of the injoctor. Bat belore "A. W. E." (let. 4457) tries this, or any other applicstion in whioh stesm has to bo ased with compressed air, I think something definite ahonid be known as to how the two comport themselves when used torether or mixed.
How can this information be got? Will ma answer to the following query lead to it? It so, perhaps some able correspondent will give it. There are two oylin. dors of the capacity of one cabic foot oach, attached by an inch pipe, with a tap to connect them when roquired. One contalus steam at 501b. prosarare, the other compressed air at 701 b . When the two aro con-
neoted, what tatee place? What change in the steam the air, and the prowance?

O핑.

IS THE MOON SPHERICAL $9-T O$ Me. W. B. Bier. [4689.]-I BAY "No"-and pledse myrelf to prove it. CE. Rabletim.

ANTIQUITY OF MAN

[4640.]-I IEGG to inform "F.R.A.S." (let. $4405, \mathrm{p} .380$) that I have no theory on the subject, but am simply looking for in formation. It is is different to me personally whether man has been 8,000 or 100,000 vears upon the earth, but I shonld like to know which is nearest the trath. I have not Lyell's book by me for reference, but What I gathered from it was that he gave fair evidence from records of excavations in Switzerland and elsewhere for an antiquity, on a rough calculation which did not assnme to be correct to within three or foar
centuries, of between 7,000 and 8,000 years. This is centaries, of between 7,000 and 8,000 Jears. This is
all I conld find reasonably fair proof of. Anything all I conld find reasonably fair proof of. Anything
further, as the conjectural period of 100,000 years or further, as the conjectural period of 100,000 years or
mach more, was too mach founded on guesses, theories, mach more, was too mach founded on guesses, theories,
opinions, and too little npon actual evidence, to be relied on.
From the accounts I have read or received from scientific men of cave explorations in England, as for instance, those lately made at Settle, it seems as if the relics of the primitive cave men go to no great depth, evidencing no very long tenure of the cave to he
measured by thonsands of years, but soon cease and measured by thonssnds of years, but soon cease and
are succeeded below by bones of wild heasts alone are succeeded below by bones of wilh heasts alone
without trace of human, occupation. Of conrse, for without trace of human, occupation. Of conrse, for
all this goes to prove there may have been men in all this goes to prove there may have been men in
existence elsewhere, though not in these particnlar caves, many thousands of years ago; if so, let us have real proof of their existence, apart from conjectare and mere theory. I by no means affirm that the lower stratum of haman remains in the Settle cave must have been those of the race destroyed by the
Delnge; bat I thought it well to direct "oar" readers" Delnge; bat I thought it well to direct "our" readers'
notice to the coincidence which nudoubtedly exists notice to the coincidence which nndonbtedly exists
between the term assigned by calcalation to the end of that primitive occnpancy of the cave, and the date of version of the Mosaic account, that of the Septaagint.
J.M. G. Brookwood.

THE ORGAN (EXPRESSION A LA MAAIN).
[4641.] - In No. 328 I addressed to "Adept" a query (8291) concerning the probable consequences of carrying out my old crotehet of inclosing each pipe of an organ-rank in a separate swell-box. to be opened by the manuals for the above parpose. Considering it is now
more than a year since the date of "Adept's" last more tribation (in No. 822), perhaps some other "organic" expert will kindly afford me the required information; for, if practicable, it seems the least objeotionable method of producing the greatly-to he-desired effects.
I also addressed a query (8307) concerning the I also addressed a query (8307sionconcerning the or other free reeds, to which a reply would confer an obligation on me.

The Harmonious Blacesmith.

ROTARY ENGINE

[4642.]-I question whether the engine of Joseph William Fennell (let. 4552) would return a higher daty than the ordinary valveless rotary. There is the same defect in it as in all rotaries-viz., the packing, or
rather the non-packing of the piston. In Joseph rather the non-packing of the piston. In Joseph
William Fennell's arrangement this conld be altered, and the engine made as good as a reciprocating engine For instance, be a square piece of brass sin. thick; this is to be forced up against the casing by means of a screw, aud the same with the sides of piston D; two plates, same
thickness, forced against sides by a left and right hand thickness, forced against sides by a left and right hand
screw. These are all to move in gaides; it wonld screw. These are all to move in gaides; it wonld
make a very effective water motor.
P. W. H. J.
[4643.]-The engine described and illastrated (let. 4552, p. 462) is a revival of an old idea of mine. About five years ago Iregistered a similar invention to this, but gave up the idea of patenting it, as an engineer to whom I showed my sketch pointed
ont to me that the valves wonld make a most objectionable noise, and moreover would not stand the wear and tear. A practical rotary movement petaal motion and the philosopher's stone. Minds great and small have applied themselves to the soluticn of the difficulty, and some most ingenions contrivances have resulted, but nothing, however, which is likcly to displace the piston morement.

Philip E. Masey.

ROUND SHOULDERS AND CURVED SPINES. [4644.]-As the attention of your readers has re cestly been called to various contrivances for remedying the above defects, I send for insertion two photo-
graphs of a simple contrivance I have just bronght ont graphs of a simple contrivance I have just brought out
for a similar parpose. The photos. represent a backfor a similar parpose. The photos. represent a back-
board and spine-chair, for the nse of children who board and spine-chair, for the use of children who
have weak frames and roand shoalders, contracted chests, and carved spines. This contrivance has for its object a perfectly plain and hard surface to rest the spino and shonlders upon, the head and seat being
eased by a thin cushion. The trunk of the body, in eased by a thin cushion. The trunk of the body, in
these positions, grows straight and regular, and the weak muscles, that cannot give thenecessary resistance in a vertical position, regain their wonted strength and prevent curvature, while the shoulders are pressed into their normal position, throwing the chest open, and free for the expansion of the longs and organs of the chest. All children while growing shonld lie down some time daily, and more especially those that are
weally. It is the custom in some families and schools
for the children to lie on a plain backboard, a little inclined, but with the plain board the ling become very trying. This irksome feening is obviace given to the spine : while lying, the child keeps its position, all Weariness is relieved, and the whole body rests together. When the child is tired of lying on the back-board it can be raised into an inclined back board chair. In luynry, position, the spine being relleve in a vertical chair The body of the child being at ease, the mind can perase its lessons without fatigue and restesbuess resses. of the spins should not brominent ronnd shonide wonld imbed itself in the mattress, and the child grows deformed while it lies; bat in the case of diseased spines, where there mast be no pressare, the same positions are necessary as with weak spines. A thin mattress to fit the back of the chair makes the contrivance valuable to all sufferers, child or adnlt, or it makes an excellent easy chair in ordinary household ase.
The ancients paid more attention to mnscular training and the lying on perfectly hard surfaces than we endency to rolar instead of brace and consolidate the mascular stracture.

As the contrivance I have offered for the informa tion of your readers is one which has for its object the remedy ing of defects in the haman structure, if I shall not be trespassing too much apon yonr space I would
trace some of these effects to their canse. Those who trace some of these effects to their cause. Those who
are occupied with the affairs of everyday lite, and are occupied with the affairs of everyday life, and
carcely see anything oatside their own basiness scarcely see anything outside their own basiness,
wonld scarcely credit the amount of decrepit hamanity wonld scarcely credit the amonnt of decrepit hamanity ful and infant members of our race. Children with sarved and dieeased spines, hip diseases, round shoul. ders, narrow chests, shrivelled and paralysed limbs,
and undeveloped frames abound. Some of them, with air medical and mechanical treatmen orow heir aflictions; others are beyond the reach of human skill, and grow up burdens to themselves and their parents. One cannot be coustantly coming in contact with such cases withont tracing masy of them to their
origin. They arise from the following canses: Girls becoming mothers when not yet ont of their teens yonths becoming fathers before their physical struc tare is matured; intermarrying of blood relations, rom which follows idiotev, imbecility, deformity; reckless lives of youth; drunkenness and glattony in parents; bad narsing, ertificial nursing; everything contrary to the common laws of our being, and to what God intended.

Many aftlictions arise from no fanlt on the part of parunts, but from hidden canses; while, on the otleer ripp, tho most healthy children have been rendered of ches for life, through carelessness; and thousand ing them to the care of nurse-girls, who cannot tas care of themselves. Here, then, is a mighty evil that stares us in the face, and one which no Act of Parlia ment can grapple with, but which must ve met by our individual selves.
Physical deformities are bad, but mental deformities are far worse. And if there was ever an age of mental deformity, this is one, in which the most valusble gifts of God to man-namely, health and common senseare sacrificed to fashion. High heels and narrow bootsf Cramped feet, enlarged joints, weak ankles, and brokes \%egs; unprotected heads, apologies for bonnets -nearalgia and diseases of the brain; tight lacingcontracted chest, diseased hearts, and sudden death; the skin, being made " beantifnl for ever," going to par ties undressed-asthma, plearisy, consamption; poisoning and colouring the food to suit the eye, living to eat instead of eating to live. Both sexes are equally to blame. I think you will agree with me when I Bay
the grandest science of our existence is to know our true selves and how to live.

THE FORCE OF GRAVITY AT OR NEAR TO THE [4645.] - TAKING $16,008,324 \mathrm{ft}$., to one second of time, as the force at a certain latitude or point on the earth's surface by which heavy bodies freely fall, or are attracted. Tarning the decimal fraction 0.008324 into the semi-transverse diameter of an ellipsis, by the addition of unity-thas, 1.008324 , the logarithm of
which equals 0.0036001 , the application of this ralue which equals 0.00
will soon appear.
The force of gravity on the equator at or near to the surface is equal to the value of the logarithm 1-20276554 $=15950178 \mathrm{rt}$, and that on the pole is equal to the value of the logarithm 12070546 , equal to which is the force in one second of time, by which
bodies are attracted at or near to the surface on the bodies are a
polar point
The two values, equatorial and polar, being added ogether, and the square root extracted thns, $1-20276554$ $+1 \cdot 20710546=\sqrt{2} \cdot 4098710=1 \cdot 2049355=16 \cdot 03007$ feet. This is the force of gravity at a point very near
to the latitade of 45°, equal to the tangent of to the latitude of 45°, equal to the tangent of
$44^{\circ} 56^{\prime} 46^{\circ} 85^{\prime \prime}$. The force of gravity, as measured or $44^{\circ} 56^{\prime} 46^{\circ} 85^{\prime \prime}$. The force of gravity, as measured or
calculated from the mean distance of the moon, calculated from the mean distance of the moon,
is equal to the logarithm 12077201 ; which, being divided by the logarithm 0.0036001 , thas, $\frac{1-2077291}{0.0036001}$ $=1 \cdot 2041200=16 \mathrm{ft}$., which is the force of gravity in one second of time, at a point on the earth's surface, precisely at 45° of latitude. And dividing the value,
as found from the mean distance of the moon, thas, $\frac{1 \cdot 2077201}{1.2049355}=0.0027846$, and $0.0036001-0.0027846=$ $1 \cdot 2049355$
0.0008155 , and $1 \cdot 2049355-0.0008155=1 \cdot 2041200=$ 16 ft . to one second of time, equal to the force of gravity on or near to the surface of the earth, "exactly" at latitude 45°
It is clearly evident, from the foregoing calculation, that the force of gravity, being "leas" than 16ft. is one secoud of time at the equator, and "more" thas 16 ft . at the pole in the same time, that somewhere be 16 ft the points that force or attractive power mast latitude.

Veritas.

CENTRIFUGAL FORCE.

[4646.] - Wrri all due respect to your numerons correspondents who use the term, notwithstanding all the discrooks in existence, at the risk of raising a sharp minent professors, manction with some of onr most force as " centrifugal force." Who can prova there is
C. H. W. B.

THE BEARING-REIN.

[4647.]-T AM glad to find that there are gentlemen not above being thought efferminate, as they undoubtedly will be, by those who countenance the nse of this applied with such terrific severity as is now being done: and, if people had not become hardened and acenatomed to the sight, I believeit would not be tolerated for a single week. I could introduce "Philo" to a diffe vinced that the coachmen are the principal and almost the only offenders. I only this morning 88 a y young horse (and they are the greatest sufferers) in sueh a distressed state that I believe if it had been a poor attention to it, who at once ssid, "I should not hare noticed ought to have six looking at the lresdmill feonld show "Philo," in a day, about 150 hackney earriages, and not one of the horses attached to them wearing the torture-rein ; about a dozen pairs of handsome animals drawing parties of the exclusive upper ten, sll appsrently happy together; then about 100 pairs very ancomfortably but not terrifically reined, remindig in sach a state that one need not to be ashamed to weep for them. It verily is an nnpardonsble craeltr; Space forbids my allading to the use of bliadery I mast call them, as they are now fitted so that a horse can scarcely know whether it is daylight or dark.

Old Plougiras.

REFLECTION.

[4648.] - Ir must be remembered that a pieca metal, or other reflecting sarface, bent in the way s gested is only concave in one direction, and thas ingo of a circular object produced at the focus is longer circular, but a long oval, so that the light covers Thuch larger space, and is therefore less concentratel propo to correct this distortion and waste of ligot, is which if of ase anotaer cylindrical mind jast pro duce the resnlt now obtained by a single mirror spherical (or rather parabolic) surface, a waste of light and complication of apparatus withont any corre sponding advantage. The germ of good contained is "E. B. F.'s" suggestion (let. 4602, p. 483) has alrests been ntilised in the Cassegrain resecting telescope this, the rays reflected by the objective specolam eaught on a small convex mirror, and reflected back the lenses constituting the eyepiece. In this constry tion the magnifying power is less than in the Gregoria or Newtonian telescopes ; but the image is more diw have a tond one image is formed, and the two murrore aberration. In fact, the Cassegrain telescope is Ampat

Alfred R. Ayees.
parallelogram of forces.
[4649.]-Ir "F. R. A. 8." and Mr. Proctor have not time to fully explain my dimcaltr, perhaps they will kindly indicate the direction our stadies mast taze on
fathom this prazing subject. It cropped ap thirty years ago in a Glasgor pablication, since then I have
geen nothiug pablished to bridge over the diftiontty. seen nothing published to bridge over the difficalty.
Sone yeara ago I submitted it to one of the sbleat profesrors in the Andersouian University, and in the
opiuion of all the class, incloding mysell, he shirked it opiuion of all the class, inclading myself, he shirked it
complectely, telling no we had got beyond our depth,
 and represent two equal forces in magnitade and direc.
tion, then the diagonal $A D$ will give the resultant in

direction and magnitude; therefore a hody uader the jnint action of the two forces mnat reach D in the same tima that it mould have renched B or C nnder the action
of a aingle force; but $A D$ is nearly donble of $A B$, therefore the body must go alung $A D^{\prime}$ with nearly a donhle velocity. Bat the theory of projectiles informs us that to produce a donble velocity requires the
expenditure of a foarfold force, but in this and similar expenditure of a foarfold force, but in thia and similar
cnses we have a donble velocity from a Aoable force. If the parallelogram of forces and this law of quadruple foree can be shown to be in harmony, it will be highly gratifying to many besides mysell.

Mabine Enainezb.

DRAINING MINES OF WATER

[4650.]-Ir 1869, at the time of the Exeter Meeting of the British Ansocistion, I met a French gentloing of the British Ansociation, I mot a Fresch gente-
man who nubmitted to the late Sir Charles Fox the plan of a now process for raising liquids to any height at a triAling cost. Thoogh a nnmber of engines are
antually supplied acooraing to this principle in France. actagly supplied acoording to this principie in France.
Sir Charlos Fox declined the commanication. I anderatand that 2,000 gallons of water can be raised to the
required height in half an hour's time by this means, at a cost of abont 7 onbic feet of coal or petroleum gas. No engine is needed, only proper tanks and pipes.
A. J. Dayman.

JUDGING DISTANCES.

[3651.]-I obseave that most, if not all, of our rile matohes take place at distances which have been likely by the aid of trigonometry. Dost of onr range measurers require two observations and a base line. In a toal skirmiohing the rifleman wonld require to jndge
the distance for himself, and to facilitate this ohject is the distance for himself, and to facilitate this ohject is
the aim of judge of distance drill. Were it not for the the aim of judge of distance drill. Were it not for the path; the resistance of the air canses a higher trajec-
tory to be described, as the velocity becomes less from atmospheric resistance, and the ball therefore falls more from the action of gravity in passing over a given
distance than it it moved in vacao. Considering, borever, the case of a parabolic path, if the ball falls a distance of a inches in the first 100 yards, it will fall
$4 a$ inches in the flrst 200 yards, 9 in 300 yards, and 4 a inches in the inrst
so on-the fall under the infaenes of gravity rary ing as the square of the distance. Thus it will be seen
that the arror of mistaking 200 yards for 100 , an error that the arror of mistaking 200 yards for 100 , an error
which I may onserve in not likely to occar, is not which I may onserve is not likely to occar, is not
so serious as mistaking 400 yards for 800 . In the former case the ball woald hit the target a inches too
low so far as this error was concerned, in the latter it would bit it $16 a$ to 7 a or 9 a inches too low, and besides this, the latter mistake is one more likely to he made, and the object is more diftcalt to hit at 400
yards. In the case of artillery practice there is the yards. In the castage that the gnnver, eeeing where the obot strikes, after a few shots succeeds in getting the
range. I have heard of telescopes for jadging the distances of objects looked at through them. I should like some information on this subject. I presume perhaps the principle of Monsienr de Rocon's telescope thesed-viz., a piece of Icelavd apar (this mineral has
theperty of donble refractivis) is slid along a wire the properts of donble refraction) is slid along a wire
in the axis of the telescopo until the observed object, the size of which mast be known, appears with the two images tonching each other. Coud the principle of
the extant be renderod arailable-viz., that a ray of
of light impinging on two plane mirrors, inclined at an angle A is divergcd
$T h n s, ~ l e t ~ b e ~ a n ~ o b j e c t ~ w h o m e ~ d i s t a n c e ~ i s ~ t o ~ b e ~ d e t e r-~$ mined, BC a brass rod aboat 5 f . in length (rather
angle $\mathrm{B} \Delta \mathrm{C}=\frac{5}{1,500}=\frac{1}{300}$ nearly, referred to its circalar measure, the anit of circular measare or an arc equal to the radias being abont 57°, inclination of the mirrors equal hals of angle B AC=$\frac{1}{\mathbf{6 0 0}}$, or abont the tenth of a degree. I shoald like the opinions of correspondente on this idea. Could the mirror B be
made to slide no steadily on the rod as not to vary ite made to slide no steadily on the rod as not to vary ite
inclination appreciably to the mirror A ? This seema the practical difficalty.

Philanthropigt.

greatly elongated projectues for RIFLED GUNS.

[4652.]-As it ie obvious the longer a projectile be made, whose weight remains the same, the smaller its diameter mast become, and consequantly the smaller the calibre of the gan from which it is expelled, it has ocourred to me that it may be well worth while to in. quire if a yet farther saving both in the weight of the gin and the powder charge might not be effected by improving the form of the projectile so that the roquired rauge may b
The advantages of increase of range, at least in rified maskets, are rory questionable. The ranges of the better kinds now in ase are so groat that they enable "Christians" to "di) giod to those who (try to) despitefally use them" at 1,200 yards, a diatance at Which a man 6ft high appears amaller than a pepperno two opinions of the economy and military advan tages of reducing the calibre and weight of the masket, also that of the powder charge, if that be possible who that of the powder charge, if that be posile whefal ranges, say up to 800 or 1,000 yards, and mach, usofit ranges, asy up tho hoight of the trajectory.
It has occurred to me that those adrantages might be obtained by excetly the same means by which we enable a given lorce to move a ship more rapidly through the water-riz., by making the thing to be
moved of a form which is less resisted. No doabt cylindriconoidal shot is mooh less resisted than a spherical ballet of the name weight, and a projectile five or geven diameters long, than one only $2 t$ or 8 times longer than the calibre, bat a projectile of the formes proportions is objeotionable on the groand that its centro of gravity ie not suffleiencly forward, conse-
quently its tendency to turn over and travol with its latter ond foremost has to be resisted by making is spin with great velocity. This onn only be done by angmenting the twist of the riting, which cortainly increases that obstruction ail rifing mast cause to the shot's expalsion from the gun.

I suspect Mr. John Scott Ruasell would have bat little faith in a naval architect who proposed to build a boat in the form of a cylinder with one end pointed or roanded and its atern a flat disc, which is jast the
form of an ordinary rife shot whose bows resemble form of an ordinary rifte shot whose bows resemble a blnff Datchman, and whose sqnare "starn" mast needs pull 2 good deal of water after it. A Thames wager
boat, like those in which the Oxford and Cambridge boast, like those in which the Oxford and Cambridge fine ran, the Arat to remore the water ont of its path alowly, and oonsequently easily, the latter to learo the water behind without palling mach of it after the boat like one with a aquare "starn" does. I need hardly remark the cylindriconoidal shot is not exactly the "solid of least resistance ;" for this we require both a ane entrance and a fine "run," such as I have drawn ine entrance and a
in the illastratione.
To keep a projectile like that represented in its proper position in the chase of the gan, it would seem that some moans of tempoiarily sapporting its latter end is needfal. For this parpose I have designed the rather pecaliar "sabot" shown in cection. The ase of any aabot, however ligbt, is open to the objyction that
more powder must be barned than woald be required if it were possible to do withont it, for it is obrions you if it were possible to do withoat it, for it is obrious you
mast burn enough to expel not only the shot, but ulso must burn enough to expel not only the shot, but also of the greatiy diminished atmospheric resistanco con. sequent on the fine ran of the projectile, the consesequent on the fine ran of the projectile, the conse-
quence of which must be that, as its velocity will bo quence of Which muat be that, as itf velocity will be
mach less redaced at long ranges, it can hardly be mach leas redaced at long rangee, it can hardy be
needfal to impart to it so high a relocity before it leaves noed ial to impart ex it so that, notwithatanding we hare
the gan, bence I expect the gan, hence expect that, notwe, perhapa even less, powder will be required.
powder will the apeific gravity of the anbot be mach less than that of the projectile, that difference, together with greater atmospheric resistance to the sabot caused by behind, the projectile, after separating from it, probetind, the projectilo, after separating from it, pro-
ceeding on its course
nnincumbered thereby. Were the recess in the sabot whioh reoeives the projectile a mere conioal hole, I fear the latter wonld be jammed therein by the force of the explosion, and fail to become separated, so I hare designod a seriee of cylindrical compartmenta, affording altogother, inclading tho
bottom of the amalleot ono, four surfaces at right
angles with the axis of the projectile, and I think if rather thick papor washers be inserted at the bottom and between the annular surfaces to prevent contact adhesion will be provented.
The best material for the sabot woold be something at once aufliciently atrong not to be deatroyed by the explosion, which is as light as possible. Should metal
be loand necessary, probably alumininm nould be best it being very light, but I foar too oostly. Erery known it being very light, bart I lear too contiy. Erery knowa
kiad of glass or earthenware would, I thing, be too kiad of glass or earthen ware would,
brittle. Bone, wood, or yet better, painier-máche Which is far stronger than any wood of phose of bres it is composed, might serve it the explosion did not deis composed, might serve if the explosion did not de-
gtrey it. That it would survive, I duabt, although the girey it. That it would survive, I duabt, although the
presiare of the gases would not be so great as nanal, pressure of the gaser would not be so great 28 asaal,
becanse, as leas velocity would have to bo imparted to the projectile, a smaller powder charge woald suffice. Porhaps a yot farther saving in the weight of powder might be effected by forming the periphery of the largest part of the projectile to it the prooves of the rifing, a thing by no means diffloult to effeot with compressed leaden ehot I think this would sare that small propurtion of the powder those forco is no only employed in forcing the aylindrical sareoe of the pro jectile into the grooves, and thereby altering ite form to at them. This portion of the powder cannot asisist already been of the projectile, becanase its force has can't do ite " "ore" taice. Wure the work of shaping the projectilo dono before it ras introdaced into tho gan, the whole of of the explosion would be the able for expelling the projectile jast as it is in great gans تhere projectiles have ribs cast on them to of the rifling. I thint it mut be admitted that is 50n Tant to oxpal either a projectile from a gan or follo hnuman being from your house, putting obstacles in hia way is not the way to facilitate that process. Spiral grooves mast needs be obstacles to expalsion, bat aro to send him "spinning" on his way.
Tu thone who have not realised the magnitade of what Cemar calls the "impodimenta" of a modern army, the saving of, perhaps, 20 per cont. in the seem of littlo powar caige of a good many tons in the weight to be carried, often orer very inferior roads and some not fow thonands of pouods in military expenditare. I may forthar ramart pouads in mulitary expenditare. I may farther remark the shot is expelled from the gin the groater the recoil a thing which-in the oase of old "Brown Beas"-was, "no joke" bat like the mriter "terribls in earnat", as our soldiars (and their braied shiolders) coald tos. tify. Besides, if onls four-athe as mach pordor bo barned mag not masket some will be lessened to the great comfort of the many muscular Curistians those rather nuploser do many mascalar carry it when the thermometer stands at 120° in the to carry it when the thermometer stands at 120 in the sanshiae, doing which, '" ika the venerable "Brown iness't
recoil, is no joke, I kulkalate." Certaing, I don't rnow from experience, because, when a joang man, keing a man of peace, I listoned not to the voice of the cbarnmer"-in the guise of a recraiting sergeantWhen, quoting Shaksespeare, that charmer said, "List,
O lint !" neither have I plased at soldiering like moat voluuteers do N.B.-Few of them do angthing mose in the military line than play. The pley homever in the military line than play. The plag, however,
greatly resembles hard work. Whether "Le jeu ne greatly resemblos harrd
veat pas la chandelle," is another question.

The Harmoniote Blacissmtit.
P.S.-May I take the liberty of inviting the criticiams of "Artilyery Captairs," and other oxperts on this my last shot, which I hope will not quite mias ita made. Porhaps it woald be yet more hikely to ar, yet bettor, if thaper towards the irsi shoalher or, yor, thereby roducing ite diameter to something less than hall the calibre at that part, alsu onabling as to extend the length of the hinder part to ire diameters instead of $8 \frac{1}{2}$, and reducing the leagth of the aabot one-rourth. See Fig. 2. The proportions of this projectile being be so far forove suggested, its centre or gravity woal its fight, oren if the twist of the rifing, and its consequent volocity of rotation, were bat small. Excessive twist is very objectionable, for it induces tho stripping of soft leaden projeotiles, bat so long as these be mado of equal diameter thronghoat, behind their heads, a great twist is a necessity to prevent them from tarning over during their fighta, and the longer they be made the more they resomblo Oiver Twist in asking for more (twist). The Habmonious Blacesmith.

Science and Art Department.-The examination of students' worky has just been concluded. From 337 night classes $\mathbf{5 6 , 0 1 6}$ works have been received. rom 114 Schools of Art 73.22, works have been sent up, making a grand total of $1,9.242$ dra wings, models, or paintings, executed in the year ending April last. works were first tion, each school being taken separately, by a Comnilttee of Examiucrs who a warded 1,100 third grade prizes, and at the same time selected from the mass 1.203 of the best and most advanced works for reference to the untional competition, in which all the Schools of Art in the coluntry compete with ono another. Tra gold, twenty-five silver, and sixty bronze medais have been awarded, together with a number of prizes of wooks. Ase prize works of this
competition, together with as meay of the other competing works as space could be found for, are now expeting wited at thi South Kensington Museum, where they will remaln open to Kensina
will remaln open to inspection until September.

REPLIES TO QUERIES.

*. In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDENTS.

1. Write on one side of the paper only, and pat drawIngs for illuntration on soparato pleces of papor. 2 Pat titles to querles, and when answortng queries pat the nambers as woll gs the titles of the queries to whioh the querioe, ar replioe. 4 Oommeroial lettera, or quorites, or querios, ce roppioe. iseorted. $\mathrm{b}_{\text {. No }}$ question mating for oducational or soientifio information is arswered throngh the poet. G. Lettore sent to correspondents,
ander oover to the Editor, are not forwarded; and the nnder oover to the Editor, are not forwarded; and
names of correspondents are not given to inquiters.
[11554.]-Pedestrian Tour.-How to make a pair of comfortable waterproof shoes out of a pair of old trousers : Cat out of your old clath as many pieces as yon require for the thickness of your soles. Boil equal parts of resin snd tailow together, and soak che piecei in them. Bcrape ho sublance them with a hot iron. your soles tngether, presict This will make them par ores ler any kind of cloth in like mancer. Orer your ooler hay any ind ol cloth or canvas you please, it round the border or and and your shoes are made. They may be made to to or than on this prinoiple.-G. R.
[11682.]-Debilitg. - If "Cordwainer's" friend cannot procare the bean at the herbalist's, he can obtain the pills of moat ehemista. Sold ander the appellation of Edward Douglas's nerrous pille.E. Parier.
[12002.]-Aquarium.-" K. O'B." says, "Don't collect eels or other runving water animals, beomuse such cannot be hept alive in still water." As far as my experience goes small eela live very vell in aquariums, and I know that the finest specimens I bave ever canght, or seen canght, wore the not rumniog.-SAul Bhich
[12054.]-The Needle Lock.-I am very glad that my note on this suhject has produced a reply from "Q. Yorke," especially as the quary appeared to be likely to join the "lost" in the ananswered column. I never said the needle lock was "nnpickable"-probably no look ever made really is, but the needle lock can only be "pioked" with a key made for it. It is, too, one of the beat locks ever made, from that very fact. "Force" does not enter into the question at all, for we do not employ locks to resist "force," bat to prevent doors or boxes being opened by every curions or nefarions individaal. I have yet to see the lock capable of resisting "force" when applied by the skilled hands of an accomplished thief. As a matter of fact gentlemen of this character do not waste time and ingennity in picking looks; they either force them off or ont them ont, nnless silence happens to be a sine qua non. The lock that does not yield to gentle force, vary frequently has its fatenings removed by a well understood process, and if the exact position of these is not known a wide weep is taken and the piece to which the lock is secared cut out. The needie lock will not bear rough reatment, but thoce I have seen have answered very well. Like all other looks it is not proof against the plendid tools (quat tools) which your arstolans burglar ases. It is juat a question of the insertion of a bar in the keybole, a few turns of a nut on s screv, and the beck of the look, if not the whole of it, is farced off. Bauz Byieza.
[12057.]-Defeotive Sewing Mrachine (U.Q.).Make the recess in the hook doeper, that the spool may retain its position. Now, it gets hampered by dropping lown between the shield and hook, and jams the thread.-Jack or Ale Tradege.
[12088.] -Tambour Frame (U.Q.). Make it the ame me ordinary sampler frame, either with two morticed raile and stiles with boles in for stretahing, or cour lathes with holes in and pins; or, if for larg work, a square frame with a strip of canves nailed apon the frame with webbing and snap-heeded brasi aails. To this the material opon which yoa wish to work is atretched and teoked, a real being taken in to suit the size.-Jack or All Tradss.
[12064.]-Diameter of Borew (J. Q.).-This is a query i cammot ninderstand. Will J.
more explicit q-JACK or ALL Trades.
[12067.]-Portable Borce Pump (J. Q.).Some time ago, when paying a vinit to Dowgate Doc (Morowood \& Co.'s old place), I saw just the thing that would suit "W. M." It was very portable, and con sisted of a moderatorsized galvanized buczet, with a mall pump fired in the centre, furnished with brass fltinge. Branch has plain lats, and rose with indisrubber hose, and at what I thought a very reasonable price-Jack of All Tradege.
[19067.]- Fortable Force Pump (U. Q.). This pamp is convertible in case of are, or for garden phopeses. is will need bus litule explanalion. parts: by following the lettors nothing can bo miennderstood. It will be seen by reference that I have not introctueed for gerden purposes the ordinary rose for watering prepose bet one cimiler to a ratar, as read by-fecrisera; aebling the bent-anited, 00
as not to destroy the most tender blossom of flowers or plants. The only letters I shall mention will be those marked M, arm of piston disconnected; N, hose and union joint or sorew; 0 , bell-shaped nozzle at the end

riolin, and as thiok as the depth, say litin. Cat out the shape with a fret-saw, and you will then have a ramework to begin with (see sketch), A A. Out out to that you can uese hand-parew or small oremp to fetch up the blook when glacing frame cut the corvers BBBB well in, and wide cenough to take two picces the thick ness of the sides of the violin, bat don't cat it too and fit them in the frame You can bead them to thed hape on a round piece of iron made warm, not hot and beld in the rise. Noe don't be in a harry when bending the sides becanco there is plenty of time, and If the iron gets cold yon can farm it egain. If the sides do not bend readily, we the upper side a lithe, oniy don't try to bend it all once; do it litkle by likio and it will gradually oem to its proper place When the sides wre fit you cat propare the blooks, six in
of suotion hose, or fastoned by union joint to bottom of pump barrel. To render this pump compact, as well as portable and convertible, I have carofully arranged every part. The supply of water may be drawn from
pond or portsble cistern. - Josnpe Wrincay Fennelu
[12071.] - American Drill Ohuck (U.Q.). Tap the chnck to fit the lathe spindle.-P. W. H. J.
[12071.]-American Drill Chnolk (U.Q.).-

[12075.]-Fruit Syrups (ס.K.).-There are rarious ways; 80 me are chemicals coloured with int of which one ponnd of sugar is added. Some are pint of which one poand of sugar is added. Some are tend and stand natil clear, sugar bein
ing. Jace or AlL Trades.
[19076.]-Polishing Elate Clocke (U.Q.).-Take a piece of flamel or list, with spirits of wing, and see whether it hes been lacquared, if 80 wash the lecquer off and net copal varnish. Sometimes these are oilod before leoquering, which
JAOE OT ALL TRADEs
[12082.]-Turning Tools used for Metals U. Q.).-These are hook tools, heel tools, diamond nose, side, L, three square skimmers, bolt head, planishers, for all classes of brase work, and filed for quirks, hollows, and beads of various aizes, for standard ools as well aspgnimet, ahical nose, round.nowa, all of hand turning for slide-rest. They consist of ronnd and ane nect ronghing tnife, spring rading bead

bollows, so. The sketch will give a general ides Tate them in rotation, as mentioned; the last is the Bootch, and is not to be beaten for rough work, and in fact, general ufe for suriscing or boring tools; but though you may have the formagiven, and make them it is another thing to use them.-Jack of Ale Trades.
[12088.] - Polishing the Fdgesof Glases (U Q.) -This is done in many instances with a cork wheel and fine or flour emery, patty powder,
[12085.]-Cricket Bats (U. ©.).-A oricket bat re quires no staining ; age is the only seasoning which is serviceable. Polishing is a drawback, and makes it more of an ornamental than a usefal toy. The face of a bat shoald on no account be polished, for then oil canno penetrate, and no bat can be of much nse for any length of time without constant oiling.-W. M. Comles.
[12085.]-Ciricket Bats (U. Q.).-Can be atained with a weak aolation of bichromate of potanh, epirit, and turmerio, and poliahed with palo polich or a coating of bright.-JAOz OP ALL TBMDEs.
[13087.]-Violin (U.Q.).-Fent is the means of bending sides of violin. If the wood is wetted it is apt to recover its straight form on cooling. The violin makera use "curling tongs." For the amaterr I suggest the following mode:-Heat a piece of round iron (an urn-heater will anewer), nip the cooler in the vice, bend a piece of tin and put over the heated ond. It the prepared slip of rood is held down upon the tin, shifting it as required, it may be carefully beat (dry) to the required shape, and will retain its form.Sugfole Amatedr.
[18087.]-Vialin (U.Q.).-Get a piece of wood (pine will do) large enough to eat ont the shape of your
number, one for each corner, and one for anch end. Be careful in fitting the blooks, and get thean to bed well. When fit you may prooed to glee the nidee ing block up two corners tirst, one at emon'
do the othors, and then the onds. Bee that the gitee. do the others, and then the onda. Bee that the give has not famened the sides to the irame, or you put some a job to get it out. When the blocks ere cot, pat some 'strips of wood at each edge inside; cut the stripe in lengthe to reach from blook to bloak, and bana hem the mame way as the lides over the iron. Nae strips are bast made of split wood, you can then in depth, and

about one-sixteenth of an inch in thickness outides and tapering off inside. When finished you taper them alter fixing them in their places. Prepare one side of the etrip, and fix it tightly into its place, each ond junt catching on a block; when they are all in and at ininh. off inside, making all perfeokly smooth; lovel the edree and the blocke, and it is then ready for the back. If sou don't understand thit wito again, sad I will endearour to explain, though I conld have shown you all about it in lese than one-half the time it has tateen me to write this.-J. R. F.
[12087.]-Violin (U.Q.).-I will relate how ast job was done by mo with perfeot suceess. A frame of deal is first made of the eract ahape of the outhee of the violin, out of two pieces of doal sin. thiciz, imes together face to face, with lin. blocks between, so te to make the whole depth 1 in., the usual dopth or the ribs. The wpod for the latter having been redaced to something less than one-iixteanti ness, should be cut to the exaot lengths of each rib, sad
 atoeped in warm whier bent on an Italian iron such as lenodreaces nee Tiz., aniron turoo on a heaters are put from time to time to keep up the heat. To preep dop the strips on the irom uso a piece of wood virn the ond bollowed to it the curre of the iron; whilst the wood is gtill varm Gx it in ita plece rith umall fist piecan of woord
having a head at one emd projecting at right angier; the rib so as to make it sit cloee to the frame, and drive a small tack through the flat part into the face of the irame, and When all the ribs aro bect and secared in this way, set it aside to dry; arterwards glue a small block of wood into each angle of the ribe. and also some strips of deal, sboat zin. deep, sad oce sirteenth of an inch thiok, roand the top and bollom
 of frame,
Viownist.
[19087.]-Violin (U.Q.).-Boil them, and upon and botween block.Jucg or ALL TEADEE.
[12088]-Cleaning Jowrellary (U.O.). - Sat ammoniac and urine are
[12091.]-Plums (O.Q.)-Dinense is said to be canased by the large roots getting down into hangry soil, more eapeaially if your bottom is red gravel. I have seen trees treated thun: Uudermine the roots and out ofl the tap rook Grab out if you can, with as little injury to the surface roots as possible, and anl in with old mortar, or, what is bettor, powdered oyster sholls. The trees mast be lopped in proportion. I have scen rees that have been served like this-which bore no rruit before, but plonty of bloom; and others that have berne frait to a great extent, but which never camo to perfeotion-onred and beoome aplendid trees by this trontmont-peara, plams, apples, walnata, g00seberries,
vines, ac. There is a nice little work called the "Cottager's Calendar," by Preston, price 8d.-JACX or All Tandes.
[12108.]-Staining Glacs (U.Q.)-Those are plated glasses, that are only coloured on one side. This plated glass is acted apon by hydrofinoric acid upon be coloured side ; in fact, it is otohing upon glass, the cid dissolving the coloured glans and learing the other clear for colours.
[11107.] - Recipe for Gremy.Strapping (U.Q.) -I know of nothing bat hot water, which will drive the greace out. -Jace or ithl Tradia.
[19107.]-Reoipe for Greasy 8trapping (U.Q. -When atrapping getes so rreasy as not to be pieced rith the ordinary belt panch and leoe, there is no help or it it muat be got rid of. Avoid all very greasy
in to alip ii the grease is in excees.-P. W. H. J.
[12109.]-Old Locomotive Tubee (U.Q.).-They are generally very brittle, and must be thoroughly cleaneed inside and out, then heatod very nearly red hot, and slacked in water. Fill them eithor with pitch, re
[12095.]-Flardening Eteel Bhafts (0. Q)With a few fre-bricks build a furbace after the following sketch:-Fig. 1, end view; Fig. 2, sootion through A F; S SS, shafts; brioke are left ont here and there in the orown of arch, and the same through flue F. At right angles place the onds of shafts throngh, and late in with loam; rest the other ends apon trestlos. Heat to a bright blood red, and alaok in a good depth of water, at 80° or 90°, planging
them in perpendicularly, and let them in perpendicularly, and let
them remain antil perfectly cold. them romain until per
JACK or ALL TRADEs.
[12119.]-Pump for Colliery (U.Q.).-I ohould fanoy a centrifagal pamp woald aza wor you
[12119.]-Pump for Colliery. -I don't exaotly understand "One in Need." He anys that he has to
briog 500 galls. 200 yards, but does not say to what height it is to be raiced. It it were on a level or on an incline downwards towards shalt there woald be no need of a promp, so I ans forced to the conclasion that it has to be raised. If this is only a fow foet, a contrifugal pump
would do best. It moald only requa would do beat. It fould only require a vory sman in Need" is anything of a meohanic, he cone make one himealf. The wheel could be entiroly o brase, and cacing of sheot iron. One of sboat 8in. Iiemeter would do, of coarse a less one woald do, but I think that that woald be most servioenble. Bat cannot eay ponitivoly anything ooncarning it nutil 1 have farther particulara. I want to koow detcription of mine- Whether it is driven in the side of the hill or not, or whothor, if it has a shaft, it has as rogular sot of pamps. A plan mind nection of mine woald make things clearar.-P. W. H. J.
[73155.]-The Suspended Shilling. -The ntatement that a suspendod shilling will atrike the hours oan hardly be taken as a fact. I have cured one person of the esclacy by requesting him, instead of looking at solf, to watoh his arme and observe that it does not move. I ehould expect that your correspondont is equally open to a eare.-Sutrole Amatecr.
[12172]-Conatipation,-Int "H.S. A." try the fothowing: 10 grains powdered rhabarb, 24 graina i eceacuanha made into 24 pille. One to be taken thrico daily with a littlo good exorcieo. Continue for two or three weoka. If no benefit aricos the remedy is not hurthul.-Buypole Amatice.
[12180.]-Secsoning Pear Wood.-If A. H. Coake keeps his pear wood in a hay-loft he will tind it soon apoilt. Cboose a place which has a cool dranght, the hay- allow the wood to dry. Pear wond is used for tarning and oabinet work.-SUFYOLK AMATE UR.
[12184.]-Brown Farnish for Basketz-Uso
[12187.]-Repolishing Chimney-piece. - Polish with Tripoli, and then with patty powder and felt; don't nes too maoh wator.-E. M.
[12205.]-Double Rocket (Heaperis.) - In answer - the above as to the best method of propagating
the mame, 8. Bottone (pagn 415) sayn: "Beat from ceed sown in the antamn to bloom next year." I hope that 8 . Bottone will oxcuse my asking if he bas raised the doable roaket from coed himself, or if he apeaks from the information of others. I have grown the donble rocket for the last twonty years, and 1 never foand it to produce a single seed. I havo looked at enveral worke on hartionitare as to the method of propagating this plant, and and no mantion made of cod. They givo the nanal method of propagatiog by iviaion of the rooks aftor the plants are done flower ing or by eatting.-Asel.
[12218.]-Coffee.-I have latoly seen a self.acting apparatus like that described on page 416. In the one I man, however, the two resoels (whicli were of oarthen-

rare) instead of being above one another were placed at the extremities of a brass rod balanced like a see saw. The chamber containing water, which I will cal

Mr. to resiat the heat of ges for houn. Surely, is Mr. Sharpley spoils a lead type every half-hour, brase must be cheaper. Why mot try oast iron 9 or are the letters too small to get good ty pes in this motal.-E. M.
[12349.]-Figh Pressure Fire-Boz Boiler.In reply to " 495," the plates of the sinell are to be in. thick, double riveted, and best Stafiordehire iron The ends to be same kind of iron' ita. thick, having wo strengthening pieces sin. thick, and Ein. wide, roted diagonally across from about the crown of the abe to the shell, and the stays mentioned in my frat etter pass through shell and atrengthening pieces sud crewed up. By the use of Galloway's tubes you migh make the boiler move over $40 \mathrm{~h}-\mathrm{p}$., but I think that it wards as jou find your power ingafficient. Thas you ill always be able to inarease your power withon putting an edditional boiler down. If I had calonlated or Galloway's tubes at first, I might havemado the boiler oonsiderably smaller. The tubes aro to be set t an angle of 10° with the vertical lime. There are to be 85 of them set in two parallel rows, at a distance of ft. from eaoh other in the line ; they are to be abon ain. wide at bottom and sin. at top, internal, and bort fin. thiok with flangen. The bridge is to be a briok and a half thick at top, and two bricks at bottom. The Arebars to be of oast iron. I need. not particularise Hopkinson's valve, becance, of course, you will obtain t direct from the maker. I monld meraly etipniate that the diameter of the top eafety valve should be 6sin. diameter.-P. W. H. J.
[12255.]-Elair.-The best wash is : Boso-water, 80z. glycerine, toz., aul phar, 1drm., sugar of lead, fdrm. mix. To be used daily till the head is clean, and then occasionally. Proved.-M. W. G.
[12258.]-Old Violin. - The label "Ohetianas amaten Camonensis, 1640," does not indioate value apart from its genaineness. I cannot find any man tion of such a maker of violins. The Amatis of Ore ona most known aro Andreas, Hind Bologna.-Butrolx AisatRUR.
[12867.]-Cabinet for Birds' Eggs.-" C. T. B.' will find that a miniatare chest of drawery will be the mont anitable reopptaale tor apeoimars of egge, \&c. W. М. Социes.
[18293.]-Tighthouses.-Mr. Hey must epply to the Trinity Board, Tower-hill, E.C., when, if suc censfal, he will have to go throagh a couree of taition on Blackwall Wharf, and finally pass an examiantion by the Trinity engineer.-LaND's'AND.
[12200.] -Trar Pavement.-There are one or two points of importance in the construction of this kind of cansemay that appear to have been overlooked in Phiv's reply. One is, the regalation of the size of hard mabrials w mix wilh Gas.lar; and another ho neoesaity of securing perfect adheaion between them extent hom extent homogeneons and prevant its breaking np from wdieh is very successfully adapted to provide for the heary wear and tear of exposed railway platforms, the following particulars soemed noteworthy :-Firstly the following particulers seemed noteworthy:-Firatly,
the securing a perfectly firm fonndation of hard ranmed chalk, bailding rabbish, or other "hard core," the thickness to be proportioned to the anticipated trafice and to the oharacter of the soil beneath-i.e. with regard to firmness or tendency per contra to with regard to firmness or tendency pir conira a tery yielding oharacter, it must be excarated to a sufficient depth and replaced by the fonudation stafif well rammed as aforeeaid. The hard material for the path may conaist of gravel stones or of ahingle from path may conaiat of gravel stones or of ahiogle from
the ses beach, broken etone, or anything similar ; but it must be double riddled, so as to exclade all pieces it mast be double riaded, so as to oxclade all pieces fal size spoesrg to be from ensions. The limit of usefal eise appeare to bo lrom tia diamoler as cho ainimum, up to lin. or 1 in. The next objeot is to thoroaghly dry this matarial. as as obtain perfeot adhesion of tho tar whea applied to it. For this purpoee the stone is carefally romsted, in this way: Δ thin layer of the stone is spread, and upon this a fre of cinders is lighted. Whan it is buraing woll a smail quantity of the stone is scattered npon it; and when this is thoroughly hot more cinders, and again more stone, and so on, until the whole of your material forms an incandescent heap. When it has thus remained a sufficient time to have overy particle of moistare expolled from it, it bocomes (as may well be sapposed), vary "thirsty," and will sack in any fluid applied, $s 0$ as thoronghly to incorporato it. Bat first the hot stnif mast be again sifted to got rid of and the ashes and dast; and this mast be done qpickiy, in As fast as it is sifted and thrown out of the sieve by As tast as it is sirced acd tarown oat of the star from a loog ladte, and another rapidly tarns the heap over a long ladte, and another rapidy tarns the heap over
and over, so that every eorap of atone gets a thoroughly good coating and soaking with the tar, but not in excess of the quantity required to secure adhenot in excess of the quantity required
sion and frm testare. These procesess, it is obvious, mant be cormiod on, not npon the aite of the intended mast be orried a, hort diatance from it; and the tar, or mixtare of tar and pitoh, shoald be placed in a tab or mixtare of tar and pich, should the piacedin in the or half-oast sunk to a levol, wand theace may be convieinity of the roasting heaps, and theace may be coa-
veniently ladled ont as doecribed. The tarred atone is then barrowed to the path, apon whioh it is evenly then barrowed to the path, apon whioh it or so, the spread to a streanged with proper "pitoh " for surfacedrainage. It is then rolled with heary rollops; and in drainsge. It is then rolled with heavy rollors; and corners or against wals, where she rollers cannot
rammers. After this, a surface coating of drying stnf. which may consist of coarse sand or lime rubbish, or, better still, the small chips and dust from a stonemuson's rard, muat be sprinkled evenly over it, and the roling and thamping repeated. If, from intense "sne" np on presnare, farther coatings of the drying stnff may be applied from time to time as required. And, if not objectionable for any reason, a thin coating of the same may be left loose on the surface for a time, to prevent any possihility of damare to even the most delicale of "onderstandings" by direct contact with
the tar. The pecnliarity of paths well made on this principle is that-like

A woman, a dog, and a walnut tree,
The more you beat 'em the better they be.
They improve continnously with "wear and tear ;" will stand a considerable amount of even rough usage; and, agreeably elastic at first, they finally settle down to a nnder cover in this way, a larger proportion of pitch, or of real asphalte, appears to be required; and the broken Derbyshire apar (crystalline anlphate of lime)
is nsed with good effect and great advantace in estabis nsed with good effect and great advantage in est
lishing a firm and pleasant sarface.-G. W. K. L.
[12811.]-Eyydraulic. -The quertions are easily answered. Pamps expel only the water which stands above the $\ln w e r$ end of the pipe; never that which is
under it. The action of the pnomp piston is to create under it. The sction of the pnmp piaton is to create a vacuam, which is immediately filled up by the detion" but by atmospheric prespare. This presfnre is also called gravity, and incorrectly considered as cen-
tripetal. Hard water, being of greater density, nccutripetal. Hard water, being of greater density, nccu-
pies the bottom of the well; it cannot ascend, if not pies the bottom of the well; it cannot ascend, if not coft water ascends in proportion as a vecoum is produced nuder the piston: it descends first hy atmospheric pressnre acting on its surface. The place It is always the apper water which descends to the pipe's mouth, in obedience to atmospheric pressure, and fills np the racuum. Should not this take place, no water wuuld ascend at all.-C. R.
[12329.] - Practical Mechanios.- What do the several correspondents who have written npon this
subject require? Mr. Anderson's Centor I subject require? Mr. Anderson's Centor Lectares were given pretty fully, sud at the present time the Rev. A.
Riga's Cantor Lectures are appearing just as fally. Rigg's Cantor Lectares are appearing jast as fally.
Both these series of lectures are apon the subjectApplied Mechanios. As for books upon the subject, I agree with yonr correspondent "Cser Glon" that they are unsatisfactory; bnt it is probable that before long something better will be published. Meanwhile, let me advise all atudents to follow some such plan as this: the to see a machine at work, seek out the point were the power is applied, then see where this power is carried to, and how. If this be done, the stadent will be rendering me personally an important service, and I believe many others also, if correspondents wonld deaire to know in this sabject of applied mechanics.desire to k. W. B.
[12341.]-Moths.-Finely gronnd white pepper duated on the carpet and ander will banish them, but may banish rou, ton, it yonr nose is mach given to sneezing. Try sauf.-M. A. B.
[12344.]-Disappearance of Art.-Tf there be no remains of the mechanical arts fonnd in Egrpt, Assyria, de., does it not argue that they never existed of England waned, and the mechanical arts were lost, of England waned, and the mechanical arts were lost,
what would become of the rast accumnlations of that indentructible material, iron, existing in the form of ponderons bridges, craves, girders, steam hammers, marine, loco, and land engines, \&c.? Their debris at least (if not their actual forms) wonld last many Thnasand years. This query and 12874, "Ancient quiry. Many thanks to S. Bottnne and to "J. C. L." for their answera to 12188 . -LXXXVIII.
[12346.]-Gearing Waggon Wheels.-In my reply to the above query (p. 409) there is a alight mis.
take. It ought to be thostake. It ought to be thus-
25:2:-10(arm
25) 200 (8 in ., or $\mathrm{a} / 10$ of an in. out of straight line. 200

-Luffra.

[12347.]-Stroke. -The stroke of an engine is twice the radias of the circle described by crant-pin. It can be ascertained from an actual ongine by tarning the will go, and the engine is on the dead centres. Then tie a piece of string tigbtly ronnd the piston-rod, close to the top of stafting-box. Now turn the fy-wheel to the top of stafting-bys. Now turn the fy-wheel measure dintance between top of etafing-box and of fr.wheel for the Boalton and Watt engines as given by Watt, is fonnd by this rale. Maltiply the number applied by 2,000 , and divide the prodact by the square of the velocity of the circamference of the wheel in fet t per second, the quotient is the weight of the wheel in cwts. Thus, the weight of a \#y. Wheel for an engine oiameter, aud to revolve 22 times per minute 18 The modern rule, as given in "Mlolesworth's" for weight
of rim. is this: Let $D=$ mean diameter of Theel in $\mathrm{S}=\mathrm{P}=$ total averaga pressnre on piston in lb., and cwts. $=\frac{\mathrm{P} \text { S }}{45 \mathrm{D}}$, and sectional area of rim in sq. in. $=$ 11.43 W , and $D=$ stroke $\times 31$ or 4 generally. For engines with bigh expaosion or irregnlar loade, maltiply W, as found above, hy 1.5 . Some engineors have from 6 tn 8 cwt . per horse power, frnm 6 tn 8 cwt . per horse- Therer, of which weight in weight nf boss and arms. This rale gives the fiy-whenl
about 8 to 6 times the average monentam of piston and other reciprocating parts.-P. W. H.J.
[12349.]-Spanish Pronunciation.-Erratux. -The word blancher, as given in the tenth line of my July 19th, 1872. onght to be blanco: the error is typographical.-War. Wrar.
[12351.]-Underground,Telegraph Wires in Cities.-The snil is dng ont to the proper depth, a bed is made at the hottom sufficiently large to receive
the wires and allow of their being isolated. These the wires and allow of their being isolated. These of a disc of perforated sheet iron, threagh which they nass ; three or four yards are drawn out at the time. nass; threo or four yards are drawn oat at the time. bitnmen, or common reain, is poared in so as to completely envelop and isolate them. This dono the work is complete, and the earth is covered in. Sach
wires never need repair, and are free from all influence wires never need repair, and are free from all
of atmospheric electric perturbation.-C. R.
[12352.1-Centrifugal Pump.-It appears to me that if "Rat-Tat" tried a pump constracted npon his idea, which is only a modification of the spray apparatus, he woald ind that if the aperture for the exit of the raised water were anywhere between the stean noznle and enrface of water that the air woold rash pass nozzle as the smoke and air in locomotives does. the wator would be blown into apray and the steam condensed instantly.-A., Liverpool.
[12352.]-Centrifugal Pump.-The plan mentioned in the latter part of answer of "Rat-Tat "has with the centrifagal. The reason is that to pamp or eject with the centrifagal. The reaton is that to pamp or eject of the eteam, if it is not in larger rolume than would of the eteam, if it is not in larger volume than would
be required for a well-constracted engine.-P. W. H. J.
[12952.]-Centrifugal Pump.-I will Arat answer last part of qucry-viz., to gind the number of revolntions. I shall sappose that it is Appold's or Gryane's, as these are the most largely employed. The following is the formula for calculation:-List $V=$ velocity of periphery of pamp in feet per minnte, and $\mathbf{H}=$ the
 correct, hot is near enoogh, and easy to deal with. Then $\mathrm{V}=(550+550 \times 3) \mathrm{ft} .=2 \mathrm{O} 00 \mathrm{Lt} . \therefore$ Number of revolations per minate $=\frac{2200}{3.1416 \times 2}=$ aboat 350 revola-
tions per minate. The leather helt mentioned would be exposed to a strain of 5301 l . Theoretically, 8in. and a fraction woald drive it well, bat I think that it is an adrantave to hare one 10in. brond, as there would be mich less danger of atraps breakig, huroagh not belag shown by dotted lines woald be of no possible ase for so ahort a length of strap. If it were a long strap, then it woald be nsefal, on account of the weight of the strap increasing the adbesion, bat even then it would hardly be worth while. The small palley marked e on drawing (which, by the way, is not described) would increase the adhesion considerably, and so lessen risk of breakage. Il "Teachable" had sent description of chain, it wonld have been possible to bave segn whether of getting over this difficalty is to increase the velocity of the palley c, ard lesseuiog its diameter. This woald bave the effect of decreasing tensional strain on the chain. It woald be the best and sarest plan, bat would entail considerable cost. Either diameter of aparwheel a wonld have to be increased; or, what is mach cheaper, if possible, the diametor of the pinion b would have to be diminished. At atl events, try the
first with present arrangements.-P. W. H. J.
[12352.]-Centrifugal Pump.-I have seen a woven leather belt (Harn, patentee) driving a 16 horsepower engine and centrifagal pamp to perfection. One of these woven belts has been driving the engine at the
Royal Gas Factory, Woolwich Arsenul, upwards of Royal Gas Factory, Woolwich Arsenal, upwards of
three years to my knowledge. Inapect the belt and jndge for yoarself.-Mecuanic.
[12666.]-Pianofortes without Strings. - It ar. Fennessy will take the tronble to look into beveral articles lately printed, he will find pianos without atrings are no novelts, a patent for one by Dr.
Clegget dating 1788 . Tbey are now in rather common Cleggebating but were never extensively adopted, probably because the tones of most of them are very short, bat this I believe to be only the result of the bad proportions of their forks or vibrating parts, for the soands of a good taning fork are ans thing but " short," certaiuly not so short as in Mr. Bottone's words to "require no
dampers." Mr. Goldsworthy's-I shonld bave written Geldsworthy Gurney's-piano was mentioned by mee as being one of the best and simplest arrangementa I have seen, and becanse it promises to obtain the greatest possible resonance any such instrument seeme likely namerons, ay Mr. Fennesgy will fud by "reading ap"
stracted pianofortes whoso sounds were obtained from steel wires coiled like a catherine wheel, the atraiy tht ends of which fitted tightly in a holo formed in $8:$ bridge on the sonndboard. He taned them by forming a screw on the straight part Thich projected above the was fitted batherna of a rather tight nitigg nat apringe, a la American clock "bells." To raise their pitches, he drew more of the straight parts thruch the bridge, thereby shortening the lengths of their vibratiug portions. To fatten them the reverse
operation served. I think very similar means have been emplosed for varying the pitches of harmoningo reeds, and noware for organ reeds.-Tas Hakxosiors Blacksmith.
[12968.]-Imitation Bronze. -There is a prae dice that I condemn-riz., nging corrosive sublimate fo bronzing. It in, in the frst place, very peraicions,
and will make brass work as rottea as a biscnit. It, therefore, exdangers the pablic safety if ofed in gas-ittings. Use sulphnte of ammonia and awoat with acid.-Jack of All Tradrs.
[22368.]-Imilation Bronse.- Powder the rorto sive snblimate; if it
suffeicnt.-W. Bolton.
[12974.] - Ancient Wrought Iron.-Is not the diameter of the base of this column a hotle nverstated.
$14 f$. in . seems rather out of proportion for the base of a column probably not mneh inger than ite rieible pro tion, which is stated to be $488 t$, and onlr 12 in . diame!e at top. Should it not have been $144 / 10 \mathrm{in}$. at bottom If this wroaght (?) iron column be a mere relic of a past civilisation, like Cleopatra's needle, and no longe? serves any nsefal parpose where it stands, althoaz as a rale I abhor robbing rains, I yet think it woald be worth while to bring it to Eagland, and if snme What too large and heary for the East India Masenm. it might be sent to that interoating refoge for destitato cariosities, Soath Kentington Maseam, and again s.0b-
jected to the inflaence of (Horry) King Colo.-Tiux jected to the inflaence of (
Harmonious Blacksyitr.
[12384.]-Coppering Carbon.-Place a piex: c? zinc in the porous pot, with one part of anipharid acid and seven parts of water, and in the onter cell extra criat solat extra cryatals added to keep up the artrength. Trist a
piece of copper wire roand the carbon. and conatec to the zinc, allowing the carbon to dip in the esppry solntion as far as reqnired. Motalic enpper *ill shortly be deposited on the carbon, to which you cas easily soldor, using chloride of zinc, otherwise kil.a spirits of palts. I think th
(query 12453).-W. Bolton.
[12397.]-Boat Buslding.-Having built s sme boat for my own amusement (thongh not a boat bailder if gives me pleasure to write what I know of it, in ats
hope of impartiug some beneat to " W. S." as? others. The kind of boat I wanted was such as ons person could emsily row for six or eight miles, sud if necescary carry two or three personc. Having bs visiting the quay decided on her dimensions-nametr 12 ft . keel, 3 ft . 9in. beam, and ahout 16 in . deep amid. ships-to build one of these dimensions the folloxing materials are reqnired :-One piece of oak 13 ft. ty
3in. by 1 tin. keel, one ditto 2 ft . by 1 ft tin. by stern board, one ditto 2 ft . 4 in . by 3 in . by 1 ifo. stern post, one ditto 2 ft . 4 in. by 4 in . by 1 ijio. (crirred) ntem, two best quality sellow pine battens $14 f t$. by $7 i n$. bj seven bor from shakes, or bad kunta, sod not dry-cat ask 5ft. by lin. by sin. ribs, twa pieces of ash 14 ft bs $1 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$. gunwales, three dozen $1 \nmid \mathrm{in}$. brais or 6 lb . pint. for planing sind catting timber ordinary tools bost builing half a dozen pairs of what are tormed fongs will he foand very nsefal for gripping the planks together antif shaperery nseial for gripping the planks together ant. shaper and secured. 18 in . by 2 in . by 1 tin., taper from 12 in . beck of
osk outside at one end, and at the other taper them fin back, or inside, to give room for a wedge : strap together. secure each on a pivot, and by driving in a Fedge s: short end the jaws tirmly bold the planks together. T. build the boat, or rather the ray I brilt it, whi baring planed ap the stuff, I half checked the stem and sternposts on keel, nsiled on sternboard, rebated ked for edge of first boerd, placed this frame on a eorpi, of stools about 20 in . high, and stajed it securely in is upright position; cat one of the boards lift. loog to the centre; these formed the first planks un eech sid pailed three or foar pieces 6in. by 3in. by iin. beel to keep first planks horizontal smidshipe. on each edge to fit, painted rebato in keel and piar on each adge to fit, painted rebato in keet and eag next plank, overlapping edge of first tin., gripped next piank, overiapping edge of first tin., grippedic-
together with tongs, thpered edge to At, and reda top edje at stem and stern, as at those points I and proceeded to third, which I had to ont and again to get it third, whi I had to cat and $2 \frac{1}{2}$ in. long, kaving a piece of brown paper painted each side, and well nailed together, saited mainte. W the planks had been bronght up to the required de end barpe of boat the gnuwale was pot in, and is: spont, stopped at one end piecen ordiuary tin. dir spont, stopped at one end, serred metor steamit
chest to soften and supple ribs, the nooner theen checured to planks after coming out of "ebeat" better job; mine were putin lyiu. apart ; three o ribs, four costs of paint on ontside; then shepei ansmers my parpose well.-H., Bellast.
[12417.]-Hardening Spiral Springs.-You have probably been using mild steel, stoch as pianoforte stings ; it won't harden or temper to spoak of. Get Rood cast
UBBORNE.
[12419.] - Photography. - Wator alono. - 8.
[12427.]-Entomological.The maggot is very like an ordinary aheese maggot, abont fin. long, but stonter. It is found singly or by tros and threes in
the enap-ressela of the leal-atem or midrib of the leaves the eap-vessele of the leas f -tem or midrib of the leaves
that are turning yellow in various apecies of Brassics. that are tar
[12428.]-Air Vessel for Pump.-The size, ahape, and matorial are of no miroment, so that they are bif onongh. It may be neoesiary to provide for
the periodical supply of fresh air into a pressure pot.

[12429.]-An Engineering Inquiry.-There is no royal rond for a practical enpineer to attain even a partial knowlodge of his profescion. At the same time, if J. A. P. Spence is in eornest, let him engage for two years in a marine engineer's erecting shop, but
he muat make up his mind to rough it, but "Dam spiro he must make up
spero."-LUFFa.
[12433.]-Testing Beer and Epirits.-Sykea' hydrometer as ased by the Excise is the only roliable one for alcoholic strength, prico, 15s. to 25s.-M. A. B. Roberta asks for an impossibilitr. Theoretically, ${ }_{\text {a }}^{1243}$. perfect nlane surface cansot be obtained; practically, Sir J. Whitworth Arat brought into fashion a means
of getting a plane snrface. Mr. Roberts should parof getting a plane snrface. Mr. Ruberts should par-
chase a pnir of Sir J. Whitworth's plane sarfaces, of a chase a phir of Sir J. Whitworth's plane sariaces, of a size rather larger than he requires for his instrament.
Then serape a sarface as trae as he can on the face of bis instrament, take one of the plane surfaces, oover with some colour which can be removed easily; on
bringing this into contact with the scraped sarface, the bringing this into contact with the scraped sarface, the high parts will be covered with the colour whilst the
low parts remain unooloured ; scrape away the high parts. Try again with the coloured plane sarface, and s.) on, till the colour is distribated equally all over
the surface. He will then have obtained as true a p'ane surface, as mechanics at present can make.C. H. W. B.
[12439.]-Working Plane Surfaces.-Cannot R. Roberts use the method employed by the plass polishers? I will describe it. Two plates are employed rongh. just an thoy come from the annealing farnace,
one three or fonr times smaller than the other. The larger plate is imbedded in grpsnm in a perfectly hori. zontal position apon the griuding bench, a table of
a hont 2 ft . high, resembling a billiard table. The smaller plate is fixed into the mnller or upper stone, a movable box made heary by weights, bat in such a manner that the plates shall present opposite surfaces to each other, that is a rough (rolled) tomards a smooth
(from the casting plate) sarface. When all is thas prepared, coarse sand and water is applied, and the apper stone is set in motion over the whole surface, ronnd its axis, and bachwards and forwards at the
same time, either by the hand or machinery. When sams time, either by the hand or machinery. When
the sand bas become too tine, the next size or nnmber id applied (at Nowhans, in the Anstrian States, seven kiads of sand, of different degrees of fineness, are em-
ployed), and this is continued antil the grinding is pluyed), and this is continued antil the grinding is fectly horizontal and plane sarlace. The process is
then repeated with emery, which is revewed fifteen then repeated with emery, which is revewed fifteen
times at some places, gradually growing finer, until at last the glass becomers smooth as welt as even, bat is
still dull aud incapable of rellection. For this parpose still dull and incapable of rellection. For this parpose it next requires polishing, which is done either by
machine or by hand, the machine producing the beat plane sarface, bat, nevertheless, it can be done by
hand good onongh. TThe powder cmployed is oxide of hand good onongh. The powder emplosed is oxide of
iron or crocus, also called colcothar (prepared by roastiug green vitriol and washing). This is rubbed gently
over the glass by meana of a weighted board covered over the glass by meana of a weighted board covered
with woollen cloth. This process might eansily bo applied to metal, and I think with the same succoss.P. W. H. J.
[12443.]-Indigestion.-Drink a tumbler of cold water containing a tablespoonfal of lime water as you wholo of the wheat gronnd, no bran being removed; aroid made dishes, spices, or sances. Early to bed and early to rise. As mach open-nir exprcise as
possible. Never eat to repletion, bat leave ofl whilat yon could still eat a little more; no raw veretables (salad, celery, sc.) ; avoid any vegetable that disagroes or canaes flatulence. Indigestion
diet, not by medicine. - M. A. B.
[12443.]-The Tremolo. - "Corelli" mast have loug practice to give that beartifal tromolo which he ayks for; ; it is prodaced by the trembling or quirering of the single fager which atops the note. I way yeurd
before 1 conld accomplish it properly, althongh I hav. ecraped a fldde for the past 23 yeara. Pursevere, and chase Kreatch's Exerciees (la. 6d.), you will fad many good exercises in it.-W. Clarke.
[18443.]-The Tremolo.-It is diffecult to explain, in writing, how the tremolo is produced, but, in a genoral way, it may be desoribed as the shake, withont
remoring the finger from the string, and this may be done by the fingers only, or by a free morement of the appor part of the band in connection with the parti-
cular anger required. $\rightarrow F$. F. C.
[12444.]-Day and Night Telescope.-The erecting eyepioce of most telenoopes (spr-glasses) consists
of four lencies, these are contained in the lant draw of the instrament, two at one end in a amall trabe inaide the draw and two at the othor ond ; there is a utop ia
oach of these inner tuben to out ofl the wandering raya.
 the frrt dran (the one nearent the ayo), and nnecrow from it the innor tube farthest from the oye and remove
it ; screw on the draw and focus again ; the focus is it ; screw on the draw and focus agail; the focus is
much shortar ; the objeot appears unveiled, but brighter, as it in not so mach magnified, and beaides, the loss of light insurred in pasaing throagh two lenses is aroided. Moot amall tolesoopes magaity greatly in proportion to
the size of their object-glaseen, and show darkly as day tolescopes, and do not do well at night.-PBILAxthROPIET
[12445.]-Rotten silk.-Where dast is allowed to aconmalate it breeds a spocies of fungus similar to
mildew or mast, which will very soon rot the best of fabrice.-Jace or ALL Tandes.
[12447.]-Fimployment for a Retired Trades. man.-This all depends apon a person's tasta. A good gardon will afford you a rast fund of amusement. Mechanies are all very woll; but some spond their life in such things withont knowing, or being able to drive a nail properly. If "A Retired Tradesman" is determined to go in for mechanics, and has the means, got a good lathe, not less than 6in., with tools and slide-
rest. Joiner's tools to consist of brace and bits; planen, smooth, jaok, and trying ; chisels, firmers from tin. to $1 \frac{1}{2}$ in, mortice tools from tin. to f in., beads, hollows, and moulding planes as you want them, bradamla and gimlets, a carpenter's bench, fret and circalar saw, table for lathe, oval chack, with other chacks; in fact, there is no knowing what you want nntil you start. I shonld recommend you to get the
back numbers of the Enalish Mectanic, in which all back nambers of the Enalish Mechanic, in which all these thinga are treated on. If a start is made there is not the least donbt bat that yon will and by apply. ing here that yon will nipd plenty able and willing to gire you tips. Never ase a good lathe for grinding
and polishing, bat in some ont-of the-way place at a and polishing, bat in some ont-of.the-way place at a
temporary affair up for the parpose-JACK or AlL trades
[12447.]-Employment for a Retired Trades-man.-A work -room with lathe and joiner's bench is all very well, bat hardly enough for an active-minded man, accuatomed to employment. A garden is a capital resoarce, so is an aquarinm, especially if "A Retired Tradesman" has a microscope, he will fnd his aquariam almost as interesing as a hoological Gardon, atrange. constanty of some branch of natura history will be a more endating pleasare than hool benoh. Geology in, perhaps, the most saitable for "A Retired Tradesman," but he canuot go wrong with any, if stadied properly, not contenting himself, as many do, with learning merely the names (say) of the insects he collects; he must try to observe their manners and custons, to get all the good they oan teach, which is a great deal. There is no neel for a student of nature to travel far or incar mach cost in finding ob those who know. They may be ionnd every where serving quickly increases the power of observation; those who have not acquired it, hare little idea how mach pleasure they miss. Many of the very commonesi objects are, when properly examined, amongat the most wonderfal ; for instance, what fisherman's net is half as skilfally constracted as a spider's web; what building built with sach econumy of material as a honeycomb, and we shall be lucky indeed if "our" -Peilo.
[13447.]-Employment for a Retired Trades man. - I think photugraphy woold prove very interest ing after the first diticulties of the art Fere surmounted, lessons might be taken from a professional photogra. phor. Chemistry is a very interesting study, but some of phor. Cuemistry is a very interesting study, but some of
its experiments are not devoid of danger ; however, by far the greater portion of them are quite safe. cal Experimenta" might suit.-PHilantiriorist.
[12450.]-Beehives.-The hive described in p. 806, Vol. XIV., is not the hive which I prefer above nll others; but for those who prefor the Wuodbury hive it is, in practice, the very best I know of, and with the improveroents saggested at the end of the letter, and description, it will be perfect as a Woodbury hive. My,
objections to the Woodurry are described on p. 533 same rolumo, and my neq hive is there roaghly shadowed forth, and I haro beou promising to send an aocurate description of all its parts ever since, bat really cannot ficd the time to do it. However, I will endearour to do so in time to enable bee-keepers to arrange for next year. But to retrin to "Sig. Fione showe gronnd plan. The blocks go down to within one sixteenth of su inch of the bottom, and come up to within din. of top, and on them is laid in. deal to thll ap the apaces, which said \ddagger in. stafl is usiled in throagh both inner and oater skins of hire. The notches, as in the Woodbary, are cat into, and uo are of question makes it onnecessury to reply to the last one. As regarde my new hive, results are bearing out all my anticipatinne. Swarms of this year are flling them, of them as compared with the Woodbary is mos decidedly in their favour-no idling or ontuide clnster
ing ; no fanning at entrance, which is gia. wide aud
tin. high; no difficulty abont the vontilation, as the top board being in pieoes, rontilation can be regalated
to a nicoty.-C. N. ABbort. 0 a
[12452.]-Building on Sand.-Sand is one of the beat of foandations if properly drained. The first thing to be done woald bo to asoertain what is the bailding the stratam benoath; if it is at ald sort, One of the worst aitnation for a sand forndation is at the aide of a hill-P. W. H. J.
[12452.]-Ballding on Sand.-If "Inquirer" mants agood job, by all moans pat in a concrete foundation; it is not oall a bettor job, bat it can be tion I a cannot monll to mind more powerfal recommenda. [19456.]-Fich for Steam-Engino.-Use and coke in preference. -Jacy or ALL Tradse.
[12158.]-Blowing Apparatus.-The pressare roquired to force alir harough ine ayrap woald be nearly economically, though it would force it. The plan that I should recommend would be this: Got an iron or brass ring or tabe fin. diameter, internal $16 i \mathrm{in}$. dismeter, in which pierce afty or oixty emall holes. that woald let a knitting-needle go throagh them. This is to bo fustened to the bottom of the cistern, and to have the straight portion of the pipe passing ont at the side. This will do better than the Bessemer plan for a amail thing lite this, as in the former there wonld only be needless oomplication. There then vante a oylinder bin. strote, and sin. diameter. This is to be made lite a doable.action air-pamp, and will require conaiderable care in its conatraction. It will be bent made of brass The air-ressal in to be a tia cylinder 10 in . diameter and the same high, which is to be connected mith the ring by a pipe. To the piston-rod of the air-pessel therois to be fastoned a lever-handle to work up and down like a pamp. Instead of an air-pump, you might meat with an old engine-oylinder, second-hand, with by arrave attached. This might be made into a pump tions to the piaton, by fising the valve-rod to s pin on lever. An arrangement wall be sent it desired.P. W. H. J.
[12459.]-Bending Laths.-If you only want slight work, make anw cats acruss your wood on cun-
cave side - one inoh or less npart, and two-thirde of an cave side-one inoh or less npart, aud tro-thirds of an
inch through ; and before boudiug wet the convex side only with Lot water; bat you unust itx the ends iu position permaneatly. It you want strong work you muat gire more particalars-riz., loa, the chord, rise of arch rom chord, kiad ol view. I am supposing deal; but you can buy of a
cooper a hoop of ash to make two much atrouger and cooper a hoop of ash to make two much strouger an
cheaper than you can make oue.-CABINET MAEER.
[13159.]-Bending Laths.-If birch, beach, ash, ke., boil them and bend apon blooks. Oak. lime poplar, willow, \&e., will rotaiu their shape. With the get thom to a diftcalt job not to bond them, bat to groove or fixed in some way.-Jack or ali Trades.
[12401.]-Threads in Gas.pipe.-If "A Sabscriber" will faruish himselt with either Greenwood's
or Martin'd book apon "Berew Catting," he will have or Jurtind book apon "Surew Catting," he will have tritliag outlay. They both advertise in "ourd"-Jace of all trades.
[19461.]-Threads in Gas.pipe.-1in. and npWardy = 11; fin. and tin. $=14$; sin. and fin. $=1$ is; Bolton.
[12402]-Electrotyping.-Copies can bo taken of the plaster it it is properly prepared. They must frat be dipped in melted wax and allowed to remain
for a fer minates. After they are cool they are to be blackleaded with a bott brusli. This wants to be doue so that the blacklead is scarcaly risible. They will then so that the blacklead is scarcaly risible. They mill then
be ready for copyiag. They will return a fair medal be ready for copying. Thoy will retarn a hair medal,
but there are many sabstances more saitable. Gatta perche serves the purposo admirably. The method perche is to heat the guttaperoha in boiling water, or in a chamber heated to the temperatare of boiliug water which malies it soft and plable. The plaster casts are to be titted with rimi made of stout tin o pasteboard, bound round with wire. The gattaperch is then to be gently kueudelin and worked ronud until it has penetrated into tho hollows of the plaster. The are then each whave weights loaded on the gatta
percha and set aside antilit is cool. Another plan is percha and set aside ontil it is cool. Another plan is
to place the plaster casts, if medals, or sianll ones, each at the bottom of a separate sancer, and surround it with well-kneadod clay flush with sariace of medal, allom this to dry aud press the gattapercha into it. To ob with boiled liaseed oil until it is perfectly satarated this succeeds best when plaster is gently heated. another plan is to satarate with water, and anotho and before the max is quite cool undo the rim or else it will stick to the was. Care must be taken not to poar on the wax too hot, as that is one griat canse of ailare in getting good moulds,
jost as it it is begiuning to set in the disb. Poared on
Pat the medal and wax in a cool place, and in about an hour the two will separate easily; when they adhere, the cance in either that the pianter has not been properly
prenared, or that the wax hae been poured too hot.nrenared,
P. W. H. J.
[12462.]-Electrotyping.-I should recommend the ase of guttapercha in preforence to wax, the latter
of the formation of air bobbles, and other inconveniences. The gattaperoha mast be hoiled in water until quite soft. The object to be copied, if plaster. shonld be slightly rabbed ovar with sweet oill, and
shonld be provided with a rim of cardboard, or very shonld be provided with a rim of cardboard, or very
thick drawing paper, allowing suffcient depth in the thick drawing paper, allowing suff cient depth in the
rim to hold a requisite quantity of the material. This rim to hold a requisite quantity of the materia. This gaa. A rim of thin tin will answer the parpose very
well if properly secared by means of a fine wire. To lay the plambngo on the moald, you need only to noe a camel's.hair brash and rab on the plambago (which mast be very freely pulverised) in very small quantities. working roond in circles, antil the mould hus acyuired have almars found it to answer admirably.-W. H. H.C
[18462.]- Fileotrotyping.-Take a piece of cardboard and tie roand the edge of caots, either wetting or oiling before pouring the wax, or standing the whole in a hitue water in a sancer. To make the blacklead then apply the plambago with a soft camel's-hair brash.-Jace of All Trades.
[12463.] - Vision.- There is another theory for the correction of the inverted image-viz., at the optic commissare or janction of the two optic nerves, there are three sete of fibres-decuscating, non.deonssating, and oommissaral. It is supposed that inverted vision is corrected here by the lower ibres pasaing apwards, and the npper downwarda. A parfectly salisfac
reamen, howerer, hae never been given.-M. A. B.
[12463.] - Vision.- Perhaps visible direction has something to do with the inverted image, as evidently the oye recoiven the rays of light proceeding from an object above it in a direetion alanting downwards, and we may thra be enabled to jadge of the position of the object ; a similar reasoning mill apply the situated below the eje.-PHiLANTHROPIBT.
[12463.]-Vision.-"H. Science "asks for the mos probable canse of the inversion of images on the retina, but as the oanase of that is nearly sell.evident, I think he mast mana to ask why do objecta, the images of Thich are inverted on the retina, appear to us upright.
The difficulty I feel in removing this dificulty, which Tho difficulty 1 feel in removing this difficulty, whicu many have, is in understanding what is the difficalty they and. We are entirely anoonscious of the image Which is formed on the retiua; all that we learn by
direct sensation is that wo see when there is nothing direct sensation is that wo see when there is nothing
between our eres and objects giving off or reflecting between our eyes and objects giving off or reflecting light ; that we see most distinctly the objects at
which we direct onr eyes, and that when we try to see Which we direct our eyon, and that when we try to see parts of ohjecte above or below, or at the side of that immediately in front, we have to turn oar eyes up. wards, downwards, or sideways respectively; and we
have learned to do that just as we have learned to raise bare learned to do thas by the waction of muacles, the or depress our hands by the astion of maseles, the
antion of which is quite anconscions to us, naless, insotion of which is quite anconscious on as, anlesi, in-
deed, the mascles are injured or fatigued so that their deed, the muscles are injured or ratigued so that their
action gives us uneasiness. This is, I think, the most action gives us in aninesi. real position of ohjects seen by us is learned; bat it may have been learnt, as it is now known to ua, by our obsorving, as we often may image of which is highest is nearest to the floor, imare of which is highest is nearest to the flor, Which we know is below nis. Thus, when wo are ling
down on (say) the right side, the lowest part of an object down on (say) herm right side, the lowest part of an objint
we look at forms its image on the part of the retina, where an object to our right wonld form its image if we were upright; bat we find no difficnlty in deciding its position with respoct to ourselven, if we know our own
position; nor should we find any dificalty by looking position; nor should we find any dificalty by looking
at objects when standing on our heade, and knew we at objecta whon standing
were doing so.-Philo.
[19470.]-Separating Salts Produced from Kelp. -The qnestion pat by "A Trro" is one of those
which it is difficalt to answer, owing to their indefliniteness. The method to be parsued will depend very much apon the proportion of the salts contained. I shonld say that from a solntion of potassium chloride, sodinm carbonate, and sodinm solphate, if the proportion of the two latter be large, the best plan wonld be to concentrate by boiling. Upon cooling a crystalline
mixture of sodiam sulphato and carbonate would be mixture of sodiam sulphato and carbonate would be obtained, such as bold by the name or grocers soda
crystals. From the mother liquor crade potasiam chloride might be obtained by a second concentration and crystallisation. Bat I mast confess that as I Eee no method by which they may be neatly separated, I potaseiam chloride be large in which case it might be crystallised out from the original liquor. I should advise the querist to concentrate some of the solution, and soe of what the crsstals obtained on cooling are composed, whan he will have a better ddea how to set aboat it.-Analyst.
[12478.]-Printers' Rollers.-To mix composition for rollers: Summer use, $1 \frac{1}{2} 1 \mathrm{~b}$, best glue and 41b. treacle ; Winter nse, 11 b . best glae and 41b, treacle. Soak the
glae about one hour and a half if thick, if thin glue about one hour and a hald if thick, if thin a board until next day, then melt down in proper melting-pot, or pat it in a sancepan and place it in run over containing water (be sare and not let the water run over into Jour glae; one groat secret in rollor casting is to have as little water in your glae as pos-
sible), then add treacle as above, let boil onee, then sible), then add treacle as above, let boil once, then
keop it juat ander boiling point until cooked, whioh kep it junt ander boiling point until cooked, whioh
takes about two houra, more or lean ; pour out into monlds, well cleaned and greased ; if left too long on mealis, well cleaned and greased; it lett too long on cient for an 18in. roller; other sizes in proportion. From long experienco I find the above is the best for both machine and presp. Any farthor information to
"A Tyro" I ehall be Hagpy to give. Porhapa the
following nay be of use to him and others. French compo. prevents damp rollers. For a 24 in . roller, take inz. Rassian isinglass, fne. gelatine, dissolve the two ready for warer. When the nanal composition ready for pouring, add the above to it, let all bo
\ddagger hoar longar, and cast in uanal way.-W. Chanke.
[12475.]-Removing Whitewash.-I ahonld advise "S., Colombo, Ceylon," to try dilate hydrochlorio acid for the removal of whitewahh from stone and wood
[12475.]-Removing Whitewash.-Take a bass arrabiing-brash and elbow grease. - Jace op All Tradis.
[12482.]-Integral and Differential Calculus. -It wonld be difficalt to mention any branch of science where the calculi are of no use, and it would really take np too mach time and apace to show where, when, and how nsed. The stadent, before commancing differential calenlas, onght to have good knowledge of trigonometry, and some knowledge of cosics. Of coarse, a slight, jet neefnl, knowledge of this branoh of mathematics may be obtained without so very extended acquaintance with the above snhjecta. (See Mr. Proctor's articles on the Calcalos in Vol. XII.) I(personally) can Mir. Todhanter's borks ta be Macmillay, 103. 6d. each. A book has putoly been pablished by Mesars. Longmans, written by Professor Williamaon, bat I cannot ray
C. H. W. B.
[12484.] - Inorganio Chemistry. - Get the "Science Directory" from Sonth Kensington Maseum. The syllabne for chemistry, frat stape, second stage,
and hbnoure, will be found therein, also the booke recommended by the examiner.-C. H. W. B.
[12484.]-Inorganic Chemistry.-If "Science and Art" is ignorant of the sciesce ho desires to stany, I should recommend him to begin by attending some regular ccarse of lectures on chomistry, such as are
civen in moat towns by certificated science teachers. It given in most towns by certificated science teachers. It he prefers, or is compelled, to stndy privately, let him
begin by reading Roscoe's "Science Primer," price le., begin by reading Roscoe's "Science Primer," price le.,
published by Macmillan, carefally performing the ex. publizhed by Macmillan, carefally performing the ex-
periments thereim described. Then read Houghton periments therein described. Then read Honghton sams way. If the for schools," experim to aoquire a good knowledge of the science, I would then advise him to stady Roscoe's "Elementary Chemistry," and the first two rolnmes of Miller's "Elements of Chemistry," but as his olject is to pass the science and art examinations, ho mast read the book nodmaster the chemical grmnastios of the examiner, Dr. Frankland. I am airaid "Science and Art" has fallen a victim to the intricacies of the "Science Directory" when he writes of wisking to pass "first-class in the third stage for hononrs." The lowest or elementary stage has two classes, first and second; so has the advanced stage; and so has the highest or "honoura" stage. When obtained, the "honours" consist of a pieco of brown card with your name written on it. Thero are very few honours to give away as the department has little to spare, its breactes of contract and "mistakes" being not unfrequent. The teachers of ohemistry working ander the department do thoir best, bat their pay being dependent on "results," they are compelled to cram their pupils with the questionsble theories of the examiner to the exclusion of much more valaable information and sound bnowledge. If you want to learn chemistry for its own sake, and independently of the hononrs, attend a clase not
department.-ALFRBD H. ALLEN.
[12486.]-Machina for Cleaning Boots.-In reply to "S. J. R." first black your boots by hand, then polish with a revolving hrnsh fixed to the headstock of a lathe, or to cog-wheels, and a weight over
pulley. - R. A. H.
[12504.]-Sketching from Nature.-Take a picture frame abont 18 in . square, or thereabonts, tie
across the frame threads of cotton, both perpendicular across the frame thresds of cotton, both perpendicalar and horizontal, sboat 2in. apart, like a gravol sievo ; monnt the whole npon a leg and fix it in the ground. Sit at a distance of 5ft to loft., you will then see the place each object of the landscape occapies in rela.
tion to the cross lines, which serves to measare the tion to the cross lines, which serves to measure the
position and space each require. The papar yon position and space each require. The paper you sketch apon should be the same size as the frame, and
should be attached to a board with pins. Dots at the should be attached to a board with ping. Dots at the end of the paper and across the top indicate the position each ohject mast be plaoed in is oasily tound by the nas of the T manare plaoed in is easily found of the before-the T square, which serves, with the aid small eqnares in tinned dots, to divide the paper into threads divide the view of the landscape. This apparatus can be constracted for 18. In sketching it is required to sit in one position until the ontlines are it necessary. You will probably understand it withont, if not I will send akotch.-Joun Hoperms.
[12504.]-Sketching from Nature.-In answer to Thomas King (query 12504, p. 497), I do not think that anything better cau be recommended for sketching
from nature than the camera locida ; it can be obtained from nature than the cameralacia, it can be obsained cheaply, and is certainly portable. I know people who
have bonght it second-hand for 12s., and as there is some exactnees reqnired, am inclined to think it wonld not be easy for ordinary persons to make. Both the camera obscara and the lucida have been tried by my--belf, and the palm belongs to the lacida for usefalness -bat, "afe, there's the rab," it wants practice, and,
possidy, a peculiar titness of vision to ase it. I am jastiaed in saying this, becauso I know talented artista

I have expployed it for some years, and it a good servant, and therofore reoommend it to othera. Mine cost (now) £2 5 s. The Whole principle of the instrament lies in a nutshell: a prism, through which the images of the objects to be delineatod are carried; theze are seen refiected by the ese perpendicalarly andernoath the priam on a sheet of papor which is placed there. The eye then is held over the edge of alace, the hand with pencil delineates the outline of the landecape or objeot to be represented. The difficalty is in being able to see both the image of the object to be drawn and the pencil point at the same time-thoagb some appear to surmount this vexations trouble (for such it is), very quickly. After baying my locide I lai, it by in disgast for moro than ton years, till a happy thonght ocourred to me to try it once more-and sncdencily. Bat for absolate trath I have more conis appliance my own corroct eye than in any optical araphe are watover. Many otherwise excellont paroihas this are notorionaly distorted. The camera. lacid correctly. The wilh care it may bo made to apeat ence to the diagrams, will explain it. A, prism; B two osepieces to aspist defective vinion; \mathbf{D}, elamps to sceare the elongating and telescopic rods, which thos increase or decrease aize of imago on paper; E, serew

for fastening on to edge of table or board; Fis a pirct by which means the lengthening rod can be piaced al any desired angle; C is a movable eyehole, of great advantago in confining the field of vision. The other dingram will show the principle still clearer. A, the prism ; G, object to be drawn; H, image refeoted; \boldsymbol{I}, the ere. If Thomas King will tarn to my anster to "Poloski" (12393), he will have the other
sketching from nature. Δ Worarse B.
[12511.]-Gas.-The following table will formish A., Liverpool," with the information he requiret, asd he nbefal to others. It is from the "Gab-Manager's Handboek." Wigan cannel and coal produce oan an average :-

Cannol
Gas................
Coke
Coke
Tar.
10,900 .. 9,980 cubic foet

Ammoniacal wator
$1,486 \cdots 11.4$ кperm candles
-Saul Rysia.
[19511.]-Gas.-In reply to "A., Liverpool," I learn that about 8,000 feet of really brilitiant gea csn be obtained from a ton of the best cannel coal; but is it is allowed to remain in the rotort to be still farthre exhansted, then ten, twelve, and fonrteon thonasad feet of poorer staff can be obtained, but the colse is thea coarse, will render a less and poorer quantity in proportion ; but the larger the quantity of vapour obtwaed the greater is the profit the gas companies deriva It is a pity that our meters only register the quentity,
without indicating the quality, so that we are noo made to pay as mach per thoasand for the poorer et:5 as the good, and are compollod to open our tape widk to burn a larger quantity, to obtain the ligbt which less quantity of the best gas would givo. The cocmgetting so poniveral that it is thme this anbject wa thoreaghly ventilated.-R. A. H.
[12517.]-Mathematical Irachines and Tribles. - Babbage's extreme ambition uohappily did so orer. leap itself that the lesser of his proposed ongines, the Kensington, is neither finiohed nor, I believe, nan yw Kensington, is neither finiohodi nor, I beligva, han nix
produced any kind of tebla. Tbo simpler of is pro
par
S
\qquad

12415, p. 405: nud in now, I beliove, manipalating the data of the 1871 census into a nem edition of those
tablen. Babbaze's complete desige, the " Δ nalytical tables. Bahbage's complete design, the " Anaytoreal
Engine." which is to tabalate any fanolion whaterer, exproceible hy any algobraic formaka, remaine on papor only. Had he been content to execate oithar of
toem, as a first epecimen, on a scalo registering to ton taem, as a frst specimon, on a scalo registering to ton
decimal Agares only, it seems he would have been decimal Agares only, it seems he would have boen
enabled to carry ont oven this marvellona "Analytioal enabled to oarry out oven this marrellous "Analytioal
Engine;" bat he insiatod on twenty figure resnlts, as wlomo worthy of a national engine, and had to leare posterity to grow to his opinion. The little anbstitute of Bohentz was a qnite independent invention; 10 admilted, I believe, by the philocopher, and without
jealousv, welcomed and introduced to the country by jenlousv, welcon
[12520.]-RHuid Lons for Photography.-It vould certainly be possible to conatruat a camora objections that no good could come of such an arrange. ment. 1. The loss of light by retlection from forr mirrorn would be very oonsiderable. 2. The sulphario acid would be conatantly absorbing water, thas increasiog its balk, and altering its density and reffective power. 8. The wator woald rapidy traporate from be beat foand by experiment with a piece of tiasne paper or ground glass. It would vary with the dis. tance of the object. Better buy a common sixpenny lens and at it in a cigar box, than conatrnat such an
arrangement as in the diagram.-ALragd H. ALLEx.
[12526.]-Camera Lucida.-The simplest so called camera licida for the microscopo is Dr. Lione glase of a noutral tint inolined at 45° in front of the apertare in the cap of the eyepiece, and answers the parpose of Sömmerling's mirror or Wollaston's camera very matisfactorily. It may be purchased of any optiolan for a for shillings. The form introdaced some yeara sineo by Mr. Collina ie, in my opinion, the beat. A substitate whioh will serve for rough work may be oacily dovised. Take a pill-box which will just allp on apertare in the bottom of the box the size of the oyelens of the eyepiece, ix in a frame, which may be made of wood, cardboard or cork, two pieoes of thin glass with a piece of thin tracing paper between them, or a little slightly coloured water may be ran in in such fachion that the glastes ahall be inclined at 45° to the fintod glase substitnted for the thin glasses will, of course, form the orthodox article and may be very easily made by a pernon pnanesaing very ordinary ingenaity triniag cost \rightarrow H. P. H.
[12567.]-Ohalk for Microsoope.-The plan I have adopted with very fair soocoss is cimple. I tate a piece of the chalk I wish to examine, and immorsing it in a small basin of water sorabit enorgetioally with a
tooth brash, or small nall brach, until the wator has tooth brash, or sman nall brach, until the wator has it has had time to allow the hearier partialos to sub. side, when I ponr off the water to about an inoh of the bottom and ail ap afreah with clean water. I then
asaally transfer the whole to a glass vessel, the bettor usually tranefer the whole to a glass vessel, the bettor and reflling mast be repeated a score or more timen, and the deposit after (eay) the tmentieth rashing of sods are remord the deposit, if now all traces will usaally be fornd to consist of little oleo than foraminiferw, ococoliths, ac. Another plan, whioh I sometimes follow, bat do not like, is to pound the chalk tolerably fine, plaos it in a maslin bag sad wath with the "bloe has." proseeding lator as in the prewith the " bloe hax." pron
ceding plan-H. P.

ONANSWERED QUERIES.

The mumbers and sitles of queries whioh romain mm . annoerred for five weeks are insorted in thio list. Wh: truct mation they can for the bemaft of their jollowat eontributors.

Slince our last "Jnot of All Trados" has anewered 12057, 12063, 12044, 12n67, 12071, 12075, 18076, 12092, 13033,

$\begin{array}{ll}12181 & \text { Violin Case, p. } 368 \\ 12188 \\ \text { Mottled Cary }\end{array}$

12193 Mrgenta, 836
12195 Ventilating and Warming Baildinge, 866
12198
Extractiog Iodine frrma Solwood A ELies, 866
Reducing P^{\prime} th to Pulp, 360

$\begin{array}{ll}12308 & \text { Oold Fish, } 3 i c \\ 12 j 10 \\ \text { Mannfacture of Blackload, } \\ 1006\end{array}$
3iannacture of
8nperhenter, 836
Iron Casting
23230 Platinnm Solition, p. 867

1z235 Onrpenter's Took chest, 367
1243 Turpentine and Wood Naphtha, 367
$\begin{array}{ll}123918 & \text { Chninical, } 367 \\ \text { Seven Koyed Taning Fork, } \\ 357\end{array}$
$\begin{array}{ll}\text { 20.48 } & \text { Shent Irna Firepruol Dood-bux, } 907\end{array}$

QUBREES.

[12587.1-Comproseing Air.-II Itake es cylindrica
 platon moving in it is oxactly one square fons, anid $61 \mathrm{n}, 7 \mathrm{in}$., 8in., 91 n ., 10 ina . and 111 n ., what will be the wir expended in oomprossing the above criblo ar sappone at froezing tomperntare and sion.
 of a cubic fout? The relative pressures in atmospheres
will be $2,3,4,5,6$, and 12 , including the ordinary atmowinheric preasure. At thene particular volames and corspheric pressure. At thene particular volumes nnd cor
responding pressures, what will be the temperatare of tho comprossed air at the moment of compressi) n, the sides of the cyllinder being astraveriable, or impor meable to hast either from withoot or from within, no laking into considerntion the incrange of elasticity o the heat generated? Δ gain, supposing the length of the vessel is infinite, what will be the tomperature o
the air when the piston is raised 1 it. -whioh will, ot

 piston to those various points? I kuow it will involve the uge of the higher brnnchos of mathematics, bat
1 ghall not be alraid of that. Will "E. L. G." kindly help me, or any other competent to do so ? - MEGBANICAL Equivalent.
[12538.]-Flectrotyping.-Will any oxperionced hand in this art toll rme why I cannot get the deposit to ata in the deep onvilies of my monlas, bnt only on tho
flat or raised surfaces? atgor and branch out like rock coral.-DvpLex
[12539.]-House Fly.-Can the common bouse ity
[12540.)-Poultry - 1 should be thankful for the divice of any of orr trionds who have knowledgo of the diseases of proltry and their remedy, in the follinwing
case. A cook bird has lately manifosted great difforily in swallowing, and, on examination, snbstancee oontinates 10 enlarge, and is now quito np. prarent throngh the sides of the beak, which the bird cannut perfectly olose, I have tried various things
which friend have advisod, but none soem to do any Which Yriends have advised, but none soem to do any
good. The bird does not seem ill otherwise, inasiunch good. The bird does not seem ill otherwife, inasinuch
as he pergeveres at the food, and with difticalty passeg as he porsereres at the flood, and with difticulty passes
sopped brexd and barlermanal. I ehoald like to save im, as he it valuable.-H. G. W.
[1254L.]-Fish Culture.- I live on the bank of a smail river which is thinly stocked with troat. Wonld higier parts of the river; aliso the beas way to do go ? There are daco twelve milles lower down, which is as far as the tide comes.-Geren Drase.
[12542]-Iuminous Tubes. -1 extract the following from Enginecring, of June 23, p. 435:-"Another carious digoovery of Dr. Gois3ler was, that morcury, When ghaken !n a raretied glass Labe, wrald alao beoome
laminoas, and emit a strong light, go that in a perfectly dark room all objects conld be distinctly seen; the colour of the mercarial light eould bo modined by the peesence of small tracos of gases in tabes. A minimum light. The capnolty of meroary for producing light noems to depend on its purity, so mach so that it was not laminons when it oontained an admixturas of tin, ad, yino, or bismuth, but gold or bilver did not nffiet of meroury for Hghting ap ohambers filled with explosive or mercury for ighaing ap ohambors illod with explosive zloes, Instesd of asing the Davy lamp.; I Phould lise to know lf any ot "our" readors have aror maide this tur in the form of an hour-glask, ahd with what result. In this way the mercary conld be kept in motion for a oon. qiderable time, and for that time would, I conceive, be a self illaminating lamp.-Pggasus.
[12348.]-IIght Shifting Hoist.-Will any brother reader of our oxcellont jornal kindly aid me in the
 on to a slat 9 ft . blgh. The bottles I fil with oil tilb. In each), and have thon to lift all downagnin on to a trolley Tolghs ovor 901b. asid whon the latter are filled the weight is more than 1801 b . I want some contrivance
 Ceiling with atroug jine, a too muoh in the way, and the ordinary pulley block are inadequato, as with thom one oannot well shitt the
lond far enough from the point of eampension. $-\mathbf{S}$.

[1254L]-Taraxacum. -1 shall feel obliged if any ona will inform ane hum to make taraxacum or dandelion Wreghman.
[19545]- Comet.-I ghall feel greztly ohliged if nny the next coonet mich will be rors will inform mis when oxpected to appoar in Eugland.-Gay yon Goloar.
[12548]-Protcotion for Steam Boilers. -Wonld any of your correspondonts infurm me what ic the beat covering for atenm boilers exposed to the air ? I have
seon a composition of manure, clay, do.. nnd should like to know the oxact proportion of each, and huw it is
used. Wx. PELLows.
[13547.]-Pastiag Cloth to Maps.-Will some triod to do some ani they crimp, thn cluth rdins in I pasted both tho papar and oloth. What sort of oloth.
shonld be used?
 ia reqnired far tha follining hend of a exbrinlet. Brillianoy,
Gexibility, and resistance of wet aro the desiderata LAMBDA, acd resiatance of wot art the desiderata-
[19549.]-Field-glasses.-To "F. R. A. S." or Mr.
OLDritid.
syy a darkened aulu icecupyiug the middle two fourtho
of diamoter of fald of viow la observable. Isthic in the
oye or feld lenses? Is it a fault or a faling ? LambDa. [12550.]-Beasweedm.-How ase ceaweods be niooly
[23551.]-Pictaro Framing, -Wouh some pmotical poraon kindly informmon throagh the mediam of this
paper, the simplost way and the neateat to cut and jolia paper, the simplost way and the neateat to cut and join
the anglos of piotare frames, and it will groatly obligo-
[13s52.] - Aquarium. - I am aboot making an wonld supply the following information, sabeoribert

 be best to stock it with when iniohed? Any other in formation which they may think necessary would oblige W. R.
[12558]- Zlectro Magnetiem. - I have an electromagnetio ongine which is naetuil to mo in doing light
worls, but tho contact breaker is a constant soureo of annoyance, as the platinum poiats aro continually burning or being oxisised. T have partly romedied the of wire round the magnet and joiniag the onds oo it ogether, thereby forming. a oomplete oiroait in itself. This, I suppose, acts as an indrction ooll doos. and contaot breaker known what wish to know is, if the will be better than a platinum one. I ghould foel very much obliged if Mr. Spragae would describe minately formed npon breaking contaot is pot rid of. A small oketeb would, Ithink, interest many of your roaders. should also like to know how it is that my pinn of nu
extra coil lessens the burning effect of the spark, and also if it lessons the power of the magnet at all.-Cos. tact Breakre.
If Mr. Sprague weuld Battory. - I shonid feel obliged glass tobe is for in the graphite battery, described on p. 423 , and whether to use acid or saline soletion in the
[13555.]-Packfong or Ohinese White Oopper. this alloy? Ihave some reason to the oupoot it eontaing niukel, and rosembles the so-called albata or German articles in composition and proporties. Also, What gravity, and price ? -THR HARMONIOUS BLACEsMite
[13556.]-Soda-watar.-Would somo of your roadera ioform asil soda-water be really a woakoning b
My improssion is it is a valgar orror.-A. B.
(18557)-Nickel 8iLver.-There is adrertisod pure te.) What I want to know is, ie it the pare metai nickel, or is it a mixtare of niokel with othor alloy-
whito metal in fact ? white motal, in fact 9-Niamil Silver.
[12558]-Boot and Shoemexing. - Thanks to tho jeot. I have been direatod to a more actootifo man then I have met hithorto. He modellod my old lasts with loather to very noar the pattorn of my teet, and the
boots made on them are an improveunent, bat not all boota made on them are an improveurent, bat not all
requiro. I ind my problem fan not eo easily soived for my ioot, as I said, measures more at big too joint than at instep, and it made suffolently wide at former part to takio off preasure from that Lender appo, he enys it Would be impossible to get the last out of the boot when
gnished. I fud the only boots I csa voar withont pain are a very old pair whioh have workod into the very to modele giale, and in the same way tho maker 1 reter a models hin iasts, so that buiges ou the sole will bave
a correaponding hollow in tho ingole of the boot, but then he cannot give me suffioient wldit in the upper. Can any ane solve this problem for the shoemaker? Also. is there any remedy for - Wollon tender joints,
beides taking the pressure orf?-Iarsy MxoHakio.
[12550.]-Oleaning Oll Painting.-I wish to clean an oll painting that is dirty with age, can any one give
me a truatworthy recipo that has been proved?-Sexpre me a trus
Paratue
and
[12560.]- Varnich for Tarbled Edges.-I bavo marbled some book edgos by tho tranater process, brt they aro dall. Is there ang rarnish or gloss
not stiok them together? - Sxmpar PARATUB.
[12501.]-Ourving Book Edges. - Will some one Inform me how to bond the fore edge of books, and at What stage of the process of bookbioding it should bo
done, as I pannot curve them vell, they run in stops?

[12562]-Tar Pavoment. -Will "Phllo" or any of preorroapondent of "ours" inform mo the proportion I pitend bo colling the coal tar. Would small sea shinglo do instead of gravel, for our gravel is aimply soft granite Wet 9 The only objeotion to sea shingle is, its being salted would take the damp in changes of weather, bu
I do not know is it would do ao if mixed with boilod con tar and pitch. An answer mach wanted.-H Oarı.
[19583]-Rough Bkin.-I hnvo for mome monthy past beon tronblod with a roazhness of the exin of my witbont the desired effect. Thonkin of the oheeks and iorohead is in a perpetaal atate of small White fiskes or
 glad of a recipe for this irrogalerity.-F. Ack.
[1056.]-Photographio. - Wul some kind reader of onr mechanic inturin me the cause of my Cirter
ncgatives giving a dark shade on the faces of oach person I tnke. Is it the want of pr.rer knorriedge of
the arrangement of that on the sitter or some defect? My negatives seom clean and sharp, but still the finces are
H. WILLIAYs.
[125A5.1-Sticks.-Can any reader toll mo how to thorn to make sticks for "hockey," do. \rightarrow W. M. CosLes
[19860.]-Boes.- If a nwarm of beor tako possespion of the owner of the hive - W. Y. Colhke.
[12567.]-Brick and THle Glazing.-Can any of "our" readers inform me bnw the above named thing

[is868.]-8moke and Iight.-How is it that tobace on a dark ?-A. B. M.
[12569.)-Consumption of Alcohol.-Can any reader inform mo what quantity of alenhol is yearily con-
anmed in this country por heide of the population? Ixquerize.
[12580]-Sunrise and Sunset.-Will some kind and minfet for any particular day? Will the same rule answer for the moon and planets, A short example will render great ansistance to-Delth.
[12571.]-Brake for Bicycle with Indiarubber rabber tires hnt without a brake. I am aboat to have rabber tires hnt without a brake. I am abont to have
one added. Will any correapondent kindly intorm me if the urdinary wooden block wears oat the rubber, and If the roller senw.
[12572]-Piano Construotion-Will the "Har monlous Blacksmith, plecse to enlighten me on the
following pointe in hin No. 8 Piano Action, aiven at ollowing points in hia No. 8 Piano Action, qivon a sented the proper length? 2. Would it be best to employ a metal rall for hammer hatts to centre in. or Fond. so that ench hammer can be taken oat slacly ? 3. Are the dowels whith fasten on the glanting part of the hopper to be in a vertical or horizontal plane them?
vertical, how is the wire epring to pass between them? If horizontal, how is it possible to get two dowels $5 /$ gnin. diamoter with room for the wire spring to pass between them in in. ? in what manner is the hopper kept.
from slidive indeways from nader the hamamer butt? 5 . from slididig ildewsys from under the hammer butt 7 .
Is the sot off screw attachod to the hammer butt, or as the hammer atrikes the striog, does it force the hopper from under the notch in the hammer butt by the set off rcrew coming in contact with the lower end of the hammer butt? 6 . How is the forte pedal placed to lift the dempers from the wires ? With respect to wire
hridzes, wonld it not be equally as well to make them in hridges, would it not be equally as well to make them in lengths for one note
bedded
-PIAMETTE.
[12573.]-Hygrometer.-Can any one desoribe an nelif Leslie, by whicb m
into too $\%$ C. T..
[12574.]-Calculus.-Will some kind correspondent solve the following question for me? A pentleman had a circular ashpond, the diameter of which was 100 tt . He Winhed to inclose it by a lence in the form of an the circle. Required the length of the sides so as to inclose the leatt posilble land.-W. H. H. C.
[12575.]-Angles of Incidence and Reflection. - Can any of your readers give me niny informntion angler of inoidence and reflection The anthor of this disoovery, Mr. Brine, of King's College, Cambridge, has a machine made to test the thing, and thereby proved his aesertion the Ve irae foand with its construotion. I should like to know what beoame of the discovery, if it is one.-R. P.
[12576.]-Buffalo Pickers.-Will any one oblige by describling the proc
pickers ?-Linux.
[18577.]-The Iris or Rainbow.-WII one of your astronomical or moteorologleal readers kindly inform me why it is that the rainbow appears of a circuiar
shape? 1 have referred to many booke on the subject. but can only find that the resson of the rainbow appearing as a segment, in in conseynence of the refracted reys of light bisg angles. This is by no meais achat oxpanation my tion from some of your many talented contribators.-A Youna Abtronomer.
[12578]-Medical Coil.-I have a medical coll which is worked by six Smee's cells, zinc plates 4ili. $x 8$ in... of coure the extreme ends of the batiery terminate in a silver at one end and a zinc at the other. The binding screw on the coil which oonneots the wire coming frnm the extreme silver is marked N, Which I take for negative, and the other end Pi whioh is positivo. Now from the zino through the guld to the copper, and from the copper to the zinc through the connectlog wire sbove. how is it that the copper extreme is the battery is given off into the coilfrom the zinc or positive ond of the battery, and I cennot underatand bow it is that it is so, as from what 1 read I anderstand it anite the reverse. Porhaps I am mistaken in regard to the
circulating electricity, as I suppose that when the body circalating electricity, as is suppose that when the body is placed in the circult, it returns by negative pore back
into the battery. I am ning my machine for rheninto the battery. $\begin{aligned} & \text { am asing my machine or rism of ave years atanding, and have not been able }\end{aligned}$ matism of
to work for over seven montha. It is principally in my
teet, and I am not tble to atand long without a deal of feet, and I amm not able to atnd long without a deal of
pain. I have no pain when I am off my feet and I feel anxious to know the most beneficial way to ase my machine to bring aboata a cure. I might say that I apply the positive on the spine and the negative to my feet. -
S. A. [12579.] - Counting Envelopes.-Is there any
manchine for counting envelopes ? 1 .now that there are many machines emplojed in making them.
such a machine be asefal P-PBILANTBROPIBT.
[12580.] - Photo-Lithography.-Can any of your pictures can be ased directly for reproduction by photolithography? As far as I can learn only negatives (photographic) are at present employed with the prepared etnie or transfer papor. If any one can give me the formnla for such procesp, or will indicate to me to -AMATEUR PBoto-LITHO.
[12581.]-Tests for Flour.- I am much pleased with two more testo-viz, one for rice and one for ching clay
as I have suspected some blscuits-sea biscalts commonly oalled-containing one or both these ingredients. -Ohio.
[12582.]-Paper Clothes.-The Japanese, it is woll known, are the best paper makers in the world. They use paper advantageously io a thousand ways nnknown paper, that paper sults, cool, light, waterproof, and not asilly to be torn, are imported into New York, and sold here from half a doliar upwards. Can any Amorioan clothes We havedone a rood desl in England in the way of collars, curtaine, and other articles in paper, and ought to be able to compete with the Japanese, or at any rate to be able to import some of their productinns. Fancy the luxury of paper suits this weather Tbe houghts of them almost tempt me to lear my black cloth coat into fifty pieces 1-KAPPA.
[12583.]-Electro-Plating and Coppering.will "Jack of All Trades," or bnme of our eleotro-plating iriends, put me right in the following:-1at. I hare some cutter-knives (steel blades), they have been plated, bu he silver is Worn off. I have placed them in the oute cell of Daniell's battery, and cannnt copper them. I nd. Is the cyanide solution the best for plating? mix together 9 soz. of cyanide to 1 quart of rain-water,
and add toz. of nitrate of silver. Is this right? and add
ANXIOUR
[13594.]-Bee-Keeding.-"Phan" wishes to know whether she may continue to prit on fresh super room after the drones are killed? The cottagers here, who all keep bees on the old barning prinoiplo, haren elrong prejudice against supers, and argae that whan the ruper-honey is taken the bees rob their neightour "Phan" would be glad of any remarks to prove the folly of this.
[12585.]-Thermo-Electric Pile:-I shonid esteem it a great invour if some practical oorrespondent will give me envinformation concerning the construction ol know (1) what pise bismuth and antimony, and want to kould, and how to cast make the bara ? (2) In what otherwise to unite the end ? (8) What solder, or hation respecting same or galvanometer.-ROBERT Knioht [12586.]-Magnetine or Improved Skeuasma -I wish some afhe correspondent would inform me how the above are made. What is their principle of action? What form should they take to be suitable for the varions complaints they are intended to cure? Have they heen patented; if so, when? Directions how to construct similar bands gome time back wonld greatly oblige.-J. R. L.
[12587.]-Lamp for Blow-pipe-I am a working jeweller, and am working in a small conntrytown where there is no gas. Will any of your renders kindiy
recommend the beat lamp to work by, and for the blow-pipe?-Standstille.
[12588]-Railway Metals.-I am informed that on railway running north and south the rails wear most on the west aide, while no a pallway running enst and west there is no perceptible difference. Oan any of "ou correspondents say anything about this i-LuFFRA.
[12589.]-Lapidary's Wheel-Could any reader give mat a few hidts as to size of lapianry s wheel for outting and polishing stones, speed run at, \&c.-A Sob sCRIBER.
[12590]-Glues.-Will any of ynur namernas readers or correspondente inform me how it is that nome glues after being ased for a very little thme in the glue-pot get frnthy, and that othars preserve the black colour as but experience difficulty, or rather annoyance, in naing it from its frothy nature; it clogs the brash, and dous it work freely. Is there nny cure for this? Or is the not work ireely. Is there any cure for this ? Or is
[12591.]-Fiarvest Moon.-Can any one fnform me why "the harvest moon,'s

OHESS

AxL commanications intended for this department to be addressed to J. W. Abrott. 7. Claremost-place Loughborough-road, Brixton, S. $\dot{\text { W }}$

The "Chess Tournament," nader the ausplces of the British Chess Association, was held at the Crysta Palace, on Jaly the 18th, 19th, and 20th inst., and me with all the success that was anticipated, and althong the heat was excessive, and very much against th prosecution of a sedentary game like chess, the meet ingitore attonded by a large assemblage of plagramm of the firs ald parts of tha coantry. consultation, and simaltaneons games. Blackbarne condacted ten games at the same time blindfold, and actually succeeded in winning six, drawing three and lost only one. Lowenthal played twenty-five simultaneous games against as many amateurs, win ning seventeen, losing one and drawing the remainder Two consultation games were played, the combatant being Steinitz and Tuckertort againat De Vere and Wisker, while in the other Boden and Daffy wer matched ngainst Merchin and another. On Friday Captain Kennedy gave a lecture on the "History and Antiqnities of Chess." The discourse Wha interent ing and reemed to be appreciated by the audience. On Satarday the programme was of a varied games blindfold, and althongh hardly so succossful as Blackbarne on the previons Tharadiay, he played the games with great precision and rapidity. The Telegraphic Mntch axainst the Clabs of Birnuingham, Bristol, Hall, Glasgow, and Nottingbam was highly
interesting, and created much interest among the
numerons visitors present. Unfortanately, owing to the lateness of the hour, but fow of thegames were fivishers. The Congress throughout has audoubtedly been of a successfal character ; the greatest harmony and gis-d
will has pervaded the ontire proceedinge from frit to lats.

Probley IX.-By A. W. Cooper. Black.

White
White to play and mato in four mover.

Solution to Probley ViIL.
White.
Black.

1. R to Kt 3
2. P to P 5
3. K t or R metes acc.
4. Anything
W. Nabr (S. Neots).-Problems of five and six mates deep, and upwards, are appreciatedouly by ontb nd such composition are ailogether out of a newipaper column. Aany dinar corresporased three move problems quite dimcult enciagh, ric prohlem, your advocacy in favour o? mire prohlem, vour advocacy in favour o! mirercte
cated positions is surely somewhat premature on! part.
R. 8. (Edinburgh). - Lnok again attentively at Prol: VII, and you will disoover that the diegram is p fectiy crrrect, as is the printed solation.
ndUCTORIUM. - Your problem in sound, bat it is rile too ensy fur pablicity.
G. J. Slatsr (Bolton).-Both the positions appear to to
sond now, and thoy are accordingly marted insertion.
aroo (Yarmouth)-We shall avall ourselves af med your problems in due course.
J. C. 8 Probleme received with thanke from W. S. Pun
B. Horwite, A. W. Cooper, and C. W. (of Sanbart! Correct molations to Problem VII. (motinmedi-c Grand (Grteshead) : Argo (Yarmonth); Wis
wich); G. J. Slater (Bolton); J. R. (Lincola).
Correct bolutions to Problem VIIL. bave been recei; from A. W. Cooper. R. A. Proctor, H. Cherry,
Bereaford (Vauxhail). All others are wromg.
 months. (Foster, Garette Office, York: Rell s $[12:$: Liculars of the meetiag of the British Chese Atwr tion, several of the :"mos annotated br Mr. Wisk the winner of the ohallopge cup, gew ririationt
the Allgater gnmbit, hr Mr. Wigker, games from : the Allgater gnmohit, hr Mr. Wiskg
provinces, problems, ice.—[ADVT.]

Experiments with Dynamite in ItalsA geries of trials of dynamito as a blasting efers made daring the past year at the Biasse tambel, of th line of railway now in course of constraction besw: Genoa and Spezzia, and which fally sho :: superiority of that substance over ordinary biasiz powder, and especially when water is met Esstern end.-Compact limestone and hard dodera 1st. With ordinary blesting powder. 203 metres tannel driven $7 \cdot 50$ squaro metres in section be days, or at the rate of 1.015 metres per day of ifts 2nd. With dynamite, 300.80 metres run of eqan tion in 160 days, or at the rate of 1.88 par day a hours, showing a soperiority in favour of drascis: 0.865 per day. Western end.-Rock, clayes ci with beds of sandstone and abundant flimatise water. 1st. With ordinary blesting porder. metres ran of Ennnel, 7.05) equare mutres in as Ariven in 190 days, or 0.425 per das of 24 haus. With drnamite, $107 \cdot 10$ metres ran of tencel of ste nection in 170 dayn, or 0.60 per dag, hhowiog $0-y^{2}$ day in favonr of dynamite. From a carefal exj= made as to the relative cost of blasting wite to powder, as compared with dynamite, a mavide ard francs per cabic metro way fuand to be obisiaed ro the latter substance had been need.

ANSWERS TO OORRESPONDERTS.

The following are the Initiala, te., of lettera to hand np to Tuesday morning, July 80 , and unaoknowledged olsewhere:-
J. Redfern.-March and Pattieon,-Streot Bros.-W Woodman.-J. L. Thompaon.-P. F. Nersot.-Charles Crawloy.-J. Berry and Ca-Lient. Colonel Cotton.J. Rickmore and Co.-Frances and Co.-Lumra.-E. L. Aramburn-C. Buckley.-Jos. Wolstenholme. Fred. Pratt.-Wm. Manllies,-J. W. Abbott.-W. R. Blit. -
Geo. E. Aveline.-J. M. Garldine.-James Hili. John Ieonnigg-The Harmonious Blioksmith -E. W. \&.
W. B. B.-8. and Oo.-R. Johnsons and 8ons.-J. B. Dent.-W. B. Clarke.-R. A. Proctor. A Batisfed Sub ncribor.-C. P. H.-Lands-end.-A Builder.-E. R,
W. B.-J. N.-S. \& C.-A. C. G.-A Subscriber from he Beginning.-Dabbler.-Thos. Hutton.-W. B.C.-Toivo.-Connection.-Xenophon.-W. Crisp.-Thomas Garding.-C. Gnudibert.-Hy. Clark.-Conntryman.Thomas Burrows.-Dr. Morgan.-Mrs. Jnok of All
Trades. Fiamborant.
 Hopwood.-J. A. Chappell.-A Muler.-J. T. Lowis. -Opilcian.-Hy. Holland.-Electric-Star Gazer.-P. Vhittaker.-Waravilla.-Queen Mab.-Clinney.-G. W Whittaker.-Wm. Korslake, Jan.-Tom-Tit.-T. M. D. Inquirer. - W. Airov.-Tressilian.-Josiah Wison.-Pptice.-Staines.-Frances.-F. Steward.-Paddiar.Veritas - Animals' Friend.-T. A.-J. Baxter.-W. C. C
 Bcriber.-David Jacobs-M. G. C.-E. O. \& Z. -W.
H. Cash.-H. J. C.Emigrant.-Thomas Buchana Hy. Chapman.-Clandio.-C. Wray.-Excelsior.-W.
H. H. Coopor.-W. H. Neal.-R. K. Jones -A. Brown. - George Findley. - Fred. Garthwaite.-Alired H. Allen.-Paddy.-W.-J. Cross.-Z. A.-C. H. Wing.
field.-D. J. Bodkin.-W. Withors-P. W. H. J.-Sıal Rymon. - Wm. Tonkea.-J. T. E.-Jack of all Trades E. L. G.-C. C. C.- D. M.-Boat nan.-Common -T. W. B. Disappoinsed.-A. W. H.-Glazier.-W. R. -G. R. K-Industrions Will.-E. Woodrard.-Philan-thropist.-C. P. E.-Nathaniel Wotherall.-Stanley A Co.-J. Birmingham.-T. 8. V.-C. Townley.
Jeriro Frobt, New York, John Baynes, Manchester.See "Hints to Correspondents," Na. \&
Now Scrence.-Your query is too vague. You mast asy more partioularly for what parpose
raise water. Soe also back volumes.
Commnnications which oan only appear as advertise ments to hand from Shamrock, W. A. G., Athelatane, P. E. M., An Improver, R. M. M. S., One in the Trade.

The Distrensed One, Rodger, F. R. C. P.. John Smith,
Banjo F. R. L., Water, W. W., Eeam, R.B. are referred
Banjo, F. R. L., Water, W. W
David Jacob.-See back rolumes, if nothing there guits you write again and say plainly what you want. Your
telegram was too ambiguonaly worded, and beaides arrived to lato Your letter alince to hand ahall appear next week.
Prentice.-Build and try jour steam carriage When Bending Ambiz.-"Out of Pooket" writes that "Jack of All Trades" plan for bending amber has pr G. W. K. L. - Your wit is of the henviest charac

We cannot Your will of ine heaviest charactor, and Which does nothing but "chafli" in a rathor stapld mauner, one of our oldest contribators.
OUTGENIOUS W EYTEAMTH, Never mind Jour componnd medicine.
Linuk.-We do not think "J. K. P." would do what you akk. At any rate, your request cannot appear as a query. Yon might advertise jour request and ask g. Sim to sond yon his address.

The book on tarning to
Cnincury.-Our opinion is that Condy's Auld has been J. D. much overrated.
J. D.-Your elghth paper on the organ next weak.
E. WOodward. - No stampe inclosed Geo Godward. - No stemps inclosed.
Gso Gillus.-See "Ainta to Correspondents," No. 1 L. S. (DuWliu)- We cannot inform you.
giveu in last volume, pp. 202, 207 . W. T. R. -The only way to preve
your invontion, is to patent provent any one pirating and will, fill we have a reform of our patent lawe F. Cukshikz. - Such questions are no doubt askod both for exercise and to elicit information.
Btclen - Do you want the akin of your fece destroyed?
R. Juhnson.-Your gketol and dosariptlon R. Junsson.-Your gketol and description are scarcoly E. J. III., Porrer

- Yuur queries are advertisements. E. W. B-An American paper.
J. M. G Brookwood.- Your lett
J. M. G Brook wood.- Your letter on Mnges or Bamuel Is rather out of date, and rather too Biblical.
printer's error in my last letter (4566, p. 46i). In line 35 downwards: Not parallel to the gluss plate must point, da." the same point, \&c., ought to be: to amme

Hy. Clany (Derby). You speak of the brain as if ite parts could be counted, measured, snd separated like nuch more myaterions thing than you and some other profensed phrenologists think. We have srequontly seen men who knew next to nothing of physiology or
the properties of matter, or of vital forces, and who the properties of matier, or of vital orcos, and who of existence; and wo occasionally lot one of these correspondents diaplay his ignorance in our pages with the hope that some one who knows a litule about mind and matter might onlighten him. But wo suppose onr chiot correspondents think it would be Thate of their time and our space, and bence they let che sabjeot pesa as Henry Clark speaks with great
oonfidence, we will venture to give him a ohallonge confience, we will ventare to give to suggent that he should manipulate the eads of ton men in the dark. The possessors of the hould be a poet, another a farmer, another an engi neer, anothor a musicinn, another a bricklayer nother a clergyman, another a mathematician, and on; and we andertake to cay that our friend the phrenologist would not be able, by fenling their heads, o distingaish one from the other. Wil Honry Clark accept the ohallenge $\{18$ so we will do our best to Ce Wr Torese fitcs to eay that
for some time ill, and is "prohihited nuder medical advice from oven reading." This is the reasion of his Inte silence Ho is, however, improving. "and hopes hhortly to tazo his piace once more in our columns.' Wo heartily wish his health may be speodily restored. Thomas Buchanan has rent us the following in reply to our note lastwak, p. 4. or to hold me up to 'Inextioguishable leaghter. I shall on spall mpself of your kind permission to sat 'F.R.A.S.' what those 'eternal fires' mean. The question of my locture was merely a rhetorionl erotesis, not needing an answer, sioce it wan the mental soliloquy of the Chaldean shepherd 4,000 years ago, the expression of philosophic wonder, which, as 1 attempted to show, calminated in the apotheosis of masonry-to wit, the Deism which elaborates a rell. gion apart from revelation. The last two topics I did not name, except so far as they are inoladed in the Egyptian worship of Isis aud Oairisthe Buddbiem of India, and the parallol asistem of
Confucias in China. But I merely glanced at the poetical sapect of the rubject, which Byron has ombellished, and which so long, as astrolozy. enthralled
nations; and at the theory which represents the conatellations as a panaramic picture, on which, in fiery etchings, the record of the Nwachinn deluge and the Ark were preservol." As wo have given the whole of Mr. Buchanan this time he canaot compiain of our only making an extract. We shall be giad to hear
from Mr. Buchanan again on some less speculative from Mr.
sabject.

THE INVENTOB.

APPLICATIONS FOR LETTERS PATENT DURING TEE WEEE ENDING JULY 29,1 Im,
 anolicable to moymble bridgon and the gater of docke and canal

 2138 J. B. Robertana, Manchester, for Improvementa la atesm 2157 J. Dale, Manchnater. inr improvementa in the menafactare
 .

2110 B. Blair Belfect Dawlo for improvemente is ast for carrieges and other reblolen.
8141 H. 8 Copland, Daknatroet, Brand, for an Improved ap

 axplonive atmospheres. A eommunication.
a
 2141 B. B. Batoon, Bolton.atroet, Maytair, lor impropamenta is the trastment of hidee and akine.
2145 M. A. Wier, Great Winchester-ntreet. Clity, for an apoaratus or regintoring and checkine entrios and oxitu to and wramway gitif E. Brooks, Birmingham, for tmprovementa in brooms and
 punc
${ }^{2118}$ W. Jenking, Leamington, for improrements tu mechinery
2149 J. Bidder, Inlinitin, A C. L. Lamb, Twickanham, and
 machine for
munication.
g161 C. J. Tiahin and E. Voss, Holland, for improvemonts in
apprathe ther ballding
siss C. W. Siomons, Grest George-atreot, Woatminatar, for im
provementa in rukenernilive gas furnaces for the manufacture o lasc. 1 cummuntastion.

 tharowith.

 proved ppatatu
2160 W. M. Hutchinunn, Wallesbourno, Davonohire for imprive
senta in Went therefor
 2162 W. Llaney, Bedworth, Warwicknhiro, for propelling looms g16s J. Pullen, aen., and J. Pallen. Jnn, Garaden otroet, Wal,
worth. for a new and lizproved mothod of caiting and makiog lead gist R . Parne, Prime, for facleating the variations of heat in
gres. gless H. Robinenn akinton, Yorkehire, for tmprovemeate in th gien W. Raires and W. T. Eader, Birmiogham, for an imgroved abe catter and .
2187 J. Richnrisain Lineoinahire, for Improvemonta in arranging,
cetaating. and coutculing cat-off ilido vilves of steam and othor 2168 J. Lake, M ancheiler, for Improvements in uteam bollera.
2169 M. Henry. F:wet-street, for tomprovamnnto in apparatua for
meanaring and fisticatiog tums. A c, minnalcation.

 muntcation.
9172. T. Knott, Sbrmald. for an Improved labrizator for machinery
 hotrame. Eldiann. La-is, for improvemonts in platiorm utte 2174 R. W. Eldiann, Lanile, for improvemoata in platiorm uite
or hideta. A cominunica:ion.
 21:6 A. M. Clark, Chancary-lane, for a new or lap proved expab2177 L. C. Warnnck. Parif, for a new or tmproved arrangement
ofithag nerew pripeliar. 2178 A. Rey, Guiluturd, for an tmproved mechaniaal mover. 4

g183 G. Gooid. Hanlsworth. Birminshem. for iupprovemente in appuratur for rexulntiag the dratizht in thio chimneys of aroplacos, و1ss T. N. Paloner, Dalatnn, for an improved eatamenial belt,
which may also be ased for other parponea. \& commanication. 2184 R. Hatton, Bhemeld, for fomprovemento in ateam bollor and
other farnaces. g1Rg W. R. Lake, Snathampton buildalage, for improvemonts is
hoista or olevature. A communication.
 2187 A. M. Clark, Chincary-lane, for Improvements in the mana-
facture of ornamental tilos or alabs. A culemuntention.

 engtren. 4 cummunication.

PATENTS EEALED.

187. R. Smath. for a now self.ecting machine or apparatas for
working sewiug or cther alinilar mancuices that are worked by foot

apun into thresde or yarne to be aned for weaving.
oldoniol wo

 or finting rosultuz from the naralak of pyritosi clasers, and of the
acid uquid produted uy the abourpluon thereot. 2:1 A. W.on 1 , for improremeato in deaning tramwayt and te 912 R. J. Wun i, for improvaments in aweoptag atro
and in the machinery or npparatua ocoplored tharofor. 913 A. Wood, for Improvemente in tramway cara.
231 H. Jones, for a new or tmproved moustache protector and 29s A. Rindonherg. for improvemonto in agaser roinaing and in the
 apparatus for g+n friting atoam. byurucurbon opluit or olla. 255, W. Waltin, for improvements is the manufactare of wire 277 J. F. T. Wonds, for Improvecs
other laruaces for chomical purpones.

ThE"BuIdiva Nawa." No. 916, July 26, Covtaiva:

Terms of Subscription,

PAYABLE IN ADVANCE

6s. 6d. for 8fx Monthn amd 11s. for Twelve Months, Post Free to any part of the United Kingdo
Volumes V., VI., VII., VIII., IX., X, XI., XII., XIIL., and XIV. bound in cloth, 7s. ecah.

Indexes for ench hali-yearly volume, np to Vol. X. (except Vols. II., V., and X.) inclusive, 2d.; Post Free, 21 d . Cases fpr Binding, 1s. 6d. esch.
*- Gubscribers are requested to order Cases and Vols through their booksellers, and not to send direct. The now regnlations of the Post-oflice prevent their trangmission through the Post.
To American and Belgian Subscribers. EP Amorienn and Belpinn Sabseribers, especially
when renexing their subscriptions, are particularly When renereing the ir subscriptions, are particularly requcsted to anfise the Pablisher of the transmission
of the Post-office Orier, and the exact amount for which it is made payable.
Subseribers in the United Atntes and Belgium oan be this Office, for the sum of 18 s . (3 dols. 25 c . gold, or 15 fr . 60c.) per annum, payable in advance.
The remittance shoald be made hy International Post-ofioe Order. Back numbers oannot be aent by the ordinary newspaper post, but must he rem
the rate of 5 d. each to cover extra postage.

Notioe to Subscribers.

Sabsoribers reooiviag their coples direot from the office, are reqnested to observe that the last number of
the term for which their Sabscription is paid, w'll be the term for Which tceir Sabscription is paid, w'll be tion that a frosh remittance is necessary, if it be desired to continue the Suhseription.

Charges for Advertising.

ALL ADVERTIBFMENTS (exoept in the Exchange ${ }^{\text {Bo }}$ Column), per line of Eight Words..
(No advertisementíserted for leas than 1s.) Larger Advertisements Contracted for. ADVERTISEMENTS In EXCHANGE COLUMN for Sixteen Words
For every suosesding Eight Words. \qquad Front Pege Advertisements 9d. per line. The address is included as part of the advertisement and ohsrged for.
Advertisements must reach the office by midd-day on Tuesday

OUR EXOHANGE OOLUMA.

Exorimen Advortisemonte arn ehargad at the nate of
Bixpence for the first Sisteon Words, and 8ieponoe for Eirpence for the Arat Bisteon
every suceceding Eight Words.

Patent Bodawater Apparatrs; ifr gnod Glazier's
Diamond or offera.-B., Postoffce, St. Georges Sak - Dgates, Salop.
 For exchange, "Cassell's Popular Edccator," the
 Dialing or Merhnntent M
Platt-lane Colliery. Wigan.
In exchango for a gond Concrbtina, Shakesperre's

Fine Violoncello and Bow, with good strong case complete : for large Bieycle. In Rond working order.-J. Tchanclle,
at Mr. Forbea, Bwinton-row, Ediobarih. AIr GON, never been used (value f: 3s.) will be exchangnd for
Wanted, a good Set of Photooraphic Anparatus for
Velocipede to Velocipede to rarro 3 perpons,
HiLL, Chertary Foundry, Burroy.
A 86 in . Bicyctes, in firatheiars enditian, biokory
 An excellent 86in. Braccie (coat 86 10s.); offers mollolted.

Remarkable vent Remarkabir Imderd," are the

AMATEURTURNERS.-Ornamental
 Cutting Machine

MACHINERY DEPOT, LEEDS. BENJMIN MILLBR. Licenined Valaer of haechineryy

IRON FRRAME PIANOFORTES.-Every

NOTICE !-ABSCONDING APPREN-

FOR SALE.

MACIINERY to be SOLD CHEAP.-

 mixis

M$\triangle R T I N \& S O N$, Engineers, Iron, Brass,

 an
A MERICAN DRILL CHUCKS (Beach Patanti' 314. each. Warwick Chnek, ese. esoh, post freo.Bootr BPOTHER Dublin
B
ICYCLE REGISTERS, specially adapted ,
V ELOCIPEDES at 1s. 2d. per inch dia-

H

H
$\frac{\mathrm{C}}{\mathrm{A}}$OKIZONTAL ENGINE CASTINGS

MPOUND SLIDE REST (6in. centre),

A
BARGAIN.-BICYCLE for Sale, 36in.,

CONJURING APPARATUS, PUZZLES,
 8trand. Ioodnon. w.
THE ENCHANTED FLOWER.-At word
 M AGIC.-Profeesor De Vere's BOX OF

COPPER WIRE, Silk and Cotton Covered.
 WNGRAVE YOUR OWN NAME.-All (YOOD DOUBLE-BARKEL MUZZLE-
 BIRD ORGANS for Teaching Birds to

A SPLENDID BICYCLE, 36in., $23 .-$

> A HENRY NEWTON. 18. WIMAM-Btreet, Stepney. R.
HARMONIUM, walnut case, new, £315s. ;

 SEWING MACHINE MAKERS AND

ARMONIUMS, f4, full compass, walnut
A BYSSINIAN GOLD ALBERTS 68. each.

AS GOOD AS GOLD 1-The New Metal

THE BEST THING EVER INVENTED.

THE GREATEST DISCOVEKY.-Abys-

A BYSSINIAN (HOLD is one of the preatest

DRICES PLEASE ALL.-ABYSSINIAN

A. GOOD AS GOLD is the character of

MI R. J. C. 8TE VENS has received Instruc

BICYCLE for Sale, first-class maker, 308.
 TO AMATEUR ENGINEERS. - Some 13EAM ENGINE, new Cylinder, Bin. diaYTEAM BOA'I'S, (Working Models). for DISSOLVING VIEWS (pair Newton:
DISSOLVING VIEWS, (pair Newton' ${ }^{\circ}$), TATHE, ($4 \frac{1}{2}$ centre), on iron standards,
 WHOLE PLATE PORTRAIT LENS
 A FINE-TUNED EBUNY CUNCERT

WANTED.

ginvations.

A GENTS WANTED EVERTW HERE

 E. W. BACON and Co., 127, 8trand, London. W ANTED AGENTS to sell Birmingham YOUTH (intelligent) as OUT - DOOR
 $T O$ MILL SAWYERS.-WANTEI, a
 and Redratb.
THE ADVERTISER seeks a SITUATION an FOREMAN BMITH. IA woll wo in eneinna bath ris

ADDRESBES.

TVOULD any kind reader give me the general PDDREAS of MAKE: of bolt kind ot hand ladder fog A DDRESS WANTED "TYNE ENGI-
 W ILL "J. B." (Query 12363, I Recuvering Grinnteed.

WANTED, the ADDRESS of a Firm who
 WANTED to PURCHASE. PLATE Pump. ELEECTRICAL, MACHINE, with Apparatus. TALL AUS

THF LONDON AND GENERAL PER-

Large or amall amias received on del osti. reparable at abart
 DEATH or INJURY from ACCLDENT, with the coneraaent LOSS of TIMK And NONEY, prond

the
pum
den

~

ILLIAY J. VLAT, ecerving.

Ohy Cunflish Gftechanic

WORLD OF SCLENCE AND ART.

FRIDAY, AUGUST 9, 1872.

ARTIOLES.

THE DETECTION OF ADULTERATION OF

 ARTICLES OF FOOD.
By Alfred H. Allen, F.C.S.,

Lecturer on Chemistry at the Shefield School of Medicine. THE adulterstion of food is a subject which has been written on by many, and the public are now pretty well aware what articles of food are most subject to admixture. But most writers on adulteration have been content with stating their results, without describing the methods used in detecting admixture. Even those who do describe their processes do so in most cases in such a manner as will only be understood by soientifie men, omitting the minute precautions, the observance of which will alone enable a beginner to obtain satisfactory results.

Many articles of food are used but in amall quantity, and the fee to a profesaional analyst for the examination of asample would often exceed the saving that would result from the use of a purer article, and in many cases the only satisfaction the consumer would obtain would be the knowledge that the article he was accustomed to purchase was grosaly impure, while he would have no certainty of procaring a superior quality by ohanging his shop. If the detection of admixture were more readily effected, and more generally understood, there are many who would he only too glad to examine their purchases. It is nanal to assume the necessity of employing complex chemical tests and a powerful mioroscope in detecting adulteration, and although there are certainly many admixtures whioh can only be recognised by these means in the hands of an expert operator, there are, on the other hand, many adulterations which can be readily detected by any intelligent person who possesses a small miaroscope and a dozen or two of bottles, with reagents.
It is my intention in this article to describe minately the simple methods of deteoting the adulteration of food, avoiding, as far as possible, the employment of technical terms, and I hope in this manner to place the readers of the Englisi Mrchanic in a position to examine many artioles for themselves, and 80 learn which are the best shops to make their purahases, while at
the rame time I give them the results obtained the rame time I give them the resalts obtained
by myself in the examination of a considerable number of specimens.

Adulterations of Mustard.

Mustard is a condiment very commonly adulterated with wheaton flour or staroh, turmerio, cayenne, \&c. Ground mustard seeds give a somewhat pasty flowr, owing to the large quantity of oil present. To prevent the tendency to cake, flour or starch is added, 10 or 12 per cent. being amply sufficient, though the quantity is oftan increased to 50 or 60 per cent In the best quality of mustard prepared by one of the best-known makers, no stareh is used, the tendency to cake being got over by the extraction of a large proportion of the fired oil. The presence of flour or starch may be detected by boiling a small quantity of the mastard with water, and gradually adding to the thiok liqnid a solution of
iodine in alcohol (or in water to whioh iodide of iodine in aloohol (or in water to whioh iodide of
potassium has been added). \mathbf{A} blae or violet colour will be produced if starch or flour be present, as it almost invarisbly is. Gennine mustard seed contains no appreciable quantity of staroh, and does not give a blue colour with solution of iodine.- The presence of starch or flour can

[^18]also be readily ascertained by the microscope, the granules of starch being readily recognisable they are turned blue oy addition of iodine solution. The shape and size of the starch granules, as seen nnder the mioroscope, indicate the kind of staroh employed for adulteration. Wheat flour is commonly nsed, but I have also found potato starch.
Turmeric is seen under the microscope of a bright yellow colour and characteristic structure. It may be detected with certainty by the following test, even when present in very small quantity. Shake half a teaspoonful of the mustard in the cold with two or three times its bulk of methylated spirits. Filter the solution and evaporate onehalf of the liquid to dryness at a steam beat in a porcelain basin, in which is placed a piece of filter paper about the size of a penny. When all the aloohol has been driven off, moisten the paper with a strong aqueons solation of boracio acid, and again evaporate completely." In presence of tarmeric the paper will aoquire a redilish colour ; but, as a further proof, drop on it some solation of caustio potash or sods, which will prodnce a very beantiful series of colours, in which rreen and purple are most evident. On then adding hydrochloric acid, a red colour will be prodaced, whioh can be again turned green and blue by addition of excess of alkali. The colours are very vivid and characteristic, pure mustard giving no such result. Turmerio is very frequently added to mustard to give it that bright yellow colour which the pablic seem to expeot bat which is not nataral to pure musterd. Turmeric is not injurione, and is not generally used in quantities sufficiently large to appreciably affect the weight of the article.
Gamboge is said to be sometimes used for colouring mustard. Its employment is highly reprehensible, as it is a violent pargative. It may be detected in the same way as turmeric, but gives a bright red instead of a green or blue oolour on treatment with canstic sods, and on adding excess of hydrochloric acid the paper becomes merely yellow iustead of the orange red colour produced in presence of turmerio.
Cayenne Pepper, or Capsicum, is often added to mastard to increase its pungency. It is beat detected by evaporating to dryness the other portion of the spirituous solation used for testing for tarmerio. On heating the residue in a porcelain dish very pangent fumes are evolved, which irresistibly compel coughing, and produce a sense of heat in the lungs.

Charlock Seeds are sometimes used for mixing with mustard. The charlock is very olosely allied to the mustard, its botanical name being Sinapis arvensis, while white and blsok mustard are respectively Sinapis alba and Sinapis nigra. The charlook grows in corn-fields, and bears a large yellow flower. The taste of the seed is not so pungentas that of the true mustard, bnt agreeable and somewhat aimilar. There exists at present no means of deteoting its presence in manufactured mustard, but admixture with it is by no means so reprehensible as most adulterations.

Plaster of Paris is said to have been used in sdulterating mustard, but I never met with an instance. It could only be used to inorease the weight, and, therefore, would be employed in some quantity, so that a sample of the mastard would leave an excessive proportion of ash after ignition. Mustard nsually leaves about 3 per cent. of ash, and any proportion exceeding 5 per cent. may be looked upon asindicating adulteration by mineral matter.

Chalk, if present, would be at once detected by addition of an acid (bydrochloric) to some of the mustard, when effervescence would be produced.
The recent examination of seven samples of mnstard, purchased in Sheffield, has given me the following resalts :-

No. 1.-Price, 6d. per $\frac{4}{} \mathrm{lb}$. canister. Free from starch, flour, and turmeric, bat oayenne was presant, and a sensible quantity of husk. The taste was extremely pangent-far more so than the other samples.
No. 2.-Prioe, 2oz. for $1 \frac{1}{\text { d. }}$. Contained no cayenne, and but very little turmerio. Potato staroh was present in some quantity
No. 3.-Price, $1 \frac{1}{2} \mathrm{~d}$. an ounce. Contained starch or flour, turmerio, and cayenne.

- A solution of borax mixed with hydroohloric acid may be employed in place of the boracic acld. but is is there pablished in a new form, and is the only on by which tarmeric can be readily and costalnly detected without the ald of the microwcope.

No. 4.-Price, 1녕. an ounce. "Warranted free from all imparities and adaltarations." Contained tarch or flour, turmeric, and cayenne.
No. 5.-Price, 1d. an ounce. Contained mach taroh, tarmeric, and cayenne.
No. 6.-Prioe, 1d. an ounce. Contained starch or flour, turmeric, and cayenne.
No. 7.-Price, 1d. an ounce. Contained starch or flour, cayenne, and a little turmeric.
From these results it will be seen that all seven amples contained admixture of some kind. All but No. 1 had their strengih matarially reduced by admixture with starch or flour. All but one contained cayenne. All excopt No. 1 had more or less turmeric in them. It may be thought that the addition of flour, or starch, to mustard is of a very excusable nature, but the admixture of excessive quantities not only cheats the consumer by selling him flour at the price of mustard, bat is highly reprehensible in a medical point of view. Suppose a child poisons itself, and while the medical man is on his way a dose of mustard and water is given to produce sickness, bat in consequence of the adulteration of the mustard the emetic refuses to aot and the child dies; who is to blame here, and can the admixture of flour with mustard be considered legitimate? Undonbtedly the consumer will do well to purchase his mastard free from starch or flour, with whioh he can easily mix it for himself, if he fancies it too strong or to dear. When one well-known firm sells five or six different qualities of mustard it is evident they are not all likely to be the pure article. In this, as in other cases, the best is the cheapest.

Adolitrations or Gnarb.

The additions to ground ginger are very similar to those of mustard. Turmeric may be detected by the microscope, or as described under "Mustard." Cayenne must be searched for by the mioroscope. As ginger naturally contains a large proportion of starch the iodine test is inapplioable, and the addition of the various farinas can only be ascertained by carefal mioroscopio examination.

adulterations of Vinrgar.

Vinegar is an article very often adultarated, the more common imparities being sulpharic and hydroohloric aoids, and cajenne, with acoidental contamination by zinc, copper, and lead. Oxalio and tartaric acids are also said to be ocoasionally present. Vinegar is essentially a weak, impure, moetic aoid, of very variable strength. Its strength may be ascertained by the usual processes of acidimetry. A more simple but less exact method is to weigh carefully a small, dry, white lump of marble, and place it in a known weight or measure (500 grainn) of the vinegar until effervescence has entirely cessed. (In presence of sulpharic acid a little barinm chloride should first be added.) The marble is then rinsed, dried, and re-weighed, when every five grains of loss indicates the presence of six grains of real acetio acid in the sample of vinegar. The vinegar of commeroe is either fermented or distilled vinegar; the latter variety is obtained by the distillation of wood, and the former derived from oither sugar, malt, or wine. The percentage of real acetic soid in vinegar varies from $2 \cdot 38$ to $5 \cdot 66$ per cent. Very weak vinegars should be rejeoted, as they are unable to prevent the deoomposition of meat and vegetables, while the extromely pangent varieties are open to the suspicion of containing onyenne or sulphuric acid. One part in a thonsand of sulpharic acid may be legally added to vinegar to inorease its keeping properties, but this proportion is often greatly exceeded. If addition of solation of barium obloride ocoasions more than a very slight clond, the presence of free sulpharic acid may be suspected, and searched for by the following tests:-

1. Write letters with the vinegar on white paper by means of a clean quill pen or splinter of wood. On strongly drying the paper before a fire the letters will become charred if salphuric acid was present in the vinegar to the extent of 2 per cent.
2. Dissolve a lump of white angar in thirty parts of watar, and dip into the solution a porcelain capsule or basin, so that it remains wet. Then dry by placing on a vessel containing boiling water, and while in this position allow a drop of the vinegar to fall upon the porcelain, and let it dry up completely. If sulpharic acid was present only to the extent of a 300th part of the vineger, a black spot will be produced on the basin where the rinegar fell. With very minute quantities of sulphorio acid the spot has a green colour
3. Il it be desired to determine the free culphuric acid, 8oa. of the vinegar are ooncentrated, the liquid mixed with twice its bnlk of alcohol, filtered, acidifed with hydrochlorio acid, and precipitated with barium ohloride. 233 grains of the ignited precipitate correspond to 98 parts of concentrated salphurio coid.
The other adulterations of vinegar may be detected in the following manner:-Boil down 4 onncos of the sample to about an onnoe, and divide into four portions, Nos. $1,2,3$, and 4 .
4. Evaporate nearly to dryness, add methylated spirits, stir well, and filter. Evaporate the clear alcololic solution to dryness and heat. Very pangent fumes, which produce irresistible coughing and sonse of heat in the langs, indicate the pre-
sence of cayenne. (Ginger, which is occasionally sence of caycnne. (Ginger, which is occasionally
present in vinegar, gives a similar result. The present in vinegar, gires a similar resalt. The carefolly neatralise the vinegar with sodinm carbonate, when the taste of the liquid will generally settle the question.)
5. Add a strong solation of potassium carbonate, then more of the original vinegar (so that the reaction is strongly acid), and stir with a glass rod. A white crystalline precipitate, giving streaks on the sides of the vessel in the track of the glass rod, indioates the presence of tartaric acid. Vinegars obtained from wine contain tartaric acid as a normal constituent.
6. Eraporate to complete dryness, and ignite the residue in a porcelain crucible till no longer black. (The ignition may be greatly expedited by addition of a crystal or two of potassinm chlorate.) Boil the ignited residue with a little nitrio acid, add water, and filter. To the clear solution add excess of ammonia and carbnnate of ammoniam, boil and filter. If the filtered liquid has a blue tint, copper is present. To the hot liquid add a solution of ferro-cyanide of potassinm, when the production of a white precipitate shows the presence of zinc. Pour acetic acid on the filter containing the precipitate produced by ammonia and ammoniam carbonate, and to the liquid which rans through add chromate of potassium. A ohrome-yellow precipitate will be produced if lead is present.
7. Dilate with water, and add a solution of
calcinm ealphate (plaster of Paris,) A white calcium eulphate (plaster of Paris.) A white turbidity shows the presence of oxalic acid.
If the original vinegar gives more than a slight
milkiness with a solution of nitrate of silver, the milkiness with a solution of nitrate of silver, the presence of hydrochloric acid is indicated.
I have recently examined four samples of vinecar by the above method, with the following
resu!ts:-results:-
No. 1.-Price, 8d. a quart. Adulterated with
cayenne.
No. 2.-Priee, 4d. e quart. Contained oajenne
and s small quantity of free aulphario soid. and a small quantity of free sulpharic aoid.
No. 3.- Prioe, 5d. a quart. Contained cayonne, and mall quantity of free sulphurio acid. suspioions preoipitate with nitrate of silver.
No. 4.-Price, 8d. a quart. Unadulterated. Adolterations of Pepper.
Dr. Hageall found pepper adulterated with wheat and pes-flour, gronnd rice, ground mustard seeds, linseed moal, and pepper dist. The examination cannot be made satifactorily without a good microscope, and then requires care and skill to successfally detect the admixture of the various starches, sec. I do not believe that aotusl dust or
dirt is ever intantionally mired with pepper, its dirt is ever intentionally mixed with pepper, its
adulterations being tho above farinas, \&c., added as make-weights. As pepper naturally contains a large quagtity of starch the iodine test cannot be used for detecting admixture. Four samples of black pepper recently purchased in Sheffield have proved free from foreign admixture.

Adultrrations of Capenne Peppre.

Cayenne peppor (ground capsioums) is sometimes adnlterated with oommon salt, varions lead, and vermilion. The addition of salt givea cavenne a bright red colour, and renders it less liable to fade on exposure to light. Salt is sometimes present in very considerable amount, and is used to oover other additions. The above adulterations may be detected in the following manner :-Boll some of the cayenne peppor in water, decant some of the liquid from the undissolved portion, and test the solution for starch
by means of iodine solation. A blas or violet by means of iodine solation. A blue or violet
colour indicates the presence of starch. The particular kind of starch present can oaly bo ascertniued by the microscope. Filter the remainder of the water in which the cayenne has been
boiled, and to the clear liquid add come ailver nitrata. A white ourdy precipitate, not dissolved on adding nitrio acid, is produced if common salt is present. Boil some of the cayenne in strong hydrochloric asid for some minutes, then add a a few drops of nitric acid, and boil again. Dilate the acid liquid with some water," filter, and divide the clear liquid into three portions, which test in the following manner:-

1. Add potassiam ferro-oyanide. \triangle Prassian blue precipitate indicates the presence of iron. Traces of iron are naturally present in oayenne, but a distinot procipitate proves adulteration
2. Add ammonia till alkaline. Then acidify with acetio acid, and add chromate of potassinm. A chrome-yellow precipitate proves the presence of lead, probably as red lead, in which case the original solid particles will be darkened on moistening with dilute nitric acid.
3. Pur the
4. Puar the liqnid on a olean penny or piece of onper, and after standing some minates wash the metal and polish with a oloth. If vermilion was present in the cayenne the oopper will appear white and amalgamated.
Sawdust and turmeric are best detected by the microscope, or the latter addition may be readily discovered by the method described under Mustard."
Four recent examinations of cayenne pepper resulted in the detection of salt and a small quantity of starch in two, the other samples being genuiue. Dr. Hassall found only four genuine specimens in a series of twenty-eight, one half of which contained one of the poisonoas metals-lead or mercary.
(To be continued.)

TECHNOLOGICAL EXAMINATIONS.

THE Society of Arts has formulated a pro-
gramme of work which even if the resnlts gramme of work which, even if the results fail to come ap to the sanguine expectations of many, cannot but be productive of much cood as far as the manufacturing interests of this
country are concerned: for if it is backed country are concerned; for if it is bscked up, as
it shonld be, by those who are in possession of the requisite means, and can impart the needed stimulus, it will go a great way towards enabling as to retain the supremacy in the industrial world which we at present look apon almost as our birthright, and even if neglected and left out in the cold will still assist in a measure to keep what may be termed the science of manufacture and tho necessity of a knowledge of it prominently before the public. The scheme, which may be considered to have been fairly started at the reoent Conference of the Society of Arta, under the patronage of the most distinguiahed notabilities, had its origin in a proposal of Major Donnelly, R.E., that the Society should undertake the examination of artisans in the ecientinc which they are engaged or are likely to be engagod, and award certificates of proficiency and prizes for those found to be acoomplished. These certificates will be of three grades, and will probably be divided into first and second class, and the degrees of proficiency, or grades, will be apportioned, and certificates awarded as follows : -No. 1 will be the elementary grade, or wha may bo termed the ordinary "workman's" cortif cate; 2, the advanoed, or "foreman's" certificate; and 3 the honours grade, or " manager's" certicicate, which may be assumed to imply that the holder has been examined and found to be acquaisted with all that is known of the soientifio principles on which his special art or manafac ture is founded. The first of these "technical examiastions" is proposed (we hope soon to be enabled to state that the scheme has passed this stage) to be held in May, 1873, and to take up two of the most important manufactures-viz.,
cotton and paper, the idea being to follow as closely as possible the line taken by the annua International Exhibitions. It would be premature to speak of the minor rules and regulations which will govern the working of these examina. tions, but the committee appointed to shape a programme for the proposed examinations of artianas employed in the cotton mannfactare was read at the conference, and the following will convey an idea of what is required of the candidates. The examination, then, will be divided into three parts, the first of which will be concerned

- If the insoluble rosidue has a reddish oolour which
is perisistent aftar igailion, the prescnce of b:ici-duat may be aysumed.
with those branches of science an knowledge of which may bo considered necosestry as a foundation for sourd technical instraction, regard being had to the acknowledged difficulties of obtaining a scientifio education. The second part will be concerned with the "teohnology" of the mannbranches of soience to it. The third will be concerned with the practical skill shown in the manufacture itself. The knowledge of the candidates will be-tested, as far as concerns Part I., general soience, by the ordinary May examinations of the Science and Art Department; and as concerns Part II., technology, by special papers, set immediatoly afterwards; while the qualifiostions of the candidates as ragards Part III., practical skill, will be judged by the returns of their employment in cotton mills. The outline of the sohemes as applied to the cotton manufacture may be teken as a rough guide as to what will be required in the techuical examinations connected with other industries, but special sabjects, will of course, be introduced to suit the requirements and peonliarities of other trades or professions. The committee consider that the following aubjeots are more or less connected with or involved in the manufacture of cotton: practioal plane or solid geomeiry, machine construction and drawing, building construction, pure mathematios, theoretical mechanics, applied mechanics, vegetable anatomy and physiology, and steam. To obtain the elementary grade, or "workman's," certifcate, the candidate will be required to "pass" in practical geometry and the elements of mechaniea: he may then count marke in any of the other subjects above mentioned. For the advanced or "foreman's" certicioate the candidate will be required to have obtained at least a "first-olasa" in the elementary stage of practical geometry, machine construction and drawing, elementary mathematios, and applied mechanics or steam, and when he has qualified in these he will be allowed to count marks in any of the other snbjects. For "honours" the candidate mast erince a higher knowledge of the various " necessary" subjects, and will then be allowed to count marks in the others. The "technological" portion of the examination requires a knowledge of the nature and properties of the raw materials, of the methods of preparing them, and of the machines by which the various operations of the manufacture are performed. A knowledge of the "stiffening and weighting" processes will also be required, as well as of the numerons articles or kinds of woven cotton fabrics. These particulars will give a fair notion of what may be expeoted to be required for the different teahnical examinetions, although the "papar" examination will, jadging from the report of the committee, require a knowledge of a greater variety of subjeots thes the " ootton."

We can anly hope thast the requiremente of the examiners will be sapplied by the candidates; and with the nine hours' movement apreading gradually there is just a minimum chance that workmen will find the requisite time to devote to study. We are, of course, presuming that what is tormed " obtaining a first-class," really means a sound and thorongh knowledge of the various subjeots constituting the elementary etage;
but we do not know at what point the otadard but we do not know at what point the ateadard
will be fixed. If placed too high worting men will be discouraged; if too low the object of the society will not be served so woll as it might be if the "happy medium" should be chosem. Wa observe that in the eppecial oompetition for prises
the candidate must "come up" in all the sabjeots the candidate must "come up" in all the eabjeots in whioh he wishes to count marks; but for the oortiticstes he will be allowed to take the subjoots in successive years-the latter a rary neoessary
regniation, for it is uneless to suppose that as workman could aequire a knowledge of all the sabjects in the limited time at his disposal, and until the primary education of the maseses is liftod above its present level the nambers whe will go in for the "exam." will not oome up to the expecttions of the fonnders of the soheme. The 8ociety of Arts' certificateb, we have reason to believe, mo highly valued by both employers and employed, and Mr. Lawton said at the conference that applicants for situations in the cotton mills and warehouses of Lsucashire who could produce one of these cortiticates, generally obtained the preference. Similar results would doabtless follow the establishment of "technical" examinations in manafactares, and in course of time em. ployers wonld look apon these oertificates of proticiency as a gaarantee of the ability of proticiency as a guarantee of the sbility of
the applicat to perform the work he desined to
obtain. If the proposals of the committee are carried out, and the programme adhered to. the advancod or "foreman's" certitioate will be evidence that its holder is an educated man ; "first-class" knowledge of practical geometry, machine construction and drawing, pare mathe matics, mechanics, steam, soonstics, light and heat, and inorganic chemistry or vegetable plyyiology, besides an acquaintance more or less extengive with magnetism and electricity, orgauic che mistry, and systematic and economic botany. In other words he will be, as the phrase goes, a "well educated" man, possessed of more solid information than many of his predecossors in office ever dreamt of. We shall probably return to this subject at a fature time. The scheme should not be allowed to fail, now it is once formalated, and be the resalts mach or little, if properly worked it cannot fail to improve the rising generations of artisaus, who, as children, it is to be hoped, will soon be tanght the rudiments of science at echoo just as they are now tanght the A B C. Till, however, primary edacation is immensely improved it is useless to hope that a sufficient number of workmen will "qualify" to leaven the whole mass and elevate technology to the high position it ought to occupy in a manufacturing country like Great Britain. In the mean time we canno but regret that the Society has determined to discontinue the ordinary examinations, which for seventeen years have been tolerably waceessfal We hope the new "tochnological" examination will meet with a greater measure of ancoeas.

PERSPECTIVE.*

T^{B} HIS simple, excellent, and moas infolligible ittle work appears a propos with ragerd to a discussion which has for a good many weoks
been carried on in our own colunans; and we woald refer the disputants, with some considerable amount of confidence, to it, for a parapicuous solution of the leading points of diffionlty mooted in the course of the debate.

There is one observation of our anthor's, the simplicity of which impresses us with an ides that it must be trite; but the truth of which may be well laid to heart by all who aspire to sketoh correotly. It is this: "The most frequent casuse of failure in attempts both in drawing and colouring is - not knowing how." We are anly doing Mr. Colling bare justice when we say that - careful perusal of his book must certainly remove this partionlar defioieney, so far as the bnowledge of perspective is concerned ; izasmuch as, beginning at the very beginning, he enunaiates and explains its leading prinoiples with a derree of lucidity which must render them apprehensible by any one who will follow his explanations with the most ordinary care. Moreover, essentially mathematical as the whole subject is in its fundamentals, there is a marked absence, in the work monder notioe, of anything in the shape of mathematics which cannot be easily followed by any one who can ase a pencil and ruler, and knows what an angle is.

Beginning with plain definitions of the few teohnical torms to be alterwards employed, the author goes on to explain the nature of sight, and o tell us what the "projection" of a picture means. He then proceeds to exhibit the difference between perspective and orthographic projection, and to exemplify the nature of isometric and stereographic drawing. All this is done in a way whioh a ohild might comprehend, by very moderate application. Then the subject of perspective is treated in full detail, and a typical and somewhat elaborate view of the interior of an old hal is taken, and instructions given, step by step, for drawing every item in it. As the particular example selected presents several points of diftioulty, it is scarcely too much to say that the student who will follow the anthor's teaching, pencil and aketch-book in hand, and reproduce his frontis piece by the aid of the principles which he so alearly enanciates, ought, hereafter, to meet with no difficulty whatever in delineating any object which ordinarily occupies the amatear, in correot perspective.
The work conclades with notices of "false pictures," the hanging of pictures, the reflection of the moon in Water, complementary colonrs, the ments; subjects ill more or less cognate wit the main one of the book, that of "the art of the main one of the bo
draming what one sees."
${ }^{\circ}$ " Perapeotive, or the Art of Drawidg what One Nese, so. By Lle
Loasmane.

Thirty-eight carefally-exeented woodouts (in addition to the frontispiece) illustrate the work, one of them (Fig. 19) dealing expressly with the point concerning which the conclading part of a sustained argument appears in letters on our 489th and 599th pages.
Briefly, then, we would commend this little book to all such of our readers as may sketch from nature ; and conneel them to inclade it with their drawing materials, when packing ap their travelling bags this summer.

THE "FALLACIES" OF DARWINISM."
PROBABLY the namo of no writer on scientific
subjects is better known throughout the world at the present time than that of the author of the "Origin of Species" and the "Descent of Man." Not merely because his books deal mainly with the animals which are joint inhabitants with ourselves of the earth, and are replete with entertaining anecdote and narrative, but also because they contain an hypothesis whioh is aalculated to distarb in no alight degree the self. satisfied and complacent frame of mind with which we regard the inferior or brate creation consoious of the saperiority whioh, for all we know to the oontenay, is our birthright. It might be expected that any one who should publish a statement that maxp immediate ancestor was in all probability an ape-and what is worse show incontestably that he had come grounds for the opinion-would meet with a storm of opposition from the great mass of humanity, and even from a very large number of those specialists who from their acquirements and intelligence were best capable of weighing the evidence placed before them. As a matter of course, when Darwin published his hypothesis the outraged foelings of the commanity found vent in an avalanche of wordy pamphlets containing much of the odinem theologicum, little argument, and no facts. Bat against the storm Mr. Darwin showed a bold front, and now numbers a very large following. It is only matmal that it should be so; for Mr. Darwin brings great scientific attainmente, laborions col-
leotion of facts, and undoubted honesty of purpave to wart apcua the etatemente he has to his opponents, if not completely defeated, have at least failed to demolish his hypothesis, and a similar fate would appear to be in store for Dr. Bree, who considers the time "opportune for a review of the whole subject, and in venturing upon the task, proposes to treat it in a spirit of pare scientific investigation." But so far from being a "pure scientific" examination of the Darwinian hypothesis, Dr. Brec'sexposition of its "fallacies" covers a far wider field, and argues "the subject in reforence to an issue ten times more important than the knowledge of man's biologioal history." Perhaps it is imposible to dispute the propositions of Mr. Darwin is their full bearing without bring. ing Revelation into the eontroveray; and a writer who does this well and does it fairly will be snre to obtain a wile circle of readers for his hook. Whether this will be the case with the volume issued by Dr. Bree remains to be seen; bat in venturing to doubt it we can offer remons which are furniabed by the book itself. On the very first page we find it stated that Dr. Hooker, in the well-known address to the British Associs tion at Norwich in 1868, asserted that "so far from 'natural selection' bring a thing of the past, it is an accepted doctrine with overy philosophioal naturalist." This statement Dr. Bree oharacterises as a "sweeping assertion," and procesds to point out its incooursoy. Now' it is in the highest degree necessary that any sttempted "exposition" of Darwin's fallacies should be based on facts; bat so far from this being the case with Dr. Bree's work we find at the very outset a "misquotation," and several pages devoted to the correction of an error which mily exists in the imagination of the anthor. Most persons would hare thought that before occupying several pages in refuting a statement made by Dr. Hooker, Dr. Bree would have at least taken the pains to see that he bad not made a mintake, even if he conld not gencronaly credit Dr. Hooker with trathfulness. So far from sny-
ing "every philosophical naturalist," according to the anthorised report Dr. Hooker said "almost every phiiosophical naturalist"-a qualification

An Exp.rition of the Fullacies In the Hypothesis of
Mr. Darwin, by C. R. Bask, M.D., F.Z.S. Londoa : Mr. Drewid
Longration
which brings the assertion of the ex-preaident within the confines of fact, and renders worse than useless the pages Dr. Bree devotes to the correction of the supposed error; for even in these he misquotes or misunderstands Mr. St. George Mivart, making the talented author of the "Genesis of Species" any the direot contrary of what he really did say. Blunders of so stupid a nature as these inevitably create a saspicion in the minds of unbiased readers, and lead them to look apon the arguments of the anthor with distrust.
Dr. Bree divides his subject under the different heads of the "physical," the "physioo-paychical," and the "variation and natural selection" arguments, and though possibly, standing on the ground he occupies, he has the advantage of Mr. Darwin, he has certainly not used his advantage in the best or most conclusive manner. He furnishes us with a frontiapiece showing in an illustrative form the "Descent of man after Darwin's theory," in which we find the protozoa of the unknown past as derived from "inferential protoplasm," or from the meteorio "mass" of Sir William Thomson, which he brackets as "very inferential." From this protozoa the diagram takes us to the ascidian-like larva which is Darwin's starting point (an inferred organism) and then the "Descent" goes from the Amphioxns or Lancelet, the first " so-called vertebrate," through the Sturgana to the Lepidoniren-or amphibious reptile. We then come to the first break, for here we have to "infer" a line of reptiles ending in anotber "inferred organism"-an early implacental mammal whioh carries on the "descent" to the Ornithorynchasand the Kangaroo ; but here two organisms are wanting-the "implaoental progenitor of the first placental mammal, and " man'e ancient ancestor, with cooked ears and tail, prehensile feet, both sexes bearded and hirsate, males with great canine toeth." Surely "man's ancestor" is out of place here ; for the cescontcon tinnes through the lemur, the Simiadm and the old-warld monkeys to the "so-called man-like ape." Here the great break occurs which separates the lowest type of man from the higheat animal-a link in the chain, which has to be supplied by an " ape-like man" before Mr. Darwin's theory can connect man with the apes. On this point Dr. Bree says, "It mast be obvious to the most superficial observer what an enormous amount of mere guessing is made ase of in such a pedigree. Still more olear is the fact that, even supposing the present state of science justified apparent plausibility in the indicated line, the science of to-morrow may send such gaesses into a totally different direction. [It may also prove the correctness of Darwin's hypothesis.] Mr. Darwin starts with guess No. 1; he then jumps over almost the whole class of vertebrate animals, to arrive at what he calls the first vertebrate animal-a form which has very little in common with the sub-kingdom it is placed in, but naturalists do not, in fact, know what to do with it. He then passes throngh cartilaginous fishes to guesses Nos. 2 and 3, as regards the amphibia and reptiles. Then an animal new to science, the early progenitor of implacental mammals, forms gness 4. He oannot keep the platypus nor the kangaroo in the direct line, bat he makes them minister to guess 5 , in being the lines to tho implacental forefather of lemurs, leaving out the great class of birds. He then jumps to the Lemuridx at a bound, leaving all the principal familieg of mammals out of the line altogether. Here he makes enormous guess No. 6, about man's early progenitor, who had oocked ears, a tail, prehensile feet, both sexes coverpd with hair and wearing beards. From the lemurs he passes to the Simiada, and follows the Catarrhine (or old world) groap of monkeys, and has to make another huge guess (No. 7) in order to get into the line an imaginary creature he calls an ape-like man,' who leads him to the summit of existenceman. Nothing displays more the real ignorancs of science, or the axtreme baldness and improbabilities of Mr. Darwin's hyputhesis, than a table like this." Dr. Bree has not omitted any of the defects of the theory, and it is very probable that "intelligent thinkers and men of education and high mental culture" will shake their heads and become disbelievers in natural science founded upon sowh a basis. "The chance of the ramains of] some of these variatious being found in the different gravels or fresh-water formations above the tertiaries must be very great. And jet not one single variation, not one single specimen of a being between a monkey and a man has ever been found. Neither in the gravel, nor the drift-clay. nor the tresh-water beds, por in the tertiarics
below them, has there ever been discovered the remains of any member of the missing families between the monkey and the man, as assumed to have existed by Mr. Darwin. brated Neanderthal sull bel. . The celethis rond confessedly to and yet presents, although it mey have been the sknll of an idiot, immense differences from the highest known anthropomorphous ape." These intermediate forms, too, must have been in great numbers, and the ohanges which the ape's skull must have undergone would alone have taken a vast time ; it is strange, therefore, if the Darwinian hypothesis has any foundation in fact, that remains of these intermediate forms have not been discoverod. Dr. Bree also examines the various points in the hypothesis, and step by step refates them, as he considers; but it is, of course, on the main point referred to above that his position is strongest. He quotes largely from the numerous articles published against the hypothesis, and devotes a chapter to the principle of "least action" as propounded by Dr. Hanghton in lectures which will be found in Vol. XIII. It is needless to say that he makes nse of every fact that bears in any way against the hypothesis, bat into even a fow of these fragments of his argument we cannot here follow him. And yet this is not the book to counteract the Darwinian tendencies of the majority of scientific men, nor a safe and trustworthy guide or exponent of the "fallacies" of " natural selection" suited to the requirements of the general public. If Dr. Bree had confined himself to the main points and defects of the theory, his woik might have been accepted as a popular exposition of some of the so-called "fallacies," but even then it would have been necessary to avoid misquotation and misconception. As it is, his book teems with errors. Speaking of Mr. Mivart's doctrine of evolution we are told that it is offered "as a means of reconciling scientifio and religious thought, and of bringing together the two lines which, Mr. Spencer remarks, are running parallel and gradually approaching each other." This extraordinary statement is illustrated by a diagram-two lines nearer at one end than the other, bat certainly not parallel. Speaking of the vivid colours of birds, Dr. Bree says they are produced by strix of pigments which " decompose the light and enable the feathers to absorb the most brilliant rays" and so commingle them as to yield the most beantiful tints. In an appendix Dr. Bree reproduces a large portion of M. Flourens's criticism of Darwin's "Origin of Species," bat appears to bave forgotten the replies to it-notably Professor Huxley's in the Naturalists' Magazine.
Many minds have been unsettled by the hypothesis of Darwin, and the acceptance it has met with in soientific circles in different countries, but we oannot think that Dr. Bree's book will do much to quiet those who have been disturbed by the "suggestion" that their reason and their intellect have been derived from a monkey-however far baok in time it may be when the gap which now separates man from the ape was bridged over. They are already aware of the great defects in the hypothesis, bnt the minor points and details apon which Mr. Darwin has built are not to be set aside so easily, and if the connecting links should ev.r be discovered, few, indeed, would be his opponents, and weaker still their arguments. In the mean time, Mr. Darwin has been refused admission to the French Academy as a foreign correspondent, because, according to a correspondent of Les Mondes, "the science of those of his books which have made his ohief title to fame-the 'Origin of Species,' and still more the 'Descent of Man'-is not soience, but a mase of assertions and absolutely gratuitous bypotheses, often evidently fallacious. This kind of publication and these theories are a bad example, which a body which respeots itself cannot encourage."

IMPROVED TURNING TOOLS.

\mathbf{A}^{N}N improved form of cutter or die for turning shafting and similar artioles has been recently patented by Mr. J. Fensom, of Toronto, in Canaian and in conjunction therewith he oonstructs the bed of the lathe in a pecoliar manner, when employed for turning such artioles. The improvement in the outter or die consists, according to the inventor, in making the front outting edge like a chaser or screw-ontter, the thread of which gradually diminishes in depth nntil it rana completely out, leaving the back portion a broed cutting edge, which is in the same plane as the
innermost part of the first thread. In this manner the thresd, which is commenced by the first cutting edge, is atilised or cansed to operate as a feeder for the cutter, but is gradually out away as the threads in the outter become less deep, and is completely removed by the baok outting edge. The effect produced by a cutter of this kind is that of distribating the outting points, and thereby reducing the friction npon them, while at the same time the outter is self-feeding.
The improvement in the bed of the lathe consists in making it of the shape of a trough, without the ordinary heads, the spindles fitting

a broad cutting edge, which entirely removes the thread produced by the front part a, and leaves the shafting plain and smooth, and reduoed in diameter, as shown at C. Blacksmiths and others who do not usually possess machinery for tarning can with these dies or outters utilise the ordinary atock for that purpoes. The cutters may be applied in various ways, either singly or in any number, to common or bolt-cutting lathes, either with or without the usual feeding gear as may be required. Fig. 3 shows an ordinary screw cutting die conneoted to a cutter, which will answer in a rough way the purpose of the cutter or die A .
Fig. 4 is a transverse vertical section, showing the improvement in the bed of the lathe mentioned above. It will be understood that the revolving spindle passes through the end of the bed D, which is, of course, fitted with proper journal boxes and requisite bearings. The tool-reet \mathbf{E} must also be shaped so as to admit of the shafting or other iron under operation being held in the position shown at F, that is, immersed in the water contained in the trough-shaped bed D. Both the bed D and the tool-rest E may, of course, be varied in form.

IRRADIATION.

TF two circles of equal diameter, one white or a black ground, the other bleck on a white ground, are looked at together, the white one appoars larger than the black. This is the phenomenon called irradiation. The apparent magnitude of the stars when we look at them is doubtless affeoted by it; and its inflannce is very well observed in the appearance of the moon when only a few days old, the bright crescent apparently extending beyond the darker portion of the diso, and holding it in its grasp.
Platesu has assigned a physiologioal osuse to irradiation, saying that the impresaion produced on the retina extends beyond the outline of the image. Welcker and others assert the oanse is a physical one-vir., the dispersion of light. In support of the latter view it is urged that irradia. tion increases with faulty accommodation in the eye, and that by the use of proper glasses it tany be removed. It is not only light objects on a dark ground that irradiate, the opposite also occurs. A simple way of proving this is to draw on fine white paper two equal thin dark lines, meeting at an angle of 1° to 2°. Look at these and note the point at which the breadth of the lines seems to be equal to the distance between them. Cheok this next by careful measurement, and it is found that at the point fixed upon the distance between the lines is considerably greater than their breadth, showing that the dert lines had appeared to broaden at the expense of the white space. This is only perceived, however, when the dark objects are very small.

Dr. Volkmann, of Halle, has experimented carefully on irradiation. He used an instrumant which he called a macroscope. This is no otber than a telescope tabe with only the objeot-glase left in it. He looked through it at broad parallel bands (of black or white), whioh thas gave a diminished image. If the breadth of the lines did not appear equal to the distance between them their distance from the lens was altered till this took place. The following are some of the results that were arrived at:-The amount of irradiation varies with the size of the image on the retina : the smaller the image the greater the irradiation. Two parallel white lines 1 mm . broad, and which conld be made to approeeh each other, were placed at eight different distances. suocessively, from the lens, giving oight different images. It was observed in each case at what distance from each other they had to be placed in order that their breadth should be equal to their apparent distance, and the above result was obtained.
White lines on a black ground irradiate mare strongly than black lines on a white ground. The surface of a board was half covered with white paper, and half with black. Two black paralled lines were drawn on the white half, and two white on the black. They were each 3mm. thisk, and each pair 6 mm . from each other. The distanco from the lens at which each pair had to be pat in order to their distanco from enoh other being equal to their breadth was noted. This was mech greater for the one pair of lines than for the other.
The amonnt of irradiation is dopendeat on the difference in light intensity between the objeot and its ground. An experiment was made with
white objects on a black ground, the source of light being placed at various distances successively, and the result was that the irradiation was greater in proportion as the light was further removedthat is, as the light contrast between objeot and ground was leas. Another mode of experiment, however, gives a somewhat different result (which the law must be made to inclade.) If we have four equal dises, one white and and one gray on a black ground, one black and one gray on a white ground-then the white looks larger than the gray on the black ground, and the black looks amaller than the gray on the dark ground.
The smount of irradiation further varies with the dispersion of light; it varies in different individnals; it is inoressed through the slightest fatigue of the eyes ; and the reflection of light trom the field of vision external to objeot and ground has also an influence on it. A. B. M.

THE WATOH, AND HOW TO REPAIR IT.

By "Seconds' Practical Watchmaker."

(Continued from page 503.)

The Adjubtigent of the Mangpbina.

T0 commence. Place the barrel A and the fusee B in the frame, and secure the upper plate by pins, which pass through the four pillars ; place the book of the chain (1) into the hole at the top of barrel, and then wind the chain on it; fix the hook (4) into the notch of fusee, and then wind on the barrel by the endless sorew, or by the alick and ratohet method-both these terms are familiar to the amateur as well as to the workman ray half a turn. Fix on the fusee-equare the adjust-ing-rod, which had better be described before procoeding further. This rod (or tool) is formed of a piece of moderate sized roand steel wire, nearly 12in. long. At one end it has a very amall screwvice attached, and by unsorewing a small thambsorew belonging to it it can be secured to any size of watoh fusee-square. Upon the wire of this rod there are two brass weights whioh pass up and down freely, and by their screws may be made secure at any part of it. Sapposing that the rod is firmly fixed to the fusee-square, and the frame held in the left hand with its edge npward, the right will be at liberty, aud thas the rod may be turned to wind the chain from the barrel, and thereby fill the grooves of the fasee. When fally wound up, the adjustment can be tested, and then so arrange the frame by the band holding it that the rod can be easily turned. The movable weights on the rod will be on it below the fuseesquare, and be very similar to the ordinary steclyard. Allow the weighted end of rod to rise, and so place the weights that it will only just rise. Allow it to turn: observe the next turn whether the weights go over with the same or less power than the first one ; continue till all the tarna-over of the rod are accomplished. Generally the adjasting-rod will soarcely rise at the last-but-one turn, and at the last there is no force apparently left. In suoh a case set the spring up more-that is, turn the ratchet and click, or endless sorew, another quarter of a turn more, making, with the half-turn first started with, three-quarters of a tarn, then try again in the same way. Should the result be an improvement, proceed two or three clicks more, and repeat the trial. If the rod passes over equally except the last turn, hesitate whether any further alteration should be made for this reason. The whole trin of the fusee may correspond in value of time only five hours, and then by removing the adjusting-rod and fixing just on the opposite side of the fuseesquare, the power by which the rod is lifted may be judged by the value of from two to three hours; therefore, it can with safety be so left, because no watch is supposed to continue going till quite down. Again, shoald the rod tarn over more freely toward, and at the last turn, the mainspring is set up too muoh. Bat if the greatest loroe is evident at or about the middle of fusee's motion, it is evident that that fusee is too large thereabout ; and if the watch under trial be of superior quality. remove the mainspring, apply another, and repeat the trial. It is customary with manufacturers and examiners of superior work to have the cutting of the fusee teated before it is delivered from their place of business, and therefore rather donbt the quality of the mainspring than the form of the fusee.
Having left the power equalised by which the train of wheel-work is kept in motion, we have to consider, in the next place, in what way the watch is made to tiok. Below the fusee D is a
sented in Fig. 4, generally having fifty-five or sixty teeth out thereon. The wheel A has to remain stationary during the time of winding up the watch; we will therefore describe in what manner this is effected. This wheel A represents the first wheel of the train, and detaohed from the fusee D in order to illastrate more fully the consequent action when both fusee and its wheel are connected. This wheel A is represented lower than the fusee, to show that at the lowest part of the fusee saw-like teeth are formed, E , termed "ratchet-teeth," and also that the centre portion of the wheel is hollowed to allow the ratchet portion of the fusee's base to lie within it so as to oome in connection with the click B, it being a small hook and movable. The piece marked C is a piece of brass so secured to the inner part of the great wheel that it forms a spring so as to press the click B toward the centre of the wheel, and when the ratchetteeth part of the fusee E lies within the wheel A, a olick-and-ratchet action is formed. The watoh-key baing placed on the squared arbor of fusee 0 , and turned, will wind the ohain from the barrel on to the fusee until the grooves are filled; then an arrangement gets into aotion, and prevents the over-winding of the watob. (See Fig. 5.)

By inspecting Fig. 4 it will be readily seen that the key mast be turned in the direction of the arrow, and that the saw-like teeth at the bottom of the fusee will raise the click C, which, when it has arrived at the highest point of the ratohet-

woth, falls from it, and is pressed to the base of the sacoeeding one, and by the flat face of the preceding tooth being presented to the point of the click, prevents the fusee being turned in the opposite direotion. This click rising and falling causes the clicking noise heard when winding the watch. Thus, both fusee and its wheel are carried together, and caused to follow the inolination of the mainspring's force, the resalt of which is that the chain is unooiled, and when all the chain has left the fusee the watch is then down, and must be rewound before it will again tiok.
Having thus far become zoquainted with the office of the mainspring, barrel, fusee, and great wheel, our attention mast now be directed to another diagram, Fig. 5, in order that we may understand the simple bat effective means employed to prevent the watch being over-wonud. In Fig. 1 we see that the stop-stud G is the fixture in which the stop is placed, also that a small spring L, Which is secured at one end by a sorew, passes underneath that stop. The office of this spring L is to press the stop upward, in order that when the watch has been fally wound up an antomatic action shall follow in connection with this stop, as the chain nncoils from the fusee.
By inspecting Fig. 5, B, we may readily reoognise the fasee, as in Figs. 2 and 4, although the grooves are not reprcsented, one turn of the chain being sufficient for our present purpose; and the mind's eye may be asciated in following the means whereby the atop acts at the termination of wind-
ing up the watob, and also in what manner the parts forming the stop-work get ont of aotion
again, and so allow the fusee to continue its motion without obetruction. This atop-stud G is a piece of brass seourely rivoted into the upperplate, and scross which a notch is made with a thin gaw ; into this notah the thin blade of the stop is placed, and therein secared by a small pin passing through the stud and stop, which are so arranged that the stop moves freely in the stud notch as well se on the pin. Underneath the stop, olose to the stud, the spring L passes, and is so bent that it forces the stop upward, and thas remains until the winding-ap of the watoh.

We will now consider in what way the stop becomes usefal. When the winding key is applied to the fusee-square 0 , for the parpose of winding up the watch, it is quite clear that the chain is wound from the barrel on to the fusee. It therefore happens that when the last turn of the key is about to be completed the ohain has to fill the last groove of the fusee, and as the chain passes aoross the stop H, in the direction M (toward the barrel), it presses it toward the upper-plate ; therefore, when the point N of the fusee-oap has advanced to its completion of winding, the flat end of the stop H is presented to $i t$, and the key cannot be turned further. This, then, is the stopping of the winding, because the key cannot then be turned beyond that point. This simple arrangement is termed by watohmakers the stop-work. When the fusee has made one revolution after the watoh has been fally wound up, by being moved in the opposite direction, the point N of the fusee-cap has passed ander the stop H, which is brought about by the spring L presaing npward this stop, thus allowing freedom for the passing of the cap of fusee, and thas the ohain is again transferred from the fusee to the barrel.

Our next oonsideration is that of the train, or wheels constituting the watch. Every watoh is made up of foar portions or divisions, that is to say, the barrel, fusee, and stop-work are termed "the great wark," the three wheels following are known bv the term "the small wheels," the last wheel, with the rest of the parts constituting the escapement, is recognised as the "esoapement," and the two wheels and one pinion under the face is known as "the motion-work." Each section or portion will be referred to separately, and therefore we proceed to consider that portion of the watch which immediately follows, from the fasee-wheel including, which is termed the train.

We can, then, understand that the term train has for its signification those wheels and pinions forming that part of the watch until they become connected with the esoapement. When the term wheel is made use of it refers to circular pieces of metal, usually brass, with teeth formed on their circumference. When the term pinion is made use of we refer to the small steel wheels into which the leading and succoeding wheels act. The five wheels of a watch are fixed on steel spindles (or arbors which terminate in two small onds) or pivots, and tarn in holes made in the frame. When we refer to the teeth of wheels we nnderstand by that term the notches formed on their circumference; bat when we refer to those teeth which form the pinion we term them leaves; therefore, as the two terms will be frequently employed, it has been thought adrisable to mention the distinction.

As the fusee continues its action by the mainspring's foroe, the train of wheels are put in motion, and, as we have stated, would have moved 80 rapidly that in a very short time would have ceased to move were it not for the arrange ment just referred to as the third portion of the watch, termed the escapement, the objeot of which is that the wheels shall be permitted to perform their revolutions in such periods of duration as may be assigned to them by the medinm of its intervention, and by which the mainspring is permitted slowly to ancoil after it has been coiled up in its box by the process of winding up the watoh. Thus the term escapement at once suggests to the mind that means by which the power, after it has been concentrated in the barrel, is permitted to esospe; and hence it will be seen that at each tick of the watoh a portion of the mainspring's force has been disposed of.

SUNSTROKE

DR. HORATIO C. WOOD, jun., has recently pablished in America an excallent paper on vations and oxperiments undertaken by him with the view of elucidating the phenomena. After showing that in cases of sunstroke the blood undergoes no primary changes in its physiological or
ohemioad properties，Dr．Wood＇s next step was to ascertain why the heart and mascles are fonnd so
rigid aftor death from sanstroke，and what it is that rigid aftor death from sanstroke．and what it is that really kills in this affection．By subjecting myo－
siue to different temperatures，he fond that this siue to different temperatures，he fonnd that this
substance coagalated with great rapidity from 108° to 115^{2} Pabr．，and the temperature of the body in cases of sunstroke often reaches 110° Fahr．at the time of death．But the heart is found to continue to beat in animals dead of sunstroke－at any rate， dead in the sense that they had ccased to respire． The rigidity of the cardiac muscles，then，is a post－ and not an ante mortem phenomenon．As some ex periments by Dr．Wood proved that heat applied to
a nerve trunk would not destroy its conducting a nerve trank would not destroy its condacting power，his further investigation was directed to the
action of heat on the nerve centres．By some in－ action of heat on the nerve centres．By some in－
genious appliances，hot water was made to circulate over the surface of an animal＇s head，and it was fonnd that sudden insensibility，and ultimately death from asphyxia，could always be induced at certain temperatures．A brain temperature of
from 112° to 114° was fatal to a cat，and one of 114° to 117° to a rabbit．Owing to the possession of a more highly organised hrain，it is probably that in man a less degree of heat wonld produce the same set of symptoms．The mechanism of an attack of sunstrokn then，according to Dr ．Wood，is that＂nuder the inflaence of external heat the tem－ perature of at which the heat paralyses，by over－ stimndation，the controlling centre regulating animal heat ；then a sudden additioual rise of tem－ perature，with a corresponding increase in tho severity of the symptoms，occars．＂Of coarse cold is the remedy，asd cold water the readiest way of applying it．It is a great mistake，says the Lancet， to suppose that these cases are commonly due to the action of the direct rays of the sun，for in India，as in America，attacks are very frequent at
night．One of the main things to be attended to is， night．One of the main things to be attended to is，
as we have said before，the fanction of the skin by as we have said before，the
the daily nise of the bath．

TEA，COFFEE，COCOA，AND ALCOHOL．

THE remarks of Dr．Arlidge，which we printed on p．269，appear to have led to further investi－ gations of the properties of tea and other beverages， and we extract from the British Medical Journal the conclasions of a French physician who has been experimenting in this direction：－
the sbandozed class of persons otions concern－ ing the abandoned class of persons stigmatised by learned writers as＂tea－drankards，＂it may be in－
teresting to state the conclusions of an elaborate research by Dr．Angel Marvand，which has recently attracted mach attention in France，on the physio－ logical and therapeatical effects of coffee，tea， coc3．mate or guarana（Paraguay tea），and alcohol， Which he classes together as aliments of economy， or anti－waste foods．He considers their influence on nutrition from two points of view ：as stimalants to the nervois syalem；as anti－waste foods，or
anti－assinilators．Alcohol acts directly on the sensory apparatus of the spinal cord，and indirectly on the motor apparatus．Coca acts directly on the motor apparatus，which it excites in the same manner as strychnine．Coffee，tea，and matè act manner as strychnine．Coffee，tea，and mate act
principally on the brain．Alcohol and coca excite principally on the brain．Alcohol and coca excite the excrcise of thought．Further，by lesseniug the waste of the tissaes，oounteracting organic oxidation， and diminishing loss by means of the recretions， they all act as aliments of economy．In this way is explained their action in stimulating to work in the eveniug，in partly supplsing the want of solid food， aud in moderating vital combustion．Hence arises theirincreasing consumption，and their more general use as articles of daily regime； hence，too，their
ntility iu alimentation，and their important place in hygieue．The abnse of these aliments has，it is trae，two principal inconveniences．In the first place，the excitement of the nervons system which they cause is liable to be followed by fatigue，weak－ ness，aud even inertia．In the second place，by their interference with and reduction of the pro－ cesses－indispensably neoessary to life－of combina－
tion，transmatation，and decomposition，they may tion，transmatation，and decomposition，they may
cause arrest，suspension，or even complete suppres． cause arrest，suspension，or even complete suppres．
sion of the nutritive clianges in t＇se cellular ele－ sion of the nntritive clanges in tie cellular ele．
ments，and may produce as resnlts，torpor，atony，
fatty dereneration，and necrobiosis of the tisaung． fatty degeneration．and necrobiosis of the tissues．
Thus are explainef alcoholism，coffueiam，theinism， Thus are explainen alcoholism，coffeeism，theinism，
and cocoaison．The therapentic pronorties of thege susatances result from their physiological efficts． Medicine is capable of deriving great power from them as stimnlants of the nervous system，as anti－ calorifics，and as rotarders of waste．They ougat to find a place in materia medica among the medica－ ments that excite the function of the nerves of re－
lative life，and depress those of orgnnic life． second of these properties may be re＂grded as a conscquence of the first，if the in de of action of the nervons system be considered．Those centres which nervous systembe consifered．Those cenires which
preside over natrition and its priucipal phenomena
（assimilation aul decompositiou）act （assinilation aul decomposition）act with less euerky in proportion as the centres which regnlate the intellectunl，senzory，and motor phers are
subjected $t)$ a more livily aid lasting stimulation．

FASTENINGS FOR WATCH－CHAINS．
A．METHOD of securing watch－chains to the waistcoat in a reliable，and at the same time ornamental，manner，has beon patented by a Mr．Dolby，of London．The dovice is applicable to Albert and Victoris chains or gaards，which are generally gecured to the waistcoat by means of a bar on the end of the chain，which bar is passed throngh one of the batton－holes of the waistcoat．This mode of attachment，while giving little or no scope for ornament，is very incon－ venient on account of the difficulty in getting the bar throngh the hole，and in afterwards passing the button throngh tho same hole．Victoria chains worn by ladies are generally attached at their apper end to a hook on a brooch or on the dress itself，an insecure modo of attachment．To obviate these inconvenienoes，and provide a reliable fastening，the iaventor employs a p！nte， key，shield，or ornament of any kind，provided at the back with a shank to pass through a button． hole or through a small hole made for the parpose，
the shank being se－ cored or dress waist spring bolt．The chain is attached to the plate， key，shield，or other ornament，or to the shank，and remains en tirely outside the waist coat or dress，together with the plate or other
ornament．The general idea will be readily understood from the engravings，which re－
present one form of the ＂invention，＂，which is， of course，capable of great modification．Fig． 1 shows the plate a ，which may be ornamented to any desired extent；and b the shank which is passed throngh the hol in the waistcoat，
secured by muans of the bott shown in Fig． 2 ．

COAL AND DOMESSTIC ECONOMY．

AFRIEND of Sir William Bolkin＇s has offered to the Society of Arts the sum of $£ 500$ to be awarded in prizes＂or otherwise＂for the invention of stoves，adapted for ordiasry sitting－romons and kitchens，which shall as far as possible consume the
smoke aud iusare＂the most perfect and judicious use of the coal to be cousumed．＂This is，indeed， a timely ofter，and the Society has thankfally ac－ cepted it，and apprinted a coramittee to report on the best manner of taking action in the matter．

THE MANCHESTER STEAM USERS＇ ASSOCIATION．

\rceil HE last oritaary monthly mecting of the held at tise offices，41，Corporation－street．Man－ chester，on Thesdav，Jnly 30th，1872．Sir William Fairbairn，Bart．，C．E．，F．R．S．，LL．D．，\＆e．，presi－
dent，in the chair，when it appeared from the re． dent，in the chair，when it appeared from the re－
port of Mr．L．G．Flutcher，chief engineer，that during the past month 67.3 visits of inspection had been made．and 679 boilers examined，40li externally， 6 internally， 6 in the thaes，and 261 entirely，while， in addition， 6 new ioilers were tested by hydraulic pressure，as well as specially exanained both as ro－
gards their constraction and complement of fittings，before leaving the maker＇s yard．The fol－ lowing defects had been met with：－Furnaces out of shape， 1 ；fractures， 12 ；blistered plates， 4 ； internal corrosion， 12 （ 1 daugerons）：external ditto， 8 ；internal grooving， 5 ；external ditto， 13 ；water 8 ；internal grooving， 5 ；external ditto， 13 ；Water
gauges ont of order， 4 （2）dangerona）；safety valves ganges ont of order， 4 （2 dangeroas）；safety valves
ditto， 4 （ 2 dangrous）；pressure gauges ditto， 6 ： total， 69 defects（ 5 dangerous）．
During the month two explosions had arisen from boilers unt under the inspetion of the asso－
ciation，injuring eigat persong，thong fortunately ciation，injuring eight per30ng，though fortanately
not fatally．The canve of one of these explosions， which had been investigated by an officer of the associntion，was foumd to b：the same as that so frequently mat wit！on previnus occasions－viz．，
the nse of an old worn－out boiler，the plates along the nse of an old worn－out boiler．the plates along the bottom，where resting on the brick pork，having como as thin as a sheet of paper．This corrosion was greatly accelerated by the fact that the boiler was not set upon suitable seating blocks，bat let which harbonred sonistue work with wido seatings， which harbanred moistuie，and thas promoted the
corrosion．The entire boiler had been thrown from its seat，and a convideraine portion of it harlad
 slates scatered in all directions．It was a wonser that no loss of life resalted．Competent inspection
wound have greventad this ex，losion．

ATMOSPHERIO GEOLOGY． PAPER was recently read by Profeszor J Wise before the meteorological section of the Franklin Institute，under the somewhat fancifal
title of the＂Geology of the Atmosphere．＂We are title of the＂Geology of the Δ tmosphere．＂We are assured，however，that this is no fancy misaomer， but is as much a matter of scientific fact as is the geology of our planet＇s crust．Indeed，while the geology of the earth＇s crast confines our positive observation within the limits of one or tro thou－ sand feet beneath its anrface，that of the atmosphere allows us a practical soope of examination of $30,000 \mathrm{ft}$ ．above its surface，and of that portion of it most interesting to our welfare and stady．Now， whatever the condition of terra firma may be bo－ yond the point of certain examination in regard to its crust and internal structare，whether eolid to its centre，or hollow like a geode，or whether filled with plutonic lava as some physicists maintain，we o kuow that the geology ol the atmosphere proves itself to be a stratiked elastic substantive sheil to many miles outward as you choose the distance of as many miles oatward as you choose
to connt it under the lam of geometrical dimination to connt it under the R⿴囗 of geometrical dimination
of deusity，which brings it so near to a nonentity at of deusity，which brings it so near to a nonentity at
forty five or fifty miles above the earth＇s surfsce that the atmosphere philosophers have placed its ultimatum at abont that linit，but they forget to tell us what begins whore the atmosphere ends leaving us in a sort of philosophical quandary，and so we may as well come down into the shell of our
snbject，for shell it is，as certain as is the shell an subject，for shell it is，as certain a
Trne it is that we shall not find it nearly so difforlt of penetration throngh its atrata as the granitie layers of its correlative banement，or oren the liquia rests，but we shall nevertheloss find it possessed ests，bat wo shall nevertheless and if possessed with counterparts as interesting to contemplate an
are the old red sandstones and primitive serpen－ tines of the nether geology．
nes of the nether geologs
Viewed from afar off，as
tandpoint on Mars or 2 ，we might see it from號 sonable probability find the semi－tramepareat
geology of our atmosphere to present us with a geology of our atmosphere to present us with a
teld of view similar to the belted Japiter or stristed Mars，since we have such well－defined lande in the torrid，the tomparate，and the frigid zones that mont of necessity give aspects in accordance to their tem－ peratures，their reflections，their underlsid watar bases，liquid and frozen，and its persistent equatorial cloud－belt that shifts itself in accordance with the earth＇s declination to the plane of its orbit．
While the gravity of our earth，by which all the other planets are weighed，at best is hypothetical． tioned，as of its atmosphere can harellian baques That instroment tells us the Torricelian balance． That instrament tells us that our atmosphere is
equal in weight to a shell of water 34 ft ．thiok，en equal in weight to a shell of water 3 ± 16 ．thiok，en－
cumpassing the whole world；so you see we havea compassing the whole world；so you see we have a positive data of its weight，and have a good foun－
dation to start on in the investigation of its geology． Now，as it may safely be alleged that the general stratification of the atmosphere is constantly liable to slides，and heaves，and aralanches，and shiftings as compared to the geology of the more solid crust of the earth，the difference is only as to time While the oue is liable to ohanges in short periode of time，the other is just as liable to changes in luag periods of time；and in the one case，as a the is all the same as regards the computation of time and chango．

That the atmosphere has its fixed geological strats is manifest in various indisputable conditions of constant recurrence，well known to the seafaring and airfaring man，and he knows them as well in their conrses as does the engineering landsman
know the valleys of the Mississippi and the dmezon． or the ranges of the Cordilleras．The trade winds were for a long time only studied and understood us related to ship sailing voyages，as the sqnirrel noder－ stands and practices the art of crossing rivers，as a failare of the nut－crop makes it a necessits to mi － grate from one side to the other．Now，since we are a little more advanced from the ancestry Which Darwin gives us，we are prone to look a little higher． leads ut，in accoritanco with the law of progreas with a viem，if not to make ourselves wings to tly with，at all events floats to sail with，that bring us face to face with acrial highways，mountains and valleys，streams and counter streams，tides and find stratiters of clouds，warm and cold．just as wa find stratifications，tides and gulf streams，in the
more crude form here below；nud thas we behuld more crude form here below；nad thas we behold
that unity of force and law in nature that mores and vitalises all things with its providential life and motion recognisable in the multifarions forms of matter springing out of it．Yon will not objeot to the term highway．as applied to this appor ovean． when I tell you that great processions of the thistio－ seed，with its tiny silken chariot carrying it along， may be seen high above the second stratum of cloads，as is seen the gulf．grass moving with the the impreguating priaciple of the vegetable king－
copy of the paper from whicla these liaes haro beon ex． traeted．
dem, which may be seen in these moving strata in the form of faintly outlined nebulons colonds, in
their mission of destiny fulfiling the works of natare.
That great contrifugal farnace - our equator, rapour, thnt is pumped up, as it were, by a tremen. dous irrigating engine, as if made expressly to send heat and moistrre to the nitermost parts of the heat and moistnre is of itself a grand and interesting stady, beearth, is of theif a grand and interesting stady, bopre which the hearing tres the atratum which has paratively tame. That is tuxe atratum which has not yot recaived its full share of considerstion in the cosmogony of our planet, but rather neglected
and left to the unimaginative sailor, who conjores and left to the unimaginative sailor, who conjures
it up into "calm belts" and " horse latitudes," and into "doldrams" and "crossings of the line,". \&cc.
Owing to the confguration of the globe in its continents in conneotion with the motion of the earth, and the gulf streams that are projected from this hage steam generator, the mariner tracks oat his roads and byoways as delinitely as does the civil while this great engine is moving the waters of the sea it is jast as diligently at work in moving the great oocan of rapoar over ous heads above, pre. genting the grand conjunction of the trade winds rashing into this equatorial vortex from the morthward and the southward, only to be raised and conducted outward, freighted with its life-giving matemech of its of the animal in its peculiar economy. Old "Probabilities" - I mean thy
Old "Probabilities" - I mean the origival one, Joseph Henry-gavene a lesson in this weather pre-
diction fifteen years ago. With his weather map bediction fifteen years ago. With his weather map be-
fore him, and a telegram from S. Louis desoribing a fore him, and a telegram from S. Loais desoribing a storm then and there in action, he began to trace it by stioking pins into the mup. As we had been disoussing the nature of storms and the upper trade
winds the evening before, I remarked, 4 You onght winds the evening before, I remarked, "You ought meridian of Washington," and he did predict it trathfully! He farther remarked, "You know the snowstorme malmy commence in the west, and whenever I get a telegram from S. Lonis of a snow. storm raging there, I ean tell about what time it will reach the Atlantic seaboard." It is only when the east wind of winter forms a conjunction, and an atmospheric node with the west wind, that a deposition of snow takes place; and this winter node of
anow, rain, or sleet, always travels eastward. Our weather sigual service is mainly indebted to the early experiments of Henry; for as soon as a general aystem of telegraphy was established, the western prediotions were an accomplished science, and he pressed the matter as a necessary and economical getion of the Government for the benefit of seamen and agriculturists.
Sach is the ase of the stady of the geology of the atmosphere, and while it woald be too prolix for an evening essay to attempt the details of arrears of isobarometric lines indicative of the conrse of the storm, it is in order to say that high and low barometer is only an effect of the storm motion-that is to say, the condensation of the atmosphere, cansed by its pushing forward, makes the mercary rise, while its dilation, following in the wake, causes mercary to fall.
The heat and force that actuates all our storms comes from the intertropical belt of our planet, and they ever take their rise from the vapour that is pomped up by the great centrifugal eugine of the
equator, and from thence sent north and south in equator, and from thence sent north and south in
the form of cyclones, and from the offshools of the form of cyclones, and from the offshoots of
these come our more northern gasts and storms, never so great and grand in the temperate zone as in the tropical. It does not belong to the solid oarth elone todevelop the stratification of horizontal and inclined layers, since we find the atmosphere presenting a similar condition. We often soe the stratam of clouds with their feather-odged ontlines crust of the earth, and when the setting sun throws her golden sheen over them their forms and figares require no vivid imagination to trace the geology counterpart of the uphearing earthquake and lavi. projecting volcano in the downheaving waterspoat projecting voicano in the downh
The great balance of nature is vibrating oll the time with exaot rhythmioal motion-the earthquakes, oyclones, and volcanos are bat bars and semiquavers
in the barmony of the universe, and we, shortin the harmony of the aniverse, and we, short-
sighted creatures, often look apon them as catasighterl creatures, often look apon them as cata-
stropher, and. with the uneducated, as the visitations stropher, and, with the
of an offonded Deity.
The shell of atmosphere that emfolds the enlid earth is full of life and full of uses. One of its abes is yet to come. When man shall have stndied
more fally its metter and its condition ; its highwars and its byoways; its mountains nil its vall ys ; its tide of fax and reflax; its capacity to float ships of eopper or iron (a balloon made of oopper plate, Woighivg a poumd por square foot, and of lontt.
diameter, will float in the air), then shall wo aloo appropriate the knowledge of the ntmosphere's geology to our ase as a means of devising fleet and
pleasant travel

The individual who nowadays negleote to look at "Probability's" enunoiation in the morning papers -especially when he says are a of low barometur will pass over you to-day-and determines to leave oad excarsion without his umbrella, deserves to have his bst sopped with rain, and his garments soaked with an edmonitory moistare.
A more advanoed theory of the geology of the atmosphere will teach us to prediet earthquakes, as it is already more than surmised that the elastic shell of the atmosphere pamps up a bubble in the shell of the earth, and then lots it sink again, as does the indiarabber ball the water when wo press the ball, and then suffer it suddeuly to expand.

COAL-CUTTING BY COMPRESSED AIR.

A T the recent meating of the Institution of $\mathrm{Me}-$ chanioal Engineers, a description of a machine for getting coal was read by Mr. Winstanley, and as the subject has more than usnal importance at the present time wo reprodace it almost in extenso. Mr. Winstanley said that at no time in the history of the coal trade had a greater waut been felt than at the present for the aubstitution of machinery for mannal labour in the working of coal, and never, since the year 1761, when Michael blenzies made one of the earliest attempts on record to coustruct coal catting machines, had the difiecnlties experienced by coal proprietors been greater than now-a time when it is almost impossible to nuke prodnction keep pace with the demand, and when tho ditio-
calty is further increased by the lessenud outpat or culty is further increased by the lessenud output or
prodnction which socompanies a high rate of wages. Any improvement, therofore, in the working of coal mines which would inerease the quantity of coal got and diminish the cost of production, nud at the same time relieve the miner of the most laborious and dangerons part of his work, mast be a benefit, not only to those immediately interested in the work, but also to the consumer generally. The object of the paper was to describe a machine which had been morked daily or nightly for the last two years at the Platt-lane Colliers of the Wigan and Whiston Coal Compauy, in a scam of coal known by the name of the "Pemberton Little Coal." The
coal is about 2 ft . 4 in. in thickness, and is notorionsly coai is about hard, so muoh so, that it was with the ut most difiticurd, so m cuity men were iulaided so work it, and alone inme the seam stood iule for some time, because colliers
could not be got to work in it, whilst the proprictors had always to pay a higher rate for getting it than for any other seam coal they work. The cutter,
which is the invention of the writer and Mr. Barker, is, like most othors, driven by compressed air, which is conveyed down the shaft and along the main coads iu iron pipes, and from the end of the draw-ing-road to the machine in indiarubber hose pipe, 2 in . in diameter. The coal is cnt by a spur wheel fitted with teeth, this wheel being 3ft. Gin. in cliametor. The wheel cats its way into the coal with"hoting "pade by the wheel can be varied at will. The machine is drawn along the face of the coal as it "holes" or cats its way, throwing out the small coal or slack between the tram rails upon which the machine runs. The chief advantages of the machine are the following: 1. What may be called the "swivel movemont," by which means the cutter "holes" its own way into the coal, cutting, in fuct, back underneath the framework of the machine when not at work, and in this position the machino can be taken throngh any narrow roads or portions of the mine without the necessity of removing the wheel from the machine. Another advantage is that of applying the power to dri re the cuttingwheel direotly on the periphery of the wheel ; whilst the mode of gearing also allows the small pieces of ooal or alack to fall throngh to the bottom, so as not
to lock or clog the toeth of the machine. The average rate of holing by the machine is from 25 to 30 yards per hoar, according to the material the machine is holing in ; bat this, the writer said, was, after all, a matter of no great inportance, as the great points to be considered were the amount of work the machine would do, and how it would do it. The machine in question had frequently cat the whole length of the face of 120 yards in a night, or whole length of the face of 120 yards in a night, or
between 7 p.m. and $4 \mathrm{a} . \mathrm{m}$. This, however, included all stoppapes, such as meal times, changing cutters, \&c. In she same mine tive yards per day is mach above the average work fur one man with the pick;
and under ordinary circumstances it is considered and under ordinary circumstances it is considered
the work done by the machine would be equal to the work done by the machine would be equal to
that of forty men. The machine works in the night time, the coal bcing removed by ordinary manaal labour in the day. No powder is used, the coal falling by its own weight after it is holed by the machine. For over six months the machine had had little or no repairs, and the practical advantages that without worsings are, the writer said-brst, hote this partioular coal on account of its thicknees: seoond, that when the seam was worked by manual labour the proportion of coals and slack was ne three of coal to one of slack, and with the machine it is
eight of coal to one of alack ; third, that werk is
dene independently of the mon, who could not be got to work regularly, and oonsequesty the protuction is more certain with the machine. The actual
cost of getting the coal by the machine and by hand labour had been found trom the parments made daring a period of six weeks at the Platt-lane Colliery, to be as follows:-Hand labonr, 3s. 641 L per ton; machine labour, 3s. 1td. per ton, $8^{\prime} 10 \mathrm{wing}$ a saving of 5 d . per ton by the machine. This prot pense of was considered by interest on outlay, and wear and tear. The increaserl value of the produco, in consequence of less slack being made by the maohtne than by hand labour, was estimated as follows:-By band labour, 3 tons of coal at 11 s . par ton, and 1 ton of slack at
 11s. per ton, and 1 ton of aleck at 7s. 3d $=95 \mathrm{~s}$. 3d. or an average value of 10 s . 7d. por ton, being an in-
crease of $6 \nmid \mathrm{~d}$. per tour in the value of the coal whea crease of 6\{d. per tour in the value of the coal whea worked by the mackina In a conm of coal a fow inehos thicker than that of the Platt-lane CoHiery, and under more tavorable eiroumstances, it was considered there woald be a saving ovar manual labour of from 25 to 90 per cent. The cost of getting the coal by the machine, given it 3 se .1 da. per ton, could not, however, be taken as a corrued representation of the cost, the one at the Platt-lane Colliery being the firat that was pat to wort, and, as a commencoment, a liberal rate of pay was given to the man attending it, as an indacement to give it a fair trial. The same man has now been working the machine on contract for the last fourteen of the machine on contract for the hast fourteen of fifteen months, and now earns more than three
times as mach per day with the machine as he previonsly did with the pick.

The President (Mr. Siemens) said:- According to the paper, there is an economy in working by the machine; and anether adrantage whioh every one will appreciate is, that the machine, I presome, does not strike, and that men, to superintond its work-
ing, will be more readily got than man picking at the ing, will be

Mr. Fidler, who has the machine at work, said it now had had a fair trial, and, ho theoght, mast make its way. The machine in question, however, had not suaflicient ground to work upon, or they ton in getting the coal.
Mr. Lawremce said it was not the all-important point to compare the cost of the machine with the wages paid to the miner, becanse, if it worked in a seam of coal which could not be worked eeonomically by men, he thonght it woald prove of sufflaient value withoat any comparison as to he cost ol
manual labour. It seemed to him, howevar, that manual labour. It seemed to him, howevor, that there were some classes of conl in which so machine
would not worls well, and that with soft coal it would not works well, and that with solt coal it
woald very soon jom itseld ap. He would like to woald very soon jom itsed ap. He would like to and whether the wheol wae not hihaly to be jammed by the coal coming dowe.
Mr. Winstanley said the depth of the coal below the holing was about 7in. in this instance. As to the question in respect to the conl falling, the man who worked the machine had wooden wedges which he inserted behind the machine to prevent the coal coming down. In this seam the conl was very firm indeed; and it very seldom happened that it came down and jammed the wheel. They had not had any experience yet in a verysoft coal, bat he thought cutting machined would not be required where the by band waft, becanaait conld be ent eamily enough by hand.
Mr. Fidler, in reply to a question, said they did not take anycoal out betore they starsead the machine,
as it worked its way in itsell. In neply to another question, he reid the meohine wes not atopped onco a month in consequence of the teenth of the cutter getting out of order.
Mr. Menelaus said he had paid mach attention to the question of catting coal by machinery, but for their purposes in their district he had never seen a machine which he thought could possibly compete with colliers' labour, and he was very sorry for it the whole labour of the collier, and in his district there was really very little of it, owing to the soft nature of the coal; so that the whole economy they could get was a saving apon 10 per cent. of the labour of the collier. What the increased price of and difticulty in managing, labour, might yet bring them to he did not know, but he confessed he had given up as hopeless the introduction of coal-cutting
by a machine of that kind in his district. He had seen and paid attention to overy machine, and he could say that if Mr. Winstanley's was not the best, it was one of the best; and if any machine would succeed in effecting its object this one was as likely as any he had seen. He could easily understand that for thin veins and hard coal it might be introduced with very great ecouomy, bat for soft canls and thiok veins it was not likely to be of much use. He was hopefal that it might bo introduced, aud if they had seams in the Dowlais district which he thought it would work he shoald be very glad to give it a trial.
The President, in proposing a vote of thanks to Mr. Winstanley tor his paper, said ho was cartainly
disappninted to hear a man of so large an experience 2s Mr. Menelaus speak in faint praise of the machine. He was quite sure, however, he would be the first man to change his opinion, if the invertor conld prove there was an advantage to be obtained even in soft coal; but, in regard to hard coal, all seemed to agree that considerable madrantage might be to agree that considerable mavanta
derived from the use of this machine.

COT-NAIL WORKS AT MIDDLESBROUGE.

MESSRS. JONES, BROTHERS, \& CO., of the Ayrton Rolling Mills, have inangurated a new branch of industry in Middlesbrongh. On abont an acre of ground adjoining their mills they have erected thirty nail-cutting machines, three
shears for aross-outting, a number of grindstones, lathes, and drilling-machines, requisite for making tools and keeping them in order. The cat nail trade is a special branch of a number of trades included in the term nail-making. The nails are made oat of sheets or atripe of Cleveland iron, and the thickness of the sheet varies acoording to the length of the nail required. The sheets are cat into strips transversely, the width of the strip being identical with the length of the nail. Δ youth "feeds" the machine with strip, which is seized by a "clamm," and turned over at each cut, the nails being produced at the rate of from two to three per second. The machines are constracted by the firm of Messrs. J. Rice and Co., of Birmingham, and embrace the latest improvements in nail-catting machines. The machines are driven by a horizontal engine, the steam power being derived from two horizontal boilers, which are fixed outside of the building. Foundations are pat in for another engine, to be coupled to the one already erected, when additioual machines are laid down. Provision is also made for the erection of half a dozen "washer" machines. The sheets from whioh the nails are made are manufactured in the adjoining mill belonging to the firm, and an interesting system of threehigh sheet rolling has been introduced for the parpose of tarning out thoee sheets more rapidly, and pose of tarning out those sheets more rapidly, and with a better surface than is done by the old pro-
cespo. Generally, cut nails are made in Birmingham, cosb. Generally, out nails are made in Birmingham,
Leeds, Manchester, and Gateshead. At present, the price of cat nails, from 3in. to 6 in., is present, the There is no place in the United King dom where cat nails can be manufactured cheaper than at Middles. brough. The town is also favourably situated for the London and Scotch markets. The works are producing rose, clasp, aud cloat nalls, joiner's eprigs, ceiling brads, floor brads, lath nails, colliery plate nails, and any other class of cut nail not less than lin. in length. The machinery is capable of making abont forty tons per week, but the works are laid out for ultimataly turning out about 100 tons of cut nails por wook. The building is orected with the view of giving as much light as possible to the inroof is and for ghis purpose a good portion of the roof is constructed of glass.

MRCHANIBM.*

(Continued from p. 507.)
THERE are four recognised modes in which a pear approach may be made to a faithful reIn Fig. 13, sappose that A and B are the centree of two shafts, then $A B$ will be the line of which wo have so frequently spoken as that in which is the pathway for the communication of motion from the patinway for the communication of motion from
one wheel to the other. If the point T, at which one wheel to the other. If the point T, at Which is invariable, then the relations between the velocities of the two shafts will also be invariable.

Sappose the circle and portions of circle to be the wheels keyed on the shafts, then one mode of determining the form of a contrivance for conveying
motion from A to B by sliding, similar to that con-
-- by the Rev. Abthua Riac, M.A., being the Cantor Leoturen dellivered before the Society of Arte
veyed by rolling, is thus : Let there be at b, in the rim of the circle round B, a pencil-point, and snppose a sheet of paper to be gummed on the back of at b resting on the. Then, with the penci-point circle ronnd B be rolled freely like a one and the hill from (a) to T, then the pencil-point will trace hill from (a) to T, then the pencil-point wil trace
the line $a b c$. Now, sappose a piece of wood to be the line abc. Now, suppose a piece of wood to be
shaped like a b c, and to be attached by an arm to move round A, and suppose an arm to be fastened to move round B, and to have a pin in it where the pencil b was. If, now, the arm with the curve ($a b c$) be placed so that a is at T, and if the arm with the pin b be placed so that b is also at T, then if the arm with ($a b c$) be moved, pressing forward the pin b, it will be fonnd that the pin will so slide up the curve $a b c$, as to reach "by sliding" the exact point b, which it would have reached, had the circular wheels "rolled" truly apon each other.
If, now, we increase the number of these curved arms and pins, or if we remove the rolling circles and put on others, which, not tonching, carry carved arms and ping, then the one will be a wheel with the requisite number of teeth, each carved as (abc) and the other will be a pin or lantern wheel, such as has been provionsly referred to. These pins are well and good for producing motion, but they are very mach like a steam-engine which looks very well and very pretty so long as it has no work to do, but as soon as you put it to work there is a breakdown. If you pat work upon these pins on wheels thoy will very soon break down. Prior, however, to a rejection of a scheme of toeth and pins, which has some very commendable features, the meohanic endeavours to avall himself of the labuars of the mathematician, by strengthening the pins by means of end framings. Thus the pin-wheel hecomes a It is, or "trundle" Wheel. (Seo Fig. 6.) find some hnd some substhate 10 the pin, or some ther con trivance. Hence the meothenic has again to apply to the mathematician. The mechanic says, "I want something stronger than a pin;" and the mathematician says, "then you must put a line
there." He adopts a process which Fig. 14 may serve to illustrate as a second stage of develop. ment.
Assuming the explanation which has been given with the former figure, instead of the oircle round B rolling as a wheel on that round A, let a circlo

grooves. If now the ahall $\begin{aligned} & \text { be rotated, you }\end{aligned}$ may notioe that each roller alides backwards and forwards in its diametrical pathway. and it wach how equable is the motion and how neatly it is transferred to the grooved wheel and shaft B A, from roller after roller. The valocity ratios are suoh that A makee two revolutions whilst B makes one Four radial grooves and two pins produce the same velocity ratios.
Two applications of this motion mey be named. One is to compel a polished bead placed on the top of one of the pins to deacribe a struight line. This bead thus moving causes a reflected light, as that from a candle, to appear as a atraight line. Thus from two or more lights are formed two or more straight lines. Hence the intensities of the lights can bo compared, and the isstrument motion is to photain what, by a misnomer, mast be called " a parallel motion ;" the end of a piston being attached to one of the pins will, of course, be guided in a rectilineal path.
It will be observed that the two methods already suggested for making available the principle of
sliding to accomplish the results of pure rolling, aro applicable aocomplish the resulte of pare rolling, aro calculations have been made, and working in one direotion only. It is very desirable that rotation in either direction may be communicated, and that either one wheel or the other may be the driver, and that they may run freely when geared with different sizes. If, then, the mathematician canuot provide for the mechanician and the mechanic some principle of more varied application, and enable him to use any two may be pat in worting gear-if this cannot be done, the complexities of wheel-work would almost be a bar to the use of it.
These considerations led to a generalising of the principle hitherto desaribed. In Fig. 16 (Tb k) the circle which rolls
npon $(a T \mathrm{~m})$ is apon (a T m) is mater of a diller T B. Iet it roll on ($a \mathrm{~T}$ min from It to m_{4} and deTC. Instead now, of tating aither a pin or a same circle (Tbl), roll in the inside of (n T e), them
will the point. T, describe the carve
T F. If, now. hese curves be the shapes attively to the shafts, A and B_{1} meticians tall us) communicate the required motions,
sizen of the wheels on A and B be variable. This gives that extensive generality to the conetruetion which enables mechanios to keep wheel petterns and wheels within a moderato number.
The previous explanation of the principle upos which the most sccurate system of teeth for a specific parpose can be formed, admits of only a slight deviation from perfeot workmanship. There is another plan very generally adopted, which procoeds upon a different view of the relations between the driving and the driven wheel. Fig. 17 is intended to explain this method. The dotted ciroles touching at T represent what would be the circles if perfeotion of rolling were practicable. D E and E F represent other smaller circles or wheale. Through T draw E T D a common tangent to D H and E F. Let us suppose T D to be a piece of string having a pencil at T, and we proceed to wrep T D round the rim of D H, the pencil would treee the ourre, K T H. Transfer the pencil to the end, T, of $E T$, and wrap round the rim of E F, then will the curve F T G be traced. Teeth formed with these curves, and placed upon wheels fired to the axles A and B, would canse these axles to move as though moved by the one dotted circle ralling 00 the other. Wheels formed npon the curve nemed in the first two methods (Figs. 13, 14) are anid to have epioyolic teeth ; those in the third method (Fig. 16) are oalled epicyclio and hypocyclic teeth; and those upon the last mothod (Fig. 17) are called involute teeth.
The explanation now given will to mens appear deficient. For example, it is wanting in any attampt
to show that the line in which these sliding surfaces transmit the motion is a line which always passes through the point T. To show this involves a property of the curves used, and, as meohanicians or mechanics only, we must accept the mathematician's statement that it does so. Should any one present desire to follow ont the inquiry, he may refer to Professor Willis's "Principles of Mechanism," or to Professor Goodeve's "Elements of Mechanism," both pablished by Messrs. Longmans.
One difference between teeth formed upon the epioyclic and involute principles may, however, be stated. The action of epicyclic teeth when crossing the line of centres A B, and therefore when in the act of transferring motion, is always, at T, perpendicular to this line of contres, $A B$, whereas the action of involute teeth is always in the direction of the common tangent, as D T E, Fig. 17. Hence,

owing to the great strain this oblique preserure puts apon the shafte to which the wheels are keyed, the latter (viz., involate teeth) are not adapted for the traremission of pressure or the communication of power. For modifying motion, or the simple commupication of velocity, involute teeth are valuable. They have, too, this farther advantage, the tooth of one wheel may be made to touch both back and ront of the other. Sappose two wheels thus perfectly made, then, by a very slight inorease of disance of the centres, there will be a sufficient space and clearance, and so that which is sometimes wrongly called "backlash," will be reduced to a minimnm. Hence, to0, with involute teeth, what the microscopist calls " lass of time" is not a serions inconvenience to these workers in a field of science where "time" is so veluable that none can be spared lor the tolerance of what the mechenic generally or the tolorace of the menerally
Snch being the principles bich govern the for Duch bot to in rion maloged in all ortreme of verging relocits, omployed in all extremes of varying velocity, an inquiry naturauy aros at a vary eariy dato-what is the size of the smallest wheelg in any oystem which shall insure that a second tooth is coming into position before the acting or driving tooth has quit contact, and thus that jarring or shaking be obviated which occurs when there is a sudden transfer of the source of motion? Such, in fact, as may be illnstrated by the periodic brightening of a gas-fiamo when the mechanism of a gas-meter is not well arranged and balanced. The mathematician answers the inquiry thus:-
The least numbers which can be safoly employed Of involule teoth a
Of epicyclic toeth \qquad pins \qquad 12
6
Pin-wheels, as deduced in Fig. 13, ought always to be followers and never drivers. The reason is very simple, and mas be illustrated in this way. If you take a stick and draw it backwards, with the end resting on the gronnd, you can do so easily, but if you attempt to push the stick in front of you it is continually being shaken or stopped. In other Words, if the stick be drawn towards the side on
which it makes an acute angle, the following is Which it makes an acute angle, the following is
smooth and easy. If the motion is towards the smooth and easy. If the motion is towards the
obtuse angle, snch is not the case. It is the same with a pinin a wheal.
In Fig. 13, suppose B is driving A, then the pin would come in contact with the tooth ($c b a$), and in order to turn the wheel, A, it would have, as it were, to rise up the hill, from b to a, of this tooth. It would have to do with the tooth, practically, what you have to do with the stick when you push it 0 met wonld prodnce s constent jarring; wheress if the pin slides down the tooth, as when A drives B, there is that sliding motion which is characteris.
tic of toothed wheels, enabling the engineer to attain to perfection of rolling contect.
So much for the teeth of wheels. Those teeth slide on each other, and we have therefore a motion communicated by sliding only.

ON MEASURING TEMPERATURES BY ELECTRICITY.*

THE trath revealed to us by one of the yoanger branches of physical science, which has been oultivated and exponnded nowhere more effectually than within these walls, has divested heat and eleotricity of their mysterions character, and has tanght us to regard them simply as "modes of motion." nature also has been shown to be identical in its gency " a force differing only in "quality of action" Irom the others. According to these views, force, in whicherer type of action it presenta itself, is as indestructible as matter itself, and is, therefore, capable of being stored up and measured with the capable of being stored up and measured with the
same certainty of reanlt. We have a unit of force or the foot-ponnd, and a unit of heat, or the heat necessary to raise the temperature of 1 lb . of water

It is my purpose this evening to place before you an instrument by which I hope to fill up to some extent the existing gap. It is the result of occasional experimental research, spread over several years, and it aims at the accomplishment of a donble purpose, that of measuring high temperatures, and of measuring with accuracy the temperatures of inaccessible or distant places.
Ent before entering upon the details of mysubject, propose to place before you an instrument which pulfis, in principle, all the conditions essentially necessary in thermometry, and is at the same time the very first instrument that was ever proposed for measuring temperatures. I speak of the air thermometer by Galileo! It can be shown on theoretical grounds that the expansion of a permanent gas at constant pressure is the most perfect index of temperature. It is, in fact, the degree of energy of temperature. It is, in iact, the degree of energy
of the atomical motion in an elastio fluid which determines its volame, and which oonstifutes at the determines its volume, and
same time its temperature.
same time its temperature.
The air thermometer consists simply of a bulb of glass with a long tnbular stem, open to the atmoshere at its extremity. If I heat the bulb (by dipping it, for instance, into boiling water), and put it into a holder, with the hollow stem reaching downward into a cup of meroury, the air within the bulb will no longer communicate directly with the atmosphere, because the mercury is interposed. If now I cool the air. within the bulb, by the external application or iced water, its heat motion will diminish, and its volume would be rednced proportionally, if the external atmosphere conld enter freely to fill up the vacancy thus created. But inasmuch as the external air cannot enter, a reduction of pressure will tare place, which, according to the law of nlasticity by Boyle, must be proportionate to the reduction of volume at constant pressure. The difference of pressure thus created bure. Ineen the bulb and the external atmosphere will be balanced by the column of mercury will be balanced by the column of mercury
rising up into the tube, and the elevation to rising up into the tube, and the elevation to
which the mercury attains is a true index of the which the mercury attains is a true balb had been previously heated. This is true with regard to all temperatures, from the lowest to the highest, and the instrument may be termed a univeral thermometer. If the bulb could be cooled down to 273° Cent. below the zero point it would follow by the law of Charles that the elastic pressure of air would be reduced to nothing, that is to say, the motion of the particles of air, which we call heat, would heve ceased, and we should have reached the point of established also by other means.
Practically, such an instrument would be most inconvenient; its indications would have to be corrected by caloulation for barometrical variations; the capacity of the deecending tube, which contains air not subjected to variation of temperature, air not subjected to variation of tomperature; would have to could be arrived at without taking special precantions, such as are only within reach of the experimental physicist.
[The otber known methode of measuring ordinary and furnace temperatures were here passed in roview, and the limits of their application pointed ouk They ware classified into:-Mermometera, by ex of solids; pyrometers, by chemical decomposition of

through 1 degree Fahr., and it has been already proved that 772 units of force are the equivalent value of one unit of heat. Again, the chemical force residing in llb. pure coal is equal to about 14,000 heat units, or $14,000 \times 772=10,808,000$ foot-pounds $=$ 4,825 tons lifted 1 ft . high.
Questions regarding the quantitative effects of heat present themselves, however, much less frequantly for our cocsideration than questions regarding its intensity, upon which depends the nature of the phenomens surrounding us at every step, both onr command for deternining moderate intensities or temperatures, the mercury thermometer, leaves little to be desired for ordinary nse; but when we ascend in the scale of intensity, we soon approach a point when mercury boils, and from that point
upward wo are left withont a reliable gaide. The upward we are left withont a relisble guide. The
result is that we find in scientific books on chemical result is that we find in scientific books on chemical reaction takes place at a dull red heat, such another at a bright red, a cherry red, a blood red, or a white beat-expressions which remiad one rather of the days of alchemy than of chemical acience of the present day. There are pyrometers, it is true, bat reliance can be placed on them.

- Road at the Rojal Institution, by Mr.C. W. Sinmere, F.R. 8 .
solids, comprising Wedgwood's and Deville's pyrometers; pyrometers, by observing the melting point of metals ; pyrometers, by thermo-electricity; pyrometers, by exposing a copper or platinum ball of known heat capacity to the heat to be ascertained,
and of quenching it in a measured quantity of water.]
Water. instrument which forms the subject matter of my discourse presents viany points of analogy with the air thermometer, if we substitute " electrical resistance in conductors " for "expansion of gases." Both these effects are fnnctions of temperatare, inBoth these eth the temperature according to prooreasing with wi gressive las whe conductors the law of " the law of "increase of electrical resistance with temperature." The latter law, which is of recent origin, had already been partially developed by Arndsen, Swanberg, Lenz, and Werner Biemens,
when my attention was directed, in 1860, towards when my attention was directed, in 1860, towards an application of the same to the measurement of temperatures at places inaccessible to the ordinary thermometer. By means of the contrivance which I shall describe presently, I was enabled to tell, in the testing cabin of a cable ship, the increasing temperature of the interior of the mass cable in the hold, and to prove the necessity of transhipment of the same into a veasel fitted with water-tight tanks, Which have been resorted to ever since, to avo

I have arranged an apparatus for proving to you, in the first instance, that the conductivity of a wire
of platinam or other metal is greatly intluenced by of platinam or other metal is greatly intuuenced by
its temperatare ; for this parpose direct the current of a galvanic battery at will through two branches of equal resistance, each branch comprising a free
gpiral wire of platinam, and one of the coils of a gpiral wire of platinnm, and one of the coils of a
differential galvanometer. By throwing the powerful light of an electric lamp upon the face of the differential galvanometer, and by throwing the screen, the andience will see any movement of the needle to the right or the left that may take place when I complete the battery connection. The redeflection of the needle is observable on depressing the key, but when I pass the flame of the epirit lamp ander the one platinum coil the needle is thrown immediately over to the right, because the
electrical resistance of the heated wire is increased, and consequently a larger proportion of the current is passing throngh the cooler circuit, exercisivg a nreponderating inflnence upon the galvanic necdle. needle rapidy returns to its zero position, but in passing it ander the other spiral wire the neerle mmediately deflects in the opposite direction.
If instead of using the open spirals I were to wind thin insulated wire of any pure metal upon two small eylindrical pieces of wood, and were to inclose view and in section by Fig. 2, taking care that the extremities of the spiral wires were soldered to thicker insulated wires leading respectively to the battery and differential galvanometer hefore mentioned, it follows that no deflection of the needle enstes when both the protected and equal spirals
aredropped into a jar contaioing iced water. But are dropped into a jar containing iced watcr. But it, for instance, by his kind permission, into the hand of our president without disconnecting the
eame from its leading wires, the balance of resis. same from its leading wires, the halance of resis.
tance will no longer take place, and a detlection of tance will no longer take place, and a detlection of
the needle to the right actually takes place. I will the needle to the right actually takes place. I will
now endeavour, however, to re-establish the equilibriam by adding werm water to the iced Water surrounding the comparison coil near me until no doflection of the peedle is olservable. This ture of the water surrounding the one coil must be identical with the temperatire of our president's hand, and the delicate merenry thermometer which I have placed in my solation must give me the temperature of the distant place which I intended to meaeure. The temperature here ohserved is Henry Holland's hands. This result is independent of the ratio in which the electrical resistance inoreases with temperature in the sintilar coils. and considering that the silver casings containing the coils are not larger than small pencilcases, this methnd might be adrantageously em.
ployed in physiological reserch. The one coil ployed in physiological research. The one coil
would only have to be placed within the cavity to be measured to enable the observer to read the temperature from time to time, without disturbing the patient, with the accuracy of which the mercury or spirit of wine thermometer emplored is capable.
But the same method is applicable for measuring the temperatures of distant or inaccessible places, such as the interior of stores or cargoes of materials suable to spontaneous combastion; of pointselevated above the surface of the ground, or of great depths below for meteorological purposes, or for measuring the temperature of the sea continuously in attaching such a coil to the mariner's sounding lead. An error would in such cases aiise, however, through the uncertainty of the resistance of long, leading wires, if a complete remedy of error from such a course had not suggested itself. This consists in uniting three separate insulated leading wires into a cablo by which the distant coil is connected with the measuring instrument. One galvanic circuit passes from the battery throngh one of the leading wires, through the distant spiral and back again through the second leading wire to the differential galvanometer and the battery, and the second passes from the third leading hroagh to the distant coil with. out traversing the same, and back again through the second leading wire to the galvanometer and hittery. Thus both galvanic circuits coil, and aii variations of resistance by temperature to which the leading wires may be sabjected affect both sides of the balance equally. In constructing coils for measuring deep sea temperatures a large quantity of insulated copper or iron
wire is woand upon a metallic tube open at both wire is woand upon a metallic tube open at both
ends to admit the sea-water freely in order to im. onds to admit the sea-water freely in order to iminsulated wirc. The coil of wire is protected externally by drawing a tube of vulcanised indiarabber over it, whioh in its tarn is bound rand by a close apiral layer of copper wire, whereby the sea-water these arrangements the temperature of distant or otherwise inaccessible places can be accurately ascertained; but the method is limited to the range of temperature which can be obtained and measured
in the comparison bath. In order to realise a pyrometer by clectrical resistance, it is necessary to
rely npon the alisolute measuroment of the electrical rely apon the alisolute measurement of the electrical
resistance of a coil of wire which must be made to resistance of a coil of wire which must be made to
resist intense heats without deteriorating through fusion or oxidation. Platinam is the only suitable metal for such an application, but even platinam wire deteriorates if exposed to the direct action of the flame of a furnace, and requires an external protection. The platinum wire used has, moreover, to be insulated aud supported by a material which is not fased or rendered conductive at intense heats, and the distarbing inflaence of leading wires had in this case also to be neutralised. These varioqs conditions are very fully realised by the arrangement presented on the following diagram, Fig. 3.
Thin platinum wire is coiled upon a cylinder of hard-baked porcelain, npon the surface of which a conblion, sonden to prevent contact between the coils wire. The porcelain cylinder is piorced twice oncitudinully for the parsage of two thick platinam crading wires, which aro connected to the thin
spiral wire at the end. In the npper portion of the porcelnin crtinder the two spiral wires aro formed into a lonoitudinal loop, and are connected crossways by means of a platinum binding-screw, which admits of being moved up or down for the purpose of adjastment of the electrical resistance at the zero of Centiprade scale. The porcelain cylinder is provided with projecting rims, which separate the spiral wire from the surrounding protecting tube of platinum, which is joined to a louger tube of wrought ron, serving the parpose of a handle for moving the instrument. If the temperatures to be measnred do not exceed a moderate white heat, or say, $1,300^{\circ}$
Cent. $=2,372^{\circ}$ Fabr., it snffices to nake the lower protecting tube also of wrought iron, to save expense. This lower portion ouly, up to the conical
enlargement or boss of irnn, is exposed to the heat ahargement or boos of iron, is exposed to the hat
to be measared. Three leadivg wires of manated copper united into a light cable connect the pyrometer with the measaring instrument, which may be at a distance of some hundred yards from the same. They are connected by mewn of binding-serews at the end of the tabe to three thick platinnm wires passing down the tube to the spiral of thin platinnm wherens the third the Leadng wires are nniced, itself likewise to one of the t ro former, which forms the retarn wire for two electrical circuite, the one comprising the spiral of thin wire, and the other returning immediately in front of the same, bat traversing in its stead a comparison coil of constant resietance. The weasuring instrument may conist of a differential galvauometer as before, if to added. If the pyrometer coil were to bo put into a vassel containiug snow and water, the bslance of resigtance between the two battery circuits would
be obtained without adding variable resistance to be obtained without adding variable resistance to
the enil of constaut resistance, snd the needle of the differential galvanometer would remais at zero when the carrent is establishef. But on exposing the pyrometer to an ele vated femperature the resistance of its platinnm coil would be increased, and resistance to the same amount would hare to be instrument. in order to re-establish the electrical balance. This additional resistance wonld be the measure of the increase of temperature, if only the ratio in which platinum wire increases in clectrical resistance with temperatare is once for all cstablished. This is a question which I shall revert to after having completed the description of the pyrometric instrament.
(To be concluded.)

THE PROPERTIES OF CASI IRON.

T^{H}HERE are fer things more interesting to one who is accustomed to watch the onward movements of natural and physical science than to observe the evidence of progression which has marked every process in the treatment and manipuand Ing economy are seen and heard of on every haud. ingenious coutrivances completed, or on trial, it quality, are strikingly manifested in the growing namber of inventions under the stimnins of inoreasing compztition. The progress of knowledge forbids us to cling pertinaciously to old opinions or old processes, or to pronounce improvements to be impossible, because we cannot at once discover the right mode of making them. The application of scientific priuciples to new mechanical contrivances, and a stricter attention to the properties of this material, may redeem us from reproach, and enable as to anticipste a time, and be destined to witness sanguine of us has ever dreamed of or ever hoped to see roalised. To emalate and excel is a maxim and creed so excellent and usefal that we should be the last to sneer at any exhibition of earnestness. I shall not attempt to foreshadow the resalts of the

Abstract of a paper read by Mr. Laind at a rec
aceting of the Δ asociation of Foreman Engineern.
many attempts. chemical and otherwise, which have bech made frow time to time to impreve the
quality or increase the tonsile strength of cest iron quality or increase the tensile strength of cast iron tion more uniform in textare.
be accomplished by chemical agency in the separs tion and absorption of impare and foreign sub stance, or by the nuion or mixture of other metels or substances, one of your members (Mr. Galloway) has made some efforts to explain. He has broaght out and placed before you a proposal to oombine lead with iron, so as to inerease its homogeneity and strength. Although, as I believe, Mr. Gallowny no somewhat caralierly treated in disciangeation avd cfforts. It is well known to chemista and ia indeed, one of the deductions of the atomic theary, that metals and other elementary sabstances cambine with each other by ordinary chemical affuit 5 , and it has been accurately demonstrated by and it has been accurately demonstrated talis place in certain definite proportions, in fact place in certain definite proportions, in
in simpla
multiples of those proportions. The numbers which represent those simple proportions represent also the relative weight of the atoms to
each other. Definite chemical action and nion can each other. Definite chemical action and union can
only exist when these conditions are present, and xist in the combination of two or more motals when joined by a state of fusion. For example, our mis tures of two metals, composed of oopper and tio, or copper and zinc, known as gun-metal and brass, are not composed of the two metals in their atomic weights and equivalents. No chemical combination exists between them, but the simple condition of a state of mechanical suapension of their particles is contact with each other, without any detinite o existing chemical union. Hence, the tronble and inconvenieuce so well known and often experienced by our brass founders, arising from the permeating action of copper and its constant tendency to sepa rate itself from the tin by reason of its greater specific gravity, and the higher temperature a which it is fasible.
I do not know in what proportions Mr. Galloway proposes to mix the two ingredients, iron or lead. of
for what specis] parposes he anticipates the compound special parposes he anticipates the coar pure metal will be best adapted; bat, fer 1 nir the conditionse chemical combination, and relative atomic weights of the two metals wonld be, for the iron 28.0 , lead 103.7 . Specular metal, one of the hardest and most dense mixtures, although ex tremely fragile and brittle, is composed of copper and tin, in the proportions of about two of tin to one of copper. The atomic proportions begin nearly in those of the atomic weights, or for tio and in use before the discovery of the atomic theory. its discovery must have been the resalt of chened or experiment. As, however, a great deal of rata the properties of matals in combination with each other, by a careful stady of the atomic theory in its relation to metals and their comporand, I recommend it to your consideration in its mare exact and extended aspect and form.
Time will nat permit that I should further porsue the investigation of this part of my sabject, and I shall proceed te direct your attention to that which time, and is forced on our notico by the adrocetes of high engineering in their importanzte demands for extreme pressures and great expansiona The advantages or disadrantages of extrome pressures with great expansions are emi
nently controversial points, but as the noe of high pressed steam involves a high temperature, is is a vital question as to how far cast iron is capable of sustaiuing those pressures for any grest length of time, under such conditions as those we haw
referred to. By way of illustration, let me refar to the case of a cylinder of the moderate dimensions of 3in., filled with steam, say of 2001b., a pressure which said to be retailh in use, and giveng go00 The or 706in., which, maltiplied by 200 , would equal pressure inside it of about $141,200 \mathrm{lb}$. acting nguinat the two ends and aronnd its internal circumferance in a line parallel to its axis, and tending to proloce rupture in a tangential direction. To contend against this force, we have the resisting power of some 9 in . contained in its circumference, assuming our by 94 to be lin. thick. New, if we divide 141,200 by 94 , we shall have a quotient of 1,396 , equal to
three-quarters of a ton of strain per square inch three-quarters of a ton of strain per squarr inch
The mean of many experiments si:Ows that the average teusile strength of cast iron is nearly? tons to the square inch of seotion. Therefora we may assume the force exerted by the steam on she inside surface of the cylinder would be about one teuth of its breaking or bursting strain. We masy the right side of gecurity. I am by no means insensibie to the moditication this extreme strafo wo buntergo from the accomplishment of motion by the performance of work, but this favourablo
condition would be considerably diminished fram the constant and repeated blows from the staan

Aug. 9, 1872.
ENGLISH MECHANIC AND WORLD OF SCIENCE.-No. 385.
ing action on thre piston and the ende of the cylin. der. But stesm of 200 lb . pressure has a tempera tare of 387° Fahr., and we must now introduce and
deal with the irresistible forces produced by the deal with the irresistible forces produoed by the
high temperature of such extreme pressures. For, although the experiences of our workshop practice show that the results of cold indacing straining from compression, are oftantimes far more destructive in its effects on cast iron than heat causing expansion, it is found that increments of hent, by extending and stretching the particles of
iron, always canses a diminution of strength.
According to the expariments of Professor Daniel the elongation of a bar of cast iron due to 75° is
.000116 . Now. 75° is contained in 387° five times. therefore f ve times $\cdot 00046=00233$, abont $1 / 500$ of its length. The compressibility of cast iron is greater than that of wrought iron, and a ton per
square inch is capsble of compressing throngh square inch is capable of compressing throngh $1 / 6000$
of its length, and as the above expansion was nearly $1 / 2 n 00$, the power exerted mnst be nearly $2 \frac{1}{2}$ tons per square inch. Now, allhough danger might not perbaps be apprehended from simple pressure, yet, when these pressares are accompanied by motion, and that of an intermittent kind, there might be some risk of a strain being produced by accamulation, far greater in amount, and being sometimes forward ani sometimes backward, far more destructive in its effects than simple pressure. From these considerations, it becomes a question of some impartance, and one requiring attention, as to
how far or to what extent the elasticity of oast iron is capsble of sustaining expansion when it is subjected to high temperature, and when the expansion regretted that the limits of this papar will not perregretted to enter into the exporimental detaila and and laborions investigation, the details of which are always ingenious and instractive; this consideration will amply repay the minate stady of the meahanical stadent and workman. Ir is principally byatistics that we can gather date for the solution of such questions. Perhaps, at the present time, no mechanical question has more claims on our atten-
tion than that which relates to the numerous instances of failure amongst the cylinders of tho marine engines in the British Navy. The causes there is 80 much confusion prevailing over the whole sabject that the dieposition to aftributg sach results to metal, to contraction, or some other equally hension of the exaot points wherein those oyliuders fail. If we separate the foroes of expansion into Wo groups, which shall inelade the strains produced that which is due to expansion of the metal arising that which is due to expansion of the metal arising
from the temperatare of the steam. The interior surface of the cylinder will be understood to be exposed to two strains, each one acting at right angles to the other; and now, if fracture occur, it
will certainly be in the line of those forces. In some cylinders, however, from a want of judgment on the part of their designers, or from oversight at the proper moment. thoso forces are entirely ignored, and disaster follows inevitably.
The remedy for all this unsatisfactory designing and practice lies in the investigation and adoption of the principles apon Which endurance depends. In other words, we must wisely follow, as our gnide, tudiual directions, and observe the varions append. ages that are cast on and surround the tabes of cylinders in a pratical light.
Nearly allied to this section of our subject, there is yet to be dealt with what constitntes the gigantic and imperial question as to the saitableness of cast most intense interest and importance, for, although we are warned thet cast iron, from its low tensile resistance and strength, is totally unsuited and unsafe for the requirements of ordnance of large calibre and power, we yet believe there is a succe nful
future in store for the adrocates of its ase. With future in store for the adrocates of its use. With
the exnmple and practice of the Americans before as, with thair manner of asating, and then of cooling their gans by means of a hollow, spiral tabe, and streams of water flowing through it nutil the casting is in a comdition for the lathe, we onght to thrioe its previons strencth. The manner has saperiority of such guns has been proved to be due, in a great messure, to the effectual manner in fact, rapidity in cooling a casting improves the quality and strength of the iron, by imparting to it loseness and density.
We bave long believed, and recent circumstances better results would be obtained in crasting our heary ordnance, if external longitudinal ribs, intersected by rings, we e mide to surround the
circumfercuce, the principal bands covering the circumfercuce, the principal bands covering the
geat of the cartridge and of the shot or shell bonlind the trannions, the ribs gradually taperiug onf towards the chase and mazzle of the gua. said to be 33 tons per square inch, or some tive
times greater than the tensile atrength of ordinary cast iron, we are anabled to suggest and detcrmine apon a section of sufficient, bat yet inoderate area, which woud secaro a given rebistauce to the
explosive foree of the powder, whilst insuring a margin of safety. This may be done without having reconrse to those ponderous yet graceful
forms so familiar to all of ns in the Dahlgren, Parrot, and Rodman ordnance of the Americans which, however, do not add to their strength, but Which make them look heary and nowieldy. Without wishing to annibilate your patience by the recital of what is specnlative and ancertain, I cannot bat avail myself of this opportnnity of low tensile strength secms inferior to mall able iron or steel, yet that its cheap aud easy construction and the quick and ready manner in which casi ordnance can be produced, will at all times entitle this material to consideration. The history of scientific discovery teems with proofa that it is very unsafe to predicate that no progress will be made in a direction which we may taink to be a wron one. Transatintic steam navigation was pronoanced
by a very distinguished savant to bo an impossi-binty-how many royages an what to prov that prediction a false one? When, therefore, w hear any one assert that cast iron is unsuitable for the purpose of prodncing trustworthy ordnance, and pronounce its doom as certain, if not already accom plished, and that no improvement is to be effected, and no progress is to be made in this direction, such not assuredly shake our faith in the ultimate trinmph of cast iron over its detractors.
We now propose to glance for a moment at tho indireet claims of our subject-to nse a popalar and political phrase of the day-and to notics the prodncts of the modern school of engineering design and oonstraction.
Those ponderous mechanical incongraities which we sometimes observe, and which are designated as ateam-engines, suggest, in the exuberance of thei malformation, notions of specimens of the extinct
species of the pre-aiamite world. Bat even as species of the pre-aramite world. Bat even as
contemporaneons mandwelt then in tents of sking, with cartains hang round about them, and hia descendants boild palaces of alabaster, so may the descendants of the present race of engineers and machinists produce eventually works that shall com bine strength with graceful outlino and form-tho utility of the modern. with the philosophic grandeur and beauty of the ancient style. It is to be the leading firms of this conntry, as certain agricaltaral implement-makers and small machinists, for example, no efforts seem to be made to introduce expression into the consirue. tion of engines, or to combine the maximum of strength with the minimam quentity of material. Oar prodigality of material, indeed, seems only to be equalled hy that of our fuol. There really exists, as a general rale, but little connection or affinity between the proportion and strength of a stracture and the mass of mnterial of which it is composed, or in the general ontline and disposition of its parts. It is common to spacify for an unnecessary margin
of strength, apparently only with a view to meet the of atrength, apparently only with a view to meet the
chances of mistake on the part of the designer. Bat chances of mistake on the part of the designer. Bat why allow the incompetency of the desiguer, or the fancy of the overscer, to supersede mathematical precision or the cause of good tasto and order? 'The ancient Greeks owed their superiority in architecture columns for ingt this characteristic. Thas, in parts were multiples of diameters, whilst in figures they copierl and reproduced everytbing with just scientific proportion and accaracy. Why should the details and parts of a steam-engine not be made conformable to some such plan? Upon what priuciples of mechanical science should nureasonnble ariationa bo allowed to exist? We find in the practice of wheel work wile differences in the arrange-
ments of soveral firms and individuals. The proportion of the length of teeth to the pitch ranges rom seven-eighths to five eighths of the latt
Winy should not something
Wing should not something like unifismity of design, regularity of proportion, and ratio of ma-
terial, be conditions subsisting between all the parts terial, be conditions subsisting between all the parts or au engine or picce of mechanism? That it is not uniformity in culture. Were it otherwise, economy of material would be secured and safety enhanced. Notwith. standing the importance of this subject. it is rarely mastered by the ordinary race of draugutsmen and beneficially.

In the disenssion which followed, Mr. Stabler said, as regariled the systems of ordnauce, which
from time to time har been started, he remembired from time to time had been started, he remembired the elaborate experiments and explanations given
on the subject by Mr. Keyte, at the Woolwich Arsenal, about ten years ago. The endurauce of cast-iron guns, honped on Sir Willimm Armstrong's principle, was at that time a vexed question, aud Mr. Ficyte had ha. 1 ruch experience on the saliject. It was then that the teuxile sticupth of the soveral
the cast-iron gun with its cambersome fittiugs sas tained, nevertheless, a considerable explosive force mach variety of opinion on the snbject. As the mach variety of opinion on the subject. As the
author of the paper had pointed oat, our incriacity of debigning proportions that shall render the castings at once ornamental and safe was un doubted; but it might be slown, on the contrary,
that the outline of a casting had really little to do with its intrinsic value. Mr. Laird had touched upon the chemical affinity which existed between cortain constituents; it bad even been shown that the in tluence of the earth's magnetism could not be dis regarded with impunity, and the entire question had received and deserved great consideration at the hands of engineers, but the problem of good castings was far from being solved, although often the most palpable mistakes were made from sheer ignorance of tirst principles. The complex form of onnons had given way to a more simple pattorn; sharp angles and cors which are perfectly useless, is abolished. It is the porfection of the gan, as an instrument, that must be aimed at ; and, howeve plain it may look-to the really educated eyo-such a piece of ordnance will ever command the greatest
consideration. In the casting of large cylinders the consideration. In the casting of large cylinders the most elaborate precautions had often failed to
insure the desired saccess. Disintegration of the component parts is mainly caused by uuequal and nusatisfactory cooling. However, a great deal might be done in bringing aboat more satisfactory resalts. Mr. Stabler then described a plan according better disposed for the purpose of cooling. In the absence of a diagram the explanation was difflcult e anderstand, but the casting is, as it wer, thas creating an almost uniform thickness of mathas crial all through. He went on to speak of the merits of steam-jackets, high pressure steam aylinders, and the employment of steel in casting cylinders. The sabstance in that case might be considerably reduced in thickness, bat to all intents and purposes it was his opinion that for eugine
cylinders cast iron wonld hold its ground againstall cylinders cast ir
Mr. Briggs briefy reviewed what had been ad. vanced on the subjects of tensile and compressive strength, power to resist impact or shock, modalus of elasticity or stiffness, bat be regretted that nternal strains had hitherto received bat littlo ake the matter up to construct oylindirs of 3,4, scc., inches substance, to burst them experimentally, and thas to ascertain a ratio which might be approximately correct.

Attention being drawn to the effect of rings placed outside of the cylinders, Mr. Brazg, who was anderstood in the main to corroborate Mr. Briggs, thought sight of in acconnting for the bursting of cylindersiz., that there is more elasticity ontside than inside. Ho demonstrated the fact simply and clearly by assuming that two beams, one 18 in long, and another 3ft. long, were stretched at
the same time. He need not say what the result the same time. He need not say what the reand
would be, but that clearly establishod the rewould be, bat that clearly eatablishod the re-
lation between the inside and the oatside of cylinder. He farther said that as a matter of experience if a cyliuder split lengthwise, the bottom remaining intact (which, by the bye, it did in one case out of a hundred), the line of fracture passed through the vent hole.
Mr . Jordan, who spoke from practical experience in the matter of hydraulic cylinders, thought that that was not difflcult to account for. By drilling into the body of the cylinder a wedge is actually made for its splitting. There could, however, be no dificulty in avoiding theso consequences. The aril!ing should not tnach the body of a cylinder at all, it shoald be kept outsido, and
Mr. Briggs replied that the boss itself would hardly offer a guarantee against fracture, that migit take plaoe right through boss and all.
Mr. Jordan thought that woold undoubtedly oocar Where the engineer neglected his duty, and that was to see that the metal was properly mixed, and the moulders were prevented from having it all their own way. As to the question of riugs, he had no doubt whatever apon the matter. Practically, they were of the greatest ase in insnring the strength of sime cylinder, bat they were additious which people simply dechued paying for. There coadidurtiner be
no question as to the possilility of fasing cast with wrought iron.

The Panama Canal.-According to the latest intelligence from the Isthmizo of Panuma new hopes are cutertaised about mak:uz a Ahip canal acrose
that obstraction. After failing to discuror a prounising line for the excaration in the natrower portions of the neck, the American survejors have gouo back to Nicara, un, and vom report a favorarable place tomards
tire nurth of the Isthmis, whero they beliero the euterpriso can and should be aceomplifhed. It can not bu donbted, howiver, that ma-h greater difflcalties of Sues.

IGTTERS TO THE EDITOR.
[WV do not hold ourcelvea responsible for the opinions of our coortospondente. The Editor respectitully requesta
athat all communications should be draven up as briafly as gemible.]
cill comannicatione should be addressed to the Editor of the Englibe Mroinnito, 81, Taptatock-street, Covent Gerden, W.O.
Aul Oheques and Post Offec Orders to be made payable to J. PAGgMoni EDwARDs.
"I would have every one write whet he knowa, and as much as he knows, but no more; and that not in thit only, but in all other subjects: For such a person may mature of auch a person or buch a fountain, that as to other things, knows no more than what everybody does, and yot to keep a clatter with thir little pitcance of his
will
undertake to Will undertake to write the whole body of physicks: 2
From whence great inconvenlences derive their Floo from whence great inc
ortinal"- Montaigne Escays.

*. In ordor to facilitate reforence, Oorreapondonto whon opeahing of any Letter previouoly incorted, owill oblige by on wioheh it appears.

263 P. XVIII. $\triangle Q U I L E-E Y E P I E C E S-C E N T R I-$ FUGAL "FORCE "-PARALLELOGRAM OF FORCES - COMET - FIELD.GLASSES - SUNRISE AND SUNSET-AND THE HARVEST MOON.
[4658.]-IN compliance with the request preferred by "E3psilon" (let. 4588, p. 485), I hare looked at the gtar 208 P. XVIII. Aquila, bat confess that I shonld not directions for fnding tha his description. Web and if "Epsilon" will get his namesake in Aquila at the bottom, or hoorth, of the field of an eyepiece of the magnifying power he specifes, or perhaps of a rather lower one, he will see the star he seeks almost sonth of it, and on the other side of the centre of the field-in Sow, a however, comes the corions part of the matter. 268 P. is, I see, triplo-i.e., it has a second faiat, and considerably more distant companion than the one Those position angle and distance Webb gives (from
Smyth). Unquestionably, however, the position angle of -what we may call-the original companion is almost precisely 289°, while that of the more remote one is mach nearer 20° than 110°, at which latter angle no the comes now under discussion is a good deal farther ofl than $14^{\prime \prime}$ from its primary. It is too faint to bear the illumination necessary to measure its position angle and distance mierometrically; but, at all events,
the whol, asterism by no means corresponds "Eppsilon's " description of the ohject he picked ap and which I have quite failed to identifg. Should my ,
 XVIII. A quila as 18 h . 54 m . $9 \mathrm{~s} .$. and its north declina: tion an $14^{\prime} 442^{\prime}$, and setting his circles accordingly, to get it almost centrally in his field of viem.
There is a tacit assumption contained on the letter
(463t) of "Betsy Sammercity" on $\mathbf{~} 518$ which it is neotssary in the outset to correct. It is this, that the imange formed by a properly-constructed achromatic object-glase is leas porfoot than one prodaced by a parabolio mirror. Now, disregarding the small and quite conitidently, that one of Dallmeyer's object-glasses tranomits an image in every way as optically perfect as the finest mirror ever ground, and that the Huyghenian eyepiece produces no more effect apon the one than it
does upon the other. If we construot one of these eye pieces with two lenses of the same material, so plaoed that the distance between them in an arithmetioal mean between their focal lengths, the combination is ex necessitate achromatic-i.e., it magnifies the rays of all colours precisely alike, and shows a white image white, Hoyghenian would, in no shape or way, give "the necessary correction" to an "imperfectly correoted" object glass; on the contrary, were the latter anderimage fringed with red and yello is and ware it on the other hand, over-corrected, such image would be edged with deep blae. As for caring apherical sberration, the Hrygenian eyepiece would not do that either, becanse the kind of distortion which takes plece in it merely produces the resalt of rendering equal angular intervals equal divisions of a micrometer covering it. Ans object sennibly free from distortion. Besides, Sir George Airy's formala enables the optician to eliminate the the greater part even of this defect of aplanicity. I rather fanoy, from internal evidence, that "Betsy" has been reading the deacription of the Hnyghenian eyepiece as applied to the microscope, written origi-
nally by the late Andrew Roas in the "Penny Cyclopædia," and reproduced by Quekett in his work on the " MIficroscope," p. 167, et seq. I was quite aware eyepiece was not new. employ ing a microscope as an scopist, Dr. Hagkins, F.R.S., \&C., used his Ross binocalar in this way as far back as the year 1861, in order to obrain quasi-sterooscopic images of celestial objects.
Nothing, however, ever came of it.
Reverting for a
moment, before concluding, to the subject of the secon dary apectram, I may reiterate, what I hare before men tioned in these columns, that I saw last antamn an objeot glass by Wray in which this was for all praotical parposes cured, in fact, which was sensibly aplanatio. It had an apertare of 3.75 inches only, bat exhibited the colours of Japiter's belts marvellonaly; in fact, 1 question exceedingly whether any 6in. mirror coul
would have shown this phenomenon much better. I wonld join "C.H.W. B." (let. 4646, p. 514) in deprecation of such a torm as "centrifagal force," the centrifagal ten
lavo of motion.
It is something fresh for me to learn from "Marine Engineer" (let. 4649, p. 515) that ". . . to produce a donble velocity requires the expenditare of a fourfold forco ;" becanse I have always hithorto been tanght, same body produces a donble velocity in a anit of time, a triple force a triple velocity, a sextaple foroe a sextuple velocity . and so on to n terms. For example. let us conceive an iron ball to bo dropped from a height, then at the ond of one second, it will have acquired a velocity of 82 ft . 2 in . ; bat, having started with a velocity of O , will have fallen through 16.19t. Let us now, though, farther imagine that a magnet placed underneath our anpposed ball begins to act apon it at the same instant as gravity does, and with exsetly the same force, then, as that alone would impart a velocity to it at the end of the frst second of 82 ft . 2 in ., the combination of the two forces will induce one of 32 ft . $2 \mathrm{in} .+32 \mathrm{tt}$. 2 in. , or 64 ft . $4 \mathrm{in} . ;$ and inasmach as the ball started from a state of rest, at the expiration of the second it will have fallen jnat 32 ft . 2 in ., or exactly twice as far as it wonld have done if acted apon by either of the two equal forces alone. How "Marine Engineer" has mixed 7p "the theory of projectiles," with the simple and obvious law which I have attompted
I oan only say in reply to Mr. Grayson Goloar's query (12545, p. 521) that I don't know. I may perhapa add that I think it probable that this roply will be echoed by the rest of "onr astronomical contribators." It is practically impossible to answer such a question as that put by "Lambda" (query 12549, p. 521) withont soeing the glasses of which he oomplains; bat I shonld say that the appearance which he describes almost certaing has its origin at the eye-end o! his field-glasses, und muny possibly be a diffraotiou phenomenon, having its seat in the stops boundin: the deld of viow. It might evea bo a spectralappearance, arising
from fatigned reting; but, as I have ion plied before, it is idlo to theorise in the absence of the offending instrument.
I trust that the following formala and example will enable "Delta" (guery 12570, p. 522) to calcriate the time of sunrise and sanset for himself. It is aban dantly accarate for all ordinary parposes. Let ns call the co-latitude of his place of observation ψ, tho zenith distance of the sun z, aud his North Polar distance d and let as call $z+d+\psi, 28$, and the hour-angle
from the meridian Then-

Sin. $\frac{1}{\frac{1}{2}} H=\sqrt{\frac{\sin .(8-\psi) \sin .(8-d)}{\sin \psi \sin d}}$
By the aid of an example, we will pat this into figures.
At what hour will the sun rise and sot, in lat. $51^{\circ} 30^{\circ}$ At what hour will the son rise and set, in lat. $61^{\circ} 30^{\prime}$, on Augast 10, 1872
Sin. $1 \mathrm{H}=55^{\circ} 52^{\prime} 15^{\prime \prime} \overline{9.9179129}$

$$
\begin{aligned}
\mathbf{H} & =1 \overline{11^{\circ} 44^{\prime} 80^{\prime \prime}}, \text { and this in } \\
\text { Time } & =7 \mathrm{~h} .26 \mathrm{~m} .58 \mathrm{~s} .
\end{aligned}
$$

Now the san is on the meridian on the 10th at Oh. 5 m . 8 s ., and if from this we take 7 b .26 m . 58 s . We get 4 h .38 m . 5 s . for the time of his rising, and adding the same quautity, 7 h .82 m . 18. for that of his setting. rikidly accarate, bince borne in mind that his is no tance will be less, and at his setting greater, than the quantity we hare assumed. This change in declination which in the case of the moon is very rapid, added, moreover, to her perceptible parallax, renders the accurate calculation of moon rise, \&o., a very complicated matter indeed, and one, the explanation of which would demand very mach more space and many more figures than I feel at all disposed to ask you to grant me, or to print. May I advise "Delta" to compate table of semidiarnal aros for his own latitade? He will page the simple formula, and an example worked oat, on way, ask him to correct the misprint of "T" for D on lines 12 and 23.) Sach a table woald be very useful to him on many occasions.
I will, after the Scottish fashion, answer the question (12501) of "A. S.," on page 553, by another. Dows the harvest moon appear larger than at other times? I ree that another of your correspondents, "M. A." (let. 4622,
p. 609), appears to labour under the same hallnaimation as "A. B.," and to imagine that she does. I suspect the fect to be that people hear that the harreat moon rises, aboat the fall, nearly at the same hour for some nights, and so look out for her on the horizon. Were they to watch her rising at other times, they would see that she Would appear just of the anme diamoter as she does at inoresticular one. The question of tbe apparent is a very arize of bodies as they spproach she hored in the cary carions one, though. It is very marked be travelling a has beon mooted in "our" columns before, bat I have no time just now to wade through the indices.
a Fbllow of the Royal abtronomical Bocibty.

PERSPECTIVE.

[4654.]-In my first endeavour to introdaoe a glimParis thergh the wondroas three months ago, I' had sketched, bat did not think of asking sou to engrave. the diagram now given in Mr. Proctor's letter ($\mathbf{t 6 2 1}$, p. 509). I coald not conoaive any one requiring a fgure to realise my simple remark that the top and bottom of the tower's pioture were at distancen from the aye just as different as those of the tower iteelf. No Yerring to the diagram, does M. Paris mean to deny that AB is optically less" than od in the that others, so "Bobo" (let. 4605, p. 489), will repeat that the reason "artists dram all vertical objecte" without convergence becauce the upward convergence is "slight." It is neither slighter nor anywise loss sensible than horizontal convergence in a streel. It is simply that the pictared lines must be parallel in order to concerge rightly in the oye. Similarly the "agarea in ${ }^{8}$ market-place" of M. Paris's leat letter (p. ©10), is standing in a rank parallel with the pictnre plare, mast all be drawn of equal height, in ordir that the lateral ones may (in the eye) bo dulydiminished; and N. Paris, bimply faliity the later shorter in his picture, wapart from paistilig) is matter of rigorons science, no more admitting of "compromises" than geodesy or arithmetic admits of compromises. It is true, as I have pointed out, there are a fem trifing details wherein a parioue to ornament a wall. and so to be sight shoald differ from a "cosmorams," i.e., peep-show or stereregular objects, as architooture and farnitare ; and ths chief is, that the scene should not embrace above 40° or 50° of the horizon, though it may have far more range vertioally for the roason I explained. The nezt, and circles, as the farspes and bases of colamins or tarrets, however near the sides of pictare, should have tise major axis of their ellipse horizontal, instend of risiug Coward the side, as rigorons drawing requires it. Again, far from the picture's centre, should be circular, not elliptical, as strict perspective (or photography) wonld make them; bat indeed the ellipticity woald hardly be sonsible except at greater distances from the point of sight than any picture is lizely to place them.
These might be called " gallery compromises." i.c., point of viem, and one whose spectatora are sappsied to move. Bat none auch will apply at all to a cosmorama, nor to a book illastration, or anything hasing a sapposed single definite place for the eyo; and any
 must beg atterly to deng as sanotioned in any
place or time pretending to mal art. The sanys or moon's diamoter in a piotare maat bear that rela. tion to its architectural vanishing pointe that 32 or 84' bears to their real angalar distances on the horizon. In no case can it be magnified withoat mere grosely exaggerates the rising enn to many degrees diameter. To make it trae, the whole pictare woald have to represent the field of a telese)pe many
miles from the objecte; and in that case, of course the architectural vanishing-points would bo periaps as many yards out of the piature as they are
inches. If any peculiarity of light or colour is held to convey to any eye an impression of greater size, let the painter so imitate the light or coloar as to convey the same impression (or "illasion" it you will), but to falsily the size itsoll-to falsify line -is sheer blaneering paorility ; and there is no case of "oom-
promise " in form yet desoribed by M. A." or M . Paris that is anything else, or that even Chinese would now (aince the spread of photography) tolerate. is for the impressions given by a monatain olope in front view, and the pictare of it, the latter, being vertical. cannot well aroid (except in a stereoscope) appearivg M. Paris to give (p. 510) the "real slope" rather than "the apparent." If he means, however, that any one over-estimates the slope of ontlines seen in prosle, the same mind (not "eye") will equally over-estimate that of a truly drawn representation. The artist's basinesa rial give the spectator the same means or linear inctejudge or jadgment that Natare gives, and leavo him to colvar, or what "M. A." calls " pictorial perspective o" (more properly "aërial perapective"), bat the whole form or line syatem, and every line in a pietare, ia either true or false, just as each namberin an almanac or a bank account-book is true or false; and cooked ontlines are just as moch or as littlo noeded or tolerable in any world, artistic, "menthetic," or what 5a0 will, as cooked accounts.

What Sir Darlă Brewstor cited a rectangular tower to illoatrate was probably the straightness (an well as parallelism) that the eye, however near, attribates to he sidoa, though their images on the retina are dealiealy carred, more so than the hiserooscop the Salisbary spire view that I long ago referred to, and wioh I And is marked "Sedgheld's English Sceners." No. 877, it would greatly onlighton him. It is perspective with no parallel lines, and with three raniehing points, the appor ono or zenith probably the nearest of the three. It is a viem, but not a picture, becanse the latter word implies a riew projected on a rertical plave. A photograph of a tower, however near, taken on a vertical plane (as I have repestedy told him), cannot have any apward convergence. Noither can a plammet, near or distant, detect any leaning in lines that do not really lean.
The optical corrections (so-called) in the Parthenon and other Greek baildings, are a wonderfal eridence of refized art, but bave toally nothing to do with these perapective radiments. It is quite certain those who contrived them woald never have toleratod any outline cooking buoth as M. Paris defendi, in the roprecenta ion of them or of anything alse. Moreovar, I doabt in many of them were "optical" in their object, $s 0$ much as mechanical, or directed to high philosophic ideas of perfection. Thus the convergence of the axes of all the columns tended evidently to irmness, daration and resistance to earthquakes. Their entasia wai almost necessary if the workman (as Raokin arat re marked, I think) was on no acooant to out roikin the straight line, any invasion within it boing traly into corable. Then the hyperbolic carves of the long courses mast make them, from some central point, exachly fit the cone of rajs from the sea horizon, erincing tha they observed its dip, that Minerva's architecte were no Hampdens of a poor nineteenth centary, but wer bailding on a globe of definite size, and knew it !
E.I. G.

NEW SABH FABTENERS.
[4655.]-Tyrsz dravings almost apeak for themopen it to admit air you draw oat the knob and throw

up the window, whioh will fasten itsall at any hoigh you may require. Figa. 2 and 3 show the bolt fastened and withdrawn. This is a perfoct and simple fastener and I am told does not readily get out of order. Δ and B in Fig. 1 reprecent the mashea, \mathbf{C} hole made in thom to admit bolt, which oan be made at anv height you
require the window to open. $\quad \mathrm{J}$. W. Biorirond.

ECONOMY IN USLNG COAL.

[1656.]-W. Browxe (let. 4556, p. 468) very wiedy suggeste the nee of ire-balle, made of coal clack and olay, as a anbatitate for ooal, that has beoome and is qully in South Walea, where they are made of oulm (the small of anthracito coal) and wot clay, beaten togother, and formed into larger or smaller balls, ae a blowar or quicker ire is desired. They make a very ploceant and conomical ire for any weather, bat more eapecially for warm weather, When a genulo ire for cooking only in needed. some montis ago you incertid the doscrions to wet, which I have tried to rofer to without pervious in whink it wan by dipping them into melted parafin. bnt am not sare. The Wolsh Aro-balls boing made of oulm, containing little bitamen, barn with very little amoke or fame, the latter being chiedy that of carbonio oxide. Mont of the hoat produced by the fiame is aboorbod by the daj, and given off as rainant hoat, Loas than asaal boing eilhor condacted away by the beat of a common Are goes. Ordinary slect is not, I am told, so suitable for makiag aroballs as culm is, Count Rape ford recommended ore-halle to be made of Count Ramiora recommended aro-helle to bo made of Ho suggested that straronilia powder, and wot clay. Ho sakgened that straw ohail or sawaut might bo tried; wiso that balls, if to be nsed for lighting irea, might be dippod ion a tolahon of altro to wake thom barn easly. Tho clay la tho

THE GULF STREAM.

[4887.]-I bave been mach intorested in perading the article by R. A. Proctor on "Oceanic Circalation. I quite agree with him in retaining the term Gal Stream, although I have long held the opinion that it does not all traverse the GaIK of Mexico; bat what Winh more particalarly to draw attontion to io a metho by Which its presence may be traced Which is no
ret reoognicod by the scientitio world. My idea in that Jet reoognised by the scientitic world. My iden in that it impinges on our west coaste at an angle mach more neariy to aright angle than it is laid down in the ohart which acoompanios the article. It trace its effeoto on the conatt reaching from Breat to the North Cape, Wharever they are exposed to the direot aotion of the Athantic Ocean. A glance at the map will show a
pecaliar ruggednoss of ontline in contrast to the sandy pecaliar ruggedness of outhine in contrast to the sandy
ghore of the Bay of Bicoay. This characteristio marts the coast in the neighbourhood of Brest, the eouthwost conate of Dovonohire and Cornwall, the Bristo Channel to the Bay of Carnarvon, soath-weat and west coants of Ireland, weat coasts of Scotiand, north
of the latitade of Ireland, the Orkney. Shetland, and Faroe Inlands, Iooland, and the coast of Norway to the north of the latitude of Scotland and the Orkneys. Whence this ruggedness of oatline? It results from the absenoe of the proteotion of a sea-beach. It you observe a aloping gasdy beach aftor an on-shore gele of wind, you will ind that there hes been a movemen in a seavard direotion, and probably the sand has moved seaward and left the gravel. This phenomenon admits of an eacy explanalioa: an on-shore gale mas necossarily raise the sariace of the water in-shore. This, of course, areatos a counter corrent in an oppo-
site direotion, and although this current may not have site direotion, and although this carrent may not have the power to move the sand
yot when the breaking wave stirs it apit will re move it in a seawnard
direction. A littlo rofection must convince no that the Gult Stream mast have a similar aotion on the shore as an on-ghore gale, with
this difference, that this this difference, that this aotion will be constant, not alternating with the change of wind from an on-shore to an ofl-shore breeze, as in the latter case there is nothing to connteract the nataral action of the wavo, whicb, takon per be, is almaya accumulative. I oonsider that the Gall stream is orced into its prosent position by the polar counter carrent which hoga the const of 1 merica, but it must be evident that this was not almays the caso, as provious to the eleration of the Somn dinavian peninsala, we havo many proofs that his counter carrentcaus down the Whit Boa aud long the Baltic, bring lng the polar icebergs to this conntry, and when the land became too much alovatod to allow of the icoberge dritting our direction, We hould sil have the cold co Co, Keeping down the iemporataro of these alande 80 that gleciers would form on the hills. As to the geological period to which this obange may be reforred, I may remark that A. Goikie, in his " Soenery teology of Sootland," p. 820, mentions a raised beach, boons 400 above high- waier mark, which oontains Arctic hholls, and thinke ghl elovation dales from the later part of the glacial period, which coincides with my now an being on the coast of argyloehire and Invergons, consequently facing the allantic. If the Gaif Stream then ran in its prosent direction it woald have removed thic beach. He alioo mentions another beach aboat 20rt. to 25tt. above high malor; bat this only exists to the southward (page 823), where it is sheltered from the motion of the Galf Stream by Iro land. It is erident that the Glacial Period had passed at the time of this last olevation, as haman implements havo been foand in it, showing that the cllmato was millaer, and the ieland was inhabited-its absenco to the north shows that the Galf Btream had thea changed its direction. I attribate the traditions wo hear of the Wasking a way of the laud on the soath. West coast of
Eagland, in the neighbourhood of the Channel Idands, eo., to be a consequence of this ohange. J. Wilison.

$\triangle U R O R A$.

[4658.] - As aurora was seen here on Satarday last, the 27th Jaly. At ten p.m. a bright diffased homo geneons light was vieible over the northera horizon, Trom which at midnight shot np bright white stroamers, which wore well viaiblo evoa in bright moonigal. Thi display seems to have been the conolanion of the ho worthy of remariod oommencing on the $20 t$ Jaiv. It in wortiay or remark dast the shormy period daring january 8 and 4 , 1972 3 and 4, 1872.
Champion-hill, S.E., Auguas 1.

CHANGING RECIPROCATENG INTO ROTABY

 MOTION (p. 484).[4659.]-This appeara to be a molitication of a plan which I saw working a emall stomm-engine to turn a lathe, in the town of Lincoln, some years ago, and which made a very objeotionable clather in revolving. bat was simplor than thin, although neither are applicable to large enginee, more eapecially sean-going onea, to the bacianh Ine ogs woald be nomething antal to contomplate. In the engine to whioh 1 allade thero was ang-Wheol with the toest on the inside rim, whioh wat atiached to the standard th in the ponition of the dotted circle shown in diagram, the pinion rerolved in ond of arm C, and was fast to arm G, thna doing away
with the intormediate whool. Verdict: Cog. wheele not with the intormediate whool. Verdict: Cog- Whe
A., Liverpool.
[4680.]-The no-allied "new method of changing reciprocating into rotary motion" (described in letter 4578, p. 484) is afty yeare old, and wonld have been amployed had it been of any raluo. I cond you a krotoh of the apparatas we ased in the draviag.omeo bont 1848 for doecribing ellipses, \&o., which is parhapa its boet applioation. It any of your reedore will take the troablo to make one it will afford them a month's amasement, se they oan desoribe figures of marvollows axtent and beantr; particalarly if the proportions of the whools E and F be slighaly altered, the paper made totate, or motion ondways onmmanioated to it, aco. The intarmediate wheol D should have itro toeth lese in E is is ono-sixth, and the diamelor of the wheol F is onethird, of the longth of stroke required. The levers

C and G boing of equal length, a pencil plaoed at the end of the levor G will describo a straight line equal to the length of stroke required. By moving the pencil inward olliptical or oval agares are thes prodaced. Whoels E and F are placod as near as posaible to each other withont being actaally in gear.

Reprrinceg.

$E \mathrm{E}=\mathrm{E} F=$ ono-foarth of ditto
Diamotor of whool $E=$ one-nizth of ditto.
Diamoter of whel $F=$ one-bitrd of ditto
\mathfrak{g} balance-weight for levers C and G and wheals and E
Sheot of paper to be pleced rertionl.
Join H. Kidd.

WATCH REPALRING.

[46d1.]-I quirs agree with as "Abordeon Wateh Jobbor" that the method adopted by "Soconds' Preotioal Watohmaker" for brapping Genera oncoupt-wheel "A W J" doing a sale if a
 lons it bo a brace ono) to strike alle croases, it loarda a mark; bealaos, thero ia a rik oh pais of you is as follon in haring a with a pono (medo of pegthe a panol (a) to per to the required to bo po the roang give "s. P W." in hie peport, chiting ofe to svoid any of thote con nocted wish the " eoft Tommy" argament.

Jons McKay.

HINTS ON THE CONSTRUCTION OF GREENHOUSES.
[4662.]-I mave for some time had an idea that if your horticaltaral readers mere, Igaratively apeaking, to pat thoir heads together, they might conjoinly hit apit the pocket of the average English mochanic, and yet be all that he conld require. As the season is faut approaching when the greenhouse is in requisition, hastau to lay befors those whom it may concern a few
notions on the snhjeot, which, though donbtless crade, notions on the subjeot, which, though donbtless crude, and maybe impracticable, will posaibly lond somo of
your readers of a more mechanical tarn of mind than
 object. I need not say that a greenbouse affords
healthfal and pleasant amnsement or recreation, as well as proftable occupation, and thongh at times requiring great and anromitting attention,
there is ample reward even when the plants are not tarned into money. The cost of a greenhonse, it is trae, is conaiderable (comparatively apeaking), but I soaroely think that is the only canse teuding to pre-
rent it becoming a more common appendage to a garden than it is. Few working men can consider themselves as permanently settled in any honse in the auburbe of large towne, and unless the amatear floricaltarist is a freeholder or leasoholder he is untarally chary of orecting a atructure which he may be com-
polled to leave for the benefit of some one else. The difficalty of remoring a greanherse has something to do with this, and so has the law of Extares; bat the lattor is obriated by erecting the house on a foundation of brick, whon all that the law reqnires is that the bricks ahoald bo-loft, becanse they are "in the groand" and have become part of the "estate." That in a
rough way is the law of fixtures as applied to greenhonses, and sereral manufacturers have taken advantage of it, and now supply houses which to all intents and purposes are "tenants' fixtares." Bat tho oeat of eren these stractures is rather heary, the cheapeat adrertisod being aboat £87 103. for a span roof 20it. by
12ft. This includes fixing and overything bat the brickwork, the ataging, and the heating apparatua. The framing and sashee are of red deal, the latuer 2in. thick, glazed with 160 z . glase, with foar coats of paint; the gattering, locks, and the requisite gearing for opening the ventilators being alco supplied. It is the price of the labour, ase that if we estimate the cost withont charging for ore orn handiwork, the the facilities of mandactan poasessed by the seller, and for the lower cost to him of the materials. Bat as a matter of fact, fow of the saricaltorists contemplatid by this letter would require a honse of the dimensions opecified; for besidee being larger than most working men could spare time to atimal to, it is naturally more
expensive than a lean-te. The ideal honse, therefore, expensive than a lean-te. Thiceal honse, therefore, (say) 12ft. long, by 6ft. Wide and 8ft. high at the back,
and about 5 tt or 6 fit. at the front. The brickwork woald and abont 5 ft . or bytt. at the frant. The brickwork woald thas be, allowing a door 2 ft . wide, 22 ft . long by 9 ft .
high, so that 1,000 bricke lid half. brick thick wonld be ample for the wall and the fireplace, and enable piers a fall brick thiok to be builk at intervals of a yard. The first twe coarses, full brick, might be laid in the ground, so thet the front of the house above the ground level would bo aboat $2 \frac{1}{f} \mathrm{ft}$. brick and about $2 \frac{1}{f t}$ ft.
wood and ginss. Any tolerably sound old bricks woald aganer the parpoes, and they would probably not cost more than 10a., including carting. Before starting
with what may be called the foundation, it is highly necossary to settle the method of heating to be adopted, and also whether the floor of the house is to be on the ground-levol or annk aboat $2 f t$, more or less. Several advantages are alaimed for a house than sunk, can be no objection, but if hot water or the ordinary flat is intended to be used, my adrice is emphatically build on the groand level, for with a freplace it is absolntoly necessary that the grate should be some dis. tance below tho level of the flae, and a aimilar arrauge mont will bo necessary with a boiler, though it scarcely a desirable or oven economical heating modiam. This part of the question, however, I will
loave to snother lettor. Personally, I incline to the old-fashioned flae, and therofore proceed with my ideal hoase on the ground leval; bat indepeniently of all considerations of heating arragemente I think a house
Before laying the bricks, then, it will be necessary to choose a site and mark ont the plan on the groand. the boat posible posilion ior a greenhouse, then, is one in which the greatest surface or glass is presented to the
south-east, for it is in or aboat this qnarter of the heavens that the san rises during those months of the year when his assistance is of the greatest importance
to the inhabitants of the greenhonse, for the morning to the inhabitants of the greenhonse, for the morning not, but every one who has lived in walled town gar dens ranning north nnd sonth has had ocular oridence of this fact. For obvions reasons, too, the greenhonse shonld be as near the daelling-house as possible. The site being chosen, then, take ont the soil to a depth of
6in. all over, and well rame aiong the line the brick are to follow, except where you have determined to build the fireplace. In laying tho bricks, when the conrse aboat 2fft. high is reached, leave ont one a intervals of a yard: these apertares are to be after
wards closed with wooden flaps which will act as ventimards closed with wooden flaps which will act as ventilators when required. For the corner posts, 8 in
quartering will be required, and these are to be con. quartering will be required, and these are to be con-
nected by beams 2in. by 3in. with tenon asd mortice
joind, cramped together with bedscrews, dowel holes
being cut in the 3 in . poats, and dowels made to hide the screm heads when all is painted up. I propose which will preant no ingaperable difficalty and will onable us to take up oar greauhouses avd walk as enaily $2 s$ wo do our bedstemads. In the 12ft. length three or lour ports will be required to support tho front beam, socording to the sizes of the front eashes, and here I am for min quandary as to the proposed the machinemade saches is to parchane second-hand or tho Humover, these posts, bo they three or four, will bo steppod in the wall-plate of Sin. stafl bevellod of on the oataide edge, and each eash should be hnng by hinges at the top and at fairly olose aqainst filleting nailed on the fllled ind octom of the frame-work. The endst. the glasa fitted in between each bar in one piece if possible. At the end at which the door is made, a post of 2 i . staff is to ran np from the step to tho sloping beam, and at a suitably height a cross beam will secrre it frmly to the end post, while an iron rod will rod being taver post to the front cornerpor, I do not propose sashes for the roof, but fixed sashbars, let into the back and front beams and fixed by acrews, so that the glass may lap over the front and be carried up to willin 2in. of the back beam. The aillet or tongue of enahle a board hinged oleared off for the top the the back benm to fall close on the glass. This is to act as a rentilator, and wonle possibly bo better in two or even three pieces, being made to open by small palleys and strings from the incide. An iron rod, acrewed at each nuder, and indeed, pressing against the iafter nachbers, being seeared by a nat at either end. The glazing of the roof is a matter of some moment, and I anhenitatingly adrise that the glass be in pieces, of uniform size, for convenience and economy of repairing, as well as to prevent scalding or soorching. Which is vory single pieces ender a hot san As to the best kind of
 woald scem nataral that 21oz. is better able to resigt hailstones than 180 z , the weight asually given by the makers for the lomer priced honses, bat a friend of mine anagres me that 16 oz . resiste a hailstorm better this is so the it "bends "and yiala to the otonee. If With reesed to Gxing the glass, I think I rhould putty in ell the vertical panes and fasten those in the root with tacos or pins; but chacun a son goit. The whole of the framing should be exposed to the ann before paiming, and when thoroagbly dry four coartit cheald
be given, over and in all joints as well, for it can be rubbed of mith mand paper to make a fit aftor wards, or the joints may be woll dressed with ram oil. Now to the main point ; I think all this may be done for aboat sf, according to looality, and a very cheap and servicaable height (if thie io ; ot to be had the diftarence mast bo made rop with ingh boaeds, which will keep oat "oold" as well es 4 in brick), chelves may be itted all along. Thile anplo bight on the stage will be found for the Arent choico evarse, bo built in the honse, with the achpit and door in a hole antaide, for by this meame a vary hasedy means of raiaing tonder ceods is provided it will be observed that I have confined amatemers oaderstand working in iron, wherenh many do in woed. I notion, however, that honses 301k by 12ft. spean rool in metal are to be had for e35, but despito all that has been said to the contrary, I doabt properly worked. One well-known firm in the county of Easex sapply galvarised structures at the following rate, 6 ft. $4 \nmid i n$. long, 6 ft. $3 \nmid i n$. wide, 7 ft . 7 fin . high at ridge, 4 ft . 6 in . at eaves, for $£ 44 \mathrm{~s}$. Bd. Thas inoludes two glass ends and one door; the glass is ont up and a priming coat of paint on the wood. It will bo andertood that they are only made to certain sizea, so that would be 288 8. 6d. withoat fixing, wall-plate, or brick. work. I shonld be glad if some one will correct my estimate. I make it somewhere as follows:

Glass at 3d. foot......................... \&l 160
Tro planks at 8s. 6d. 1elt. \times 1lio. $\quad 70$
Bricks, mortar, \& :............................. 1010
Wall-plate, a 3in. plank, cut long-
Front sashes, iron rods, berews, du. 1
25 00
It will be seen that I have omitted to mention the paint, bat I have allowed liberally for the other items,
and at all events the cost is safliciently noar to be pat at $£ 5$, at which price a greanhouse ought to pay for itself in a conple of years. Bat I have said onongh at
present, and shall be pleased to have the plan criticisod.

BLINKERS REMOVABLE.

[4668.]-I boucht a five-year-old mare for gig and light work. Sue war blink ${ }^{\text {ared, bat I removed them }}$ the mare had expended her sapertlizons spirits, I took oĨ her blinkers. This qaickened ber speed for a time. When sbe was fresh I pat ber bliukers on. This prasand freely withoat them. I have seen other instances

ON COVERED STRINGS IN PIANOS; ALSO, WHERE AND HOW TO COMMENCE USING THEM.
[4664.]-Is most of the best modern upright pianofortes not exceeding 4 tt . 8 in . high, it is nsumal to commence using covered strings at or aboat tenor \mathbf{C}, in
those 6 in. shorter at D, and to make the arat covered those 6in. shorter at D, and to make the firat covered strings from one-sixth to one-eighth shortor than doable the length of the uncorered stringe which soand the octare above, according to the proportion the thickaess of the stcel ander wire bears to that of the covering wire which is coiled aroand it; bat, notwith standing these comparatively large dedactions from What wonld-were they uncovered-bo their proper lengths, these strings are as
ss freely as conld be wiahed.
Δ very cummon defect is employing steel wite forths first covered stringa many sizes amaller than that need for the lowest ancovered strings. Sapposing the thickness of the oopper covering wire to remain the same, it is obrions the thinner the steel ander wire is, the more heavily it mast be loaded in proportion to its tensile strength by coiling the same copper wiro (say Na. 1) around it; althongh (the length of each coil required to inclose a thinuer steel wire necessarily being somewhat lesy than that needed for one of larger diameter) this evil is not quite so rapidly developed in practice as it would be if the same total woight of the coils on (ssy) No. 16 ateel wire was equal to that on No. 20 . The proportion of load to strength being, however, consilarably greater in the instance of the thinner (No. 16) wire. we are compelled, to aroid the risk of breskiag it. to
make it shorter when employed to prodace as soand of given shorter when employed to prodace 28 sound ol given pitch (say tenor C) than it need be if earenjg
wire of the same thickness wore coiled on No. 20 steel As all pianoforto-makers well know that any grast firat not covered strings canses a vory sean the timbre or quality in the loaduess, batsin from them, ther ordi narily make the first covered strings somerhat $t: 0$ long, thinking that they may tharoby reador loss obvions that disagreesble "break" in the tone commonly indaced by the substitation of eovered for anoorered strings; bat it is quastionable if thoir sooond Dovil is not worse than their first; for by making the ars ocvered striugs too long for the proportions of their compelled to pat too great a strain on the latter. In when, by pervietind palline they are compelled to came up, or rather are "dragged ap," they are apt to be very otiff in their mannera, in a word, tos ripid to vibrats properly, not to mention that thay then oflen fail to do good service for any long period, and they "crack ap," and "go ander," from which I infer that it is bost to treat tenderly our slaves; and that "the mercifal gasn Who is mercifal to his beal-oven if that "baast" bo It is a great mistake to euppoen encer fomesse of tension imprises the tone of a pisnoforte, at leant balow a pianoforte to be too "tight" as it is for its triaer io become so ; and I can aver from experience, this is a condition of "things" which don't anyhow imprura the voices of either of those "things;" certainly not the voice of the haman thing, for when too tighty is; and waut of "clearness," both of thought and vocal utterance, is not so vary nuoomaen the me nool hardly employ "thitroes"" to incopene a matural im. perifa
of u.
In many cottage pianos which have come ander my observation, the last nacovered strings have been of covered strings only Nos. 16 to $18 \rightarrow$ difforence of trom four to six sives in two successive somitones; poed wo wonder a difference of length equal to aboat one-cisth was lound neceseary, or that the dififoreace of timbre was most offensive, and the "break" so obrious, that I was tempted to "break" the covered strings, which cansed it. Coleris paribus, the more nearly tho lengths and thicknesses of the firat covered approsimate to those of the last ancovered onea-or rather to shoese of uncoverod strings which are of the proper thicknoss and length for the sound one nemitone belor it-cthe loen will the timbre of the soands they prodace ainor from other thiags the nearer will the bridge, which sappork these striugs on the soandboard, be to that which sap-
then ports the former, oonsequently, I ane feer from beipg confident there ought to be any differenco at all ioertainly not mere than one size, if enyl botwoen their hickaesses. Not having tried the ofrect of making them on different bridges, I cannot poaitively aay they oagth "ye practionl men". why they nowe strings avo the thick. neeses differ; bat the most "satisfactory" reply I havera obtaijed is, "becanoe it always has bove done," which of doabt, is quite conclasive is "whatever is, is right able to swillow oar puetical Pupe's doama) mat be quite pat ont of court by anch a reply as shic, aod if bo (privatuly) presumes to think "Whatover is is (asch -keep his convictions to himeall, last he be farthar conricted of that mortal (origiual) sin ignorance, comemon to all; bat he believes this word is atco rery com. monly amployed to dosiguato iocapacity to percoive the xiatence of slleged facts, which othera thiak thoy
know to be trathy. Ol course, anch "incapacity" mout be morally wrong; in fact, the very greathast of vicked ness, quite deserring that everlasting "conde menation,"
which affords anch great confert to the pionsly benavolent.
However apprnetical they may deem him, the "Blackemith" probably has had, in thio matter, rather more practical experienee than some of "ye pratical
men ot themesives, who afforded him the ebove very men "themselves, who afforded him the above very gatisfactory reacon for tho faith that mas in them whioh induced their employment of thin under wires for covored stringg. In the coarse of some experiments carried ont nador his direotion by the late " was found that when a No. 19 steel wire covered nith No. 1 coppar was substitated Lor the original No. 17 Wire earrying the same covering, it not only "came np", moeh more readily than the lattor did, but it vibrated very much more freely, and produced a sonnd of someThat greater londness, whose timbre differed mueh less from that of the sounde of the nnoovered C:3 stringa of No. 21 wire than thole attered by No. ${ }^{17}$ wire cia, being 45 in, , and the covered c strings
trying some forther experimenta on the monochord not on the piano-we foand No. 20 steel, covered with No. 0 copper, aame ap to teanor C, and ribrated pretty freely; its length was 44 in ., only 1 in . shortor than the aforeanid Ce, but its tone was hardy so good ae that yielded by No. 31 wire with the bame covering, and both were sarpassed by No. 21 whenit was covered with only
No. 00 copper, and its length made the same as that of No. 00 copper, and its length made the same as that of the Cg strings-i.e., 45in., which is about $1 / 9$ th part
shorter than doable the length of middle C in that shorter than doable the length of middie C in that
gealo. Ite vibrations were very free, the tone firm and scalo. Its vibrations wore very free, the tone firm and
powerfal; and with such wire as is now prodiced, I powerfal; and with such wire as is now produced, I have no donbt its pitch might hare been raised at least toar cemitonea without the least dangor of its becoming
brohen for many jears. After this, am I not jnstided in meniog why use two bridges whiah are, onless frmly in minceted, \& La Broadwood, almosh cortain to increase the "break" in the quality of the tone.
What is true of pianos 41t. 8ia. high, is no less trae of those 4it. 2in., or shortor. It is also equally krue of those which are longer, yoes, ven of $81 t .6$ Gin, and woald bo of concort grands 10ft. or 12ft. long, such as the late Robert Mott longed to construot for me-probebly he hraght this anagaal longitudinal extension migh possessed "more money than brains," which might have boen very true without his possessing much of the ormor; bat, happily, he did posess enogh of the latter to avold paying abont 100 for anme three addi tional feet of caso, belly, and strings ; the latier of which
were oven then quite long enough (ia an instrument of the asual leng(h) to produce soands whose londsess well nigh drowned those of its treble strings. Years after I had an little experience of the "dalights" (and expensee) of (amatar designed) grand pitter the ox perimon above dehoter to covered notes ayy shorter than the
strings. On the eontrary, I preferred stringing three stringe. On the oontrary, 1 proierreis two orve and the last one 4100 sizes larger, which I found quite prevented the ear from detecting any want of Armuess in the timbre of the gonnds they produoed. The long bridge and the short babe bridge were anited by halring them lattor, whioh was tapered down to aboat lin. thick at its end; and that portion of the bass bridge which extended aboat 7 in . to the right of the long bridgo-i.e. same thickness at its ond, which reached within a few same thickness at its ond, which reached the belly. I copied this method of connecting the tro bridges from what I observed Messrs. Broad woods had done in cottnge what I observed Measra. Broadmoods had done in cottnge
pianofortos, perhaps nearly twenty years ago, and its pianofortoe, perhaps nearly twenty years ago, and its
advantages are, of course, not confined to pianos in Which the orat covared strings are as long as the last Which the arat covared stringe are as long as idzad may cross the long bridge-i.e., be balved und
distance desired ap from its extreme end.
I have been told by "practical" men that it is objectionable to pat two (unconnected) bridges on the same sonndboara near each other, becanse when so posited, unleas connected d ha Broadmon, thes
mataally mate eanh other. It it be true that mataally mate each other. It it bey do this objection onn hardly apply to the bridges of my deaign for an improved apright grand cottage piano figured in No. 295 of the Exglisir Mecbasic, for in that-and some other instrments of similhe design which have been imported from America-the
two bridges are quito far enough apart to be out of two bridges are quito are enough apart
ench others way. Inave not a very strong fatth in the matanl anitive power of contlgaous bridges, but I do matam anitiog power of conngaous it coninces to the darability of the instrument to connect them a la Broadmood, for this is practically distribating the downward pressure of the strings over a larger proportion of the surface of the
soundboard. If not an abeolato necessity, it seems at least an error on the safe side.
When atringing my grand, hed I been what an old Werkman of mine was accastomed to aall me, to wit, the tonsions of the lant ancovered and the firet covered stringe by yot furtbur rernuciag the weight of the load
 of doing this are possible-asing thinnor wire or substitoting some metailic matorial loses heary then copper or bracs. Iron has boen noed, parhapa to advankage, for not only is its anel woald be profershle to iron, copper or its alloys, bat its tenacity is far greator. It follows as a mattor of course that it can bo osed when thinner than copper, and yet be coiled tight enoagh roaghened eurfece. Thas, the load of the ander wire may be rendered less withoat mach riak of hreaking may be rendered loss withoat mach riak of hreaking the covering wire by snhjeoting it to moro tonsion than
it cas alalaly bear whilo it in belug wrapped romed the
former. A really gooa method of doing this I greatly deniderate-i.e., eoiling very thick roand comparatively thin ateel wire (GAY) Na, 4 or 42 copper or brass wire
roand No. 26 to 30 ateal, without any rigk of twisting roand No. 26 to 30 steal, Withoat any risk of twisting but kept as trade secrets, indend, I designed one my self, which I may coatribate to our journal if it editor thinks it worth engraving, in which the under wire is acarely held by clips only one-tenth of an inah
apart, while the cavoring wire is beiog coiled around it, and oonseqnently is is not sabjected to any appreai able force tending to twist it, bot the great practica difforlty seems to be communicating snffcient tensil force to the covering wire, when the latter is extremel thick, and consequently inconveniently rigid, to insur that it shall be coiled tightly enough on the thin
undor wire to prevent the string from becoming " mader ."
Besidea uning steel covering wire, which is asid to deteriorate the quality of the tone prodaced by covered string, I might have omployed for the atringa of a note only one semitone lower than the sounds of
the latt uncovered string, an open coil. What, in thealas, long past 1-days of my yoath were termed "oper" covered strings were common enongh, in fact, for
others were ased. Now it mast be others were ased. Now. it mast be "obvious to the meanest oapacity, ", thatif the covering wire be wrapped
round the ander vire in the form of open coils (like a corkscrew or a bell firiring extended) each of which ar perhaps tive times as wide apart as the diameter of mate wire of wich ther are formed, only one-fifth a mach oovering wiro will be coiled ronad the ander wire as there wonld be if the coils were close to, or toachen each othor, as thoy ranally do. At present I see no
objection-excepting lierhaps, prejudice, and the louk objection-ex:epting lyrhaps, prejudice, and the louk
of the thing, both of whieh have wonderfal power over of the thing, both of whieh have wonderial pnwer over
poor hamanity n to the emplosment of open covered poor humanity-to the employment of open covered
strings for the frst two or three oovered notes if it be strings for the frst two or three oovered notes it it
possible to wrap the wire tight enough to prevent possible to wrap the wire tight enough to prevent
them from becoming "falee." It is for ye string covererb-rather a prejadiced and therefore conser vative race-to say if this is a dificalty. Query, migh not steel ander wire if the latter be previously tinned the steel auder wire il the later be previously tinned
and the customer willing to find the "tin." I, for one have great faith in the efficacs of "soft sawder," in tellizently applied, for prolonging haman and othe "attachmenta," becanseit can be emplosed withont aither of steel wiro, or what are far less tender than thal not very " soft " material, " married coaples."

Tife Harmonious Bhackbiite.
IN WHAT DIREOTIONS ARE SOUNDEOARDS MOVED BY THEIR BTRINGS?
[4665.]-Mr. Scrucht asays the string of a piann moves its sonndboard in the same direction that i would be moved by a lever, inserted vertically in its bridge, if that lever was palled to and fro, alternatels in the direction of the string's length. How the atring can move the bridge thas to any appreciable extent in hat portion of the piano's compass which is near to direction of the bridge forwing a very acate angle with the atring its resistance to motiou in that direction mast be enormona) I can hardly conceive, althangh I can very eazily sulpose it to do this to anme small righ angle with the where the hridge is nearls at nstead of being extended berond the bridge to the plate, as it usaally is-attached to the bridge, its ibrations mast rock the bridge to and fre just like the vibrations of a harp string alternately lifts ite sonndallows it to descend to its normal position
and
From the fact that violin bridges are not in contact with the breast throughoat their lengtha, but have two legs, I infer the impulses commanicated to them in everse directions by the strings alternately deprens ach half of the soundboard, allowing each hall to rise again before the string commences to move in the soundboard, just as the harp string allows its soundbosid to descond when it becomes straight. The strings of a piano being struck in a direction vertical to its sonndboard, natarally are at first compelled to vibrate in the same direction as that ot their impelling force, at least, their earliest ribrations mast be vertical to the plane of the soandboard, whatever directions they may afterwards assume during their continuance hence I infer that when the atring descends or is driven backwards by the force of a blow delivered from above or in front of it, it oarries the sonndboard with it, and in the instance of horizontal piano, Whose hammers strike string as they rise lift the soundboard.
That a harp string does lift its sorndboard was demonstrated by Dr. Tradall when lectaring on sombd. Which was attached to what he termed the bottom of which was attached tray, wat which was, howerer, for all practical parposes, a true soundboard or cable de harmonic. On vibrating this string a very lond soond resulted, and ribrating that string a very lond soand resuled, and dircction of motion had boen changed $-i e$. , that the vibrating gtring palled the bottom of the said wooden tray-which performed the fanction of a noundboard to it-every time it ribrated, and thereby compelled this "Then surface to vibrate synchrononsly with itself. p. 254, No. 37t, is an mith's" new riolin, hgared on p. 354 , No. 374, is an exact copy of Dr. Tyndell's
experiment, excepting that he prefers emplosing many connected soundboards to a single one bat this does not alter the principle of the contrivance oes jot.
neithor "The Harmonioses Blackemith's" violin mor Dr. Tyndall's wooden tray bottom can bo said to
possess anythiag which can act the part of the bridge in atringed masical inatraments, nor hat the harp Perhaps Mr. Bohuoht, "Fiddler," and other reailor who are bettor vorued in aconaucs than the writer, and boards, will enlighten, on thic subject,

One who Degires to be Inetbucted.

A NEW MATERIAL IN ORGAN-BUILDING.
[4686.] - I do not know of any objection to the use of paper for organ pipes, as proposed by "Sacram, provided one is astisfed with the tone produced, bat
for one 1 should not be satisfed. Organs and organ pipes have been made of almoat every conceivable matorial, from brass to paper. Most of us have heard of the celebrated organ erected in Winebotior Cathedral in the early part of the teall eextary, which had four hundred pipes of braes and ten keys,
with a wind power prodnced by the united exertions of with a wind power prodnced by the united exertions of
seventy men; and some bave theard of an organ made seventy men; and some have teard of an orgau made
by a French Abbé at the close of last centary out of a hy a French Abbe at the close of last eentary out of a pack of playing cards, which in sxid to have prod acod o powerfal as the Wincteater imstrament. Twenty years ago I made some pipos of paper, with motal lipa, and a mooden block or lapgaid ; bat could not got nay clear tone, and the smallor pipers seomed to be born with a violent atback of asthna, whien was quite in onrage others who would like to make the experiment or it is not a costly one; bat, for my own part, honld prefer to make a set of wooden pipes, as far a ime and tronble are concerned, to the plan proposed by "Sacram ;" the tone, also, wonid be groally superior and if n scudamore arrangement of pipes in dosirod,
let them be thained, say, the smaller pipes a very light hade and the largo pipes in the brock row a dark shade ben as any wall-paper pipes.
J. D.
[4667.]-PAppra, or rather " papier mâche," has been nsed with great success in the constraction of pipes by
F. Besson, of the Easton-road, who, I feel oondident. would willingly commanicate the resalts of his experi ments.
s. Botrone.
[4669]-I beg to inform - Enormm " (1ot. 4579. T. 490 that I have practically tested tite adaptability of
paper for cironlar organ pipes. I took the following pajor for cironiar organ ordinary paper raler of 7in. long, and fally in in diameter, ronnd which I wranped four pioces of paper 5 ammed, each 7in. by 9in. ; I then formod a cone in tho snme manner, the block used being a piece of
clay, shaped accordingly, bat rather longer than necossary, so as to allow the insertion of tho top pioce. then panebed out a ctrealar piece of card for the lan. nid, cutting ofl a amall piece so an to make it eorrespund with the top of the enne, which is a intlio dattened at
one side, and nicked it as fine as possiblo. When perfectly dre they were talren oa the blocks and glaed together, hnving previnnsly insorted the languid and out out the n"cessary portions of the pipe. You may imagine my surprise when I blew into it. The sound enme out quite
clear. It is perfectly in anison with G in alto of stopped diapason. I am mach pleased with its tone, beiog nice and soft. Perhaps I may not have been explicit enough with some parts of it, but will be glad to evown.
OpALIE.
anvestions on the eabject.

MUBICAL EDUCATION.

[4669]-What "Fidder" says in his letter about the scarcity of amateur playera who consider musio as a science is perfectly trae, and it oxsetty conarms what I eaid in my last. It is beoanse so many people, not natarally masical, learn to play that we havo so many performers and so fow masicians. Every young lady ip expected to play, the consequenee is that those who learn becsuse it is a fashionablo accomplishmeat do so merely for the sake of display, and the masio which is easiest to rattle off, prodacing the greatest amonnt of noise and so called " brilliancy " of offect,
with the least expenditure of trouble, is "hat they with the least expenditure of trouble, is what they prefer to all other. The Aryt requirement is that a piece shall be easy, the rest is of but little moment. Ask
these toocommon dra wing-room masicians, as "Fiddler" nays, to play one of $\mathbf{B a y d n}$'s or M. Mart's sonatar, and they will not-not always becanse they cannot, but becanse they are absolutely inoapable of understanding its peanty. And all this atrengthens whst I said before aboot masical edacation, and the miataken
idoas of it entertained by most English parents. They ideas of it entertained by most English parents. They
will not see that masic ia not a matior of mere teaching, will not see that masic ia not a matior of more teaching, like the alphabot or the maltiplication-table-that it onnnot be driven into all alike, by so many lessons from Herr So-and-so, and so many hours' dally pounding upon the pisnoforto. And so long as this is so, left alone wis tanght indiscriminatols, and talents of each individual, which are the gifts of God (not by any meanas to bo imparted by man), 80 long chall wo see masic at home in its prosent degraded condition-so long rhall the masic-sellers' shelves be loaded with
stale
danco-pieces and new, thoagh far from original, stale danoc-pieces and nem, thoagh far from original, itions of the greant masters bo neglected for the reams of apoiled papor which the publishors tara out, week by week, for the benefit of the amatours of socioty.

Verturnue.

ON CO.OPERATIVE GTORES AND CONNS-TO " E.L.G." and Othris.
[4670.]-"E. L. O." (let. 4630) says coins were invented for "facilitatiog the payment of taxes." Whether for that parpose or not, there onn be no doabt das Bob Lowe conld tentify-the poseesaion of abnaBritoss. May be "coin is a badge of conquest," not necessarily in this case of oppression, for my small experiedce compels me to believe it is the means of
liberty-i.e., liberty to purchase what you deaire. No liberty-i.e., liberty to purchaes what yon desire. No of commen sense, is a coin but a certifled given weight of gold or silver 2 - the fact that it is certibed to be of given weight and fineness by legal anthority saring as
the trouble of weighing and assaying it, and thereby the tronble of woighing and assasing it, and thereby
much oftener facilitating parchase than tex paying. much oftener facilitating purchase than tax paring.
The otility of coin may be "a superatition," bat it The otility of coin may be "a superatition," bat it
scems rather a woll-foanied one. I have found this coems rather a woll.founted one. I have found this
"euperstition", extremely convanient when I wanted to bay anything. No donbt the preoions metals art
not the only possible " mediam of exchange." Iron in not the only possible " medinm of exchange." Iron in Sparta, leather-there is nothing like loather-in
Ohina, and paper promises to pay in Europe, from China, and paper promices to pay in Europe, from
bank notes to ansignats, Yankee greenbacks and ahinbank notes to aesignats, Yankee greenbacks and shinf issned under conditions proventing ite value in ozchange becoming depreciated-i.c., convertible paper, not necessarily convertible into the precions metalswill in all probability become the common ourrency of the fature in civilised conntrien. N.B.-One kind of "convertibility" I have stated at some length in
No. 1 of the British and Foreign Mechanic-one of No. 1 of the British and Foreign Mechanic-one of
the many journals since absorbed by "our" "Aaron's cerpent.
"E. L. G." mave the trader is not, as anch, a product of Providenco. Possibly not; but I And it hard to conceive to what other produotive energy we owe his exis tonce. To me it aeems he mast be just as much the product of the "all Father" as his customers, be
they kings, labourers, or the mighty middle clesa. they kings, labourers, or the mighty middle class.
Such questions as these I prefer not to dicenss, bocause, Such questions as these I prefer not to discuss, because,
as Matthow Arnold would say, it "ain't odifying," boas Matthow, Arnold would say, it " ain't odifying," bo
sides \boldsymbol{m} hich, divine Providonce not having condesoended sides which, divine Providonce not having conde conad to reveal all things nnto me, 1 am compelled hambly
to actnowleige myeolf "ignoramas." Not haring the hononr of being permonally aequainted with cortain and sundry "live and dead Satans," I am also ignoramus in relation thereto, always ascuming the aforeadid gatans really have any pertonal exintence, and are not one of the many melancholy mental "crazes" of our clever correupondent " E. L. G."
How, in the name of on oo-operative stores, so-aalled. How, in the name of the "thingnmmy "-who is, I suppose, vearly related to the Batans above mentioned coald oo-operative stored (Or, for that matter, any other machinery for distribution in any societv in which commanity of property does not exist) work if we had no medium of exchange, not necesearily stamped, and thereby certified, gold and silver. Perhape some modiGeation of Robert Owon's "Isbour notes" might serve, or yet better, an andepreciable national paper currency, Which would command rather more general oonfience than elither R. Owen's labour notes or any other merely
local isane. Cortes, it could not much facilitate axchanges if all parchasers were nompelled to exchange in loeal demand-for another they needed. Sare-ly in local demand-for another they needed. Sare-ly bank notes are better than barter, and it must be easiar to carry a check on your banker in your waistcoat pookot than to can/

Thi Harmontove Blaciamiti.

gELENOGRAPHIOAL.-GASSENDI.

[4671.]-Ir answer to Mr. Birt's question (let. 4528, p. 437), I may say that the formation marked a in my sketch does appear very like an outpouring from the crater that, for nome reason or other, with which celegance or descriptiveness has little to do, has been
called "the spoon." Its outwardly carred on tline called "t the apoon." Its outwardly curred ontline
seems to be ench as a flow of molton mattor woald seems to be acoh as a flow of molton mattor would
cesame when arrested in its progress by cooling, and the re-entering angles that divide the outline into eeveral carves would show where the discharge was held back by obstacles on the surface over which it moved. It is far otherwise with the formation b, which seems to overlio the former, and to have intruded on the
apoon, dislocating and pressing inwards its sonthern spoon, dislocatiog and prossing inward
Mrart-that is, the spoon's rampart.
(let. 4585, p. 485) ditcueses cortain apparent evidences of recent change in the central hills of Gaseendi, snd oompares Professor Phillips's sketch on the one hand with the aketches by M. Gaadi. bert and me on the other. It is seen, however, that although in our sketches we difer entirely from Profossor Phillips, we agree with the old observer, Schröter; and it is not likely that the central hilla, after suffering a complete transformation, would be restored jant to their original state by mabsequent disturbing forces. II we could believe that the vien given by the Professor is not an inverted one like the others,
the apparent diecrepanoy would be explained away at once.
Among the several observers oited by Mr. Brown
M. Gandibert alone has correctly shown the carved M. Gandibert alone has correctly shown the carved
ogare of the east central mountain. He is also more Igare of the east central mountain. He is also more
correot than I in tho soathern boundary of Gassendi, correct than 1 in tho soathern boundary of Gassendi,
which appears too mnoh fattened in my oketeh. I may say for myself, however, that I attempted no very general aocurncy, as my parpose was principally to direct attention to the formations a and b.
J. Birmingeiax.

PIANOFORTE TUNING KEY.

[1672.]-Is response to the invitation of yonr talenter correnponadit The Harmonious Blacksmith ley I designed many yeare ago, bat for want of appliances could not carry out. 1 trast it will answer its parpose.
The apindle E F, made with a square top at E, fitted into a square hole in the handle $G H$, to insure their tarning together. On this spindle is axed the pinion A. The wheel B and pinion C to be axed on the on a anle, and they tarn together. The wheel D Axed on a equare at the head of the koy K, and they tarn roand hole for the apindle E F to pass freely, and the head of the key K passes freely through aroand hole in the bandle at M . The screm L keeps the spindle $E F$ in its place. If the piniona A and C have hall the number of toeth as the wheels B and D, the handie

wonld tarn round four times to the key once. If the wheols and pinions are made of steel and the handle of brace, the tool woald bear the strain in tuning a piano. The above sketoh ohowa the prinoiplo. In constracting it the wheels and pinione ought to be
placed nearer in contact, that is, A and B nearer to D placed nearer in contact, that is, A and B nearer to D
and C, to give reom for the whools in the handle. and C, to give reom for the whoels in the handle.
movable onver $N O$, to take the form of the handle, wonld admit of the introduction of the works.
The expense of saoh a tool woald be groat, but few amatears woald objoot to this, considering the advanages it offers. The writer woald be bat too glad to
parchase one if made parchase one if made.

BEDCA.
CHEAP SUPER FOR COTTAGE HIVES.
[4878.]-" Pamo " is evidently no beekeeper, or he would not Wite That he has done on $p .462$, in the namber for Jaly 19. If the queen should go into the super, Which is a very rare occurrence, she will certainly eave it beiore the drones are destroyed, and never which will ocoar, to show the drones are anuihilated, whirming seasoon, is over. A diameter not over 2in. will swarming season is over. A diameter not over 2 in. will
keep the queen out after the drones are doad. Boes win oortainly not eat putty; they like puading better. Novertheleas, either paint or patty will deatroy the hive. Δ friend of mine onoe painted his bive ridicaloasly, and the bees were all dend in three days. H. B. E.

MPPROVED FOLIAN HABP.

[4674.]-SoME of "our" oorrespondents are showing the miatake which is so often mado in manical instra-ments-i.e., incloning the aonadboard so that the tone beoomes necessarily choked and oomned. I send
 far more e ceetnoss in the tones than I have ever heard expresed by the ordinary box-shaped inotrument.

HYDROPEOBIA.

[4675.]-Somz interesting information respecting this terrible diceaco appeared in "our" Mrag uxic some inserted. in rosponse to a letter from me whink you wrote know anything of the following remodies, as wrote know alything of the following remodien, ata
ecount of which I have met with in a Salopian paper ?
M. Marochetti, an Italian sargeon of the hospital at Moocom, boing in the Ukraine, was requested to givo assistance to Afteen persons who had receired the bite of a mad dog. Knowing the worthloseness of the peo help to the unfortanata who, doring sereral jear persons through a pereanh Who, daring several yeara, had eoquired groat repuceion in curing hydrophobia, the peacant mdministering to foarteon of the persons connded to him in a poenilar
way, while the afteenth, a young girl of 15, was treeted way, while the afteenth, a young girl of 15, wae treeted
by M. Merooheti in the ordinary manner, for the purby M. Maroohatit in the ordinnry manner, for the per pose of proving the eiriect of both maine of theily one pound and a half of the docootion of the bude of rel. pound and a hali of the deooction of twioe a day under the tongas the place where, wooording to his ctatement ittio swaunge wore formed containing the viras of madnoss. Theso Bwellinge rore on the khird or nual day, and wore seon by M. Marochotti.
they appoared they were tonched with a red hot neenle. they appoared they were toached with a red hot neede.
after which the patient garglod the part with the de attor whioh the patient gargiod the part with the coction of broom. The resull of tais hreakuart an whilst the young girl, treated difierontly, diod on the soventh dey in the oonrulsione of mednoce. The sam physician fem yoari later at Padotis, had a net opportanity of conarming this intoreating dicoonary. caring twe
The other cure for this dicence is given by Doo Victores Agrilar, who has coen the medicine admberis fered in the leat paroryams of the disence, in whiot it was never known to fail. It is as follown : Boak reanet in a litto more fhan halif a tumbior of cinar 10 c abont ive minates. When this has beon done, edd od pulvarised sovadilla-(Hordeum causticum), eppecien of veratram-an maoh as may be taken up by the anamb
and three inger ; mix it thoronghly, and give it to the and three ingor ; mix it thoroughly, and in an intarve between the paroxysms. The petiont is then to bo put into the san if posible, or placed pear the tro, nnd well warmed. If the Arst doee tranquillies him after a short interval, no more is to be given ; but if $h 0$ continuo farious, another dose mast be administered, Whioh will infallibly quiet him. A profound aleop, o rather a total loss of all power over the bodily aod mental facallies, with a desth-like atopor, withoat any ymptom of animation, will oucoesd, Thioh will hem tweaty-four or forty-ight hourg, acoording to the strongth of the pationt's constitution, at the axpiration of which time the effocts of the mixtare will arouce the pationt, and its riolent operstion, as ometic aod ee thartic, will last ten or atteen minatoe (the atteet
lasting till the poison be entiroly ojeotod), the faid dischargod from the stomach boing bleok as chareoal and offensive to the smoll. He will then be reetored oo his sences, ask for food, and bo porfectly oured leeling nothing bat the debility produced by the con-
bined effecta of the diseace and the medioine. bined effecte of the disesce and the medicina. KAPPL.

DISPERSION OF SEEDS BY THE WANDS.
[4676.]-IN Nature of June 27, there appeare st article on "The Disporsion of Seods by the Wind, over the signatare "A. W. B." In Which the writer doabte the wind performing this important duts. In 1852, I made a balloon royage from Zancerille, Ohia and when I reached the heighte above the frat layer of clonds I found myriads of the thistle seed, with its tiny paraohato, sailing along in the appor carreal and these little air-floating regetables had the reod woating i. I havo irequently notiood zebale read be ore the Franklin Institate on "Balloon Meteorolog" coveral years ago, these facts were also mentioned. 1 mention this mattor of fact for the benelt of sciencen

This improved harp consists of a strong rectangular box of oak with the sidee open; the timber is about an inch thiok, the soanding-board is placed about three-
quarters of an inoh above the bottom board of this box quarters of an inch above the bottom board of this box, and at a few inches on oilher side (Whioh position
ahoald be preotically determined) are placod the ahoald be praotically determined) are placod the
bridgea (half an inch high), on which the strings, eight bridgea (hall an inoh high), on which the strings, eight
in namber, rest. The taning-pins are surned by inin namber, rest. The taning-pine are surned by incorting a anitable koy through holes in the apper board
or top of the box. On either side of the box, extend. or top of the box. On either side of the box, extend
ing as far as the bridge, pieces of wood are placed ing as far as the bridge. pieces of wood are placed,
which give strength to the inatrament, and canse the which give strength to the inatrament, and canse the
breeze to flow only over the stringe. The tone aud breaze to flow only over the atringg. The tone and
power of this contrivance might be farther increased power of this contrivance might be farther increased probably it would be a material beneft to cut it awas in the centre.
Rerferences.- AaAA, a rectangular box open at the sides; B, soundboard of thin pine; C, strings; DD
tuning-ping.
believing that it is usefal in the establishment of a great physiological question not yet thoroughly understood. The migration of oertain portions of the regotable kingdom is not more curious than the migns. tion of certain portions of the animal hingion. Motion is the prime law of nature, and when the seedbearing float takes to the wind it does 80 from the foree of circumstances, just as we do ourselves when we are moved to emigrato, and in this our migration wo are aftor all as subservient to the univeraal law of motion as is the seed and the pollen, although we may staidify ourselves in the raia concoit that wo may do, or may
not do, the thinge that are done.
Joas Wrss.

Eall of the Franklin Ingtitate, Philed elphia.

IS THE MOON BPHERICAL?
[4677.] - I 8HALL be glad to see M. Rebache's proc

THE OBGAN BUILT.-VIII.

[4678.]-Having got the framework of the organ put together, it will be better to make the pedal sonndbosards. Get a set of cardboards the size of the Bourdon pipes, and divide them into two lots, taking EEE, FFFE. \& for one lot, and the alternate cards-viz. CCC DDDE, FFF, \&o., to form the other lot, there will thas be thirteen in one lot and twelve in the other. Now lay the thirteen side by side, leaving a quarter of an inch between each, and get out a piece of inch pine 8in. wide, and the length of the row of cards; mark on the board the centre of each card, taking care that the largest card is on the end of the board that goes to the back of the organ. Now bore the boles for the wind ; the hole for the CCC should be 2 in . by lin., and for the C ziv. in diameter. The channel for the largeat pipe must be 1din. wide and $\bar{\delta} i n$. for the smallest; the depth of the channels to be 2 in . Make the channels with bars, as previously depcribed, only that each channel being exactly under its pipe, there will be a space like a wide channel between each real channel. Let the windchest be $4 \frac{1}{2} \mathrm{in}$. deep and 6 in . from the treble end ; in each wind-chest cot a hole in the back $9 \frac{1}{2} \mathrm{in}$. square for the wind-trank to enter. No slides or stockboards are necessary for these, as the draw-stop acts upon a valve in the wind trank instead of the ordinary plan of slides; the pallets in there wind-cherts are to be the fall length of the channels. Over each hole in the soundboard a block of $1 \frac{1}{2} \mathrm{in}$. pine is to be firmly glued, having a round hole bored in it, to receive the foot of the pipe; the hole for the largest shonld be 3in. in diameter, and for the smallest lin. (See Fig 1.)
Before describing how to make the movement for the organ, it will be as well to explain a simple plan for preventing the noise often caused by wires working in holes in wood. Every hole in a piece of wood in which a wire works shonld be lined with cloth, and althongh apparently a very difficult job, it is in reality very easy. Bore a smooth hole in the wood tin. in diameter, get a strip of cloth sin. broad, and ont it into lengths of 1 din, ; cat one end to a point, rab a
little plue into the hole, and draw the cloth through the little glne into the hole, and draw the cloth through the
bole antil the pointed part of the cloth is palled throagh.

Cat the cloth off close to the wood on each side, and push a small bradawl through the centre of the cloth to ferce it nicely ronnd the hole; the holes which require bashing, as this lining is termed, are those in which the roller ends work, and the centre holes of backfalls and squares. Now get out the rails in We 4 ft . long-viz., for great and swell organs-and one 9 ft . 8 in . long-for the coupler great to pedal, one width of each to be 3 din. ; the rails are made of a thickness of mahogany and one of pine glned together, the mahogany lin. and the pine $1 \frac{1}{2} \mathrm{in}$. thick ; while these rails are drying make the "conpler" swell to great $;$ it is a rail of mahogany or onk 2 hin. by $1 \frac{1}{2} \mathrm{in}$. The exact length between the ends of the keyboards to be left the full thickness, and a tenon 2 in . long and gin thick to be left at each end. (Fir 2.) The tenons slide in a groove cut in the frame of the swell key. board ; the rail is to slide 3in. backwards and forwards in this groove. In the rail bore a quarter-inch hole exactly over the centre of each key; great care must be taken to make these holes vertical. After making all the holes line them carefally with cloth, and afterwards get out a sufficient quantity of mahogany rod, round and smooth, of a size to slip easily through the holes after they are lined. The length required will be about ten feet. Next fix small wedgeshaped pieces of wood on the great organ keys, as shown in Fig. 8; they are to be 3in. long and the width of the key. Make similar pieces for the swell keys, but 5in. long, and fix them to the underside of the keys by a screw only at the thin edge of the wedge; at the other end of the wedge pat a wire screw throngh the key, so as to adjust the wedge to the top of the coupler sticker, and then cat the mahogany rod into lengths to tit between the wedge-pieces on the keys. After getting the stickers the right length, blacklead them well to make them work easily. The dotted lines show the key frames and the groove for the coupler to Work in; the coupler is shown in position when in forward. It is advisable to cover the wedge-pieees with a piece of leather to prevent any noise; the smooth side of the leather to be outside and well coated with blacklead.

EUPLECTELLA.

[4679.]-Some time ago a query appea*ed in our paper respecting the Euplectella spinosa. No answer about this creature since the date of the query, I feel

it incambent on me to give the querist the benefit of that acquired knowledge. In the first place, the name given is not correct; it ought to have been Euplectella speciosa, "the beantifal enplectella," and not " spinosa," the thorny. The creature itself is a kind of sponge, which fixes itself by means of a lovely silky base to the sea bed. Until very lately it was thought to be thirteeny rare, and good specimens fetched from thirteen to foarteen goineas. Lately, however, its
habitats have been discovered, and by means of a peculiar kind of drag, resembling a small but longpeaded rake, considerable quantities have been raised so that the price has fallen to 30 s . for good specimens, and 12 s . for those of commoner aspect. The peculiar shape, silky white lustre, and delicate textare of this remarkable sponge will ever canse it to be a fayourite with the lovers of the beantifnl in nature. I inclose a rongh sketch, which may serve to call attention to this "wonder of the deep."

FENUGREEK.

[4680.]-Fenvareek powder as a cattla condiment. A friend told me a day or two since that he has in very many cases used this as a cattle restorative with very good effects. It has been tried recently on a donkey of mine that was going off his feed with equally good results, a small quantity only (about loz.) being daily mixed with a feed of chopped mangold and bran mash. Can any one state whether Thorley's Condinunt is partly or chiedy composed of this sabstance, and if it human subject? Animals' Friend.

FURNACE FOR HEATING WHEEL TIRES, \&C. [4681.] - A NEw farnace for heating cart-wheel hoops, engine-wheel tires, spring plates, or any kind of article to nearly white heat. Black spot A is chimney-hole on

flat floor, where articles lie to be hested, B door to cover mouth of farnace tire holes at esch side below floor ; they ran all the length on each side inside. Can be got
to any heat quickly, from cold to melting point.

Damper at top of chimney to regulate heat. Furnace door B shonld be li, inside with fire-brioks. The farnace appears to ha se corner short, bat all can be seen that is required.

Octgenious Whitesmith

FALL OF A BULLET.
[4682.]-With reference to the paragraph quoted by "Pazzled" (qnery 12377, p. 444) from Mr. Proctor's letter (4411, p. 381), I cannot see how it is "perfectly true that gravity draws down the most swiftly travelling bullet-fired horizontally-so that it reachea the ground as quickly as a ball dropped from rest from the same height," for would not a ball, if propelled swift enough, continue to revolve round and round the earth, yea, and even recede from it every revolation and part of a revolntion, until at last the earth's gravitation wonld lose all control over it? And can we not conceive of a ball being propelled horizontally with such foree as would make it revolve rond the centre of the earth, but becoming nearer and nearer each revolution, until at last-after a period, we may say, of a centary-it would reach the centre? And wonld not a ball dropped from rest from the same height have reached the centre long ago? What I hold is that this theory is not perfectly true, bat nearly, and even then only on compara tively short distances.

Francis Lewis.
ALTERATION OF DISTANT SIGNALS ON THE MIDLAND RAILWAY.
[4683.] -Tre distant siguals on this line consist of an oblong board; when turned facing a train they are " on," when turned edgeways so as not to be seen they are "off." Great difficulty arose then to distinguish at a distance whether a signal was facing the train or whether it was simply the back of a signal belonging to the other set of rails. To remove this difficalty the right hand sides of the boards are to be lower than the other, so that at sight it will be seen to which line it applies. Some of the siguals have already been alterer well. All now distant sigaals will be made of this pattern, and it will also be applied to the old signals as soon as possible. I think the "directions" will interest your readers.

With a view to increase the efficiency of the distant signal in use on the Midland Railway, by enabling drivers, on sighting a distant signal, to distinguish by the shape of the signal, as well ha by the colour of it, whether it is applicable to the lise on which they are running, or whether it is simply the baok of the signal which is presented to them, it has been arranged that
the form of the disc shall be altered, and shaped the form of the disc shall be altered, and shaped as shown below :-
as
It will be observed that the diso consists of a high side and a low one, and the signal will be so arranged that, when turned on against an approaching train, tue high side will always show on the left-hand side of the post as drivers approach it, and the low side on the right-hand side of the post. Drivers will easily recollect that, as all semaphore signals are shown on the lefthand side of the post, so the elevated side of a distant signal shown on the left-hand side of the post indicates that the signal applies to the line on which they are ranning, whilst tbelow part of the signal appearing on the left-hand side of the post indicates that the back of the signal is towards them, and that it applies to the other line, and not to the one on which they are ranning.

When the signal is at " all right," the board is tarned edgeways so as not to be seen, and the lamp shows a
white light.
C. E. S.

SEPARATE RAILWAYS FOR GOODS TRAFFIC:

[4684.]-Some twelve or eighteen months since a letter was published in one of the weekly professional journals pointing out the advantazes of, and the necessity for, the making of entirely distinct lines of railway to be used for goods traffic solely. I do not know whether any action is being taken apon his suggestions, but I think it is an idea which ought not to be lost sight of, especially as some of the companios are now doabling their existing main lines in order to accommodate the increasing goods traffio thrown upon them. If this example be followed by the other compauies, as it certainly will be to a considerable extent anless better means are provided, the resalt will be that when Government takes possession of the railways (which I think only a question of a few years' time), it will fand a badly-arranged system-one made not for the general interest, bat for that of each par-
ticular company-daplicate and even triplicate linas langor from accidents as at prosent, as the additional goods lines would here to cross on the level the namerous bravehes running into the main lines.
The existing canals might bo atilised so as to form portions of main gonds lines, and the position of the many large works erected on their banks being a fertile souree of traffic ready to hand, would be a great arga-
ment for oonverting them; but nnfortunately their cont for oonverting them; but nnforionately their cources are often so devious and winding that the disever, that betore many vears bave presed atway they
will, nnder Government control, be shortened by catting afl the windings. Bat this eannot be expected at present, and in the mean time the doobling process will go on. The writer atove alladed to recommended a one main line the midland conntien, the potteries' distriot, and the whole of the north of England. Commencing at London by connections with the goods termini of the northern lines, it would run to abont the neighbourhood of Leicester, where it would divide nto near Sheffield and Barnsley, to the West Riding towns, whence it would be continued through the Darham coal-field to Nemeastle: the other throngh the potteries
to Liverpool and Minchester, with oonnections to all the Lancashire towns. To this might be added a the Lancashire towns. To this might be added a to Birmingham and South Staffordshire. Short junction lines shonld be made to each existing line, crossed in order to throw es mach traffic as possible on the goods rackay. There are several existing lines, which, being as portions of these liuen, among which are the Chesway, the Biddalph and Beudbach branches of the North Way, the Biddalph and saud bach branches
Staflordshire Rillway, and perhaps others.
I am aware of one great objection which will be urged against such a scheme as this. None of the existing oompanien would of themselves offer to make the line, becanse of the opposition they woald be sare to receive at the hands of the companies whose territory they proposed to invade. But I think the diffenlty woald soon disappear were they all to anite together for the parpose, each contribating capital in the proportions to which they are interested in the traffic, or as nearly so as can be compnted; pay interest on this capital at 5 per cent. (or a lower rate as might be
arranged), asd divide the surplas profits among the companies in the proportion to the amount of traffic conveyed, and which would in the ordinary conrse have been taken by each of them. Thas each company would receive the prifit of its own traffic, and the only extra expense wonld be the interest on the capital
employed in the constraction of the line; against employed in the constraction of the line; against
which should be set of the increased eafety of the pavamerer lines and the conseqnent diminution of the phel charge for compeusstion, in addition to the far groatior goope given for developing the pas-
senger trafllo on limes almost allogether freo from senger trafilo ea limes almost altogether free from goods.
There is another point. On lines employed exclasively for goods traffic there would grow up in time a natural desire on the part of the residents in the disticts through which it passed to avail themselves of it
for pessenger traffic. Tinis wonld, of course be for passenger tramc. This wonld, of course, be a
departare from the principle of separate goods lines ; departare from the principle of separate Roods ines; but in case of a sutncient amount of traflic from that
source being likely, third line might be laid down running by the side of the others until the nearest junction with a passenger line was reached, where the janction with a passenger line was resched, where the who might indeed work such traffic themselves at a percentage of the gross receipts.

I am convinced that it this or a similar schome were oarried out it would reduce the chances of accident to a minimnm, simplify the management, and eventually prove a great saring, not only to the companies but to
the mation on whom the cost of all undeoessery works the mation on whom
will nltimatoly fall.
Manchonter.
W. H.

WARMING RAILWAY OARRIAGES.

[4685.]-HAVTry some time back in "Ory" Mzchanio seen several letters on the warming of railWhy earriages, and having lately travellod in differeng systoms of warming. Three have been deseribed by sereral of my brother readers; but the best, in my oplesem, is on the Berlin-Potsdam Railway. Tbe car-
riages need little or no alteration. Yon take two pieces riages need little or no alteration. You take $t w o$ pieces
of chemically prepared ehareoal the size of a brick, put tham in a wire box similar to a rat-trap, set fire to it, and you have the carriage Farm for oighteen to twenty hours without further attendance. I wes lucky enongh to obtain several pieces of Herr Ober, engineer's turner, in Potsdam. One piece I haid on the window-cill in a trong breeze : it geve no spark whatevec. Another piece I lighted and put in a dish in the middle of a very small room, door and window ahat, so 20 to oxelude all ventilation for five hours. 1 was in the room What a boon time, and I am still alive and kicking. What a boon for an inflrm lady or gentleman, aud many others who are obliged to travel in the rough, cold winter time to sit in a warm carriage. The coal is very cheap, about the London price of the best
Welsh ooals, whioh mnet indace the Railway Companies to adopt the syatem.
H. Merz,

Factor to the Weatfilische Marmor-Werke, in Allagen by Soest.
[4686.]-TF "Hyrab Sen" will make his calcnlntions is to the tomperature of Jnpiter's astellites in Centi grade instead of Fahrenheit degrees he will flad that he Will arrive at a temperatare for them sbont seventeen
times as great (according to his method of compntatimes as great (according to his method of compnta-
tion) as the one he gives. This alone ought to show tion) as the one he gives. This alone onght to show
him that thers is some fatal fallacy in his reasoning and that he has been connting hia degrees Fahrenhei like a seboolboy counts marbles, as Mr. Proctor it by his last latter.
т. H .
[1687.]-In "Mrab Sen'm letter (4573) there are several grave mistakes. He sopposes, in the frat place, They are nothing of the tind, for let him to it ont They are nothing of the kind, for let him work it out,
using the Centigrade scale, for finstance, and see what he will arrive at. $1200^{\circ} \mathrm{Fahr}$ are equal to $618 \frac{8}{9}^{\circ}$ Centigrade; this, divided by 600 , equals, according to "Hyrab Sea's" method, $1 \frac{11}{135}$. which, if "Hyrab Son's" method is correct, ought to eqnal 2^{2} Fahr. Bat this is not the case, as it equals 1.96° Fahr., the reason why there is so small a discrepancy being that the girns of the two scales are not far removed. Again, "Hyrab Sen's" method of Anding how much the temperatare of Japiter's satellites would be intluenced is incorrect-that depende sololy apon the apparent diameter of the plauet as seen from its satellites, and lite, Japiter has an apparent diametor of $21^{\circ}-44^{\prime}$ while at the surface of the planet itself of conrse its apparent diametor is 180°. Leaving out the question of Japiter's ellipticity, the amount of heat receired from the planet at the furthest satellite bears the same proportiou to the heat at the surlace of the planet as che squares of the above quantities do to esoh other-
iz. as $0146: 1.000$; that is, the plenet's tempersture if obtained solely from Japiter, wonld be equal to 0146 of that of the planet. Finally, "Hyrab Sen" asserta his belief in the theory that distance per se diminishes the brilliance of an object, and in sapport of his supposition he asks why the earth-lit surface of the moon should not look equally brilliant with the moon-lit surface of the oarth. Just for the same reason that a lighted candle will sppear black when held before the sun's disc, the intenser brilliancy of the sun-lit portion remsining portion. Besides, if feeble light from the correct-riz. that distance diminishes brilliance-he will see that that would give a considerable advantage to Mr. Proctor's theory, as in order to shine as brightly as he does, Jnpiter mast be immensely more brillisut than he appears to ns, and mast therefore shine with considerably more than three or four times the brilliance that he would if merely reflecting the smn's light.
G. F. H.

DOUBLE STARE.

[4698.] -The following double stars, fonnd since the 20th Julr, 1873, are not in "Celestial Objects," ac., Ophicticus. - $12^{\circ} \mathrm{N}$. of β, Magnitudes 6, 8. P. 20°, D. $35^{\prime \prime}$. and 85^{\prime} preceding. Oprivceres.-A wide donble, abont 80 N . of β, and 20' preceding. Magnitade of primary aboat 8. Prevented taking position of companion.
Ophivcuus.-A wide doable, about $15^{\circ} \mathrm{N}$. of β, and 25^{\prime} preceding. P. 860°, D. $25^{\prime \prime}$

Ophiuchus.-A rather close double, 8' N. of 73, same right ascension. Magnitade 8, 9. P. 140°
D. $1 \cdot 2^{\prime \prime}$, As this doable is in the same field as 73 , 1 dare say it has been noticed before.
In my letter 4589, Ophiachos 890^{\prime} N. of E, read N. of ((epsilon).

Jamet. Hainant.
C. Gatdibert.

THE $\triangle U G U S T$ METEORS, 1872.

[4609.] - I AM desirous of directing the attention of your scientific readers to the meteoric display which may be expected to occur on the eveninge of the 9th, Who bave the leisure and inclination to maintain a careful watch of the sky on the eveninge I have mentioned, so that the details of the appearances, numbers, de., of the meteors mar be placed on reoond. By a reference to letter 2528 (Vol. XIII., p. 619), it will be seen that daring the interval from August 9 to 11 last year I obserred no leks than 260 shookigg-stare, andion.
 meteors appeared at the rate of 88 per home, while on the following eveuing the namber 10 per hour. In 1871 there was a particularly grand display of the Augnst meteors. Mir. W. Davenport, of Lee Vol. XIIL, p. 644) in oompany rith thee friends, observed 42 meteors on Augast 10, between 11 h .80 m . and 11 h .45 m . Other observers have also pablished the results they ebtained, and it would appear that meteors were very numorous in Angast of that yeaz partionlarly observers 10th and Ilth. On the former date troes 9 h .45 m . to 12 h . 0 m ., and on the following epening they saw no less than 47 in the two hours preceding places, Professor A. S. Herschel was enabled to compute the heights of 20 shooting-stars. See Qtuarterly
1871. He fonnd that, at the first eppearance, the average height, in British ctatnte milet, wim 86° 1. Whats at disappearance the average elevation wes 5.5 ; thear velocity per aecond wai 51.6 , and the length of their moteors, which had been previonaly seen, were follow:-Of 16 meteors doably observed in 138s 741 British atatate miles at trat apperaman 54 disappearance ; of 10 meteors 20 maen in 1863 57.7. The above figures mre given in the lant "Report", Hgares we given Meteors, whieh also oentains partioulart of all the
lange meteors that came under observation daring the preeding year, and refers is detail to the progreen made throughout the year in moteoric estronveny. of the members of the oommittee the resalts they then obtain during the fortheoming display of
The observations can then be compared and and in oeses where the same shooting-titar has puth, and other partiocalars may
dervers muct, of conrse, be as
careful to note their dimentions times
radiant point. daration,
invariably done, our stocl of ably eagmented.
would soon be consider
Hollywood Lodge, Cotham Park, Bristol.

gPINNING TOPS AND GYROSCOFRS.

 "Taking oat of accoant friction and the resintanoe of the air," the rallocity of the top or Rrooccope roald gamin uniminiohed, the axis gould maincing bot of in inolination to the vertiol, and the apeeds, bow I thion " of gyration, wonld remain 486) ebout the ball neceasacily complieates the question. It ranid be tedions, although quite easy, to take the feature refarred to into consideration; bat the simpler plan is to restrict the conditions of the case first proposed by "A.," by assuming that the ball starte in a direction parallel to a horizontal plane, that gracity acte at rushs angles to
A. 's' letfer (459 , P. 486) shows cariote contradictions. He appears to see that it is the lover activs which mates the contrifagal fores ast pertly in raining the governor-balls, when he refers to J. M. Taylor's theory. When speaking, however, of the weight and cord, he lays, "The cord has nothing to do with thing to do "ith The fact is that the cord hat evarycisely like the lever or link of the governor.
Glasgow, July 27.
E. H.
[4691.]-ANY one who reads "Sigma'e" ledter (5303) will see that he fally confirms my position tmetead of confuting it. That opinion is, that if a body be dis charged or propelled with sufficient velocity -and mind charged or propelied with sameient velocity and mind
you that this propelling power be kept ap continaonsly -that said body would maintain a straight coares in spite of gravitation. I soppose that no one will derg spite of gravitation. I suppose that no one will dary
that if a osnnon were pointed npwards and a ball fired from it with a continnous propelling apparatus atteched from it with a continnoas propeling apparatas atiached gravity any more; and if this be trae vertically. Why not equally so horizontally? I never dispated the inot that a cannon-ball yields to the force of grarity as ita velocity decreseas, but do maintair that it oannot fall in the same time as the ball left to fall frealy, add invite "Sigma" to controvert the folloring proposiinvite "Sigma" to controvert the folloring proposswiftly; it will follow in what is commonly termed a swifly; it will follow in what is coramonly
horizontal line as long as the speed is maintained. Is is evident that the same would take pleos if it rese a cannon-ball if safficient speed was attained. Now, it cannon-be baid that the cord holds it fup, as it onfy drags it along. I maintain that propelling it wond drags it along. I maintain that propeling it and
have precisely the game effect as the cord has; and have precisely the game elfect as to ast oh where and oh where are poor gravity and the parallelogram of farces ia thia ann?
4., Iiverpool.

MONOLITHIC BUILDLNG.
[4893.]-IN reply to "Epsilos" (lat. 4570), I trast le will forgive me when I eriticise his oriticiam. Vere I or sny of her man adopting our fritad "The Emo
 of jointo property so-oalled, wo should at onoe pleal guilty to having emplojed a word the aidnitacace of "Epsilo did not onderstand or knowingly asicapplien, ing sarfaces, but wanders emay into e coasilaration of ill omenting process in ordinary briotwork Nom. 1 bet or admit that any comparion oan bo the is molid mees of matter, overy partiole of Thioh is poasessed of greator topacity and remictance thean briat itself, to say nothing of fin. joints of mortar, ta many cases not bettor than so muotr mad. Daly fanog a brick wall pat up in suoh weather as wo ace not his mortar to get the brion in ponition. To talt of tonacity in such work is to insnlsthe asiterstianding a
any refecting mind. My comparison was drawn botween stone and concrete, and in any discassion on
the relative merits of building material I should the relative merits of bailding material I should
decline to enter were brickwork, the only and sole decline to enter wero brickworz, the oniy and sole take a placo. I certainly commitled a slight lapsus when in my former letter I compared the joints of stonework and concrete as in the latter. The addition of a layer
of material cannot be eaid to constitute a joint any of material cannot be asid to constitute a joint any
more than the addition of a load of hay to a rick aan be said to do so. Did "Epailon" evar see a large work exacutcd in plaster ? and if 80 would he gay that thero
were joints in it? I venture to say that if the work whs were joints in it ? I venture to say that if the work wha
well orecnted, not only would it be impossible to find well orecnted, not only woald it be impossible to find where the additions of material had been made; and so it shonld be with concrete-the frames shovid be
raied and the work progress in such a manner that raised aud the work progress in snch a manner that having been observed in propertioning and mixing the having been observed in propertioning and mixing init. We are as yet in the infancy of this matter. True, the ancients knew and practised the system, bat the light brought to bear by ecience in the preparation of cements has rendered its application at once simple and ellective, so that thone who will take the trouble dnuce to the day when it will be gererally adopted. That failnres hare happened, and will occur again, is only in the nataral coarse of events, bat so surely as
truth ever oreronmes prejudice, so surely will concrete trath ever oreromes prejadioe, so surely will concrete buildiag, Whetber traly monolituic or not, siparsede
brickwork. In the aame number of "ours" as the brickwork. In the name number of "ours" as the
letter of "Epsilon" I nind a selected article from the letter of "Epsilon" I nnd a selected srticle from the
Alerdecn Journal on concrete, bat from the description Aberdecn Journal on concrete, but from the description It is a system of cement paddle or grout constraction, true concrete, theugh doubtless for ootteges as described true concrete, thengh doab
it answere every parpose.

ISEXPENSIVE AND SIMPLE STEAM ROAD.

 CBUSHER.[4608.]-A oruEL means of ooercive restraint the bearing rein is, donbtleas, most troly stated to be, and
"Old Plonghuann" (lek. 444, p. 884), doesrres mnoh credit for drawing attention to the evil. But there is yet another form of barbarity to which ell our horses yet another form of barbarity to which an our horses
alike are subjeoted even againet the will of thoir manadam of a nowiy-repaired road to be gradually
worked own in the conrse of pablio trantic by the horses feet. This practice, although it has beon mach dennanced and condemned, is yet everywhere pre-
valent, and the costly and cambersome steam road valent, and the costly and cambersome steam road
crusher is. owing to its limited loas application, not crasher is. owing to its limited local application, not more handy mppliance is very trach needod. Now, more handy appliance is very maoh needod. Now,
while reoenthy lonking over an illuetrated desoription What atenm plough, in magazine, the thought
ocnurred to mo that euch a contrivance might bo ocrarred to mo that auch contrivance might be
atilised on a common romd by merely substitnting a heary otone or iron roller for the plough, all the other apparatus boing retained without alteration. Mnvable barriers might be set np at (say) 200ft. or $800 / t$.
apart, half across the section of road. ander the apart, half across the section of road ander the operation, tbe other half, as is usaal, being retained
for trafte. The roller might then be ran by a stafor trafic. The roller might then be ran by a sta-
tionary engine to and fro over the metal till orashed in. tionary engine to and fro over the metal till orashed in.
A small roller might trandle immediately behind the A small roller might trandle immediately bebind the
large one to act as a pawl to obeck recoil in casa the large one to act as a pawl to oheck recoil in casa the
r.pe shonld give wry, whioh wonld he more particalarly r.ppe shonid give wra, whioh wonld he more particalarly
needfal in asceuding inclines. This aimple apparating needfal in asceuding inclines. This simple apparating might be promptly set ap, and as easity remored in
almost any locality (except on very steop inclines) at almost any locality (except on very steop inclines) at a small cost when compared to the ponderous machine Which is occasienally and exceptionally brought ont to
do similar duty. I send the above euggestion for what do similar duty. i send the above euggestion for what be found practioally arailable to leasen needless anima suffering.
animals' Friend.

"VERITAS" AND THE PENDULUM.

[4694.]-I OAxnOT anderstand what "Veritas" is
attempting or doing in lettor 4606, page 489. Why dow he multiply the seconds in a month by the seconds din a day? And why divide this by the number 830, and then the square root of the quotient by π, and by the n° to log. $0 \cdot 00072838$? What is the latter quantity, and what is he going to find?
The petar diameter is not $7900 \cdot 18$ miles. Neither is the maan diametor a geometrical mean between the equatorial asd polar. It is twioe as near to the for-
mer as to the latter, beoanase the larger diametor applies to two dimensions, and the smaller to only one. Coming to his secord letter (4645 , page 514), he is wrong in placing the earth's mean diameter at latitude 40°. It is at $35^{\circ} 16^{\prime}$, and is the mean of three oxtreme ones, the polar and two eqnatorial diameters, instead of one of each. The manan diameter is that Which the earti of each. The mand have if monided into a sphere withoat change of balk. It is not the mean between only two, the largest and amalleit. He is right in placing
45°, but wrong in calling it "the mean diamoter."

The strangest thing, however, is whenoe he has got his false data of the feet fallen in a becond. These arn half the relocity acquired in a second, and the latter is $0^{0} \times$ the length of second's pendulam at the same place. Nothing has been more accurately mea-
sared than the pendulam at varions latitades. It is (according to Airy's Work, referred to in his flist letter, paze 489) 3901677 inchen $+{ }^{-20377}$ sin. lat. This is
for the ses-level, and shows that the longent pendulam poasible, namely at the polar nea-level, would be
$80 \cdot 21704$ inches; and the shartest pnosible at any sea level-namely, at the eqaator-is 3901677 inchep. gives 895.08 inches, or 39.09 fent. So that there is no latitnde where the fall of hndies in a second, at the sea level, is so small as 16 feot. "Veritas" contratade within fonr milos of 45^{\prime}, and afterwards tha "somerhere" it is 10 feet, "and that point is 45 latitade." The real fall at 45° is 16.096 , and at the equator 160045 . Tu get to a place where it is as little as 10 foot, we must either descrud helow any mine or acond above any monntain yot climbed-namely, more than hive miles, even at the equator. I lately remarked, on the metrical qnestion, hast it we were ever to adop and foot by one-thnusandth, so that a oubio foot of "ater might be 1,000 onncos instond of 997 , and his " module" of 50 now incles (or 50.05 present anes) be a decimal fraction of the polar axis; then the now foot Wonld represent the quarter-second fall of bodies somevorere, at some accessible height on the Qaito Andes;
but it wonld atill be a little ahort of the fall at any placo inhabitod.
E. L. G.
P. S.-"Veritas" cannot dedace the mean fall here on earth from the moon's fall per seoond, as if the latior were known by some independent measure I Of measured by her parallax and our measuros of degreas on the earth, and the former can hardly be known to four fignres; ovon tho latter are nncerthin berand the fifth figure, while pendulam lengthe aro pretty certain to the seventh. The neareat miles to the earth equatorial diameter are 7,926, bat to the polar 7,899 and to the mean 7,917, instead of those he has found.

PROPOSAL FOR UNIVERSAL STANDARD MICRO METER EYEPIECE FOR MICROSCOPES, 40 .
[4695.]-SoME of your readers may be interested in learning thant I havo calcalated and completed a com.
pound miorometer evepieco which I think might be poand miorometer eyepieco which I think might be
nsed as a standard onc. I have had it in aise for some months. - It is not mure theory. I give a fer reasons or considering it a mtandard :-

1. It magnifes jnat ton times of itself, which is an easy multiplier, and is not like any I can hear of.
2. It shows the majniffing power of any objective simple or componnd) at sight, by measuring the size of the image formed by the ohjective of astage micrometer raled to 100 the and 1000 ths of an inch.
3. It shows the magnitging power of the oombined objectives and eyepieces by maltiplying the magnity. ing power of the objective by 10 , its own power. If tho objective be $10 \times$, and the eyepiece (or ocalar) bs
$10 \times:$ then 10×10 gives $100=$ the magnilying power of the whole combination.
4. It will show the real size of the original object.
5. It will enable as to calculate easily the magnify. b.
ing po
tive.
ing
6. In the telegoope it will show the real size of the
mage formed in the focas of the teleseopic object lens or reflector.
7. It will measure the breadth of the pencil of light
mergent throngh the ejepiece of a teloseope, and how its magnitsing power.
8. In the epectroscope : It shows at onee the distance of the Frainubofer lines in the spectrum formed in my Browning's) epectroscope
9. It will show the relative dispersive power of the prisms by the distance betweon the Frainahofer lines. 10. It will gire a rough meayure of augalar magni.
10. It makes the foons of any object for parallel rays asily calculublu.
11. It veritios its own utterances as to magnifying, for any ono can soe it magnify by 10.

Gro. Findley.
RADIUS OF SURFACEJOF OBJECT.GLASS.
[4696.$]$-In reply to Mr. Oldaeld and Mr. Vivian, I would tase any amount of trouble to get my object glasistence proferred in his letter ($4483, \mathrm{p} .412$). The actasl olear aperture of the object-glass as monnted in a plain screw-down brass cell, is $48 / 10^{i u}$., the real noagh by his proportinn for the above dismeter, is would save some of my present work. There is one thing I am yot in donbt of. Is it possible that my lint lens is too thick in proportion to the arown? will state the measurements in decimals of un inch, and perhaps matters may bo improved in this reapect. Crown in centre 35 , on edge -18 , lint in centre -26, on edge 35 . With, regard to the quality of the glass, cannot see any reins or atriv, only a very amall seed or air bubble, one in each lens, and in both oases close to the edge. In exsmining photugraphio lenses I have often seen these veins by holding the lens between the oye and a bright oloud oe a lamp. As a certain dismy lons, with even the crown tation separately, did not reveal any.

I muat now pload gailty to having given some Wrong apecific gravities of the glass. The frazments do not vary to the extent I gave in my letter (43 º $^{\prime}$) on aboat a bad workman quarreling with his fools as an excase, bat I fornd that one of the knife edges of the to Mr. Olddeld's directionge going to work, acoording grarity, I got the weights most carefally adjastad, and
also the balance put in firat-rate order. The water used was distilled, the temperatare kept to 60° Fahr ments incladed dozen resnits on the lensss and frag for the flint. A still mare carrefal test of the object glass iteolf last woek gave, to my great matiafaction exactly the same rosult even to the fourth figare, which I have no doubt is the real thing. I shall be very glad if Mr. Oldield will set me to work with some new curves. Dues the above agree with my refractive index given some time since-viz., 638 lor the fint, and 529 for the crown, both of which I took som
tronble over?

COMPARING ELECTROMOTIVE FORCES.

[4697.]-Referbing to letter 4610, p. 490, I beg to assure " Pi" that the three equations contained in my letter (4475, p. 411), are quite correct. The term ois
shonld, however, be precedod by the sign + in the shonld, however, be precedod by the sign + in the second, and by - iu the third equation, or vice generally and not merelg mind, these equations hold galvanometer is nit. I derived them from the follow ing consideration, that "the sum of all the prodaote of the separate intensities and resintances in any closed cirenit equals the sum of all the eleotromotive orces in the same cirouit.". This is a natural consequence of Ohm's law, by which the product of the intensity and resistance in any part of a cirouit equale the fall of tension in that part.
The trath of these equations may be shown to another way. By considering El alone to sot, find the ourrent it woald carise in the galvanometer. Do the same with Es, and the difference of these expres sions must represent the actasi ourrent. If is:
$\mathrm{E}_{1}(r+y)-\mathrm{E}_{9}(\mathrm{R}+x)$
Now, by eliminating i_{1} and i_{2} from my meond and
third equations, with tho ausiatance of the fint, the
above expresaion is also arrived at, thue showing the above expresaion is also arrived at, thus showing the
securacy of the equationa.

boat building.

[4698.]-WoULD some practical boat-bailaing correpondent kindly give me information on the following pointo-rit.: Wharein consiats the superiority of bey more dithonlt to baild ? Are they lighter, with he same degree of trengh ? Are timbers required ? Is the planking at and about the midships continned rom ganwale to ganwale round the keel, or fixed to the keel as in ordinary clincher bailding ?
I have frequently built small araft clincher fashion, and am thinking of bailding a maall lifobont to const in, 14ft. long \times 4ft. beam, with air-chambers, ton, and docked over, canoe fashion, and think it beat to build it diagonally, time beiug no great objeot. I would there ore be glad of the above information, or any other idene in conneotion with the matter. Ishould mention I am intending to build it of two fin. skins of white sprace or yellow pine, and would also wish to know if
the timber would be suitable, and of enfficient strength.

Canosiat.

USEFUL AND SOIENTIFIO NOTBS.

Whitworth scholarships.-The following were he ancoesaful candidates in the compatition for the partment of the Comenittee of Cuancil on Education, partmeut of the Committee of Cuancil on Education,
Sonth Konsington:-Rubart H. Suith, aged 20, Donth Konsington : -Robart H. Swith, agod 20,
mechanical engineer, Edinburgh; Albert E. Seaton, 23, dranghtsman, Hall ; George W. Butclifio, 23, joiner, Buoup ; Juhn C. Jrfferson, 21, meohania, Leods ; Henry Baoup; Juhn C. Jefforson, 21, mechanio, Leeds; Henry
G. Willis, 2t, stadent, Trimloy, near Ipswich; FredeG. Willis, $2 \pm$, stadent, Mrimley, near Ipswich; Fredo-
rick H. Millington, 21 , millwright, Worsley, near Manchester; Edwin G. Field, 20, engineer's apprentice Wolverton; Robert Coey, 20, stadent, Belfast; John
C. Fell, 20 , mechanical engineer, London; William Firkin, 81, mnalytical chemint, Crewe

Maine Power.-The State of Mnine is in one sense the moet powerfal State in the world, although it oontains only 80,000 square miles. It has about 1,800 lakes covering nearly $\mathbf{~}, 000$ miles, nearly all of which lie at the head of rivers ranning to the sea, and their great altitade gives to the descending wator an immense powor. Rangely Lake is 1,500ft., and Lakes Umbagog and Moosehead are each over $1,000 \mathrm{ft}$. above the level of the soa, and the whole sarface of the State is, on an average, b001t. in elevation, so that the waters of all the lakea and rivors mast fall that distance. It is estimated that the total water-powor of the 8tate is eqnal to the combined working energy of $4,000,000$ horses or 34,000.000 unen laboaring day and night all the year aronad, or, onanting only that a railable, ex-
coeds the actual working power of all the men in the ceeds the actual working power of all the men
United Statea, Eugland, France, aud Germany.

Submarine Photography.- According to the corrospondence of the Neve Yurk Herah, an ingenions plan has been adopted by Prol. Agassiz's expedition for dotermiuiag ho far the sabmarine reginns are pervions to light. A plate prepared for pholographic purposes is inclosed iu a case so conTie mpparatas is sauk to the re quired depth, and at tho expiration of the poriod alated is drawn upraud duvelopod in the ordinary ray. It is said that evidonge has this boen obtained of tide than hitherto suppoiol possible

REPLIES TO QUERIES.

**: In their answers, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.

HINTS TO CORRESPONDRNTS.

1. Write on one side of the papar only, and pat drawIngs for illustration on separate piecos of papor. ${ }^{2}$ Put
titles to queries, and when answering queries pat the numbers as well' as the titles of the queries to which the repifies refer. 8. No charge is made for inserting letters queries, or replies. 4. Commercial letters, or queries, or
 throagh the post. G. Lettora sent to correspondents, names of correapondents are not given to inquirora.
[11589.]-Dry Steam.-Will "E. L. G." kindly refer to experimental proof that 301b. steam saddenly
relieved of balf tha confining pressare will at once relieved of half the confining pressure will at once
expand to not onls dnable bat to nearly four times its expand to not only dnable bat to nearly forr times its
volame. I do not remember to have seen this stated before, but that is no reason for denying its correctness, nor does it seem to be improbable, bat I shonld
like to tee it proved. It it be so, the sudden expan-ion like to tee it proved. If it be so, the sudden expan-ion
of compressed steam will cause more of the appareut of compressed steam will canse more of the apparent
loss of heat than I supposed to be caused by its expan. lose of host than I supposed to be caused by its expnn.
sion alone. "A., Liverpool," is mistaken in aupposinR sion alone. " Δ., Liverpool," "is mistaken in aupposink
that I attributed the increased pressure of saperheated that I attributed the increased pressure of superheated
steam to the increased quantity of water in it. Its elasticity may be increased jnst as that of any gas may be, by increase of temperature alone; bat when steam is heated in contact with water, its increased tension is cansed chief.y, not exclusively, hy the increased quan. its of water in the form of vapour, and the increase of its tension is very great in proportion to its gensible increase of tomperatare. As before stated, I do not think
the increased tension of dry steam is the chief reason of the increased tension of dry steam is the chief reason of its adrantage, but that the excess ol heat allows some of it to be tranemated into power, without any steam opinion is generally accepted, but it is, I believe, correct, or nearly so.-Philo.
[12103.]-Staining Glass.-"Clinchey's" reply making of coloured glass - perfectiy distinct things, the in the manafactore), painting on panes of glass with vitrifable enamels, and the staining the same yellow or orange, for these are the only two atains yet dis. covered. The "very fine red" he first copies is the old German glass beakers. Bring " fine" bee on an opaque paint or by reffection, it wonld, in a window within than so much sealing-wax. The more effect to all the other recipes with which be favorrs the with no hint how it is applied; and doabtless a green of somes sort has sometimes been produced by this "rellow on one side and a blae on the other," but he describes no bleit Oxide of chrome has not "been glass-i.e., to tinge it in the melling-pot, which copper, however, does more richly. The chrome green is nsed only for trinkets in which also gold and uraninm are emplored to tinge glass, bnt not that of windows. besides copper (which gives both the fivest red and Aneas green) are only cobalt for blue, manganese for violet, antimony for orange, and silver for yellow. Of all
these, the only colorant known to stain plass already made is silver, either alone or alloyed with antimong The silver, to stain yellow, may be either metallic or in the form of Chloride, apd being levigated with a oream of clay or ochre (merely as an inert dilating vehicle) is spread and dried on the glase, being after wards acraped
of any parts that are to be left nustained ; and when it has been exposed to a red heat, the laver being seraped or washed off, can be nsed again. The parts covered by it are found to be as transparent as before, twentieth of an inch. With the antimonial or even fimilar atain, but of a dall orange or sherry colour, one miscalled "reartintically, is produced, and even has no effect ; nor have means of staining in any other colour been found, thongh these have been practised for at least five centraies. Panes thns stained yellow manafentured of that for ase in windows, all glass noted that when, as in the Manich atyle of class paint. ing, the same pane is to receive both enamel colorrs and either of these staina, the paintiug and stain most be on opposite sides, or they woald ron together in the barning, and spoil each other. In the golden age of
this ert, till the end of the thirteenth centary, neither these staing nor any paintiog in colour was yet znown, (the only enamel applied being shadow-colour) nor was even any glass that we shonld call white, pro-
dncible: Those Cathedrals of Chartres, Bourges, the Sainto Chapelle, or the Trinity Cbapel, Canterbary-works of art as impossible for modern man ever to replace as to build unew Parthenod, or paint a new Vatican-had no glass that we should deem good or colourless enough for the radest penny drinking vessel or toy, or any outhouse
window.-E. L. G.
[12140.]-Chemical (U. Q.).-In answer to Mr. J. S. Hoyles, it is my opinion tiaat Professor Dolbear's
method for making potassinum is not dangerous. The mettod for making potassinm is not dangerous. The
esplosive compoand, which is formed in the ordinary
process of manafacturs, is a compoand of potassiam with carbon monoxide. Now, carbon dioxide is no present in Dolbear's method of manafacture, and from ingreriente nged, I think it is impossible for an
explosive combination to be formed. It remains now to be scen whether the process is commercially aseful. Certainly the aeparation of the metal from the paraffin
oil will be no hindrance to its introdaction, it needs oil will be no hindrance to its introdaction, it need only to be poared a way or filtered, for notassinm
solable in that menstruum.-Gbozge E. DAVIs.
[12158.]-Ant Hill Earth (ס. Q.).-I know Buth-brick fine, add one-third whiting, and wet with brine of sommon salt, not too strong, he mav barn his moulds and blow them out cloan with a bellows; bat you must gaard agsinat expoting yoar moalds to the action of the atmosphere as they absorb it very rapidly, and in dryiog again are apt to explode ; therefore, when once dried and barnt keep in stove or oven antid wanted. The same material can be orushed, sifted hard and clean, making good sharp conk pe fred vorfin have fonnd as good ; in fact, to my fancy, better than wax.-JACE of ALL Trades.
[12167.]-Dry Soap (U.Q.).-I don't know mach sbont it, bat I started to repair some maohinery at a dry soap works; they canght me looking at them, so they sent me off before 1 had got all particnlars. They had a pair of rollers like those that grind olay in a
pan, by means of which they ground soda, tallow, and pan, by means of which they ground soda, tallow, and and litle tallow. The heavy rollers are to well mix it
and When they had well groand it they shovelled it out into low boxes aboat 4ft. aqnare and Gin. doep. There they let it lay till it dried a little (it won't stand drying with steam or fire, it melts the tallow). Then they pat it into a mill, something like a coffee mill, and knocked it aboat, and it ran out anderneath, dry soap. There
is a firm not quite a thonsand miles from Bradford, in is a frm not quite a thozsand miles from Bradford, in Yorkshire, where they make lard oat of soap.ands, Which they get from washing machines at factories;
the residue mates tallow for dry soap.-OUTGENIOUS Whitesarth.
[12167.]-Dry Soap (ర.Q.).-"An Old Weston query, so I will now do my best to query, so will now do my best to help him. Dry moaps may or made in many ways. This is one pracess : Boil 9 parts of soda-ash (containing from 8 to 12 per oent. of caustic) in 10 parts of water, and add 10 parts of fat of any kind; keep constantly atirred, and add 80 parts of boda-crsstals; keep or disanved in their watar of crystallisation, then run ont into shallow iron trays, and keop constantly raked about, with a very fine-toothed rake, antil cold. The dry soap wili then be in a powdery state, and ready for 80 parts of soda.crystals in their water of crgatallisa 80 parts of soda.crystals in their water of crystallisa-
tion, and add 15 parts of hard white soap until dissolved; it is then run ont as before, raked into coarse lamps, and afterwards gronnd in a mill. A third process may let my readers into a practical exposition of the zaring, "one-half, of the world doesn't know how the other hall lires." A dry soap is made by this process by a "a dry-soap maker "in one of the northern
connties. A soap is made by the firat process, only 20 parts of soda crvstals instead of 80 , and this is aftorwards groand np with not a very deanite quantity Glanber's salts. The following are analyses I mado some time since of the first and last specimens:-

	First.	Second.
Fatty acids...	10.000	8.774
Sodium chloride	$1 \cdot 228$	1.048
Soda crstals......................	$79 \cdot 440$	14938
Soda ash at 50 per cent.	$8 \cdot 510$	$2 \cdot 244$
Glycerine and sodium sulphate	-822	78.000
	100.000	$100 \cdot 000$

-Grorge E. Divis.
$100 \cdot 000$
[12170.]-Dyeing (U.Q.).-I know of no associa ion for the chemistry of the above, bat you might apply to Lockwnod and Co.; I believe they publish a Trabeb.
[12172.] - Constipation - I beg to inform "Saxum" I have nsed the enems daily, and still continue; as regards its oontinued ase, that mast depend upon circumstarces. Mine was a bad case. I may explain: At two years of age had a fall, which reanlted in a determination of blood to the head; at foar years my parente were informed that by the age of foarteen i should be a confirmed idiot; at fourteen a capita head-pieco, but very weak constitation; pat to hard
work and loag hours; at twenty-one very costive and work and loag hnars; at twenty-one very costive and montal anxiety, piles, rheamatism, sickuess after ex? meal, and considered physically broken down, and mental powers weakened; at twenty-nine gave ap my doctors, took to scientitio parsaits (as a recreation to divert the mind), with oxoellent resalts; had a greal
deal of out-door exercise, bat bodily ailments atill con tinued; at thirty-two cured myself of rhenmatiam with egg liniment (try it); at thirty-three operated on a Sermarts lor piles (a good cure, bat in my case no permanent: given ap as incarabe); took to the enema forsorty-four, and in three months my old friends Corsoix me; at thirty-aeven I have not taken a duse ot
nedicine, nor needed one, for three years. A debility of the syatem to a slight degree is left, the affect of so tevere a drilling. My experience shows me that I recuire a daily use of the enema, bat in some cases
every other day would do, where the lower gat has not
been so mach weakened. From a pint to a quart of plain tepid water can be uned in winter, or quite cold in oummer; the cold is asefal when the voseele rejai
constricting, or where actual piles are present. constricting, or Where ectual piles modicated vat
 as a soapy lather woold act as an irritant, and tha tarch an a counter-irritant. Tho beat form of inetrement is an indiarabber one, which can be bought ir not moro than 6a. 6d. at any indiarabber shop. ft Is With such a one any quantity of water can to pumped; to any one a stranger to ite ase I wonc 3 privately send instractions. Moat good doctors knoJ the value of it, bat rerf fort have experiance of a cric-
tinued use, becaune patients, as a rale, do not like an5 rouble ; it is a good thing for medical men they do n, Even if a strict course of diet was ordered to a hals dead patient, ii would bo condidored very hard to to
obliged to restrict oneself, and for a doctor to obliged to restrict oneself, and for a doctor to se atrictly conscientions means poverty to one struggiina
lor a living. An old woman doctor (19172) recomautady lor a living. An old moman doctor (19172) recomaneid asbages, tarnips, for a person in good health, and digestive orgeas
nound, but arfally flatulent for weak atomacks, and I now know numbers of costive persons who dare cal eat them, in consequence of not being able to digrst
them : the remedy in that case is worse than tit them : the remedy in that case is worse than tity
disease, and I know it to my cost. It appears to at from a long experience that the proper conrse is to eas food which easily and quickly digests ; take no medicios to farther weaken and irritate the macous membraje but empty the bowels by means of the onema, and ta ourae thas the aytom wil otreagtuen and allow you to eat green staf as mach as you like. That is
procisely what has taken place with mysolf. I eat antthing now, bot continue the enema, through the lowe gat. boing still my weak part, alchoagh I have no piite ${ }^{\mathrm{K}} \mathrm{J}$. W.
[12172.]-Constipation. - I fally indores the views of "A Physician" on the above subject, as
the conatant use of white bread aggravatiog, if so being the main canse in many casces, of confirmed cos stipation, thongh at the game time whole theat a brown bread are not always suitable means of relierica it, as many weak stomachs and bowels cannot bear the irritatiog effecte of such. Vegetablee and frait art much more saitable in such onses, with daily ablatioes Dr. E. Johnson's theory is "that nerroas excitement a arreaze of constipation-that is, the cause of to tion, therefore, does not reside in the bowels tetra relves, but in the nervous system, and can only ho exciteruent, and strengthening the great nerpuas centres." Ho regards the hydropathic ireatment as great means of care, as drage of ans kiad only raliere Yor a time, leaving the syatem wask and more casecy thibe to a fature attack. He also regarde it a most ud natural practioe when the bowels are slaggich to haro all cases the feces has not been meareted, as in almost of the pargative is simply to furce and expal that frue the bowels that natare intended shoald be reminud some time longer. He also holds that the entire of tibe food is taken ap into the blood, except indigetiole stances, which pass without andergoing ans change and that no part of it is expelled in stool or feces thil reasons, he gives the case of a pationt hopt alive of the daily injection of matton broth, and the yalto of wos his bowels being regalarly relieved every three or fosf days of a woll formed and healthy stool, poscoesing all ins properties of an ordinary ejection. Anotwar bowels are opened, though no food is taten. Sarin if the common-recoived notions were trae that the stools are the residunm of the food it wonld be a maties of great wonder, sisce ont of nothing assaredly nothing can come. There are thonsande of individuale abo ars conatitutionally relioved only once a meok, and somitimes once a fortnight (of a apare habit of bods. with good appetite), whereas others again are daily reliered. Ill the old medical theory is correot, what bete the tention of recommend the perasal of Dr. Johnson's pamphise on constipation and indigestion to thoes of your reader suffering from such silmenta. I could write mach more on the anbject bat fear I heve slready traspered too much on soar space ; bat the sabject is one of sacs importauce, no donbt, to many of your readers, mare eapecially to those who are brain-workers, and these following selentary occapations (the great aufferers from constipation), as the man labouring by the aweat of his br
T. L. V.
[12173.]-Coloured Inks.-The fanlt of manesin onoars is, that they make them too strong. I have for a long tim red ink it is very brilliant and I have never neecte that it ahuald be thickened with gom. I hare note nsed sugar either; it might certainly increase the bril liancy, but my inka have always been as brilliant as have cared to see them.-Groncir E. Davis.
[12245.]-Chemical (U.Q).-Mr. R. Terset dve not say whether he wishes for a method for maparalus. the illaminante from coal gas, on the analgtioal, or ua the lurge scale. Presaming that he wishes to do it on the large acale, he has ouly to pasa the cuad gas throagh a small colamn olled with sinta, down hich tinuous

If a oudiometrical analysis is required of the gas, the olefines must be absorbed by a ball of coke suturated with a oolution of sulphar trioxide in hydrogen sal phate, and when the abeorption is compiete, to remove
[12269.]-Staining Ieather.-A solation of calt The glose is put on by rabbing with a piece of hard wood. $-\mathbf{E}$. \mathbf{M}.
[12279.]-Electrotypling.-To W. H. H. C.-The objects I am trying to eleotrotype are wood engratinga, printing frome the engraving. When I have obtained the thin thell of coppor by the deposit, it is quite the hom tha to moan in apon bilore eiog abio to prise from, rade are upon type motal, how is this type metal made vith powdered ronin, and poared melted motal on, but monld not answer at all. I hare sean some olectro rith very thin contingg of coppor indeed, and which appeared to me an if the copper had been deposited upon the motal stereotype, instead of being doposited this is the and proces after all in this department of his is the right prooss altor all toolde pare been olectrotyping. p to now anmy moul malde take gattaporoha : I coald not make wax moulas hake (9 y .12485) is inquiring for information respeotiog electrotyping, for the same purpo
blocke for printers.-ZOO ANDRA.
12276.]-Bolling under Pressure.-"W. W." at P . What temporatare he wishe to voin bri hich the "lid" coald be any rossel atrong enoagh in
tept down would do.-E. M .
[12277.]-Aniline Black.-A. Maller givee the following formala for an aniline black which can be ased for printing :- 20 parts chlorate of potash, 40 parts sulphate of copper, 16 parts of chloride of ammo500 parts of water, and warmed to about 140° Fahr., then removed from the water bath apon which it has ben hested. If blect onough it is to be exposed to the air for dor tro is no heat azein botore to posing. After being well washed the powder or paste think this will suit "W. W."-Gzo. E. DAvis.
[12278.]-Moroury. -The symptoma of mercurial poisoning are said to be unmistakable. A ooppery taste in the moath, loose teeth, and spongy gams, and so on. The remedies are the dillate sulphuric sold of the Pharmacopeia, lime or lomon jaice, and saline aperienta. For the throat, nee a very weak gargle of chloride of lime. Don't follow this adice aniess you linou it ia mercurial polsoning from which you are anfering; althongh yon can't do any harm by using
the remodier, you may be negleoting the " beginnings" the remedief, you may be negleeting the "beginnings of nomething else.-8AvL RYMRL.
[12280.]-Winters Mraohine.-The "wire pasaing throngh the wooden ring " may be of brass-preferapark by collecting more electricity.-E. M.
[12282.]-Holes in Valvo-Board of Har. monium. -These are made long for convenience. You may. make them round if yon like, bat you won't
get them tighter then. It is not the shape of the get them tighter then. It is not
holes that is at fault.-K. T. L.
[12288.]-Radius of Object.Glases.-I send "Amatear "a set of carres for the discea named. The flint glases must be gronnd to the following radii, or on the following tools:-Convex side of dint lens mast be ground to the radion of 102 in . and the concave side to $17 \mathrm{in} .$, ditto that of the crown must be groan
$17^{7} / 10 \mathrm{in}$. by 26 in ., both convex. W . Ondrmid.
[12302.]-Stains in Oak Plank.-Try oxalio acid and water, or weak mariatic acid and wator. The f. \mathbf{E}.
[12304.]-Phrenology (and Eloctric Bparks.) -I am quite sorry for "Sigma." I had no intention of hitting him so hard as from the tone of his letter at
p. 492 it is ovident I have done. This he will of course deny, bat nothing short of oxtreme irritation can explain or excase his ill-mannered reply, of which, howover, I make no complaint, as bad langange injares those only who ase it. "Sigma," as is nataral with a man of his tompor, thinks that I, who doubt his infallibility, cannot know what I write aboat, bat the proof be gives is in this instance a queer one, for he abandons the opinion he gave at p. 18 , to sdopt
that I gave at p. 468 , which is that all bat niviversall held by all great writers on the aubjeot. At p. 492 he asserts, as if he thonght it was denied, that ohildren
from their birth have very diferent powere and dis. positions; but allowe that they know nothing they hare not learned, which is exactly what the great Writers tanght, who, he sayn, were never more mistaken.
He does not tell as what writora he did refor to gass ho doesen not know or much oare whether John Locke hald the opinion or no. If "Sipms" neither knows nor carol what opinions great writors do hold or
do not hold, would it not be as woll for him to hold hia peace on the stajeet nutil be does know? Electrio sparks soem to be a sore sabject with
"Sigma," so I will say no more aboat that ; except to rofer those who winh to see whother it was I or ho that Wis dogmatic, to the lottera, and that they may do so with little tronble, I have looked ont the pages in
whioh they appear-namely, 615 and 667 of Val. XIV., Whioh they appear-mamely, 616 and 667 of Val. XIV.,
and 48, 68, 119, and 266 of Vol. XV. I garo no oplaioa
of my own at all, bot morely gtated a fact which I had been told and believed, which "siama" very radoly denied, but which turned out to be quite correct
"Sigma " aays I am incapable of anderatanding what I oither read or write, and prooeeda to miereprewhat I ohther I did write by eajing I appoar to gramble when people laugh at me. If he will look again a p. 472 he will see that I said I would rather be laughed langhing at othering cepecially at those who cannot langriag at ont gentle correction withoat their dignity being inaulted. -PBilo.
[12308.] - Iron Vate Loalring with Ono Liquid and Not with Another.-If "R. J." wonld ecrew his vats together with shoet indiarabber between the flanges, instead of mood, I think that would stop, or roduce to a minimum, the leakage of which he oom. plains. The reason the mirtaro loaky, and not the nitre (potash nitre), is that nitrato of potash is not deliquescont, whilst muriate of potash and alao the aitrate of sode both are, and it is Almaya found when operating apon the large soale that ir thore is any deliquescent compounde.-Grorge E. Davis.
[12391.]-Chess Plager.-"Zoo Andra." p. 492, thinks Kempelen's onn negleot of this toy for so losg after it had answered its ond of amasing the Empress, Was a" presimption in favoar of the pretensions of this Withoaro to a masorpieco Without regarding it as any way remarkablo for mo chanism, I oannot bat think his condact very nataral The object was to outrie some magnetic "experiments" r paradoxes that had excited the Court's admirution. The myatery of the so-ciled antomato as to make ooncealed player working the figare so as to make
moves of the pieces, which any one maat have known maves ofsy by mechanical transmiesion ; bat in this Was easy by mechanical transmission; bat in this antagoniat has made. He is placed, I am told, under he board, whioh is thin, and has 64 little pondents of a little play ap and down. The antagonist's pieces each a little play ap and down. The antagonist s pieces each a pendent that is sticking to the board drop, and another a pendent thatis sticking to the board drop, and another
that was hanging down jump np to the board, he knows that the piece which was over the former pendent has been moved and placed over the latter. Having a little pocket book board and men in his hand, he accordingly pockistera this move of his opponent, then considers and
ren registers his own, and then proceeds to executo it publicly by the mechanism. As most players, on firat atacking the antomaton, iried
could treat a falie move, they gave him the opportanity could treat a false move, they gave him the opportanity
of thamping the table, replacing their piece (or tarning of thamping the table, roplacing their piece (or tarning it off the boardr
fresh move of his own; no small advantage. The inesh more or his own; no sme beridently sam nothing to be proad of in the mere mechanism. The magnetic indioation of the moves was the gist of the puzzle. After ite revival, however, in 1781, the popular ides aeems to have been hat a real antnmatic player, i.e., a self-directod chessplaying machine, was either made or pretended to be Earope, and in the beginuing of this centary, I believe, Europe, and in the begioning of this centary, I believe,
to overy part of Asia and both Americas; the main to evory part of Aia and both Americas; the main
question raised everywhers being whether its moves were or were not directed by a haman mind! Bat the climax of the joke was that even when this had been ettled, as probably all civilised men soon did settle it, (For mind applied to each move, not mind that had on falso grounds ; and probably 99 in 100 of na even now fancy the bare idea of a chess-playing machine is absurd, or woald involve creation of something. It involves nothing of the sort. It is not more certain that an ongine oan be mado to coant sovereigns, and farther inter two boxes, the light and heary, than that machinery might be made, were there time for its stady and execution, to play, sad either win or draw the game with every haman chess-player infallibly. Ite lato Mr. Babago langhed at, he onoe, I believe, proposed to clear np the befogged ralgar mind upon it by constracting an actnal antomatic player of "paughts and crasese," child's game on nine squares, probably the simplest of the olass to whioh draughts and chess belong. The fact is that all such games are a mere trial of who will play them, nd makes ; and a machine might therotor min or dram. Between two machines (or porfect players) there mait alwaya be a draw.-E. L. G.
> [12314]-Dieappearance of Art.-The débri of iron "bridges, oranea, and girders, waniag when unpainted, into " that indestractible material " rast Will not, I foar, aftor the "" many thonanad years" o dence of mxin. (p. bis) yiela quite " mach ori as the mochanical (obay nothigg ot bine art pottery of Asyris; and stapendoan bronzes, and rounded by endleas broken glass, pottery, and bricks, of Egypt, oach alike traly "indestractible" materials aud in the latior alimato even papyri and mammie nearly as mach so. The ohances, or rather certainty in all proeent appearanoe, promise those old landa very docided monumental survival yet, after the "dis appoarance "of the arte of "girder riveting and al pertaining thereto. Meohanical arts and manaluotures must sarely bo diapinced, supersedod sind vanish; tha of papyras-making for instance, Whioh employed hall
Egypt's popalation, and now it is far more than 1000 Egypt'e popalation, and now it is far more than 1000 yours aince a ahoos has boen made, or a plant grova.
(Ime. XIX. 7). Tbere is emall myatery in onch
changes. As for "fane arts," they seema blossomins nto which no race or tribe bloome more than once, in heal genaine manner. Oruament and architoctary have boen slowest declining in India. After many centaries of steady the Tadors, or oren nownal to French of that date in all bat ite statarary to the Mahommedan horror of idolatry hay always st least equalled the rery oarliest Christian, these lats Hindoo and the earlier Arab decorative arta prove that theory. Benidea, the deoline of dissic Enropean arts began as early as Alexander, classic sone eren before Chriatianity appeared, and was protty wall at its bottom by the time Constantine acknopledged the new religion, when alone it could begin to affect art generally.-E. L. G.
[12348.] - Spanish Pronunoiation. Thanks for Mr. Wray's rery fall particulars. Is he sure
any other than Blanco is legitimate ? Another point in which the grammars seom to differ from what oquire hoard apoken, is in defining the j as simply really equiraleng to preceding e or i. Are not ja, jo, ju, letter, sounding as gi, the German ch (or rather what Orientalists now express by hh) followed by short i ? Hijo, bajo, = eehbio, baluhio; not eehho, bahho. I agree with him that the Spaniards, by their senaible philosophic reform of their spelling, have made their grame, in this centary, the most rogaiar and easy th grammar, probsbly, in Earope. It is alao, Ithink, tho cont in mound: at loast, excelling the Italian on that the rowels, or reare of o, and less of the thin e and i, there is freedom from the donbled consonante, and indeed froma all byllables ending in other consonanta than the six best terminals d, l_{1}, n, r, s, and theta. (These,
by the way, would be our only abandant wordolosers in English, if we had not the wretched t and l as often.) Though Italian boasts of almost entire absence of consonanta ending worde, it perpetually ends a gyllable with one, and even repeate it to begin the next, a defect at bad as any in our barbarous north. Spanish has not only, thas. more vowels to its consonanta, but a rare subordination of the acnte or harsh mutes, p, t, k, f, to the grave or soft, b, d, g, v. They
make acuto into agudo. I think that sdmirable ; due proportion of onch lottors baraly appearing in French while in Italian ach leters barely appearing in French, are smampad by, the not learnt sor foreign langoege young, cen hardly sound words like hand, language young, can hardly flaal letter acate. Both rub, dog, withont matiog lack our corrapt ehort dall northern vowels, and have hardly more variety of sonnded than of written vowela, all distinot and fall. Bat Italian, besiden fewer vowel, has fewor consonant bounde (and honoe fewer letters) than, I think, any other alphabet; whereas Spanish is singularly rich in ohoice of oonsonante. "It keep, at
once our ch and the German ch. French " $1 l$ monille," onoe our ch and the German ch, French or 11 monille,
Italian θn, and the ∂ and θ that none others bat we and thalian gn, and the $\begin{gathered}\text { and } \theta \text { that none others bat we and } \\ \text { the }\end{gathered}$ the Greeks have. Trae, it singularly lacks boti onr mediato the Greak β and probably Latin B. Our $t 0$ mediato, the Greek β and probably Latin B. Dar the its aspiration. Doubtless theirs is the tongue most like the Classics. Then apart from sound, its grammar i most rational. It alone has the four distinot anxiliary muat see that it is a barbarous dofeot onr having only "to be" for ser and estar, and only "to have" for haber and tener. Wo are all as mach behind Bpain in thi as the ancients were behind us in not having two article the Romans none; or as the French are in their odioa ase of femme. How absard, again, rast none ni ni out of Spain, writing a question, will distinguiah it by the There most need
[12350.]-Sulphurio Aoid. -I ennnot say exactly how Dr. Uro compiled his percentage seale, but it may bo done by takiug a known weight of moid at a know denaity, precipitating with bariam chloride, and calca datiog the acid from the salphate collocted. As the following ready method is followed by some mano lactarers :-It is taken that lin. of vitriol at $120^{\circ} \mathrm{T}$. (1.75 speciac gravity) weighs 101 b . Then, if we have 40 cabic feet at 1720 specitlo gravity ($144^{\circ} \mathrm{Tw}$.) and $x=$ the weight required
$n=\frac{144 \times 12 \times 10 \times 40}{150}=4608 \mathrm{lb}$.
Now this method is incorrect, for in the first piace an inch over a cabic foot do is not weigh 101b., and the quantity of the di-hydrated salpharic acid $\left(\mathrm{H}_{2} \mathrm{SO}_{1} \mathrm{H}_{2} \mathrm{O}\right.$ Twaddle's hydrometer. Now, taking as ang for on water to weigh 1000 oz., we shall get the weight of oabic foot of ritriol from its specifo gravity, thas abic foot at 1720 will weigh 172.002., and at 1750 it will weigh $175^{\circ} 0 \mathrm{oz}$. 40 onbic foet of vitriol at 1720 will weigb 43001b, and as ritriol at $1 \cdot 720$ apecifc grarity
contains aboat 79 per cont of $\mathrm{H}_{3} \mathrm{SO}_{4}$, and at 1.750 o.3n tains 81.5 por cent., the following equation will give as the weight of vitriol at 1.750 whioh 40 oabic feot at 1.720 is equal to :-

$\frac{4300 \times 79}{515}=4167 \mathrm{lb}$.

Difference, error in Arst method 4411 b . Now, the first method, which is so simple, requiring so fer figures, weinth an init over a sqare loot to bo 011 . Hid $\stackrel{\text { weight of }}{\text { bringo- }}$
$\nu=\frac{144 \times 12 \times 9.1 \times 4 n}{150}=4198 \mathrm{lb}$.
[18858.]-To "The Harmonious Blackemith." -On referring to my contribation to the early history of pianofortes printed on p. 435 of No. 381 you will find jour question relating to the combination of organ pipes with pianoforte strings sabatantially answered. I have little to add to what I there wroto, but may just remark that if the same rank of heys be employed for both, the pianoforte "touch"" maat be ntterly spoiled so far as capability of expression on that instrament is concerned, just as it is in some modern combinations of free or harmoniam reeds with the piano. You are quite correct in sapposing the main diffleulty is preventing variation of the relative pitches of strings and pipes, which, although unisonons at the same temperature at which they were taned, become dissonant by any increase or diminution of heat. I fear nothing bat maintainiog the temporatare at which they were tuned can ontirely provent this oril, althoogh something may be done by mechanical contrivances wbich vary the pitches of many reeds at once, or by the late General Perronet Thompson's contrivance, which he designated a (pitch) regulator, which Was asystem of adjustable ghades. Some two years ago I same pipe with varying pressares of wind that my, perhaps, rathor long ears havo hardly ceesed cmarting yet, for even donkeys can feel, although pachydermatous. Norertheless, this 0 -called imposaible thing was done Long ago by S. Erard, with what remalts I can find no record. My other ald auggestion to put each pipe of a gradaally by the further doprossion of the manual for the parpose of obtaining exprecsion a la main in organs ceems bat a still-born child. Long ago, I requested our late able "Adept's" opinion of this crocchet, but he has made no sign since he promised to reply to this and nome other queries. Considaring be "hevery hinch sentleman," I greatly fear his long continued ailence is the consequemes of gerions ciaknems, iffiot momething yet morac. Surely all us "orotchatty" correapondents cannot but regret the ceanation of his mont able, instractivo, and practical pepers
[18871.]-Trues.-Hisv the metal work plated or covered with valcanite as done by the instrament makers to some nargical hatrimer his ter the land pads to unship. One of the orainary kna for the land and one niled with bornehair only, and covered with ding for the springs. Highly dangerous to bathe ding for the sp
[12856.] - The Prevention of Inorustation in Steam Bollers.-Probably. "J. D. K., with many other noers of steam, hes loand by experience how little geod scormes from the use of mineral compositions for bailers. Fallar's earth was once eagerly nsed antil it was found to rapidly silt up the boilers. Tannic acid or tannate of soda in now having a good crial. Nearly any easily decomposed organic subatance aekes a good compoaition, the mineral matter becomes morrounded by the organic, which gota charred, when it lorms a scale and allows the water to oreep behind it Bones form agood anth-incruatator-GEORGE E. Davis.
[19887.] - Amateur Organ Builaing.-The izes giveh are sufficient. If the bellows are to be worked by meohanical power or by hand double loeders will performer a ingle foedor wh bo mom of the dimen ons pry ions proposea. The scale 1 umeieat, viz., $6 \times$ btiv. 1 very much prolar noderale-sized pipe mado to opeak up woll than large pipe which
[12899.]-Organ Building.-The Vial d'Amou is a very smail bale pipe of 8ft. pitch, it is half the diameter of the Duloiana, the mouth is one fifth of the circumference and as high as it is wide; the pipe hes a weet clear reedy tone, beantifully delicate and soft. There is no dificrence in Ehape botween a Wald finte and Claribel Gate, but the Wald hes a higher mouth and is more reedy in tone. I would recommend the Boardon to be mitred or elbowed and keep the pipee vertical.-J.D.
[12480.]-Automaton Chess Player.-1. For the article in German, with ongraving, apply to Veit and Co., Leipzig, Germany, and order Schacheftteng of May, 1869, pp. 141 to 144. 2. For the article in Dutch, writo to Dr. W. J. L. Verbeck, to Wijk bij Duarstede, Holland, and order Sissa of January 1870, pp. 5 to 7. 8. For the article in English, with
game and diagrams, write to Mr. Harrison, Merton Kame and diagrams, write to Mr. Harrison, Merton House, Balisbury-Court. Fleet-street, London, and
order Gentleman's Journal, sopplement for March, 1870 order Gentleman's Journal, sapplement for March, 1870,
pp. 105 and 106. \&. For a German notice in a Portu pp. 105 and 106. . For a German notice in a Portu guese paper, apply to Mr. W. Spaythe, 66, Ladgate
hill, London, and order Echo Americano of October 27 1871, p. 198. 5. For an English article on the ol 1871, p. 198. 5. For an Engliah article on the old antomaton, apply to Trubner and Co., 60, Paternoaterrow, London, and order Chuss Forld, April and May, 1868, pp. 1 to 4 and 11 to 45. 6. See Profesnor C Tominson's raluable work, "Arasements in Chess,"
 Meyer corresponds with Mr. Hooper, inventor of Meyer corresponds with Mr. Hooper, inventor of
the fgare at the Crystal Palace, and is willing to give the figure at the Crystal Palace, and is willi
further information.-H. Mr ME, Sydenham.
[12488.]-Ohess.-The following Knight's tour has no ends, therefore jou can commence it on any of the no ends, therefore you can commence it on any of the
64 squares. There are several solutions to your ques-
tion:- $d 5, e 8, g 4, h 8, f 1, g 8, h 1, f 2, h 3, g 1, \in 2$

b4, a 2, c1, b 3, a 1, c 2, a 8, b 1, d 9, c4, a 5, b 7, $d 8$ B, a 7, c 8, b b, a 8, c 7, a 6 ,
F. Lewis and C. N. Abbott have also answered thin query.-ED.]
[12489.] - Working Plane Surfaces. - Mr. Roberts, I think, may be able to grind plane surfaces a he gets ivo piane grinding toois, elithor planed fiats or tarned perrocky gat, and griad them together till all tarniag marlay are removed with ine omory, and anish ofl with poanded pamioe atone; aftar they are roand true together wort the articles on oithor of them in the manal way of grinding and polishing trae arfaoes. This should answer for ordinary purposes but if required in large pieces then Mr. Roberte and have to apply machinery, whioh Mr. Tydoman, I have OLDTERLD.
12444.]-Day and Night Tolescope.-The day and night tolescope is made with very largo field oriow, abandance of light, and only a moderate power, mach loss than hat or other tolesonpos, which ight, when other telescopes would be useleas on sight, when other telescopes would
[22447]- Rmployment for a Retired Tradee-man.-1.et a retired tradesman fit ap a small print ing-office ; I warrant he will find pleaty of amacoment and interent in that; I ghall be gled to give any information
12447.]-Employment for a Retired Trades-man.-Being myself a "rotired tradesman "-woll, a matired manafacturer of remarkably "retiring" habits retired manafactarer oi remarkably reiring habits necessity, for he and most of his clase (which has bat lew resoarces) are generally asdiv in want of somebing usefal to do, hence, nearly all retired tradesman owever pecaniarily rich, mast of necossity be like "hash out of water."-TaE Harmoniove Blacesmitr.
[12457.]-Geometry.-Let AB C be the given triangle, and S the given Riven point. Draw SN parallel to beomaee $N S$ is parallel to $R C$ and rhombas ingcribed in the triangle \triangle BC.-P. W. H. J.
[12463.]-Vision.-"H. Science" puts two queries, the principal of which, I presume, is "How does the eye see an object erect when an invertod image is depicted on the retina ?" I fear he will get little other explanation from scientifo sources than he has himsel indicsted. The edncation theory seems to me to be a mere assumption. I hold to the common opinion, that the ese rees the ontward object and not the inverted mage. The prool is in the fact that objeots appear in their natural position. Perhaps some of your sble correspondents can telif as what amount of prool
attaches to any scientile theory on the sabject.attaches to any
Common Sinse.
[12464.] - Aquarium. - From reading Mr. E Fowler's query am reminded of a young indy who kep aome small troat in a glass globe. mr. Fowier say One day the water is nearly white ; the next day, do. to the end of the ohapter where the tragedy ocours. Just what Mr. Fowler graphically dopiota happened to the troat, from the young damsel fancying that on globe of water woald do hor maci-prixed fish for an indeanite time, bat they were all "with the majority" next morning. Perhaps some spiritaslist, who did not diadain suen trifies, cast a apoll over the imprisoned iry and sent them wimming tarough the narrov ncean of his faucy. Atall ovonis, the young lady' finh wandered ronnd the globe no more, like some pan discontented individuals, bat lay" contented and atill. She was then sivised, if she wished to keep ath for the fatare, for their hemith and vivacity, to keep them sapplied with a constant stream of freeh water. This was accomplished by forming a oommurication with s the tap to reguiate the aupply. A small fountain was
making come small holes in the top, and it formed beantifal ormament with the lively fiah inaide. Th water was carried away in an ovardow pipe and cac the other. - RAT.TAT. he other.-Rat.Tat
[12405.]-Compound Eyepiaces.-In reply to C. B.," the following is a good rale which will ansuer bis parpose for the Hogghenian erepiece with the pro portion as 1 to 3 ; divide twice the product of the focal longths of the feld and eye-glase by thatr eam. Thus, the focal lengthe of the inadent and equalto $\frac{2 \times 8 \times 1}{1}=1$ ar 15
The positive or Ramsien's is as follows:-The leas quivalent to an oyepioce of this description is fora by dividing the products of the focal lengthe of the enses composing it, by their sum loes the dintance lons be $1 \cdot 5$, and the distencie iocal lengub 1 in will be as lollows : $-\frac{1 \cdot 5 \times 1.5}{8-1}=\frac{295}{2}=1.195$ nearly $112 i n$. focus ; this method will, I have no docthe uit "C.B.'s " requiremente.-WM. OLDrieLd.
[12468.]-The Farp. - Although "The Bleck kaite is not the especial "Sinn at the Wheel," oar a End ond Hechat poshis his quovion "it "Tho Hermoria Blackemith'" to inform him tio cenn see some epecime of Irish harps at the present loan exhibition of aveive. oneical instroments in South Konsiogton Yiveris. nusical th the thondant plicomant permien (N.B-Bobby in a rery oivil follow whose temper s muok tried by the geatoal mob who will mot teep their hamis of what they doa't know how to touch withe great riak of injuring) \rightarrow of mesearing thair atring. Oz great rise harpe numbered 226 in catalogre, is otremp with rather thick wire, bat it look very tiack, I" rethe gross" it "uint "ap to much," and cortainly not "ap pitch. Ano 1011 "bsby" in years is lont by a lord, consequentry it is omething to interes and to be almoest morehipped b
 Bealdes our ancient Hibernion trionds, while co harian on thie our hares also one English ditto soid to bare beloneds arr most religions and moral King Charles II of pion ur motr to mem the dont ant the in then ay ak, by way

idering the "pions" memory of ite royal areng udering the pioas momory al ine ioy ouraw, in harp mudt yed have an ounar of easality tar to bo porms ful to be smelled on Sandig, at hast by the "conaso
people," although "King Cole " has coesionally ed mithin the sacred precinets of soiance on thent hat. a course, I need hardly add-lor it is quito self-crideatthat this woald be so very dangerous to morality in a poor a locality as Bethnal-green that it could not iv polerated, вo the police had orders to deprive of ther ticketa the wicked aristocratic visitors who " deeocrater the Sabbath by visiting oar "East-end Mochenic') looal masenmin leot Sardav. (Soe Mr. Goechea's stan ment in "the Hoece.") There are aleo some Freet harps of the poriou of Loum Carkores and 1ntr bat, to my hamble juggud hold the candie to loable action ta cos ollochan

 dipar catalogne "stuffed" with very interostling meme:THB HABYoNiove Blationtri.
[12469.] - Bees.-F. J. Gooden will be lack $4 f$ bes hive, for second swarms aresimays a mintsice, muchs put a 1 in puke of hos over the swarm and he will to to tarit the stoel hive and plece another over it. I do net Er
Will C. N. Abbott hindy forvard his opinion end athes -H. B. E
[12473.]-Printers' Bollers.-Small rallers a bo cast in an ordinary tin canistor if it is perfect round, caro to bo taken to lot the compoast revid bould ole or pir in lempa; nover mesh a roller rith ise (potable ruins them; when out of use take es mach int ruins thom ; when out of use tako en much and neatsfoot oil, and keep in a well ventilated capboe or box. To make the roller take ink after being gnover it rith a damp rag or piece of waste. good and tacky at the end of a twalve month as it when frrst capt-ZOO ANDBA
[12474.] - Machine for Maldine Aareza the oxoell or from 700 to 1,600 bottles per day, is chosp ymasat for vese : 214700 bollies, 5891,500 botthee. I torgot mention that the gas remaining in the maching and an operation can be need for the seat, snd will mas
1
[12478.]-Bee. Keoping.- Porbaps some of the plans sargester by Mr. Abot' fromsime to time would the methethode recommended by me to "Wulle Scerer" and "W. T. L." The bees seem to have formed a rery deairable amajgamation, thongh very oingular from the fect that altar driving or fumigation boes are more inalined to rob the neighbouring hivee. Howevar, the order of procedure, as members of the law say, may havo been reversed in "B. H. J.'s" case from some three hires were famignted the same day, whioh may zocount for the beea being bewildered and not knowing their own hives. "B. H. J." says that hin bees have built the combs in hi, "Nsborg eabinet" diagonally, instesd of atraight with the frames. To prevent them bailding in any but the right direction, and in the right compartment, a few bits of comb from the old hive should be atteched $;$ by heating a little, along the tope of the barn, the bits of comb may be about two inches long, half an inch deep and the width of the frames.-Riv-Tat.
[18477.] Water Glass.-A eimple form of waberglass may be mado by comenting a aicocalar piece of glase to one end of a woocen tnve, the tive may be 6ft. long, and sbont in. in diamoter: to ase it the glass end is dipped some dopth in the matar, and the
other end olotely applied to the side of the face. It has, of onares, no mafnifying power. A eimilar one is has, of onarm, no mafnifyigg power. used in Norvay; if lenses wrer and the loch would bo the refractive infer of mater being oun miderable. the rofractive in
[12478.]-Sonr Ale. -Rack it ofl, and put some bicarbonato of soda and some hopa, and bung apagain for a week or two.-Jacx of ALL Trades.
[12480.]-silk Working.-No remeds but to be fled ou
[12480.]-silk Working.-Touch the males with hydrochloric acid, and the rast will noften and drop out with the working of the silk.-Rat-Tat.
[18481.]-Vaz Toth.-Treat them while in the hive, or in covered veasel, with tobaceo manake, or oarbolic soid gas. If mothy see about cover the entrance holes at night, and atand a shallow reasel potasaing on the top of the hive, or on the stand. The potasainm on the top of the mire, or on the stand. Ihe and fall an easy prey.-RAT-TAT.
[18482.]-Integral and Differential Daloulnas. -Thie branoh of mathomatien in uepd in the higher branches of mathernatios. In astronomical oaloulations optical in restigations, in oaloulating eirength of meterisis, to., it is the fonndation of the higher mathematios. If a porson knew Bachl and algobra, he could begin the ealculus, but it is nazal to stedy trigonometry also. There are mome eroellent radimentary treatises Todhunter's Integral Caloulus are read at Cambridge. They are expensive, 10s. 6d. each.-PHEANTHROPIBT.
[12488.]-Bewiring Old Plano.-I rewired an old one about 12 years ago with as near the same aize wires as I could jodge, and it answered well. If yon pot stouter, the ping will not besr the strain required to tane it. I pat all plain wire; you can get it in will advertice address, I will send to yon.-WeBB.
[12484.]-Inorganio Ohemintry.-The "Boience and Art Syllabus" mentions the following works for the adranoed stage:-Chomistry, Inorganic and OrRanic, Bloxham; Manuad of Elemeztary Chemistry, Fownes; Elements of Inorgsnin Obemistry, Miller ; Chomistry for Stadents, Williamson; Chomiatry fer Schools, Houghton Gill; Qualitative Analysis, Galloway. Besides thene works, the following are recom mended for reading and working for horomrs:-Seonnd Btep in Chomistry, B. Galloway; Cheraical Physios, Watts; Elementary Tratise on Eleat, Belfour Btewart; Watte; Elementary Treatise on Eleat, Balfour Btewart;
Heat a Mode of Motion, Tyndall; Quantitative Heat an a Mode of Motion, Tyndall; Quantitative
Analyais, Vachar's Frenenion. Sciemeo and Art" anglyais, raobars Fromenion wishes to know what " conours comiat of. Thia ia asked by many, but having passed them zyeolh, I can cay that you have the honour of ach the renite of the pristed apon a piece of paper oalled the reculte of the cornothing, even if it is only a printed card, as a mart for having passed through such a stiff eramination as it usually is.-Gro. n. Davrs.
[12485.] - Eleotrotype Casting.-Moulds for these are beet made of oither marine glue or guttapercha, keoping the model in olose contrat by means of a weight ontil cold. Treat the face to a polish with a vary soft bruah and plombego nntil it has a good me-
tallio lastre. Ueo two amall battaries and a docomtallic lustre. Uee two amall battaries a
poaing trough. JムOX or ALL Tradeg.
[18488.]-Twohine for Cieaning Boote.-I have somewhere seen a drawing of a machine brach, similar to those used in modern hairdreseors' establish. ments, worked by the foot in the pame way as a lathe or sexing machine. Why ehould there not be shops in London or elsewhere where you might ga in and have your boota cleaned on your feet by an uttendant witha revolving brash in his havds ? let some of gour hairdreasing renders introdace this praotioe into their establighmente. A few extra bruahers and a longer band areall that are neoded.-C. P. E.
[12486.]-Machine for Cleaning Boots.-If the Exalisil Mecaanic, he will there fud a skotoh of
a boot cleaning machine "driven by power or hand, 250 per morning."-THOMAs HuTTON.
[12488.]-Ma人hine for Cleaning Boots. Marcly a machine like a scianors-grinder'a barrow, subditating breohes for atones.-JACK OF ALL 'l'eades.
[12487.]-Annealing Spring 8teel.-Thle is a new "hick" antiraly, ammaliag steel for weldina-at leat to mo. To anneal iron or ateel, take amall chalk, ald mortar, or whiting vill do, inclome it in that in a pieee of tin ar ball of clay, and make it red-hot. It will make it beantifully wolt and feeo from ping, and if the operatiou is continued with cara, castiron or steel may be made so soft that jou may ont it with an ordinary pan-koife like lead, and no detrimont to the ateel.-Jaci or ALL Tradres.
[12487.]-Annealing Dpring gteol.-I don't know bat to wold a spring plate as well as it can be done is to weld a piece of iron to it, then the other piece of steel to it same as cost eteel. To temper any kind of springs, make red-hot all over, cool in soft water, then hold over bright fire, get a lump of tallow, grease all over, hold it till it blazas all over, let it cool oat itaelf.-OUTGENIOUS White bxatr.
[12488.]-Zinc for EFot.water Tanics.-It must be very stout to be of any eervice, as it contracts and expands ao mnch that it oracks at anglea and joints, and soon benomes nseless. Try galvanised tinned iron. -Jaoz or all Trades.
[12489.]-Lacquering Brasswork,-Yes, it is sometimes done, or attempted; it is not alwaya that they succeed in making a job of it. The best way is to dip it quiok.-Jack or Ale Trades.
[18189.] - Ieoquaring Brasswork. - Braes. fimishers often give brasiwork two or three oonts of laoquer, and re-heat for each coelt given.-W. 0.
[12490.]-Grape Culture.-" Horatio" will ind sbundant information in a work composed by Thomes Mawe and John Abercromble.-CumCHEY.
[18400.]-Grape Cultora. - "Hoare on the Vine" is. an exhacstive treatice on the subjeat.-OLD Boors.
[12491.]-Overgraining.-Discard the beer. It ohosld only be used for dead colours and show-boards. Uso tarps instead.-Rat-Tat.
[12491.]-Overgraining.-Use vioegar; when beer or size is used it has a habit of orawling and pealing of ; by nsing the above you will got over the difficalty.-Jack of ale Tradbe.
[18498.]-Show Etand.-To drive show etand, a small drum with danges at each end, four straight pins
 lor rope $\&$ to lap on to, double eye with collar and nut to held to flonr boarda for pulley C to work in, rope G worke over attached to lamp of
tone B. I is ehop front, F ahow stand, loment oud as a contre working on a piece of if0n whth posed bottom of ahopfront window. The reasion for having a large atene yourmeli by knocking 8 lump of or patting a lamp on When moctat to wind is up you catch hold of bottom wiug of atend, and twine it the other way tin wright comes cloes to pulley C. The dram A munt bo a amall ons.-OUTarnious Feictiserter.
[12492]-Show Btand.-There in a maker of a jack for ment roasting that will turn from 1001b. to 150lb., something after a bottle-jeok. The foot of frame reata in ateol contra, and the afiair is regulatod by a fan. This vould suit you. The maker's name I know not. I have had them under repairs. Jace of Ahl Trades.
[12401.]-Eiardening Teeth.-It is the effeot of the said. No oure now. Aftar taking the compound you ahould have whohed your mouth and teeth with carbonate of wode-Jace or AnL Tradis.
[12494.]- Fardening Teoth.-I do not think quinine has anything to do with the breakage of the quinine has snything to do with the breakage of the beat tooth powdera.-M.
[12496.]-8tainod Soarlet Tunic.-Well wach, and affor rinse in aalt and water, after in pare water. -Jucx OF ALL Tmades.
[12199.]-Trigonometrical.-Draw DE perpenaconlar to AC.

$T a n \cdot A C D=\frac{D E}{E C}=\frac{D E}{A E} \cdot \frac{A E}{E C}=\frac{B O}{A C} \frac{A D}{\overline{D B}}=\frac{a^{2}}{b^{2}}$
Δ gain. $\because \frac{\Delta E}{E O}=\frac{A D}{D B}=\frac{a}{b} \cdot \therefore \frac{\Delta E}{\Delta E+B C}=\frac{a}{a+b}$. $\therefore \Delta E=\frac{a b}{a+b}$.
$\mathrm{Also} C D=\sqrt{D E^{2}+E C^{2}}=\mathrm{AR} \sqrt{\frac{\mathrm{DE}^{2}}{A E^{2}}+\frac{\mathrm{EC}^{2}}{A E^{9}}}$
$=\frac{a b}{a+b} \sqrt{\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{4}}}=\frac{a b}{a+b} \cdot \frac{\sqrt{a t+b s}}{a b}=\sqrt{\frac{a+b b}{a+b}}$.
Q. R. D. Many solutiond.-Alespe.
[T. Hucklabridge and "Xonophon" have also ansmered this quary.-ED. 1
[12500.]-Lamd Elurvegtas. - A land surreyor should be able to sarver ma oateco sad make a map of it ; be shourd have aleo an elementary knowledge of civll engiseering, and be able to mako a road, to. ; he shorld be aoquaintel with drainago and irrigation. As to stodion, a fair knowiodge of olementary mathemation, sueb an Eaclio, algebra, and trigonometry is noosmary. Barreying should bo madied theoretically and preotionlly; drawing and mapping are very important. \mathbf{A} practical acquainiance with sha indtramenta ues by mo civi enganear should be sttained ; many moderal saves the tronble of made with the chain alone, is is nenessary, however, to anderstand the ase of the theodolite, the level, tho bor sextsat, primmatic compans, co. I do not hnow the teehnioal requiremeots demanded of the aurveyor.-Prilatrimporier.
[1250L.] -A Cheap Gan.- Your correspondent will find some valnable information in a book pabliahod by Treatice on Gas-works and the practioe of Manufec-
 taring and Distribating Coal Gas." By Bamaal
Haghes, C.E. The nominal price of the book is 3s Too mach of your space woald be ocoupied by giving

[14501.]-A Oheap Geal-"A., Liverpool," doos not cay the quentiny he winhes to make at once, mor the purpose he wishoe to apply tt to, bat athar staking that it need not be inflammable, We may suppoae he does not wish to burn it. Coal gas costs more for making
in some places than others. I know place where in some places than others. I know a place where cannel gas ouly costa 9s. 6d. por 1000tt. for making, and another where 00al gat coms 8s. 2d. per 1000t, so it depends apon the locality for one thing, whioh would have to be taken inbo comaideration before a price was given. I" "A." wiahes to make it at Liverpool
[19508.] - Tenting Tartario Aoid. - Make a clemer solation in pare wator, drop into it a Hutle solution of chloride of barium, and a deace whith preoipdtate will form; pour of the liquid, eacpend the prooipitato in a limle water, and add aitrio or hyaroohlocio scid; it any remain andiscolvad, there ia, probably, a sulphate mixed with the tartaric acid, porhaps alam.Pemb.
[12504.]-Sketohing from Nature.- Let T. King get epiece of well seaconed wood, aboat 16in. by 10in, or even larger. At one ond insert an apright contrally (a), in which is ixed a emall piese of tin, card, or other material with a small noatly panohod hole aboat the size of the letier " 0 " in the type with whioh this is printed; two more uprightes and o with grooves, in which alides a piece of good glase α. To nse it-

melh oree the glees a very thin solution of gum arabio and mite sugar-candy, twenty parta of former to one of latter, let it dry ; now set it up ; 100k through the small hole to get the objeot or landuonpe sabtended by the glees, and with a soft Paris Conit eragon ontline hie nubjeet on the propared sarfece; semoye the glay and lay it over your abotoh; if you require the eutitine you chould hare a macond plate of gleas, and trace ovor on, and a liftle gay with charcon, then lay your paping will tranafer the oatine. By adaing a dreser to jour board and sorev holes for your uprights you may omery the appanatas abuat with Oase.-OLD Boots.
[12504.]-8ketohing from DTatare.-Make a eqnare or oblong frame of strips of wood lin. wide by tin. thiok (6ing by 8in. would be a convenient aize). ateotoh fre. Atring or wire acrose each way to form about lin. iquares; suspend this in front of you and ${ }^{2}$ Wrozthe
[1950.]- Bketahing liom Nature. - Lot T. King provide himaell with a frame of light mood of seoh dimenaions an bo would be satisted to carry; let him divide this into a ceriou of aquarea or oblongs by ceringe or wires ateotohed acorose the length and bread to astoth into a aet of peoportional dirivions, by lightly marked dots or lunos in pencil Let bim carry a
walking-stick with a taper ferrale at one ond, and a T top, each end of the top to have a sorew-hole for attaching it to the frame; the donble attechment will seep the frame from swinging. Having selected his view, he is to attach the stick to the frame and Ax it npright in the groand, then taking ap a saitable position behind it prooeed to sketoh the most marked objects in the centre divinion of the frame exactly in the same relative poeitions in the centre division of the paper. It would be well to have one or two test objects in the corners, or on the cotual intersections, for during the progress of the drawing he will be sare to shift the position of his eye, and by bringing these test objects into their original place he will get right again. It is better to jot down the principal objecte arst, and afterwards fill in the connecting parts. The inconvenience of wires is their goting bent; of strings their becoraing aleck; bat most people know how to tighten a string. Δ plate of glase might be used in the frame on which the lines conld not vary; but this would add to the woight, and glaes is very sure to come to grief.-T. S. G.
[12506.]-Power of Engine. -The effective horsopower of Hecle engine, if it is high preesnre, would be shont 74, but as for nomfinal he can give it any name ho likes.-EI. T. P.
[12506]-Power of Engine.-The nominal and effective horse-power of engine of the following dimensions :-Cylinder 20in. diameter, 18is. stroke, and 100 revolutions per minute (Which is equal to
800ft. per minute; steam 40lb. pressure, and cut or at two-thirds of stroze (which is equal to 26.6361 L elastic force througheut the whole stroze). Firsi I will find the nominal horse-power, which is merely a term in the baying and selling of engines, independent of locomotives. Rule, find the piston's ares in squmre inchen, multiply by ite velocity in feet per minnte and x by 71b., which is always taken as a constant number; divide the product by 89,000 , and the quotient is the expressed effeot in nominal horse-power, whichis 19.99. $80^{3}=400 \times 7854=814.16 \times 800=94248.00 \times 7=$ $\frac{659696}{33000}=1999$ horso-power nominal.
Or can be fonnd by dividing the square of the diameter of piston in inches by 20, which answer is not far or of former ene.
$204=400 \div 20=20$ horie-power, nominal. The effective force or working power of the eame ongine is-Rale, multiply the piston's area, in equare per square inch, then by number of feet piston trevels per equare inch, then by number of feet piston travols per minute, and divide product by 88,000 ,
$==$ the effeofive horse-power, which is 80.7 .
$20^{\circ}=400 \times 7854 j=814 \cdot 16 \times 26 \cdot 666=8877 \cdot 89 \times 800$
$=\frac{2663217}{83000}=80 \cdot 7$ eflective horse-power.
-G. Valenting.
[12511.] - Gas. - The following is the avarage quantity of gas obtained from one ton of Lancashire Cannel, 11,600 cubic feet; Wallsend, 10,800 ; Newcastle (Hartley's), 9,600 ; Temple Main, 8,100 ; Stafiordahire (best), 6,400; Primrose Main, 6,200; Pembry,
4,200 . The following is a table, showing the com4,200. The following is a table, showing the comparative qualities of coal, Scotch coal being estimated
at 1,000 :-Scotch Cannel, 1,00 ; Iancashire, 986 ; at 1,000 :-8cotch Canvel, 1.00 ; Lancashire, 986 ;
Yorkohire. 949; Bewioke and Craister's Wallsend, 875 ; Rnssell's Wallsend, 861 ; Tanfeld Moor, 850 ; Heaton Moor, 822 ; Hartley's, 810 ; Killingworth Main, 792 ; Pontops, 762 ; Temple Main. 690 ; Manor Walleend, B50; Foreat of Dean Middle, Delf, 612; Eden Main, 562 ; Staffordshire cosl, 1st, 546 ; 2nd, 514 ;
3rd, 492 ; 4th, 490 ; Pembry, 85t.-WnLiny H. HEx.
[12511.]-Gas.-Newcastle coal yields from 9,500 to 10,000 cabic foet per ton, and Cannel yielda from 11,500 to 15,000 oubio feet per ton.-W. Airer.
[12511.]-Gas.-The quantity of gas capable of being obtained from a ton of coal varies with the variety of ooal, and also with the degree of heat used in carbonising. Coal will yiald irom 6,000 cabic feol to even coal is a rarity, but it has been done. From 8,000 to coal is a rarity, but it has been done. From 8,000 to 11,000ft. may be got from a ton of cannel coa, but is
10,000ft. are obtained from either Wigan or Bridgwater Cannel, it is not bad carbonising. - Croage E. Davis.
[12511.]-Gas.-Noweastle coal will give from
, 000 to 11,600 cubic feet of gas per ton. Cannel from 8,000 to 11,600 orbic feet of gas per ton. Cannel from 9,8501t. to 15,0001 t-ExCELsion.
[12512.]-8potted Eid Gloves.-Tonch the spota with benzine collas.-Rat.Tat.
[14514.]-Flder Flower Water.-Take of freah elder flowers 101b. (or an equivalent quantity of the flowers preserved while frosh with oommon salt); water two gallons. Distil one gallon. This is according to British Pharmscopcoia. For lavender water take of essence of lemon, essence of bergemotte, and easence of cedra, of each half an onnce; oil of cloves and oil of citronello, of each half a drachm; otto of roses, three drops; and oil of lavender, half an ounce; spirits of wine, one pint; sew grains of musk may be added. It improves with age.-Opalinz.
[12515.]- Towing Tachine.-There are varions the knives of "A Countryman's" machine-viz., they may have been repaired with inferior iron, or are too may have been repaired with inferior iron, or are too
long or too short, in either case breakage will occur. The finger beam and fingers may require setting and adjasting, this is a frequent cause of breakage. I it, although I decidedly prefer a machine with a long
rod. I repaired a machine last week troabled with the same complaint as "C.'s"; in this case I found the arank shaft was crooked. Bat the best advice I can give him is never to allow any one but a thoroughly competent machinist to have anything to do with re-
pairing his mechine, he will And ont what is wrong and pairing his machine, he
remedy defecta.-Torvo.
[12515.]-Mowing Machine.-I had a machine [12516.]-Mowing thachine.-I had a machine made by the same makers, which worked very well
until the third season, catting about 100 acres each anar, when reveral knives were broken befors I found ont the canse, whioh was from the pin and pinhole of crank having become worn ; mine worked with a long rod, in consequence of this part having play the knifebar is struck instend of being pushod. Any loog iron bar will drop in two pieces if struck repeatedly on one placo, with a amall hammer.-OLd Prodginan.
[h2516.]-Mathematical-To show that

$$
\cdot i=\frac{1}{9}
$$

$-i=1111 \ldots$. \&c. multiply by 10 $=1 \cdot 1111$.... dc. anbtract $\cdot \mathrm{i}$
$=1111 .$. de.

Soe alen Mann's "Theory of Arithmetic," p. 184.c. H. W.
[12537.]-Compressing Air.-" Mechanical Equi. valent "has miscalculated the pressures his air will have when contined to the Sin., 4 in., or 3 in . Instesd of 8 , 4 and 5 atmospheres at those three volumes, it will be $2 \cdot 4,8$, and 4, inversely as the volumes themelves. The halving or doabling, Dalton fonnd to raice about 50° Fahr.; and for other ratios were to escape, or expension the hast boing es the mort exerted and this being as the hyperbolio logarithm of the ratio of change of balk, the rise or fall of temperatare, if the sot conld bo perfectly madien, would be to 50° as the common logarithm of the ratio is to 80108 . Hence To havo-
Log. ${ }_{2}^{8}=0.4=0.801080 \propto \quad \underset{60}{60}$ Fahr. temperature.

These would be the rise of temperatare at the compressions into $6,5,4,8,2$, and 1 in . ; and at expanaion to 2ft. the fall wonld be 50°; to 4 ft . 100°; to 8 tit. 150°; to $16 \mathrm{ft}, 2200^{\circ}$; to $82 \mathrm{ft} .250^{\circ}$; to $64 \mathrm{ft}. 800^{\circ}$; to $128 \mathrm{ft} ., 850^{\circ}$; to 2561t, 400°; and to 512 tt . (if that is what the last figare means) 450°. As for "raising the piston to an inAnite height," it is certain that, without receiving moro hoat, the air would not expand beyond a cortain an inelartio surface, we it mast at the top of the atmo aphere, at a tomporatare (as is anpposed) of - 688°. At lower temperataree, it woald not oxpand so far, and the aboolute zero, where all finids monld lose olasticity is probably aboat - $490^{\circ} \mathrm{Fhr}$. The work expended will be aboat $14 \cdot 8$ foot-pounds (ar 1835 times the air's waight) for each degree. To heat a pound of air 1 degree without ohange of volame requires 1806 foot-poands. To hent and also oxpand it, withont change of prosanre quires $189 \cdot 5$ foot-pounds, the difference, or 53 footpounds, being the power exerted in expanding It is poundion being the power exerted in expanding. It is quastionable whether a heating of the whole appar as to expand to soveral times its present height, would be perceptible to ne otherwise than by elightly altering astronomioal refraotion, and very alightly lowering the barometer, by the gravity lost through increased diatance of the apper layers from the earth's centre. All this heat wonla probsbly radiate into space before a very sensible portion conld areep down to us here, four miles below, by condnction. The quention has mucb bearing on the dilarial comet-fall.-E. L. .
[12559.]-Oleaning Cil Painting.-I cannot give "Semper Paratas" a "trust worthy recipe which has been proved," or rather I conld give him nome half. dozen such, bat, alas I not any single one which is the "universal medicine" or menstruum he requires, simply because different varninhes are used for pictaree,
and the solvent of mastic will not dissolve copal and the solvent of mastic will not dissolve copal.
Picture cleaning is an art not to be learned in one day and before the g is an art work on any operator can be alaty trastod on 80 coloured by rience. In ite absence, no doabt you may "clean" piotare very effectively, so much so that it is often so
thoroughly "oleaned "that it becomes so difficalt to thoroughly "oleaned "that it becomes so difficalt to
determine what the anject was that it is almost a determine what the sabject was that it is almost a necessity to make a copy beforehand to enable you to
"restore " by repainting it all over. I am sorry to add "restore" by repainting it all over. I am sorry to add many of the raluable prodactiona of the old masters have been "restored" after this fashion by men who are neither old nor new mastors-in a word, Who have
exhibited no "mastery" of the bruch at all. I think I have replied to similar the brush at all. I have replied to similar queationa more than oneo
hefore. See No. 298, p. 185 of our journal.-Tus Harmonious Blacesmith.
[12572.]-Piano Conetruotion.-1. The engraving of action Fig. 8 is half the size of my drawing, consereqnently the hammer-shanks and other parts are doable the dimensions shown therein. 2 . Δ double I greatly prefer being able to remore each hammer singly, consequently I most decidedly recommend a
separate fork, or-if the batt be forked \rightarrow neparste prong for each. 8. In my dra wing only the ronad parte were shaded, consequently the ponitioms of the doxtls were very distinct. Probably my mere outline drawing
was not sufficiently "artiatic for the wood chopperTas not sufficiently "artistic" for the wood chopperI beg pardon, I mean ongraver-so he (or rather, par. hape, the dranghtaman) shaded all the parta "protty con. giderable I gress," henoe the positions of the two hori-
zontal dowela in the hopper are difficult to soc- Chey zontal dowela in the hopper are diffonlt to soe-they are bat just visible when the dotiod lines are carefully
looked for. In my model the width of the hoppar !or looked for. In my model the width of the hopper ...r the npper 11 in . of its length in $7 / 1 \mathrm{cin}$. Where the inciined part is glued on, and it is reducod to inin. bolow "Men it is in the forked griding socket. If "Pianoteo pro, fers making the head of the hopper no wider than la, he munt une thinnor dowele, eay tin. or 1/10in. diacuct or hornbeam, wonld be strong enongh; brase or copper wire rivete might bo preferable. 4. For preventira the hopper from aliding sidewayn, probably the chespert thing is a forked socket juet like those used for twe jeoks or hoppers of ordinary grand pianofortol In kis patent, Mr. Molineax specifes a clothed mortice to the hopper, whioh is guided by an oval key-pin inserkd in the rail behind it. This has the great adrantage of onabling the side shake to be reduced to a minimand by partially tarning the oval pin, just an wo prevent tuf rattling of keye which have olothed front morticts "Ed oval ping luxury well worth its triaing oxtra ant. The "rattle" of loose keys is to me a very unpleanait "plaything." 6. The set-ofl sorem is in the zopper. which is reinforced-or left thicker-where it in tcrewe through it. This acrew has a slot for the ecrew-driser at ita front end. By the way, the front sarface of te? tail of the hammer-butt is orroneonaly represented "ort of the square" with the inaor end oi kits cires. Of course it ehould be parallel to the corow's hinder aurface. 6. In all actions in whion the dempers are atteched to the hammer-butt, it in customary to tahs the dampers away from the stringe by moving the action trame forward. It wire bridgoe be made oriy long onough to receive the strings of one note, anlest seoured by other means than the downward preasure of the strings on them, there is zome rifk of their tay. ing out when the stringe are taten ofi. In some resperts I profer atads to wire bridgee. Soe article on improsisz the trobles of oottage pianos in No. 881. Bat 1 yes believe the tone is parer whon the wire bridge is eciployed, eepecially if the loweat inch of the apsce ix with felt or doth, 2020 to preventany sadible vibrati: above the wire bridge.-TEI Humoxious Blaici. smits.
[12574.]-Galoulue.-Let ABC represent the re quired triangle. Join A with O (che contro), and p:oduce AO to meet BC in the ronahing-point D . Join E $=50$ (co-sec. $\alpha+1$), aud BD $=50$ tan. a ($00-\mathrm{sec}$.
 tan. a ($00-100 . \alpha+1)^{2}$. Differentiating and equatur right member to zero $\frac{1}{\text { cor. }{ }^{9} \alpha}\left(\frac{1}{\text { sin. } \alpha}+1\right)^{\text {: }}$

$\frac{2 \sin . a}{\cos , \alpha}\left(\frac{1}{\sin . \alpha}+1\right) \frac{\text { oon. } \alpha}{\sin . q^{2} \alpha}=0$. That in. $\left(\frac{1}{\sin . \infty}+i\right)$ ($1+$ sin. $\alpha-2$ cos. ${ }^{2}$ a) $=0$. From frot iactor, sin. $:$ $=-1$. From nocond factor, $1+$ ain. $a-2+$
 $60^{\circ} ; \therefore$ the required triangle is the equilatoral ciream triengle. The side of this is eavily foasd

UKANSWERED QUERIES.

TMe mumbers and titles of quories whioh romath us ansoered for five weeke are incertod in info biot. We tro. mation thay sam for the bemaft of thotr follow count butoro.
 genious Whitesmith," 18167.
12257 Milking Machinea, p. 392
12259 Faulty Acotate of B>ds Bath, 383
12321 Doable Flageolet, 392
Length of Electric Spark, 898
Electric Bell
Electric Bell, 343
Hydrogen La
12290 Hydrogen Laray $\mathbf{1 2 9 3}$
12291 Nature Printed Leaves, P 593
12993 Watoh Springs, 993
12803
8mall Casting

QUEBIES．

［2a592］－silk Solvents，Many monthe apo I in． pired concerning this matitor，and sigma kindyy sug． silk dressea and trying to make them into new onea Which did not soem to be a very promieing soheme），
that I should no dont he summed 1 am or was a oockney－send her＂ex oathodra＂（I meen oritide our metropulitan oathedral－i．e．，to 8．Pauls Churahyardd and having prosentod hor with a blank cheque，allow
her to select as many new allk dresses（at a cost not oxcoeding the moderate rato of 15s．per llineal yard）as her pesthetic taste diotated．At the time I felt duly thank． fal for this＂good sdvice，＂for which＂amall thanks is yet the market prico＂＂bat notwithatanding this power－
fal doue of the cold water cure，＂I again beg to say I have a very diatinct remembrance of roading that a Fronch ohemist had not only suocoeded in making a finit mistaken，he formed by forcing it through miltably． formed spertares（jnst as wo make peppermint pipe or draining tiles），the aforesaid corda rememblling the so－ oalled＂silkworm gut＂of the apgler．I opine sach solld sllk cords would not only form fohing lines with． They might also be at once far oheaper and preferable
 torsion conaiderably diminithing the effeotivo atrength of any ropo－than the iwisted silz lines made in France for doep soan soundings．Will any of our scientinc cor HABMOMIOUS BLAOKBMTH．
［12598］－Tightning and Thunder．－WII you kindly inform me whethor lightning evor oocurs with－
out fte beiog acoompanied with thunder？And if so，the

［12504］－Varniah Cells，－Will any reader inform Gold size and Branswick black make good oells for dry mountiog，but on the application of heat for belsam moaningg，the rarnigh rans nina the balsam，and so epoile the object I Tant a Varniah
［12505．］－Boate．－I wish to construct a emanll ploasure boat about 14ft．long．Conld＂A．，Liverpool，＂inform me for building boats？I shonld also like to have leo－boards and sliding koele explained，and how the wator is pre－
 that it would cake more room than the editor Fould allow to describe fally the art of boat－building．Ithink this gabject in as worthy of attention as many others
which appear weoklin ine page of＂our＂Miccinir． Thich appear weiticles on it would be warmly recolved that many others like myedis seek information quaries branoh．－J．E．D．
［We woold manage to And apace for a sacies of articlos
or lotiors on boatbullding．］－ED．
［12596．］－Clenoe．－As there are doubtless many practised oanoeilate monongst joar oontribatorn，may I ask of them a sow hints as regards the following：－ coed down the Trent and Humber to Hall，then，if prao ticabie，to go by sea to Fhey or sarboroagh． go by rail from Hull．What is the best size for anch a one，mo as to enable me to fool perfeolly at ease．I am Wranld the use of one be safe without any praotical instructions as to its management on anch a trip？ Paddeer．
［12597．］－Waterwheel Moots．－I wiah to learn the moat approved form and directions of the foate for
an underahot waterwheoh，for which littie water wil be an undershot waterwheel，for which ittle wa．
a vailable and cocnomy very dealrable．－D．J．
［12598］－Age of Trees．－Would you oblige me by asking through your columne for anthentic recordre
the extreme age of trees growing in Anstralie，Africa， the extreme age of trees growin
and Callfornia
i－Lionux
Vits．
［12599．］－Dimencions of Mrall Boate．－Can any Dublin Steam Packet Companys boant of one of the carrylng the Iriah mails betweon Holyhead and Kinga－ owat－．
［18600．］－Hydraulic Exploaion．－I wae maling olber day．I took a rathor large（in fact too large）pieo
 Lion at once，and I held a glase jar，whioh would hold aboat a quart，in the nazal way to reooive it，but alas plosion，the jar and sandry botulos，dc，near，were was knooked into a cookod hat Now，would any（ung spondent of＂ours＂kindiy oxplain，if＇he can，the carase of the explosion？I was ence pertorming the same ax periment，and with the mame result，but naed then ${ }^{2}$
little fask with narrow neok in which I forced the sodium wrapped in paper，and so held it under water and I Always thought ohe cappecity of the tahk wai too jar was not hals olled when the explosion took place． heat erolved have takon fre，but by this maans I oonld not account for such a violont exploioion．I have aluo such a rapld decomposition of the water，for the oxygen no be liberated an well，and the heat evolved to have re combined thens．If this conld bo no，of c
［12601．］－Tuning Rolian Barp．－I have one of of your manionit oorreapondenta tell me mow to tune it？ pinc．
［12603．］－Fxtinction of Fires．－Many gases are
ar more soluble in water than carbonio acid isa，Would Mr．Bottone kindly inform mo if a solution of some of the othor gabcs，such as chlorine，Acc．，would not be
uo re c出caciunat in extlinguighing Gres？Somo are eup－
porters of oombustion，as sulpharetted hydrogen，do．， and others，pertaps，are too expensive；but could not some sort of sall bn dissolved io the water whioh woald gevaporated，the gat generated to be such as would ex tinguish fire Oi course，mach less water is to he nsed in thopiex．
［19808］－Acoustios．－Can any of your corro spondents inform me what is the amount of the absolate motion of each particie of the air，or other medham，in sound wavo 1 do not know．Whenh his has beon o determined，I ghould ilie to kno by hats meane 1 sappose the amount will vary with the londness of the sound．It this is so，what is its amount for the lowes cound we can hear？－Gy．
［1280t．］－Quill Pen Maling．－Will some one who is an adept at making quill pena by hand，kindly，
me how to inaure a stralght and clonn＂apli＂？ ［12805．］－Organ．－For some time bnok，I have been studying the varions letters that have appeared in the MxCHANIO，with a view of commenciag the buildiag of smull organ，of one manual，and four atops．I oan bond bot I，and pipes，according to the initractions giv th koy acting on the pallet．An illuetration of an antion push do nn the pallet appears in Vol XIL，p．187；and an illustration in Vol XIV．，p． 685 ，giving me some ides of the equare action；but 1 cannot learn from it the position or use of the rollers and backfalle．The en graving geams to ahow the sotion as consisting of equares，iracizers，and pall－downs．Thero is， 1 bellive an action called fan frame，said to bo the most mimplo Would some of your cong poth actions，merols grame the mechanism from the key to the pallet；ale tho how to conneot the bass koys by cross action with the bas pipea，which may be placed at the treble ond of the soundboard？I should slso feel obliged is the length of middie C，8tt．pitoh olarabolla，1fin．\times tin，and the促 I belleve，beling a narrower and longer pipe than the game note in diapason．As my acguaintance with the refer farther back；and but for the palanble ingtruotion lately given by the various contribators，my oase woula have been hopolese．－E．J．D．
［19608］－Bubmerged Foresta．－I should feel any oheap and speoial work on submorged foresta not，where ahould I be most ilkely to see and loarn
＂ 128007.$]$－Watoh Repairing．－In a reply to ＂Second＇s Practioal Watchmaker，＂by＂Aberdeen
Watch Jobber，＂let． 4609 ，is given a method of fattening Watoh Jobber，let． 4000 ，is given a mothao of giatienin Coneva escan when，whe the espociar dor you brt Ithink that one rons a pros riak in thas fiationing them．The way in which I have done them is by taking a atrip of common soit solder mesing a hole in the centre of it so as to admit th pinion sid no more．As the mheels are gonerally al inst，ana as a rule in treating anything harr－idey made straight on the low alde，so as to ralse it，so in fattening the escape－wheel，I rested the wheol on the solder，striking the cross which wanted to be ralsed on on the side genuly；the cross restag pariecilb som in the method which our Abordoen frlend gives us，but perhaps some of our brother pivots would kind ${ }^{\text {and }}$ give
us more information on the anbjeot，and explata the reason thy steol then hard requires to be atrack on the low side to bring it up，and when soft，to be strnck on帾
［12608．］－Bookbinder＇s Press．－Wanted to know the best method lor lapping the holes for th acrows to work in bookbin and ite corresponding lap，and to send it throngh stin． dry hard beech is more than two men can accompurh． Any iastruotionis or notice of any apparatua to gave go mobscristra．
［12600．］－Packing Grapes．－What is the best plan to pack grapen to trave
bloom off them $9 \rightarrow-\mathrm{B}$ ．
［12610．］－Lighting Gas by Eleotrioity．－Oan any render of vars obilge a brother by girng praotioa Hoyal Albert Hell． mame lastant by doctricity，but is it acoomplishod by an nduchon con．and is so，how are the wires insulated and do the pointa from which the spark passod reman
conatantly in the gas flames，or is any mothod used to conmene them then the ges beon lighted ？－A Bosquer．
［19811．］－Moth in Pianoforte－What is the best dampers，do．，in a planolorte ？－GRABAX Yovica．
［12618］－Aotion of Oil on Waves．－In an acount took or a shipwreck which oocurrea reconty，the orew colza oil），on board whloh they took a large quantity of colza oil．The wavea being very boistorous，and being in momentary danger of being swamped，they poared the bove on the waver，which quite caluned themp In fuot hey mogt hare an old story but nerer yot heard the clentifo reaeon y．－Grahiv Yocig．
［12619．］－Drying by Steam．－I have att cd ap some steam pipos yor tha purposen，will hadiaraboer Will any of my fellom rader tall meif superhoasted Wileam will destroy the rubler？
and
［12014．］－Corpulence．－Will seme one kindly inform acquire bulk（fat or flesh）？Is it 10 be done by diot， aro wood for produclog the denired effeot Any infor aro tood for produclag the ionired effech，any ing
mathon on this subjoct will oblyge．－AxII－BANTIMg．
［19615］－Tide Waiters．－What are the qualifica－ ［18816］－IIde Waitors．－What are the qualiace and what are the examinations necessary to andergo ？ A Subsoriser from the beoinuing．
［19616］－Hemlock．The mention of hemlock once anson reminds me ol a paragraph I read a year or two ago in the Graphic，in which it was stated that somo prolessor had been uxperimenting and had fuand it not a poison．Doos any botanical corro spondent remember this slatoment，and is it fulie？Ia Beide gavant mit ahowed that the foriamed William Tell muat be conildered a rather mythical porson－ A．O．G．
［29817．］－Tennesseo．－Oan any of＂our＂readors parnimh any reliable information at to the prospects in Tennesseo，or the adjoining States，for a zether with Pow handred ponnds？Aro farms ohoap？What priool
does produce fotch，and is thoro en ready galo？ does prodi
Emarant．
［12618．］－Exceeaaive Perapiration－I should foel much obliged if ene or more of your readers would toll me of a romedy for oxcoseive perapiration．It ise groat source of annojance
［29619．］－Bad Water．－I think that there is some thing vary delotarious in my pamp wator．Is now potatoo quite of an luky colour And ifs littie of the moter be put into goblot and two toaspoonstal of white brandy be addod it immediately tural to a dark brown．Can any of your numeroas readers
ococarrencea P－IMQEIRER Bugoloy．
［12620．］－Suspended Tramways：－Will some zab acriber inform me whioh of the two susponded tram ways is the most simply constructed，and require lona n bep wheels fxod to bottom of baskets，but lad the wheal arnet and damage a largo quan ity，of the graln－B． ［1202L］－Blaok Dye for Leather．－Will any one inform me
good blaok
inat
［12822］－Labour Saving Machines．－A oabinet manufacturer，employing come 16 to 20 hands，wishes to of tha most nsetul laboar saring machinea for the work shop where steam is not praoticable．He is informo that in many of the workgiops in sootland very neef machines are employed，more espeoinlly for veneering tco－8．V，Dublí
［12828．］－Lampblack－Can any reader describe or give a sketch of the arrangements that are neceseary fo the manufactare of impolack on summercial soal from tar，pltch，de．？What weight of
for one ton of lampbiack ？－Fr．Soor．
［19294］－Stufing Reptiles．－Will some brother romder hialy roll me how to atur a boa congtriotor＇ and shark＇s akla？They aro both driod．Neo how to
［12625］－Heat Bumpe．－Would some one inform me of a good recipe for hoat bumps？I have tried two boo fioot The ohild lo threg I oould think of，and all to there appears tyenty of theso bampsin in aight and some as large as a threepenny piece，rery onsightiy and irritable ；we are irequently disturbed four or ave hour in a aigh－D．
［12328．］－Indiarubber Models．－Will any reader of the Mecranio kindly give information on the followin sabject．I want to make an indiarabber model whici shail retain its elastioity whon made．Something，a．p． indiarnber？o How llanid mast it be ？ a Yust any thing be mixed with it？ 4 What substance and in what proportion ？5．Of what must the moulde be mede，will plaster of Parif do or mast it be some metal，and it a of what kind ？6．By what process mast the model be set 7 ．Is by hest，what degree and how procured ？
I？excess above or deficioney from the prescribed degree，what would be the offect 9－Cuatio
［12627．］－Oarbolio Aold as a Halr Dye．－Wu
 ollou apphea ho car Does it darten the akin of reve her －ator with carbolio adid altor his hair hat turnod oolour，and does he uec it overy time he washea－
［12823．］－Ruaty Iron Castinge．－I have 10 or 18 hnadredwelght of amall castings，nuob as pinione
bearings，to．，deoply rustod，osn I doan them with auld so as to get them paintod ？－PaDDy．
［12829．］－Skeleton Flowern．－Wil any rendor o ourn＂Kindy toll mo how to propare＂akaloton flowers J．B．
［19680．］－Magnetiam．I have a astrong electro－mag netio insohine of the usual horso－ahoo form Fith revilv－ ing oflinders or coils or wire．I ased it for rheomakem Can if sae it for any
［12831．］－Fizing the Bloom of Scarlet Run－ norn some alaks on which here have been as usay as thirk
blooms，ull of which hare fallon ori lustead of coming
［12632］－Photochrome．－What is the natare and composition of photuchrume，
［12639］－Dried Yeast．－Will any of yonr cheraical corrospondeuts inform me what ingrodiont is necessary o be added to couprossed yeart to insure itr keepink KIte＇s presses，bat iud it will not keep often mora than ell an article whlich keeps as wall as the Gurnan yesst There is no doubt zome chomical is added to insure
［19334．］－Photography．－Can＂Photo．Bristollien photugraph on porcelatio or opal mo how to prodace a known velicle or medium for an artici to work them ap in watercolour with ：－Aहт－Peoto．
[19630.]-Trapaforring Pencil Drauring on Paper to Other Paper. - Will John Hopking or some one else, give me lastruotions how to tranglar a pancil drawing on papar to other paper, and the sart printed impremaion or engravieg on papar ou to other paper ${ }^{\text {ph-T. }}$ H.
[188sa]-Enlarging Photographe, I ohall be with regard to the above, asaniting him that daykifit will anermar my purpose equally an wall as the magnodim, and at the same time 1 nm anxions to go to wark as cheaply as poesible.-Iudvataroua WiLn

[18887.] -Optios.-Can any of your namerous mathematicians or etndents of option kindly inform mo how to work the following:-At what dictanoe from a mark fin. square shall 1 etand so that it may appear of the same | sizeas |
| :--- |
| -Oprich |

[19898]-Ficaes in Dorp-TWill eay brother reador inform me if one toaepoond al of sulphrarous aoid mised jarions to his skin or hair, as I find that aeld so diliatod will kill foes almost ingtantly? -Codmeryman.
[12890.]-Worms in Pony.- What is the beat thing to divo a pery that is troubled with wormes All the sood ho cets seopme in do him but itthe Rood. Could I give him anythiag with his food to deatroy thom? They appear to bo aboat 8 in . long.-Countriniak.
[18840.]-Ioe.-Can any of "ours" give a recipe for a

nseni.]-Sticklebackes-Cen any ozo kindly inform me the bertimay to desiroy aticklebacks without destroying the other Ash 2-Boatmax.

OHESS

Aus commanications infended for this department to be addreased to J. W. AbBotT, 7, Claremont-place, Longhboroagh-roed, Brixton, B.W.

A match is boing arranged between Steinitz and Zakartort, the prizes beling £20 for the winner and tio for the losor. The winner of the tirat ueven games to be the viction, drawn games not conning. The toarnog which reanited in a game for esch, and three drawn eanes, imparts additional epeculation to the present contest, and the resentit will be watohed with intarnet by ebees playars in all parts of the world.

Problem X.-By H. Meyer. Black.

White to play and mato in two moves.
"A In fature the solutions to orr;pxoblems will be Than a 1
T. A. HuxD.-Thanks for the "Knight's Tour." but we have no apace for the same; mon
tions are only inferesting to a few
R. B. and A. Cumumaros.-Tbe Bleok King has two
 \%O ER E B W. Arncr.- You are not the only oorrespondant who has Pley that you and chere anggest is-

$$
\text { (1) } \frac{R \text { to } Q \text { B } \theta}{P \text { tases } B} \text { (2) } \frac{B \text { to } K B B}{Q \text { to } K l ~ s q . ~}
$$

How do you propose to mate next move
A. L. (Lisooln).- You chall be informed of the reatilt. G. Harwood.-A very neat litle problem; it ahall appoar in its turn.

Sea-Serpenta.-According to Nature, the Soath Afrioun Macenm, Cape Town, reeently received a speciment of the Ribban filh (cumnoterus) iftoon toet long rithoat the talu. It appoers that thin hish is known to distant inland fehermen as boing forty feet long, and from ite slender ahape and snate-like morement is probably the "sea-serpent" of late jears so minutely described by navigators. From ita hemd there is erected a plume of flexible rose-coloared spines, and from hend to tail along its back there is a conspicanas mane-like fin. Its general colour is like burnished gilver. The oye is large and silvery, and the prodle of the head comports well with that of the hores. Tue specimen could not be presorred, but there are two amaller apecimens in the Maseam.

ANSWERS TO OORRESPONDENTS.

** All oommunleations should bo addrasced to the Cogent Garden, W.C.

The following are the inititity tive, of letters so Hand eleowhere:-
W. L. Breare.-Rev. G. M. M'Oord.-E. C. Fhimips.-Frank.-James Pattiok.-E. Wood W. Kuight.-P -George Jarmain.-Henry Northcote.-W. CrispeJ. K. P.-Thomas Flotcber. Wm. Wakeman.-James Polman.-P. and L. J. K. R.-E. B. W.-Obip of the Old Block.-Jnok of All Truden_A Berlia Sabscriber. -F. Porki-Rev. F. Gilbert White- Edwerd Monld A. Cbeaterhom.-James Mshins.-E Jones.-C. H.
 Calnis.-Thomas Fletcher. J. J. H.-E. P. HarkC. B. A-J. B. Wariog.- E. Sutcliffe.-James Eazard. H. F. Coulsan James Ward.-C. H. P.-Rev. James Henry-World Wide,-Clook Maker-Sun 8pots.-
J. T. M.-J. H. Oachpole-C. B. Turner.-American Sabscriber. - Westward Hol-Young AstronomarJ. Oarlion, R, J. H.-J. G. Withers,-G. L. C.-8cal Bymea-One of a Trade.-J. H. E.-A. M. C.-Kent.-
O. Coleby. - Whitesmith.-F.B.A.S. B. Capper.Three Years' Subecriber, - Village Blackumith.-Over-looker.-J. Brumby.-8alop.-J. Arnowamith.-James Beardsley.-Ontario-James P. Browith.-J. B. H.W. G. T.-Ontre Mer.-St. Orignin.-James Daw.-
The Hermonions Blacksmith. - W. J. Hodgson.-Soda The Harmonions Blacksmith.-W. J. Hodgson. - Soda -George Knott.- Epilepsy.-The Buffulk Amateur.A Buboc.-J. Grifith.-Herbert Jaokson.-Aguariven. Major.-T. Grimih.-Gienbert Jaokson.-Equariam. Wm. Tryer.-J. M. Tyro.-Haratia-Sarvejor.-J. G. Matthews-Paete.-Ayna-Amatanr-J. G. NW. Georga-J. H. Gilbert. X.-Ret-Tat.-E. O. Bim-mands.-Vandyke.-W. Hatfied.-R. A. Prootor.-C. Norris.-E. L. G.-Odgen and Gibis.-Fiddler,-Sting.-L. H. O.-Simplex.-James Murtyn.-S. Cas-
ning.-Inquirer.-J. W. Rhodes-Alfred ning.-Inquirer.-J. R. Rhodes-Artilery Captsin.-Mil.-L. W. D.-F. R.-J. W. Fennell.-R. Henry.-Reckoner.-Busy B.-C. iN. Abbott.-A Mental Suf-ferer.-Thom.-A. B. W.-W. S. B.-Salmon Sons nnd Ritchie.-A Bnokkeeper.-R. A. H.-Aries.-Com.
moder.- E. T. Gravs.- Tawee.- A. C. L_-Oomeh.
 Bobo.-Artillery Gunner.-Beeteoper.-V. B.-A. L. T. E.-T. Hucklebridge-J. K. P.-James Hicks.Taok of Ail Tradek-W. H. H. C.
Veritas, W. F. Dawbon, Canary, and Gold Leaf, are requested to oonsult bacte numbers.
qudscape Housg. - Your inquiry about the earth being reoently in the tail of a comet Fould possiblr lead to an idite controversy. If jou wish to excite discusgion
why not sugrest something more practical and of overy-day utillity
H. A. G.- Your query is an advortisement.
. Wriniaxs. Yon will Ind information on the Whitworth scholarships on p. 258 of Vol. XIV., No. 348; but and Art Department, Bouth Kensington. The examl. nation papers of the Science and Art Department are to be obtained from the same source, by addressing a letter to the socratary.
Erratus.-In letter 4579, p. 188 , "Sucram" intended to say that no glase should be put on for the frat time of comminications which oan only appear as advertic menta to hand from W. Karalate, Young Telegraphint, Masical 8ubeoriber, A. W. H., A. X. Z., L. Dance.
Crime-It is not lawful.
C. C. O., T. M. P., E. O. \&. Z., E. Gardzer, and Tinker,

J. Bharig, -Na $O 8$ comber if you vary the invention the matter is different. We have no more 500 m for replies to the query ans wered by you
Bremparay Subscribre.-Apply to the chief of the
department in the town in which you reaide department in the town in which you reaide. selling value.
O. Towncer. The furnace desoribed in this number by "Oatgenious Whitesmith" will perhaps meet your requirements.
H. Mexz.- Yearly subseription, Inoleding postage to Prussia, 17s. 4d. A reduction is made on such paper money may be sent T. A."" im a letter, gay he "annnot comply with reckoning in the genealogy of Shem and the lires of Abraham, Iseac, and Jacob, because he has not the Soptuecing and our veraion boing so notorionaly incorreot is "T. A." had the 8optragint, and was able to satiafy "E. L. G."" "ours"
manax.- We have given the process of galvanisingiron in several places in back numbers. The articles to be galranised are cleansed by dipping into a bath o diluted salphuric acld, sooured with sand, and im morsed in malted zinc, which should have a tolerably thick covering of sal ammoniac. It would seem that yon have not had sufficient sal ammoniac, or the heat has not been high enongh to prevent the article you fall, write.
you fant, wribe
aables are as rillic.-The lengthg of the Atlantie knots; the 1806, 1,852 knote 1850 Onble onntains 1,00 tains from Breat to 8. Pierre, $\mathbf{8 , 5 8 4}$ knots; and from 8. Pierre to Duxbarg, 759. 100 knote are equivalont to 1152840 miles.

Sanuel Syither.-Next week

R. A. Proctor.-Nest week. On account of what is cat Beturderg Hulidey wo had 10 prepare for press 0. E., Jasies L:
edrertivercents. See "Nutes to Corresp jadents."

Hr. Clark.-Let there be no aubterfage. Will 302 or any professional phrenologist acoept the ohnilenge auch the Was 2 the merile af ibe fapolry
E. H. THoxus-The best way is to write on white peper with bleck ink Rodink on white paper is not mocol, W. G.-W.e oan blad yonr velumen in cloth at bell-eonown par volume.

Terms of Sabscription,

PATABLE IN ADVANCR

5s. 64. Yor SIx Months and 11s. for Twelve Morthe, Peet Pree to any part of the United Kingdo $=$
Volames V., VI, VII., VILI, IX, X., XL, XII, XIIL, asd XIV. bomid in aloth, 26. each.

Indexes for each hald-rearily voluma, To to Fol I (except Volk. II., V., and X.) Inclanive,
Free, 2$\}$. Oases for Binding, 1s. 64, each.
** Subscribers are requasted to order Canes and Vols through their bookseliers, and not to send direot. The new regulations of the Post-afice prevent their treat
mifsion throngh the Poot. mifsion throngh the Poat.

To Amerioan and Belgian Subsoribers.

 when Amerioan and Belgian 8ubsoribers, copectally when renewing their subscriptiono, the pansiculerdy of the Pont-omice Order, and the exaot amoemt for which it is mado peyable.Dubsoribers in the United Etaten end Bolgime can to applied with the ENGLIBH MKOHANIC post ireo trom this Offico, for the sum of 18s. (8 dols. 25 c Eold, at 15fr. 60c.) per annam, payable in adrance.
The remittance should be made by International Post-onioc Ordor. Back numbers oamnot be aeot by tho ordinary newspaper post, but mast be reen
the rate of 5 d . oach to cover extra postage.

Notice to Subscribers.

Euberibers meoivtag thetr covies direot frem the office, are regneated to observe that the last namber of the term for whioh thotr Bubscription in paia. Wrll be forwarded to them in a colowred wrapper, is an insime
tion that a fresh remitance is nocesemry, if it be deaired to cortinue the Sabseription.

Charges for Advertising.

ATL ADVERTLBEMENTS (ezoept iat the Frohange
Colimp), per line of Eight Words.
ry minalime 0

No advertisement inserted for lese then iss
Larger Advertisementa Contracted for.
ADVERTIBEMENTS in EXCHANGE COLUZN fos Bixteen Words.

Front Page Adverticements 9L. per lime. Tho madress is inoloded as part of the adrartisenacel and charged for.
Tudvartisemonts to ensure incertion in the following Erifiat Tueeday to ensure incertion in the following Erifayt namber.

OUR EXOHANGE OOLUMM.
Reorusrer Adsentionments ace ofterget at the rety of Bteponce for the frot Biotcon Worle, and Elopence for overy smeoceling Pipht Werda.
G. Cane sha Luceat Marnay (espood as now) ; Lor Miscroscege-
 MovL, Guornsey.
A capital oombined amatour LATEF and Lapldary foe
 Bioycle (88in.). cost $\mathbf{e 8}$; for Eagy Chair not of lem Valine than RS. -JAXES Clasize, manager for the Cheoterton Gxi SEwing Macking, strong, lookgtitah (cost 210) Harmonina waoted in exchange,-il. Morme, Pbut ogang Haddersticild
A Filuable Frewor Horw, with eloven arcoles (vime as 94): Tor a mpod Marp or Bnes
Crowborough, Tuabridgo Wells.
Porty-six WATER OOLOURS (oost 21 103); fora Mineo
Iron 4-ton Lipting Oxas, with palleys, blookes eod
 Corner and Clabionertic; for Rod and Tuekjo; oc caything oeotal-A. B., 18, Brlego-rond Wek, Beterien
"REMARKABLE FERY REMARKABLE INDERD," are th Curiog and invigoraling durlas bot weathor. Sold by all Cbomistatian aed the Mater, 118, Halborm-nill, London.-(ADFI.
ThE "Butling NEwn," No. 917. Aogurr \& Cowtadrs

 Concha
KRnR Conduc
tural

Ar
1

Thy Emplish Giffechanit
 AKD

WORLD OF SCIGNCE AND ART.

FRIDAY, AUGUST 16, 1872.

ARTIOLES.

THE EQUATOREAL-ITS USE AND ADJUSTMENTS.

By a fandow of the royal abthoxomical socixty. GOONER or later (and, as a rule, sooner rather than later) every possensor of a telescope who employs it for the purpose of celestial observation finds out the discomfort, annoyance, and impracticability of a mounting which, like the ordinary tripod stand, admits only of motions in a vertical and a horizontal direction. Such a mounting in effect limits him to the employment of low powers, prevents him from recognising a star or other heavenly body from a catalogne, and absolutely precludes him from any form of miarometrical measurement, or from even the approximate determination of the place of any unbnown body in the heavens; so that he ultimately discovers that, for anything like systematio work, an equatoreal, in some shape, is absolutely indispensable. Moreover, this is true concerning every description of telescope (refleoting or refracting) in use; the kind of mounting of which we are speaking boing alike applicable to, and necessary for, the efficienoy of instruments of the Galilean,

Aohromatic, Newtonian, Hersohelian, Gregorian, and Cassegrainian forms. In the interest, then, of those who are not alreedy familiar with the nature of an equatorial mounting, we propose to explain, in the first place, the principles on whioh its action depends, and we shall then go on, in the next, to describe one of the most nsual forms in which it is constructed, and to give such detailed instructions for its adjustment and use as shall enable the possessors of telescopes thus mounted (who may yet not be sufficiently familiar with the theory of astronomioal instraments to adjust them with facility) to regulate and employ them in the most efficient manner. Here, as in our preliminary explanation, we shall endeavour to employ the most simple language at our command, and systematically sacrifice any mere grace of diction to our leading objeot of making ourselves apprehensible to those, whose acquaintance with the subject has jet, in effect, to be made.
For the parpose, then, of the exposition whioh we have proponed to offor, it will be necessary to begin at the very beginning, and to recall some of the mont rndimentary astronomical facts to the recolleotion of the atndent. Let us, therefore, conceive ourselves to be placed upon a very small island in the midet of the sea, in some northern latitude; let us further imagine the evening to be sufficiently fal advancod for stars to be visible, and let us try to realise the espeoteale which will be presented to nE .

At the first glance we shall notice that the sea and sky do not, as it were, shade off into each other, but form all round a hard, sharp, welldefined line, in point of fact a cirale, of whioh the eye of the obeerver fores the centra. This dirole, pretty
evidently, outs the heavens into two equal hemispheres, one of whioh above us, is visible ; while the other, beneath our feet, cannot be seen. We will suppose, too, that we know the point of the horizon above whioh the san is situated at apparent noon. This will, of course, be the sonth. (Further on we shall reiterste directions, already given in these columns, for finding this south point with some considerable degree of accuracy, but at present we will imagine it to be

and remaining a very short time above the horizon; those which rise further toward the east, a larger regment of a larger cirolo, and remaining longer visible; and so on, until wo come to stars which rise due east, Which will be found to treval over a semioircle, and set exaotly in the west just 12 hours after the time of their rising. If, now, we consider those whioh rise to the north of east, we phall observe that they desoribe the larger part of

mown.) Facing, now, towards the soath, we shall notice stars in the western part of the celeatial concave, gradually disappearing beneath the horisom, while others previously invisible will rise in the east. Forthermore, if we can watoh through any considerable interval of time it will be seen that every star eeems to desoribe more or less of a cirale in the aky; bat that these ciroles are not all of the same size, those stars, for example, whioh rice very little to tho east of south decoribing a very tmall eegment of a circle of certain dise,
visible for more than 12 hours (the circles themselves, however, growing smaller, inasmuch as the greatest of all are those desoribed by stars whi h rise precisely in the east), and 80 on, until we shas find some which never disappear bolow our horizon at all, bat desoribe their entire diarnal circular path above it, round one common point which is called the pole of the heavens. There is no visible star ersetly on this point, bat there is one sufficiently near it in our northern heavens to jumtify its appallation of the Pole Star. Its posi-
tion may be reoognised by reference to the map on p. 25 of our tenth volnme. Moreover, we relative positions in the sky, bat revolve as thongh they were attached to the internal surface of a vast sphere, which itself rotates on an axis passing throngh the pole just apoken of and an opposite and, of course, invisible one, beneath the horizon. Farthermore, a little attention will show us that there is a point in the sky at which each star ceases to ascend and begins to descend, and it will not be very difficult to discover that a semicircle drawn perpendicnlar to the horizon, aul passing through its north and south pnints, will be that upon which stars will, one and all, reach their highest points, or, as it is technically called, culminate. This line is called the Meridian (from the Latin word meridies, mid-day, becange at noon the sun is upon it). It is further selferident that it mast pass throngh the poles and also through the point immediatcly over the observer's head, or, as it is called, the zenith. It determination, as we shall hereafter seo, is a matter of the highest importance.

Before proceeding any farther, it will, perhans, be as well if we endeavour to realise the description and definitions whioh we have jast given by the aid of a figare.

In our first figare. then. 0 represents our imaginary observer and 8 E N his horizon, of which S is the south point. E the east, and N the north point (the west point being obviously behind E , as seen in our sketch). Then $a a^{\prime}$ will represent the path of a star in the southern part of the sky from its rising, at a, to its culmination, or transit, at a'; after passing which it will, of course, begin to descend and set as far from S on the other side of a^{\prime} as it rose on this. b represents a star rising nearer to the east, and so on to E, which shows one which rises precisely in the east, reaches \nsubseteq (or arrives at the meridina) 6 hours afterwards, and sets, at the expiration of another 6 hours, exactly in the west point of the horizon. As we proceed northwards, $d, d^{\prime}, e, c^{\prime \prime}$, and $f, f^{\prime \prime}$, may stand for the apparent diurnal circles described in the sky, by stars nearer and nearer to the pole. The visible pole, or end of the axis, about which the celestial sphere ecems
to rotate, is seen at P; the other extremity of sach axis P' being, of course, invisible ; and if we imagine a huge sheet of metal to pass through the earth's equator, $a q$, and to be prociuceal outwardly, until it onts the heavens, it will trace ont the great circle, $\mathbb{E}, \mathrm{E}, \mathbf{Q}$, distant, of course, at all points 90°, or the quarter of a circie, from the points P and P^{\prime}. We may add that Z in sthe zenith, or point vertically over the observer's head, and N the nadir, or that preciaely beancath his feet.
Before dismissing this frime trear our conside. ration, it will be as wofl to peove from it a theorem of capital importanes is the consideration of the principle of the equareal. We mean heavens ubove the bcimon is always equal to the latitude of the plaee alservation. For, let x, q, be the earth's egratres, and 0 the observer's a, q, be the earthrean and 0 the observer's his latitude or north of the equator.
Now, all right angas (a fact of which the veriest ty 70 may acare himself by placing a pencil square to the anface of a slate, and viewing it from varicus positions), and, therefore, in our figure $\mathbb{E}, \mathrm{E}_{\mathrm{y}} \mathrm{P}=\mathrm{Z} E \mathrm{~N}$. Take away the part common to both Z E P, and the remainder E E Z = the romainder PEN. Bat E E Z (which is evidently a E O) is the latitude of the observer, and PEN is the elevation of the pole P above the horizon. Therefore the elevation of the pole at any given place is always equal to the latitude. Q E D. Aseaming the stadent, then, to have thoroughly familiarised himself with the nature of the appareat diarnal motion of the
celestial vault, let ns proceed to examine the celestial vault, let us proceed to examine the
condition of any one with reapect to it, who is vided with a telescope mounted on a pillar and claw stand. Fig. 2 has been drawn to illustrate this.
A very brief stady of it will eaffice to show that, while the apparent paths of the stars a, a^{\prime}; z, b^{\prime}, sc., are inclined to the horizon at a detinite
angle (that of the co-latitude, or 90°-latitude), and angle (that of the 00 -latitude, or $90^{\circ}-$ latitude), and
the axis of rotation of thesphere $P P^{\prime}$ has theincli. nation P N to it ; the telescope rotates round the vertical axis T, A, and cuts out the circles $w x$, $y z$, \&u, in the hesvens, parallel to the horizon, intersceting those of the stars' paths at two
points ouly (such as u or v, and their correspondpoints ouly (such as u or v, and their correspond-
ing ones on the other side of the meridian). Hence
it will be seen that (save at the time of its culmination) a star mast always be travelling obliquely through the field of an instrument thas mounted. so that, in order to follow it, tion simaltaneous motions are required, vertical and horizontal ; or as they are teohnically called, in altitude and azimath. Annoying as this is with low powers, and in the observation of large objects like the Sun or Moon, it becomes almost insufferable and intolerable when we are examining faint stars with a high power ; while, as we have previously intimated at the beginning of this essay, it practically precludes the observer from the identification of a star from a catalogue; or from any form of micrometrical measurement.
The remedy, however, will raalily suggest itself to any one who has considered our last figure with the smallest attention. It is indicated in our sketch below; in which it will be at once seen that all we have done is to make the principal axis of rotation of the telescope T A coincille with the aris of rotation of the heavens; bo
that, if we now set it unon ins given star, by turning the telescope ronnd such axis, we aan, by a single motion, follow that star from its rising to its setting. (We hera ignore the effeat of refraction as immaterial to our present purpose.) In fact, we have converted our telescope into a rude form of Equatoneal.
We have, however, gained but one solitary advantage attendant on an equatorial mounting, that of following certain stars by a single motion of the telescope. We hava said certain stars advisedly, because it must, at once strike the most careless observer of onr third figure that it would be absolutely impossiblo, in the position of the telescope there delineated, to turn it upon any vitat at all near the pole. Preserving then, the vital principle of the coincidence of the principal axis of rotation of our instrament with that of the heavens, let us see how our primitive mounting can be modified so as to enable us to reach every part of the visible hemisphere ; and, incidentally, to set it, by the aid of certain co-ordinates, upon any object contained in a list or citalogue.
Now, the object of these papers being wholly practical, we shall not occupy needless space by the delineation and description of the various shapes which the equatoreal has assumed, but shall, at once, proceed to describe the German or Fraunhofer form of it. We select this, since it is the one most commonly emploved to carry all telescopes, such as are erdinarily found in the possession of amateurs ; and as, morenver, our explanation of its construction and detailed instructions for its adjustment and nse, will, if once fairly mastered, enable the student to deal satisfactorily with any kind of equatorial mounting whick may come nander his notice. It is shown in Fig. 4
Here we see the telescope T supported by a cradle E E', and thus immorably fixed to the end of the declination axis D, to the other extremity of which the declination circle DC^{\prime} is aloo attached. As this axis terminates in cylindricel pivots whieh rotate in tro Y's (one of which is chown at Y, and the other is hidden behind the dechination circle in our drawing), it will be seen that the telescope and circle must move together. The Y 's, as inspection of the figure will show. are carried by or form part of the framework $G G$, whieh is itsed attached at right angles to the poler axis P; the principal axis of rotation of the inctremeat, the extrencities of which of course must puastion the poles of the heavens. Means for adproving the declination axis to a small extent are poler axis are covered by the hour circle- H C in our fagare. This bowr circle, which is divided right round to XXIV. hnnrs, is read hy the aid of the vernier $h v$; the vernier being adjastable by cormangement shown at ij. It shonld, on telessope is aconrathly in the meridian, according as it is placed to the west or east of the polar axis. In our sketch it will be noticed that we have
shown the telescope to the west of that axie, and the declination circle, of course, to the east of it. The declination circle D C'-is almost always divided into 4 quadrants of 90° each, starting from the equator as their iuitial points: so that when the optioal axis of the telescope is directed to the
equator, the verniers $d v$ and $d^{\prime} v^{\prime}$ read 0°. The equator, the verniers $d v$ and $d^{\prime} v^{\prime}$ read O^{0}. The
verniers referred to are supported br, and adjastable on, a framework, which the dectination itself covers in the ligure. SS is the cast-iron stand supporting the working parts of the equatoreal ;
a pillar, according as the latter is formed of brick or stone, or of iron. The rest of the mornting is almost invariably constricted of gan-metal. The edges of the circles D O and H C are racked with a screw tool, and into the worm-wheels thas generated work endless screws $a j, b c b^{\prime}$ by which slow motions are given in right ascension and declination, respectively. These screws are thrown in and out of gear by a simple arrangement at c and m, which it is scarcely necessary here to describe. $C^{\prime \prime}$ is a counterpoise, which is shifted when a micrometer or analagons apparstus is attached to the telescope. F is, of course, the finder, and L a little lamp swinging in gimbals. This reflects light through a hole out in the side of a telescope on to a perforated mirror, placed diagonally in it, which itself casts the light down the tabe, and so illuminates the wires of the micrometer or transit еуеріесь.

An eqristoreal mounted as completely as the one we have attempted to delineate and describe would almost certainly have a clockwork movement to drive it in opposition to the diarnal motion of the earth, and so to keep a star apparently immovable in the field of view; but we hase omitted a clock in our sketch to aroid needlesa complexity. In practice, the motion of such 2 clock would be controlled by a conical pendulam, in which the friction of an arrangement anslogons to the governor of a steam engine, against the inside of a cone, sapplies the regalating power. An equable motion thas obtained wonld be commanicated by light shafting to the endless screw $a . j$; and so the hour circle H C (and with it. obviously, the whole instrument) cansed to rotate at preciscly the same rate as the earth, but in an opposite direction. We shall presently speak, too, of a spirit-level, bat as every one who is likely to use our directions for the employment and adjustment of the equatoresl must almost certainly be familiar with this in some form, we abstain from its illustration and description. It only remains, then, that we ehould formally exemplify the meaning of the terms right ascension and declination, before proceeding to the immediate object of thesepapers; that of explaining the best and most available mode of getting a telescope equatorially monnted in correct adjustment with reference to the heavens.
Obvionsly, we mast have the means of identi-
fying a star; and for this purpose tco co-erdi. fying a star; and for this parpose tuo co-ordi-

 figure) in a fixed circle thenein. ${ }^{\text {Pa}}$, every one whe har poun . book on inclined $23^{\circ} 977^{\prime}$ from a peront and that, consequentily, phenit must form that angle with the equator, or (as it is called when projected on the concave face of the heareas) equinoctial. The immediate effect of this in to cause the apparent annual path of the Sum through the heavens, the ecliptic, to cat the equinoctial in two parts, 180°, or 12 hours, apart. The Sun is on the equator on the 21st of March after which he continues to travel northward until the 21 st of June, when he attains his greatest distance $23^{3} 27^{\prime}$ north of it ; after this he descend again, once more crosses the equinoctial on the 21st of September, travels down $23^{\circ} 27$ sonth by the 21st of December, begins to ascend again, and so on. Now, the point of the equator, which the ecliptic crosses on March 21, is called the frut point of Aries; and from this right asoension is reckoned eastivard on the equinoctial. Perhaps the simplest detinition of right ascension that we oan give is, that it is the interval in time which elapses between the transit of this first point of Aries over the meridian of any given place, and the arrival of the body whose R. A. is to be determined on the same meridisn. Declination is the distance of a star, or other heavenly body, north or south of the equinoctial ; for example, in our inst figure $E d$ would be the north declination of a star d^{\prime}, while $\mathbb{E E} a^{\prime}$ would be the sozth deolina tion of another one a^{\prime}. In many fixed observataries north polar distance is employed in liee of declination as a second co-ordinato; bat, as the Nautical Almanac uses declination, and as, moreover, all the chief popalar lists of double atars, 太ce. give the element in this form, we shall, ourselves, invariably use it in our subsequent exposition. Should the student have access to a oelestial globe, reference to it will materially facilitate the understanding of what we have beenendeavouring to explain.
(To be continaod.)

THE MUSEUMS OF LONDON.-II.

 Socta Kengingtox Mugeda (1).THe Insenm is under the direction of the mittee of Conncil on Education, and the chief offices of the department adjoin the Museum. It is situated at South Kensington, near the site of the last great International Exhibition. The Maseum is strictly educational, and is one of the most popnlar of similar institutions in the metro polis. This will be seen from the following statistics of the number of visitors. -In 1857 (the first year of opening) the number was
268,291 ; in 1862 (the year of the Exhibition), 1,241.369, the highest yearly total yet attained; 646,516 in 1867 ; $1,014,849$ in 1870 ; and in the first six months of the present year 710,111; a total up to that time from the opening (June 22nd, 1857) of $12,355,470$.
The nuclens of the Maseam was a collection of objects of art in conneation with the schools of art hold in Marlborough House, about the year 1852. In 1857 the collection was removed to temporary buildinge at South Kensington, popa larly known ss the " Brompton boilers." This
temporary bailding is in course of being replaced by a permanent structure, parts of which, a completed, are successively thrown open. The temporary arrangement, as might be expected, was inadequate and inconvenient, but the new buildings are large, airy, well lighted, and adapted for the purposes for which they are intended. When completed, and the old buildings removed, the South Kensington Museum will take its place amongst the architectural features of London. In rooms connected with the Maseum are the National Art Training Schools-the various work ing rooms of which are open to publio inspection on Satnrdays from 2 p.m. till dusk-and the Naval Sohool; a new block of buildings for a Sciemes Naval School is now nearky completed. The new buildinge are all of bright red brick, which shows very conspicuously in com parison with the neighbouring stone and piantered buildings.
Turning to the interior we find that the whole of the collections fall into two divisions; those belonping to the art department comprising paintings, scalptares, architectural models, \&c. Which ocenpy the mally of the building, and
 of theso disriacione is arorary and reading-rcom. Not cany is theme a permanent collection exhibitad in the Yinseam but a special feature consists in haring emally on view loan exhibitions of varioun ela of objects, an excellent means of making the pablic acquainted with the art
treasures which are scattered about the country in the possessina of private individuals. As ex amples of these loan exhibitions we might mertion those of fans, the Doke of Edinburgh's collection during his voyage, seheal furniture, anoient and modern jewellery, and musical instruments : the last two at present on view.

On Mondays, Tuesdays, and Saturdays the Museum is open free from 10 a.m. till $10 \mathrm{p} . \mathrm{m}$. Wednesdays, Thursdays, and Fridays are set apart as students days, when certain privilegcs are granted to persons nishing to make copies of the objeots or paintings; the public are admitted on payment of sixpence. It may be as well to mention, persons who have obtained a certificate for drawing in the second stage, or a science certificate in the advanced stage, osn, by application to the Secretary of the Science and Art Department, obtain a ticket which will insnre them free admission to the Museum on all days when it is open, and also to the two libraries. On students' days the closing time is 4,5 , or 6 p.m., according to the season. Daring the whole of Easter week, Whit week, and Christmas week the Musenm is open free till 10 p.m., and the number of visitors at each of these periods is very considerable.
Entering the boilding by the principal entrance in Cromwell-road, we first come into the temporary portion from which a corridor on either hand leads to the larger rooms. Looking through the window facing the entrance the new front of the permanent building may be seen. Ifet na leave the art collections for the present and turn to the left to the educational series. English and German domestio life of the seventeenth and eighteenth centaries are strangely portrayod in two ceses in this entrance hall, one being a large
doll's house withont a front, plentifully stocked With miniature furniture and ntensila, which was
the reign of Queen Anne ; the other being a somewhat similar toy-house made at Nuremburg in the seventeenth century. Near the window in the hall one of the daily reports and oharts of the meteorological offioe is hung, and the observations of temperature and pressure are taken at the Musenm.
The corridor is lined on both siden with bookcases, filled with modern volumes on the varions subjecte included under general edncation. The reading-room opens on the left, and is acocseible to teachers, sohool manamers, etndents with tickets, and sabscribera. The works inoluded are, as a rale, given by the varions pablishing firms, together with educational periodicals. New additions aro for a short time placed on an open table in the room, after that they are consigned to the various cases; to obtain them then it is necesaary to flll ap a printed form. Farther on, the corridor contains specimens of sohool desks and seats, and a few cases illustrating the late Professor Henslow's method of teaching elementary botany. On the wall, on the same side, are large botanical diagrams and specimens with description, a very useful adjanct to the textbook; the wall on the other side is occupied by drawing models, and amongst other things a collection of the postage stamps of the British Empire. A small passage on the left contains examples of the weights and measures of several Earopean conntries, and a series of metrical weights and measures, as here shown, in a school wonld be the best means of making the soholars familiar with the advantages and applications of that system, and would enable them to compare specimen of a somewhat strange educational apparatus for aesisting in the grammatical constrnction of sentences for tramelation into another language, the principal being that with the hnowledse of a faw words a large number of sentenves can be constructed. It was brought ont abeat seven or eight years ago noder the name of the "Metabolical Machine," and consists of a oertain number of cabes, haring a different word on each of their facos, those en the same cube being interahangeable. They are arranged in separate divisions of a box with glass front, so that by a can fall over and exhibit a fresh face.
In the rooms on the right-bnnd side of the main corridor the bulk of the educational collections will be found. The end room contains a collection of educational appliances from Sweden and of school harmoniams; and on the wall a case, also, is well worthy of attention. It containg the ekeleton of a fish (cod), bird (dack), and mammal (cat), taken to pieces and arranged and numbered so as to show the homology of the various portions. 4 aimilar case has reoently been placed in the geological musenm, and we need scarcely point ant the value of suoh (umfortanately unusual) epecimens to the stadent of comparative anatomy. In the succeeding room is a series of geographical acoessories, maps (amongst which we would direct attention to Sydow's beautiful relief maps), globes (terrestrial and astronomical), topographical models, \&o. At the base of one of the windowr, with mirrors set so as to properly reflect the light, is a photograph of the moon, arranged as a stereoscopic objec by Dr. De La Rne, and presented by him, forming a highly interesting illustration of the telescopic appearance of our satellite. Among a series of mathematical, optical, and meteorological instra ments in the wall cases will be found the identi cal quadrant which the famons Capt. Cook employed in his voyage round the world. The floor cases contain small collections of shells mineralogical specimens, and geological cabinets and one has a number of flint implements, and casts of engravings on horn, made by the cave men in the sonth of France during the reindeer period. These floor cases are not the usual fiat or pearly flat ones, so ormmonly seen, but are higher, narrower, and have one or more shelves filled in, thus greatly economising ground space. In another of the cases will be seen a graphical representation of the principles of perspective the figure on the picture plane (represented by an upright piece of glass) is shown to be produced by the intersection of linen of sight (represented by cotton threads) from the varions parte of the object (models of bridges, \&ec.) to the observer's eye. The next room contains several very complete series of instraments used in the majority of chemical and electrical experiments, and also a series of working models of varions simple machines and pieces of mechanism. In a small
of wheels intricately fitted together, and with three vertical rows of wheels in the front, having the digits marked in order round their ciroam ference. This is Babbago's famous osloulating machine, exhibitod by the Board of Works. Near to this are a namber of small pieoes of apparatus designed to illnstrate practically sach rastronomical principles as the canse of the sessons eclipses, and the precession of the equinaxes. In this room, too, is a amall map of London of a date antecedent to the Fire, withan engraving of the old St. Paul's Cathodral. The last room in this department is filled with a very miscellaneous collection, the most important of whioh is a series of iron working models exhibiting many of the first principles of meohanim, as the nature and uses of cams, cogs; several modes of obtaining reversing and reciprocating action, \&o. This part of the Museum we have ocen describing is always closed at dusk. The remaining portion of the irusenm we must leave for a subsequent paper.
W. H. W. T.

DR. CARPENTER ON OCEANIC CIRCULATION AND THE GULF STREAM.

I^{N}Mr. Prootor's argament for the superior effi-- caoy of equatorial heat over polar oold, im prodooing the vertical ocesnic oirculation-whiah, me to hith myself, he recognises,- -he appears to sideration If his vie be correct-that the excess of evaporation in the intertropical area produces, as in the Mediterranean, an inflow of water from an extraneous source-sach excess ought to show itself, as in the Mediterranean, in an increase of specific gravity. Now, as all trustworthy observations agree in showing that the specific gravity of equatorial water is lower than that of tropical water, I cannot see how Mr. Proetor's thesis can be sustained.

But farther, if, as I gather from his critioism on $m y$ exporimental illustrativen, be considers that the remeval of equatorial surfiese-raster by evaporation draus in polar watere the botrom, it would be necessary that the whole inco cliatc anetum hould first rise towane the sarisoe in
order to make room for it. Now this hypothesis is open the prima-facic objection of violating the principle of "least action," which I had urged against Professor Wyville Thomson's hypothesis that the deep flow of polar water towards the equatorial ares is se indraught replacing that which has been swept off from the surface by the action of the trade tion was discussed last year in Section A of the British Associstion; and 28 three of the most eminent physicists in this country-Bir William Thomeon, Prof. Stokes, and Pruf. Tait-agreed with ye that any such loss of surface-water must be repieoed (in the open ocean) by a surface, not by a bottom, inflow, I must venture to maintain my previous conclusion, that the "creeping flow" of polar water townede the equatorial area is due to the excess in the specific gravity of the polar over the equatorial column. And that this excess is maintained rather by polar cold than by cquatorial heat, seems evideat from the fact that while, es all recent observations concur in showing, the temperature of the ree in high latitudes, where not affected by any epecial carrents, diminishes from 36° at, or little beneath, the surface, to below 30° at great depths, the infla ence of equatorial heat is not in the lenst per ceptible at 200 fathoms' depth, as I learn from tise temperature observations made last year in the school-ship Mercury, kindly commanioated to me by Prof. Draper, of New York. This fully justifies Sir J. Herschel's very significant (not humorous) remark on the " more intense action" of polar cold.
Now, since the specific gravity of equatorial surface-water is rather under than over that of extra-tropical water, the question arises how the enormons loss of water by evaporation in the inter-tropical area is replaced. In aesuming tha it goes to supply the rainfall which feeds the rivers of Europe and North America, it seems to me that Mr. Proctor neglects two very importan considerations: (1) that the greater part, if not the whole, of the rainfall of Europe and North Amorios may be socounted for by the evaporation of the Mid-Atlantic beyoad the region of the trade winds, say between 20° and $40^{\circ} \mathrm{N}$. lat. and (2) that there is an enormona rainfall in the region of "equatorial calms," which is attributed by Bir J . Hersohel to the deponit of the waters taken op by the N.E. and S.E. trades. For, he rays, "these winds arrive from highar letitudes,
deficient both in heat and moisture, and take up both in their progress towards the equator, while they return little or none of the fresh water so taken up in the form of rain, till their arrival at and near the equator itself. There, however, they at onoe precipitate a large proportion of the water 80 absorbed, a process whioh, being in constant operation, must in some degree freshen the surface." (Physioal Geography, Seotion 20.) It seems to me a pity that before committing himself to any "prediotion" as to the saperior effcaoy of surfsoe-heat over surfaco-cold in produoing a vertical circulation, Mr. Prootor had not tried the experiment. If he will do so, he will (I ventare to gay) be rather astonished at the way in which the introduction of a piece of ice canses the sarfaco-stratum close to it at once to tumble down (no other expression will so well desoribe the movement) to the bottom, where, as each new fall takes place, it oreeps onvards to the other end of the trough. On the other hand, the application of surfaco-heat, in any way that can be devised, does not per se produce any rise from below ; the only movement it produces being a slight surface-flow towards the heated ares, to replece what is lost by evaporation. I is only when it acts in combination with the surface-cold at the other end of the trough, that it helps to maintain the vertical circulation, by keeping up the antagonism of temperature. For if there were e constant renewal of cold at one ond of the trough, without any restoration of heat at the other, there would be a
take leave to express my coincidence with Sir. J. Hersohel in an expression of aurprise that "there can be any posaible ground for donbting that the Gulf Stream owes its origin entirely to the trade winds." It happened to me in early years to make a voyage to the West Indies, and I found the regalar sailing course to be to keep as nearly south as possible notil " the traden" were entered, a perfeot relisnoe being folt that they would do all the westing. This wha fully justified by what, aftar an interval of nearly forty yeara, is still among the pleasantest recolleotions of my life-the "ran down the trades" with a steady breeze on the quarter, making every sail draw, that carried a heavily-laden merchant ship at the rate of eight or nine knots an hour for ton or twelve days continuously. And if any interraption to the regalar trade-winds should occur, all experience shows that it is local, the general westerly movement being undoubted by every navigator I have ever mot. Wiwiam B. Oabpenter.

MECRANISM.*

(Continued from p. 533.)
T^{T} is obvious that, whilst we have been forming of these and similar carves, and taking portions of them for teeth, we mayy continue them, and it is possible we may find such continuations usefal in hair character of sliding surfaces. They reappear in that character, and receive the name of cams. A cam consists, generally speaking, of a curved purved which conveys motion to a pin or to another
this straight cam. In the fusee barrals of watabes and clocks, the sorem that takes the ohain is aleo obtained from the atraight oam. You have this same atraight cam in the Archimedian drill.
'As was said just now, motion is given to pins or bars by means of these cams. It is easy to see that if one pin is not of sufficient strength two may be pat side by side, or three, or four, until at length you reach the form which ultimatoly develops into half \& nut, and that half nut is used in Sir Joseph Whitworth's lathes, and is the mode by which the outting tool is edjusted upon the lathe, the half nut being used beomase it can at any time be lifted out of gear so as to allow the alide-reat to go rapidy back We may maltiply or inarease the length of this half nut and diminish the length of the screw, and we then reach the rack; for as the nut increages it extends into a rack, and the screw works apon it, causing it to traval (Fig. 18). We may also curve the rack round 2 ring, 28 in Fig. 19, and then it becomes What we oall a worm-whoel, and wo got the ordinary worm:wheel motion. This mechaniem, therefore, has altogether resulted from a struight therefore, has altogether resulted from a strigns
slit in a board moving on a plane, simply by throwslit in a board moving on a plane, aimply by throw-
ing the olementary parts apon curved surfaces. ing the olementary parts upon carved surfaces
The screw may take two forms, so as to wort aithes The screw may take two forms, so as to wort either from right to left, or from left to right. In this
pizce the screw or worm is revolving on a shaft in pizce the screw or worm is revolving on a shaft in to a shaft at right angles to itsolf.
We found the same meohanism in that old Chinese charka, or cotton gin ; it is very oddly made, and of very rade construction. In it are two screme, vir., a right-handed one gearing into a left-handed one, acting as if they were toothed wheele, and so canaing two shafts to rotate parallel to each other.

continued reduction in the temperature of the entire mass of water in the trough (sapposing its bottom and sides to be non-conduoting) until. the whole comes to be as cold as its coldest part In making this assertion I am justified by the anthority of the greatest master of Thermotics in this country; for after the discussion in Edinbargh Sir William Thomson gave me anthority to state that he entirely accorded in my view of the matter.
As Mr. Prootor is, so far as I know, the only man of soience in this country who agrees with Captain Manary in attributing the Gulf Stream to some other canse than the impelling force of the trade winds, I would strongly recommend him to study the "Wind and Current Charts of the Atlantic," published two years ago by the Admiralty. He will there find that the predominance of easternly winds in the area of the equatorial current is so enormous that to say that they will not produce powerful driftcurrent is to ran counter to all we know of the action of wind in giving surface-movement to water. No one (80 far as I am aware) questions the action of the predominant sonth-westerly winds in giving a N.E. drift to the surface-water of the North Atlantio. But their predominance is far less than that of the N.E. and S.E. trades. The general direction of a drift-current will, of course, be determined by the excess in the whole movement of the air in one direction above its whole movement in any other direction. And until Mr. Proctor can show that there is no suah westerly excess in the intertropical area, I must
model), this carved piece went round in that direction, it would raise the bar between the two gaides but if the curved piece came back again it would leave the bar at the point to whichit had been raised. Place, however, a curved piece on the other side, and by that means the bar would be brought back. That is generally called a constrained cam. The curved cam may drive a shaft, or it may move an arm. If the curve forming a caun was passed round on a flat surface, it would form what is called a flat sorew-wheel. It may also appear in another form and this form is a very instructive one. Here is a piece of board, about 10 in . by 6 in ., and we will piecpose it to represent a page of printed matter in two columns. There is throngh the board in two columns. There is through the boord aft-hand corner of one column to the top right left-hand corner of one column to the top right hand corner of the same column. Let there be a pin in this groove, and let it be ixed on a bar con-
gtrained to move parallel to the lines on the page. Sappose the grooved wood to be slid for its whole length parallel to the biuding of the volume, then will the end of the bar have tra velled the breadth of a column of type. In this is a straight-line cam, and it is one of a vary old form. It seems to have passed out of use for a long time, bat has been reintroduced. If you put it round a cylinder it becomes a screw. In certain processes the screw is not conveniently available, and there are two cases known to many of you in whioh this flat or inclined plane cam is used for the purpose of generating screws-in the case of rifing gans, for instance. The rifling down the gun is a very long kind of screw, similar to the ane on this old Chinese cotton gin, and that rifling is obtained by the nse of
${ }^{5}$ By the Rev. Aspros Riog, M.A., boing the Oantor Leotaren dellvered bofore the Sooioty of Arth

This worm-wheel motion appears in a variety of forms, and it is generally employed in redacing speed; for one revolution of the shaft only allowe one tooth of the wheel to pass. Yoa may remember it in the crane kindly sent from Crewe. There was a very high relocity, which had ultimately to be very materially reduced; and the latter part of the reduction was by means of one of these worm-wheole. This is therefore a mode of converting velocity into power. The perfection to which these screws have attained is very great; so great that practically what we have hitherto called "clearance" is difpensed with.
This is one of Mr. Whitworth's standerd moesuring instruments. We have a sorew perfectly mada working in a nut perfectly made-that is, as perfeet as hands can make them. There is a certain number of threads upon the screw, say 50 in en inch If, therefore, this wheel, which is divided into 100 graduations, be keyed on the end of the serew, it would divide one inch into 100 times 50 parta, whioh would be 5,000 ; so that one of these divisions on the wheels would indicate the 5000th part of an inch The manufacture of the apparatus is 80 perfect that it is capable of dividing an inch into 10,000 parts. It is ased for the parpose of determining gagee, and is a case of cam motion applied as a scrow.
These cams are also employed in another way very different to that, and here is a Swedish machine intended to represent some of the phenamena of light, hent, and sound. It consists of three rows of levers, which at one end work in a series of cams on rollers, and by turning these cams the wave-litho motion which you see is produced.
This is another very usefal development of the same thing. Here you have the mode by which the thread is laid on the bobbins in ootton spinning.

You will and the pin which originated the nat in this case is one only, but extended to a flat pieoe and the grooves of the acrew are so arranged that there is a return motion which gives a varying direction to a bar.
Here, again, is anothor which differs both in form and name. On turning a handle at E in Fig. 20, the upright bar, G, remains steady, ${ }^{*}$ but by changing the angle of this plate, F, an upand down motion is produced. This is a cam acting parallel to its axis ; it is callod a "swash" plate.
In this machine, Fig. 21, are the arrangements by which gold and silver coins are weighed before being issued from the Mint. It is apon a mach larger scale than the actual machines, and has been hindly lont by the Master of the Mint. It may be well to preface any explanations of the cam contrivances in it by a atatement of the
In the process of coining, some of the coined pieces may be too heary, and some too light. Such irregularities in weight must be within very narrow limits, and by means of mechanism, constructed as this large machine, it is determined which coins are too heary or too light, and must not be allowed to pass into circulation, and which may so pass.
The coins are placed in heaps; they pass down a spout ; and the machines take coin after coin, and give a verdiot Which consigns the coin to the public meohanism is self-acting, being driven by power derived from heat. The coins are weighed at the rate of about twenty per minute. In the Mint there are nineteen of these self-acting maohines at work, apable therefore of weighing 22,800 coins per hour. As an illustration of what is required from the mechanism, we may take the case of au

The legal weight of a sovereign is
Less allowance Therefore the weight of one blank or counterpoise is
Making a similar allowance of -2 graing for excess, has led to the adoption of a weight consisting of a platinum wire, and called "the remedy," of \qquad
Graine.
123.2744
123.0744 (A)
\qquad
4
123.4744 (B)

All coins below the weight marked (A) are too light and must be rejected.
Again, all coins above the weight marked (B), are too heary, and must also be rejected. It will be observed that a coin heavier than the blank and remedy" combined mast be rejected. Hence one blani and one "remedy" wire constitute the weight on one side of the beam.
Mechanism similar to this is in use at some banks, and actuated by electricity. In one mechanistic respect it differs ; for its judgment is only invited as to a coin being too light. The machines at the Mint are expert at keeping from the pablic coins too heary. Therefore, where the Mint mechanism has three courses of decision open to it, the bank mechinee need only one.
Lot us now turn to the mechanism, and follow the operations in weighing these metal blanke, Which are our representative sovereigns:-

It will be observed that at the lower end of D there are two alits, and at the lower end of E onls one alit.
a horizontal bar, rigidly fixed to the vertically grided rod N N, has its ends passed through the lower end of these two slits, consequently, if at any time the scale-beam is out of leval, a depression of this vertical bar N N will rentore the beam to the leval.
Y is a rocking bar attechod to a horizontal slide, Y Y. If this slide be moved from the reader's leil hand towards his right it will be withdrawn from below the coin at M. If now it be moved from right to left, the coin will be adranced, and placed ppon the scale-pan, F. Beneath that scale-pan is a pair of nippers, marked Q, by the action of which the pendant D, and consequentls the beam $A A$, can be held in any position.
the "weighing." Let us now turn to enothered to the "weighing." Let us now turn to another class of contrivances which have reference to the determination of the deatiny of the coin being weighed. Passing one through and the other near the upper of the two slits in the pendant D, there may be seen in thegeneral drawing two pieces marked respectively 88 and T T. The one marked 88 passes through the apper slot in D. The one marked T T passes outside the slot in D, and carries the ohisel-shaped end T. Which is so connterpoised that when free the right hand end prepondorates. 8 is called an indicating inger; I is called an indicator. 3 may part of the sod by the mechanism, fall on the lowe (not shown) carry down with it the indicator, 1 .
If we now pass to the extreme left of the Gigure carred apont, having at its apper end a wide month, may be traced. It is lettered U U. At the

In the model the plate F coald be moved about (e) and placed at right anglen to E, or in a horizontal plane
three notahed atepe. The spout is tree to move near its upper end about a horizontal axie perpendicular to the plane of the paper. Dependent upon the position of the lower extremity of the spout is deoided into whioh of the three troughs (shown on the base-board of the machine) any coin passing down the spout may be disoharged. These three roaghs are the respective entrances to the ver the heary coing.
Having thas described the general construction of the essential parts of the weighing and distribating arrangements, we may turn our attention to the wheels and cams by which the whole of the previously described parts discharge their appointed duties, and in the required order
J J J J are four small-toothed wheels, the three upper ones being of the same size. On the axes of aach wheel are two cams, lettered K and $K a, P$ and O, W and \mathbf{R}. The cams have very raried portions of their circumferences struck with the same radius, and therofore when thatportion of the circumference is upon the arm no motion is commanicated. K and Ka canse the bar I to rock, and thas one coin is placed on F, and slid off by the second coin pat on in consequence of a second rocking. Assume that a coin is on F, and that it is too heary, the scale benm will be depressed. This depression will have raised not only the blank counterpoise in G. but also "the remedy" in H. So important and sensitive is the action on the remedy that the bearings shown at I, Fig. 23, on which the amall "remedy" wire rests must be traly horizontal. This is secared by the three levelling screws, as shownin Fig. 23, which is placed under \mathbf{H} in Fig. 22. To return to the weighing.
opening and alosing of the vilves of steam engines, Where it was considered that the action of the excantric (another name for a particularly formed cam was too gradual.
There are, however, few if any machines, in which cam aotions have been nore succesafully employed than in the large one now before us. It is for the making of those wire combe called cards, used for laying the fibres of cotton parallel to each other. A consideration of this mashine must be postponed for a future occasion.
(To be continued.)

DISINFECTANTS.

THAT may appropriatoly enough be termed the " battle of the disinfectants," if still ansottled in this country, may be regarded as approsohing a satiofeotory molution in France. What with the old-fashioned ohloride of lime, carbolic acid, Condy's and other flaids, chloralum, and sandry other inventions, patented and otherwise, each said to be the best by interestod persons, the uninitiated public is in a perfect quagdary as to which to use, for of course the pablio is anxious to have the cheapest as well as the most roliable article. The commission appointed by the French Academy to inquire into the relative merits of the various disinfeotants when employed in eradicating contagia report that the first place among agents for atteoking and destroying infeotions germs mast be accorded to hyponitrous acid. Extreordinary prouse of this dang of course, be obsarred in making murt be oarefully sealed with gummed paper. When disinlocting a room containing
oubic yarda, or
the oubic yard, the inaterials are taken in the following proportions : 2 quarts of water, 3 pounds mercial nitric acid. and pound of oopper turnings or flings. A stoneware vessel is employed, gallons. The exit doors are carefully pasted up, and the 48 hours ciosed for 48 hours. The person opening the room at the expiration of the time should be protected in some way from breathing the gas, by a suitable respirator.

Carbolicacid, however, in oheaper, more easily used, less dangerous, and bestemployed mixed bestemployod mixed with sand or sam

The zotion of the cam \mathbf{P} releaser a little weight Thich closes the nippers \mathbf{Q} and holds the beam. The cam, B , then acts, and 8 falls apon the upper slit in D, carrying with it the chisea-ehaped end, which is ortaide of the slit in D. The aam, W, now allows the spoat U U, to fall, and, in the case assamed, the lower notoh in ∇ woald rest apon the chisel ond. (The drawing shows the middle notoh so rosting.) The deating of the coin is now detormined, and the soale beam may be restored to its proper level. This is accomplished by the cam 0 which lowers the leveller attached to the vertion rod N N, the cam P having previously opened the nippers Q. This loveller, pressing apon the lower slots in the pendants D and E , restores the beam to horizontality. It will now be seen why the portion S S, which decides the drop of the spont is double, for the levolling of the beam at this stage does not disturb the ohisol end in the notah.
The beam being levelled, the cam \mathbf{P} again permite the nippers to close. The cam K adrances the slide \mathbb{Y} Y, and with it another coin. Thas the one on F is displaced-it falls into the spout U U , and being too heary is guided into the receptecle or heary coins. The cam W returns $U \mathbb{U}$ to its first position; the counterpoised end of $T T$ causes the ohisel-ahaped end to rise, and the apparatas is restored ready for another operation.
The lectarer illuatrated the description by weighing metal blanks, some of which were too heary. others too light, and others correot, and said the instrument is produced as an example of the uses in mechanism of came, affording, as they do, pariods of rest or of impulaive action. These cams are lound in many machines. They have also been employed in the form of tappete, for the audden
different subetance.
coid to three pounds of an indifierent substance. The mixture, placed in earthen vessels, Whas nsed for
the same purpose as the hyponitrous acid. Carbolic cid, diluted with 15 or 20 parts by weight of rater, was foum usefal for daily sprintling of the floor and bedclothes.
An interesting case is mentioned in the report where neither chlorine nor hypochlorous acid wae able to destroy or render odourlees the gases given off from the corpses in the Paris Morgue during the heat of summer. The object was attained by dissolving a quart of liquid carbolic zcid in 500 gallone of fresh water, contained in the roservoir, and used to sprinkle the bodies. Patrofaction was entirely stopped.
Devergio found that water containing oonly one part to four thousand of its weight of carbolic acid sufficed to disinfeot a dead-house, even in the hotteet weather, when six to eight corpees were in it.
For fumigating linen, mattresses, and other bedding with chlorine, Régnanlt's latest method was ased-namely, one poand of chloride of lime (bleach-ing-powder) is sown op in a atrong bag of sail cloth, holding aboat a quart, and pat m an earthen pot containing a quart of common mariatio acid
(specifio gravity $1 \cdot 15$) and three quarts of water.
As soon as the acid comes in contect with the ohloride of lime the room is closed, and the things exposed to the action of chlorine gas for 24 hoars; the roons is then aired for 48 hours. Ten such earthen pots give ofl about 14 cubic feet of chlorine, sufficient to disinfeot from 20 to 25 , more or lesg, dirty mattressen.

ECONOMY OF FUEL IN STEAM navigation.*

THE writer stated that he had often boen struck by the indifferenee to the question of economy in fuel which for so many years prevailed among the constractors and the users of marine steam-engines,
and by the fact that, whilst wonderful progress was and by the fact that, whilst wonderful progress was made in the increase of the speed of the ships, the
quantity of fnel burned seemed not to be cared quantity of fuel burned seemed not to be cared as a reproach to marine engineering. In these days, when ships were tried for speed at the measared When ships were to asoertain the last portion of a knot that conld be got out of them, the question as to the quantity of coals barned in obtaining this speed was never raieed, and the suggestion that a trial as to the consumption of fuel-was never thrown out. The astonishment that was folt on looking back at this long-continned apathy as to the consumption in marine propulsion was increased
when it was considered that the mine owner, the When it was considered that the mine owner, the
waterworks engineer, the locomotive saperimtenWaterworks engineer, the locomotive saperintenof portable agricultaral ongines, had all along been trying to find out to what extent economy coald be obtained, although not one of them had really so mach canse to search after saving as had the pro-
prietors of ocean-roing steamers or the builders of prietors of ocean-going steamers or the builders of
marine engines. He believed this indifference to have arisen from various causes, amongst which was the fact that steam navigation in the outset wes confined to coasting voyages or passages across the Channel, and, onder the circumstances, the quantity tively small, whilst owners were content with a very slow rate of speed. The opening of new ontlets for industry, requiring boats that conld perform long royages, led to a demand on the part of steamship owners for more economical steam-engines. Tere not was a general opinion that marine engines were not
suitable for the use of high pressure steam; but compound engines having been tried, with the use of high pressare steam, the beneficial results obtained induced owners almost universally to adopt them for vessels going long voyages ; indeed, so great were the advantages found to be, that most of single-oy inder engines in their existing ships re placed by compound ones. It was still an open by the compound cylinder could not be obtained by the single cylinder working expansively, either arrenged so that the expansion could not be tamperligent man who would not throw the expansion out of the gear. Theoretically, there could be no doubt that steam could be as advantageously expanded in one cerinder as in two, and even more pasantages between the two cylinders of the compound pasgages between the two cylinders of the compound
engine, which loss did not arise when the expansion was made all in one oylinder.
The writer then proceeded to trace out the history of the compound engine, describing the various arrangements which have been from time to time brought into nse, such as the original arrangement of Wook, the modified plan of McNanght, and the rarious forms which have been given to compound engines as applied to marine purposes. adopted for commercial steamships-namely, the steam-hammer type, with but two cylinders and an steam-hamar intermediate receiver. Mr. Bramwell also showed that, whereas the average constupption of 4.5 lb . of fuel
marine engines of nine years ago was per horse-power, the same results were now obtained per horse-power, marine boilers for bearing higher pressure, he said, marine boiers for bearing higher pressure,
was a subject of essential importance in efficiently was a subject of essential importance in enticien in
carrying out the advantages of high expansion in compound engines, and in connection with that subject there were important questions, such as care in
the manufactare of the plates, their thickness and darability, and other matters; bat they could not be ontered upon in this paper.

Discciseron.

In the discussion which followed, Mr. Jamieson said there was no doubt there had been very great changes in engines since 1854, much greater even of four-eylinder engines working with one-third of fuel used for engines in 1855. In a voyage to Valparaiso and Panamas and back n the mail serrice in 1855 the consamption of coal was 1,08 to 1,200 tons, and this had been reduced to 550 and fiol, and even been dons in the last ten years, and even in the last five years, and it would be well to look at the effect of the adoption of the two cylinder engines on commerce. It was evident that the compound en-
gine was the engine of the day for marine purposes, gine was the engine of the day for marine purposes,
and in the future, attention mnst be directed to the and in the future, attention mnst be directed oo ther
further improvement of the engine and the boilcr connected with it, with a view to a greater reduc-

Abstract of paper read by Mr. F. J. Brasiws LL, be
fore the Insti:ution of Moclanical Engineers at Liver
tion in the economy of fuel. They mast see if they could not get a better boiler, and a forced combustion in smaller tubes. He had reason to believe tion in smaller tubes. He had reason to believe
that in the next decade they would see the figures reduced as much as in the last.
Mr. Crampton arged that the only test of the performance of an engine which they should take into consideration was the amount of water or weight o steam used per indicated horse-power per hour. The quantity of coal used to evaporate that water depended upon the quality of the boiler, and in considering the performance of the engine it should be left out of the question altogether. Mr. Crampton proceeded to describe a series of experiments he had carried out on a small pumping engine doing a aniform duty, and capable of being worked with steam at pressures varying from 351b. to 701b. per square inch. The experiments were made with
steam at the different pressures, the degree of exsteam at the different pressures, the degree of ex-
passion being varied so that in each case the engine pausion being varied so that in each case the engine
was made to develop the same effective power. Each was nade to develop the same effective power. Each
experiment lasted a week, and the results at which Mr. Crampton arrived were that practioally nothing was to be gained by employing steam of more than abont 401 b . pressure expanded six-fold. He also subsequently pointed out the importance of employing heavy reciprocating parts in single-cylinder eugines working very expansively, and atated that in the case of the pumping engine to which he had alladed, the great length of the pump rods cans the reciprocating weight to be anusually large.
Mr. Thomson, in answer to an inquiry as to why some single oylinder marine engines, which had been
built to work with high degrees of expansion had bailt to work with high degrees of expansion had
not succeeded, stated that the engines were given up in consequence of its being found impossible to get the value gear to stand properly.
Mr . Head called attention to the practice of stoking by hand. He said he had never seen stoker putting on coal in frout of a blazing fire withont thiniking that it was a practioe which ought to be pat a stop to. He was told that not more than one man in three could endure the wotk in trapical climates, and that in the Red Sea it was not unfreguent to see the firemen drop down dead at their work. He appealed to the authority of Professor Huxley in saying that a human being who was undergoing severe physical exertions in extreme
heat lost 2 lb . or 3 lb . in weight per hour. The appliheat lost $2 l \mathrm{~b}$. or 3lb. in weight per hour. (heasplistokehole, and the operation of taking up coal and potting it on the fire seemed only to require a little mechanical skill. It was not more complex than what had been achieved in the construction of the sewing-machine, the steam plough, and many other applications of steam power. In the interests of engineering, and also of common humanity, attenshould be glad to know from the marine engineers present whether there was any prospect of mechanical tiring being applied to marine engines.
Mr. William Laird said the firm of which he was a member had been engaged for many years in the construction of engines, and of late years they had
found that nothing bat the compound engines wer found that nothing bat the compound engines were
called for for commercial purposes. The great called for for commercial purposes. The great
economy which had followed their introduction had economy which had followed their introduction had applied them that the compound engines had really displaced altogether the old system of engine. In some cases au opportanity had been afforded of testing practically the economy obtained in the ase of compound engines as compared with the old
system, by the substitution of the modern for the old engive in the refitting of ships, and the resal in a series of voyages had been that the quantity of coal consumed was about one-half the consumption with engines of the old type. This, he thought was conclusive proof that ine adoption of the com pound engines had been of immense benent to com merce, and the resalt was that almost all the large steamship owners in Liverpool had, more or less,
adopted them for their vessels. In some companies adopted them for their vessels. In some companies
all vessels refitted had been supplied with the compound engines, while they had been adopted in the new veesels. Withont entering into details, he merely wiahed to intimate the general and successfal adoption of the componnd engines, and he felt satistiol that if they receded from the stage at which they had now arrived, and used a lowor pressure
for engines or another system, they would make a great mistake.

Mr. Crampton said that in the statement made by Mr. William Laird the point was ignored that the engine taken out might be the worst type of singlecslinder engine.
Mr. Willian Laird said, in making the statement, he only meant to show how geuerally the comhe thought it was safficient to pat the matter in a general way. Perhaps his way of stating the matter cave too great an advantnge to the encines on the to show, in a commercial sense, the great aitvantnge which had been gained through the introduction of the compoand engines, and the state of
perfection to which they had been broaght by enperfects thronghout the country. He did not in tend to claim any special credit for Liverpool.

Mr. Ramsbottom said es to the abstract viow of the question there was no room perhaps for two opinions, as far as theory went an advantage was to be derived from but whether it was done by one cylinder or two was, he thought, a matter of very little consequence. It became a question whether they could get material which would do something more then the material now known; bat he thought they had pretty nearly reached the practical limits of commercial economy.
He did not think they were likely to reduce their He did not think they were likely to reduce then and he should be glad to see that they were Hikely to increase materially apon it. If they coald find materials, the mode of construction Fould be speedily hit apon, and they might look for higher pressure and corresponding economy. With regard merely a few honrs' daration, were of very little value. He attached very little importance to speed mile trips, the truest and safest results being, he thought. found in more lengthened worting, stech as actual sea voyages.
Mr. Bramwell, in replying on the discussion, said he thought there hal been too mach of the tone of finality abont it. With regard to the observations of Mr. Ramsbottom in depreciation of mile trials, sad irced with him if the thing to be tried was not a steamboat. He thought a six hours' trial, carefully conducted, was a better teat of what engines could do in the way of economy of fuel than the tost to be dorived from a long voyage.
Assuming that the continuous indicabor could be Absuming that the oontinuous inds, he trusted that
relied upon for giving good results, relied upon for giving good results, he truated that
steanship owners would go to the expense of fitting their steamers with implements of that kind, 80 as to arrive at trathful results. The getting a better evaporation of water for the fuel burnt was at the root of economy. As to mechanical atoking, alladed to by Mr. Head, he most thoroughly agreed with the suggestion, and he could not halp thinking that it was a problem which ought to be eolved. If they succeeded in doing so they might get a more regular combustion of fuel. A many as from thirty-five to forty firings in an hour; they endeavoured to get by rapidity of hand stoking the uniform and good effects obtained from efficient apparatus. Mr. Bramwell also depreoatod anything like finality in seientific discussions, and in illastration quoted zome ex. ceodingly amasing extracts from evidence givea by some of the leading engineers early in the presen century on the ocoasion of a Parliamentary incriry, this evidenoe going to show hat the whe ameces of higher pressures than 4lb. or 5lb. Whe ameces sary and absurd, and that cast iron was far pre ferable to wrought iron as a material for boilar making, althoughone witness admittedtast inasmach ss "" each rivet formed a safety-malve.

AUTOMATIC GASLIGHTENG.

ANEW patent apparatus for the instantaneons lighting or extinguishing of gas-lamps bas just been, it is said, successfully tried at Preston. a moderate-sized globalar inkstand of glase, sur monnted by a tube of the same material, with a metallic top; and by screwing off the barner it csn be very easily attached to any lamp, chandelier, pipe, or ordilat gith a doen red coloured liquidsimple chemical mixture, with no combustible properties, almost without smell, and so cheap that phreepennyworth of it will serve one lemp for t walre months. Over this liquid, and within the glass tube, there is a plate of zinc, along with 2 pieve of graphite or gas carbon, and between these and thin coiled platinum wire fixed over the cap of tho general vessel into which a gas burner is inserted
galvanic communication is obtained. A pipe, to te screwed to that up which the ordinary gas suppis flows, runs through the base of the vessed to abwat the centre of the surmonnting tube: pressare brought to bear upon the gas in this pipe causes, by small collateral openings, a aimultanoeas degression upon the chemical solution which occupies a lowe: level in two side tabes; the gas oceupies the racuam cansed by the displaced liquid, and then ascends t the dimber in counection with the burner. Whass the displaced liquid is pressed int the graphite, geue
 the platinum wire, and exciting the catalytic pow of the wira, which, when exposed to the asceudias jet of gas, resultsin immediate, almost instantanevaz
ignition. Each lamp requires one of theseappliances: but, as stated, they are cheap, and the price of w requisite liquid may be termed nominal. Ta apparatus is virtaally self-acting; it requires a
skilled hands to superintend its operations ; it ma be attached by a novice; it may be replenished a any ordinary chemist's shop for a fow pence p year; it needs nothing bat tixing, and then b

SCIENCE IN SEARCH OF COAIS

 $S_{\text {atterupt the solution of a problem which is of }}$ immediate interest to evary houscholder in London and the Suth. It is nothing less than a searchfor coal under the rocks of the South-Eustern connties. A committee of the British Association has been appointed to disaover what is the order
in which the strata lie under the Wealden which in which the strata hie under the Nalden which boring is to be commenced in the lattor county on occasion of the meeting of the Association at
Brigliton in the present week. This boriug is Brighton in the present week. This boring is intended to go through the
lying secondary rocks to the Paleozonic strata which are sapposed to lie still farther down at a depth of
from 710 feet to 1,700 fect. It is expected by many geologists that at that depth coal-measures will be found which will be practic: lly
a continuation of the Belgian coalficlds on the a continuation of the Belgian coalficlds on the
east and the Bomerset coalfields on the west. There is little donbt that at some time the coal. measures have been there, and the question is whether, as the late Sir Moderick Murchison believed, they hare beenswept away by the extensive
denadations which preceded the deposit of the chalk. Up to the present time no coal has ever been discovered south-east of a line which may be to Yarmouth. The whole area thas marked off is occupied by strata far newer than the coal-meaoccupied ; and though thin beds of shale and lignite have been fonnd, and beds of sandstone strongly resembling those which overlie the coal, all attempts to discover coal have hitherto been usoless. Some
carious efforts have been made. Nearly two hancarious efforts have been made. Nearly two han-
dred years ngo the Rev. Giles Thornbury bored for coal at Guildford. In grabbing op the roots of an old oak, he had found some pieces of lignite, and the discovery at once suggested the search for coal.
According to Anbrey, the coal was actually foundAccording to Anbrey, the conl was actually found-
"a kind of rocky coal," he says, "like that which they call Kennell coal, whioh burns like a oandle." But when the borers got to the coal the irons broke, and as fast as new irons were put in they snapped irons were broken by subterraneous spirits, the attempt was abandoned. In the first years of this century a shaft was suuk to the depth of 164 feet were met with; but the mine was drowned out and the scheme was abandoned. About thirty years ago an attempt was made to get ap a colliery company to sink a shaft 1bort. doep at Norplestin, near Wosing, through the Bagssot Sands ; but int ole
course failed. Mr. Joseph Prest wich, in an article in the carrent number of the Prpular Science Ke-
vielo, states that among experienced coal miners rieto, states that among experienced coal miners
an impression exists that coal is to be foand in the Lower Tertiary strata, between the London olay and the chalk; but that all these expectations,
founded as they are on the presence of irregular seams of lignite, are necessarily futilo. Coal is never to be fonnd in these newer rocks. It is a rolic of an earior condition of the plat.
buried ruing of an older world.
The failure of previous efforts to find coal in the south-east of England is, however, no reason for believing that coal does not exist. It has never yet
been looked for in the right place. The coal-meabeen looked for in the right place. The coal-mea-
sures are the upper part of the Paluozoic series of rocks, and those rocks anderlie the Tertiary and
Secondary serics, when tiose series are present as Sheonarary in this part of Enalaud. Speakiug roughly there are some fourteen of these strata which come in regular succession, and which are altogether be-
t ween 7,000 and 8,000 feet in thickuess. On the essumption, therefore, that the coal-measures which lie to the east of us in Belginm, and to the west of ns in Somerset and Sonth Wales, are continued nnder us, it was estimated that they would lie at now been discovered that a good many of these intervening strata are absent. In a well was hoped would pierce the water-bearing formation of the Lower Greensand, it was discovered that there was no greensand to penetrate; indeed, all the
1,113 feet deep. what was supposed to be the old Red Sandstone, which anposed to be coal-measares, was fond. At Harwich, a year
or two later, a like discovery was made, though the rock found at a depth of 1,025 feet was mountain limestone. This is very uearly the depth
at which the same Palwozoic rocks are found on at which the same Palwozoic rocks are found on gests the very strong probability that in some parts
of the southern counties the coal-measures themof the southern counties the coal-measures them-
selves may be found at a similar depth. The Somerset coal seams are lost at a point between Bath and Frome, at a depth of 500 feet. Bewells have been sunk to anything like a thousand feet, yet it is after going to at least that depth that near Reigate 900 feet deep, another at Chichester 945 feet, and one at Southampton which is still in the chalt, at a depth of 1,317 feet. It is intended
that the boring now to be set on foot shall be continned to the depth of about 2,060 feet. It may or may not pierce a seam, of coal; but it will at leart how in what order the older atrata lie, and will give geologists facts whioh will enable them to point
out where coal may be found, or to decide that it out where coal may be
cannot be found at all.
Happily the chances are that coal will be fonnd. The general drift of scientiflc opinion during the last few years has been towards the belief that there are workable coal senms under a great part of
Kent and Sussex. Mr. Prestwioh, indeed, places then uuder Essex and Hertifordshire ; Mr. Godwin Austen, who, as long ago as 1855, bronght the sub-
ject before the Geological Society, places them in the line of the Tharnes valley, parallel with the North Downs, and believes that they continued join the luristol coalifield and the hemmet valiey to coal is likely to be plentifal and good-more like the Somersetshire ooal than that of either the Midlaud or the Northern counties. In report D attached Supply. Mr. Prestwich, who ably supports Mr. Godwin Austen's argament, estimates the area of the supposed coaldield at 150 miles in length, by a
breadth varying from two miles to eight. Such a coalfield woald be no insignificant addition to our national resonrces. Even though it shonld lie at a depth at which coal is at present only occasionally worked, it would be cheaper and more available to
us in London than the ncarest coal now worked It wonld be premature to epeculate on the social and induatrial results of the discovery of a vast coalThames as it is upon the Tyne, as plentiful sonth of London as it is north of the Trent, would probably be to oause the rise of a belt of manufacturcourse There is almost every scientific probability in ravour of its existence; and should the geologists of in pointing out where it will be found, they will do the greatest service that science has yet rendered eve and enriched.

pyro-plating."

THE end of pyro-plating, like that of all other methods of plag, superior metals; but this method is applicable where none of the other methods can be applied with success. "Close plat. ing," whether witu hard or soft solder, eannot be
applied with saccess to any cutting instrament, as a kuife or a pair of scissors, \&c. Hard soldering would completely destroy a knife-blade or a pair of
scissors. The eoft solder plating can be applied to scissors. The soft soliter plating can be applied to
a knife or a pair of scissors without destroying the steel, thongh with difficulty; with the ecissors the frst attempt to cat would shear off the plating, and with the knife, if it were sharpence so that it would cut, the plating would ohip of in using it. Common electro-plating is not applicabla to steel or iron, as by that method these metals cannot be got per by that muthod no adhering coating ean be obtained.
In fact, for all manner of plating or soldering, the first requisite is, that the two metals that are to be applised to each other mast be chem.
or no propor adhesion can be obtained.
This cleanness is obtained in various ways: In soldering by various fluxes; in electro-plating to snch metals 24 that method is applicable, by dip. ping the article in an acid which will readily dis. solve the metal of which it is made-and not only so, but the salt formed by this solution of the metal in the acid used must be readily solable in water, or no clean sarface can be obtained. There is still another condition to be considered, that is when the sarface of the metal has been made thoroaghly clean, it must be protected from contact with the air in its transit from the cleansing. baths to the solution wherein it is to be coated. This condition tro-plating caused many failures and mach trouble, till it was discovered that a tilm of mercury prevented the contact of the air with the cleaned metal. Moreover, mercury has this alvantage, hat it amnlgamates with the metal to be coated, not absolutely necessary, yet it facilitates the conting of metals with other metals by electro-deposition, when the two metals will readily amalgamate. There are cases where amalgamation is not possible ; for example, where one of the metals will not amalgamate, as with steel and iron costed with copper, gold, or silver; or when neither will amal-
gamate, as or nickel. win steel or iron coated with aluminium amalgam with these amalgamated by the intervention of sodinm, but it solation of a mercuric salt must be nsed.

By J. Baynze Thoxpsox in Chemical Neres.

Now, for all such cases as these where the amalgamation process canuot be nsed, pyro-plating is especially applicable. The name propoplating is
given to this process to distinguish it from the electro-plating process, and becanse the conting is electro-plating process, and becanse the conting is
priven into the surface of the metal on which it is put by means of heat and pnenmatic pressare. It is not contined to conting with silver as its name might indicate, bat it is at present applied to coating with gold, platinnm, silver, nickel, aluminium, copper, brass, or bronze and eluminiam bronze.
The rationale of the process is very simple; bat the various details require much care and attention.
The end to be obtained is simply this. That the metal to be coated shull be "chemically clenn" when mmersed in the solution in which it is to be coated. There are several ways in which the attuinment of this end may be prevented: By inadequate means for cleansing, by the passage through the air of two or three feet after being cleansed, by the metal being positive in the coating solation-in this case the metal is fonled on coutact. This refers to sanide solntions, to sulphate and chloride solutions. ammonia, and of platinum and potash or soda. All of theso may bo used in certain cases for pyroplating, but they are not used. There is a special solution used for pyro-plating in all cases, because nost of these solutions leave matters in the metal that is being coated, if it be in the slightest degree porons or "roaky," as is the case with steel that
has been badly faggoted, and on the article passing through the farnace these matters volatilise, and cause an irraption in the coating. The method used for cleansing steel and iron articles is as follows: They are tirst boiled in canstic alkali to free them from grease; they are then mechanically cleansed with fine llour emery and brashes in water ; they are then brushed with steel wire brushes ander a stream of a solution of carbonate of soda; then they are wired and hang in the same solution ready for being made chemically clean. This is done by means of nascent hydrogeu in a hot alkaline solaion. The water of solution is decomposed on the article by means of a strong current of electricity, kept strong and not carbonised, a film of this solation is sufficient to protect the artiole from contact with the air in its quick transit from the last parifyFith the air in the qolation wherein it is be coated. The time for it to be transferred can easily be seen by the experienced eye; the article assuming gradually a more silvery appearance. After the proper amount of metal is pat on in the coating
bath the articles are taken out and washed and dried. The smount of metal put on is ascerlained by having a test-surface put in with the articles, and the exact time of putting in and the exact weight of the test noted, and this test is carefully weighed from hour to hour till the amonnt desired is put on. After being aried, vhe articles me put inion into the surface of the coated metal. The firing furnace, as it is technically called, is of simplo constraction. The conditions to be observed in its construction are two, namely, to obtain a bright red heat in the chamber where the articles are put, and to secure the articles from coming in ontact with the fael or prodacts of combustion. In fring knife-blailes and other cuttig care has to be taken that they are not carried higher
than between 450° and $500^{\circ} \mathrm{F}$. This is ascertained by trials on a pad of prepared test paper; a blade by trials on a pad of prepared test paper; a blade
is taken out from time to time and tried apon the pad and the colour is noted-whether it acorches it straw-colour, yellow, pale brown, deep brown, or black. Alum-water is used for regulating this paper as to the colour for the proper degree of heat. Δ fter the proper heat is attained the blade is instantly quenched point downwards in cold water, For articles that do not require tempering, or that are made of metal that will not temper, as iron, oopper, good brass, or German ailver, the heat may bo higher. Even if a steel article shonld be carried tempared to soten it. it can be ro-hardened and tempared with the silver or other metal upon it, theory of this part of the process, which is technioally called "burning in," is this: The coating metal in all cases is one of the superior metals as
compared with the coated metal, and is less porous ompared with the cold

The article being heated, it naturally expands and becomes more porous, as of course both article and coating do, bat their relative porosity remains the same, consequently on expansion there will be an infinite namber of smal cists into which by atmospheric pressare the coating will be driven on attaining the proper heat. Then on the instantaneous quenching in cold water, the coating is under metal. This is seen to be the case on filing or grinding the coating of the under metal; for
though the coating may be filed or ground of till both coating and nader metal are filed or ground both coating and nader metal are read or groand
ofl together, yet the under-metal remsins spotted
all over with an infinity of little points of the conting metal.

SOMETHDNG WRONG WITH THE SUN.*

 WHEN we consiler the intense heat which has prevailed in Europe during July, and the circumstance that n America alio the heat has been excessive, insomach that in New York the namber of deaths during the week ending July 6 was three times greater than the average, we are naturally led to the conclusion that the sun himself is giving out more heat than uisual. Thoagh not indorsiingsuch an opinion, which, indeed, is not warranted by such an opinion, which, indeed, is not warranted by
the facts, since terrestrial causes are quite sufficient to explain the recent unusual heats, we cannot refraip from noting, as at least a curious coincidence that at the very time when the heat has been so great, the great central luminary of the solar system has been the scene of a very remarkable disturbance-an event, in fact, altogether unlike any which astronomers have hitherto observed. Now certain Italian spectroscopists-Respighi, Secchi, Tacchini, and others-have set themselves the task of keeping a continual watch apon the chromatosphere. They draw pictures of it, and of the mighty coloured prominences which are from time to time apreared ont of, or throagh, the chromatospheric envelope. They note the vapour Which are present, as well as what can be learned o the heat at which these vepours exist, their pressure, thair rate of motion, and othar like circumatances. It was while engaged in some of the more difficalt and delicate of these tasks that Tacchini
"I have observed a phenomenon," he says, "which is altogether Dew in the whole series of my observations. Since May 6, I had found cortain regions in the sun remarkable for the presence of magnesium.' Some of these extended half-way round the sun. This state of things continued, the extension of these magnesium regions gradzelly growing greater, until at length, "on June 18," says Tacchini," was able to recognise the presence of magnesiam quite round the sun-that is to say, the chromatosphere was completely invaded by the vapour of this meta. ${ }^{\text {absence of the coloured prominences, while, on the }}$ contrary, the flames of the chromatosphere wer very marked and brilliant. It seemed to me as thongh I could see the surface of our great source of light renewing itself." While this was going on Tacchini noticed (as had frequently happened before in his experience) that the bright streaks on the sun which are called faculw were particularly brilliant close to those parts of the edge of the dise where the flames of the chromatosphere were most splendid and characteristic. The granulations also, which the astronomer can recognise all over the sun, when a large telescope is employed, were unusually dis. tinct.
Tacohini conolades (and the inference seems just) that there had not been a number of local eruptions of magnesiam vapour, but complete expulsions Only we would venture to substitute for the word "expalsion" the expression "outflow" or "uprising, since it may well be that these vapours rise by a quiet process resembling evaporation, and not regarded as expulsive.
In whatever way, however, the glowing vapour of magnesium thus streamed into the envelope of the sun, it would seem that the aspect of our luminary was modiffed by the process-not indeed in a very atriking manner, or our observers in England "ould have noticed the change, yet approciably. "More than one parson," says Tacchini, "has told ordinary aspect ; and at the Observatory we bave judged that we might make the same remark. The change must be attributed to magnesiam.'
It is impossible to consider attentively the remarkable occurrence recorded by Tacchini without being struck by the evidence which it affords of solar matability. We know that during thousends of years our sun has poured f(rth his light and heat upon the worlds which circle around him, and that there has been no marked intermittence of the supply. We hear, indeed, of occasions when the sun has been darkeaed for a while; and we have
abundant reasons for believing that he has at times abundant reasons for belioving that he has at times been so spot-covered that there has been a notable diminution of the supply of light and heat for several days together. Yet we have had no reasons for anticipating that our sun might permanently lose so much of his heat and lustre that the inhabitants of earth would suffer. Tacohini's observation reminds us, however, that processes are at work upon the sun which admit of being ohecked or increased, interrupted altogether or exaggerated so violently (as it were), that the whole aspect of the salanetary system, may be seriousiy affected.
If we only remember that our sun is one of the stars, not in any way distinguished, nulessperhaps by relative iosignificance, from the great bulk of the stars which illaminate our skies at night, or are revealed by the telescope, we shall learn to recognise the posibility that he may undergo marked changes. There are stars which, after shining with apparent steadiness for thousands of years (possibly
for millions of years before astronomy was thought
of, have become suddenly muoh reduced in brightness, or after a fow fliokerings (as it were) have gone out allogether. blazed out for a while with a lastre excoeding a biazed out for a whicedfold that which they formerly possessed It would be equally unpleasant for ourselve Whether the sun suddenly lost the best part of his light, and presently went out altogether, or whether he suddenly grew fifty-fold brightor and hotter than he now is. Yet in the present position of siderea astronomy, it is quite impossible to assert confidently that one event or the other might not take place at any time.
Fortanately, we may view this matter (just as astronomers have learned to view the prospect of mischievous collisions with cometa), as a question of probabilities. Among so many thousands of star there have been so many sudden outbursts of light and fire, so many sudden defaloations of splendour. Our sun is one of those thousands, and so far as we know, takes his chance with the rest.

ON MEASURING TEMPERATURES BY ELECTRICITY.'

(Concluded from page 584.)
A LTHOUGH I have explained that by means of sistance (constituting in effect a Wheatstone bridge arrangement) the increasing resistance of the platinum spiral may be measured, it was found that the use of a delicate galvanometer is attended with considerable practical difficulty in iron works and other rough places where it is important to measure elovated temperatures, or on board ship for measur-

to beok the same result by the concoption of an instrument which is isdependent in its action from tremulous motion, or from magnetic disturbance caused by moving masses of iron, and which requires no careful adjastment or special akill on the part of the oparator. This instrament is represented by Fig. 4, and may be termed a ohemical The immortal Faraday has proved that the decomposition of water in a voltametar, expressed by the Volumes of gases V, is proportionate in the unit of time to the intensity I of the decomposing current, or that

$$
\mathbf{I}=\frac{\mathbf{V}}{\mathbf{T}}
$$

According to $O \mathrm{hm}$'s general law, the intensity I is governed by the electro-motiveforce E , andinversely by the resistance R, or it is
$\mathbf{I}=\frac{\mathbf{E}}{\mathbf{R}}$. It is, therefore, $\frac{\boldsymbol{V}}{\mathbf{T}}=\frac{\mathbf{E}}{\mathbf{R}}$ or $\boldsymbol{V}=\frac{\mathbf{E T}}{\mathbf{R}}$;
or the volume ∇ would give a correct measure of the electrical resistance R if only the electro-motive quantities. Bnt 1 is very variable; it is influenced by polarisation of the electrodes, by temperature, and the strength and purity of the acid employed. The volume of gases obtained is influenced, moreover, by the stmospheric preserue, and it is extremely difficalt to make time observations correctly. It occurred
to me, however, that these uncertain elements to me, however, that these uncertain elements
might be entirely eliminated in combining two similar voltamaters in sach a manner that the current of the same battery was divided between the two, the one branch comprising the anknown
F.R.B Read at the Royal Inatitution, by Mr. C. W. Sremera
resistance to be measured and the othar a frown and constant resistance. The volume of sas pro B^{1} in circuit, would be expressed by

$$
\mathbf{V}^{\mathbf{l}}=\frac{\mathbf{E} T}{\mathbf{R}^{2}}
$$

and we should have the proportion of
$\mathbf{V}: \mathbf{V}^{1}=\frac{\mathbf{E T}}{\mathbf{R}}: \frac{\mathbf{E T}}{\mathbf{B}^{1}} ;$
or E and T , baing the same in both cases, may be simple form
$\mathrm{V}: \mathrm{V}^{1}=\mathrm{R}^{\mathbf{1}} \div \mathrm{R}$.
The constant resistance R of the one circuit being known, it follows that the unknown resistance B^{1} is expressed by $\frac{\mathrm{RV}^{1}}{\mathbf{V}^{2}}$; that is to say, by a constant multiplied by the proportion of gas produced in the two voltameters irrespective of tima, or trength of battery, or temparature, or the atate at he barometer.
The resistance R and R^{1} are composed each of wo resistances-namely, that of tho principal coila which we may term R or \mathbf{R}^{1}, and of the voltameter and leading wires, whioh is the mame in both cases and may be expressed by y. The expression should therefore be written as follows:

$\mathbf{V}: \mathbf{V}^{\mathbf{l}}=\mathbf{R}^{\mathbf{1}}+\boldsymbol{y}^{\mathbf{l}}: \mathbf{R}+\boldsymbol{y}$,

R1 being the anknown quantity.
The mechanical arrangement of the instrument will be understood from the diagram, Fig. 4; and the whole arrangement of the pyrometer, with it leading wire and reaistauce measurer, from the general view given in Fig. 5. The voltametric roigtance measurar consists of two calibrated vertical abos of glass of about three millimetres diameter, aqual divisions. The apper ands of the tubes are coed by small cushions of indiarabber preased down lopo the openings by means of weighted levers npones the lower portions of the tubes ere videne out and closed by plags of wood, through which the sectrodes in the form of pointed platingm wime electrodes in the form of pointed platinum wires. penetres into the widened portions of the tabes. By metres into the widened portions of the tabes. By a side branch the widened portion of eanoh vartica tube communioates by maans of an indiarabber comnecting pipe to a little glass reservoir containing acidulated water, and supported in a vertical slide In raising the weighted cushions closing the upper onds of the vertical tabes, and in adjusting tho position of the small reservoirs, the acidalated water will rise in both tabes to the zaro line of the scale. In tarning a batton in front of the tabe ha batiary current is passea through bo pormanent resistance R and the leading wires up to the pyroneter, and the other the leading wires and the pyroneter coil. If the resistance of the pyrometer coil should be equal to the permanent resistanoe $\mathrm{R}_{\text {, }}$ the ${ }^{1} \beta_{1}+y$ will be equal to $R+y$, and therefore $\nabla=$ V, but as the resistances differ, 80 will the volamea V1, but as the resistances differ,
Necessary conditions are: that both reservoirs are Necessary conditions are: that both reservoirs are
flled with the same etanderd solution of pare flled with the same standerd solation of pare
water with about ten per cent. of sulphario acia, Water with about ten per cent. of salphurio gend,
that all the electrodes are of the same form and size, and that their polarity is reversed frequenty during the progress of each observation, in order to avoid unequal polarisation. With these preasktions, which invoive no partioular atill or knowledge of electrical observation on the part of the oparator. very accurate results are obtained ; bat in order no to incur considerable error of observation it is anvisable to continue the current, reversing the cames say twice, until at least forty divisions of geses aro produced in the least activated tabe, which operation will occupy from two to three minutes, if a battery of from four to six Daniell elements is emplojed. The volumes V and V^{1} being noted, after having allowed halt a minate for the gases to colleot after the current has ceased, the muighted cushions apon the tubes are raised in order to allow the gaces to ascape, when the water levale will immediately return to their zero position, to make ready for as other observation. By inserting the obsar red ralam for V and $V 1$ into the expression above given, the unknown resistance \mathbf{R}^{1} can be easily calculatod ; bel in order to facilitate the use of the instrument I have prepared a table which gives at a glance the resistance due to any two observed volumes, the volames V governing the vertical, V the horisonta columns, and the reaistance being read off at tho point of intersection. At each point of intersection the resistance is marked in black, and the corresponding temperatare in red ink.
It now remains only to be shown what is the relation between the resistance and temperatare in heating a platinnm wire. The researchos of Dr. Matthiesen, who has made the latest investigations on the effect of temperature apon electrioal resis. tance, are restricted to the narrow range of temperatures between 0° and $100^{\circ} \mathrm{Cent}$., nor do they cofeprise platinam. He adopted the following geacel expression for the pare metals:
$R=\frac{R_{0}}{1+x t+y t^{\prime}}$

Which, in determining the specific values of x and y for each metal, gives a close agreement with obser. vation between the narrow limits indicated, bat is Wholly inapplicable for temperatores oxceeding 200° Cent., when the ralue $t 2$ commences to predominate and to produce absurd values for R_{t}.
It was necessary for my purpose to undertake a series of elaborate experiments with a view of finding a ratio of general application. Coils of thin
wire, of platinam, iron, copper, and some other wra, of platinam, iron, copper, and some other
metals, were gradually heated and cooled in metallic chambers containing the bulbs of mercury thermometers, and for higher tomperatures of air thermomoter, and the electrical reaistances wero carefully noted. The progressive increase of electrical resis. tance Was thas compared directly with the increasing volume of a permanent gas (carofully dried) ratio established, whioh is represanted by the formula.

$$
\mathbf{R}_{t}=a \mathbf{T}+\beta \mathbf{T}+\gamma_{1}
$$

in which T signifies total temparature counting from the absoluto zero, and a β and r speciflo co-eff cients for each motal. Aocording to this formala the alectrical resistance is a constant at the absolato zero, and progresses in a ratio represented graphically by a tipped-up parabola, approaching more and more toward a unform ratio at elevated
temperatures. Although the comparison with the air thermometer could only be carried up to 470° cent., the general correctness of the ratio of in-
crease just stated has been verified by indirect means in measuring progressive heats, and by comparison with the platinum ball pyrometer.
It is important to mention here that great care must be exercised in the selection of the platinam wire for the measuring spiral, platinum wire heving boen met with condacting only 4.7 times better than times better than moroury, although both samples had been supplied by the same eminent makers Yesarro Johnson and Mathey. The abnormai eloctrical resistance of some platinum wire is ture of iridium or other metale of the same or otherp, and it appears that the platinum prepared by the old welding process is pater, and therefore cal purposes than the metal consolidated by fusion in a Deville fur nace.
In conclusion, I shall sults of the working remeasuring by means of the same protectod coil a miriure of ice and water, and the fire itself by lead, and the fireitself by which readings is melted, the 2° Cont., 98° Cent being

Cont., and 860° Cent., 330 temperature signified a cherry red heat latter be judged by the appearance of the tabe when withdrawn from the fire. The instrament which I have had the honour to bring before you this evening has already received several useful applioations. Throggh its first application an important tolegraph cable was saved from deatraction through espontancous generation of heat. Prof. Bolzani, of Kasan, has made some interesting applioations of it for recording the temperature at elevated points and at points below the oarth's surface. Mr. Inowthian Bell has usod it in his well-known researches on blast farnace economy; and at sevaral ironworks pyrometer tubes are inconnected with the offing, where the heat of eanh stove can at all times be read of and recorded. These and other appligations are sumcientlorded. ovident, if the soundness of the principles upon Which I rely is conoeded; but I fool that the short nees of time at my command has hardly enabled me to do more then to pass these in review, while endea vouring to demonstrate the results obtained of recording the temperatures of diatant or inaccessible places, including furnace temperatares.

SPONGES.

WERY few among the thousands who are now ceeking recreation at the seadide are aware of the immense rariety of life the rea contains, or the wonderfal and interesting oharacter of the marine plants and animals that are within reach of the the Gardener's Magarine, on all our conats sponges abound, yet the fact is scarcely known except to the naturalist. They are to be found growing on seaweeds, on the backs of crabs and lobstera, on and apan rocks and sand ovarywhere. The seameed collector will meet with apongen at evary turn,
whether in gathering from the deep ees or from th far separate in organisation and their respective far separate in organisation and their respective
sequence of development, though constantly in sequence of development, though constantly in
proximity as products of the waters. The first are trae vegetables, the second true animals. We know somewhat, though perhaps but Ilttle, of the first but of the second we know next to nothing; and jet the sponges carry us farther into the realms of romance then the seaweeds de, for they were doubtless among the earliost and most industrious bailders of the world, and have left thair frail akeletons as memorials of their existence in the "White cliffs of Albion," every separate flint being to use a homelj phrase, a "petriffed" sponge.
Take a thin slice of flint, property prepared for the microscope, and let the instrumrent nuravel ite horia, you will hardly fail to find of fossil infusoria, you will hardly fail to find them in it, and you gain one step towards an answer an to its history.
Organised forms have had something to do with Lhe formation; at some time, very far back in the past, there has been animal life there, and that lire Fas marine. But you cannot nocount for the formation of separate and independent nodules of silica, infusoris over a bed of chalk, by the help of these rough; but be very careful not to broken off in the rough; but be very caraful not to spoil your objectglass by bringing the two sarfacos into alose conact. Now What do you see? Remains of shells, and here and there distinct traces of a sort of retioulated structure, sparry incrustations of a
contour which you cannot but believe is derived oontour whioh you cannot bat believe is derived
from some organic form, long since annihilated. These appearances are repeated in various specimens, and have a general relationahip one to the ofner, especially in the interlacing lines and epicule of which they consist.
Life may be said to begin or and in the sponges they are the very loweat in the scale of animated

nature ; but it is quite certain they are not members of the vegetable kingdom. Take a piecs of sponge,
such as is commonly nsed on the toilet table, and sach as is commonly used on the toilet table, and dipit into a thin solntion of size, and you have a ponge proper of its condition when living. The costing is organised and simelon, and the beat proof of the fact is afforded by the miaroscope, which reveals ciliary motion, and there is an and of the difficulty as to what place it should ocoupy. The openings in the sponge are chambers, interlaced With silicated fibres, and, by the play of the cilia on the gelatinous murface, the water is made to circalate from chamber to chamber, so that the sponges obtain their food by the same process as a vorticella or rotifer-namaly, by oreating carrants through the agency of cilia. The exterior film
is the life of the aponge, the akeleton is a is the

But the film mast be understood as pervading the inner as well as the exterior chambers, so that the carrents of water past through the ontire mass, and
carry nouriahment to all the months for which the cilia work so incessantly. A very dead sort of creature is a living aponge. It has none of the organs of sense which distinguish terrestrial animals; and not even the irritability which makes a sea-anemone of so peeviah or spasmodic a tempor. Bat it has its hiutory, however brief, like others of the great alass of zoophytea. The sponges increase by gemmation. Little bude appear within the openings of the retionlated mass, and these at last detach themsolves, and exhibit the aame play of cilia as their parents.
But instead of at once becoming fixed, the action of the cilia carases the aponge to spin about in the water, so as to have a real looomotive power of anding for itself a site, where it casts anchor, and or the rest of its days nevar knows either the pleasures or the pains of travel. If every separate fint Wha once a separate sponge, this locomotion
accounts for their detechment and their subseguent accounte for their deteahment and their subsegnant
conoretion in distinct nodnles.

LIGETNING AND LIGHTNING CONDUCTORS. TN a letter on this subject to the Times, Mr. W. H. information : of
I wish to express merely the results of my own study and exporience. If, however, twemty years training in that profemion which, according to one of jour correspondente, "lives by lightning"," if the personal inspection of innumerable lightning accidents, of the erection of lightning conductore (not in tens or handreds bat in thousands), entitle one to express an opinion, then I trast your readern will bolieve that what I saly th not mere sciolism, bet the lessons of that beest of all teachers-oxperienee. I said, "Ivery one can, it he choose, at the expense of a few shillings, render his house absolately safe with a perfect asitem of lightning conductors." I will now show how of lightis can be done.
Bat, first, what is lightning ? It is, like thunder one of the effects of electric disecharge. It is not the destructive discharge itself. The amount of misconception and error in the patho mind on the onbject of electrio storms is astomishing. We rem of the "electric finid" being attricted by this thing and by that-at one thme by the lamp trons on the ends of a railway carriage, at another time by the looking-glesses, which are carefully remored; we hear of "asconding" lightnoing, its coarse is traced the clouds overhead ;" "it struct her feoe peased to her chest, and crossed over the region of her heart;" it objeots "to tarn round sharp corners "" and en on All such statements are scientifo absurdities.
Modern physioists know no auch thing as the is electric filuid." Electricity is no more mater than is heat, or Ight, or sound. The laws of its transmission are simple and thoroughiy well knewn Thanderstorms are but gigantic repetitions of drawing-room experiments ; they are simple electrical phenomena, differing only in degree from The ordinary spark exhibited by a lump of sugar There must be two masses in opposite electrical states, separated by a non-condactor. Two "thander" clonds, or the earth and a thunder coloud separated by the air, gives these conditions. When the intensity of the aharges becomes too groat for the interrening non-conductor to prevent their neatralisation by combination, or when its thiokness, and therefore its resistance, is saffidently reduced by the charged bodies approaching each other, wo have dicoharge and ite effoete-light, heat, mechanioal energy, and sound, or thander and lightning and its destractive effects. The $\mathbf{n o}$ called "electric fluid" can no more be said to asoend from the earth to the clond than to dercend from the clond to the earth. The discharge invariably cocurs along the line of least resista continnous and instantaneous along the whole line. The line of least resibtance may be made ap of Whatever offers the least resistance will be the choeen path. The ohief function of a lightning conductor is to farnish this path. But it has a much higher and important function. It disaipates the higher and important function. It dissipatem the conditions Which detarmine discharge. In fact, it
provents lightning. This it does in virtue of the prevents lightning. This it doed in virtue of the
prinoiple of points. A pointed body directed towards prinoiple of points. A pointed body directed towaris when a thunder-alond passen over a lightning conductorits charge is silently, quietly, and oontinuously neutralised. If a galvanometer were inserted in this conductor at such a time it would give indiontions of the presence of an electric current. Tolograph wires are invariably oooupied with currents on such ocoasions. The presence of a storm at NeFfoundind wha observed at the extremity of the atlantic cable in Irelend.
Hence the conditions that determine a perfeot conductor are that it shall expose in some prominent position of a building a metallio point, and that it shall offer from this point to the ground a path of ittle or no resistanoe. I say that the ordinary galvanised iron wire known as No. 4, which is fin. in diameter, tipped with a gilded brass point or cona is amply enfficient for any dwalling-hoase. It conth about 1d. per yard, and the brass cones would cost about 6d. each. Thirty shillings would pay for all the matarials required for an ordinary house.
My reasons for recommending this wire are these country they were proteoted with lightning bandzo tors. This practice was aubeequently fornd to be too expensivo, and was abandoned. Sach "earth wires," or conductors, were, however, found to effect another and very important object, and their use was continued on all main lines. I have neve known a case of a pole so protected being damage during a thunderstorm, whereas ecarcely a thander atorm ocours withont some unprotected poles bein injured. I remember, near Romeey, twenty unpro tected poles being ahattered by one discharge, and upon the Basingatoke and Andovar line 15 per cont. were found to have been struck. The fine whe renewod and earth wired, and not one single case of damage has ocourred since, though some jears have elapeed. A pole was very recentily found in Soath Wales with 8 in. of its top shattored - the earth wire onls went so far; the charge from that point
went hermloall to earth through the wire. The
cross arms are freqnently foand damaged as far ns the earth wire, never beyond. I could maltiply instances ad infinitum, and as the wire used is gene-
rally No. 8 (170 in. in diameter), and sometimes rally No. 8 (17 inin. in diameter), and sometimes
even smaller, I think I am fully jastified in saying even smaller, I think I am fally justified in saying
that No. 4 wire, which is twice as thick and offers that No. 4 wire, which is twice as thick and offers
half the resistance, is amply sufficient for the protection of our houses. The precantions to be used in fixing conductors are those:-

1. The conductor mast be solid and continno us from its gilded point to the gromnd.
2. Its connection with the ground must be sound and good. It may be connectod with the iron, gas. or water mains, or be buried several feet deep in a bed of coke, or be attached to a mass of metal in moist earth, or be carried down a well.
3. Each conductor, if there be more than one, should make a separato earth if possible, and they should all be connected together below the surface. The lead rooing and all external should be connected with them.
4. All joints and connections should be solderod. It is better that each chimney stack should have its own condactor, and they shonld be periodically examined to see that their points remain intact, and that their metalic continuity is perfect. The casto
is to fix them and then to loave them to chance.
The precantions that are not necessary are these -1 . It need not be copper. 2. It need not be insulated. 3. It need not be carried externally to their
disfigurement in the cases of charch spires, columns distigurement in the cases of charch spires, colnmns,
and ahimneys. I never pass Trafalgar-square with out regretting the disfigurement of Nelson's statue It is, however, better to carry the wire externally in the case of dwelling-houses, lest it pass too near the lead gas-pipes, which, being good conductors the lead gas-pipes, which, being good conductors
and soft metal, might be fused. The wire can go round a corner as well as through it, but accute angles round a corner as well as throngh it, bat acate angles
are best avoided. The more direct the course to the are best avoided.
The area protected by a conductor is said to be that whose radins is equal to twioe the height of the conductor from the ground ; but it is safer to take the radias as equal to the height of the conductor. Thas, for small hoases one condactor is enough, but it is safer to attaoh one to each stack. If it project a yard above the stack it is sufricient. and it is within reach for inspection. The stack pipes down the sides of a house are convenient conduits for the wire, and there is no reason why it should not be carried down to the ground inside them, so as to be out of sight. If there be no oon-
venient stack pipe, the wire can be ran np and stapled to the prickwork or stone. With 30 s . for
for materials and 10s. for laboar any intelligant man can, with these directions and precantions, safely protect his house from the destructive effects of thanderstorms.
The effect of thanderstorms apon our telegraphs is not very serious, thongh the extension of such a network of wires, 130,000 miles in length, over the whole country would lead one to expect considerable demage. All the telegraphic apparatus in the Pootal Telegraph Department-end there are 8,500 is use are supplied with lightning proteciors. The wires themselves are excellent protectors. Aocidents are due either to imperfect apparatus, careless construction, or neglect of instructions. The percentage of instruments damaged is very small. It was bofore the transfer of the telegraphs to the State 3 per cent.; it is now decidedly less. The Postal Telegraph Department possesses about 3,500 stations of its own ; scarcely half-e-dozea have been injured throughout the whole of this severe season. At two or three stations the wires were carelessly carried parallel to the lead gas-pipa As sparks passed from the wire to the pipe the pipe ago, not only this happened, but over the gas-pipe was a lead water pipe, whioh was fused by the gas, and the water which escaped extinguished the flame. Evary discharge disturbs the wires are active. Frequent and powarfurbs carrents pervade them. Brilliant flashes are observed about the apparatus, brat no injuries oceur to the manipalators, though shooks are sometimes fell. I have known one or two clerks knocked down, but principally by fright. If there were any trath in the popular notion that metal attracts lightning telegraphists wonld lead but a sorry life during thanderstorms. Daring a reeent very nevere thunderstorm I was watching its effects in a large offloe. Not one clerk left his post or shirked ki , daty, and all appeared perfectly in-
different to \because ro roar and fary of the elements outside. In saggesting "patting grates to earth," I advise a telegraphist's cure. An external system is better and cheaper, though this plan wonld add an addigrate must be taken ont, and a pin tapped into the beck of it, to which mast be welded the galvanised iron wire. Separate wire should be carried from each grate straight down the side of the flues, and united together at the ground line, and thence taken "to earth." The wire should not be allowed to go near auy lead gas-pipes.
Mr. Hyett's plan is an admirable one, and his pipe is an excellent condactor. The right angles are harmlowe if the pipe is carefolly rounded athose places.
Points and sharp edgen are alone to be avoiaed.

LETTERS TO THE EDITOR.

[We do not hold oursolves rasponsible for the opinion that all oomnumications shoubd be drawn up as briequy a passible.]
dil communioalione should be addressed to the Editor Garden, W.O.
All Cheques and Post Offee Ordere to be made payabl o J. Passmore Edwarde.
"I wnald have every one write what ha knows, and as much as he knows but no more; and that not in this only, but in all other subjecta: For such a person may nature of suchac person or such a fountain, that as to other thiugs, knows no more than what everybody does,
and yet to keep \& cluttor with this little pittance of his, and yet to knep a clutter with this little pittance of his,
will undertake to write the whole body of physicks: Fioe frim whence great ins.
original"-Montaigne's Essays.

* "In ordor to facilitade roferonce, Oorrespon dente whon meaking of any Lettor proviously inserter, will oblige by on which it appears.

WEBB'S CELESTIAL OBJECTS AND PROCTOR'S STAR ATLAS.
[4099.]-M. C. Gaudibert is doing very usoful work in noting the places, de., of certain double stars, which he has observed on divers occasions. Bat I would venture to snggest that he might ind a better way of
classifying them than (let. 4688 , p. 542) as "objects not in Webb's 'Celestial Objects' nor in Proctor's amaller atlas." His present method suggests to many that in each several instance he is indicating a flaw or blemish intend this; since he must be perfectly well aware that for every object which could be inserted in sach a book there are or such an atlas as my smaller one scopic power. Webb indicates this at $p .170$ of his work, and no one can use a telescope for an hour on a good night withont finding it out for himself.
I may take this opportmity of correcting a misapprehension, which I find very prevalent, as to my p. viil) that the atlen I say in the prefaoe (2nd edition p. vii) that the athas is "specially intended to serve as intend to indicate that as the primary purpose I had in view in planning the atlas. The scheme of the atlas was fully matared, and the larger atlas was comploted, before I had had the mdvantage of reading the "Celestial Objects." My main object was to construct an atlas on a plan combining severad qualitios of great importance which had hitherto been (nneocountably) neglected; and the geometrical determination of the one the mithord by which those qualities conld be oombined Having devised a plan fulflling that general parpose, I thought I conld not do better than make the larger atlas serpe the special parrose of being a companion to Admiral Smyth's "Celestial Cycle," while I msde the smaller serve the sprcial parpose of being a companion to Mr. Webb's "Celestial Objects." These respective special parposes are quite distinct from the genera purposes whiah the atiases were primarily intended to falill.

It will, parhaps, be nnderstood that having given much time and thonght to the invention of an atias quite distinct from anything previonsly published (and on a really soand plan), I have to some degree ob jected to find my smaller atias commonly spoken of as though it were a mere offehoot from another work however highly that work is jastly estimated. All the same I congratulate myself very much on the " happy special oharacter to $m y$ smaller atias. For it is as ean to oonceive of an observatory withont a telescope a withorit Webb's charming work.

Richard A. Proctor.
THE MOON IN PICTURES, ON HORIZON, dOTo "M. A."
[4700.]-"M. A." (let. 4622,.p. 509) ham raised a question of considerable interest.
There can be no doubt, I thint, that the cize of the ann or monn in pictnres depends a good deal on the Moreover, thent. We have an ideal moon or sun. all who lonk at the pictare. Te my own judgment, for exsmple, the monn introduoed in some of Leech's pic tures appears monstrous; yet it is probably enlarged only about as much as is just for pictorial effect.
I think all these pointa depend on idess mnoonsoiously formed as the result of a mare or less truetworthy past experieace, and the judgment is exercised as if on the intnitive assamption that those ideas are jast
For example, we 800 meatharoocks ordinarily in a poaition which leads ns to form the iden that they are amallar than they really are; but we have tolerably exact ideas of the dimensions of ohurch doors, porches, buttresses, and so on. Hence, when we see a weather oock close by a charch door, porch, or battress, the mind is atruck by the fact that the weathercock takes up more apace than one would have expected.
Again, it has been shown by optical oonsiderations
as being between three and fonr times farther ampy than the sky at the zenith. Now we naually sec the When it is nesr the horizon, itill seaming on the When it is near the horizos, still seeming on the
sky, the mind entertains the impression that the sky, the mind entertsins the impression that the
moon is much farther away, and as it aubtends (appremoon is much farther away, and as it aubtends (appreciably) the came angle instead of much redruced angle, the mind receives the impression that the mo.
is larger than whe had before been conceived to be.

Now, in pictorial reprementations of the monn there is precisely the converve of the case of the horisontay moon. The horisontal moon seems mach larger than usual, and really sabtends the asae angle (appreciabty asua, and realy sabtends the same angle (apprecisery about the right size, and really mabloods a much langer angle. May not this be becsuse, whoreas in ardinary observation the horizontal aky seamemuch farther amby than that overbead, the sky of a pi
Everything seems consistently explained by the viena here presented.
"M. A." is, of course, quite right in dwelling on the fact that a swittly-moving body offers no revistano to deflection. He jastly urgee slso the great objection in the term "centrifugal force," in case whert in reality incritic (or abzance of jorce) is the essentin feature. It is not quite true, as "C. H. W. B." eass that there exists no such force as "centrifogel forch" called is no force at all. RicHam A. Pewctor.

ERRATUM AND ADDENDUY ABOCT

 PERSPECTIVE[4701.]-I Notice in my Jetter aboud perspeative (4611, p. 509) an erratam, which arose from my adting a parenthetioal remark without haring the figure before
me. Of course the sentence beginning " that me. Of course the sentence boginning "that M. Paris
may not," \&c., rulatea to the paralleling of the lines may not.
C A, D
As our common object is to get true idean eithas established or promalgated, you will permit me, I trout to indicate that the views of Sir David Browater, quotod by M. Paris (let. 4623, p. 609), are strictly correct II Paris has misunderstood them. It is quite true thes when we stand close to the base of a square tower en so diacet our vision as to take in the whole to wer is the most casrenient manner (that is, with the head throw slighty back), the perspective viow wo theo otein hows the sides of the tower coaverging, and thor woil so ngpens in photograph if the prepered plate tere
phaod in a correcpondingly inclined position; or in s pleood in a correepondingly inolined position; or in s picture, if the pinin of projection wexe ampposed to to

As the lettar by M. Paris which has appeared attec (though reoeived before) your decision to clase the diansiion, describes an obearvation soeming to demonstrac a theory which unquestionably is erroneous, I beg, is the intereats of your younger readers, who might ocher wise be misled, to be permitted to point ont thas the
result of M. Paris's observation with a plamb-line woald result of a. Paris's obsorvaki with a plamb-ine wald have very aky iliustrated my papor on in observation." it is methemation demer strable that he cannot heve eoen what he erpppeees to gaw, any more than he co lines enclosing a speco.
 tion), it can readlly be shown that accordins to thie theory two etraight linet ons inclose apace. Tbre let there in a hothy equare to wer of equal width theroagt
out, and let the observer be atationed at an unper window of a hoace clane by mo as to be opporite the middle of tho towar
 fece must convarge towards the top of the pisterre, and if produced far enough will meat in cral airection. Bat the bilum ol tower being larther from the oje that Heace, according to the theory, the sides bounding tse nearest face must converee tomends the bottom of the picture, and if produced far anough will meet in that direction. Hin atraight lines will moet is two This is manally rogarded so imporalble. bichard A. Proctor

PERGPFCTIVE.

[4702]-Stisce you have comewhat departed frome your original intention of clocing the discasion on perspective I hope you will be able to eparo epace tir a fow more lotteri on this interenting sud fur from or

[4703.]-Mr. Proctor admita that the top of the
 the appearances to be represented by the sketoher. He is, therefure, 1 sabmit, not justined in making in his anagram the line AB equal in length to the line Cot his reasoning is vitiated. Mr. Prootor and if not, all his reasoning is vitiate. Mr. Proctor indefnitely extended to which the projections of the towor's sides converge, bat the plane of projeotion eoo
extonded mast reach the zenith, and the vailhing. extonded mast reach the zenith, and the ranighing.
point of the sides of the tower is the zenith. Il the part of the plane not representing the tower be out away and how, then, can the zenith be the vanishing point in ane case, and not in the other? Again, Mr. Proctor admita that the raniahing-point of any plamb-line is the zenith, bat the plane of projeotion may obvionsly by side. Now, the sides of the tower may be looked apon as plamb-lines converging in the zenith, yot the linee on the plane, also plamb-lines, socording to him, do not converge there. If the top of the tower subtenda a B D cannot be parallel, and the plane of projection cannot make them so. The question now is, is Mr. to C D ? I bay cortainly not, and that mistake is fata to his demonstration
M. PABIs.

PARALLELOGREIT OF FONCNS.

[4704.]-I THiNK the Professor in the Andersonian University had probably another roecon for les Ting answored than the moro desiro to shirk, pimoalty.
"M.E.' B " difficulty is based on two mistacioe. The first is the common one whioh oonfounde tho parallelogram called the "parallelogram of forees " accerta nothing whatever aboat the time in which a body will traverse the diagonal $A D$ (nee the Agrere illastrating let. 4649). In too many of oar catoohisms on mechanios the question of time is dragged into the explanation, and oven into the enunciation of this mporthant low. "Mrarine in question), but what follows after the word "therefore "is a mon sequitur and if the theory of volocities weruiturreoul ghaed by "ianine Engineer, the trae of the two lorces, will twt reach D in the ame time,
de. But his reading of the theory of projectiles is quite erroncous. Whenevera body's inertian is all that hat to be crecoome by s forco, the valocity acoquired in a given time in proportional to the loree, and not to the equare root of the force. The oxperimental how In gunnery that the volooity varies as the aquare root of the oharge (other things being equal) deponde on a number of cireamotances altogether independent of will prota of the ball. lato these meturs " F.1h.A. o. ocension gennery, to whioh I can lay no claim.
I am glad to see "C. H. W. B.'s" proteot agnins many

Rigiard A. Proctog.
[4700.]-I onnvor but think that "Marine Enginear's ${ }^{n}$ difficalty (lot. 4640, p. 515) arisos from a confanion between the work done in consequenoe of a certain velocity, and the power imparting that velocity. Refarring to an illostration in "The Conatitation of
 ing up a briok with min intial rolocity of 6 mis. a seoond groator than another man who hrow ap a brick of equal weight with orly haty the indelal relocity, 83/t. a
 the former case to four thene tha herght that it will be for one second, while the sueced beiot bill take two seconds in tra, while the steced briot wil taik two quently, wo travaling its quachaph dre ore. Conce formed, not in the same time, but bon doe the the time so that the force is not quadraple but ouls doable.

จ. B.
[4706.]-I TRUst the following will "Marine Engineer" (let. 4649, p. 515) that the thery of projoctiles and the paralielogram of forces:e in complete The lino D in other
The line $A D$ in his diagram traly represents the resaltant of the forces $A B$ and $A C$, both in direction
and intensity ; but his statement 4 that a body ander and intensity; but his statement "that a body under same time it would have reached B or \mathbf{C}, under the action of a iningle force," is only correat when the body accion of a mingle force, "is only correas when the body
acted on is moviog in racuo, but when peoving in air the line AD meraly representa the zeratiat force in propertion to the other two forces, and hat nothing to do with the time occupiod or distrese ned by the body.
In the theory of projectiles the meltarie of the air has to be taken into acconnt, of the moloctisy, and to double the range of a projectile, four theme the original foroe is required; but the pellodit-4 - the the initial
 space trined han, in thene by a projectile
 in the same dopace of time, but only aboart 1t AC,
 L. H. 0 .
[4707.]-In answer to "Marine Engineer" (let. 4649 p. 515), it appears to me that his dificalty lies in the cosumption that to produce a donble velocity requime the expenditare of a foarfold force, which is only trine when the sploe through which the force is exerted is
mains constant. If we employ the asaal symbols of P for a nuiform moring force, if for the mass of a bof acted on, ∇ for the velocity generated, and 8 for the space throagh which the force acts, then by wellknown formala, $P=\frac{M V^{\circ}}{23}$, hence if S remains coer atant, and V is donbled, P mast be increased fourfold; bat if ∇ and 8 are both doabled, as in the case of the diagram in "Marine Enginear's" letter, P will only require to be doubled aleo. I hope this explanation
will remove "دlarine Engineor's" difficulty. T. E.

THE DEATH OF THE CRANK

[4708.]-Tre crank is doomed at last-after all tim attempts of disappointed would-be inventors ; in spito fruitloss efforts to discover a sabstitnte. The fortanate fruitioss efforts to discover a sabstitnte. The fortan
discorarar of the means of doing withoat the cranken
 momber of the Senior Class of Racine College (U.S.). deemed by many practical engineers and scientinc men likely to prove one of the most valuable and nsefal inventions of the age. Bnt I must quote the Argus, for I am afraid I might not do justice to the transcendent merita of the invention and the inventor:-
"Mr. Morton's improvemont [it is said] does amay with the dead points ontirols, and keeps the powor continualls apon the long lever, or as engineers call it.
the half-ceatre, thas nearly doubling the power, to haring a great amount of fuel in engines. It can be ao saring a groat amount of fuel in engines. It can be
applied to all kinds of crant machinery, engines, lathes, apphing -machines, \&c. The simplicity of the arrange-
ewing coning machines, de. The simplicity of the arrange-
ment is almont ridiculons, and maikes one langh and monder why it was never thonght of before. It oonsists of 2 ratchet wheel, which takes the place of the crank; over this ratchet wheel rans a frame, in the the connecting rod drives the frame out the cogs on one
side not apon the teeth of the theol suad carry it hals way soond, whib, at the aame time, the cogs an the opposito ado, working in a contrary diroction, when way, and the instant they wheel, aro thrown ouf of hicel thos eaj the thent taoy scrape the toight, or by of springe pod so remaining hal so are real the connecting rod is drawn in. Thras a revolation is obtained with every atrake of the piston, and no time is lost" (!)
Thare is just a little piese of information wantod to make this "mechanical triamph," as it is termed, completa. Mr. Morton mas have "got ap the invententoa days? Pending an answer I think we neod not yet altor aur crank shafts.
G.J. H.

TO "THE HARMONTOUS BLAOKBMTTH."

[4709.]-I must confens my fall beliof in "Hollow. tonism," bot not in shntting up poor Jaok in a box, or contrarywise, allowing him to " mesto his aveednese on the desert air." There is some semblance of alassical anthority for the creed. Hes "The Harmonious Blacksmith ever woon the iamous "roap of eth her the "Lsocoon" (or cast hareor)? And does he mon Why this Trojen priest incarred the purishment the ribe of the Gooder horeo lett by the Greets on an the ribs of the woodin hores lett by the Greois an an ambuscade at the siege of Troy. What hat all this to on a tho miction 1 and the pot Virgil thont Iren a long-bot he miohts) to show that he was a "chollowtonian." As tranelated by Wharton, he saye, denorlbing the maid Addling ratohSwift at the word his pond'rous lance he threw, Against the sides the furious javelln flew Through the wide womb a spacions passage founct And shook with long vibrations in the wound; And round his ownern roll'd the deafeming thander'a acoe
It may be very nnolassical to give poor Laocoon a fiddlestick, but "The Harmonious Blacksmith" rill perhaps take the arrangement in another sense, and asy "a fiddle-stiok for Laocoon"-never mind the bow. Lone, and with Virgil at my side, if I fall beneath the cona, and with Virgil at my side, if I ral beneath the spear of "The Harmonio

ay fate in good company

That the "box" in some shape or other is applied to overy masioal instrument acting by vibration of string or parchment for the purpose, and with she efreot of Witness ENolian harp to plano, trminourine to big drom. The mdrantage of a sound.hole is established and its aize regalated by experience. Opening the back doors of the harp gives it what was before wanting -a sonnd-hole. So also in the grand pisno elevating and eoundboard here modify the " box."
Does "The Harmonious Blackemith" really think that depriving a piano of ite case (learing the soundboard), a violle of its back, or a ketuedrum of the nether end" woald improve the power of their tones $?$ Truly, the hettledrum's matrimonial alliance of brass and parohment must be very ill assorted if improved cutting proper soand-holes in any dram, and increasing the thicikness of the cylinder in the middle, that perahance also adding bass-bar or sound-post in the intarior might not add to the drum's power.
As to tambourine and dram being like child and man, this in exactly corroborative of hollowtonism. The poor little child has no roice, his ribe are not grown to man's estate, nor his body long enough, while his moath is so large and open that his puny voics vanishes into empty ar. Let the the men. It and asame bJ degrees the proportions of the man. It will if he grows even to a side-drum, will have a louder voice, to be increased by becoming a Mig dram.
I never before heard of an Irish fiddle without a back; it eeems akin to she Irishman's Bath-chair without a bottom, on emergence from which, after a jonrney, Pat in reported to have said, "gure and if it hadn't been for the honour of the thing, I might as rell have walked." "The Harmonious Blacksmith" is assuredly joking, and I will them unfailingly con-
vince him of the effloacy of the box principle. Let him make the experiment for himself: take a small boy, and apply a box to his ear, if the archin does not boy, and apply a box to his ear, ir the urchin does not
give out his best tones, why I shall follow the bad fashion of the day and be " out upon strize." Extract the backbone of \& "Strad" (as doctors serve the frogi) fanoy the groans and screams of the unfortunate pationt deprived of his backbone! "The Battle of patient deprived of his backbonel bondboards may, however, be more readily determined apon the modern mode of arbitration or experiment. Let "The Harmonious Blacksmith" mak experiment. Let invention perfect, as I before suggested, it would not be a long operation, and if successful add to the laurels he has already won by his ingennity and pleasant contributions to the Mecianic.

Seffole Amateur.
[II those who controvert the opinions of "The Harmonious Blacksmith" are allowed to indulge in his strle, we shall be miataken for a comic jorrnal Guivolk Amabear" does not ofton tranegress, and the with. We warn "The Harmonions Blacksmith" that any allusions in his reply to "Vulean," in connee. excined-ED.]

GREENHOUSE FLUES.

[4710.]-IN order to further "Sanl Rymea's" very asefal hints for the construction of mechanics' greenhouses (letter 4662), I venture to supplement them with a plan of flue constrnction which obviates all diffonity as regards the relative level of flue and furnace. The plan I propose is thoronghly accordant with sound principle, and I have thoronghly proved its practical value. No excavations are required. If there be a room on one side of a greenhonse, the furnace may open into it, whether the floor of the room be higher or lower than that of the greenhouse or level with it, and the flue may descend to any reasonable depth from the fire.

I furnished a plan to a lady a few years since, in which the farnace opened into the harness room, the floor of which was, perbaps, 2 ft. higher than the flue. The mason had objected to the arrangement on that account, and great was the amusement elicited by my plan, until the fire was lit and the flame was seen curling downwards. And what is the rule by which a flue and farnace may be thus adapted, with foll assurance of success, to any position; and the whole question of stokeholes and levels be summarily set aside? It is simply this. See that the arrangements are sach that the bottom of the chimney shall be at once and thoroughly heated or warmed.
It is well known that greenhouse flues, which terminate in a chimney which derives warmth from a kitchen fire or from other chimney in a honse which is much used, draw well : but heat slowly and partially making way through a mass of brickwork must not b trasted to in the case of a descending greenhouse flue It is also well known that a retarn flue terminating close to the farnace, and in some cases passing over it before it enters the chimney, draws well. The bottom of the chimney is heated by this arrangement. Bu even in this case, when once the chimney is thoroughly cold, the flue sometimes draws badly until hours have elapsed and the mass of brickwork which separates the furnace from the base of the chimney is at lengt warmed thoroughly. These are bat imperfect applica tions of the rale. They go to show that the rule is no new, also to encourage a more perfect application of it, and also to prove how little it is understood, and how slow men are to trace ont a sound principle and make the best of it. A few words may suffice to show how a flue may be forced into instantaneous and perfect and constant action. Let the separating matter which divides the greenhouse chimeey base from the furnace be a good conductor of heat instead of a bad one: an iron plate, for example, at one side of the farnace, if the chimney abats against that side; or on the top, if the chimney is built immediately over the furnace The last is the best arrangement. The first action of the fire is thus on the plate of iron; as the flame licks the metal the heat passes through, the air in the bottom of the chimney is heated and expands upwards. It is lightened and displaced by the pressare below. Instantaneous draught is established. If the flue descends much from the farnace, make the chimney a little higher on that acconnt. I made assurance of success doably sure in the case above described, by making a slide in the iron plate (a damper), se as to open direct commanication between the fornace and chimney. If this is opened on the lighting of the fire, when all is cold, the flame draws through at first directly into the chimney and heats it. The slide being then closed the dranght takes the course of the flue.
Nine-tenths of the whole difficulties attaching to commonly constructed flines are got rid of when this rule is fairly applied. I have cured smoking flues over and over again by acting on it in one form or another. When good draught is thus insured, flue construction involves no excessive care in making it air-tight. Leave a chink open to prove this, and hold the flame of a candle to it. Greenhouse flues, being used only to keep out frost or for drying and ventilating the house occasionally, are usually cold when the time comes to employ them. How important, thes, is instantaneous action. How much more when severe frost demands instant attention, and warm air rather than poisonous smoke and vapour among the plants.
J. M. TAYLOR.

Seer Green Vicarage, near Beaconsfield.

THE WOOLWICH INFANT.

[4711.]-I inclose a paragraph cut from a newspaper, which may be of some interest to our friend "The Harmonions Blacksmith"and others who take an interest in artillery. It confirms the opinion expressed by him and myself on the disadvantage of the "increasing twist" system of rifling, and the use of studded projectiles :-"Artillerists will be interested to learn that a hardened gun-metal stad, extracted from a recovered 7001 l , projectile, is now to be seen at the Royal United Service Institation, Whitehall-yard. As the shot was supported and rotated by the studs, no part of the iron touching the bore, the injuries marked upon them show the irregular motions of the projectile in the gan. This particular stad is misshapen by the powerful wedge action in overriding the grooves about lin., and displays a shear corresponding with the increasing spiral of the rifling. This explains the accumulation of gases in the powder-chamber which cansed the crusher ganges to vary their register from 27 to 66 tons when firing only 1201b. of mild pebble powder. The sample stud speaks for itself. and the wonder is not that the 35 -ton gan is now in the factory being rebailt, but that its strength was sufficient to withstand nine suoh wedges without being rent to pieces."
artillert Captain.

GROUP OF SUNSPOTS.

[4712.]-On August 6, at 10 a.m., I made the accompanying drawing of a very remarkable group of spots on the sun. The telescope employed was the Sheep. shanks' equatorial $47 / 10 \mathrm{in}$. apertare, lent to me by the Royal Astronomical Society, for star ganging. The air was not steady, but at intervals the definition was excellent, the granules showing better than have yet seen them with this telescope. In the drawing, how over, have only presented the less left me in no doubt as to the shortness of the interva at my disposal.
I had time after completing the drawing, and the rough low-power view which accompanies it, to reexamise the pictare, and to test the groupings by a sort of mental triangalation, taking the spots in sets of three, and comparing the shapes of the triangles so formed with the telescopic view. I can vonch for the accuracy of the drawing in all essential respects.

In the low power view, C represents the space included in the other drawing; A was a spot remarkable for the way in which the penumbra was broken right across on the side nearest the sun's limb by an irregalar extension of the umbra. The space B was oceupied by a group of many small umbre - very remarkable in its gener al aspect.

Richard A. Froctor,

EYEPIECES.

[4713.]-During my stay in Manchester a German gentleman showed me an eyepiece of the kind baggested by "Betsy Summercity" (letter 4634, p. 518). He told me that it was made by Steinheil. It was a small compound achromatic microscope, and when ased as a microscope had a magnifying power of sixty diameters, its power as an eyepiece would, therefore, be equivalent to a single lens one-sixth of an inch in focal length. It was composed of a brass tube about ifn. diameter, and about 4in. or 5 in . long, as nearly as

The most remarkable feature was the immense num ber of small umbre, and their very pecaliar arrange ment. I may remari in passing that I have often noticed a tendency, in spots of this sort, to an arrange ment of the umbre into curved lines forming prolonga tions of the outer bonndary of the penambra, which are (in such cases) incomplete where the streak o umbre appears, the main umbra being there trenched upon by very brilliant white masses, forming bridges projections, \&c. The contrast between the two great spots of this nature and the round spot with its com paratively uniform penumbræ is very marked. It is also noteworthy how a long train of irregular pennmbral matter and broken umbræ extends from the space between the two great irregular maltiple spots.
On Wednesday I had a momentary view of the group which was then much changed in character-mach simplified, so to speak.

I can remember, into one end of which was screwed an object-glass, and into the otner an eyepiece. The objectglass was composed of three lenses cemented together formiag a solid cylinder of glass about $\frac{1}{2} \mathrm{in}$. long, and of about the same thickness, and I think it was convex on both faces ; the eyepiece also was peculiar, resembling the Huyghenian in external appearanee, bat being composed of a field-glass and two lenses, instead of the ordinary single eye-lens. I had no opportanity of esting this apparatus as an eyepiace in the telescope, but Mr. David Gill, F.R.A.S., of Aberdeen, showed me some similar ones, and spoke very highly of their performance with his 12 in . reflector. They have, however, the disadvantage of erecting the image, and are, therefore, somewhat awkward to nse at first.
A. Woolgey Blaceloom, M.D.

High-street, Godalming!

THE ORGAN BUILT.-IX.

[4714.]-Ir will be better now to make the pedal. bourd, and although I intand to describe an radiatiog one, beonuee I look apon it na the eacieat to play apon,
yet the same plan will do to lay out a stralght one if yet the same plan will do to lay out a straight one
 by ini. and 1ft oin. long, and tan pieces aleo of birah,
 trame, 2ft. Gin. long on the front aide and 8it. long at the edde next the organ (noe Fig. 1), divide it out into twents-nine equal apaces, and make a mark in the coentre of aeoh spaco, and then obliterate the sixth, lourteonth, twentioth, and twenty-dighth markey, count-ing trom the base aido; by oblitorating those marka a proper space will be F notes. Naxt insort ping of iron wire in the marks. The nize of the wire ahoald be No. 12, and the front row of pins on which the pedels are contred ahould be 1 zizin. long, and driven in 50 an to stand 1 ijin. high. The gaide-pins ahould be 8 in. long, and go jin. into tho top and bottom raila. Drive them tight into the bottom rail, which ehould be of oak, and let them At loocely into the top rail, so that the rail may be lifted ofir when neceacary. On one end of the pine bare glie a pioce of fin. biroh, qin. long, and the width of the bar-riz., fin. -and under oach pieco of birch bore a zin. hole throagh the pine, so that The top edge of the hole jast tozehes the birch (coe
Fig. 2). In the centre of the birch cat a amall mortico, Fig. 9). In the oentre of the birch cut a amall mortioe, fin. long and the erect width of the wire used for pins, and on the ander aide of the pedal bore a round hole very alighty, connterink it; if the mortices are nicoly out and at the wire woll, it preventa the podale twiating over. Bore a hole throagh the pedal for the gride-pin
to the rall with wire hoope or otaplos. The front rail in meraly a gaide rail, and the grooves mant be cat lown far enough to allow play to the levern. In ceab to. To insort them, bore a hole with a bradanl in the proper placo, onlarge it on the under aide with a tapor bit, drat the Whipoord through and drive in somall wedge dipped in glue in the enlargod side of the hole, wodge aippod in giue in the enlargod sido of the hole, rilent and at the mame time a strong attechment is cecared.
J. D.

LUNAR OBJECTS FOR OBEERVATION,

 GEPTEMBER, 1878.[4715.]-SEpr. 5, Mare Criniam, direetion and appearance of contral ridgea. Sept. 6, Δ zoat, Alhazen. Sopt. 7, Macrobius, Proolus, Moant Glainher, the higheat of the Coxwrall range east of Proclua namod by the late
Dr. Lee to commemorato the Dr. Lee to commemorate the highest balloon arcont.
Sept. 8, Altal Mountainn, Polybine, Beanmont Sopt. Sopt. 8, Altal Mountaini, Polybias, Bearmont. Sopt. 9,
Alfeconais, Beaumar, Werner. Bopt. 10, Palua NobuAlicoenais, Beaumar, Werner. Sopt. 10, Palus Neba-
laram, Palas Patredinis. Fine mountain ecenery laram, Palas Patredinis. Fine mountain sconery In the neighboarhood. Soe ENOLIBE MrCBMMIC, Vol. XIII., No. 822, May 26, 1871, P. 222.
Seacorides, Petot, Saceure. Sopt. 12, Carlini, Lambert, Sacsorides, Pictot, Bassare. Sept. 12, Carlini, Lam bert,
ridgos from La Place to Heradiden. Sopt. 18, Riphean Mountains, Facilides. Sopt. 14, Anaximander, Galileo, Lohmann. Bopt. 15, Bettinus, Kiraher, Wilson. Bept. 16, Zachian, Hancon, Bally. Sopt. 17, Wuhelm Hamboldt and Phillipe juat eant of it, may probably be seen under the evening illumination.
The degree of laminosity of the bright apot in Werner is an important point to mecortain, and it woald bo wall for an obearver who has the requisito lainare
to obserre it regularly every lonation. It ahould be

FIG. 1

FIG. 2

to work in ; the hole ahould be fin. diameter, and lined with aloth to prevent noice. In the rail in front of the guide-pins out amall groove for the end of the apring to Fork in. Having got the holea for the gaide-ping Anished, put all the bars in thoir places and mark the podtions for the piecee of birch to be glaed on (eee
Mig. 1), where the bleck lines ahow the birah, thus iig. 1), Whare the blect lines ohow the birah, thas
loeving the naturals higher than the tharps along the tread of the peial, while the too-plece on the aharpe is enfliciontly rained to clear the natural. On the is enficiandy rineod to clear the natural. On the the apring, and sico mark the end of the bars, 20 all to the apring, and sloo mark the and of the bars, $s 0$ as to
cut them to an oven longth. Take the bari of the frame again and glue on the proper pieces of birch and frame again and glue on the proper piece of birch atad ar ine, and if the pedal-boand is to be Ared to the organ, incert a piece of thick apper ahoe-leather in the end of the peda, as ahown at A, Fig. 2; bet if the pedal-board is to bo loose 20 that it may be lifted up ont of the way is to be loose eo that it may be lifted up out of the way -rot the benedt of the housomaid-do not insert the board: Before putting on the pedsin again, factan a thiarnees of folf or baize on the rail on which the pedals work, and two thicknceaces on the rails where phe gaide-pins are-viz., two below the pedals and two bore. IF . No baise is not thick enough, nee three, or the movement alattoring when playing end a toll. bnilt organ may be an ailent as a pisno. Good carpet folt is minciently good for the pedel.board The end of the pedel-frame is chown by the dotted lines Fig ond of the mene reil 8ft long of sin pine 8 . 8 . Now matrogany rils to it (ees B Fig in in whioh the front mazogany rains to it (aee B, Fig. 2 , in which the iront
vertical rail and also the broad rail at the beck are mahogany). Make twenty-five lovers, 7in. long, and cut grooves in the rails exactly opposite the end of each pedel. The lever is Axed into the baok rail by a wire ranning through a buched holo, and pinned down
compared with other bright spots in the neighbourhood, and it poaition in brightness should be placed on record, the names or deaignations of the spots com time of each comparicon ahould be atated.
The bright spot Mönting A (Beer and Mädler) in ht. $8^{\circ} 11^{\prime} 8$. long. $5 \cdot 18$ E., or $95^{\circ} 18^{\prime}$ from the weet or preceding limb in mean libration, has been re00mmended as a fandamental or reforence mark in selenographical inveatigations. Bereel seleoted it for his reM Mave rolitive the moon's ifbrakions. Ho described and of 81, 1889, as very bright oen in fall moon, Ster full. It is auggested that this spot should be made the subjeot of a similar series of observations an the beight spot in Werner.
The preoise objects for which Mionting A should be consdered an a point for reforence doen not olearly appear whother an atandard of brightnees or diro, or as regards moesuremente, those for the detormination of points of the frat order are by far the mont important; but at present none are made, nor have any been made ince iviller's great work. Eseoh sot of meagures for this objeot is quite indopendent of overy other, and nervere a reference point as regards them is quit unnceement.
W. R. Bnt.

CEENTRIFUGAL FOROE.

[4716.]-TMTTER 4646, p. 514 ("C. H. W. B."). -No one in theee day does maintain there is smoh 0 foree. Writera somotimes uis the torm because it it woll ancerstood, and no other short torm has boen agreed
upon. I proposed reotilinear tendency, and employed apon. I proposed re
it in a recent letter.
M. Pame

THE GYROSCOPE.

[4717.]-I Do not agree with " E. H." (lot. 4619) that beasuse a writer has not fall time for the complefe (misprinted "proper") disonasion of a subject he ahould lot it alone allogether, for very ofton it may happen that a hint thrownout at a cortain stage of a dincuagon mey be of considerable use. As to what I threw out in thit way I am oertainly not propared " either to admit that I heve been in error or to put forward aconvincing demonstration of ite accuracy " But I am quite preo pared to conaider objectiong, if they are urged in a fair and conrteons manner. Bo long as "E. H." refused to bellieve me when I pointed out that he had misunderetood me, it was herdly to be expeoted that I ahonld care for the discugaion; nor ware matters improved when he asid that he was propared to see me "change my front " yot again. But in hir last lotter he avoidi that objectionable tone.
In pacsing, lot me remark that in asying that I am "quitie right" as to a certain fect, but that "no one has diaputed the fect in the current discuasion," "G. H." seems to imply that no feot may be mentioned until it has been disputed. I fail to see the force of this.
The subject of the gyronoope came naturally to be discuseed in my papers on the "Eerth, her Figure and Motions " (1 should have mach preferred leaving is ont altogether, but conld not), and any one who will rofor to my artiale (Enchisi Mrozanid for Janaary
21, 1870 , pp. 145 and 446) will 400 how little I 21, 1870, Pp. 115 and 446) will 100 how little I pretend to give corplete explanation. Moreover, I refer the reader to the trae anthor of the general explanation there suggested. Nor was what I acid m^{2} fow meoks ago an attempt to explain the matter. Strictly apealding, I have mado no attempt whatever to give popalar explanation of gyrosoopic sotion; on tho contrary, i have neveral times distinctly said that I beliored no such oxplans. tion to be posaible. Yet once more, I have not advised that "E. H.'s" explanation " should not bo prbliahed." vary diflerent matter.
Again, I have not sald that I "have no doubt mathematical analysis world explain" the aotion of the gyroecope, brt, abootutely, that mathomatical saalyais does explain that sotion-a rery diliterent matter.
"E. IL." ahould be careful in making wach atatomants, becance a word or $\$$ wo introduced or omitted may quite altor the meaning. He hat wasted apace in me to wate more in correcting them.
As to the facte which "E. H." in mapposed to be quentioning, I do not wish to acouse "E. H. " of quibbling ; bat what sort of angwer mm I to make to the remary that I ought not to hare aaid "that the motion of one partiale andar the action of gravity Would tend to ahift the plane in one direction, and that of the oppoaite particle in preoicoly the opposite way ${ }^{\text {" }}$ since, cays "E. H."" "the faot is that gravity tends to maks both particles shirt in prociecly the same way-namely, in ciroular ares haning the point of anpport for the centre "? When I wrote the centences (let. 4587, p. 460) which " E. H." supposes himself to bo here fairly reprementing, it occurred to me that oertain pasages were so important as to require underlining. If "E. H." had seen the MS. instead of the printed mattor I should Doen he suppoes that when uncorvaing lor eracure. moant to be orerlooked altogether ? Again, hat he ast shont the partiales moring in the eame wey is mere rording pot argment. in one sence may mer therugi partios of erindetone in rapid wotion ane tho ing fin the same way, though some are moving upmards ang in the same way,
I maintain my original statoment, not an mave opision, but ea the atatement of a faok, and one bearing importantly on the eubjeot of rotating bodies, and tom ang throw light on the apparentru....ace whioh hey oppose to the direet action of a foree landing to ohange the poaition of the aris of rotation. If "E. H." pretanding to oiter a ill poptiar oxplanation of the prelonamen of ouration (and that in the rery letter phenomen in Iyration (arisere wore I sald 1 id not coaldin gin's ith as I myroecope thet the acte of rotation doe I areto hat the axis of rocation docs gyrato, eran if I had not of eyroceopic motion. If I had meant what "E.E." Eyroccopic motion. If I had meant what "E. E." ahooked the aris ainks prold be fetal eveinet remoning. Yot this fect is one of the elomentary onel of the subjeot.
If " K. H. " really has e popular explanation, at once complete and olear, why doen he not prodnce it withous $s 0$ muoh preliminary parade ? He tolle us chat two to be fanlify-incinding mine (akin to "c tatiten the breote al a Hiolsader") and wen contont rith that sohievement Why I know that he then clatimed to hare entigted himeoll of the tree explanation, and but for his eneurence I shorld have mid he tried to presont nemarance I should have cald he triod to the case, I withdraw my "Don"t."

Riciard A. Proctor
[4718.]-Ox page 542 " E. H." writes an anewer to Gy's" queation on page 484, and shows thereby that he is not a practical top-spinner. Moreover, it is quite wrong to say of "top or gyronoope" that "the arif There is a very great difference betmeen rertical. There is in a very important respeot. In the former and a top in a very important respeot. In the former fy-mheal may before spinning be placed in any deaired
position, and it oxhibite no inclination to remove from that pooition then span, wo long nes no external force is applied, such ac haoging a weight to one or other bearing of the axis; in feot, the fly-wheel, whother gpinning or not, is out oill from that attraction of yone oarth balance it on ite peg. If ane of the bearinge of the
axis of the gyrosoope wore suddenly removed the inatrument would become a top to all intentes and par-
posen, and I think nny one will admit that it would be posen, and I think any ote will admit that it would be
imposmible for the instrumant to continue apinning imposarble for the inscrament to continue spinning
 to "Gy.'s" lettor (4581). So far from the axis
leaning more and more untll the top falls over, it does leaning more and more untll the top falls over, it does
precisely the contrary; in fact, the upright position is precisely the contrary; in fact, the upright position is spinning, and the one which a top always aesumes rary quickly in Thatever manner it may happen to have been spun at Arst, and it then, as the schoolboys call it, "eleepa." A good top-spinner can make a top spin
at will, by a doxtorous movement of the hand, after he has picked it up and has it apinning in the palm of hand, or in corner of thamb nail, or better in a tiny saucer, such os you buy gold paint in, with the axis in-
clining to right or left at plensure, and on that dexterons elining to right or left at pleasore, and on that dexterons moversent eeaning the top graduallv but quiokly will
atand spimning apright aguin. "L. H. $0 .$, on aloo seems to think that the exie of top will romain in one position, from what he says in line 28 et. seq. of his
letter, which on the above showing is all wrong. He leaves the natation out of the question; but it mast not be left out, for as the axis of top, at arat supposed to be inclined, does eventanally come apright, and cannot poenibly become mo maddenly or in a utraight line,
the only ponsible line in which it can oome up is a volute, or, what is the whime thing, the nutation graduilly deecrocese will it becomes nill. I leave "derteroue movement" mentioned above oonaista,
There used to be a conjurer about the atreets, whom I There used to be a conjurer about the atreeta, Fhom I of her Majesty, and who aned to epina large top in the airs, catch it bofore it reached tho ground, and then place the end (opherioal) of ite peg in a recess in the ord of a long rittan onane, which moroover was conaiderably bont, and thin he ased to balance on his chin, and by moving op and down would make the top
dance to the extent of two foot or mare, and then would matre it gradmully defieet from, the parpendicular till neariy horizontal, the little roumd kenob on the end of the peg preventing it quitting ike rocket, sliow it to resame the apright position. I may here remark that I never yet sam a London atreet boy spin top decently (there being at least three ways of doing
it). It may be from the fear of spliting tops on the itt). It may be from the fear of splitting tops on the hard atones and of breaking windows with the resulting tragmente, that tops in Loodon are anivereally, as
far an I heve seen, ppan "anderhand" in one of two far at I have seen, gpan "anderhand" in one of two
waye, instead of with the bold etroke from far above the right ear, right down to the left hip, that was in rogre at "our" sehool vome $88 \cdot 3$ years ago. We also
used the whipcord in foed of the thick atring sold at used the whipeord instond of the thick atring sold at
toyshops for the nee of top-spinners, and with great toyshops for the nee of top-spinners, and with great advantage as regaring veloeity of rotation. I am sorry
to say in the laot sentence of lotter 4691, uA., Liverto gay in the laot sentence of letter 4691 , "A., Livar-
pool," appears to me to "maintain" rubbich, which pool," appeara to me to "maintain" rabbieh, which
he wink probably not get "Sigma" to altempt to " "on-
trovart"
J. E. P.
[4719.]-THE "carions contraditctions" whioh were sound by "R. H." in my letter (4510) are simply carionitias of misapprohencion, traceable, porhaps, to mome posible obscuvity of the language in which I ideac" I do not intond to charep "E. H." or others ideas ambodied in the "ordinary theory" which I abandon, are not esteblished by sound proof. I spoze of thoir estiabliahment in men's minds by common acoeptance. They unop up plentifully in one form or diconssion, and Philocophy" I thetris with " L. H." that Mechaniona theory, so far as on ghin it by ventaring to peep theory, so far as we oan gain it by rentaring to peep
into the very little window which he han opened, is the into the very littl

In reply to Mr. Prootor, I beg to say that I im not " eager to invalidate" ectabliehed laws. I wish to see © new, because a more truthinl, application of thom to the mabject. Without infringing on the rules of politenoss, I masy woll inquire whether he has said anything in his letters to make one satiafied wikh old colutions? What the soundness of the theory may be which Mr. Prootor holds may be judged fairly from that "one to treated as an easontis) part of it I mast needs cets of statementas, which, in my poor judgment, directly contradiot emh other. "The moon" (let. 4509) " yields contradiot each other. "The moon" (let. 4509) "Yields
to the carth's attraction as obediently as a pebble drops from a child's hand," and this notwithstanding her from a child's hand," and this notwithstanding her
distance from the earth, and the consequently distance from the earth, and the consequently
diminished force of attraction. Her direction of diminished force of attraction. Her direction of
motion is continually being changed. Here is one set motion is continually being changed. Here is one set of statements. On the other side are these spoken
of: "A top flang through the air ;" "the top's weight of: "A top flang through the air;" "the top's weight has time to a0t, and eventually (the italics are mine) "does so act as to change the direction of flight;" is "insaffaient to change the direction in a brief interval." The points of contradiction sre surely conspicuous here. The moon's direction is being continually changed, the top's directiou only ceventuilly. Tho moon gields ow that attraction is greatly diminished by dis-
tance. The top, though within the full inflannee of that attraction, in not heary enough, it is evideatly inforred, to submit mo obediontly. "Its weight is insaffcient to change ite direction in a brie! interval. Yet, while the top's insufficient weight is to exempt it from the oontinual ohange to which the monn is sab-
ject, the pebble dropped from the ohild's hand (and ject, the pebble dropped from the may well be less heary than the top) is talkan as the example of obedient submiseion of matter to the earth's attraction from which even the moon is not exempt.
It seems to me that thare is no place either for "depths" or shallows of "misapprehension" in such statements as these, and that if the moon in her falling towards the earth crachos "A.'s" philosophy, the flinging of the top, or the dropping of the pebble from the ahild's hand is equally fatal to Mr. Proctor's. Mify
own alass-house boing demolished, I may venture to own alass-house boing demolished, I may venture to
retaliate on Mr. Proctor's little window, with the retaliate on Mr. Proctor'e Little window, with the
pebble he provides me with. I acknowledge the fall pebble he provides me with. I acknowledge the full loroe of hia remark on "eotion and reaction" with
thanks, which I also render to "L. H. O." for his experiments in weighing the top, whioh veem equall oonclative against both my theories. "L. H. O.'s" explanation does not, however, seem to meet the case Parpendicular lines are wanted in his explanatory figare (4620), to show the [independent] action of gravitation on the partiales at the ends of the diameter of the disc.
Another question, however, and perhaps an important one, grows out of the anggeation and experiments of weighing the top both at rest and when spinning at different angles of inclination to the earth. The whole weight of a top seems to rest on its point of support when spinning at an acute angle with the earth. This wouk be the position of a falling tree. In this latter case is the whole weight-that of the falling tree-oxertol againat the support at the base, until the position of absolate prostration is attained, or not? A top spinning on the scale of a balance at an angle (say) of 45 degrees, requires a weight equal to that of the whole top to balance it. If this is not se in the case of the falling tree, or other falling object, by what laws of force or matter is the whole weight of a top [spinning] in the same position transferred to the point of erpport? Every machine in which the wheel and axlo reccive rapid motion would be liable to be afleated nore or less by those laws which regulate the position of the spinning-top. Is this found to be so by the watohmaiker
and others?
Seer Green Vicarage, near Benconaflela.
[4720.]-" E. H." says (let. 4800, p. 548) that the axis of a top or gyroscope woula madntatn the same inclination to the vertical were it not tor fmiction end the when the velocity of rotation is considemable, far if a very slow motion only is ition to top it fin tall. There mast be, therefore, Bome deanite volocity of rotation, above which the inclinetion of the axis romains the same, and below which the inolination from mately whose entire mass is contained in a ring 1ft. in diameter, and sappose that the distance of the centre of the ring from the point of support is also 1 centre ivelination of the axis from the perpendicular is . What woald be the least velocity of rotation sufficient to keep it from falling, and how is this
velocity to be calcalated?
GY.
watch repairing.
[4721.]-"Aberdern Watch Jobbrr" (let. 4609, 2. 489) states that I have not made it quite clear how to bamp." a Gelera escape-wheel so as to avoid "a may change ; for at line 13, colamn 8, be will read that I foressw the remark, and so dealt with the "bnmping" process; then at line 15 I say in other words, "Don't."
If this be insnfficient, I will write again If this be insnfficient, I will write again.
Concerning the balging of pinion when it is a meof one, "Aberdeen Watch Jobber" is perfoctly right so far; bnt then if the "jobber" should be so unfortanate as to strike the panch with "too mach" force, the resalt will be as he states; bat I never baw an escapeing as would destroy the pinion, as he states. When they are so, in most cases they are originally left so by the makers, the escapement-maker having fitted the rivets too easy in the escape-wheel, and to tighten it had to rivet the pinion so as to balge the pinion.head. Therefore my remarks concerning "low-priced " Swiss watches are borne out, in whioh I stated that the materials were left very soft in order to produce them
quickly. \quad grconde' Practical Watchmaker

TEETH OF WHEELS.

[4732.]-The gentleman wiso writes "Mechenism " says, on p. 533, first column, half-way down, times wrongly called "backlash") Of wheols is some. no more than it shonld be. "clearance " is the word to nse; bat may I ask what is the proper word when the clearance is excessive, or else varying in amonut from
the teeth being badly formed ? As I wrote on April 19 , p. 125, on the sabject of "lanters pinions," and there in third column nsed the word "backlash "" in'the latter sense, I think it not improbable that the writer of
"M chanism " had me in his mind when he foond fanlt
with the ase of the word as above.

DEAR COAL.-HOW IT MAY PROVE A BENEFTT. [4723.]-ETEX in warm weather the great price of coal is a minfortano to many, and an il boavanames to more ; when winter comen find it diffloult to make both ende moot an addicion to that dimioulty. Unuanal oost of fued does more mist chiel, moreovar, indirectly tham direoiy, by enhnaeing the coat of namberiess artices lor the proanction af which coal must be consumed, more especielly of treah articies as iron, bricks, hime, of the rise in price of coal mre increased cont of retting it and a tomporary excess
supply, the consequence sumption, partly diminishod hours of pitmen's laboar. out, the price oannot, and more will not, do withconsequenct of maly bo vory conaiderably raisod in supply, as appears to be the case at presert, the ibcreased cost of getting coal being considerably leas then its increased price. This will doubyee prodace in own remedy, for increaced earnings wil matarantil the cost of labour is roducod again to ite natorn level. unless that be successfally impeded by the operation of the anions of the miners ; wo mash, howovar, expect I think, a continuance for some conaidersblo time of the
high price of coal, and possibly, at least, a temparag high
rise.
It is an interesting question whecher or not we shall learn the "ases of advernity," and turn our prosest ear barrassmont to account, both by diminishing the cont of getting coal and prevonting part of ito curcire Waste, both of Which are oant to do if wisely set aboet and is done evon in a moderats degree woaid restore the balanoe betweon prodaction sod canamanan without pating any part of our popalation apm pho fally short allowance. If, as is not improbable, the anions of pitmen attempt with any marked saccose to impede the reduction of their present unasually high wages by deterring other labourors trom shatiog in them, an impalse will probebly be givent the introduction of coal-outting machins by which the cost of cond-getting may be permanently reduced, and the tyrangioal powar of the anions eifectaally brosen
This will, I hopp, be ore of the lasting good resalts from the temporary evil ; anomer will be, if many be now coripolled to be mare eonomical in the use of coal heonane it in unnsually dear, to learn how to
make lems coal do the work of more, and if they do make leas coal do the work of more, and if they do
learn that nseful lossen eifeotrally, a very large permanent eaving wih be the remal of a comparative amal tompormery lass.
The hare beion whom that nuch more than half of the heat produced by the oosl nasually burnt for rarming our hoases is allo med uselessly to escape op
the chimney, and that a large part of that whiah is the chimney, and that a large part of that which is
not wasted in that ragniar is by using single instead not wasted in that ruanpar is by asing aingle instesd
of double paned windown. Cosi for mere marming is, however, barut duying part only of the year: daring the rest likle in burst in hoases except for oooking, and the mate a mal tor cooking is generally greatar even than that burnt for warming, besides being more constant and more genoral. If any onedoabia tans les him compare thae quantity of fael barnt in an English with that in a French or Belgian kitchen, or in other countries either I dare say, bat I speak of those I hara seen. I do not know the average quantity of eoal
barnt in English kitchens, it varies so very mach, bat I do know that in my onn kitchen by the nse of a halfopen stove instead of range the cooking is better doze with a consumptionof about two-fifths of the coal formerly burnt, and that if I ohoes to look atter it mysell the consumption might be still largely reduced. I once ased s olosed stove (more economical, but less agreenble to ase
than a half-open one), in and on which two small jointa than a half-open one), in and on which two small jointe with coke costing (at prosent prices) sboat three hals. pance a day. It is present pricess) aboch mach out of so small a sum, but I have often doabtod the expedienay of lighting a fire at all when not deeired for wermith. unless for cooking a large dinner. Il I had thene to spare I woald try carefally the relative coonomy of coed and gas for cooking. I like best meat cooked in hot sir or in steam, Which is done very easily, either by
using Captain Warren's cooking apparitoas, of common pan. The first consists of appailer pea tained in a larger one with a doable lid, when mead alone has to be cooked in it, or with oonppartamens
sbove for vegetables, when they also have to bo boind in it A little boiling water is put into which mast be kept boiling, and the meat in the ingur, pas supported so that it is well out of the grary. The steam sarroanas the inner pan, and flls the compartment above it, and the space of the double lit. The is gradually very nicely cooled. It temperatare, and boiled, and nearly as tasty as if roasted ; somotimes wo brown it before the fire to mate it more lize roest meat, which it then elosely rosembles, excopt being unusually tender. Now it is evident, if this cooking pan were covered with felt, and if escape of steam were nearly prevented, that the water in it might be kept sure that it might not be rept hot enough withoat any In intional heat at all, as in a Norwegian cooking-bor. cooking woald be triting, and nearly all the foust ou burnt for cooking savg, and nerily almple facino effected by letting the fire out as soon as the dinuer is cooked, very littlo gas boing needed for merely boiling kettlefal of water for tea, or for makinz coffee.
Gas, thongh a costly fuel in proportion to the heat t achally prodaces, is often a chomp one to ase, berazee it need not be lighted before or borut ather it fis
wanted, while the quantity burnt may with eare be
nicely adjnsted. It would be very moch cheaper than other fael for mauy parposes, eapecially for cooking in summer, when heat for warming is not desired, if it were anpplied at a price little higher than the cost of
making it, as it easily micht be with profit to the gas making it, ar it easily micht be with profit to the gas
companies. Those companies are, of conrse, obliged to charge for gas consumed at night far more than the cost of making, often more than twice as much, because the cost of management, the interest and repairs of pipos, and of gasometers to hold gas made at day to be burnt at night mnst also be paid for, but for gas to be sapplied in the daytime, and especially in summer, as gas for cocking would be almost exclasively, no extra ny charge for it beyond the mere cost of making (and for a slight increase of leakage if more pressnre were wanted) wonld be clear profit. It would be very eass for consamors who wished to barn gas at a redaced diflicult to prevent gas so snpplied being need for illamination. The effect of snch a change wonld be a more strady bnsiness for the oompanios, and a great convenience to the public. The winter consnmption of gas wonld be but little increased, becanse when heat for warming as well as cooking is desired, coal or coke would be generally more convenient and economical, bat in sammer, when far less gas is ased than in winter, and when conseqnently many of the retorts wanted in winter are standing idle, it wonld be easy without any increase of the worts to make more gas than is at all likely to be burnt for cooking, even if the practice of cooling with gas became general. If it did, not only woald there be a great diminution in the consamption of coal, bat, What many wonld valne still more, in the production of smoke. The air of London might in summer be as clear as that of Paris, where wood and charcoal are so much burnt, our raiu water might be at to wash with. perhaps even to drink; we might grow flowers in our windows and conrtrards, and the trees of onr parts and squares would not lose their leaves in early antamn.

The consideration of other modes of saving fual must for it

Phio.

COAL IN IRELAND.

[4734.]-Thr great advance in the price of cal is a matter which affects almont overy one in a peouniary point of view. The supply of coals falls short of the demand, and any means of increaring the sapply and lately exported conls to Belainm, now we import them, and the question is mooted if it woald pay to bring cosl from America. In Belfast we are now paying about 80 A . a ton for ovali whioh nsed to cost 183 . I observe,
however, that some tons of very fair coal srom Coalisland were sold a few days ago in Belfast for 12a. a ton. This briags me to the subject of Irish coal. The coal-fields of Ireland, slthongh much less extensive than those of England, are yet of consiliarable importance, especially at the present crisis. There is one in
Leinstar, two in Manster, three in Ulster, and one in Connagaght. The cosl formation of Leinster extends over large portions of the conntios of Carlow, Kilkenny, and Queen's Conuty. The Kilkenny ooal is anthracite or stone coal ; that of the other connti $\cdot 9$ hituminons. The Lefingter coal area is eatimated in Griffitbs' enrrey to be 5,000 acrea, and to oontain about 63 million tons of 00al.
In Tipperary there is a enal-field which may be regnried es a continastion of the Kilkenny coal; it is 20 railway is being conntracted between Clonmel and Tharles to connect the Great Gonthern with the Limerick and Waterford, which will npen np commanication with this coal.field. This cosl costa 20 s. per ton at the month of the pit, but the expense of carriage has hitherto prevented it coming into extensive nse. The
Mnnster coral-beds occupy parts of the connties of Limeriok, Kerrv, Clare, and Cork. Sir Rnbert Kane, in his work "The Industrial Resources of Ireland," gays: "They are the most extensive development of layers of coal in this district, according to Grifethe lagers of coal in this district, according to Grifiths
sarrey, bnt the beds are not thick; the coal is softer and more slaty then the Kilzenny coal, bot is a kind of anthracite. In Ulater we have a coal-bed in the Connty miles. The., Coalisland; its area is abont ten aquare is situated abont 600ft. below the surface; it is. need now by the Newry Gas Company. Ths Connanght Leitrim, and Rnacommon; it is aboat 200 square miles in extent. At the time of Griffiths' aurvey this ceal was eold at the pit's mouth for sac. a ton! It thus appears that the coal-fields of Ireland are worthy of mach and are not unworthy of the consideration of the capitelint. Philasteroprst.

ECONOMY IN UEING COAL.

[4725.]-Coal dust or alack may be readily burat it mixed with clay (say three-fourths dast to one-fourth clay; it throws out great heat, bat takes some time to
burn ap. It wonld be extravagant to dry it before priting on the fre, as it then barns oat rapidly and doen not appear to me to throw out so much heat. It is best applied in the shape of large balle. The clay and dast mant be well mixed. and dast mant be well mixed
At this prosent time I am barning "culm" (I blieve the dust from stone coal), mixed with slime from the seashore, and so partinl am I to it thet could
I ounin tt when I leave here I moald not burn any-

2 tons culm at 9s. 6d.
1 load slime at 1 s .
Carting oulm and slime
Mixing and slacking .
The month's supply for three fires.
Shall have pleasare in answering any inquirie
Inlasd.

COAL FOSBIL PLANTS.

[4726.]-Wric you kindly allow we to eall the attention of your geological readers to the fact that I Rhall be exceedingly obliged if any friend conld let me bave small pieres of calamite, dictyorvion, sigillam, and the like, snitable for grinding down for microquid examination, and I should be happr to give a me to go on with some papers on geology and the microscope.
12, Margaret-street, Hall.
H. P. H.

greatly elongated projectiles for

 RIFLED GUNS.[4787.]-I should be rorry to oppose my opinion to that of "The Harmonions Blacksmith" (let. 4652 , p. 515), but I mast confess that I see one or two defect in his projectile, which I will point ont. In the first place, the "ogival" form of head is considared the best, as it offers the leant reaistance in pasaing through the air. In the second place, although Mr. Whitworth emploved shot which tapored towards the rear with advantage, it has been found that too great a length
(with tapering rear) is attended with one great dis-advantage-namely, the rear of the shot, being lighter than the forward part, is liable to be blown aside by moderate wind, and the head tnrned to windward, cansing the can to shoot to windward in a slight degree. In the next place, the point of the shot, besides not
heing the best for flight, is a bad one for penetration Weing the best for flight, is a bad one for penetration. Whitworth's lat-headed shot were as good as any for
penetration. The "Sabot" might answer as far it is penetration. The "Sabot" might answer as far it is
itself concerned. Wooden bottoms have always been used for shells with smooth-bore gnins, also for siege gans with both round shot and shell, and all brass field-gnns.

We have some very long projectiles in the servicefor instanoe, the 7in. double-shell is $27 \cdot 2 \mathrm{in}$. long; it is cslindrical, with ogival head and fist base. Althongh a very long projectile is theoretically the best, it is found that a shorter one, with quicker spin, is in reality bettor : for, in a military arm, stability nndar all cir-
camatances of wind and weather mnst be the object. Althongh the above are the generally-accepted opinions of those in the service, I may say that the best form of projectile is not yet finaily aettled. It "The Harmonions Blacksmith"' could make aper experi ments with his new form of projectile, I shonld be very glad to hear the resalt, and if this letter be not
quite satisfactory or not sufficiently comprehensive, I quite antisfactory or not suffic
shall be happy to write again.

Artillery Gaptain.
[4729]-"Tife Harmoniove Blacksmita's" bullet (let. 4652, p. 515) woald be nll very well if it conld be
fred withont altering its shape. Snppose a "Sabot" fred withontaltering its shape. Snppose a "Sabot"
could be made strong enough (which I donbt, unless made of some hard metal) to withstand the blow it receives from the charge, the bullet itself would be "set ap." and instead of leaving the bore a fime tapering thing bnt fould leave a orushed-ap lamp of lead, anyup" action takes place in all rifles where soft lead bullets are used; but, as they are only a very little emaller than the bore, and supported by it, ther simply leave the mazzle a trife ehorter than when loaded. am afraid that a meeharical- fitting soft haad bullet be some trouble to place it properly in the greoves ohe loading.

Abtilleay Gonner.

A TOUR ON THE CONTINENT

[fir20.]-AT the procest time, when strimes and lockorte aro unfortundaly meneneral in thle en intry, I have tinent and notico the diflorence thioh exiet betwon German, French, and English workmen, as regarda their hours of work and the manner in which such work is done. Travelling is as cheap, though not no rapid oonpons the experises of living are quito as moderste as in England. With a knowledge of German and French, or indeed with French alone, it is poesible to french, of indeed with yrench alone, it is poessible, very much obeeper than we can do in this coundry, toe to know the language is to have a great extent of ground can be got over, and muoh
valuable information gained from a fortnight's tour through Germany, Franoe, and Bolyinm ; indeed, I
 athe carae time
Iet me mention Antwerp, the firnt city I atopped at. I pot up there on Monday morning, and fownd the moraing corvicee procoeding. The market is genernlly ver by 8 a.m. ; indeed, all travellers complain that
they are alwaya boing disturbed by the ringing of the
churok bells, and the tinkling of locen' mill in the
most continental cities. The working men beem to have an endless week of toil ; freqnentry, have I noticed masons at work after 7 p.m., and Sunday only brings reat to those who can aflord it ; indeed, in Paris men gonerally work by the month, taling a day's holiday at perfectly astonishing, and very sad, to see the unin terrnpted manner in which work of all kinds is carried on day after day in the gayast ospital of the world. It made a great impression on me this ceaseless toil, and the value of our English Suuday came to my mind as had never experiencud bofore. It must be necessary to man's health, to aay the least, that he shonld hare oue day in beven as a das for rest from his daily work In Germany, many kiuds of work are carried on throngh the Sanday-harvest eperations, for instance almost all the corn is ont by hand, so that the bands have to be kept continually at work. Of course, ther is a difference, and those who oan aflord, go to charch or mase in the morning, and to the open-air Secula Concert in the evening, and appear to enjoy themselves but, altogether, the value of a parue in the usual daily labour is very little appreciated on the Continent.

I was not in a position to viait any of the large factories at Cologne, or the Iron Warka at Lièpe (the Birmingham of Belgiom), consequently, I cannots spea techuically of the actual hours of work in such eatab innents, but that the hours of labour are much loager tak they are in England there can be no doabt, if Wo the the ordinary laboaring mason as an example of able to hoars worked; while, as far as 1 have beez Bra Rhach, Cologne, Majence, Strasbarg, Metr, Sedan look, and seom submigaive to, if not contented with their lot.
The custom of harring the land let out in amall lots, and the imperfect and awkward agricutura implement atill used in Belgiam, Germany (soush), and some part of Franoe, appear to Englishmen cortainly singular The only reaping machine whiah I saw daring my tonr was in a large field some 20 miles out of Paris on the Northern Railway, and I naturally conclude that daring nnusually hot summer weather the corn mast ripen too fast for the manaal labour amploged to out it. Query whether an English implemant-maker would not make a good thing'by sending some reaping machines ove or the harvest time.
One word ahout the bettle-fields. Those who expeot to $s e 0$ marked traces of the bloody oncountere which took place soarcely two years since will be greatly dis. appointed. Corn now wares and potatoes thrive on the plains of Forbsoh and the flelds of Grarelotte. Little black wooden oroeses hare and there mark the resting places of the alain. At Saarbruck and Vionvillo, these to this massed togethor, and form comelarios, near The heights of Spioheren, however, shonld cortainly be visited; and as the tourist climes the alippery side stadded with black cherry trees, he may well wonder how any general cond have expected each a position to be taken except at a fearfol sacriace-it must have been oomplete batchery. One large mound I measured was 12 yards long by 5 wide; the bese of the hill is dotted with numerous amallor graven, while monaments to cammemorate the event now crown the aummit. Bat I must oonelade with the remark that the tourist shonld viait Suarbruck and Metz ; Strasbarg, too, if he shoald go as Iar sonth as Beden-Baden, brt not otherwise, as it is of little interest exoept for its really splendia Cathedral, from the epire of Which a most capital view can be obtained of the Maseam, Library, Prefeeture and other baildings destroyed daring the aiege.
The beantiful scenery of the Rhine, the geming saloons of Wiesbaden, and the ruined Chatean at Heidelberg, should bo duly visited, and will, no donbt, call forth the same feelings of admiration and sarprise as I experienced myself. Take all money in English gold, which is the best coinage to carry snywhere on the Continent; don't trouble to get a Continental Brad shaw, as you can get any information respecting the departure of trains at your hotel, bat, instead, procure a little book, entitled "The Rhine and its Battle-folds. and Paris," which the traveller will find most nseful ; the cost is only one shilling, and it is pablished by
Simpkin and Marshall, London. I found it more Simpkin and Marshall, London. I fonnd it more generally convenient than the large gaide book of
Baidelser, which gives very fall and minate accounts of Baideker, which gives very full and
all the principal places of intereat.
all the principal places of interea
In conclasion, permit me to wish your readers pleagant company and fine weather, both of
was lortunate in obtainiag during my late visit.

Jonn Eloghes.
Iry Houmo, Hendoz, London, August 7.
an ECONOMIC CARBIAGE LAMP.
[4730.]-I have been expertmenting on a mothod of producing o light for carriage lampe which may be iristional alectrio merchion of come of our reacera. A inictional aectrio machino il coased to rovolve rapialy
 isolated comdactor are oacied to pars betweon swo the foculs of the lamp resicotor, wheee the candle or moves the light is evolred, and tho objection to it is ite movee the light is orolred, and
weakness or want of brillianey.
A magnet might angwer better, bat this I have not tried. I submit the iden which, as far ee I know, is
original, to the readers, hoping amangat them come
one will be fornd to all mose light to this mont oconomic lamp.

MR. PROCTOR'S GULF STREAM MAP.
[4781.] -THE rocond sentence of Mr. J. Wilens's lettor (4657, p. 687) ghows the ovil of an orror I had intended to polint out in the "equal-suriane projeotion" ahocen by Mr. Prootor for his twico-repeated map, pp. 478, 499. Thore was no kind of call or oxonse for compression in lopgitade, supposing the trae ratioe of compreesion in lodgitade, supposing the true ratios of
eurface the quality moat needed. The preservation of surface the quality most needed. The presorvation of equality in areas is consistont with any angular open-
ing that might be choser for the meridiano in this proing that might be choser for too meridians in this proposeible by mating the degrees on the moan parallal porsthat of 40° for the particular oxtent of map Mr. Proctor had ehosen) of their true length relativoly to the longeat on the soule of ohords that divides each meridian, and this would have noparated the meridian to the 80° intervele boing inclined ebort 24°, those he has compresed them to littio more than $18{ }^{\circ}$. Thi ho mase alers immenealy all tho more hai $12{ }^{\circ}$. Thi for Mr . Wileon's remart on the falco direction $\begin{aligned} & \text { athere }\end{aligned}$ for Mr. With burrent is made to imping on the Brition Tales. Gome error of this naturigo on the Britioh Inles. Bome error of meritable in the upper and lower latitudes of any "equal-anriaco" projeotion, and leads to the vory obrions conolusion, I think, that this kind of pro-
jections, inatead of being at, are extremely onat for jections, inntead of boing at, are extremely onat for this particular object, and indoed noarly the worat
that could be choeen for it. They ought to supersede that conld be chosen for it. They ought to supervede
the absurdly decoptive Morcator chart indeed, for most the absurdly deooptive Morcator chart indeed, for motit
of the parpoees of popalar maps ; for diestingaishing of the parpoces of popaiar maps ; for distingaiohing political divisiona, for giving all the posscesions of one Brition Posseocions), for natural history mapa, of mineral, regetable, animal or human diatribation minera, regotabio, animal or human aiatribation, denaity of population, rolative extont of racos, religions, languages, staple caltivationa, \&o. For all these,
 joctions the mppiod outragoonaly faldifying and misjections the mont outrageonaly ralifying and misapplied) "equal- rarface" projections are the would bo worth while to place cide by side two pairs of Agares I once made but cannot now lay hands on, one of Coyloa and spitabergen to an on Moreator; Ceylon boing thone swo injades appon on them in reality and Spitthergen thont six times the of them in really, and spitiorgon wbout ix timer the larger on nearly all mape mado at prosent to inolude to to show the forms of carrento (or, indeed, any forms 1 muit contond that the proportionality of arens is a rery minor adranlage compared to Yo tho keap all angles on the map laenical whatho onpliod "Mor, appliod Merctior. rise,
 faces (Whioh it can easily do, and the hemisphere roznd any point we please) it only doubles the areat at the very borcor compared oidin pornpeetive projechou from ano anpore of map centro (the darth baing rupposed kraspareat), the only perrupedivo that paralles, or any other, project themsalvos circular with con the ap, with compases, even a amplar oporation than the straight-lined Mereator iramo. In applying thic to the Thole North Atlantio and 100 or the Douth, or all tha Mr . Proctor had to roprenoat, ine vory oxiromitien Bieire Bialra, woald bavo their surfoces bavely a haira large Boale (supericial measure) than the
What Mr. Wileon anys about absence of beaches on all the Athantic coasts of Iroland and Scotland is vary aingular, if trac, and I sappose will be soon contradioted if not so. Bat we mast romember it is not noual for primary rooks to form any rea.beach, and thene are preaisoly the parts of the British coasta that happen to be primary. Again, there are cortainly abores and beaches to the North Cornwall and Devon conet opposed to the currant and directly as any part of
Ireland. The only socondery oliffs I know totally dentitute of beach are those of Portland atone for the fow miles between Darlatone Head and S. Adhelm's (mincallod Alban's) Head, Dornet, and these by no moans moot any galf stroam, but tarn towards the sholtered conth-east, looking straight acrose to Cherbourg, which is asid to be sometimes visible from them. So great a length of conat as hall that of Ireland, without beach, would surely bo a phenomenon almost
unparallelod on the globe.
E. L. G.

THER HARP.

[1782.]-I BAD no intention of dieparaging the harp in general, bat meroly that defeotive form of it whiok can be played in only one major key. This may have done well enough for King Brian and his contom. poraries, but it can nover hold ita own in the ninecoenth centary againat instramonts of far greator cappebilities. Almoot all maxic that is worth anything, except quite plain simplo aira, andergoes come eort of modu. lation, and then it cannot be played at all on such an inatrument at the Iriah harp. Tranapodtion woald, where socidentali oocur, eerre no parpoes rhatever. Would it not be bettor to sacritice a fow noter in com. pace and it the harp with atringe for abarpe and late? It might then be capable of beooming a really general favourito, an it in, it is nimply nowhere.

Vertoneros.

IS THE MOON SPHERICAL?
[4788.]-I Dor'r know what Ch. Rabeoke (let 4639) may be driving at, the moon may be a aphore of not, or green cheeso. Ill nerer be able to go ap to see, bat I have read two moat extroordinary thinge, Whios 1 rould like some of our antronomioal anthori hies to dony or oonirm. I think it wat come Italian arant who told this talo. Obsorring an oolipse of the bright enot totality took pleco, ho sudaeny san believed this could only be oanuced by the dice of the enn boing soen right through a holo in our satollito. This, I think, is the best example of "moonshine" I W. R. Birt, I thould imagine, could sotsio this 1 The cocond stanner wai what may be Ch. Rabsocho's idea, that the moon was of shape shown in the aketch
 with the shaded par tarned to the earth. Wo know there are irrofragable oviden. cos of the precence ol wator at one time said the reverse aide of the moon was a great valloy into whioh the water flowod, asd may, for all wo know, be inhabilil by a cot of lanatica, and may have laroe, rivori, rail can 500 ni or to them. Eroept some lanar Living. stone conld erawl ap to and look orer the edge at us When he ought to see a big bine wall in space-blue on wocount of the ooloar of our atmosphere. I beliove it hat been stated that, with our precent talesoopio power, we could see a bailding as big as St. Paul's if it oxinted. Nom, Mr. Birt, what do you may to all this ? I call it anmitigatod trash.
M. A. B.

THE IGNITION POINT OF EXPLOSIVES

 [4784.]-In your namber for Jaly 26th I peroeive an article on the above aubject to whioh, as a patentee, have dovoted considorable ationion for many joars, and thinting tho matior might bo interosting to you roenders, I sond you a draming and explanation or very trantworthy apparalas 1 covea, whila appeared I am induced to do so the more on account of the very high tompergtares ascigned to the rarions explosive given by the gentlemen named in that artiole, whioh 20 actonish me that I fear the metbod adopted was very raulty. Fibrous gan-ootton, for instanco, is pat dow: at 428° Fahr. Whereat by my method, whichexoeedingly dalionte, it is only 820°. So ex uno dioco omoesing, such dincrepanaios boing vory serriona.

Refreminges.-A, retort-stand; B, gat-barner and Rogulator; O , sin oil-bath to hola khormomoter and little poroolain igniting-oup ; D, thermometar, ranging to 600° Fahr.
As the acoompanying diagram statee, I use olive oil as the caloric bath, whioh will absorb 600° of heat before it boile. Mercury woald also do; but is objeotion able on acoount of the fumex, Whioh may ealivate follows: Haring pleced the thermometer and litile cap in the oil, procoed to heat the oil up to, Eay, 800° Fahr the thermomater boing greduatod in degrees and hali degrees, then lot your aesintant (for there mont alway bo two personn ongeged) project into the litio anp mach of the axplosive under examination as vill hy on the point of a penknifo. If it igniteo inetantly at the point, the temperatare munt bo lowared, and a freet trial made, and so on. Two or three triali at meat dil caffico to dotermine the procine point of iprition. Thi method han been co far vorited that it in novi in genera usa.

Jour Hoasley, F.C.B., Anelytioal Ohemiat. Chaltenham, Aug. 9.

ELECTRIOAL SPARES.

[7785.]-I Ax in receipt of Jane number; geceln that the aparka are atill flyiag, permit me to condram the atatement of "Philo'a" Irifond (see lef. 4105, p. 199) in regard to lighting the gas by eloctric apara irom the inger. It is quite postible in this Ceaca or oars ; bat, so far as 1 znow, onis in the wincer, steam in on-that in, whon the building is warm, a whioh time and in such houses mach electrical amuch ment may be obtained, mech as gotting 2 shook when shaking hande, or when toaching the brase knob oe the steam radiator, do. If in the wintor any a your baildings in England aro beated by ctoam place try the experiment. To light the gas no special proparation in noeded, larther than first remove the geal loben (if any), then hare some one noar to turn a yoursolf ghi at yon muat not houch ghas or down the room a fow times in your ordimary alippers, rabbing your feet on the carpet as you go, then at promoh the gee bracket, have the gat-lap tarned ona alarefally place your anger over the jot, bat pointia down into without touching it ; do not try the exper ment with a cryatal gacelier, as the motal pipe is uscally disconnectod. The trath of this I can prove in the atrongest posaible way is required. If jour reader denire any experimenta tried during the coming winise let them stato clearly what thoy wish done, and, if not too difficalt, we will try to carry out their caggeotions. I know that this experiment has beon triod by com petont partios in houses not heated by etenen, but ananccoenfally.
8ince writing above I have reed the leticer ol Hring from canade and, to bo more precica 1 may Montraal, where these gecis aro not mown to all tho intolligent persons I refer, of coarse, to eleotrice sparks. I think "Traveller" mast be mistaken in re gard to the hoase boing warmed by hot-air stores; nee do I kaink the presence of sharp frow or crov amed farther than at each ants aboat ahockra, reble combe bo ol. its sorreo
I ahould be gled to have "Bigna " 000 m ont hee next winter to inveetigeto this mattor, when we woald introduco him to eloctrion and other sparki, give hiv send him home as "happy an a eand boy.
Montreal.
Carada Brar.

MATHEMATICAL PROBLEMS.

[4786.]-MAY I be allowed to make a augseetion Which will be, I am sure, moceptable to readeri of the Exalise Mscranic ? For some time past it chem problem has boen weokly insorted for solt iopa, by many of our fionde I of a colamn of your raluable space be devoled, in dimilar war, to a methematioal problom every and to the beat solation of the problam of the tmek bofors. The problems might be in geometry, algeben, trigonometry, mechaniob, elementary dirioreatial at culus, to. - that is, of anch a nature and degree an to be of intoreat to mathematical stadente and mechasioe Who love to dabble in the acience. The query to whech I inclose an answor is a fair apeoimen of eneh. problem. I am aure such a mathemationl corner woel have a great attraction for very many readers. I should be happy to cend, cocmionally, problecas of my own and of Oambridge friends, and should oven be willing, for a fow weoke, to look ovar and report on the solutions whioh would be ment. ALEPR

AURORA BOREALIS

[4787.]-I Last night witnessed from the eant pier Ramegato, Eine display of the carors borealin be troen the hours of 9.80 and 10 p.ra. I ahould be gind to learn if this phonomenon, so anueraal
rent mencon, has boen observed oleowhare.
Deal, Aug. 9.
4. I. IL
[4788.]-Tririz was a ine aurora visible hore fore short time leat night, lacting from 9.50 till 10.10 pm The longent atreamora reachod up as high as the pole atar. The maximam brillianoy, however, wac a litive
westorly, juat underneath the two hind wheal of the westorly, junt underneath the two hind wheale of the Wain.
Plymouth, Aug. 9.
IXXXVIII
INTERNAL RESISTANCE OF A BATTEREY.
[4789.]-WILL your oorreapondent "PL"" whe of a my mothoa lor anaing tho intornal reaination mothode pry (nesiven on p. 859). kindly desoribe the then bo able to jadge as to their comparative advanthagen in praotioe. I may add that, supposing a have ound that instroment by far the mot rapid an accurate in preotion for Anding the reaistance of battery. It is meraly necoseary to note the delleotion given with this instrament, and then to edjust a shant to the battory antil the dodection falle to one half, when aloarly the resiotance of chant is that of the battory. I may note that I have toatod my method the renalt with the aloctromoter, with a matiofuotory agreoment.
S. T. P.
P.S.-The remarka of " 0 ." and others on mathere conneotod with elotario seience are of grearal interest.

ON TUNING, AND REDUCTION IN THE SIZE OF MUSICAL INSTRUMENTS.
[4740.]-Ir is acknowledged by all that it is imposaiole to tune any instrament perfectly where chords are required to be played on a fred series of strings, pipes, or reeds. Thia has become so groat a nuisanoe towards remedying it. Ofton have I heard that the piano and organ would be more enjoyable if they were only in tane, although it is remarkable how many instrumenta are allowed to remain in a painful atato of discord, and, shocking to rolate, are continually playod upon, to the detriment of playar and bearer. All this has been premiced by the remarke of "F. R. C. S." on page 48 p, but I have thought on the subject, and
believe something can be done by altering the conatruetion and at the same time mating a little secrifice of porfoction-riz., the present regalar series having a atring or other mediam for every tone. I do not beliere in perfection in nature, but concoive that
all our knowledge of porfection will be more ntilised as wo stady imperfootion and try to remedy it as far as we can. I shall now direct the attention of our readors to the fact that there are two notes (not tones) in musio that seldom if ovor are playod together. It matters little whether I take the old notation or any other notationa to exprese my meaning. We mast hate, and represent it by the figure 1 , or by the term doh, or by a dot on or off a line. Now, this koy note has another directly under it-for ingtance, the key Chas B next to it, and although by our rey. board and notation no difference is apparent in the relative value or diatance of such notos, yot in fact notes in the scale of C. 80 argain, if we take F for the key note, we shall ind that E is the nearest in the coale of F, and if we take any other key we shall be aure to find the same rale in force. Do not mistake the note (or tone) abovo, for that is vactly differont, and comparatively a long way off the key nota. I have notiood that in ordinary musio these two noter, boing co alonely together, are nover nsed togethor, and I Whow of they are to be found so ased : I think Beethoren and Mendelssobn to be the greatest asers of this discord, but they conld not ailord this luxary very often. The quention is, arst, ounnot thio feot bo taien mavantage OR, and next, could no more emicient taning be produced b the method? Lot ustarea pipe or whistle with one hale, to be opened or shat to an to mate the two notee, or a atying with a lover to act like a inger to ute open or a hat, or a reed with an appliance for lowering the not befon dexired. These contrivances would havo to trizes the string wind entore the pipe, or the hammor or To abould hear two notes where one only is required. This is not so difficalt an may be supposed, bocance the notes are so close together that we can scale. I string may be played as taned, although a piece of whalebone is placed lying on the string, When will be produced ing the whalobono the next tone preasure ased, so would the tone be oither higher or lower, and as much an the hole of the pipe was covered or unoovered so would the tone be again. If, then, this iden coald be applied, so as to hare only one mediam for two be leasened one hall, we should be able to play in tune for ovened one half, we should be able to play in tune, as in the tone would be ander the control of the playe better shake, trill, or thrill than ablo to proanco organ pleqing trill, or thrill, than we can now, for in while on the ante or olarionetto it it onibe at prosent,
I think the great defect in the violin is a woakneas. of tone, especially in solo playing or in out-door mnaia For this reason I Chank "The Harmonious Bleakamith " for his new iddle, and think that if the string could be made to move all the soundboards, a groat alloot would be produoed; and as for the box principle, one picce down cela aide moald convert the apecos quickly onough. A wiro atring might do, bat a bow oould not move the atring; this withoat doubt it the difficulty.
I anv lataly a piano which oost 2100 , whose otringa ware pleoed alanting insteed of upright, with aotion to correppond, a mont laborious piece of work. In another piano I observed that while the atringa were upright, uno grain of the coandboard was alantwise. The tone of the lant in apparior to that of the Arst, and it coat loes than a third, benides being more aimple in it
FipDLER

TESTING PLANE AND CONVEX SURFACES.

[4741.]-From time to time the columns of the Erolifi Mrcienimc have containod elaborate donerip tions of varions mothoda of grinding, polishing, and teoting concare specale, hat I do not romember haviog econ any particalara with reterenco to convox or plane curfacoa, Some little time ago Mr. Tydeman promised us a doecription of the method of working planes for optioal parpones, but his lotter has not appeared yek. op a fow facte with roferance to have managed to pick op a few facto with roforence to the working and tosting or planes, 2na, of courre, the proconses for working lor convex onee, bat I ann And no ecoount of how to tost s convex sarface, or how to distingainh botwoen a apherical, olliptia, parnbolio, or hyperbolio oonvex suites, or or bow to prodace or to modity theno peonliarilies, or even how to distingaish botireen a regriar and an irregular agare. Any particalara will be thankfally
rocoivod by
A. Wookezy Buncxuoos, M.D.

High-atreot, Godalming, Aogat 8.

A HANDY ATMOSPHERIC BURNER. [4742.]-An inverted fannel placed over an ordinary gas barner, resting apon a piece of wood with a amall

ALL OF A BULLET.
(4154.-Thi lottor of Francis Lowis (4682, p. 541) ago wit a now question. It was absumed that the cally it doen earth was not to be considered. Prach. cannon ball be Ared horizontally from a place not mach above the level of the ground, the range will not be great enough to give appreciable dip lor earth's carvatare.
A ball propallod fast onough might go round the might reach to y at cow's tail, if it were long enough, We cannoth tho moon. We can conceive these thinge which Mr. however, conceive of those other motions LTW of gravity to beaks of whoat irst oonooining the could "revolve round and ronnd the oarth recoding from it every rovolation and part of a revolation." A ball might recede continaally, bat in this oase it would not go "round and roand;" is it went onoe round it would then be at its starting point-no farther away ander any ciroumstancos whatover.
II A., Liverpool, wishea to retain his views (let. 4691) there is nothing on earth to prevent him. Thoy are not likely to be very generally adopted. If they were, we shoald be pat where people were belore the Iawa of motion began to be recogniued. " Δ.'s" lotters are well worth atadying, howerer. They show where beginners are likely to make miatakes. The writers of elementary text-books cannot too carofally note thees points, for miatalea of the sort are mach more common than one would imagine to be poasible. "A." will forgive my notting him an a "horrid exampio." Ono ha no choios where the ill-informed do not ant for informa. tion but undertake to teach.
It would be a nsefal exercine for " Δ " to inquire whit ceepa a cuto alloat in sach a way that the etring rises above the point or sapport. When te has oblained a just answor to thin question ho can retarn with ad vantage to his light globe tied to a string. He will hen scareely sappose that suoh a globe illastrates quito exaotly (or at all) the motion of a oannon ball.

Riohnad A. Proctor.

OCEANIC CIRCULATION-CARPENTER

 v. MUHRY.[4745.]-In two letters, one of which appeared in the Enolisi Mboranic of Ootober 6, 1871, p. 78, and the other in Nature of the provioas day, p. 446, I showed that wo wero not justitiod in acoeding to Dr. Carpenter's wish to have himsolf conaidered the original inventor of a certain thoory on the above sabjeot, bat I rogro to 800 a oonstant inalination on the part of English vritars it ignore the statements that, in the cauco of prata, I vensured to proilsh. Amoag to partionlarly rogrot to seo one so distingaished as Mr. Proctor, mod 1 wonld ask him whother it is that he did
not read $m y$ lettors (the one in Nature appoared imnot read my lettors (the one in Nature appoarod immediatoly under one of his own), or that having road
them, and having consulted Dr. Mühr's pamphlot to hem, and haring conialted Dr. Mühry's pampalot Thich I referred, he found $m y$ conolailena hacorrec I am led to my prosent remarka by mir. Proctor'a late artioles on "Oceanic Circulation," Whero ho regaras Carpenter, zad not Mury, as the origioator hoory in question. At khe aamo time, whio ghas complaining, I must say that I folly recognise the ability ith whioh ho pais hit and sabject; and wo mact all mamire the genaine roviewar, and domonstrateo the ignorance of an egotint.
[4746.]-I HAFE read with meoh intarest Mr. Proctor's artioles on the circulation of the water in the Atinntic, do. Ho does not, howevar, give the osane for the principal motion, which seems to be the primary anse of all the subsequent sarface ourrents-ive, the carrent which sote from the Gulf of Gainea to atand in need of the information with myself, in a fatare number.

Popularis.

MPROVED BEEHIVES.

4747.]-Thanks to Mr. Abbott for his letter (4502, p. 188). I should have written sooner, but waitod for 12150 p. p. 519 , powerer, tolls as to dosell pation. Reply 21250, p. 10,1 ,
Thanko, likewieo, to our Danish friend for notioing my diffoaltion (lettor 1628, p. 511), and desoribing hia "contrifagal" honoy-tater. Thil lant, I cannot bat think, might be meoh aimplifed. Would some one
 (p. 82, No. 886)
managomant ?

In spito of thandor and rain this yoar sooms likely, in como localitien at any rato, to bo a goud bee yoar ; If co, we may have to moderato the sanguine expectamight lead young beokeopers to entortaia.
E. T. Grays.

NEW DOUBLE GTARS.

[4748.]-As my observatory hat boon under repair, Y have hardly done anything with the telesoope for the last fow woozs. On Jaly 20th, howovor, I managod to got a set of measares of Mr. Barnham's now doable atar 11 8oorpii, with the following rosalte : $-\mathrm{P}=7820^{\circ}$, D = 8.75". The doable atar 12 Soorpii, to whioh MT. Burnhan re Sir John Hersocha, at the Cape of Good
by the

Hope, and is No. 4899 of the "Cape Catalogae," where the components are described as of the $7 \frac{1}{2}$ and 10 magnitacies. $P=84 \cdot b^{\circ}, \mathrm{D}={ }^{3} 3$.
In reference to M. Gandibert's remarks (let. $454 \dot{8}^{\text {, }}$ p. 462), I may say that on May 15 th I turned my 7 tin. equatorial on μ^{2} Boitis, and with mag. powers 425 and 605 thonght the components almost if not quite separated. I estimated the angle of position to be abcut 150°, and the distance 06 or 0 O5". I fancied it rather more cpen than Caycri; bat in this I may have been mistaken. o Cygi is certainly a rather dificalt star to see well, noless the atmocpheric circum. stances are good, from the disparity of the components. I think that it improves nuder red illnmination. My measureq last antumn gave $\mathrm{P}=337 \cdot 92^{\circ}, \mathrm{D}=1.690$ Epoch 1s71.74, mean oi four sets.

George Knott
Wooderoft Observatory, Cackield, Augnst 6.
NOTE ON THE LIGHTNING OF JULY 25, 1872 [4740]-TaE dsy was very hot throughout. At panied with thander and lightning (the drops of rain being very large), bnt it soon passed over to tho NNW. the lightning, however, continaing in the N. From a little after 8 p.m. till past $9 \mathrm{p} . \mathrm{m}$, I wntched the mangificent diaplay of ligitning which took place. There were four distinct groaps of clond between N. by W. and E. by N., from which the lightning emanated. Alter a while these clonds seemed to merge together, bat
still there were the four distinct centres where the light. ning was produced. I connted the namber of flache in a second and minate; three and four flashes per second were very frequent, sometimes fire, and twico I counted six; I also counted forty-six and forty-t $\mathrm{t} \boldsymbol{0} \mathrm{o}$ in a minate. The lightuing lit op the whole groap o clond in which it was prodnced, which seemed become glowing and incandoscent; but a few small comulus clonds, jast in front, were not at all affected by it, bat atood ont looking very dark. The lightning continued more or less throaghoat the night.
Greenwich.
W. N. M.

LIGHTNING CONDUCTORS.

[4750.]-Trizre have been several letters lately on this snbject in the Timea, and one of the most recent, I think on Anguat 10th. recommended the ase of zin. or Yin. gas barrel, particularly on acoount of its cheap ness. I cannot quite agree with the writer, for a hin. and, inclading the sockets for joining it together in the same manner as gas barrels are joined, would not oost more than fivelarthings per foot, instead of the 4id. per foot of the writer in the Tines. For a condactor built into the thickness of the wall, I think 1 in . or $1 \nmid \mathrm{in}$. flat bar, fin. thick, lap-jointed together, and riveted with two rivets, or bolted with a conple of ordinary tin. or fivesixteenth inch bolts, would come in best, as it woald not involve any outting of bricks. As "Sigma" says on p. 14 of the carrent volame, copper, no donbt, is better, size for size; but it would cost at least ten times as much, weight for weight, and is heavier too. I imagine a tin. iron rod woild be as good as a copper one of hin. ciameter, and, if inside a house or built in the walls, would lagt as well as copper would outside a a bailding.
J. K. P.

LIGHTNING FROM THE EARTH.

[4751.]-Speaking of the loss of life by the recent thunderstorms the fiche says:-"It woald certainly appear that the lightning came from the earth and not from the clonds. The body of man or boast acte as a conductor from the overcharged earth. Do not the
clonds frequently change from negative to positive clouds frequently change from negative to positive
electricity, and inflaence at times those parts of the electricity, and inflaence at times those parts of the
earth near them so powerfally as to draw lightning from the earth? "
Dariag the late storms I have repeatedly seen, in addition to the ordinary descending forked lightning, ascending flashes likewise forked; bat I never saw them in such abandance as during the last great storm, when the ascending flashes ontanmbered the descending forks by eight to one. They were sent up in batches of from three to aix, while the desceading forks were only rarely doable. The idea present to my mind the whole time was that Jupiter Tonans grasping the li,htnings in his sculptured hand had thrown them together per pendicularly upwards.

AMatede.

PIANOFORTE TUNING-KEY.

[4752.]-"Bedca" has produced an implement that is a lever withont a fulcram, and is in the same condition as that of Archimedes when he demanded the roin orzo. What is wanted to enable it to act is a by some one else or reating alstaik F , and held As it is represented, trrning the handle would merely As it is represented, tnrning the hande would merely proance a raile of wheelwork, relombling what you breaks.
the wooden house at north tawton.
[4763.]-On page 445, present rolume, you gave come particulars about a wooden house that eame from Norway, for a gentleman of North Tawton, North Devon. It was stated that all the workmen required for fixing it came from Norway. Bat this is incorrect, there being only two foreiguers on the brilding, all the others being
men of this town. Living within fre minates' walk from men of this town. Living within five minntos' walk from

The house is being rapidy pat together, and I ahould hink from present appearances it will be a nice louk ing stractare. Shen inished I may, perhapa, give
sour readers a foller description with a drawing.
L. W.D.
ancient musical mstruments.
[4754.]-TuE following is a list of certain and sundry ancient masical instruments which are not in the Loan Eshibition at South Kensingten Maseam :-
Clavitherium.
Clavicembalo. Specimens ace anid to exist.
Manichord.
Trampet marine.
Transposiny harpsichord or apinette.
Models of Maring' varions piano ections ; models of combined harpsichord and piano actions. These are Faid yet to exist in Paris, and donbtless the "ive
Specimens of Silberman's and Steen's pianofortes the harpsichord made by Tschndi for the King of Prussia, A.D. 1765. Probably Bigmarck or the new Empernr of Germany-who are almost as " liberal as the French Government-would have lent these. Lyrichord, invented by Plenius.
Ferews for taning harpaichords, \&o., Wakefield.
Celeatina harpsichord, Walker.
Hammer harpsichord, alins combined grand piano
and harpsichord, Merlin. Marius seems to have anticipated this invention.
Celential harp (extant A.d. 1837), Merlin.
Harpsichord and piano combined, Gillespie. Almost certainly anticipated by Marins.
certainly anticipated by Marins.
Transposing gaitar, Claggett.
Harpsichord and pinno combined, Stodert.
Grand harmonica, Cheese.
Piannforto with ita hammers striking punches which strike its strings, Walton.
Celestes for pianos (some of them with vory unclestial effects), Bary.

Teleochordon, Claggett
Pisno, harpsichord, and celestina, withontstrings,
Organised pianoforte, J. Crang Hancock. The in. ventor was probably related to Crang, who mado the ventor was probebly related to Crang, who m
organ harpsichord now at South Kensington.
Piano, clavichord, and spinett combined, Gieb.
Grand piano with harpsichord action added, Davis.
Grand piano with harpsichord action adard.
Piano with harmonic octave stop, B. Erard.
Piano with harmonic octave stop, B. Erard.
Upright grand piano whose hammers and dampers U pright grand piano whose hammers and
re returned by counterweights, W.
Harp with a keyboard, Bouthwell.
Harp with a keyboard,
Metronnme, Eckhardt.
Grand pianoforte with metal bracing (the earliest), Smith.

Volti subito, Antig. Springs for main
Upright pianoforte, aboat 4 ft . high, with strings reaching nearly to the floor, complete metal framing with connter-tension bolts, key-frame made to turn win pirots, screw apparatus for taning its strings both singly and for altering the pitches of many strings at once, "soundboard exposed to the air on both its sides producing con observation, J. J. Hawkins.
Claviol with gat strings, horse-hair bows, pedsl keys, harmonic octare stop, znee levers for rosining its bows, \&armonic J. J. Hawking.
Apparatus for recording performances on keyed Apparatus for recording performances on keyed
musical instruments, J. J. Hawkins and Earl Stanhope.
Bat for the Commissioners' perhaps wise rale, which, by the way, has been departed from in the case of her Majesty, I conld largely extond this list, and could mpself have contribated a terpodian, said to have been invented by Bashman, of Hambarg, aboat A.D. 1810 also a sostinente pianoforte.

The Harmonious Bhacksmith.

Earatux.-" Ornamental Tarning," p. 332, read 9d. 10s. instead of 9 s . to 10 s .
Errata.-In letter 4651, p. 515, 5th line, for " $16 a$ to 7a," \&c., read "1Ga-7a," \&c.; and in the 23rd line, " a inahes" shoald be " $3 a$ inchea."-Prillan. tHROPIST.

Ieroy's Non-Conduoting Compoaltion.We have frequently had occasion to speak of the virtues of this compoand as as covering for steam boilers, and more than once have drawn attention to its asefulness in preventing radiation of heat from roofs to the interior of honses. Further records of the results obtained from its employment are pablished by the Tiures of India, from which we learn that the
temperature of a police chowzey. the rool of which was covered writh Leroy's composition, was fonnd on an average of seven days to be nearly 93° Fahr. at noon, while in a aimilar hat, but without the covering componnd, from readings taken on the rame noon was $104^{4} / 7^{\circ}$, or ay 104° as egsingt $92 t^{\circ} \rightarrow$ an differenee whioh' could not fail to make itself felt. The temperatares were also taken at 9 e.m. and 5 p.m., farour of the composition oovered rool. These are favour of the compoaition covere

REPLIES TO QUERIES.

** In their answers, Correspondents are respectfully requested to mention, in each instance, the lutle and number of the query asked.
[11621.]-Killing Roote of Trees.-In the region of Lake Saperior thes practice the following :-
In the antamn bore an inch or an inch and In the antamn bore an inch or an inch and a quarter hole (according to the size of the stamp) ver-
tically into the middle of the stamp, 1sin. deep, and pat into it an ounce to an ounce aad a half of ealtpetre; fill the hole with water and plag it up; in the spring take out the plag and pat into the bole had a gill to a gill of kerosene and gaik burning withoak any rota ity thing bat ashes. The stamp mast be moist, at mold thing but ashes. not be penetrated by the ealtyeliendry stamp will
CANADA BEAR
[11849.]-Printing in Canads.-From reading this query I presame that "A Conntry Printer" de sires to begin basiness in Canada as a prinlar. I think this would be unwise antil he had spent a year thereas a workman. Good workmen reatral are from 10 dols. to 14 dols. per week (for good men)-that is (ser) £ 2 to $£ 3$ English money. It wonld not do to brtig material, as it is manafactured here, therofore bring money. Prospects good.-Casada Bear.
[120it.]-The Needle Look_ - I do not think that "Sanl lymea " need wonder at my crying oat ggainst the word nnpickeble, though be aid nol are it himell, becanse in the original query, to which neede are nuinber referb, the the manufactnre of "The Unpickable Look Company" Agrinat the idea of a lock being anpickathe I protest sfrougly, and hold that opening a lock with a fictitious key is to all intents and parposes picking it. Brt, instemd of being anpickable, the needle secureagainst the simplest ordinary rashats a bock picking as any common lever lock. The ane wimple means than means I need not particularise), to which "Sas Itymea" refers, and which bat fow of the artists in birglary would care to take the troable to use; also the ease with whioh to its own tey get of grder, and ris to of the best locks ever invented." The same means of forcing that I have binted at wonld not heve the Chubb readily yield wile the needis lock woald at Chub reats and this by anch an ingtrament ance be at its mercy, and this by arried in the waistcoat pocket. The Capiek:ble Lock Company spent large sums in the pro. dnction of this look, but it would seem that the pablie found that it did not bear out the promise of its name. for the aale has been almost nil, and the mannfacture of thas been, I believe, given ap for meny years. the directed mostly to the protection from force end this appears to bave appears to have procuro and stady, both as regards its security from procaro and force, and also the simple mannar is which it places difficultios in the way of the expert is lock picking, so that he may confess that the dolicate ordinate place of "One of the best locks ever mede." Q. Yonke
[13144.] -Thmber Houses.-As "Philo" wiahed to be informed, on page 441, if I had tested the difierence of a thick and thin layer of inclosed air, I ber wan his attention to the results of a conple of experiment which I have just made with different-sized bell-glames meters (I used by conioctioners) and two theriometer as a check on the indications of the of corer two: but "Philo" may conduot fome similar experineanti os a leas rough mothod for grester soeuracy.) In tho
first place I stood the thermomoters on a thick mene prny table, and pleoed a bell-glass over enah, keeping the instruments as nearly an possible in the mitace at
the glasses. Both thermometers indionted the tano temperature at the outget, and rose and fell with the variations of the weather during a very changeable dyy, though not to a precisely similar extent. By obserring each thermometer attentively I notioed that the oest inclosed in the small bell-glass, which was only 6in. in diameter (the other being a loot, and gearly the outside the diference in degrese at indicatod by enoh was hardly appreciablo. I then took out a thermometer from under the mall giave and fell at once to a degree lower than the other etill amier cover, which I eapposed to be air-light. This whe in the evening, when the weather grew somowhat calater fire in the room, which the the mote centrli in a four-storied houce. Bringing the thermemelier firon the top to the bottom story, and to the outce Foean a
slightly veriable readings were obtained, whits ehe slightly veriable readings were obtained, while the
mercury in the thermoneter under the cover remained for the time stationary. I then obthined I Ifres bas and pleced it over the bell-glesy, covering one themono-
metor, while the other was left nnoovered. Remorice the box after

Ada. 16, 1872. ENGLISH MECHANTC AND WORLD OF SCIENCE_NO. 386.

While that in the othor had fallen considerably. In all cases I made the wooden and glass covers as air-tight edges.-Rat-Tat.
[12181.]-Vialin Oace (J. Q).-See answer to query 12459, p. 519, preeant volume. The best thing for you to do is to get an American cheese box from your groaer'a. These are made of various tough
woods, acoh minch, rook alm, ash, sc.; they work ap

[12198.]-Enxtraoting Iodine from Beaweed Ashes.-The amhes or kolp is lixiviated with water, and after mparating all the eryetallisable salts there remains bohind a dense oily-looking faid, oaller after standing a day or two the acid loy is placed in a large leaden retort and genkly heated with black oxido of manganese. Chlorine being produced vary alowly liberates the iodino.-Horatio.
[12301.]-Reduoing Pith to Pulp (U.Q.). A rather dimealt job, I should imaging; worse chan cork. Treat it to a bath of canatio alkali or nitric cia; ing horizontally, the seme as mill stones.-Jack ranning horizous.
[12910.]-Manufacture of Blaoklead (O.Q.)Thin material ean be reduced in a ranner, as described orts, I balieve, are reduced by mixing with ohlorate o potash, and calcined in a crucible. Ingreaients ased por adaltoration: Salphate of lime, oharooal dust, and soot; finiahed by prosi
Jack or Ale Trades.
[12280.]-Superheater (U.Q.). The quorist does not any what olace of boilerr. If Corninh, plave either a
 boilor-plato chim
[12282.]-Iron Oastings (U.Q.). - I prosume that CCanter" means the solid moulds taken from wax Agarea; if so, I was informed years ago that those aligree work and drapery, are done in that way in Italy una Berlin.-Jack or AxL Trades.
[12931.]-Yoeland 8par (U. Q).-Teelnad spar can be cat and polished upon a lapidary
[22294.]-Hedrspringe (J. @.).-Yes, they have cage. The wire for hairspringe can be got upou reel of any size requirod. You cannot do better than put them the same as before.-Jace of All Trades.
[12948.]-Turpentine and Wood Naphtha narnisher. The feame with the wood naphtha, as well as raoquiber. and japanned gooda, watorprool hata, bodies, and French polinh. The farst is got in varions wass, principally from the dietillation of the juices or sap of firs, Whise from cobs, foliaga, and loppings, sabjected to deetruotive distillation in a rotort, the products being coid, n light spirit called oamphine, and tarpgntine the reaidne, pittoh. Wood naphtha is got the same way trom onk, ash, beech, do. Products : Pyroligueons acid, naphthan a dead oil, and pitch.
upon it.-JACK or ALL Teadss.
[12245.]-Chemioal.-Olelant gas may be soparated from marsh gas by pasaing to through Nordhansen sulpharic acid-that is, the fuming asid.
Common oil of vitriol does not gucceed so well, as the gas mast be tept in contact with the scid for some gas mast bo kepl in contact with the scid for some mme aofore complete aboorption takos placo. R. Torro, ing it throagh a red-hot tabe filled with pumice-gtone even hylrogen gas, may also be prodaced; a pale red even hylrogen gas, may also be prodaced; a pale red
heat. bat not a whito, is the proper temperatare.J. W. J.
[12246.]-Seren-keyed Tuning-fork (U.Q.)This mast be taned to G when the
the bridge.-Jack or Ale Trades.
[12248.]-Sheet-iron Fireproof Deed Box (U.Q.). This shonld be treble; an eir apace between the outer shins and between the inner; nothi
than loove Are clay.-JACK of All Trades.
[12254.]-Aerostatics ($0 . Q$).-Snch a vast surface of the atmosphere must be acted npon before we can get
anything like buoyancy, and the friction is so great that it requires an enormoas ampount of power to overoome the friction of the atinosphere; but if the weight is samatined, a power can be applied that will drive it
where you like with little expense. The time is not far distant then those who feel inclined for an aërial trip may take it.-Jack or All Trades.
[12272.]-Electrotyping.-If "Zoo Andra" refers to p. 20, vill. Xtione which will help to pat him right. This volnme tion which will help to pat him right. This volnme contains what may torm the whole art of olectrn-
typing. In the electrotypes nased by printers, "Zo
Andra poited on the lead backing; neither is rosin used as a ponited on the lead backing; neither is rosin thed mean a naxally employed to anite the backing with the tilm of nsaaly empoyed thaite the backios with the 11 m o
copper. Heating the shell withnut spiling it is the copper. Heating the shenticur.-SAOL lixyes.
[122en9.]-Electric Bell (U.Q.).-I sond an oxtract from thn deectiptive book of Ty er's bell instrn.
ment, which aill explain the constractiou to " J.W. T. ment, which aill explain the constructiou to "J.W. T."
Of conrse any saita ble baltery can bo asel with thess
ingtracenta; bat the mercury cell is that gonerally
employed, requationg wo pervin partition. 1 aecrice of ordinary preservo pota would of course do. The
chemical required are zinc, meroury, salphario noid, chemicals required are zino, moroury, sulphuric aoid,
vith phatinieed silver and guthoperohs-covered wire. In with platinieed silver and gatiaperohn-covered wire. In the bell instrament the exterrior int permanently maf. is moved by a piece of coft iron, not permanentiy map.
netised, and thersfore cannot be demmanetised or its polarity rovereed by lightning. It is gottantod by transitory ourrente of eleotricity traveraing a maitable eoil of thick wire, and is only rendored magnetio at the moment of the pacage of cuoh current, toy the left
mesns it is deffected oither to the right or to mesns it is deflected oither to she right or the one may require, sud is retained in position by a powerfal permmaent magnet of the harso-ahoo form; and these boing fixed arny from, and out of the influence of the coila, are not afieoted by athospherical

- chargee of olectricity, end, having their
conatantly attaohed to the poles, retiain their magnetism for a prolonged poriod; and by a recent and very eimple arrnnagemont, these permanoal horse-shoe magnete oan at any time be secharged
satarstion without diotarbing the instrament or sendsatarstion win inspector to perform this duty. The indicators ing an inspector to porform thoir position by a very can likelvise be reting ingle looking apparata, so that no unasaal ribration of any kind oan alter thoir position. The couls, nim, being wound with wire of conviderabie soctional frealy
allow ordinary oharges of lightning to paes to "emrth ' without injury to the instrument."-TAGus.
[12291.]-Nature Printed Leaves (U.Q.)"Bobo" will and a description of the carbon printing process in the Photographic Almanacs for 1870.
He can aleo obtain Mr. Johnson's specification from the Patent Office, "Manufactare or Production of Photographio Piotares," 1869 , or go there and look at it. But poasibly some of your readers will write a short description of a process which has not, I believe,
bean described in the ENGIBE MECEANTC.-SAUL been de.
[12911.] - Fiydraulio-Bome of the anawers to this query exemplity tho absurdilies into which the "C. R"' to mitir a littlo samduat with a glass of olear Whier and then suck the water up throngh a tube. They will observe the sawdust orowdiag in from above, baneaith, They cam then draw their own inferencees. "C. B. ${ }^{n}$ taiks of the sarfeco-wator doscending "in obedience to atmosphorio preserare." Now, the atmosphere acta in tho same way at a coind pirso th the sartace of the wal, pressing is dow, zater up se mach as the atroosphere prosece it down. Int is anppose a partiale at the moath of the tube kept in Whailibriam by opposite equal faroes ansequently the downward force on the partiole partially removed, the appard force, which wes before nontraliced, now forees the particle apwards, and freesh particles ruah from all sidee to supply its plaoe. Thas the liquid at the noath of the tabe being suoked ap, water rassusin non farther partionlars would be required. If an ordinart well, the watar would quickly subuido to the leval of noighbooring springe, and would not wait to be pamped out. One thing is cortain, the water would be homogeneous from top to bottom. The following theory would explain the facte stated. The ordinary raise the water lorel of the neighbourhood another 10ft. (say). Daring the oontinannoe of showers
the surface of the well would be above the gradually rising wator-level, wo that there would be a parcolation from the well oatwards which woald purify the water in the well, so that flanily it would be filled with noarly pary rain water. The lowering of the anrface of the pace from the dauly domestio nae would neighbourhood, so that there would be but little percolation throngh the eides. When, however, the water had sank 10tt. (that is to the nataral of the well below thia lovel, and the peroolation of spring water would rander the well again brackish. There wonld be a more constant sapply at the nataral lovel. This being a very interasting sabjeot, farther particulars from "Glastoa" wonid be of genaral
interest. Does he think the theory will fit the facte as he sees them ?-Auspr.
[12311.]-Hydraulic.-From what soures ${ }^{\omega}$ C. R." erived the information embodied in his roply to "Glaston" (see p. 51Y) it is not easy to imagine.
seems rather one of the old sort of foolish practical seems rather one of condemned by all sennible correspondents cropping oat again. "Glaston" oan hardly "nd salt" "olth in then is mad of pare water 15 t . deep (sufficient to till the well), the quality of mhat he obtaina by pamping is greaty imquality of what he obtains by pamping is graaky inil he has drawn the wator down again to ita old level of 10ft. deep, beoanse in the mean time, so far from any more water entering the well from the springs or the drainage of the water-bearing stratam, the water of the well is, on the coutrary, percolating ontwasds, from the fact of ite narface-level being higher than that o the water in the groand outside. As soon, however, a
the well is drawn down to the old level of 101 L deep then for every gallon pamped ont a gallon of brackish and salt vater enters from the sarronading ground, and the rinality of what is pumped up will very rapidly re. turn to its normal condition, or what it was buture ho
rain-water was allowed to ran into the woll. "C. R." sars traly enongh that tie cud of the suction-pipe
eonerully. In any cace the watar immodiataly opposite in; and I have known of a briak-bat that had fallen into a woll being suckod right ap the pipe into the ralvo-box, in a case whore the pipe whiah was only 10in. diameter had to supply three 10in. pamps working at high apeed; bat then the ond of the pipe wat vory doep in the pamp-hole, and had no basket round it. I J. K. P.
[12889.]-Vencers.-" Shanington" can obtain veneers any size and quantity as well as quality, at a Warehonse in Shoreditch, or the Curtain-road. Lond will at prices to anil his pork. orecu a
cost and packing-that in, if he advertises hin addrems in the Mechanic.-SAYuEs Smitire.
[12847.] - Eltroke.-I should like to make a form rowaris on Molosworth's formale for the weight o, or others will kindly pat me right:-W = weight of the rima in owta. $=\frac{P S}{45 D}(1), P$ being the total average pressure on piston in pounds, $\mathbf{S}=$ atroke in feet, and $\mathrm{D}=$ mean diametar of wheel in feet, $\mathrm{D}=$ gtroke $\times 34$ or 4 generally. Sappose $D=4 \mathrm{~S}$, and arabstitate in the formula (1), we get $W=\frac{\mathrm{PS}}{180 \mathrm{~B}}=\frac{\mathrm{P}}{180}$, ene expres. sion in which W is made to depend on P. Now, it is evident that W should dopend also on the apoed of the ongine, and also on the namber of sevolatione per minate, nad thirdiy on the dogreo of reg ulatioh the engine is intended. A rapidy-mosing fly-whoel bae, ceveris paribus, more vis viva than a alowly-moving ono, and is or the same woight wil can an of a pamping-engine irregalarity, doee not matter mnoh, of a pamping-engina irrogalarity dors rogular motion is required. No fy-whoel oan produce s anilorm motion. Woald not somo seoondary componsetion be usefal

[12352.]-Centrifugal Pump.-Before assuming the dutios of monitor to cnerrent an orror whioh "A., grounds, that I have formed, bo should have tried a simple oxperiment with wator confined in a tabe in the menner suggested. The arrangement 1 proposed is more like the prinatplo of an ordinary tojector than the spras apparstas to which heallades. Doabtleen, if an orifice for the orospe of the wator wied provided, about an inch in dismeter instoad of 6in. or eo, the the openid be artiven out in the iorable length of pump to bo attached; butin if this spray be made to pass through a bent tabo, or a coll, water issaes out in an undivided column. "A., Liverpool," may also try the following an an way of getting him to anderatand what sort of an arrangement I wished to angrest to "Teachable." Procare a coppar or brass pipe a couple of inches in diametar. To this solder a tabe somewhat larger, and of any shape, or sorow bo a paratus Thich is the best plan. steam to enter a little below the joint. Tho steam feed is to be pointed upwards towards the top of the tabe ant in the form of a siphon, and I coand guarantoe minntes. of course the condensed steam will have mingled with the water raised, bat in pamps for mines, quarries, and general drainage works condueted andergronnd, this, in my opinion, is a desideratam, al ane exhanst ateam is thas easily got rid of. For a arink pure, and when mixed with other mator tends to destroy germa and remove or precipitate impuritios. Bat as do not wish to ontor on dangerons and forbidden groand, otion of puritication by condensed steam may be left ont of consideration antil some other time. in : Liverpool, may connne the water to is oovered in a roservoir, nataral or ar or air-tight lid. At the bottom of the veasel form an opening, and attaoh a valve opening inwards, throngh which the water entars to find its own level. To an opening at one side, near the bottom, an exhanst pipe is to be attached, with a tion. When the water has tilled the reservoir to within aboat an inch of the top allow steam to onter throngh the lid, from a pipe commanicating with the boiler. The water will at onee raise the ball valve, and asoend throagh the pipe from the preasare of the stoam abore,
while the bottom ralre is closed simaltaneoasly from while the bottom ralve is clozed eimulue steam does not so soon eondence as in the former, bat expend aud fills the space formed by the forced deacent of the water. "A., Liverpool," may hold a difterent opinion, bat when atonm does not immediately mingie wikn a reste nopo it as it does in this case, no condensation takes place autil a comparatively long period has Hapsed, and the apper $\begin{gathered}\text { 日urince of } \\ \text { to } \\ \text { in }\end{gathered}$ and compression of the thin layer of inclosed air at the top tends to maintain the temperatare, and is stomm is admittod when this space is illod, and instanty cot will be quaticiont to enited from the tionatoly large. To obtain a continaone aupply fron tinio surt of pamp the reservoir might be partikione leed, and erhanst pipea. Or "A., Liverpool," may seed, and orlanast piped. Or "A., Liverpool, may
take two oylinders of equal dimensiona, titiod with
bottom and ball valves in the game manner. In the inside of each cylinder insert a foating air-tight piston. The action of the fionting piaton is than or such force as to raise the float. To this is atteched an upright rod, which, when raised with the piston to a cortinin diatanoc, lifter a sliding cover from the face o the stoam feed, and allows steam to enter, which at once foroes down the piston, which at a part of its strote bringe down the aliding cover and alosea the foed-pipe, while a corresponding rod attached to the opponite siae of the piaton opens the exhanat port. In condensed," as " A., Liverpool," appears to think in one case where he makes an opening for the raised One case where the makes an opening for the raised
Water above tha ctoam nozzle. If inderstand "Micawber" rightly, he enysa a continuous jet of highpressure ateam divides and passes through a fuid body of any temperature, lite a bar or aheot of red-hot of any tomperature, lito a bar or sheot of red-hot
metal. It cannot then on entoring bo "instantly con-censed."-Rat-Tat.
[12856.]-Malleable Castinge.-The cast iron lrom red hematite is genorally preferred for making malleable castinge, finely-divided peroxide of iron being the acting agent in the prooesh, removing carbou from the surface. The castings, which are very brittle when removed from the moalds, are packed in cast-iron cracibles with powdored red hematite, and submitted to heat in a furnace nomerhat like a cemontation chamapplied and oontined for from thres and heak slowly cordiog to the depth of malleability required. Omatingy prepared in this way become britue on boing hoatod and are generally worked cold. M'Haffe has adaptod the process in the construction of various portions of machinery, and it is largely employed in the manafac ure of keyn, buckies, gan-locke, toothed wheoln, sarempropeliers, do. It is poseiblo to cane-harden the artiales when anished, so that steal, malleablo, and casi are more than gin. thinet, kernel of very goft cant iron is always loft in the centre. Anp description of good cant-iron can be made malleable by this process I
[12108.]-Quill Pens.-There are two methods of preparing gooso-quills for pens. In one the quills are aspenced a capable of being cloned perfecty quins. This rossel submitting the quills to three or four hours hard boiling in this position thoy are withdrawn and dried The next day they are cat and the pith withana dried, they are then polished with a piece of cloth, and stoved. This plan yields the best pene ; but in ordinary prao tico the quilla are merely planged into hot sand (2120 Fahr.) for a fow seconds, sorged with a blant knife polished with a piece of woollen oloth, and atoved. In procesees the atoving muat be very mild.-Tagrs. [12432.]-Testing Beer and spirite.- - J. W. F." can asoertain the strength of a sample of beer or
epirite by Sykes't bydrometor. Price, with tables (glass), from 21 to 21 108. ; (metal) from 21 , secondhand, to 54 48. new. Thebeer and the spirits should, if they contain sugar, salt, or any other matter in sola. water before the hydrometeris ased. The operation is conducted as follows:-Take a giass fiask holding sumicient liquid to foat the hydrometor, make mark in the neek, and all to the mark with the boer or spirita. Transfer to a retort, washing out the fiesk win wher, the whehinga to be edded to the sample in retort, Distil over in the retort (asing the marked finct for a receiver) till about two-thirds of the liquid hat comere over; fill the flack up to the mark with water, and teat its contents by means of the hydrome. I chall be happy to give it. If he requires to teat the beer to And its original atrongth he requires to toet the process is more difmenlt. The above operations should
of 60 .-E. H .
n14482.] -Testing Beer and Spirits.-The reply by ill test Bpirits only is erroncona. Bykes's hydrometor purchased so low as the highest price he states ; the pricee range from 408 . to 90 s . Beer oean only be tested by diatillation, and is the mothod uesed by the Exoied to and the original gravity. The saccharometer is rued thow the wort, but after fermentation it would not ahow the strength. It would show portor much weakent-INLAND.
[12486.]-Ohromo-Lithography.-In the following short description of this art it is as well to com mence at the beginning-the quarry. The atonen used aro a hind of limostone ; their qualifoations aro-to ofifervenco with an acid, eacily afleotod by grease, and
absorb wator readily. They are found in varions countries, bat the bent come from Solenhofen, in Bavaria. They are there aawn into various sized blockn of the average thickneese of 8in. or 4 in. When they arrive at their varions destinations they have the ap-
pearance of ordinary paving-stones. The hintory of pearance of ordinary paving-stones. The hintory of felder, a poor author, residing at Munich, in Bavaria, aboat the year 1796, being anxious to pablish his writ inge oheaply, oxperimented for this parpose. He found that soap, wax, and lamplack moltod together, made into int, When writton on platos of various motale, and
allowed to $d r y$, reoisted aquafortig. His mother on a allowed to dry, resisted aquafortic. His mother on a
certain occasion wished him to certain oceasion wished him to take an acoount of come hinen that had to be gent to the lanndry. Haring
nothing else at hand, he wrote it on a stone with the nothing else at hand, he wrote it on a stone with the
above inl. Alter he had written it, the happy thought above ink. Atter he had written it, the happy thought
occurred to him to try and print from it. He oat away the
ancovared exrtaceot the etone by atrong aoid, and printed trom the whing which romained. This, in ahort, wa callod. This oating oway by ecid ho altorwards found oallod. This eating away by acid ho altorwarda fousd
unnecosary ; and it may be as well to atato that overy annecesary ; and it may be as well to atate that every
original idea-i.e., the foundations of this art-was invented by Bennefelder alone, the introdnction of im proved machinery, do., being common to many other anee to the ohi anaike, which are simuar in appear anco to the or mary crayoan, an abo lio ink, are com pompblack, in rerious propartiona, The printing ink is composed of burnt proportiona. Tho printing ink whatever may be the colour required. The stone io wado to posieses s very fiet grained fece on the one aide for draving on; vory ank krained isco on the one aide apper one is kopt in motion and the and anich is apper one is kopt in motion, and the sand which in the fineness or coarnences of granalar serrfoes sough after. The tone, when dry, recoives the drawing by the artict, Who procesde oxaotly in the mame manner so he woula on paper, with a arayon (only more carofully, wards print), a painting or drawing to be reproduced having been previously placed before him. In a aimple White and bleck repreeontation the anbject is all drawn an one stone; whers thare are more coloars than one a separate stone is required
fresh printing for overy hae ; there is is one colour only freah printing for overy hae ; there is one oolour only
to a stone. In a piotare containing a dozen Chero vill to a atone. In a piotare containing a dozen there will
be as many otones, bat the number of tinte or colours vary very mach. There is firat the key draving, having the main outline, and such parts Anished which may appertain to it; this is, in fact, a map of the wholo.
This key or map is priated and then transferred or This key or map is priated and then transforred or
set ofl" to all the other atones wanted to complote the picture, as many impressions from the complote being takea an there are tranafors wantod. The artict proceeda to dramin incoh tint in its proper placo, in roIation to the painting before him 28 copy (all the parts
of the drawing which may be in one tint), one colour only to astone. On the key-stone, near the edge, he drawi cortain marks which are transforred with the key drawing to the otheri. Exactly on those marks on
overy stone the printer drilla a amall hole anfletent to every atone the printor drilla a amall hole, esffieiont to
drop a needle point into. In each sacoeeding impres. ion the marke which are printed from the hey-stone to the paper are pieroed by the needle, and so carriod with the papor to the now stone ; the needie drops into the hole. Ho does this with groat carro, by lifting ap the edges of papor, \&e., to see if all is right ; the noedios are then abatracted, and the papar left on the stone. egiator. The atone, which is in a moving tray, haring een provioualy damped, then inked by a roller, she eather tympan is ahnt down orer it, the whole drawn ory tighily beneath a boxwood or other hard soraper this gives great pressure), and so on for every impron-
sion to the end of that particular colour. And, again, this prooens is begun and carried through with every tone required to perfect the copy of prototypo. A itho-pross, by the wey, eomewhat resembles the ordinary 8tanhope printing-press. The leather which is palled down on to the stone in the lithographio answars to the tympan in the other; but in the ordinary lotterprese simplo downward rartioal force is usod-in the onder the fixed soraper. There remaing to be roller and ander the fixed eoraper. There remains to be degaribed and procese botween the time of its loaving the artiat draming oapableo of prinior is. In oraer to ronatio of acid is poured over tho and neatralises the alkali or soap contained in the ohalk or ink, and readers it insolable in water, otherWico it would all wach ort. When the printer is aboat to take an impresion, he Arut wots the entire sarface
with a apongg illed with water, and where the draving with e apongs hlled with wator, and where the drawing is, boing greacy, remains dry; overy other part of the sariace absorbe the mointuro: A roller, properly
covered covered with printing ink from a alab, is now moved over the whole apper surfeoe of stone; the oil or
varnish contained therein atteches iteolif to the portions where the drawing is-nowhere else. The damped paper is then laid over it as before deacribed. To ren dor thie 2000 nnt more defnite, it ought to be itated chat the same shoet of paper that recoives the impress from the koy-atone (not the transfor sheete-that impress from onch and every separataly, tull it has obtained all their contributions, and to the aromo-lithograph is brought to parfeotion. Lnatly, the prinaiplea involved in this art are the matainaranion of grease and wator, and the ab
ing power of the atone for both. A Woremsa B.
[12488.]-Cheas.-OP course any re-entering (or endless knight's tour answers this query, and it is easy to invont no end of ro-entering as wil as or nonre toar of the whole board to form a symmetrical pattern and I ahould like to know if any prool of this impos (p. 546) a regular pattern, by turning two of the thit lines, namely, instead of those going from $7 a$ to $6 c$ and $b b$ to $4 d$, let the formar go to $5 b$, and join $6 c$ to $4 d$ Bat then
onch. Again, I find it easy to eover symmotriWhose ends are separate and any re-entering tour or one seems essential to omit 8 squares. Is this dependent necesamy an "evenly oven" namber ? Can it prove oven," or one whome hall is odd as to oover an "oddl
[12444.]-Day and Night Telescope.-The word "anvoiled," in reply on p. 519, ahould be "in.
[12557.]-Geometry.-To inceribe the Inrand chombus in a given triangle $A B$ B with one angje of and the line aill yoa haro only to bisect hast filet to $A C$ and $A B$ will form the rhombns. " P. W. F. J." p. 64b, only produces a rhomboid.-E. I. G
[12458.]-Blowing Apparatus.-If "P. W.EI. J. ${ }^{\circ}$ (p. 519) will kindly chow a working plan of his smengement, taking an old engine cylinder as a basis of operations, he will confar an additional levour. We may add, there is a threo-horse angine on the promiece, Bnich can
[12467.]-Nitrate of Bode.-This is likely to fan in price before Decomber. Liverpool is tho beet market oo this purchason, 150 . in July, and been at 18s. 13 d . per the 1at at Augnat.-SODA.
[12481.]-Wax Moth. " R. A." can destroy the maggot of the Fax moth in his empty combs wit cyanide of potasaium (poison). Break np ecoaplo of onnces of the salt into amall pioces, strew thom on bonrd, and place the combe so that the rapour given
off may readily permeate them, covering over the whel rith twe thiakneenes of met eloth, and licare it thins for 12 or 14 hours. I thas dertrojed upwarde of 900 silh rorm chrysalides in their cocoonn, 14 he to preaern
 Fox.
[12482.]-Integral ánd Differentiel Caloulas differential calculas it if aboolatoly intogral and pernes works on natural philomophy, in which th riects of the lave that are obsorved to govern th material world are reduced to calculation. The ordinary proossor ol goometry wad rigbinomery are summer or the mensaration and dicoution of streigat hime and of Agares contained by straight unes ; bat them methods fail when wo come to dicouss carved hion and figures boanded by carred linel. In mochaniol the aneistence of the calculus in treating of forem which are continually varying from one momeat to another. The circumforencen and areas of circlos, a wall an the surfaces and oapacities of oylindera, cones and epherea, are oalculated by the mothod of the invectiget The dirferent oarves whoen propertion it ourve is neofal in very important. The logarilhmin for in exhibiting the law of the dimination He denity of the atmosphere, the cycloid in isTongaing the laws of the pendaiam, and the fan of In celeatial bodies to waras the contre of the earth two different acquire a tonowledge of the calcalus saffiecient to anderatand the elementary parts of physical ecience mes confine their attention to the differenliation of farctions of one variable suocessive differentiation, the theorems of Taylor and Maclourin, the tifects os particular values of the varisblo apon a fabction. differential minima, and the application of the and areas, with corresponding intogration. A previcu knowledge of the elements of geometry, algobre, plese and a little of the apherical trigonometry, with a tolerPrinaiples of the Difierential and Integral Calonlan," or Todbuntoris Calculus. For thone who may not have read a treetive and book, for he supplies this wank. Attor mestaring the oontents of this book, the learner could apply hie hoorledge to a variety of ucoful purposen.一W. H. C.
Working B.," in his answer to Thomes Kine. - "A Working Bu," in his anawer to Thomas King (a) 880 A saye difforlty of seeing both the image of the object in flected and the point of the pencil at the se overt This diffeclty is camed by rapo trom Tmage which is farthor brom tha from the objoct giving al and con be corrected bs plecing betean the an and prism a lons, which gives the ${ }^{2}$ me dirergence and praye from the pancil and those trom the object to the eye must then be placed reer noer the jeck Tbe prism so as to divide the apertire of the papil prism so as to invide the aperture of the papil into two pencil. There in another form of the camers otar the vised by Amici, whioh is proferable, an it allome in oye to change ite condition conaiderably. withert time. The ${ }^{200}$ the image and the pencil at the name time. The iollowing explanation with refareace to the
 diagram will ex.
plain it: $A B C$,
reotangolar glas prism, baving one cular face 3 tumad jowards the obisat right angles to an inclined
plato of gine
E. The rem priom, aro totally reflectod from its baee at ing the emerge in the direction G F. They aro then partialts vertical image of the object, L, which is and formo oye in the direction K L . The eye, at the sean by the sees through the glats the point of a pencil appline io trecod pith and thre the outlize of the objeot may be
[12504.]-sketahing from Nature.-I have usod the instrument doecribed by John Hopking where
great acouracy was required. It is not necoceary to grant incouracy was required. It is not neocecary to relation to the aiso of the canvas or paper. It your canvoly gith long you may employ tho irame ait. Ift. belore the oye, as the eanvas matt be, at the dif. the of its length. Bat it is raroly required. canras at the distance stated, but co low ac to objoots. Mark their places on thli codge Promin Youn shen, is you like, do the same wibh the maw, bilang your dhis ming matorial ap beafore you at the right oven obtain whit your T equare intorsootiona, and fix very nocuratoly the position of a number of objecta. The intormeliato eppeoss can nambor oillod in by tho oye. Δ square eyogione hald at the right diatanco from the oye 1 hare also emplojed. It is rory usofal in ostimating the hare af animplayod It represente one of the imaninary aquares into whioh reprosente one oi ine imaginary
your papar is dirided.-M. Parrs.
[19507.]-Orioket-Bat Maldns.-The ordinary common cricket-bat is made from villow woll- eeaconed. Cat out nearly the shape with a two-handle, ono-edge
paring-knife; the bat is then axed in the lathe, the paring-knife; the bat is then Axed in the lathe, the handle turned, thon gniohed of with a plane and apoko-
shave, and paperod, reazed in the lathe, the handle bound with waxed hemp, Anished ofl with two or more coats of brown hard rarninh, papering down each coat before laying on the next Of the superior eort
of bats I can give no opinion ; nover had any hand at of bate I can give no opinion; nevor had any hand at
them, but always nuderatood the beat bats had cane them, but alwsys anderatood
handies.--SAMURL SMITBEB.
[12511.]-Gas.-" R. A. H."" at p. 620, says vory truly that the poorness of gees and the concequent in crease of gas bills require to bo thoronghly rentilated. I am interested both as a producor (ahareholder) and consumer of gas, and am one of thoee who believe that honesty is the beat policy in thic as in othor casen. I the price for good, but neither is it just for consamers to pay for gas, and complain if they do not got good. Evidently, the right plan mant be that gas shonld be sold by meanare, but paid for in proportion to ita solality. For oxample, if the anthority quoted by "Sanl Rymea " at p. 529 be correot, a thoucand feet of cosl gas is worth hardly more than half as much ae a like quantity of cannel gan, but the latter, though dearer to the producer, is oheapar to the consumer. How can we best reconcile these immodiately conflicting intereste? The plan tried of sabjecting gas oompanios to penaltios that aupply gas of loes than a minimam illuminating power, does not work well, and has no tendency to prodace improvement boyond the etandard. If the price chargeable were a Axed amount per thousand feet. maitiplied by the average illaminating power or the ga apphed, there would be a constankiy aoty both to make anply gas of the mosteconomioar quaklity boun to make the fair price of 1,000 oubic feet of such gas to be (BEy) 5s., 1,000 cabic feet of gas of 12 candle-power would bo worth only 8s., while that of 22 ceandlo-power would be Worth 5s. 6d. ; it would then be soon decidod what quality of gas it is beat to make, whioh will depend apon the relative cont of the piaco in quastion of cannel coal and coke. lanere would then be no temptation to
draw off the lant drege of poor gas to increase its quantity to the injury of its quality. The consamer would pay as he ought to do in proportion to the light ho gets, and the producor would proat, as he ought to do, in proportion to hin auccoses in producing the light
needed at the least cost. I believe if this needed at the least cost. I believe if this aimple and
jast principle of payment were adopted, it would be found more protiable to stop the process of gas making as soon as the poorer gas begrins to be formed, so as to leave that in the cole, thereby rendering it a pleasant fuel for bonsehold use. If coke could thas be rendered a generally acceptable frel, a great deal of the amoke by which wo are annoyed and injured woald be pro-
vented, and thas another great beneat be seoured by a simple act of jastioe and fair doaling. -PHino.
[12515.]-Mowing Machino.-I am mado to atale that a piece of iron atruck repeatedly on one place will drop in two pioces. What I meant to write, if I did
not, was that if a rod of iron be atruck repostodly not, was that it a rod of iron be atruak repontody on
one end it will drop in tro piecos. I will undortake to canse a 3in. round rod, 12fi. long, to fall in tmo piocos in less than ton minatos by merely atriking it on one end with a hand hammer, and a nowing tife-bor will end with a hand hammer, and a now knife-boz will
break as soon as a well-mended one from the causo Rtatod, an, to my annoyancos I havo proved.-OLD
[12516.]-Mathematical. The querist maye that the wore 1's yon affix to the 1111 the nearor it ap.
proaches nuity, bat he might with equal trath say the nearer it approaches 2 or $1,000,000$, and hence argue that 1111 all intinitum is $=2$ or a million. Of course no namber of the 1 's oan quite make it $=\frac{1}{9}$, bat
" C . H. W. B." hal given the rigoroas proof. -E . L. G. [12516.]- Mathematical.-It by no means follows that becasso the numerator continually beoomes alightly
greater that it ahould ever equal the demominator, in not $\frac{1}{9}$ is the limit it approacher, $\cdot 111=\frac{111}{1000}$ The numerator has as many 1 's as the denominator has
ciphers, and evidenay no matfor how many places wo take it never becomes greator than $\frac{1}{9}$, or oven guite
equal to it, muab leas than aqual to one.-Paunar-
[12516.]- Kathematioal.-It is abourd to aup pequal to the denominator, for it will eridently almaya equal to the denominator," for it will evidentil alwaya
have oine figure leas. Stated in a form diferent, though radioally the eame, we have 1 $=\frac{1}{10} \cdot \cdot 11-\frac{1}{10}+\frac{1}{100}$, -1111, or $\cdot 1=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+$. The man of the indnite serion on the right is $\frac{1}{9}$-Axepr.
[" Xenophon" has alco annwered this query.-ED.]
[12517.] - Mathematioal Traohinea and Trible.-The calonataing maohine made calculation of tables of logarithma, do., I anderctand, and when it
made an orror it gave notioo of it in come way, oither made an error it gave notice of it in eomo way, eilher
atopping or ringing a ball, or come such way. It was loft incompleto from the Government deolining to give farther aid to itt conetruction. It took soverel year to mako it.-Pbinantrieopiet
[12517.] - Trathematioal Taohines and Tables.-I read some yoars ago a minato and lengthy desoription of Babbago'e maohine in a book, the title of Which, to the beet of my recolloction, in "The Boy Philosopher."-Exasisior.
[12518.]-The Ialand of Hayti-All that I can any respeoting jour query is that Hayti comprisen two separate states ; the Ropablic (formerly the empire) of Hayti, oapital Porzan Princo; and Dominioa, oapital France and Spain, bat neoquired ita indopendence daring France and Spain, batioquired ita indopendence daring cruoltios on the part both of the negroes and the Fronch. Hayti, the west part, is atill independent; bat French. Hayki, the west part, is aidilindepend
[12519.]-Acarus Croseli.-The following extreot is from a lottor sent by the late ADdrow Croses, Kheq, to the Electrioal Socioty of London, of science, in ta old periodical callod Hastration, of whioh I inolose a roagh tracing:"Amongst other contrivances I constractod a wooden frame, of aboat 2 ft in height, conaiating of four logs prooseding from a shelf at the bottom, apporting another at the top, and containing a third in the middle. (Bee Fig.) Each of these sholves wac aboat 7in. aquare. The apper one was pieroed with an
aperture, in which was frod a fannel of Wodg wood ware, within whioh rested a quart bacin on a circalar piece of mahogany placed within the funnol. When this badn was alied with a fluid, a otrip of fannol wotted with the same was suapended over the odge of the bacin, and inaide the fannol, which, neting at a siphon, conveyed the flaid out of the batin throngb the fannal in successive drope. The middle shell of the frame was likewice pieroed with an aperture, in which was as amaller fannel of alese, whioh supportod a piece of somewhat porous red oxide of iron from Vesurius, immedistely under the dropping of the upper fannel. This stone was kept constantly olectrified by means of two platinum wires on either side of it, connected with the poles of a voltaic battery of nineteen pairs of 5in. zinc and copper single plateo, in two porcelain troaghs, the colls of which were alled at frat but afterwards rith water alone. The lower acia, meroly sapportod a wide-monthed bottle to reciiv the drops $2 s$ they fell from the mocond funnel. When this basin was nearly emptied the flaid was poared back again from the botue bolow into the balin above, with out disturbing the position of the etone. The faid
with which I flled the bavin was made as followa:-I With which I Glled the basin was made as follows :-I reduced a piece of black flint to powder, having arat exposed it to a red heat, and quenched it in wator, to make it friable. Of this powder I took two oancos, of poted them intensely with aix ounces of oarbonato strong hasat in ensed them for fitcon minates to and then in a biack-load cruciblo in an arr-iarnaco, reducod it to powder while compoand on an iron platio, wator on it, and kept it boiling for come minatoe in a sand bath. The greater part of the solable glase thas fused was taken ap by the water, together with a portion of alumina from the orraible. To a portion of
the silicate of potass thas fased I added some the silicate of potassa thas rasod I added some
boiling water to dilate it, and then slowly added hydroohlorio acid to saperaataration. . . On On the fourtoenth day from the commencement of the oxporiment I observed, though a glass lons, a fow amall whitish orcreacenoes, or nipples, projecting from aboat the
middle of the oloctrifed sfone, and nearly ander the dropping of the flaid above. On the twonty-seoond day these appearances were more olerated and distinot, and on the iwenty-sixth day each ingure acsamed the form of a perfoot ingoct, atanding ereot on a fow
briatles which formed ita tail," tho goes on to describe farther experimenta made by Mr. Crosse in the same direction.-G. O. C.
[12519.]-Acaras Crosall.-If I rocollect right, those sapposed nem insecta taraed oat to be common PEILO
[12520.]-Fluid Lens for Photography.-The local points will be on the mirror, and is reflected on to the groand glase. Yoa can make one that way, bat will not get a very brilisnt difect, compared with the ther tine wher wau man.W. 0
[12520.]-Fluid Lons for Photography.-The focal length would bo from LI^{1} to the plato, measaring in the direotion a contral ray to jl frat to the mirror m and from that to the plato P. Of courso, moridg
the objeot nearer to or further away from in would
altor the foons ; for a conver lens, the formala in $\frac{1}{u}+\frac{1}{v}$ $=\frac{1}{f}$ whare f in the foous for parallel raya, u the distance of the objeot trom the lons, and y the diftarice of the image of it trom the long, all dictanoes bolng watoh not follow that it haugh it is rery hoary tive powar, 1 is dangerous and corronive. Bianlphide of oarbon has great refraotive powar, bat Mr. Botione could tall you botiar about thit sabjeot than I. Thare would be a -Preat loes of light by
[12528.]-Finy Anthma.-I pity and sympachice Wha your zair correspondent "Kala." I have for more forms, principally in the form of hay fover, in various sothme I I boliove thare is no orre, bat I a great rolief. Let "Kato" got a fritend to blow the spray of sulpharoas acid (one part to ten of water) phrough one of the toyn nold to throw a jot of coent to har lace (ajos ahat) three or four timee a day; aleo take three times a day about thirty drope of atrong apirite of camphor on sugar. Lot her alao keop hor hood cool, got plonty of freah air, and aplach the ohoet with oold wator. Soon air is after all the onily reml means of getting rid of thic painful complaint.-OLd Boors.
[12528.]-Flay Aethma.- "Kato " ought to try a fow inhalations of "langhing gae." It has cared many cavos of acthme-Rat-TAT.
[12528.]-Eiay Anthma.-IE "Kato" ware a gentleman I would adrise (1) Daring the paroxyam amoke an havannab, eome rotarna, or coat anvendish; (2) once a day inhalo for five minates the rapour arising from twenty drops of creonoto in half a pint of bolling water; (8) avoid amolls, and go for a fortnight to the foa-nide. -LLMMBD.
[12528.]- Hay Asthma.-It "Kate " rofers to the number for May 81st, on p. 280 she will find a remody that has been rery benefiaial to me, a fellow suflerer,
from violent aneozing ats in the summer seacon.Chmes.
[12528.]-EIay Asthma_-Pour some vator or equal parte of rinegar and watar boiling hot ovar some horba, as balm, hyceop, mint, eonthorn wood, cage, or

[12528.] - Fiay Asthma.-This complaint is gappooed, not I think proved, to bo somotimes excitod by the hay soason. I eanpeot it in aloo oxaited by chill whon in a stato of porapiration. I think it wise to guard againat elther rifk by naing Dr. Stonhoase's charcoal respirator, by day, and aloeping sarrounded by net curtaina by night, wearing a thin woollon ar merino dress, and using a oold bath ovory morning, and haring pleaty of freah air alwayb.-M. R. C. 8 .
[12580.]-Name of Plant. - Probably Reseda utcola. Dyer's wood.-Tressilinn.
[12531.]-Flatting. - Uso a Ittle slam in the paint.-Rat-Tat.
[12531.]-Flatting.-Gold size is the best to mix with it, or a mmall portion of oil varnish; it require very littlo, and great care and regalarity in laying it .
[12532.]-Republioan Monthe :-
atutume.
French Months.

Signitication.	English Months.
Vintage.	Sept. 22.
Foggy.	Oct. 22.
Fronty or alooty.	Nov. 21.
Wintbr.	
Snowy.	Deo. 91.
Reing.	Jan. 20.
Windy.	Feb. 19.

5. Plaviose.
6. Ventoso.

Windy.
Spring.
7. Germinal Springing or budding. Maroh 21.
8. Floreal.
9. Prairial.
10. Messidor. Flowory. April 80.
May 20. Sumarg.
12. Fractidor.

Frai
June 19
18534.]-Spr
make a hollow Are apon his hearth with bricks and mall conal i-JAck or ALL Trades.
[12535.]-Spots on Whitoohapal.-This may proceed from contaot with moapy water bofore dry, the use of a soapy spange in rubbling down before rarishing, and bad varniah, or from a rarniah bragh that Jack of All Trades.
[18585.]-fipote on Whiteohapel.-The trap has bocome greasy or a weated the oil trom being left nnder a warm cover for seoh long poriode. Have it rubbed dry bofore washing.-Rat-TAT.
[12538.]-Fleotrotyping.-There are 10 many canses that prevent the regalar deposit of the solation apon the monld, that it it almont imposaible to proaribe a dofinite remedy for the bad doposit of which "Daplex" writos. Howorer, as I havo had to oontond with a similar diffocalty, I will roadily give anoh information as I possess. I promise that a good oonstant carrent of olectricity mast bo oontinnoas. II the dopoait is grazatar, as geopsis to to the caso, I shonli
try s less amount of metal in the solution and let the surfice of the metal，which resupplies the solation with the amount of metal it loses by the deposition on the mould，be smaller．Perhaps the deposition is obtained too quiakly on sccount of the too high temperatare of the solntion．It was invariably the case with my own moalds，if I allowed the temperatare to be too high， that they were caated with a rough deposit．Provided that the battery be in proper worling order，the depoeit will generally be very regalar in cold weither，
but of course slowly formed．If yon use a rolution bnt of course slowly formed．If you use solution It ailver deposit，the colder the weather is the better It would be a good plan to move the moulds about in
the bath now and then，and rather quictil．When the bath now and then，and rather quickly．When the hollow parts of the mould are insumeiently conted rince the moutid in clean mater，acd apply a sarstoh－ bruah（which may be atteched to a lathe），and mase mould frequentily in the solutiono－W．H．H．C．
［18538．］－Fectrotyping．－Take some very fine wire and condact from the main，euspending a wire into the deep rocesses，allawing the points of same to toach the bottom of recesses．Your liquid must be parfectly clear and frequently agitated．JACE OF Aus Trades．
［19583．］－Ileotieotypins．－In all probability，the oavities have zot tatea the substance red to render and thosomghly with a soft brosh，plentifylly dasted and thasosghiy with ane plambago．If your morids are af sealing． What fine plambago．If your mondes are af soaling－ Fax depey may require slightiy roaghening with spirit． ing conting of ptambago．－S．Berrons．
［18589．］－ELOnse ELy－Naither．－B．Botrone．
［12540．］－Poultry．－It the fowly mere kept oloan well－shaltered from wind and rain，have crafloient soft food，with greens，and a constant anpply of nood water． they will generally be free from limese ；but if your corminates with disoharge from the nostrils and oyes， a thichening of the tongue；it is contagious，communi－ cated to the other fowle by the water．Sepsrate him food and cabbare－leaves，a small quantity of Cayenne pepper，and halt a grain of ellspioe．Wah his head vening．With this trentment fowle will geoningily and well if not gone too far；loosemens is the forerminer of⿺𠃊
［18548．］－Tight Shifing ELoist．－It B．Balmy will Ix a rod of wood ch hard＂ from wall to wall ebout bin． from ceiling，with movable wheal and hanger as per sketch，it will answer his purpone，as it did minc．I kive oroes section，which I think he win be able to anderitand．A is the rod of wood，B pulley，C pin and
nut，throngh the band D, nut，through the band D ， Which has an eye F for the hook of the pulley－blocks． This will run right acrogs the soom，and the band D provents it from oapaizing． This is same as the smiths have fi

［12548．］－Light Shifting Eioist．－I send a dia－ gram of a plan which will I think，suit B．Solwyn which is both simple and choap．Two cact－iron brackets something like A，with alothole cant in centre of each to receive a flat bar of wrought iron（ray）about 2in．by lin．，marked B in diagram，upon which to ran a double－fanged pulley C（any）about 4in．diameter，with

the strap D ，through the eye of which hook your blocks．The bar of iron must be of swencient length to allow the blocks to move from where the box is to bo lifted from to the move from where the box is to be lifted from to the table， 80 that in lifting and lowering the blocks will hang perpendicular；of conree it ment be placed with one ond over the table and the other over the trolley．The bar must be fired in ite place by letting it projeet throngh the brackets at each ead，and patting epin through it．I shonld re－ commend a pair of Weaton＇s patent differential blocks， or some other kind of salf－sustaining blocks which will mastain the load at eny required height without making it fast to anything．A pair of 6 cwt ．ones E and F are the joints；il it chould be required to run it
caroen the joint the bracketa would require packing down to allow the tlange pulley to clear the joists，or they might be left as shown，and the bar cranked down should require any further information．Selwyn and he bappy to cive－it．By a elightly different arrangemen he might，perhaps，be able to dispense with the trolles． If he diagram．－Vrbcas．
［12544．］－Tarasaonan．－Dig up the dandolion roots ；clean thoronghly；out up into dice about fin square．Rpreed ont to dry in the open air．When dry，roast in a coffee rosstor till of a fine dark brown all throngh．Grind－S．Borromm．
［1254．］－Tararaoum．－Gather the dandehon roots and wash，dry them in the sun，break them op short，and roast them in a revolving oylinder，either over or upon the Are．－JACK OF ALIL TRADES．
［125s6．］－Protection for Steam Boiler．－Take marl barnt，forge ashea，and horee droppings，or oacon－nat ibre，chopped atraw，or hair，of each alike
and mix in proportion five of these to one of lime，used and mix in proportion five of these to one of
the aame as mortar．JAcE or ALL TrADEs．
［12547．］－Pasting Cloth to Maps．－I ancoeeded very well by thoroughly watting the back of the map on a drawing－board，then putting thin paste on it thoroughly wetting thin white oahioo to remove the map precaing wrintles of air out with bloting－paper； dry slowly on top of a preas ander preanure．a lithe corrosive sublimate（10grs．to ounce）in paste if map is not tinted will preserve it from inseots－M．A．B．
［19547．］－Panting Cloth to Traps．－＂C．W．J．＂ must get a piece of finc oalico a little larger than the map，Btretch the calico on a smooth board，and tack it all round as he stretches it with tin tacks，then paste the mep and lay it on the oulsoo，aad taka a sheet 0 paper larger than the map，lay it oa the map and rab down with the palms of the handy，when dry give it troo conts of white sise，and when that is dry woe white rarnish，after that out it on the board．－0．Cowner．
［18547．］－Pasting Oloth to Taps．－Get nome vary common calioo，cut it roughly to aize，lay it on a mooth，clean board－a table leal is first rato－aponge it with water till it lies quite smooth on the board． Pacte the map，and lay it on the ealioo，then rub with a clean handrerchiof till all the air－bubbles and wrinkles sre gone．Ieave it on the board sill quite dry，when it will almost fall
mooth．Proved．－A S．Boyd．
［12548．］－Fleadble Black Farninh for Leather．－This is made of linseed oil and asphalte， in what proportions I know nok．The blecicnese does not dopend npon the varnish，bot npon the greand eont，
for which purpoee nee lamp bleok；never throw away for which purpoee nee lamp blwoz；never throw away
old oil－coms that are eeomed ap，methat mook，many many
 and is enily
［12548．］－Flexible Black Varniah for工eather．－I nse Branswick black，or as some places tarm it black Japan；if too thick，thin it with turps．I bility．Inge it for the wings and dash－boards of my carts and gig，and find it answers well．－Sayusi 8carieza．
 No．825，Vol．XIIL－A．G．Borb．
［12550．］－Seaweeds．－The weeds must be washed in two or three waters；then place each specimen on a eard，holding the roots against the card，and float them on the anrface of the water，and apresd out with a fine pointed instrament，after which well dry and prese．－ Horatio．
［19550．］－Eeaweeds．－Treat them to a bath of gtrong alum water，and well wahh in sevoral waterm then dry．－Jack of Alc Trades
［12550．］－Seawreeds．－Place the apecimen on a wheet of white letter paper or cardboard，having previouly washed the weed in fresh water；while atill wot arrange It uicely on the paper，separating the branches with is pin；then
tHROPIST．
［12551．］－Plctare Framing．－Cat the monlding into the required lengthe as nearly as possible at an angle of 45° ．This is done by means of a＂outting－ board，＂or by a beril．The lengthe are then＂tried up＂on a＂mitraing board，＂which you can borrow of any carpentar，or easily make jourself．Two lengths properly tried up will form right angles to each other． Prepare four wood corners shape of letter L，same thicknese as the moulding，and place one at each cornor of the trame，passing a stont string four fimea loowely roand the wholo．Glae np，and compress by twisting the atrings np tightly with alips of wood allow to dry twonty－tour hours，and then inish with two W．S．B．
［12551．］－Pioture Framing．－I ind the best way is to out the joinings in the lathe with a Ane saw ；this way they can be done remarizably quick and olean．－ M． 0.
［12552］－Aquarium．－The writer，who is pession． ately fond of the aquarium（or，properly，aqua viva－ rium），would earnestly recommend＂W．B．，＂supposing he intonds haring but one，to＂go in＂for a langer When abont it the oxtre oost ill not he to do 00 ． would recommend the following－riz．，8ft，long，1ft， 6 in．
wide（two cubes joined）\times 1ft．Bin．deep．Thin thise and ends should be of slate，which may te parrineon for about 9d．por semperticial feot，ready ermevea and be beet pithicmese of bottom，Iłin．The ejo hial il forget the number of cances per foot．For coenents zothing will beat the oldaranionell recipen－th，buthe linseod oil，Utharye，rod and whitiolad，nofics the greater proportion of the iattrex．Altar the cenremt is properly dry，cive，in pacoension，lliceing in the oreatures，toe，the tank shoald be conked for sourt the days，changing the water（any）three timen．Cover the bottom rith clean wahet infigits to a doptic of erter
 tastofully togother by first lipping the cothe in a hath of Portand coment，may to introctucel，avd hene ter
 in weter frequerty ohenced，previonily to plectit is in situ．Uee no phath except the following，phicturn be planted in the stringlo－ris．Falfmeris epiranis en fontinalis，and the firree Lemmas，minor，tritales at polyrhizs，to cther with a sow phate of ruemer polyrhizs，togother whe sow plak of fuarocimet and gand hat
 ＂H．O＇B．＂men any to the contrary，shoroachly anje the atill watar of the ecmeniom mad grom fat）Praneine
 of fritons（Chrictalus），male and famnle；a Hydrachna sud diving waser epiders；for ce fow Plamorbis of the varions sorte，Paludina rieapais and the Ghutinaen I Ind an orto of the ceell herth ann be tolarated and gire mariety to the cane pair of the Etviroaspicens sivo do Fell．The the require to be regularly fed，or mieohiof fill soen zere These are the principal or permanent inhabitants，bef s fer norelties mery introduced whan in seacom．in ss tadpoles，rery small froge，ahrimpe so Bet great thing to th guspded eotingt is trying to beep to mnch animal Hes and arperience alone fill meat to to preeerre the proper halemes It intended to chen in s indo drying promer aises of ceen 4 and paper shonld be pested over the ghess nert the pigh The only thing now reguired beciace enpplyine tiju to compensato the lons from evaporation，is to lot tive Natime ＂thing of beanty＂and＂ A joy for ever．＂－Buar B
［19562．］－Acruarim．－＂W．R．＂hes opan
lurge field，bet I will give him bego lied，but I will give min my experiacoe：（1）in to be state；（3）I chould advise hin to et efon ef tolurable degree of thiakmen；（8）aney reeipes he （4）do net get jour finh tro large，the sandier tis the most lively－minnowis and
g native of Italy
and can be ebtainet in
comes the Amacheris，
dead bits eqery，and ponias I cenarelly end on the ittlo thery now and theen．There is a very methl adries＂W ，oallod the Ireah mater nhrimp，which I advice＂W．R．＂to get．Et in unppoeed to ed ats pretty．It he heeps a newt it will require s acill vaic ocoactionally，as will the finh if they ave of an in Dutch weed looks nively on the top，it hatroce and maloula，which are good for the fioh．I sboull mit hoproad over the whole of the milier．A grean aitaiki
 is reeful for regulating the lighth． cmall cal livee for a long time． \qquad bet ravemoen in out more by erperience than by any ermoant of min but before I conclude I mast tell him one thing，tiv ho mhoald carefulty boil all gisaval or mand for fict bottom of the squariam，which ahould be abreat in deep．I winh him eurcees
［18559．］－Aquarinan－I know of ou ners years ainoe atill quite pertect，of plain but hand mabo gany，the cornor 1 ！im equareminto wion mils an iramed top and bottom．The bottom，a board of wi mahogany，the top a frame movebio，fopt in oinee ${ }^{2}$ ： four dowells，sides and ende rabbeted ingide yor （patent plate or patent shoet），bedded with whive not putty，bottom saremed firm to frame，the tertin edge of which frame was frest conted with white ineif， the inaide of bottom also conted over with wite trit and a sheot of glass hald apoait ；whil hiteed tinis bunt water from the wood efleotually，any manall pertion in wood work inside exposed to wot to be well perictil both bottom and top hrge enough to force nimin projeoting monlding．Ontar angleof uprighta reuming rabbot for gias of top mast be ondside．fint bell onte apoh corner，bat good workmanchip easantial．Goil ailver tah，iow pieces at eoral or rook，reep it rant in the dark part of yeur room，light of a window hit the fish，it is annefural Water－plents are protis，bity grow tast and give much trouble；the ane referrede has a fountain，this is right in a greenhoura bed inely venient in a room．－AQUA．
［19552．］－Aquarium－Iet the boltion plato－glass aides，comented with caratic lime and boinip oll beat up in the ehape of atifil patty．－JACE of An Tra
［12552．］－Aquarium．－Zino in the vet is sothom and angle base，uee stomt giass（plata，if prey after dry and paiated．－M． 0.
［12555］－Pactfongor Chinewe Whive
and 4.5 of nickel. It hase great remembiance to German silver, and is used for plating metals. The remainder of the query I am naable to anewer. Izoas.
[12555.]-Packfong or Chinese White Copper -Contains nickel, copper, tin, and a small quantity of arsenic. It is mnoh used for making thase elegant mirrors, for which the Chinese are so famons, also for gongs, tc. The value of this alloy is not exaotly known to me; I only know that the mirrors themselves can be bought at about in. each.-S. Botrose.
[12555.]-Packfong or Chinewe White Copper -I have heard it stated is a composition of cobalt and copper, another told mo it was eomposed of one part of bismath and copper, and that they forge it into gongs and varions articlos as we forge Mantz motal. I for one hope to get some information apon this. Jack or All Trades.
[12555.]-Packong or Chinese White Cop-per.-This is an alloy of the metals arsenic and oopper, formed by fusing together in a closely covered of copper clippings or fllings, both by weight. The of copper clippings or filtigs, both by woight. The the crucible, when the whole is capped with a thick the crucible, when the whole is capped with a thick The product is a white, hard, and slightly ductile, metal, permanent at ordinasy temperatures in the air, and suscoptible of a high polish; but it is decomposed by a temperature considerably below redness, yialding copions fumes of srsenions acid or phite arsenic Packiong was formerly much nsed for the sosles of thermometers pusdrants, and other instruments, dialplaten, candlesticky, dc. Use in Ohins similar. As it platea, candiesticks, de. Use in Ohina similar. As it 10 to 12 per cont., or more, of metallic arsenic, and is readily acted on by acids, it is quite arit to be used as a material for drinking vessels, unit to be used as a material for drinking vessels, household ntensils, se. In these realms it has long been superseded by the alloy of nickal and copper, -AROTEs.
[12556.]-Soda Water.-The above generally cold, except by medical halls, is only common wator oharged with carbonic aoid gas by a machine. Mineral What mazers genorally have four numbers of soda, they contain rarions quantities (4 grs , to 20 grs) of soda
carbonate per bottie. Theme ane not wholesome to be aarbonate per bottie. coneme are not mholesome thy drinking, except usder medioal adrice.M. A. B.
[12557.]-Niokel BH1ver.-The alloy generally mied for upnons, fortes, ce., is a mirture of copper, zfokel, and zine. Having a nearly white oolour it is allled German sill rer, asd sometimes niokel ailver. All hat the eommonest goods are olectro-plated. German silver is the only alloy of nickel in Renersl use. An alloy of nickel and iron has recently been depositod on fonders and similar goods. Pure nickel unmized with other metals is never employed. It is a magnotic metal, resembling iron, and haring a high fusing point. Abreid H. AhLen.
[19557.]-Niokel SHVer-If an alloy which containg variable amomis of niokel, sanging from 4 to 80 per cent., scoording to quality.-S. Botroxr.
[18558]] - Boot and Shoemahing.-I have very large fart. When young, I was foolinh enough to perniat in wearisg shoes not quite big enough, an oftect of
Which han been to canes the joints of my big toes to be Whioh has bean to canes the joints of my big toes to bo iny choemaler avereamer the diflocolty be complaing of by padling the inmer part of the shoe, behind the draning the lact, the midils part of the choo being made wide enough; the pack. If this be inenmoient could not "Irish Mechanio" have his locts made in three pieces loneftatioclly so thet by draving ort the middle pieces the others would be made quito loome in the shoes ?-PHENo.
[12588.]-Doot and Ehoemaling. - Nothiag eacier. Bee the following skotch :- Bappoaing you have a brunion at Et, a prominent big Ben at C, A tiakhish little ona, ontor joint, the choomaker ehould pare and rasp your latat down at or from A to B, and it a stoul instop leather npon it, coming hall way up the block, then pat your riares on from C to D. Your banion be dears with it; the risers ber too joints made might be deems with it; the riegrs ser toe joints made fast at C, the ramainder looen eoroes to D jour liat, oven if jour foot wea hall as large again at E and D scrons She joints as acrons the instop, you copld get it out. Take the block cut as mead, with that out cames Cather, taiso the pinoers and drat the leather, whioh will undermian the riser, which will drop dewn blook left it, and leop that thom biting the upper or teming it. Tam

aking the hoal in the palm of the hand, give the sho thow with a hammer in the waint apply the hook in [19567.]-Nickel silver.-A anperior cort of

[12559.]-Cleaning OLI Paintinge.-Thin I have Tone with good effoct by aprinkling them with common table ealt and exposing them to the night daw. Wanh with aponge and pure water. No soap.-Jacx oy AL Tradel
[19550.]-Oleaning Oil Paintinge.-II they are velusble don't sto it, unlees you are wall acquainted with the manner in which the picture was paimted, or you may apoil it altogether ; you might lay a damp cloth on it over night and clear ofl the dirt in the morning ; this is bont all a man unaequainted with pictures ought to do. It takes years of study to be a good pioture aloaner. He mast noderstand the painting paint.-M. 0.
[12560.] - Varnish for Marbled Edges.-They are never varnished, but barnished with an agate atone If you hammer the back of your book properly, the ahoald be done after the boarde are pat on before covering.-M. O.
[12560.] - Varnish for Marbled Edges.Semper Paratus" must put the book between boards, and ocrow np tight in a press, and use an agate barnisher, presaing it vary hard backwards and forwards; the top part of haudle muet rest on the
shonlders. Keep your boards fin. above the edze of book.-C. Coleby.
[13560.]-Varnish for Marbled Edges.-Use glaire and burnish with a tooth. Δ dog's tooth, the old masters would sey; but I have used any I could get so long as
TadDes.
[12560.] - Varnish for Marbled Edges.-These are not varnished, but burnished with an agato.-S. are not va
Bottone.
[12561.]-Curving Book Edges.-This process anlled ronnding, is as followa :-Having pat on your end papers, glued up the back, and cat the fore-edge, lay the book on your press, or other solid support, with the back to the left, beat the upper edge of the back over towards the fore-edge with the hammer, helping it over with the thumb of the left hand from top to
bottom ; turs the book over and treat the other aide the bottom ; turs the book over and treat the other aide the asme Way; repeat this till you have a uice round on the back, and the fore-edge will have a corresponding hollow curve. The shoemaker's fiat faced hammer is the beat adapted for bookbinding. Let the glue on the baok be pretty dry, and don't hemmer too hard. -VasDYER.
[12561.]-Curving Book Edges. -After the book is 日ewn the back receives a thin coat of glue. When dry cut the fore-edge. Plece year hand fiat on the same of book, and hammer the back gentiy. At the what kind of fore-edge you will have. Cat head and tail afterwards.-C. Colsay
[12563.]-Rough Skin.-From the description you give of the morbid condition of the stin of your face, suppose it is a mild form of a skin affection, onlled the application of liniment of iodide of potaseiom from coan BP Fon soap, by the followiag formuls :- Hard papare it far youraal by the lollowlag lormala, hard conp asd lodade of flaid ounce ; oil of lemons, one finid drachm ; ditilied faid ounce old lon orer the uno part it night before going to bed, and allow it to dry. Weah it ofl next morniog. - Menicus.
[12563.]-Rongh Bkin.-Don't use soap to face, or very little white oard soap only. A popalar remedy is a handfal of taney (a hedre weod) sfoeped in butter milk, to wash the face, but I think "F. Aee" will be
better pleased by aaing a little glycerine on a damp better pleased by
towel.M. A. B.
[12563.]-Bough 8kin.-Always wash with cold soft water; wee a little oil to the akin.-M. 0 .
[12503.]-Tough Eletn.-I have heard it stated that if a raw potato be out in two and rubbed upos the oheels every night going to bod it will cure roughnees of the akin. It may, perhaps, appear too much like an old woman's care, but I think it is worth a trial. Vircas.
[12588.]-Rough Skin.-Take the old woman'I reasdy, " brinatone and treeole" intornally; ex ternally apply a ppomaie made with otive oil and
fowers of rulphar, toz. of aulphar to lee. of ail, G fiowers of
Botrone.
[10568.]-Rough Binin.-Uso lest somp and par. tatce freely of taleds or arese, and lese flenh moat. I you hare been taking eome of show blood puriaer better iodide of potesmium in leavo it 0II, the sonner the bether, and bok apon it for the fata
ratilematro. J Jox of AkL Thadss.
[12564.] - Photographic. - Do you "splach' your developer on the centre of the plate so an to waah way some of the free nitrate $9-8$. Botrons.
[19581.]-Photographia.-The nogatives may be oither under-axpoeed or under-doveloped, lacking proper cmaity. Give a ionger expenue in the camers, dovelop more suily, and, if secenary, anteonity in tho asual way, or if they are donse in the ighte, wha beavy abaclove, the hath or developer mas be too scid. 0 there is a too direot light nced, and a retrector in ro quired to sotten the shedow. In taing the neguith an white aheet hnag at a short dintanco irom the sitter an the dark oide will do.-W. Margoand
[12685.]-8tiols.-Boil them and lay them orer briok inc for 5 fow minatica. Pase them either into boles in a stont block of wood that has besn roanded of at the anglen for the parp
dry.-Jack or Ale Tradzs.
[12585.]-Bendina Stioks.-Stemm them. When beat to the required el upe keep them so until perfoctly dry. - M. 0.
[12566.]-Dees,-If the wrarg of bees took ponses sion of your hive, thoy are undonbtedly your property till they settled in your garden, in which case they thl they settled in your
belong to him.-J. W. B.
[12566.]-Bees.-I shonld say, Yea. Beoanse in the oane of game, if you pursued a hare off your estate and canght it on my estate, you would be locked up for poaching.-R. A. H.
[12567.]-Brick and Tule Glazing.-This is done in many instances with litharge, silica, and sulphate of lime, and assisted by throwing a listle aalt into the kiln In some cases red load is used instead of Kitharge; the proportions I know nok-Jack of All Tbades.
[12568.]-Smoke and Ldsht.-The rariation in the background causes the difrerence; in the same white till laid on freeh fallen ano - look boyb
[12568.] - Bmoke and Light. - I shouid any sometimes owing to the effect of complementary colonring, sometimes to the transmisaion and nontransmission of light, coal amoze looks brown againgt the aky, blue amongit dark trees.-M. Pans.
[12568.] -Smoke and Lisht.-More light is refieotod from the white bactsground than from the dark one, and thus the amoke in the former case is rieved more bs transmitted light.-Prilantiriopigt.
[12570.]-Sunrise and Sunset.-If "Delta" will look among " Beplies to Queries" in the Frwalise MECRANIC, for the lest woek of Jesuary or the Ara week il robrcary, he will and two mothods or znding the kime when a heavenly body will attain any give altitude. They will hardly, however, apply to the moon, whose rapid motion in right asconsion eompli catos matters considersbly. Before applying these methods we must know the right asconsion and decli-
nation of the hearenly body, and the latitede of the nation of the hearenly body
place of observation.-V. B.
[18578.]-Fiygrometer,-As the pricen range from one to three grineas (Loalie's being the lowest), I will lurnish diagrams. The hygrombter is one as the most useiul inventions, s it indicales the temperatase, dry ness, and hamidity of the afmospaste. If the air be very dry, the dilerence of the two thermometerl will be very great, if moist lees in proportion, when fully saturated both will be alike. Shonld the wind beatrongly bowing apon the inctrament, the degrees of dryness observed maltiplied by 2, give the absolate aryness (the oxoess of drynem boing omitted in the calcalation), because atrong carreat of air makes the ingtrument indicato the exeens of drynese which is necenary to be addod in a caim atmonpace. If the abmalate drynem of an apartment be required, the ingtramens must be gismeed in the ehade, and the dew point loand, which, anb
tracted from tho temperature of the epartment, wil

gire itu sbsolate dryncem. The reason is obvieas, and drices from this ham-mamely, that air hes its drynes ing to 90° of Fetreaheit's themometer and in tion for in intermelinto tempereturev. In aparo
 bulb of one boing coreced rith silt rith thread dipped in distilled or boiled weter, which toops the all moint aronnd the balh while the other is der. the moset around the balb, while the other is dry; the dranght and heat emonid be aroided if posaible end th inetrument phonla not be too ezeosed to ortreme frost No. 1 fer hangieg ip on Fill. No 9 mornted pedcetal for room thbio: No 8 pedernl ith tripod loge folded or chat up; No. 4, sido and front vie of clipe to be teatome on. Bank of inetrameat, and adjucted rith amall thambecrem. this eman tefod pedeatal shorita be made of polinhed brace.-Joresp pedestal ahoaid be
[19.76.] Zantimio Picikere.-In it not grean hide lightly tracted to a bath of alam? JAOE OF AL Thades.
[18577.]-Whe Iris or Balribow.-It appears ciroular becanse the majority of, not all, the drops, are there in the position required for rafracting. If an the drope were trely spherical, the colours conld not be con in any othar part, but as we may obsarve by booking at dowdrops on the graes the calours may be refeactal at any angie. This queation reopans the great raimhow oontroveriy whioh raped in tho Enowse Mincharic eome time ago, and will probebly maked that sloerping Hion. "E. L. G." -leeptag th thin part of his brain oniy. \rightarrow an. Paris.

UNANSWERED QUERIBS,
The mumbers and thlices of quorice whioh romain man. anewoered for flos wockes are inoorted in this libt. Whe truet mation they oan for the bomatt of their followe contributors.

```
" Sinoo our last "Jsok of All Trades", has answored
19181, 129201, " "Ta10, 12820, 12292, 12981, 12284, 12249, 12946,
12814 Blosching Tanned Goode, p. }11
12820 Copper Tolns, 118
l2,
l2328 Collodio-B
12927 Horn, 418 (1896 Botanical Phenomenon,418
12936 Botanical Phenomonon, 418
12945 Ontario, 419
12349 Emigration,419
12858 Grinding Soythos,419
12954 Lrathe Constraction, 41
12856 Fermonling Bread with Starch, 419
```

QUERIES.
[19842.]-Ice Cream. - Will either you or one of your subsoribera bo kind onough to inform me throagh the medinm of your joarnal the construction of an ice
 [12848.]-Dictionary of Scientific Termsbook oxplanatory of sciantifo terms ? PLovar DBIVER [isett]-Harp Making.- Woald some kind sabscriber to this paper please inform mo how to construet a harp, where to begin, how to begin, how to get er
right ahape, and what would be the probable cost of mating one-a mediam size one? By doing which he
will obligo-Jorx Wrilinksox, Boiton. your readers indorm me wherer is printed matter can be other paper apon whioh there is printed matter ann bo
again mede asefal for the printing press? Is there any agnin made naefru for the printing press ing the printoris ink can be got rid process known thy which the paper pulp may be agsin athifed? Is it Ixquiner, Baden-Baden.
[19846.]-Aloohol. - What is the best mothod for purifying and strengthening methylated spirit so that zeeded in chemical analysis; for $6 x a m p l e$, separation of Ba from Br , Ca ? Y . A ., Kow.
12047.1-Temperature of the Sun.-At page 465 It is atated that the eminent Frenoh physicist, is. St. $6,000^{\circ}$ to $8,000^{\circ} \mathrm{O}$. Can any of your roaders inform mo how this result has 266 of his finely illustrated book on the san. By inclos. ling a black bulb thermometer in a oylinder Kept at a ing a biack bult erer, and exposing the bull alone to the
known temperatur
gun's raye, the temperature of the balb rises say θ degrees sun's rays the temperature of the berb rises say thegrees
above the inclosure. If there were two sung the rise Would be 9θ degrees, if 100 sune it would be 100θ, and so on ap to 8 the heavens. The temperature of the thermosphere of the heavens. The temperature or the the same the photophere of
meter would then bo the altitude of the sun and the olimate. In this conntry daring the summer at noon, it is from $100^{\text {to }} 19 \circ^{\circ} \mathrm{C}$. In Indis it is more than donble. The air that surrounds the bulb deprives it of heat otherwise than by rraikso that although θ cannot be less than $80^{\circ} \mathrm{O}$. It may to a gran trom ite valno would require to be taken in a hacnum and outside the atmosphere. The effect of the air in reducing the value of θ from oonriotion has been made the subject of observation, bat the soreening the atmouphere of India be so mach less protective than the atmosphere of Britain? The amount of raporr disit is in vain to suppose that aqueous vapour acts as the paracol. Aqueous particles sugpended in the air no how there should be more mqueous partioles in our aky When clear than in that of India Δn instrument to onabie the value of oto be obtained resaing in motion worthy the attention of some good instrument maicor.-F. R.
[12818]-Mrolsture on Tin Surface.-I have a gas stove. As soon as the fame comes into contact with the bottom of the tin a large quantity of moisture
forms around it, so much so, that on one oceasion I was forms around it, 80 mach so, thal on one occasion I was aboat to ompty it to ispover ath supposed similar to the formation of dow npon grame, but occording to the acknowlodged theory the circumstances are reversed, dow beling censed by a withdrawal
while this is an application of heat-Trxuv.
[12849]-Kites.-Will some one give me a hint how bent to make a life to fy for my boy; one in the shape of a bird or any other device ?-C. Hinhaz.
[19650.]-Government Sohool-Will one of your correspondents kindly inform me the necessary routine to b bobserved for obtaining admittance for a lad to the Government sohool (I believe Woolwich)
be edrasted as a naval engineer ?-W. M.
[12051.]-Plano Construction Without DownBearing of Strings.- Can any fellow-reader inform me what results when the strings of at piano are in the
zame plane throughout the whole of thi se portions of same plane throaghout the whole of the se portions of they rest on the string-plate or bent bide. Of course,

ollined bridge-ping, or by sorow olamps. In his patents
 Pably construoted the Arot grand piano made in England - EAge all the stringe of the said intramenta are laid in
 standing, every string has the required lateral pressure
Sor prodaciag its trae sound-(i.e., its vibrating length dotermined by addo-boaringo)- galinat two pins on ite bridge near together, "no that the atrings, haring no liberty to vibrato more equally (query, freely) than the arit other think, conduce to their longer continuanco There it ome interenting information to be obtalned by readiog Plonius apecifactione He zeoms to havo been the
fret to double pin his belly-briages through, an improvement which did not exist in a aquare plano made by Tumkiason in 1814, formerly in my ponsession. He mortioen in the koys to prevent them from rattling; and was, $\begin{gathered}\text { bo } \\ \text { plojod a }\end{gathered}$ tenilon of the strings of that instrument and the lyrichord.-Thi Bannoziove Blacyemiti.
[19852]-Marlin's Muaical Instruments.-Can any render inform me what has become of the colleotion of masical inatrumenta or sny of them, formerly in the possession of the celebrated John Joseph Merlin ? These instruments were sold by pablic anction, A.D.
1897, by a Mr. Mills, whose famill I bave been anable to trace. Among them were the "celestial harp" and
"fall band of keyed-stringed lnatraments, having the "foll band of keyed-stringed instraments, having the power or and bry brass circlea." Also "Morlin's original private harpaichord," gald to contain some remarkable Pxamples of that rare constructive and execatant
ingenuity for which ho wat ro reaowned. -TER ingenitity for which he
HABMONIOUS BLAOKMGTE.
[12853.]-Poultry Keeping.-I keop, and have kopt for several years, a lot of poultry-lowle, ducks, and reese-in an out-building. Can any of your oorrespondents eay what is the best way to prevent thieves breaking in? I want a practical snower from вome one who has loat a portion of his poultry, but hee saved t.
remainder by his method of terrifing or catching the remainaera. Proftable poultry keeping depends more appreas "oriot poseeselion" than the respective merita of apon quiet possean on orn, or refase wheat.-PADLOCK.
[12354.]-Tenoning Maohine. Will some one toll me if the tenoning machine patentod by Mr. Lioyd is in ate, Rnd Where it mas.
perties?-PADDIMGTR.
[12855.]-Core Box.-WIl any of our engineering mate a core box ? 1 am about to make a patiorn for the casting of a cyinder, and wish to have the portways cast in it.- Elescrao.
12858.]- Photographic.- I want to make my tranaparencies (for lantorn) a kood black. Thero are a preat many formulas for intensifying and toning in Vol. XII.,
No. 6 . Most of them I have tried, bat they are not for transparencles, they are for printing on paper. I have
and back namber, but it does not make them black to my batisfuction; ; if either of our readors will give me the best formule, with a due regard to economy, I ahall feel gratofal-Kint.
[12857.] - Catiting Oylindrical Glass as sotties and cilindrioal-shaped oandle lanterng, the glass of which is broken, neocensitating my using it in-doors only. As 1 want to use it mostly for out-door work, 1 Tish to cut a quining bottle or parafint chimney so as
to fit it. Would any kind oorrespondent help me out of the dificulty? I have no diamond, and cannot get one.
[12858]-Chemistry of Tea.-I am desirous of analysing ten into its several different component parts ; b, oxide llme, potassa, magnesia, peroxide of iron, soda, cillea, carbonio aold, theobromine, nitrogen, and ash. How am I to set sbout it, and which are the simplost instraments to be ased to obtain the resalte ? Will Mr.
Bottone, Mr. Davis, or any able chemist tell me P-W. PIEE.
[12659.]-Water Pressure. -We have a pressure of 9001 t . chrough a 4in. meter. We Wish to got the besi anpply of water, and one perw 6 in. pipes in the arsit ming down from the meter seoond mile, and 8 in. the third mille. Δ nother anys reverse the pipes-that is, commence at 6 in. the third mile, will give as the best supply. Please say whether the small or large pipes from the
meter will, in your oplinion, prove the best. $-W$. Rzodas.
[12660.]-Aerated Bread KLaking Machine-Can any brother sumethine, or whether 1 could ntilise mineral water machine for the purpose? - InW.D.
[12861.]-Boekeoping.-May I ask Mr. Abbott to send plain directions for constructing hie bar-irame teen frames, is soarcely sumpient to enable a "green hand " to construct one. What does he (or any other of I noe straw, but And it very inconvenient when feed-ing-Mira
[12862]-Steam Engine. - I have made a horizontal sidae-vale engin. Ad now wish to asoertain the power
of it, and what sise fy. Wheol is required. Also, fit is ospable of working a five inch gear iathe and planing machine, with eighteen inch stroke. The following aro a few ot the dimensions:-Cylinder 1zin. by tio. I also wish to know which fa the best kind oi boiler, size required, and probable price. Whll come brothar reader kindly answer the above
oblige a constant anbscriber ?-F. Kirty.
[12668.]-Bunrise, dz.-Can "F. R. A. S" inform mo or any wor the moon and planete is given? I have
a readere ticket for the Britich Masoum, mo I have litule donbt but that I conld
anthor's nama- DELTL
[12864.]-To Stereotype Brases Blocks-Could gome good eharp casts of brase blocks by the sterotyping pros.
cess ? Blooks are from tin. to 8in. Equare. sanzplex.
[12885.]-Soa Bjokneas, -WH1 any rosder of ${ }^{\circ}$ ours kindly inform me the best way to prevent
on a voyage of twolve houra ?-E. G. Hi. D.
[12868]- Works on Artillery.-Win some reader bome good works on ertuluery gnblects? I want the anthor's name for reforence in the library of the Britik Masoum -J. W. Loxarord.
[18867.]-Organ. - Boing about to construct a mand organ, I feel a little at nen about the soundboard, ast as far as I can learn from the directions of
am frat to get a piece of mahogany of the requititn
size, and after planing out the pofition of the pirzs size, and after planning out the poition of the pip from paper patterne, to divide it by giveing oa itnf
of wood of cortaln dimensions, to at to divide it int Afty-lour channalis of tho regalated d'mensiona 1 tha aftr-lour channels
underatand that I am to let in a plece of hall-inch plat at seven inches frour front between the bars, to ive a base for the binge of the pallets, after which 1 amt. cover the bars oarefally with strong cartriage pape. catting it a way where he grooves ot the bars, and so what forms the support in front for the palles 18 gulde pin? And alter the wind chest is fixed on there not a nottom board of plane to be glined and serex on over the na ier covering the bars to aecure all
answer to the ab ve will be thankfully receivad.
[12688]-Auburn Hair.-I shoold be gratefal
 have an order for this and am quite
way to manafacture i. $-\triangle$ BARBER
[12800.]- Iottery Laws.-Bolng vory desirous t correspondent give me some information aboat therm I cannot see why raffing for pianos, iddes, microscor and so on should be illegal. For atrifie given by mas never missed, one pereon, at all eventi, might be maje happlar. Why shonld pictares be disposed of
way and not a house?
Government might make way and not a house? Gilion against mere gambling (and oven otherwisa the

raoe betting -M. PARIS.

[12670.]-Engine-Turned Seals.-What is the bes
 turning bisk, and hom oan I re
 meand ofz-hae. means of waterprooang ith care, allowing it to dry, bes long will one last? Any w
ling will be aseful-J.
[28672]-Grove's Coll.-What proportions and re: orms of sulphurio and nitrio scid shoma be and Grove's cell to get the greatest power,
expenditure, in zine or acids ?-SEMAJ.
[12673.]-Working Guttaperohe-WII ary si nform me how 1 can mould and pollale a waricis gnttaperchas, and aleo how in oan make the guta
a liftle harder than its naial qualisy ?
[12674.]-Plant Bozes,-A common but exoendis' pretty ornament in London may bo seen in the for: in oblong box for oontaining wit sppears to bo priste? glass of various devices, the principal one of which :c raste square of blue, rea, ana wilos coll after the manner of adraughtboura. made i-J. Gar [12675.] - Elay. - There is no problem Which so pe plexes the farmer in this nnoertain olimate than the arying hay in brokon weather, of nit ing cold not her bo raí ciently dried by pressire in a hydranlic press, or cre by percussion beneath a great hammer grass, oould not such sup bo collected, boiled in: syrup, and sprinkled over or amonget the proseed s thas roviving or restoring its natrition and Hay might be dried in an oven with Are; bat this or any modification of it which has yot been sazzsei
is open to the objection of oost. Bimplicity and cand is open to the objection of oosk gimplear.
[18876.]-Boof-Keoping, Can asy one trelp $-\rightarrow$? the following dimoulty mpresent set of bookis for ris farnitare I had on handa. I have a furniture seres which is balanced at end of yoar, same as wages sci and others, and carriod to dobit of profit and losa balance of the latter, is on credur accordingly. This last year I have laid out a b amoant on now machinory, \&a, so that the balas: profit and furniture will probably bo on the other will not give a falr statement of my oapital, as I have the addiulional plant, though less cash in the beHow should it be done?-A Boos-Kereren.
[12877.]-Stops in Telesoope.-Will ary obli. correspondent in possession of a 8 in. tolasoope taiz the second stop is pleced from the objeot-glass, and far the Arit is frum the eyepiece whon in focus? In telescope there sro two stope, whioh from some csaz other have slipped, and ever since i have not beec
to see objects half so dietinotily as formeriy.- Trea. [12678.]-The Bluecoat School-Will soss your correspondents invour me with information ac wish to know at what ago pupils are recelrod, and or information on this gnbject will be coneldared tav: informal.
[12679.]-Papier Mache.-A fow praoticel hiti
the preparation and manipulation of this mait
would oblige. "The Harmonioua Blackemith " has T. GRAYK
[12080]-Darikening Graduationg on Eloalencorreapondents inform mo how to 0 or your prechal vernier and other soalos the noedful blacking to darien their greduationa I have tried lamp-blank with Lacea oil, but this misture continuing for some days after application in a molot state, easily comes ont of the ongraved parto when the soale is wiped. I prosume a dry: gradusilonif alled with thio dartenling mabetanco ?grase.
[19881.]-Is the.Interior of the Globe Veruam? 20 kind as to explain to me why it ahould not be 10 ? Why ahould it be a solld body in preference of Why conmin ficid or fire, as some cevert? Tate the giobe at 8000 mileen dinmoter, pat the orust, or carth, around ait 600 miles thick, there in loft for rionum, or colld, inid,
or Are, 5,000 miles oore. Please chow mo why it ia not or fire, 5,000 milles oore.
[12882]-Evaporation of Frater.-Baing about to re an osperiment of of a few frote here alladed to will bo aseful to mo, and may posedbly be the means of saving me a good deal of
troablo. 1 . About what rate does water spontancously ovaporate $\frac{1}{3}$ about what rate does water spontaneorsiy rupericial surface? 8. Would it ovaporato faster by tnoreased pressure of the atmosphere or not? -TIMTUB. [12888] - Ornamental Turning. - Will Samnel 8 mither show more diatinetly the contreing of his holos in the ball of the tablo which he has shown in vol.
YIV., p. 458, of the Mrosimio, as I cannot and out how the table can mand with the loge set all in one une 9 -T. \mathbf{A}.
[1988A]-Canoe-I shall be maoh obliged to any one for a deaign for a oanno 1aft. long, decked over, to carry only one, and suited for railing; the sheoting in one AOUARES.
[18885]-Gerden Mrodele.-I have seen in gardens on the top of a pole modela of a pair of sawyers at vork, of a marked by mall saile momothiog like windmin salle I thonild be muah obligod is some of "our" reedore who hare theee thinge will inform me how they
are mado, and the difrerent aimes and cort of matariall. are mado, and th
[7800.)-Gravel for Aquarium.-As I can get nothing but soe gravel I ahould lito ko know the beat mode of
[09087.]-Marting Ink-Heving tried P. Fowier'e reotpo for marting link (roply 7508 P. 917, Vol. XIII.) I
and that inatosd of being bleok it dries brown. Will any roeder kindly tall the ouase of this, or suggest a nomedy? ror ∇ andris.
[19838.]-Training for pioyole Racom,-Can any ore inform
[198e9.]-Horsen' Eloofn-I have a carriage horie whily can mate no improedon on them with the knife, the
 not be ablo to nat him for a time. Could any one toll me What I coald apply to them to make them eoft and
[19090]-Fire Marks on Sllver Goods. When I have repaired a silvor artiole, such as spooni or muga,
and placed them to cloun in the piokio (composed of and placed them to cloan in the pioklo (composed of
salphario acid and water) I and apon takiag them out salphurio acid and wetor) I and apon taking thom out that thore are atains or are marks apon them whioh no
poliehing will got ont. What oan 1 do to aloan them
thoroughly
[19001.]-Sharpening Iawn Mower.-Which is the beot
[12002]-Deliquesconts.- Aootate of lead and culphate of soda, 18 powderod and rabbed together in a WIII B. Bottone kindly utato any of or pal and aiam. have in a similiar manner; aleo which if the moot doll quifencont of the salte given in reply 12188 ?-LXXXVIII. [19008) - Yeast or Barmo.-German driod oast as burg boligg extromely hichh-prioed, and of vory inforior quality, I honould eatoom It a groat invour if any 1 jour numerous readera will farniah a roally good rooipo for - maing yeas.
[12904]-Fill and Moyer Enginea.-Can some theen ongines? Alco, partionlars of oomparaliv, tri'ele A aketeh, il possible, would greetly oblige. - A. B. Boyd
[19000] - Varge Watoh. - Will any brother amatenr more drop ${ }^{2}-$ R. T. A.
[12098.] - Atmospherio Presaures.-Will siny correspondent kindy name any work, not too oostly, which

[19007.]-The Fiarp.- Wil "Ixion," "Vertamnas," or ron or tin or uld do for thlose roll me wheiner shee oxplala the tuning-pian, how they are fantoned in, Hightened, and what diatance there should be between the atringe P-Ur Boots.
[nse98.) - Fermin.-The parnon has dutios inside dirty ootiagen, and fieas have no respoot to the oloth. to clothligg or bedquing, which maj obviato the nuifancoe? -8xizplial.
[18009]-Onions.-Does the "giant roece" require to be sown in a framo, or will if grow if sown in an
[19700]-Reog.-Removing Bupera.-Can any of ifme of day for taling off a gupar from a Foodbury inva and expelling the boen? XI two great dimcaluion
on former cocsaions have been to provent the bees oarrying the ottore below, when the super is ralcod over
night on wedee, and getting them to ontirely quit it afior removal-AMaxivi.
[la701]-Orbits of the Planeta.-I have been looktang through beok namberis of 1871 and 1879, and coel holp for the sollowing with Which no amount ol
books will aupply ma. Will w. R. A. 8 ." or one of our books wil sapply me. Whim. R. A. S." or oon or our
antronomioal friende inform me at what period the two innor planets are at their brightent 9 This I know, that Vens tranalta at intervals of $118,100,118$ yoarra, and my best monn, and when will they be at thoir naxt extreme brightest, so that I oan by addling reckon. Was Moroury ecifily Filible on the 8 grd, when at its greatcet clovation from the enn, with a torreatrial tolesoope (my only inetrument), and does Meroury alwayn recode the same dic.
 anclo it it eadont dicoernible? Vonus is moent briliant at 100 , and then (m esyo Guillomin) subtends a diametor of $61^{\prime \prime}$. The meaniog of my quention will now be apparent. Also at what difforent periode aro the onter planots reppeotivoly in oppodition? Kare, I notioe, has not been well in viow for a long kime; I noed hardly add that I Want to know when they wil noxt bo in oppozition? When will Mira Oootur bo at its brighteat? give evorr month hint givg evory month, the arrot day, and the time on
Algol will be moat brillant ?-T. Bomenvini

OHESS.

All commanioations intended for thin department to be addresed to J. W. Absott, 7. Claremont-placo,
Loughborough-roed, Brixton, 8.W.

The doath of Captain Evans is annoanoed, at an adrancod age, wall-known in oheas ciralos as the inventor of the "Evans' Gambit."
The seore in the match now pending between Zukertort and Stainitz atande : Stainits, 2; Zukertort, 0 ; drawn, 1.

Wo learn from the Auguat number of the Chess Players' Chronicle, that a matah of ton games has beon arranged between Mr. Witker and the Rov. John Owen.

Problex XI.-By Re A. Proctor.
Black.

White
Whito to play and mato in three mover.

Soltiox to Probley IX.	
White.	Brack,
1. B to $\mathrm{K} B \mathrm{sq}$.	1. P moves
2. B takes P	2. P moves
8. K to K B 2	8. I taliou Kt
4. K to K Kt 8 dis. ch. and mato.	

EDIOGMPIY (Lelconter). - Problem VIII. in quite gound,
and admits of no other colation bat that given by the anthor. The defonce to your mate in 100 movar
(1) Q to R 7 .
W. N1sE (8. Neot'm).-Thanks for pointing out the cotncddence. Perbapa you will oblige us by eonding the problem to whioh you refor.
O. W. (8uabury).-Problems mafoly to hand, for which socept our best thank.
M. I. Manke (Swanson). We infor, from the mover you cond as the solution to Problem IX. that you mant bo joking; bri, joking apart, we hope you will oxamine
the poaltions more attentively before oommanioatling the poald
F. O. Cozrixam-The problem shall be examined, and it ap to your usual atandard, it ehall appear.
E. T. Grayk-Thanks for your corrteons lotter. The poaltion shall be forwarded as directed.
G. O. Herwoob. - Quite right. It is far better to koep a problem for a month ar two, and anbjeot it to an 000 a donal examiantion, than send it or ine moment it is oomposed, for pabicity. By adopting this plan jou
win booome a caroful componer, wheh to better than - prolico one

Conaser solntions to Problem IX bave been recotved from W. Naeh (88. Neot'R); W. N. P. (London); B.H.H. others are wrong.

THE ENOLIBE MZCEAMIO LTHPOAT FUKA.
to bo forwated to the Edticer, at the 0mea, in.

Philanthroplat 3. Baxter Frbertind conterbëtion)..	

ANSWERS TO CORRESPONDENTG.

 Oovent Gendon, W.O.

HETTS TO CORREBPONDENTS.

2. Write on one sfde of the papor only, and pat dramInge for illuatration on coparate pioces of paper. \& Prut numberg roplice rofer. 8. Nocharce is mado for laserting lotiterm, querion, or replice. \& Commerohal lettere, or quieries, or ropliea, are not lasorted. E. No quation acking sor enroash the post. . . Fittors nont to correnpondonts, names of corrend entior, are not forwarded; and

The following are the Inlteite the, of Lottore to hand up to Truegday marning, August 18, and uneknowiedged alsowhero:-
E. T. S.-F. G. Dear.-W. G.-Wm. Danlop.-Philo.-Lmatoar.-Miohird. E. Fitrgorald Kormey.-T. Piggoti-H. P. A.J. P. Jamen. - Horatio. -A Windeor Sabscriber. - Plymoathian. - James Grant. - Undo-olded-J. B. Preoco.-EW. D.-L. L.- Saperintondees. Judeon and Oo-R-Rov. J. Wardala- - Mach and Path. A. J. Dayman.- J. H. Booth. -Dr. J. Row Bmith-D. - Working B. - Fred Walton - Veritha.-G. R. Dixon. -J. W. Johno. Amateur. J. W. W.- Frincie Ohryatio. James Ha Brabamon. - C. R. Bre.-Julla, - BagramJames Harta-Ritquaiot-Ade.-J. G, GMlem Inyuirer.-B. H. W. Winckbeard-Tim.-J. W. Darred.-Mix.-C. E 8.-W.-Hy. Taylor.-8oda
 Trado.-Optioal B Brickiagor. Emmigrant. J. D. D.

 -Dr. A. Woologo Bleoklook- K .-Alastor.-Harmonious Blacksmilh - East-ond Moohhnio.-0. N. A. An
R. A. Prootor.-Allianco.-J. W. Muagreriga- J. Aiport. - Sani Ryme.-0. R. Wolle -O. 8. Robertson. FF. R

 That Triea, No Sort solder. Jamea Aniton.
 pairer-Tremolo.-Will Hatoh-Briatol Sabsoriber.Baloairn. - A Stadent.-R. O. Argentaro.-J. B. Ciay.
 Tarner. C. L. H. Halle itt-Jobn Roi. Jamea ScaillAlox. B Msodowell. - E. Rrasmus Holden.-Somaj:-Ignoramus.- Horatio. -Initial.-Tub-B. A. Proctor. bers-H.3.-Soptimus Powill
J. T. Atrixsom-Soe Rxalisi Mzobinic, p. 500 , Vol.
 Bocioty, King Bolloge, London.
Beo "Hints to Corrospondente" wal not forwarded. Fhed. Paitr.- Your large diagram Ullastrating weathar phenomona would not, in our optinion, be worth the tenth part of its cost to ongravo. You conclade you lettor with theio mords: - Astronomio metoorology is one of the most intareating and raluable coilencoer
 sublime doetrine of chazoe." What is your doctrine but one of chanoe baced on oplloptio gaosses, without oven boing sublimer Behlid the " chance" of "F.R.A.s.n and Mr. Proctor there is oternal, Immatablo, and irrealiotible law. We will give you another

4. M. C, J. H. Glibert. W. H. Ku, Horatio, Amateur Imavirgr - Culloy's 4 Handbook of Preotion Tale graphy," London, Longmank.
R-Muntir. - If yon whih to doceribe your spiral tarning apparatus our colaming are open to you; if you went
 Whoy aro not- oxespt those dovotod to ad verticemonta goods: this rule ditepoess of your Arat query. All the
 Practice," which werid only bring on a profllema dlaonalion, oliciting mach empty arxument, bat no information.
Jorm Coon. - 8 eo roply 12569 in this number.
W. Czuroramany. - You ounnot now encer a caveat in the United Kingdom. Provilifonal protootion, of ooarte, practically zecares the same objoct-itis, proteotlon
 leatructions, which they will read gratis, and H yoin are $\overline{\text { ficen employ one of them, or joar evident ignorance }}$ of all connectod with patents will probably end in lone and digappointment.
Troz Joryiz (Ponle). Thanks. J. Pell'e advertisement whall not agaln appoar in our columne.
 as you would aln or the derll.

Thomas Lattam wonld be mach obliged to Zoo Andra by giving the offered information on printing in reply Henky Clank (Derhy).-Toar lettar on phrenology was rejected becanse it was singld tost the truth suggested a mode whereby you the the sknll conforms In external development exactly in proportion to certaln biases of oharacter and intellect. Wo snpgested a practicnl test. See nur answer p. 523. Instend of accepting the challenge you quibbe over it. Wo will now make another saggestion. We will pat before yon in a darkened room plaster oaste of the healda o statesmen. philosophers, poeta, ancineers, navizators,
soldiers, infamous convicta, we., and we challence von to pick ont the head of the nout from that of the navigator, or the head of the philounpher from that of
the scoundrel. If yon cannot do this by mnnipula ting the living head or casts of heads what becomos of the acience of phrenology?
A Stefperse.-Consult a medionl man.
Vraptiances.-One of yonr contribntinns incerted: the other, on co-opar.
peasionate reply.
Batcarin.-Vastly too Imaginative for us.
F. W.-The query about suspended tramways was in serted not mevely for " H. B." bat for any others win therefore be glad to recoive a reply from you, who ovidently can well give it .
J. R. Burne.-Write Triubner and Co., Paternoster-row.
J. Youzdon.-Declined with thanks.
T. R.Thomas.-We don't noswer by post: Aak one of our intellignut correspondents, and so word the quas as well.
Conmon sixap.-Tbe extract is ton long for nur space A. (Kew.)- Yon will find indermation on the best hroks
 langanges. probably Ahn's comrses wonld suit you, and they are cheap. As to the time necessary to acquire this knowledge, that, of conrse, depends on the capncity of the prpil. 81x montha, six hnurs n week, requite, with the ocensional help of the dictionary, of conrse, but you will finl your query answered over and over again in back voturaes.
J. Hatrirld. - We believe there is a "Brassfonnders'
Guide" as you mention, but we have occupped some little time in endearourling to discover the advertisemont without success.
EIras Gxx .- Your letter oontaing too many offensive eplithets to be altogther palatahle to the mijjority
Jonf Tromas-" Les8ons on Chemistry" appaer on pp.
 448, Vol . XV.
Septneus Powell.-"A Pracical Treatige on the Har monium " appeared in Nos. 94, 96, 98, 100. 105, 109, 116,
$118,124,126.133,138,186,141,151,158,166,172,180,190$, and on pp. $25,99,178.290 .433 .4488$, and 655, , vol. XI., and on pp. 5, 75, and 193, VoL XII.
M. E-Se Vol. XIII, pp. 241, 267, 291, 446, for Robinsor Cbypor.- In chess one king eamot move to a square adjoinizg the other king.
Sompa gays:-" In p. 513, let. 4639, there appears something like a challenge to Mr. Birt by Charles Rabache, that latter gendieman wishing to prove the moon is not gpherical. I hope Mr. Birt will not take ap the you will not allom it to be discussed in the pages of oars. Wo had some thme ago something similiar readers have had enough of that sort of thing, withou: going to the moon.
Plcacbra, W. s. C. Elias Jones, True Blue, J. Nelson, y. And Jasper. Soo Hints to Correspondents. (Kow. Can't any poefively about ohemical
F. ${ }^{\text {artiole }}$. Coal Minar, W. H. P.- Your queries are adrertimomenta. Curious Phenomenon.-According to ${ }^{2}$ corro-
apondent of the Madras Mail, on the night of June 15 leat the plein to the east, north, and north-oaet of Naodidroog was covered with "many thousanda" of Nights, which have been observed occosionally in former years. The correapondent compares the appearPormer yeara. The correapondent compares the appear-
ance to that of a large city brilliantly illuminated, nod in one direction the acene, through a binocular glass, "looked like a riew of part of the atarry heavens, each flame being like a atar." As many or the lights Were from tan to intoen milea distant from the reporeruat have been 5ft. to 6ft in length. An ettempt is voing made to find oat the canase of the carions phe. lights are "cansed by the ignition of some inflammable gas escaping in jets from the surface of the earth.'

TEE INVENTOR.

APPLICATIONE FOR IETTTRRS PATENT DURING THE WREE RNDTNG JULIY 3. 1897.
2198 C. L. Daquoling Cbaring-crose, for an improved portable 21 D. Canningham, Dunf

 Wondmin, Masuach uantts, U.s., for a now and usofa

 2204 .J. Cox. East Stnckwith, Lineninahire, and a. Cox. Camber

 2211 H. A. Anninatas. Alle. Piendillv, for improvements in apparntn Por the manntarture and applicatinn of wire roveringa for pecuring
the rorks of botles containing sparkling wine or othar fermented
 and other parpneses.
2313 W. F. Rtanies, Great Turastle. Holborn, for Improve

 inenta in mechanical arrangements for oltaining revarse rotary
motion from one centre, particularly applicable to screw propulaion when manro than one screw is adouted.
2218 H. B. Fox, Oxtm, and R. L. Griden, Birkenhead. Cheahire, for an tmproved grard for protecting the windows nid donra of
railway and other cartiges and moving structaros from dranght and 1ast. W. Clark, Chapeery. Lane, ior on improved wrapper
ararment for travelling and other purposes, and holder for carrying the rame and other articles.
$2920 \mathrm{~J} . \mathrm{H}$. Johnoon. Lincoln's Inn fields, for improrements in
 paratus for coolling liquide and fulds preparatory to belng drawn
off for use. particularly andicable for conling draught le, porter, ciler. or otherdrinks sheld in canks or veassial
2222 H . W. Atkins. Birmingham, for improvements in meta
 denirable.
2z23 W. Rake, southampton-bandinge, for improvementa in
apparatus for adjusting window blinda or shades. A communica. tion. W. g. Blake. New York, for improvernente in guns by

 ments tn dendortsing apparatna.
2928 C. Weekes, Dnblin for
nd conatruction of ceritral fire hreareh lioments in cartine arrangement 2 2r29 C. D. Abal, Southampton-buildinge, for iraprivements in
 $22 s 1$ G. P. Renahaw. Notthagham, for Improvements in con-
 bolter fornnces. Puddink furnaces, and frumaces for heating
retorts for the manufanture of gas. which improvements may atao be applied to othar kinds of furnaces.
2993 R. Partington. Manchester, for improvements in the atilf.

 2935
C. Levey, sassex.rond, Hollowny, for improvemente in

 elitching button hivles. A communication.
2238 A. A. Lenker. W. Norman, and W. Heaker, Bristol, for
 Writing machine. tale. Indiesting. and registering arrangementa ond mochaniam. io orovement of un apparatua for drawiog corks or buags from bottlea 2244 J . Pullar. Little Love-Iane, City, for impmvements in ap z243 W. Abbott, Limehonse, for imgroveloeuts in portable 314 II. C. Ashlin and C. J. Olover, Liverpool, or improvecenta

 ${ }_{2}^{2 \%}$ A. C. Hendero

 he ame. A con

PATENTS ERALED.

27 R . Banaders, for impeoverments in anchors and the:

 rovements in elippers for ellippies B7a II. Howand. for improwe 9. J. F. Lafrache for tanirirements in the monnfaetare of at

 onme, and also ot her analogoui, pavement and material tretion :

 cation in automaticxily operating valves and lovers in tow-double-acting vacuum pumpe, and other h!dranlin or opens in
 270 A. Annnndile. jun.. for improvoments in the resanfortece nir
J . Ward, for improvementa in the mode nod and
 nemi. J. Cooper, for improvements ith moulating bavee used

 ${ }_{1049} \mathrm{Wimin}$ purpores. Lake, for improvamente in ditching \propto treocter machines. 11.5 . Goranstion, for improvements in apparatee tor okem: ing rotis. power.

 mp nt. Ris the purpise of recotering therstrum vaicuate cberieal

©hy Cunglish tettechanit
 avi

WORLD OF SCIENCE AND ART.

```
TRIDAT, \(A O G O B T\) 28, 1872.
```


ABTIOLBS.

HEALTHY AND COMFORTABLE HOUSES.*

 NDER this attractive title Drs. Drysdale and Hayward have publiohed accounts of the experiments made by them in the warming and rentilation of houses, and as these are acoompaniod by suggestions of practical value to the public, as well as to the arohiteot and builder, our readers will, donbtless, feel interested in hearing what two well-known physicians have to sey on subjeots of such importance as frash air and warmth in dwelling-houses. The important question how to construct a house which ahall be at the same time healtby, comfortable, and not inelegant, has been answered in a variety of ways. Some have contented themselves with pointing out what the arahiteot should do; others have pat forward for his edification sohemes more or less impracticsble, whioh only their authors could repose confidence in ; while others have told us what a house should be withort showing us how to arrive at the desired resalt, so admirable in all respecto-on paper. The anthors of the present book do not come within either of these categories, for though they have, doubtless, theorised, speculated, and schemed, they have put their theories to the test of pracIn 1861 Dr. Drysdele results of their experiments. In 1861 Dr. Drysdale bailt a house in the anburbs of Liverpool, in which many of the defects of ordinary houses were aroided, and ventilation effected by what he terms a siphon-shaft, the foul air being removed from each room in the house by means of a separate pipe, and conveyed to a foulatr chamber in the roof, whenoe it was drawn by the "suction-power" or heat of the kitohen chimney. The house in queation is a marine vills facing the sea, and is of two stories, with the main staircase in the centre of the plan. In a ahamber under these stairs, a coil of pipes in connection with a boiler in the basement on the low pressure principle warms the air, which comes in through a flue opening to the external atmosphere. The freah air pasaing through the ohamber and becoming heated is distributed to the various apartments in the house through openings in the cornice near the ceiling, and through "hit-and-miss" gratings forming the apper section of the architraves of the bedroom doors. The vitiated air is conveyed from each room through a perforated ornament in the ceiling, by a zinc tabe to a zinc drum abont 6 ft. by 5 ft . in the roof. This dram commanicates by means of a zinc tube and a shaft built into the wall with the bottom of the exhaust shaft, which is formed by constructingthe smoke-fue from the kitchen fire of $14 i n$. the smoke-flue from the kitchen fire of 14 in .
earthenware pipes placed within a square brick shaft, the intervening space forming the passage for the foul air, which tinds an exit a few inches below the coping of the shaft. The fireplaces in this honse are at the corners of the rooms, and no chimuegs are placed in outer walls, while the windows are of thick plate-glass. The general result of the ten years' experience of different families who have oconpied it is that it is warm and at the same time airy and comfortable, while Dr. Inman, who visited it on a bitterly cold day, seys, in his "Preservation of Health," that seemed so thoroughly comfortable. In the house built by Dr. Hayward, also at Liverpool, the same prinoiple is applied; but in this a central lobby orms the ventilating shaft and divides the dwelling centrally. All the rooms on the three stories open into these lobbies, which, together, form a corridor extending from basement to attics, being conneoted by lattice work in the centre of the oeiling of each story and iron gratings at each side of the floor above. By this arrangoment the warm air passes from the bottom lobby to the others, bat the lattioe work and gratings not being in line sufficient resistance is offered to its passage to compel an ample supply to pase into the rooms on either side of the - "H H allh and Comfort in House Building; or VentiBJ J. U:NEDALE, M.D., and J. W. HAIWARD, M.D.
corridor through a lattice enrichment in the respective cornices and perforations in the separating wall. Over the gaseliers are perforated plates connected to a zinc tabe, which conveys the vitiated air to the chamber in the roof, whence it is drawn as before by means of the heated flue in the brick shaft.

This plan of ventilating and warming honses is not confined to any eprecial desoription of dwelling, but may, as the anthors point out, be adapted to the poorest class of houses by building them in blooks, just as easily as a common system of drainage is made applioable. But it is more especially to the "splendid blocks of offices" and workshops and warehouses, where graet numbers of persons spend a large portion of their lives, subjeoted to continual cold dranghts and to the baneful infiuences of a vitiatod atmosphere, that the anthors desire to see their scheme applied. With respect to cost, the anthors offer some sensible obearvationa for while acknowledging that the expense of the zino pipes, and running them through and between the walls and ceilings, together with the other necessary appliances of the scheme, will amount to a considerable sum, they point out that a considerable saving may be effected in the brickwork and plastering of the house, which need not be so lofty or so large for equivalent requirements. Thus, living and bedrooms might be reduced in height, and the latter also in size, for with this system of ventilation a constant supply of fresh air is farnished, which more than compensates for diminished cabical capacity, especially where the air of the larger rooms in all but stagnant. But as things are " what can architects do in changing the style of middle-olass house building? They are constantly pressed to meet the requirements of the commer cial value of a house as at present estimated, and forced to give as many and as large square boxes of rooms as will go under a roof and within four walls as can be got for the money. With sucb requirements, how can they stady convenience, beauty, health, or comfort ?"
We can, of course, only mention the principles of the method here, but ample details are supplied by the anthors, and all necessary measarements given. The cost of this means of heating is said to be covered by savings in other directions; and lest some may think that the plan of ventilating would fail when the kitchen fire is not burning, it is desirable to mention that even when this is the case " there is still a sufficient amount of suction to keep up a good circalation of air throughort the house." Indeed, every detail of the scheme has been submitted to actual experiment and all diffloulties satiafactorily met. Several diagrams help to explain the method to the reader; and the book contains besides this, ite main feature, much useful information on other matters connected with hoalthy houses, and a valuable appendix containing the methods of cal culating the velooity of currents in hot air, with record of the experiments carried out in the house bailt by Dr. Hayward, under the varying conditions of many, few, or no fires, open and closed doors, \&c. Looked npon merely as a reoord of what has actually been done the book is worthy the attention of sanitarians.

INFLUENCE OF LIGHT ON PLANT LIFE.*

PLANTS grow by absorbing certain matters from the soil, and by decomposing, through their green parts, the carbonic acid gas in the air. Of this gas they assimilate the carbon and return the oxygen. This may be considered as plant Bonnet, in light is necessary to it.
Bonnet, in the eighteenth century, observed that plants always tend towards the san, in whatever position their seed has been placed; also that plants immersed in water give ont small gas bubbles in sanlight. In 1771, Priestly put a burning candle in a closed space, and after it had gone out (the air becoming unfit for combustion) he introduced the green parts of a fresh plant. In a few days the air was purified, so that the candle could again be lit. Ingenhonsz farther observed that the parifying of impare air by plants only commences after sunrise, diminishes towards sunset, and is suspended in the night time ; that plants whioh are shaded do not purify the air, but give out a noxious gas ; and that only the leaves and green parts have the parifying action referred to.
Senebier proved the precise nature of the gases absorbed and exhaled. De Sangsare showed

- Alostract of part of a paper in Rerue der Dewr Mondes,
by Y. PapiLiox.
that the volume of oxygen liberated is lees than that of the carbonic acid absorbed, and also that plants exhaled a certain quantity of nitrogen. In sunlight, plant-respiration takes place very ener getioally.
In 1848 MM. Cloëz and Gratiolet brought to light some new facts about aquatic plants. These do not give out carbonic acid gas at night. The instantaneity of the sun's action on their respiration was proved, the plant being pat in water oharged with carbonic woid gas, and the disengagement of babbles from ita surface observed when light was admitted. Diffuse light did not produce the decomposition of carbonic acid. Further, Van Tieghem has observed that the decomposing aotion, once commenced in sunlight, continnes in darkness. The plant is thno capable of receiving, and storing np, as it were, some of the incident vibrations, these reappear ing as chemical work. Many phosphorescent substances, and photographic prooesses, furnish analogons cases of conservation of force. The form of reappearance of the vibration-force varies in different bodies: it is sometimes lumi novs radiation, sometimes chemical work, sometimes meohanioal wrork.
What is the infinence of the varions spectral rays on vegetation? The question has called forth mach researah, and is not yet fully answered. Daubeny, in 1836, was the first to examine the respiration of plants ander coloured glass. He observed they exhalod less oxygen than in white light. The orange raye seemed the most energetic ; then followed blue. Gardner, a few yearm later, put etiolated or blanched plants in the various spectral rays, and found that green coloration took place, with the yellow rays, in three hours and a hals; with the orange, in four hours and a hall; with the blue in sighteen hours. Thus the greatest energy of solar action (in this respeot), does not correapond, either to the heat maximum at the extreme red, nor to the maximum of ohemical intensity at the other extremity. Those radiations most obemioally motive influence least the phenomens of plant life. Prof. Draper, of New York, has recently shown that plants disengage most oxygen in the yellow and green rays ; next follow the orange and the red. M. Cailletet thinks green acts like darkneas in reference to plant respiration, and he thas explains the feebleness of vegetation in the shadow of large trees. M. Prillienx has studied the aotion of liyst from a different point. He sought to know the influence of lights having different colours, bat of equal intensity. He inferred from his experiments that lights of different colonrs aot in an equal degree, and produce an equal liberation of gas for the same luminous intensity. All the laminous rays canse reduction of oarbonic acid gas in plants proportionally to their laminous power. Plants placed in obscarity become blanched and lose vigour, as if they were growing on a sterile soil. One effect of annlight is a continual renewal of the moisture in the vegetable tissues. Where the moisture does not evaporate the plant becomes hydropical.
Sunlight produces numerous variations of the colorr of fiowers. The corolle of species which grow at a great height on mountains has more lively colours than that of the species found on lower parts. The sun's rays traverse the atmosphare more easily in the former case. In general the vegetation in well illaminated plecos is richer in colour than where the light has little access. Some flowers, at first white, become coloured in the sun light. The Cheiranthus cameleo is at first blue then of a citron yellow, then violet-red. The flower of Hibiscus mutabilis is white in the mornin?, aud becomes red during the day. Similurls, the colours of fruits are affected by light.

The meohanical effeots of light on plants are various. The sleep of flowers, the intl xion of stems, the nutation of heliotrope plante, the i.tris cellular motions of the chlorophyll, show, in this respect, a very delicate sensibility in cortain species. Pliny refers to the plant wbich turned with the sun, and indicated the hour to labuirers Payer has made precise experiments on the motions of cresses under light. When pat in u chamber lighted from one side, the stem carves rapidly. The upper part bends first, the loris remaining erect; this next inclines, whil, the apper part tends to resume its straightness, and the stem has finally a struight inclined pusilion. If the light enters the chamber by two windows, the effects are as follows:- If the two are on the same side, and the light of equal brialati:csis in both, the stem ourves in a direction bisecting the angle of the rays meeting where it is placod. If
one window lets in more light than the other, the
stem tends towards it. If the windows are on opposite sides, and the light equal in both, the stem remains vertically straight ; in the opposite case, it is directed towards the more intense rays. These motions appeared, moreover, to be produced by violet and blue rays, bat not at all by red, orange, yellow, and green. M. Gardner has pashed this inquiry farther. He sowed turnips, and let them grow in obscurity till they had a length of five or seven centimetres; then he oast on them the speotral rays from a prism. Those which were exposed to the red, orange, yellow, and gyeen rays, became inclined towards the dark blue; while those exposed to the violet rays took an opposite direction. The plants bad thas the oppearance of a field of grain moved by two contrary winds. The turnips in the blue-violet region looked towards the prism. Thus it is the more refrangible rays that determine the flexare of young stems.
The stems of many plants grow in a spiral direction. This is generally from left to right, bat not always, and the stems of some plants turn indifferently io either direction. Me. Darwin has examined the influenoe of light on this phenomenon. If one of the plants referred to be put in a chamber and near a window, the extremity of the stem takes more time to describe the half revolution in whioh it is tarned from the light, than the other half. Thus a convolvalus made an entire turn in 5 hours 20 minates; the half revolation on the window side took a little less than an hoar; and the other half 4 hours 30 minutes. M. Duchartre found that some plants which grow spirally in the light grow straight in darkness.

The sleep of plants, by which is understood the closing of the flowers and leaves, to expand again after a short lethargy, is not fully understood in its relation to laminous intensity.
The colouring matter of leaves and stems, called chlorophyll, coneists of very emall granules contained in the cells of theee. Different shades in the colour are due to the greater or less namber of these small grains in each cell. Sometimes they are very close together, oovering the whole internal surface ; sometimes they are fewer and more dispersed. In the latter case light, when introduced, produces a motion of the partioles, in some oases agglomerating them to a point. M. Frmintzin has studied these meohsnical effects on leaves of mosses. Daring the day, the small grains of colouring matter are soattered over the upper and the lower parts of the cells of the leaves. It the night, on the other hand, they collect on the lateral walls. The blue rays aot in this way less than white light, while under yellow and red rays, the grains remain in their noctarnal position. These intracellalar motions take place in nearly all the cryptogam, and in many of the phanerogams. M. Roze has found that the greins of chlorophyll are joined by very fine threads of plasma, which he supposes to carise their ebange
of position.
Biot, in 1807, exposed the leaves of a caotus in water charged with carbonic acid gas to a very strong artificial light, on whioh one could not look without being dazzled. No gas appeared to be
disengaged. The vessel was oarried into diffase disengaged. The vessel was oarried into diffase
daylight, and the liberation of gas at once took place with great rapidity. He ooncluded that artificial light was incapable of producing the tffects of solar light. Bat it has been recently proved that light from any souroe will cause the
respiration of plants if only it be not too intense.
A. B. M.

LESSONS ON CHEMISTRY.*

By Selimo R. Bottone.

(Late of the Istituto Bellino, Novara, Italy.) (Continued from page 448.)
206. - In order that the student may form a covery made by Messrs. Dalong and Petit, in conneotion with the aid which it affords ns in fixing the atomic weights of the elements, it is neceasary that he shoald call to mind a peculiar property, which different bodies have, with regard to the amonnts of heat they can absorb, without s.lowing a corresponding rise in temperature. It had been demonstrated by Dr. Black, Irvine, and others, towards the middle of the last century, thit equal weights of water, iron, glass, \&c., at an eqzal temperature, required very different amounts of heat applied to them, in order to raise their tempersture by 1° Fabr.; in other words, th. caparity which these bodies display for heat, The igite of tra slation atd reprodaction is reserved
varies with each. This capacity for heat is known under the name of the "specific heat" of the body. In 1819, Dalong and Petit announced that, according to the results of their experiments, "the produot of the numbers indicating the speoific hest of the different elements, multiplied by the numbers denoting their atomic weight, is a constant number;" in other words, "the spacific heat of simple bodies is always in inverse ratio to their atomic weights."
To this constant number * the name "atomio heat " has been applied.
207.-Perhaps the most acourate method for ascertaining the specifio heat of the elements is that of "cooling." Experiments have proved that on raising equal weights of different bodies to a given temperatare, and allowing them to cool down to a certain point, the times required by them to reach this flixed point, are directly as their specifio heat.

Taking the specific heat of water as unity, the following table, compiled from the researohes of V. Regnanlt, Person, Favre, Silberman, and H. Kopp, shows the relative specifio heats, atomio weights, and atomic heats of the more important elementa : -

Name of Element.	Specifio Heat.	Atomic Weight.	Atomic Heat.
Oxygen	0.250	16.	4.
Hydrogen	$2 \cdot 411$	$1 \cdot$	$2 \cdot 4$
Nitrogen ..	0.457	14.	6.4
Chlorine	$0 \cdot 180$	$35 \cdot 5$	$6 \cdot 4$
Bromine	$0 \cdot 11294$	80.0	6.75
Iodine .	$0 \cdot 108$	127.0	6.4
Salphar	0.163	32.	$5 \cdot 22$
Phosphorus	$0 \cdot 18870$	31.	5.85
Seleniam .	0.07616	80.	$6 \cdot 4$
Tellarium	0.04737	128.	6.4
Carbon	$0 \cdot 14687$	12.	$1 \cdot 75$
Antimony	0.0533	120.	64
Bismuth	0.03084	210	6.4
Arsenio	0.08140	75.	$6 \cdot 11$
Molybdenam	0.07218	96.	6.93
Tangsten	0.03342	184.	6.15
Uranium.	0.06190	120.	$7 \cdot 43$
Platinum.	0.03243	197.	6.4
Rhodiam.	0.05527	104.	$5 \cdot 77$
Palladinm	0.05928	106.	6.28
Boron	0.2500	11.	6.75
Silicon (erystals)..	0.17740	28.	4.97
Potassium .	$0 \cdot 16956$	39.	6.61
Sodiam	0.29340	23.	6.75
Lithium	0.94080	7.	6.4
Thalliam	0.03355	204.	6.84
Magnesium.	0.24990	24.	600
Alaminiam.	0.21430	$27 \cdot 4$	$5 \cdot 89$
Manganese	$0 \cdot 12170$	55°	$6 \cdot 69$
Iron......	$0 \cdot 11380$	56.	6.37
Zino	0.09555	65.	6.21
Tin	0.05623	118.	6.65
Cadmiam	0.05669	112.	6.35
Nickel.	$0 \cdot 11880$	59.	6.50
Cobalt	$0 \cdot 10730$	59.	6.30
Copper	0.09515	63.5	$6 \cdot 04$
Lead	0.03065	207.	6.35
Mercary	0.03332	200	6.38
Silver ..	0.05701	108.	$6 \cdot 16$
Gold	0.03244	197.	6.36

208.-From this table we get at the relative atomic weights of most of the elements, independent of their compensating weights (11). Unfortunately, owing to their gaseous state, the specific heats of hydrogen and oxygen do not give the same constant as the majority of the elements, hence we are not able by this mode to state with certainty the relative atomio weights of these bodies. Consequently, though the theoretic law of Gay Lussac would point to their atomic weights being, relatively, 1 for hydrogen, and 16 for oxygen, we have no proof, as yet, that this proportion is more correct than that of 1 to 8 .
Practically speaking, either mode of expression is equally correot ; for it is indifferent in all ohemical operations, whether we regard water as being composed of 2 parts of hydrogen, to 16 of oxygen, or of 1 of hydrogen to 8 of oxygen. Consequent upon the theoretic nature of the question involved, it behoves the student to bear always in mind, that although in all likelihood, the views of Gay Lussac, Avogadro, \&c., are correct, yet we have no tangible proof that the volumes of hydro-

* Reguanalt has shown that this is not really a constant, hat varies within small limits, the average being $6 \cdot 4$. This variation is sapposad to be due to the foot that the
specia, heats wrene not determined in all cases at equal
distauces fiom the fasing points of the bodios eramined
gen and oxygen are, respeotively, equal to their atoms. Hence it follows, that the only certain basis we have for oar caloulations is the fact, that "elements will combine in certain fixed proportions only, or in multiples of these fixed proportions."
209.-The theory of valency is one which, up to the present time, admits of no positive proot. though many argaments may be adduced in favour
of its existenco. But thongh not supported by of its existence. Bat though not supportes by direct proof, it is of great assistance to
chemist is classifying various elements, and is chemist is classifying various elements, and tude, the beheviour of certain bodies, when subjected to the different operations of the laboritory. Whether it be false or trae it has cartainly conduced to the preparation artificially, of bosios hitherto supposed to be the products of living organisms exclusively, hence, while keeping our minds open to the reception of negative evidence, it is well to remember that this theory is the oen which, up to the present time, gives as the mot satisfactory explanation of the constitution of oompounds, more especially of such as belong to the domain of organic chemistry.
210.-Let us briefly exmmize the gromils on which the theory of valency is based. Whea hydrogen is made to combine with oxygen, two compounds may be formed ; the first is water $\mathrm{H}_{4} \mathrm{O}$, the second is hydrogan dioxide $\mathrm{H}_{2} \mathrm{O}_{3}$. Ae we hare already seen (paragraphs 91 and 95), water in nentral, stable, and eacy of preparation; is mot nentral, and is very diffioult of preparation. It is, therefore, evident that the seoond atom of ansgen is held muoh more loosely than the first, or, in other words, that the force of ohemion aftiaity. saturatiog power, or whatover elee wo agree to call it, in the atom of hydrogen, is insafficient to satiofy to the fall, the saturating power, cac., of the atom of oxygen.
Hydrogen combines with the ohlorine in one proportion only (53)-vix., HCl, and here we fiad that the combining power of the one atom of hydrogen is perfeotly satisfied by the combining pewerof one atom of ohlorine. Carbon also can be eaved to unite with hydrogen, and of the comporads thus produced the most stable and gaturate is marsh gas CH_{4}, in whioh the combining powers of the four atoms of hydrogen are completely held in abeyance by the combiniag powar of the one atom of carbon. We might addrioe nasearou eramples, bat the above will gufice to illuetrate the sabject.
211.-We find, then, that compounds do exist in whioh the component elements show little or no tendency to dissociate, while in others (im which the self-same elements occur, united in different proportions) this tendenoy is very mastrol. The question naturally arises, 0 n what do these peculiarities depend? The answer, as given by those who maintain the theory of ralenoy, is as follows :-Esch atom of the different elemeats is endowed with a cortain fixed combining force. While the atoms of several of the elements possess similar amounts of combining force, and osa, therefore, saturate one another when combining atom for atom, others are gifted with double, treble, quadraple, and even six times the amoant of force; and henoe, can satisfy the combining power of two, three, four, and six such atoma Taking, as usual, hydrogen as the standard of comparison, and agreeing to consider its combining power, or valency, as unity, it follows that at one atom of oxygen can fix and saturate two atoms of hydrogen, oxygen must be possessed of two combining powers, or what amounts to the same thing, must be bivalent.

Chlorine can only anite with hydragen in the proportion of 1 atom of chlorine to 1 atom of hydrogen, hence, we consider it as being possersed of only one combining power-that is to say, is is monovalent when compared with hydrogea. The same train of reasoning is applicable to nitrogen, carbon, \&o., which satisfy, relatively, three and four atoms of hydrogen, do.
212.-The intelligent stadent will immediate'; perceive that whether we take the modern atomie weights, or the ancient equivalents, 83 our starting point, similar conclusions may be deduoed; but in the latter case, many elements which ve now consider dyads will appear as monads, and those which we hold to be tetrads, will Agure as dyads, \&c.
213.-One point thast mast constantly be borce in mind, when making any application of the valency theory, is the fact, that the ratios espressed bear referance to, and are trae anly

When compared with, hydrogen; for it would appear that several elements which are markedly munats, dyads, and triads, when hydrogen is taken as the puint of comparison, possess different malencies when combiniug with other elements. We have already noticed several of such casce (see pragraphs 62, 70, 71,77), and many more will come ander our observation in the course of the se lessons. In closing these few remarks on valency, we cannot do better thanquote the following passage from Profersor Barfl's "Introduction to Cbemistry :"-" It must be borne in mind, that the explanation of properties by such terms as 'valency' is only a convenient method of stating what we know about them, and that the nse of such terms may be only of short duration. It may be disoovered that some of those substances, which we now regard as elements, are not elements at all, but comprounds; and adranced knowledge may even substitute some theory which may have a more sure foundation than the atomic theory. It is well to remark this, as young minds are often apt to esponse warmly views of a certain school, and to regard as facts what are nothing more than assumptions. It is generally believed that the division of elements into those of even and uneven ralency will stand; however the body, sitric oxide NO, is one which, for the present, at least, throws a doabt on this opinion, for nitrogen is nsually trivalent, and oxygen divalent, and here one or the other must change its valency. It will be remembered that NO occapies two volumes, and this is strong evidenoe that that quantity of nitric oxide is the moleoule."
214.-A few words in explanation of the mode in which the names of the various compounds which are formed by the union of the elements are built up, may not be amiss here. The elements are usually considered as belonging to two great clasbes-viz., those which aro strongly electronegative, such as oxygen, chlorine, fluorine, \&o., and those which are more or less electro-positive." Formerly it was oustomary to place first the name of the electro-necative, slightly modified by a termination in ide, then the preposition of, and lastly the name of the electro-positive element. Thas, for example, we had oxide of iron for a componud of oxygen and iron, chloride of gold for a compound of chlorine and gold, sc. In the modern nomenclature we begin by the name of the more electro-positive element, and place after it the name of the electro-negative element (clanged as above) withoat any preposition. Thus, we now desiguate the componnd of iron and oxygen by the name iron oxide, while the compound of chlorine and gold is called gold chloride, 89. In order to specify the number of atoms of either element which the compound may contain, abbreviations of the Greek numerals are prefixed to the name of the element of which it is required to fix the amonut ; thus, hydrogen monoxide is a componnd containing one atom of oxygen in each molecule, bydrogen dioxide is a componnd contrining two atums of oxygen in the molecale. T'se prefises most in uge are:-

Mono, for 1 atom, \&c.		
Di		atoms, \&c.
Tri	" 3	"
Tetra	, 4	"
Penta	, 5	"
Hexa	,, 6	"
Hepta	7	"
Octa		

The proportions in which both constituents of a compound ocenr in the moleoule may thus be ca: ily pointed out by the name, thas dimanganic triuride is the name of a compound containing oryern.

We do not lay much stress on nomenclature, as the rapidity with which the science of chemistry is atending itself renders it a matter of the grent.ist difficulty to find a system which meets all the requirements : in all probability a moditication of Prof. Filopanti's atomio nomenclature (see p. 319, Vol. XV. of the Engilisi Mfechanic) is the one mo
our k:owledge.

It is necessary, however, to dilate somewhat on the terms acid, anhydride. \&ec., and on the terminations ous and ic, when applied to acids. In oriler to exemplify the anhije ct, we ahall make reference to the acids derived from salphar and chlorine, an we have alrcady had the udrantage of passing them ander revi:w.

- It wil ber readiby undertsind that thi division is
 holds good throughout the series of olements.

BEVIEWS.

A Handlook of Chimical Technoloy!. By Rudolf Wagner, Pl.D. Tradslated and Edited by Williay Crookes, F.R.S. London: J. and A. Charchill.

EW Englishmen except thuse engnged in scientific parsuits, stadents of philology, and literary men, are acquainted with the German language. It is true that a smattering of it is tanght in "commercinl academies," but of the general run of average intellig'nt Englishmen met with in ordinary every day life very few have any knowledge of German, whereas numbers have a more or less imperfect acquaintance with "balance of power" bronght about within the past half-dozen years will probably produce an alteration in this respect, and although it is useless to hope that Gurman will become as familiar to Englishmen as the tongue of the latter is to our better educated cousing, there can be no donbt that it must be deemed of at least as mach importance as French. Independently of the highclass literature which teems from the presses of Branswick and Leipsic, and of the great beanties of what are known as the German classics, there is no language in which a larger proportion of valnable scientific works is written, and none which at the present day records more useful and interesting facts in the domain of "original research," the importance of which in connection with our manafactures was pointed out on p . 345. It is, perhaps, useless to look for a larger development of this stepping-stone to progress, until an acquaintance with the sciences underlying the processes and operations of our principal industries is more widely spread- amongst the mass of workers. For this reason Mr. Crookes, in translating the "Handbach der Chemischen Technologie" of Dr. Wanner, has done good service, and placed before the public a work containing abondant and reliable information on the sabject of whioh it treats. In a volume containing some 750 pages, with numerons illustrations, the methods of preparing and working the various metals and their salts by the latest improved processes are described under the head of metallargical ohemistry, together with the application of the voltaio corrent to electro-metallurgy. Manufactures of such importance as the preparstion of potash and soda salis, bleaching-powder, salpharic acid, and the methoda emplored in recovering all that is of value from "waste" solations and "rabbish" heaps, occupy prominent places. The manufacture of soap, glass, lime, stoneware, mortars, the technology of vegetable fibres, including paper-making, and the arts of brewing, distillation, dyeing, and others, all will be found explained in a necessarily concise yet ample manner. The subjeots enumerated form but a portion of the contents of this book, which mast be a valuable vade-mecum to the manafacturer and the student. That it has been fully appreciated in Germany is evidenced by the fact that the edition of which the present book is the English translation is the eighth, the first having been pablished in 1850. Mr. Crookes hns edited the work carefully; all the improvements introduced since the pablication of the German edition bave been added, and the whole of the formule, which are molecnlar thronghoat, hare been revised. At the conclusion of his preface the translator says: " We cannot let this work pass out of our hands withont expressing the hope that, at no distant date, Chairs of Tech. nology will be founded in all onr naiversitics, and that the snbject will be included in the curriculum of every large school." With this nspirationall who wish to see British science and British mannfactares not merely maintain their position but. progress mnat cordially agree. Other nations are pressing us hard in the rear as regaris industri.s which were
once thought to be all our own, while in too many of the arts wo are lugeing behind. Twhnical education is the ouly thing that will enab!e ns to kepp onr place, and such works as this Handbook of Chemical Techuology will do much to supp! ns with that desideratuin.

An Iatroduction to the Practical and Theoretical Study of Nautical Survering. By Jomv livo Iatimfoy, M.A., F.R.A.S., \&i. Lobdun

Loggmans.

Probancr nothing is of ereater ioportanes to the mariner than a correot chart of the thores aloug which he coasts, or of the seas which he navigates,
for if be becomes conscious of an crror in his chart, the element of indecision is introduc diuto his tac tics-an element which on boarri elip our read.ra will not requite reminding is fran:'it with great danger. Wu believe, however, that the charts supplied to the Eoglish mariner, as a rule, are as correct as it is possible to make them; and in order to facilitate their construction on suand pria ciples, the student who desires to obtain ciarloyment in nautical sarveying is provided with tho valuable "Introdaction" to the study which forme the subject of the present notico. Mr. L cughton, who is mathematical and naral iustrnctor at Portsmonth, mentions in his preface the dictura of an experienced and skilful surveyor that a oflicer can be qualifice to take charge of the soutd ings of a sursey with less than seven jears' practice, aud while acknowled, ing that practice and experience cau alone give skill, be thinks, and rightly that withont a sound kuowledge of the theoreti cal principles on which the skill shonld be applicd, much of it will be thrown away on objects utterly useless. With the view of ensbling the ynnur officer, then, to obtain a sound knowledge of these theoretical principles, and to assist him in gainiug a mastery of the science, Mr. Laughton has pub lished what he modestly calls " only an introduc tion" to the art of survoying; bat the introduction is of such a natare that the young efficer who is well grounded in it will speedily fiud the adrantage when he comes to handle the instriments in practice. Mr. Langhton is emphatically in favour of the student becoming an adept with the sextant before venturing to tonch the theodo lite, and he is so becanse, as he says, a complete sarvey may be carried on with the gextant alpue but not with the theodolite, while any one who is master of the former instrnment will readily acquire facility and familiarity in using the latter The tert is illustrated with dingrams where neces sary, and the student of nautical sarveying will find this a very useful grammar of the art. Mr. Laughton, at the conclusion of his work, impresses on the commanders of vessels lying for any time in unfrequented harbours, the necessity of a veri fication of the soundings. Tiis is more especially the case in volcanic districts, where, during one distarbance, the whole bed of the harboar mar be suddenly altered. In these cases no reasonrble opportunity of verifying sonndings ought to bes omitted, and we join with the anthor in extress ing surprise that the Admiralty has never formally and imperatively ordered it to be doue, for her Majesty's ships are rather costly emblems of poxer, and if their commanders are careless of their orn safety, they might at least expend a little of their nuexhausted energies in scouring the safety of other, if less valuable, vessels.

The Norious, Reneficial, and other Insects of the Siate of Missouri. By Charles V. Riley, State Entomo!ogist. Jeffirson City, Missouri, U.B.A. : Regan and Edwards.

We have had occasinn to express our appreciation of the common sense displayed by the l-gislatures of several (we believe most) of the Stat:s of the Union in appointing scientifis min to extaine intoand report upin the natural bistory of the: portion of the earth contained within their bonndaries. By this means, sound practical information is aequired of what is on tho surface and what is beneath. of the miucralogy, the geology, the botary, the olimatology, the natarai proluctions and the noimal life of the whole of the rast territory iuhabited by Auglo-Saxins on the other side of the Atlantic. Nut the least inn. prrtaut of these anonal reports is the one whuse title is giren above, being the fonth annanl report of the accomplished State Entomologist of Misaouri. The ravages effectel by various predatory insents on the crops of the American farmer: are only ton well-known in that country, and have also been heard o! here, in the shape of some marvellons tales, in which the anthors had allowed their imnginations to overcome their apprecintina of number; bat making due allorance for the "talln"ss" of the acconnts, the armies of insecis which at times pass like tongaes of tire acrose the cultivated tields of the siates, canse sufilin-nt de. struction to cropa to become matter for sericus thonght. Tins, tako for iustance the Colcradio potato beetle, when was ner.r po numerous as was year. In such numbers did this p at mak" its npparance thet Mr. Rilay pawa, "B force the

 the funcral of erey one slain." I: is satisin tury
to learn that by the use of Paris green, and the assistance of its natural enemien, aided by a hot, dry summer, there was a sudden dissppearance of this bug, although the potato crop exhibited a falling off of quite 20 per cent. over the whole State. Having desoribed the damage effected by this noxions insect, Mr. Riley then gives us a deacription of its natural enemies, with illastrations of them in their different states, so that the farmer may know exactly what to destroy and what to preserve. This system is followed throughout the whole of the list of noxions inseots which Mr. Riley has been able to notioe in the compass of the present report. The " beneficial" portion is this year occapied by an elaborate treatise on the silkworm, with some excellent page illastrations of the Bombyx Yamamai, the Ailanthus, Pernyi, Polyphemus, Cecropia, Lans, and sundry other of the silkworm moths. This life-history of these insects comes at an opportune time, when the morus multicartlis, or "silkworm fever," is again gaining gronnd in the States, in some parts of which there can be bat little doubt the moths and worms might be successfully reared, and an important souroe of indnstry established. A few pages are devoted to "Innoxions insects," bat we have not space to write more of a work which would deserve a page if it only applied to our own country. The money spent in obtaining these reports will return a high rate of interest in times to come.

Science and Commerce: their Infuence on our Manufactures. By P. L. Simsonds. London: R. Hard wicke.

The statistical essays and lectures here gathered together in one volnme have been delivered or published during the past twenty years, and appear to contain a fund of information of a popalar nature on the subjeots with which they deal. The articles on shells, the cotton. wool, and silk manufactures, on dyeing, and on nuts, are fall of interesting matter. It is true some portions of the book are written in the " sensational" style, and Mr. Simmonds wonld do well to cat out unsparingly all passages of the kind. We do not appreciate the beanty or force of a simile which compares the ships of Britain to "enchanted castles (!) floating slong her ses-girt shores," and it is quite possible to convey an ides of the result of submarine explosions without saying that the 'obstractions are riven from their foundations, shooting upwards to the zenith with volcanic force into the aerrial space !" Readers who can appreciate what there is of value in Mr. Simmonds' book will merely laugh at the high-sounding phraseology in which he at times indulges.

We have also received Nos. 1 and 2 of Naval Science, a quarterly magazine devoted to the subjects comprised under its title, onntaining able articles by competent writers, and edited by Mr. E. J. Reed; A Standard Alacbra, with Key, by the Rev. John Hunter, M.A.. (Longmans), forming rolumes of the well-known School Series edited by the Kev. G. R. Gleig, M.A., which will be found not only adapted for their special purpose (sohooluse) but usefal to the artisan whose education in this respect has been neglect?d. The size is suited to the pooket; The Duke of Somerset's recent attack upon the Bible criticised, by Rev. Joseph B. M‘Caul, is a pamphlet which may interest those who delight in polemics; As Regards Protoplasm, by J. H. Stirling, F.R.C.S., LL.D. (Longmans), is an smended edition with additions of the author's pamphlet in reply to or rather attack upon Mr. Huxley; Magnetism and Devia tion of the Compass, by J. Merrifield, LL.D. (Longmans); and Plain and Ornamental Alphabets (Brodie and Middleton), is a series of alphsbets, the letters of which are of varions designs and printed in different colours, of use to engravers, lithographers, painters, oarvers, and others who require a pride in the construction of ornamental letters. We have also received Life of T'revithick, Vol. I. (Spors), and the Battle of the Ganges Renewed, by R. F. Fairlie (Effingham Wilson), notices of which must be postponed.

Black Bass in England.-Mr. Parnaby has encceeded in bringing aixty black bass fry home from America, and they are safoly deposited in the tanks a now ha cousidered safe. He fonnd great dificalty in collyecting the fry and bringing them safely across the Atlantic on account of the intense heat. Mr. Francis ennsiders this the seoond grentest feat in piscicalture,

THE WATCH, AND HOW TO REPAIR IT. By "Sgconds' Practical Watchmaker."

(Continued from page 529.)

THE remarks in last article on this subjeot introduced us to that portion of the watoh termed the escapement. Therefore, to render the following remarks somewhat more intelligible we introduce Fig. 6, which at A represents the balance. Many persons reoognise this as the fly-wheel though technioally it is the balance. Through ite contre is fixed a alender shaft, at each end having a small pivot for the purpose of working in the holes made for their reception, the lower one in the potence I, Fig. 1, and the upper one in a bridge above it. Immediately below the balanoe on this shaft-the varge-is a flat projecting blade, G and at the lower end there is a similar one, both of which are termed pallets, the one near the balance being termed the apper, and the one below it, as might be supposed, the lower pallet. By referring to Figs. 1 and 2 there will be little diffioulty in tracing the connection existing between the train and the wheels marked E F, Fig6. Therelore, we now have to consider in what manner these two pallets of the verge, an well as the balance, serve the parpose of permitting the esoape to take place.
The balance A is a rimmed wheel applied for the purpose of moving the verge and its pallets beyond that which would be natural to them without its application, for by its momentum it carries with it the verge, both being firmly riveted together. Now, the lower pallet must be first considered, 28 regards Fig. 6. The escape-wheel F has always an odd number of teeth, suoh, for instance, as 11, 13, and 15, which numbers are made use of respectively in connection with the relative numbers of the teeth of the wheels forming the train. It will be seen in the figure that the lower pallet has apon its face the point of

Wheol's motion being horizontal, it is distinguished by this term. In Fig. 7, E represents a portion of the balance, and A also only a portion of the escapement-wheel. The shaft or central axil of the balance is seen at \mathbf{C}, bat may be more distinetly seen by the larger Fig. 8, which exhibits it witbout the balance being attached. A, the eacapeWheel; B, the stem, which rises from the flat of the wheel with the tooth on its top; C, the oylinder ; and D, the escape-wheel pinion. This constitutea the entire esospement, tharefore the fourth or last wheel in the train acts into the pinion D, and hence motion is imparted to the escape-wheel, and the sotion is as follows : The escape-wheel teeth are wedges rising, as it were, upon apright pins or stams. Atteohed to the balance is a hollow oylinder K, Fig. 8, uranly made of steel, the imaginary axis of which pacres through the contre of the pirots whioh form the bearings. The toeth of this escape-wheel are of such length that they have very little freedom when inside the cylinder C and K, and the thickness of the cylinder is so made that there is the same froedom of the wedge teeth between the point of one tooth and the back part of the next on the ontside, as there is when the tooth is inside the cylinder. A notch or opening, K, Fig. 8, is made nearly hall way down the diameter of the oylinder, the edges of which, made by this opening, are polished, the right-hand one being flanged inwards, and the left-hand one rounded, in order to allow the carved edge of the teeth to act easily, and with the least friction upon them In this state of the cylinder, when the escapewheel tooth entered it, the wheel could not pas. because the rim of it would touch the edge of the oylinder, therefore another opening has to be made lower down, as represented at M, Fig. 8.
While the vibration of the balance cansee the cylinder to have common velocity with it, the wedge teeth being impelled by the mainspring

the escape-whecl tooth, and as the train of wheels sre exerting the power through the mainspring's force, that tooth must impel the balance forward in the direction of the arrow, and as the balance continues in its onward course the esoape-wheel tooth, when it has passed over the entire breadth of this lower pallet, will slip or fall from it. At that instant the npper pallet will be in suoh a position that its face will be presented to the advancing tooth of the escape-wheel, and will receive it as it slips off the lower pallet, after which the balance, by its return motion, allows the escape-wheel tooth to fall from the npper pallet, and then the lower one is presented to receive another tooth of the escape-wheel, and this alternate motion of the balance permits the teeth of the escape-wheel to escape. Thus the atility of an arrangement termed the escapement, as has been previously stated, for withont it the wheels woald have revolved very rapidly; but by its introduction the timg of their revolations is considerably prolonged, for, as in the former case, the whole train of wheels would have oompleted their revolutions in less than two minates. By its introdnction wis find that it would occapy aboat two daye before the train required again winding ap. Bat it may be said conoerning this statement that a watch such as we have now nuder consideration does not continue to go for the term of two days. True; therefore when farther attention has been called to the subject that important feature of the watch will be explained.
The wheel-work or train in the horizontal watch is very similar to that of the verge one. There is this difference: instead of the contrate wheel E, Fig. 6, which urges the pinion of the escapewheel F, of the verge watch, in the horizontal one the escape-wheel is driven by a wheel termed the fourth wheel, which takes the place of the contrate wheel, and lies parallel with the frame and the rest of the wheels. Then, again, the eecapewheel itself is also parallel to them all, and that
force necessarily allow that wheel tooth to adraser and enter the inside of the cylinder, and during the advance of that tooth its wedge shape prosea the flanged edge H, and urges the cylindes onward, during which time the tooth suoceeding approaches the opposite side of the cylinder, act the instant that the advancing tooth has left the wedge H of it, I is presented to the succeeding tooth, on which it drops; but the motion of the cylinder does not terminate at this point, for the momentum of the balance carries the orlinde: onward, nearly half a turn on each side ; thare fore, during the oscillation of the balance, the point of the escape-wheel tooth will be resting on the circular portion of the cylinder. Then the tension of the pendulam spring will bring the balance back, and when at or near the centre a motion the succeeding tooth will oommence activs on the rounded edge I of the cylinder, thereby impelling it until the point of tooth falls into the inside of it, there reposing until the bslance has completed its extent of aro, and again returned on its quiescent point, at which another impaisior takes place, and thus successive lockings ase escapings ocour.
It may be easy to understand that, as most inventions become improved after a little time, the horizontal watch of Graham's became subject to the same rule, and so we find the fact, for although it held its place for a long time, and stood nonsur passed amongst all comers, soientifio men of that and succeeding times directed their attention ∞ improving the then best time-keeper, ont of which the world has had presented to it an improvement in another form of watch.
In oonsidering a watch of Graham's, and enms even of a later date of the horizontal construetion the escape-wheel calls forth from a practies person a little thought. In the first placa, we Eidd the majority of them made of brass, whioh is the worst material for such a wheel to be made af. I experience teaches us all that almoss all
cylinder watches, with steel cylinders and brass wheels, have their cylinders cut very rapidly, and hence, however correct the escapement may be made by the workman, so soon as the cylinder shows wear all is over with time-keeping. Again, the cylinder and escape-wheel teeth must have oil applied, else the watch would not go a month, that again conduces to wear the cylinder; and should the watch be one which has moderate motive power and a fair weight balance, there is the great drawback of the shape of the wedge forming the tooth, the angle being acute, the balance of such watches having about half a turn of motion, when at the best and just cleaned. Such were made by many Londen makers. But some few manafacturers introduced ruby cylinders, with gold or steel escape-wheels, and ultimately increased the angle of the wedge teeth; then with a little more strength of mainspring such watches kept time very well indeed. But it is very ourions to observe that as the horizontal watch became gradually improved in the foregoing and a few other particulars, our French neighbours kept

THE PRIZES OF THE TURNERS' COMPANY.

THE Turners' Company of the City of London is determined to do something to encourage proficiency in the art from which it takes its name, and although the means taken may possibly not be the best for attaining the desired result. it is at any rate a step in the right direction. The competition for the silver medal and freedom of the company, which latter will include the freedom of the City, is thrown open to any workman or apprentice in England. We suppose that this is to be taken literally, and that the artisans of Ireland, Scotland, and Wales are debarred; if so, it is matter for regret, for the greater the number of competitors, the more honour will attach to the prize-winner. These competitions are to be continued annually, the materials on which the skill of the craftsman is displayed being varied each year, so as to include wood, ivory, metal, stone \&c., that for this year being " turning in hardened and tempered steel," as applied to horology-e.g.,
if mote than one box, numbered consecutively. A list explanatory of the contents, and a sealed envelope bearing a corresponding sign or motto, and containing the name and address of the competitor, his age, if an apprentice, and in all cases a certificate of good conduct, as well as the certificate above named, must accompany the objects. This envelope will not be opened until the judges have made their report. Sir William Armstrong, Sir J. Brown, Mr. Jones, of the Strand, and Mr. S. Jackson, of Red Lion-street, Clerkenwell, will be the judges. The specimens will remain the property of the competitors, and must be removed within a week after the decision. Let us hope that one of our readers will carry off the prize.

TROTMAN'S HYDRAULIC GOVERNOR.
NEW form of governor especially adapted for use in sea-going vessels, whether screw or paddle, has been recently patented by Mr. Trotman, who calls it the bydraulic governor to distinguish it from another of somewhat

equal pace with ns in that particular ? branch of industry; even the same angle of the wedge tooth was introduced from Geneva. Many still exist -of course very old watches-made by a firm in Geneva, and sold in London. Workmen may have many through their hands, and can readily distinguish such from their cases being very much bevelled off from the centre towards the edge. Such watches will never keep good time. They may also be recognised in many instances by the ratchet on the barrel, it being secured to it by three screws. Those who would wish to follow up this part of the subject more fully will do well to read "Cummings on Clock and Watch Making;" although an old work the horizontal escapement of that date is elaborately dealt with. Persons who may haveGeneva watches to repair of a similar description to the foregoing will not be losers of time if they attend to a few little matters connected with the escapement. Let them be certain that the bridge which has the cylinder lower hole on it is screwed perfectly tight, for there are many which are minus the escapement adjusting screw; also that the end-piece screw is firm ; these two little neglects often canse a deal of anxiety to young folk; but after the bridge of cylinder lower hole is secure, examine whetber the escape-wheel is the proper depth, to ascertain which, screw the escape-wheel in the frame, and so adjust the bridge or bar that the point of the escape-wheel tooth passes exactly over the centre of the cylinder lower hole. That is a proper depth for horizontal escapement, for then the tooth, in falling from one side of the cylinder to the other, does so with the greatest mechanical advantage; bat if the wheel were deep in the cylinder the blow from the escape-wheel tooth would be behind the centre, and impede the free motion of cylinder and balance, and if the wheel be very deep, I have known the pendalum spring's energy insufficient to bring back the balance for the escape, and hence the watch has stopped. Should the mainspring be rather strong that would be also greatly augmenting the defect.

similar construction which he denominates the pneumatic governor. A really serviceable and reliable governor for steam vessels is certainly a desideratum, and whether Mr. Trotman has found a means of supplying this remains to be seen when his apparatus is tested by actual work in a rough sea. The advantages he claims for it are immediate automatic action in any position, non-liability to derangement, ease of application to any engine, and perfect command over the rate of working. Fig. 1 represents the hydranlic governor in longitudinal section, Fig. 2 being a transverse section through the middle, and Fig. 3 an elevation of the end at which connection with the throttle or steamvalve is made. AA are pump plungers working through glands intochambers, as shown; B B are cross-heads whick connect the two plungers by means of rods working in guides, as seen in Fig. 2. D D are inlet or suction-valves to the pumps, and E E the correspondthe manufacture of pinions or esoapements used ing ontlet or delivery-valves. F is the hydraulio in chronometers, watches, \&c. Competitors are at liberty to select their subject for exhibition in turning and finishing, but it will be advisable to forward the complete escapement or train of wheels in position, to show the trath and accuracy of the work, the character of which will be judged of by the perfect truth, finish, and squareness of the parts, and as regards escapements by the accuracy of form and proportion for the purpose intended. Certificates will be required that the work has been done by the competitor alone during the period of the competition, and for their satisfaction the judges may require him to do a portion of similar work in their presence. In addition to the prize above named, the company's bronze medal will be awarded to the competitor whose work is found second in merit, and the company's certificate of merit to the third. The different objects must be delivered free at the Mansion House, London, during the week beginning Monday, October 21, and ending Saturday, October 26. They must be inclosed in a box or boxes, marked with a private sign or motto, and
chamber with ram G, to the outer extremity of which the mechanism regulating the admission of steam is connected at the end H. I is a guide for the ram and a set-screw regulating the play of the apring which adjusts the ram G, tending to force it into the chamber F. P is a set-screw and conical plug limiting the area of the plug-hole connect ing the delivery and suction passages S and T. V is a safety-valve capable of adjustment, and W, aperture through which the apparatus is filled with oil, water, or a saponaceous solution. With tha diagrams and the foregoing explanations of the parts the action will be readily understood. The apparatus is connected to the engine or motive power by the pins C, shown in Fig. 2, and being filled with liquid and the aperture W closed, the governor is set by increasing or decreasing the amount of opening of \mathbf{P}, by means of the handwheel, till the pressure in the chamber F exactly balances the counteracting pressure of the spring tending to force the ram G into the chamber F. It will be obvious, then, that if the speed of the engine is ao great as to canse more of the liquid
to low throngh the passage S , by reason of the more rapid sction of the pamp-plangers $A A$, than oan pass through the plag-hole P, the area of wl ich is limited by the conical plag, the ram G w:ll be forced ont wards and actaate the throttlevalve or other mechanism regulating the flow of steam to the cylinders of the engine. On the contrary, when the piston is travelling slowly the pump-plangers will canse less liquid to flow to the hydraulic chamber Fin a given time, the spring will force the ram G furtherinto the chamber, and move the steam-valve in the reverse way. It will be seen that the action of the spparatus does not depend on any particular or special position of the goveroor, but will be exactly the same when applied to engines of any arrangement ; and while from this fact specially suitable to seagoing vessels, it is also applicsble to every desoription of machine requiring prompt and antomatic regalation.

PROPERTIES OF THE GYROSCOPE.

1.IN the gyroscope, when the wheel rotates, 1. and the ring rests on the pivot, two forces the rim, and the deflective, caused generally (not invariably) by gravity.
2. This deflective force, aeting on the wheal, and impelling the free end of the anis domprards, pruduces an equal angular defleotion laterally, in the top of the rim.
3. The deflection of the revolving matter in the top part of the rim is at right engles to ithe tancential force.
4. These two forces, by "composition," preduce a resaltant in the eanne phane, in an intermediate dircotion, determined by the relation of the angrlar values of the two forees.
5. Each particle of the revolving metter, in passing at the top of the rim, suffers the same deflection, and thas receives a new dircotion the moment the deflection takes plece.
moment the deflection takes plece.
6. In other words, the tangential foree is suddenly converted, or twisted, as it were, into an intermediste one ; but the wheel, being rigid on its axis, can effect the change of direction which it eeeks only by pashing the axis backwards horizontally to the sume angular extent, till the tangential force coincides in direction with the resultant. (See movable diagram).
7. This receding of the free end of the axis constitutes, in fact, the lateral, horizontal, or orbital revolution of the whole apparatns, which commences immediately on its being placed apon the pivot, and left at liberty to take its own course.
8. The same deflection occurs at the bottom of the rim, at the same moment, in the same degree, and the effect is similar to, and conspires with, that already described.
9. The deflective force is commonly that of gravity, which is constant and acealerative throughout. Other forces, however, of an intermittent kind, may be applied, as a blow, or the npward, downward, or lateral pressure of the finger.
10. As to the remarkable self-supporting power which the wheel acquires when rotating, it is to be carefally noticed that the horizontal revolation of the axis and ring round the pivot, which has just been shown to be an effect, becomes immediately a like cause of a like effect.
11. Thus, while the lateral deflection of the top of the rim, combined with the tangential force at the same point, produces the retrocession of the axis (i.e., the horizontal revolation of the ring), this revolation of the ring becomes instantly a similar deflection of the side of the rim, which,
combined with the tangential force at that point, produces a like swerving of the axis upwards. (By side of rim is meant the point at right-angular distance from top or bottom.)
12. The forco of the swerve upwards is equal to the primary tendency of the axis downwards, and thus one balances the other. (It is not the intention here to enter into extreme mathematical niceties.)
13. In this continued and reciprocsl aotion consists the self-supportiog power which excites so much surprise, aud which can exist only so long as the orbital motion is animpeded.
14. As the defartion of the bottom of the rim conspires in its effect with that of the top, so, in like manner, tha d faction of one side of the rim co:spires in its ctrot with that of the oppopoint aud its opposite-all the deflections tonding point aud its opposite-all the deflections tending
to the sume resuit.
15. The law of rotation of a body on a morable axis, as illnstrated in the gyroseope, though deduced in this paper from the "composition of forces," may be fully explained by the following general proposition of Frisi's, depending on the same principle. "When a body, revolving on an axis, is acted upon by a force tend ing to make it revolve on another, it will revolve on neither, bat on a line in the same plane, dividing the angle whioh they contain iato two parte whose sines are inversely as the angular veloci ties which the body would have on the two axes severally, under the separate conditions."
16. From the presediug explanations certain inferences follow, which may be easily tested by experiments.
(1.) When the deflective force is that of gravity, which is accelerative, the resalting orbital motion should be accelerated. This is always found to be the case.
(2.). The deviation of the resultant, and consequent receding of the axis, should be greatest when the deflective force, or downward tendenoy, is greatest in respect to the tangential. This, also, is conformable to experiment.
(3.) Therefore, to diminish the defleotion by means of sliding weights on the contrary side of the wheel, is to lessen the orbital revolution. So, to redrce the defleation to zoro, by an exast ooraterpoise, is to dentroy the orbital motion altogether. Lsatly, to increase the counterpaise so as to canse an opposite defection-i.e., negative as respects the first direction-is to revesse
the orbital revolation, or render it negative as the orbital revolution, or render it negative as
reopeots is former direction. It may be remazked that the removal of the pivot to the opposite and of the axia, by revesing the deflection, rorarmes the creital revolution.

(4.) As the tendency of the asis downwards produces the horizontal swerve, arrorbital motion, and this motion in turn the npward swerve, it follows that to incresse the orbital-motion is to imerease the npmand swerve; and, vice versa, to hinder or destroy the orbital motion is to lessen or destroy the apward swerve or sublaining power. A very simple experiment proves thio. Gently urge the reoeding axis with the finger, and the vertical and the ring slides off the pivot. Eridantly, the operation may be reversed.
(5.) If, instead of placing the apparatus on a pivot at one end of the axis, we balance it between two centres outeide the ring, at right angles to the axis, and canse defleotion by attaching weights or levers, we produce precisely similar effects to those already shown. In this experiment a second or outer ring is necessary to support the first, and must be left free to permit the orbital motion of the axis.
17. The gyroscope is simply a spinning-top differently monnted; that is, with distinot oentres for wheel and ring. Teetotams, wheels, hoops, \&c., belong to the same olass of moving bodies, and are amenable to the same laws.
18. The conical motion of the axis of the spinning-top is identical with the orbital motion of the gyroscope.
19. This conical or oscillating motion of the common spinning-top is always the same way as the rotation-the centre of gravity being above the centre of motion and support. By raising the
oentre of motion within the body of the top till oentre of motion within the body of the top till
the centre of gravity falls below it the oscillation is reversed. There is here, in one respect, a resemblance to the slow motion of the earth's axis in the precession of the eqninoxes.
20. The orbital mution of the gyroscope has always the same direction as that of the rim on
the side tovards achich the axis deflects. Hence
if the free end of the axis deflects downsoarde the bottom of the rim determines its orbital directioa, if upwards the top. This is an important faot to remember, as it not only inclndes the phenowena described in the last two propositions, but effords an indication of the intentions of the gyroscope in any given experiment. And bere it mas be observed how caprioions those intentions seem. If when rotating it is held in the hand by a stom sorewed into the ring it resists all attempte to move it in certain directions-straining and wrifoling like a living thing, an imprisoned serpent-yet all the while aiming at one simple objeot, the orbisal turn of the axis, on the principle laid down. It knows what it wants, and has a right to, by the laws of Nature, and it sets a good erample by being content when that is attained.
The foregoing propositions, with others, cas all, I am convinoed, be understood and verified by any one who ohooses to examine the nabjeot attentively. They have been repentedly demonstrated by the writerin years past by inoumerablo experiments, not one of which has proved incos. sistent with the principles incullasted.

explanation of diagrams.

Diagram, Fig. 1, represents the wheel and rim, as viewed from a point vertioally above them. The circle is the open ring, CD the npper or visible halif of the rim, \mathbf{E} its top or highest point, AB the axis, B its free end, P the pivot EF, EG tangential and defleotive forces, both acting at $\mathbf{E} ; \mathbf{E H}$ the remaltant.
Diagram 2, a duplicate of the above, with a conond circle movable about P, representing the ring in its changed position, after the orbital motion has commonoed. XY denotes the direotion of the orbit or line of empenetion, alrays contreng to the tangential force. In this figure it is shown how the axis recedes till CD, moring to $C^{\prime} D^{\prime}$, has gained the same direction as the resultant EH.
N.B.-The lower' circle is to be drawn on a sepasate paper, a pin passing through both papers at the point P.

Honley, Huddersfield.
Wx. Horix.

IMPROVEMENTS IN PHOTOGRAPHY.

$T^{\text {E }}$HE improvements in photography recently Weyde, are attracting the attention of our pripciped professors of the art, large royalties having beat paid in many instances for the oxclasive rigbs to use it in given districts. The new process, which the inventor describes as the prodaction of metzsotint effects or "atmospheric stipples," consista is s method of combining and applying dry coloure mad crayons with ether substances, on albamenised glatenised, and gelatinised paper, surfaces saileblo ior photographic prints. ore effeots are rapidty, cheaply, anil easily produced, and at a great sarivg
of time and skill, the mothod being eepecially adepted to the finishing and beantifying of portruis and tigare photographs, as the effects are thoroagtu harmonious with their exquisite texture and delieds gradations and tones. It is well known that the surface of albumonised as well as other papers while apparently flat, consists of prominences eal indentations. Artists have observed that dry colow apphed to these prominences and indentations alise gives the appearance of opaqueness and absence a atmospheric effect, and they have aimed to appt dry coloar so as to toach only these prominsess. leaving the tints in the indentation to etim leaving the tints in the indentation to ething throagn, so to speak, and thas
atmospheric effect so desirable.

Mr. Vander Weyde's method gives the appearase of a very elaborate finish, such as conld be attainal in an approximate degree only by great labce. artistic still, and patience. Chiaroscuro efled can by this process be producod with great rapility by means of the luminoas stippled hall or midde tint which is frat produced, as this tint is capelio of being rapidly and readily lightened or darkeed withont destroying its quality, and because the sive or grain of the stipple is to a cortain extant und control. By this process a large surface ean k treated almost as rapidly as a small one, and to process, when applied to photographic portraits e Ggares, has the effect of softening, subdaing. zad retiring the background accessories and hard ant: lines, and thas enbancing by contrast the solidity brilliancy, and crispaess of the head and igen belonging to an albumenised print, the characiar ar ikeness remaining unaltered.
By this process the bickground and drapery a a portrait photograph may be made to rescuibl is mezzotint effect in engraving, but with a biabse degree of atmospheric effect (in any tint or cobjar: and with what istechnically koown as great breado aud freedom of touch, and a limiuons quality. fic effects obtained by previoas attempts in this din tion are not harmonions with the delieats gra dafsel
of the albnmenised photograph, the chalky, raw effict, eren when a stipple was obtained, being
snited ouly to crayon draxings or rough sketches. snited only to craton arakings or rough sketches.
Initian ink and water colons have also be en applied with a brush, one stroke or stipple at a time. They
have also been applied in the form of sprny, but the have also been applied in the form of spray, but the
eff.ct is blotchy and inartistic. Various other effect is blotchy and inartistic. Various other
methods by printing from negatives have also been ased for producing stipples, but with indifferent results.
In applying the invention to a portrait photograph to be finished in monochrome, Mr. Vander
Weyde prefers a comparativcly frobl priut, as age sonetimes injuriously affeets the albutnen, of which the paper should have received one coat only, for it
the albumen be too thick, it detracts from the artistic advantage foand in the texture of the paper surface, and makes it too much like plass. The picture shoald be priuted in vignette, the drapery
fading away gradually, the background having been fell masked, and the croand around the head and figure tinted very slightly by exposure to light, this tiut flowing into the head and tigare evenly, and the print sh ould be as vigorous, and its tone as
brilisant, as possible. It shonld be monnted, before drying, on a stiff, flat backing of cariboard-car haviug been taken to use paste or macilage free before it is thoroughly dried or quite hard, nsing ouls sufficient pressure to flatten down any irregalarities, thongh greater pressure is needed on emall pictures where a fine stipple is reqnired. The nld grain may be used with advantage, if the surface be very smooth or glassy. The picture thus prepared, when fixed on a drawiug-board, is ready for
the application of the invention. About two parts the application of the invention. About two parts
of powdered pumice-stone, of a medium grade of flutuess, and one part of finely crushed black crayon or pastel, preferably the softest French (thongh
not what is known as stumping sance) are sprinkled not what is known as stamping sance) are sprink
separately or mixed together over the surface to be treated, adding sufficient dry colour or crayon of a warm tint-such as crimson lake-to match the
tone of the photograph. Then with the fingers or tone of the photograph. Then with the fingers or
flat part of the hand, or a soft pad, rab this mixture flat part of the hand, or a soft pad, rab this mixture all high lights not desirable to be toned down. There should be enough of the mixtare ased to prevent contact of the hand with the bare sarface, and an even, steady, circular motion, avoiding a jerky, angular motion, and too much rubhing in one place; but all the parts should be rubped equally and cuenly as far as possible. Where a large or cross grained stipple is desired, as towards the edges of grained stipple is desired, as towards the edges of the picture, the motion shonld be brod and to obtain a
or skimming over the surface; while to or skimming ore
fine stipple-as, for instance, immediately round the
hesd and figare, where an increased receding effect hesd and figare, where an increased receding effect is desirable-a quicker, closer movement is required. It is prcferable to rab a little over the edges of the
head and figare than to avoid them. Rub thas head and figare than to avoid them. Rub thas
over all the parts to be treated several times, adding a little more crayon as it frees itself from the mixture and adteres to the surface, and occa-
sionally blowing off the mixturo to observe the sionally blowing off the mixturo to observe the effect, ceasing to rab wherever the colour has well
adhered to the sarface. Blow or dust off the loose mixture, when a dark, and seemingly dirty, smudgy surface appears; with the flugers apply a little of the mixture to darken any light spots or patches, then take n ithe powicred pume besthe over the whole, which bas the effect of partinlly loosening the mixture ingrained in the surface, and further blending it. It will be observed that the effect of the pnemice-stono is practically to dilute or attennate and minutely separate the particles of the crayon, thus giving them a trans parent qnality which alone they do not possess; the powdered pamice-stone, or other material, beingemployed in a manner analogons to the oil or water
used to thin or dilnte the colours in oil or wateraolour paiuting, bat with this difference, that, withont latoured skilful manipulations, a continuous that tint only is obtained in oil or water-colours,
however mach the coloar may be dilated, whereas however mach the coloar may be dilated, whereas
by the use of puunice-stone with dry coluar the travaparcut atmospleric stippled effect above mentioned may be obtained.

The effect produced un to this stage of the process can be proluced also, but not so well, by first apply. wards arlding and mingling the pumice-stone with it, and procecding to rub as before, then eprimble over all the parts trentcd a small portion of tinely
cru-Led, light gray, boft crayon, mixing sufficient warm coluur, such as crimson lake, to match the tone of the picture, and rub this firmly over all, with
the flugers, antil the surface becomes quite smooth, and un atmospberic stipple appears. For the lower parts of the pieture the inventor uses a crayou of a not be in harmouy with the picture, or shouid it be I desired to darken any part of it, it may bo changed
I by rabbiug in with the finger any coluar or cayon,
, with or withont a little pumice stone. To produce
very diliate stippled effects on the white parts of 1 the picture, soch as the shirt front, or as shown in
rubs in with a piece of chamois or kid skin a mixasing plenty of pamice aud great pressare. For the parpose of removing patches and obtaining an even surface, or lighting up any part desirable, pare ing or lightly rubbing the parts, and thas farther attennating or reducing the depth, of colour. A little Naples yellow rabbed all over will increase the aminous effect.
Other materials may be sabstituted for pamicestone, such as flour of glass, pulverised cattle fish, and emery powder, when a brown colour is required. Dry colours also, other than crayons, may be ased when combined with pumice-stone, but the crayous are best, because of their pasty cohesive nature, the Parisizn softest pastels or crayons possessivg theso qualities in the highest degree. For the production crayons of the colour desired, in the place of black and gray crayons.
In carrying out this process the following direc ions for further finishing the picture and canancing the effects may with adrantage be attended to skin, and when lighteniug or darkening any part of the background relieve the shaded side of the head and figare by a light background gradually darken ing towards the edge of the picturo, and conversely for the light side of the head and figare. A vigorons cast shadow will always relieve the head and tigure,
and it should commence saddenly and boluly and it shonld commence saddenly and boldly (ye the shady side of the bead jnst under the shoulde of a three-quarter figare, and jast over the shoulder if a head and bust. Here soft crayon sance, warmed to match shadows of the picture, will be found more vigorons than black crayon. This part of the background should present the strongest contrast of light and shade. Ink-eraser and vulcanised india. rubber may be used with advantage to remove small patches or lines, and to put in edge lights to the cast sha head or figure, and for high lights. The hair, eycs eyebrows, and al strong arapery shadith sin
centre of the figure, shonld be treated with prepare gam-water. For increasing high lights in whit drapery, or linen, or jewellery, mix a little orange chrome with thick Chinese white, to avoid a chalky effect.

MECHANISM.*

(Continued from p. 555.)

HITHERTO the commanication of motion from one piece to another in mechanism has been considere as taking place only by the pieces. The laws which govera the ratio of the velocities of the driver and follower were either
obvionsly impressed upon the driver, as in the case obviously impressed upon the driver, as in the case
of circular wheels rotating abont fixed shafts, or of of circular wheels rotating about fixed shafts, or of
cams acting npon simple rollers, or sometimes, but cams acting upon simple ronars, or somently, the law was impressed apon the combined action of the driver and the follower, a in the case of elliptical and lobe wheels, and sometimes cams acting upon cams. Whatever might be the law, the driver and follower mast, in accordance with the principles before annonnced, be placed in commanication by means of rigid bodies moving aboat centres or sliding in grooves. Such communication necessarily narrows the range of primary can the The space within which rigid bodics alone facilities for the transference of motiou. Suppose it was requisito (and the case is a very commou oue) o convey a fractional part of an existing primary montilised motion remaining. There must then be called into play a truly perplexing array of wheels, called into play a traly perplexing array of wheels,
cans, and bars, rolling, oscillating, and sliding, in cans, and bars, roling, oscilating, snd shaing, in motion.
Valuable to mechanics and engiseers as may bave been the deductions of the mechanician and mathe. matician in relation to the communication of motion by contact, the field of their operations must have putency to employ the heary cumbersome meaus by which aloue this mode conld be ntilised. Let auy one enter a workshop or factory, where steam or water is a source of motion, and those things which first arrest his attention are not whecle, cams, and rods-they are not the rolling and sliding of material sabstances, each in mechauical contact with the other-but they are the straps. the chords, and the chains which are united in what is usually called wrapping gear. Take, for example, the sheds or rooms in which the weaving of oloth is
carried on. They are generally on the basement carried on. They are gencrally on the basement
Hoor, in consequence of the beavy weight of the foor, in consequence of the beary weight of the as are other sights which varying manufacturing processes present, it may be questioned whether any thing in the manufacturing live is more perplex endlessuess of interlacing ly which, in these sheds,

- By the Rov. Antrita Rroo, M.A., being the Oantor
motion is transferred from a supply-shaft to the recipient shafts of the respective looms. Speaking gened or cure of these lono hanired to two hun closely packed that those who attend to them have but narrow space in which to move. To give motion to the parts of these looms with which the mechanician is conceroed, there are apparently from two hondred to four hundred atraps coming
from shafts generally near the ceiling. All straps are in rapid motion. aud the labyrinth of these moving bands is so bewihtering, and tho hopelessness of penetratiog with the eye turongh his labyrinth to the end of the sheds in which the looms are placed is so very great that there arises in the miad of an unaccastomed spectator a sense of fear rather than of respect for the skill which, from apparent chaos, briugs perfect order. And farther, in this same shed there is a whirr of wheels, a click of gathering ratchets, a din of beams, and sharp raps at brief intervals, now driving and now stopping the shuttles. There are material clements of varied forms seemingly endowed with hif action, each in its own sphere, disporting itself as the midst of these soands and scenes the aninithe midst of these soands and scenes the aninicause this babel of mechanic tongues are themselves perfectly silent. Each strap is doing-what England expects every man to do-its allotted dnty in its appointed way, too busy to moldle with its neighbour's concerns; and from straps such as these, thas simply coustructed and sufficient for the purpose, mechanicians can now obtain from one moving shaft, withoat the cunbersome mechanism and contrivance whicis motions by contacts require, as creat a variety of motions as plants obtain of flowers and fruits from the same garden soil.
For example, through the agency of straps, or of those wrapping connectors which partake somewhat of the character of straps, motion can be accele rated, as in spindles, lathes, and circular saws. It can be retarded, as in the descent of clock weights can canso tools to advauce, as in planing and shaping machinery, or retrogrado, as in empty
kibbles descending mine shafts; it may be made to kibbles descending mine shafts; it may be made to panse, as in panching and shearing machinery; a clock which remains at rest for an hoar; or it may canse a combination of reciprocation, acceleration, and retardation, as in mule-spinuing.
It is not only by means of strapa and bands that we can commanicate motion to a distance. There aid of pacal and chemical lams, just in the same way as sliding contact was, by the mechanician's ingenaity and contrivance, brought to assist rolliug contact, which it seemed entirely to destroy. On mechanician is dependent for distinct motions. For example, in the relays of telegraphs and blacking of railways, electricity and maguetism are employed In the delivery of parcels by the Pueamatic Com pany, blasts of wind are ased; in the motion of ships, steam is emploged; in the motion of project somaphore, light is employed; and in the conver semaphore, light is employed;
anve of sound, air is employed
Interesting as it is to follow the ingenaities by which the contriving minds of thonghtful men have put in harness such mighty powcrs, snd made them must not now encage attention. One brief sentence at parting with some of the noblest trinuphs of the human mind over
powers a nichte. not to be forgotten when Mr. James Nasmyth, with a delicacy of touch that would barely crush a soap.bubble, caused his newly inveuted steam hammer to gently tap an egg in a wine ghes to drive fine needles into wood, and then come down with a blow that shivered a block of oak, as thongh torn iuto splinters by a lightniug flash; and all this within the space of one minute, and withoat auy really personal effort.

Wrapping counectors are of various forms and different materials, and within limited distances ar the most convenient mode for iransferring motion The purpose for which each is to be emplosed de-
termines the material of the wrapper used. Stated generally - and the statement, though gemeral admits of bat few exceptions-where the ohje et is the trausmission of motion with a virw to obtain power, fat straps are ased, and when that motion is very the objen hat chains may be velocity or to work np to velocity. then round bands or cords mas take the place of flat straps or chains. The mode in which these strapa are generally nsed is by means of what are called pulleys-not pulleys as we co:nmonly anderstand the word. It is to be regretted that in mechanisu, as in other departments, the same
chara character. Pallers aro really. as we are mown them, simply whells with or witiont rims There are speciment on the diagram lettered A, B C, D, E, and F. Thesce of which sections are given in Fig. ©4, bave all at one tine or other been ent
pluyed; ther are but a sel.ction from a very numer pluyed; ther are bat a bel-ction from a very numer
ous olase. It is really extsaordinary to noto how
prejudice or profit prompts opinions, for in pallers prejucice or patisfactory forms have sometimes displaced the more satisfactory ones. The selected placed contain some pecaliarities worth stadying, for six contain some peca be found features which were
amongst them are to once tho
ployed. B are smooth-grooved pulleys.
Sometimes the groove is sharp or pointed, as at A. At other times the sloping sides are rounded into each other, as at B. Those who were present at a former lecture may remember that attention was directed to the form of the sides of a large grooved palley from the works at Orewe. The form of that groove, and the angle of inclination of the sloping sides in relation to the diameter of the rope, and the purpose for which the system was used, were then pointed out. Such a pulley would convey an amount of power, for the object of a palley thus formed in the groove is to enable the cord Which presses into the groove to drive the shaft to Which the pultey is keyed. By the wedging of the cord between the sloping sides this is accomplished,
and for this reason the slope of the sides and the and for this reason the shope of be related. Other diameter of the cord should be related. pulleys are arranged merely to guide the cord, and are not keyed on any shaik in that case is formed
be driven by it. The groove
as at B."

In the case of A (Fig. 24), it is essential that the cord should assume, by the force of tension and compression in the groove, something of an angular character, although only momentarily. The elasticity of the cord prevents it retaining the angular form, which is impressed upon it that the wheel may be driven. It was once thought essential, in order that a palley might be driven by a cord, that
the palley should be roughened, or have spikas pat in, as at E. The object was that the rope might lay hold of these, and so drag the palley ronnd. Many can remember the day when it was generally believed that railway trains could never ran on smooth rails, and some of you may know that rails were laid down which were either adapted for toothed wheels, or ronghened by some other means.
So here it was thought that a cord could never So here it was thought that a cord could never
drive a shaft through the agency of a palley without some means of holding. Sometimes the pulley was grooved or serrated, as at D (Fig. 24), the rope
laying hold on the serrated groove dragged the laying hold on the serrated groove dragged the
palley round. Sometimes Y-shaped iron projeotions were fastened on the pulley, thas presenting lodgments for the links of chains, by means of which the pulley could be dragged round. Other plans for holding the chain links were also used.
C and F (Fig. 24) are types of palloys now in use. Those hitherto considered have been used
with cords or chains. C and F are forms intended for straps. Until recent years all straps were formed of leather, latterly straps formed of guttaformed and canvas have been introduced. Although it was found that the adhesion of the strap to the pulley gave sufficient driving-power, and so enabled mechanics to dispense with the contrivances pre-
viously named, yet it was considered that unless plans vionsiy named, yet was consioned that nless plans
were adopted to hold thestrap on the palley it would not remain ; and at the time referred to palleys were supposed to retain the driving-band by such arti-
ficial means. Therefore palleys, similar to \mathbf{C}, with ficial means. Therefore pulleys, similar to C, with
high edges or deep rims, were used, and the band was supposed to run between the edges or rims. Very serious difficulties encompassed this apparently simple and necessary appendage. Any mechanic who attempts it will find, that although he thus provides a way and a guide for the strap, yet the strap may be said to have "a will and a way of its one did when told that all facts were against a novel theory he had broached- "Then so much the worse for the facts." So here. Perseverance in a
wrong opinion, however plansibly supported, cannot convert "wrong" into "right." The strap will rise up and run on these apper edges, or fray itself to
pieces in the corners by attempting to rise, and so pieces in the
be destroyed.
Mechanics lost both time and temper in trying to keep that band in its place. It woald not stop.
Yet if we let the band alone it will stop where we want it to stop. It will not obey our dictation if we say you shall stop, bat if we give it liberty to run off it never does.
24), it ther plain pulley,
never (Fig,
goes at all, but between those two
*Many anch formed palleys are seen along the rallTys, guiding the
Le somaphore.
walls on C it will not and cannot be bound. If anybody wants to destroy their bands, let them pat guides apon such pulle
will soon be complete.
There is a pecaliar and unexpected requirement here. A band always seeks the highent point upon the wheel, and those who take ap mechanism or who take up physical science, or who take up any branch of Nature's laws, will find it their wisest plan to learn what Nature says shoula be done, and
to seek to impress that npon what they wish to be done. We may jast as well attempt to make water done. We may jast as well attempt to make water
run up a hill as attempt to make a band ran on a flat between confined walls. The proper method is to observe how a band behaves itself, and you
will find it always trys to get to the highest point, in that respect imitating some of ourselves. Here (referring to a model) is a band running over a double cone, and about 6 ft . lower down it runs orer a cylindrical dram by which it is driven. On turning the lower drum the strap rises to the highest point of the cone. Why is that? You see it is now positively ranning on the edge formed by ${ }^{s}$ junction of the bases of the two cones. There is no provision made to kep it should ; ind down the hill, vision rather is that it sholid go down the hill
which we might think would be the easier to do ; Which we might think wonld be the easier to do;
bat it prefers going up and stopping at the top. The reason (now that we know the fact) is very simple-like many other facts that are easily explained when we know them. It was not so easy to anticipate it. The explanation may be given with the aid of this diagram. Fig. 25 is a rounded or coned palley, very mach distorted, in order to make the canse of the phenomenon more distinct. When a band is stretched between two pulleys, if there is any irregularity, however small it be, in the pulley or in the density of the band-we will assume it here to be in the palley-then the line of the strap at C (Fig. 25) is clearly moving, owing to its position on the palley, at a higher velocity than the line at c, and not only is it moving at a higher velocity, but that edge alone to be convejed. The driving power is transmitted simply along the edge C D, because that edge is atretched and the edge $(c \quad d)$ is not edge is stretched and the edge (c d) is not
stretched. The consequence is that stretched. The consequence is that the edge $C D$ of
the band touches the pnlley, and the edge c
d does not. Therefore, tonching the pulley, it drives

FIG. 26

being there most stretched is taken into the position shown by the dotthis portion of the band falls upon the larger
diameter of the pulley, and is carried in a plape at rignt angles to the rotating shaft. A the revaft thus causes the edge of the band 0 to resch the npper
orlargerdismoter or largerdiameter
as at
\mathbf{S}. Uliti. mately, the middle of the band transmits the pressure. It may not be the mathematical middle, but it is the middle, as regards density and elasticity; and although it may oscillate to one side or the other of the apper line,
s, it is again driven back. It oscillates about the middle, owing entirely to the difference between the degree on which the outside and inside edges are degree on which the outside and inside edges are
stretched. Therefore, we have no need whatever to do anything to keep bands in their places, except give them a high point in the palley to ride apon, give them a high point in the
and there they always stop.
Another point about these bands is their great rigidity. Hence a question of some consequence arises, namely, that the palleys shoald be of large diameters, and not too near each other. Nothing is more injurions to the band itself, and nothing involves a greater loss of power, than attempting to bend a rigid band round a small palley.
So far, then, for bands and cords. Chains, however, are also used for these parposes. Chains, bands, and cords, as generally uséd, transfer a motion not regularly, that is to say, they do not transmit it with a definite and decided law, because there is a cartain amount of sliding and slipping, and it becomes a very serions question if it is possible to arrange a flexible connector between ${ }^{\text {a }}$
moving shaft and one to be moved, which shall moving shaft and one to be moved, which shall
transmit a velocity ratio identical with that which can be transferred by rolling and sliding contact. There are wheels with what may be called teeth upon them, not teeth in the sense of toothedwheels driving other toothed-wheels, but teeth for a partioalar parpose, and chains made with links ohain is held by a tooth of the wheel. The consequence is, that sapposing another similar wheel engaged in driving this one, then the velocity $\left\lvert\, \begin{aligned} & \text { engaged in driving } \\ & \text { ratio of those wheels would be preserved through- }\end{aligned}\right.$
out the whole of the course. Thas the chain becomes, in fact, a flexible wheel with internal teeth.
driving another wheel in the same direction, as driving another wheel in the same direction, es
it wonld it it was a circular wheel with internal it wonld it it was a circular wheel with internal teeth. There are other chains which hook upon Fig. 24 similar to those on the finaged pad in the first mowing machine. Here are other forms of driving chains, this is one used in whiches ohronometers and clocks-chains that may be bent in one direction bat not in any other.
(To be continued.)
BRITISH ASSOCIATION.-ADDRESS OF THB PRESIDENT.
A^{T} the recent meeting of the British Associstion. LL.D.., F.R.B., President, delivered the following address :-
Thirty-six years have now elapsed since at the first and (I regret to say) the only meeting of this Association held in Bristol-which ancient oity followed immediately apon our netional universities in giving it a weloome-I enjoyed the privilege whieh I hold it one of the most valuable functions of these annual assemblages to bestow ; that of coming into personal relation with those distinguished meo "hose names are to every caltivator of science as "household words," and the light of whoee brillieat example, and the warmth of whose cordial eneoe. ragement are the most precions inflaenoes by which his own aspirations can be fostered and directed Under the Presidency of the Marquis of Lansdowne, with Conybeare and Prichard as Vice-Presidents, with Vernon Harcourt as G-neral Becreters. and John Phillips as Assistant Secretary, were gathered together Whewell and Pescock. James Forbes and Sir W. Rowan Hamilton, Murchison and Sedgwick, Buckland and Du la Beche, Henalow and Dedgwick, Backland and Do ha Becke Grenal Forbas Daubeny, Roget, Richardson, and Edwnard Forber with many others, perhaps not less distin
In his honoured old age, Sedgwick still retcins, in the academic home of his life, all his pristine interest in whatever bears on the advance of the scienee he has adorned as well as enriched ; and Phillip: still caltivates with all his old enthasiasm the $000-$ genial soil to which he has been transplanted. Br the rest-our fathers and elder brothers-" Whare are they?" It is for us of the preseat generation to show that they live in our lives; to carry forwurd the wort which they commenced; and to transmi the influence of their example to our own succer${ }^{3} \mathrm{ras}$
There is one of these great men, whose departur from among us since last we met clnims a apecish notice, and whose lifo-iall ns it was of years ast honours-we shouid have aldasirele see proloafter for a few months, coald its foebleness hare ber:
nnattended with suffering. For we should all the nnattended with suffering. For we should all tha with which be would have received the intellipenes of the safety of the friend in whose scientific leboers and personal welfare he felt to the last the kesour interest. That this intelligenoe, which oar on expedition for the relief of Livingstone world ham obtained (we will hope) a few months later, aboid have been brought to ns through the generosity of one, and the enterprising ability-may I not ax our pecaliarly English word, the "pluck"- of arr other of our American brethren, cannot bat be s that regret in the rommon ioy which both nations feel ingrel come to Mr. Stanley let us glory in the prooper come to Mr. Stenley. let ns glory in the prooper!
now opening, that England any America will operate in that noble object which-far mare than the discovery of the sonrces of the Nile-oar gray
traveller has set before himself as his true minion. traveller has set before himself as
the extinction of the slave trade.

Government Aid to Science

At the last meeting of this Association, I had itz pleasare of being able to announce that I had ro ceived from the First Lord of the Admiralty favourable reply to a representation I had venture to make to him, as to the importance of proeerat ing on a more extended scale the course of impuing into the physical and biological conditions of the deep ses, on which, with my colleagues Profeser Wyville Thomson and Mr. J. Gwyn Jeffreys I had been engaged for the three preceding years The fition of at least threa yearci dunarigating expith of at least three years duration, providos With an adequate scientifc staff, and with the mos complete equipment that our experience conld derise The Council of the Royal Society having been wo by the encouraging tenor of the enswer I had nceived to make a formal application to this effeet the liberal arrangements of the Government har been carried out under the advice of a scientife committee which included representatives of thi; Association. H.M.S. Challenger, a vessel in oren way suitable for the purpose, is now being Bsuc out at Sheerness; the command of the expedition is intrasted to Captain Nares, an officer of Whoee bixt quile t
excellent friend Professor Wyville Thomson, a whose suggestion it was that these ipvestigations were originally commenced, and whose zeal for the wefficient prosecution of them is shown by his relinquishment for a time of the important academic position he at present fills. It is anticipated that the expedition will sail in November next; and I
feel sure that the good wishes of all of you will go feel sure that
along with it.
The confldent anticipation expressed by my predecessor, that for the utilisation of the total eclipse of the sun then impending, our Government would "exercise the same wise liberality as heretofore in the interests of science," has been amply fulalled. An eclipse-expedition to Indis was organised at the charge of the Home Government, and placed under ment contributed its quota to the work; and a most valuable body of results was obtained, of which wiluable body of results was obtained, of which, being prepared nnder the direction of the Council of the Astronomical Society.

IIan as the Interpreter of INeture.

It has been customary with successive occupants of this chair, distingrished as Teaders in their several divisions of the noble army of science, to open the proceedings of the meetings over which they respectively presided, with a discourse on some not aware that any one of them has taken up the other side of the inquiry-that which concerns man as the "interpreter of Nature;" and I have therelore thought it not inappropriate to lead you to the consideration of the mental processes by which are formed those fundamental conceptions of matter and force, of cause and effect, of aw and order, which fernish the basis of all scientifio ressoning, and is a great deal of what I cannot but regard as falleis a great deal of what I cannot but regard as falls-
cious and misleading philosophy -" oppositions of cious and misleading philosophy - oppositions ot science isisely so called abroad in the world at those who set ap their onon conceptions of theorderly sequence which they discern in the phenomens of
nature, as fixed and determinate laws, by which those phenomens not only are within all human experience but always have been, and always must be, invariably governed, are really guilty of the of the ancients, and place themselves in diametrical sntagonism to those real philosophers, by whose comprehensive grasp and penetrating insight that comprehensive grasp and penetrating insight that
order has been so far disclosed. For what love of the truth as it is in nature was ever more conspicuous than that which Kepler displayed, in his abandoment of each of the ingenious conceptions of the planetary system which his fertile imagination had
successively devised, so soon as it proved to be insuccessively devised, 80 soon as it proved to be in-
consistent with the facts disclosed by observation? In that almost admiring description of the way in which his enemy Mars, "whom he had left at home a despised captive," had "burst all the chains of the eqnations, and broke forth from the prisons of the tables," Who does not recognise the justice of Schiller's definition of the real philosopher, ss one Who always loves truth better than his system? And when at last he had gained the full assurance of a success so complete that (as he sayn) he thought
he must be dreaming, or that he had been reasoning in a circle, who does not feel the almost gablimity of the self-abnegation with which, after attaining what was in his own estimation such a glorions sacrifice te abstaing fom claiming the applense of his contemporaries, but leaves his fame to after ages in these noble words: "The book is written; to

And when a yet greater than Kepler was bringing to its final issue that grandest of all scientific conceptions, long pondered over by his almost superhaman intellect-which linked together the heavens and the earth, the planets and the sun, the primaries and their satellites, and incladed even the vagrant establishing for all time the trath for whose utterance Galileo had been condemned, and giving to Kepler's laws a significance of whioh their author had never dreamed- What was the meaning of that agitation which pravented the philosopher from com-
pleting his computation, and compelled him to hand pleting his computation, and compelled him to hand of his own greatness, but the glimpse of the grand universal order thus revealed to his mental fision, which shook the serene and massive sonl of Newton to its foundations, we have the proof in that beanti-
fal comparison in which he likened himself to fal comparison in which he likened himself to a child picking ap shells on the shore of the vast ocean
of trath; a comparison which will be evidence to all time at once of his true philosophy and his profound humility.
Though it is with the intellectual representation of nature which we call scieluce that we are primarily ooncerned, it will not be without its use to cast a glanoein the first instance at the other two principal characters under which man acts as her interpret

- hooe, namely, of the artist and of the poet.

The artist serves as the interpreter of nature not when he works as the mere copsist, delineating that which he sees with his bodily eyes, and which we conld see as well for ourselves; but when he
endeavours to awaken withis ns the perception of those beanties and harmonies which bis own trained sense has recognised, and thus impart to us the pleasure he has himself derived from their contemplation. As no two artists agree in the origjnal constitation and acquired habits of their minds, ah look at pature with different (mental) eyes; so
that to each, Nature is what he individually sees in and
that
her.

The poot, again, serves as the interpreter of nature, not so much when by skilfal word-painting (whether in prose or verse) he calls ap before our mental vision the picture of some actual or ideal scene, however besatiful; as when, by rendering into appropriate forms those deeper impressions made by the nutare around him on the moral and emotional part of his own nature, he transfers these impressions to the corresponding part of ours. For it is the attribate of the true poet to penetrate the secret of those mysterious influences which we all
unknowingly experience ; and having discovered anknowingly experience; and having discovered this to himsolf, to bring others, by the power he
thas wields, into the like sympathetic relation with thas wields, into the like sympathetic relation with
natare-evoking with skifal touch the varied response of the sonl's finest chords, heightening its joys, assuaging its griefs, and elevating its aspirations. Whilst, then, the artist aims to picture what he sees in nature, it is the object of the poet to represent what he feels in nature; and to each
trae poet, Nature is what he indiridually finds in her.
The philosopher's interpretation of nature scems less individual than that of the artist or the poet, becanse it is based onfacts which any ono may verify and is elaborated hy reasoning processes of which all admit the validity. He looks at the nniverse as a vast book lying open before him, of which he has in the frst place to learn the characters, then to master the language, and finally to apprehend the ideas which that langaage conveys. In that the ideas which that language conveys. In that book there are many chapters, tresting of different
subjects; and as life is too short for any one man subjects ; and as ine ts too short for any one man
to grasp the whole, the scientific interpretation of to grasp the whole, the scientific interpretation of
this book comes to be the work of many intellects, differing not merely in the range but also in the character of their powers. But whilst there are "diversities of gifts," there is "the same spirit." While each takes his special direction, the general method of stady is the same for all. And it is a testimony alike to the truth of that method and to the unity of Nature, that there is an ever-increas ing tendency towards agreement among those who use it aright ;-temporary differences of interprets tion being removed, sometimes by a more complete mastery of her language, sometimes by a better apprehension of her ideas;-and lines of parsuit which had seemed ontirely; distinct or even widely divergent, being found to lead at last to one com rise to the general belief-in many, to the confident assarance- that the scientific interpretation of Nature represents her not merely as sho seems, but Nature represent

The Sclentific Interpretration of Nature.

When, however, we carefally examine the founda tion of that assurance, we find reason to distrust its security; for it can be shown to be no less true
of the scientific conception of Nature, than it is of of the scientific conception of Natare, than it is of
the artistic or the pootic, that it is a representation the artistic or the poetic, that it is a representation framed by the mind itself out of the materials sup-
plied by the impressions which external objects make apon thpressions which external object science, Nature is what he individually belieres her to be. And that belief will rest on very different departments have very unequal values, in differen monly known as the "exact " sciences, of which astronomy may be taken as the type, the date afrorded by precise methods of observation can be made the basis of reasoning, in every step of which
the mathematician feels the fullest assurance of certainty; and the final deduction is jastifted either certainty; and the final deduction is justiffed either
by its conformity to known or ascertainable factsby its conformity to known or ascertainable facts-
as when Kepler deternined the elliptic orbit of Mars; or by the fulfilment of the predictions it has sanctinned-as in the occarrence of an eclipse or an occultation at the precise moment specified many years previously; or, still more emphatically, by the actual discovery of phenomena till then unrecognised - as when the pertubations of the planets shown by Newton to be the necessery results of their mutnal attraction, were proved by observation to have a real existence; or as when the an-
known disturber of Urancs was found in the place assignel to him by the compatations of Adems and Lo Verrier.
We are accustomed, and I think most rightly, to speak of these achievements as trinmphs of the human intellect. But the very phase implies tha the work is done by mental agency; and the coin-
cidence of its resalts with the facts of observation is far from proving the iutellectual process to have
been correct. for wo learn from the hone been correct. for wo learn from the honest con fessions of Kepler that he was led to the discovery
of the elliptic orbit of Murs by a series of happy
aceldents, which turned his erroneous guesses into the right direction; and to that of the passage of the radius vector over equal arcas in cqual times,
by the notion of a whirling force emanating from the Snn, which we now regard as an entirely wrong the Smn, which we now regard as an entirely wrong
conception of the canse of orbital revolution.* It choald always be remembered, moreover, that the Ptolemaicsystemof astronomy, with all its crmbrous deal mechanism of "centrio and excentric, cycle and epicycle, orb in orb," did intellectanally represent all that the astronomer. prior to the invention
of the telescope, conld see from his actual stend of the telescope, could see from his actual stendpoint, the earth, with an accuracy which was proved
by the fulfiment of his anticipations. And in tnat last and most memorable prediction which has given an imperishable fame to our two illastrions contemporaries, the inadequacy of the basis afforded by actual observation of the perturbations of Uranus required that it should be supplemented by an assumption of the probable distance of the disturbing planet beyond, which has been shown by subsequent observation to have been only an sapsequena onservation
approximation to the truth.
Even in this most exact of sciences, therefore, we cannot proceed a step without translating the actual phenomens of nature into intellectual repro-
sentations of those phenomena ; and it is becanse sentations of those phenomena; and it is becanse
the Newtonian conception is not only the most simple, bat is also, ap to the extent of oar present knowledge, universal in its conformity to the facts of observation, that we accept it as the only scheme of the universe yet promalgated, which satisfies our intellectual requirements.
When, under the reign of the Ptolemaic system any new inequality was discovered in the motion of a planet, a new wheel hed to be added to the ideal mechanism, as Ptolemy saia, hosare appearasces.
If should prove, a centary hence, that the motion If should prove, a centary hence, that the motion
of Neptane himself is disturbed by some other of Neptane himself is disturbed by some other
attraction than that exerted by the interior planets, attraction than that exerted by the interior planets,
we ahould confidently expect that not an ideal but a real canse for that distarbance will be found in the existence of nother planet beyond. Bat I trast that I have now made it evident to you tha this confident expectation is not justified by any absolute necessity of Natare, bat arises entirely ont of our belief in her uniformity; and into the gronnds of this and other primary beliefs, which serve as the foundation of
rtherl presently inquire. certainty is gother class oi cas for concturions tha seem to flow immediately from observed facts, though really evolved by intellectual processes ; the apparent simplicity and directuess of those processes either cansing them to be ontirely over looked, or veiling the assumptions on which they are based. Thus Mr. Lockyer speaks as confidently of the sun's chromosphere of incandescent hydrogen, and of the local outbarsts which canse it to send forth projections tens of thousands of miles high as is he had been able to captare a flask of this with oxygen. Yet this confidence is entirely based on the assumption that a certain lize which is seen in the spectrum of a hydrogen flame, means hydrogen also when seen in the spectram of the san's chromosphere; and high as is the probability of that assumption, it cannot be regarded as a demonstrated certainty, since it is by no means inconceivable that the same line might be produced And so when Dr . Higains dednces relative positions of certain lines in the spectra of different stars, that these stars are moving from or towards us in space, his admirable train of reasoning is based on the assumption that these lines have the same meaning-that is, that they represent the same elements-in every laminary. That assump tion, like the preceding, may be regarded as possess ing a sumiciently high probability to jastify the
reasoning based apon it; more especially since, by reasoning based apon it; more especially since, by the other researches of that exceilent observer, the
same chemical elements have been detected as same chemical elements have boen detected as
vapours in those filmy cloudlets, which seem to be stars in an early stage of consolidation. But when Frankland and Lockyer, seeing in the spectram of the yellow solar prominences a certain bright line not identifiable with that of any known terrestria lame, attribute this to a hypothetical new substance which they propose to call Heliam, it is obvious oundation. nutip it shall he on a far less secare cation, which, in the case of Mr. Crookes's researches on Thallinm, was affiorded by the actual discovery of the new metal, whose prescnce had been indicated to him by a line in the spectrum not attribu. table to any substance then known.

Common Sense.

In a large number of other cises, moreover, our acientific interpretations are clearly matters of judgment; and this is eminently a persanal act, the
value of its results depending in each case upon the value of its results depending in each case upon the
qualifications of the indiridual for arriving at a qualifications of the indiridual for arriving at a
correct decision. The surest of such judgments are those dictated by what we term "common sense,"

- Soe Drinkwater's "LIfe of Kepler," in the Library of
as to matters on which there seems no room for difference of opiuion, becanse every sane person comes to the same conclusion, although he may be able to give no other reason forit than thatit appears to him " gelf-evident." Thus, while philosnphers
have raised a thick clond of dust in the discnssion of the basis of our belief in the existence of a world external to ourselves-of the Non Ero, as distinct from the Ego-and while every logician clains to have found some flaw in the proof advanced by every otber-the common sense of
mankind has arrived at a decisiou that is practically mankind has arrived at a decisiou that is practically Forth all the arguments of all the philosophers who have fought again and again over this batte-ground.
And I think it can be shown that the trust worthiness of this common sense decision arises from its dependence, not on any one set of experiences, but upon our unconscious co-ordination of the whole
agyregate of our exprriences-not only on the conclusivesess of any one train of reasoning, bat on the convergence of all our lines of thuught towards hus one centre
Now, this "common sense," disciplined and enlarged by appropriate culture, becomes one of our most valuable instraments of sciontific inquiry affording in many instances the best, and sometimes the only, basis for a rational conclusion. Let us take as a typical case, in which no special kuowthe " flint implements" of the Abberille and Amiens gravel-beds. No logical proof can be addaced that the peculiar shapes of these flints were given to them by haman hands; but does any unprejudiced person now doabt it? The evidence of design, to
which, after an examination of one or t wo such specimens, we should only be justified in attaching a probable value, derives an irresistible cogency
from accomalation. On the other hand the from accumalation. On the other hand, the imshape by accident becomes to our minds greater aul greater as more and more such specimens are found: until at last this hypothesis, although it cannot be directly disproved, is felt to be almost in. conceivable, except by minds previously "posorigin of man. And thas, what was in the first instance a matter of discussion, has now become claim the unhesitating assent of all whose opinion on the subject is entitled to the least weight.

Necessity of Special Knowledge.

We proceed, upwards, howerer, from such qrestions as the common sense of mankind generally is conpetent to decide, to those in which special knowledge is required to give value to the jndgment; of that facalty comes to be more and more individual; things being perfectly "self-evident" to men whose training has lain in or different direction, do not apprelend as such. Of all departments of science, genlogy seems to me to be the one that
most depends on this specially-trained "common most depends on this specially-trained "common
sense ;" which brings as it were into one focus the light afforded by a great variety of stndies, physi. cal and chemical, geographical and biological, and throws it on the pages of that great stone book, on
whic! the past history of our globe is recorded. Which the past history of onr globe is recorded.
And whilst astronomy is of all sciences that which may be considered as most nearly representing Nature ns she really is, geology is that which most completely represents her as seen through the modum of the interpreting mind; the meaning of the phenomena that constitnte its data being in juilgments passed upon the same facts being often difirerent, according to the qualifications of the acqnaintance with the bistory of this department of science, can fail to see that the geology of each eroch has been the reflection of the minds by which its staly was then directed; and that its true progress dates from the time when that "common cally adopted, which consists in came to be gene nation of past changes in the forces at present in op ration, instead of invoking the aid of ex
traordinary and mysterions agencies, as the ol er geologists were wont to do, Whenever
they wanted-like the Ptolemaic astronomers-"to save appearances." The whole tendency of the has been to show how little reliance can be placed apin the so-called "laws" of stratigraphical and palieontological succession, and how much allowance as to be made for local conditions. So that while fulinlment of his predictions as an evidence of the correctuess of his method, the geologist is almost entirely destitute of any such means of verification. For the value of any prediction that he may hazard
-as in regard to the existence or non-existence of
al in any given area-depends not only upon the of the general doctrines of geology in regard
saccession of stratised saccession of stratified deposits, but still
pinn the detailed knowledge which ho may rired of the distribation of those ho may rticalar locality. Hence no reasonably
$:$ an woald discredit either the general doc
trines or the methods of geology, becanse the prediction proves untrue in such a case as that now
aboat to be broaght in this neighbourhood to the aboat to be brough
trial of expericuce.

Origin of Primary Beliefs.

We have thans considered mnn's function as the scientitic interpreter of Nature iu two departments example of knowlenge; one the other of the freest method, which mau can employ in constructing his intellectual representation of the universe. And as it would be found that in the stady of all other departments the same methods are used, either separately or in combination, we may pass at once to the other side of our inquiry-namely, the origin of those primury beliefs which constitute the ground-
work of all scientific reasoning. The whole fabric of reaning.
The whol. fabric of geometry rests upon certain axioms which every oue accepts as true, but of which it is necessary that the trath should be assumed, because they are incapably of demonstra-
tion. So, too, the delivernners of our "common sense " consider the "self-evidence" of the propositions affirmed.

This inquiry brings as face to face with one of the great philasophical problems of oar day, which has been discussed by logicians and metaphysicians of the very highest ability as lenders of opposing schools, with the one result of showing how much schools, with the one resuit of showing how much
can be said on each side. By the intmitionalists it is asserted that the tendency to form these primary beliefs is inborn in man, an ori,iual part of his mental organisation; so that they grow up spontaneonsly in his mind as its faculties are gradually unfolded and developed, requiring no other experience for their genesis than that which snffices to call these facultics into exercise. But by the adrocates of the doctrine which regnrls expcrience as
the basis of all our knowledge, it is maintained that the primary beliefs of each individual are nothing else than geueralisations which he forms of such experiences as he has either himself acquired or has conscionsly learned from others; and they deny that there is any oricinal or intritive tendency to the formation of such beliefs, beyond that which consists in the power of retaining and generalising experiences.
have not introduced this sabject with any idea of placing before you even a summary of the ingenious arguments by which these opposing doctrines
have been respectively sapported; nor should I have bsen respectively supportea; ; nor should I
have touched on the question at all, if I did not believe that a means of reconcilement between them can be found in the ides that the intellectual experiences of the prccious race. For, as it appears to me, there has been a progressive improvewent in the thinling pover of man; every product of the culture which has preceded serviug to prepare the Now, as there can be no doubt of the hereditary transmis.ion in man of acquired constitutional pecaliarities, which manifest themselves aliko in tendencies to bodily and to mental disense, so it seems equally certain tbat actuired mental habitudes often inpress thenselves ou his orgnnisation, with transmission to the off spriug as tendencies to similar
modes of thought. And thas, while all admit that knowledge cannot thus descend from one generation to another, an increased aptitude for the acquire-
ment, either of knowledge generally, or of some ment, either of knowledge generally, or of some
particular kind of it, may be thus inluerited. These tendencies and aptitudes will acquire additional strength, expansiou, and permanence, in each new generation, from their habitual exercise apon the muterials supplica by a continually enlarged experience; and thus the acquired habitudes produced by the intellectual culture of ages will become "a
We have an illustration of this progress in th fact of continual occurrence, that conceptions which prove inadnissiblo to the minds of one generation, in conseqnence either of their want of intellectual power to apprehend them or of their preoccupntion
by older babits of thought, subsequently find a aniversal acceptance, and even come to be approred
as "solf-evileut." Thus the first law of motion, as "self-evileut." Thas the first law of motion,
diviued by the genins of Newton, though opposed
F I amphath to bo allo to appetal the followin' extract from a letter which My. John Mill, the great Mitster of a few munths sinue, with refereuce to the attempt I had
 in $u \%$ respect inuate or instinctive have been frequeatls repented, tho mind acquires, as is proved by the power
of habit, a greatly increased facility of pasiog int of hatit, a grently increared facility of pasing ints
those states; Rand this increased facility muat be owing
to some those states; and this increased facility mate be owing
to sime chane of a physical character ia the orknnic
action of the brain. Ther
 mitted, more or less cimmpletely, by inherit, unce. The
linits of this power of tansmision, hnd the conditions
on which it deneod are scientitio wurld; and are a sublject now fairly Lefore the
d uliticss, in tiwo know
 you do, at least in principle.
by many philosophers of his time as contrary to all exp-rience, is now accepted by common consent, not
mercly as a legitimnte inference fron experionent. but as the expression of a necessary and univeras truth, and the same axiomatic value is extended to the still more general doctrine, that energy of asy bind, whether manifested in the "molar", motion of masses, or consisting in the " molecular" motion of atoms, must continue under some furm or ot ber wihout abatement or decay; what all admit in regard to the indestructibility of matter being accepted as no less true of foras-namely, that as nihilo nil nt, so nilfil ad nihilum.
But, it may be urged, the very conception of these and rimilar great truths is in itself a typical
example of intuition. The men who divioed and enunciated them stand ont above their fellows. sa possessed of a genius rhich conld not only combine but create, of an insight which conld clearly disGrant wat reason could bat dimly the inting this freely, I think it may be the intuitions of iudividual genias are bat specially property of the race at the time, and which bave com to be so in virtue of its whole previons calture. Who, for example, conla refase numbers, which displayed itself in the untatored boyhood of Grorae Bidder anil Zerah Colbara, the boyhood of Crorge Bluter anil Zerah Colbara, the title of an intuitive gift? Bat who, on the other
ham?, can believe that a Bidder or a Colhnrn coald hani, can believe that a Bidder or a Colhnrn coald suddenly arise in a race of savages who cannot
count beyoud five? Or. agrin, in the history of the count beyond five? Or. agnin, in the history of the connise the darn of that plurions genins, whoee brilliant but brief career left its imperishable impress on the art it enriched? Bat whe woald be bold enou'h to affirm that an infant Mozart could be born amongst a tribe, whose only masical instrement is a
Again. by tracing the gradual genesis of some of those ideas which we now accept as "self-evinent"

- such. for example, as that of the " aniformity of Nature"-we are able to recognise them as the expressions of certain intellectnal tendencies, which have progressively augmented in force in saccessive generations, and now manifest themselres as mental instincts that penetrate and direct our ordinary course of thought. Such instincts constitute precious heritage, which has been transmitted to as with ever-increasing valug through the long guecession of preceding generatious; and which it is for us to transmit to those who shall conac after us, culture and wider range of knowledge can impart.

Matter and Force.

And now, having stadied the working actian of the haman intellect in the scientific interpretation of Nature, we shall exninine the general oharacter of its prodncts; and the first of these with which we shall deal is our conception of matter and of its relation to furce.
The psychologist of the present day views matter entirely throngh the light of his own conscionsness: his idea of matter in the abstract being that it is a citing sensations; his idea of any "property" of matter being the mental representation of some kind of sensory impression he has received from it: and his idea of any particnlar kind of mattar being the representation of the whole aggregate of the sense-perceptinns which its presence has called ap in his mind. Thus when I press my hand againge this table, I recoguise ity nnyieldingness throagh the coujoint mediun of my sense of tonich. my muscular sense, and my mental sense of effort, to which it will be convenient to give the general dekignation of the tactile seuse; and I attribute to that table a hardness which resists the effort I make to press my hand into its sabstance, whilst I also recognise the fact that the forco I have employed is not snfficient to move its mass. But I press my band against a lump of dough; and findinethat its substance yichls under my pressure, I call it inft Or azain, I press my haud arainst this desk; and I find that althongh I do not thereby change its jorm. I change its place; and so I get the tactite
idea of motion. Again, by the impressions receired through the samo sensorial apparatns, when 1 lift this book in my hand, I am led to attach to it the notion of iri ight or ponderosity; and by liftin? different soliils of abont the sames size, I am enabled. by the different degrees of exertion I find merelf obliged to make in order to sustain them, to distinTuroagh the medium of another set of sense ner. ceptious which some regard as belonging to a diferent category, we distiuguish between bodies that frel "hot" and those that icel "coll $;$ " and in this manner we arrive at it ine notion of differences of
teomperature. And it is throngh the mediun of our tactile sense, without any aill from vision, that we

first gain the idea of solid jorm, or the three dimensions of space.

Again, by the extension of our tactile experiences, we ncquire the notion of liquids, as forms of mattur yelding readily to pressare, but poseressing a sensible weight which may equal that of solids: and of air, whode resisting power is much slighter, and whose by artificial manns. Thus, then, we arrive at the by artificial manns. common to all forms of mintter; and now that we bare got rid of that idea of light and heat, electricity and magnetism, as "imponderable fluids." which used to ver nur souls in our scientitic child. hood, and of which the popular term "electric
flaid" is a "survival," we accept these properties flaid is a "survival," we accept these properties
as affording the practical distinction between the material" and the "immaterial.
Turning, now, to that other great portal of sensition, the sight, through which we receive
most of the messages sent to us from the niverce around, we recognise the same truth. Thus it is agreed alike by physicists and pbssiolomists, that colour loes not exist as such in the object or transmitting a certain number of millions produce that affection of our concionsness which we call colour, when thry fall apon the retina of the living percipient. And if there be that defect either in the retina or in the apparatus behind it, which we call "coloar blindness" or Dattonisin,
some particular lucs cannot be distingnished, or there may even be no power of distinguishing any colour whatever. If we were all like Dalton, we should see so diffrrace, except in form, between ripe cherries hanging on a tree, and the green leaves around them: if we were all affected with the severest form of colour blindness, the fair face of nature would be seen by us as in the chiar'oscuro of an engraving of one of Tarner's landscapes. not as in the glowing hues of the wondrous picture itself. And in regard to our visual conceptions it of very numerons observations made apon persons Who have acquired sight for the first time, that these do mot serve for the recogmition oven of those familiar through the touch, until the two sets of sense-perceptions have been co-ordinated by experience. -
When once this co-ordination has been effected however, the composite perception of form which we derive from the visual sense alone is so complete that we seldom require to fall back upon the tonch for any further iuformation respecting that quality of the object. So, again, while it is from the co-
ordination of the two dissimilar pictares formed by any solid or projecting ohject upon our two retine that (as Sir Charles Wheatstone's admirable investigations have shown) we ordinarily derive through the sight alone a correct notion of its solid form, there is adeqnate evidence that this notion, also, is a mental julgment based on the experience we have acquired in early infancy by the consentaneou exercise of the visual and tactile senses.
Take, aynin, the case of those wouderfal instraments by which our visual range is extended almost into the infinity of space, or iuto the infinity of minateness. It is the mental, not the bodily, oye that takes cognisauce of what the telescope and the microscope reveal to us. For we should have no
well-grounded confidence in their revelations as to Weil-grounded contidence in their revelations as
the unkiouen, if we had not first acquired experience in distinguishing the true from the false by applying them to linown objects; and cvery iaterpretation of what we see throngh their instrumen-
tality is a nental judgucnt as to the probable form, tality is a mental judyment as to the probable form,
size, and movement of borins romoved by either their distance or their minuteness from being cognosced by our sense of touch.
The case is still stronger in regard to that last
addition to our scientific arnumentum, which promises to be not inferior in value either to the telescope or the microscope; for it may be truly said of the spectroscope, that it has not merely givended the range of our vision, but has almost given us a new sense, by enabing us to recognise
distinctive properties in the chemical elements which were previonsly quite nuknown. And who which were previonsly quite nuknown. And who as to any form of matter; or that the scirnce of the as to any form of matter; or that the sciruce of the fourth quarter of this century may not furnish us
with as great an enlargernent of our koowledge of its properties, sud of our power of recognising them as that of its liaird has done?
But. it may bo aid
But. it may be raid, is not this view of the materinl universe open to the imputation that it is
"evolved out of the depths of ourown conciousness" -a projection of our own intillect into what

Thna, in a rece- ily recorded caoe in which gizht was imparted by nperation twa y yaug worman who had been

 reppidity (at she called it) in not haviog tande them out
b. ijec.
surrounds us-an ideal rather than a real world? If all we kuow of matter be an "intellectual concep. tiol, how are we to distinguish this from nuch as
we form in our dreams?-for thrse. as our laureate no less happily than philosophically expresses it. are "true while they last." Here our "common
sense" comes to the rescue. We "nwake, and sense" comes to the rescue. We "nwake, and
behold it was a druam." Every healthy mind is conscious of a iream." Every healthy mina his dreauing experiences; or, if he is now aud then puzzled to answer the question "Did this really "1appen, or did I dream it ?" the perplexity arise Andevery bealthy mind, finding its orinexpepined of its waking state not only self-consistint, bat con sistent with the experiences of others, accepts them as the basis of his beliefs, in priference to even the most vivid recollections of his dreams.

The luvatic pauper who regards himself as a king, the asylum in which he is coutined as a palace of regal splendour, and his keepers as obsequious at teudauts, is so "possessed" by the con-
ception framed by his disordered iutellect, that be ception framed by his disordered intellect, that he
docs project it out of himself into his smrroundings; his refusal to admit the corrective teaching of common sense bcing the very essence of his malaily. And there are not a few persons abroad in the world, who equally resist the teachings of educated common sense, whenever they run counter to their own preconctptions; and who may be regarded as-in so far-uffected with what I once heard Mr. Carlyle pithily characterise as a "dilated insanity.'
It has been asserted, over and over again, of late years. by a class of men who claim to be the only true interpreters of Nature, that we know nothing but matter and the laws of matter, and that force is a mere fiction of the imagiuation. May it not be aftirmed, on the othr baud, that white our notion of matter is a conception of the intellect, periaps even the only direct-cognisance? As have already shown you, the knowledge of resistance and of weight which we gain throngh our tactile sense is derived from our own perception of exertion; and in vision, as in hearing, it the horce with which the andulations strins ness with sights or souuds. True it is that in our visual and auditory sensations, we do not, as in our tactile, directly cognosce the force which produces them; but the physicist has no difficulty in makiog sensible to us indirectly the andulations by which sound is propagated, and in proving to onrintellect light is really enormous.*
It reems strange that those who make the londest appeal to experience as the basis of all knowledge, should thus disregard the most con stant, the most fundamental, the most direct of all experiences; as to which the common sense of mankind affords a guiding light much clearer thau any that can be seen through the dust of philosophical discassion. For, as Sir Johm Herschel nost traly remarked, the aniversal conscionsniss oristence is as much in accord in regard otween causene of an external world; and that consciousness arises to every one out of his own sense of personal exertion in the origination of changes by his individual agency.
of canse wine fally accepting the logical definition of canse as the "antecedent or concurrence of ante cedents on which the effect is invariably and ancon-
ditionally conscquent," we can always siugle out one ditionally conscquent," we can alwaye siuble out one dynamical antecedent-the power which does the
work-from: the aggregate of material conditions under which that power may be distributed aud applied. No doubt the term cause is very loosely emploged in popular puraseology; often (as Mr. Mill has shown) to desiguate the occurrence that immediately preceded the effect; as when it is powder is the cause of its explosion, or that the siipping of a man's foot off the rung of a ladler is the canse of his fall. But even a very slifhtly trained inte. igenee can distinguigh tie power
which acts in each ense, from the couditions under which it acts. The force which produces the ex plosion is locked up (as it were) in the powder ; and iguition merely liberates it, by hringing aboat new chemical cambinatious. The fall of the man from the ladder is dae to the gravity which was equally paling hindown white herestechoug; and
the loss of support, either by the slipping of his foot, or by the breaking of the rung, is merely that change in the material couditions which gives the porer a new actina.
Many of you bave donbtless viewed with admir. ing iuterest that truly woulerful work of human desinu, the Walter printing machine. You first imply palls a handie towards him; and the whole ineri mechanism becours instiuct with life-the hauk paper continnously rolling off the cyliater at oue end, being delivered at the other, wituout any

- Sne SIr.Juhn Herbchel't Familiar Lectures on Scion
tiluc Subjecta.
intermediate human acency, as large sheets of print, at the rate of 15.000 in an honr. Now what is the cause of this most marvelloas effect:
Snrely it lies essentially in the power or force which the palling of the handla brought to bear on the machine from some extraneons source of power-which we in this instance know to be a steam-engine on the other sine of the wall This force it is, which, distribated through the rarious parts of the mechauism, really periorms the action of which ench is the instrument; the ony suply the vebicle for its transmission ant appiraion. The man comes again, pashes the machiue the opposite direction, detaches tho machiue from the stcam-engine, and the whole comes to a stand; and so it remains like an inaninewal of its moving power.
But, say the reasoners who deny that force is anything else than a fiction of the imagination, the revolving shaft of the steam-engive is mater in motion ;" and when tbe conaection is establishe between that shaft and the one that drives the
machine, the mation is communicated from the for mer to the lation incommunicated several parts latter, and thesce distributed to the operation is just what an observer might give who bad looked on with entire ignorance of every thing but what his cyes could sce; the moment he pats his hand apon any part of the machinery, and ries to stop its motion, be takes as direct cognisance, through his sense of the effort required to resist it, of the force which produces that motion, a he does throngh bis eye of the motion itself.
Now, since it is uuiversally admitted that our notion of the external world would be not only in complete, but erroneous, if our visual perceptions were uot supplemented by our tactile so seems to me, our interpretation of the phenomena of the universe mast be very inadrquate, if we do
not mentally co-ordinate the idea of force with not mentally co-ordinate the idea of force with
that of motion, and recognise it as the "efficient that of motion, and recognise it as the efficien cause" of those phenomena - the "material conditions" constituting (to use the old scholastic term) only" their formal cause." And I lay the grenter stress on this point because the mechanical philo express itself in terms of molion rather than in terms of force; to become kinetics instead of $d y$.

Thus from whatever side we look at this question whether the commen sense of mankind, the logieal analysis of the relation between canse and effect or the stady of the working of our own intellects in the interpretation of nature, we seem led to the those elementary forms of thought with which we can no more dispense, than we can with the notion of space or of succession. And I shall now, in the last place, endeavorar to show you that it is the last place, endeavour to sho for the mere phenomenal idea, which gives their bighest value to our conceptions of that order of nature, which is wor shipped as itself a God by the class of interpreters whose doctrine I call in question.

"Laws," and the Power which gives Effect

 to them.The mest illnstrative as well as the most illustrions example of the difference butween the mere generulisation of phenomena and the dynamical onception that applies to them, is harnisbed by tary contion discovered by the persevering ingenuity of Kepler, and the interpretation of that motion iven us by the profonnd insight of Newton. Kepler's three laws were nothing more than compreheusive statements of certain groups of phe-
nomena determined ly observation. The first, that nomens determined lyy observation. The first, that of the revolution of the planets in elliptical orbits, was based on the study of the observed places of Sars alone; it might or might not be true of the other planets; for so far as Kepler knew, there night not be the excentric circles which he had first supposed that of Mars to be. So K'pler's second law of the passage of the radius vector over equal areas in equal times, so long ns it was simply a generalisation of facts in the case of that oue planet, carried with it no rcason for its applicaderive from his erroncons conception of a whinhing derive from his erronnous conception of a whining
force. Aud his third law was in like manner simply an expression of a certain barmouic relation whish he had discovered between the times and the distances of the planets, havi:g no more rat i, mal
value than any other of his nnmernus hypothes: Now, the Newtonian "laws" are of hin spoken of ss if they wromarly higher !eneraliwions in which hepler's are iucluded; to we they seem to possess un altogether different chrracter. For them tending to produce continnons nuiform motion in a straight live, the othre twaing to produce a unformly accolerated motion towards a fised point, Newton's wouderfal mastery of if these dynamical a-emmptions be granted, kepler's phenomenal "laws," being n ecessary cinse-
quences of them, must be unirergally true. Ind
while that demonstration would have been alone sufficient to give him an imperishable renown, it was his still greater glory to divine that the fall of the moon towards the earth-that is, the deflection
of her path from a tangential line to an ellipse-is of her path from a tangential line to an ellipse-is
a pherummenon of the same order as the fall of a stone to the ground; and thas to show the applica-
bility to the entire universe, of those simple dynability to the entire universe, of those simple dyna-
mical conceptions which constitate the basis of the geometry of the principia.

Thus. then, whilst no " law" which is simply a gencralisation of phenomerna can be considered as
having any cocccue action, wa may assign that value to laws which express the universal conditions of the action of a force, the existence of which we
learn from the testimony of our own conscionsness. learn from the testimony of our own conscioasness. tation mast act onder all circamstances according tation mist act ander all circamstances according
to its one simple law, is of a very different order from that which we have in regard (for example) from that which we have in regard (for example)
to the laws of chemical attraction, which are as yet only generalisations of phenomena. And yet even in that stroug assurance, we are required by our a rescrve of the possibility of something different; a reserve which we may well believe that Newton himself mast have entertained.
A most valuable lesson as to the allowance we onght always to "make for the unknown "possi-
bilities of nature," is tanght us by an exceptional phenomenon so familiar that it does not attract the notice it has a right to claim. Next to the lav of the universal attraction of masses of matter, there is none that has a wider range than that of the expiansion of bodics by heat. Excluding water and ne or two other sabstances, the fact of such ex. pansion might be said to be invariaidic; and as recards bodies whose gaseons condition is known, simple and detuite than the law of gravitation. Supposing those exceptions, then, to be unknown the law would be unirersal in its range. Bnt it comes to be discovered that water. whilst conforming to it in its expansion from $39 \frac{1}{\circ}^{\circ}$ upurards to its
boiling-point, as also, when it passes into steam, boiling-point, as also, when it passes into steam,
to the special law of expansion of vaponrs, is excep. tional in its expansion also from $39 \frac{1}{\circ}^{\circ}$ dowonwards ts its freezing point; and of this failure in the aniverality of the law, no rationale can be given. salt in water, we should remove this exceptional peculiarity; for sea-water continues to contract rom $39!^{\circ}$ downwards to its freezing-point 12° or $1 \cdot l^{\circ}$ lower, just as it does
perature at higher ranges.
Thus from our stady of the mode in which we arrive at those conceptions of the orderly sequence
observable in the phenomena of Natare which we observable in the phenomena of Nature which we
call "laws," we are led to the conclusion that they call "Laws," we are led to the conclusion that they and that they may or maynot express the ideas of the great author of Natare. To set up these laws as selfacting, and as eithar excluding or rendering unnecessary the power which alone can give them effect, appeak of any law as "regulating" or "governing" puenomena, is only permissible on the assumption of a governing power. I was once in a great city which for two days was in the hands of a lawless mob. Magisterial authority was suspended by imidity and doubt ; the force at its command was paralysed by want of resolute direction. The "laws were on the statute book, bat there was no power
to enforce them. And so the powers of evil did the enforce them. And so the powers of evible work; and fire and rapine coutinued to destroy lifo and property without check, until new power came in, when the reign of law wan restored.
And thus we are led to the culminating point of man's intellectual interpretation of nature-his re-
cognition of the anity of the power, of which her phenomena are the diversified manifestations. Towards this point all scientific inquiry now tends. The convertibility of the physical forces, the correthat nextes betweon mental and bodily activity, which, explain it as we may, cannot be denied, all lead upward towards one and the same conclasion; and the pyramid of which that philosophical conclusion instincts of humanity.
mitive instincts of humanity.
By our own remote progenitors, as by the antutored sarage of the present day, every change in which haman agency was not apparent
was referred to a particular animating intelliwas referred to a particular animating intelli-
gence. And thas they attributed not only the movements of the heavenly bodies, bnt all the phenomena of Natare, each to its own deity. These deities were invested with more than haman power;
but they were also supposed capabie of human passions, and sabject to human capriciousness. As the nniformities of nature came to be more distinctly recognised, some of these deities were inrested with a dominant control, while others wer supposed to be their sabordinate ministers.
majesty was attributed to the greater gods
ubove the clouds; whilst their inferiors
above the couds ; whilst their inferiors
me down to earth in the likeness of men.' de down to earth in the likeness of men.
corth of the scitntific studg of Nature
the conception of its harmony and unity gained ver-increasing strength. And so among the most enlightened of the Greek and Roman philosophers, onity of the directing nind from which the order of unity of the directing nind from which the order of
nature proceeds; for they obviously believed that, as our modern poet has expressed it-

All are bat parts of one stupendous whole,

The science of modern times, however, has taken a more special direction. Fixing its attention exclusively on the order of nature, it has separated seek after its causc. In this, science is fully justified, alike by the entire independence of its objects, and by the historical fact that it has been continually hampered and impeded in its search for the truth as it is in nature, by the restraints which theologians have atteunpted to impose upon its inquiries. But when science, passing beyond its own imits, assumes to take the place of thsology, and sets upits own conception of the order of nature as a sufficient account of its cause, it is invading a province of thought to which it has no claim, and not unreasonably provokes the hostility of those who ought to be its best friends.
For whilst the deep-seated instincts of humanity and the profoundest researches of philosophy, alike point to mind as the one and only source of power it is the high perogative of science 10 demonstrate
the unity of the power which is operating through the limitless extent and variety of the universe, and to trace its continuity through the vast serie
ages that have been occapied in its evolution.

USEFOL AND SOIENTIFIO NOTES.

A Now Rock Drill.-Many descriptions of rook drilling machines have been designed within the past ton years or so with more or less satisfactory resalts; and althongh porfection in this kind of boring apparatns is possibly not yot attained, a good stop in this
direction has been taken by Mr. McKean, who for the last six years has been experimenting, and bas at length constracted a machine which, for simplicity, facility of manipalation and application in any position, oombined with strength, is beliered to be anrivalled. It is driven by either ateam or compressed air, and can be adaptod 1501 b . driven by 751 l , depth of 13 in . per minute in Aberdeen granite. This is a maximam, bat an average daty of from 6in. to 9in. s minnte free from shock to the machine us the piston coshions against steam or air, and the feed is either antomatio or by hand as desired. One of these drills can be seen working daily in granite at 22, Borough road.
The Oxyhydric Light.-In relation to the oxyron light of Tessie du Motag, of which we have made mention, it may be stated that M. P. Thomas, acting nnder instructions from the Paris Society of Civil Engineers, has recently presented to this body a report apon the process. This report simply treats of technical advantages and disadrantages, leaving ont of aight the economical question, which is somemat to be regretted in view of the indiatinct statement of the canses which have led to its remoral from some of
the streets of Paris where it had been introduced. The the streeta of Paris where it had been introduced. The conclusions arrived at are the following:- -(1) Theoretically, the combastion of oxygen does not increase the tically, however, it ensblos a burner to consame four times the quantity of gas that can be burned in air, without detriment to the atilisation of the light which may be developed. In particalar, it atilises the antire Inminoas capacity of the gases, however rich, and in almost any quantity. Consequently, it woald be disadrantageous to employ it for ordinary street-lighting. on account of the limited quantity of gas consumed by the barners, the only advantage gained being the beanty of the light, provided the gas is very rich. expense from the complication of the apparatas.) Bat it is very advantageous, and the more so in direct proportion to the richness of the gases employed-for
great centres of light (san-barners, \&c.), where a large great centres of light (san-barners, tc.), where
volume of gas is to be consumed without loss.
Fruel in Italy.-While the searcity of coal is alarming the inhabitants of our island, the Italians in a way that will render them independent of the present coal crisis. Lignite is procared from the mines of Monte Rufoli, which is being more and more widely ased in the Peninsala. It barna well in fireplaces withoat making any noise, and experiments have been mithoat making any noise, and experiments have been most expensive Newcastle coal, one quintal of the former being equal to three-quarters of a quintal of the English coal. This material is already being ased in distilluries, and it is likely to be emploged in the asion of the iron of Elba, as it containg no element Italy to be independent of our coal, as the inhabitants
in consnme charcoal in their kitchens in a very eoouomi. cal manacr, their expenditure being aboat one.tenth of that of an Eugliah calinary estailishment

LETTERS TO THE EDITOR.

[W0 do not hozd ourculves respondibe for the opinione that all communications shomld bo drawn wp as briegly as posatble.]
commuications should be ediressed to the Ferteo of the Enolise Mecianic, 81, Tavetock-Ctrect Covess Garden, W.O.
All Choques and Post Oplco Ordere to be made paycble - J. Pasgmora Edwards.
"I would have every one write what he knowh and so much as ho knows, but no more; and that not in this only, but in all other subjects: For such s person mas have some particular knowledgo and exporionce of abso
nature of such a person or such a fountain, thet as to nature of such a person or such a fountaln, thet on to
other things, knows no more than whet overybody doen and yet to keep a clutter with this little pittance of hia Fill undertake to Write the whole body of physicks:
vice from Whence great inconvenionces derive sheir
original."- Monkaigne's Ereays. ** In ordor to facillidate reference, Correopondenten when
opoabing of any Letter previously incorted, will oblige by apontioning the nwobler of the Lettor, at well as the gate on whioh it appears.

MR. PROCTOR'S GULF STREAM MAP.
[4755.]-As this map was sololy intonded to give true areas, "E. L. G.'s" criticism (lot. 4731, P. 566) is misapplied so far as his comparicon between the equal surface and stereographic projection is concorned (Sarely he does not suppose there is anything new in his remarks beginning "there is another projection quite as eass," dc. The storeographio projection is probably the oldest in existence. Its propertiee were perfectly well known to me. They are considered and demonstated in a simple way in my "Handbook of the Stars," published more than six yoars ago. They are employed in the index-maps of my smaller atles both of which, by the way, show much more than : complete hemisphere. I have also anggestod the nse of the projection, appliod so as to shom nearly the
whole ephere as the best possible contrirance for Whole ephere as tho best possible contrivance for enabling national men to readily plot down "great
circle" courses.) The differenco (" bareity a third circle" oourses.) The diference ("" barely a third
larger superficial measare') which "E. L. G." considers "trnly immaterial" seoms to mo simply monstrous. Doer he consider it matter of indifier ence is an aroa of $8,000,000$ square miles is apparenty increased by $1,000,000$ sqqaro miles? Ra the is mistaizon as to the limits of my map. It inciudes of Avis. This was essential for my reaconing "R.L. G." will And that it the stereographio projection were applied to sach a range of our earth's earfece, a ohange of auperficial acale far greater oven than his immaterial (hongh monstrous) change woald zocrue. I had no occasion whatever to illastrate forms in my article on the Gulf Stream; though I fally recognive the interest of Mr. J. Wilson's commanication, rele tive to the direction of the carrents whioh impinge ore
the shores of the British Isles. Nor could I bave opened out the meridians as "E. L. G." gugresta without carrying the boundarios of the Atlantio mach too far amay from oech othor, between Soath
Amerion and Africa, to be incladed in any map of reasonable dimensioni.
I ventare to think that I have had a mach vider practioal oxperienco of all modes of projection than mapa on different projections ; and I will andertake to say that thieront projections; aiow in constructing the map "E. L. G." speaks of can be falalled by no nther definite pa that whioh I have adoptod, at leest, not or ans served nomewhat better; and I began the preparntion of a map on sach a pian ; bat I foand it woald take much more time than I could eparo. bicailed A. Peoctor.

OCEANIC CIRCULATION.-CARPENTER . MUHRY.
[4756.]-In answar to ${ }^{\star} \mathrm{J}$. B." (lot. 4745, p. 367, ${ }^{1}$ may remark that I had his lotter and come othar com Dr. Carpenter iow in aying hal question. If I had intended to imply that Dr Car penter wha the original inventor, I should have subetiated the words "pat formard " for "adrocata" a theory if be is the inventor of it At least, Wobeter defines " adrocete" as " one tho pleads for another" Bat as my ramart seeme open to misconception I Bat mon lo to " J." lor setting the matter righ I I thank "J. B." for the very gratif fing wey in which he speaks of my essay. I ought to remark, however, hat I have no settled convictions as to oceanic ciroula tion. The sabject is one which requires an abandance as in a position for safe theorising.

I sm not sware that there is th.

the alightest oridenos he Atlantic circalation of Gaines is the place Whance "Popalaris") circulation has ita origin, as suggeated by Popalaris" in letter 4746, p. 587. If I conld have Gainea would not have appeared to be in any sence distisguished from any other part of the curface circaation. It appears to me that the main (not the acle) canse of the oceanic circulation is the continual with. soas through evaporation. As far as I can jadee, no ther cause is comparsble in energy with thic tremen

ENGLISH MECHANIC TURNERS' SOCIETY.
[4757.]-I AM afraid the above has fallen through given it a start, bat nothing seems to have come of it.

SETTING MOTHS.

[4758.]-Allow me to mention a method of setting these which is, in my opinion, snperior to those already named. After secnring the insects in position with needles, an operation which will be assisted by ruling gnide lines across the stretcher, wind some fine glaze 1 thread over the wings from end to end of the setting.
board, securing it from slipping by notches in the board, secaring it from slipping by notches in the board. Three threads across each wing are enongh
for the largest. A slight twirl given to the needles on for the largest. A slight twirl given to the needes the wing.
the organ (Expression a la maln).
[4759.]-I AM afraid our friend "The Harmonions Blacksmith" has proposed a practical impossibility, al though theoretically it is possible: all these things are possible to an organ builder who has a good enough golden
glass to look through. But before looking at the ases of this expression, and some of the difficalties to over come, let us see what is the intended nse of it. Int remember rightly expresion duced into harmoninms about the year 1850, principally to allow the treble note of an air to be heard more distinetly, althongh it also eqnally allowed any other note to be strengthened, or
whole passage conld be so strengthened, yet the idea was to allow the air of a tune to be more distinctly heard than it nsually is in harmoniums, where all the
notes blend together so notes blend together much as to give the idea of one rich note rather than varions notes (in passing, I varions notes (in passing,
may mention Dawe's melody attachment, which is another attempt to overcome by softening every note ex. cept the highest, so that is distinctly heard). Such is distinctly heard). Such being the use of the exdifficulty to be overcome, is there anything in the tone of the organ which wants improving in a similar manser, and what difiof producing such an expression? To my mind, be no 1 mprovement; if it is required to give the melody more distinctly than asoallaying alreay bo done by playing it on a lond stop on one row of keys and the row. I do not quite anderstand whether "The Harmonious Blacksmith" proposes to inclose each pipe of only one stop in a swell, or he corresponding inclose the corresponding pipes of each stop, so if the organ has 54 notes there wonld be 54 swell boxes, each box inclosing the pipes belonging I presame, is his meaning.

To do so the pipes woold require to be planted in a single line on the sonndboard instead of a doable one as at present, and that would require a windchest of something like ten feet from side to side, as space would have to be allowed for the side of the swell between each pipe. Now, to my mind, expression a a main could only bo useful -if at all-in small organs with one row of keys, in ract, only in chamber crgans, and an organ ten fee wide whoat a case woal be rather too big for mos people who are content with one row organs. There is, shats closely, and it ought to do so ; the boxes being so shnts ciosely, and smalhont anening the bor the pressure of wind way very to flaten the friend say then? And last of all, it does not appear to me to be required, for unless a number of matation stops are need, the tones beloaging to each key are so distinct that every note in the fullest chord is readil distinguished.

ECONOMY IN USING COAL

[4760.]-It is well hnown that most of our grates are very badly constrace ed, and the greater portion of the heat goes up the chimney. The sides of the grate should make an angle of 1us, wila the back to relec Rumford.

Faber.

Faber.

MARINE AQUARIUM.

[4761.]-Having been rather succesaful with a marine quarium (or rather a rock fool), I thought it likely hat the readers of the ENGLISH MECHANIC wonld like to follow my plan, which seems to me to be good as
well as cheap. On a window-sill place a moderate-sized well as cheap. On a window-sill place a moderate-sized glass globe aquarium of fresh water (see C); in this
have two siphons, one short like n, and one long like ; bring a large earthenware pan about 2 ft . in diameter and 9 in . or 10 in . deep; cover the inside of this with stones and rockwork, using pamice-stone pebbles, gravel, and sand ; in cementing the stenes, pebbles, gravel, and sand; in cementing the stenes,
\&c., to the side of the pan use a cement made of two parts resin, one part beeswax ; fix the pan in a rough deal table or stand, the top of which also ornament with rough rockwork (see h); in the crevices of the rocks plant seaweeds (sea.grass is the best); fix and cement to the pan a glass tabe, reaching to the bottom (see i); this tube must have a cone-shaped cork (bored through the centre) fixed into it (see k and); m is the shorter glass siphon, having a cork-rest fixed to it, eo that it mav rest on the edge of the globe when not in action. When the seaweeds have been planted in the rockwork of the par fill up with sea water, until a marked point is gained (see o). When the sea-water evaporates put the siphon of fresh water, , on the top dio fresh water from the bottom of the patler to ada the f in the on 1 when the water will rise from thom freben the lower plants, These rock pola mar be men very cheaply, and if nicely done will afford quite as

leading screw of 2 threads to the inch. Therefore, my remarks will only apply (practically) to that, as I have to write what I know, and no more:-If you are chasing screw with an even number of threads in the inch, ach as $, 4,6, * c$. , with the lathe screw of 2 threads the box tight, then put the nut into gear with the lea ing box tignt, then put tue nut into gear with the lead.
 or it po so or keep it going; tase off the cat and the nat oat of tor bel fas to screw for
 atter box, also on the ixing against which the boss of ho has who it the same pla lake ofl the h, your sur in when, and put the, wind beck the saddo dittle way past the begin ang, the bas the ro the then por mish talo; pat the in with a stat lhe Pepeat this the screm is ont
 I b, said before, yon are cotting an he latith; yon mas toep it roning. When the sadde has tra. you may keep th th g. Whouind sado has traafter marking the hand-whel a before decribed) and be not out of gear, wind back the sadde; pat on ore the in por of your getting across the thread, if you put the nut properly into gear
In cutting odd pitches, it is different, bat I have fond no difficulty by doing as follows:-If you are catting (say, for example) 8 threads per inch with the bading screw of 2 per inch, and you only want the screw to be cut to be $1 \frac{1}{2} i \mathrm{in}$. long, it you can work the saddle farther than the length required, you may do so ; thas, artor making your tool and he tring you are going to cat ready, you put the screw into gear; turn the lathe round until you feel the sea ue move, hen puta mari behind the saddie on the lathe-bed; start the lathe cut the 1 din. ; then talse the cut off, and let the lathe run another din., and pat a mark at the other end of the saddle. The aaddle has thus worked 2 in. ; bring it back, and do likewise. If it is not convenient for you to work the sadale farther than the length required you may allow $\frac{1}{2}$ in. at the starting point. You will easily see that by letting the saddle work zin. farther, we make the ratio between the screw to be cat and the leading screw of 6 to 4 an even pitch. One example will suffte, and 1 think this matter will be sufficiently anderstood. Bat should it not be convenient to work the saddle a greater distance than the length of the screw required, proceed as follows :-Put the sadde into gear with the leading screw, the the latie with your hand until you feel it move, then pat a mark a the end of the saddle on the lathe-bed, one on the lathespindle and the fast headstock, just behind the face plate, and another on the leading screw and the fixing hat holas it in its place, then sel the hathe on, and travel the lengti of torn back toun ontil the men the Pindle and hadsck are together, and the marte pinde and headod fing tor, nut into gear with the leading screw; start the lathe, and proceed in this manner until the screw is cut.

Apprentice Turner.

NEW SOUTH WALES AND ITS METALS.
[4763.]-Since my last letter to you a new era has dawned on us. The golden age has been revived here, and an age of copper and tin is opening new treasures to our view. The mining mania here is now at fever Sydney Morning Herald, which will give you some idea of what is taking place in New Sonth Wales at present, bnt it will not inform you of all that has been done in mining matters for the last few months. Since the commencement of the year to the 1st of May-a period of four months-upagrds of 200 companies have been floated for the prodnction of gold, copper, and tin, involving a nominal capital of some four millions sterling, and the floating of new companies is still in progress. Before this reaches you I have no doubt that the mineral richness of this colony will be known in England, as large shipments of metals and ores have been made for several months.
It has just occurred to me that the ENGLise Mechanic might be of great use in assisting the deveInchanic might be of great use in assisting ehe deveopment of our resources by occossional ar he have abundant sapplies of coal and iron of the best quality, and gold and copper have for years been articles of export from these colonies, bat tin is a recent discovery here, and is found in rich abandance imbedded in primitive rocks, or disseminated along the beds and banks of rivers and creeks in allavial deposits, which are richer and parer than that obtained from mines, as by exposure to the atmosphere the pyrites origirally associated with the tin is oxidised and disappears. Some of this stream tin is very rich in gold, the gold in some cases being as valuable as the tio. Now, as tin is a new product here, valuable as the tio. Now, as tinlish friends how to tarn it to best advantage, and you woald be conferring a it to best adrantage, $\begin{aligned} & \text { and } \\ & \text { groubt not, would be appreciated }\end{aligned}$ by tho colony-if some of your contribators were to py the colony-il some from time to time the most approved methods pabcrushing, washing, and smelting the ore, and more of crushing, wasbing, and smelting tue ore, and
I merely throw ont these hints as the mail is leaving, I merely throw oat these hints as the mail is leaving, advisable.

Join Rag.
beE managrment.-DRIVING AND TRANSFERRING.
[4764.]-Wrisx it is necessary to trangfer the conlents of an ordinary atraw skip, or box hive. to a bar frame hive, it involves the neccusity of driving or
dramming; names given to the operation by which bees drumming; names given to the opernion by which bees are made to leave their combs and hive, and ascend to
the hive placed abore them for their rec. ption. Givon, then, a common straw skip fall of combs and bees, to transfer to a bar frame hive. henceforth op me called be driving or drumming, henceforth by me called
driving. In passing, I may say that the same process driving. In passing, I may say that the same proesss
is that by which artidicial swarms are made, and the presence of qneens ascertained, and the queens themolves extracted if reqnired.
Driving shonald be purfirmed in the middle of the day. When the majority of the working bees are away
in the filda, for reasons the most obvious-to wit, there in the fielda, for reasons the most obiona-to wit, there majority will be oninfinenced hy the operation, what ever means be asta, and consequently rebbing need not
be apprehended, as the said majority will quite be able be apprehended, as the said
to deal with all marauders.
Driving is performed as follows: In the middle of the day blow a little emoke into the hive, a very little Will do, and to do this the only apparatus reqnired is a
common pipe of any kind, but timid people may nee a oommon pipe of any kind, but timid people may nge a
long clay. Pat a small bit of tobacoo in the bowl, pat long clay. Pat a small bit of tobacoo in the bowl, pat
a lighted fazee into the tobacco, wrap one or two thicknesses of handkerchiof over the bowl, and apply the moath to the bowl, blowing the smoke out of the
waxed end of the pipe into the hive. A very little waxed end of the pipe into the hive. A very little
smove mast be naed, or the bees will not come out with all the drumming rou cen give them, and if they are made drunk, they will stick in the combs as if entangled together. The reason for this is, that smoke frightens
them, and their frst impulse is to gorge themselves them, and their frst impulse is to gorge themselves
with honey as if determined to save all they possibly with honey as if determined to save all they possibly
can of the sweets they think exdangered. In that can of the sweets they think oudangered. In that trollable; bat if too much smoke be given they become sick and drank, and vomit their honey among them selves until they become a stioky, immovable mass.
After smoking (gently), the hive should be prised off its floor-board, and kept ap, Bay aninch, so that the bees
may be the more alarmed, and after aboat five minutes may be the more alarmed, and after about five minntes
the hive may safely be carried from its stand; inverted, and set, if a round topped one, in a pail, if a fiat topped one, on an inverted pail a few yards from the stand. An empty hive of the samesize (or larger) shonld be set on it and another empty hive should be placed on the stand There the fall hive was removed from. The empty hive is for the parpose of "amasing" the bees which
return from the fields while the dramming goes on, and their astonishment at Anding it there instead of the full one prevents the robbing and excitement one reads so mach af. The empty hive having been fairly eet on the inve ted fall one, a roand towel should be boand tightly roand their place of janction; and as a rule it will be foand that the towel will go twice round, and may be eecared by putting a atick in the loose
fold and twisting it ap tight. Then beging the drumfold and twisting it ap tight. Then beging the drum-
ming, so called becaase two sticks are used, one in ming, so called beesanse two sticks are used, one in
each hand, to beat the sides of the lower hive. In this care should be taken not to drum too hard on the sides of the hive to which the ends of the combs are atteched, for fear of cansing a collapse of the whole, and it will be found that in about a quarter of an hear nearly all the bees will have ascended to the top hive. The real object of the drumming is to cause a alight jarring of the combr, a sort of miniature earthquake, which torrifies the bees and drives then ont, unleas they have had too much smoke.
The bees having ascended to the top
The bees having ascended to the top hive it shosld be remored and set on ita own stand instead of the empty one placed there, the psendo empty one being tarned
orer anywhere to cance the beea therein to join the main swarm, which they will readily do.
If it is reqaired to get rid of the fer remaining bees from the inverted hive-and it cannot be done with a feather-scrape a hole in the gronnd in front of the original stand, pat the roand towel into it,
pour on aboat an onace of chloroform, and set the pour on aboat an ounce of chloroform, and set the hive orer it for a fem minates, when it will be fonnd
quite free of bees, and it will also be found that those opersted on are too fall of honey and too tired to make any demonstration, all that has been written to
the contrary notwithatanding. The canse of misohief the contrary notwithatanding. The canse of misohief
is in culting the honeycombs and filling the air with is in cutting the honey combs and flling the air with scentiug afar off come in thonsands to partake of. Imperfect observers think they are the bees which hare
been operated on, bat they, poor things, are already been operated on, bat they, poor things, are already
oreroharged with honey or pollen, and have nowhere to deposit it, so why should they, or how conld they be robbers? I have driven hundreds of swarms under all circamstances, and I most distinetly assert, without reservation, that, a driven 6 warm is invariably comed
and helplese, and never volunteers a marauding attack. and helpless, and never volunteers a marauding attack.
Transferring the combs after the bees have been got Trangferring the combs after the bees have been got rid of is simply a mechanioal operation; bat had
better be performed by an amateur in 2 room to which better be performad by an amatenr in a room to which
the bees have no access, for if thos bo allowed to taste the honey within doors, they will speedily and for several days become a naisance to the honsetbold. The
toolas which will bo ncceseary are a sharp carping snife, toola which will bo neceeseary are a sharp caring knife, a large dish, a fem strips of thin deal juat a trits
longer than the frames are from front to rear, inside, a longer than the frames are from front to rear, inside, a
few wine corks, a fine awl, a few strong pins or nails, and little wooden rack or grating similar to a smail
hurdle. Lay the gratig on the dish, and the frame on urdle. Lag the grating on ths dish, and the frame on
.0 grating, cat the bire coutaiuing the combs slick

mb oleanly, and lay it in the frame. If it comes out
Hat-topped hive it will fit close along the apper bar
of frame; bat, if from a round-topped bive, it will require catting to fit. R member the oamb mast always
be attached to the top har of frame, and to one or both be attached to the top har of frame, and to one or both
sides if possible. If it is too large or wide for the frame, cnt away the parts conteining boney, and let them fall through the grating into the dish, and crond
the comb into the frame with the knife, and if it flls the combinto the frame with the knife, and if it fills hold it in its place nntil the bees have time to fix it permanently-henoe the neoesvity for an ami, to bore
the hales throngh the frames. Flat-headed alate nails will answer admirably for the purpose, they are about itin. long, fine, straight, and claan, and are cheap. In axing the comb by them they should not be thrast into alternately, for the centre or fonndation of the comb is much stronger than the cells, and it the pins are on both sides of it it cannot fa l ont. If the combs are
too small, and will not fit or fill the frames, the best plan is to fit it to the corner of the frame, as in Fig. 1 . Place one of the deal strips ander it, and press it ap
tight with two or three of the corks, pin it in as shown tigat with two or thrce of the corks, pin it in as shown,
and raise it ap to a perpendicalar by raiting ap the aratiog so as not to casase any strain on the comb or ringh. The corks ack capitally al blocks to keap ap the strip at bottom of comb, and standing solid are
not likely to tarn or fall. The comb is now ready to not likely to turn or fall. The comb is now ready to put into the centre of it. The other combs should be reated in a similar way, taking care that the combe are pat into the new hive in the alme order they were
in the old hive, so as to keep all the brood together, in the old hive, so as to keep all the brood together, and as soon as completed the whole ahorld be tazsen to It Beldom happens that tho contents of a stram skip will fill all the frames of a bar frame hive, but as it is mach better to hare six fall frames than ton partl filled, I recommend my readers to fit in only such combs as contain brood, at the first operation, for a nails and strips, or wires, or whatever may have been ayed, for it is protty certain that almost everybody will adopt snme improvements of his own. To remove the impedimenta give the bees a little smoke as befors,
lift out one of the combs, brah all the bees ofr it lift out one of the combs, brahh all the boes oul it,
and carry it into the aperating room-keep it perpen dicnlar as it hang in hive, place the gratiog behind it and lay it down on the dish, then draw all the nails, and remove the corks sod wood, leaving the frame as in
Fig. 2, the vacancies of which may be flled ap with the reserved combs as suggested by the dotted marks.

This will be fonnd a muob better plan than attompting to fill up the whole frame at onoe with several pieces of comb, as is gererally recommenaded, and will plan an to many persons who keep bees on the of may be sared, and the portions of comb which contain brood and pollen, and which have genorally been thrown a way may be ntilised. Any one with three or four means of bees which they wiah to take may by tha will make him wonder how he conld have been for so long what Mr. Langstroth calls an "Old foges beekeeper.'
Let me add a word of cantion to my bee brethren. If feed do any weak atceks to roite do it now; if any evaporating the mow, and give the ont of it and ont of the hive before the cold weather sots in. Cold and dry will death.
. N. Abbott.

sOLUBLE GLASS.

[4785.]-As I hase often seen inquiries about solable glass in your columns I send the following, which may interest several of your readers. Solable glass is
simply a variety of parely alkaline glass in which the alkali i in iety or prdinary window glass is a com. poond of silica mith potash or soda, and in some oases lime ; oxide of lead added to the compound of silica and potash or soda, gives fint giass; Rohemian glass is a componad of silica, soda, and lime ; and the coarse glass ased for bottes contains mach iron and some alamina, which is the base of clay. Acoordiug to the quantity of alkali employed, the glass will be
solable or insolable, it being anderstood that all glass is solable to a certain extent. Old wiadom panes that have been exposed to the elements for years are in general so corroded that their sarfaces are no innger parfectly transparent; and common fint glass, when finely powdered, dissolves in water to sach an extent that its presence oan be detected by the least
delicato reagents. Bat when the proportion of alkali
is largely increased, and eapecially whon the comporamd consists of pare alkali aud pare silice, we obrain glass which dissolves entirely in water, and wbich may e applied as an incombustible varaish io for brict art tone a
 ase by Prof. Fachs, of Manich, in Bavaria, in tbe year 1823, and hence is irequentiy known as Facha olabio glaca. 4 lat andts of peariashes, fitteen parts of powared quar the and one part of charcoal dogether, all portions at a time to boiling water nutil the whole was dissolved. The solution Was then eraporated to a jelly-like c~nsisteney. when it was ready for market. More recently it has been lound that cortain varioties of silica ara solable in a boiling solation of canstic soda; and also shat, when the temperature of an alkaline solanion in greatly increased, which may be done by boning ither hard varieties of silica di⿰solve rapidly. It is in this way, we believe, that Ransome propares the solnabe glass uned in the manatcotare of his fanasas artaction of these methode, that solable gleas in readily prepared; of these methods, that soluble glese in readily preps there and, as the matariala are comparatively oneap, exten is no reason Fhy it should not come into very exten-
sive nse, provided it ahould prove really valastle in sive use,
The frat notable spplication of solable glass was to the theatre of Manich, where it wes ased for the par pose of preventing the recurrence of a fearial diessate by ire. Belore trasing to ita proteoling qualikes, however, a tost was made of ite powars, sud a in ond of the prblic squares, and attempte made to fire it at several points br placing small heepa of light wood is contact with it pnd setting theo heaps on fire. Ol course, where the fismes came in contact with the building, the wood of which it whe made wes charred. and to a certain extent destroyed. Bat in no caee din deemed 00 entispetory that the thentro Fise inamdiately ooated in anch a way an to bo made fireprool Since that time, it has been applied in mapy cace and always with ancoess when the spplication made with m moderate amount of skill. That it miges be ueed extensivaly for preventing fires, and for adiligg to the durability of all wooden atructures, is nipques tionsble; and therefore a fow hints as to the best methoda of ning it may not be ont of place. Thet hints wo are euabled to give more resaily, eince the brated. Prenoh chemist Dames, ho han, in his "Traite de Chimie applique any Arts,' detailed very fally the results at which he arrived. He found that, althongl gojuble glass is of itself a good preservative from tre it fulfils the objeot better when it is mixed with sncther incombastible body in powder. Clay, whiting, calcined bondes, powdered glass, \&c., may all be employed for tive purpose, though it is dincult to decide which of thes is the best. A mixture of aley and whiting appeary to be bettar than oither used separstely. Flint gleas, and the arude soluble glass as it comes from tho furnace, are excellent additiong. The powdered soleble glass ought to be exposed to the air antil it his
attracted some moisture; after which, it it be sired with the solution and applied to any body whatever, it will in a short time form a coaking as hard as atoes by by expasure, and resiats tire admirsbiy. When ealabin glass is usea for rendering wood ire-proof or ind acible, it is always well to apply, is the hrat pen flled up; while, if we use a thick and paint-like min tare of the solation wik bome powder, the liquid das not penetrate beneath the suriact, and mach of the elloot is lost. When properily propared, soluble gines after being dried by expognre to the air, sulears The o which renders it incapsblo of being wash in thi form of glass, it is difiouplol work that has been treated with it ; but this objective might be remedied by treating the propared onisa
when dry, with a weak golation of acid. G. I. H.

ATOMIC PROPORTIONED ALLOYS.

[4786.]-In the report of Mr. Laird's lectare on Cast Iron," p. 534, the composition of apecalam metal is given as "aboat two of tin to one of asppers. Which would be nearly that of their atomic weights B. B Denison on Bells ("I Lectares on Charch Bail E. B. Deniso ne Bes "Lord Rosse adopted mutiote ing, p. 2riche combination of copper and tin for his preat Gil sper Omb specrlam matal i eqniralents of copper to 10 til specaly ormal metal 6 equivalents of copper to 1 of tin will gire ver? nearly 15 to 4" (an error for 13 to 4), "whiel wood probably be produced by patting the metala in the pro protion of 2 to 7 , as before recommended. It is in portion of a to 7 , as beicre r efommended. is is is possible and usiless to
waste of the tin in melting is not naiform, but s greater the longer it has to be kept hot.'

With the jatest values for the equiralente, the ebome atoms for specalaum mena wonld give coppar 13 the tin 6 vers nearly; whioh inight reacals from misiog 9 eal
1, if the loge of tin by evaporation be abous 8 per cest I cannot ans of tin by draporation be aboal oper ceat and the only cece I have seea of an allor dirocted be made in what are now known to be the singleatian
weights or near them, is the alloy of silrer $£$ and asti-
mony 1, for penetrating glass with the red orange staio referred to in reply 19108, p. 644. In connection with this sabject, can your obemioal contribators tell as of auy alloy baving its more fasible comp,nent in fatible metal to prevail in quantity, had the force of a
law in asefal allogs.
E. L. G.
E. L. G.

A NET MATERIAL IN ORGAN BUILDING.
[4767.]-" Suoras" may rest sati, fied that his sag gestion, if not a new one, is of a practicable and usefu of pipes formed of ars since I made a small bird-organ of pipes formed of waxed cartridge-paper, whose per fcrin"nce was "very tidy." It was only of 8 octaves
comira-s, tuned in the key of C nataral. It convinced compars, thoed in the key of C nataral. It convinced
me tbat the thing was feasible, and, in bettor handa, me that the thing was feasible, and, in better handa, wno
and satisfactory. From want of experience, I 1 cannot and satisfactory. From want of experience, I cannot
say whether paper would answer well for larger pipes. sap whether paper wonld answer well for larger pipes.
I shonld think it woald not for large ones. I foand the tone was modifled by the thickness and homogethe tone was modited by the thickness and homoge-
neity, as also the solidity, of the walls of the pipe. I nett, as also the solidity, of the walls of the pipe. I
als made a papor fate, the tone of which was satis factory, although, from my clamsiness and inexperience, it was not of mach nse, being considerably ont of tune.
$\mathrm{H}_{\text {ss }}$ "Sncram " tried gattapercha for small pipes? Has "Sncram" tried gattapercha for small pipes ?
Pipes made of it give out a very aweet tone. A friend Pipes made of it give ont a very sweet tone. A friend
of mine devotad mach time to making a gattapercha cornopean. Many were his failares belore he ancceeded in proinucing a satisfactury ono, bat the resalts amply he apent on it. The gattapercha, for this parpose, must be of the best quality and commercially pare; indeed, quite equal in quality to that ased for insulating the coppor wire of sabmarine telegraphs. The pipes
must be mado slightly longer than required, and, after beiag thoroaghly seasoned, tuned and varnished.

Arotes.
[47GS.]-I BAVE read Dr. Ussher's note in answer to
mine upon a new matorial in organ-boilding let, 4637 mine npon a new matorial in organ-bailding, let. 4637, and aun rather sarprised at one or two remarks, which
most likely he would not have made had he taken a most hikely he would not have made had he taken a
littlo more time for congideration. I thank him for the little credit he awards me for my enthasiasm; bat
I cortainly shall be sorry to find any of our amaters running off on a wrong track, who, I think, cannot possibly do so, becaase those who enter npon the task
of building an organ for themselves (it being to such I address myself principally), would certainly not ran far before taking that consideration neceesary for such an undertaking, and so try an experiment or two by
way of prool to prevent the aseless craelty I ana way of prool to prevent the naseless oruelty I ang
charged with. Knowing as I do that profesionals, as a rule, will not teach others any more than they oan possilly help, trae it is that metal-pipe making manat great many amatears cannot get at, and are obliged to do without them, at the same time they mast have an organ and build it themselvee entirely. Dr. Ussher
will Bnd that I have not said, nor even hinted that I will Bnd that I have not said, nor even hinted, that I recommend paper instead of metal, far from it; but I
do say that paper may be tarned to some acsonnt in do say that paper may be tarned to some acsonnt in
organ pipe makiog, in addition to the rest of materials, organ pipe makiog, in addition to the rest of materials,
and so introduce means of producing tones of a and so introduce mesas of producing tones of a
character differont from those brought oat by the precharacter differont from those brought out by the pre-
sent range of materials. Dr. Usiher seems to forget sent range of materials. Dr. Ussher seems to forget
that if an organ of (say) eight stops (four wood and four metal) were put up in a cottage and played fall, it would drive eversbody ont of the hoase, and this entirely on acconnt of the metal, whereas if the stops
wore foar wood, three paper, and one metal (if metal wore for wood, three paper, and one metal (if metal
mast be nsed), it will be mach softer and give the same mast be nsed), it will be mach softer and give the same
variet.j. And as to the tnniag and voicing, I mast gay there woald be no dilficulty, becanae it is only the cylinder I wonld have made of paper, so that the parts
of a pipe concerned ia the voicing would be made of or a pipe concerned in the voicing wonld be made of
wood like all wood pipes, and open to the same means Wood like all wood pipes, and open to the same means
as anaal for that parpose, and as to taning that woald as nanal for that parpose, and as to taning that woald
be simple enongh. It does not follow that becanse the be simple onoagh. It does not follow that becanse the
cone is ased to metal that it mast be ased to paper; the cone is used to metal that it mas! be ased to paper; the
means for toning wonld snggest itself to any mind of means for taning wonld snggest itself to any mind of
moderate contrivance. He says, "Another medinm moderate contrivance. He says, "Another medinm
may be got as good as wood, but would it be worth the may be got as grod as wood, bat woald it be worth the
tr \quad Inlue. 1 say name the mediam, and some of na rill try. it, as I want some one to try mine, and as to
wise will try it, as I want some one to try mine, and as to
the cat anl king, I think one is as cood as the other when both are made of paper, neither of thinh vili when both either in or oat of a diflifalty, bat paper I feel sare, would, with the assistance of wood aud metal. Perbaps I bad better say before closing my remarks What I know to have been done by way of experiment. A cylinder was made of paper entirely, 9ft. in length, tapering from lin. ingido diameter at the bottom to inside and ontside, and put apright and allowed to fall on to a stine floor for the parpose of trying its on to a stine floor for the parpose of trying its
stalility, which was fonnd to be quite as good as before. Tunn it was slipped into a short tabe made to receive it. the same tube containing a large striking reed similar to thoze used in a trnopet-stop, then it reed dimilar to those used in a trimpet-stop, then it
wat blown by means of a small wind-chest and feeder made fur the parpose of trying experiments. And now made fur the parpose of trying experiments. And now
for the ovidence obtained at the trial. A young man Who bas had some jears of experience in an organ factory was bringht into the adjoining room so that he might not ace it before heariag it, and so give his cantid opition on it, and after expressing himsell catificd opinion on it, and after expressing himselt
with its tone, he was taken into the room satichicd with its tone, he was taken into the room
waure it mus, atd there expressed his sarprise at the reanlt frum such material, saying it was very good in.leed, and that tho pipo had beon far more severely reed was tin. long, tin. Wide, and rathor thicker. Thas asaal, requiring rory littlo wind.

PIANOFORTE CONSTRUCTION.

[4769.]-"Onz who Debires to be Inatrectbd" (let. 4665, p. 599) cannot gee that the bridge in a piano. forte is the lever with which the string sets the seand. board in vibration. Ho thiuls the atring rises and lowers the sonndboard bodily. I am pleased to think that I ean show now more clearly than I have done before that the lever moves in a radias whose centre ar according to the constraction of the seandboard, in the bar, or soundboard, or if no bars are behind the soundboard may be within the lever icself. For economy's sake I arail myself of the opportanity to time. Fig. 1 is a section of a violin, and if at rest we time. Fig. 1 is a section of a violin, and it at rest we
may suppose the breast and back wavelesa, bat when may sappose the breast and back waveless, bat when
the bow is drawn across the atring the latter will atick for a small interval of time to the latter will atick for a smanl interval of time to the bow. and cousewill incresse its tension, press hesvier on the bridge will increase its tension, press heavier on the bridge, add mate an impression on the breast. At the same
time it will pnll on the neck and nat, which form levers to the back, which will be drawn wards a straigh line; bat that can ouly be done when the sonndpost is making an impression underneath the breast. Leaving it in that position for a moment, I must eay that it it in that position for a moment, I must eay that it
the breast is fin. thick, the goundpost should be the breas is fin. thid, tho soundpost aboald be hin. away from the briage, to ailow the two opposite pres sares to create a fall half wave, as seen in Fig. 1. Now, the string releases itself from the bow and springs back in a straight line, and the cxtra pressare is gono and the breast is waveless again. Of course the number of waves so created in a second depend apon the tenaion of the string. Fig. 2 is the same as Fig. 1, with the exception of the sonndpost, and it will be clearly seen the and baek again ack will move bodily in the dotted line and baok again at eaoh deffeotion of the string. Fig. 8 ing I mast ing 1 mast cite a practical experimeat of the brother Weber, the description of whioh will be lound in string is strack pith a hammer near one of ita end a it makes an impresion wave. This wave, when the hammer is drawn bact quickly, will ran along the string natil itis cheoked on

we cannot fail to detect a delicate beating or palse in it. The meaning of this is most higily valaed by "The
Harmonious Blaoksmith's" frieuds, the pianofortetanmers. Next after the haman vaice is the masical-box, the concersina, the harmoniam, and organ.
J. H. Sceucat.

PIANOFORTE TUNING.KEY.
[4770.]-Is reply to "Bedca" (let. 1672), I denigned two or three years ago, and with the assistance of a exactls on constructed a piacoforte taning-key p. 540 . with this difference; mine consists of two eight leaved piuions and two forty-eight toothed whoels. If "B.dca" carries out his idea he will And that the spindle E F sqould not be fitted into a square hole in the handle G H, becanse it has the effect of making it work like an ordinary taning-key, on account of the falcram and lever being moved together. The frame-plato should be held steady, and the spiudle tarned by another bey.

Jas. Ountos.

BLINKERS REMOVABLE.

[4771.]-It was a learned man who once wrote that and I prejndice is atronger than the power of reason, and have accepted the assertion as well fonoded. Being a similar assertiou, bat offer fantt), I will not make exercises as great, power orer the mill taal fashio reason, and that a rest amen of milion than does million and to the million's animanforiug both to the No 0 in Est K it it is the la hio
horses. in the fields, at plongb, harrow, roll, or in Baffol drill they are never used, as what is called the plough harness is not farnished with them, but the ogrt harness is. If a farmer of that district purchased a horse from any of the adjoining coantios where they are worn at fiold work, he would not for a moment think of sending him to ploagh in blinkers-it woald from his companions at lesst I nour hoard ran away case. I conld mention instances of horses ranning away from another onuse, but apaco forbids.

Old Plovaman.

THE "FALLACIES OF DARWINISM."

[4772.]-Nothing can more olearly show the animus Which pervades the mind of the reviewer of my book than the paltry natare of his criticism and its misrepresentations. I will give an inetance of oach.

1. The paragraph aboat the tro lines of religion and science is, I admit, unfortunate, bat it had already boen altered for fature ase. Instead of ranning "parallel," it your critio had siomply told ns it ought to have been
"opposite" a good deal of ill-nature might have been " opposi
${ }^{\text {ap }}$. The reviewer has misrepresentel mo to have said, - Speaking of the vivid coloars of birds, Dr. Bree baya they are produced by atrim of plgments which decompose the light, and enable the feathurs to absorb the most brilliant ray.
What I did say was the following:-"To make a certain colour in a bird'e plamage, either colonr pig-
ment is deposited in appropriate oells, or the little ment is deposited in appropriate oells, or the little barbnles are stristed so as to decompose the light, or
both of these means may be foand in the same feathor both of these means may be found in the same feather. But to make this colour, it may require 10,000 gradations either in the pigment or in the length or depth of the microscopical strim on the barbales. Dark pigment here and lighter there-3tria which will decampose the light, and enable the feathers to absorb the most brilliant rara, and so commingle them as to prodace the most vivid, the most varied, the
colouring in the world." (Page 230.)
Colchester.
C. R. Bree.
[It is nnnecessary for me to deny that any "arrimus parraded my mind" when reviewiog Dr. Bres'a book. Whether the critioism is of a paltry naturd, and gailty of misrepresentation, are questions that readers are erord "parallel"" in, no doabt, "anfortanate;", it is mord "parallel" is, no doabt, "anfortanate; it is
alao very nafortanste that it should be attribated to Mr. Spencer-at least for Dr. Bree; beosane it is one of thoye nistakes which onase a writer's statements to of tose inishakes which onase a writer's atatements to
be regarded with suipicion. Num, with respeot to the be ragarded with suspiciun. Nuw, with respeot to the looked the meaning of the italicised apparently over-" and has omitted the conclading part of the aentone but this is immeterial, as he soppliea the whole passage from his book, and mang of his readers will donbtlese wonder how leathers an prodace the " most beantifal wolouring in the world" by aldortiling the "most brilliant rays" of the spectram. Truly, tilis is a "misreprerass of the spectram. Truly, this is a misrepre
seatation "-of the theory of light and colour. I may here mention two errors which do appear in my reviem: "strixe of pigmonts" shoald be " strix or pizments;" and the reply to M. Flourens by Professor Hixieg was originally pablished in the Nictural Mixtory/ Rriecte, and is reprinted in his "Lay Sormons."-TaE Reviswis.]

TESTS FOR TELESCOPES.

[4773.]-Op"F.R.A.S.'s" tests, the following are the results, taken from my obsorvatory book:- A paile pretty well dividud, well seen at timus; λ Ophinchi, woll separated, ooluars yollowish and blaish; 73 Ophiachi not well seen, like an hour-glags. (In these obayrva
 yhased; i Ep panlii, weil elongsted The restt havenot had the opportanity of boasing at. $£ 3373$ Pugasi I

WARMING GREENHOUSES.

[474.]-Serina in last woek'b Englisi Migchanic a letter on the construction of a moderate-priced greenhouse, and in view of the fact that some of your readers may wish to heat by gas either directly or in. directly, it has occarred to mo that a few hints from one who has had some experience in greenhouse hoating might be acoeptablo. Suggestions from practical readers of the Mzciasic would also doabtless be vory apropos at the present time, when the price ol pretty s rising so frightfally. I have experimented preing largely with barners, and have at seen on the score which will compete with any I have seen onetch of one of cheapness and economy. I inclose a sketon is one I made of cast iron principally, but the materi) consisted essential. The burner proper (A in skerch) consist to of a disc 4 in . in diameter, oored out inside so as leave $8 / 1 s^{i n}$. thickness of metal all roand; the cored being supported in the monld by atalk which formed the central hole, and by Which the venis hole was insurad, and in threand, and a piece of sin. gas-pipe tapped with lin. thread, and a pieco oin. pipe was almo 8fin. long, screwed in. This piecemity, and on to this screwed for tin. at its lower oxire In this conpling were lin. gas couping sarew opposite sides. The bottom of arilled four $5 / 1 \mathrm{~s}^{2 i n}$. holes on opposite sides. Mo rood driven the coupling was filled by a piece of hard wood of in. in tight, and through this was screwed the plece of ain brass piping, which carried the burner. Tn the meant B is the ain. pipe, and C the conpling; so far the morns of mapplying and mixing tin gin. in diamoter, the cirburning. cumferenoe will be 25 holee tin. diametor were drilled, not exactly on the 25 holen tin. diametor were drilled, not exhety were just centre of the edge, but near the boing ; tarned on rushes jin. centre to oentro. The gas being tarned an induced throagh a No. 2 barner the holes D drilled in the conpling 0 current of air entors whe both in the pipe and the head of the barner. After a few moments a light is applied

to the rim, and the mixtare ignites, ranning all round, the holes being near enough lor the parpose. The hame is pale blue, with a alight tinge or white at the tip, perfect mixture of gas and air, and poriect of the bnation boing insured by the construotion of the burner. friend os mios, from me last summer, and ixed it in his dressing room, merely covering in min sheel iron dome to provent 14 ft . by 6 ft . by 8 ft . high, and was kept during about 14it. by 6it. by 8it. high, and was wepte of last winter at an even temperatare of 70° to 75°. The extreme consamption of gas would be 8 ft. per hoar, but the burner was working half power, 16 hour in 2 I one gin., suppined gith two no. gas burners, this last generated a prodigious amount of heat, nnfmeient to koep a greenhouse 14th. by 8 it. bit. by oft. average I hall be happy to give information tonching these or any other type of atmospheric burner.

Atmospheric Burngr.

HINTS ON THE OONSTRUCTION OF GREENHOUSES.

[4775.]-I was glad to see in "our" Mschantic so able a letter (4662) from our vorthy correspondent, of whom wo hear so often, upon greenhouses, do., and the best adapted for the amaterr, as I was myself under the same impalse to break the ice, as it were, in this matter, for the beneft and proft, I trast, of our numerous readers. Well, as our friend solicits critieism, may I be allowed to say his plan in general is very good; but shall wo find all our mechanics good enough at joiner's work as to be able to pat np a house aftor this sort, and if so, I fancy we shall not all get bricka and cartage at 21 per 1000 , por quite so ony a bargain as our friend oflers for 25 in the pro-
spectus inaned, may I say. spectua ianned, many I say.

Now, would it not be better, provided it could be done, to get a building fitted complete, with bars, ac., done, all made in ond the glass supplied ne; the woodwork in frame, and the glas do., and then for us only to once or twice painted, of the same together? Now, I have the mere pating of triend of mine, and ho has have hinted the same in the aflair in endeavouring to bring great the desired end. Thus, he will make a bring aboat the desired end. $\times 8 \mathrm{ft}$., or $12 \mathrm{ft} . \times 6 \mathrm{ft}$., groenhoase for sale sill, aft. \times 7ft., as it gives one more or, room in front of him, and seeme in better shape and room in front of him, and somanner and costs. Two ligm, aftor foof, owoh 9 ft. $\times 4 \mathrm{ft}$. 6 in. ; two lights in front to ering as ventilators; two lights for the ends of same building, and a door hang in frame, all of which amme burs complete. The glass to be all cat to a uniform size.
Thete. The grain much in time and laboar-a great feature to most of us, and have only to supply oureature to moor rough boards, old packing-cases will alves with a o, or a coly reducing the same to a minimam, and one bid whitention of oar own minds and ploasure to our pamerons friends. Thas the cost of same would come thas:-
Sir lights, atted and framed together, to compose a house 9tt. \times Plet................. 2176 Glage for ditto, at gd .
Painting for same
110
0
10
$\overline{24176}$
I find 16oz. glass to suit sdmirably, as my own house is glazed with same, and I have boen within the same when heavy storma have poured down apon by nith hail in abundance; but in moret show a flaw or bending beiore aterwarde.
I inclose s sketch of house, and trust it will be the I inclose a secton young friends to try their hands at this pleasarable pastime. Now, as regards heating at this pleasarabhall be gled to hear what our friend the samo. I shal and then, if agreeable, I will aleo bring out my idea, as I have bring out my idea, ant have 150 ft to 2001 t. of 2 in . hot15015. Wipe at the sman cost water pipe at the and night, and will go for eight or and will go por wours attention, and, I think, will not coat more than another 25 to complete the whole affair, or at least enough to warm or at aboro-sized house. As soon as I can get my eleotroe done I shall offor them in the advertisement sheek oa our paper, and truans of witi prove the mean and satiofying our losired wish of a
mach-desin maca-p greenhouse heated cally.
 cally. Should the sam that, too, of our worthy editor, I shall only be brick stove with a fue running alongthe pathman. I too plosiod to name it the "Engisise Mroianic Greenhouse." As I know it has been a source of great concern hom to secure our stock of bedding staff from Jact Frost, for how many of us hare had ohoice and valnable assortmants of plants, have had ohoice the mortification to see them withor and die?
However, I think if we only endearour to help one another, we shall overcome this diffloulty as we have done many others, by the help of this our friend the Mrchanic. I trast our friend "Sani Rymes" will continne to lay before as things both new and old, and en-
lighten us as as far as he is ablo. Bro. 8AM.
[4776.]-In continuation of may letter (4662, p. 538), I have now to deal with the method of heating the greenhonse, or rather of keeping out the frost, for his is all that is sapposed to be attemplea the stove, or hoasea, which are For proper. For very many plants just sufflcient vermth to preyent the inmatea of the house being frozen is all thet is required, and to achieve this resalt trozor three of the emall benzoline lamps will be foand to gield grite enough heat to prevent any disantrons affects from the coldest night, if thoy are supplemented by coverings of mate, old acil-oloth, carpets, or other by coveriging matorial aspable of keoping the heat in. Bnt تith the half-hardy and tender plants at pren. Bua in "bedding out" it is necesaary to do somesont thing more than merely proservecimeng are desired capable of pielding a tolerably long season of bloom, it is requisite that cattings should not only be taken early but thet the shonld be tept gteadily growing on Once the eloment of artifioial heat is introduced Once the the greenhouse vill require all the attention the smatenr gardener can bestow; for too high a tomperatare or a as mach rain all frost in its absence. With the changeable eather of spring in this dimate (for inchangeable weather of apring in this chmato (tance, that of the present year) Are heat matior be allowed to meet san-beat-indeed, this shonld neter happen under any aircnmatanoes; and while the warmth of February induces the belief that the are may be
dispensed with, the cold, biting nights of April and even May will often disappoint the hopes of the fori-cethey will the artilicial heat must bo kept ap, and 1 bsve frequently known one night's neglect to resalt io the death of a whole honge of plants, which woulh probably have sarvived the winter if artificial heat hed probably have aarvived. Ithink, therefore, that, nnlesa aver botar or " hasting" had better be left alone.
Bat heating being determined on, in a greenhouse Bat heating boing determined ont, by $6 f t$) we have ohoice proply two methods, for, on the acore of ohoice of only two methas, fe ort of the question, amel aconomy,
 burning the or a fine ranning glong the pafb Gerga been tried as your resders are amare, both for Gas ase beta and in what I may torm the dry utate but tho wandts, so far as have yot come under my per but tho rosults, bo far as have yol come an astiafinctory sonal kno Nere, 1 believe that with approprias nature. apparatas be remembered that any defect in the apparatas pat mitting the eaceppo of the famen would end in the de mitag the plants. I apeak, however, with dis atration of as plancerns hot water and ges ; for it by dence as no means fillows it does not exies or eannot be inventod. Bot you reader will ecarcely misunderstand me. I shall han reader: will at mistake and certainly be mnch disap made groal milicosaion on this anbject in the pointoa columns does enh honses.
Betwoen the choice of an iron stove or a brick 1 cannot personally heaitate. Iron is not a maitalie modiam for radiating hoat and warming air breathe by plants, and this applies even when the sfove the irom whin irebrion, or apa inolosing the are. Therefore, I case and tho brit itiono to the best and mont recommend what ill as neatest, arrangemeat-rix, a
brick stove with a inue running alogg the path in the dentr
construct this fue a trench must be dug in of the pathway about a foot or fiftoen inches mide co sbout eight inches deep. This trench should have is bottom made tolerably firm, and a layer of cibdra or fine gravel 2in. thick put in and levelled. the bottom tiles are laid, and bricks on edge at cithe side, $s 0$ as to leave a passage bin. Wide and sin. dan The covering tiles one inoh thick are then laid an, an the sides closed in with gravel or cinder mh, to th the tiles form the path. It is decidedly beat to mort all the joints closely, bat it is not absolntely mecemar. for if the stove and fine are properly arranged resy hit smoke or gas will escape into the house. The brie stove should be ballt entirely in the greenhoese, esi should be constrnoted at the same time as the foem tion wall is orected, $s 0$ that the iront of the store a serve as part of the wall. It will be necessary to b a hole at least 2 ft .6 in . deep, for the fregrate avel be at least 18in. below the level of the fue, and to must be left for agh-pit. The hole chould be is square on plan, and be lined with $\frac{1}{4}$ in. briotreark, bottom oonrses being laid a fall brick thick to form the ash-pit and to aflord support to the fro-bare The the place should beabout 7in. wide by 7in. deep, formed d clay lumps or fire-bricks, which should entirely round the fuel. An opening for the feeding-dow wi have to be left in the front or external wall abore t top of the fireplace, and a hole about 2ft. 6 in . deep cirn sponding to that in the interior, and of a breatit en width sufflient to allow of conveniont "atoking, " mes be dug ont on the outside. The feeding-door ahoald x donble, fitting very close, and the ashpit mest euts be prorided with an equally close ateing door co.. ing a valve to admit more or less air, or an iron p mast be made to alide in groove just ancer ter bars, so that the supply of air can be shat of eatith or regolated to a nicety. This latter plan I cartis prefer.
In many of this description of atoves a lua of fire-olay is pleced about Bin. in front of the apea to the fine, and extending about 2 in . on cither sole a it, the object being to keop the beat in the etont os prevent a 000 rapid exit of the heated gas by rey of lue. This is the secret of all heating by sloms : retain the hoat at one radiating point, and to pring
as much as poadble from escaping by the eliser

The bottom of the fire as before mentioned shoald be The bottom of the ine we belore mentan and
not less than 18in. above the grate ; and the brickwork not less than $18 i n$ above the grate ; and the brick work
need not be carried up more than 6 in. or 8 in. above noed not be carried up more than 6in. or 8in. above
the floor of the bouse ; bui I think it adrisable to carry the floor of the house ; but Ithink it adrizable to carry it ap nearly level with the staging, and ntilice the apper
part as a kind of miniature forcing. pit, for raining part as a kind of miniatare forcing pit, for raining
 sooomplished by placing an iron plate oror,
receive the heat of the faol boneath, building a shell of bricks on this, and filling ap with sand and compost, or sand alone is it is to be ased for planging pots. The store would, of courro, be at one end of the houso, proferably the door end, and the ohimnoy at the other, anilt againat the wall of the garden, and oonnectod by ahioh (the point of connection) a tighty fitting door is to be placed to enable the soot to be remored. I believe it to be perfoctly immaterial where the atove or the chimney is plaoed ; the former might bo placod in the middle of the front with a ehimney rising directly trom the top throigh the roof, or with infue running diagonally to one of the back corners, or with a fine raning all ronnd and the chimney taten out jnst over ranning all I hare also seen very servicesblo heating arrangements in which bin drain pipes formed the fue, bnt these require caretnl joining and are not more ace, bat these require carefuljoling, and aro noinore flue reed not be sank in the pathmay, bat may be catried ang noter the etariog on the ground lavel carried along nader the staging on the ground lovel, for the atoke-hole. And then again, it is quito possible or the floze-holo. And hoa agals, in quit posable I have done 8till, I think a brick stove is not only i have done. Stiul, 1 thinz a brick stove is not only cheaper but more advantageous and suitable than an articles of this latter description heve been introduced of litheles of inis latcor description have been iniroduced on cipal deniderats in the greenhorie and its appartenances I of the house hen obtained it is concely worth while of the house When obtained, it is scarcely worth while entoring into that here; let as got our hare and we will moon 000 k it. But may point out that a atove of the construction indicated, and with the arrangements docourse, to get the heat up to a certain degree and then by regalating the combustion by means of the sliding by regalating the combustion by means of the sliding giren will contain enough fuel to last all night, and given if it should po out towards daylight, the bricks will still zradisto sufficient heat to provent Jeck Frost from doing harm. Small coke, coal, cinders damped, from doing harm. Small coke, coal, cinders damped, elippings, anything almost can be utilised as fuel. For very mangy plants it will be safficient to start a good fre in the erening and let it burn out ; bat if jou mant thinge to groe the temporeture mint perar belese than 40° Fahr., to that a thermometor is a sino-gatesinon. I have juat read the plan of Mr. Taylor (let. 4710. P. 562). I cas only say that it is rank "hereay," but ageinst all the "doctors of hoating," but it neema focolble, and in cortainly conveniont.
satl Rxiga.

aNOTHER REMEDY FOR THE POTATO

 DISEASE.[4777.]-As I soe from various reporte that the potato disense is showing iteolf in many parts, and as overy suggeation is possibly worth trinal in the general aond you the following conting from the Glasgovo Heraid, cond you the following cating from the Grasgono heraiad, from the little experience and the few experimenta 1 have made, that the potato disence arices from a suparabondanoe of alkaline mattor, absorbed by the plant trom mointare and heat. Any one may toest this from mimeolif for a halfpenny. Cat ofl the thami [haulm 9], and water the ground with a watering-can, taling toz. of sulphario soid dilatod with 1$\}$ to 2 gallons of water. If it has rained, examine in twenty-four hours ; if not, wet tho ground with plain wator to carry hown the nolution to the tabern, and examine in annther twenty-four hours, when it will be found that the diecene has been arrestod, and tho part affoctod retarned to its natural arrost the acid connteracting the enperfitity of alkarine matter absorbod. If our ohemical friends would analyes the sonnd and ansoand potato, and bring out somothing practical from this hint, they would oonfer a great boon on the haman family."
I annot anderatand from thie homit.
that the "part afiected has returned to mecortained shate;" for anloss the tabern are takon ap and atate; " for aniess the tabert are taken ap and know what parts were affectel, and consequently what parta had "retarned" to the nataral state. It meeme parta had "retarned" to the natural atatia It seome this metbod; but the writer does not say how long after the dincence is noticed in the loures his remedy has been found effectaal. Can he dig sound tabers when the hanlm ia black to the groand? sound tubers when the
SAUL BrEBA.

NON-PACKING AND VALVELESS ENGINE.

[4778.]-The diagrams inclosed represent a unique uitule engine, well tested for its capability at Mr. Tyroll's factory, Deptford. It is ased to drive the blowing machines, which that gentleman atatoo requires 4 horse-power, and this it performs with such onergy as to leave no danbt it posiesses not only the forco requisite, but something more. Fig. 2 is a trantverre section through the middle of the oylinder and piston. These are bin. deep; the platon moves on a crank, the centre of which is compelled to more sound the middle circle, thris commanicating a rotary metion
to the palley as marked E, Fig. 1. The iteam is admitted by a plpe into the stemm ohest, the opening into phe working part of the cylinder being oovered with a the centre of each revolving round the middle circle before referred to Throigh this plate on one side of beforly the extremity of eash thin plete on nne side of neariy the extromity of each armor the piston aro holee to admil the stonm into the colls, and so arranged as o be opened and shat iy the sariace of the oylinder piston. The oxhenetior is aflected from the bottom of the ofinder, and the eucep is at the tide marked D Fig. 1. The sotion of the steam in giving motion to the pirton A will be anderatood giving motion to to pialos \triangle. The oglinder and pieton are perfeels steam tight; the exquivito form and workmanship

Herewith I send photograph of my best instrament or deseribiog ellipses. After over thirteen yoars of tady in this particular mattor I canuot make or find confer a grest faronr "oura" knows of one he would onfer great fsrour by letting me havo a elighs The drawing will explain itsalf to those interestod in the anbjoct if they pill take the tronble to read do cription of smell ingtrament page 281, December 19t 1871. This instrument ill describe circles and illipes of any aiven diameters that the length of tho malinaliding bar and rod allows of; said bar and rod regalating the moan diameter of ellipses, and the amall bar with pencil attached giring the diffarence between the mosn and the major and minor axes. Thisinstrn. ment can also, by change of ponition of one wheel, and

renders them so, the supply being at the top, at the bottom the exhaust, at the side the escape. This doable notion is continaed uniformly during every revolation of the orank, and each oell continneen to be stoam-tight 18in. overy poaition of the piston. Oatside diamelor
 paoking and valvaloss engine. Joszp

CHANGING RECIPROCATING INTO ROTARY MOTION-ELLIPSOGRAPE.
[4779.]-TEI writer begs to inform "A., Liverpool," that the plan in letter 4578, p. 484, is not a modiacoation
of the one " 1 . Liverpool," $88 w$ morking in Linooln, bat of the one "A A, Liverpool, " saw morking in Linooin, ba
quite a diferent thing. There may posaibly be a great buicklash when oog. Wheols are worted inside a circular hoop with toeth on inside rim, and all consequently oonverging towarde a contro ; bat, as is shown in Rov.
Arthar Rigg's article on "Mechanism," p. 688, Arthar Bigg's artiole on "Mechanism," p. ordinarily ueed, baoklach may be reduced to as minimum. As for " Δ.'s" idea that toothed whools would be decidedly objectionable for ase in sea-going vosuele, I think, considering that in mort casoe where heary work with constant and sudden variations of recistance is done by the steam-engine (sach as an iron rolliag, panching, and shearing mill, for inatance), the power is all applied throagh the mediam of corwheals, and that there is no subetitate for them, what ongines ; indoed, they have been unod to give motion
by uaing whoels with difforent numbers of teoth as bubetitates for said whoel, be made to describe a namber of beartifal carres nimilar to those prodacod by Suarrdi' pon. (For a desoription of this pen see Knight's "Penny Ogolopmadia.") G. Proniraron.

BATTERIES.-TO " SIGXL."

[4780.]-Wink this correspondent kindly give me some hinta about setting up some manganese oells on the priaciple latoly doscribed by bim in his orcellient articies on "Electro-motallurgy "? Let me premise that the oelle aro for working oleotrio houco-bells. I propose asing stone-ware jers, 4\}in. diam. $\times 5$ ㄱikn. doep, which I propose alling ap within aboat fin. or tin. of the top. propose haring the porous ooll of this same height and pleoing it in the oontre. On one aide I shall place a carbon about $6+\mathrm{in}$. long. I shall pack all round the ooll with pieces of carbon about the size of a hazel nut, and a mirtare of manganese and powdered carbon squal parts. 1 diso of ourdboard soaked in parafin will corer all, with holes for a zinc rod placed in the poroas cell and for the graphite to pase throagh. On the cardboard will be poured molted cement. The hoad of the graphite vill be soaked in paraffin, and a tinned oopper wire will be cast into the sinc. It "sigma" soen anything wroag about the above will he kindly correct it ? Now for a fow direot queriesWhat size shoald the graphits, the porous coll, and the zine rod be? Will a fow din. holes in the porous coll be an adrantage? Woald it be bettor il the porons coll came through the cardboard, and was closed

to the shafts of serew steamers, or I am much mistaken. "A., Liverpool,"" has rather too hastily jumped to the conclnsion that "oog-wheole are not a praction arrangement for large engine oranke.

John E. Kidd is no nearer the mark than "A., Liverpool." He says the plan is ifts years old. Lot him com pare the poor, clumsy instrament for drawing ellipeos, Whioh he used in 1848, with its baisnce, its iwo eooth nees the memerabie stiow of delocency in iaveative neis (the paper having to be pleced in a vertical position), with the plas of one uhown on page 281, December 1, 1871, of "ours"; besides, the tratb allipees, nor the two teeth he has robbed the whoels of, and then it might do its work.
oparatoly with a comented cork or bung, and with a hole for the zinc? If I make a mall rertion hole aboat 1in. down the carbon, and pat in a tinned wire and make another hole right across, cutting the first, ad ran them both fall of lead, shall I here a reliablo oonnection? Is sulphate of ammonia or ohloride of mmonium beat, and should I pat some orystale, and hould the solation be astarated or not 9 If not, What trength L Letly, what does " Sigma " think of 000 Pox's plan of grephite porous ce
I hope he will pardon this long list of querios, but opinions on some of the points vary so mroh, and others, I think, want explaining. I want a battory that will go the longet posaible time with the leas poesible aftention.
H. E. G.

FUEL FOR TRE WINTRR.

[4781.]-With reference to this subject, concerning which "Philo" makes some remarks (let. 4656), let me suggest that if any of your correspondents have had practical personal exporience is making ap coal dast into cakes for fuel they could acarcoly do better service than by pablishing in your colamns a fnll description of some of the methods which are arailable for private families. I was in Wales last yesr, and intended to have taken some steps to ascertain how the Welsh go to work, bat ras prevented by cireamstances. I satisfed myself, however, that coal dust can be formed into most valuable freel. The point upon which information should be given for the use of Evgliah readers seem to me chiefly the following:What are the proportions in which the clay and coal are to be mixed? What is the best agent that can be employed for binding them together? Is it necessary to intermingle with the main mass any infammable matorial suoh as bitumen to facilitate combustion; and brought in order to matro the eddit ture easy of performance? Some partioulars as regards the manipulation genersilly would also be deoirable. I make this last remark chieny because I notice stoh a great want of detailed practical information in many of the answers rent by correspondents of the Exalisu Mzoganio ; they write rather as if they wore porforming on the spot as woll as oxplaining, and so suppross petty details which altaough polly essential to be known by persons soeking at a dirance to enrry out as tyros the recommendations mado to thent my betief is that meny anall fanilios conld ay dith knew how properly to ase up fael refuse, and actod on kneir knowledge. Certainly, with conl at its present prioe, atid with the prices in prospect during the next prixe, monthe, every householder belonging to the apper and middle elames owes it ats a duty to soctety to do all
 he can to show strike-foving democrats hat capital is not, and does not.
G. F. Chaverrs.

TAR PAVEMENT.

[4782.]-A Nsw procoss for making serviceable tar parements has been recently patented in A merica. The parpose of this invention is to farnish s now and im. proved oomposition, whereof the make sike, which shall be free from objectionable odours, the like, which shall be free from objectionable odours, not lisble to injury from rains ialling on it soon aftor it is put down, and which, it is olaimed, has other incidental advantages. It is made principally of equal parta of coal-tar, pitch made rom coaltar, and asphalte, to which is added gam camphor, in the proportion of sib. to each barrel of coan-tar. added thereto. The asphalte is melted separately, and then mixed with the other melted ingredients. In laging down the parement a sabstractare of aboat 2 in . of small cobble-stones is laid, ranging in size from aboat the nize of a gooso's egg to the size of a robin's egg, and previonaly coated with coal-tar by poaring the tar orer them and raking them aboat. This is rolled down frat with a roller about 22in. long, weighing aboat 5001b., and aftorwards with a roller about 24in. long, weighing about 8001 lb . Screened sand is next mired with melted tar, pitch, asphalte, and oamphor, till the whole forms as stifl paste, which paste is put apon the sabstractare sufficiently to cover it when sabsequently rolled, first with the light roll and then with the heary one, to aboat an inch in depth. When well rolled the anrface is sprinkled with waterlime to the depth of aboat one-sirteenth of an inch, which is rolled into the paste with a light roll. The inventar claims that the combination of the tar, pitoh, and asphalte makes the mont durable composition for this parpose yet known. The proportiona given will best fuldil the conditions required; bat they will approach this resalt in any combination. The camphor deprives the whole mass or bad odoars from the first The water-lime forms a thin scale over the walk im-
pervions to water, which will not wear away till the pervions to water, which will not wear away till the
walk is anficiently hardened to reaist all action of the rais without this protection. These "tar" paths make excellent substitates for gravol, and are being extensively nsed in one form or another for variou
pablic works.
Tages.

AXES OF THE PLANETS.

[4783.]-Is let. 4449, p. 408, Mr. Proctor wishes to be informed as to the inclination of Mercury's equator to the plane of his orbit. "W. T. R." has sappliad the information in lot. 4536, p. 460, baying that "Scliöter estimated the angle whioh the eqnator of Mercary, makes with the plane of his orbit at about 20°.", Schröter's determination was, I think, something more than an "estimate", for from trenty-seven draw. ings made May 18 to Jnily 4, 1801 , or within the appoe of forty-seven days, he deduced the position of Moroury's equator by a graphical process, the prinoiples of Which he details at some length. See "Hermographische Fragmente zweytor Theil, nebst den Beobachtangar des Planeten Vesta, vou Dr. J. H. Sohröter, Gợtingen, 1816.'
Δ farther deduction may be made from Sohröter's observations, for, as he saye (p. 128), during the whole of the time from May 18 to July 4 the markinge on the sarface of the planet, as shown in the drawings, maintained the same invariable angle of rotation, or nearly ao; whence it follows that the earth must have equinozes of the planet. That this whe the vernal
equinor follows from the fact that the position of the axis of rotation was abont 30° less than that of the terminator, and also that Meroury was in superior conjunction aboat the 3rd of Jane. Again, on the 10th of Jnne, or about the midale of the series of observations, Mercary wonld follow the sun by aboat 0°, so that his longitude Was aboat 85°, therefore the earth'e longitade aeen from Mercary would be 265°, and his north pole This is, of course merely the This is, of course, morely the radest approximation but, as Schröter himself says, when giving the inclination of the axis, it is betler to know aomething of this element than nothing (indessen ist es doch besser, ron
der Schiefe dor Mercurs-ecliptic etwas, als gar nichts der Schiefo
zđ пissen).
As I haven
As I have seen the telescope with which Sohrüter mostly observed the inferior planets, it may be a valaable hint to some of your readers to know that although it was 10ft. in length its apertate was only
aboat \sin. The powera he used were 82, 126, 206, 242 , and 291.
R. 0 .

PERSPECTIVE.

[4784.]-I by no means lay nny claim for protensions to high art, yet, if allowed to say a fer words on the sabject of perspectire, I will simply say that the laws as deaned in most of our schools often perplex the
stadent. I mssell flad the most simple means the stadent. I mysell find the most simple means the
most efficecious. I will quote the opinion expressed in most efficacious. I will quote the opinion expressed in
the Athencum:-"Perspective Simplifed.-A pioture in perspective is simply a plane parallel to the plane of the eye interesecting the raye that come from the sarface of the objects represented. The points of these rays, at the places of their sereral interieotions, com.
bine to form the true perspective representations. bine to form the true perspective representations.
Now, without mach semi-scientific pedentry, the whole Now, without mach semi-scientinc pedentry, hat whole science may be nnderstood by bauncing a hal-crown
on the top of the forefinger of your right hand ; hold it on the top of the foreflager of your right hand; hold
up so that its broed plane is parallel to the eye's ap so tant it nearer or farther, and it seems to inerease or diminish in size; turn it obliquely, and it appears an oral; put the edge on a line with the oyo, and it appears a mere thin straight line. A sphere is the only geometrio form that nndergoes no perapective changes. The ese is able to take in any given space set at an angle of ander 60 degrees. When both eyes view a scene, instead of the circle oue eye sebs we have an
ellipse, formed by the continuation of the two circles of iaion, the point of sight being opponite the centre of the space between the tro eyes."

say that I do not put myself forward es possessing any dap from it.

NEW DOUBLE STARS.-To Mr. Bird.
[4786.]- I Was glad to see your observatione and notes of some of the new doable stars, and I cannof you heol encoaraged 1 gran not to see the close pair near \& Boïtis (let. 4378) are with a moderately large apertare, nuless the oight en with a moderatoly large apertare, tuless the nigh vis a fine one, for with my ingtrament it is exoestivels
diffealt, and requires very favoarable conditions; by difficalt, and requires very favourable oonditions; bat
then I see it perfectly. I and I have been anticipated then I see it perrectly. I and I have been anticipsed in the diseovery of this pair. Mr. Alvan Clark iotorma found it with a 12in. object-glass, but that the fact had found it with a $12 i n$. object- glass, bus that the fact had
never been pablished. It does not seem to hare boen never been pablished.
measured by any one.
Speaking of doables in the zame fields with conspicuons and well-known stars, thare is a pretty bat Very faint pair in the field with γ Aquilm, only $8^{\text {c }}$ cootid of it. I hare perhaps called atterstion to this belora.
The components are nearly equal, of 10 or 11 mag, atad The components are nearly equal, of 10 or 11 mag., and
separated perheps $3^{\prime \prime}$ or a littlo more, the position aggle separated perhaps ${ }^{\text {a }}$ or a hittle more, the position angle
being about 40°. There is a third star a ahortdiatanot preceding.

I have not been able to identify the double you hare found in the neighboarhood of the pair nent; Brotis, bat perhaps I have not looked in the right directioa. How far from the atar marked 1 in the sketch (let. 4258) is it ? It is cortainly new if in the same feld with any power, and I shall bo glad to look it ap, althoagh it io getting rather late nom. The nearest astalogued doablo
 Did you observe star 3 in reforence to its presan rightaess?
The doable atar you mention as not boing in the Mens. Mic. appears to be 0 ± 261 (18h. $4 \mathrm{~m} .67 \mathrm{c} .:+$ $32^{\circ} 53^{\prime}$, mags. $7,7.8, \mathbf{D}=0.5^{\prime \prime}$). The diolance (estimated) is somomhat less, bat the identity is sufficiently establishod. Not haviog an equatorial moanting, 1 hare not been able to look it up. I may asy, in pase
ing, that my object-glass, and its tabe, and evorything ing, that my object-glass, and its tabe, and evorything
olse belonging to it except the eyepieces and Ander, else belonging to it except the eyapieces and Ander, are aboat a thousand miles apart. The sabsititato for the tabe whioh I am asing consista of teo picon of beard about tin. Wide, nailed together at the edgen a right angles, the object-glass being fastened to one col in a rrame and the eyepioce to the other. ject-gless diffanlt to keep in adjautmen when the instrament is reversed, the move ment is equatorial), its performanco is aood enongh for almost any object, howort
difficalt. The identification of doabler difficalt. The identification of doablen When foond, is laborious and tronblesomen,
but it can be done with the aid of tar mape.
You shonld procure, if possible, 2 copt of Otto Strave's catalorue of 514 donble and maltiple stara. The objects in this are far more interesting than those is Mrens. Mic., from the equal paire being generally very olose, and a very greal
difference in the maguitudes of the wider ones; in fact there aro very for ow stars. In this catalogne 167 pairs ragso in di stance from $0 \cdot 3^{\prime \prime}$ to $1^{\prime \prime}$, and mart than 200 are as faint, or fainter, than the poblished in 184 scale. The origial min 1850, with the addition of 16 per ctari

I inolose my simple plan of measaring and inding the given point in perspective, being a frame scaled ont, with tone threads diverging from a given contre the horizontal line is distinotly marked.

Josepa Whliax Finnell.

[4785.]-Wirn reference to letter 4654, p. 536, I beg to be allowed to state that my experiments with plumb lino and with vertical inas on a window pane are fallacioas, becanse these hines mast converge
to werds the zenith as well as the sides of the tower As I feel quite sure the sides of the honses I observed were not parallel with the lines, I conclade they are not exactly vertical. The osly way to test the difor ence between $A B$ and $C D$ is therefore by angalar
measarement. But nobody appears te deny that $A B$ measurement. Bat nobodg appears the derfore on the stock "pane of glass" A B mast be narrower than CD Now, as it is perfectly true that on paper or canvas we need not notice this convergoncy, yet as it appears on
the glass two things are evident-Grest, that Sir David wes right in stating that a photo. would show convergency ; second, that I was right in stating that the pane of glass mentioned in books of perapeotive will not gaide us to the perspective of a picture. With
respect to my "cookery," I wonld remind "E. L. G." that pictares are very rarely viewed from the proper place, and, therefore, as according to his own showing hhe perspectire mast be thrown oat, I think we may induge in a little departare from iti rules, if we can
by so doing prodace some desirable effect. A E. L. G." permits me to cook in some instancos, why images on the retine seems to ind to the carved images on the retina seems to indioate that he suppnem better than that. If "E. L. G." had to paint arcmitectare on the inner surface of a "Great Gllobe," he would have to paint his tower convarging. I beg to

The number has since been incressed to
539 by other discoverles, which will be foand in Monthly Notices, Vol. XX., p. 8.
I would call attention to the so-oalled 16 m .00 m panion to a^{2} Cepricorni, and woald like you sad thers to exsmine it with apertares of bia. or fia Either this star is becoming easier, or ita dimealy boen greatly overraled. Hersohel, in his mird ogne of oabe stars, obser ind the and action to the paper says, "It is one of the most beantital and delioater objects in the hearens, and could not be oxpeoted to be seen doable in the $5 / \mathrm{t}$. equatoroll, or indeod with any tolescopo of inferior hight to that with which I observed it [201t. rofecotor], unlens, is doed (which I partly suspect may be the osses), a very perfoct destraction of aberration, by bringing the whole light to bear rigoroasly on a single point of the retime, and destroying all loose light in the fuld of vien, may not in some mesare compansato for a defect of quabtity. Bat this has obriously its limits." (Mem. R.A.S., Vol. III.).
In his fourth catalogao he gave tho magaitade of the companion as $15 \cdot 16$, and in a note sayb "The amall star is brighter than 18 mag. as net dovil in my former catalogue. The position difere gresily rom my former estimation ; bat this is satisfactorily accoanted fur by the proper motion of the large tatar. The distance he gives nn" as $8^{3 \prime}$, and poition as 13 ,
Mem. R.A.S., Vol. IV.). I always see is stesdily io Mem. R.A.S., Vol. IV.). I almays see it stesdily th good weather, and even when a good way from the meridian, with my Gin. retraotor, and conld not call a severo teast for that apertare. I shonld rate the rals nituite of the small star now as about 18 , or 14 st the most, and the distance perhaps a lithe moro bered Herschel's second estimate. When it in remombere that the companion itsell ia a pretty close doatio, object cannot be considered other than ons oh dieded nteresting. The daplicity of the companion dich
ome two years ago with the Chicago glaca of 18 sin , bat
afterwards learned from Mr. Alvan Clark that he had observed it with the same instrament while the glass Wasin his possession. He statet. that he
of its daplicity with an apertare of 12in.
Have you been the companion to a Aqnile (OL 532)? and if so, what apertare is necessary to show it? This is one of the very few doable stars I have not thns far been able to see with my ingtramput. I wonld lite to
inquire if ol atid a ${ }^{2}$ Cygni are regarded as forming a inquire if ot atid or Cygni are reanded as forming a naked eye test. It is a more dithcalt object than any
wide aimailar pair I now recall, bat is very readily scen novertheless. In this connection I may gtate that I novertheless. In this connection I may atate that I
can in any ordinary weather clearly divide a Lyre with can in any ordinary
the nnagsisted eye.
I have jnst been very fortnnate in being able to make my donhestar literatnre almont, if not quita, com-
plete. Prof. Yonng, Director of the Dartmnath College plete. Prof. Yonng, Director of the Dartmnath College
Observatory, very kindly placed his astronomical library at mpservice, and I hare made copies of overything to bo foand in this departmont, ensbracing all the varinns catalngues in a complete Bet of the
"Memoirs of tbe RA.S.," new ohjecta in Herschel's and Sonth's catalogne. varinns objects noted from time to time in the Monthly Notices, Astronomische Nachrichtiri, \&s. I also obtained recently a copy of Herschol's "Resnlta of Astronomical Observations at the
Cape of Good Hope," which containg a guod many Cape of Good Hope," which containg a guod many
northern stars. So far as I know, my collection of known donble stars is sabstantially completo. In all of these lista I find but two of my ohjects-one,
is Scorpii, and another a donble star in Hydra, com12 Scorpii, snd another a donble star in Hydra, enm-
manicated some time since-two of the easiest I have manicated som
Jaly 29.
S. W. Bernham.

New Docble Stars.-Correction.-In let. 4549, p. 462, communirating the discovery of several new donhle stars, the description in reforence to tho second doable shoald read, "Aboat 1° from 33 Valpecala," the nam-
ber being omitted by the printer. The distance of ber being omitted by the printer. The distance o is a very protty pair, aud not at all. diticalt.-S. W Burnhay, ang. 5.

ON THE DISREGARD OF THEORY FREQUENTLY SHOWN IN TRE CONSTRUCTION OF THE OPERA OR FIELD.GLASS.
[4787.]-THE opera or field-glass is an instrument of general nee, yet there are numerons examples of incon. gistent conatraction to be mot with to which I wonld in optics that the limit of offeotived apertnre of an objectin optics that he limit of effeotive apertnre of lan object glass is reached when the diameter of the glass bears
to the diameter of the papil of the eje the same ratio the diameter of the papil of the aye the rame ratio as the magnitying power to anity, any excess of aper-
tare beyond this limit being useless, for the simple reason that the diameter of the cone or pencil of rays formed by the glass (where it enters the papil) then bepins to exceed the diameter of the papil or aperture of the eye itself. Hence the cone of rays from an object-glass, whose diameter exceeded this limit, wonld sarronnding the papil. An absolntely defnite size sarronnding the papi. an absot be given for the pape ofe, since it is capable of diation within certain limits, but it may be atated with accuracy that the diameter is rarely less than fin., and very seldom exceeds fin. ; the mean dia. meter may be probably taken at about three-sixteenths of an inch. In the case of an opera-glass a magniffing power of too is very common, aud this is in genera quite sufficient for the parposes of this instrnment. For this power the concave Jens e is placed exactly half way between
the virtaal focus F of the cone of rays proceeding from the object-glass and the ohject-glase itaelf, ns shown in the scomppanying diagram. The papil of the ere being placed immediately behind the eys-lens e,
is obvinus that the diametar of the pencil of rays Where it enters the propil is in this case ore-ball that of the object-glass itself. It need scarcely be remarised that the rays on passing tirnongh the eye.lens are rendered approximately parallel. It is clear from the above ondiderations that for a magnifying power of two the effective diameter of the object-xiass is exactly. twice that of the papil, i.e., a seven-rixteenths to half. inch ohject-glass would be amply large enongh for this power ; any larger diameter wonld only have the effect of casting a glare of aseless light ontride tha bondary of the pupil, at the same time increasing the spherical and chromatic aberration of the object-
glasa, beaides other disudrautages.
Now, opera.glaoses haring a magnifring power of
two with ohject-ulasses of lin. diameter ap to eve: two, with ohject-wlasses of lin. diameter ap to eves ldin. if not boyond, are o be met with ; the anser pight is thas chtainen, whereas a detrimental glare which plays aselessly over the non-esen itive parts of the eye is the only result, to say gothing of the increasod optical errors dae to incrasaed diameter of plass. If,
on the other band, the diameter of the oljiget-glags on the other hand, the diameter of the olject-glass wero no grester than that which was eflicient-aay
geven-aixtrentha to half an inch-lor a maznitring beven-aixterethe then the focal length of the object-glass might be proportionately redoced-the whole instrament wonld ho moch more partable and conceuicut. Inetend of the clumsy alfair at prengnt too common coat paclet, and its nse wonld become more frrqnent.
 may measure aud jadge of for bimself, are, withoat
exaggeration, utterly preposterous, and wanld remind one mach of asing a telescope of elc. apertare for a power of 20 .
Hany are no doubt deterrod from nsing this conrenient adjanct to play or concert from the incon-
venience dae to its ahsard size. A compact instravenience dite to its shoard size. A compact instra-
ment, with otject.glasses not esceeding in. in ment, with orject-glasses not exceeding in. in
diameter, and whose length when shat np need in+o more general ase.
S. T. P.

calculating wages.

[4788.]-I bea to send you the following nbservations on calcnlating wages: :-Let a be the number of hours in a fall weel's wort, s the shillings to be paid號 hours worked, we have $A=\frac{h}{a} \times s$. It mast be observod, however, that this formala is not saited for overtime-that is, h mast not be greater than a, time is, of conrse, as it onght to he, paid for at a bigher rate. Taking a full weok's work at 54 hours, and putting this value for a, we get $\mathbf{A}=\frac{h}{54} s$. Now, tho nsual means of tabulating snch tables is by prodacts; this method makes the tables very long-for example a table of prodacts of nambers ap to 50 would give 2.500 products (all not necessarily difierent numbers) not repeated.
Now, a table of sqnares up to 100 requires only 200 numbers-riz., the numbers themselves 100 , and their squares 100. To adapt the formala $\Delta=\frac{h}{54} \times s$ to such a table, $\Delta=\frac{h s}{54}=\frac{4 h s}{216}=\frac{(h+s)^{2}-(h-s i 2}{216^{2}}=$ $\frac{(h+s)^{2}}{216}-\frac{(h-s)^{2}}{216}$. Let the equaros of the numbers 1. ${ }_{2}^{216}$, 3, \&c. ${ }^{216}$ up to 100 or more be calculated, and, dividing each square by 216, aud expressing the quo tient as shillings, the fractional parts being redaced to pence, we obtain the accompanying table, calculated up to 54 hours, and wages up to 50s. a week. To
illustrate its use, suppose 47 hours are wroaght, and Mustrate its ase, suppose 47 hours are wroaght, and
the wages for 54 hoars is $383 .$, how much is to be the wages for 54 hoars is ${ }^{\text {paid }}$ adding 47 and 88 together we get 85 , opposite paid sum in the table is 33 s . 5 fya. Take the difference of 38 and 47 (no matter whether hours or shillings per week are greatest), we get 9 ; opposite 9 in the table is 4a. Sabtract the latior result from the former sid we get 33s. 1d., correct to the nearest penny- the it one is calculatea the nearest halpi ther
 dhe toble, 1 readily be atended and aalcnited ior The hable coula readily be extory 3 , and oaklyly wages quarlers of hors, and adapted for a week of fall work, of more or less than 54 horre The table is very compondions, and saves the tronble of torning over leaves, or tinding the intersection of lines and colamng. The principle might be applied to other tables.

Philanthropist.

A Grant planet.

[4789.]-" G. F. H." (let. 4687) socms to be in error, the freszing point of water is 32, Fsurenheit, and 0° Cent:grate. The loiling point of wa'er is 22° Fi:
100° C., therefore $912-32=180^{\circ}$ of F atreaheit scule $=100$ of the Centigride scale. $1200 \mathrm{~F} . \mathrm{i}_{3} 1165 \mathrm{~F}$. above freeziog, or $\frac{5}{9} \times 1168 \mathrm{C}$. above frcezing $=760$ Centigrade. Also $1 \frac{11}{1055}$ Centigrude is not eqnal to 1.05 Fahrenheit, bat $=32^{2}+196=$ nearls 34 F .
philanthropist.
Errata--In letter 4735, p. 565, "mixiag and slackng shonid bu "misiug "ud staxikiug ". the month's supply for three fires."-Inlasd.

REPLIES TO QUERIES.

** In their answors, Correspondents are respectfully requested to mention, in each instance, the title and number of the query asked.
[11589.]-Dry Steam -I do not think it likely any experiment proviog so simple a result of the third lusw
of motion ay "Pailo" a ak 3 for, on p. 554 , can havo of motion a, "Plito" ask 3 for, on p. 554, can havo been specially recorded. Of conrse a stifty moving piston might have such friction as to be driven only to the place of exact equilibrinm betwoen the pressaros, and there stick fast; bat rith a large cy wader an on seeing sach a morimat. Nor, what sper the steam expmes to with the lurgest and most freely moving piston to drive, it surely wonld expand farther with no tall.-E. L. G.
[11887.]-Hair Dye. - The lotion of hydrosnlphate of soda, lately discorared accidentelly by D: MCall Anderson to be a hair-dse, pronises, it is raid, t, be the most perfect black one yet seen. It stains neither skin nor clothing. I have never sean it applied, aud cannot tell whether it is or is notinjarioas ho the shin or hair, but perhaps some reader of the Evalish Mechanic will kindly give "Grag. Barrd
other desirable information.-Black. Beard.
other desirable informawion.-Black-BEARD.
[12191.]-Surgery Abroad (U.Q). -I shonla have replied to chis query sooner bat thonght some of ours conld have answered it better. I mot a colonel last year who had resided matay years in Adelaide, he said there was a good opening there for a sargoon, bat Anstralia is very lactaating, and the sargeons who go out with emigrant vessels often remain, so that openinge are nucertain, and may be soon alled ap. As to Canada, there are about 20 doclors in London, 0 atario, to a popalation of less than 20,000 , nad bosides this there is more equality in the colonies than here, and of course the profesional man has not so good a position as in anglan the United States, than here. america, particularly in the and this overatocks the profession. or in Aastralia. doctor might do we
Pgilantriopist.
[12991.] - Nature Printed Leaves (U.Q.) inclose a entting from one of the photographic journals which, I think, will be usetul to "Robo" aud others. I can, it required, give a more minate accoant of the entire process, bat I should advise "Robo" to do as I did and take a leason or two. The only skill that is required is manipaiativo, so that the precess is best learnt by seeing it done. The Autotype Company, of Rathbone-place, Oxford-street, givo instractions gratis once a week. At least they nsed to do so, and I sap. pose they do atill. I should also advise that the carbonpaper be parchased ready prepared, and sensitised of the required tint, bat only a small quantity mast be parchased at a time, as it does not keep in working condition for more than three weeks. The baromate of
the process is the action of light on bichromen the process is the action of potash in contact with organic matter.
with a mixture of this bichromate and gelatine ; exmiln anixhare of pose oommon photographic printing. frame. Where the light reaches the coated paper r reely - i.e., in the high lights of the matised gelatine becomes insoloble. Where the light is entirely shat ont from the coated papar-ie. in the deepest darks of the negative, which are the brightest lights of the pictrre to be printed-the bichromatised gelatine remains perfectly solable, and may be entirely washed sway. In the hall tones-to be reversed, be it remembered, for negative and pictare, by reading halt light in negative for half dark in pictare, and vice versi -insolability is attained, or solability preserped. in proportion to the degree in whioh light is shat ont from or let in to the coating of bichromatised gelatine. Now mix a pigment with your gelatine, and yonr lights, darks, and half.tones, are at once tran black chalk, sepia, Indian ink, common ink, bistre, or what you will. The practical diticalty in this process was to preserve the hall-tones of the printed picture till they foated amay in the washing process necessary to get rid of the solable parts of the print-its lights. It was
Mr Joseph $\mathbf{S}_{\text {wan }}$ an inventive chemist of NowcastleMr. Joseph Swan, an inventive chemist dili ollty as to make the process commercially workable; but it was rendered practically and generally arailablo by the
patents of Mr. J. R. Johnaon, the Chenical Director of the Aatotypo Company. Mr. Johnson has devised a new and highly improved pignent papar; has disonvered that when an aut trype print is impressed on this paperit may be attached to a permauent backing, or support, withnat auy cement. If tuis bacisiag (a fatty substance (iufusible at the temperatare of the water naed for wa, hing a way the solable conitiag, hat fasible at a somewhat hifher points, the pic nre filu may be readily datu shed from the bauking. All that is
necessary is, that it shoalid be tonanted on properly prepared paper by any of the many colluids that may prepared paper by nay of the many c
[13378]-Bat-making.-A apokozhave is ased to fuis honl, and thay are prosid. in a milnine to make them hard. S sotela glao is tha best.-E. II.
[13293.]-Silver and Gilt Articles -" Sporo" will tind all hy wats ia buck nambers. Oxilising siver is explain od on pp. sing, See iudices of last f,ar volames.-Tages.
［12495．］－Watoh Making．－I regret the delay in answering this query，illness having been the canse The horizontal escape－wheel will be incladed in the article which follows the next one，and，as i am uneble
yet to writo for any length of time without rest，I yet to writo for any length of time withoat rest，I
hope to claim his indalgence．I am hopefal of treating hope to claim his indalgence．I am hopefal of treating
his subject，＂Trains，＂soon．I cannot find the No．of his subject，＂Trains，＂soon．I cannot find the No．of
Englise Msoranic which oontains hie query thereon， Englise Mbcesnic which oontaing his query thereon，
but will order one．－Seconds＇Practionl Watce－ but will
［12496．］－Stained Scarlet Tunic．－Soour the part with strong soap and water，in which some pearlash has been dissolved，then sponge it woll with
wealk solution of snlphuric acid，say one teaspoonful to weals solution of snlphuric ac
a pint of water．－BALcairn．
［12504．］－Bketching from Nature．－＂Old Boots＂gives a very nice plan on prepared glass，simple and easily got up，bat is not olear in his description． What sketch is the glasa to be laid over，and how is the seoond glass to he prepared to trace the reverse way－trace what ？Explain，please．－Julu．
［12506．］－Power of Engine．－If G．Valentine （p．548）will kindly explain the following，be will confer an obligation on myself，and perhaps many others．By what arithrietical or other process does
he get his 26.666 mean elastic force thronghnat the he get his 26.666 mean elastic force throughnat the
 ominoasty like of the，and ask what becomes of the expanaive foree of the steam already in the cylinder When the supply is cat off？And am I to understand hy ofrective horse－power the mechanical capabilities of the engine entire ；or the amoant of dynamical inertim expended agginst the piston throngh entire stroke ？I understand the use of the steam－engine indicator，and the brake dynamometer，but sach costly appliancas
are out of the reach of workmen generally，and I confi－ are out of the reach of workmen generally，and I conf．
dently assert that a cimple rule for calcalating mean effeotive pressare is mach wanted by many of＂ours，＂ incolive pressare is ma．TonERs．
［12506．］－Power of Eingine．－G．Valentine is in orror when he atates that the mean pressure of stoam in a oylinder，outting off at of，with an initial pressare
of 401b，is $26 \cdot 6861 \mathrm{~b}$ ．Now，the was to find the mesn of 401b，is $26 \cdot 6861 \mathrm{~b}$ ．Now，the way to find the mean pressare of steam on the piston thronghoat the stroke
is，divide the initial pressare by the ratio of expansion， and maltiply the namber by its hyperbolio logarithm， plas one．In the example given it will be $\frac{40}{1 \cdot 5} \times$（ 405 $+1)=26.6 \times 1 \cdot 405=87.87 \mathrm{lb} . ;$ and not $26.666 \mathrm{lb} .$, as
atated by G ．Valentine．The nominal horse－power is a name given in eommerce，and is useless，as an engine is sometimes worked to six times its nominal horse－ power．The indieated horse－power will be 1067．－K．
［12587．］－Compremsing Air．－To solve this ques－ sion with perfect acouracy might be imposaible ；for，if we consider the fact that a quantity of air compressed into one－half its volume has its pressure more than by the increase of the adaitional prossure cansed by the increase of temperature．As to the tompe－ rature part of the question，I have no tables，and can－ not reply to it．As to the work，I will kive a reply， neglecting temperature，which does not afloct its accu－
racy much；and，indeed，considering temperature racy much；and，indeed，considering tomperature it would probably give ns an expression which we conld it wonld probably give ns an expression which we conld negloct it，or approximate to it by a series．Take rectangalar ares Ox, Oy ．Let the carve represent the pres－ sure of the steam in the fol－ lowing manner：－The pres－ care varying inversely as the L F the initial pressare，and the piaton drawn np to P ，
then $B F \times L F=P N \times P M$ ．
 Lat $\mathbf{P M}=x_{0} \mathbf{P N}=y \cdot \mathbf{F B}$ $=$ lit． $\mathrm{F} \mathrm{L}=a$ ponnds on Then $x y=a$ ， a particalar kind of hyperbola，the equi－angaiar hyper－ $x y=c a$ ．Now，$y=\frac{a}{c}$ ，and the area of the curre between the limits $x=M P$ and $x=\mathrm{L} F$ will give the work done in compressing the air．To consider the case of expansion－
$\int_{\mathrm{LI} \mathrm{P}}^{\mathrm{F}} \quad \begin{aligned} \frac{a}{x} d x & =a \log . \mathrm{LF}-a \log \mathrm{MP},\end{aligned}$
MI P alog．（pressure of atmosphere）－$a \log x, x$
eiving x to twice its bulk，and the atmospheric pressure be 151b． to the inch，we get work given out by expansion of the air $=$ area of piston in square inohes $\times(a \log .15-a$ log．7⿳亠丷厂犬）．Against this we have 15 （P N -1 ）\times ares of piston for presenre of atmosphere．Bo，on the whole，
in this ease，we lose by expansion，as the pressure of in this case，we lose by expansion，as the prossu
the air in the cylinder is low．－PHmantrimopist．
［12541．］－Fish Culture．－Dace are not worth much lor the table，being soft and fabby．They never grow to a large size，being whon fuil grown only a few inches in length．＂Green Drake＂may conveniently cultivate dece for his yonng ducks by sinking a deep hole at the side or in the bed of the river．The fish are not fond of clear doep atreams of running water like the
trout，bnt prefer ponds and pools of rather turbid In this respect they are like the roach and eal，bat do not wriggle through the mad or make their hannts in holes as the latter does．They foed on insects，water－ worms，and shells，and may be canght with gentles， paste，moths，insects，and worms as baitn．－Rith gentles，
［12542．］－Laminous Tabes．－Salpharic acid is said to have a similar offect when agitated in a glasa tabe in a darkened ohamber，bat its laminoasness is保 sumfient supply of rareted air conld be anpplied at
intervals to the inclosed mercury，a constant and intervais to the inght coald be maintained；bat＂Pegasas＂does seoady light coald be maintained；bat＂Peganas＂does pare by the operation．To support the light something pare by the operation．To aupport the light something
mast be barned or decomposed，perhaps the inner sar－ face of the glass，and if the prodncts of combation mingle with the mercary it would soon be rendered uneless for illaminating parposes．－RAT－TAT．
［12546．］－Protection for Steam Bollers．－ Either wood，hay，or atram，or valcanised indiarubber can be used．The last is beat，as it is a non－condnetor of heat and electricity．As boilers whea jacketed look ansightly and out of proportion，a thick convering as a protection onght not to be employed．Porhaps very thin laths agrroanded by a light sheet－iron case， and inalosing a thin layor of air aroand the boilor， might be the beat protection．－Rat．Tat．
［12548．］－Flexdble Bleok Varnieh．－This query ferent proportions of rubber，boiled lineeed oil，turps， ivery black spirits of wine， naphtha，and sach things，are recommended．Camphor as a
TAT．
［12551．］－Picture Framing．－Lay the ende of the laths forming the aides of the frame over ench other，and with a tenon－snw out from the inside across the right angle formed．When the sides are cut apply a intie glae with a brash to the onds intended to be near the ang and drive a short taok thro agh the end planed and rabbeted beforehand，or＂Jim＂may gine on the face pioces cut with the others with the tenon baw．－Rat－Tat．
［12555．］－Paokfong，or Chinese White Copper．－The Chinese puokfong，tatensy，German silver，and eleotram，owe their whitenese to the pre－ sence of the metal nickel，and like brass，the propor－ tions of their ingredients－viz．，oopper，nickel，zinc， with occacionally a little load or iron－aro variable． Thus，the packfong contains $18 \ddagger$ per cent of niokel， whilat the ordinary＂German silver＂contains from 20 to 25 per cent．－M．F．P
［12566．］－Bees．－It woald be illegal to retain the bees on the owner making application with a properly witnessed declaration that the bees which had taken possossion of the empty hive were hin，and that he
traced them to the place．Boes can be reoovered by traced them to the place．Boes can be reovered by
the owner like other stray property，as cattle or aheep． the owner
－Rat－Tat．
［12571．］－Break for Bicycle with India rubber Tires．－In reply to E．B．Shaw．I knowno－ thing with regard to the wooden blook or the roller，but I think a good brake is atill a desideratam；the syatom at present in use is aimply rapid destruction of the indiarabber tire of the back－wheel．I have had a Phantom bicyole in constant use for the last tweive rubber anid am mach pleased with the very solt ohine，but on the bapled by the makers of tare ma－ vary fast．It soems to tear off in short strips ：possibly a harder variety might wear better；that is，might grind away in the form of a powder．In any case，it soems to mo that if you only pat on the brake so as to oheck the wheel（bat not atop it）while going down hill， the tire must grind at two points，at the part in contact with the brake，and at the part in contact with the ground；if，however，the brake is pat on vigorously so as to stop the hind wheel from turning at all，then the destruotion is only at the one point at the part in con－ tact with the rosd．Practioally，I believe the bast plan would be to have very soft rabber on the front wheol， and a mach harder kind on the hind one．The rabber tire on the front whoel ahould be as soft as possible to nentralise the irregularitien of the road，which are felt by the rider almost entirely throngh the mediutm of the front Wheal，to which the handle and treadles aro atteched； and，except for abolishing the noise，I oan see no rea－ gon（as far as oomfort is concorned）for an indiarabber tire on the hind whoel．I had a front wheel in use for many monthe over betroen 2，000 and 3，000 miles of all sorts of roads，and the soft indiarubber tire was as good as ever；it was cut in many places，bat in conse－ conld not gepenstruction and was，therefore，practi－ cally uninjured；it geve way through an accidental fracture of the felloe．It is obvious that the brake should be applied to the hind wheel，because any check to the front wheal will cause the rider to turn a somer－ sanlt ovar the steering－handle；bat I think this might be arranged so as to make the hind wheel turn stiffly fanhibearings；I can see a way of doing this after the directly to thriction－brake wholat applying the ath machine might be controlled so as to run steadily at a moderate pace down a hill withont grinding the tire to pieces．With the prosent system，the only way to sare with ou reat on the treadios down the stoep fall epeed， and if in good order，thil will very soon be nearly twenty miles an hour when once let loose．－A． Woolsey Blacelock，M．D．
［12578．］－Hygrometer．－A hygrometer is an in－ strument for measuring the degree of saturation．of the one of which I vill describe，called the ohemical hygro meter．In thin hygrometer a given volume ot air is
made to pass through chloride of caloiam，or very strong aniphario acid which has been provioualy Weighed．The increase of weight showit the nnount of the are fied on conring are fixed on the same axis，bat on opposito sides， The interior of ach sesel is mannected by a centra toba interior or on tabalthe，an ir with aria ar outhe by mat gattererohs tabes to the tabes C and D ．hich are gilled vith hlorido gatarated salar valoar from oscuping from the revervoirn to D and any vapoar from oscaping trom the reeorvoin to D ，and it The or verted 20 thrt the war ronning alomly trom it ar pelled the air in A through the tabalure h which eon－

sects it with the air oatside．The vacaum now lormed in A canses a draught of air through the bent caloimum tabes 0 and D ，and the caloinm absorbs the moistare in the air which passes through it．When all the water has run into B ，the reservoira are agcia invarted． and the same process commenoss again．II the reservoirs have been turned six timea，it is orideat that nix gallons of air have pasiod through the trubes \mathbf{C} and D ，and have been deprived of the motatare in hemen． The contente of the tabes C and D are then weighed， and the increase of weight gives the amount of vapoer contwined in sir gallons of air at the time of the experi－ ment．I do not think Lealie ever made nee af the hygrometer to convert wator or morcury into ice．It in true that he couverted both water and mercary into ive by a method of rapid evaporation，which I will en． deavour to describe．He plaoed onder the receaver al an air－pump a vessel containing strong sulpharic acid． and over it a thin motallic shallow box，in which was placed some water．When the air is withdrawn from the recoiver the water boils，and since the vapouns are absorbed by the sulpharic scid at soon as they are formed a rapid evaporation takes placa，Which
ocauses the water or mercary to freeze．－W．H．E．C．
［12574．］－Calculus．－The triangle falaning the condition bo sn equilateral．Wo，laserarore， quire to and the side of an eqnilateral triangie circus． triangle will be twice the tangent of the angle of 80 in a triongle there cosine the radias of the of 60 in a triangle Whose conine（the radius of the circlol＝ found to equal $86 \cdot 6025 f t$ ，and the side of the requirea found to equal $86-6025 \mathrm{ft}$, ，and the side of the requirea
equilateral trianglo being equal to twioe this tangent equilateral triangie being equal
will be
178－205ft．
［12577．］－The Iris or Rainbow．－I think \mathbf{y} ． Ganot＇s explanation of the caase of the rainbow rill
suit＂Δ Young Astronomer．＂M ．Ganot says：－Tbe phenomenoung Astronomer．in．Gaiot acye：－1be composition of the rainbow is produced by cho do－ passes into the drops，wite by its or inside face．In fact，the same phenomonon is wit－ neseed in dewdrops and in jeta of water；in shorh wherever solar light passes into drops of water under a certain angle．The appearance and the oxtent of the rainbow depend on the position of the obearver and on the height of the ann above the horizon；hease only some of the rays refraoted by the raindrope and refleotod in their conoarity to the oje of the apectactor
aro adapted to produce the phonomenon．Those vhinh

do so are called effective raja．To get a general idea of this let as refor to the figure，in which tro raindrop pared with the arc of which they formod part The pencil of mhite are of whioh they formed part．The ontrance into the droplet and decomponad giving rieo to seven rays，red，orange，yellow，green ，bive，in risa and violet．At the point a ，yon the green．blas，maizo droplet，a portion of the refracted light emenpes of dispersod in the atmosphere mithont siving particalar phenomenon；the light ghich has agy particaliar phenomenon；ine light which has oot emargod fromine drople is collocted at a，rotarns and emerges in bing ascond time retreoted，and remokea
seoond droplet, c, placed below the preceding one, pro-
dnces juat the mame eflect, yot it does not eond the dnces juat the mame eflect, yet it does not eend the
anme colour to the epeotator. For as the diferent colours are uneq口ally refrangible the ooloured rays which emerge from the same raindrcp divergo, and tharofore are not propegated together, whence it follows that each drop conds only one kind of colour tewards the observer. But from the degree of rofran. gitility of each ray the dropleta on the outaide of the are send only red raye towards the eye and thoue on ine inside volet rays. The other colours arice irom intermediate droplets. In short, the rainbow it the is the observer's oye, and the surface of this cone is found from the outside to the inaide of ceven anceessive onvelopes, red, orange, jellow, to., corresponding to each of the bands of the apectram. The nearer the san in to the horizon the larger is the vioible part of the ralnbow; bat as the cun rices the are diminianes, above the horizon; hence the rainbow is never meen exoopt morning and ovening.-M. F. P.
[12578.]-Medical Coll-" S. A. Z." is quite right Then he connecta the zino of one call to the silver-or nnat I prosume as poaitive and negative ends. " S. A. Z." says, "The binding gorem on the coil which conneots the wire coming from the extreme ailver is marked N, which I take for negative, de." This is correot. N for negaive, P for positive; but why "the wire coming from rith the binding apparenert of with the binding sorew mermed N, as if there were no
other alternative, I am at a loss to anderstand. Unfortanately, this is the first stumbling-block, and, confortanately, this is the first stambling-block, and, con-
sequently, is the canse of mach confuaion. The wire sequently, is the oanse of much coninaion. The wire
from the silver should be connected with the sorew marked P, not N. "G. A. Z." continues to say, "Now What I want to know is if the electricity flowi first from the zine through the fuid to the copper, and from the copper to the zinc through the connecting wire above, how is it that the oopper extreme is the negative 8 "Now, permit me to say that the copper extrome is the posiive, and not negative; of courso, I presume by The platinised ailver plate may be called a negetive metal, but it, nevertheless, constitutes a poeitive pole, and the zinc may aloo be called a positive metal, yet it is anegative pole. Let me refer to the following diagram :

I think it will be evident from the above diagram that the current of electricity passes from the zinc in the fluid to the copper, and lrom the copper to the zine ont of the finid, each plate ansuming a poaitive and negacive end; and here it is where mistake is made of great importance, when it is assnmed that a negative or
positive plato would be the same throughout ith ontire positive plate would be the amme throughont its ontire length both in and ont of the frid; that, for instance, a nogative plate in the tuid would nlso be negative ont
of it. It is important to recollect that such is not the oaso, but that each plate assames polarity, and is, in feot, the reverse in the liquid to what it is outside of same : hence, a copper or platinised gilver plate would be negative in the finid and positive out. And, further, that "the eleetricity in the battory is given of into the coil," not from the zino, bat from the copper or positive pole, and this is the "extreme" Which should be put a current of elootricity from a ooil for rheamatiam, 1 would adrive "S. A. Z." to pat his feet, also the negative pole, into warm wator, and apply the positive pole to the part sflectod onder a atrong power onco a day for about twenty minates; and, farther, twioe a day as
opportanity offers to take the negative polo in his hand opportanity offers to take the negative polo in his hand on that side which is affected, and apply the positive pole to the place whare the pain oxiata, taking care to inculato the handie, and having within it a damp sponge.
 its efficacy and ralne, if properily applied. Should 'S. A. Z." require any furthor information, I shall be most happy to give it, 20 far as lies in my power.E. O. Simyonds.
[12579.]-Counting Envelopes.-I should think amperfine for conntiog envelopes wonld bo almont a anvelopes by the right hand bottom corner bet peen the flager and thamb of the right hand, and hold them up. they will apread ont like a fan, and connt them with onghi him to geep pace with any machine yet invented. -A Maker.
[12570.]-Counting Envelopes.-There is a machine at present in use-a babe from Yankeedom, I
understand-for counting leather envelnpos, alias boot-
tops, which are out like paper envelopen, on a block of wood apon whioh is made to descond a stoam suitable form on ita lower feco. There is one erected in a large ahop in Nowoactio-on-Tyne. a meohanic from the United Statee had to be brought over to sot What we may call the counting apparatus in working order. I don't know the prineiple of this portion of the hammer or dio, aeting an a pendulum, touchee a amall cog whool, and at each blow passen a tooth in the Wheal which neta in motion a train of wheola, one indicating by meani of a olook-hand on a fignred dial the namber of onvelopes cat. Solos are oat and the num. ber lidicated in the same way. An overveer is not necessary with this machine for looking aftor the by then, as it showa at onco whether they have in contemplation to indicate the time aince starting, like an ongine alook. A very light and simple modifcation of this machine would do for cutting and oonnting papor envolopes
Rat-TAT.
[12581.]-Tente for Flour.-The most reliable tent for rice is the mierosoopic appearance of ricetarch, which is quite pocaliar and charactoriotio. China clay. If prosent in the bisouits, woald be left behind on ignition. Wheat fiour never leavea more than 1 per regarded as mineral additione.-ALFRBD H. ALLEM.
[12582.]-Paper Clothes.-The doorways of the galleries near the Indian Court in the International Exhibition are hang with paper cartains whioh have zome resemblanoe to chintz. The fabric is the invention of Mr. Eagene Pretto, and is something like and regetable sabstances are used, suoh, for instance, $2 s$ buffalo kking , the intestines of animals, the fibres produced from the various nettles and grannes, barks of trees, and from fiax, hemp, and cotton. These substances, mixed together in varying proportions, are treated mach the same as the matoriale for paper are rolled, prodaced differn, however, from ordinary paper in this, that it is not readily torn, is comewhat elastio, and soft enoagh to fall rexdily into gracofal solds. The inventor claims for it, farther, that it will resist the setion of the weather and sun, and that damp does nothing more than make it more soft and yielding to the tonch. The fabric at present has been principally applied to window cartains, roller-blinds, bed-cartains, and for the covering of walls, not so much in the way of ardinary paper-hangings, bat more as ohinizes or tapagtries are nsed. The pattorns are an imitation of the Trocaded silks of Lyons, chintzes, and cretonnee. a matorial that shall go much farther in superaeding woven fabrics, in the shape of coverings for chairs, and evon as carpets for floors. Tho coloars are lese liable to fade than in chintzes, as they are printed prinoipally in body colours, and will koep clean the longer, as dus is not absorbed, but can be brafhed off. The prices plete curtains vary from 5s. to s0s. per pair, oid Thia application of may also motically new so far as this country is concerned, thongh the Japanese have long ago foand out that it conld be applied to such
purposes as what we call drapery is naed for. Posaibly parposes as what we aall drapory is nsed for. Poanibly direction intimeted in "Kappa'a" query.-Topsy.
[12584.]-Bee Keoping.- "Phan" has not given sumpient information to enable one to give a sound opinion as to whether it is proper to pat on new eapers depends on the size of hive and super already filled depends on the size of hive and saper already alled,
for if they be of small sizes the chances of further aurplas are very small indeed, bat if the stoek be lerge and powerful the bees may yet all a small super if partly alled with empty comb, bat will raroly take to a cecond one If empty. Killing the dronos does not always
imply that the honey season is over, but sometimes in atrong atocks it is the reverse, for having nowhere else to atore a glat of honey the bees tarn out the drone brood and nse those collis for the parpose, and haring begun with the brood they finish with the destraction of the drones themselves. It is not to be wonderod at that cottagers have prejudicen in beo.koeping and
prefer thoir own iguorant blindness to the blind prefer their own iguorant blindness
leading of nthera. Lot any one try " Rat-Tat's" loading of nthern. Let apy one try " Rat-Tas's"
sdrice to " W. T. L.," Jaly 86 , p. 494, " late in the advice to "W. T. L.," Jaly 86, p. 494, "Inte in the evening, Which is considered the beat hme, nad aiter
that gay if the oottagers have not nome ground for that say if the cottagern have not nome groand for
their prejudices. The oottagera' projadice against thair prejadices. The oottagera' projadioe against for they praotionlly soknonlodge that the super aystom, or as it is callod, the depriving syatom, leares the or ooks so strong that those saved from the brimatone pit are anable to hold their omn. When a large maper is removed from a strong stook of bees it must be evident hat the stook hive bocomes moro crowied, oopsoquentily grosher heal ougendored, asad the beos aro cottagers say, are not at "to take," forgetting that what are not it to take are not fit to leave. Cottagers hoold loarn by experience, and sdopt the syatem divoentes the saper, although at the same time be defends the salphar pit, and concidors it no more cruel o suffocate bees for honey than to cot a sheep's attaiding the matton that procoss, like beo-barning, antaiding be the matton that process, lite boe.barning, does not consist la charging deprived bees with robbing
for it in a faot that strong stocka will plunder thoir weaker neighbours withont mercy, really carrying out the good old plan-"That they ahall take who have the power, and they shall keep who onn." It is andoubtodily a provicion of natare that reak atocks should be absorbed by atronger onee, and in one's own apiary suoh unions aro benoficial rather than otherwieo, bat when a cottager's bees are abeorbed by another porson's atrong stooks the cottager ought to learn the lesson inculcated, and have atrong stocks too: "The way to pronerro pence in to bo propared for war, and it all are "fit" for aggression, all are propared to recint it. The cottager's folly conaints in deotroying all his atrong atocks, and so placing his apiary in joopardy. My adrioe to all beo-koepera ic-notmithatanding all that has been naid about equalising stocka for winterequalise if you can-i.e., mako all strong, bat nevor weaken a stook to do so ; better anite three or four than weaken one to aid anothor. This ia, parhaps,
grataitons, but none the less valuable.-C.N. ABBoTt.
[12588.]-Magnetine or Improved gkeuanma. -There are three magnotic belte in the fiold-the F. W. Darlow, in November, 1868; the ampyterion, patented by Mr. P. W. Soymour, in January, 1872. In the form of the magnetio blooks it in auperior to thone of the skeanams, being lighter and more flexible Since then the magnetine has been pablished. The date of its patent I do not know. As to the principlo of action of all theeo bells or applanach, 1 am quito the dark. Thay profess to allerato and curo ing magnetio iron on the body. The skeuasma ia made ing magnetio iron on the body. The steunema is made by fasiop magnotic iron filinge with indiarubber; this, in small blockn, is placed at equal distances in a or othor coabrivan, laclosed willa hann A the one side and a kind of jean on the other. As thes blooks are somewhat stoat, I presame thet in the im proved akenaema they are cut np into minnte Deedle like atrips, ao as to be more pliable, and then fastened over the whole inner surface of the belt or othar applianoe. I gather this fron Mr. Darlow's advertisement I may add, in conclusion, that whatever may be the principle that governs the magnetic applianceg, 1 have fairly tried the amynterion acoording to the direotion given me for over two moaths, carefally watohing for symptoms daily, but felt no improvement Thatevor is my health, no tingling sensatioa, and 20 or rence except warmith suoh as an ordinary
would give. Yet the amynterion infiuences the neodle woald give. Yet the amynterion infiaen
of the pooket compess.-A Wormive B.
[12588.]-Rallway Ietals.-As the oarth mover from west to oast it would canse a train moring from north to souith to nwerve a little to the weat side, which would throw a little more weight on the west rail, and more weight means more wear, the swerving would no occur in a truin ranning east to west, or wice mered, as it world then be motiog in near the samo direotion as the earth.-Stadacona.
[12588.]-Railway Mretals.-The earth'a rotation is from woat to enst, and is more rapid at the equator than towaris the poles, thas a train proceeding north-
wards has a tendenoy to wear the eastern rail, for in wards has a tendenoy to wear the eastern rail, for in tion beoomes gradnelly a little lesp, being alwass the tion beoomes gradually a litfle lesp, being always
name as that of the part of the earth it is pasging over name as that of the part of the earth it is passing orer.
but as it procoeded monthwards the western rail would be more worn.-PBmantiropist.
[12588.]-Railway Mrotals.-It has also been aseerted that the wearing of river banks if for the same regard to that in which the earth rotates.一M. PARIB.
[12589.]-Lapidery's Wheel.-About 10 or 12 aches diemeter, from 400 to 1000 revolations por minnte. Rans horizontal. -Jace or
[12590.]-Glues. -1 should recommend "A Country Bookbinder," when he has melted his glae. to atir a hat candio in if for abont one minnto. He Hin the rade I have mide work beter. whoth caces with the glue thas served.-C. Coreser.
[12592.]-Silk Solvente.-If "The Harmonions Blacksmith " wishes to find out how to dissolve silk, ot him pat one of his better half's old silk dresses into hasin of mariatic aoid, when, if it be a pure silk aress, he will And that it has entiroly dionppoared. If ho could manage to preaipitato the silk from the above the faotory and got it woven, which wonld be a very good "spec." indeed. Howerer, joking aside, I have good spec. indeed. However, joking aside, I have coment for glama plates, and when pare is entirely coment for glaza platos, and when paro is entired
tranaparent. Perhape some ehemical correspondent can give a solation to the query of how to precipitata it.-OPRALINE.
[12593.] - Lightning and Thunder. - Sheat lightning occars withoat thander in very warm woather.
I have seen a portion of the sky beanatifally lit ap at I have seen a portion of the shy beantifally lit ap at
intervala with sheet lightning on warm nighta in Canada.-Philanthropist.
[13593.]-Lightning and Thunder.-As far as my rearing enables me to ansmor I shoald say not Bammer lightning. as obsorved by Soneca, is
meroly the redection of a distant storm. Lightaing withnat the thander being beard may be noticed in the clouds about watersponta.-M. Paris.
[12593.]-Lightaing and Thunder.-Lightning is seldom. If orer, a onompanied by thunder at sea ; the reason for this is that the sarfaoe or the zor does not present obitscles, like hills andother irregalaritios on. land, to intercept the pasageo of th
ongsed by the lightaing. -R. D. D. M.
[12598.]-Lightning and Thunder.-Lightning rever occars wilboat being scoompanied by thander.
Sumctimes, hovever, the reflection of lightuing a long way off is se $\in \mathrm{n}$, and then, of course, the thander cannot be heard. When this summer lightaing occurs, it is often followed some hours after by a renl thanderstorm, as was the cuse at Weston-Soper-Mare on the
evening of Jnly 251 h , when smmmer lightning was evening of July 25 ik , when summer lightning wha
observable, and at $2 \mathrm{a} . \mathrm{m}$. on the 26 th when a bond fide: observable, and at 2 a.m. on the 26 ith
thander-storm occarred.
.E. Johnson.
[12593.]-Lightning and Thunder.-We might safely pronotnce, I think, a concassion like any electric discharge, in air within four miles of the grozud, to be What is it that always starts with the triin, goes and What is it that always starts with the train, goes and
stups when the train does, is of not the slightest ase to stups when the rain does, is of not the slightest ase to
the train, bat no train can go withoat it? By night we mas plainly see either the light of lightning or the mas plainly see either the light of lightning or the suppose them unaccompanied with thander; becanse suppose them anaccompanied with thander; becanse thauder was andible quite 24 miles. One very still evening, by the const, with a storm of lightning reevening, by to co const, with a storm of lightning rea friit moan of not half a second daration, 119 seconds a fint moan oi not half a becond daration, lis seconds
after ita fash, whion was a rreat and vivid one between
olond and sea, the wind being fant olond and bea, the wind being favourable. 1 doubt in cially as the shortness of the soand proved it to arrive cially as the shorthess af the soand proved it to arrive one part been a mile nearer than another, so an to spreaint the sound's arrival over 5 secon
certainly have been inadible.-E. L. G.
[12503.]-Lightning and Thunder.-Professor Thomson, in his "Oatlines of the Source of Heat and Electricity," after describing the nature and appearances uf thnoder and lightning, says that when no
noise is heard, it is distance alone which prevents it; noise is heard, it is distance alone which prevents it ;
for there can be no lightning withont thunder, any for there can be no lightning withont thander, any
more than we can take a apark from an electric machine more than we can take a spark from an
withuat a snapping noise. Alsetor.
[12504.]-Varnish Cells.-If "Alf." uses goon copal rarvish with his Branswick black instoad of gold Jace or All Trades.
[12596.]-Canoe.-If "Paddler" valnes his life he will gin by train with his canoe from Hall to Scarborough. It is jnst possible that the trip might be safely accom. P'ished by sea provided you possess a thorongh znow. water smooth. Bat bow can weather is ine, and conditions? The wind might rise, and the water roughen when yon were rounding Sperm Point, or when you were passing Flambro' Head (where, by the way, you would find it impossible to land); and you wonld then speedily wish yourself on firm earth again. Begin by Eailing about in the bay at Scarborongh when the of swell provided the waves do not "break." Nothing materaally smaller than the hob hoy canoe is fit for the sea. Fall dimensions are given in "1,00 Milos in
[12597.]-Water-wheel Floats.-Poncolet's an dershot wheel is the best ; the
buckets are carved so that buckets are carved so that
when the impulae of the water is expended it pives farther power br running down the floats, and there is less shock in the meeting of the carrent with the Huat a little. I do not know the
 cxact form of the carve; it is
concave towards the stream. - Phinanthropist.
[12592.]-Age of Trees.-The age of trees being now positively determined by the number of zones or rings in the fibre of the wood, it settles the question into one of veracity and honour in those explorers of botanical science who afford the world the result of their observations. The great reason why their ifs dirit is impagned arisos no doabt from the dithcalty of suhytituting a visible fact for a theological mytb, which is greatly to be regretted, especially when this mith is steadily adhered to by gentlemen of liberal ediacation, and who apply the test of reason in all
matters concerning their duily occapations. I yow matters concerning their daily occapations. I yow
beg to refer your intelligent readers to some statistics cerefolly compiled by Sir Ra. Plillips in his most asefor wrik, "A Million of Facts," furnished to him by Mr. Dou, Sycretary Linnean S, ciety: The baobab, of Senegal, 5,150 years; decidnous cypress, 6,000 ; yew,
3,$000 ;$ clive, 2,500 years ; drajou bloud, 4,000 . I have no dunit that the very gigantic trees of California will yiell upon examination an antiquity far exceeding thise abose qnoted. I should be gratefal to any of yorr mneserons correspondents if thes conld add other facis of cxtraordidary longevity of trees.- A Belle
timat One Fact is Worth a Millon Myths.
[12598.]-Age of Trees.-Jadging from the concentric rings bapposed to indicate the annual growth, sotne of the gignntic Califorvian trees mast have been
growing when Father Abraham was a boy.-M. A. B.
[12599]-Dimensions of Mall Boats.-The
follosivg are the priccipal dimensions of the Hulshne.dnatal are the priscipal (they are all very much alike):-Length,

[12599.]-Dimensions of Mail Boats.-The dimensions of Leinster aro-length, $860 f t$: breadth, 35 t.; mesn dranght, 12 ft . 9in.; ; area of midship im-
mersed section, 330 square feet; eugines, 720 nomi$\begin{array}{ll}\text { nersed section, 330 square feet; sugines, } 720 & \text { nomi- } \\ \text { ual horse-power ; cylinders, } & 98 i n . \text {; stroke, } \\ \text { fit. }\end{array}$ nal horse-power; cyliders, 98in. ; 6 trove,
boilers, ei.ght; with 40 furnaces; with 4, 176 tubes; and 16,800 square feet of heating surface. The workiag presanre is 201 b . per sqnase inch. The boilers
are not fitted with saperheating apparatus, nor are are not fitted with superheating apparatus, nor are
the engines fitted with an expas:sive gear, but stesm the engines Atted with an expansive gear, but stesm
is cat iff by the slide valves at five-eighths of the is cat cif by the slide valves at five eighths on the
atroke. The paddles are on the feathering principle, flont boards 12 ft . long. 5 ft. deep.-J. B. Clay.
[12C00.]-Hydraulic Explosions - I have often met with explorions when preparing bydrogen by the action of bollinal on water, but they bave never been so sofliciently an to brenk the receiver. I never tried to till a qnart jar by theabove method, bat only prepared a few ounces of hydrogen. I have always attribated the explosion to a layer of sodic hydrate being formed roaud the motal and kept by the intenso heat from jnit like with the water by an intermediatolayer of bteam jnit liko water on hot iron). On condenastion of the bydrate (or possibly oxide). producing suddenly a large qnantity of steam and hydrogen, and thas cansiug an is not 1 and cannot see how oxygen could possibly be liberated in the presence of sodiam, and "Dabbler " mast remember that the heat required to decompose water is the same an is generated by ita synthes oould in that way be evolved.-ALrat
[12801.]-Tuning Rolian Harp.-"Opaline" mast tane the strings of hi
note he wishes.-Horatio
[12602.]-Ertinction of Fires -A gan for ortingaishing a fire shonld be withoat smell, which neither Chorine, bydrochloric acid, nor sulphar dioxide are but is itsell combastible. Carbonic acid satisfos the necessary conditions, and is used in the apparatas called the "Extinctear,"" which is very nsefal for small called the Extinctenr, Which is very nseiad for small fres, being equiva
Alfred H. AlLEN.
[12604.]-Quill Pen.Making.-Cat the point oonsiderably longer than you intond to use it, then redace it to a comparatively broad point previons to
splitting. To make a good split, insert the point of splitting. To make a good split, insert the point of
your buife very gently in the broad point to stert it and then press gear thambensil againgt it antil yon have led it sufficiently far up. This plan I have always lonnd snswers well. You can then redace the aize of the point in the ordinary manuer.-Alastom.
[12604.] - Quill Pen-Making. - I am not an adept at making quill pens, but I have made them. The way I alit mine was this: I ont a piece of hard Wood to fit the end of the quill as far as I wanted to cat, then I fixed it nice and bandy to get at, then blit part and fuishing at the point.-Sting.
[12605.]-Organ.-If "E. J. D"parposes building an organ of four stops and one manoal he can with safoty begin his coandboard and bellows; they will take him some little time to make, and by the time he has thom finished I shall have described, in "The Organ blow, the action he inquires aboat, as 1 han. The leng'h of middle C in the clarabella is 2 ft. on a scale of $19 \times 1 \mathrm{~s}$. Why make a wooden dulciana? anything like a true tone cannot be olttained from it, for it woald onls be a soft clarabella withont the singing tone it shonld have; if, however, you are inclined for it nse the same scale as for the stopped diapason, making the pipes, of coarse, twice as long.-J. D.
[12606.]-Submerged Forests.-Thonah I know of no special work on this subject, "J. G. W. R." may like to know that he may see remains of submerged woods among other places on the coast of Sussex,
between Eastbourne and Hastinge. I lately visited one of these woods near Bexhill. It is oxtraordinary how little is known in the ueiphboarhond abont such a astural coriosits. I fonnd it by walting along the sands from Bexhill towards Pevensey at low water. A the remaius of the forest are kuew nothing whatever abont the mat!er. The old trees are to be fonnd n few rards east of Martello Tower No. 53. There are few iarge roots and stanps leff, though there are plenty of roots of bashes cropping ont of the shingle. The
largest stamp I found was about sin. in diameter, and abont fin. ont of the sand. There is a description of G. F. Chambers, F.R A.S. (Stanford and Con," by Mr. Crosg), with au extract from an article which Charing-
 Since the time the article was written, however. the forest mast have dwinded terribly in its propartions probably at the hands of too inquisitive geologista. I nearer Hastings. I read in the Morning Post of the nearer hastings. Tread in the Morning foos of the pier there, tlat submerged trees had beon removed that an oak had been placed by the pier anthorities in S. Andrew's Gardens.-V. B.
[12606.]-Submerged Forests-A great many of Alleu iu Ireland. Tar! or peat is a good prescrge tive, and the timber of the trees is as sound as before
submerged. The vood is carved into bog-oat orobments, ac., and from its hardness it can be exqoiuitely found sabmerged on the west coast of Portagal, Japno, found salmerged on tho
and Chili-Rat.Tat.
[12608]-Bookbinder's Press. - Substitato bren or steel male aud female screws.-Rat.Tat.
[12609.] - Packing Grapes. - Pack betreen ayers of their own leaves in willow baskots to preserto We bloom-Rat.Tat.
[12609.]-Packing Grapes.-Pack in dry mr. dust.-Excelsior.
[12609.]-Packing Grapes.-Let "A. B." pack his grapes in sawdust or bran, preferably bran, tase
the box, cover bottou with bran, then a laser of grapes, the box, cover bottoun with bran, then a laser of grapes,
cover with bran, being very carefol to till ap spses cover with bran, being very careial to ail tup spsed
between grapes, stalks, and everywhere ; then reptat, between grapes, stalks, and everywhere ; then repas,
lasing a good lager of bran on top, aud nail duric lasving a guod lajer of bran on top, aud nail durk little babies, very tenderly, and the bloom will atas on -Sting.
[12611.]-Moth in Pianoforto.-Pack in cass 43 air.tight as possiblo, and fill it with the raponr of other, epirits of wine, tobacco amoke, fames of anlphar, ar. paratua, and the motha will be destroyed. - Rar. Tar.
[12611.]-Moth in Pianoforte-Touch the dampers with spirit of camphor.-Excslsion
[12012.]-Action of Oil on Waves.-The onls explanation of this which occars to me is that ail being more viscons than water requires greater surface agite tion bofore it is lasied into wavea. To illaatrate this, take a tambler, and having abont halt alled it mitio water, rest it on a level table. A vary alight blast from the mouth will cause wavelets to be formed ou its surface Now add oil to the depth of 1 centimetre (liia.). Cos. siderably greater force must be exerted to form aimilar waves on the surface of the oil. Bat it seems bighly improbable that a similar action woubes.Alsaron
[12612.] -Aotion of Oil on Waves.-It proveds the raffling by friction of the wind, bat does not itop andulations propagated. You can throw a likue inlo breezy pond and see how the oil amootha the sarimet.
I cannot think its effect would be very decided in a gale I cannot think its effe
or shore. - M. Paris.
[12613.]-Drying by Steam.-If the robber is vulcanised, snything short of a burning heat will not destroy it.-Rat-Tat.
[12614.]-Corpulence.-Fat, sugar, gum, starch, farinaceous food, milk, and the like, sad artiones ol diet abonnding in them, are favoarable to the prodnction of fat in the body of animale, man ine bes the Mild ale, beer, and porter, for like reason, bes th
same tendency. Much exercise or labonr acts in contrary direction. Indeed, quiet and repose tead greatly to the production of both fat aud flash, bat tha latter is not then of a muscular oharacter, as mitnessed in feeding domestic animals. Leanners is generally cansed by defective digestion or action of the stomach or bowels; often both. Cod-liver oil (the best now pale
Newfonndiand) has a wonderful power of incresing Newfonndiand) has a wonderfal powes of incren
the weight and fleshiness of the body.-Arotrs.
the weight and fleshiness of the bods.-ArotBs.
[12614.]-Corpulence.-There are some people on whom all the food they could eat monld never pat lat I never в8w a jolly, good-humonred, hind barkpp,
person, who tonk pleasure in making others happy person, who took plessure in making otless throngh
who was one of Pharaoh's lean kine, ungs diseara. A selfiah, uncharitable, cantankeruan, nagging diseare. A selfah, uncharitable, cantankerva, at the late Mas
alcinflint is always thin. Look at the Lrmon and his prototope Falstaff. Compare (as the Lumon and his prototype Falstaif. Compara Heep. enmmentatirs asy) with Pocksnia and fition aveet Telieve me, the proper sugar of make
temper, and the milk that of hamankiness. ADy temper, and the milk that of habs or oily aubstance tends be stored ap in the system ; bnt Wilkie Colling was wrong when to
the silky villain Fosco ay a fat an:n.- j . A. B.
the siltsy villain Fosco as a ixt infin.-]-Corpulence. Diet the thing for
[12614 "Auti-Banting," bat not inactivity. Bread and milk cocoa, \&c., for breakfast. Matten chop, port frite theo rice-milk padding at lunch (or, if he dives lata, we bread, with Devonahire cream or thick baker milk.-E
Porridge may be sabatituted for bread and

Jounson.

[12614.]-Corpalenoe.-"Anti-Bantiog" aikn bor a thin person may be made fat, and a fat ona mind bu leav. He little thinks, probably, how wida a qnestion opens out. Wo often hear pan, or latevin or leaning upon this or that tivd of fool, bot the don't know what they rar. Eren some of on learned (?) medicists and chemists talt abont food as if a person had only to sabsist npon starch, an; albnmen, fas, \&c., in different quantities, to bery "ro" of bones," as Dr. Livingstone describes himself M. Stanley found him. It is alpost purelif a quas of tempr rament, and involves more a koomied ded cience than of dietetics or chemistry. A mornesi ness, or leauness are all dependent apon bin twap x ment, as inherited from and impressed br his para aud aucestry. They have little, wry litfle to din his food. To assmer "Anti-Baotimg's" quealy niliess he kue: his tanperament, and tho dian d. grees in which be had the several revl!cid blonded in his own person. Along with ther certuin tras
of the brain has mach to do with if, for
of brain do to a certain extent accompany cortain types of temperament, or form and strength of body. The rital or lymphatic temperament is, ander all circumatances, and with any kind or food, the mos of food, and that good, bat as it exists gmongst all
 epicare might rovel in to that of the poorest of the poor ; both woald be fat, though not, perbaps, equally Bo. These persons have a predominance of the vital powers, of the didestive apparatas, and their nerves are not too active, so as to become great wasto prodacers They are easy aud content, hence get fat. A person perament, verer gets fat. The most prominent and perament, never gets fat. The most prominent and
active part of his body is the nervons astem; he is all alive; all nervons action; his mind is ever awake; he can't get fat, no matter what he eats, or hom much. "Anti-Bantiog" may remember that the less motive, or bony and musoniar, and nervous aystem there in getting fat. The less vital, and the nerrous or menta high, the less likely to get fat. Cardioal Wiseman Spargeon, Macleod, Panshon, the "Claimant," Mark Lemon, and men of that clasa, have the vital temperament high, and the osseons and minscnlar systems less developed. In many cases the brain is large and active, yot at times lazy: such men do love their stomachs, and altogether bave the natares for getting fat, and they make the best of them generally. Smail, limber, clean, neally made men, like J. S. Mill, Arohbishop and others, have the mental or nervons temperament highest, hence their cleverness; sach men are not osnally thin throngh poverty, yet who ever sees them fat it is not their natare, and their systoms moald and modify their food, rather than their food monalding
end controlliug their syatems. The inherent power 2nd controlliug their syatems. The inherent power and quality of food is mach, bat the inherent power of
an organised animal over its food is more. Bufore pig. an ox, or a horse, can become a prize for fatneas, it maet possess a certain blending of temperament, and this is given to it by the process of broeding.'
Men liko Lhincoln, Wellington, Clyde, Shafteabnry, Dieraeli, end othere, are of another type : the bilioas or motive; they don't get fat; they are too active, too
industrioas, both mentally and bodily; all their surplas natrition is worked off. The lymphatic are the lazy, mentally and bodily, in different degrees, of course The nervons are pre-eminently the active minded; the bilious the active miuded and bodied; the last gives the most power of mind, as mind; the
lymphatic or vital the least. In what degrees are the lympantic or vital the least. In what degrees are the
various tomperamente possossed by "Anti-Banting ? This known, he has a grester casace of knowing his over penned npon dietetics or medicine can tell him.George Dawsos, Sheffield.
[13618.]-Exceasive Perapiration.-Oonstant ablation with sponge and cold water, especially where perapiration lodges or oxcorintions exist. Dry par-
foctly aftor, and dast part with prepared faller's earth. It is pat up for nursery ase, and is a great boon to stont people in India.-M. A. B.
[12618.]-Excessive Perspiration. In training for athletic sporta, the ngnal mode of preventing perspiration is to leave off taking botter, potatoes, dc.. and I I see
R. $D . \operatorname{D.~}$
I.
[12618.]-Excessive Perspiration.-Take hot bath from 90° to 100°, and dress down either with cold dash, shower, or cold water and towol.-Jack or all Tradeb.

[12018.]-Excessive Perspiration-Let "A." rost salished with his present condition and rejoico, excessively, in hot weather. Let me atrongly advise him not to attempt in uny way to interfere with the nataral elforts of his system to compensato for the effects of immersion in an atmosphere of anuanaly high tomperature. All he should do is to be temperate in eating and drinking, keep the bowels regnlar, avnid all debilitating habite, avoid the ase of ices and cold drinks, and exposare to dranghts of air, and indulge in daily ablations or baths of warm or tepid water. | Evaporation canaes $\begin{array}{c}\text { cold. Witness the effect of } \\ \text { wrapping a wet cloth roand a bottle of wine, or of the }\end{array}$ |
| :--- | porons earthen ware bottle on its contained water. The skin, moistened with perspiration, offers an immense surfuce for evaporation, and the consequent cooling action on the body is very considerable, aud is, farther,

often the salvation of those who complain of it. I often the salvation of those who complain of it. 1 in the san, or even the shade, in hot weather, bat I never foel oppressively or even unpleasantly hot, al-
though the perapiration trickling down my face and though the perapiration trickling down my face and
head, and falling on my dress, often annoys me. The chief cause of the so-called "brastruke" or sammer apoplexy, is insuficient perspiration, and consequently particalarly of the brain and heart, and the blood passing throngh them. Whon liering, and the blood vertical spo of the tropics I never felt opprespitaly hat becanse I perspired very freely, whilat those aronud me who did not do so, bitterly complained that they "felt anficnted, nearly barnt np," and that their heads "felt barating." Oe the nambers of Earopeand then aronnd me who died of saustroke, I fonnd nearly all (morst likely all) belonged to the latter clas-riz., par pir stiva. Of course the cold ameats of pu hivis aud [12618.]-Excessive Perspiration.-Bathe in fistr-Tation or apply an infasion of senna leaves.-
[12818.]-Excessive Perspiration.-Try 10 to 15 dreps of dilated phosphoric acid in water trice a darth a trial.-Opaline.
[12619.]-Bad Water.-Most probably the water "Inquirer" spesks of contains a trace of iron. Has not his pamp an iron barrel or pipe. There may be ron in the strats the water of the woll passes larough, bat this is very rarely the case. A more trace of iron In his water would prodace all the eifects ho apeaks of it a commoa cona the emplosed,
[12621.]-Black Dye for Leather. - Make a atrong decoction of elder bark and dress with it. Trea therwards wita a strnng decochion of nat.gall and a mall portion of lon wiod, and lastly with acetato of
(12631.]-Black Dye for Leather.-Nitrate of ilver, or green coperay and oommon black ink.-RAT Tat.
[12634.]-Stuffing Reptiles.-The skin of the boa constrictor mast be damped to soften it, and then thled with tow. Yoa can then, after neatly sowing ap When quite dry the skin mast be sized and varnizbe in the following manner. The bast size is made of parchment cutlinga, aboat a good handfal boiled for an hour in a pint of water is about the proportion The size is required in order to preserve the colour and beanty of his majesty. Apply with a dry brash three or four thin coats of size, allowing each to dry well before patting on another. When the last is dry coats of crystal varnish mast be applied in like manner. This rarnish may be parchased of an oilman or colourseller in any quantity. Fasten in the oges with patty, shonld
[12635.]-Heat Bumps.-Take the cbild off fleqh meat, allow it plenty of fresh soand vegetables, and and water, and do not at aff the child with sweets and cakes.-JAck of AlL Trades.
[12635.]-Heat Bumps.-Give ynar child at bedtime $2 f$ grains of Dover's powder mixed in a little preserve. In the morning as mach citrato of magnesie as whit ho a by warm heol will be well. No cold drinks or wine at present Till J. DAyMAs.
[12625.]-Heat Bumps.-Get 3oz. or 402 . of con centrated flaid extraot of sarsaparilla from a goo wholesale chemiot, give a teaspoonfal two or three times a day in a wine.glass of water. This will also
generally cure all forms of eraptions on children. generally
Exocian.
[12627.]-Carbolio Aoid as a Eair Dye. Carbolic acid ia not a hair-dye, nor have I ever noticed that it has the slightest effect on the oolour of the hair. Its aso (hishly dilated) as a hair-wash is now very popalar. Hitacts by constringing and atimalating the skin, and thas tends to slightly thicken the scalp. Gradnal attennation of the scalp is one of the most common canses of failing hair and baldness.
for many years naed a wash of carbolic acid (1 part acid, dissolved in 40 parts hot water), bat my hair is a silvery as ever.-двотEs.
[12638.]-Rusty Iron Castings.-Take 1 part salpharic acid to 12 or 20 or water, and place your castings in this antil the rust disappeara; well wash and dry them; you can then treat them either to a coa of boiled oil or paint.-Jack of all Trades.
[14638.]-Rusty Iron Castings.-Acid is rather dear to nae for buch beary work. It wouldn't pay to Tat.
[12639.]-Skeleton Flowers.-These are prepared by the old ard simple, bat tedions, process of "retting," the resulting skeletons being subsequently conached and monnted, or bet ap. The art require delicacy of tonch in those who adopt it. These pretty objecta can be parchased cheaper than an amatear can myself, at one time devoted mach attention to the sub ject, bat wo found that thore was very little improvement to be made on the old metheds of procedare -Aвотев.
[12:29.]-Skeleton Flowers.-Flowers are very difticalt to treat, being far more delicate in tertare dry cellar for some time, then the petals or flowers are taken oat and -pressed between the leaves of a book prepared for tho parpose. After that they are dipped behate bydrochloric acid, and the tibres are lof water till their subatance is partly decomposed. Rat-Tas.
[12629.]-Skeleton Flowers.-To obtain skeleton leaver, place the selected specimen in a plate just covered with water, and leave it in a place where it
will not be distarbed nutil decompovition seta in, which will not be distarbed nutil decomposition seta in, which
generally takes place in abont throe veeks. Then fat sariaco par water on it from a matacing it on a if that does not wash away the gress parta, dab the leaf fently with a clothedbrush, which will separate the particles which adhere more closely to the atem and veius.-C. N. W.
[13630.]-Magnetism. -If the machine is made

Why "D." should not work a raonum tabe with it. I have never heard of its
against it.-R. D. D. M.
[12681.] - Fixing the Bloom of Scarlet Runnera.-I bave some scarlet ranners, and the bloom was felling of withoat the beans forming. I was advised to try liquid mazure or sulphate of ammonia. 1 applisa the lat the rate of half an oance of the salphate to one gallon of water. The beans have now set, and I am going to havo an abuudant crop. ©. W., Leeds,
[12631.] - Fixing the Bloom of Soarlet Runners.-I have likewise been disappointed by the falling of of the bloom of scariet ranners, and consalted the head gardener at a large garden close by, sha ho assared me it was cansed by the heat, and that if the weather became clondy they would "set," hand has wealler became doody they would "set," which and trally taken place this week or ton days past, My benns are planted under a bigh wall in a very hot bitation.-Optical Bricelayer.
[12031.] - Fixing the Bloom of Scarlet Ranners.-Il planted in drift that can be collected ofir the roadiate, this never occurs. Draw a tronch along both sides nnw, and pat some in, or some old decayed have a good sample. Nothing better for peas and beans or carrots than the drift off a turnpike road.jack of all trades.
[12633.]-Dried Yeast. - Brewery or distillery yeast after proper puritcation and oompressing will Hulland, at present, is in many cases too dry, oming to a good portion of farina or potato gtarch being mised with it, partly to prevent its becoming soft on the vosage, aud also a greed of extra profic. I am in posscssion of the entire process of manafactare of German dried geast, and wonld bave mach pleasure in opening a correspondence with "H. W. T." if he will advertise his address.-Geo. A. Davison.
[1:2633.]-Dried Yeast.-If mixed with barley meal or pea meal rery stif and air dried, it can be bept any length of time if kept dry and cool.-Jace or
all Trades.
[12633.]-Dried Yeast.-Let the yeast be kept in a dry cool place, and when pressed pat it in bags at once.
If at all monist aprinkle it over with a little rioe floar, it at all moist aprinke it over with a hittle
[12638.]-Dried Yeast.-[If " H. W. T." will wash his yeast twice in tepid (not warm) water, that bas been previonsly boiled and conled, before pressing it, I think he will and it will keep better. I have taken yeast, thas prepared, on several long voyages in hot climates,
and foand it good after six monthes. It shoald be trept and found it good after six months. It should be kept as dry and cool, nevertheless, as circumstances wil allow. The addition of chemioals alwaya injnros the
quality of the geast. The only thing I found that quality of the yeast. The only thing I found that
minht safely be used was the addition of a little, a very might safely be used was the addition of a i itle, a very
litte, common salt to the washing witer. The best Dutch and German yeast is generally treated in this way. The admixtare of dried pipe-clay, often adopted, injares the fermenting quality of the joas, as well as shat of the bread, \&o., made with it, is unhealthy, and oby law.-Arots.
[12635.]-Transferring Pencll Drawings on Paper to other Paper. - Tuke a piece of ngglazed papor and treat it to one of these processes-lat. rab
with a piece of cluth and lard, and after rabbing it well in amoke it orer a candle or lamp; 2nd, rub the back of picture or one side of a sheet of unglazed paper with a solid block of black load; by placing the prepared paper between the pictare and paper, the
prepared face apon that apon which yon wirh to make prepared face apon that apon which onn wirh to make an ivory style or nicely-rounded point of a steel knitting needle, upon takiog the paper oired This looks simple enongh, bat it requires great practice and care simplet enoti, bat
to get anything accurate and satisfactory.-Jack of

[12635]-Transferxing Pencil Drawing on Paper to other Paper.-Any kind of reasonably tine paper, elther thick or thin, serves to receive the copy. the face of the draming paper layg boara, then aper and apon the top of the lot lay the draming, pencil marks upwards, fasten the whole three sheets together, and to the board, by four drawing pins, one at each
corner, then proceed to ran over the pencil marks with corner, then proceed to ran over the pencil marks with
a fine bat dall pointed instrament. I bave nsed for the parpore a stocking darning needle with a handle, and the point ground off, run over the marks in the same way as with a transparent slate, If the drawing is not too thick, and the carbon paper good, you may get a good copy with care and practice. I have keen
copies taken by first perforating the picture with small holes along the marked lines with a veedle, then afterwards laving it on the face of another nhect of paper, and rabbin's it over with pordered black lead; the black load goes through the holes and likea a dotted ontline beneath. A pencil is aftersurds ran over the
marks, and a fair copy is produced, which cau be quickly multiplied. I cannot promis instrnetions for should be glad to hear of a method to do so. I kno of nono.-JoEn Hophins.
[12635.]-Transferring Pencil Drawing on Paper to other Paper.- Thu foll.wing, copiod rerbatim from an old book on "Philos"phical Rocrea"T. H.'" purpose: -"A perfect enps of any print or
finest white paper, and wetting it over with clean linseed oil on one side completely. Wipe off the oil as clean as possible. Let it stand to dry a few days, otheraside will be equally effectual to prevent this accident and render them more smoothly transparent. Las a and render them more smoothyy transparent. Lesy a sheet of this prepared tracing paper on the picture to be copied, keeping it firmly down by moans of woights on the corners and oleowhere; mad then with a soft blacklead penain oopy over and the loading outhines of the figures, filing ap the shades as may suit your fancy or be consintent with the sabsequent genius to be evinced in this part of trecing paper face downwards upon the paper, or other eubstance that is to recoive the pictare, when the pencil marks are to be transfarred from the transparent tracing paper to this now bubsis in a oommon oes this, and a pair of smooth boards in a oommon presewnt to be worked ent in oil colours, for the greasy natare of the ailed papar may probebly come of at he name time, a circumstance which then signifies very little. Bat for water colours or penci oopies, a
stamp mado of a skewer, or a sharp pointed tracer, tamp mano ory amooth, ontlines, to, and yon shall have the same trokes of the ferring flaid sold by a stationer in Chancery-lane. I erring laid sold ay a stangh it brings oflimpressione boughts botur; ain an hardly to be of any real preotical eervice. The prinaipal ingredient appears to be spirits of turpentine; principal ingredient is anything else mixed with it I cannot say; I merely go by the strong amell of turps it gives off. The directions are to saturate the picture place it on a sheet of writing-paper, then place be-mallet.-Hy. Taycor.
[12687.]-Optics.-Let x be the required distance. Thon, if A be the angle the mark 8in. square subtend at 200 yards, $A=\frac{8 \text { inches }}{200 \text { yards }}=\frac{\text { fin. nearly in cir- }}{x}$ cular measure. That is, $x \times 8$ in. $=\}$ in. $\times 200$ yarde. $m \times 82=200 . \omega=\frac{200}{82}=64$ yards.
-Phmantifropist.
[12637.]-Optics.-The apparent size of in object lepends on the acntoness of the angle formed by two lines drawn from the eye to the twe extremities. The angle inciaded varies inversaly with the distance of the has its apparent haight and breadth donbled at hell the diatance, snd so on. A square having ite sides 8in is thirty-two times as high and broad as a square only fin. in the aide. For the two to appear equal in size, the amaller must therefore be placed thirty-two times nearer than the larger. Therefore, $\frac{200}{\mathbf{3 2}}=61$ yards for the distance; the tin. square mast be placed to sppear of the same size as a mark 8 in . squat
distance of 200 yarde. -Acrmed H. AnLEN.
[12687.]-Optics-A simple rale of three sum. As 8in. is to 7200 in . (or 200 yards), so is fin. to the answer required. Answer, 6 \& yards-QuErous.
[12638.]-Fleas in Dogs.-Qaite harmless at the proposed dilution.-Opawire.
[12639.] -Worms in Pony.-Get some smoking tobacco, and dry it before the fire, rub finely into dust; a teaspoonful given with the first feed in the morning will have the desired effect.-N. 0 .
[12639.] W Wrme in Pony.-Give 60gr. of calomel at night, and 60z. of castor-oil ta warm gruel in the morning; you can mix the calomal with his lood, giving a dose once or twioe a week; don's give him much work to do when under treatment.-OpaLiNz.
[12689.]-Worme in Pony.-Take green broom and male fern grean, and chop amall; gire him a handfal to eat occasionally with his food,
the morning beat.-JAOE OF ALL Trades.
[12640.]-Ice.-I believe that the chespest freezing powders are made of two parts of common sods, and one part sal-ammoniac. The cost for freezing a gallon of water I cannot say.-Jack of ale Tradeg.

UNANSWERED QUERIES.

The mumbers and tilles of queries which remain unanswered for five weeks are inserted in this list. We trust our readers will look over the list, and send what infor-
mation they can for the bemaft of their follow contrimation
butore.

Since our lant "Philanthropist " has answered; 12191 ; 13359 Snlpharons Smell after Thunderstorme, p. 48 $\begin{array}{ll}12359 & \text { Snlphurons } \\ 12964 & \text { Hoist, } 443\end{array}$

Hoist, 443
Liquid Rosin, 444
Electrical, p. 4
Grense on Lenther Bands, 44
Brass Moulding 444
Builer for Mindel
Bniler for Mndel Steambost, 44
Chemical, 444
Chemical, 444
Expansion J
Expansion Jolats, 444
Harmunium. To

Beam Power, 44
Belgian Glads Trade, 445
Piano, 4:5

QUERIES.

[19702.]-Photographic Enlargeme nta.-Will method of making enlargements by development 9 -G. N. [12703.]-Fuchsiae-I shonld be glad to learn the asson and the remody, say, for the bads and blosoms of frohsias bougal at greeahoases or from tho havo tried a good and a soanty supply of water, indoors and ont, bat with the samer regalt. I have one which has ahown twenty or thirty bada the la
no overy one has droppod. Focesil.
[18704.]-Maple Vencears.-Having a lot of sawn maplo veneers in which the saw marks are very deep, 1 wish to know the easiest way to work them ap into
istare frames. Also, if there is any way of making piotare frames. Also, If there is any way of making
them pliable. Any suggention will be received by-OLD Hatrez.
[19705.]- Britraoting Vegetable Colouring Matter oolouring matiers from lenves or roots of plants, e.p. the yello
[19708.]-Laboratory Purification.-An amatear hemiot experionces a dimoalty in romoving from his
 nate the whole house with the obnoxious vapours Wil some one kindly inform him of the usual and besi methods of removing them ? - Axasios.
[18707.]-Geometrical Query.-The following question was proposed in a recent honours' papor of the and to which examinations in plano ataln the answer:What muat be the position of a circle in regard to the pictare plane in ordor that its perspectiveprojeotion may bo a parabola r' And zarther, Io wish to kiow, what is
the projection of a oircle, oblique to the picture plane the projeotion of a oircle, obiqua to tho
It is certainly not an ellipse.一 W. E. C.
[19708]-IIquid Reain for Violin.-Wm some one give an opiaida to the ordinary resin ? -Corephion
[12709.]-Soundboard Varnish -WM "The Har
[12709.] - Soundboard Varnish - Wul "The Har-
monious Blakemith" or any of "our" readers inform me how to make a varnish for pianoforte noundboards, EO. 7 -YOREBEIRE AMATEUR.
[12710.]-Ginger Beer.-In making aïrated gingerboer 1 nse the aseence or rom the root by spirit, bas as this makes tho whio If I can make a siftable essence in any other way. have seen andark rod starir called gingerine, propared, I bolieve, from the groen root Would this do, and if so, how preparod ? The aërated ginger boer kold in Lon-
don is quite clear and has a cream on it, but I am at loas to know what is nuod in the proparation. Any information how to get
ige.-Sodmarer
[18711.1-Height of Mountain.-Can any one inform me how to oalcglate the height of a mountain Whose base is insocess.
anknown ?
[12712]-Tinseed OUL-Can any reader toll me What oan be beat used to keep tin clean and bright the tin, and is dloening brings the tinning or with it.-J. G.
[12713.]-Thermometer in the Shade-Thanks for inserting querios 18973, 12974 , and 18875, p. 414; a slight correction is required in the frst and eecona.
For "a deep well n read " dip well," and in the second query, "with a diamoter of 14ti. 4in.,'" should be dismeter
of $14 i \mathrm{in}$. Will some of yoar obliging correspondents assist me with their opinion to deoide the torm of shady place Wheroin to hang a thermometer? The defnition has a wide range. In my opinion, inside a garden summor a brick or stone built house, while both positions would be in the shade.-Grisex, Ontario.
[12714]-ENo of Sound on Water.-A ourious phenomenon was prodaced here on the lat Jaly, during Day. arm of Lake Slmout five miles long; on the above day a salate was fired from gans in Barrie, causing a momentary sound which died away, but revived again after a lapse of flve or six seconde, then re-echoed as distant
thunder away over the waters of Lake Simcoa thonder away over the waters ong Lake simeoe: no
sonnd whatever being heard during the interval of flve seconds. Howis this to be acconnted for? Was the sound conveyed by air or water ; if the latter, why was
it not heard in the intorval ?
Gilulem, Ontario. it not heard in the interval?-Gillekm, Ontario.
[13715.]-Ladies' Fans.-Will some reader oblige pretty paper fans, inticactions how to make hose aboat them, but are yet so elegaut and attractive at fancyfairs? - ADA.
[19716]-Electrical Clocks.-Some time back Dr. Grabham and Mr. Fox gave particulars of their elec.
trio clocks. Will either of these gentlemen kindly eay what is the nsual going or losing rave of one of these clocks?-No. 170.
[12717.]-Watch Drills.-Will any oorrespondent be so good as to inform me how to make watch drills
small enough for pirots and hard enough for steel? small enou
DANIEL B.
[13718.] - Potato Stains.-Can any of your readers kindly inform mo of anything that will take out the stain from the efngers caused by poeling or rasping
potatoes? It seems to be a powertul acid in the sking that does so.-ANTI-ACID.
[12779.]-Medical Coil. - I have two pint and ono quart Daniell cells. Will either or all of these do for use with a coil for rueumatism, cc., or will it be prefer.
able to abandon them, and get a quart bichromate cell for this parpose? If unsuitable for a coll, how will the
above Daniell celle do to work a olook instead of above Daniell cells do to
Leclanché oells ?
(12720)-Medical Coll. - I shall be obliged to some
kindly inform mo in what casea the naual intarrapted current of 2 coll is most suitable, and to what cappos teady conilnuous orrent will be obtalied by setting ap he conthacus curronowreker and not allowiag the contact to be broken. If not, what will be the beet vay to use the coill with this ourrent ?-No. 170.
[18721.]-Hydraulic Machine for Blowing an hydraulio machine for blowing an organ, and oxplafi he priniple on whic it arkg? Is it on the ancm principlo as a steam-engine, the motive power boing colamn of water, and what is the cost of one for a smal organ p-W. B.
[12728.]-Coal Getting.- Haring seen a Hillie nov our subsoribers bo tind end coal getting, will sha system of getting it at the presont time by meebt nery' I have seen a skotch of a sawing-machine. with oring-bar and catters, working, with tar mintrors oyindera, red Davig's, I beliove. Anothor one was a hatiog xed at the shalt end by a joint, and worned of a mas hewing it. These were in use some yeare ago ; whe have we now i-INQuisirive.
[1272s.]-Compreased Air.-Having $830 n$ in the driving coal nery for quarrying machinery niling roct-bitig he bes method for geting this compreasod atr for the po pose 2-I maviative
[12724]-Tobaoco Culture.-Wanted to know al boat the caltivalion of tobaco nad manargatire of
 on this inand two years ago, and having bean coanides ably benefited by this nne climate and God's blesainc la now desirous of earning an honest penny in the abowt ine-Will WAtce, Jamaica.
[12795.]-Fused Chlorlde of suivor.-Can any d of making the above, to be used in conjanction ni.'s zine piatos ior Gaifres battary? tavo procipiatia tho chloride from the nitrate, in the ubual manare.
but have algnally failed in the operation of factag in My fusod cake presonts the appearance of a gray, hard and gritty sabstance ; thet supplied with the battery to a a brown and Bomewhat soft and traze pan kindly sho me where my ercor lies.-Argintix.
[1272a] - Motion of a Balling Boat- Fould ant Wh our cort is galling as neary explain the followizs sible, the foroe (the wind) Which ie oscueding is to mith is belng applied in nearly an opponite aivection to the sail as is doenwhen eny thin, fiat body (a alete, for example) is plece: ovenly on the surface of Fiter, and allowed to sink, doos so in a zig-zag manner, and not atraight dor resistance of the fuid are equal at all parts of its ser face.-Tos.
[12727.]-Ciroulating Library.-Is thore hive don a circulatin
[12728] - Wave Pattern.-I ahould bo man FABER.
[12729.]-Breech-Loaders.-Would some fellor roader, who is well "up" In arms, give nse socuc dramian similar to those of the "Berdan "in No. 838 of the m , oelebrated breech-loading syatems now in ase, bus:
 tor heavy gans.- FABEB.
[12730.]-Weir's Sowing Machine.-I ahould in obliged to "Jack of All Trades " is he mould explata th way to set a Weir sewing machina. Wo heve ocie cannot get out of order), which will work pretty vell tow stitclies,
Bitches.一H. E.
[29781.]-Ha nd Pad. - Woald some fellow reeder kind enough to explain the manner in Thleb hadd pac or fit into the asme handle ?-H. E.
[12732]-Glass Paper.-Can any praotienl maste give me any information as to the matorial ous fasten on the glass to paper for the nee of catrice
makers, \&to.; how it is applied ; and almo the caud makers, \&o.; how it is applied; and also the cast
maohine for grinding the glass for the parpose? maohine for grinding the glass for the
answer will greatly oblige.-
[12733.]-Measuring a Cob Thatching.some reader kindly inform mo where aro thi gro places to tate the messuros for measaring the thatici-
of a round stack commonly called a cob ? $-W$. Bct:-
[13734.]-Cement for Greasy Strapping.-I m heard of a cement for the above whith athores 4 'i: and is ready for ass in a fow minutos mithoat tho $\begin{aligned} & \text { sith }\end{aligned}$ -T. т.
[12795.]-Barometer and Clock Rate.-I which it was stated that the inflaence of varyizx es sure on the rate oould be vasily cllowed fur. Observatory, supply the soale ing which this oorran s apphed:-RHo.
[12736]-Cement on Postage Stampe.-Whe
? 1 Rн.
[12737.]-Size of Globe and Speed Rate Rotation.-Will some of your readera be wo kids et me right (if I am wrong) in the following:
revolution of globe in 24 hours gives 8 honrs din to give 8 hours diamoter must travel 10.3 miat
hour, 24,000 miles in 24 hours. It makes 305 revera to form iour sersons-spring, summer, sutncora. -one year. It follows that the globe travels 8 ? miles a year. Circumforence of globe, $8+, 001$ o
an hour. Circalar course of globe 885 times larger than itself, being one revolution in $2 \mathcal{h}$ hours, gives distance 8,760,000 miles to make four seasons.-Baloatra.
[19788.]-Graphite Cells.-To Gzo. Fox.-Wil this correapondent tell ua if his graphite coll
expectations of a yoar alnoo?-H. H. G.
[12780.]-Geometrioal Theorem.- Point (1) is the intervoothon oit a ane Cin Problem Book 1; point (8) the interieotion of F C, B K, AL L point point. Bhow that a circle may be denoribed through the points (A), (1), (() , (3).-THarAKT, Horaliman.
[2940.1-Lojer Recapement:-I have a raok lover and Figh to doteon it. It han a small eacapo-wheol pota new fork and roller? Woald any brother be kind enough to give me proper deptha ${ }^{2}-\mathrm{NO}$ Bors 8owdza.
[12741.]- Leather Machine-I experience great dimality in getifing leather of one aniform thickneis for
covaring planoforto lovers, do. Can any of our reeder oovering planoforto iovers, do. Can any or our readori
give me a design or suggention how to mako a mall give me goesign or sugbention how to mak
[19748.]-Portamonth Harbour Steam Bridge Cran any reader give mo a deeoription of the ateam bridge that runs
sFANT 80 BaCBIBIR
[18748,]-Eiseence of Wood Smoke.-Would any of my follow readera furnioh mo with the rocipp ior becon, hams, to. instosd of the nsanl ungatistactory Thy of sending ihem to the oarpentere, to., to bo hung In their ohimnoys? An answer to the abore through the medinm of the EMocisz Mrazaric would greatly oblige -An Axrious Oxi.
[12744]-Hartini Rifto. - Would "Artillery OapGin,", or some one acguainted with the working of the Martini or Westley Richards, oxplain the notion of the extractor, and the manner in whioh it pilches out the ompty oartridge case ? Neo atate whother it espeoially
requifes the bottio-nock cartridge, or could it bo uined reguros the bottio-nook cartridge, or conal it bo uncd
with the ordinary Boxar ourtridge, nimilar to that uned in the sinider 2-4. I.
[17745]-Hen Keoping.-Will muah foeding with dit indian corn have any bad effoct apon hens? Wh
[1274A]-Borews for Woodwork:-Wul some on give mo a doecription of the beat way now in res of cut and the beet means of making the outters for the same? - Winhme то Lanzm.
[19747.]-Roasting Jaoke.-Onn any one give me meat jeokg, to as to work oasily but fith the great in strength? Also if there are any other meane nsed than
the apring for the worting of jucke?-Wrunco 0 To the sprint
Lunax.
[19748]-Transparent Oement.-Can any one toll mo of the beat oompound or ohemiloal to bo used se a Hquid Arat, and afterwards to sot as a hard subatance:
but after cetting to have tho appoarance of water?but after settilog to
Wrumb to Leark.
[19740]-Punohing Holes in Sheot Braes-I wish to punch out some small odroular pieces of sheet brass by hand. Whioh will bo the boat meases of doing it

[178750.] - Steam Yaoht-I poscess the only attempt at a gteam Jacht in the port of hillowirne. Bhe le 28 2ht.

 mpeed, 5 knote Boet and ongine both' my own (amatear) balld. The boiler is of copporr, and le made by a trades.
man-it is $3 t \mathrm{hlgh}$, with rounded dome, and 2 ft . dit. man-1t in 9 th high, wilh rounded dome, and 2ft. dia.
moter iortioal fice, outalde of copper, sib. to square fool. Firebox of $81 b^{2}$, oroseed by two Galloway tubes. I home brothera, espooillly ai to the proesure I may home brother, esperilly as to the proasare I may

 gueries ? - What thioknose is the sonadiog-board? What is the inside height of box ebove the strings ? What is the distance betwoen atringa? Does one bridgo at emah
 T. Haswhli.
[12752]-Nervous Exoitement.-" T. Y. V." in his arilicie on "Conatipation," In laut week's gamber, alluded
to as remedy which has the power of allaying nerrous to a remedy which has the power of allaying norvous
oxaitement and strengthenlog the groat norvous contreme." Coald the writer of the article jant montioned, or any of your readerg, give a professional gentleman a definite idea of the moans to overoome thia terrible detractor of his ofiorts in pablio as an ingtramentalist ?-Trexiolo.
[127ss.] - The Moon. - I have beon much pazziod to
ascortuin the la wr regulating the mon's motion in doascortuin the la wi regalating the moon's motione in do-
 your astronowionl readers can assist mo. I havo soarohod
at least halt-a-dozen books on astronomy, but fall to got
 Nautical Almanao for one year If Ind the doolination is, What is the cause of this ranothor, 25° north and soath a cyole coming to the same number of degrees north and nouth in a oertain number of years? Is there any oycle in which the moon rotarns to the eame position in the heavens with regard to the earth on the game day in the perigee, or at the asme digtance. 1 should very apogee or to know whether there is any period in mhe very mach like the moon's motions and poaitions will retarn to precisoly the same place on the same day after a cortain number poyenit, so that here is an exact ropotition of thote positione with the apogee and porigoe of the mon and
her posillons in dealination. Pdo not know whether 1 bare posilions in decilination. Ido not know whether I bave made my meauing sufficiently plain, hat perhapes
oome of your readers will understand my dimenlty. The motione of the moon mire doubtless vory oacy to anderatand to thote who know all about tt, but 20 the tyro in astronomy they are very pazzillog, and the way that the
so-oalled "popalar" books sot about to explain or hale oxplain the subject, only makes what is ailready a 00
tuaing subject " worse confoundod."-W. In Brows.
[12754]-Chead Firewood. We shall feel oblined if any of your numerous readers would give us information about oneap are oood made infismmabie by heo sdaition of rosin. Wo have sar mille in a very price it was lest year, wo fear the coming winter will be a very trying one. Every year coal tiokets are dintributed, but what is very much wanted is a frowood that woald onablo a poor perton to boll a kottle without keeping up a aro all day. Any hints as to the mode of making suah wil much obuga. OxDIx AND Grase.
of All Trades" "Joase look all Trades."-Will "Jack
 Why the ourd sosp acts

OHESS

Axr commaniontions intended for this department to be addressed to J. W. AbsotT, 7, Olaremont-place, Loughborough-road, Brixton, B.W.
The great Rarl of Chatham, upon being complimentod on one of his finest strokes in polition, is roported to hare said that "he deserved little praike, for his sucosess aroee only from having been chearmatod by discovery, the day boforo, at choes. And in his speech in the
Hoase of Lorde, on the 20th January, 1775 , relative to Hoase of Lords, on the 20th January, 1775 , rolative to the affairs of America, he said, "The hour of danger mast arrivo in all its horrorn, and then these bonotfal miniaters, apite of all their conddence, and all thair
mancenvres, ahall be forced to hide their heade. They manconvrea, ahall be forced to hide their heade. They shall be forced to a diegracoful abandonmant of their prosent meacures and principlee ; prinolples whioh they avow, but oannot detend i meacures which thoy prosume to attompt, but cannot hope to eflectuate. They cannot, my Lorde, they cannot stir a stop; they have not
a move left; they are cheokmated."-From "Game of a more laft ; thay are cheokmated."-
Ohenes," by P. PRATT, published 1817.

EnigMa I.-By F. Henwiy.
White.

K on Q B 5; Kt on Black. White to play and mate in two movea.
Problex XII.-By C. W. (Sunbury).
Black.

Whise
White to play and mate in tro mover. solution to Probley X. White.

Black.

1. R to $Q 8$.
2. Anything.
3. Kt or Q mates, acc.
,
J. I. B. (Uiverpool)- - You cannot caetle when ynur King In in check, and ohooking your adveranry's King doet not interfore fith his priviloge of oastling. In roply thyour other questions, we adrige you to get Lowen you ample cuarse of atudy.
W. Nalis.-The idea Ia somowhat similar, but the posi tions are not identical. Soores of problems admit of the mame ooinoidenoe. For instance, how many times has the Indian Problem boen sorved' up, and by some of the best composern, too ?
F. C. CoLunss.-The problem appoars to be perfoctly correot and very good.
A. W. Cooprer.-The last two problems aro neatly con atructed, bat rather oany ; they are, however, marked for ingertion.
M. I. Masis (8 wanwoa).-Wrong in both inatances.
G. J. Slatez (Bolton)-Your problem (No. 27) admite of

The other is correct and good, and it shall ahortly appear.
Conrect solutions to Problem X. have been recelvod from \&. M. Barter (Kensington); A. R Moli son (8wanean) © G. C. Hoywood (Great Torrington) E. T. Jamen Harricon; W. Nash (8. Noot's); Aloph (Bod. ford); Argo (Yarmouith); A. W. Coopar; H. Cherry; W. Alrey (Woraloy); F. C. Colllos ; A. G. (Ialington). Ali
olhers are mrong.

THE ENGLISH MMCHANIO LIFEBOAT TOMD.

 Amount prorional
Cop. Brokeby

```
ly acknowioaged
```


ANSWERS TO CORRESPONDENTS.

*** All oommunications should bo addresesed to the

HIXTS TO CORRESPONDENTS.

1. Write on one alde of the paper only, and put draw. Inge for illastration on soparato plocent of pappr, 2 Pat tities to querifes, and When answering querios pat the
numbers as well as the tilles of the quorios te whioh the numbery as well ak the titles of the quorios te whioh the
replien refer. 8. No chargo is made for inserting lotiarg
 quariea, or repiot ingortod. E. No question amking for edroational or miontile information in answored undorg the post 6. Liotters cont to corroepondonta, names of correspondenta are not givon to inquirert

The following are the inftiala, te., of lettore to hapd up to Truesday morning, Augast 20, and unaoknowledged abemhere:-
G. C. Priod-Wm. Pryer.-J. Gadeby.-P. W. Spencer.Bornard Davic. W. H. Colling.J. W. Stuchberg-Wonder.-EE. L. Daniel.-E. J. Rowley.-W. Davenport. -R. G. Fi. R. Loyden.-G. Bariand. James Dine.-Glide- - Bev, F. Selmon. - R A. Prootor. - Trib. -
 ganious Whitermith.-O. M. M. B.-C. Gaudibert-A
 Taylor.-R. Terrok John Hophins.-Tapper.-R B .

 J. D.-J. K. P.-Dr. Oarponter.-Rorrac.-E. W. Burn-

 D. A. Adamg - Hagh. A Constant Reador. We Belog.
 Analyst- Stamp-One of the Edinnorgh Branoh.-Betholl-John Wattoon-Jannifred. - R. L. B. -Miverpool-Photo. Bristollienale.- Vircoan.-Levatt., - An English Moohanic.-A. Jote. -Provod-Seneoio The Harmonlous Blaokemith. - Hymmonds.-Bobo. Coroin-Emigrant.-M. A. B.-A Poor Irishman.-F.W. -Soionoe and Art. Sigma - Contrifugal Foroe -Boctus,-Nema,-Q.Yorke-Aseoolate-V. Cembridye
J. Snollgrove-Fulornm.-James Tresfac.-E. B. Johng. - James Bollows. - Ramegate Babsoriber. G. H. G.-O. H. W. Bigg B-Comai.-Jasper.-E. IL. J. W. Cuthbert.-Thoa R B. Blisdiey, Wm. Wray. Mechanio.-Oanny Scott.-A. G. Boyd.- Frod. Wailton -Salvator.-R J. Wiloon.-EE. I. H .
A. B. W.-Quite impraotiosble, so far as wo are oonH. B. -Yos Consult a zolicitor.

Yanieze.-Yat your quention more plainly. What platee do you mean ?
 pefneiplo too mach a repotition of the other to bo worth inserting. Rindly takt a little more care with your grotohes. kinot draving.
Broctire, - Soe roviow or Mr. Colling's book on "Par.
 O
Oyi Trat Tarze.-Oannot appoar as a quary.
H. Wasymaron.- Write Bennett Woodoroth, Government Patent Office, Southampton Bulldings, London Io grat reglet eomothare B. R
a. R-We cannot be everybody's lawyer. We shouid expect, if we complied with your wish, requeste from uncorthert draw up heir wills for them, which To could only do on condition of being allowed to Ingert a hendeomo legaoy to oursolves.
Subscriagra (Bristol), A. L. (Hindley), and J. Pagh, are
referted to back pols. referred to back vols.
ingorber.- For information on mushroom oulture see Triter 65 , p. 400 . Vol. XI. Trx-For description of instrumente for de
ellipseas aee pp. 502, 548, 695 , and 618 , VoL, XL
Inquikez (Hartlopool). Ast at any chemitt's.
SAMEs HURTR - For Information on ferne seo reply 2417, p. 93, VoL. XI.; also indices to other back vole,
RITviLisT. The incenso used in the services of the Rytualist. -The incense used in the serrices of the Churoh is bensoin. Yoa oannot "make" it.
APPEXTICE TURNER-Write Lookwood and
Apprimtick Turisz-Write Lookwood and Oo. or J. Longmane for a eatnlogua.
has however, in a har, hawever, in a contribation which appoared in spots of a later date.
Tox. Tire - If you will deane what you moan by "point of time " in contrediounetion to the time indioatod by the hands of the clook, we will ondeavoar to answor yoar very hazy quention.
G. W. Lisms. - Direotfons for mak
 givon in roplies
Naturac.
Ask you want to know about the dulcimer. AXIEL B.-For information on six and twelvo lens
D. P. L.-For information on the oonstraction of the metronome see p. 161. Vol. XI. Jons Rase (Sydney).-Vol. XI. is not of print. We have and three blank conses. The cost of these, dedicted from the sum remitted leares enough to pay Mr T.'s subscription up to April 11., 1873. Vols. and caess sent to frm named in your letter on Ang. 15.
CAREPOL, Bertha, David Loag, and G. S. are referred to indices to back rols.
C. H. W. Biges thinks that "a mnthematical colamn would be an estimable boon to wany." He says, "I
am supposing that such a column ehould not degeneam supposing that such a column should not
rate into mere pazzle pages nid entch questions, hat Thit into mere puzzle pages nnd entch questions, but to the many, not tio few.", "If no better one, like to Mr. Proctor or 'E. L. G.' would undertake the re-
sponsibility, I ofer my gervices. I know I cannot compete with these g antlemen. yet I think I know what wonld be valasble to the stadent, both theoretical Hind practical."
HTRAB SAX. - The reason mentioned was not the only one that stood in the way of the insertion of your
letter. A love of trath, for its own sake, independent of personal considerations of any kind, should be the primary and prevailing consideration in scientific controversy. We cannot comply with your request as you do not give your address.
Johan. - You were referred, as you are now, to indices of Goink volumes.
ornevine, J. Wallig, Ibid, Hannibal, Wm. Millard,
W. Hindley, Poblican, W. B. M., your queries are adW. Hindley, Pablicnn, W. B. M., your querie W. MiniARD.-Your query is rather beyond our line. Ed. H. M. - First query not in onr way. Second query, Sheridan was the anthor of "School for Scandal." J. T. H.-Pray consalt a medical gentleman.
A. G.- The Motropolitan Inatitution for Diseases of the Ear, 32, Sack ville-street, London.
Next WERE. - We have an anugally large number of
contributions atanding contribations atanding over for next week from many of our esteemed correspondents, Incloding F. R.A. S., The Harmonions Biscksmith, w. R. Birt, B. Bottone Jack of All Trades, and dosens of others.
anti-Flattits. - We do not intend to rermit annther digcussion with those who believe that the earth or the moon is fat and not round We heliove cbarles Rabache has gome theory of the
Chaped, or bompthing of the kind.
Ch. Rabachz. - Your letter (both for its matter and its manner) on the moon is nnsnited to our collmmas, and, The same remark applies to your letter on centrilagal force.

Trig " Butidige News" No. 919, Avougt 16, Contains

 pant free, 8qd. Pubish

THE INVENTOR.

APPLICATIONG FOR LETTERS PATENT DUBING THE
 revemente tira. Whitechapol, and H. Jackoon, Loede, for Im aud pulveribing sewase deponit. manure, comont, chemicati, grain
2967 T. Boan, Liverpool, for improvemants applicable to folding marlinnei for perforating, panctaring. indenting. Reparating. or
diviting newspapers and other $4 k e$ sheets during the procesi of beling folded

2369 H. B. Flood, Ban Franclisoc, U.S., for an improved cornet.
2970 C. Drevfin, Rsarifife, Lancashlre, for improvements in
 2372 F. Jacknon, Whinniat or, Oumberiand, for improvementa in
aliae vaireo for steime enninet, zins P. Jaekkon. Whinlattor, Camberland, for improvementa in 2974 G. Ryilll, Dewwhary, for Improvemants in machinery and apparatiar fyeing or unining siman and veretetio snbatances.

 mente
mion.
tin the

 2283 B. T. B. Milla, Sninthampt in houltinge, for timprovemorts in Hon of fuinne fire bar.

 prntuction and purineation of phosphonic acid and lio combina-
tions. A commanication. 2257 P. A. Dormoon and F. A. Paget. Se
ior improvements in padding fargaces.
 2299 C. Levey, Susasex-road, Holloway, tor
tcam eng ine
${ }_{22}^{22: 0} \mathbf{A}$ Crowther, Lockwood, Yorknhlre, for an
 9291 B. J. B. Mille, Soathamptan balidinge. for Improvemonts in
 aetnring the sad
ommuntation.

 art for controlinng, venulating.
and flada, and preventing wasto.
P2ng J . Young. Kolly, Renfrowshire, for improvementa in ob-
ining motivo power. 224, A. Prinnlo, Benabronk, Irolnnd, for improvements in the
rentuent of tuax and other Abrous subatances. 2295 W. S. Hidson Now Jernes us,
22966 Her

2927 J. Flet her. Ashtno -ander. Lyne. wnd s. Fietoher. Tolltownth wiles and actuntod by the cam ohatt of mules.

 Where e rampualtornating rotary motion is requiled.
2300 X. Norman, Bayswater, for an improved sowing machine. 2301 J. Fielding. Manchester, for 1 mprovements in apparatue
for con veying signala from one perroon to another in rallway tralne.
 ors
 draine through piper communicating therowith

 oils. A comnunication.
 2007 nd machinory for the asme.

 29r9 C. Reflixrdson, Gracecharch-etreet, City, for improvementa
in looms tor weaving.

 2913 G. G. Andrd. Dorking, Sarrey, for Improvements in raiting
or torceing water trom minea, wells, or other places, and in ap

${ }_{0}^{2318}$ N. N. Thomas, Glangow, for Improvements in motivo-power 2914 N. Thnmas: Glasgnw, for Improvemanta in ho
water supplied to steam-boilers and In generatiog steam
2915 W. Hnahnnd. Hagle, Curnwall, for improvements in stoam
${ }^{22316}$ (inder. L. Fyfe, Noble-straet, City, for an Improved sourt box or

9318 J. Henderson, Glaszow, for improvemente in convertink
cast iron into teo and wrought iron, and parilying cast iron for

 receptacla Ror koeping or bol
during traneport or otherwise
2921 G. Haseltioe, southampton-bullaings, for improvemonts in 2723 W. E. Gedre, Welling

 certing
circular motion.
2284 W. E. Gedge, Wellingtnn-stroet, strand, for an improved
 machinnery or apparatai
manncation.
2ase in looma tor weaving.
298
los.

 ame to be directly or inditectly tranformed into iron or steol tho 9332 J. Doare. Glamorgandilro, for improvements in the mana
facture of artuctal fael ${ }^{2339}$ T. Wrizhtion, south stockton-on-Tees, for improvementi patents sealed.

 951 A. G. Bell, for an linproved galvanic belt.

 ,
374 J. E wards, for iluproveruente in looke.

set J. Phillipa, for improvementa in abipar alroal lampa.

G. smith. Ior An tmply

W. Willoughy, J. Willoumby, 8. Willorgthy. for taryore
 atraction nf furnaces for carbonating or drying aliknilioe
other subutancea, and in the method of woring the 53 me.
 pparatns fir ienining or parifingrovols.

Int Improvamanta to
padding, or meltion izin
w. F. Heshayten, for an matomatic water or other aris
R. Nottell, for improvements in whntilen for loome
W. J. Mirny for an improved nystera or metbod

 to he uned in connection with wire tramwaykining ye low and res
si2s R. Smith, for lmprovemants in obiaining

 In consection wi h such vohioces, or where puwer in required io b
transmitted hy means of corde, ropes, or helt
b20

 of horse.sh $h e$ nnlla and in the machinery for that parporso. afpt
able alan to ther articles.
 1061 W. R Lako, for improvementa in the saennisctare
 arture of refined asit and in the apparatus tharef 1971
 1810 R. Coddingtinn. for improvemeate in priptian berswm partlv applicab'e to other macbinee. 1 or improvements to apparz= for screening Coils.
1309 J. H. Johnon, for improverreate in the treatrent α
α or

 or tomprovements in maohinery for seadatay ox
 1789 J. H. Johnson, for improvemonts to the ranameatere

 nurhing torecher the rearna of ood adpratas to be emoloyed for sn-h purg 1937 T. Ramption,
Beasemer steel ingots.

T

0 AMATEUR MECHANICS and oth

The Invantar and Patentoo of an Improved TRCESN
 1at Prize, b9. - For the bert Telescople stick With Leazatzex 2nd Prize, el - Pro the secind butiditth.
srd Prize, 21. Frr the beat Walking Stick (with leass

Also Prixes for tho best Pustical Compositindes on the etraci-

Part, renzanco.
Penzince, Augat, 1872.

THE TURNERS' COMPANY OP DOV. The PREEDOY of tha COEAN

Thy Ctrylish Jftechanic

FORLD OF SCIENCE AND ART.
TRIDAT, 4 UGUST 00, 1872.

ARTIOLES.

OCEANIC CIRCULATION.

By Bichasd A. Paoctor, B.A., Hon. Sec. R.A.B. Author of "The Sun," Light Saience,"
"Essays on Astronomy," \&ec.

ITT is imposaible but that on a subjeot so difficult and complicated as that of ocoanic circulation, different viows should be entertained by students of soience. And it is olear that in the preeent stage of the inquiry no nseful parpose could be fulifiled by making the problem a matter for controversy. Dr. Carpenter himself has shown that much more is to be gained by observation than by reasoning on imperfeot knowledge. If I venture to remark that his deep-sea researches have led to the most important contribution which has been added for many years to our information respecting ocoanio circolation, he will not, I trust, consider that I am passing beyond the bounde of controversial courtesy. But I am, indeed, not anxious to treat the matter as one for controversy in any sense. It will be perceived by those who have read my remarks on the subject, that I have rather put them forward as suggesthons than as indioating theories which can be maintained with any dogree of aseurance, far less with conviotion. Nor does it seem to me likely that one explanation oan suffice to scoount for all the phenomena recognised in oceanio circulation. This is a case, if ever such case were, in which more causes are in operation than ome; so that it may very well happen that exoellent argaments can be addacod in maintanance of different views. If, therefore, I enter on the defence of what I have already written on this subject, it is not with the wish to show that one partioular explanation of oceanic ciroulation is correot, and all others erroneous. If I am dedrous of dealing with the considerations arged by Dr. Oarpenter, it is not beoanse they seem to him to militate agninst the views I have to some extent advocated. What I wish to show is that I have not addressed your readers on the rubjoot of oceanio oiroulation without making mywelf familiar with the facts which bear upon that subject, and at the very least, with thowe comparatively fundemental faots to which attention has boen invited.

And here I would remark that one who writes $s 0$ mooh and so often as I have had ocoasion to do on this and kindred aubjeots, is placed to some degree st a disadrantage. He oannot on the one hand assume that the readors of any partionlar casay have also read all that he has writton on the wribject ; yet, on the other, he cannot essume that none have done so, and that he is therefore free to repeat (in a more or lees modified form) much
that he has formerly urged. I wes, perhaps, that he has formerly urged. I wes, perhaps, aroid touching at any length on any partis of the subjeot which I had more partionlarly dealt with eleowhere ; and accordingly I have laid mysels open to a mothod of atteak, whioh in reality in-
volves the euggention that I have writtem without dee consideration even of the elements of my mabjoot. I have no doobt that Dr. Carpenter has no winh to imply this direotly, yet indireotly it is be able to abow, however, that every oue of the yoints torobed on by Dr. Oarpenter had been fully cenddered by mo-and, for the moot past, several
months bofore bo had troned hin attention to thin months
First thore is the remark that I have loft out of viow the ciroumstance that if there in orcess of evaporation in the intertropical area, the ercess ought to show itsolf, as in the Mediterranean,
in an increase of speoifio gravity, Whereas the epecifle gravity of the equatorial wator is lowoer than that of tropioal wetar. Now, it in nnquentionably trae that the effeot of evaporstion is to increase the specifio gravity of sea water ; but it is equally true that the effect of the heat which causes the
evaporation is to diminish the speoifio gravity. evaporation is to diminish the speoifio gravity.
The point is considered in my essay entitled "Is the Galf Stream a Myth ?" which forms part of may "Light Sojance for Leisare Hours."
"We rocognise," I there sey, "two contrary effecte as the immediate results of the sun's action. In the first place, by warming the equatorial waters it tends to make them lighter; in the second place, by eausing evaporation it renders them salter, and so tends to make them heavier." And I proceed to inquire which canse is likely to be the more effective; arriving at the conclasion that the water is made lighter. The osse, indoed, sppears to me to be altogether different from that of the Mediterranean Sea cited by Dr. Carpenter. In the Mediterranean Fo have the same heating action as on the Atlantio in the alme latitudes, but not the same relatively enormous quantity of water freely commanicating with the region so heated. We have, then, in the Mediterranean evaporation as everywhere the Mediterranean evaporation as everywhere
else, and evaporation to the same degree, appreciably, as eleewhere in similar latitudes; but eraporation not compensated as in the open Atlantio by the effects of free communication with surrounding water. Hence we have in the Mediterranean an increase of saltness; in other words, an increase of specific gravity. And prooisely becanse this increase takes place in the Mediterranean, whereas the water of the Atlantic in the same latitudes, exposed to the same average degree of heat, is not rendered heavier, it may be maintained not unreasonably that the water of the equatorial Atlantic being unconfined will in like manner not be rendered heavier by evaporation. It seems' to me that we have here a positive argament of greas weight in favour of my views. Bat independently of this I would ask whether it can be questioned that enormons eraporation does take place over the equatorial ares. This is what I contend for, and I should have imagined that few would undertake to deny the proposition.
In pessing, I must remark that I do not adopt the distinction between equatorial and tropioal water which Dr. Carpenter appears to recognise. I have in view the evaporation over an enormously larger ares than he considers-no less an area, in fact, than the whole oceen between latitudes 40° north and sonth of the equator (at the equinozes, and varying according to the reason). It by no means follows that becanse the equatorial ourrent does not cover this enormons area, that therefore the relation whioh I have suggested as the mainspring of oceanic circulation has not that extent. On the contrary, while it is on the one hand cortain that there is an excess of heat over this enormons area, it is on the other almost a necessity of my theory that the resulting current should be found running along the middle only of the great region of evaporation.
This brings me to Dr. Carpenter's second objeotion, that if the removal of equatorial water draws in polar water from the bottom, the whole intermediate stratum should first rise towards the surface. I do not hold the view thus demolished, but aimply that the inflow is from below. The question whether the inflow would be from above or below was dealt with by me in a paper on "Oceanio Circulation" in the Student for Jaly 1868. I do not urge this as a proof that Dr. Oarpenter's objeotion is invalid. My reasoning may admit of being refated. But I wish to show that the objootion is not a new one to me. The inflow may be from below without being from the bottom. If it ware from the bottom it would not have the effects I have ascribed to it, that is, it would not result in a westwardly-flowing ourrent. What I conceive is that since the whole tropical and equatorial ares is a region of excessive evaporation (as surely no physicist will deny), there is over the whole region a depreasion of the ocean level. This depression may be, or rather must be, exceedingly minute ; but the total quantity of water thus, as it were, wanting, must be enormons. The difference muat by the lawe of flaid equilibrium be supplied, and though the immediato supply in equatorial regions may come from tropical regions, the sotual souroe of the total supply must be sought for in higher latituden. That the water drawn in under these ciroumstanoes would traverse the surface of the Atlantio, is by no means proved by the frot Carpenter consider that an in-draught to replece witer "swept off from the surfaoe," by trade wind action woald be a surface current. The two cases are wholly dissimilar. I mast, however, admit that my case is one of extreme difficulty regarded as a problem in hydrodynamios It is to dificult that I do not balieve it can be solved even after the very imperfect faghion in which hrdrodynamical problems have hitherto perforce been doalt with. When the physios of hydrodynamios have been treatod by mathema-
ticians like the phytios of astronomy-or rather when they can be so treated, it may be possible to deal with this problem. Unloss I greatly mistat
I do not see how the action of the cause I have considered is affected by the diroumstance that the equatorial heat does not show any effects below 200 fathoms; for the cause is in its very anture a surfeoe one. Bat I would remark that so far as continuity of action is concerned, the equatorial heat seems at least on a par with the polar cold. For as the equeons vapour rises it finds its way to regions where the atmospherio ciroulation is at work to carry it away (it is only the surplas quantity whioh is condensed into clouds, and even these are in great part carriol away); and thus the process of evaporation cas hardly be exhausted. Even st night, though in a modifled manner, the evaporation must continue. But the ention of the polar cold, though it is con tinuous in the sense that the inorease of cold extends to great depths, yet has this grest dififoulty to contend with that the descending water must perforce wait until room is made for it by the slow removal, the creeping away, as it were, of that which it replaces. That this cause, per se, can ever become one of suffioient activity to generate a complete system of vertical coeanic circulation seems at the least open to grave question. It ap. pears to me also that when applied to the North Pacific this theory fails. Very little water can pass throngh Behring's Btraits, and beyond Behring's Straits there is an island-locked and shallow sea of enormous area, eltogether unliko the deep North Atlantio.
I would further point out that the interesting fact above mentioned, namely that the equatorial heat exerts no perceptible effect at a depth exooeding 200 fathoms, is in reality almost an necessity for my theory. For if the whole of the equatorial ocean were heated, and, therofore, of roduced specific gravity, the water arriving from higher latitudes would flow to the bottom, and so have to force up the intervening atrata, in order to produce the observed effects; and this may be regarded as impossible. As it is, suoh colder and heaviar water would be in dynamioal equilibrium within a very ahort distance of the sarface.
Next, as to the question of rainfall. Dr. Carpenter considers that I have overlooked the considerations (1) that the rainfall of Europe and North America may be mocounted for by the evaporation in the Mid-Atlantic, beyond the region of the trade winds, say between 20° and 40° north latitude ; and (2) that there is an enormoner rainfall in the region of equatorial calms, which Sir John Herschel attributes to the doposit of waters taken up by the N.E. and S.E. trades. To this I muent reply that in my easay on Rain in the "Intalleotuat Obeerver" for December, 1867, I have weighed the whole queation of rainfall at least with great care, and with constant reference to the best sources of information. One circumstance I therenote which seems at a first viow (or rather viewed as Dr. Oarpenter appears to consider the matter) muoh more fatal as an objeotion to my theory then either of those noted by Dr. Carpenter; viz., that acoording to the observations of Hamboldt and others, the annual rainfall is at a maximum at the equator, and diminishes with inarease of latitude. Bat the whale question is, where does all this rain come from? If it comes from tropioal and equatorial eraposation it will surely not be argaed that what falle in or noar the place of evaporation itself, represents the total amomnt
of such evaporation. It is unquestionable, I conof anoh evaporation. It is nuquestionable, I conceive, that the rainfall is onty the excees of the aqueous rapour poared to copiounly into the ait
from the whole of thia region. It is the quantity from the whole of thia region. It is the quantity of little importance where the ruinfall of higher latitudes comes from, though it ahonld be notioed that the views of Dove, Ksemts, and other leading meteorologists reapeoting the winde and rains of high and low latituden, cupport my romark about the great rivern.
Now we have in the phenomens of the zone of calms a orucial teat of Bir J. Hersohel's theory as to the origin of the equatorial rains. It appears to me that this teat altogether negatives Hersohel's theory. If the moisture to which these equatorial rains are due oame from the trade-wind regions, we ahorid cartainly not expect
the fall of these rains to be assooiated in any

- In passing I may notice that I did not auppose sir J. Herscbel to ho humorous in reterence to the intensity of the polar setion, bat in his nee of the word "omphasis" should not have toughed on the point did I nut speculative of theozetion opinions.
marked degree with the progreas of the equatorial day; or, if at all, then the cooler parts of the day, when the point of saturation is lower, would be the time of precipitation. With the mid-day heat would come a cessation of precipitations. As a matter of fact the contrary is the onse. The sun (we are told by Dove, Ksemtz, Humboldt, Maury, Buchan, and many more) rises commonly in a clear sky in equatorial regions. As the day proceeds clonds form, and towards mid-day they grow dense. It is at noon that heary showers fall, and towards evening the skies again become clear. Now, any one who has noticed what happens on calm summer days in any well-watered region oan see that the equatorial phenomena represent the same processes on a greatly enlarged scale. On a summer's day in buch regions we see how scattored oumalus olouds begin to form in early morning, become larger and more numerous as the day proceeds, and in the afternoon begin to be traneformed into camalo-stratus. The ex. planation is simple. The sun's heat has caused aqueous rapour to rise into the air, until there is so much that not very far above the earth's level the sataration point is reached. The further rise of the vapour is followed by the process of condensation into cloads, mach hest being given out in the process, causing the air to expand in the neighbourhood of the clonds so formed, and thas giving to these olouds their peonliar rounded tops. (At least this feature seems better explained thas than by De Banssure's theory.) Now suppose the conditions changed to those existing at the equator. The supply of vapour is very mach greater, the saturation point is very mach higher near the sea-surface, and the contrast between the conditions prevailing there and in the region Where condensation begins is very muoh more marked. The air above the equatorial and tropionl seas contains, in the form of invisible equeous rapeur, an enormous quantity of water; this vapoar rises and extends itself, its place being continually aupplied by fresh evaporation. What must happen when the process has continued for several hours, but precisely what is observed to happerx? There is an overflow, so to spesk, resembling, only muoh more marked, that which cances the formation of our summer colonds. Enormous cload-masses are formed, which oannot be carried away by the atmonpherio cireculation (very high above the ealm eone), so fant as they are formed. Hence follows arcessive acoumulation, presently resalting in peocipitation, accompaniod by remarkable eleotrical phenomean.
But to suppose.that the whole quantity of water evaporsted at the equator, and in tropical regions, is precipitated there in the form of min, corre-
sponds to mach a supposition as that the water eponds to mach a supposition as that the water
overflowing a dam inoludes all that has risem to the level of the dam.
I should not be areatly concerned if the reselt of the experiments I spoke of should not socord with my prediotion. Bat serely to pat ice in water oapable of moltiag it, is mot in any sense to reppesent the conditicas of the sotual oase. The addition of water trom the ieves it malts is not in erocordance with these conditions. It caunot surely be maintained that the oceanic circulation depends
on the sddition of water from the melting of ioe; on the addition of water from the melting of ioe; umimportant feature of Dr. Ompputer's experiment. At any rate, the ioc does molt, and the movement comes to an end wher all the ice has melted away. Let the ioe be paeked outside the arotic ond of the canal, soas morely to produce a refrigeration correcpending to whet ectually takes place with wator carried into arctic latitudes, and result. Under the aetual cireumetances, the melting of the ice produces effeots much more nearly corresponding to those due to rainfall than to the mowe effects of arotio cold. The very
sotivity of the oireudation shows that the water aotivity of the cireutation shows that the water
which mores tomarde the ioe does not undergo refrigeration. Water dees not eool quiteso quickly. It is the melted ioe-water whioh descends; and nothing takes place in the arotio regions which corresponds to this continual addition of water to that alneady ciroulating. Otherwise, the arotic ice would be contioually diminishing, which, of course, is not the case.
It will be gathered that I agree entirely with the opinion which Sir W. Thomson expressed, as
to the reason why heat is decossary for Dr. Carpenter's experiment. Heat is necessary, because the ice must be melted to make the experiment suoceed. Bat onmparing the effects of heat and refrigeration (not of heat and the continual inflow of ice-oold water), I conceire that heat would be found altogether the more effective.

Lastly, as to the wind thoory of the Galf Stream, Dr. Carpenter remarks that, so far as he knows, I am "the only man of science in this country agreeing with Captain Marry in attribating the Gulf Stream to some other canse than the impelling force of the trade winds." He must be aware that there are not hall a dozan stndents of sciense in this country who have expressed definite opinions on the sabject after a thorongh and independent inquiry into the evidence. Amongat those who maintain the wind theory there is not one, so far as I know, with whom Dr. Carpenter is in agreement. Mr. Lsughton disputes the very principle of Dr. Carpenter's reasoning, holding that the change of temperatare from equator to poles proceeds ton slowly mile for mile to prodace the effects. Which Dr. Carpenter indicates. Mr. Croll, in like manner, has expressed his complete dissent from Dr. Carpenter's reasoning. So also has Mr. Findlay. I believe these gentlemen to be misjaken, and I conceive that I have been able to pat my finger on the precise point where their respective lines of reasoning fail. Bat, if Dr. Carpenter is to take general cansent as an argument, and to maintain that I am wrong because he knows of no one who agrees with me, I may as well point out that he is entering into a very questionable alliance so far as his special views are concerned. So far as I know, all the continental stadents of soience who share our common views as to vertical circalation, reject the wind theory as solely sufficing to account for the Golf Stream. Again, he sets Sir J. Herschel's opinion (30 years ago) that " the Gulf Stream is entirely due to the trade winds" ssalmost conclusive against me. It is, at least, not new to me, since it is cited in every paper I have written on the subject. But is there no evidence to show that Sir J. Herschel absadoned the view he formerly entertained? I would ask what Sir John Hersobel implies when, in his letter to Dr. Carpenter, he writes "' The action of the trade and counter-trade winds, in like manner, oannot be ignored ; and henceforward the question of ocean ourrents with have to be considered under a twofold point of view." The word "henceforward" implies very distinctly that Sir J. Herschel was entertaining a new opinion-that is, an opinion new to him ; and I think Dr. Carpenter would find it difficult to demonstrate that this new opinion wonld not have enforced the omission of the word entirely from the sentence quoted by Dr. Oarpenter.

I need hardly say that I do not agree with Captain Maury, whose theory of oceanic circulation appears to me to be wholly untenable. Nor do I for a moment assert that the winds play no part in producing oceanic ciroulation. I may have been mistaken in attaching 80 much weight as I have to Maury's evidence as to the trade wind zones, though it is known that science owes more to him than to any man for our present knowledge of the winds prevalent in cartain regions; and when I first wrote on the Gulf Stream there was no evidence on the subject even approaohing Maury's (or that collected by Marry) in acouracy and completeness. Bat there is one argument which those who have adopted the trade winds as the primary oause of the Galf Stream appear to me to have overlooked, and it is on this argument that my own view has been ohiefy based. The trade wind zone of the northern hemisphere is not constant in position ; bat travels northwards and southwerds with the northerly and southerly motion of the san in declination. The change in the prsition of the zone of calms is not, indeed, so great as is stated in Buohan's meteorology, where it is said to travel from 25° north to 25° sonth of the equator; but it is considerably greater than was sapposed by Dove, Kaemtz, and others. If we set the extreme shift of the northern trade-zone at ten degrees we are certainly not over-rating it. Now, taking this zone as extending in spring or antumn from 10° to
25° north latitude, we shonld have it in winter extending from 5° to 20°, and in summer from 15° to 30°, the only part common to these two ranges being that from 15° to 20°-that is to say, the northern five degrees of the winter zone, and the southern five degrees of the summer zone, esich zone being 15° wide. Now, if any one will mark these zones on the North Atlantio, he will find that while the zone of winter trades would produce a carrent flowing into the southern half of the Gulf of Mexico, the zone of summer trades would produce a current flowing into the northern half. The former would prodnce a ourrent flowing as the Gulf Stream actually Hows; the latter would prodace a curreut fowing precisely in the opposite direction. This being the case, I do
not find the evidence for the trade winds as the
sole or even the main canse of the Gulf Btreem altogether convincing, The case doen not, for instanco, zeom quite "ea raicar vas the rotstion of the earth." It seemg, also, not underirable to mention that the equatorial current and the Gulf Stream are not. neare daift-purrents, and that on a careful estimation of the frictional action of suck winds as the trades our the surface of the coean, the action will be found quite unequal to the propulsion of so vast a body of water as is actually carried weatwards (nok, by the why, before these winds). Until difficulties such as these have been removed from the trade wind theory as solely sufficient to sccount for the Grall Stream, I think I woeld rather be the only student of science opposing that theory, than one of a phalanx, however large, maintaining it. Thers is, however, no such phalanx ; the subject being regarded by naarly ill students of soience as a very opan one.

NOTES OF COMMUNICATIONS TO TER ACADEMY OF SCIENCES, PARIE.*

PHYSICS.-Ortical Peienombnon obseated at Grand Ceartrevse.-The degeription of the phenomenon observed in the balloon by 14 Tissandiert recalls to mind an identieal circumstance observed by me four years ago. On the 3rd September, 1868, towards 5 p.m., I wes, with several other persons, apon the narraw platform which terminates the Grand Som (2,033 metres high), and of which the walls form themselves into a peak at the Grand Chartrease. Clonde onveloped us each instant; the sun, nearly setting. cast our shadow, and that of the cross planted upon the summit, upon them, somewhat enlarged, surrounded by a rainbow-coloured cirale. We could distinctly see our movements reproduced by the shadow; it appasred to be distant a handred paces, and a little below us; a cirale presenting all the colours of the spectrum, riolet on the interior, red on the oataide, completely sarrounded it. The phenomenon appears to be analagons to that known under the name of the Speotre of the Brocken. I have not observed the Thite rainbow, or circle of Ullos, beyond the irridescent cirole which formed the frame of the piotare. M. J. Gay.

The Primary Epmotbom of Iobenz. \dagger-The emisaion of red light by the rapour of iotion atrongly heated appeased to me to premet andficient interast to ongage me in ctudying ret chaver the epeotram of that metalloid. MM. Pticherer and Eittorf hare not sucoeeded in prodacing zith iodino, by belp of the Arieglar tubes, A epectizen of the first order that would corrmpond sith the epectrum of absorption; I have beea mara happy in employing, shenthed trabe, nad bave trece ande at will, and in the same apparntus, entircly cecestrocted of glass, to obtais a speetrum of lines do-
soribed by Pliuaker, and a new specterm of wioh the least refrangible pert roprodncen, eo to mant the negative proof of the beartifnl spectire of absorption, so woll atediod by M. Thaten ; it in acocompanied by bands excoesivaly difficoed et the commonoement of the blue and the eatremity of
the indigo; thene hands beoome more leminome on the indigo; these bands beoome more lamizons on inoresoing the tonsicie of the rapoar, bat shes the light of the trbe is of a bronse-jellow with coll ; it becomes a violet-blue with heret. To oltain tho new apeotrum it is neocesary to employ a eorace of electriaity having littlo tonoion, os the bohtio of induction with a jar; it is bet litsle laminoes, unless coe employs a partioular artifice to obencre it, peeseating only to the apeotroseope the section of the namor tobe Faoh bright band, on being
brought andar the rotiolo of the gitea, is ropinoed by a blank band when the rapour is illemianted from bohind. We peroeive in this a acer orengle of maitiple speotra. One cansot sappoce that the body whioh fumiaches the new epeotrum in a componnd of iodine, for thin would be the com pound that gives the well-known bands of the speotrum of absorption : in other mords, the chamoteristio coloration of iodine, from which it derives its name, would be due to an imparity It seems to me, then, proved that the same elemem-
tary body may have two epeotra, as it can haro two allotropic atates, whioh is the old opinion af Plücker. It became interesting to know whethes the continuous apectrom of iodine heated to redness would present signs of the primary bends, as the theory of the proportionslity of emissive and

* Trnnalated and abstracted for the Fivatin
absorbing powers demands. With better conditions and by employing strong dispersion I have succeeded, in fact, in reoognising the prinaipal of them.-M. G. Salet.

On a New Electric Pilr of Economic Con-STROCTION.- [The objeot of the anthor was to construct a pile of common meterials in everyday use, that mipht be made anywhere, with. out the intervention of special workmen, and which should possess the essential quality, constanoy in effeot.] The pair which I have adopted, after some trials, recalls in its form that of Calland, employed some years since on telegraph lines; but its elements ave diffurent. It is oomposed of a vessel in which is planged osbeet of lead and another of sino; that of lead descends to the bottom of the vessel; that of tin is one hall shorter ; the bottom of the vessel is occupied by a bed of mininm ; the exciting liquid is water mised with ohlorhydrate of ammonis in proportiome 10 to 100. The electro-motive force of this pile is abont one-third of that of Bussen; its in. terior resiatamee is weak and varies little, and the resoltant compoand does not materially change the condaotibility of the exciting liquid; its constancy is great, and the expenditnre is almost nothing when the cironit is open.-M. Gaiffe.

Јонм J. Iner.

ASTRONOMTCAL NOTES FOR

SEPTEMBER.

BY A FELIOW OT THE ROYN AETnomoxconl, Socimy THE right ascension of the Son at Greenwich mean noon on September 1 st is 10 h .43 m . 32.22s., and bis deolimation north $8^{\circ} 5^{\prime} 15 \cdot 6^{\prime \prime}$, so that he will be found in the constellation Leo, slmost close to the emall doable star 179 Piszai X. He rises in London on the lat at 5h. 15 m . a.m. and sets at 6 h .44 m . p.m., thus
being obviously 18 hours and 29 minates sbove being obvionsly 18 hours and 29 minutes sbove
the borizon, and only 10 hourn and 31 minutes below it. He is, however, travelling rapidly down towards the equator, which he arosses at 5 h .53 m . on the siternoon of the 22 od . At this instant he is teohnically said to enter Libra, and autumn oommences. He is really at the time in the constellation Virgo, a little to the south of a line joining β and η, and rather nearer to the latter. The time of his crossing, or being on the equator, is very evidently that of the equinox, but the nearest practical approach to the equality of day and night will be on the 25th, when be will rise at 5 h .53 m . a.m. and set at 5 h . 52 m . p.m. Subsequently to this the nights will gradually become longer than the days, and on the 30 ch sunrise will happen in London at 6 b . 1 m . a.m. and sunset at 5 h .39 m. p.m. The equation of time is subtractive daring the whole of September, and increases very rapidly from only $0 \mathrm{~m} .17 \cdot 12 \mathrm{~s}$. on the 1 st o the 30th, when 10 m .10 .73 s . must be taken from the instant of apparent noon to give the time whiah a properly regulated chronometer should indicate. The semi-dismeter of the Sun at the instant of his crossing the Greenwich meridian on the 1 st is $15^{\prime} 53 \cdot 7^{\prime \prime}$, and this oconpios $1 \mathrm{~m} .4 \cdot 38$. of sidereal time (oonvertible into mean time by the subtraction of $0 \cdot 18 \mathrm{~A}$.) in its transit. The semidiameter inoreases to $16^{\prime} 1-2^{\prime \prime}$ by the 30th, and this oceapies 1 m .4 .33 s . of sidereal time (oonvertible as above) in its transit. The sidereal time at Greenwioh mean noon on September 1 is 10 h .43 m . $49 \cdot 35 \mathrm{~s}$. and on the 30 ch 12 h .38 m .9 .39 s . ; the mean time at sidereal noon, or mean time of transit of the first point of Arisa, being 13 h .14 m . 0.22 s . and 11 h .19 m . 68.9 s . on those days respeotively. An abnormal number of apota continue to divervify the solar diec.
The Moon will be new at 53.5 minates after midnight on the 2nd; enter her first quarter at 2 h .8 .3 m . in the afternoon of the 10 th ; be fall at 5 h .4 .7 m . a.m. on the 17 th ; and enter her last quarter at 1 h .21 .5 m. p.m. on the 24th. She is $28 \cdot 1$ days old at noon on the 1 st, and $29 \cdot 1$ days at the same hoar on the 2nd. On the 3rd, at Greenwioh manan noon her age will be 0.5 days; and so increasing by one day de die in diem nutil the end of the month, will, on the noon of the 30th, be evidently 27.5 days. At 5 a.m. on September 8 libretion will bring an additional portion of her B.E. quadrant into view; while more of her S.W. quadrant will be peroeptible at 11 o'olook on the night of the 20th. The south-eastern libration will very evidently occur when the Moon is beneath our horizon. The Moon will be in oonjonotion with Meroary at 7 h . 58 m . A.m. On the 2nd; with Voans at 8 h .38 m . am. On the 4 th
with Batiors of 10 h .18 m . a.m. on the 12 rh
with Uranus at 6 h .43 m . a.m. on the 27 th; with Japiter at 5 h .38 m . in the afternoon of the 28 th ; and, lastly, with Mars at 11 h .54 m . on the same night.
There will be seven occultations of fixed stars by the Moon daring the months of September. Firstly, at 8 h .27 m . on the night of the 14th, B.A.C. 7550 will disappear at the Moon's dark limb, reappearing at the bright limb at 9 h . 21 m . Then on the 15 th, t^{1} Aquarii will disappear at the dark limb at 11 h .29 m ., to reappear at the bright one 33 minates after midnight. Subsequently, at $12 \mathrm{~h} .46 \mathrm{~m} ., t^{2}$ Aquarii will disappear at the dark limb, reappearing at the bright limb at 1 h .50 m . At 1 h .33 m . a.m. on the 20th, B.A.C. 728 will be occulted by the bright limb. and will emenge from behind the dark limb at 2h. 48m. On the night of the 23rd 132 Tauri will be occulted by the bright limb at 11 b .45 m . This star will reappear at the dark limb exactly one hour afterwards, or 45 minates after midnight. \& Gemincram will be occalted by the bright limb of the Moon 27 minutes after midnight on the 24th, and cariensly (as is the case of the star previously named) reappear exactly one hour afterwards at the opposite one. Lastly, at 4 h .45 m . in the early morning of the 26 th , κ Geminoram will be occulted by the bright limb to reappear at the dark himb at 5 h . 33 mm .

Mercury is a morning star daring September, and may be caught before sunrise towards the middle of the month. At 16 minates after midnight on the 15th he attains his greatest western elongation, $17^{\circ} 52^{\prime}$ from the sun. At this date he appears above the horizon in the morning nearly an hour and three quarters before the san. The heginning of the month, howevar, will be preferable for viewing him should the observer possess an equatorially mounted telescope, inasmuch as his apparent diameter is now decressing dsily. He continues in the constellation Leo until the end of the month, when he passes into Virgo. On the 15th, at Greenwich mean noon, he will be close to ρ Leonis and slightly to the north-east of that star, while at 623 a.m. on the 24th he will be in conjonction with σ in the eame constellation. His conjunction with the Moon at 7 h .53 m . in the morning of the 2nd has been before epoken of.

Venns is an evening atar in the sense of setting after the sun, bat she is much too close to him to be favourably observed. Moreover, her apparent diameter is exceedingly small, and she is very nearly round. She is travelling through Virgo during the whole of September, but never passes near any conspicnous star. Her conjunction with the Moon at 2h. 39m. a.m. on the 4th has been previonsly noticed.

Msrs is a morning star too, bat is such a wretohed little object as assuredly not to repay the tronble involved in pointing a telescope at him ; his diameter never subtending an angle of $5^{\prime \prime}$ during the entire month. He rises soon after 2 o'olock in the morning at the beginning of September, and a little earlier st the end of it. He is moving across the face of the heavens from Virgo into Leo, and at the end of the month will be pretty near to Regulus. a Leonis is not a pare white star, bat it will be seen to contrast markedly with the sallen red of Mars, small as the planet nowappears. Mars will be in conjanction with Japiter at 4 h .36 m . in the afterooon of the 21 ft , bat both planets will be close to their setting in bright sunlight. We have mentioned his conjunction with the Moon at 11 h .54 m . On the night of the 28th under another hoading.

Japiter is a morning star, rising about 3 h .7 m . a.m. on the 1 st , and aboat $1 \mathrm{~h} .46 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. on the 30 th . This planet is travelling across a barren part of the constellation Leo, and will be pretty close to that very ourious variable star ψ Leonis at the end of the month. His apparent diameter continnes very slowly to increase, subtending an avgle of $32^{\prime \prime}$ at the beginning, and one of $33^{\prime \prime}$ during the lutter part of the month. The conjunction of Japiter with Mars at 4h. 36m. p.m. on the 2lat, and his conjunction with the Moon at
5 h . 38 m . on that of the 28 th heve been adverted to before.

Of the phenomena presented by Japiter's satel. lites, some few will be visible daring September but many of them will occur at times when the low altitude of the planet, or the brightnese of the twilight, will render their observation problemation. Firstly, during the early morning of the 2ad, the eolipte of natellite 3 may possibly be witnessed at 4t. 27 m .6 s . So again may the reappearaces of satellite 2 from ocolitation at 8 b . 40 co a.m. on the 5th. The ingress of the shadow of eatellito 1 will be risible at 8 h .5 lm, a.m. On the

8th, and that of the satellite itself sfterwaras at 4 h .26 m . The same satellite (1) will reappear from occultation at 4 h .8 m . in the early morning of the 9th. Daring that of the 13th the egress of satellite 3 will happen at 4 b .30 m . It is possible that the eclipse of satellite 1 may be witnessed at 3 h .7 m . 50 s . on the 16 th ; 2 s also the egress of the shadow and that of the same satellite at 2 h .34 m . and 3 h .16 m . respectively, on the 17th. An eclipge of satellite 2 will be visible at 4 h .51 m .27 s . on the early morning of the 10th : while at 5 h .11 m . on the next, satellite 3 may just possibly be detected in its entrance on Jupiter's limb. The egress of the shadow of satellite 2 may , perchance, be seen at 2 h .53 m . s.m. on the 21 st.; that of the satellite casting it will be visible at 4 h .26 m . An eclipse of satellite 1 can also be seen at 5 h .1 m .32 s . a.m. on the 23rd. Before sunrise on the 24th the ingress of the shadow of aatellite 1 will happen at 2 h .7 m ., followed by that of satellite 1 itself at 2 h .5 fm . Then at 8 h .34 m . satellite 4 will enter on to Jupiter's disc. After this the shadow of catellite 1 will leave the planet's opposite limb at 4 h .27 m . ; as will the satellite which casts it at 5 h .16 m . Perbaps satellite 1 may be detected as it reappears from occultation at 2 h .37 m . 8.m. on the 25th. The ingress of the shadow of satellite 2 will begin at 2 k .32 m . a.m. on the 28 th , the satellite itself not following its shadow antil 4 h .16 m . The egress of the shadow mey possibly be perceived at 5 h .28 m . Finally, althougb pertaining (according to oivil reckoning) to the early morning of October 1, we may, astronomically speaking, consider the reappearance from occultation of satellite 3 , at 3 h .36 m . ; the ingress of the shadow of satellite 1 at 4 h .1 m ., and that of the satellite itself at 4 h .55 m . as belonging to this month.
Saturn may still be seen during the early part of the night, bat is just as wretcbedly placed as ever for observation. He is still in Sagittarius, and during the whole of it just to the south-east of π in that constellation. He rises on the 1 st about 4 h .21 m . in the afternoon, southe at 8 h . $19 \cdot 3 \mathrm{~m}$., and sets about 17 minates after midnight. On the 30th his rising, soathing, and setting ocour at 2 h .27 m. p.m., 6 h .25 m . in the evening, and 10 h .23 m . at night respectively. Wo have mentioned his conjunction with the Moon at 10 h .42 m . s.m. on the 12th (of course beneath our horizon) above.

Uranus is a morning star, is situsted in Cancer and is gradually coming intn a more favourable position for the observer. He rises on the 1st about 50 minates past 1 a .m., souths at $9 \mathrm{~h} .41 \cdot 4 \mathrm{~m}$. (of course in bright sunlight), and sets at 5 h . $\mathbf{3 4} \mathrm{m}$. in the afternoon. Then, at the end of the month, he rises about 4 minutes after midnight of the 29th, souths at 7h. 63m. the next morning, and sets in the aftersoon of the 30th about 3 b .43 m . He is in a somewhat barren part of the heavens. His diameter increases from $8^{\prime \prime} 6^{\prime \prime}$ at the beginning of the month to $4^{\prime \prime}$ at the end of it. His conjanotion with the Moon at 6 a .43 m . a.m. on the 27th has been previously spoken of.

Neptune must also be called a morning star, in so far as he is not on the meridian antil nearly $3 \mathrm{a} . \mathrm{m}$. at the begincing of September, and about 1 o clock in the morning at the end of it ; bat he rises about 7 minates past 8 in the evening on the 1st, and aboat 6.15 on that of the 38 th , so that he is fairly visible daring the working hours of the night. He is situated in the constellation Pisces, olose to the 5 th magnitude star o, and will be almost due sonth of it, and in the same field of a high-power eyepiece, upon the nights between the 5th and the 9th. The planet will reqnire considerable magnification to demonstrate its nature satisfactorily. His apparent diameter is very slightly increasing.
Showers of shooting stars have been suspected at the beginning of September, and between the 18th and 25th of the month ; bat there is no definite confrmation of this. Observers may look out, though, as such confirmation would possess a considerable degree of interest.

INFLUENCE OF LIGHT ON ANLMAL LIFE. IN a paper in the Revue des Devx Mondes, M. Papillon commanicates the following facts :Certain Infusoria, in stagnant water, receive oarbonic acid from the liquid and give out oxygon (like the green parts of plants). The oxysenation thus produced varies throaghoat the day, baving a minimam at eunrise and a maximum about four p.m. It takes place by night as well as by day, bat with less intensity; and in clear wanther it is greater than in clondy. Light
acoelerates the vital movements in animala, espocislly those of nutrition. Fowl and oattle are fattened in partially darkened chambers. In these vital aotion takes place more alowly, and the nntritive matters are more readily deposited in the organs. Continued absence of light sometimes kills animals, sometimes produces a marked change in their organisation. There are, in some subterranean oaves of the Basse-Carniole, certain curious reptiles resembling salamanders. They are nearly white, and have only rudimen. tary eyes. When exposed to light they seem to suffer, and their akin colours. It is probable these animals have not always lived in the darkness, and that their skin and vision have been affected by the absence of light. The appearance of animals in such conditions presents a
striking analogy to the case of etiolation in plants.
Edwards, in 1820, studied the inflinence of light on animal development. Frog's eggs and tadpoles, exposed to light, developed regularly, while growth was retarded or hindered in the case of others kept in darkness. M. Mcleschott, 30 years later, found the carbonic acid gas expelled by frogs in the light was a fourth more than the volume expelled in darkness; also that the production of oarbonic acid was proportional to the intensity of light. He thinks the action of light on batrachians is transmitted partly by the skin, partly by the ejes.
M. Beclard has more recently studied the effects of glass receivers of varions colours on flies' eags contained in them. Maggots were produced in each oase, bat, in four or five days there, were perceptible differences of growth; those in the violet and blue rays had developed most, those in the green much less, while red, yellow, and white rays had an intermediate effect. He examined, also, the quantity of carbonic acid produced by birds and mice in the various coloured rays, bat found no difference; the hair or feather covering, possibly, obsouring the effect. Frogs, similarly rreated, produced more carbonic acid in the green than in the red ray.. The difference is generally about a third or a fourth. When the skin is removed, the effect is reversed. The cutaneous exhalation of water vapour in frogs was found s half less in darkness than in light, and in violet rays it was nearly the same as in white light.
M. Bert has made some curious experiments on the predilection of animals for various coloured rays. He put a number of Daphnia (a minute fresh water crastacean), in a glass vessel placed in the dark. When the spectral colours were thrown on it, the little creatures, which were dispersed throughout the vessel, grouped themselves, chiefly in the yellow and green rays, and in diminishing quantity towards the more refrangible end. On interposing asoreen they were again dispersed. The more luminous part, of the spectrum appeared the most agreeable to them. M. Bert thinke also that, like ourselves, they have no ocular perception of ultra-red or altra-violet Tays.
The ohange of colour in the ohameleon has been variously explained. M. Brucke's recent researches show that it is due to rarying dispersion of solar light in the coloured cells; a phenomenon of the same kind with that observed in soap-babbles and thin plates. The tint of the animal passes from orange to yellow, from green to blue, by a series of shades dependent on the state of the diarna radiation. M. Brucke thinks temperature has no influeuce on the phenomenon.

The hair and feathers of animals are of a darker colour on the baok than on the belly and breast. Their colours are also more intense in summer than in winter. Batterflies of the night never have the brilliant tints of those which appear by day, and of the latter those of spring are much brighter coloured then those of antumn, showing a oongraity with other colouring in nature. Night birds also have a darker plumage and a softar tegament than day birda. We have, again, a striking difforence of colouring between the animals of cold regions and those of the torrid zone. The influence of light on organio forms, as well as colour, is also seen in the gradually increasing abondanoe and variety and beanty, from pole to equator.
The influence of light on the haman system presents many interesting pointa. An infant instiactively seeks the light, turning in the direction stiacirely seeks the light, turning in the direction
whence it comes. The organ most affected by light is the eye, and the exoitability of the reting is very variable. Prisoners in darl dungeons have been known to soquire a wonderful distinctness of vision in the dark. The eyes of such also become scusible of very slight ohanges in intengity of
light. Lavoisier, in 1766, wishing to sequire a greater delioacy in perceiving the relative intensities of certain flemes, shat himself in the dark for ix weeks. Dionysias the Tyrant constructed an inclosure with bright illaminated chalk walls, into which he introduced prisoners who had been kept long in darkness, whereupon they beoame blind. Travellers to polar regions speak of the injurious effeot which the refection of light from the snow has on vision. When the impression of ight on the eye is powerful and instantaneous the retins suffers most. If leas energetio and more prolonged, the hamours of the eye are altered. The phenomens of sunstroke arise from the action of light, not from elevation of temperature. A very intense artificial light (such as the electric) may produce it. The rays cansing it appear to be the violet and ultra-violet, and those studying the elootric light often employ gless soreens which absorb these rays.
The skin is evidently affected by light. The hands and other uncovered parts have a darker colpar than the covered. Country people are browner than those in the town. In latitudes little distant from each other are to be found variations in colour of skin corresponding to solar aminous intensity. In Earope several varieties are perceptible; but the same phenomenon may be observed among darker peoples. For example, the Hindus of the Himalayas are nearly blind; those of Malabar and Cevlon are darker than some of the negro tribes. The Egyptians present an ascending ohromatic scale se you advance from the months of the Nile towards its sources. Again, the women of certain coloured reees, being kept constantly wider cover, become whiter, 80 do the Esquimaux in their long wintar. And many other facts might be given. Doabtless, many other influences co-operate in such effects, bat the effect of luminous radiation is incontestable.
All the organic fanctions benefit by light. Darkness seems to favour the prepunderance of the lymphatic system, the susceptibility of the mucous membranes to ontarrhal affections; the facidity of the soft parts, swellings, irregulari ties in the osseons system, \&c. Miners and others are sabjeot to these dissdvantages.
Certain spectral rays indinence animal life at darkness does. M. Bert found the orange rays hinder the development of Batrachians. Now these same raye are favourable to plant growth; and, on the other hand, green light, whioh is hart ful to plants, is very favourable for snimale. M. Dabrunfant hence divides the rays of the speotrum into two complementary groups, a green and an orange, manifesting antagoniotic qualitios in nature. Green light being a powerful stimn lant of the animal functions, makes the spring time specially enjoyable.
The relation between perfection of form and exposure to light is also seen in the case of human beings. Light tends to develop the different parts of the body in harmonious proportion. Deformities are most rare among the coloured
races. Men who live naked hare all their parts bathed in light, whence arises regularity of fanctions and development. It might further be shown how the functions of the mind are affeoted by light. A mind that has been dull and sluggish thronghoat the day, in a sombre room, will in the evening become lively and active in the brilliant!y lit hall or drawing-room. And every one is familiar with the opposite effeote of a cloudy and a bright day upon the spirits.
A. B. M.

MEASUREMENT OF WAVES.

A PAPER on this subject was read at the meeting of the British Association, by Mr. C. W. Merrifield, F.B.S., Principal of the Royal Schoo of Naval Architecture. The anthor was induced to look into this matter in consequence of a question put to him by Mr. Francis Galton as to whether Wha possible to arrive at any definite estimate of
the "roughness of the ses," at present recorded for meteorological purposes at a very coarse guess from mere inspection. He oonsidered it was desirable to confine the measurement to the two points of ascer taining the aggregate height of the waves and their number during mensared intervale of time; and he had devised simple and compact machinery for thie purpose, ${ }^{2}$ woll as for obtaining profiles of waves float sliding up and down strained wires on a plat form like Brighton or Scarborough piers. A line from this float could pass over a palley, the motion of which, transmitted through its shaft, would give of the required measurements. The measuremen offected by aimply connecting a ratchet wheel pawled so as only to twrn palley. A projecting atud on the ratohet whee
would record the aggregate height of the wavea by means of any mechanical conating arrangement In order to count the wares it was eimply necemany to record the number of times the fiont palley re versed its motion. This wers effectod by a reoipeo oating frame connooted with a ratohet wheel by a parll which the wheal could reverse by lifting the eciprocating iramo. Themethod oi counthy wndis turbed, traced a atraight line on a long slip of paper ruch as a Morse tolegraph coil, and rocoived a clight thate at stated numbers. Time would be marteed on the same paper by a olook giving a similar shatre to another
his manme
the number of permanent and continnous neons and times would be antomatically made. The machime might be perfectly boxed in, with no other cam munication with the external pulleys and foat then a shaft paesing throagh e stamng box. The record ing machinery would thes be secure irom injuryIt wonld, moreover, require attontion onily oncos day Mr. Merrifiald also described an arrangement by which the same mechine might be made to trece he profile of waves whenever required. Bat thil daitional apparatus would require to be apeaino being far too numeroqs for it to waves of to talte portrits of ell of them He suggested that it would portraits of al of them. He suggesiod that it wouk at Brighton Pler.
Mr. Hawkehaw saggested that observations should be made with the view of ascertaining the motion of waves with special refarence to foree, which would be a metter of practical importance to ongineers ; but Mr. Merrifield explained that his experiments had bean for meteorologioal purpose rather than to discover the charactor of waves in the open see.

DEEP-SEA SOUNDING-LINES.

APAPER was read at the British Association meeting by 8 ir W. Thomson, F.R.S., on "The Use of Rteel Wire for Deep-sea Soundings." The great difficuly of deep-sea soundings concisted, he said, in the resistance of the water to the mataria used for letting down and raising the waight, and that the only way in which that dificalty had over been overcome in very deep soundings had been by employing extremely heary weights. When the depth of three hundred fathoms was peased, the ordinary lead line ceased to be arvilablo, or at all events convenient; and until very recently the dillculty of calling up a long line and heary weight from considerable depths was so great that it had become the practice to leave the weight behind, simply ringing up the speaimen of the botwim. Admiralty had made great improvements in doepesistance to the water when drawn up by hand at considerable speed was so dangerous as to necesed tate the use of steam power. When there we great resistance to the line, and the currente carried it away to s distance, it was difficult to know whes the bottom was reached. Howerex, he beliove that with so great a weight 283 cwt . the depth of the water might practically be perceived within ow fathoms, and although it mast bo think the orror in the sounding conld be considered to be serious. To many it had occurred that wire rope would be a great adrantage, inasmuch as it would occupy mach less space and, therefore, creste lem resistance to the water. The objections which had been raised to wire were that it was lieble to ruat and it would coald not handle it, as it woald henht and it would go down in a heap over the weight: bat he believed all those difficulties might be over
come by proper care. It had been considered neosessary to have a great deal of mechanism, but all that hedeemed to be essential was \& whoel, which would operate like a brake, and around which the wire should be twined, the wire ased being No. 2 gange, of the quality known as the homogencors wire, whioh coald be manafectured in grea engtha, was 03in. in diameter, weighed 121 h . the end of the wire was atteobed a piece of hemp cord, which carried the weight, and by that meean the wire was prevented from touching the bottom at all. He had made an experiment in miq-0006n, at a depth of 2,700 fathoms, experiments with the apparatus and materials he had indicutca, and is
having been attended with the most perfect succees he wes sanguine that if wire were allowed to tah the place of cord in deep-sen sonndings, it worid is lar moreeconomion, and the calculations themsetren would be more eocurate. Mr. Hawtehaw thoogh it would be a great pity if our doep soa sounding expedition completed its Labours without edoping dis W. Thomson's recommondations; and in discussion which ensued it was generaly ooncede that wire would more effectually reaisi watar the howous materia such as rope; plan cocald be adopted to altogether remove the danger of wire breating when the soundings were being cenductit

DR OARPENTER ON OEALK

THE following is the substance of the lecture delivered by Dr. Carpenter to working men, at the close of the meeting of the British Association at pernons were disappointed that he had not in his opening address, as it were, "cooked up an old
atnner," by referring to his own researches, the loctarer ackid :-
You all know what chalk is. I need not tell you Brighton men what chalt is-that is to say, I need not tell you what it looks like, bat I shall have to tell you what it is. If I were to say to you, "Do
you hnow what chalk is "Oh, of course we do ! You hoow what chalk is "On, of course we do! we see it fort then I think I can tell you a little about this ohalk. In the frat place, where do you see it 9 You mee it forming difirs on your coasts; you it wherever there is a little remoral of the surface grace; jou find plenty of chalk pits in rarions parts of the ridges of jour downe Where there fa an exposure of the clif, you will see, if you We call stratification-that is, that there are regralar strata or layers one above anothe each other. Sonsetimes by diatinct lines, and some. timen by lines of finint, for examplo, but you will not soe them al ways horizontal: sometimes they nore inclined, and sometimes vertical, bat they were are horizontal once. These ofe the lines which intilmate the successive deposition that took place at the bottom of the deep see; for there is no question now but that ho whis of the chalk formalions of this part of England (Whioh you soe at Dover and Folkeotone higher than in this neighbourhood,
and at Alum Bay and the Needles) were onoeat the bottom of the sen. Some of these layers were herizontal, and some of them tilting ap; butit would carry us too for if I were to carry you to oonsider the asases for this these layers of ohaily one above another indicate their successive ages. What position does this chalk occupy with regard to the other strata, to the great series of stratifed rocks Which goo-
logists tell you of? It is a comparatively new formation (that is comparatively). The general series of atratified rocks were frst stadied in England ; for it happens, by a most fortunate thing for science, that in Great Britain we have a soit of comprehensive pocket edition of the great series of stratified rocks. Beginning in Scotland and Cam.
berland and North Wales we hare the oldest of berland and North Wales we have the oldest of
these rocks; then, in the middle of Wales, we have those rocks called the Silarian system by Sir Roderict Marchison. In the Midland connties and the west of England, in Shropebire and Devonshire,
we have the Devonian and the Silurian, all of we have the Devonian and the Silurian, all of
them inclined-all of them shelving towards the enat. And then you bave that great and most im portant formetion, the carboniferous limestone under which the coal-basin lies. Then comes the end of the series; all these lie more or less regu-
larly on one another; and then again we find animal forms passing from one another. This saries wo call the Palmozoic, which is a Greek compound meaning ancient life. We come at the end of that to a great break; and I wish jou to under stand that the break occurs in this conntry, in Europe. But it does not follow that it occurs every. but we And an apparent great brea strate, where we flod no animals at all; the fossils of the new red sandstone are rather gcanty, bat there is the beginning of a now set of types. It genarally lies nuconformably with two different degrees of alope, and that makes great ohanges beimestone. We do not use the term primary now for the old period, because that applies to a atill we sometimen call it the Mesozoic or middle-lif period. Then we bave the lias-the formation of the middle coanties, and Dorsetshire and Bristol. There is a band of lias orossing the middle of England. Then We have the colite which gives us our Bath stone and Portland stone. Then we come to the greensand and the chalk. The chalk is the last of that strata. There ia this very beautiful type of life, the Pentacrinus. Mr. Willett has a beantiful specimen in his collection, Which, I am happy to hear, will hence-
forth belong to Brighton. It passes ap from the lias into the chalk. Then there is as similar great break to that at the ond of the Palmozoic series before what are called the tertiary. These deposits generally lie anconformably upon the chalk and the types of life are mostly new. They cannot be tracod distinctly from the chalk. There seems to have been a dying ont of the animals of the chalk, and we trata. It is very carions animals Paris are sitanted apon the great bases of chalk of subsequent formation, some of them fresh water and some of them local deposit. Now, the clay in hat stire clay which lies immediately over the chalt-is the local representative in that ares of a
very different formation in the south of Earope namely, that great limestone which makes hills and oven monntains in some places, and which runs along both the soath or Earope and the nort formed whe of determining whether it is nummalitic, but we know it is of the same period, because we find in it num. malitee representing the great nummulitic series. I will be eeen, on examining a specimen ol and divided into an immence number of partitions. It is of this nummulitio limestone that the pyramids of Egypt are built. I had the pleasure of visiting the pyramids last antumn, and bronght home a beantiful specimen of this limestone. I will now jas give a general aketch of the position of the chalk It is the highest of the seomadary serien, and it i uanaily considered lat thare is a great gep between the chalk and tertiary formations. Every geologis who is intarested in the progreas of modern science knows that, mare and more, 28 we examine it care fully and minately, there are in this formation grea gaps, bat if we find a gap here, there is 2 continaity covered by eas; it remains here for ages; and therefore, when it ainks, a fresh deposit takes place, but this depositrepresents altogether different conaitions. But then, during that period, depoaite take place elsowhere. In Rugsia, there are immense ander oovared with now red sandstone. I speak ander correction, because I do not proless to to ${ }^{\text {a }}$ but I beliove large arees in Russia have never been ander water since the old red sandstone deposite Supposing they were to sink, a fresh deposit would cause an enormous gap. Now, you see it is entirely a question as to whether a particular area has been
above the sea or not, and 1 believe all the modern above the sea or not, and 1 believe all the modern geologista are now cuming to the conclusion that, if there is an interraption in one place there is cone inaity in another. Only two days ago I hed dist point, and I sid, "It is my gists upon it there is an interraption here there is continaity there: He said, "I am entirely in accordauce with you," and he came to the conclasion that where the interruptiou seems the greatest it is bridged over by what we heve found, or what we shall hereafter find. in some other part. I will give you an illustration. This is not a proved fact yet, but it will show you the kind of knowledge that we may get. I daresay many of you pave heard, wila great regre, hat beginning of the present year. He was obliged to go to Eyph recrait it, and he went ap the Ne great deal further than 1 did. I asked him "Did
you follow op the curions nummulitic limestone? yon follow np the carious nummulitic limestone?
"Yes," he said, "and as far ns I conld see, it rested conformably apon the chalk." Now. in the sonth of Europe and here, the London clay does not lie con formably on the chalk, nor does the nammalitic limestone of the south of Europe geverally. Now we come back to the question, what is chalk? Chalk is an aggregation of either very minate shells, or Globicerine Hundreds of them would only weigh grain. What is the nature of the animal? It is a little lump, or rather a series of lumps of jelly with no month, no stomach, no nothing, except that t can send out long threads, the minuteness of which is something hardly conceivable to you. They are not the ten-thousanath of an inch in diameter They go out in clusters; they diffase themselves throngh the water, lay hold of particles still
minuter than themselves, and they draw these minuter than themselives, and they particies back : there is a continuoas test as a sort
ment. I have sometimes described these as of animated apider's web. It is always sending out some of these threads and other threads are being drawn into it, and in this manner, without any diatinct mouth or stomach, the nutrient particles are constanyl beding Now, when I tell yon that there ise greater quentity of this life at present existing than of all other kiuds of life put together -you will see what an important part they play in nature. The whole bottom of the Atlantic, except where cold currents come down, is covered with hese animals and masses of decayed and broken shells. There is so much in the Atiantic that I cannot pretend to form an idea of how much there can be. In dredging the Atlantic at one mile in depth, we brought ap nearly half a ton at one time, and al three miles depth wo brought ap 1, owt., besides our little history of this remarkable inquiry. Some years ago, my friend Professor Williamson, of Mancheater, had an opportunity of examiming some mad
broaght up from the Levaut, and he found, by the id of the microscope, that there wero large namber of these orgunisms there. These all beloug to the same general group, and are called these shells are filled with small holes, you will see that this name is applicable to them. These holes are pores (as you see in the diagrame). All these shells are composed of carbonate of lime, and now
you seep why geologists believed that lime, which is
found in limestone rooks, at one time or another formed parts of this animal, which has the power 50 draw lime from the water and then pour it on again in the form of shells. Geologists have come that is found in varions limestones has at one time formed part of an animal. Here wo have this mass of chalk, which has all formed part of these Globigerine, which have drawn into themselves the hane from the sea water, and eraded it from these ahella, just as shrimps, or lobstars and oysters layer. The lobater forms a new shell. Some of you know what are called "arab's eyes" in the stomeoh which are little accumalations of lime atored up against the time when the orab wante to make a new shall. Then these disappear from the stomach. I give you this illustration to show you
how lime pasees from sea water into shells. We have long known that chall was made up of this and deposited in the deep mea. Thare are certain minute particles which I won't speak of, because we do not know the meaning of them, bat we find cartain other oarione particles which will ariord peologirite stady for a good while, ano lumps of driod mud which wo brought ap from the bottom of the Atlantio, and not one of you wonld know these from pieces of ohalk, except that thoy are a little grayer, and they have a little more sand. Bat the im portant point is that these coccoliths in our okalk re precisely the same as those which are found in orman brought up from one mile and two and three miles rom the bed of the Atlantio and the whole of thoee diffe. Now, as to animal life. We have found a great number of typea moes digtinotly oharacteriatic of the aretaceons poriod. The most remarkable we met with - it was our great privo-was Now, I will just mention to you the fact, as I think may interest you, that I havo been knocking bout the North bes mating some deep-sen explora tions. Our first vessel was not suited for our purpose. It was a most antiquatod ateamer, being n the year 1825 was built for hor and for several days we were knoaking about doing a little work now and then. But one day we had most muccesaful dredge, and I rather glory in it becanse it wes done on s Sunday. I glory in it becanse it was a study of one of the most important nd most wonderful of the works of natureand of the abont we hada fine Bunday. I said to the captain that I was very unwilling to work the men on a Sunday, I was very unwiling to work the men on a sanday, was a good and a holy work todo. Reward was given us. The discovery of this sponge was, to all scientific men, one of the most remarkable that has been made. Many of you have seen the wonderfal and beantiul works of Mr. Gould, the ornithologiat, who went to Australia, and expended $\mathcal{E 8}, 000$ in his vieit and in the production of his work; and when he saw his specimen he said, "Dr. Carpenter. I envy you. it would have been a reward to me for all my toil and expense." You may suppose, therefore, if this excites such an interest among thoes who are not of my own line of inquiry that it mast have created leelings of intanse pride in my breast. This apecimen is of great interest in itself, and it is one of a ype of skeleton. The akeleton of the ordinary ponge is horny, and is oseful becanse it has no fint in its composition. It has noedlos in it which
will run into your hands, bet in this particular type will ran into jour hands, bat in this particular iype of spongo tho akaleton in componed of hink. Now, men of a most remarkablo groap of sponges. This ponge represents the whole type of chalk fossils. Prolessor Haxley one day came to my honse to see it he kneit down at the table to looz at it, and, tarning to his wife, said, "Now, do not speak ; this surpasses the love of woman." Last Satarday I was on Lowes Downs, on Mount Harry, and I was asked to say a few words about the chalk. I just adverted to this, and my friend Mr. Crosokey, a very able geologist, who was born and brought np at
Lewes, at once said, "Why, the whole of this hill is Lewes, at once said, "Why, the whole of this hil
full of Ventriculites. I have got them over and over again in the chalt in this bill." Now, I think you will understand what a point of extreme intereat this was to us. Here we foand the type of the old Ventriculitea, whiah was sapposed to be extivet, still going on in the deep sea, and no only the sponge, bat a great number of other ani-
mals; and the more wo have examined them the mals ; and the more wo have axamined them the more carionsly they correspond to the old chalk
forms. One of the lant we got was a most singular speoim One or the last we got was a most sungula balar form of urahin tribe. You know his nue siugular specimen instead of boing like a box siell was like chain mail, a number of separate pieces all flexible; and it fattened itself out when laid on the hand, and I said to my friend, Mr. Wyville Thom son, who is a little heavy sterned, "This looks as if you had sat upon it." One or two imperfect specimens had previously been lound, and may be seen mens had previousgy been tound, and may be seen
in the Britian Museum, but here we had the auime
actually existing at the present time. I will not descant farther upon this, but will just go, in the last place, to the general question of what this means. Now, the credit of the suggestion is en-
tirely due to Mr. Wyville Thomson-but it devolved tirely due to Mr. Wyvilie Thomson-but it devolved npon me to pablish it. as I was the reporter of the
expedition, and I entirely fathered it-that really expedition, and 1 entirely fathere the production of chalk from the old cretaceous period to the present time. Perhaps the form in which we put it out wha open to a liftle exception. We said that we might
be considered to be still living in the cretacenas epoch. Very eminent men, such as the late Bir Roderict Marchison and Sir Charles Lyell, have taken exception to that statement, and perraps not unreasonably. bat it all depends upon what yon mean by the mesuing of the words is that period which was terminated by the disappearance of a great number of types of animal hife that you do not find in that chaik. Where, he asks, are the chambered cephalopods, where are the fishes that were characteristic
of the old chalk? Do you fad may other? The shells of the nantilas type, the animals of the cattlefish kind ? Well, we hide our diminished heads and say, "Certainly we do not find them, bat still we that there has never beerr a break or cessation, and the ground we go apon in this, that dorring the whole of the tertiary period there is no evidence in this north-western portion of Earope, nor is there any evidence on the other side on the oorresponding latitade, that the bed of the Atlantic has ever gone up more tharr about $3,000 \mathrm{ft}$." Now, what is 2000 ft . tead of 15,000ft. We find tertiery shells from $1,500 \mathrm{ft}$. to q,000ft. on Welsh momatains and elsewhere. There is evidence that the land has been lifted np 2,000ft. of near it, in the tertiars period, bat there is no eviderree that it has been lifted more, and, if not the bed of the Atlantio mast have been the bed of the Atlantic from the trme of the commencement of
the formation of the tertiary strata. We have every reason, therefore, to bolieve that our modern chalk formation goes back to the commencement of the formation of the tertiary strata. Now, may not we go a little farther? Mr. Darwin tanght us Arst that
there are great areas in the Pacific ocean at the prethere are great areas in the Pacific ocean at the prethat there are parts where by the condition of the ooral we cen eurely astert that the bod of the ocean other parts in bed of the coean is as gradually rising. Vory well : now I apply that doctride to this formation of chalk. I believe that as the time when the area of Europe and Britain, and what was formerly chalk lying at the bottom of the deep sea, that then occupied a great part of Earope, had been formed, when
the elevntion gradually lifted it up above the sea, the bed of the Atlantic wes going
down, and that the chalk animals migrated from down, and that the chalk enimals migrated from What was then the old chalk sea of Europe into the that woald bear the migration went along, and others that would not bear it did not go and died out. Bat now, then, oomes my friend, Mr. Prestwich, who, in his presidential address to the Geons the retionsle, and a most besutifol rationgle think you will consider it. Mr. Prestwich, on other grounds. quite irrespective of any hypothesis of Ours, belheves that the old chalk sea of central cate with the Porar Sea. He believes that at the end of the Porar Sea- He believes that at the
endiod communication was opened between the Potar jea and the sea of central Europe; that that let in a great quantity of polar water; that the temperatare of the old reduction of temperature killed off fishes and these higher molluses, bat left us those lower forms which could survive the redaction of temperature. I think jou win say this is one of the most than a speculation) ever pat hefore the world. In the greensand, which is all silex, composed of silicions minerals, you find these little particles. Professor Aaronberg, who ts one of the greatest microcopic discoverers, has shown that the greensand dant internal casts of Foraminifera, and I can assign each one of those on the diagrams to one or other of the order named by Professor Aaronberg. What we now know to be chaik uocs not always retain its present condition as chalk. In the
cliffs of the Giant's Causewry, in Ireland, you will cliffs of the Giant's Causeway, in Ireland, you will
find what we tnow to be chalk, by the series of its strata, \&c., converted into white crystallised marble, and this marble was once animal life, as ohalk was and we krow it was so by the course of interpreThere whioh geologists are accustomed to employ. stone which forms the bed on which the coalmeasures are deposited ; and there we also find coral reefs, and other bens which geologists, like I believe it will prove that these sea beds formed like chalk and converted to the condi tion they at present are by the subscquen
process of metamorphosis. I must now Rpeak the lowest stratified series now known as the Laurentian, which is abandantly developed in all the countries of Europe. In this series there has been found to be serpentine limestone, comLmwman and Davidson have been enabled to de oide that these serpentine layers are of organic stracture like that of the internal casts found in the greensand. Sir Roderick Marchison had been enabled to make ont that the Lamentian series in Canada is $90,000 f t$. thick, and the azoic is at the
bottom of that. Now when yon thiuk what that bottom of that. Now when you think what that $90,000 \mathrm{ft}$. represents, you will see that we naturalists own way. Y do not let astronomersmonse lapse o ages that mast have existed before we got the light of Sirius, and that, if Sirius were extingnished now it might be some millions or billions of years before we should see it again. I believe that these inquiries earry us as far backwards in geological time, as the inquiries of the as ronomers carry them back in distance and time in their way. There is something romantic in this. Yoa know it has been said that reason carries us where imagination searcely dares to follow. The spectroscope is the grestest romance, and goes beyond all the beyonds, if I may nge the expression. But I think those
natiers which have been placed before you to-might are not altogether behind them in interest, and that they will have your thoughtfal consideration.

INSTINCT

A N interesting paper on this subject; interspersed N interesting paper on this subject; interspersed
With anecdotes, was read by Mr. D. A. Spalding at the meeting of the British Association. facta. Do the animals exhibit untaught skill and innate kuowledge? May not the stupposed examples of instinct be after all bat the resalts of rapid learning and imitation? The controversy on this subject has been chiefly concerning the perceptions of digtance and direction by the eye and the ear. Against the instinctive character of these parceptions it is argued that, as distance means movement, locomotion, the very essence of the idea, is such as cannot sensations of sight and hearing correspond to, must be got at by moving over the groand by experience. The results, however, of experiments on chickens were wholly in favour of the instinctive natare of these perceptions. Chickens kept in a state of blinduess by varions derices, from one to three days, whan placed in the light onder a set of carefally prepared conditions, gave conclasive evidence against the theory that the perceptions of distance and direotion by the eye are the resnlt of associations formed in the experience of each individual
life. Often at the end of two mirrates, they followed with their eyes the movements of orgmling insects. turning their heads with all the precision of an old fowl. In from two to fifteen minutes they pecked at some object, showing not merely an instinctive perception of distance, but an original alility to measure distance with something like infalible acwalked or ran up to the object of their pursuit, and may be said to have invariably strack it, never missing by more than a hair's-breadth; this, too, when the specks at which they strack were no bigger than the smallest visible dot of i. To seize bet ween the the smallest visible doe of the very instant of striking seemed a more difflcult operation. Thongh at times they seized and swallowed an insect at the frst attempt, most frequently they struck Ave or six
times, lifting once or twice before they succeeded in times, lifting once or twice before they succeeded in
swallowing their first food. To take, by way of illustration, the obsorvations on a single case a little in detail:-A chicken at the end of six minutes after having its eyes anveiled followed with its head the movements of a fly tweive inches distant; at ten minates, the fly coming within reach of its aeck ond of twenty minutes it had not attempted to walk a step. It was then placed on roagh groand withiu sight and call of a hen with chickens of its own age. After standing chirping for about a minute, it went straight towards the hen, displaying as keen a per ception of the qualities of the outer world as it was ever likely to possess in after life. It never re-
quired to knock its head against a stone to discover quired to knock its head against a stone to discover that there was "no road that way." It leaped over round the larger, reaching the mother in as nearly a straight line as the nature of the ground would permit. Thus it wonld seem that, prior to experieuce, the primary qualities of the axternal world, all arguments of the parely analytical school of paychology to the contrary notwithstanding. Not less decisive were experiments on hearing. Chickens hatched and kept in the dark for a day or two, on being
placed in the light vine or ten feet from a box iu which a brooding hen was concealed, after standius chirping for a minate or two, uniformly set of which to the bux in answer to the call of the be

This they did dtramoroling trrough grass and over rough ground, when not yet ablo to stand ateadily on their legs. Again, chickens that from the Arst had been denied hoods drawn over their heads while yet in the aboll were, while thus blind, made the subject of experi ment These, when left to themselves, soldom made a forward step, their movemeuts were round and round and backward; bat when placed within fire or six feet of the hen mother, they, in answer to her eall, became much more lively, began to make little forward jourueys, and soon followed har by sonnd alone, though of course blindly. Another ex periment consisted in rendering chickens deat for a time by sealing their ears with several folds of gam paper bufore they had escaped from the shell. ears opened when two or mother concealed in a box or on the other side of a door, after turning round a few times ran straight to the spot whence came the first sound thes had ever heard. Clearly of these chickens it cannot be said that sounds were to them at Arst but meaningless seusations. One or two observations fa roarable to the opinion that animals have an instinctive knowledge of their enetnies may be taken for what thoy are worth. When twelve days old one of thy little protéges runting abont beside me gave the pecaliar chirr whereby they annoance the approach of danger. On looking op a sparrow hawt was seen hovering at a great height over head. Aguin, young hawk was made to $1 y$ over a hen with har arst brood of chickens, then about a week old. In the among of an eye most And scarcely had the hat tonched the ground abont trelve yarde from where the hen had been sitting, when she fell apon it and would soon have killed it outright. A young taritey gave even more striking evidence. When ten tisy old it heard the voice of the hawk for the first time and just beside it. Like an arrow from the bow it darted off in the opposite difrection, and, cronched in a corner, remained for ten minutes motionless mend dumb with fear. Oat of a vast number of experi ments with ohickens and bees, though the result were not uniform, yet in the great majority of in-
stances the chickens gave evidence of tustinctive fear of these sting-bearing insects.

NEW METHOD OF OBTAINING STEABIC AND PALMITIC ACIDS.
WR. W. LANT CARPENTER read a paper on In the International Exhibition of 1871 there Fatic exhibited several specimens of stearic acid. Se-, manufactured by Professor J. C. A. Bock, of Copenhagen. It was stateal that they were produced by a new process, which possessed very many adran-
tages over any other known method. Mr. Carpuntages over any other known method. Mr. Carpon-
ter having twice visited Copenhagen to Btady the process, and having oxtended its application to neutral fate other than tallow, in Eagland, thraght an account of the scientific aspeots of the subjot might not be uninteresting. Professor Bock whas led up to his invention by patient microsecpical and chemical study of the properties of nentral fats, and reflection upon the reasons of the disedvantages of methods hitherto practised. These disadrantages Mr. Carpenter poiuted out at some length. Hitherto, when fats wers decomposed by alkail, a considerable ercess of aikain aboro
the theoretical quantity was required, unlems the operation were conducted requirer very greas pressure, when the risk of explosion was great.
When they were decomposed by sulphncic for any other strong) acid, as was nsually the cess in England, much of the fat was lost by being cherred and barnt, and the remainder was so black that it whe necessary to distil it to render it good enough in coloar for manafacturing parposes. The rist of ire, and of explosion, in this operation, was conhad shown that most nentral fats were made up of minute globales of fat, surrounded by albaminons nvelopes, Whioh form 1 to 1.5 per cent. of the of alkali, of presing, or of heat red thed the axcesa falki, persor removal of these albominous en relopes, which clao attracted to themselves the colouring mattera contained in the fat, or those produced therein daring its decomposition. The existence of the albomae conld be demonstrated in the laboratory by dissulping the fat in ether or benzole, and precipitatiag the solution by water, or by boiling the fat ou a atrong solation of oxulic acid. In both cases the albuminoos anvelopes collected at the plane of janction in the minous envelopes were broken and partly dostrojed by the action, for a limited time, and at a girem temperature, of a small quautity of strong sulpharic acid. The neutral fat then pourgd out from the envelopes in oustate ready for decompusition by mater in open tanks. an operation Which resuired several hours for its complete performanca it
progress was jadged of by microucopical examina progress thas jadged of my meroucopicat examinsfion of the crystals of the fat, or fatty acid, eo-
formed by slowly cooling a thin lager apon a gleks
slip. When it was completed, the glycerine, whioh Was dissolved in the water used for the decomposition, was drawn off, purified, and concentrated or sale. The falty acids, amounting to 34 par cent. of the original fat, were at this stage of a very brown or blackish calour. The next operation
was to eliminate the albuminous envelopes, and With them mont of the colouring mattors. This Was done by submitting the fatty acids in open tanks to the action of dilate solutions of certain ex-
idising agents, by which the black matters were idising agents, by which the black matiors were
parthy oxidised, and thair specito gravity grently norensed, so that when the oxidation had procoeded far enongh, they readily subsided to the bottom of the tank, leaving the fatty acids comparatively good in colour. After two or three washinge with dilate acid and water, the fatty acids ware cald pressed and hat preasod in the usual way, and the result was a stearic ecid higher in melting point and graater in quantity than conld be produced in any other way, and an oleie acid oxoellantly fitted for the manafecture of soap and other purposes. One of the greateat advantages of the procons was, that all operations wese condocted in open tanks, with steam not exoeeding 351 lb . pressure. Mr. Carpantar etated that he was at present engeared in applying this proceas to palm oil and other vegetabla fats, and he illagtrated his paper With epecimens of the varions atages of mannfacture from Copenhagen,

MEOHANIBM.

(Continued from p. 584)
MERE of wrapping comaectors is very old; it drtuing maehfinery, and here is one of those lathes Whion grven mene mion chough our present lathe bears no more resembianoes to it than Althougstamoes that never were on meahanism so nivercally useful a machine as a lathe could not avoid notice, yot the paimitive form of the ingtramert, seems to have been "improved out of exiatance.
In Clerkenwoll, however, the original lathe is atill in wes, and the conetruction of one is this :- A long lath, or eladtio branch of a tree, is pat over a beam, one end boing held firm ; at the othar end, therefose is an elasticity similar to that in a bow. A cond from the end of the lath pacses round a piece of wood rooghly chaped oylindrically with a hatchet, thence it pacsess to a treadle, which, in the one berove yea, is nailed to the floor by apiece of common motion is given by preseing the treadio. When the motion is given by presoing the treadio. When the preesure is witadrawn the spring of the lath beok again, and eo a beok ward and forward motion is obtrinel. Whatever may be the amount motion is obtained. Whatever may be the amonnt of time oocspied in taming one way, there is an
oquad loss of time in turning backwards. Whilet 80 returning the werkman withdrawe the tool, replaoing it ${ }^{20}$ the mork comes forwarl again. Therso fore half the tive of the man is lost, while the work goes baok waods. Theve are two tredes, and per cannot be diaprosed with. No mechanamm bee yot emmbled the artien to repiace what we choakd call the soogh-agd ready varying travel of that lathe. The two tradee in whioh it in rased are the watchstenm tapa. On lonting at the oneo of a watoh you wim find in the rim ane or twe hingea. These hinger ene etpai.to the turning seol. Hence wery " mill are" of circlue have at timsoes to be tarmed or

No doubt moeherriane might be inveated, bat the time bost in coning the mechanism weald be mose then the tine now oceapied in doing the work Therefore, man stillod at the trade-and one mata told me be had been monting at one of these theop inches, or sel a quarter of asizoh, of a cir. cundercece of 8 in . or 9in.

Rracreon, for whom a meohanic ought to have
 conin in order that the palley mighte be driveo, and wilh hermend of boing emooth moald bo covered tho perlopiand eo dren it round. As to the smoth puifor, Pis 24 (p. 584) here is Yoang's book, es soptor and the Mfochenieal Arto," dolitmed in tho Roynil Inatitation of Great Britain, and printed in 1807. Now, lot us 806 what Young in that day wroto. He says (Vol 2, page 183), "When a strap rans on a rovolving cone, and is sumbiently tight, It edrancee towards the base of the cone and does not alide cowardis the potnt ; for the edge of the strep zeeareat the base is drifien more rapidiy than the olber, and the portion advanoing townards the

- Ap abo Bov. Angmen muce, MuA, belog the Gacter

order that a strap may remain on the middle of a wheel, it mnst consiat of two portions of cones oined at keir basem, tai romered mas conhave in 1807 the true principal haid down, and yet, have in 1807 the true principal hid down, and yet,
in 1872, the question is still bocesionally discussed. Strape are very pecullar in thetr bohaviour. Not ondy are they disposed to atop on a pulley that is not level and roech the highent point, but they will do what esmetimes meobanics try in vain to make them they will most willingly "drive" roand

FIG. 26 corners. Nothing is more easy, not done in the right way. Her is a palley at the bottom of a shaft and one at the top, at right angles; ss you soo, there is no this right-angled corner. There is nothing to hold it on, bat it keeps ite place. Yet, if the driving palloy be turned in the other direotion the strap will not koep on. The privoiple is very simplo, and applies to shafts oblique to one another as well as to shafts at mode of operation to seoure the strap remaining on is this-Ascerthin the point where a perpendicular to the two sharts coald be one shaft to another, at right angles to the two shafts. The apright, in Fig. 29, is clearls perpendicular to both shatit. Now, distence for the top palloy equel to the radins of the lower pulley, and for the lower palley a dietance equal to the radius of the top palley. The radii of the pulleys are the portions involved. If the distence from the perpendicular of aither pulley be too great, then yom will obeerve that the point on the palley where the etrap enbers is not in the plane of the other pailey. All that is noedod to retain a atrap in ite porition is that it should loave one prilley in the plane of the pailey on which it is to travel. It must be entering in
the plane of the pulley to be moved. It may leave a palley in any phane, but it may not enter in any plane
In Fis: 26 the direction of the motion of the strap is uhown by the arrows. Remembering the previous explanation, it will be noticed that the point E in the apper pulley projeots or overhange so far as to be in the plane, pascing through the lower pulley D C. Therafore, when the strap is entering on the lower padley, there is no teadenoy to ran on. again, the lower palley $\mathbf{D} \mathbf{C}$ is so pleoud that the point d is in the plane K F, and theretore the deviation from the true planes may be permitted For thare is, as it were, a content between the ourvature or rounding. as in F, Fig. 24 (p. 584), of the vature or rounding, as in F, Fig. 24 (P. 584), of the
palley, and the tendenoy to run off. If, now, the pairoy, and the tendonoy to run ofi. If, now, the thes the strap immediately falle off, in mocordance with what the precoding reasoning led us to sees peot It is disoreditabio to a meohenio to hol strape or palleys, or to use gaide palleys under many circon matances in whioh these are placed. Who ovor does so may perbape be a good mochanio, but beis a poos meahanioian.
(To be continued.)
CAVE EXPPLORATIONS.
T IHE report of the Settle Cave Exploration Cem mittoe was brought ap by Mesars. Boyd Dawkins and Tiddeman. Both geologioally and bistorioally, the resalts of the labours of the Settle Oave Enplocation Committee in the Victoria Cave during the lath throo yeurs are of great importance Tho care is albueted to the north of Ingleborough and consists of several large chambers, often neaply flled up with earth and stones. Work commenced by cutting a trenoh through a layer of stones broken frem tho olic above, whioh proved to be reating on
a dark lajar composed of berntiatones and bomes, fragrante of pottery, and a fow Romar colne Bollowing the layar right into the arve coverel broves gilt oramocots of Roman wortmanehip weas foand, and otboren, certhinis not Roman, bet boailigg a arong resemblance in danign and ezecen tion to Lethh or CClitio worke of art proeerved in rarions maseana. Tha Colinic thorthorra, the goat
 of thair bonee whioh wore discurered. The etrange miature of artieles of luccery kend orasement in eo wild a place ceem ondy mocuruteble by the expponithos that the cave was imbabitol, as a phece of ro raga, by come woll-to-do Romeno. Oeltic family; whe meay of their ralembleen catthe, end other property The date of this occupation seemed to be betmeen Hion of bemen colien, and the ftert quat of tho
seventh centary, when the kingdom of Strathelyde was conquered by the Angles. But besides thi evidence was round of a moch older occupation Underneath the Romano Celtic layer, at the en trance, pieces of chipped flinto, broken bones of o and bear, and rade bone instroments, proved the animals other than man inhabited the cave at lower level, and therefore before the acoumalation of the talas on it. A sabeequent shaft being sunk the discovery was made of a still older occupation of the cave by hyænas. Their broken bones, teeth and coprolites showed that they mast have lived there in large numbers, and the gnawed bones of rhinocerons, cave bear, mammoth, reindear, tc showed on what animals they preyed.
In the eighth report of the committee for the Ex ploration of Kent's Cavern, Torquay, for which an annual grant is made by the Association, Mr. W. Pengelly stated that, during the past yoar a tooth of the great cave tigor (Machairodus latidens) had been mot with in the cavern. Flint implemente the andoabted work of man hed aleo been met wit in a bod below the care-earth, and the oldest stratum yet worked. On this tooth Mr. Boyd Dawkins rea a short papar, affrming its true charactor, afte which Professor Phillips stated his beliof that man of these bone caverns might be preglacial. In reply Mr. Dawkins showed that many of the animal Which occupied the European area before the glacial period, returned after the cold bed passed away. He thought the enture evidence of the Kent' Cavern pointed out that it was of preglacial age and that man might have been living in Eunope at that time. In this Mr. Pengelly concaured.

THE WASTE OF COAE
THE Following is the address delivaned by $\mathbf{M r}$ Science Soetion of the Britieh Aceociation fow preliminary sentances, Mr. Bramwell said :I have thought over many subjects connected with mechanical science, bat I cannot diecover any thing more practically important than "Coal." Very fow matters are of greater real interest at all times to mineaty af mego, and. vary few are mare pro minently before the minds of the public at the present time ; and certainly no sabject can be more appropriate for a mechanical engineer, if for no other reason than this, that the steam-angine is atil the very crowning glory of mechanical enginoering and that coal is the etaif of IVfe and, so to speak, the breath of the nostrils of the steana-ongine. The increase of consumption and the rise in price are startling facts, and force us sariously to reflect apon the use and also apon the abase of ooal. Theen reflections will make us remomber that whatever the known store may be, and whatever now dis coveries of othar beds mar be made, the sapply after all is but a finite quantity; that, unlike the fual wood, which grows year by year to replace the annal consumption, the fuel coal is given to ut once and for all; that we are therefore dealing with a store that knows no renewal; that if w waste it, the sin of that waste will be visited npon our children ; and that it becomes as to look apon coal as a most precions, valuable, and limited de posit, of which we are the stewards and gaardians, astifed, no doubt, in using all that we require fo egitimete parecees, butmoct crination in respect of all that we wachor whother that macto arise from wiful indiffersace or from caralons ignorasoe, an ignorance calpable as the indiffereaco itvalf. Thic being so, let us 800 how we do deal with coal in those ouses whore coel must be used ; how wo might deal with it in such casen; and how we might in certain instances substifate other eourese of pewer for the conl whioh we now consame.

Utilimation of the Power of the TMac.

And let us firat of all consider this queation of finding sources other than coal for our motive power. Before the steam-engive was so extensively ased as it sow is, the wind the force of atroams, and the force of the tide were all omployed to give motiv pomer. With respect to the power of the wind, it is o be feared it is too irregniar to enable any mana factarer to rely apon it in competition with the steam-encina With rempeot to the power of on streams, the altered condition of the enil, due to in creased drainage and collivation, has so materially interfored with the ragalarity of thoir flow, that thei effciency as sources of constant powar is serionaly diminiehed, whilo competition with tham by ateam has beoome mneh greater than it was when the water-mills themcelves Ware better or. This stat of thinge, however. might.be oared, ench, in fect, has been cured in oertain distriota by tho mion of a largo number of mill-proprietors to form storage reservoirs from which the wator oan be delivered with regalarity, so as to give a uniform sapply to the mill. But the third coarce of waler.power, the ide-mill, Which at one time was usod to a consider The accues of this drometimance are exmefiently

 snd, to obtain the tat
labourch nuder these disedrantages, they possessed the great merit that their power, such as it was, was one that conld be depended on, and one which, althown ind defnite limits.

I would suggest that in those cases where there are large manufacturing districts within
a few miles of the sea, and where there is a few miles of the sea, and where there is the outset at all events, with natural indentations of the coast, whioh might be comparatively readily dammed up for the storage of the water, there such atorage should be made that the water should be pat to work. Tarbines of the best kind (tarbines which will work with very nearly the same per--
eentage of the total power given out by the water centage of the total power given oat by the water
at any particular moment, whether they are immersed or whether they are not); that these merbines should be employed in pamping water at a high pressure into Armstrong aceumnlators, and a high pressure into armstrong aceumalators, and to the neighbouring manufactaring town, and should there deliver their power to the consumers, requiring it to be used by them in water-pressure engines.
Suppose a beginning were made with the city of Suppose a beginning were made with the city of
Bristol, which is no doubt a very favourable instance for the application of this suggestion. Here the rise and fall of the tide might safely be taken at 24ft. Half a square mile of water inclosed would. after the most lavish dedactions for lobs, yield in Bristol at least 5,000 horse-power, probsbly sufficient to re-
place the whole of the power of the stationary piace the whole of the power
1 will not detain you by further dilating upon this subject ; but it does appear to me, looking at the opportunity which good turbines give of atilising the power reniding in water under constantly varying
conditions of head, looking at the fact that by Sir William Armstrong's arrangements this power may be transferred to an extremely amall quantity of
water under high pressure, and that therefore such water under high pressure, and that therefore such
water may be transmited for many miles whier may be transmitted for many miles those pipes be of no great size,-looking at these facts, I say, I cunnot help thinking that chanical engineer s now field of enterprise, and one Which, if successfal. would tend to economise the fuel we so much value, and to leave more of it for
consumption in metallurgioal operations and in other operations requiring heat.
Before quitting the subject of finding sources of power other than steam, the Section will perhaps permit me to remind them of what has been done habitant in the way of atilising the water-power of the Rhine, and of laying it on, so to apeak, to every
man's door. This has been accomplished by erectman's door. This has been accomplishod by erectdeliver their power to endless wire ropes carried over palleys placed alongside the Rhine, the rope
extending nearly from one ond of the town to the extending nearly from one end of the town to the
other. This rope gives off power at the end of each street abatting on the river-bank, and that power is conveyed along those streets by a ghaft in a channel under the paring. Each manufacturer can make his own commanioation with these principal shafts, that no more is aharged than is just safficient to pay for the current repairs and for depreciation.

Wante of Coal in Mincer.

I will now consider the question how conl is wasted in its nse ; but bofore doing so I will say a few words upon the loss that occurs in the coal-mine itself. Happily this lose has for some Jears past been greathy reduced. More coonomic systems of work-
ing have prevailed, plans of dealing with small coal by washing away its impurities, so as to render it fit for cokeing, have been largely adopted, and thus
a great deal of that coal which a fow years since a great deal of that coal which a few years since
would have remaized buried in the mine, as not justifying the expense of raising it to the surface and of paying royalty upon it, is now brought to light and is utilised. Nevertheless, we know that at ordinary prices of coal it is to the advantage of the colliery proprietor in many instances to leave a con-
siderable percentage of the seams that are worked, rather than to endeavour to lessen that percentage by the use of a more oxponsive system of artificial support for the roof; and, further, that it also pays coal. Thus, in the very outset, we are wasting fuel. eonl. Thus, in the very outset, we are wasting ivel.
But the prevention of this source of waste is a question quite as mach for the mining engineer and the political economist as for the mechanical engineer. I have, however, mentioned it before this
Section, because the mechanical engineer may consection, because the mechanical engineer may con-
tribute to such provention by devisiag now modes of extracting coal in places where hand labour would press too hearily upon the men engaged in the work, and where, therefore, their labour would be too costly.

Domentic Wasta

I now come to the question of the way in whioh Thate ocours in the ase of the coals that are brought to the sarface. This use may be divided into two Oreat branches, the domestic and the manufacturing
highly important branah of the mabject. It is be
lieved that out of the total of 98 or 99 millions of tons of coal which in 1869 were retained for home nse, $18 \$$ millions of tons, about one-filth of that quantity, were consumed for domestic parposes (about 10 millions being exported). We ell of us
know so intimately the wry in which coals ere barnt know so intimately the wry in which coals are barnt
for domestic parposes, that I fear it will seem an for domestic parposes,
idle waste of time to describe it. Nevertheless, I really mast occupy a few moments in so doing. We put a grate immediately below and within a chimney, and as this chimney is formed of brickwurk, by no possibility can more than the most minute amonnt of heat be communicated from the chimney to the room. On this grate we make an open fire : fire
cannot burn withont air, and we provide no meang whatever for the provision that not one architect or builder in a thonsand dreams of making. The consequence is that the unhappy fire has. as it were, to etruggle for existence. In \& well-built house especially it bas to straggle; for the doors and windows shat tightly. The result is that the fire is always
smoking, or is on the verge of smoking. We breathe smoking, or is on the verge of smoking. We breathe
the noxious gases and we spoil our furniture and pictares; nevertheless, happily for us, the fre does succeed in getting supplies of air which, even
although insufficient for the wants of the chimney although insufficient for the wants of the chimney
dranght, do renew the air of the room. If to satisfy the demands of the chimney and to stop its smoking, a window is left a little open or a door is set ajar, we complain of dranghta, and we complain of the unhomely look cansed by sitting in a room with an open door; so that there wo are, with an asphyxiated fire, our smoky rooms, and our draughty rooms. Moreover, the fire being immediately below the chimney, the main part of the conducted heat inevitably goes ap it and is wasted, learing the room o be warmed principally, if not entirely, by the radiaied heat ; and we do and suffer all this in order that wo may see the fire and be able to poke
it. For myself I must confess that if there was no cure for the evils I have described other than the close sfoves of the Continent, with the invisible fire and, with the want of circulation of air in the room, would rather pat up with the whole of our present domestic discomforts, and even with the loss of heat, than resort to the stove as a remedy. Bat thoro from dranght offich reedom irom smoke, hroedom the heat may all be combined with the presence of the visible pokeable fire. Some members of this Association may recollect the paper that was read before it at the Norwioh Meetigg in 1868 by Captain Douglas Galton, in which he so clearly described his admirably simple invention of fire-grate. * This consisted in patting a flue to the upper part of the tormed in the ordinary chimney, which chamber was supplied with air from the exterior of the room by a proper channel, and then the air, after being heated in contact with the flue in the ohamber escaped into the room by openiags near the ceiling so thet the room wes supplied with a copions volume of Warm fresh air, which did a way with all tendenoy to draughts from the doors and windows, and, moreover, farnished an ample supply for the parposes of ventilation and combastion. These fireplaces, regret to sey, have been bat little used in England, crom s cause I shall have to advert to hereafter, a adoption of improvement generally. The merits of theese freplaces were at once acknowledged by the theee flreplaces were at once acknowledged by the
French, who made the most careful and scientioc invertigation of their working; and they found that, with such fireplaces, three times the effect was obtained from a given weight of coal that could be got with those of the ordiaary construction. No
donbt there are many other plans by which the same end as that attained by Captain Galton may bo arrived at, and yet we go on year after year
building new honses, malring no improvement posing ourselves to all the no improvement, all, wasting the precious fuel. Suppose that we conld reduce the total consumption both in summer and in winter by 50 per cent., what an enormous boon that would be even in the one matfer of a pare atmosphere.

Waste in Canufactures.

The other way in whioh we use cosl is for purposes of manafacture; and this, again, may be divided into two branches at least, namely, the coal that is employed for obtaining power, and the coal that is employed in metallargical and other operations not immediately connected with the production of power. To treat of these latter cases first, they are far too
numerous to be dealt with in detail, and a few of the numerous to be dealt with in detail, and a few of the principal subject of coke-matring. How much conl is heated in clampe and in kilns to bo converted into coke, and in how few instances is any use made of the whole of the heat reaiding in the gaseous parts of the coal which are driven off. This heat frequently amounts to 30 per cent. of the whole of that
which is in the coal. We come next to the smelting of iron. Take the preliminary process of calcining the ore. In those cases where the ore is "black
band," the ore so common in Scotland, the calcining is done by the combustion of the carbonscoors matter mixed with the ore. Far more than the quantity of fuel requisite for the calcination is ascociated with this ore ; but the whole of it is burnt ofir: sud no effort Whatever is made to utilise the surplas heat. Then, with regard to the blast-furances for
wmelting iron. Here still, almost aniversally in Scotland, that large seat of the iron manufacture, and to a considerable extent in Engiand, the Waste gaser are saffered to issue from the farnacetop, illaminating the country for miles, and bearing testimony to the indifference of the owner of the farnaces to a waste of our store of fuel. Upwarde of 60 years ago, riz., in 1811, the atilisation of theee gases was suggested in France; but not much whe becemer yo yoars. About 1840, howover, tad theb manufacturers and chemists tanght us that the gav thus recklessly wasted might be collected ano atilised, and made to replace the fael expended in heating the hot blast-stoves and in raising ateam or the blowing-engines. Bat, for the canse Which has been and wion alluded to, the adoph It of thi plen was very slow indeed in Engiand. It has now oen in use, however, for many years in oar beet condacted works ; bat, as a proor of the siownea of its introduction, the furnaces of Bookland, as I have already said, are even to this day elmont aniversally worked upon the wickedly wastefu principle of allowing these gases to burn idily amay. Take, again, the melting of steel in arucibles wher the heat issues from the furnsce of necessity hotier than the heat of the melted steel (for were it not so it would cool it), and of thisisening heat, at a rale, so use whatever is made. Take agnin the heetingfarnace and puddling furnace of our ironwortes; rery commonly from chimneys disregardod, as though it hadooet nothing for its generation.
In many works, it is true, a portion of this heat in atilised for generating steam ; but far more steam can be obtained than is required, even wikt the moet annocessary and lavish consumption of it, and that in great ironworks boilers in whioh the steam is generated by the wasto heat of the fornsoes may be seen constantly blowing off large volames of cteme at the valves ; and many farasces are in ane to which no boilers are applied, for the ximple reaco wai they woald be absolasely superimoas. This wron and for other metellarrical operatione is br mo means necessary, although it might be arged that 4 is; and it might be said that if a furnace is to hoe a body to 3,000 degrees, you must of necocity ellow the heat to escape at that temperaturo, or rathor at something above it, or else in lieu of heating the body you will be cooling it, and that you can no more trap esoaping heat than you oan trap a bav. Mr. But one of my predecescons in that jor can trap the hoat, and that yon can eo lay hold of it and store it np , that the geses as they pase into the chimney from the furnece in which there in, say, even melting steel. shall bo lowered is then perature down to that whioh will not ehared up heet may be communicated to the eoparate dereams of incoming air and gas of hia geo-furneces, 00 thas that temperature to bo increseed by thele anion and combustion in the furnace. So beantifally can this trapping of heat be carried ont, and so sucocearailo can the heat be rotained by very trifing atication on the part of the worimea to the aparatan, tendent of the London and North-Weatern Railway. knew ho should not be applying too dalicecte a tex when he inserted the onds of picces of wood threegh openings into the outgoing fices of the ateod-heating parnaces at Crewe. These pieces of wood were padlooked in their places, were taken out periodically. and if they were found to be bernt it was kown that the man in oharge of the furnace had boen og fuel and had mbuered has been beforptrai noblio for very many youres ad has been before the pabsor although it has had the appromal
ald
every other distingaished soientilio mun who hat investigated the queetion, and, I am gled to casy, the approval of the loeding minds among the uears of have to illude to the progrees of this in reation hat been by no means commensurate with ite irapert anoe; and it is not 100 much to say that mangfacturers would rather wasto oheap coel than be at the trouble of ingtructing and of watahing over thoir workmen.

Waste in Steam-Engince.

Next, let us consider how wo are dealing with coal when we use it for obtaining motive power in our steam-engines. Staem-onginas may bo wivibed into the four grest heads of marine, locom otive. portablo, and fixed. Inclading withis the terre team-angine, the boilar as mill as the en dine

1
arise from an imperfeot atilisation of fuel in the production of steam, that is, a waste due to the boiler and to the firing; or it may arise in an improper use by the ngine of the steam provided for it by the boiler. There can be no queation but that the boiler Waste is, as a rule, very large indeed. A pound of fair conl is theoretically capable of evaporating from the boiling-point 131b. of water. I do not believe that I shall overstate the oase when I say that on an average not more than from one-third to onean average not more than from one-third to onethe boilers in use.

This poor result varies from a variety of canses : -1st, bat Aring, which means bad combustion; 2nd, ingumicieni surfeoe to absorb the heat; 3rd, an anclean condition of that sarface, either from internal or external deposit, or both; 4 4th, a faulty propor-
tioning of the parts of the boiler to each other and tioning of the parts of the boilar to each other and
to the work to be done, which canse heated water to be carried over with the steam, 一a cause of deficiency of evaporation, which, however, so far from being at a rule deteoted, goes to swell the apparent boing too thick, or too thin or irregular. If too thiok, the carbonic acid that is generated by the oombustion of the lower part of the fuel with which the air irst comes in conteot is changed in its oanic oride, by absorbing from the fuel a second equivalent of aarbon free atmospherio air, and meet Whth it at a scitable temperature in the apper part
of the furnace, it must remain unconsumed, and will of the furnace, it must remain nnoonsumod, and will pasestere throngh the inues or taben of the boiler and
mate escape into the air, oarrying with it the paluablo nuconeumed carbon of the coal in a gaseons sorm. It is commonly said that smoke is nucon-
sumed fuol. This is true ; but it is not commonly reoolloded that there may bo invisible smoke arising
(Oves from a coke-Are) whioh shall contain the highly combantiblo ingredient carbonio oxide gas. When it in remembered that overy pound of coal barnt into cheady been eaid, about 131 b . of water from 212°, while a pound of conl, converted onls into carbonio ocdic, fo capable of evaporsting bat 41 lb ., it will be chan how necessary it is that no mismanagement of the Are aboald cause a portion of the fual thus to the management of a fire (an opposite defect, as it Were) by which coal may be wasted, is the admission α toomuch air; and thin arises when the fire is too thin in relation to the ohimney-draft, or when (a
more common evil) it is thin in plece, owing to the negitgenoe of the firemen in leoping it properly lovalled.
The way in which waste arises from these canses 18, that unnecossary air is introducod into the fire to bo beated, and then (even if the heat be abstracted from it, as far ne praoticable by the boiler) It will egcape on the ohimney at a tomperature of the whole of this exoess representa wasted conal Thus, on the one hand, it is of importance that there thould be a proper amount of air to secure the perleot convaruion of the carbon into carbonic acid this amount ahould not be excoedod, involving the neceserity of noolesaly heating air not wanted for combaction. 8uch a happily balanoed atate of things amoed imposaible, bat not abeolutaly impossible, thoagh only attained at compotitive triale, and wher these triale are conducted by highly akilled men.
In euch trinit of portable engines before the judges a the Rojal Agricaltural society of England, the larty-Ave times in an hour, the quantity pat on at than as spoonful. Writers on the management of the theam-engine usually adviee that the firo-doors should bo opened an littlo as posaible, and that the firing hoould take piace about every quarter of an hour but when it is decired, regardices of the amount of manual labour, to obtain overy partiole of useful rative to open the door, not four times an hour, bat sore thas lorty timen an howr, tating oare, however, it is it is only opened for the freotion of a second. conl, distribated over the Are, that the competitors are onsbled to inaure a uniform condition of that dre to recoive the aotion of the air. They hoow preaxperience they also know what thickness of fire rill exsotly balance, as it were, the air that comes jot there may be no free air. But in ordinary hand. aring, done at intervils of a quarter of an hour, it is obrions that the thiciosese of the fire at the end of hich it was at the begtoning of it, and thns if that thioloness be right in rolation to the draught at one time it must be wrong at another. At one time, im mediately after Aring thero may be a distillation of hin will go on till the fro borne thin and bor in
do not wish to be underatood that I am adrocating the attendance of skilled firemen to fire forty-five times in an roor. Coal must be far dearer than it now is to make it gay so to occapy a man, or rather watches of men ; yor on one man could submit to such continuons labour for tapre than from four to attention to the snbjeat of mechanical to call you lieve that the high evaporetive daties that have been obtained by the use of liquid fael, duties approaching very closely inderd to the theoretical power of that liquid, are largely due to the fact that the air and liquid can be injected in definite and regular pro-
portions, insuring perfect combastion. Again, in portions, insaring perfect combastion. Agein, in the powder is blown into the furnace by the very air which is there to enter into combustion with it, very high evaporative results bave been reached even ander the disadvantageous circumstances attendant upon early experiments; and this also I believe to be due to the power of accurately adjasting the quantity of air to the fael to be burnt.
The same power of adjastment may be obtained in those instances where the fuel is previously oonverted into gas, as practised by Mr. Siemens ; and nearly similar control can be got with ordinary fael by reverting to some of those aystems of mechanica thirty years ago, but whioh have been to a great thirty years ago, but whioh have been to a great
extent abandoned in consequence of the more general adoption of internal fires and high-pressare boilers. The fires of such boilers are in farnaces of small diameter, which do not admit of the introduc tion of the apparatus, for which room was readily found helow the bottoms of the waggon-shaped boilers formerly used for low pressure steam. Other modes of fre-feeding, however, have been devised, perfectly cortain there is hardly any subject more worthy the attention of the engineer than the replacing the stoker by some mechanical arrangement which shall afford ebsolate uniformity of firing, and therefore absolate nuiformity of the conditions of the fire ; and this is a sabject not only worthy of attention on account of the saving of coal, bat also on the ground of putting an end to a most laborious, oxhausting, and, it is to be feared, unhealthy occopation-ris., that of the steamboat inreman,
more particularly when he is working in a hot climate. If perfect combustion were obtained in he fire, I do not think there would be much diff calty in properly atiliaing by the boiler the heat ovolved. All that is neoessary to attain this end is on give a sufficient amonnt of surface to absorb the heat and to transmit it to the water, almays bearing in mind that, above all, the form of the boiler should be a safe one, that there should be proper waterapace within it, and an sdequato watar-zuriace so with tranquillity, and so as not to give rise to the spray technically known as "priming," and alonning.
I am aware there is a temptation on the soore of aring expense and of eaving room to make the boiler of small aize in relation to the amount of coals barnt under it, and to the quantity of steam required from it ; but this is a most extravagant sconomy-it is a saving in the onteet, bat it is a perpetual source of loss in the working. Tempera-
tures as high as 800° and even 1000° of heat have been known to exiat among the products of combastion escaping from the boiler. Now, when it is recollected that every 100° of heat in the outgoing products of combustion represent 2\& per cont. OI he whole heating power of the coal, even if oniy bustion is aitted it will be cen how necessary it is that there shonid be sufficient surface in the boiler to absorb the heat of the gases, and to bring them down to a few degrees above the temperature of the water in the boiler itself. I have mentioned the temptation to use boilers of inadequate size on the score of expense and on the score of room. It is this latter reason, no doabt, which induces shipowners to endeavour to diminish the size of their boilers as far as practicable, becnuse they argue that all waste occupied by the boilers and machinery is coals or with cargo. With short-voyage steamers, voyages of a few bours only, this argoment may be a valid one; but for the long-voyage vessels to India and elsewhere, where fual has to be carried for from wenty to thirty days steaming, and where on the homeward voyage the ships have to be supplied with coal that has boen brought from England by sailing-vessel at s large cost for rreight, the trae space deducted from the cargo and passenger-carrying power of the eteamship is olearly not that occupied by the ongines and boilers alone, but that cocupied by the enginea, the boiver, and the coal enlarging the boilers to diminish the consumption, the spece to be given up to the engiog, boilers, and conl were still the same, in consequence of the increase conl-spece of the boilars being equivalont to the antage of the shipowner th woul bo to the ad, occapied by the boilers rather than by the coals.
not to be retpeated for years until the boilers wear out; bat the expense of coal is an outlay that has to be made at every rojage, and therefore it is a short-sighted policy to restriot the anount of absorbing aurface in a boiler on the plea that a boiler with fuli surface takes up a greater space in the ship, if by dofic away with such restriction \& saving can be effectea in the fael.
The beneficial resulte which are attalned by the greater size of boiler in relation to the coal barnt and to the horse-powor required, ann be shown no
only by calculation, but by examplo. In H.M.S. Briton, ftted with oxtromely economic compound engines of Mr. E. A. Cowper'e deaign, close apon
21b. por horse-power por hour were barnt when the 21b. por horse-power por hour were burnt when the
ship was making thirteen knots: but on being worked at ten knots the consumption fell to $13 / 121 \mathrm{~b}$. of coal for the lesser horno-powar then used.

Good and Bad Eingines.

I will now aay a few words apon the engines. The locomotive engine has for many yoars past been dirst, from the fact that aince the introduction of coal the farnaces have been to a considerable extent gas-furnaces, with a free admission of air through gar-iurnaces, with a free admission of air through
open fire-doors to the surficee of the fael. Second, rom the fact that the boilers have large abscirbing sarfices. From these canses as muoh as 91b. or 101b. of oold watar are oommonly evaperated per
lb. of coal, while the engines working with high lb. of coal, while the engines working with high
team and considerable expanaion make good use of that ateam.
In marine engineering there has within the leat ten years been an enormous improvement. The old-fashioned engine working at 201b. staam, and
rith injection condensers, is being abendoned for engines genarally on the compound-oylinder principle, working at 601 b . and 70 lb . stoam highly expanaive, and itted with surfeco-condencera. The result is a reduction of the comsamption of facl in the same vessols on the same voyages, and performed in the game time, of from 40 to 50 per cent. of that which was previonaly burnt; but I believe that a large field for imprevement in marine engines till remains, especially in the flring and in the cirse of the boilers.
Among the best instances of what can be done in the way of economy may h mentioned the rapidly increacing olass of portable agrioaltural engines. These engines, like the looomotive, are, from their migratory condition, inoapable of being fitted with condensers, and thnes must be worked ao non-condensing engines, exhanating their wasto team into the air-a most corious disedrantage. Nevertheless, 50 great advanoes have been mado by he unremitting attention of the oxtremely akifful meohanical engineers who conatruot theoe anginet, that at the late Cardiff meeting of the Boyal Agricultaral 8ocioty of England, one of the enginen ran horse-power, being therefore a littlo under $28 / 2016$. of oonl per horse-power per hour; and this horse was the horse-power of the dynamometar brake, and not the mere indicated herco-power by which marine ongines and other engines aro ordinarily udged. The indicated horse-power is, of coares, a excess of that dovoloped upon the brake, as the
indicated powor inoludes all the engino-friotion and indicated power inoludes all the engino-iriohow and aken as a atandayd, the best of the engines tried by the Royal Agricaltaral Bociety this yoar at Cardiff will oiler lavourable comparison with even very good condensing engines, and will bo found to give a duty far beyond that which ten Jears ago would
have been thooght obtainable in any bat the very best.
It mas bo mentioned that the Corniab pumpingongines, which used to be loozed upon as the mont eoonomio of all enginet, are, ecoording to the June monthly report, doing only an avarage daty of coals, and that the very beet of them is doing only $1^{1 / 10}$ millions of lb ., while the brake harse-power developed by the engine at Oardiff, gave a daty of $79^{9} / 10$ millions of 1 b . This large daty was due to hes already been hinted at) and to the proper proportion of the boiler in obtaining the stoam, and to portion of the boilar in obtainigg ing it in the frst ts thorough olealng th prearntng it in ene arst toam by high expansion in a oylindar atoamacketed around its circumferenco and at the ende. Butat the very same show there competed for the prise an angine whiah, tothe eje of the uninstracted the ordinary purchaser for oxample), was as likely an engine as the prize engine; and yot this engine barnt 101b. of coal per horso-power per hour, or nearly four timen that which was burnt by the prize angine $\mathrm{i}_{\text {and, moreover, it must be remembered }}$ thought warthy to be sent to trial.
It may be said that hitherto my observations upon consumption in steam-engines have contalned quite as much of praise al of blame, and I am giad to these praieot have referred to the engines of rail, thich ere undar the espeaial charge of odu-
their disposal for the parohase and maintenance of good engines ; that they referred to the recent improvement in marine engines, which engines, being as a whole in the hands either of powerfal companies or of large capitaliste, eujoy the advantages of
due outlay and of propar eaperintendence, and that they referred to the prize engines and to the better competitive engines of the portable class, while admitting the existence of a large number of snch engines which were most destructive of fuel. Bat there remains the great class of fixed engines used for driving manafuctories, which engines are, as a rule, of the most disgraceful and ecandalous character. In the first place, enormous numbers of this it is in many instances alleged that water is this it is in many instances alleged that water is scarce and that there is not, to meet such excases it should be remembered there are appliances well known to scientific engineers-at all events that
have been in use for many yeara-by which conhave been in use for many yeara-by which con-
densation can be effected with no more water than is required for the feed of a high-pressure engine. I allude to the ordinary cooling-ponds for injection. water, and to the surface-evaporative condenser. In every instance these may be employed ; and thus, in lien of sending steam into the atmosphere at a pound or twoaboveatmospheric pressure, that steam might be condensed, and a pressure of 121b. or 131 b . might be boiler woald be kept clean, and thus its surface would be in the best state for transmitting heat.
But passing by this question of the repugnance to the ase of condensing engines, and admitting, for the sake of argument, that non-condensing engines may be allowed, what does one ordinarily find as a type of the non-oondensing engine? One finds the cylinder with a cubic capacity far too great for the work required; where steam is nsed throughont the stroke, one Ands that this capacity is not atilised as it might be by the employment of high pressure steam and considerable expanaion, and that while the steam, oven in the boiler, is probably at ouly 401b. above atmosphere, the governor is fying out closed, and there is a continuous wirg drasing of the stoam, so that its average pressure throughout the stroke of the cylinder is only some 151 l . or 201 b . above atmosphere. Now, when one recollects that it requires one portion of coal to get steam up to atmospherio pressure, and that this portion may be atmospheric pressure, and that this portion may be
looked npon as practiolly constant, whatever preseure of atoam above atmosphere may aftor be attained, and that if, therefore, steam at 151b. above atmotephere be used, half of all the fuel is lost, while if at 801 lb . above atmosphere, t only is lost, and if at 1201b. above atmoephere, one-ninth only will be lost in gotting ap stoam to atmospherie pressure, one onn ing engince the steam should be used at a really high prescare; and yet, as I have said, I believe of 10 or 20 -horse horizonturers thyoughout the Kingdom, were examined, indicator diagrams were taken, it would be found that their pressuro upon the pistons did not average math more than 20lb. sbove atmosphere; and it is mach more than 201b. above atmosphere-; and it is engines, men who oannot be properks callod enginoers, men who are mere manufacturers, not knowing the prinuiples of the art they follow, will boast that their engine is doing very well, it drives the Whole of Mr. So-and-so ${ }^{\circ} \mathrm{s}$ Work and does not require more than Boib. steam in the boller, not anderstand-
ing that if they would raise that steam to 1201 b ., and then work it non-expansively in a small cylinder, and woold theroby be obtaining a great economy, oylinder that oglin would obtain a still greater economy.
I think there is so little reliable information as to the total horse.power at work in the United Kingthe number of boilers has been estimated before a Parliamentary Committee as low as 50,000 , and as high as doable and even close npon quadraple that number, that I feef it would be an unwarrantable waste of the thme of the Beation if I were to invite them to follow me into oalculations, or rather specalations, as to the exact sarving that would be made
in the consumption of coal, censequent upon improv. in the consumption of coal, censequent upon improrhighest standard. It will, however, be quite suffdent, to show the importance of the question, for me to say, and I am sure I should be perfoctly safo in saying, that such esving would have to be estimated by millions of tons. Suoh a saving, as I have waid, is one that might be made with our present noorning even as low we recolleet that an engine
but 21 b . of conl per indieated horse-power per hour is still devoloping only onetenth of all the power which, acoording to calculaHon, resides in that conl, there is manifestiy a vaot soope for our mechanical engineers in the exercise of their talents for further economy.
But let not consumers of conl remein indiferent 0 sarings on their prosent consumption until those
their power to redace the consumption to the extent present practice show the consumption con be reduced. One is apt, at first sight, to marvel that users of steam-engines shonld be so blind to their own interest, and should permit waste to go on day after day and year after year-a waste not only prejudicial to the community at large and to succeed-
ing generations, but a waste cansing constant ing generations, but a waste cansing constant
expense to thnse who commit it, and a waste, thereexpense to thnse who commit $i t$, and a waste, there-
fore, that one would think such persons would only be too ready to stop; but the fact is there are several reasons why manafacturers and others permit the waste to go an.

The so-called "Practioal Man."
In prosperons times those engaged in manufactares are too basy earning and saving money to attend to a reorganisation of their plant ; in bad
times they are too dispirited and too little inclined to spend the money, that in better times they have saved, in replacing old and wastefal appliances by new and economical ones; and one feels that there
is a very considerable amount of seeming justificais a very considerable amonnt of seeming justifica-
tion for their conduct in both instances, and that it ion for their condact in both instances, and that it requires a really comprehensive and large intelligence and a belief in the futare, possessed by only a facturer to parsue that which would be the true policy as well for his own interest as well as for those of the commanity. But there is a farther and a perpetual bugbear in the way of such improvements, and that bagbear is the so-called "practical man;" and he was in my pind when, in previous parts of this address, I have hinted at the existen
I do not wish the Section for one moment to suppose that I, brought ap as an apprentice in a
workshop, and who all my life bave practised my workshop, and who all my life have practised my
profession, intend to say one word against the truly practical man. On the contrary, he is the man of all others that I admire, and by whom I would wish persons to be guided; because the traly practical man is one who knows the reason of that which he practices, who can give an account of the faith that s in him, and who, while he possesses the readiness of mind and the dexterity which arise from the long. continued and daily intercourse with the sabjeot of his profession, possesses also that necessary amount f theoretical and scientific knowledge which justify him in parsaing any process he adopts, which in which, at all events, if he be not of an inventive quality of mind, will enable him to appreciate and alue the new processes devised by others. This is he traly practical man, aboat whom I have nothing o say except that which is most laudatory ; bat the practical man, as commonly anderstocd, means a man who knows the practice of his trade and knows nothing else coneerning it-the man whose wisdom he new discoveries which are taking plaoo around him, in decrying those discoveries, in applying to hose who invent improvements, even the very reatest, the epithet of "schemers," and then, when e finds that, beyond all dispute, bome new matter is good and has come into general practice, taking
to it grumblingly, but still taking to it because it he did not he could not compete with his co-manaacturers, the ajm and object of such a man being 0 insure that he should never make a mistake by ombarking his capital or his time in that which has not boen proved by men of large hearts and large intelligence. It is such a practical man as this who diays al improvement. For vears he delayed the development in England of the ntilisation of the waste heat of blast-furnaces; and he has done so so successfully that, as I have already had occasion o remark, that atilisation is by no means nuiversal in this kingdom. It was suoh men as these who sept back surface-condensation for twenty years When the Siemens's regenerative gas-farnace was introduced, what said the practioal man? "Tarn your coals into gas, and burn the gas, and then talk of regeneration I I don't know what you mean by
regeneration except in a spiritual sense; I am a regeneration except in a spiritual sense; I am a practical man, and if I want heat out of conls, I years the practical man has been the bar to this most enormous improvement in motallurgical ope rations.
The prectical man is beginning slowly to yiold I have already said, that mes, grester intelligence have now in sufficiently large numbers adopted the invention to make a formidable competition with the persons who stolidly refuse to be improved, tho same practical man for of the development of Bessemer steel.
been compelled to become a convert.
As I have said, the practical man derides those who bring forward now inventions, and calls them schemers. No doubt whatever, they do soheme; and well it is for the country that there are men that do so. It also may be true that the majority of schemes prove abortive ; bat it mast be recollected that the whole progrees of art and manufacture has depended, and will depend, upon successful dis-
that heve been, and will be, unfruifful; bat the successfol discoveri-s, because they are succosofal are taken out of the category of schemes when years of untiring application on the part of the inventors have, so to speak, thrust them down the throat of the unwilling practical man. Take the instance of Mr. Bessemer, who was beset for jears by difficaltiee of detail in his great scheme of improvement in the manufacture of steel. As long as he was so baset the practical men chorused "he is a achereser, ho is one of the schemers; it is a scheme." It is a apecien of profanation to sugkest, but I maot suggest if tar it is true, that Watt, Stephenson, Faraday, and almont every other name among the honoured tead to whose inventive gening we owe the development that has taken place within the lest century in all the laxaries, the comforts, even the bare necessities, of our daily existence, would in their day, and Fhile struggling for success, bave been spoken of as tions of which we are now enjoying the fruits

A soojety to Rownard Ecomomy.

One word in conclasion. Can we not deviee seme means by which consumers of coal may beinstracted in, shamed into, or menpted to The Royal A rian that most valuable material f The Roval AgricultiralSociety of England, byits jndicionseftorts formad years past, by the inatitation of trials and the giving of prizes for the bost enginee, has brought the coe sumption of coal down from 101b. por horse- powere to a littie over one quarter of that quantity. Coald we not institato a cociony the rewardiong of the performanoes of steamboats, and of fixed angime is a dimonity in these cases which doee not obtats. in the oace of portable engines that cean be brought for trial upon a dynamometer, and that in that ine power exorted by marine engines vaies dariag the voyage, and is not that whici is davoloped at are
measured mile, while in a manafaetory it vare eccording to the conalions the trade, and to the oxtent to whon to his work. But there are tmplemente which record the horse-power exerted from momena moment, and registor it on indicen as reacabio sa those of an ordinary
I believe that one of the very groatent incentivee o economical working which the owaere of ctcensboats conld offer to their engino-brilders and ongineers would be the application of such implonents as these. Were they employed, the ship-
owner would know at the end of the royage en nuat horse-power had been exerted as as whole, that 20 much coal had been burned, and that the resal therefore, was a consamption of 80 many pounds per horse-power per hoar. Al orevens of honer vould be eliminated from the calculation. The ces. tinual indicator woald registar truly the wort the angine had to do, Whether that wort mas mets rendered light by farourable brewnen and whe assistance of canvas In the aame wiay the geoprietor of the engina for mannfectaring parpoeea oven the highly irsegalariy-working roltimeraille and sam-mills, would bo able at the ead of the uarser to aly-" Not withstanding all the variation my mazade asd rate of manufactione, I men thot that I have barned so muoh coal, and that, thare:
fore, euch and such have bean tho eooneaic sealta, Accuning that steamboat proprieters and the owners of fixed land-angines woald go to the expenet of applying auch continuous recording inplemeats as these to their enginea, and welid become and inspeoting, and of reporting apon thetr meohianers, and of giving prizet to the men in chargo tor care. al attontion, perises to the manate marent, to and prizee to the proprietors for their pablic eidit in having bought that whioh wen good instent of hat which wes bad and choep, and for having cere ployed, intolligent and careful matruen in tean of yoans, as great as improvemeat mikts bo melt onging ia marino mandectaring on tions of the Royal Agricalternal Seciety of Englma among the portabio.ones I think the initintion co

Orange-Colournd Epectanien,-In anoty to the Journal of Chomixtry, Dr. Stearme Sarewon at the UR Asylama for Disabled Soldione, at Milwankes, Wia, sofarring to the photographio noe of orabgroala earprise that no optician hae had the genius to mes thet orange is the proper colour for speotacien, inatoed of green or blae, for percons of weak eyce. Dr. Stearns with which inestag fact that a room it

BRITISH AgSOOLATION GLEANIITGS.

Inriction of Immersed Aubslanoes.-This
 of the Admiraly, vith the viar of detarmining the an of resiatapico of sarface friction, as ofocted by apeed, by quality of sarface, and by the longth of the rabbing sarfece oparated on. The realts genorally were that the reciatange variod at the power of 1.8 of any of the ordinary compodilions ; that with a polished surfoce of tinfoil It varied as the power of 2.2 of the
volocity; that there mase a very peaneible difference relocity; that there mas a rery acanible difference
between the resistance per square foot on a plane 50 . between the resistanoe per square foot on a plane 50ft.
in longth, and one 10 ft . in leogth, but the same in oir. camforenco; that betmean a plane of 10ft. and one o

 per aquace foot of matnied or varatited varfecen. That oficojont.

Aerial Navigation. - Mr. O. A. Bowdiar read a paper on this cubjeot which, he thought woald bocome an important element to millitary used, but it wes by no means tmprobeble that dinoumatances would ocenr whore it wornt bo mos decirable to pacs orer the enemyta porition, and it woald then bo teoportiant to hate the perrar of sovering to right or left an requirod. Oaptive bellocan coonld not be used in matoty in high winds on aceoume of violont rocking of the our. He thonght that abrial navigutitan was practioal to a cortain limit by simplo meotianical meem. Of the practicability of applying rteam powbr he had no hope, the weight of - a steamongtine made at light is poiffio, consintent with dae strength, boing mach too great for apy gas bailoon to sapport. The bum wecurca, the question wnone how the porar o direotion coald be aequitred, that boing of the utmost bo rotating the balloon to then holdíng it from furstar ory potion, the rotation wis completety umber the control of the aievoranat. A rudder Heal tise fred in en tor By tarniag the plane of fite aise the ourroit of ait machine to rotate right or left preaisoly sin the rudde of a thip gurided the voceel. stit. Repnolda mid bo had found if imporathe to get, brimeroal power, more than to tro. The great afinealty with regard to on Arive machice wes that ita increme of power whe in edrinice of its eapactis of carrying.
Rolling of phipa, -Mr. Froude made some 50 marks on the mode of recording the solling of - a ship in a monway, eod amboralily and ably expiaided apph. sorma of the waves. A revolving ojlinder, coverod vith papar, and tarped by olookwork, roceived the mank zande by moveral peane. One of thoee pens recordec timo, jerke baing giran to it by an earcot coook. The
 Tish tho heal, mooorded continnonals by a ceoond pen she anglos which the elhip at enoh moneont made pith the meen or afloetive carteco of the wave. Another pon, sotaaiod by a roaking arm, kept loval by an ob by a thind pan. the spgle the ahip mede with the of rolling of the ahip mas at once shom and than of tho 0 or Mr. Torde eatud thet ea her workea out graphically Mr. Froude edatd that he had completod an appartata In Which he emplojed a hoars atationary wheol so the motion of the anip. Thir theal pleobd tram the motion of the ship. Thir wheel, pleced trane apid that supply the phaos of the thothoatal bar.abovo ema thase supply the plaos of tine mortaratal
Variation of Polse.beata. - Professor Sanderion medo a commanication on the rhythmion variation of artortal prestare. He poiatod out the raythmical irre griaritice obsermable in the pulation of certaid animala, stating that the pariods of fact beating corroepond to inspiration, and that the periods of slow chis is recorded by a graphio mothod. Dlscanaing the question of the relation of these phenomeng the thowed that, when the masolet are sabjeotod to paraTyuls, so that respiration almost cosses, there is no rariation in palantion, Whence he concloded that the
phemomona in question are not ralatod as carse and phenomona in quostion are not ralatod as canase and afloct, but are rosalts of the name easase. A comma. Frequency and the Forcos whioh vary it Mr. Garrod detaliod come espariments, with a viow of showidg thet the rapidity of the palse yatiee liverraely as the reatetance to the flow of blood from the artorios ; that varietions to the amoant of blood in circulation do not Fary the rapidity of the pulee, and coneeqneatly that the palce rate io not dependent ant the blood pressare, an manas sappoesed.

Aetion of Baolight on Glime.-Mr. T. Gnf. Achi, of Boaton, J .8 ., read a papor on "Tho Lotice of finmed shat mont sumples of glamen, eepocially those culuiniog mengration becarme colorred more or lees
stained windows of cathedrals had changed somewhat rom the original colours ; theee coloars, however, could be restored by subjecting the glacs to the aotion of sumaivat heak. M. Bentemps sadd that he had found glass
containing maganece mo good for lighthouse jentes, contaning mangenceo no good for iightionse jenzes, per cont. -did not ohange colour at all. Mr. Wenham ald that traces of carbon would oolour glase, bat the wifture of a little nitre with the materiale, would got Hd of this coloaration in a marvellowa manner. He beliered Mr. Gaffleld's discorery of the restoration of the oripional colour of glese by heat to be anew one. Dr. Do La Rue asid that the nature of the motion of itght upon some of the constitaonte of the glams appeared to be one of disintogration and decomponfion, is the glase appeared to become in all cases more coloured; thero was, he uupposed, never any bleaching cotion. M. do Fonvitile had juat enggested to him that this action of Hght upon glaca might, in fatare experimonts, be accelerated by means of a lens.
Mirage.-Ieoture Iricpertment.-In the conrw of a papar reed by Profescor Everott on this subjeot he Mosoribed an experiment derised by Profoscor Olark Maxwoll, F.R.8. In this experimont the beantifal effocts of mirago were oblaiaed by means of thres iquars, the loweat Hqaid being a inctaremed solution bi alnm, tho highoat pare vator, and between them - s apoagh sugar to mato its apecifio gravito ioternelitet botwoen those of the other tro ligaida. It is mach more ratrucive than cilbur of them. Triplo tmague wore obtained, with groat diatinctinees, of all tho objoets

 direction dithor or belor and all theni imisgen

 dictant 700 yarda.
The Oolour of Finhes. - M. Georges Pouchot contribeted a paper on the mechantom of the change of ochone in - the mat oruitecem. The author roforis. to the feot that nahen ofton change in calour acoarding ar of top odjects by Hatcht they moc. NerAch is deprived of the nerven thatrypuphe
pecaliar corpusalos to which the averertadeo. dinge does not tate place in blind tuttele ; mad and the atin the efinero toce not occur. It the afth nerve is dividod the drape Whes place all over the body except the part to whth Chat nerve fa diatribatid. Those experimonte, M ceat upon impreectons recoived by the nerrous by inm Chrough the organs of rieion.
Tame Waap.-Bir J. Labbook exhibited a dime mape which had beon in his poscosilon for about shree The masp was of a bocial kind, and he took $4 \$$ to Me ane formed of 27 oollis in whioh there were lsto she
 moc ance would have been quite a hitbe celury of menemotmep mandid no egga sidee it hed been in hie frat it wes rither too rondy with its sting. If now oate angar from his hasd end allowed ham to stromo it.

 gard as so bome. This was the Arot tame wep lope by itreals ho had evor heard of
Preotpitation of Enver by Ooyper.-Mr Alfrod Tribe oomatanicatod an interevting paper on this subjeot. He stated that in the coures of experi ments on a rathor largor coalo, it had been found that ailvor obtained by prooipltation from solation as mifrate, by moams of motallio copper, elvayy contained washed. The oonnont preseace of thite metal mas idered dee to diment provence of thir motal wis 000 or to the absorption of thyt en kn tho air by the produced copper nitrato derting or oubeoquent to the prodpation. In preotico it was foond that the preeence of the copper wae not dae to dibolved oxygen in the cilver solutions, but to oxygen sboorbed from the atmoaphere; in one erperiment as moch at aftoen per cout of eoppor whe obtained by an exposare of forty.
elght hoarn, and the author exproncol it as his opinion
 thas be sid way sodmoit any quantiy of coppor mign canmed to bobbte through the solation daring preolpication, the quantity of coppor was diminiohed to a vory great exions. It wha alio round that where an exces of vilver remained in the mixture the moretht traces of coppor were foand, but, on the oonfrary, when the
dilvor was on the point of culhanetion, the wepoution of copper increaced conaiderably.
The Fuaion of Arsonio.-Profoser Mallott, of Virginia, U.S., roported some exportmente andertakon
 the arlld to thenct bo fumed, bat pacese direoty iram cecare increaced porfuan by reing a mealod tabe andy reallts in the barpting the tote. Ho esocesed in peo carlag fused arseofo by slling marrow troas glase tubeo (barometer trbee). whioh wat again inclomed in an outor tabe of irona, aod henced in a obaroonl Are faced into a perfocely compand on cooting to hare chal gras coloar and brillianf lontre, having a appociac
gravity of 87709 at 19° O. Speoimens of the metal
 botpeen the fuding poimto afeatiomony and dilver.

 mechine, and without farthor preparation phentie. rorged into a tolerably parfoot blede for a papor knifo. another had been hoated to redness in a vacuous porcelain tube (for the parpose of examining the ocoluded gacea), und had thon boen with great difincalty lorged into a blede of aimilar hadn, tn whioh ermots and fawi ware vidible. The thited hed been headod in like mannor in vaono, bat to a white hoat, and this apeaimen could not bo forged at all. The concointrble canses of this difference wore briely dicerced, suah an the moro or leas eomplote romaral of the ocelpad mad mulphar, and molling oat of phoaphtis of trem, Lowitag the motal porven.

Telenoopio Walling-stioks. - Mr. 'Barion Richarda, of Penzanoo, tras rocently patontod an fm-
 Whioh may be made aimply to ohnt ap like a taloscoped
but may alco in meditior bo furniahed with lonsee, and ant may aleo in zadition bo furniohed with lonsen, and giaen is appliod. In order to arrive at the boet deafigh and the most mabrtantial we well as convoniont arrangement of the parts he hat offered prizes for the conatruotion of Lolescope walking-atdicks tn any saitablo material, the partionlara bf the competition for which
will be found in our adverticoment column. A Will be fourd in our adrertleoment columnn. A
 atill further onhanced by furnifhing it with lonses.
Firoproo! Weod-Wood may be sondored neardy a capable of moictiag Aro ar briok or alosp, aitbont great laboar or axpeace, by conking the dsied timber a hort time in a sciedion of moleble glema, a alicen ai

 the Abre of the wood ere therwore pecmanent.
Bolenco 'in 'Byrminghate.-Throagh the mivoality of Mr. Joulah Mr woon, who founded the orphanage it Erdington, a ecience collefo is to be cerayinied Hrmingham. The wordi of the tragh-deed are wortity

 the promufuctareer and indastrial parrotic or' the 'han. end distriot, and particularly of the boroughe of Btrmingham and Kiacerminutor," Mr. Meaon "h min properts to the foundation of ma institatica whering property to the gounamiton of mind With thits objoct, Mr. Mason anotgas cortint trestrid and leacohota property, cotimatod at mot letsinga 8100,000 . Immtration if to bo provided by suares of
 applicedion to mines and motallargy), botany mothows

Japan. Mroh interoet hae been axitiod the United Btatce and Englaod by tho morement amone be Japames looking tomard the introdection of the nggita hagango and its litaratare into the Japanoso ompire; and it has ovan been atatod that there is a ouiturty the rar methar-longue may in time besome hair national haqago. The priaqipal dimealty in the way of this deairable oansammation lios in tho po-
coliarities of the Kagliah Languge, and the numbir valiartities of the Enalich Lapguggo, And the nambor of irregular verbe oharacteriaing if, as aleo the mant of aniformity in its pronanciation. Tho Liean has boem
 verbe repular, and improving the orthography. The ahice of an now language by the Japanose lles, it is add, botwoen the Raglioh and the Gorman, and the colection of tho latter io warmily argod by the Germana. Indeed, that languago appeare to be quite a faroarfio one in Japan, as attected by the exietonco of an extorive German bookstore thare doing a large buainen, and by the eatablieb
teahitog the fongas.
Boonomfoal Cooking Apparntmen. 1 coating
 at Wootrioh, emider the direotion of the Oolond com. manding the regiment. The apparatas, which has been inventod by Sergeant Majell, meator cook of the regiment, consifets of ceven livilies or boilory, air ameopane, s frying pan, gridirow, lantart, and midng 30in. aquare. A fin the lighted in a tronal hastily dug in the open atr, and by a judiaions economy of ool, 182 galloas of watar were bolled in swanty miarlen after the tre wao lit; the eacoopans botog afterward boiled in 11 minates. The preaent daily conasmption ical in a cavairy regimeat is ive owt.. bat wha khis Two sote en be enried 0 a horse, fxed in Moody's peok maddio, and will cook ration for 600 melis.

LGTTERS TO THE EDITOR.

 of our ocrregondonts. The Edilor rascotfully ragmoete mentric.]4it ecmammioctione should be adiressed to the Editor
 nurion, W.O.

Alt Oheques and Poot Ofvec Ordore to be mads sayable 4 J. Packion RDTALDE.
${ }^{\text {mI }}$ I would have every one write what he knowh and at mooh an ho lnows but no more; and that not in thit only, but in all other cribjecta: For such a porson may
 ather thingalkown wo nore than what ovarybody doem and yot to Eoep a alattor with thic hitie pittasoe of his, viee from whence freat inconveniancen dortve shielt

 maining of any Lettor proviomaly incerted, will oblige by encrioning the never.

THE MOON.

[4790.]-In answar to F. I. Brown (q]. 18768), it is $t 0$ be noted that the moon's path being inclined on the nataly north and eonth of the ealiptlo by this amonnt Now in eficot on her zenge in declination fill deanind Now the eficet on her reage in decination will depend on the poaition of the points where the moon croeses rining node coincides with the riding node of the coliptic yn the equator she will be $5^{\circ} 8^{\prime}$ morth of the ecliptic on the equator she will beoliptic is $28^{\circ} 27^{\prime}$ north of the equator, 80 Whare the eoliptic is 28° 27 north of the equator, oo that ahe will be in all $28^{\circ} 80^{\circ}$ north of the equator in The oppooite part, If ber deacenaing node coincide With the rising node of the coltptic the in will be of of the equator, or sho will be only $18^{\circ} 19^{\circ}$ north of the equator at the part of her orbit where she bas her the equator at the part of her orbit whore she bas her hreateat northerly dealisation; greater range eonth of the equator. In inter. mave no greater ranke the rising node an intermediate range of deelination will reanlit. (The whole sabject when illastration, however, and dover The riaing node of the moons orbit performs a com plote dranit of the ealiptio in a mean period o $18 \cdot 6997$ years; always regreding on the whole in each lmation, thongt not always at the same rato, and always adrancing for es greater or lees portion of each is 90° from the sun, and least when one or nod is 80 from the san, leat when one or othe node is in conjunction with the enn, but it need hardly be said that this condition never provail throughout a lunation. The inclination alco variea attaining a marnmum when the one or other node is in comjangtion with the sun. The range of change is sboa 8^{\prime} on either aide of the mean value.

Thare is no oycle in which the moon " returns to the eare ponition preaisely with regard to the earth on the mame day in the same month, and boing also at the came time in apogee or perigee." Nor are thece condi tions all even approzmataly fultiled save in cyoles of Fery creat longth, quite ruselce for ordinary parposes. in the cyale called the 8aron, invented by the Chal doans, come of the conditions were nearly salalled, but this ajole had no refarence to the year. It continued 6585 days, or 18 years and ncarly 110 daya. It thas comfained 928 lanations, 218 nodical monthe leas 89 minuten, 869 anomalitio monthis (or mean intervals botween lanar paseages of perigee,
241 sidereal months lom one day. 241 didereal months lave one day.
The lunar perigee on the whole adrances in eech jear (the mean adrance boing aboat t0in), but recedes on the whole in ceme monthe, advanoing on the whole in others, and alwaye both receics and advances alter mataly during the course of each month. It performs a complete dircuit in a mean period of $8282 \cdot 675$ days The mean interval botween gnoceealve conjunotions of the sun and perigee is $\leq 11-761$ days, the mean interval botween anceeseive conjanotions of aun and the moon'b zring node 846.6 days. The mean advance of the perigee from the node is acoomplished at the rate of abont $59^{\circ} 58^{\prime}$ 4. $8^{\prime \prime}$ per annum, wo that the interval be tween succeasive conjunotions of the perigee and rising jode is alightly grealar than 6 years.
I may take thic opportunity of notioing a alisht mistake in Mr. Birt's paper on the moon's libration, in the Eronim Msominio for July (I think), 1871. The suo coedive retarna of the moon to her perigee do not take place in a leas time, but (on the arrorage) in s longe time than her ancceaive returns to her rising node.

Riczied A. Prootor.

DOUBLE STARE.

[4791.]-LET me thank Mr. Prootor for his remarks with regard to my "way of olaseifying " double stars. Nothing was further from my thought than to apeak disparagingly oither of Mr. Webb's invalueble work, "Colential Objecta," ece, or of Mr. Prootor's no lese useInl atlas The only reacon I can give for thas apeating is that these two works ere the onily ones I possees on double stars, and, therefore, I conld pot say whether such stars are in other works or not. To those of your readers who may have grpposed that I was indionting

Whenever I aurvey the starry heavens with my telescope Mr. Webb's work is my constant companion; an though I poseoss another atlas, yet I And Mr. Preotor so mnch easi
clunivaly usa.
I mm very m路 O giring the meacures and positions of μ Bouds and Cggol. Though the diference of the state of the hava piere, when the observations were made, may Cave much to do on so delicate objocts, Jet, I believe, Canocr more difmoult at present with my apertare positions adapted to the a instaces, but in this way. I circle rith divisions of fire degrees each, and it is to theae divisions I refor the poaition of companions in dorble tars. I am afraid this oirale is not in the exact poail tion. Morcover, when I obeerved the above-named stars, I was obliged to move my toloscope out of ite usan place, and doubtleas its axif was not in the oreo direction of the maridian, hemeo the error.
O. Gaudibint.

BUN BPOTS

[4792.]-Ar 6.80 p.m. on the 17 th ingt, the surfece of the run did not precont 80 partionlarly intareating an object as it has done for some time pact, and not been for orre partioular feature mpioh cagaged my attention on oareful examination. I may mention that there were bot four olnaters of apots vidible (as the scoompanying alsefch chowi), and each clunter o sroup required some conaiderable power to be applice to bring out detaila. On examining each groap enparatoly my attontion wes drawn to en oxceodingly rminous spot in the centre of the dark nuolers shown by the arrow B on the skotoh. I examined this grope oarafally, and in order to avold any poedible mistite which might arise from optioal illanion or otherwise, I mede une of four eyepleces of different powers, and found the aamo luminous eppearance was precented, more or lees dietinctiy, as the difingent powers wert applice. I am sorry I was provented fromexamining

this particular group with a glaes of larger apertare consequent apon a tall elm-tree obstructing the viow and I have not had an opportunity nince of noting any posaible change in its appearance. The spots an drann somewhat larger than they ahouid be in proper came relative ater of the cirole, bot thoy preced the time montioned. Jates H. Whietle.

THE SOLAR CORONA.

[1798.]-Wmi Mr. Prootor permit mo, an onegreatly interented in his able estronomical worts, to sak him if he etill holds the opinion that "the solar corons is due in great part to the existence of millions of meteorio systems haring their perihalis close to the ann." From Mr. Lockyar's speotrosconic observations of the tote eclipee of December, 1871, it would appear that it congiate of "glowing gas." I can nnderstand thet thi con conld bo prodiced by the meteorites bein raponieed by the intance heat to which they are anb jected in their perihelion sweap ronnd the solar orb but Mr. Lookyer's observations ceem to polnt to the concluaion that the portion of the oerons plose to the sun's limb derives its anbatance from the prominences whioh coneist of hydrogen ges; as other elementa are known to exist in meteoritos I cannot reconaile the two theories. Will Mr. Proctor Hindly eay which he oon siders the most probsble explanation of this monderfal solar appondage 9 and oblige J. F. Gore.
Kamowioe, Panjab, 80th July, 1872,

GTARS IN AQUITLR

[4794.]-TzANEE to "F.R.A.E." (lot. 4658, p. 586) for his prompt roply so my requeat reapeoting 263 P. Aquile. (By a atapid miatake I digned my lettor that object, but as the "faint comes" he refers to showed very prominently in my objeot-Rlaes (by Wray) I did not imagine it would not be included with the two doeser components and clased as at triple star by 8myth. (cay sonother faintar comes at nearly the same angle (any sV) as 2 the one mentioned by "H.B.A.B." and a about three times the distance. Now, with reference to
the faint group inquired aboat in my previous intier, I wat lod into the orror from paying more altention is Mr. Webb's directions given in the urrot pararieph is taking the objeot as olosely folloming " (the waed the foly would have been better left out), and I fuc... it is not group the neareat rollowing thet ctar, incept th not 80 far sonth in the sicld 23 203 P. I sees anic comes (this immedintaly follows i) at abou a0 an and probably $70^{\prime \prime}$ distance from the triple gioup nan no mother comes rether cioner at abouk 70 anion rong estimations. Ifring no equalorial moanimg
 maint mo, and, with the above ereoption, I never Lou. any dimoulty in idontifying objecter. Tmin

AUGUBT METEORS.

[4795.]-I EExD you a lith of the metcors I obened on the ovening of Auguat 8, hoping you will gabitin ith us nome of them may be recogniced by other observer.

The magnitudes are eatimated from a to r_{0}, is Ale vary largest kind, with a long troin ; and z the felvitent, having no train. Those with two lettart are fritermediate. The direction of the path of the matect in catimated by suppoaing the meteor to ctart from the contre of a clook-fece, of whioh the 12 o'alock is in the zenith, and the nambert reprecent the hour towands which it movel. The start mentioned in the sir. column were in or near the path of each metece reapeotively. Nambers 18 and 17 boing quile neverato ; 5, 7, and 16 nearly 80 ; and the reet mose or law s0. 17 and 18 were aimaltancons, and so 18 was at the beat very doubtfal as regards direotion and poaition As I had no anaistance, I found it impoesible to obesive and record more partionlars then I have done. Indeed, Done of them I eatr had traing long enough to need two observations. It will be found that the rediant point of the above meteor in emmewhere mear 88 Androuncio. Namber 12 appearing to be hardily conformabis. The reat converge, howover, pretty ccoarataly. Ative 18 o'clock the sky beoame overcant, and so it remelonal on the three following nighte. I foar I annoot ret upon the time giren ; brt beliove the greatent ceror to be within 15 ceoonds of Greenwioh man time.
I have given the above partioalars as a guida to others who may wigh to record eomething more Elan the more namber of meteors they cee. Of conrm theoe that poseena a meleoroscope save the mont dimeralt gat of the task-vis., that of recogniding some atar in ar near the peth of the metoor. If Mr. Demining carte to bare my obearvations of the meteors on the $18 \mathrm{~m}_{\mathrm{h}}$ mon 18th of lat Novamber I ahall be heppy to format thom by poek.
Wennington, Ianonaler.
W. DAviaroxs.

GIANT PLANET.-RING-NTBUUA IN LYRA-ALT-AZIMUTH BTAND FOR REFRACTORS
 288 (May 81), regarding Mr. Proctor's quctation Arom two narratives by eminent obeervers of "dary tramatip" on Jupiter, montioned in his paper on "A Gians Planok," and not having econ any reply. I prearme it Procior has overicozed the latier, an he has repian hi other on
Might I ask Mr. Prootor (ghould he have the time a his disposal) to give n s some instanoes from the raceed of the Royal Astromomioal Bocioty (of whioh he is hon. sec.) of the frat and ccoond matalliten baing eme and any pecnliar fentares noticed antine tranalt In the Mechanics' Magasine for Jals g7. "Astromomical Notes for Anguat," by Mr. Proctioe, he states (p. 68) : "The ring-nebula in Lyrs may be 200 stadied to adrantage with the 41/ioin teleceope te longing to tho Aatronomical Bocioty; the pham writer sces it at an oval ring woith she inderior as dion with larger tolencoper (ose of Browning's 18tia re teotors, for example), the ganny light indido the thas can be clearly recompieed.
In Mr. Prootor's "Hall Howr with the Taloncere, he says, "It is seen 42 k riag of light whither moderate talencoplo power. In a good 8 jin. the nobule exhibita s motiled sppengance and ling light; larger instramerats cuhiblt s phems within the ring." Now, with is
Wray, I tee os. glimmoring lightw within the rime to Wray, I see a glimmoring light" within the rins, an
to bo so dofolent in illaminating powar as not to oxhiblit this grotuating light. I alco woe the 11 magni. tade (Harechal) olosely following the nobula, and glaen. If this atar brightening?
I am rure many readern of "oars" will zoknowledge Whh mot that we are indebted to Mr. Prootor for mueb Marabble instruotion derived from many of his writangi. The alt asimath triped atand I ase was conwith the Talocoopo"" p. 17, with in his "Hall Hoarn the detaile. It is prineipally made of and iron, with a kriote quadrant, and two sorew motiont, and oont me a bittle over 25 (inelading the coost of pattorab). It coald bo made for a lese sum by any amatear meohanio who han a lathe, though the quadrant would likely require to be out in a machine shop. The otand is vary rigid, to bo cut in a meohine shop. hone stand is very rigad, viow oven with the high power of 4io. The talencope

THE ORGAN BUILT.-X.
[4798.] - Havira now got the pedal board made, Ax it in its proper position nuder the keys; the keyboard should project aboat nine inchos over the pedale. Sume, yovtlar of flanoy. The middle 0 of the podal board munt be direotly uuder the middle O of the kejboard, although that will throw is two cotave podal boerd a little to the that will throw s fwo octave podal board a lithe to the
loft of the contre of the instrament. Now Ax the lorer loft of the contre of the instrament Now ix the lorer
board E , in Fig. 1, to its plecee, and And the length of board E, in Fig. 1, to it placo, and and the longth of the beakfalle being oxectly over the front toop of whip. the beakfalk being oxactly over the ront loop of Thip.
oord in the podal bovers, and the back end of the baok. cord in the podal Lovera, and the back and of the baok-
falle under the ond of the koys ; get a pioce of board alle nuder the end of the koys; get at piece of board
the length of the pedal board, the width to be the game whe the diatance befveen the front and brok of the baokfalla, and on this board carefully martithe ponition of the beakralle. Now out a piece out of the board down the middle the rame width es the beokflall rail, and
boing drawn ; by puahing the knob in, the front and of the equare is raised, and the coapler rail with its beckfalle drope down, and coneequentl out of action. The coupler rail works botweon gaide pina, which are ared to the frame on which the keyboerde lay. The nert parte to make are the squarea, ifig. 4. They abould be mede either of malhogany or Amorican birch, a quarter of an inch thick and mitred st the joint; to getve the nocescary strength a san out is made in the beok as doep as the dotted lines show, and a piece of remeer woll glued in. A hole in bored throagh sa shown lor the contre wire, and buehed with cloth; hole are alco bored at the ende for the palls and atickeri.
Twenty-Ave of theese equares aro required, they are attod in tro raile simillar to beckefll raile, thirtoen 80 into one rall and twalvo into the other ; the dietaroe make the roller stade taree-aighthe onciont phn in to

ean bo dirsoted to any point of the atry in an inntanf, wifh the exception of s circle overhead of sbout 180° diamoter. should any of "our reachard requent

Indrea.

II.PROVEMCENTY IN OMDIDBUBES.

[4797.]-Occanconalisy, whilot paeding along oar ronds in theee convegancen, it has occurred to me to What an inconvenience paccongers are put in giving The conductors notice to stop when they whah to get ont. One is obliged to shond to the eapductor, polve Mim whit jour umbrelle or gitiak, or troeble one's fallow panangers to atop him. Why cannot there be a bell placel close to the conducforis atand at the ond of the omribuece and tramway carr, atiached to a rope or trap ranning the Whole length of the carriages, either maide along the roof, or at the beot of the ceate, so that each peasenger by aimply palling it gives the down. A immediate notion where they winh to be cot down. Δ dimillar plen might be adopted on the rool for the oataile peacengers. I think a mode nomerwat the contineat is in nee in Paris and other paris ol the comtiveat. It is a curious fact that mattarn of than shoy tecs at home. manazed moch botior abroed
facten the pieces of board to each stide of the rail, wo that the surfeces of all three picces are lovel, and mark the positions of the beokfalls on the rail. From these marke oat the grooves in the rail ene inch deep ; before, howevor, catting the grooves, mark whare the wire that the beokiall works opon will be, and mako o bradanl hole on eala nide of whe wire lor a amall wire staple to be driven in. Each bectanil should have as soparate centre wire three quarters of an inch long, and n ntaple on asch aide. The hole in the baokiall mhonld be bored at right angles to the wood and not aloping in any way. The backfalls are thin bars of mahogany 1 in. by $\frac{150}{}$., and ahaped as shown in the engraving. They all vary in length, whioh leogth will be got by plecing them on the martipg board. A hole muat be bored through at each ond large enough for the wires to go throngh; the haler ahonld be enlarged on the ander aide to allow pley for the wire, but ehonld only be large enough on the upper adde to juit sllow the wirea to $\overline{50}$ through raining or couplar is hrown in an out action by raining or dopreanog the ran. At in ing. is a roller of two-iboh etan, havigg an arm at acca end attached to n short ind projectig ris another arm on the rover at right aggles to the urat arms is the sqaare baing atteched to the dras other end ol emparing ehons the conples in action the ap. The
got a piece of fin. mahogany, cut ofl the and of a boand, ifin. long, roand one ond of it alighty an at A; zent, Tith a gage, run a line down lin. from A., loavios tom. to form the pin B, and reduce that part to yln. thiok. By this means one end of your board will ahow a acetion of a roller atad, then eat yoar board fato leng the of three-quarters of as inoh, plane of the marite of the of tareoquastround the ond for the pin, bore holes en efigith of an ineh in diametar, as ahom in aketoh, and beah thom.
Whare two rollers work in one stud, at shows in Fig. \& the stade munt be 1 fin. long. The roller boardi will be the next part, and it will be better to begin with \& horizontal one und the podal windoheet. Bollers may aither be made of wood or iron; if of wood they may be made of white pine bars one inch thick and octagon shaped, if of iron make them of quartar inoh gas tabing. The directions for making she rollers will epply equally to iron or wood, but if wood is used wooden arms may also be need; if iron the arms muat alco be iron, and iron arms may be nood nith wooden rollers. Got cat a board the came length as the windobeet, and as wide as the longth of the rail in which the squares are Azed. Plece a row of raller studs in line near one edge of the board, Fifs 7. Than mart on the board lines correaponding with the
squares, and one inch farther from the roller atede
already Axod will be the place for the other utude, which fix in. Noxt oat the roller rod into longths to At eneh placeo. If iron rollors, it is now neoessary to drill the holes for the arras; they must be tin. diameter, and oarried right throagh the trbing. Attor arilling
drive a pag of mood swo inehes long into each end of drive allor, and insert the arms in thear places. The armas are made of thiek iron wire, of a aize to it the hodes prepared for them, asd for theee pedal rollors munt be three inchee long. They are fattened at one ond, and a hole drilled for the pull wires to go through. The arma L in ineerted at right aggles is the roller, bat the arm K is placod as shown in Figs. 8 and 7. Drive a wire pin into the wood at one end of the roller for a centre, and make a bradmel hole at the other end for the pin to go in. Pat the roller tato the place, and drive the pin in through the stad; the pin should projoct a quarter inch beyond the atud, so that it may bo readily withdrawn if it is necestary to take the roller ont The arm K is attached to the pall of the pallet or acrew, or "tapped wire" going throagh the hole
in the arm, and a cloth washer and leather button used in the arm, and a cloth washer and leather b The same directions apply to the large roller board D. In Fig. 1 a section is shown, and in Fig. 8. a front viow. These rollers may be either wood or iron; two rollers work in one stad in the ceantre, the stads being mado large onnough for that purpose ; the arm at that and of the rollor is palled down by a tracker G, which is attached to the lever H , and the arm at the other end pushes down a sticker F, and depressee one end of the square E ; the other end of the square is stitached to a tracker by a screw and bation, this tracker being alteched in a similar manner to the arm L of the roller lying under the pecal windohest. Trackers are thin fat alips of pine, the size being three-eighths by one-tenth of an inch. At one end a hook is nometimes inserted ((toe Fig. 6), in which the thick bleck line ehows the way the wire is pat throagh the trecker; sho and a erpose is copper bell wire wed one end of the wire so that it will just go through the wood, and then bind strong thread Armly round; also work some thin glae well into the thread; the end of the tracker should be nicoly tapered bofore patting the throad on. If red thread is nsed it gives a nice finished appearance to the work. Leather buttons are always used as nuts on small aloth washor should be put on so at to provent noise.

THE GYROSCOPE.

[4799.]-J. M. TAYLOR (let. 4719, p. 564) not only agrees with "E. H." in "thinking that" my "theory " unpleasing method of trying to fix upon me a theory whick the merest tyro in dynamics would reject. I have not gaid aboat "a top fang through the sir" what "i sientanlly changes the direction of fight," and is innafficient to change the direction in a briel incerval." Any one who will be at the pains to refer to my letter (4810, p. 826) will see that the latter words are applied to the rotating top; and that in epenking of a "its woight would be insuffleient to ohange the direction of the top's motion appreciably in a brief interval." statement and that whioh J. M. Taylor ascribes to me Then follows the remark which inclades the word "eventaully," and every one mast percoive that the word "appreciably" extende to that remark also. Saraly one may write that when a body is moving at a appreciably in a briel interval, bat that eventaally it does (so) change, without being supposed to sapport the ogregiona theory that gravity does not act on a swiftly moving body. It is, of conree, easy to cavil at the remark, juat as one may cavil at the remark that the sun rises; bat it in as absard to interpret the remark into statement riolating one of the fundemental lare o mechanics as it wonld be to assert that I belioved in the Ptolemaic systam, il I chanced to say that the sun rose or set. Ricisard A. Paootor.
P.8.-As my remarks in reply to "E. H." net. 4717 p. 568) may seem to imply that I think it possible he any be able to give a popular explanation of gyroseopio motion, I mast atate that I am convinced that it would e atterly imposaible even for a mathematician with ten times the akill of a Nevton to effect such an achieremont.
It is oommonly admitted that Poinsot has done more than any other mathematician to make the mathema.
tioal solation interprotable in its entirety. But his treatment of the subjeot is far boyond the range of any who have not thoroughly mastered the principles of rigid dynamios.
Now, I do not for a moment fear that any of those skilful mathematicians who are to be found among our readers will interprot my remarki in let. 4810, p. 326, otherwise than as they were intended. It is only those Who have but lately, as it were, begun to know what the laws of motion mean, who can conceive it possible for these la ws to be overiooked eren by the tyro. In fach I wholly arquit "E. H." and J. M. Taylor of intentional radeness (so far as their original miatake was concerned), since neither of them can be a ware how atterly absurd it would be to suppose that such a blander as they charged to me would be made even by an intelligent school boy.
Nevertheless, I shall venture to quoto from Routh's "Rigid Dyramics" (s fine work, which I would recommend to "E. H.'s" carefal perasal) a passage which presents in mathematical torms the general
feature which I indicated in poptiar worda. Readere of Poinsol's papera on Rotation will rot amed to herpolhode. In passing, however, I may remarik that since in the case of the giroseope, or of mry top, the two principal moments of inortia mre equal, the oodiral ellipaoid fe one of rerolation, the polbode fa a drole aboat the axis of this spherofd, and the herpolhode is a circle aboat the axed axis of the octople of tropulee Moreover, the ollipsoid of kyration, belag the reaiprocen arisce of the momental olipsora, is alio aphorw Thus, then, Writes Routh, aboal the ing bodies:- It is weil koow is much moremed by stability of a moring body is much moremed by at rapid rotation about a principal aris. The secina of
this is as follows :- The tnatandareotes axis deceribes a this is as follows :-The inetanvansocas axir deverbes a
polhode in the body, and a herpoltrode in npmeo. If the polhode in the body, and a herpoltrode in npace. Ir in body be met rotating abont an axis rery noar ine prin.
oipal axis of greatest or teast moment, boin the poioipal axis of greatest or least moment, boih the poi-
hode and the herpolhode will generally be very small hode and the herpolhode will generally be very small
ourves, and the direction of the principal axia of the ourves, and the direction of the principal axia of the
body will be very nearly fixed in apace. If, row, a body will be very nearly ixed in space. Til sow, a alter alightly the position of the instantaneous axio. It will bo moved from one polhode to another very near the former, and thas the angular position of the axis in apace will not be much sffoctod. Let Ω be the angular velooity of the body, ω that gonerated by the impulse, then by the parallologram of angalar velo-
citios the ohange in the position of the instantaneons axis camot be greater than sin $-1 \frac{\otimes}{\bar{\Omega}}$. If, therefore, Ω be great, a must also be great, to produce any conaidorable ohange in the axis of rotation. Bat if the body had no initial rotation Ω, the impulse may generate an augular velocity as about an axis not nomrly ooincident with a principal axis. Both the polhode and the herpolhode may then be large carves, and the instantiareous axis of rotation will more abouk, both in the body and in space. The motion will then appear very naiteady. In this manier, for example, we may explain why in the game of 'cap and ball,' spinning the ball aboat a vertical axis mares it mare easy to catoh on the apike. Any motion aansed by a wrong pall of the sting or by grazity, will not produce so great a change of motion as it
Without asking you not to pabliah anything olalming to be a complete popalar explenation of gyrosoopio motion, I would earnestly advieo that, as a proliminary step, the reasoning of Poinoot in his masterly work on rotation shoald be ohown to be erroneona. I myboil, for one, should be delighted to hear "E. H.'a" expla-
nation after that preliminary procses. R. A. P.

THE AOTION OF GRAVITY

[4800 .]-I dos'r feel any inolination to take part in the discassion on spinning tops and gyroscopes now going on in your colamne; bat as some of the disputants seem to have got into a maddle on the subject, perhapa I may be allowed to set some of them right on one or two points regarling the action of grarity. If I refer to two letters (4594 and 4691) of "A., Liverpool, they will be suffoiont for my prosent purpose. I will refor in the Arst place to an error into whioh . Le hat Fallen, and which your other correapondenta have no notioed, and have beon rather lod astray as to A. A. real meaning. He ovideatigy thinks that ot in motion, and the propoling powor tho body will esiat its motion and altimatoly bring it to a stand. (800 let. 4601.) The leot is that if a body be once seil in motion, the tondenoy of that boay ia to go an in the ame direction and at the same apeed for ever
In let. 4594, "A." observes that " the question is it a oanmon-bali be fred horizontally, how is the rectitance to change of plane of motion so nullited that it beoomes of no effect?" co. So far 28 I dan see, there is no resiatance to any ohange of the line of motion. (See Mr. Prootor's correction, lot. 4618.) "A." may hink 1 am oontradioting myself because is to go in etraight line. This is not a contradietion, however, for a moving body possesses this tondenoy moraly becanse that in the direotion in whioh it was eont, bat as $s 00 n$ as any powor is brought to bear on that body make it ohange its ooarse, power applied, consequently there uan be no realstacies to change. In the anme lettor he refere to a waight atteched to a atring and swang rosend with suoh force as to altain a horizontal ponition, and says that the cord hae nothing to do with holding the Tright up. To maie this remark apply to his theory, the mace nama anything to do with holding ap the meight. I would ask him how is it that bat for the string the weight woald nover riee to a horisontal pooition? In prool of this, let him stady the following diegrem :-

Referbrces.-A, post fixed in the ground; B, collar on the post to support the ring C; C, ring work-
ing loose on the post; D, cord fastened to ring i E , ing loose on the post;
weight attached to cord.

Appif a emiall farco; ngd the wotght will dacilios drofe in the plane F at G. By inerowing Cactionee nearly above it will be eeon that the length of the atriea the etring height to whian tho baly th the same ficme that the foroe was inarsased, the weipht would continne to deearibe circles in the plane H that it occupies whem nt reat. Bat if the atring be not lengthened, then part of the power applied is used to raise the weight saff aiantly to allow it to desoribe a airale of the required dianctar. I think this will be sumcienidy plain to ahow "A." that the shortnoms of the strive. and-mot a horimontal foros overooming gravity, in sual oient to eqoennt for the Faight boing raised to newis - horisontal position. If "A." is not satisbed with thit explanation, lot hime atieoh a similar ball on eacl alde the ring 0 , an to banace cach othar, and co diminioh the friction of the ring on the post. Kow apply anfloient force to bring the balla to a horizontal position. Now apply atill greatar forco, and then lat him explain why on the foree boing raised the belle do not rieo till higher, and lond the ring ofl the top of th post. Let him aleo try another experiment : Whan b has epplied force enough to bring the balla horizontal let him lower the collar B, and zhen, if his theory be correct the balle will remain in tho same porttons short time and -ill gradually drop es the motion short time, and will gradually drop sall will drop a saddealy as though thay were not in motion.

We will now tarn to det. 4691, in which "A." eay that "if a body bo propellod with suffloient velocity and that this propellipg powar bo kopt ap oontinaally, that asid body monad maintain a straight coarso in spite of gravitation." He evidently falls into the error of supposing that the said body moald ander these circumatances maintatn a nuiform rate of spoed. Any one well mohooled in the elementary prinaiples a saionoe would know that each a body would move with a continaally macoloratod motion. The velocity of aannon-ball diminaishes only on ncoonnt of the resict anco offered to it by the aif. If that reaietance coald be done a way with, the bell would reach the groand a the same moment, but we the epeed would be kopt ap it would go farther. One illatration will bo sufficien to prove the rallacy of "A.'s" viem of this sabjeot Objeots at the equator move at the uniform rate of somothing inve 1,000 miles an hour (ratior fartar then a connon-ball). Now, if motion sach as can be mparted to a cannon-ball be sufficient to overeome the efilocte of gravity, what would be its eflect on object moring at the speod ahoy do at the oquilor? Acoard ing to this theory, an object whioh would weigh a toun in a apring balanioe at the poles would woigh lees then nothing at the equator. In regard to the experimem of the light globe tiod to a string, " Δ." would find is he coald ran with it in a vacaum that the effect would be the same as though he had a ton veight at the end. It is the resistance offered by the sir to the pasmage of a light bulky body which causen it to rise to a horizontal position. Why does "A." use a light
globe ? would not the game weight of leat do as well it globe ? would not the
his theors be correct?

OBJEOT-GLASSES

[4001.] - I EATE egain to thank "F.R.A.S." for His ommaniention and beg yot once maro to troable him. I have frat to observe thet it is years sinces I read the Rose article he allades to (snd whioh, by the bye, ham one mach harm to sclenoe, for intlosd of affordme information on the -rital point of objeciver, it dival jpasa-misormatior, mon rorrackion of covera, obvilat in order to retain a monopoly of objeot-gians matitag and this ho succeented in dorng, alrhuagud ho ex plaineed Mr. Listor Jackson'e tmprovements, heradreds of Mr. Lister Jackson's improvemente, aunareds inventors would have appliod their powers in perfeoting the instrument long ere thit With the Mr. Wenham's papers in the Aicrovcopical Jonrnal heare are no books extant, on the mioroucopic objoctict and amateurs as a rule are Wholly in the dark on thi all-important hoad. I consider it both impolitic an barbaroas to retain at a trade-secrel an inveazion borrowed from a scientitc man. I havo spont yeara ghas grinding and in the ofndy of optiea, bat havia Montagne in riow, I am diffient os to the quaiky "F Requ" mill naturallg hertiog filohed thom ? Bolar Boscous. mannensuly those of a frrst-liess Powall and Lealand microtcope to apply it both blace Powin and Lealand mith reione porb as an erepioce to as mirror as perfoot as may be, and give tis the reanli.
"F.R.A.S." acourately conoleded that I conemidered retectore betfor than refreators. I concaive it posaibl to perfeotly bgare a specalam (althoogh we are in from that as yeh, at the same time I cannot soe pm feotion atteinable from rofractora. Admizable ginem oxiat aqquanionably-comparatively admirable, promiso, they never will boar high eyopioces wilhos lenses an objective ought to conciet of many, to give a prospect of perfect oorteation, and the difinualian ano to me insurmountable.
-Although foreign to thic sabject I ber to potat toe to my follow. oontribatiors "Hyrab Roe." 2an Montaigne's Adrice, a
Montaigne

PERSPEOTIVE.

[4802.]-T yust confees I thought you were clostang the disonsaion on this natjeot rather early; bat I
The letters of "Bobo" and M. Paris (4702 and 4708, pp. 560 and 661) show that further reaconing would be pp. 560 and 661) show that furh or reaconing woud thrown away; since the formor bolieves "vertioal line in
to be atriotly scourate, should show a to be itriotly acourate, shatat singular earre" too (as natare" the a curve, "matinds of suoh oarres, named and annamed. as the hyperbola, olesoid, Writch of Agnexi, both the conchoids, the quedratrix of DtnoAgmert, both the of othors), "tbat oternally approaches
 a straight line, but ona "converging in the soaith."
speaks of plamb, yaes yonverging readera ahould be oonfused, and imagine that there is a contiot of opinion where in reality no mathenatician can ontertain the slightest donbt, I would recommend those who maty be thns perplexed, to wait, bofore forming ar opinion, monly called "solid geometry." The Arat eight delnimong and the Arst ninetean propositiana of the aleventh hons af Enalid will saffice for é beginging. In reading book of Euata wh se woung stadent shonid tako cars to spoid the mistake of regarding the lines in the illustra. tione to three rose egnality, parallelism, so aro re-
 ferred to in the domonstrestins. Epace whioh are meant oancaive the lines and planet in epace
to be pictured in these illastrations.

The matter which has ro vantly been under diecuesion may be taken as a "ridar" to Proposition XVI., a rather eesy rider no doubt, but still not a bad exoro If there be two planes, one containing a given line, a the other parallel to the given line, the plames internec in a line parallel to the given line. Prove this; and apply the property to showo the frllacy of the idea that the perspective view of a tovor equaly wide ain wopards the top
s/ould be bounded by lines converging tow of the picture.

Sach a deduction would, of course, not serve for the tripee at Cambridge, or for like ersminations; but for junior oleeses it would not be wholly unsuitable.

Lastly, in this and other sabjecte, the learner ahoald work eteminly onwarda from the beginning towarde the end. This is the approved method. By reveraing it the learner may be led to all manaer or strange misapprohensiona. It is in this way that oircle-squarers gis omne aro geseraled. For cxamplo, wo may angle of that the geatleman or angles (I forget which) bas never gone farther back than Proponition XXXII., Book 1, of Eaclid. If he could only work his way thence to the axioms, he would be get right; but thare is now amall hope of thic.

Riobard 1. Proctor.

CO.STORES.-To Others, rot " Hиrmonious

 Blackomiti'[4803.] - Wrin I Arst andertook to annwer the query of "Babbet" (9819; p. 81, valame bofore dant) on "oooperative cocietios portant of the 12641 queries yet bromohed,* and vory far from boing yot duly treatodwhen my roply sppagred as let. 8044 , p- 248 , our acat preent (0t 8165) wit pery lond bat far from articulate complainto about "saperlative medness," min "bad imitation of Thomas Carlylo's staff," with instat is "no use to abaes compelitios" (rhioh I had beon showing how to stimulate and ane lor good), and so forth : the main or sole intelligible complaint being my not ${ }^{\text {Hed }}$ its inindicions adrocatos only strength of mind onongh to lot it alone, at least as far as regarde preach. ing ont of aenson sbout it ssilence is golden sameth the rage of Chelsea), we might perhaps have hoard leas and eaen more" "to. Snrely, by the way, such comeplaint direoted at me entirely danced ofl on the Editor flaint is is not prosumabie thet whatever queries ho prints If it is not prosumabie that whatever queries ho printa adroilend It ace his place if may onere to M les $i t$ alone," sarely not mine after tho quary had eppeased. Wel, formet, no ho is ignorant of this, tocormant of chat, and is think is neogesery in ghetiog comething I kno tingrith pleinly that suob sod eath eminter comoented tith it I Pas quite igoorant apon s and the spaen then taken on a late occanion raised "Sigma's" wreth; bat I presame thare wes somethbig pooitive gliver all, "Harmonious Blacksmith" ever read the momo from Montaiges that heads every batah of thees levars 9 Montaigne that heade overy baloh of these lownots? And is bo it now so irsormat on themo tho mbyer of goldea silenoe, "eage of Cholecm" asd all other thin. goldea sheno, "a tora his merde, "can't he let it clomo," and conld he not have let it slone thoee mont in meo? 8appose eqail eppece takion to inform us . What peo
 thenjar thinge, now on the tapis, Mir. Procior wonld the Pant of, and so on with other contribatiory wonia the

in No. 1 of the British and Foreign Mechanic, which he cannot snppose very eacily obtainable. I find the Britirh Museum possesses no copy. "The trader," he admits, it "posiibly not, as anch, a product of Provi dence ;" but he fands it hard to oonceive to wha other produasive onergy wo owe hia to
ception, then, is hard where it ought to be particularly coption, then, is hard where is augh ho particularl ensy, ss two letters prefixed give him the oanso in question-improvidence. Way am (and every Lon donar ot present) anculo to get one penayworth of fooa, penay gois to farthering all iniquity, and hastening every was my farthering oll iniquaty rain? Slmply becase in thi nation's and race iteo millions ioes not contain ons hunulred individoal of wo minions dors nol or enorgh to allow such para neighboarly or providena eno of allow saca a para monn day sion 1 Divine Providence creatod man. Haman impro If my alone created and areater "improvidence" is not " my querist objects, inat improvideace is not prodnoive energy, varions "Satans" "(whether he likes the term or not) that alone are "productive" of cankera like this; at phyoioal corraptions are productive of cholera and mall-pox or of maggote and fiea; donbtless not o the germg of eithar. As for an "all-Father," I know not where the term comes from, but in the only writings of recognised anthority on such a matter among na, He who tanght men to address His Fataor as
 the ill do , ohits beca to exclade at present any they whi do when of
 other When a tree of the letter heare of the eppeen anee. in the ath of trpee of the former he gays "A anco, in th thas this" bat ordera both to be let ero onem bill tho Logenarining hecate orerywhere this manner of now begu a produche aro er banae. athar ont all thinge that do offend and bind to them in buadie to bat to beoin aloo boing rethere
 into donbtione, wit
For reply to
or reply to "how the thingummy" those who have thinge to exchange, and make them, ana make a mediam of axchase, I whit "Eqaitable Commerce" (1853 Fowler and Welle, 181 Nassan-street, Now Yort (185, Fowler and to Which proiesses
\& Seven Not Tanraybrnale. 7×12
 Dao to Jacob Smith, Poanda GEVEN HOURS' LABOR
in House Rent,
or Biver Twente-Pourds of Corrs.
Mary Jones.
The frontispiece is anothar specimen with similar angraring and side mottoes-

Three
Hourn.
Not Transferable.
8×12
Poands.
Due to Sarah Johnson,
THRRE HOURE LABOR
in Compenterty Fork,

On Therea Twbles-Peunde of Oomer.

Joseph Peters.
Frill explanetion of theme and the working of the ayatom in given, in 120 olonaly printod pages, for 25 centa. Bin intar work "True Civiliantion an immediaio aecosaity, and she last Grousd of Hope for Mankind (1863, J. Warcon, Boston, and A. C. Coddon, 73, Falkland-roed, Kentish-town, London, N.W.) gives more elaborato form of note for "One Hoar's Labour in Caxpentering, or 8 ponnde of corn," with 184 pagon of explanation, and moat intaresting historical dotail of the movemont. Carpontoring, tharatoza seams have dechined in real value in those impoen
As near England no one of tbe Oriannel Inlands, I bolieve a market-hoase whe brilt come yearl ago with out the use of other money than sueb notes. "Cortes," I would conclade with our "Harmonious" striend "it could not " (therefore cannot) " meoch facilltato erchanges if all parchacere were compollod to exotangge one form of wealih-which especial form might not bo in loonl demand-ior moother thoy nooded;"一-1hat it, procicely what the EMropean coinage aystem (Which, above, ho denies to be "nocesearily oppresaion and half the dilver (the two mot pirydoally valuabt metals in ratare) sunk, Idio, and in a perfeotly ase lene form. Of all the bedgen impoeed by oonquerort this in at ouce tho most Aagranely oppresedre (axcop
 out even erat ozeeption. arkit bat they are cortainaly
hope they are at thetr darkent,
though an end only to be attained by true co.oparation among operatives and wholls againet "employera"as now deined, wholly for the auperseding and elimination of shem as a olase, is yet a very minor end of this great holy var and true Armageddon to which Heaven callo us all an end not to be attomptod at the outcet, bat only altor far more important resalts. At least, though reformore cituatod ss in Δ merion may begin with it, we ean only wighis of metal "in np traly civilised socieky wis "the troable of weighing and assasying" be found a bit more requisite than weighta of choese or soap
" cortioned."

DEBCRIPTION OF A CONCRETE BULLDNNG CONSTRUCTED OVER THE METROPOLITAN DISTRIOT RAILWAY.
[4804.] - I mave latterly read with much intereat the etters of "Khoda Bax," "M M. G. C.," and others on the interesting sabjeot of concrete, which I, alike with "M. G. C." (let. 4692, p. 542), firmly believe will, in anto bricke and mortar, when trath has over come prejadioe, which it certainly will. Oar friend "Khoda Bux's" personal experiments shom its ohemp ness and darability, and I may safely state concret building in every particular, whether monolithic or not, drives the soon \cdot to beoome old bricks and mortar plan into the shade. To prove conclasively the largely discrased question as to the reliable character of con crote expoeed to comprensive atraina, I will bring bofore "our" readers the teats applied to the experimental conereto bridge, set in cement, erected over that branch of the Motropolitan District Railmey which forme on of the janotions bet ween the Inner Circlo and the Wee London Extension. The structure experimented noon Lovais the open onting betreen Gloncester-road station spars the opon on 14 has and 78.6 in 3ft. 6 in. in thichent which abot apon anorete etem-backa. The conerat of which the bridge is mede is composed of concret greal ad Hitone Porthad coment, mised in the proportions of ebort eeren to one carefoll- leid it proportions of about soven to one, carefally laid is incloned at the sidea. The conorete was mixed by hand labour as mayy men being omployed to mixend man info formod in three pertions, the centre portion 12 ta wide, beitn Aret paileand toetod. Each portion 121 formes ing one operation. The Ewons portion mes employed in the opentre portion ane abont 4800 oabic foet, 106t, which, woighing 15 owt. per cabic foot, gevo 2 contro of gravity in the half apan being 16ft. 6in from the abotmont, the weight of the same 150 tons and the rise of the aroh 7 It. Bin. the throat at tho orem is equal to 880 toms. The areh boing 8 th. oin deep in the contre, and 19\%t. Wide, a seectional area of 48 square feet is arrilable to resist the thrast, whiob is consequently equal to 7 tons 17 owt. per square foot The additional strain imposed apon the concroto in the aroh for every ton per foot rom of distribated losd is equal to 94 tons per square foot, and the marimom equal for a roling load of 1 tom per foot ran is about Bt tons per eqnare foot. It occurit when the loed coovar aboat aro-eighthe of the span. In testing the centre portion of the bridee, rails \quad ere laid npon aleopers orec the areh, whiloh broaght a lond of 2 /rstha of a ton per foot ran apon the etruotare. Soven tracks woighing, whh their loads, 49 toms, were formed iuto a train having a wheel bece of $\overline{77 f}$., hence the rolting lond amoanted to cofoths of a ton por foot ran. The defleo tion prodiced by the paceage to nad fro of this train loar times wee noted witis a epirit-lovel upon a standard oemonted to the sidee of the aroh at a distance of one-uthird the aptas from the abotmente. When one side of the briage was londed the extrome rice of the hamach on the opposite alde was about $1 /$ thth of an noh, bloh the prodeoed by marimum etrain of 10 tons 14 owt. per square foot.
At a eubsequent trial a maer of gravel 10f. wide 8n. thick at theorow, end 6f. deep at the hanchos, wai laid over the bridge, add upon this ballest was placed the permanent way. After an intorval of a for day the trooka, loaded as before, wore pascod over the bridge, at frat in pairs, and inally altogether. In his toat the atrain apon the conarote was as follows :-

Tohl train ger goet 159
After repeatod transit the load wes left on the bridge all night, and apon examination mowed no aigne a failare or diatress undor the corore strains to which in had been exposed. That a very emall etress wai. developod apou the underside of the arch rat orl denced from the feot that nene of the comparatively 10030 pobbla oa the Lones sarinoe of the arca became dothoted, the latertor of the suractare was mach dencer than the ostaide, and at 6 in. from the onter surface mas excesaively hard. The exterior of the work was rendered in Portiand cement to represen ashlar. Some fine oracks appeared a few month aftormards, atterbated to the further shininkage of the ennorete by drying, bat these have not extonded Novertholese, the porocs nataro of even such good

REPLIES, \&C., FROM " SIGMA:"

[4805.]-I havs to apologise to several querists for not replying, owing to having had my time wholly engaged on businesg requiring a good deal of abeence calling for attention in the latt three numbers, so far as my precent time permits.
himelf. (10t. 4601, p. 488) hat not even yot extrionted intencity." The otatement of mine which pazzles him is striotly trae, and be should try it; interposed reaistance does not affeet the weight of copper deposited by a given consamption of zinc, it only prolongs the time and geverates heat in the wire; of oourse, there is the rame total beat or evergy devoloped in both cases, but zis differently omployed and distribated : of course, sleo, the excesaive consumption of zinc by local action mant be allowed for, as it has nothing to do with the depodition. "T. H." sheald read again my papor in No. 865 dealing with this. The primary of his coil appears to to too long and too small wire, therefore has too mach recistance to develop fall magnetism in the core; and rembianoe to develop fall magnetism in the oore; and the cotton oovered mire secondary in not
does not lie olnee enough to get fall offect.
INTARSAL Registasce.- My opinion on this matter, to which " Pi " (p . 490) rather objects, relates to general ase by our readera, chiefly manateurg, rather than to electricians possesaing Thompeon's refleoting gavanomotor and perfectly arranged reniating coile; given to those who do not. My ndvioe is mainly appliances, and it is for such Itry to devise and seleot epe eanient procesees, and most convenient inatruments.
I amnot at present go farther into the pointa named by "Beacon Lough," P. 491, because having ohanged my abode withinghe last fortnight, and spent most of myat away, my books and instramenta are nnavailable at prosent, being as yot in a state of chaoe
at prosent, boing se yot in a atate of chaoe. (12509, p. 497); possibly the carbolate of lime may seat him, bat I am not sare.
Acaris not genessim. -This wee a mistake, the seari were not generated as supposed, but were a woll-knewn
ereatare. The whole of the experiments were decoribed in a previous number at fall longth. I oannot give the in a provious number at full langth.
 to coldor short piecee of wire at the serveral lengtha and bring them out for conneoting to studn, so that any of the longthe may be oonneoted to the tarminals.
My diagram, p. 502 , is suflicient aid for so very aimple a meltior.
(12558.)- Elzctroo.Magnering.-Probably a apparate circuit would pat an end to the troable of "Cohtaot Breaker," such as a length of Ane platinum wire, or
better still, a voltameter through which the extra courreat at breaking circuit ahould paes, inetoad of carrent at breaking circuit should paes, iastead of formipg a appark: I suapeot a battory of too great abeorbe the extra current; covering the oleotro-magneta With copper or brame cylinders woald do so still more effectively.
(128554.)-Graphits BATTRRT-The glaes tabe is for addirg and removing liquid without distarbing the loove particies or moring the coll; with manganeme, I beo to nerare "A bo nsed.
I I beg to acsare "A, Liverpool" (lot. 4691, p. 548), voithing I yoid done anything so absurd as be supposes; sothing I said oonld bo tortared into ascorting that a velocelty woald maintain a straight course in apite of recrovitation." Imand it would do no bust for grovity, and cravitation." I said it would do no but for grovity, and that a part of the energy was conommod in slightly raiding the ballet and so prolonging its time of falling
to come emall extent. The veloaity of the motion has sothing at all to do with efther time or rate of fall due mothing at all to do with etther timo or rate of fall due the ball, bo it a hollow indiarrubber one or a 68 -ponnder, conld by no ponsible valooity of rotation ever rise to a conald by no ponsible valooity of rotation ever rise to a true horizontal plane, and the oord does most cortainly hold it ap, by fransmitting to it that energy whioh consingauy linta it as iast ac gravity tonds to make it fall, and before any one troables to anawer " A ', ${ }^{\prime}$ " pathetic "Where, and oh whers," it will be as well to

TUNING KEYED INSTRUMENTS.

[4806.]-"FidDLeme's" idee respecting the taning of keyed instramenta could nevar, I fear, be carriod into ofleot, for the difnealities in the way are vory great. At the came time, if anything conld be invented to onable such instraments to bo played equally in tune in all keys it would increase their value to a marvollous oxtent, and be the greatoest improvement that the manioian could deaire. Bat I do not think "Fiddler's" arrangement will accomplish this, for the following receoule First, ho proposes to make the key whioh plays the tonio of ench scale pley the leading note anco, by a differonce in the force of touah, and jastites thic, on the ground that the discord of the diminished second in scarcely ever employed, exoept in a fow intrue ; but as thesen great meanders do som. This is quite duco it, such an alteration wonld provent the Whioh it occurs from evee being played works in geriona objection to "Fiddler's" plan in thet the more once of tone is produced by so indefnite and nincortain a thing as the varying atrength ith and uncornote is strack Sappose, for ingtance, that wo are playing in the key of C; we mast alwaya play B reary pofily and the tonic loudly, for an inayreapiay of very Fould tarn the former note into the latter. What,

Fancy the resalt, it in a rapid crescoindo pasaga, the alightest amount of ondue presanre would throw all out of tane I Verily, I think, "Fiddier's" remedy worse than the disease, and it woald make the piano twioe as difficult to learn as it is at present.
Thongh the discord of a diminished second is very rarely omployed, that of the major noventh, whioh is practically the same thing, is not at all unoommon, and on "Fiddler's" piano that chord oould only be sounded by playing an apparent octave, and striking one of the notes hardor than the other. Then, again, the reduotion in sise of the instrament, which he considers an advantage, if to my mind a mistake, for it would greatly increase the difficalty of performanoe. Who conid play the chromatic soale with smoothness and ease, when he woald have to repeat the toach on every note? None bat the finest performers conld do it entisfactorily, and I doubt if oven they conld, in this mannor, equal the rapidity with which the same thing mas be readily done on the ordinary keyboard. In fact, to halve the number of notes, is to doable the difficalties in the way of the player rather than to rednce them. Besides this, hov are we to manage when we wieh to play an aceidental fate, gay B? The note A will only produce itself, and A aharp, and surely that io not to be used instead of B fiat, for if so, What becomes of the improvement ? If not, an anditional note will be required, and then the keybsard will remain of the amme dimeneions as at precent. I am afraid this notion of "Fiddior's " learos as as far

MONOCHORD WITH SOUNDBOARD AND OTHER

 MUBICAL BTRING TESTING MAOHINES.[4807.]-I msolosz drawing of very cimple apparatas for ascertaining the amonnt of toneile forco-expreseed in pounde weigbt-required for canaing antritg of given
length and thiokness io produce a sound of given pitoh. Many yeara ago, aboat 1850, a far more contly meohine
promare wan not dppliod until atter the woight which atrained it had beon iri operatien for a fow eoberde of time. Had the premare been appliod in the came plame at that of the bridge's inner burface, it coold not hase increased the tensile force, beoanse it
I have a rather strong ime olip.
trings of ordinary cottegs pience otringe of ordinary cotiege pianoe were teated, the rommonly emplojed for FF-if sabjootod to the Thome atraining foroo and thicknees (I mean the pueder wire) as midale C-might poasibly be heard to soand Λ, if not B; "I guess," their pitah woald rice "protty A, if zot able." I think I aeo the look of blank atonithmer some of my clever friends in the trade mould ertritit some of my clever iriende in the trade woald exmitit lioved it if I had not heard it, and yet my coveral strings are exsotly the anme as those of Meares B., C." to., mentioning the names of one or two funt-cha manufecturers, whose real namen I, for obriona remecea forbear mentioning, and leave the riddle to the reader.

DEECRTPTIOX OF TRE YIGURE

AA, bed or bonch on which the standardes \mathbf{K} and \mathbf{C} are fixed. N.B.-If it be desired to make this apparateo indopendent of an ordinary bench, the wooden bed of a common lathe, or a rimilar bed formed of two piecon of common spruce deal 8in. \times titin., or eves $2 \mathrm{jin} . \times 8 / \mathrm{in}$. placed aboat 11 in . apart, will eerve.
B, a soundboard abont 16in. to $18 i n$, equare, fixed on
a roctangular frame, which may reat on the bed \triangle Without boing oismped thereto.
O, a standard fixed by the bolt G at any required dirtance from the standard E ; of course, the diatance theme two standards are apart dopends on the length of mo striag which is boing teated.
D, a standard whioh need not be fixod, bat may ouly reet on the bod 4 .
E, a forted atandard axed to tho bed A by the sares bolt G. This mandard axpporte tho lover F.

was constructed to my design by our lato fellow correapondent "W. T.," bat haviag quite pot over my early prejudice in favour of expensive apparatus, also well knowing that mont of my friends in the pianoforte trade share " W. T.'s" quite justidable terror of the probablecost of nnoustomary iron work, I hare deaigned this afrair to be slmont entirely constructed of wood. concequently, any pianoforte-maker (who being unhappily affliotod with the same form of disease which myself and my late friend formerly suffered severaly from, to wit ouriosity, is desiross to know what he really is doing, and is not quite content with the oustomary "rale of thumb") may make it for himself at a very trifing cost, certainly not exceeding 20s., if he does what I did-riz., make the back of one of his benches serve for its bed. This he may do by bolting to the bench a piece of (say) beech wood the same thickness as its top, sboat 4 in . or 5in. Wide, which also forms a very folerable makeshift bed for a rough lathe
In testing piano atringa, no very great aocuraoy is required. In practice, it is sufficient to be able to ascortain the straining force within 1 per cent, which quence of the friction of thable of doing. If, in consequence of the friction of the lever on the tin. ronnd iron pin on Which it works, and other canses, the lovar scts rather aluggishly, a fow gentle taps of the mallet 400n, by jarring, canse it to asame its true position When the infuence of the Frights anspended to it. When great acouracy is needed, probably nome such Perronet Thempen described by the late General tating the tmning of his celobrated enhered lor iacill would be taning of his celebrated enharmonic organthir the string being teeted hed the etraining in gmepended to it direotly the the etraining weight dioular), and no amount of do string being perpen. bridges whioh could sensibly afrect results whes antered the extet ; in feot, a preanare of only 41b. .

Par example, experiment No. 1. Having pat a No. 24 steel-wire string on the monochord, place the bridges 24 ib . apart, and load the lever until the strain is equal to (say) about 2901b., which, I believe, will cause the etring to sonnd middle 0 of oar philharmonio pitch. N.B.-Under the circumatanoes mentioned below, this would require a weight of 281 lb . to be placed in the scalo-pan.

No. 2 Increase the distanco betreen the briages to 26in. $=1 / 12$ more, and the straining force will require to bo increased aboul 18 per cent., approximativaly. No. 8. Inorease the distance to $28 i n .=1 / 6$, and the atraining force must be increased about 86 per cent. No. 4. Increace the diatance to 82in. - 1 , and the the atraining force must be increased about 78 per cent. No. 5. Increase the distance to 86in. - t, and the atraining foree munt be increased sbout 185 per cent. If dearired to accertain the amount of tensile force Which any string-in any instrument-is subjected to, place the bridgee on the soundbonrd B, and on D the eame distence apart those are on which the atring reats in the instrnment, and put weights in the soale.pan until the string prodnces s soand of the same pitch as it did-or 28 a stri
in the inatrament.

Ghoald It be deaired to judge of the timbrea or varying qualition of the sounds obtained from strings of equal lengths, but of diferent thicknesses (when conneoted with the same soundboard, and producing uni. sonous sounds), this apparatus may be alightly modited
for that purpoee. By insorting three hitoh-pins in \mathbf{O}, lor that parpose. By inserting three hitoh-pins in O , and three wrest-ping in F, the sounds prodnced by three stringi of difiorent thicienceses may bo compared, slway sacuming the apparatis be made atrong enongh to bear the additional strain of two more stringe OI rising by putting additional weighta in the scalo-pan, or otherwise, eay by etrutting or by tioing it down. I think it woald be proferable to subetitate for the lever F a Epare etandard which would do duty for a tomporary wreat-plank; bat, after all, such experiments aro of doubfial valae, becauee in praotice the sonndboard mont suitable for long covered strings is not mont suitable for comparatively short ancovared etrings, and these recalth-although far from valucless-not to be depeaded on equally whth triald in

TEB HABMOMOUE BLACEgMTTH.

PHONOLETERS.-COLONEL PERBONET THOMPSON'S MONOCHORD.

[4808.]-Prosariz the mont sceurate instrument ver conatracted for "waighing sounds"-to borrow it deaigner's expreasion-was the phonometer deaigned by required to bring a etting ap to a given pitch (and the change of its longth noeded to produce a given altorathon in the pitch of the sound produced by its vibra. tions) oould be accertalned to the greatent nicety. His purpoes in having it eonatraoted was to facilitate the saming of his colebrated emharmonio organ, in which counds difering in pitch lees than one-tenth of a -an that it had been doing diaty in a sohool atteched to a ohapel in or near Jewin-atreot, Alderagate, bat wae Chem-and had for rome time beon-superteded by an tharmoninm, the complex hoy-boards of the enharmonic orian being $t 00$ diffonit lor performance by untrained players. My informant confl not toll me where the phonometer was. If any follow reader can, he will phonometer was. II any fellow reador oan, he will moter would be valusble additions to the educational department of Soath Kengington Museam, if only for the parpone of demonstrating that performance in tame is profarable to parformance out of tane, which is just what all performanoes on instruments with fixed aneen on the riolin -and rolce whoes intonations are not Ared-have seomed to me distremingly to resemble.

The Bhamoniots Bhacegitiz.

BIFIS TARGETS.

[4809.] - Wrin at Hrellinga a fow wooks aince 1 noticed what soemed to me a great improvement appon tool, fixed on a stalt bofore an ordinary target, a large plate reprocenting tho oentre and a amallar one in front Che balra-oje. If aither of theee plates be atrrak with a ballot a lood sound like that of a bell is heard, by
the tone of whioh it is known which plato is atruak, so Che tone of whioh it is known which plato is strack, so that no markar need be expoced to any riak. It is trae to signala, bat soarcoly a scacon pasces without a patal cocident from mant of euch attontion. I do not know Whether the oont of such sabstitutee for markers is considerable, but think it cannot be more than is well worth paying I shoald, howover, like to know. Por-
hape some of our correppondents can gire the information.

РепLO.

gInGLE VERSUS DOUBLE-CYLANDER ENGINES.

[8810.] -Now that this rabjeot in oxelting considerable interoct, I send the following extractis from Boarme's "Recent Improvementa in the Bream Encine" (p. 51, ©o.):-" For all presparee employed in the ordinary clace of exiecting etcam-remeal, emgines of me common ungile oylindor iype aro as afliciani as any other, and in praotioe suoh ongines are found to work quit as eoonomicaly an onglnes with aly greater

601b. or 701b. per square inch it will be adrisable to donble the length of the strote, and halve the area of
the piston." "If such pressures be employed as 1501 b . the piaton." "If euch preserres be employed as 1501 b . to 2001 lb . per square inch, it may be proper to iatrodace dopble-oglinder ongines." "The gain in power prodocible by a given amonnt of expansion is oqually
attained, whether such expanion is scoomplished in attaired, whether such expancion is sccomplished in one cylinder or Afty" Doable oglinder enginen, bow. over, onable expanaion to be carried farther rithout interfering much with the uniformity of the motion.

Pellanthmopist.
FALL OF BULLET.
[4811.]-Wrri respeot to Franoia Lowia' lotter (4689, p. 541), it muat be ovident that the fall of a ballet can only be regardod as an example of the second law of motion when the earth is oonaldered es a plane; bat the earth boing a sphere, there are tro points shat will thooretionlly afleet it. In the Arot plaoe, when a bullet is projeoted horizontally, that it at a tangent to the earth's ciroumforenco ; bat as the tangont incroasos the cocant increasea, theroforo it will tako as long resching the earth as the seosant exoeede the radian. And, secondly, as gravity aots inversoly as the square of the distance, therefore being farthar oft the attraction will be logs, and it will take loogor to reach the earth. Therefore, for two reecons, it will theoretionally from the mame hoight.

Zert.

LATHE CONSTRUCTION.

[4818.]-I AM aorry to have kept "C. N. M." (q7. 18854) waiting so long, and now cend aketohes of both heads for a small lathe. The mandril hoed woald be better if it were a little longer, aay
another inch in a bin. lathe, and tho mandril another inch in a bin. lathe, and tho mandril
should be as long as posible, prordided you oan got it

bation of Dr. Liddley. Having no opportanity of con. sulting tha Gardeners' Chronicle for some yoars altor that date I cannot any for what reacon or in what manner the syitem ceaced to apread iteelf or to be spoten of. I apeak from muoh practical nxporience of its great morits when I say that I know no other argu. ment againat 1t; and the foroe of this objection it greatly diminiehed by the fact that in all the cases in Which I was peraonally engaged in its application, whore I have been able to accortain by inquiry, it continues in operation to this day. Its diesppoarano
 the feot that the aytuem is reprosented rather by principle of hot air circuiation than by an apparatas. It can andiy, theretore, form part of the stock-in-trade of high olase tradesmen. In other worde, men wishing to adopt Polmaice an a aystom proved to be thorough officulous for bot-bousos, ohurchen, do., would ind grest dimoulty in getting hold of any who should under stand it.
The work is that of a common bricklayer, and falls, theroforo, into the hands of a clece of men who do not trouble thomealves genernily with the laws of pnoamatios. It was very obeorvable too, at the time of the introduction of the aydem, how vary froquently the principle of Polmaice wat micanderatood. Those interested in opporing it uced to represent it is only a now form of the usolese hot-air appliances already in existonce, and even of those tradesmen who took up Polmaise and advortised it, some would be ohangiag it into a more apparatus of iron pipes and hot-air dues, to the nogloot of the loading prineiplot and featares of the ayatom. I applied the syitem to a small hot-house of my own conatruction, and ita complete ondiency and romartable oheaplota, both in conetruotion and in use, indaced others to try it ior the same pur. pose, and I never heard a word trom thene friends othor than thow of commendation. I appliod it to a largo parich ohurob, and it wan appliod by planas and inatructions formiebed by me and in all ame churahea, and in all cases with ex. collont reante ; one of thene I will epeoify. A at a cont of 845 on the Polmaiso oystem, while another of aimilar dimen. sions had a hot-water apparatas mppied at a coin the lattor cace reached the sum of 290, against 25 in the Polmaice for the eame period, the 6 wo aburahes being comiortably and offolently warmed.
With the advantace of the experience already notice points faromable and uniavoarable to me. apparatas an deecribed in "E. C. G.'A" quotation. He is quite alive to the need of poaring in warm air by oubio foot or yards into the honees to be warmed, inatead of nigel. ing with tubalar atoves known a complicated ape paraters of amell pipe through which nothing mant of a netenm-anging
into its place. The earem of now of mandril for a contree) mon be N. M." wanta (only 8tin. flace collar may measure about $9 / 1 \mathrm{c}_{\mathrm{i}} \mathrm{m}$. or fin. inaide in fronk. I have shown the fllat that goes between the beds neariy $1 \nmid \mathrm{in}$. deep, as it is extremely conveniont occacionally to be able to raive the heads from tin. to 5 in . heighs of contre by the ingartion of parallal pieces of wood under them, and if thene are not more than lin. high there is still plenty of the allet remaining between the beds, to hold the heads true while they are boing bolted down. Such a deep flllot to the mandril hoad hae aloo the affeot of atifening it matarially in it weakeet place. I ehould not temper the collar more than to boiling-water heat; both in ahrinting it in to the canting and in japanning thare is some rink of its boing tampered too mach. I mant refor "C. N. M." to my previous letthers on this aubjeot If he wanta any more information. The aketohes sont aro from tomplates mado many jears aince for a sin. lathe, and I think for proportion, with the exception mentioned above, will make as pretty a latho as need bo, whether enlarted or diminiahed as regarde sotal dze. If "O. N. M." readies in or near London, my ald addreme, Pitcairn'a Ilibrary, King's Colloge-rosd, N.W., will enable him to appotet s meeting.
J. K. P.

HRATMNG BY HOT AIR.

[4818.] -In reply to "R. C. G." (let. 1635, p. 618, Na 884), I beg to refor him to the volunes of the Gardencrs' Chronicle for $1817-49$ (as nearly an I oan
ramember) for an acount of aystom of hot-air ramomber) for an acoount of a nystom of hot-air
heatiog oalled Polmaise. He will find that it is too heating oallod Polmaise. Ho will find that it in too lato by 85 yeara to olaim a flrat acceose for hot-air heabing of plant homese in 1878 . Polmaice forced its calance
and fan could have driver heated a into cied building (e churoh) sumeient in rolame to warm it-ABC attarily fail to prodnce any reacio her is a cood featnre in the aystem, brit highly heated eurfaces imply ox. travagant conanmption of fuel, if they aro oxtonaire. They are aleo injurious to plant lifo; the great adran. tage of extanded marisce reaiding in the poner thms gilned for warming large volamen of air moderatuls. It is mioh easier also to apenk of rapid current pasaing over anch eurfaces than to obtain them, when they have, 3 in Mr. Horaman's syatom, to pee through lengths of horizontal hot-air fires, every yard of which is an obatruotion to the ourrent. The power at command to create a dranght threagh a hot-air apparatus and syetom of hot-air fices is just that of a ofimney of the hoight of the plant house, a rery im. perfect ahimney indeed.
So far as Mr. Houmman's nyatem is deecribed in the quotation of "E. O. G., " it is on the principle of inflation as contracted with ciroulation Which oharioteriser the Polmaice systom. In the formar aneo the whole contenta of the hoase have to be driren oas to make room for the heated air. In the Polmalise In prom the 0001 air of tho house in activaly employed in produring er promoting the oiroulation of the heal "E. I O. Gave written at sumoient longth, but if the plan of drecilation, and desoribe the systom of Polmaise more porfeolly, and point ort in what oace
seer Green Vioarage, near Bemonndald.
"Chemical Essars," pablished, if I recollect aright, in Sour pretty thick8vo. rolumes. In these essays it is stated
that on the eoath const of England, Sassex possibly, that on the soath const of England, Sassex possibly,
after a heary gale of wind cosl rabble was washed up alter a heary gale of wind cosc rubble was washed ap in such quantities on the beach as to yield very seasion-
able supplies of fael to the poor, able supplies of facl to the poor, who, on such occasions,
eagerly gatbered it. It is very odd that in all the diseagerly gathered it. It is very odd that in all the dis-
cussions on the subject of possible subterrene supplios of crasions on the subject of possible subterrene supplios of
coal in the southern counties this fact, if it be a fact, has coal in the sonthern counties this fact, if it be a fact, has
never once been adverted to. To me it seams as clear as never onee been adverted to. To mo it seems as clear as
possible, is the averment in Parkes be correct, that possible, if the averment in Parkes be corract, coni crops up in the Channel bed, and conseqnentiy,
presumptively extonde beneath the contiguous land.

Lrion.
DEAR COAL-HOW IT MAY PROVE A BENEFIT.
[4815.]-AT p. 564 I described one mode by whioh moat may be very nioely oooked with vary little fael, and very mach better cooked than it commonly is when far more coal is bornt. If, therefore, the dearness of coal has the effect of inducing many to cook their food in a better and cheaper manner, the permanent benotit arising from a tomporary loas will bo vory great. The Fasto of food from bad cooking io at far graator lona than by the waste of fool, and as it so happens that meat as well as coal is just now exoeptiomally doar, it is to be hoped that more attention than asial may be
drawn to the great waste of both, that by a litte common sense gray easily bo axated. Some may be doterred by the Arat cost of Warren's oooking apparatas from naing it, thongh that first coat is quickly ropaid by the food and fael it saves. I will, therefore, desoribe other simple modes of cooking that answor very wall, but require moreloking after. First, if the meet to
be cooked be suapended or apportod upon a trivet in be cooked be suapended or arpported upon a trivet in a comman pan sbove matar covoring ita botbom, kept
boiling gently, and the stoam kopt in by a well-atting lid, the meat may be cooksed in the steam conetantly maintained by a very small fire or by a gas jet. I do not think meat thus cooked is quite so tastey as when cooked in the hot air of the Warren, and ingtead of rioh grapy we gat rather woak soap. Still, it is better than moen boiled in the atill too common way by which moat of the jaices of the meat are extracted by the
water, and, to thoee who do not like broth, lost. This common way is to pat the meat into a pan of cold water, which is gredoally heated, and then kept boiling antil the meat is dane, generally too mach vear the surfaco and too little wilhin. Fow know, or if they know et an if they know, that the proper way to boi meat is not to boil it at all, but to place it in a pan of
boiling wator (the temperature of whioh it immediatoly redncea) and nover to allow the water to reach the boiling temporatare again, bat only to rimmor gently antil the meat is cooked thronghoat. The effoot of patting
 While, by the gentle heat afterwards cootiaige, the fibres of the meat are separated, the red blood gtobates rendered brown, and the meat made tender and digestible with very ifttle loss of natritive matter. The water
is so poor it is hardly worth anythiog as broth, while meat, which if cooked in the comanon why moald be scarcoly ea
toothsome.
Many cooks moem to think that water boiling violently is hotter than that which boils gently, and acting on this belief waste mach fuel in driving of steam uselensly, and making the kitohen ancornfortably hot. It in to bo hoped that the dearnese of coal will indree many to try if they cannot, as they cortainly can, boil jnst as well without this wasta
Though boiling in some form is the eevient prede of cookiog economicalls, and though I fer one pretor it to all other modes, wo need not confine ourselves to it. As I have already said, at p. 564 , meat cooked in the Werrez and browned beforo the fro, or in a well-venti. lated oven, is only distinguishable from roastod meat eastly have their meat roasted in an oven, the top and ridee of which are hoated as woll as the bottom, and if the air in the oven is not too much conAned, meat so cooked is, in fact, roasted, with less risk of being coorehed. No grary or fat mast be allowed to fall on the hot bottom of the oven, or the meat may acquire an unplosanant flavour.

I have not triod roasting with gas, bat intend to do so by piacing tho meat to be cooked on a trivet, covered ware, Sin. thick. A small quantity made of earthon. ware, the ingide surface of a thick of gas burnt will hot, and I expect that the radiant heast from that sur. face will roast the meat within the oover nicely. The grary and fat will fall into a plate below the gad jeta. where it cannot poselbly got overheated or burat.

WARMING RAILTAY CABBIAGES

[C816.]-ThE plan of warming tho foet doearibed in let. 4685, p. 542, by Mr. Monz, io vory old, oxoopt, posaibly, the form in which the feal is ased. It is a very old plan to barn charooal in a sort of footatool, bat now a vessal of hot water is I think wively, oommonly crbatitated. What is oalled obomioalty-prepared charooal is, I saspeot, oommon charcaal pomdarod and formed into a brick, with olay enoggh to bold it to
gether, which is, I dare say, convenient, but will have gethor, which in, I dare asy, convenient, bat will have
no ohemical efrect. I do not think either burning charcoal in movable vessels af hot water so good a plan for warming railmay carriagen as blowing waste steam chrough pipee benoath the floor would be, as was deceribed in "ours" a fow months sinco. The common
feot-whemers are too bot af arst, mad do not hoop werm
long enough ; they would be more comfortable at first, long enongh ; they would be more comiortable at arst,
and nsefal longer, if covered with felt or thick dragget to prevent the heat passing away too mnoh and too qnickly. It is remarkable how lithe dieoomfort is canaed
by even very cold air if it be nearly still, and it the feet be kept warm. I believe it the floor of $\frac{2}{}$ ohnrch were warmed, the air need not be. PBu\%.

LIGHTNLNG CONDUCTORS, do.

[4817.]-"J. K. P." (let. 4750, p. 568) is perfectly right in his remaris as to the advantage of a solid rod orer the mach more costly gas tabe recommended by the writer in the Times to whom he refors. That writer, no doubt, sapposed there was some adraetage to be got from the larger snrface of the tube, a very natural and common error among those moo, knowing litte of the subject, confuse in their minds the wholly distinot
sabjeots of capacity for change and faculty of oondaction.
J. K. P.," however, does not quite approhond my remark as to the proference of copper. The fact is that a copper conductor need have only oneesixith the 200 . tional area of an iron one, to bo equally efficient, and posaesses the adrantage of not rasting. It is, however, paraly a matter of coot and convemionos; and I do not in the loant doubt that a galramised iron wire, auch as and parts of boildinge, and safely led to earth - ie., the gas and water mains, not to the mere service pipes.
In reference to "Canada Bear's " suggestion to me, P. 566, to visit Canade to investigate the matter of eleotric sparke, I doubt if I should maoh admire a Canadian wintor; I had eome idea of going over for a month or two this sammer had not other ongagements prevented. However, as to the special sabject. I have say enough for one apell of eleotric spark the this beoanse they happened to serve in these pages ago one selected my next dor nutighour a "line of least resistanoe," thereby sending his chimnerstack down through my roof to my considerable in. convenience, though happily with no farthor worse effect than a general panic, and its usaal acoompmaiments among the feminines of the eatablishmont.

Sigm.
LIGHTNING FROM THE EARTH.
[4818.] -" Axatzos" (let. 4751, p. 588) reopena a vexed and very inloreang question. Without donying the possibility of the facohea he saw prooceding from the earth, I should rather bo inoined to thion they
wore discharges fron on lower to a higher doed, ats. charges between clondeboing quits an frequent as be. dischara discharge of electricity from the earth woold be not
from one point bat from mavy, and in the form of trom one point bat from many, and in the form of
brash diechargo. This quiet mode of discharge is oxbrash dischargo. This quiet mode of discharge is ox-
ceedingly common, and is eapocially no daring "thandery ceedingly common, and is eapooially so daring "thandery
weather" an mountaing. At eea, it is known to sailors wy various nemes, and was one of the alarming inby rarions " nemes, and wre
oidents in "The Tempest." "Arago" thinke thet these cidents in "The Tempest." "Arago" thinke that these
brush diweharges are probably rarely absont from elevated points daring thanderstorme, and are not reen oxistence of npeked for. "Arago" does not deny the existence of upward strokes; he thinks, however, that the evidence is insufflcient.
Thore wea near my houce daring a recont storm an oxtraordimary ingtance of the force of lightning. The chimacy of a eatcage isolated in the fields was atruek. The bricks were thrown all round the house with such force that thces which hit outhonses twenty yards off were palvorised, and the weathor-boarding looked as it oovered in places with red powder. Nearer, palings were cut 24 if by rife halls; and the masons tola me that out of two cartaoale of brick oomposing the agimney, not one whole one could be tound for use
age piecee few over the ficlds to ediatance of again. The piesee far over the ficlde to a distance of bigger than ma exg. The cothagers were numbed for fonco timb, and tald mo they heara no noise except the felling of pieces of brick apon the rool. They munt have beer insensibla, for I hoarid the crash of the thunder. What way very ood, the lightaing ran down an inon pipe which did not quato reath the ground, abd instond of pacesing straight into the aarth trom it (the dishanco boing bot Bin.), "jamped" on one mide to a
oorner a foot off, and paesed down there, maiking a hote oorner a 1001 oif, and pasaed down there, making a hote
an inoh in diemoler. The ootiagera said they wore an imoh in dimmoler. The oottagora said they wore nemely manooaved by "eriphur," mod a baby wat stif itar a long time, and unabie to move ite moriti when its mothar oitored the bromek. If the ohimnoy had not beon so uttoriy gmeahed, bat had been only knocked
down, the whole family woeld probebly have boen tilled, as they were all hoddiod together in a Bitte room jui
undor it
M. Paris.

CHANGES OF LEVEL IN LAND AND SKA.
[4819.] -In one of "E. L. G.'a" remarkable lettors (4540, p. 461) ho ravis in effeot that it is not worth while to relate Lyell's estimate of the possible antiquity of man based on the idea that land rises so many inches in a oontary, boonase Lyoll himmelf speaks of Chili and New Zealand being thrast up 10ft. at a
jork, and the Aleatimn Isle 8,000 it. jerk, and the Aleatian Isle 8,000ft. in a year. Unforcertainly no recent edition; bat I should be glad is "E. L. G." rould explain bow the instancos cited render Lyell's arguments not worth "stooping (t) to refate." In doing so, I bope the will keep clear of the Sacred books, of Nephilim, Delages, and the jike, for
they are in no way concerned with what I want to
arrive at. It appears to ma, then, that land which has been gradually riaing ont of the seab, or from which the liffer hat boen gradunly reooding, would prasent is her different coast-line, both in ehape and composition to beyond disputa, I believe, that portiona of our own beyond dispaia,
island have bean raised from the son while othern have become sabmerged-or the afes has receded from or eas become sabmerged-or the Bes has receded from dres and
croached upon tho land. Raised beaphes and enb crozched upon tho hand. ransed bonohes mad nibl it appeare to me that if the contorr of the coant, iram the water-line to the raised beach, is a gradual or erea sharp rise, withont abrupt breaks that cannot be accounted for, there is primu facic evidence that the elevation of the land or the recession of the ges hm ficen place slown and wilhoot jark; whil if the ans and did not oxhibit oniform ioter-pear tom the the ind apwarda, it wonld conclusivaly edow that the lem had been lifted by jerks. At any rate, I caunot con had been lifled by jerss. At any rale, I caumat con peologista to arrive at an opinion whether the laad ma been alowly raieed or at intorvals and by jerka.

I And in a papar read by Mr. Howorth at the reoval meeting of the Britigh Asaociation, some particulars of the riaing and falling of the land at difforent para of the globe, and 1 anad an extract which may interas your readers; but it does not give the inforration I want. Mr. Howorth said: "The conviction hee bean gradaally strengthaning that the torm torra frme is a misnomor, and that the land no less than the een it constantly moving. The importavec of mocertaiming and mapping out the arees of riwing and subsiding land both for geologists and geograp huns, and for eng. neers and practical poititioians, can hardiy bo orerrated, yet litNe has been done in thie fald, and the best mape show the empirical way in which the queetion hae been treated. The anthor had collocted all the lemes be coold and bearing on the areas of aphanval The
when arranged are very interesting. The relative When arranged are very intaresting. Tho relative height of hand and matar being our gange, the cond line is the only tost We have. Jadging from zhis is this aphental scandinanis exoopb Soacol is ricing Ruscia. inclaling Nan to siberia snd all norther the White Sas Nura Zambla The cone-hno fre same is true of Behring's Straite is all rasing. from Kamtachatka to Formoas, inclading the Amoar country, the Yellow Sea, the islands of Japan, and Looshoo. Siam and the Malay Peninaula are riniog. so are all the islands of the eastern archipelago from Borneo to Now Grines. The peningratin of Indte is probably sinking, to ia Coylon, bat we moot with ricing gronnd again at meckran and trace it along the comets of Persia and Arabia, inclading all the Red Sel Aria Minor is probably rising; so is Syris ; so is Earope east of the Arriatic. Weat of a line joining the Memal in Prmsmia, Enrope is apparently more or less minking so is Britain, oxoept the monntainous portions of Seol land. In North and Soath America all the lend is app. parently rising except a portion of the Unired States of Brazil Florida to the 8 . Lawrence and the coart tude of Z. Arrica is rising from the Cape to the hati deprescion far as the on either coast, extending on the enstern as Cameroons the northern horth of this io dapression that is progresaing in the Mediterraneen, Australia, Tabmania, New Zealand. Now Caledonis and the Chatham islands are all rising. Tbeso feeto areur the conalasion that all the great masces of had ribirg of thiog, and that the probable forc of we areas of the land are the two poles of the earth. the the eqnator." Th. in least to me an interesting quention, and I should hite to know on what partinns of the earth the eatimates of Lyell aro based, and whethar the rising is at the same rate at different parts-same, of couree, volcanic districts.

THE MENGLISH MECHANIC" GREENEOUSE, AND HINTS ON ITS CONSTRUCTION.
[4820.]-I havB reed with maok intorest our esteemed correapondent's plan for a chap and darablo
greenhonse ("Sanl Rymenan letter 4682, p. 558). In greenhoase (" Sanal Rymoz," lettor 4082, p. 5388 . It
appears to me to be an excellent plan, one that coald appears to me to be an excellent plan, one that coold Englich meobanios ; bat I do not think, painting and all inoluded, it coold be done at the present time, com sidering the high price of materinas, for $£ 5$. At to the In ${ }^{\text {m }}$ of axtares, which ho has corroctly explained, I need eay nothing, but would strongly adrise him and others not to be done with "tenante" fixtarpe Mr. Editor's sanotion, the "Emginsi MEcranic grean honee," and I hope some more of "oar" friende vill ondtribate to its constraction. Ithink the propartions will do admirably, but the floor I shoold adrise to be on the ground level, as sunk floors do not al ways answor. With regard to tre heating. I hive foume the mot coonnmical plan to bo the old iae and eryital lamps. Of course hot-water and gas apparatas are the
 viz., 8.E. is crymis remark as to the whe morrins san in best for vegetation, bat with ralerence to ith belig an near to the house at pomible, thie mates mo matorial difference, as long as the aspect is good. No one oan do better than follow "our" friond's instrec tiogs as to bailding-in feot, myaelf boing in ment of a amall house I have half a mind to ereet one to his directilona. Good 210z. glase is preferablo to 1802 I
have never found 180z to bo bettor for a hailetera
-ann "orr" friond sey why $?$ but glase it on the old patty system, well sprigged and bedded. I am a large owner, and a great opponent to glasing on the iron and Other oimilar new and costly syotems. In faot, 1
denounced it in rather otrong torme a fow months beak in "ours." As I said above, I fear it could not bo effectualy erected for an no note. In the Arot plece, 210z. or 16oz. sheet could not, at the present fabaloas anything like 8 d . I should pot it at 6d., which would
and be a fair price; this wonld double the item to 23 18s. The other items are at a gnod price; bat "Seal Rymea" The other not incinded the painting and glasing, which would cont 50 s . to be done, primed, stopped, and painted four cont 50 s . Lo be done, primed, stopped, and painted four conts, of the house would be: 一

$£ 960$
Of cource I have allowed, like " Sanal Rymea," a good price, and they should think any respectable brilder would do it completo for 2710 n . As to the wood and iron, I am of opinion that rood houses, when orected anbetantially, drive iron into the shade, especially when economy is considoted. Norertholess, an iron houe
the Amonsions he given wodld be otheap at 24 As. 8 d .
H. B. E.

CENTRIFUGAL FORCE

[1821.] -Wher I read my note on this stbject I thought myself too egotistical. I im glad moit of your corrempondents have taken the right view of the malter. I deemed the termerupneous ; and, as suoh, wished to see an alteration. We mathematicians should be eraot. If, therofore, any term is inexact, let us attempt, at any rate, to agree npon some other term, and oome other way of explanation. M. Paris rather mistakes me. Many of our text-books devote a chapter to the consideration of centrifugal force i I wonld hare it explained, in the ohapter deroted to the "Laws of Motion." not as centrifagal lorce, but as rectilinear Condency or whetever napoe we agree upon. Burely, if
public opinion is favorable to this ohange it mast be pablic opinion is favourable to this ohange it mast be
made. I don't say that I agree with the ferm proposed m M. Paris.
O. H. W. B.

DISTANT SIGNALS ON TEE MIDLAND. [4828.]-MANY thagks to "O. E. 8." (let. $4688_{\text {rp }}$ p. 641), for the information reppeoting the Midiand ditstent eignaln. Would ho lay If these is any really pie., en ohlong bogrd turning on a parperadioular pirot over the ordinary lind of an are on the loft of the post? It always seems to mo thet even with the altera. cion mentioned it muat be more dincult to krow if it Is the front or back of the board, than it is to romember that unless the arm is on the left of the post it mast be the bsok of the arm, and, therefore, of no consequence. Again, if the ordinary aignal anawera ignal semaphore, why shoald if nol two kinds of aignals il one would answer the parpose as the simpler signals are, the better for the drivers.
A. G. Bord.

Diceaced Potatoes.-The Prime Minister has requested the Direotor of Kew Gardens to give pablicity quetted the Direotor of Kow Gardens to give pablicity Professor Henalow into certain चlligges in Buffolk and ohewtere for utiliotng diceased petatoee. He eays :the potato is not affected by gio divense, but retains the potato is not affected by cre divense, but retains

 have sank to the battom, and the disemend'riatter, roody fibre, we., Will be sugpended in the water, and then be added, the starch stirred ap, and agitin allowed to settle. Two or three of eush wahings will remove all impuritios, and render the whach art for rese. If thoronghly dried it will keep for any time, and can be used as arrowroot, for pnddings and caken, or, mixed With flour, as bread. A atat piece of tin, proparod as a
grater, may be had of a tinsmith for trifle, and nothing else is required but a knife and a tub of water. But this temporary measure cannot be all that scientiac But thia temporary measure cannot be all that scientiic
rusorcea may supply. Sarely some method (by deaicrusoarcea may supply. Sarely some method (by desio-
cation or otherwise) is applicable and arailable to the cation or otherwise) is applicable and arailable to the
oottager by which the roand tabers and the soand parts oottager by which the aonad tabers and the sonnd parts
o! diseased tabers may be so treated that they mag be preserved for winter use; and I cannot doubt bat that chemints will soggest such. Lastly, this season, which has favoured potatoo disease, has also favoured an abandant crop of green food; and I would arge apon the clergy, medical men, and intelligent classes of the country parishes, combined antion, in the way of precept and example, in introducing the beotroot, the lolage of the tarnip, and varions other vegotables, as for laying in stores of suoh natritions articles as dried for laging in atores of such natritions articles as dried haricota, calarances, and rarions other palies and
beans which furcu the cheap, sgrecable, and most natritions lood of the popalations of mang tropical natritions

REPLIBA TO QUBRIES.

-* In their answoers, Oorrespondente are reopsetfully requested to mention, in each instance, the title and number of the query asked.
[12234.]-Hairsprings (U.Q.).-"Jnak of All Trades " is a little out of his element in watchmaking. Watchmakers do not ase a gange for hair spriggs. The wire of which hairspringe are made can certainly be parchased, bat having the wire you are a long way from posaessing a spring. Hairspringe are not made by hand now so mach as formerly. They may be par. chaeed beanatifally coiled up and roads for ase. In selecting a apring the diameter is determined by the
distance of the curb pins from the pirot hole, and the distance of the carb pins from the pirot hole, and the strergth by the size and weight of the balance, and
number of vibrations watited per hour, this necositating number of vibrations watited pur hoar, this necoseitating
an emount of exporience by no means fnoonalderable.WEST OORNWALL.
[12272]-EHeotrotyoing (U. Q.).-To ill up the back of copper electroty pos nese powtor solder and lead. Discolve some zinc in mariaicic acia, and well cove some very small bits of ponter solder on the beck whice you hare covered with the entotion, pat the electrotype on a hmp of oharcoal, and apply fame rith a blow. pipe until the solder has penetrated into the crepicea Afterwards you can ase lead, which is cheaper, and will strengtiren the electrotype. Thic is a simpler process than using a ftesible metal, the rocipe for whimh I bave alresdy gtion you. You intght make an mona of the engraving of the anloy if tor oun devito a mmas of ougng so whotut infurfur the engravtog, mind then gitve it a coating of eopper.一W. H. H. O.
[12814.]-Bleaching Tanned Goods (\mathbf{U}. Q). Try a bath of anlpharic acid, one part to from twelve to twonty of water, and afterwards ase strong bleaching liquid in the shape of chloride of lime, or subject it to the action of the gas.-Jack or All Trades.
[12324.]-Spoillod Elains (O. Q.)-To about evary 121b. of salt pat lib. of coarse sugar with 20z. of galt petre; with this you oan ase oithor 2oz. of juniper berrien, or flh, of corisnder soeds in powder, or if woll rab your hame and plops of oreosove; what gratio over a pan or cistorn of water in a cellar or cool plece. Afterwarde whon hed two days of this, give them forr more in bring, take out, dry them thoroaghly with oithar bran, pollard, or mawdust, and hang them ap to dry.-Jıoz or AlL Tandes.
[12824.] -Bpolied Elams (U.Q).-Eramor becon raited or opoiled, not rotton, cover them in Hinen aloth, hig a holo cirson or foar iot doop or zoro, puitho nimar thoo the lot and

[12396.]-Collodio.Bromide (U.Q.).-Ordinary bromo-iodised negative collodion may be convertod into oollodio-bromide by the addition of an abooholio solt tion of nitrato of eilver ; bet is not hikely to give good romalte, as a apeoial collodion is required. Tripod" had bettor proearo a pamphlot, pablished by Mcmara. Mam.
son and Sman, Newonatio-on-Tyze. - Pzoto. Bars. torismets.
[12327.]-Horn (U.Q).-I believe this oan be done by anbjecting them to a bath of potash and water. Jace or Ale Trades.
[12342]-Pounoing Pattorn on Printing Blocke ($\mathbf{D} . \mathrm{Q}$.).-This is, I presame, wanted to trans fer the patterns apon blocks for either catting or
pricking out. Brash your block over with oither some pricking oat. Brash your block over with oither some
Hize or gam water.
Having pricked your pattern aize or gam water. Having pricked your pattern
paper through with a atoat pin or needle, fis it to paper throngh with a atoat pin or needle, ix it to
your block with some drawing ping, then take some whiting and tie it up in a piece of maslin, dust it whiting and the hole over the pattorn, take your paper ofi, invert your block orer a boiler of water, and steam it; pat by to dry ; your pattern will be fxed for working. Jack of All Trades.
[12345.]-Ontario (U.Q.).-As to where extromes of heat and cold are least, I should think west of Toronto ; as you go west the climste gets milder. The Ontario (Upper Oanada). In London, Ontario, where I have been for foar vears, the heat of an average summer day is about 85° in the shade; the nights are warm, about 18° is the cold of an ordinary winter day. As you go north the winters become colder in a greater ratio than the summera. I to not know abont the lake distriot of simeno. Cansis is not very like a park. The cleared Aulds have zig-zag fences of timber called snake fencos. Nearly all the land is forest until it is cleared. The trees vary in different places. A farmer would do well, particularly if he had a family who coorld help him, at hbovr to dear. He would hare very hard wort in the spring, and woald bavo to roagh it for a while. The apring sewon is short When the snow melts the hot weather oomes in whit a rush. The people are qniet and ascisble ewoagh. asaal. Those who hare no honsen useally lire in boarding bonses or hotels in the onntinental fashion, all taking their meals torether. Fish and game are abnidant. Farther ioformation if deaired.-Prilantraopisf:
 naft interesting note at p. 515 of "ours" (No. 385)
will be read with pleasure bs all interested to such
matteri. As I am anked the quostion by our warmed friend, I may anower that I do not beheve in any othe pronnaciation than blanco and bacho, heeoho, for Ohe Torda blanco and bajo, hijo, the getural somod of the j in Spanish being ideatioal with the Soottish soand ch hat the word boch, and not difforisg at all in qnaity from the eparioh 9 before e or i. Ido not thinz the connd of the Eebrow lettor heth would perleetly reproconst the Epanich gattarala g or j; pat I amm not maot of an orieakatiot. Will "E. L. G." kindly inform me Whether the Banilrit gatturalo kha and gha are eoanded in a similar mander? I have Wilson'a grammar, ba the equivalomis given aro to in the words hhan and Afghan. I shmata ciso lite to know whether the oom pound letere ama in meraly a surong mpitatio or a woak gattural-if the former, Sanskrit would seem to be deficient in the peciliar gattaral somen in question, the same an it is notably so of our soit sor z, mad atilu mor extraordinarily of the short vowel e, at in our word met. Like the Spaniab, bowevor, this "porieot lan gange" is phonetio, and the alphabet with its 47 letters is the key to correct pronanciation, provided ite
Earopean equivalenta are oorrectly statod.-W. Wux.
[12352.]-Cemtritfugal Pump.-The renson which indaced to to critioise "Rat-Tats propoee sols, and ras toleting Montstence pecept by recom mending the palling down of a machtio which is known to raise a large quantity of whter with a proportionate oxpenditure of power in order to try a proposed arrangement which his been already tostod in several ways and found watting. The results of some trite which I made in as similiar direction are that there it enormous waste of steam la proportion to the quaritity of water raised. As some corresponderta are recom mending a trial of compressing air in a similar man ner, it may be ueftul to state that the result of - my oxperimentes in shis dircotion ta, that the quantity 5 comproseod, and the proseare obthined, is exoeedingly stomm so rised.-A., Liverpeol.
[18355.]-Formenting Bread with Btaroh.-I then "Dough'a" forment lis alive, he adds some itwrob from etther rice or potatoes, with a mall portion of sugar, he will And his doagh light enough,- ind go raniphag mod. Potalo diaroh it to be got momerthere, as it io aiod to a groat extent for
[12078]-Bat-THalirg.-Firw question, twe a 410 socond, scrape, then glase paper on a pieoe of hat cork to. For hutdoritng (withool speoial tools) lay the bat on potr kroen, or on sotmothing soft; anoh as a doth rollod in ${ }^{2}$ knob; got your shoomakter to leth you hi over well to shape ; if done properly no marks need be soen. For glatetg, got the best; the secrot Hes in making the top of the splice pinot the handie, a good cork orit tio \bar{V} ides of the handle, it fill greatly mesta in ffiling, and pat plenty of glae; who warm the jotat before glueling. The cane can be got at any basiotshop; you will have to glue some dozon pleces togethar if not, ask agetn.-A Wermouti Athlera.
[12388.]-Onions. -I have some over a foot in ciroamferonoe, similar to "M. W. G." (p. 493). I planted in Sopler
H. B. E .
[12401.]-Fiouse Patatiag.-Thiy is a pooular quesion. For 181b. of goruane" white lead taike 1 pt. of oul, goz. dryern, 3 pt. of turpa. Don't use tarps rould mive a folioar you could see throagh-H. B. E.
[12406.]-Worm-eaten Violin-Bab the violin inside with methylated spirit.-H. B. E.
[19408.]-Guill Pens. - Thoy are firot patood chrough hot oinders or ashes to parify. This mekeen a profound ateack, bat remores wifliniture, oil, and fat They are tbea mashod and dipped in atum water, and aftormards placed on
not to uplit. $-\mathbf{B}$. B. E.
[12409.]-Trandferting Pencil Drawings on Paper to Boxwood for Engeraving. - I thank "Barah," "Xylographer," and "Juan Huptina " for their kiodness in anawering my quary. I find tracing a fuishod dra ming on paper query tedioas, but with outline it saits admirably, Whon I revorse, it on the prepared block, the groat difmentey la in alling in the shading as it is on the paper betore belug tranaserred - the burnishing process has a blarred, indiatinot appearanoc, Which makes it very dimpalt to ongrare properly. Can "Xslographer" tell me of any solation,
\&o., that by applying to the paper before or after the do., that by applying to the paper before or after the
draming is made on it, then by placing on the block and demping the back of it, take a facolmile of the drawing as it in on the paper ?-E. B
[1942.]-Precerving Green Pens and Goom-berrioes-A good plan to ensble one to tave green peat for Carictems dinner is to pal thom in an ins. Gooseberrien can be dose in the same manner for the mme twes. I have soen this done and tbo froill and peas out as woll at at epriag timo.-H. B. K.
[12s41.] - Anta. - Lay quicklime or powdered H. B. E.
[13448.] - Wall Papers.-The most boalthy thy of decorating ralls is onduabtedly "distempor ;" it is also, to my taste, the most artistic. Any anount of bo dirided in panols with glti linen, and rarloun pians
of decoration can be meen in any Arat-alaes modern house. The danger from wall-paper can
[19ss9.]-Gnata.-The query of a "Constant Sab. seriber" is, to nay the loast, a very modeat one, and I therefore waitod till thelant minuto bofore anawering it, shinking that some one woald confar a boon on the civilised world by giving us not only a remedy for
crat-bites, bat also a "proventative." Well, arnioa gaat-bites, bat also a "proventative." Well, arnice but ast to a "preventative" the only one I know of io to kill the female gratts (the males don't bito). In the mean time lot as rejoice that thie "horrid " alimate
has come sedvantages over the mere favoured countries has some adrantages over the mere favoured
Where the mosquito abounde. B uI Rynce.
[2451.]-Rnglish Concertina.-The Fibrators Which have "gone fat "are probably craoked ; if not, acraping or aling the free ond will sharpen them. for T don't know what " T. W." means. The ends of the inatrament can be removed by taking out the the inatrument can be removed by taking out the
corow, when the vibratora will be seen on their frames, serowe, when the ribrators will be eseen on their frames,
alid into grooves in the " soundboard." These nlip oot alid into grooves in the "goundboard." These nlip ort emoly. I cannot khink
[12455.1-Water Supply,-Apply at the office of the Earet London Watarworke, Gt. S. Helen'g, Bishope-gato-atreet, for pricos, to. Yor can obtain their Aot by Hansard's, Gt. Queen-streot, W.C. The whter is suppoeed to be rised for domentio prarposes only, and if yoo foep horsea, cown, or other animale, or require wator lor buainess or garden purposee, you will be charged axtra scoording to the report of the aurroyor sent by
the company. You can, howevar, insiift on being dharged by metor.-BAuL RyMes.
[1M57.]-Geometry.-" E. I. G.'s " anower is imparicet and incorreot. He omits to state that the equilateral. In any other trianglo his mode of procodure monid only prodnco a rhomboia. He is aleo incorrect in mtating that "P. W. H. J." (p. 546) prodzces
a rbomboid - what is there prodiced is only a trea rbomboin-wh
pesiam.-BOBO.
[19504.]-8ketohing from Whaturo.-The ob" 4 Workiog B." said, the diffealty of coeing both the image and the pencil at the satue time, but not owing to thoir different distavoes, which "E. B. H." (p . 570) known not how to obviato, though it is perfoctly easy to do so. All instramente for aletohing require that oither the object'p image be brought to the apparent
distance of the paper by a concare lens, or olse the diatance of the papar by a concave lens, or olse the apperent distance of the objecte by a convex lena. The concare lope, if uned, must be between the landecape
and the refiector. The convex one, if noed, mnat be and the refector. The convax one, if noed, must be either cace, if the solar focel length of lena bo a little more then the distance from eye to drawing-or more ornetly, if it exoced this distance by the same fraction the eye will focus the two at onco. Bat a lens where "E. B. H." places it, botween the eye and instrument, can never be of the slightoent nce, ase it aots on botb objoct and pencil alike, morely making you long-gighted
for both or short-nighted for both. The dofoet of for both or short-nighted for both. The dofoet of
Wollaston's instrument has therefore nothing to do with this mattor of focesaing, but only with the nee of the apper and lower halres of the papil; one to receive
light from the refleotor, the other peat ite edge. This ight from the refieotor, the other past its edge. This requires a quality of eye that mont of as do not posseas. acouired by the generality of eyes to eee in this manner. It is as much a phyrical endowment as ven.
triloquiem. Amolaja modidoations of the ingtrument, triloquiem. Amioi'a modidoations of the ingtrament, p. 670), are really the only ones arnilable for ayes in general, the rasy from papar and pencll coming through a parallel glase that at the came time refiecte the rays of the object, and both kinde of rays entering
the whole pupil at once. Bat there in no real noed for mose than this parallel glaet, and the lens (concaro in front of it, or convox below it), if we are content to trace adthar a reverved or inverted image. The whole purpose of a second refection, either in Wollenton's or a prism, is merely to get the image at once righthanded and erech-i.e, neither topar-tarvy nor turned right for left. Not finding any neceasity for thin, I haro always uned with sucoese a mere tragment of good
plato-gleas, lin. by tin. If there be, in the natare of plato-glane, lin. by tin. Is there be, in the natare of revorsed, you have meroly to draw on transparent paper, and turn its beok over to inish it. I should obeorve, howevar, theroe is, and always will be, a dimcalty in so adjasting the illumination of vohite paper that the pencil thereon and the refiected scene may bo wall seen at once. The real, and I beliove nole, remedy, as I told a queriat two yeara ago, bat have never scen atatod eleowhere, in to trace with a solite arayon on a black or dark barfaco. Trangparent treaing paper may be laid on a bleck board or glato, and drawn upon with a ine pen or brach and Chineese white (from the botcle turn it over, and retrace the othar mide with black or colourn, anally mounting it on white.-E. L. G.
[12507.]-Oricket.bat Talding. - Criaket bate been kept foar or fre years. The bat is will whioh has mach larger than the required naze, and kept another year, then the blade or pod is laid in an fron moald, and
sizo. The piece is then fixed in a lathe and the handle arned. The bat is then finighed by hand and atrung buife lathe. The tools aeed are the paring or araw on no ccocount be varnished unless on the back, an otherwise of cannot anak intothe wood. Some bats have cane or wihandles are made of the small cane, sin. diam., to be got st a saddler's, cat equare, and glaed up, and then farned and cocomp. These handles sre ioto the bat in the part of the blade, go a fow inches noder the string, and sometimes piece of ash is glned up with the not clear I shall be glad to give further information. C. B.
[12515.] - Mowine Machine.-"Old Ploughman" 1 right as to the oance of the aiekle bar of "A Conntryman's" machine breaking. If the oye of the aiokle bar and conneoting-rod in worn, rimar them with a square rimer with a taper hall round plece of Wood
at the back, and nee hard woud siakle pins ; this is how at the back, and use hard woud siokle plas ; thin is how
I have treated one of Samuelson's mahinee.-Hanrs FABugz.
[12515.]-Towing Tachina.-" A Countryman'a" mechine shonld have a leng roll. This
[12517.] - Tathemation 2rahines and Tablen-In the Meakanics Magaxine for Jane 16, 1855 (No. 1662, ald seriee), "Tablee for Facilitating Addition" are deccribed, by means of Whioh addition tedions operntion of suithmetio, may be performed Withont any machinery and in a manner deceribed by the arthor as "a mechenical way of making additions as simple as possible, allowing great repidity of operation, giving reanlts perfectly trastworthy, and requiring no labour of the mind for ite applioation."-0. J. B.
[18518.] W The Island of Elayti-Is "F. 8. M. W." aure (p. B71) that the Domingans have
been reanited to Spain? They sued for readmission come years ago, hat the last I heard was that Queen isabelia's Government rofused to have them. They are less parely black than the French-ppeaking Heytians, but one hears less of them. The Haytians, ever since
their independence, faithfully oopy the last Paris their independence, faithfulty copy the last Paris fastione poitica, twice a repablic, twice an "empire,"
and now, I snppose, ropablin for the third time. In the intervals of these olanges, they amase tbemselves with hitherto fruitless attempts to subjugate their brown co-inlandera, of the esatarn and Iattor helf. Buch continues the ninetoenth centrary atate of the fineat land Columbns eet foot on; the ialand second in aize, and by aniversal consent firstin richness and nataral aplendour,
of the western world I Glory to thee, 0 Contury IIf. Lhe G.
[12528.]-EAy Asthma.- "Kato" is really ontitjed to sympathy under this attack. A friand of mine has had it overy year for many years, and has tried all kinds of treatment-three years ago he went under homosopathic treatment, and got a little reliof from of Hey " bicines, the principal of which was Extrac as he has gone back to his old doctor. His latest ex perience is that he gets the most reliof from gentle expeotorants, which olear the ohest and allow more freedom in breathing.-Jozar.
[12528.] - Fay Asthma. - I am sorry to see a 00% respondent, "Lambda," recommend the iohalation of creosote for this complaint. I can assure "Kate" that the nie of oreosote in any shape or form will inevitably canse violent nervous twitching and oren
paralysis. But the will And that bathing the ohest paralysis. Bat the will And that bathing the ohest the ane of Eptom walts and eande-cologne, and mean the use of Epsorn sats and ean-de-00logne, and sea-
bathing, will cure the very worm case in a ahort time if persisted in. I would be glad if "Kate" will comif persisted in. I wonla be glad if "Kato will communicate the reanit
aflioted. - ALFRed 8
[19589.]-Improved Tachine for Taldig: Aerated Drinirs.-I did not state that the gas for all machines for malding aërated drinks was made of enlpburic acid and oommon whiting. It is in very advantageons from its eoonomy (cee reply to "E. L. P. G." last week). The proportions T don't know, bat should imagine it would depend on the namber of bottles required. No doubt gas for other machines can be made of other compoands. Perhaps " Sodawater" or "I. W. D." can answer this part of the quention. I may add full direotions are given with the machine for everything. I will forward name of mazer on any one advortising address in "ourn."-HL B. E.
[12587.]- Oompreasing Air.-On what basis doee Dalton's hypothenis or theory reat? Thatemperatures givan appear rather low for the oorresponding presenares. I have belore me the reanlth of experimente that scarcely seem to bear out Dalton's views. With ar-comprosaing oylinder of 8ft. atroke, area of piatou.
814.16 square inches, and outer temparature $40^{\circ} \mathrm{Frahr}$. 80 strozes per minote for 80 minates, or $80 \times 30=$ 900 strokes, each atroke halving the volume and donbling the preasure. That in, the air was allowed to to 15lb. per square inch. At the end of the 80 minutes the oflinder 1090 completed, the tomperature of

108-40 $=68$. Becond experiment, uader sinars conditions, except that the eecape-valve was wigas to 801b. por square inch. Beanit-tomperatare 168 $40=118^{\circ}$ of temparatare gained. Third oxperimea, under similar conditions, excepting that in thin ar outer temperature was 50°, and alety-val the gaip per equare inch. Besalt-209-50 = 165 = ain of temperature. The alatotywoighted to 58 lb . per aquare inch, and minate, further gain of temperature being $202=94^{\circ}$. An experiment of over two hoars showing the ratio of incrence of temperature roing et mex
 the whole of the time.

Time.	Begistered tamparatare at cylindar.	Oater. tamparature.	Strolices pe mismat
10.80	88	88	2
10.40	188	88	8
10.60	168	88	8
11.00	188	88	8
11.10	808	80	21
11.20	814	co	8
11.80	281	40	-
11.40	281	40	83
11.60	887	40	8
12.00	219	41	3
12.10	245	11	8
12.20	250	4	31
18.80	255	$\underline{14}$	87
12.82	268	18	8
12.40	256	48	87
12.4	258	4	27

Bome portion of this tomperstare in, no torbe in to the friotion of the piston; but anroly not the difurues of Dalton's formall show the the presenres ; this is important an ofil trobling to found. Knowing this, and the gemeration o
ghall h
Mke " tares M. G.'s" opinion on the recalting tempere diconecion is oct in commonaing asd suctiring tris querists have lately songht for information eborevin pressed sir, but th hey ested for too mech inform pressed air, bat they hare asked for 200 merch infory By combinetion mowerer any onc hadriaush can give. By combination, however, and working-i.e. dinemelae
$-\infty$ operativaly, wo can, I think, eapply tho duind information. valuable experimerite mathomatioal parts, and canting in thoir $t w 0$ miteo, by other correaping th general improm tioa, we may, I thinly, becut a goneral improvement to our kroomledge.
retioal and prectional, respecting the nee of retical and praction, respecting the uce of cowprand air as a modiam for the transmistion of porer, ant to make this more cartain 1 propose hoh his chat cometry Our common object is the economionl havinge of eal Onr common object is the eco
MECEANIOAL EqUIFALEETT
[19543.] -Iight Ehifing Eolet. - I bea to than our editor for his conrteny in inserting my query, an "Bting" and "Vircas" for kindly replytag thent (Aug. 16). Either plan would anewer well, bat Foin be iroes kindly inform me whothor there could Do
 as in Weston's, might knoak bottles? I fancy s modificatio tion of tho compoand tine could be inverted, the dificerential roiler beto ealt It bottom, and working in a nkrep having one orteo for lifting. The palley moald then be at the top an into the in a strap, the hook of Which riight be inca.ti rope, which would bo as it were endicen, mikht, whe
 Boing no dragghtaman, I ann mable to give nill dispenaing with the troller in ho is angenale 8. AxLWYK.
[12551.]-Piotare Iraming.-AE the nanal ney of making oheap frames of German monldies it about ten minutes ha not been mentionen, it may as woul to daccribe it for Jimi The thols neovsary aro a ino-toothed tasoun lry, mliro-blook, a miroblan, crying plaro, atout vioe a light hammor, ana sprigg or iwo. Nhe sata an plon of the bo kept very shap, the pher locul then the gilding snips ofl. As moet mechanie wonld know what a mitre-bloak is, it seems unnece to describe it, bat the mitro-bourd may be al follows:-Take a piece of boand, say 80 in found lin., plane up iraly, another piece sin. ad ery side of plane, and about Bitio. marrowis then fis board. Tail on secarals por broarataly at an anglo of 45° broad, and as high as the apper edge of reaches whon the plane in lying npon
pressing against the atruight edge of the which is the way it is used, keeping the p left hand (thin in the mone crition pify one to
ceoling that it is a little hiphor up than ite nltimate position by means of forefagor, bors a emall gaiding hale with pring. bit, uift ap, put a deb of thiakioh glae
on beok side (don't corer the whole surface), put in别 both mitroe correspond (thin reqniree great cartion, or ther tivo ildes are then done cimilarly, and lastly, these tro are rnited at opponito corners, which divide tho lest joints will not coinoide.-A., Liverpool.
[12567.1-Niokel Euver-A. H. Allen will and, cioloal unmixed with other motalan" is omployed, for niotion anmixed oith otbor motala" and amployed, for yot appliod theroto. The Bolpian sone aro the examplo our groats, the nickal cooms to paces for about a afteenth ite weight of illver, making a far more oon-
reanient amall correnoy than bronse. Its yellowish reaient amall carronoy than bronzi. not yillowink
int, alooaly reeombling platinum, will not aliow it be mictaken for ailver. -E. L. G.
[19558.]-Boot and shoe Traling.-I fanoy hat "Irish Muchanio's" shoemaker oannot be up to he mark in his trado. Ho can pat in as many attings co he likes on the toe of the last, withont feotering
chem to it. The laat woald then come out ase oasily them to it. The last woald thon oome out ae ensily
momible, and the fittings be gaken out with the hand afterwards. As the groatost room is required about the joint of the great too, theoe attings ahould
be pitobed in from the toe of the boot when lanting, and not from the top as urual-J. Roskers.
[29588.]-8moke and Might.-If there were any kind of amoke or translucent body that prosented the anal whon intorcepting light, this would bo a traly monlt phenomenon to explain. The genoral rale in hat they refiect one part of the apeotrum and transmit they refleot. The atmosphere at large sots in this way
like tobecoo amoke, and rendera the sun's transmitted rayi more and more orange-ooloared, the
greater thiokness of air they traveres, for the very ande more bluo, and the aky blaest of all. Many liquide and oven eolide-a opal-glece (made milky by boneash or phosphate of limol and the oommoner kinds of
real opal-do the came. It is moot natural for whatover cingee transmittod light yellow or brown to appear
[12571.]-Brake for Bloyole with Indiahas not the same disadrantage as the block brake, prosenting as it does a rond or currod froe instead of an edged or angled surface to the rab-
ber tire. It, therofore, does not bite or wear it away by resting on any particalar part, bot canases the fric. tional reciastance by merely rolling agninat the tire. If he thinks, however, that it wears inaway the may make felloe when brought into action by a lever, henalle, or other arrangoment. To provent the wheel wobbling or retting oat of position, by using this kind of brake at
one sint of the whool, Mr. Sham onn employ a doabloone sine of the mhool, Mr. Shan onn employ a doablopivoted in the contro like a pair of scissors, the plirot pivoted ing upright bohind the aadale in the epring or ramework sapporting it. Two small wooden roliors, a inge in the ends of the crossed lovers. These are the brakes, and to bring them into action the arma, or tront parts of the levers, are pat farther apart, which may be done by the arms of the rider, or a alight in-
clination of the body backwards. As either kind of brake may be objectionablo, a hoop or apring brako may be employod as in horso-rakes and agricaltaral passed round s fixed palley on the axle, the ende of the hoop boing tastoned to a hand lever, but a small podal slide atteohed to a lover can algo be uzed, and brought in contact by the action of the hands or foet, or simple can be an of the bodr; or a curved flat rod of stoel amall wheel or roller a fow inches from the ground in forked bearingu. To employ the brake the ateel is wesed throagh the rod at a oonvenient dietance from - botiom. 4 coiled spring, as in the "Phantompporting the handle, elevating it a fer incher By assing down the handlo a small roller-brake, attaohed the axle bearings, is brought in contact with the nds. In this last arrangement the porition of the eranked having not be ohanged; or the hanale may of the tront whool, and the power of the hande many be hus brought to bear aither in propoling the biajcie, \rightarrow ita motion--RAT-TAT.
2595.]-Boat Buillding--Having beon oat of Conld notroply to thie sooner, and bog to inform
D. that I do not know of any practionl work D." that I do not know of any practionl work hoat bailding; also that I am not a ship or bont py to give any information in my pover. Lee If I havo only mot with apon Datoh galliota, and sthat from thoir tmall size, compared to the Ia koole I have seon at Now York, bat have
thene waters. A aliding heel is contained in a watortight cace, carried up, as ipresama, from one nide o the koel to lovel of ganwar, and could not be appliod ho a mall boal, har. In order to baild a boat about isin. Loei, erroot kool, in rem, sternpost and niarnboard ins the rebate is to be made as me in reply 12887. Tithe rebato phone near onda mach as oonvenient with a ploagh plane, near onds work hall ohecked and riveted together. Note : Bivet copper naile wherever posaible, as they don't hold well without; ase a very light hammer, they are rery bad by hammering opon an anvil. The koel, stem, and tornpost ought to bo two inchos khil, ap the robate to put an elbou or thee picco at enah end inaide to atrenthen the junation of utem and stornpost with kool. Freet the frame as decoribed in 18918, and satiofy yourvelf that it is the ehape you wish the boal
 as desoribed by "hio I ingliove is ased by bookbinders), Is math (varioue boarde. It is made that: Two pieces of ash nbout $16 \mathrm{in} . \times 2 \mathrm{in} . \times 1$ inin, with two wood screvirs about igbt inches long, moting apon opposito aidos, learing the javs aboat six inches long at one end, and diowe tor The garboard strake I nsed was American ook sonked Lor a coaple of daya in a pond to prevent splitting, as I required a fat floor. This way in one pieoo from ond to ond, all other strakes wore scaried, the soari en be the length of the breadth of strake, and whito lead appliod When riveting up. Prime tach part ase you in to the relative breadth of the straken at the wident part, and at the stem and atern, as this is infnenoed by the breadth of the boat, and be particalar that eaoh
atrake liea ap olose to the gaiding frame, by bevil strake lies ap olose to the gaiding rame, ling of the edge of the one is overiape, or the boat will I will give some more particulers as to ateaming, de. A, Liverpool.
[12596.]-Canoe.-As to the asfety of canceing from Hall to Scarborongh, it depends on three thingsvik., the weather, the oraft, and the man in it. Now the firat we presume is settled, as it in not to be imagined any one woald be insane onough to aftemp sucha a oraiso nolese the day was both calm and oleur with a prospect of ite continuing so. Then, as to the Nautilus trpe, the cantares of whioh recommend the very fat floor, and good sheer and camber. The dimensions of the craft I wonld prefer for the parpoes would be an follows : Length, 16 ft ; beam, 28in. ; heigh amidships, 18in. ; height at bov, 20in. ; at stern, 18in. camber of teol, qin., with matertight compartmonte a bow and atorn, and the well with a timber hateh instead of an apron. The great oheor in given to pro vent diving into the seas, and is, I think, necessary for any res going canoe. Now, thirdly, as to the man. I think, from "Paddjer's" query, he has not been to een before in a canoe, and he ad mite never having riod canoe sail then my adrioe would be not to commence a boost knowi it requirea prectice and skill to do it pro porly and with ralety, and overy one that oan sail a canoo knows it is more difficult to sail than a boat, and mach more dangerons ; and again, every canooitt thal has sailed a canoe in lumpy water knowe the dangerous propencity of the cralt to dive when ranning before the wind with eaile, and the dimoulty of managing it properly. Canoes of the Rob Roy type are not itted or coa mort ; and though 1 aruised for miles along the south conal of Ireland in one of the Rob Rny's diman. wee anly bail of spraco, Mr, and canas-deared, see I would be inclined to diesumde him from the attempt ; bat if he will go, I shall bo happy to give him any more information in my power.-Caxosigt.
[12599.]-Dimenaions of Yail Boata.-I abridge the following from "Recent Improvements in the Steam-engine," by Bourne, page 189 :-" The example of modern engineg by these makers that I shall select is the oscillating paddle engines of the Holyhead
steamers Ulster and Munster, for although I might stoamers Ulster and Munster, for although I might
have selocted a more recent oxample. I coald not have have selocted a more recont oxample, I coald not have soloctod st more periect ona, co. Those vessol, are depth of hold, and thoy each measure ebont 2,000 tons brildor's moesurement Eroh reseal is propelled by tro opocillatiog ongines of 96in. diametar of oylinder and 7 ft . stroke; the pressure of steam in the boilar it 281b. por square inoh. The nominal power of emon
pair of engines by the $A d m i r a l t y ~ r a l e ~ i s ~$
750
hores. They make 28 strokee per minuto, and they work a to 4,100 actanl or indiontod horses' power. dranght of watar when reedy for man and oomploto with stores zod 75 ton of coald was, forward 13sh, and af 13ft. 4in. The paddle whoole are foathering 83it. 9in In diametor to the innor odge of the outor ring. Theee vessola, and two aimilar reseola, the Leinster and connaught, the enginea of whion wore hansiruolinod a apeed of upwards of 20 milen an hour, and ac average apoed io all weakhert aning in information principell of 18 miles an hoar." Farthor information, principally aboat boilers, do., if required.-Philunthrapist
[12002.] - Thxtinotion of Firee-I have made no oxporimenta on the subjeo to sive the proference to aarbonio moid. As to employment of come malt which world genorato an uninfammabio and Are-axtingaichin
gas, I beliove a atrong solution of Biourbonate of anamonia woald be of groat arrioo, it it could
daced at anfiently low prico.-S. Botronm.
[12808.]-Acoustion-In "Tyadell on Sound," I read :- Wo bave not to examine how conoroas motion is produced and propagated. When a Aame in applied to thic amall collodion balloon, whioh containg a mixture of oxygen and hydrogen, the gacee oxplodo, and orery car in the room is cosicolour ol a shook, to whil the name of socud in given. How was this shook ranamitted from the belloon to your organs of hoar. \log ? Have the exploding gacee ohot tho air-partiolee againet the auditory norres as a gun ghoom a bail gainut a targot 9 No doabt, in the neighbourhood of partioles ; but ar shooting throagh air oomes speedily partiolee; but air shooting taroago atr comes spor the to reet, and no particle of air irom the reat. The proballoon rescied the enr oh any one prohod the mized gases they combined ohemically, and thoir union whe aocompanied by the development of intorico hoak. ir at thia not rocns expanad suadouly, surrounding air violontly aray on all sidem. Thin mopartod to that a little further off, the air Arst sot in partod to that a littie further ofi, the air irst get in motion coming at the came time to reat. The air, at a litile distanco, pacsod its motion on to the air at Thas distance, and camo also nse the torm, ear rounding the balloon, took up the motion of the shell rounding the balloou, roormip it to the next sucoeednext prooeding, and trasing thas propargted ta a palee ing sholl, the motion being than. proparated
of wave through the air." $-W$. Counas.
[12608.] - Bookbinder's Press.-Thero suroly mat bo some mistake, or "Dabina Sabscribor's men muat be phantoma; he must mean a sfin. scrow. ing to a rork ocely. ΔA are two head-atookn; B is a hard wood corew the same as you are going to out; it sorews into

$\Delta 1$, and is plain in $\Delta 2 ; O$ is a outtor whioh is made the ahape of thread. Now, if the outtor is mande to work out and in, and the block bored and boltod apon the when you put the with the hole in a ine witb sknd it is evident that it must out a thread in the pieco at EE; youma
[12609.] - Paolding Grapes.-The mode aniverablly sdopted in Itely is to divide an egg-box into ittle oompartments aboat 6in. equare (with thin wooden partikes of grapes mecording to their size. No fll in anch compartment with fine old eamdust or lineoed. The grapes mait not be over ripe.-9. Botronz.
[12612]-Action of Oll on Waves.-II you plece pioce of gilk aloth apon a polished table, and pres the table obilquely with your anger, the cloth yielde. and glides over the table, which is thas in a groat meaaure relieved of the efreot of the pach. So also when wabor is covered with a lajer of oll whioh does not cling to it, the oil acted apon by the wind gliden orer the arface of the Tater, and thas lossens the action of the wind apon the surtaco. It in trae, oll cannot lovel down the harger Waves when they have beon onoe formed, bu the aldes ol large wavos are almays riaged mad farrowo by amaller ones, which ronder the large ones roagh, and
 powar. The oil hindare the lormalion of there that the fifoot of the tind Griben Yoang oan, axperiment for himeali by going on a mindy day and pouring a little oll on the windmard aide of a pond. - Vincis.
[12818.]-Drging by Steam.-I think if T. King anoe steam of a high temperatare he will never Anish mending joints if mado with indiarabber wachera. Dy far the beat matorial for gaok joints is Chariton's mired with bailed all and a little span garn ont Ane; mixod withe band
 made, not too thiok and will hechew I would recommond T. King, if pondble, to have his fanges planed, mond to mato his jointa ase thin 20 poseiblo, and not to have his coment too atill. In mating the joints with planed fianges a piece of twine similar to that nsed by railmakers shoald bo laid ronnd the fange inside the bolt holes and beddod in the coment. Rod and whito load is the next beet thing, bat ralcan coment will lead is the next beat ihing, bat ralcan coment mill atand any heak, and advico him to got a mall oask of thif ocment from the manafecturern.-Vircas.
[12814.]-Carpulonce.- Get "Benting on Corpa
onco," a good work on the aubjeot. The book, with others of ite clace, is pabliahed by booknollors in Pator-nothar-row, London, price 1a. In many people the phyian orgenilatioa provonis hom from growiag are nots are the saring in pmotod elomely, are inclinel to
be carpalent. Others, again, from trying to grow atont, generate fat on the liver, which is the moat sasceptible to obesity in delicate conatitations. As the querist is an "Anti-Banting." he mast have heard or read of the an "Anti-Banting, he must have heard or read of the book recommended, bat the work may bo nceial to
others. Lot "Anti-Banting " try snother. There are others. Let pamphlets on the subjeot.- Rat.Tit.
[12614.]-Corpulenoe.-No pracedare will enable yom to acquire bulk that does not aim at promoting the general health of the syatom-at improving the tone of tbe digestive apparatas and antabliahing a healthy atate of the blood; disordered digeation will remalt in defeotire natrition, by cansing a defaionoy in quantity or quality of the ahyla, and un unheallihy state of the blood unay be the immediate cance of dafective nutrition by interfering with a cortain nice adaptation oxisting in bealthy mirition botwean the blood and the tisseet. It is no preciee regimen that I would lay
you down:-Commen eense mad experience will teach you down :-Commen eenae and experience will teach diot is adequate, brit avoid axoesces in toa or coffee. bef to submit a few directions, all of which aim at promotiog the general health, and which, I believe, will serve your ond :-Take regular and genaral bet not fatigajng exercise ; it ie well known thet inactivity of a limb invariably leads to its attennation. Walking is the best eserciee; it cells into play mare masoles then
any other. Fresh air is positively pecessary, that your any other. Fresh air is positively necessary, that your
blood may be in a healthy condition. Let your walkblood may be in a healthy condition. Let your walk-
ing be in the country an mnch as poseible, and I woald suggeat early moraing. It is not 10 mash the kind of food, wethat you mactioate it well. Never harry over m meal-no "bolting." Eat when you are hangry, and not becanse it is meal hour ; you are certain to derange digestion if you impose work npon your digestive organs then they make no call by hanger. Take very light suppers, if any. If you obey these directions, you will alliom have a disturbed night's rest; monnd sleop being all important in the process of "bulting." Drink sumbler of cold water each morning on rising, in sips it will prove an effleient tnnic for your stomach. Avoid constipated bowels; regulate by enema rather than by
drugs. Sponge jour body eaeh morning with oold water, druga. Sponge your body each morning with oold wator, and rab with a coarae towol. A void excemaive smoking; it enfeobles digention, and the epitting aceompanying it proves a grant dranght upon the ayoton. Thus you
may invigorato jear aystom and facilitate matrition.may invigorate
[12691.]-2:190k Dye for Leather.-If "R. Mr." doos not wish to dye leather on a large scalle, the fol. lowing is beat plam: 1d. worth of potagh to one plat of with the solntion; when nearly dry, eponge over with with the solation; when nearly dry, eponge over with bleck. If on a large scale I can mend recipe for black dye.-BadDLer, Kendal.
[12628.]-Immpblack.-I camsot eay the quantity of tar, pitoh, ce., required for one ton of lampbleck but any one can see that it is a prodtable braineas, though not very onviable one. The accompanying

in the iron farnace, and the dense amoke pagsea into the chamber, which in lined with oither sactring or sheeperins. The interior is swept from time to time and sold withoot any further proparation. The hollow oone of sheet iron inside hes a small hole in the top to allow the amoke to escape slowty after it hes deposited the greater part of its carbon; by raining and lowering the cone it sarepes the sides of the cenves or lea
and deteahes the lempbleakn-sundwe, Kendal.
[19684.]-Photography. - "Art Photo." had better try the "Collodio-Chloride Proeess," which gives aplendid reanits on either opal glass or poreelain. For full partioulare of the procese refor to a manusl, to be prnonred of the publishers of the Photographic Neve - Photo. Bristoliswers.
[12684.]-Photography.-One very geod plan to prodnce photographe on opal glase, or porcelain, is to take a transparenoy in the oamora. This admita of altering the size of the pictnce, and I have found it to give very fine reanite. Of course, a plate of opal giass or porcelain mnat be need for taking the piotare on instead of the ordinary glase. If the pictare wanted is to be the same aire as the negrative it can be done with. out the camera. The prepased plate is placed behind the negative in a printing frame, as a piece of paper
would be if wanted to print the piefre on it The Woold be if wanted to print the picture on it. The
plates, however, must be rept from touehing, or the sarface will be apoiled. A amall slip of folded paper
placed af ench ond anil do this if the presenme placed at each end will do this if the preesure of the
apringe is light. I don't bother with a the plates together at the ends with my Angers. Care
comes at a right angle to it, or the pleture will not b sharp, as the two surfaces are not in contact. I find that standing sbout 6 ft . back from a window, and keep. artifcial light. is used, the plate should be plan. I 1ft. from it for a mall negatire and farther for a larg one. There is also the collodio-chloride process for getting a picture on opal glass, which gives very fine resalts. I think that a carbon print trangerred to porcelsin or opal plate, would hare a very fine effect and would probably take colour well. I have never tried either of the two lapt methods, nor do I know anjthing abont colouring them; at least, not practically, and therefore cannot write from experience. occasioral Photo.
[12894]-Fhotogenohy-Trke a manoth sheet of opal gleas, cont it in the ordinary "albaman proouco mede. Whan dry, place a nogative in coment and expoes for tem seconds to dillused daylight Develop the image by gello-nitrate, fx, and if deaired tone in gold ; varaiah. Any of the dry collodion pro comes many be vecd instead of the albumen. I can give no information with regard to colouring.- B, Bortonn.
[12636.]-Thlarging Photographs.-The inclosed sketch will show "Industrious Will" my method of enlarging photographs from emall negatives. A is an ordinary 4 plate portrait lens, whioh is afined in a long bodied camora BCDE, taking a 10 in . x 8in. plate in the dark alide at B D. On the hood of the lens A is ftted a aquare doal box F, in which slides a alightly amaller box G, blechened inaide with lampblack; H and I are two small catches holding the negative to be enlarged with the film vide towarde the lens. On pointing the camers to a clear alty, an onlarged image of the negative will be thrown upon the focussing screen at B, the sise and sherpneas of the image being regulated by aliding tho inner boz backwards or forwarde as required in collodion plate 6in. \times 5in. is now propared the negative at wis is now corered with a dark

cloth, whilat the dark sllde is placed in the camera, and the shatter raised. Expose by removing the dark cloth for the time required, which may rary from thirty seconds to fifteon minates, sccording to the inten-
sity of the light, density of the negative, and state of the sity of the light, density of the nogative, and state of the chemicals, but be careial not to nnder expose, rather go wrong on the side of over exposure. Develop with ordinary protosulphate of iron, as for negativen, bnt do not intensify. The resalting pioture, is, of oourse, a transparency ; to procnre an enlarged negative the 6 in . $\times 5 \mathrm{th}$. transparancy is placed in the box G, in the same way as the original small negative, and the operation repeated, this time enlarging to the fall size of 10 in . by 8 in . ; the reanlting picture being a negative which, if the operations have been properly condacted ohould be equal in sharpaess to the origiaal emal pioture. Great cleanliness is, of course, indispensable, as every apot and speok is, of courso, enlarged tenfold. -Photo Bristoliensis.
[19888.]-Fieas in Dogs.-Refor to Vol, XIII., No. 828, p. 887.-N. 0.
[12639.]-Worms In Pony.-An old man near me oftan came and begged "bex" from my garden for thia parpose, telling me that ho ohopped it up and
mixed with the fond. The man is now doad, or I mized with the fond The man is now doad, or
woald have made particolar inqairias, and been full would have made parti
satiefed.-Benenoxe.
[12942.] -Ice Oreams.-Various ingredients are ased as well se refrigerntors, the most general consist of milk thickened with some ingredionto, and havoured With some of the eseroces. The freezing apparata conaistry of two perter cylinders and a buoket when ie and bo got ; ice and asit are used in the outer backot tween the oplinders. The of saller one is furnisbed withe piston that tita slack, and is worked up and down by this. The thin film of ioe is thrast down to the bot tom, and continues accumbiating until all is froeon If wanted colid it must remain a for minntes after it foels firm ander the pioton, otherwice it is like Anely divided snow. Whether there is any improvement upon this I know not.-JAOE OF ALL TRADES.
[18648.]-Diotlonary of Eolentifio Terms.There is a book published by Lackwood and Co., in Weales" Serios, oalled "A Dictionary of Teohnioal Torms ased in Civil and Naval Arohitecture, Bailding and Oonetraction, Finily and Boeloninotical Art, Oivil Sad Meohanioal Engincering, she Fine Arts, Miniog Sarreying, to." to which are edded explanalory obeer and moiemen, pion anbjeots conneoted with appliad ar
[12648.]-Dictionary of Scientific Terms. Bachanan's "Technologioal Dictionart" is asefal book, and will probably anit "Plough-Driver. type a dieadrantage-DR. 8 .
[12648.]-Diotionary of Solentifio TermaSimmonds' "Diotionary of Trade Prodeote and Treoh nical Torma," Ronilodge and Co., is the mont reand cheap, and portabia work of roference-P. In ED suombs.
[12645.]- Otilistang Oid Paper.-The proent of moving int from privied peper and wooldog ti into grip has been in operation some ton en twelveycera, and B Lambert (the in ventorn) proeser whe elopted. I thinh by Bradbery \& Evams, at the Kennet Paper Kills, I Theale, near Beadimg.-P. In. Snryords.
[12646.]-Alcohol.-If methylated spirit be ack tilled, the shellac or other residone matter which $:$ contains remains in the retort. If it be necemary 4 obtain a spirit richer in alcohol, rediatil this the
 will give a probe
poee.-A NAlyer.
[12846.]-Acohol-Pat it into a still and arme over two-thirds.-JAOR OF AKL Trades.
[12848] - Moifture on TYin Suarnoe-The phe nomeaon which "Tintab" hes observed is moot earil explaimed. Water is one of the products of the ect buction of oongra, ariaing from the hydrofen whin it containa. Thas vepory of water in, of 00mrme 000 denced when a cool sariace is exposed to the bente

[12648.]- Mointure on Tin Earfoo-In th process of combnetion the hydrogen and oxyeen of the stmosphers combins and form reter whioh in the shape of vapour, is condensed by coming in contact with your cold tank-JAcy or AIL Tenders.
[1964.] - Tantwre on Tin Surtece. - Mre eage of the water forming on the bottom of "1 Tyintals tin oistern is due to the concensakion of whe verpar formed by the oumbuation of the hyarogen of
filame in conthet with the oxygen of the atroupplem which condenses on the cold corfece, water chers which condebees on the cold curface, Faler abwey being formed when hydrogen or coal-ges in
air. I fornd that in 1800 the quanatity of duced by the burning of conl-eas, in duced by the barning of coal. Rse, in
smounted to 16 tons 180 int.
[19648.]- Tolsture an Tis Surenca-The cen in barning, keneratee walor, its escaping geees nis Cherefore a mirtare of nitrogea, carboaso and and There is no oontradiotion to " aknnomledged theony;" but perfeet ecoordance thorewith.-Gicra.
[12649.]-Kitea.-In kite making the shape of tie kite, although the usual one slways bies beat, is ant matorial, 80 long as it is light, ovenly balanoed, and lies at the right angle to the wind. In obteining and precerving thin angle lipe the whole art of the tite-finc, and to this ead he depends prinoipally on the tail, an best form of which is a string of three or four enall conical bage (more or lese, according to their sisa, and also sceording to strength of wind, whioh experienec will show). The botion of one tied to the moeth a the other some 6ft. or 8ft. apart. The montha of the hage are kept open by a piece of split anae made irto a hocp, and Eewn into the calion or other material a which the bage may be made. For general nee and wesker I make the tail in about them proportions :For.s 6/t. Kite of the common form I ahould have the firat bag of the tail-i.e., the one nearent the kite (and thet should be some 8it. amay) aboat 7ib. in dinmeter at the mouth and 10 in . deep to the point, and thre others at intervals of 8 ft. of string. of diametces gradually reduoed, so that the lest should be oels sbout 2 in in dismoter. With this tail no remains is required to raise the kite, it will go np, es it mera, of itself in astraight breeze, that is to say, sures tram the influence of trees or houses, by merely palling the atring with a slight jerk, abont thirty or lorty yarde outsad a ray from the kite, which has been laid rith itn face on the ground and with the tail clear.-l Yomis.
[12658.]-Poultry Teeping.-Bring diverimp to bear upon this, Fhioh map be deoe veit
rery eftoctually. JAOK or All Tande.
[12655.]-Core Box_-The interior of your bas moit be rasde the eame shepe Bi vou require your steam wars, sllowing extra length to tit the print apon yoar pattorn, that the core can be properio cesp portad.-Jacz of Aul Trades.
[12656.]-Photographio.-Tranaparenoies fer 9 magio lantern may be tomed to ariol Mach eolorar by
 of mive or in trearion in 5 ge heth of bichilots of mercney follomed bs a solotion of ememenin f effer to the ounce of watar. The former metbod rill m found the bottar of the two, giving greeter dafticent than the lattar which is opt to canen hamenar Transperencies shonld it derelopet pith seikin Tranapasenceis anit "Kant", rill matre colation of pror incalphatying of 15 gre citric acil 8 are wetor $10 x$ and nee the of inc tn dey oiteic mis agroy wator loky, alil obia black colonr, withost any after toning-REara BRigtolifisets.
[18886.] Troto Eraphio. - Print froue a M
dovelop with pyrogallio soti onky, not with sulphate of iron. By these means row mill generally got your oathines black enoukh. Showd
toae with gold. $-\mathbf{S}$. Bortome.
[12657.] - Cutting Cylindrieal Glase as Botties and Chimneys.-Take a fine gle and niek it all ronnd; alterwards take long tobacco-pipe, glage will drop off. -Juck or ALI Tradzs.
[12657.]-Outting Oylindrioal Glass as Bottles and Chimneys.-W. Pike may out the abore easily
withoat a diamond; let him take a worated
and thread and wind two or three; ply a little (say tin.) beyond the part he wanta it cat at, let the thread be
thoroughly soaked in water, then let the edge of the tame of a clear gas-barner strike it as close as he can to the thread, tarning it all the while, and it will scon fall in two. Shonld the thread get dry or vary hot, wet alsech. I have out a quart bottlo by such a procena very neatly.-W. D. T.
[12857.] - Cutting Oghndrical Glass as bottles and Chimnoys.- W. Pixo may out his iron pointed at one end, just long enoagh to handle oonveniently ; hoat the pointod end to rednees (not oonveniently; heat the pointiod end to rodrees (not it, and in a second or two he will hear a sound whioh indientes that his out, or rather orack, has commenced. Now draw the iron on slowly, and he will find the crack follow after in whatever direction he wiahee; repeat the hoating process whon necessary. He will find it beat to make small nick" with alio metted with Bhicklayer.
[12659.]-Water Preserare.-II your rupply-pipe from the metor is to be of a certain diametor only, of course pat that size pipe in, cal it is a fin. Cimmon sense will tell you more than the fall of it cannot come
through it, bat you can increase the rapidity of the through it, but you ean increase the rapidity of the
flow greatly by enlarging the bore aftor loaviog the metar, and, therelore, got a greator diacharge in a given time. After a far yards of the 1 in . pipo, oontinne through a bing, and your best reacit will be obtained. -M. A. B.
[19659.]-Water Preanare.-Make your entrance or feed trampet-monthed, never mind the rest, as long 28 your
And Tridga.
[19859.]-Wator Promarue.-I shoald think you would find it bort to commence with the amallest pipees, as mator woald evidenthy pace through a large pipe Fith more faolith than a small one; you would, therefore, have the resistance lessened every mile, so that if it was able to pask through the irst mile satisfacto-
rily, I should think it. Would be cortain to do so in the rily, I should think
others-R. D. D. M.
[12660.]-Aexated Bread Maldigs Machine.You oonld not nse the machine otherwiee than for genorating the liguor for wetting. You would vant a trough and mizar.-Jıck or ALL Trudeg.
[19604.]-To Etereotype Brame Blookes.-Are they come blocks you want to get some copios of, or types are done ?-JACE or ALL TadDEs.
[19865.]-Gea Bioknoen-d cure in enid to have been discovared by Dr. Landerer, medieal man at Athens. His remedy is to give from ton to twolvo eaces romeves nagasea, and peosone who have taken the remedy soon become abto to mtand op, and got accastomed to the movement of the ressel. 8hoald was tried on twenty passougers on a very rough voyago from Zoa to Athens, and an, with the exception of
two , were cured by one dose. The minority, two ladios, wore able to reaist the feating of illmens on taking a second dove.-samarana.
[12665.]-Sea Sickneas.-Twenty drope of ohlorio ethar in a lttule watar falken whem compmezoling the roymge hat beon found efleacions- S .
[12665.]-Sea Sickneas.-Keep on deok. Should you feel any nansea, lay fat down, as near the contro of the deck as possible, and ix your eyes and attontion on a book, that shate nut from your sight the view of the moving spary, \&o. Belore going on board, naither
motarve nor gorge yonrcelf. Arodd fat food, and do not marre nor gorge vonreelf. A.
drink brandy. -S . Bortons.
[12866.]-Works on Artillery. - Emerson's "Story of the Gans" is worth reading, although not a very tochnical book.-PriLastirapist.
[12088.]-Aubarn Fair.-I do not think it isposaible to turn dark bair into an auburn shade, bot I have prodaced Ane anbarn shades in hair of a middle tint, by mesps of strong nitric acid. Care mnst be zaken not to dip the hair for too great a length of "golden" dyec.-AKalyst.
[12669.]-Lottery Lawwe-Read the following Acts of Parliament:-17 Goo. II., chap. $5 ; 42$ Gen.
III., chap. $119 ; 5$ Geo. IV., chap. 88. Wimhum Mex.
[12670.]-Engine.Turned Seals.-TTake equal papwards ponr some npon it. When it has hecn on for apwarde ponr some npan it. When it has hecn on oor cess takes the barrs off ; to prevent it getling black ild
[12671.]-Dresalng Jaok Line.-Tnke a mall
portion of turps, in which dienolve a emall portion of
onsmphor, mix this with six er woron times its bult of ram lincoed oil, and straining your line, drens it. A line drocmd any way in
$\mathrm{J}_{\text {AOI }}$ or ALI TRADEs.
[19871.]-Dreacing Jwok Inino-Make a oail of your line, tie in throe or four places wilh threed. Dhs. colve halr a pound of beet glue in water, hell a pint in a Piphin. When diseolved, boil yours ocil of hioe in it for half an hour, romove it, and dry it on graea, anooling it. hour in a solution of hall a pound of tersa japonica (catecha) in a pint of water. Hang it ap to cool for (catecha) in a pint of wator. Hang it ap to cool for
half an hour, well weah it in olean oold watar, dry, and strotoh. - M. A. B.
[19er8.]-Grove's Cell.-The bet way to con. struot a Grove's cell in to have two platinum plates ir'a porcelsin fat cell, and a single zinc plato in a porous cell, also fiat, clamped in the samo manner as a Smee. Sulpharic acid 1 part to 8 of water, to be ased in the porous call; and concentrated nitrio acid 6 parts to
of conoenteated sulpharic acid for the onter coll, the 1 of conoentrated anlpharic acid for the onter coll, the platinam platee boing immeraed in thia. Although the arrangomont is very cootly in the frat place, it is the chespest in working, te the whole of the gine is oon.
anmed without wante. The zino. ahould be well amalsamed without warte. The zino. gho
gamated.-A. J. JABMAN, Ramegate.
[12674.]-Plant Boxea.-Tho colours aro.probably glased tilos. May bo got at any pottory and not in - ${ }^{\text {grod.-C. B. }}$
[13674.]-Plant Bozes.-I have some pretty ones in my windown, which were made by nailing pieoes of oil-oloth of saitable designs on to the wood work for contrea, and patting a moodon moulding round the
margina, the latter painted any colomr to mit the margins, the latter painted an
patterne they inclosed.-T. H.
[12675.]-Fiay.-This plan, I think, would prove a failore, inasmach as I do not boliovo that it is ponsible to get one drop of juice from a ton of hay, however
great the presarare applied. JIACr or ALL Tradze.
[12675.]-Hay.-The beat process in a very simple one for hay, grain, to., and woald often pary well. It fon to draw warm air throagh the meso.-Siema.
[12676.] - Book- Keoping.-The value of the machinory shoold be pat to the ceedit aide of the capital nooguat. It shoald ano appear in the itiook aconont, this
ANTRROPTET.
[12678.]- The Blucooat Sohool. - "Tavse" ahould got a liot of governors who have presentations conntil carront year. This and ithe for bd He should then urite to any one or two of the eoserne whoes names he mer knor mitigg his ciresmetanoes. If he hat any friond who oun intoreat himeoll with gorernor his ohance monld be earior. Boys are received from 7 to 11 years of age. The oxamination for rrom 7 to 11 years of age. The read any elamentery book, write legibly, eay the manltiplieation tablo. 9-10, booz, writa legibly, eay the mankiplieation tablo. 9-10,
ditio wa abore, epell fairly from diotation, work the feor mimple ralee of arithmetio. $10-11$, ditio an above and fair lrowledge of the compoand rulles of arth metio, and the Latin Aecidenco.-An Oud Bluy.
[12079.]-Papier Maohe.-Is no more than old papar roduoed to a palp, or paper palp mixed with panto and prossed into a mould, it is then dried and atoved, trented to lacquer or a aolation of apphalto and etored again, then dreesed of emooth, hequased

[12880.]-Darkeniag Greduations on goales. -Try Branamiok bleak. Rab quiokly ovar the divaions,
Bottons
[12881.] - Is the Interior of the Globe Veourum P-This was rather fally disonseed in No. 167 Vol. VIL., "Soven Fandamontal Errore in Geology." which "Baleairn" will ind worth anaworing belor he proceeds further.-E. L. G.
[12682.]-Ervaporation of Water.-The rate of ovaporation inareases rapidly with the tomperatare, it varies as the anrface ; other ciroumatanoes, proh as tomperatura, being the anme. Inoreazed preasare
diminiahie evaporation, and vice vered-PHLLANTHRO PRAT.
[2888.]-Erraparation of Water.-In proportion to surfaco, not balk. Inore
lensen the evaporation.-Cervus.
[12685.]-Garden Models.-Insteed of the man turning the grindatone the grindatoze tarns him. A omall wind mill might be attached to the abaft of the grindatone, and be concealed from riow in some man nor. The figares may be made of light wood painted. A weight might bo anod instead of the windmill, but the mechaniem would not be so simpio. A opiral of paper placed on an axis enme distauce over a lamp rotaten, and might be conneeted with a figure. I baw this in Canada-Philanteropist.
[12888.] - Graval for Aquarium. - I have aways found simple washing in cold water amply suffcient to remove all impuritieq deleterions to fish from quantity to injure the fish nuless a very large quantity of gravel in proportion to the size of the aqnarium was ased. I make it a rale to have as little gravel rock-work, de.-and, therefore, as much water-as posaible in my aquariams.-Loacr.
[12fR6.]-Gravel for Aquarium. - Boil the
[12687.]-Tarking Int-If the ink marks turn brown your romedy is to damp the part, and amooth it
over with hot iram, they will then be black.over with a hot iran, thay will then be black.BALOAIRK
[12688.]-Training for Bioyale Raoos-LJot esch time ran. milo daly on a good roed, notioing sble to perforta ino dietmoe to a wery hort span of time, and will, therofore, stand a falr obanoe in any bioyele races that takee place-FI. B. Sunw.
[12689.]-Florses' Eloom.-OII the hoofs occesionally with neatafoot ofl (to be obtained st the sadders). Some peogle stop the hoota, at night vith galt mod from the gea ghore, or aimpty wash tham in
brine. Having tried both plans Ithint tho oil is maoh to be preferred.-SByyiock.
[12689.]-Fioseced Hoofis.-Try paintiag them ever the ontinde with trenolo, nind pain os tho bot wh wh com.dang and treacle when pat up at_night.-Jacx or axl Tradeb,
[22689.]-Foraces Eloodn, The onciost and beat remody "W. H. E." ean apply to hie oarriage-horso is o get his medilar to manco mrgo hormeboota, and ill spon ceoh evoming with fresh cow-angg (come aso largo sponges inside boote, wot with maler or tar-watar), bat ow-ace io mati; in a sbort kime the heofe will get in propar ordor ; thero are othor sorte of ooverings
[12689.]- Horsea' Hoofm-If "W. H. K." will take of stockhalm tar two parta, and white fullow one part, pat it in an ald ascoopan or lades, boil it gondly to or thre tin go eota, than apply it to thi are he will find the hoofs in a short time all that he requires. Have the horse shod with s stif shoe--ONE WHO EAS been Troubled with tif Same Thing.
[12690.] - Fire Maske on Surar Geods. "J. J. N." may eneily remove the marks be complains of by well rabbing and braching the aeticle evith gtrong liquid ammonia, if this fill not remave tham dip the articleinto a boiling hot colation of oymanide of potaconinm, 1ne. oyanide to lqrt. Water, to be made hot in a porce hain badin (never use a manal eluoopan) rab abe artuole ajoo win ho mation wio handa into it) ; this done, woll wash the artiole, dry, barnish, and palith in the reaal way.-A. J. Jalman.
[12690.] - Fire Tarks on Bllver Goods.-Use nitric coid in wator instoad of salphario to make the plokle. Heve your stained ailver hot, throw it in, and it will be porfectly oloan and free from atain, no reatiar how much dicooloured it may have been.-Butcalkin.
n2090.]-Fire Tarise on sulver Goods.Try nitrio acid, and wash rith oranide of potassiam. I em afratd yoe have givea them too mach dre-dif no, there ia no caro.-JAOE or ALL Thadea.
[12692.-Deliquesoenta.-There are many mitu Whioh on boing rabbed up in a martar togothor, doliquecco. This is owing to a doable deoompoaition tak
 sfflaityfior oech other's besees then for their oen rna liquid then pordared together. The most delignecent bodies are calciam chloride and ohromio coid. -8 . Bottowe.
[12608.]-Fenat or Barme.-A half gallon of malt and $\ddagger 1 \mathrm{~b}$. of hope will mate three gillions of what is alled patont yeach. Boil them together for an hour and whon lako-marm oot thom whith an or or half pin
 portion rieed
[18697.]-The Raxp-I would not adviee "Dn Boate" to meke his cound-bor of metal, for it vould not be likely to produce the noft mellow tone of Wood, nor would it be as eany to work np, and as far an coand giving eapabilition go, wood in lesa affeoted than iron by variation of tomperature. It he livee in London he woald do well to viaitithe Exhibition and thare take the measarament required, Sor he doea not say what kind of harp he wishes to make. For the practioal detaile of the manafacturs, he coald not do better than follow out the aseggastions of "The Harmonious Blactr. amith," or, if he wante to make the lriah ome-koyed affair, of "Irion."-Viaromones.

UAANSWERED QUERIES.

The numbert and tiles of quorico porian semain me annwered for Ave weeks are incortedion this liot. Wo truet our readore will look ooor win hich, and nend what ingors mation ehoy aen for the bonall of thoir fallowe eonioributors.

8ince our last "Woat Oornwsil" has angwered 12984; 13327,$12362 ;$ " Outgenions Whitesmith," 12324 ; "Photo. 12354 (see letter 4812).
18483 Pie-Henter, P. 471
12484
12437 Brickmaking M, 471
$\begin{array}{ll}12437 \\ 12440 & \text { New Oil Light, } 471\end{array}$
English Coucertinn, 471
Southern States of America, 471
Fonr-valved Cornet,
Exhibited Inventious, p. 472
Whoels, 472

QUERIBS. (19756), -Ritohing on Stono. - Would a A Working it of otobing on lithographio mitone ses he has givon
 W. B., Bojal Eagineerth
 well ; and aloo bost means of moniding game, whether by roatery made to rati mouldiling (it boing winding

[19758]-Sooket Handlee.-I shouid be obliged to come one giving mo hiormation ao to the bost moans of mating soozel I have e verg large guantity to make and 1 am now turning them on a mandril in a croase, Which is a very todious procesis. Thope some one can

[ITT5Q]. - Lealdmg Indiarubber Bottie.-Oan botule that loaks P-W. DAVErPPorr.
[197e0.]-Binnging 8late to 8urface of Quarry: deep, from which ap to the present all the stone has been breaght ap by horsean and carts. Ih have an 8 -horse engine at the surfaco for the parpose of working the
pampe which keep the water down. Now, as the engine pumpe whigh only required to wort half time I wish to uthlise it for bringing the stone to the sariface, by tramway or way od doing this? Would a steam winch led by the prosent boiler bring ap (say) a ton at a time apas procine of 1 in 6 in Any hints brother subscribers may give woald greatly oblige-A Poor Ibisuman.
[18781.]-Fleotrotype Moulde.-Have any of your readers over used stenrine wax for this parpose. I have
found that when mixed with small proportion of rotion-btone (to provent brittleness) it takes aharp mpreasion and is easily dotached irom the mould.-Z ETA [1278es]-Ourve of Yirror. - What is the ahape of the ourve of a mirror for reflecting teloscopes ? Is ita parabola Is there any machln
are they done by hand
t-ZxTA.
[19768]-Proparation of Carbon.-How is oarbon prepared rom loar sagar 1
[19784]-Fringe Mraking. - Can any of the readers of the Exalisi mectunic toll me if a machine is made, meohine to take ont of thene the warp or wool ase the caco may require.-Hvoi.
[19708]-Bun-dial. -I want to constraot a sun-dial at corroct ai posesile, bat do not know how io go nboat 300 N. is it nocessary to know the minatoe and seoonds? I Want the onter circole to be 12 in . diameter. What hoight ohould the gnomon bo and what angle ? Bhould
it pontint tree N. and 8 ., or would the magnetio veriation
 hour woald desoribe a 121 n circlo, and mark off the out aite and shapo of gnomon and let me have it with
 thank him mang a day when it would be set ap in a far.
offland. 1 would engrave it on slate. 1 think a prac-
 would be of great intercest to many an-Emicasint.
[19768.J-Fidddles and Fiddiling, Many ngoful 1 have been watching to soe if anything should meet my callo. Ithink, in ady holp me out of I am tronbled with the bow aitpping on the stringe (ss it seems to me); my I try my beet to avold tit. Is the qudle in Eanlt, the lor the best, however) the resin (too muoh or too little), the bow, or him that boweth? My instrument, Strad., eco, Oremona, 1719. Powerful toned.-H. H.
Hig7e7.] Puddling Fishponde, dec.-I havo e
 informu mo how to proceed as regards mixing the clay
and pating it in, and mhat thickness will bo suffoiont, as it has been pridaled belore with sim. of yallow aly y, What thioknces of lime will bo sunficient to keep the

[19768]- Bpeoifo Gravity.-Bykee's Bydroto tako mpooino gravition wht it. I should take it as a groat avour is come ono would givo a comparativo tablo
of dogreen, as marked on Sykesk, Baumb, and Twaddle's bydrometers.-sprart
[ia7ee.]-OVal Turning.-I ahall be obliged is w. adapting the athe for oval turning, the bed of lathe beling

[19770.]- Boring for Water Jot. - I have nomewhere rem probably long belore the adoption of that prectico in Artole, thence we derive the namo (artesian) of wellis 80 formed. Can any fellow reader oblige me with information concerning the antiquity of this prooess-when firnt uned in Weatern Rarope and Northorn Afrion; alion in What booki I oan "rosd ap" its history? I trust my bored-by my many inquiries and that I oholl not bo
considered to be "boriqg" for information. ${ }^{\text {THI }}$ HaRconsidered to be "bori
moMiove Braczacirn.
[12771.]-Colorado, U.S.-I am about to emigrate to any rellable information on any of the "ollowing points: 1 Best way of getting there-Quebec, Now York, or
Baltimore in
2. Expongo for intermedinio and 2nd clags.

I do not mean the stenmer or rall fores, I can ind them out, but inoidental cost, onch as average oost par day in noderato hotolis, aredining oartiages in the traing), trannit o luggage by
oart or oab, do an am going to Denver City inat, and have a littie capital to buy land and either grow frult, raise stook, or larm ; what part of Oolorado would bo beat for each 4 I am told the climate is the boat in the worid; is hall this true? 5 . Aro there any books on
 able in this conntry ? 6. Bhould I take tools and implements or anything particular oat of a regalar trave
kit 7 . What are the prospects of success for hard rork, aome intolligence, and thorongh determination? Is it mere
[19772]-Beo Keeping. - Many thanks to Mr. C. N. o good as to fulorm me requently given ; will ho be barrframe hives that bave movable partitions; if he would advise taking somoof the frames that have sealed honey in the comb from each end, and leaving the ends vacant, to be alled another year; and the best way another; also the bost plan of ventilating or lotting of the broath of the bees from bariframe hives during the finter monthe ?-Join Walrox.
(18773.)-Boot and Shoemaking.-I shall foel obiged to oar idelalgnble riena daciof all Trades ing? Also, how are the pieces of leather put on heele or toen' ends en as to make them appear straight or on piece ? Also, is there a tool to tako out the old naile ?Harby Macpirbson.
[12774.]-Harmonium Koys, Not boing in a pootuny reader kind wood as a substitate, and whether it is advisable to varnish them 2-E. W.' \mathbf{P}.
[12775.]-Artifloial Marbles and Stonee.-Can prod and give hrochoas for making theae, aia io some time ago, and there was bat ono answer, and the directions given were too general to be of any aso.-
Thos Hackirt
Thos. Hacket
[18778.]-Gas.-Like "Philo," I am a gas consumer, ought to have some means of tnowing the quality of the gas we barn. Could he or any of your scientinc roader quality of gas ? It is able instrument ior tesiing tare care and leos light we are called apon to pay more; or in other words, our gas bills increase every oorrespond. havo reocived valanble suggestions from thbe columng of the Yrcinnic respecting gas, but I feel we are too much

[1877.]-Object-Glage.-"F.RA.S." is so kind in answoring queries that I am tempted to submit to him
the following. Ism about constructing a teloscopa and in the purchage of the object-glash I cannot excoed a oortain sum, and for this amount I can purchase al 21 n . glass or a afin. glass of best quality from an optician of creat ropute, whilst with the emonnt I intend expending
can buy a 8 in. or 3 in. glass of ordinary can buy a 81 n . or 3 ilin. Rlass of ordinary quaity, suc
as those supplied in the es telesoopes. In want my tele soope both for antronomic and terrostrial observation and wil than ourt-nass. Which will be the most Eatis ohate of the object-giase. Which will bo
[72778]-Printing Metal Leap on Silk and by tolling me why loal on aillt and ootton for folt hats ? A man who has juat come from America can print metal leal on almost anything, whereas I have to make three or four improssione eometimes to get a good one, and he hat a trang parent varnish, and that it doew not affoct the ull or cotton, but leaves it just the samese if it had none on. It arys in one minaie so that thiys are rating the
for printing at once. It is made of three thinge and are rather expoasive ; bat mat ther are, ind hom the varnith is made, I cannot find out The French printer and some of the London printers ase the anme. Fo some years I have used powdered rosin and shellac. got a good recipe from this paper, but it is nothing com-
pared with this Amarican recipe. Adraving of the pared with this Amorioan rectpe. A drawing of the
Amerioan press would also oblige-J. B. BEARPLEY.
[12779.]-Tightning and Thunder.- $\mathbf{1}$. What is yclept, forked and aheet? If it that the fash appear Coos not the faot of so mach and ehoet otherviso sna doos not the faot or so much sheot ughtning being coon
at night, nuecompaniod by thunder (and, therefore, we may prosumo, at an extraordinary distance away), prove atinglo and distinet, afteryoed by an eleotric explotion oansing the continuous soand known as thunder? ${ }^{8}$ When an animal, tree, or other object is struck by light-
ning, what is the materint that strikes ? Is it oimply ning, what is the material that gtrikes is it oimply Cric Auld " a material which may be analysed at woll as Eilt No doabe an nnswer lo theee queries would [19780.]-Turning Spokes of Carriage Wheel is neoded to turn a spoke for carriage wheel in a oommon lathe P-AMATETR.
[12781.]-Applied Mechanics.-It P be the break n ixed at both ends, f and a tro eross section in inches, $l=$ length of oolumn, and $h=$ die of column ; then

Now I wish to know to what anits $P, 1$, and h are referredthat is, does Preprese
inohes?
[12782]-Fiull Moon.- 1 wonder whether some of
for three or four yoars to corme. It eo I fanoy it wooll [12788.]-Sish Prancea,-Can any of yont cocre pondents toll me why geah planae are hot iep pain but so far as I Bormace AMD ARy.
[12784]-ILibrariea.-WII some kind roedor plean ducting of publio libraries? tho management and ease and numbered? Is there no bottor and more back way of numbaring than by gummed tickote, which an iton torn off and lost? Could nome kind of a ctamp ased for that parpose-if so, where is one to bo hed : a Libeariak.
[12785.]-Trompe or Wator Blowing Tachise
 machine going in Eagiana, as mam not awro or any anfit for capola parposes of Any informntion regartar

[12780.]-Photography.-I shall esteom it a grea ravour it some of our able phota correspondents man
kindy reply to the following quarios. 1. What asan ik done to silvered paper to makiko it teep a wook or foraight bofore usiag ft p q Oan anythling beoides ksir oused for restoring the colour of discoloured nitris I always ind the molution wants hiterine aerta visites be prossed fiat ? Mine alwaya ourl after rolline 4 I wish to produce mome very opaquo transpareasin or magic lantern from negativas How am 1 to for
work? 5 . I ghall also be glad of information respectic copying from the carto de vialto print, same size nlargement, without artifoial light if possible roplying to some of the ebove queries - Curres.
[12787.]-Dear Cool-Win "Philo" kindiy tell o the price of the half open stove alluded to in his leve apparatua?-C. W. A
[12788]-Design for Marble Iniaid Table-Wi marble table, about 20in. on top, and pieces (say) ifc. ifin. to 8 in. $?$ I underatand the practical part vary wis bat I wish tor a good design-M. \& 8. Masox.
[12789.]-Staining Fanlight-I wish to stais e olour a fanlight over door to show some view or picent: over publioans' doors stained a very bright arimeon green, with picture in uncoloured or platn glase: for
stance, the Bridge Inn, with view of a bridge a scenery. If some one wonld kindly give the informatit SaddLER.
[19790.]-Watch Repairing.-Being in towa t materisls, I found that the same had increasod in pris Now, I consider that I would be justified in makin: conntry jobber, I shonld feel obliged if any brother pivots would inform me what is the usucl ahsri for potting in a mainipring, a balanoe ataci, and a reič
also, if they would kindly say which is the best meltx of hooking in a maingping with a stoel hook, or mir brace one, same so in a Goners watoh I also wish peper) (perhape "Pratical 8eoonds" will tell us in tiver papery how to take the height of a oylu for his wrink
broken ode. P.8.Thanks to J. Mokay fot his in brimping a Geneve escape-wheol I onif wish I th kame method.-J. H.
[12791.]-Table Fountain.-WIL aome one axpici the action of the self-acting table forntaing showni [18792] the steel for a magnetio needle to a blue or to a firw oolour? I wiah to woight one end with solder. Wril tre
[12798.]-011 of Peppermint-WIll any of rot readera kindly inform me how to extraot irom the pin [12794.]-Ammoniscal IAquar. - I mould than ber of gellang in ton of smmoniacal leupor of δ°, \mathcal{F}^{2}, ber of gallons in a
70 Twuddle.-J. W.
[18795.]-Test for Whiting in Paint-Will of our ohemioal miende kind
[12798]-The 8panish Leneques-Erevine oided to acquire a knowledge of the Spanish langange. "ours" to give his opinion with grammar for self-taition. I ahould use en Ollesurs if there is one pablinhed. I find that by auch mane can learn a language in much leas time
[12797.]-Rats and thoir Eisbite-De. Lirs of the in his recently arrived denpachos, speatis fomats whore the animals wers lialn caje of ther
"Many were half rotton or gonared by rodeut to sharpen
leaden pipes." A common oplnion among nib, at the water they hoar ruehing past. Can any: scquainted with the habits of thope animale say t gives the right reason for th
the Dootor?-COyMor SExam.
[12798.]-Air Fessel on Suction Pipe-1 and on this plpe is ixed a lergo air peen ilk ke pamp. Would any kind reader inform what alvaie is gained by haring one on th,-Douaypul.
[12799.]-Speculam. - Will Mr. A. W. Blaokjoek he got his specalum out of, and also how he manew get the edge to shape p-AXIT-Fhazizi.
[12s00.]-Pantelegraph.-I ahould teal ankr-the abcre- PHikuxteroviat.

OHES 8

Arr commaniontions intonded for this appartmont to be addreseod to J. W. ABzotT, 7, Claremont-place, Loughborough-somd, Brixton, B.W.

The correrpondences matok betreen the Oity and Theans Oheps drabs, to which wo alluded a low woeks beake, hat been commanced. Tro gromes will be played concurreantly , Vienna having Ir in the Austrians and Loned the ball with the orthodox P to Kt , and London openversed by moving P to $\mathbb{Z} 4$ aleo. In game No. ${ }^{2}$ Lonaon comm to K4. The ereat cantion dioplajed by London in adopting an irregalar oponing may posaibly to s tribnte of respeof to the known or auppected power of tholr adver rariee, bat whatover infuence it may have apon the allimatedectination of thentakes (8100) ilis cortain to deprive the game of all interent to those amateuri Who hare been looling forward to this matoh for nome now derelopment of the theory of chesa, Oze of the Vienna papers printa a liat of gentiomen appointec by the alub to condaot the games on their behall- r in. $\mathrm{Dr}_{\text {r }}$. Meitper, Jos. Berger (the woll-known problem composer), A. Czank, O. Galbfuhs, and Dr. Floinaig, favourably known as a blindlold plajer. London will bo reprecented, wo baliovo, by J. Lowenthal, Harwits, Pottor, Steinitis, and Bleakburne.

The score in the matoh between Steinitz and Zakerfort stands:-Stoinits, 4 ; Zakertort, 1; dramn, 8 .

ENIGMA II.-BY J. W. Absott.

E on K Kt 8 ; Kts on K Kt 7 and K Kt 8 ; B on Q8; Pa on K Kt B and $K R 4$. Black.
K on K Kt 8; Re on K Bíand K6; B on Qeq Pb on K 2 and K 8 .
Whito to play, and mato in two moven.
Problem XIII.-By J. G. SuAter. Brack.

Whise
Whito to play and mato in four moves.

Solution to	Problex XI. ${ }_{\text {Black. }}$
1. Q to $Q 7$ (ah).	
2. P to Kt 8 , beooming a	2. Kto Q \% \%
8. Kt (ch). ${ }^{\text {c }}$.	
8. Kt. to K 6 mata.	

0. A. Beowreor (Dubuque, Iowa).-Wo ehall taic an early opportunity of notioing the contents of the Augast number of the Chese
obligingly forwarded to us.
W. N. P.-Thanka ; shall slwaya be glad to hoar from do dalajec. 8. H. Trouns (Plymorth). The problem ahall be oxamined, and ropoctod on noxt wook, Q at $Q A$ and the B P on Q 6 ahrite out the ah. Of B Q at Q on sis the conatsection of the problem.
Asco (Yarmouth). The problems lant cent are not equal
 Bocorrone to Problem X. (continued).-S. F. Thomas (Plymouth); R H. Bracod ; Mail (Oherter). Tan following have sant correot solutioas to Problem XI.

 Rooper ; Conderford; A R. Moleson (8wannee); W. Airey (Wuraley); A. L. (Lncoln). All others are wrong.

Boldexing Ziux. - It may be important to many Loldow, on the arithority of M. Ganduin, that smixtove of equal parte of exyolite and chloride of bariom forms a fax enperior to borax for soldaring iron, or fornes ang copper, breas, or bronzo. Aryolite is found in brazing copper, brand orndance in Greenlend; it is a doable flaoride of damininm and codinm, and has been largely gloyed in the grodaction of the retal alumininne.

ATSWERE TO CORRESPOMDEKTS.

- 418 commumioctions onould be addrocoul to the
 Oovent Gardow, W.O.

HITTS TO OORRESRONDENTS

1. Write on one nide of the paper only, and pat drawInge for lilustration on soparate plecees or papur. \% Pait itica to querios, and whon anamering quetio phich the numbers as wall an tho wiles is made lor insertling lottera repiees rofer. 8. No aharge imaroillottert, or querios, or ropilos, are not insorted 6 . No quention miking for edinoational or malontifio information is apondonte through the pont. e. Lotiors nont to corropd; and the names of correepondents are not givan to inquirerk.

The following are the initiale da, of letters to hand to Truesday morning, August 27, and ancoknowiciged arowhers:-
Geo. Hy. Ooz - W. M. Simpeon. - Robert Hirone.-Rov. E. E. Monntford.-Wm. Fryer.-W. Davenportalonin
Jonen-G. R Niahols and Oo.-W. D. Bkelton.-Jonon-G. R-Niahole and Rod-N. D. T. Bond and Co.- Franoen Radodifio. -H. Young.J. M. Wilson. -W. R K.-R. D.-W. E. and B. - F. J.J. O'Brion. -G. Wisoon. B. Woa, J. B. B. - N. and Co.J. Dreeeor.-J. Billook.-B. Bloharde.-G. C. Price.- Ha J. irracher. - T. Sprague.-G. R Nixon.-Solomons \& Co Oharlee J. Frarcourt. J. M. Lambert.-J. Franoes.Ounilire \& Oroom.-J. A. McKean.-D. Harcourt \& Chilic -Thoman Athinson-M. R. Horley.-John O. Phelinpal
 M. I. G. -J. A. T.-Changhi, Sorew Outier.-Akmo-
 W. S. O.-Malt-W. S. B.-Bota-Lomba-D. Dapior A. D. Another Paddier.-W. V. Clarke.-Convortion.
 Ragsoles.-Horatlo-Alfred H. Allon-O. H. W. B.J. Pugh-N. 8. Hednokenno J. Tregnakio. ArotociT. A.-E Tridentle. A Carlow Kem.-Tintub.-Good nnent-M. F. P. J. B. Clay. -A. B. -Z O.t.-E. B.

 G. H. Goodman_ A. R. O.-DoAnition- Hi G. W.-Hopkinn-J. Gunn-Belmo-E. T. E.-M. F.-M. A - From one Amilioted.-A Oarpentor.- Young Gleagow. -R. T. E.-J. G. H. -E . H.-J. G. P. H. - F. R. A. \&. J.C.J.-Harmoniona Blackemith Edward Gardner.-Samuel Hilli. Saul Rymea.Eavrard. - One in a Fir.-Albe
Spris.- - Conault a medical mant in There is no doabt there is moh in what 8. K. So. T.-There is no doabt there you say, but the oastion to the general
Sroor ArD Dres.-If you want eny doinite forlormation that may be unofin to yoursall and others ask for it,

R. D. B.-Consult baok numbers aboat browing.
A. GMaticion biader is a very indiforent one, or he vorld not ask us to insort a query which is an adves. tisomant.
Nif Dzeprizaxpow.- You soy you "have had eevaral communiontione from tho spirlit, and in some cacea thith atartiling zocoracy not nearly vo mach so, for in some cases they have been radically wrong," and you "Want come correspondent to explain how this is socounted for." Why not ask the aplitits who are so "startilingly correot with rogard ro the part wealth of Wisdom, ought to know more about your arfire than trangers!
Pali.- Tou eay you mant to removo a mole spot, and you havo been trying to remove it and made the mattor rorne, for Thare you had a mole now you have milll worve.
. T. I. - Your only way would be to rent a peivate wire of the Poet-omoo. Writo tho mocrotary.
 \triangle Cany soot O. M. M. B. (cocond queation) Diona beak rolumes
Oomminications whioh aen only appear ac advertice ments to hand from E. J. W., E. Ward Jnolicion Q.M. M. B. (Arrt queetion), south Devon.
J. I. M.- Four nilitorato valgartity is onily to bo pitiod but your mpilfofilal atteoks on a corrocponacnt who ha alwys been willing to afford readers all informstion in hle power render you unvorthy of farther notioo. paperi. Boalogne proferable.
Oini ix fin Dark.-Your query on bronso for brace wort has beon answered bofore, and your query on drille for mending ohina is sa advorucoment. T. D. W., I. W. D., J. R. Wation, Optical, Jas, MoL Partnor, J. Murdock, see "Hints to Oorrerpondente, RTO. 4
W. T. K., J. Laurio, Tam 0° Bhanter, R. W. B., J. L. LhYour querien have boen aniwerod in beok numbera.
H. O. Bnrex. Tour "oopy" it writen in the ceme hadd H. O. Bnrix.- Your "oopy ig wriven in the sent to the
 quaries avo landmiasabla

Jances Poiowars. - Moat of the information in yeor lottor in good enoagh, but unfortunalily you une two as many woral lottor uttle and gooa, ana jog leter on u Lightnin T. Bugazki-2 Yor sona Cond and theredore not inyortod. Bealdes, the same lotior han bean mont to other prbilications:
J. H. B-T You sond a letter writion partly in ponall and party in ink, and tho lottor alfogotbor is so bedly pat togethor thit wh have not time to endearour to mato out what you moan to convoy. AE aponteoripl you
 do not arouse you, as drop your lettor into the wat and as a punirhmont arop Your is wort' dolng wolk, and no one has a right, to save his own time, to trospecs on the time of anothor.
J. W. Warixa. - Pray try and inform yourself on eo dell cate a matter belore you attompt to instruot othera B. B.-We know of no Each acos, and agala refer you to beok numberin No that are those who are doate who give as nor readert, bat who write as ahon they want any information withoat troubling themsolves to accertain what han beon and on the subjoct
. HMapprin.- You appear to forget that you have been bound over to keop tio pence beforo more hazn one tribanal, as you write a loilor whol, is pubished, IE is geid thet you to andid dreede the proe but you tis sale if yon liked to ruth into it. Wo have several trimes stood your best friond by provanting you ariminimes sting yoursill, and, as a matior of courat, you havo rewarded us by ribald abuce.
Excilaior.-Too logal for us.
WAEENAMM.-Your desoription of alldo-reat nnat week Emquirbs. - We devotod as maoh space as wo oan apare to saorthand about two yeare mime. on it was somemhat exhauativa.
o sxyrial Corazapomplarta-The apace we have dovoted to roports of the Britich Acsociation is one quaries, are prosted out till next weok.
F.R.A.S. - Your meocond article on "The Equatoreal" hes been in typo two weakn. It ahall appoar in our next.

THE ITVEETOR.

 2834 J. Mulien. Bary, Lanceablre, for taprovemeata in welf. 2335 G. Bray Leede, for fmprorvomete to gatber

 Hartiopool, for Improvamenta in the manafoctaro of tron and

 zenatactare of pure phosphatio of Hiriting, lor an improved ink.

 the ahamion treatman o misish

 an tmproved metalle abonitiog for
 marefyin hamporner.

 ton. A. Clark, Rethbonevilace, Oxford-strope, for Improvempeate
 improy carrise

 and mortite of hydraplic em innoe.

 Mers inveratone, lancesebire for tmprovomenta in

niratinn. Lane and w. Onlons, Lurerpool, tor impervemente it
 Drimmonind, EAinbargh, for Improvemente in reaping

 od for colilery winding, sachpension brdages, and athor

 trmolion of apring matticesses and other articies for stitting or

 tharemin. T. J. Denne and A. Hentachal, Cambirlagerosd, Mulle end,

 2ner In pinces where the fitmo pharm in charged with nozlous gaces or

 and for infaning, attomperating, and mathing, etpecially toplitabio

 of coivo T. Joaeph. Glampronganahre, for A new or fmproved method
 plating J. Nowton, Now Wortioy, and w. Price, Hunclot, Leodn,

patimte enaled.

or 1098 J. Betcole ind iny, for 1 mpprovementa in the menatruetion of shipt

 Sutioner. For Pornck, for Improvements in the conatruction of
 parathe for dryine and preatng or calendoring printed papar.
 teathing ne millity itry improvements in apparatas for rotarding

 to other pulvericoer.
 and methilic ralling for varisaa rala of metenic bodatestan non cote,

 and more eapectiuly the fire dorlived from the Banban tree or noefal parposeen, and in machineery tharator

Terms of Subsoription,

patable in adtance.

5s. 6d. for Six Months and 118. for Twelve Mronthy, Poet Free to any part of the Unlted Kingdon
Polumes VI., VII., VIIL, IX., XII., XIII., and XIV.
boond In aboth, bound in ojoth, 7s, aach.
Indexes for each hall-yearly rolume, up to Vol X.

Free, 2dd. Casen Sor Binding, 1s. 6d. ongh.
*. * Subsorlbars are requented to order Caages and Fols through their booksellors, and not to sond direot. The new regulations of the Post-office grovant their trans.
miselon through the Post.

To Amerioan and Belgian Subsoribers.

EP Amerionn and Belginn Snbsoribers, arpecially requested to advise the Pablisher of the transmission of the Post-office Order, and the exact amount for which it is made payable.
Sabeeribers in the United Atates and Belgiape oan be this Office, for the sum of 18s. (3 dols. 250 gold, or 15fr. 600.) per anpam, paysble in adrance.
The remittance should be made by International Poat-ofice Order. Back numbers cannot be sant by the ordinary newspaper post, but mast be sem
the rate of 5 d . each to cover extra postage.

Notice to Sabsoribers.

Subscribers recelving their oopies direot from the ome term for Whioh their 8ubscription is paid, will be tlon that a fresh remittance is neoessary, if it be deaired to continue the Sabscription.

Oharges for Advertising.

ALL ADVERTISEMENTS (except in the Rxchange Colamn), per line of
(No adverticoment inserted for leas than 14)
Larger Adrestisements Contracted for.
ADVERTIBEMENTS In EXOHANGE COLUMN IEE Sixteon Word
For every muoceeding Fight Words
Front Pace Advectisemente 9d. per Une. The addross is inoludod as part of the advertisoment and charged for.
Tresday to engure insertion in the follo ming Frddey's number.

OUR BXOHANGB OOLOMA.
Exominar simentiomonte are eharged at the wele of Bixponce for the frat Bistoen Words, and .Bieponce for ever iwcoseding Bight Words.
Excellent Galvanic Medical Apparatus, 2 splendid Nodle Tolegraph Iuatruments lor exchango. - Alphid Czorts, Bicycly for exchange (cost 810),-Address, H. Youso, Docknow, Rathgar, Dubita.
Dorble ENoirge, nearly ready, cylinders 2tin. by 6in. ; for a Bewirg Ma Mbtne or Foot Tathe, or
RICuARD Rove
Two Model Horizontal Sllde-valve Engines, quite Wow: for articles of equivalout ralue.- Mor parts
to Gro. JAs. Burre, Hopeatreet, Norton, Malton.
Photographic Dark Tent, Rouch's Pattorn 8tand all
 A Taicycle in exchange for a Standing Deak. Screwing Tacklez, Gas-meter, and Bread-maker, for
Revolvera, Sowing Machino.-a. P., 10, S. Leonard's atreet, Man-

4in. Lataz, iron frame (valne 86); offers, anything
aneful.-B, Bt. Georgo -torrace, Fort-road, S.E. 4 in . Compornd Slide-rest, and 4in. Ornamental ditto, Grover \& Baker Sewing Machine; for Lever Watch.

[^19]
 THE POCKET ESTIMATOR FOR THE BUILDING TRADEA: beling an any mothod of antimeits.

reconity pablishod, vith 19 Wondeata. Leother, watstrost pxeket

THE POCKET TECHNIOAL GUIDE

A TREATISE ON THE PRINCIPAI

Hondan: LOCK WOOD A CO., 7, Butloneri' 耳nil-conrt. E C. no Mona lawters billb,

HVERY MAN'S OWN LAWWYER. A
 "No Bineerm, salldors, to.
Londoo: Lockwa
 AILEY'S ILLUSTRATED USEFUL

 Albion Worka, Salford. Manchnetar.

NOTES ON THE EPICPCLOIDAL

N^{I}EXT OF KIN (1871 edition, now

 THE MICROSCOPES Manafactured by hy J. .e. Winnpear, Darringham Worke. Hall. with imin J. Z WINSPEAR, Douringham \#orke. Eall

WANTED.

BIFUATIONS.

GEWING MACEINES. - WANTEDD. Machinery not arrcty
 WTANTED, at once, several first-class

 MUULDEK WANTED in a small country SEWING MAOHINE MAKERS D. WOON. 29. Pionbury. Hi hace, R.C. W ANTED, by an Experienced Iron

FOUNDRY MASTERS.-WANTED, by
 10 MECHANICS, INVENTORS, \&c.-

W ANTED, BOILER and ENGINE.
WANTED, a Rmall SCREW-CUTTING

ADDRESSES.

DATENT ECONOMIO GABDEN FRAMRy and Port
WILL "J. W."(12172) kindly send his
WANTED, the ADDRESS of the ManoB. EDWARDS, Moortown, Rugroud, Hatta.

Ohe Otylish detcchanit

 WORLD OF SCIENCE AND ART.SRIDAY, SEPTEMBER 6, 1872.

ARTIOLES.

THE EQUATOREAL-ITS USE AND

 ADJUSTMENTS.By \triangle Finlow of the Royal abtronomical society. (Concluded from page 552.)
 for finding a meridian line, and since we require to obtain one in the outset before we can even place the iron framework, shown at S in Fig. 4 , correctly apon the top of the pillar, or pier, which is to carry it (and to which it is nltimately to be immovably fastened); we will doal at once with the most simple mode of making the determination. It is that of-what is calledequal altitudes. The principle upon which this method depends may be gathered from a study of Fig. 2, where it will be seen that a telescope moving round a vertical axis cats the diarnal path of a star in two points, and two only, so that an instant's reflection will show the student that as, in the description of such path, the altitude of any star is continually varying, and that if we conceive it to be (for orample) $42^{\circ} 8^{\prime}$ sbove the horizon, when it is 3 hours and 14 minates east of the meridian it will continue to get higher and higher until it actually transits it ; after which it will begin to descend again, and precisely 3 hours and 14 minutes after it culminates will be once more at an altitade of $42^{\circ} 8^{\prime}$. By the aid of an instrument known as an Altazimuth, the observation of equal altitudes can be made, and the horizontal angular interval between the two positions of the telescope bisected, with all conceivable accuracy; bat as these papers are not written for those who can be assumed to be familiar with instruments of this character, we will proceed to describe the very much better known way of getting a north and south line by the use of the shadow of a vertical stick placed on a traly horizontal surface, in sunshine. There is one drawback to this method, however, and that is that it is only rigidly applicable about the end of Jane or December, when the sun's declination changes very slowly. During March and September the rapid motion of the sun in deolination introduces a soarce ef error into the determination of the meridian, which renders it decidedly undesirable that those seasons should be selected for finding it ; but even at those epochs a very close approximation to it may be made. The mode of proceeding is illustrated in Fig. 5 , in which ABDE represents the top of the pillar (supposed to be square) upon which our equatoreal is to be fixed. The first thing is to level this very carefully with a spirit level. This accomplished, we take the centre C of the slab, and round it describe a series of circles, of which three are shown in our aketch. Then (by the aid of a plamb-line, or otherwise) we erect a rod C R on C accurately vertical. As we commenced by levelling the surface A B D E truly, the rod referred to will evidently be at right angles-or equare-to it. This rod should be as thin as is consistent with its rigidity ; a perfectly straight knitting-needle answering capitally.
Now, in limine, it is apparent that the lower the snn is down the longer will be the shadow of this rod ; that it will continue to shorten as the sun asoends; be at its shortest when he is on the meridian; and then, at once, begin to lengthen again, and so on. Let us, then, observe when the shadow of the top of our rod falls on one of the circles, foar hours or so before noon; this will be at, say, a in our figure. Then let c be the place just touched by the shadow half an hour later, aud e that where it falls later still. Now, let as notice where the shadow falls at corresponding instants after noon. We will marls its points of contact f, d, and b. All that remains for us to do is to join each of these pairs of points and biscet the intererpted arcs (a, b, c, d, e, and j in our figare). Should this be proporly performed, the litu of hiscetion will be a diameter common to all the circles. and will be the meridian of the piace of olservation. Wo have represented it above by the line NS, which may, when once determinci,
be conveniently marked on the top of the pier permanently. This done, the equatoreal framework is to be so placed on the pier that two plamb-lines dropped, one from the centre of the top of the polar axis, and the other from the corresponding point at the bottom of it shall touch N S. Having effected this, the iron framework S, Fig. 4, may be bolted or cemented down on to ABDE, the more refined adjustments being provided for in the construction of the instrument itself. So far, then, as we have gone, we have got our equatoreal, presumably constructed especially for the latitude of our place of observation, and very approximately in the meridian. How mast we now proceed to get it accurately into adjustment.

Before passing to instrumental adjustments proper, we must find the line of collimation, or optical axis of the telescope. To do this let us insert the transit eyepiece (the field of which we have shown in Fig.6) into the eye end of the telescope.

Tura it round until stars ran accurately parallel with the declination wire $d u$, clamp the declination circle D C', and by the slow motion $b b^{\prime}$ thread some star apon it. Now, withoat moving the telescope, turn the whole eyepiece through an angle of 180°, so that the bottom of the field becomes the top, a being at b and 20 at a, and observe if the star is still threaded on the wire. If it be not, move the frame and wires (by the aid of the proper sorews) antil the declination wires $w d$ is half way towards the new position of the star. Once more bring it on the wire, again reverse, and so on until the star continnes threaded on $d w$ after it is tarned through 180°. It manst then evidently bisect the tield of view horizoatally. It is pretty evident that by making $a b$ horizontal in the same way, and repeating the same adjustment with that (being carcful to make it ouly by the screws at a and b), we shall with equal ease and cortainty get that to bisect the field too ; and hence the point of intersection of these tro wires c c must, ex-necessitatc. be in the optical axis or line of collimation of the telescope.
This effected, we proceed to the adjastment of the different parts of the equatoresl, inter ac. As we shall have frequent occasion to spuak of the reversal of the telescope, we sul,join a skutch in which the instrument is delineated in two aspecte, the tirst with the telescope to the west of tite pular axis, while in the second it is suen to the east of it. We have marised thess A and B for
convenience of future reference. We may here mention, once for all, that the instrument is employed in position A for the observation of objects to the east of the meridian, and in the position B for observing those to the west of it.
The first thing, then, is to place the declination axia D (Fig. 4), at right angles to the polar axis P. In many cases this is done by the maker; is effected by the most delicate filing of one of the Y's, and once completed is practically permanent. It may be tested by placing the equatoreal in posi tion A, Fig. 7, and carefnlty levelling the declina tion axis by the aid of a striding level, which stands apon its oylindrical extremities. The hour circle is then read. Then, the whole instru ment is tarned over into position B, the deolination axis again carefally levelled, and the hour circle once more read. This last reading ought to differ preaisely 12 hours from the first one, and will do so if the two axes be acourately square to each other. Should the readings differ irom 12 hours, the hour circle must be placed half way between its present wrong position and its proper one, and the declination axis made horizontal, oither by the screws at $l \mathrm{Y}$ in Fig. 4, or, in their absence, by the maker of the instrament delicately soraping one of the Y's.
Adjustment 2 consists in setting the optioa axis, or line of sight of the telescope, at righ angles to the deolination axis. To effect this we must insert the transit eyepiece (Fig. 6) and, as before, make a star run along the declination wire $d w$. Now, with the telescope in position A (Fig. 7), clamp it a little in advance of a star read the hour circle by mesns of the vernier $h v$, and note by a sidereal clock the exact instant of the star's passage over $a b$, the middle wire. Turn the instrument half round on the polar axis, inte the position B, again clamp it a little in advance of the same star, again read the hour circle, and, once more, note the instant of the star's transit over the middle wire. Then, if this adjustment be correct, the interval of time be tween the two transits and the difference of the two readings on the hour circle will be identical. If there be any difference, the wires (Fis. 6) must be moved through half of it, by the screws at d and w. This mnst all be repeated until the interval indicated by the two hour circle readings and that elapsing between the two transits of the star are precisely alike. Let as illustrate this by an example. We will suppose that the equatureal is olamped in position \boldsymbol{A} at 0 h .22 n . We will further imagine that, under these circumstances, the field of view is as represented in Fig. 6-i.e. with the end a of the wire at the top, or true south, of the field, and the end b at the bottom of it. We will suppose, then, that we note, by the aid of a sidereal olock, the transit of a Serpentis, and find that it crosses $a b$ at 15 h .59 m .59 s ., as indicated by it. This ubser vation made, we reverse the instrument, nud place it in the position B, thas evidently tarning the field of the eyepiece over, and having the end b of the middle wire at the south, or top of the field of view. We will now clamp the hoar circle at $12 \mathrm{~h} .26 \mathrm{~m} .$, and wait until a Serpentis again crosses the middle wire. Let us ansume that it does so at 16 h .4 m .11 s . This is obviously too late, as it ought to have been on the wire at 16h. 3m. 598. , whereas its transit has buen observed 12 seconds after that time. Tue half of this, then, or 6 seconds, we must correct for. If we sappose that the interval occupied by the passage of our given star from wire to wire is 18 seconds, we must move the frame carrsing the wires through one-third of this interval to make this adjustment. It will be seen that. inasmach as the star (as we face the sonth), (uters on the right hand of the field, and travels a to the left, and inasmuch as we are supporing the transit of our typical one to have taken piace to latc, the wire frame mast be too far to the left in the second position B of the instrament. We must, then, lower it to the horizon, bisect some object by the wire ba. and move the screw at d (bear in mind that Fig. 6 is now inverted) until the given object is one third of the distance between the centre wire and the next one to it.
Our 3rd adjustment will be to cause the veruitrs $d v$, $d^{\prime} v^{\prime}$ of the declination circle D C' (Fiz. 4) to read $U^{\prime \prime}$ when the optical axis of the telescope is directed to the elpuinoctial, or, in other worls, is parallel to the eqnator. In
naking this adjustment, we woull counel tha

- Fornill necilini iufurmation ag to the naturent sidereal For ail necihaliufurmation as to the naturn of sidereal st.... the recinc is referred to tho touth wol. is the

beginner to confine himsely to one vernier, and to attach a piece of paper, or other mark, to it for the parpose of recognition, and to prevent mistakes. When sll is complete, the second vernier may be caused to read identically with it, by one operation. Sappose, then, that we select the vernier $d v$ in our Fig. 4 (or that which is next to us when the telescope is to the weat of the polar axis, as at A, Fig. 7), and let us make any star, the nearer to the meridian the better, ran along the declination wire $d u$, Fig. 6, and read the declination circle by the aid of our selected vernier. Now, turn the telescope half round the polar axis into position B; sgain bring the same star upon the wire; and, again, read the declination circle by the same vernier (this will now be on the farther side from us). If now this latter reading be identical with the former, the vernier is accurately in adjustment ; if it be not, half the difference of the readings is an index error which may either be applied as a correction should it be small, or eliminated by shifting the vernier bodily if it is large. Here, as in the previous adjastment, an example may help us. With the equatoreal in the position A, and the star a Ophiachi threaded on the declination wire, the declination circle resds $12^{\circ} 41^{\prime}$; bat on reversing the telescope, and again running the star along the wire we find the reading to be only $12^{\circ} 38^{\prime}$. The difference between these two readings being 3^{\prime}, the index error is evident $1^{\prime} 30^{\prime \prime}$, by whioh quantity the circle reads too low when the telescope is to the east of the polar axis, and too high when it is to the west of it. This observation (and that in oonnection with the 2nd adjustment) should be repeated several times, and a mean of the results taken. If we sappose that this mean gives exactly $1^{\prime} 30^{\prime \prime}$ as the index error, and that the vernier reads too high by that amount in position A, the simplest way for the tyro to proceed is to clamp the declination circle seourcly (with the telescope to the west of the polar axis). so that the vernier reads $1^{\prime} 30^{\prime \prime}$ north of zero, and then releasing the screws which hold the vernier bring it down and make it read $0^{\circ} 0^{\prime} \sigma^{\prime \prime}$, after which it may be permanently fixed. Two cautions are needfal to the beginner. The first is, in readjusting the vernier to take care not only that the middle division or zero of it coincides with the mark 0° on the limb of the circle, but that the ends also coincide precisely with divisions on the same limb. The next is, not to screw any one screv tight up at once, but to turn them up very gently one after another, half a turn or so at a time. Neglect of this latter precantion may throw the adjustment all ont again. When it is completed, we have only to loosen the opposite vernier $d^{\prime} v^{\prime}$ and canase it to read identically with the one which we have finished, and this part of our work will be complete.
In the 4th place, we must level the deolination aris, with all possible accuracy, by the aid of the striding level, as in adjustment 1. Then, releasing the screws which confine the vernier of the hour circle $h v$, we must, by the aid of the tail piece $i j$ in our figure, make this vernier read either 0 honrs or 12 hours (according as the telesoope is in the position \mathbf{A} or B), and, this effected, screw it up and make it a fixtare there.
Having thas (practically for our present purpose), eliminated what may be called instramental errors, it only remains for us to place the equatoreal in such a position that its principal axis shall correspond acourately with that of the heavens; and, it must be obvious to any one who has studied our 1st and 3rd figures, that the first thing to do is to make the elevation of the polar axis exactly equal to the latitude of the place.
We have, from the beginning, assumed that the mounting of the instrament is so constructed that this adjnstment is very nearly made; and, therefore, a slight motion of the bottom of the polar axis (effected by a contrivance hidden in Fig. 4 by the hour circle), is all that we shall need to render it perfeot. For this parpose we must select a star from the Nautical Almanac, which is as near as possible to the meridian at the instant of observation; and the higher up this star is, the lees will refraction complicate the matter, and the more accarate the resalt will be. The following are very good stars for the parpose on these latitudes :- a Persei, Capella, Castor, 1 Ursæ Minjoris, θ Urse Msioris, a Canum Venaticorum. η Urse Majoris, ζ Hercalis, β Draconis, γ Draconis, Vega, a Cygni, 61^{1} Cygni, or ζ Cygni. The
meridian altitude of our chosen star we may calmeridian altitude of our chosen star we may calculate by adding its north declination to the colatitude; and we must now find from a table of rffractions (such as appears in every book of
that altitude, and must thereupon set the declination circle to the declination of the star, with this refraction added (if it be south of the zenith). Then, waiting until it enters the field of view, we must raise or depress the end of the polar axis, until the star rans along the declination wire. This adjastment will then be complete.

We may here, in parenthesis, say, that a table of refraction for all altitudes greater than 10° above the horizon may be caloulated by any one, with abundant accaracy, from the formula, refraction $=53.49^{\prime \prime} \times$ tan. of zenith distance.

We have now only to get the polar axis into the meridian. For this parpose the ordinarilyproscribed way is to set the telescope upon a standard star about 6 hours from the meridian, either east or west, and read the verniers of the doclination circle. This reading corrected for refraction ought to be pame as the star's declination given in the Nautical Almanac. Sapposing, for illustration, that the star is east of the meridian, and its declination, as shown by the declination circle, exceeds that given in the Nautical Almanac, the lower end of the polar axis is to be the west of its true place (and vice versa) and must be moved accordingly. There is, however, a simpler mode of performing this adjustment, which will probably suit the beginner better, should he be the possessor of a sidereal clock. It is this: Once more carefully level the declination axis and clamp the hour circle; calculate the instant of transit of a known star near the eqnator, bring that star on to the centre wire of the transit eyepiece (abl Fig. 6), a few seconds before its transit, follow it by the screws at the bottom of the polar axis, count the beats of the clook by ear, and stop at the precise second compated. Should the observer have no other means of obtaining time he may do so by levelling the declination axis of the equatoreal and taking the transit of a star close to the zenith. For all detaiks as to time-taking, however, we must refer to paper spoken of in our footnote on p. 629.

This concluding adjustment made, the deolina tion circle must be now levelled for the last time, and the vernier $h v$ made to read accarately either 0 or 12 hours.

The very great, and nnexpected, length to which our directions for the adjastment of the equatoreal have extended, oompels us to be much more brief than we had anticipated in our directions for its nse. We will deal, in the first place, with finding an object from a catalogae, and will give an illustration without the enunciation of any merely formal rales. Suppose, then, that at 18 h . 4 m . 32 s . sidereal time, on August 30 , in latitade $51^{\circ} 30^{\prime} \mathrm{N}$., we wish to direct our telescope to 61^{1} Cygni, how are we to proceed? The right ascension of 61 Cygni we find from the Nautical Almanac to be 21 h .1 m .12 s . ; so that it is, at our presumed instant, 2 h .56 m .40 s . to the east of the meridian. Placing the instrument now in position A, we set the hour circle to read 2 h .56 m .40 s . Its declination we see by the almanac is this, st the then altitude of the gtar msy be ronghly taken at $50^{\prime \prime}$, adding this, then, to the declination we get $38^{\circ} 8^{\prime}$, to which we set the declination circle to read, and the star ought to be very near indeed to the middle of the field. We should, perhaps, add that, to preserve the sequence of our remarks, we have reversed the order of the settings of the two circles. In practice we should set for declination first and for right ascension afterwards.

We will now imagine, though, that we have pitched upon an unknown object, say a comet, the place of which we wish to fix with all possible accuracy. In what way are we to determine its place? We should proceed thas: Clamping the telescope firmly in right ascension, a little in advance of our anknown body, we must note the
instant of its transit; and then, leaving the hour circle clamped, raise or depress the telescope, until a known star following the object, whose place we are seeking to obtain, enters the field; when it does so we must carefully observe its transit too. As the hoar circle has been fixed, the difference of these two times will give the difference of right asoension of the two bodies. To sary is to thread our comet, say, upon the declisary is to thread our comet, say, upon the deci--
nation wire, and read the deolination circle ; then, if we turn the telescope upon our standard star, bring it on to the same wire, and once again read ference of their del sation shater the first ob servatious it does not matter whether the star of comparison precedes or follows the strange object.
it, and the closer the better. An example mas tend to render this explanation clearer. The transit of a comet over the middle wire of th eyepiece is observed to take placeat 19 h .37 m . Jta sidereal time, and that of the star β Aquarii (to which it is near) at 19 h .41 m .41 .5 s .: therefore th.if difference in right ascansion is $3 \mathrm{~m} .47 \cdot 5$ z. The reading of the declination circle when β Aquari is on the wire $d w$ being $6^{\circ} 6^{\prime} 20^{\prime \prime}$ south, and it reading, when oar imaginary comet is bisected try it $6^{\circ} 5^{\prime} 50^{\prime \prime}$ soath, the comet must be jnst 3 ir north of the star. Tarning now to the Nautic: Almanac we find the right ascension of β Aquari is 21 h .24 m . $51 \cdot 53$. , and taking from this 3 m . $47 \cdot 5 \mathrm{~s}$ we get 21 h .21 m .4 s . as the R. A. of the comet st the time of its observation. The declination of β Aquarii is stated in the same work to be $6^{\circ} 7^{\prime} 48 \cdot 4^{\prime \prime}$ soath, and if from this we take 30° we obtain $6^{\prime} 7^{\prime} 18 \cdot 4^{\prime \prime}$ as the comet's deolination.

It was our intention, in commenciag this series of articles, to have given a description of the position miorometer, and its use in messurina doable stars, the diameters of the planets, sa as also of the ring micrometer, and its emplosment in mapping the heavens. We have, how ever, already exceeded the space which we pro posed to ourselves to occupy; and a detsiled cortainly itself expand into another essas. We are compelled, then, relactantly to panse here If we have not falfilled all that we proposed to ourselves to do, we trust that, at all events, we have succeededin giving the student such plain and intelligible directions, as shall enable him not only to place a telescope mounted in the way we hate described in accurate adjustment, but also to understand thoroughly the reasons for every successive step that he is called upon to take. Should our studionsly simple instructions hare enabled him to do this, and to employ this admirable instrument more effectively, and with a better appreciation of its powers and capsbilities than be previously possessed, our esssy on the equatores! will not have been written in vain.

THE MUSEUMS OF LONDON.-III

South Kensington Mosbum (2).

HAVING in the previous article described the educational department of the Maseam, we propose now to speak of the oollections of objects of art, which are no numerous and so varied as to preclude any methodical and detailed arragement throughout. Perh.ips in no other eingle building has such a miscellaneous collection ever been brought together, and in consequence of the frequant changes of the loan objects, and the addition of parchases and gifts, the details of the arrangement are constantly in a state of transition. After premising so much we will take the corridor to the right on entering, which lesds to the large courts, and whioh is hang in part with large series of photographs published by the Arandel Society, comprising historioal oharacters, art objects in the Mnsenm, and figures and groaps of figures from the Raphsel oartoons. Oopice of these oan be had at a cheap rate at an adjoining office, as also negativer for home printing. We are glad to see this branch of education obtaining more favourable recognition then has hitherto been accorded it-e.g., the pablication of the photographs from the British Masoum; for by What better means can the sphere of nsefulnese of museums, themselves neoessarily local, be extended than by ensbling every one to poesess accurate representations of their most ralues
treasures? In a small side room are placed the engravings, miniatures, and books (many of them with interesting antographs), of the Dyoe bequest As an example of the way in whioh the Mnseam has grown, we might mention that this gentleman -Rev. Alex. Dyce-in 1869 bequeathed to it $\$$ pictures, 63 miniatures, 802 drawings; 1,511 prints, 74 rings, 27 art objects, and 13.596 books The two large courts-North and Soath-fora the larger part of the new buildings; they are both spacious and lofty, open to the roof abore. The South Court is decorated from the designs of the late Godfrey Sykes, and contains in the upper parts of its side walls a series of thirty-six alcoves, each containing a portrait in mosaic (br different makers and of different materials) of some oelebrated character in the history of antWilliam of Wykgham, Raphael. Dürer. M. Angelo, Wron, Reynolits, \&c. The "Princ" Consort Gallery" (connecting with the pictor: galleries) ruus down the whole length of the coort. dividing it into an east and west portion; the latter, which the visitor first enters, is devotel
mainly to loan olijects, the epecial lorn exhibitions, however, being asnally held in the North Court. The visitor will at once remark the exceedingly great variety of objects which are here gathered together, and as a consequence of this the confused manner of their arrangement. The collections admit of no entire classification, and all we can do is to point out the general features of the varions divisions, and notice specifically a fow of the most prominent articles.

A large altar-picce on panel of the fifteenth century, from Spain, in this court is worthy of careful attention, as it is illustrated with scenes of of the different modes of martyrdow then practised in that country. At the back of the altar-piece is placed an electro-reproduction of one of Ghiberti'a famons gates, made for the Baptistery of A. Giovanni at Florence, about the beginning of the fifteenth century. In this neighbourhood are numerous examples of the modern cabinet work of various nations, English, French, Dutch. Japan, \&e., and farther examples will be found in other parts of the bailding. In the cases are mineralogical specimens, some ancient jewellery and watches of quaint construction, and small isolated series of pottery, \&o. The radiating frames which stand about in many parts of the Museum are very convenient and economical as regards space. They consist of a series of square frames disposed at a medinm height by means of lateral hinges round a centre pillar, and for some classes of objects are far superior to the horizontal cases-e.g., medals can be held so as to show both sides. In the cloister between the Dyce gallery and the courts are shown the Abyssinian trophies, very interesting and instructive as
regards that country, and an extensive collection of ecolesiastical vestmente, amongat which is the "Syon Cope."
The eastern portion of the South Court has, till the present special exhibition of musical instraments, been chiefly devoted to that class of objects. In the large oases is a very showy collec-
tion of electrotype reproductions of numerons pieces of phate, comprising she regalia in the private individusls. There is also a reproduction by similar meade of the famons violin said to have been given by Queen Elizabeth to the Earl of Warwick, the origined of which-lent by the
present earl-is now in the Museum. In the present earl-is now in the Museum. In the
centre of the court is an entire pulpit of oarved and inlaid wood, and sumnounted by a minaret, brought fram a mosque at Cairo. Among the furniture at the end of the court is a cabinet of varions woods inlaid and carred, secured for the Mnseum for the sum of $\mathbf{2 3 , 7 5 0}$ as being the most elaborate piece of farniture in the 1867 Paris Exhibition. In the gallery above is a pioture best seen from this court) of a meeting of the Commissioners of the Ex
The narrow cloisters on the eastern side of this court aro devoted to Oriental objects; they were decorated by Mr. Owen Jones. At the end was a very interesting example of a Parisian boudoir of the latter part of the eighteenth century, decorated by artiste of the period, and bought for
 the walls and ceiling elaborately ornamented, but all in good taste. This boudoir is said to have been originally fitted ap by the wife of the Marquis de Serilly, with the assistance of Marie Antoinette, and among the furniture of the room is a harp supposed to have belonged to that queen. Here are several radiating cases of splendid photographic vierrs taken in India, inoluding landscapes, architecture, dco., in looking carefully over which an hour may profitably be spent. We can only stay to direct attention to a small series of miniatures on ivory by an Indian artist, and to a painting on silk of a crouching tiger, excellently done by a native of Japan-Gauko, a celebrated animal painter, date about 1700 .
The North Court is frequently used for the special loan exbibitions. It is a fine room 107 ft . by lubft. and 33 ft . high, with an elevated glass roof for lighting. Only the larger objects in this court are permanent; among them are casts of t wo large pulpits from Pisa. Specimens of screens and gates of wrought iron will also be found here, and some have recently been removed. Among them were portions of the iron railings ronnd Hampton Court Palace (English, date aboat 1700). taken from that place on account of the signs of their rapidly perishing from exposure. Two
colussal statues here are casts of the works of Miohael Angelo, one being a figure of Moses, the other of David as a youth. In connection with this artist will be found in a cace in this court a
number of Italian figures modelled in wax aud terra-cotta, and evidently intended as art atndies of these twelve are attribated to M. Angelo. An electric clock, from the Exhibition of 1862, made at Clerkenwell, serves for use as well as show. In the northern cloisters, besides a large number of architectural casts, is contained a very complete collection of Della Kobbia ware, which may be almost described as earthenware senlpture, and the character of darability attributed to this ware is attested by a large shield, exposed externally in a villa near Florence from 1442 s.t. to its removal a few years ago. The adjoining small fernery is for the parposes of instraction in the schools of art. Following on to the left we come to the circnlating portion of the Mnsenm, consisting of representative art objects which are lent to varions local museums, exhibitions, and schools of art, and this is not nne of the least important branches of the Musenm's organisation. The oloisters contain namerous specimens of ironwork (among which is a couvre feu) and of the coffers and chests of the last two or three centnries. In one of the end alooves is a sumptuous French bedstead of the period of Lonis XV., with gilt frame and blue silk drapery, and with a tine circular mirror intended to be fixed in its apper portion. By a careful arrangement of the mirror among the drapery in the bottom of the caso reflection from the under surface of the glass case top presents the appearance of the upper portion of the bed.
The western portion of the Maseam coutains examples of ancient state carriages and sedan chairs, locks, carving (among which are some remarkable carved bellows from Italy of the sixtrenth centary), and also typical apecimens of French bronzes, timepieces, vases, cso., intended to illastrate their cheapness as compared with similar objects of home manofacture. These and similar objects, as well as all parchases, are marked with the price on the label. The food collection-now removed to Bethnal Green Musenm-was formerly placed here; the rooms are at present occupied by drawings and designs from art schools.
The neighbouring staircase, the decorations of which are not yet complete-leads to the cersmic gallery, which, in coustruction and arrangement, we consider to be the finest in the whole Museum; it is quite a model gallery. Owing to good ventilation, it is always cool and pleasant (more eapecially so by oontrast in the evenings), snd the lighting is good, and not too glaring. The ceiling and side walls are completely but tastefully covered with decorations and gilding, and the names of the various schools of potterymannfacture, with date, are painted in chronological order round the cornice. The pillars and the side walls of the staircase are of enamelled earthenware tiles, which have the advantage of cleanliness. We have not space to particularise the collection, but we might state that it is typioal rather than comprchensive. Two specimens of hoaschold stoves from Germany; Frenoh cabinets, stande, \&o.; Spanish, majolica, Palisey, Sèrres and Wedgwood wares; and some very fine examples of modern pottery, find a place in the oollection.
We next come to tho piotures, of which wo will only speak collectively. The fonndation of this "National Gallery of British Art" was laid by J. Sheepshanks. Esq., who gave a large number of very valuable pictares for that parpose. Before these galleries were opened in the evening scientific commission (inclading Tyndall and Faraday) reported on the cffects of cowl gas that no injory might be apprehended, bot advised that the sulpharous acid gas prodnced by combustion be properly oarried off. Among the artists represented are Reynolda, Landseer (many of his finest animal paintings), Wilkie, Turner, Maclise, (his fine pictare of the play scene from "Hamlet"), Gainsborough, Mulready, sec. The "Worship of Bacchus," by Cruikshank, attracts more visitors than any other single picture. A room is specially devoted to the celebrated seven original cartoons by Raphael and some othor works of that artist. A gallery of water-colour paintings has recently been opened. Those who delight to eramine the ground-work and details of art will ind much plessure in examining alarge serics Tarner-his "Liber Strdiorm" and in snother room several hundred pen-and-iuk fketohes and designs by Mulready. Jewellery and other artobjects are contained in some of the rooms. The manner of lighting the gas-jets in this part of the Masenm is worth seeing.

We have not yet apoken of the Art Library, a
gend mpidly-incraseing collection of books
and engravings conncetod with art-very valnable in connection with the schools. When removed from Marlborough House in 1856 it contained only 5,000 volumes; now it comprises 25,000 volumes and pamphlets, 8,000 original dra:rings and designs, 600 illaminations, 21,000 encrarings, and 35,000 photographe.
W. H. W. T.

REVIEW8.

Patterns for Turning, comprising Elliplical and other Figures Cut on the Lathe without the Use of any Ornamental Chuck. By H. W. Elphisstone 216 pages and 70 illastrations. London: John Murray.
THE title of Mr. Elphinstone's work is a tents, but in the preface we learn that all the patterns given in the book can be cat on a lathe furnishod with a division plate, a slide-rest suitable for ornamental tarning, an excentric cuttingframe, and an overhead motion. The figures or patterns forming the illastrations consist of excentric circles disposed upon circular, elliptical, epicycloidal, and other curves, and the object of the book is to explain how these and other patterns can be prodaced by the simple apparatus mentioned, and without the aid of chacks and compliosted mechanism.
With the geometric chack highly ornamental curves are generated by continuous rotation, and very similar figures are produced, step by step, with the excentric chack and excentric instrament, by the method known as "double connting." It occurred to Mr. Elphinstone, however, that as by the horizontal motion of the slide-rest, combined with the circular motion of the lathe, the axis of the excentric cutting instrument might be brought into line with any and every point upon a surface attached to the lathe spindle, the excentric cutting instrument could be made to out circles upon any line or curve whatever, and by these means patterns produced similar in nature to those obtained by ordinary "double figares are still obtained by donble, or, us he terms it, "dual counting ;" but whereas in "double counting" the two motions are those of the lathe division plate and the excentric chuck wheel, in "dual counting" the two movements are those of the division plate and the horizontal slide of the rest. By this latter method it is possible to very closely imitate many of the most complicated and intricate patterns produced by a geometric ohnck of any number of slides, but the preliminary calonlations necessary to onable the amatear
to locate the separate circles are such as will limit its adoption for comparatively simple patterns only.

Chapter I. is devoted to general explanations of the terms and adjastmente. Chapter II. gives rales for determining the size, number, and portion of circles in contact. Chapter III. is on miscellaneous simple patterns; and it is not until we reach Chapter IV. that the reader finds any explanation of the principles of "dual conuting." Mr. Elphinstone then proceeds to give instructions for the production of looped figares, circnlar figares, straight lines, ellipses and waved ellipses, stars, polygons, and other figares, whilst the remaining part of the book is devoted to "settings" of the apparatns for the reproduction of the various patterns aud tables to facilitate the calculations. Most of the patterns are good, but many are extremely neat and well out. We may pick out as amongst the best, Nos. $20,34,42,43$, and 62 ; bat we do not see why they could not be placed consecutively, instead of No. 62 being at the beginning, 68 at the end, and 69 and 70 in the middle of the book. We think, also, the reader should be made acquainted with the principle of the system in the first page instead of at the sixty-seventh. But in other respects the book is very complete, and Mr. Elphinstone deserves the thanks of amatear turners for his very thorongh explanation of a system which enables them to produce such pleasing patterns with so few apparatus.

The book is extremely well got up, the letterpress having an ample margin, and each figure a leat to itself. Some of the patterns, more especially 21, 41, and 63, look rather smakl to occupy alone such a large page, and much of the print is also needlessly large. Withont in the slightest degree injuring the work either in atility or appearance, the cost might, we think, be
easily reduced. And cost is considered, even by amatour turnars.

CHEMICAL NOMENCLATURE.

Da. A. CRUM BROWN read a paper on this much discussed subject at the meeting of the British Association. He said that setting asido in the mean time "trivial" or "proper names" (names Which are simply arbitrary words or marks, each indicating, in virtue of a convention applicable to
each individual case, a particular gubstance, there each individual oase, a particular substance), there
ere two systems, or kinds of systems, of chemioal are two systems or kinds of systems, of ohemioal the composition aystem, and 2nd, the fanctional or relational system, or olass of systems. In the firat the name of a compound indicates the elements or radicals contained in it, and sometimes their proportions. Thus Chlornatriam. Chloriod, Dreifach chloriod, silicium Wascerstoff, \&sc. In English we have fow names so distinotly compositional in form (we have, indeed, zinc methyl and all other allied names), but many of our names, although apparontly functional in form, are really compositional. Thas, chloride of A means with us nothing more than, or different from, a componnd containing the chloride of iodine, terchloride of iodine, siliciuretted chloride of iodine, terchloride of iodine, siliciuretted hydrogen, not only represent the same sabstances
as the German names just quoted, but tell us neither more nor less about the enbstances than these German names do. On the othar hand, functional names present the chemical relations between sabstances.
We may take as examples such names as the anbydride, the amide, the aldehyde, the nitrite of acetic acid. These derivatives of acetic acid contain aO acetic acid, but they stand in certain deflitite relation to that sabstance, and the anhydrides, amides, aldehydes, and nitrides of other acids stand in the same relation to them. What is still, the common popular nomenclature of salts, althongh originally intended as a compositional nomenclaoriginaly intended as a compositional nomenclature, might, with perfect consistency, be retained
as a functional nomenclature. The objection to the as a functional nomenclature. The objection to the term" muriate of soda Was ant contains no soda. Bat the amide of benzoic acid contains no benzoic acid. Soda contains oxygen; mariate of soda contains none (anless chlorine be an oxide), but the nitrite of benzoic acid enntains no oxygen, although the acid itself dnes. The name muriate of soda originally meant the compound of anhydrous mariatic acid. $2 \mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$, and anhydroas soda $\mathrm{Na}_{2} \mathrm{O}-\left(2 \mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}\right)+\mathrm{Na}_{2} \mathrm{O}$. We may now, if we please use the name to mean the result of the action $2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$. If we do so, the name becomes a fractional one, and the phrase " mariate of," or, what is neither better nor worse, "hydrochlorate of," expresses the complex operation. Addition of hydrochloric acid and simultaneons separation of water. Similarly, in the case of sach names as sulphate of potash, nitrate of oxide of silver, \&c., the phrases "sulphate of," "nitrate of," express the complete operations, addition of sulpharic, or nitric acid, and simaltaneous separation of water.
While the old view that salts are compounds of anhydrons acids and anhydrous bases is now abandoned by most theoretical chemists, a relic of this view still remains in the most advanced systems of nomenclature, producing an inconsistency really inconvenient to the teacher and student. The objection taken to the name hydrochlorate of sodr was not only that the sabstance contains no sodia, but also that it contains no hydrochloric acid, this objection is perfectly valid against the name as a compositional one, but does it not equally hold against the words sulphate, nitrate, equally hold

If we are to

If we are to have hydric sulphate and hydricacetate for sulphuric and acetic acids, why not hydric muriate for mariatic acid? That this question is not altogether an absurd one will be obvious if we consider that all chlorides are not mariates. Those substances which are by general consent called salts atand in a definite genetic relation to the corresponding acids (or the hydric salts of the series), and it is inconvenient to have the same general name-chloride-applied to substances Which do stand in this relation to hydrochloric acid, and also to those which do not. We may divide the chlorides into two groups, very different in character in their extrome members, and gradually shading inte one another. We may take chloride of sodium as a representative of the one, and the chloride of phosphoras as a representative of the other. Chloride of sodinm is a mariate; the chloride of phosphoras might be better described. We may call the acids and acid anhydrides negative, the hydratic bases, anhydrous bases positive-arranged in a series, we find the series a continnous one from the most positive or basic oxides or hydrates to the raost negative ; it is however convenient to have a zero point, and it is one. When we come to express numerically the amount of positivencss or negativeness of these oxides and hydrates, it will be necessary to have a zero point, and a very convenient one is that which corrcsponds pretty nearly to the generally nuder upon the direction in whioh the action takes place.

HOT-WATER HEATING APPARATUS.

THOSE of our readers who are in want of a hesting apparatus for their greenhouses, Fhich, while economioal in fael, requires but
the minimum of attention, will probably find the the minimam of attention, will probably find the desideratum in the arrangement shown in the centrifugal heating apparatus of Mr. S. Deards, centrifugal heating apparatus of Mr. S. Deards,
of Harlow, Essex, for which he recoived a medal at the recent Royal Horticultural Show at Birmingham, as the best "Amateur's Heating Apparatus." The illustrations are sufficiently explanatory of the arrangement, which appears to be constracted on sound principles, and from its simplicity is not liable to derangement. The " boiler," it will be seen, consista of a coil of pipe surrounding the fire; and the advantages olaimed by the inventor are economy in fuel, true circulation, and self-cleansing aotion. It is stated that with one of these "boilers" 60 ft . of 4 in . pipe can with one of these boilers 6 hat. of fin. pipe can and, what is of equal importance, so little attention is required that the fire may be made up at tan at night and at seven in themorning will be found still alight, with the water but slightly, if at all, lowered in temperature. By means of dampers and the door of the sah-pit the combustion can be easily regulated, so that the boiler may be used either for getting up a high temperature with rapid circulation or for obtaining the more moderate heat required in a greenhouse. The larger sizes can, of course, be so set in brickwork that the fire acts upon both sides of the coil, when the grestest economy of heating power is obtained. One of these large-sized boilers, at the recent trial at Birmingham, went 15 hours without attention, and although in the open air and exposed to several showers of rain, the temperature only fell
of investigating the moon's surface and throwing light on phenomena observed, more or less, from
the epoch of the invention of the telesoope. The the epoch of the invention of the telescope. The Committee regard the stady of lanar physics as in its infancy, and trust that in future years the Assoointion will not overlook so important a branch of astronomical inquiry, yet, to use 3 homely simile, they do not strike the iron while it is hot, but allow the intereat of the pablic to 0001 until on some future occasion the Associstion maj for the fifth time turn its attention to lumas physics. We have some reason to believe that the observations will not be allowed to drop throagh. The development and dissemination of truth is the higheat prestige the working philosopher can have.

THE SPHEROIDAL STATE OF WATER AND HOILER EXPLOSIONS.
A^{T} the meeting of the British Association, Mr. spheroidal state of water, and its possible rolationspip to certain boller explotions Phe folloriog ie ship to cortuly boiler explosions. The lollowiag is an extract, "On one occasion, some six years ago. I wanted to cool a red hot copper ball. For this purpose I planged it into some water in which I had just washed my hands. The hot ball went in without any hissing or visible evolation of steam. and on removing it from the water it appeared as hot as before, in fact it remained brightly incandescent, somewhat below the surface of the water. I was astonished to see this, as I did not know that the spheroidal state of water could be so readily produced and maintained by a body at this temperature. So I tried other red-hot bodies in the same water, and with the same result. I then threw away the soapy water and nsed plain water; the resalt was now quite different, the hissing was lond, and the ovolotion of steam copious. Hence the soapiness of the

off 20° during the whole night. It will be observed that danger of fractare from unequal contraction or expanaion is reduced to a minimam in this apparatus, while the perfeot circulation prevents injurious incrustations in the pipes.

LUNAR METEOROLOGY.

THE Committee appointed by the British Associstion for the Advancement of Science to discuss observations of lanar objects suspected of ohange presented its report at the late meeting at Brighton. The report, which is very short, and merely introductory to Mr. Birt's elaborate report on the streaks and markings on Plato, fally indorses the view of the effect of solar influence in darkening the floor of Plato (see Evaiss Mechanic, No. 367, April 5, 1872, p. 53) in the following words :-" One interesting and important change has been fairly shown; the floor of Plato becomes darker with the increase of the san's altitade. Mr. Birt has saggested an explanation of the phenomenon. Whatever be the true cause of this change it is very difficult to account for it by the ordinary laws of refleotion. When we consider the varying aspect of the streaks at the same time of the lani-solar day we cannot but think that with carefal observations made with powerful instruments, suoh as the Newall refractor and many others, we may be able to confirm or otherwise a physical explanation of these curious ohanges involving the existence of certain gases and vapours on the surface of the moon."

With so successfal a termination of the labours of the Committee it is a matter of some little surprise that the report should have been closed without recommending a continuance of observations that appear to be oponing of effoctive moans
water was concerned in the phenomenon. Adding a little soap to the water immediately reproduced the result tirst noticed. Other bodies that dissolred it water were also tried, and the results are bricis these:- Abamen, glycerine, and organic liquic: generally lacibly by increating the cohesion of the state, probably by increa bodies such as ammonis which readily yield vapour have the same effect, bai not so marked. Oil shaken ap or even placed on the surfece of the water has the same effect as the soep surface of the water has the same effect as the soap, pour a little of Platean's soap solution into a large beaker of water, and then, by means of a hookid wire, lower into the liquid a white-hot metal ball. some 2 lb . weight, and of copper is best. The ball smoothly enters the water, and glows white-hot as a depth of a foot or more below the surface. No:withstanding the considerable hydrostatic pressure it is seen to be surrounded by a shell of vapour. perhaps half an inch thick. This vapour shell is bounded by an envelope that resembles barnished silver, and has a most striking appearance. In fac. the hot ball blows a soap bubble of steam, from the limiting surface of which the light is totally re flected. As the ball cools (mainly by radiation) the shell of vapour is seen to grow thinner, and finalls collapse altogether, when immediately there follows a lond report, volumes of steam are prodeced. ar: often the glass is broken. Ihave heard that traces of oil often get into the boilers of steam-engides. and there can be no doubt that dissolved orgauic matter often finds its way in. If in any way we increase the density of the water we render it p : sible for a corroded boiler to give way ander is pressure of the steam suddenly generated in the $\begin{array}{r} \\ \text { an } \\ \end{array}$ I have indicated.'

An inventor of Genoa, M. Lamonica, has, rercarta Galignani, invented a machine for reprodocing speech with the rapidity of thougt, and dectine to suppress stemography.

MECHANISM.*

(Continued from p. 609.)

IFF straps have to be shifted on palleys it should be done when in motion. They are then easily moved, but not so when they are at rest, for there is all the force of their cohesion on the palleg, Which canses them to drive to bat if a
moving the strap needs only to be gaided, and the moving the strap needs only to be gaided, and the
pressare of the hand at one side throws the strap to pressure of the hand at one side throws the strap to
another part of the palleyimmediately. That is the only mode of moving the straps with ease. For hus, in fact, the machinery. moves the strap, and the workman guides or directs the machinery by his hand on the strap, as a coachman directs the horses by his hand on the reins. Fig. 27 is a diagram with cords showing how they may be arranged so as to cross each other as at B, or aot direct as at A. The advantage of crossing is this, that a strap eaces of the pallers. Nor is it with cords only that this
 crossing may be accomplished. The half tarn given to crossed straps in passing from palley to pulley 0 accemmodates itsel to th B the straps pass without even touching each other.

Cam Palleys.

These are not generally used, but they have properties which might under many circumstances be ntilised. Fig. 28 represents an arrangement by which the pecaliar action of cams may be studied in their transference of motion to cords. C is a palley driven in the direction of the arrows ; or p is a cam, around which is passed the cord. From p the cord passes to q, then round the pulley B and
voder the stretching palley b to s, r, and p. W is noder the stretching pulley b to s, r, and p. W is h-meingtains the tension of the cord.

Assume that the cord is round the circumference of the circuiar palley C, then the point q, in the line $\mathrm{B} q$, will be moved uniformly round the centre B, and the directional relations and velocity ratios whil be constant. Transter the cord to the position
shown 28 ; then the motion imparted to $\mathbf{B} q$ shown in Fig. 28 ; then the motion imparted to $\mathrm{B} q$
will be a variable one. The travel of q ovidently will be a variable one. The travel of q oridently
depends upon the length of cord passing ofl the cam, s r p. Now, the cam may be fixed on any part of the face of the palley C.

It it be so fixed that the centre of the pulley \mathbf{A} is Within the cam, then the directional relations of the motions of A and B will be constant, bat the velocity ratios will be variable.

Let the centre A, and the cusp r, coincide, then in q there will be a period of rest. Hence whilat the directional relations are constant the velocity ratios
are such that one has vanished and motion has are such that one has vanished and motion has

Let now the centre Δ be withont the cam, the point g will advance, panse, and then retrograde. rhus, with a cam palley and a cord, we may, without any alteration in the mechanism, pass from directional relation and velocity ratio constant to

One example of an application of a cam to produce a variable circular velocity in the slide-rest of a screw-catting lathe may be given. Some years ago the connecting and other long rods in engines were "barrelled," that is, they were in longitudinal section curved, being of a larger diameter in the middle than at the ends. Upon the proportions of the varying diameters much of the beanty of the carve depended. Uniformity was seoured thus:-
The handle of the slide-rest was removed, and a cam (as s rp. Fig. 28) or some other form, was fixed in the stead of the handlo. A cord was passed round this cam, and one end tied to the end of the
lathe-bed. As the alide-rest was advanced uniformly by the action of the change-wheels, the cord caused the cam to be moved at a varying rate. Having given the required data, it was then easy to form a cam which should give any predetermined curvature to the " barrelling."
Here is an apparatus containing two pulleys of different diameters. It is an old-fashioned Chinese windlass, one of the oldest of wrapping contrivances. The object is to get a motion dependent on the diameters of the two pulleys. You will find that a very large amount of cord passes, and a very small motion of the weight takes place. This arrange.
ment has been chiefly regarded as an illastrative ment has been chiefly regarded as an illustrative experiment until Weston's palley blocks were adopted; then, by a peculiar contrivance, that which was nearly useless, owing to the large amount of cord needed and the small saotion resulting became useful, and is now frequently met with in the workshop. Here is a pair of large palleys by which the soction can be seen. The peculiarity is that there are grooves cast in the rims of each of these two pulleys, and the links of a chain drop into them, so that "slip," is destroyed. If the chain does not slip it is heldin, and must force the palley does not slip it is hean lift heary weights with great round. One man can lift heary weights with great ease, leaving them suspended in any position with-
out a counterprise. The weights are lowered by out a counterprise. The weights are

There are various other arrangements of strap gearing, both for the reversing of motion and for producing variable motion, which have been kindly lent. Here is a machine for reversing motion, and producing different velocities. There are two spar or toothed wheels of different diameters, so as to give two speeds. One wheel is brought into use cansing the tool to do its work, and the other whee causes the tool to run back at a mach quicker speed the reverse motion being obtained by changing the strap from the outside palley at one side over a loose palley in the centre on to a pulley at the other side, so that there is a period of rest between the two, preventing any jart in the machinery. Here is another of the same principle, but withont variable velocity. Here is one with two straps, one being crossed. Observe, there are foar palleyt-the two centre ones being loose on the shaft. The direotion
of the machine is determined by moving either the of the machine is determined
orossed or the othar strap on to its correspondent onter palley.
This subject of strap gearing is far from exhaustod. We mast, however, tarn to a piece of mechanism which is as extraordinary as any over invented. It is a machine for making cards. The cards whioh it makes oonsist of very fine pieces of wire bent and pushed through pieces of leather. They are used for the combing of cotton. Cotton fibre, before it is manufactured into thread, mast all be laid in the same direction, and these cards do with the fibre Thompson and Co., of Kendal, have kindly sent one of their machines, and a piece of the leather card it was making before being taken down.
Tbis piece of leather, through which the bent wire is to be put, passes betwoen two grooved rollers, and is led over a palloy, being stretched by a weight of twolve pounds. On the right hand of the machine is a light lantern-wheel, which carries a coil of wire. There are no toothed wheels; it is exclusivoly a cam machine. Upon one short shaft are thirteen cams, each of which takes its part in a
proper sequence in one rotation of the shaft. On proper sequence in one rotation of the shaft. On actions, and a fow notes as to the character of the cams :-
Action of Cams in Cardmaking Tachine. Came. Daties.
1 grips the wire to be advanced.
2 advances the gripped wire.
3 holds firmly the advanced wire.
4 cuts the advanced wire to the required length. 7 actuates prickers of the leather.
8 withdraws prickers.
5 advances fingers to hold and bend the wire. 6 withdraws bending fingers.
${ }_{10}^{9}$ \}canse the bent wire to enter the pricked holes.
13 raises front nippers and bends the wire.
11 releases the wire-holding pieces.
12 advances a sleleton stepped cam.wheel.
Notes on Cams in Catd-making Machine.
1,2 , is a double cam; 1 grips the wire by a oylin drical contrivance; 2 advances it by a swash-plate
4 not only operates on the catting-blade, bai canses the machinery to stop if the wire should be broken.
5, 6, 7, 8. These rotating camsact in combination and with springs.
The very fine wire, about the size of a" full stop. passes through a small hole, above which is a pin that can be pressed down so as to hold the wire, and lifted up to release it. When the wire is gripped it is advanced as far as is needfol, being adjasted for any required length by a set screw. ing the wire so adranced. this piece kis up, leav ing the wire so ad
down and grips the wire. The piece which origi
nally adranced it goes back and repeats the same operation. The piece that held it down after being advanced retains its hold nutil a couple of pieces like fingers, operated upon in the centre of the machine, come forward, and a third piece corresponding to them comes from above, so that the wire lies across the two underneath, and the third holds it across the thwo thererneath, wailst so lying another above. It lies there freely. Whilst so living another
operation is performed. The wire is now lying in what may be called a loose grip, and a motion then takes place which pushing two fingers a little in adrance, the wire is gripped firmly. Whilst thus held, as in a vice, two other fingers come forward and bend it. They bend it forward and then close in, causing the points of that wire nearly to touch each other. That, however, is not what is wanted but the wire has a certain amount of elasticity, and the pressare of these fingers beyond what is required is just sufficient to overcome this exceasive elasticity. These bending ingers then withdraw, the elesticity of the wire carses it to open so as to remain with its bent ends exactly opposite the two amall holes which have been made in the leather at a previous stage by two prickers. The wire being passed through these two holes as a thread through the eye of a needle, two hooks rise up on the outside close in, clip the wire, and bend it down, and you will find, on examining this card, that all the wire are bent exactly alike. When so bent, all the operating pieces withdraw, and the wire is left in the leather. Then it is that an action takes place which advances the leather ready for another opera tion. The processes are these. First, the wire i gripped in the way described by a piece falling upon it ; the gripped wire is then advanced. Having been advanced, a pieoedrops and holds the ad vanced wire as in a second vice. Whilat so held a knire comes forward and cats off the required length cut-ofi piece, which has been laid, as it were, upon them; they hold it balanoed, projecting an equal length on each side. Whilst so held, a piece descends in front, and, in combination with the two fingers, grips the wire firmly; then two other fingers come forward. Whilst that is going on with the cut-off wire, two little prickers mako holes in the leather, through which the wire is to be pushed A cam withdraws these prickers, then the bending angers begin to act; when hey have benl the wire to the proper position, those bent fingers withdraw themselves and the holders insert the wire throagb the leather, the hooks in front coming ap and bending the inserted wire. Now a wheel, such as few if any in this room have ever seen, called a akeleton wheel, moves. It is a kind of componand side cam stepped wheel, an outline of which has been traced on the board. It is gripped by two clams, and every time the wire is advanced this wheel canses the leather to be pushed sideways. The cams which work the machine are some of thom single cams, some swash plates, and some componnd cams. There is also one cam which has a very peculiar province. It has no part in the mechanism of the work, but it does this. There is a cam which cate off the wire at the propar length with a little knife Upon the wire rides a piece of light metal. This ight metal rests as it were upon the wire, so that if the wire should break the light metal wonld fall down a quarter of an inch, asd that falling of a qnarter of an inch canses a small piece to rise up which stops the whole machine by throwing the strap wheel oat of gear. If the piece of wire were to break, unless the machine were stopped work wire inserted. It is essential, therefore, that the whole of the machinery should stop when the wire breaks. A similar contrivance causes the stoppage thread be broken.

PRESERVED MEAT, CONDENSED MITK, AND EXTRACTS OF MEAT.
DR. EDWARD SMITH commenced his paper read before the British Association, on the principal preserved foods, by stating that the onor tained rondored it very desirable hat the pablic should understand their value. There was mach ignorance and misconception on the subject. First,
as to preserved milk. This was sold as a thick as to preserved milk. This was sold as a thick
fluid in tins, and was manufactured in England, fluid in tins, and was manufactared in England,
Svitzerland, and America. One pint of the proSwitzorland, and America. One pint of the pro-
duct represents four pints of milk, which would duct represents four pints of milk, which would cost in this country from 4d. to 8d., according to the locality. The tins held 16oz., and represented a little more than two-thirds of a pint of extrack which would be worth, therefore, about 6td. whereas the price of the tins was 10d. to ls. Therefore, instead of being economical, it was very dear o the consumer, though it was a most prontable invention to the manufacturer. The sugar generally in Comptition por cent. oless show its orsults in two directions, an increased proportion of water or sugar, and a less proportion of cream or butter. The "preseived meat" bronght under consideration was that now so widely known as the " $A=8$. tralian!"y Dr. Amith described the process of pre-
se-ration, and atated that 6lb. of raw meat, with a p:opt into a bath of chloride of calcinm, and exposed to a temperatnre higher than that of boiling water, namely, from 230° to 250° Fahr. The tin was sol-
dered and closed except at one point, where there dered and closed except at one point, where there
was a hole throunh which the stoam escaped. The olij. ct to be obtained was primarily the expulsion o the air from the tin, consequently a higk temper-
a^{\prime} ure was remired; and secondly, the cooking of tip meat. which, however, might be effected at a mnch lower temperatare. The tin, to prevent too great loss of weight, was "primed from thine o
tine, so as to keep np the weight of the contents. The circarnstances to be remarked in the process boiled, but stewed in its oinn vapur ; second, that it was overcooked, so that a larger proportion of the sonnle materins was extracted than occinrred in
the ordiunry process of boiling, and the sulid part mas more or less broken up into bundles of fibres;
third, the extracted juices were more valuablo than third, the extracted juices were more valunble than
from oridiary boiling of meat; aud by so mach the solid mass was less valuablo thay orlinary
boilp, meat ; fourth, the pecnliar Havour was given partially ty the mode of cooking, but cliefly by the aillition of the flavour of roasted meat, which way arreeable. The solid motter. although soft, was the t-eth, and without free mastication it was leas prfectly digested. The conclusious to be deduced ware classed under different heads. The nutritive valu, of the whole of the contents of the tin could
not be greater than that of the raw meat put into the tin, and hence, although the meat was conked. the comparison of the value mast be with raw m ant and not with cooked meat. If, therefore, a dictary was four ounces of cooked miat, the
Anstraliun meat wonld have to be supplied in the same quantity as the raw meat in weight before being cooked-namely 51 ounces to 6 ounces. H also held that the Australian berst was not equal
to the English beast. The pecaniary aspect of the question sho Fantage to the Australian producer, since ho could by this process make larger returns than by boiling down the carcasses of animals for the production of tallow and fat, and, so far, the wealth of the Colonies was increased. Moreover, the process alded to the amount of food for man, and therethe English consumer, taking becf sapplied to institutions as at 7 d . and 7 id. a lb., he
thonght there was little gain in the nse of the thonght there was hittle goin in the nse of the
Australian tin-meat in those cases, but there was a gain to the individual consmmer who had to pay m re to the butcher for his meat in this country. H- advised that the recommendations laid down by the oricinal importers of the meats should be adhered to in r spect of not cooking the meat farther thau by preparing it in a stew or soup, withont more fond.

Respecting Liebig's extract of meat, he pointed

 ont that it was claimed for this that 1lb. jar reprewater, and, in large quantity, tho salt of meat and the phosphates. It contained only the soluble parts of mast, and on'y sach as conld be preserved fromputrefaction. The fibrine or solid sulstance of tho putrefaction. The fibrine or solid sulstance of tho
meat was excluded, for that was ingoluble in water. The fat was excluled most carefully, as it would bicome rancid. Gelatine and albumen were ex-
cluded becanse they would decompsse. When, therefore, fibrine, gelatine, and albumen cluded, it was certainly not "meat," which was left as the word was understood, for nearls every part of the meat which conld be transformacd in the body and act as food was excluded; therefore, Liebig's extract of meat was not meat, and to give the meat power the 32 lb . of meat from which it is said to bo
talien mast be added to it, for as it wag, it was the play of "Hamlet," with Hamlet left out. The product was of less valae to the consumer than lusive rather than a real nilvantago; but, although he said this, he held that it had a value as a
gtimulant in the same way as theine or caffeine; atimulant in the same way as theine or caffeine
bat its ceonomic value was very small as repre snating 32lb. of meat in a 1lb. jar. There had been mnch misconception respecting the product, equivalent of meat.
In the discussion which followed the reading of which oagh, to be taken into account, viz one item meat was ready cooked. and so the cost of fuel for cooking was saved. The introdaction of the meat into public institations had, it was stated, reduced nsual stock arguments to prove what is incontestable, namely, that Anstralian preserved meat must be cheaper, because it is cooked and withont bone-
the latter biug a large itom in ordinary "butchers ment." The assertion that the conteuts of the tius were underweight was eontradicted, with a connter-
stat m"nt that they are, as a rule, overwoight. The con lenned milk was considered a great boon wher the fresh article could not be obtained; aud Liebig
stimulant. Dr. Smith, in reply, snid that the 10 per average of bone throt be imagined that the 10 per cent., bat it mast not be imarined that the
bones were of no value. The butchers would allow twopence a ponnd for them. It mast also be recollected that in boiling a log of matton, there was in reality no loss, becanse whatever nutriment left the meat went into the broth. and the broth shonld produce of the joint was consumed. As to the saving in firing, that hal been rather exaggerated, becango a fre mist be kept up for personal comfort in Finter, and in the summer it would be reguired for boiling a kcttlu in order to make toa, or for couking cogetables. Ho quite admitted that it was very time, but that was not a point which he had dealt with in his paper

THE AIMS AND INSTRUMENTS OF SCIENTIFIC THOUGHT.

THE followin is the lecture dolivered by Professor British. Association: Mr. President, Laties, and Guntlemen-It is my daty to speak to you for a scientific thought. It may have occurred (and very scientific thought. It may have occurred (and very naturally too) to such as have had the ouriosity to read the titlo of this lecture, that it mast veces sarily be a very dry and dificult sabjoct, interesting to vory few, intelligible to still fewer, and nbove all, ntterly incapable of adequate treatment within the limits of a discourse like this. It is quite true that a complete setting forth of my subject would require a comprehensive treatise on logic, with iucidental discussion of the main question of metaphysics that it wonld deal with ideas demandiug close study for their apprehension, and investigations requiring a pecaliar taste to relish them. It is not my inten. tion to present you with such a treatise this general, contains three classes of persons. In the first place, it contains scientific thinkers, that is to say, persons whose thoughts have very frequently the characters which I shall presently describe. Se condly, it contains persons who are engaged in wor upon what are called scientific sabjects, but who, in general, do not, and are not expected to think about the sabjects in a scientific manner. Lastly, it contains persons who sappose that their work and their thoughts are unscientific, bat who would like to know something aboat the business of the other two classes aforesaid. Now, to any one who, belotiming to one of these alasses, considers either of the other two, it will be apparent that there is a certain gol between him and them; that he does not quite on derstand them, nor they him ; and that an opportanity for sympathy and comradeship islost through this want of understanding. It is this gulf that desire to hridge over, to the best of my power. That the scientific thinker may consider his business in rclation to the graat life of mankind; that the noble army of practical workers may recoguise their
fellowship with the outer world, and the fellowship with the outer world, and the spirit
which must gaide both; that this so called outer Which must gaide both; that this so called outer world may see in the work of science only the worl -may feel that the kingdom of scionce is withi it. These are the objocts of the present disconrse and you will see that they compel me to choosa such portions of my vast subject as shall bo intelligible to all, whilo they onght at least to command an in est aniversal, personal, and profona.

Scientifio and Technical Thought.
In the first place, then, I want to explain what is meant by scientitic thonglt. You may have heard some of it expressed in the various sections this morning. You lave probably also heard expressed in some places a great deal of unscientific thonght notwithstanding that it was about mechanical energy, or about hydrocarbons, or about cocene de posits, or about malacopterygii ; for scientitic thought does not mean thought about'scientitic subjects with long names. There are no scientific subjects. The
subject of science is the haman uuiverse-that is to say, eversthing that is, or has been, or may be re lated to mau. Let us, then, taking several topics in succession, endeavour to make out in what case thought about them is scientitic, and in whet cases tive motiuns of the san and moon recurred all ores again in the same order about every nineteen years. They were thns enabled to predict the time at which our observatories can do a great deal more than this. Like them, he marres use of pist experience o predict tho fure, buid hass ox a grea years, and takes account of all of them; and can tell abont the solar eclipse of six years bence exactly Where it will be visible, and how much of the sun surface will be covered at each place, and, to a
secoud, at what time of day it will begiu and finish second, at what time of day it will begiu and finish the hi hest order ; but it does not involve scientific thonght, as any astronomer will tell you. Fy sach
calculatious the places of the planct Uranas at different times of the year had been predicted and se
down. The prelictions were not falflled. Then rose Adams, and from these errors in the prediction he calculated the place of an eutirely new planet that had never yet been suspected; and you all know how the new planet was actually found in that place. Now this prediction does involve scieaticis
thought, as any one who has stadied it will tell voo. thought, as any one who has stadied it will tell you.
Here there are two cases of thought about the sarae subject. both predicting events by the application of previous ex perience; yet we say that one is toch. nical and the other scientific. Nor, let us take an example from the bnilding of bridyes and rools. When an opening is spanned over by a material withoution, whe onoth to injure itsalf there are two furms in wich this to injure itse, here are the arch ard the chain. Every part of an arcin is compressed or payked by the other parts; ever pay of a chain is in a many casus these forms primd by the other parts. In many cases these forms are
nited. A girder consists of two main pieces or booms, of which the uppar one acts as an arct and is compressed, while the lower one acts as a chais and is palled; and this is trae even when both tis pieces aro quite straight. Tuey are enabled in this way by being tied together, or braced, as in is called, by cross-pieces, Which you mast often engineer makes a brilge or roof anon some approres pattern which has been made befure, he desirus the size and shape of it to suit the opening which has to be spanned. selects his material according to the locality, assigns the strength which mast be giren to the sereral parts of the structure according to great deal of thonght in the to bear. There is whose dal of thongs is previous experience. it requires techuical ski! of very high order bat it is not scientific thoaght. On the other hand, Mr. Fleeming Jenkin desings a roof, consisting of two arches braced togtther, instead of an arch and a chain braced torether and although this form is quite different from say known structure, yet before it is built he assiga: with accuracy the amount of material that most bput into every part of the structure in order to maike it bear the reqnired load, and this prediction may be trusted with perfect security. What is the natural comment apon this? Why, that Mr. Fleeming Jenkin is a scientific engineer. Now it seems to me that the drareqce between scientiac and
merely technical-tiought, not only in these bat in all other instances which I have considered, is just this. Both of them make ase of experience to direct human action; but while technical thont: or skill enables a man to deal with the same circam stances that he has met with before, scientitic thought enables him to deal with different circom stances that he has never met with before. Bat how, you will say, can experience of one thins enable us to deal with another quite different this? To answer this question we sball have to constiry ns are closely the natare of scientitic thought. Las as take another examplo. You know that if yon make a dot on a piece of paper, and then hotd a dot bnt two A mineralogist, by mesurior ose angle of a crystal, can tell you whether or no: it pnssesses this property without looking throngh : He reqnires no scientitic thought to do shat. Bal Sir William Rowan Hamilton, the late Astronomef oxplanation of them which Fresnol had girei: thought about the sabject, and he predicterd that by looking through certain crystals, in a particula tinnous circle. Mr. Llogd made the experimeat and saw the circle, a resalt which had never been even suspected. This has always been considerel one of the most signal instances of ecievtic thought in the domain of physics. It is not distinctly an application of experience gainod unda and circoustances to entirely differaut circum stances. Now, suppose that the nightbefure comiog
down to Brighton you had dremmed of a railmay down to Briguton you had aremmed of a raiway a llock of sheep, and jumping suddealy beck ore all the carriages, the result of whioh was ihat yoar head was unfortunately cut of so that you had ω put it in your hat-box, and take it back Lowe to bs meuded. There are, I fear, many persons er'in as this day who would tell yon thatafter sưh a dreen This is a proposal that yon shall take expertecte gaived while you are asleep-when, as the Presid a a plantom railway, and apply it to guide you when you are awake, and have common sonse, in yoy dealings with a real railway. And yet this propmis is not dictated by scientitic thoaght. Nux. let a tako the great example of Biology. I pass oyer tbe process of classitication, which itself reyuares greal deal of scientine thonght in particaiar wne
a naturalist. who has studied and mano, amisula a naturalist. Who has atudied and mano
fauna or a flora, rather thaw a fanily, is ab
 for the sablivision of an orider quida nes to biz
prolensive knowfedge of whants minate minis cuig and
differences, their structure and functions; a vast body of experience, collected by incalculable laboar
and devotiou. Then comes Mr. Hervert Spencer: and devotiou. Then comes Mr. Herbert Spencer;
be takes that experience of life which is not haman, be tnkes that experience of life which is not haman,
which is apparently stationary, going on in exactly which is apparenty shacionary, going on he exactly that to tell us how to deal with the changing characters of human nature and human society. How is it that experience of this sort, vast as it is, can gnide us in a matter 80 different from itself? How does scientific thonght, applied to the developsapinexogen, make prediction possible for the first sapinexogen, make prediction possible for the arst
time in that most important of all sciences, the time in that most important of all sciences, the
relations of man with man? In the dark or na. rclatinns of man with man? in the dark or un-
scientific ages men had another way of applying scientific ages men had another way of applying Por example, that the plant called Jev's-enr, which
does bear a certain resemblance to the haman ear, does bear a certain resemblance to the haman ear,
was a nsefnl cure for diseases of that organ. This doctrine of signatures, as it was called, exercised an enormons intlnence on the medicine of the time. I need hardly tell yon that it is hopelessly anscientitic; yet it agrees with those other examples that it rpplies experience about the shape of a plant, which is one circumedicinal properties, which are other and different circumstanees. Again, suppose that you had been frightesed by a thunderatorm on land, or your heart had failed you in a storm at sea ; if any one then told you that in consequence of this you should always cultivate an onpleasant sensation in it, that you shonld regnlate your sane and sober in it that you shonld regnlate your sane and sober
life by the sensations of a moment of unreasoning terror ; this advice would not be an example of scientific thought. Yet it wonld be an application
of past experience to new ond different of past experience to new and different circumstances. But you will already have observed what is the additional olanse that we mnat add to our
definition in order to describe scientific thonght and that only. The step between experience about adimals and dealings with changing hamanity is placea of Urants to the existence of Neptane is the law of gravitation. The step from observed behaviour of crystals to conical refraction is made up of laws of light and geometry. The step from old bridges to new ones is the laws of elasticity and the strength of materials. The step, then, from past strength of materials.
experience to new circumstances mnst be made in experience to new circumstances mnat be made in
accordance with an observed uniformity in the order of eveuts. This uniformity has held good in the past in certain places; if it should also hold good in
the fature and in other places, then, being combined with our experience of the past, it enables us to predict the fatare, and to know what is going on elsewhere; so that we are able to regulate our con-
duct in accordance with this knowledge. I want to duct in accordance with this knowledge. I want to
make a little clearer the fact that what you call make a little clearer the fact that what you call
the evidence for a thing depends upon the assumption that this uniformity is valid at places and times at which it has not been olserved. The aim of scientitic thonght, then, is to apply past experience aniformity in the coarse of events. By the use of this instrument it gives us information transcending our experience, it ensbles as to infer things that and the evidence for the trath of that information depends, as we have seen, on our supposing that the nepiformity holds good beyond our experience. I nniformity to consider this uniformity a little more closely; to show how the character of scientifio
thought and the force of its inferences depend upon the character of the uniformity of Nature. I cannot, of course, tell you all that is known if this
character withont writing an encyclopedia; but I character withont writing an encyclopsedia; but I
shall contine myself to two points of it about which it seems to me that just now there is something to
be said. I want to find out what we mean when we say that the nniformity of nature is exact; and what we mean when we say that it is reasonable.

Exactness of Natural Laws.

When a stadent is first introduced to those sciences which have come under the dominion of bursts upan his vier. He has bean accostomed to regard things as essentially more or less vague. All the facts that he has hitherto known have been expressed qualitatively, with a littlo allowance for to the ground. A rery observant man may know also that they. fall faster asservant man may know student is slown that, after falling for one second in a vecuum, a body is going at the rate of 32 ft . per
second, that after falling for two seconds. it is going twice as fast, after going two and a half seconde, two and a half times as fast. If he makes the ex-
periment, and finds a single inch per second too periment, and finds a single inch per second too
much or too little in the rate, one of two things must have happened; either the law of falling bodies has been Wrongly stated, or the experiment
is not accurate-there is some mistake. He finds rencon to think that the latter is always the case; the more carefully te goes to work, the mare the error tirns ont to belong to the experiment. Again, be may know that water censiste of two gasee,
orygen and hydrogen combined together; but he now learns that two pints of steam at a tempera-
ture of 150 Contigrade will always make two pints of bydrogen and one pint of oxygen at the same ternperature; all of them being pressed as mach as
the atmosphere is pressed. If be makes the ex. the atmosphere is pressed. If be makes the experiment, and gets rather more or
of oxygen, is tho law disproved? No, the steam was impure, or there was some mistake. Myriads of analyses attest the las of combining volumes; the more carenally they coincide with it. The aspects of the faces of a crystal are connected together by a geometrical law, by which, four of them being given,
the rest cau be fomud. The phice of a planet at a given time is calculated by the of gravitation it is half a second wrong, the fanl is in the in-
strument, the observer, the clock, or the law; now, the more observations are made the more of this faalt is brought home to the instrument, the observer, and the clock. It is no wonder, then, that our stadent, contemplating these and many like instances, should be led to say, "I have been shortsighted ; but I have now put on the spectacles of science, which nature ball prepared for my cyes; I world is ruled by exact and rigid mathematical laws - Kai su, theos, geometreis.' $"$. It is onr business to consider whether he is right in so conclading. Is the uniformity of nature absolutely exact, or only more exact than our experiments? At this poiut we have to make a very important distinction. There are two ways in which a aw may be inaccu-
rate. The frot way is exemplitied by that law Galileo which I mentioned just now; that a boily falling in vacuo accuires equal increase of velocity in equal times. No matter how many feet per secoud it is going, after an interval of a second it
will be going thirty-two more feet per second. We now know that this rate of increase is not exactly the came at different heights, that it depends upon the distance of the body from the centre of the earth; so that the law is only approximate ; instead of the increase of velocity being exactly equal in body falls. We know also that this variation of the lav from the truth is too small to be perceived by direct observation on the change of velocity. Bat sappose we have invented means for observing is in versely as the squared distance from the earth's centre. Still the law is not accurate ; for the earth does not attract accurately towards her centre, and the direotion of attraction is continually varying with the motion of the sea ; the body will not even with the motion of the sea; the body will not even
fall in a straight line. The sun and the planets, too, espeoially the moon, will produco deviations yet the sum of all these errors will escape our new
process of observation, by being a great deal smaller process of observation, by being a great veal smaller than the necessary errors of that observation. But still the influence of the stars. In this case, how ever, we only give ap one exact law for another. I may still be held that if the effect of every particle of matter in the nniverse on the falling bolly were calculated according to the law of gravitation, the body woald move exactly as this calculation required. And if it were objected that the body must anghty magnetic or diamagnetic, while thereare magnets not an infinite way off ; that a very minate repulision, even at sensible distances, accompanies nomena are themselves babject to that these phethat when all the laws have been taken into account the actual motion will exactly correspond with the calcalated motion

I suppose there is hardly a physical student (unless he has speciully considered the matter) who wonld not at ouce assent to the statement I have just made; that if we knew all aboat it, Nature would be found aniversally subject to exact numerical
laws. Bat let us just consider for another moment what this means.

Praotical and Theoretical Exactness.

The word exect has a practical and a theoretical meaning. When a grocer weighs you out a certain quantity of sugar very carefully, and says it is exactly a pound, he means that the difference between the mass of the sugar and that of the pound weight he employs is too small to be detected by his scales. If a chemist had made a special investigation, wishing to be as accurate as he could, and told you this was exactiy a pound of sngar, he would mean that the mass of the sugar differed from that of a certain standari piece of platinum by a quantity too amall to be detected by his means of weighing. which are
a thonsand fold more accurate than the grocer's. a thonsand fold more accurate than the grocer's.
But what would a mathematician mean, if he made But what would n mathematician mean, if he maide
the saine statement? He would mean this:-Suppose the mass of the standard poand to be repre sented by a length, say a foot, measured on a cer tain line ; so that half a pound would be represented by 6 in . and so on. And let the difference between ponnd be dre the sugar so mat to the same scale. Then if that difference were maphifled an This is number of theores it would still be invibible. practical meaning is only very clowe approximation
how close, depends apon the circumstances. The knowledre, then, of an exact law in the theoratical
sense would be equivalent to an intinite observation. I do not say that such knowleige is impossible to man, bnt I do say that it would be absolutely dife rent in kind from any knowledge that we possess at present.
I shall be told, no doubt, that I do possess a great deal of knowledge of this kind, in the form of geometry and mechanics, and that it is jnst the example of these sciences that has led men to look said to mess in other quarters. If this hat been known what to reply. Bat it happens that abont the beginning of the present century the founda tions of geonuetry were criticised independently by two mathematicians, Lobatscheifsky and the im. and generalised more recently by Riemaun and Helmholtz. And the conclusion to which these in vestigations lead is that although the assumptions which were very properly made by the ancient geometers are practically exact-that is to say. more exact than experiment can be-for such finite things as we have to deal with, and such portions of spac as wo can reach, yet the truth of them for very mach larger things, or very mach smaller things, or parts of space which are at present beyond onr reach, is a matter to be decided by experiment, when its powers are considerably increased. I want to make as clear as possible the real state of this question at present, because it is often supposed to a a question of words or metaphysic, whereas it is very distinct and simple quastion of fact. I am supposed to know, hen, that the three angles of a angles. Now, suppose that three points are taken in space, distant from one another as far as the smu is from Sirins, and that the shortest distances between these points are drawn so as to form a tri-
angle. And suppose the angles of these points to be very accurately measured and added together this can at present be done so accurately that the error shall certainly be less than one minute, less therefore than the dive-thousandth part of a righ angle. Then I do not know that this snm would difer at all from two right angles; but also I do demrow or the the have reasons for not knowing.
This example is exceedingly important as showing the connection between exactness and universality. It is found that the deviation, if it existo trian Sarl proportior in the case of a triaul whose sides are a mile long would be obtained by dividing that in the case I have jut ing by four handred quadrillions; the result must be a quantity inconceivably small, whioh no experi ment could detect. Bat between this inconceivably small error and no error at all, there is fixed an onormons gulf, the gall between practical and theoretical exactness, and, what is even more important what between what pricticall say that law is theoretically unior perimaly universal that might be got at br such periment for all case. We assame this kind of nniversality, and we find that it pays ns to ansume it. But a law would be theoretically universal if it were trae of all cases whatever,
we do not know of any law at all.
I said there were two ways in which a lnw might be inexact. There is a law of gases which asserts that when you compress a perfect gas the pressure of the gas increases exacis to the proportion in to say, the law is more accurate thnn the experiment. and experiments are corrected by means of the law But it 50 happens that thi law has been explained; we know precisely what it is that bappens when a gas is compressed. W know that a gas consists of a vast number of sepa rate molecules, rushing about in all directions with all manner of velocities, but so that the mean velo city of the molecales of air in this room, for example, is about 20 miles a minute. The pressure of the gas on any surface with which it is in con partis nothing more than the impact of theseng to particles npon it. On any snrface harge empacts in second. If the apace in which the gas is confined be dimininhed, the average rate at which the impacts take place will be increased in the seme proportion; and because of the enormons number of them, the actual rate is always exceedingly close to the average. But the law is one of statistics ; its accuracy depends on the enormo of the case, it exactness cannot be theoretical or absolute

Nearly all the laws of gases have received these stntistical explanations; electric and magnetic attraction and repulsion have been treated in a similar manner ; and a hypothesis of this sort has been enggested eren for the law of gravity. of a cas inturfere with each other proves that they repel one another inversely as the ifth pow"r on the distance; so that wo have found at the basis o
of theoretical exactness. Which of these forms is 0 win? It seems to me, again, that we do not know and that the recognition of our ignorance is the enrest way to get rid of it. The world has made the
remark that I have attribated to a fresh stadent of remark that I have attribated to a fresh stadent of
the applied sciences. As the discoveries of Galileo, Khe applied sciences. As the discoveries of Galileo
Kepler, Newton, Dalton, Cavendish, Gauss, displayed ever new phenomena following mathematical law, the theoretical exactness of the physical uni-
verse was taken for granted. Now, when people verse was taken for granted. Now, when people
are hopelessly ignoraut of a thing, they quarrel about the source of their knowledge. Accordingly many maintained that we know these exact laws by we did not know them from experience. Others weid that they were really given in the facts, and sadopted ingenious ways of hiding the gulf between he two. Others, again, deduced from transcen dental considerations sometimes the laws themselves, and sometimes what through imperfect in-
formation they snpposed to be the laws. But more serions consequences arose when these conceptions derived from physics were carried over into the feld of biology. Sharp lines of division were made between kiugiloms and classes and orders; an animal was described as a miracle to the vegetable
world; specific differences which are practically permanent within the range of history, were regariled as permanent throagh all time ; a sharp line was drawn between organic and inorganic that accuracy had been prematurely attributed to the science, and has filled up all the gulfs and gaps the science, and has filled observers had invented. The animal that hasty observers had invented. The animal between them, occupied by beings that have the character of both and yet beloug distinctly to
neither. Classes and orders shade into one another neither. Classes and orders shade into one another
all along their common boundary. Specific differences tarn out to be the work of time. The line dividing organic matter from inorganic, if drawn to-day, mast be moved to-morrow to another place; and the chemist will tell you that the distinction has sense for the convenience of stndying carbon com pounds by themselves. In geology the same tendency geve birth to the doctrine of distinct periods marked out by the character of the strats deposited perhaps, no ancient cosmogony has been further from the truth, or done more harm to the progress of science. Refuted many years ago by Mr.
Herbert Spencer, it has now fairly yielded to an attack from all sides at once, and may be left in peace. When, then, we say that the uniformity which we obserse in the course of events is exact and nuiversal, we mean no more than this, that we are able to state general rules which are far more exact than we are at present likely to come across. It is important to notice, however, the effect of such exactness as we observe upon the nature of inference. When a telegram arrived stating that Dr. Livingstone had been found by Mr. Stanley, what was the
process by which you inferred the finding of Dr. Livingstone from the appearance of the telegram Yon assumed over and over again the existence of
uniformity in nature. That the newspapers had miformity in nature. That the newspapers had graphic messages; that the clerks had followed the known laws of the action of clerks; that electricity had behaved in the cable exactly as it behaves in
the laboratory; that the actions of Mr. Stanley the laboratory; that the actions of Mr. Stanley
were related to his motives by the same uniformities that affect the actions of other men; that Dr. Livinget one's handwriting conformed to the curions rule by which an ordinary man's handwriting may be recognised as having persistent characteristics
even at different periods of his life. But you had even at different periods of his life. But you had a right to be mach more sure about some of these
inferences than about others. The law of electricity was known with practical exactness, and the conclusions derived from it were the surest things
of all. The law about the handwriting, belonging of all. The law about the handwriting, belonging with conscionsness, was known with less, but still witly considerable accuracy. But the laws of hnman action in which conscionsness is concerned are still so far from being completely analysed and which you made by their help were felt to have onl: a provisicnal force. It is possible that by and-by when psychology has made enormous ad able to give to testimony the sort of weight which we give to the inferences of physical scionce. It
will then be possible to conceive a case which will show how completely the whole process of infereace depends on our assumption of uniformity. Sup. pose that testimony, having reached the ideal force runs up bill. You could infer nothing at all. The arm of inference would be paralysed, and the sword of trath broken in its grasp; and reason could only sit down and wait until recovery restored weapons. I want in the next place to cousider what we mean when we say that the uniformity which we have observed in the course of events is
'Reasonableness " of Nature.
No doubt the first form of this idea was suggested by the marvellons adaptation of certain nataral structares to special functions. The first impression of those who studied comparative anatomy was that every part of the animal frame was fitted with extraordinary completeness for the work that it had to co. I say extraordinary, because at the time the most familiar examples of this adaptation were manufactures prodaced by haman ingennity; and the completeness and minuteness of natural adapations were seen to be far in advance of these. The mechanism of limbs and joints was seen to be adapted far better than any existing ironwork to those motions and combinations of motion which
were most useful to the particular organism. The were most aseful to the particular organism. The
beantiful and complicated apparatus of sensation canght up indications from the sarronnding mediam, sorted them, analysed them, and transmitted the results to the brain is a manner with which at the time I am speaking of no artificial contrivance could compete. Hence the belief grew amongst physiologists that every structure which they found must have its function, and subserve some useful parpose; a belief which was not without its foun-
dation in fact, and which certainly (as Dr. Whewell remarks) has done admirable service in promoting the growth of physiology. Like all beliofs fonnd ne growth of physiology. Like all beliefs lone ind anccessfal in one subject, it was carried over into the specalations of Count Ramford about the physical properties of water, to which the President has already called your attention. Pare water attains Fahreatest density at a temperatnre of about 394° Fahr, ; it expands and becomes lighter whether it is cooled or hested so as to alter that temperature. Hence it was concluded that Water in this state means the sea was kept from freezing all through as, it was supposed. must happen if the greatest density had been that of ice. Here, then, was s substance whose properties were eminently adapted to secure an end essential to the maintenance of life upon he earth. In short, men came to the conclusion hat the order of Nature was reasonsble in the sense that everything was adapted to some good end Farther consideration, however, has led men out o that conclusion in two different ways. First, it Was seen that the facts of the case had been wrongly
stated. Cases were found of wonderfully compli cated structures that served no parpose at all ; like the teeth of that whalebone whale of which you heard in Section D the other day, or of the dugong, which has a horny palate covering them ull up and used instead of them; like the eyes of the unborn mole, that are never used, though perfect as those of a mouse antil the skall-opening closes up cutting them off from the brain, when they dry up and become incapable of use, like the outsides you Awn ears, which are absolately of no use mon haman contrivances were more advanced became clear that the natural adaptations were subject to criticism. The eye, regarded as an optical instrument of haman manufacture, was thus described by Helmholtz, the physiologist who learned physics for the sake of his physiology, and math tician sent me that as an instrument, I should send it back to him with grave reproaches for the oarelessness of his work, and demand the return of my money.'

The extensions of the doctrine into physics were found to be still more at fault. That remarkable property of pare water, which was to have kept the sea from foraging, does not belong to salt water, of which the sea itself is composed. It was foand, in fact, that the idea of areasonable adaptation of means o ends, useful as it had been in its proper sphere order of nature as a whole

True Meaning of "Explanation."

Secondly, this ides has given way because it has been superseded by a higher and more general idea of what is reasonable, which has the advaratage of being applicable to a large portion of physical phenomena besides. Both the adaptation and the have been explained. The scientific thought of $\mathbf{D r}$ Darwin, of Mr. Herbert Spencer, and of Mr Wallace, has described that bitherto naknown process of adaptation as consisting of perfectly wellknown and familiar processes. There are two kinds of these: the direct process, in which the physics changes required to prodace a structure are worke out by the very actions for which that stractare been modified from generation to generation by the bendings which it has undergone, and the indirect processes, included under the head of Natural Seferent from their parents, and the survival of those which are best fitted to hold their own in the able to talk existence. If some idea of the rate at which we are getting expla. nations of the evolution of all parts of animals and plante, the growth of the skeletons, the nervous
system and its mind, of leaf and flower. But what then, do we mean by explanation? We were con sidering just now an explanation of a law of geses the law according to which pressure increases in The explanation consisted in supposing that a ga The explanation consisted is supposing that a as
is made of a vast number of minute particles always flying about and striking against one asother, and then showing that the rate of impact of such crowd of particles on the sides of the vessel contain ing them would vary exactly as the pressure is fonnd to vary. Sappose the vessel to have parallel sides and that there is only one particle rashing back wards and forwards between them, then it is cless that, if we bring the sides together to half the distance, the particle will hit each of them twice as often. of the pressure will be doubled. Now, it turng out that this would be just as true for millions of particizs s for one, and when they are flying in all directions nstesd of only in one direction snd its opposita provided only that they interfere with each other' motion. Observe now; it is a perfectly well knowo and familiar thing that a body should strike against an opposingsurface and bound off again; and it is mere every-day occurrence that, what hes only half so far to go should be back in half the time bat that pressure should be strictly proportional to density is a comparatively strange, unfamilias phenomenon. The explanation describes the ar known and unfamiliar as being made up of theknown and the familiar, and this, it seems to me, is the true meaning of explanation. Here is another in stance. If small pieces of camplor are dropped into water, they will begin to spiu rund and swill sbout in a most marvellous way. Mr. Tomlinson gave, I believe, the explanation of this. We masi observe, to begin with, that every liquid has a stio which holds it; you can see that to be true in the case of a drop, which looks as if it were hold in bag. Bat the tension of this skin is greater in some liquids than in others; and it is greater in camphor and water than in pore water. When the camphor is dropped into water it beging to dissolve and get surronnded with camphor and water instead of water. If the fragment of camphor ware exsct? symmetrical, nothing more would happen ; the tec ood but be greater world follow. The camphor oow, but is irreguler in shape it dissol res more on one eris than the or . ind consequently pulled sbout, becanse the tension of the stin i pulled about, because the tension of the stin is
greater where the camphor is most dissolved. Now. greater where the camphor is most dissolved. Now.
it is probsble that this is not nearly so satisfactory au explanation to you as it was to me whan I wa irst told of it, and for this reason. By that time was already perfectly familiar with the notion of a
skin apon the surface of liquids, and I had bers caught by means of it to work ont proulems i capillarity. The explanation was, therefore, a d not knon of the unknown phenomenon which I phenomens which I did know huw to deal wil But to many of you, possibly the liquid skin my! seem quite as strange and unaccountable s it motion of camphor on wetar. And that brings m from an explangtion. By known and familisr. mean that which we know how to deal with, eithe by action in the ordinary sense, or by active thonsth Whev, therefore, that which we do not know how: deal with is described as made up of things that we do know how to deal with, we have that sense of
increased power which is the basis of all higher increased power which is the basis of all higte
pleasures. Of course, we may afterwards by associ ation come to take pleasure in explanation for i:s own saze. Are we, then, to say that the obserres of it admits of explanation? That s process mis! be capable of explanation, it mast break np int simpler constituents which are already familiar th us. Nnw, first, the process may itsalf be simple, an no break up; secondly, it may break np is olements which are as unfamiliar and impracticai st the original process.
It is an explanation of the moon's motion to est that she is a falling body, only she is going so faand is so far off that she falls quite ronnd t? nther side of the earth, instead of hitting it : as so goes onfor ever. Bat it is no explanation to seems that the motion of the body may be resoir into a motion of every one of its particles towanievery one of the particles of the earth, with an celeration inversely as the square of the distance ween them. Bat this attraction of two partici must always, I think, be less familiar than ta the fature begin to read their Newton. Can the ai traction itself be explained? Le Sage said that ther is an everlasting hail of innamerable small ather -r. ticles from all sides, and that the two man particles shield each other from this and so
pashed together. This is an explanation: it may may not be a true one. The attraction may be altimate simple fact, or it mas be maile simple facts atterly unlike anything that we explanation. We have no right to conciucie. that the order of events is always capable of bric easonable as weH as exact.

Cause and Effect.
There is yet another way in which it is said that Nature is reasonable; namaly, inasmnch as every
effect has a cause. What do we mean by this? In effect has a cause. What do we mean by this? In
askiug this question we have entered apon an appalling task. The word represented by cause has sixty-four meanings in Plato snd forty-eight in Aristotle. These were men who liked to know as cuear as might be what they meant; but how many meanings it has had in the writings of the myriads of people who bave not tried to know what they
meant by it will.' I hope, never be connted. It woald not only be the height of presumption in me to attempt to fix the meaning of a word which has been used by so grave anthority in so many and varions senses; bnt it wonld seem a thankless task to do that once more which has been done so often at sundry times and in divers manners befors. And Yet without this we cannot determine what we mean by saying that the order of Nature is reasonsble. I
shall evade the difficulty by telling you Mr. Grote's shall evade the difficulty by teling you Mr. Groters
opinion. You come to a scarecrow and ask, what opinion. You come to a scarecrow and ask, what
is the cause of this? You find that a man made it is the cause of this? You find that a man made it self "Everything resernbles this scarecrow. Every-
thing has a parpose." And from that day the word thing has a parpose." And from that day the word
canse means for you what Aristotle meant by final canse. Or yon go into a hairdresser's shop, and wonder what turns the wheel to which the rotary brush is attached. On investigating other parts of the premises you find a man working away at a
handle. Then yon go away and say Everything handle. Then yon go away and say " Everything
is like that wheel. If I investigated enongh, I shonld always find a man at the bandle." And the man at the handle, or whatever corresponds to him, is from henceforth known to yon as canse, and so generally. When you bave made out any sequence
of ovents to your entire satisfaction, so that you know all about it, thelaws involved being 80 familiar that you seem to see how the beginning must have been followed by the end; then you apply that as a bimile to other events whatever, and your idea of cause is determined by it. Only when a case arises, as it always must, to which the simile will not apply, you do not confers to yourself that it was you ray "The canse of that event is a mystery which must remain for ever unknown to me." On eqnally just gronnds, the nervous system of my umbrelle is a mystery which must remain for ever unknown to
me. My nmbrella has no nervous system ; and the event to which Jour simile did not apply has no cause in your sense of the word. When we gay, then, that every effect has a cause, we mean that every event is connected with something in a way that I, at least, have never yet seen any single meaning of the word that could be fairly applied to the whole order of Nature. From this remark I cannot even accopt an attempt recently made by Air. Bain
to give the word a nniversal meaning, though I to give the word a niversal meaning, though
desire to speak of thst attempt with the greatest desire to speak oi thst attempt with the greatest
respect. Main wishes to make the word cause
hang on in some way to what we call the law of hang on in some way to what wo call the law of
energy; but thongh I speak with great diffidence, energy; but though I speak with great difficuence, I do introduction of this word canse can only bring confasion into a matter which is distinct and clear enough to those who have taken the trouble to understand what energy means. It would be impossible to explain that this evening; bat I may mention that energy is a technical term out of mathematical physics, which requires of most men a good

Doctrine of Contradiotions.

Let $u s$ pass on to consider, with all the reverence which it demands, another opinion, beld by great numbers of the philosophers who have lived in the brightening ages of Eiarope: the opinion that at the basis of the natural order there is something which we can know to be unreasonable, to evade the processes of human thought. The opinion is set forth
first by Kant, so far I know, in the form of his first by Kant, so far I know, in the form of his
famons doctrine of the antinomies or contradictions, famons doctrine of the antinomies or contradictions,
the natnre of which I will endeavour to explain to the nature of which I will endeavour to explain to
you. Kant said, then, that space must either be infinite or hare boundary. Now, you cannot conceive infinite space; and you cannot conceive that
there should be any end to it. Here, then, are two there should be any end to it. Hers, then, are two
things, one of which mast be true, while each of things, one of which mast be true, while each of space are hedged in, as it were, by a contradiction. Again, he said that matter mast either be infinitely divisable, or mast consist of small particles incapable of further division. Now you cannot conceive a piece of matter divided into an intinite num-
ber of parts ; while on the other hand you cannot conceive a piece of matter, however small, which absolately cannot be divided into two pieces; for however great the forces are whech join the parts of
it together, von can imagine stronger forces able to it together, you can imagine stronger forces able to
tear it in pieces. Here again, then, are two statements, one of Which must be true, while each of them is separately inconceivable: so that our
thonghts abont matter also are hedged in by a conthonghts abont matter also are hedged in by a con-
tradiction. There are several other cases of the tradiction. There are sevcral other cases of the tive examples. And the conclusion to which Kant
was led by the contemplation of them was that on
every sile when we approach the limits of exist The doctrine has been developed and extended The doctrine has been developed and extended able, or unknownble, which is also called the absolate and the unconditioned, has been set forth in various ways as that which wo know to be the true basis of all things. As I said before, I ap-
proach this doctrine with all the reverence which should be felt for that which has gaided the thoughts of so many of the wisest of mankind. Nevertheless, I shall endeavour to show that in
these cases of supposed contradiction there is always something which we do not hnow now, bu of which we cannot be sure that we shall be ignorant next year. The doctrine is an attempt to fonnd a positive statement upon this ignorance, which can hardly be regarded as jastifiable. Spinoza said "a free man thinks of nothing so this maxim in ;" it seems to me we may paralle wise man only remembers his ignorance in order wise man only remembers his ignorance in orde
to destroy it.' Δ boundary is that which divides two adjacent portions of space. The question, then, "Has space (in general) a boundary?" in volves a contradiction in tirms, and is, therefore anmeaming. But the question "does space con-
taiu a finite number of catic miles or an inflnite tain a finite number of cabic miles or an inflnite
number ?" is a perfectly intelligible and reasonaile question, which remains to be answered by ex periment. The surface of the sea would contain a finite nnmber of square miles, if there were no land to bound it. Whethar or no the space in which we live is of this nature remains to be seen. If its ex tent is finite, we may quite possibly be able to assign that extent next year ; if, on the other hand fact would be it is true that the knowledge of lha we at present possess, bat we have no right to say that such knowledge is impossible. Either the question will be settled once for all, or the extent of space will be shown to be greater than a quantity which will increase from year to year with the improvement of oar sources of knowledge. Either alternative is perfectly conceivable, and there is no contradiction. Observe especially that the supposed contradiction arises from the assumption of theoreti-
cal exactness in the la case that I mentioned has a very similar origin The idea of a piece of matter. the parts of which are held together by force, and are capable of being
torn asunder by greater forces, is entirely derived torn asunder by greater forces, is entirely derive deal with. We do not know whether this iden ap plies in any sense to the molocules of gases even still less can we apply it to the atoms of which phenomena ; the pressure, which when two bodie are in contact connects the motion of each with the position of the other, and attraction or repalsion that is to say, a change of velocity in one body de pending on the position of some other body whic is not in contact with it. We do not know that there is anything corresponding to these pheno mena in the case of a ever, be given to the qnesio a piece of matter so small that its properties as matte pleee of matter so small that its properties as matter depestion is reasonable, but we cannot answer it at question it reasonable, but we cannot answer all at equally ignorant next year. If there is no suc piece of matter, no such limit to the division whic shall leave it matter, the knowledge of that fac would be different from any of our present know ledge, bat we have no right to s8y that it is impos sible. If, on the other hand, there is a limit, it is quime possible that we may have measured it by th when we are told that the infinite extent of space for example, is something that we cannot conceive at present, we may reply that this is only natural since our experience has never yet supplied ns wit cannot be sure that the facts will not make us learn to conceive them, in which case they will cease to be inconceivable. In fact, the patting of limits to human conception must always involve the assump tion that our previous experience is universally
valid in a theoretical sense, an assamption which valid in a theoretical sense, an assamption whic we bave already seen reason to reject. Now you led us to the true sense of the assertion that the order of nature is reasonable. If you will allow me to define a reasonable question as one which is asked in terms of ideas justitied by previous expe rience, without itself contradicting that experience than we may say as the resnlt of our invesigation ligible answer, which eituer we, or posterits, may know.

Conclusions.
Wo have, then, come, somehor, to the following conclusions:-By scientitic thonght we mean the application of past experience to new circamstances by means of an observed order of events. By say-
ing that this order of events is exact, we mean that it is exact enough to correct experiments by, butw do not mean that it is theoretically or absolutely
exact, because we do not know. The process of
inference wo fonnd to be in itself an assumption of uniformity, and that as the known exactaess of the nniformity became greater, the stringency of the
inference increased. By saying that the order of events is reasonable, we do not mean that every thing has a parpose, or that everything cau be ex-
plained, or that everything has a canse, for neither of these is true. But we mean that to every rea sonable question there is an intelligible answer which eithor we or posterity may know by the exer cise of sclentific thought. For I specially wish you not to go away with the idea that the exeroise o scientitic thought is properly confined to the snbjects from which my illastrations have been chiefly their experien. Of between citizens and aliens, showing by the difference of their actions that they regarded the cir cumstances as essentially different, they laid the foundation of that great structure which has guidei the social progress of Europe. That procedure wa an instance of strictly scientific thought. When a poet finds that he has to move a strange new worlc which his predecessors have not moved, where nevertheless, he catches fire from their flashes, arms irom their armonry, sustentation from their foot
prints, the procedare by which he applies old ex prints, the procedare by which he applies old ex
perience to new circumstances is nothing greater or pess than scientific thonght. When the moralist studying the conditions of society, and the ideas of right and wrong which have come down to us from a time when war was the normal condition of man, and success in war the only chance of sarvival mnlves from them the condilons and it the com radeship of equals is the condition of national succass; the process by which he does this is scientina thought and nothing else. Re the troth which it arrives at is not that which we can ideally contemplate without error, but that which we may act apon without fear, and you cannot fail to see that scientific thought is not an accompaniment or condition of haman progress, bat haman progress itself. And for this reason the question what its endeavoured to give you some glimpse, is the ques tion of all questions for the haman race.

BRITISH ASSOOLATION GLEANTINGS.

Astronomioal Refraction.-Mr. G. Forbes read a paper on "Astronomioal Refraction." He pointed
ont sourcos of orror in the observation of stars, dne to the moistare of the atmosphere, variations of baro well as other soarces of inaccuracy. He stated that althoagh Greenwioh and Chiselharat wero only ite barometric direrence between them of nineteen-thou sandths of an inch during a period of one month differe at haphazard. These thinge might canse plain discrepancies in obsorvations of the polar dis tances of the atars.
Rainfall and Treea.-M. Lemoine road a paper on this subjeet, in Which he anid :-The action of foreste
on the alimate of a coantry mast be considered as ex tromely donbtfol In the batin of the seine it ha boen outablished in respect to forests, as compared with coil ooverod with grack, or even with other permawateroonres. The onty abeolatoly cortain 0 the forests is their influenoe on the protection of the soil Thes prevent the earth boing carried away; it follow torront waters. In fact, in the Haates Alpes, the preence of foresta prevente the formation of torrents he replanting of woods extinguishes torrents alreads risting; but in most cases taring alono is sufficient be carreally limited to the conntries in thich they have boen obtained. Mr. Brown said there were indications that a great portion of Sonth Africa had been ander water, but at what period had not been ascerained. The trees varied in magnitade in direrent locality. The desiccation of the conntry ham been going on since the draining off of the waters, owing to going onation. The destraction of herbage and grass by fire, the ase of the axe by native and colonist, and the formation of sheepwalke, facilitated the process of evaporation. Mr. Blore sunk two oglindrical jars, of the same size, in the groand to the depth of 4 in . loaring them projecting lin. above the sarface. One ther was sunk in a nemls cleared plot. Into each jar was pat 20oz. of water on January 31. On Febraary 5th the water remaining in each was carofally measured, and it was fonnd that the evaporation from the jar in the open groand had been more than donble that from the other jar, which was partially protected, though not covered by bush.
Vesurian Dust.-Mr. G. Gladstone, F.C.S., anid that, daring the eraption of Vosurius which took place
last spring, Naples and the surrounding conutry was last spring, Naples and the surrounding conutry was
risited by a shower of fine black dast. In some places the fall was rory heary, and evon in Ischis, at twenty-
are milos distanco from the moantain, whore the drut
examined was collected, the quantity was sufficient to canse great annoyence to the inhebitants. It consisted of aggregations of oryatallised quartz, dotted over with the magnetic axide of iron. The ferrosoferric oxide was almo arystalline, and possessed a high metallic lustre. The graing were very nniform in size, and Would pass through a wire ganze, the apertures of which measured the 16,000 th part of a square inch.
By boiling the sand in hydrochloric acid the whole of By boiling the sand in hydrochloric acid the whole of
the iron is removed, and nothing bat crystals of pare the irpn is removed, and nothing bat crystals of pare
white quartz remained. Its composition is the same white quartz remained. Its composition is the same some parts of the conntry ronnd Vesurins, and which is the prodnct of former eraptions. The latter, howerer, contains a larger relative proportion of iron, and the grains show waterworn appearance under the
microscope. Neither of the Vesuvian opecimens conmicroscope. Neither of the Vesuvian epecimens con-
tain titaninm, which is found in the magnetio ironsand of New Zealand, which has most likely been ejected from the great volcano of Mount Egmont.
Vital Movement.-Dr. Radoliffe read a paper entitled, "Whether the Canses of Vital Movement are Fet Clenriy Appreciated. So and ancient and modern writers on the sabject of vital movement. He ridicaled the fital movements are distinet from those manifested in inert matter, and which can at best be only regarded as a hasty deduction from saperficial obeervations. are in direct contradiction to this assamption ; and the doctrine of the correlation of physical and vital forces implies a grand centralisation, by which what hare been regarded as separate forces are made to appear as various aspects of seme central force. Dr. Radcliffe
then referred to some investigations which be had recently made with Sir Willian Thomson's electrometer, and which had tended to conflrm the views of Galvani. periment that he had made with a strip of indiarabber, periment that he had made with a strip of indiarabber,
coated on the two surfaces with metal, which was coated on the two surfaces with metal, which was the discharge causing the rubber to contract to its original length.
The "Fossil" Man.-Mr. Moggridge, F.G.B. read an account of the discovery, by Dr. Riviere, of
the "fossil" man at Mentone (see p. 478) ; after which the
Mr. Pengelly gave description of the remaine. He said the apparently finished tools lying around the skeleton were not artificial tools at all, but appeared to be what were known as whetatones. They were not
instruments in the proper sense of the word. Any person looking at the skeleton would see the attitude Was moh as was assumed in quiet, tranquil sleep. This might be accounted for by the supposition that the man died tranquilly where Riviere fonnd him, pos-
sibly from charcoal fumes, for there was plenty of charcoal discovered about him, and that he was here baried by his frionds, who simply covered him over. The remains of a Kjokkenmodding were found at the mouth of the oavern. Mr. Boyd Dawkins thonght
there were no facts to lead to the belief that this there were no facts to lead to the belief that this
skeleton was of any enormons antiquity, or that it skeleton was of any enormons antiquity, or that it
dated back to the age when extinct animals were living in that part of Erarope.
Evolution, and the Erman Arm.-Professor Strathers exhibited a number of bones and dissections, showing the preseace in the haman arm of a suprafrom its mention in Mr. Darwin's recent work. This little projecting spar, just sbove the elbow, occurs, has been senerally supposed. He finds it in about one case in ffty, and it may beobserved in a very radimentary state in almost every subject. It was impossible, he said, to explain this variation on the old ideas of final canse and type, and it was a strong piece of eridence in sapport of the dootrine of evolation. In fulfil, but in man it served no parpose whatever.
The Origin of Alphabets.-Mr. John Evans, F.R.S., dc., read a paper on this sabject, in which he spoke of the immense importance attached to writing, and the reverence with which it is regarded by tribes
who do not possess the power, snd stated that such Who do not possess the power, and stated that such by a sort of piotorial writing. So early as the time of the caves of the reindeer period in the sonth of France, bones and horns were fonnd bearing pictorial repre-
sentations which seemed to give a history of some sentations which seemed to give a history of some
character. Similar representations were found on the bone instruments of the Esquimanx. The north American Indians had considerable powers of repre sentation by picture signs, and conies of some tombstones erected over the graves of their chiefs were ex-
hibited bearing such a record. The earliest form of hibited bearing such a record. The earliest form of
Chinese writing was pictorial, and Mr. Evans showed nomerous examples of the manner in which the an cient pictorial forms had been shortened into the characters in use at a later period. There conld be no
doubt, he said, that the Phœnicians were the first indoubt, he said, that the Phœnicians were the first inRomans of classical times. The period at which it was introduced was uncertain, but in all probability was
not more than 1,000 years b.c. The exact form not more than 1,000 years B.C. The exact form
of the Phonician letters was shown by the Moabite stone which commemorated the acts of Mesia, King of Moab in the days of Omri, King of Israel, ahout 2,700 years ago. Disgrams were exhibited showing how the
Romsn alphabet was derived from this Phonician Roman alphabet was derived from this Phcenician
alphabet. The word "alphabet" was composid of two Phonician words, "aleph "and "beth," in an
Hellenised form combined together. Lantly, from Hellence was this alphabet in useamong the Phonicians
derived ? Was it pictorial or arbitrary ? Here, al hough following in tho steps of Gesenins, he ooald not
foel that he was treading on such sale ground as in the former part of thating on such sale gronnd as in Pbronician alphabet had its name, and they were in nearly all cases able to recogniso the meaning of the
name of the letter. Aleph was stated by Platarch to hame of the leter. Aleph was stated by Platarch necessary of life. Aleph meant the head of an ox, and the Phoonician A might be taken to be a representation
of the head of an ox. Beth, the socond letter, meant of the head of an or. Beth, the socond lelter, meant third letter, "Gimneah," meant a camel," and the Phoonician C represented the head and neck of an
camel. Mr. Erans wont throngh the remaining lettera of the alphabet, and exhibited diagrams soggesting their origival pictorial forms.
Raised Beach in Ireland.-Profersor E. Hall read a paper on this subject. All along the eastern
coast of Ireland, from Dablin Bay northwards, there is to be fonnd at intervals distinct evidence that the coast has been raisod in recent times. This evidence is divisible into two linds; first, the occarrence of a extending for anme distance inland from the coast, and composed of stratited sands and gravel, contaiding
maring sholls belonging to species now inhabiting the marine sholls belonging to species now inhabiting the cliffs, forming the inland margin of these terraces, Which are now berond the reach of the lighest tides. In tho North of Ireland these clifis are penctrated by caves, which have yielded bones of animals, some of
which are extinct in that part of the country, while the gravels of the old beach contain amongst the sea shella worked thints in considerable quantity in Conuty Antrim, which prove the elevation of the coast to have taken place since the hnman period. The height
attained by the beach above the present gea-lerol is abont 8 ft . in the sonth, but it rises pradually northwards, and there attains a height of 20tt. The anthor cousidered this to be of the same age ns the 25ft. beach of the west coast of Scotland, which falls somewhat in level towards the Solway; sonthwards this decrease in
level contianes, till the evidences of a raised beach almost diapappear tomards the estnary of the Mersey. The identitr, therefore, of the phenomena on both the physical geology of these islands.
Decomposition of Water. - A paper on the Mataal Helpfalnoss of Chemical Afflitity, Hent, and Electricity, in Proancing the Decomposition of Water.
by Dr. Gladstone and A. Tribe mas read. Some metals by Dr. Gladstone and A. Tribe mis read. Some metal are able of themselves to displace the hydrogen ol
pare water, while other metals are nyable. Zinc, if porfectly pure, is incapable of doing so, but if it be brought into contact with another metal still
farther removed from the power of effecting the decomposition of water, the electric force started by contaot of the metals enhances the chemical atinity sufficiently to make it effective - or, otherwise exprossed, the electrioal tension, plus the chemical tension, apseta the state of equilibriam between the oxy-
gen and the hydrogen. The amount of action may be gen and the hydrogen. The amount of action may be measured by a thomson's galvanometer. The ofirect ot
varying the diatarce of two plates of zino and copper varying the distarce of two plates of zino and copper
was tried, and it was foand that the chemical action was tried, and was foand that the chemical achion increases alomy till the plates are within an inch or
so of each other, bat on continuing to bring them so of each other, bot on continuing to bring hem
together the action increases at a rapilly accelerating ratio. Heat assists the action considerably. Magnesinm is capable by itself of decomposing water, but its action is greatly increased by tonching it with a piece
of copper, and some of the hydrogen gas makes its of copper, and some of the hydrngen gas makes its
appearance on the copper. If, instead of magnesium, appearance on the copper. If, instead of magnesiam,
a metal leas capable than zinc of decumposing water a metal less capable than zinc of decumposing water
be used, there is still found a deflection of tho galrabe used, there is atil foand a deffection of the galra-
nometer, if it he nited with a metal still more negative. The order for pare water seems to be-platinam, silver, copper, iron, tin, lead, zinc, magnesinm.
The Geological Distribution of GoitreMr. Leboar has collected a great amonnt of information apon the distribntion of this disease in England, and his facts are of the more importance as no information can be obtained apon the sabject from Government statistical returns. He traced in detail the range of goitre over the various formations, and showed that the accepted beliefs on this sabjeot were frequently Which is commonly believed to magnesian goitriferoas rock, he showed that there as in some other formations. Again, whilst on some regions occupied by carboniferons limestone the disease abenuds, in others, where the general character of the rock is apparently the same, it is entirely absent. In bearching for a general canse regalating the distribation of goitre, the anthor rejected asinsuff. cient that generally given-the hardness of water. He inowed it to be more probable that metallio impurities in the water were the canse. The carboniferons limestone was characterised by goitre almost in exact proportion to the metaliferoas natare of the rock.
Districts where ferraginous water occurs very oommonly have goitre, particniarly where the iron is derived from the decomposition of iron pyrites.

Glass Plummer-Blocks and Axle-Bearings. -From what is stated it ronld appear that MM. De Camnsand Haret bave successfally sabstitated glass for bronze in the above-named parts of machiners. The nse of glass for the purpore alluded to seems to be
attended with many advautages, aud amongst them that of requiring less labour in making the articles, and greatly decreased consumption of labricating ha
na

LETTERS TO THE EDITOR.
(We do not hold ourselves reaponsible for stie optane of our correspondents. The Editor respect fully rrywort
that all communications should be drawn up as briedy a posstble.]
All communications thould be addrested to the Edit. of the Evalise Mrchisita, 81, Tavistock-strect Comed Garden, W.O.
All Cheques and Pont Onee Orders to be made payable to J. Passacier Edwazds.
"I would have every one write what he knows ant is

 ice frrm whence great inconveniencen derive diat original."Monlaigne's Essays.
*** In order to facilitate reforence, Correspondextovine peaking of any Letter previously incorted, will oblige is on which if appeare.

HOONRISE—TELESCOPE STOPS-TEE EARTE'E INTERIOR - ELONGATIONS OF THE ISEERIOR, AND OPPOSITIONS OF THE SCPEPIOP PLANETA-MIRA CETI, AND ALGOL-HEIGET OF MOUNTAIN-CLOCK RATE-ROUNDABOLI THEORY-LUNAR MOT!ONS-57 M. LYRE-SPECULA-PURCHASE OF AN OBJECT-GLASS -AND A FEW FULL MOONS IN ADVANCB.
[4823.]-Writing from the locality whence this is penned, I can rut, off-hand, tell " Delta" (query 125in. p. 674) the title of any book which conlains the caicnlation of the rising and setting of the moon. bat have very little doubt that he wonld ind it in such a beok es
Chauvenet's "Spherical Astronomy," or in any of the larger works on Navigation, anch an Papert Norie's, Merrifield \& Evers's, wo. As for the risine and setting of the superior planeta, they may be of (icuracy by the oid ol a talu of semi-diarnal arcs (with an allowance for reiraciian
such as I have previonely advised him (\mathbf{p}. 536) to mate for himself.
"Tyro" puts a question (12677, p. 574) which it is simply impossible to answer, inasmuch as ine gires $\mathrm{g}: \mathrm{f}$ the slightest hint either as to the focal longth of bs his stops. In the absence of these absolately essertial his stops. In the absence of these absolatcly essertial
details, I may tell him that he may arrive at che details, I may tell him that he may arrive at the
proper plases for the stops by the following timpt proper plases for the stops by the following Eimpu
formala: As the diameter of the ohject-glass : its fx-2 length : : the internal diameter of the stop : ies distame length : : the internal diameter of the stop: ifs distam
from the focal point- g., suppose that ${ }^{\circ}$ Tyro ine : from the ocal pointer g., suppose 45 in . focal lenz:b and has a stop belonging to it of Nin. internal dis. meter, where onght such stop to be placed ? We sit three sum, comes out 90. The stop, then, most be placed 30in. Irom the focal point, or 15 in . from the object-glass. Or, again, imagine the stop to have a
 the focus of the instrament, or 40 in . behind the abjesi. glass.
It "Balcairn" (query 12091, p. 875) were to pick गp bail of an inch in dinmeter, whose crternal surfece was formed of cork, and, patting it into a balances, sis cover that it weighed two ounces, he woald as once be cial ial considerably heavier than that of which its sus ace was composed. Asnaredy he wonld bee, instand, hat our hypothetical eptare was not merely onaple cork shell, with an internal racaum. Let ns aprily this reasoning to the csse of the earth. Tho ruay density of leas than three times that of water. Tze density of less than taree times that of water. Tte 5.5 times that of water, and is very probably erse greater, so that, so far from the interior of the earit being a vacuum, it must actrally contain meatter is ome form) of considerably greater density then tha composing those parts which are accessible to na. fy telliug him that Morcary is at his brightest whes by telliug him that ercary is at his 3°, and that when his elongation from the san is about $33^{\text {, and that Fis an erening star such brightness is at its maxi- }}$ he mom an erening star such brightness is at its mant mam afew days bejure his greatast elongation. other hand, when he rises bofore the or is morning star, he is at his brightest a 10W da his greatest elongation. Thas, for example, be m! attain his greatest elongation east ($31^{-} 25$) at 1 h . Pan brillimncy during the week between Norember 20 and that date. Mercury was, or ought to havo been, very viaible with proper optical aid on the 8rd Anguat, bri a "terrestrial telesoope" is scarcely compatent to puck
the planet up in the daytima Mercury does no "alpays recedo the same distance" from the Km , it orbit being mach more ecoentric than that of eny x^{4} the other large planets; in fact, its distance from the
 thing approaching to one-fith of the major arge at
that orbit. I have said that Mercury will atlan
 of the present jear. I may further inform wi
quarl that ho will arrive mots greateat
clongation (OS $^{\circ} 8^{\prime}$) about 8 o'clook in the morning on January 6, 1878, so that (cocording to the intimation Conveyed in the beginning of the answer to this par-
ticular query) he will be at his brighteat about a week ticular query) he will be at his brightest sbout a woek
after that time. Venus attains her greatest brillianoy some $\mathbf{8 6}$ days before, and again 86 days after her in$80 m e ~$
86 days before, and again 86 days after her in-
ferior conjunction, her elongation being then (as ferior oonjunction, her elongation being then (as
Guillemin, according to your correspondent, correctly says) abont 40°. Thus, at 8 h . 40 m . on the night of Febraary 22nd, 1873, ahe will be at her greatest elongabrillisncy on the 30th will be actually at her greatest brilliancy on the 30th of the ancceedink month, March. eve in bright sonshine if her position, be accurately known. Then, pasaing her inferior conjnnction at 5 h . 5 lm . in the afterneon of May 5, ahe will aqain be at her brightest on the 10th of Jane, attaining her midnigit on Jaly 14th. Referring to the next part of Ir. S.'s question I may say that Mars will next be in opposition at 2 h .40 m . In the afternoon of April 27th, Ophesition at 2 h . Japiter at 53 minutes past 1 am . In. on Febrnary 15th, 1873 ; Saturn at 4 h . 57 m . a.m. on July 22 nd , 1878 ; Uranas at 5 h .56 m . in the evening of January October 17th 1872 . With regerd to Wirs the night of October 17th, 1872. With regard to Mirs Ceti, it mast the 27 th of last May. We have only to add 384 days to this to obtain the time at which its next maximnm may be expected. I may conclade my reply to Mr. may be expected. I may conclade my reply to Mir. give the time at which Algol will be at its greatest brilliancy orery month has been made before, and I will only here repeat what I have said in these columns will only here repeat what I have said in these columns
on a former occasion with reference to this very subject. It is briefly this, that I could only arriva at "the time at which Algol will be most brilliant" by a method equally open to your correspondent himself-i.e., by act ually watching it. If he will do this, and add 2 days 20 hours 48 m . 55 s . to the instant of the particular phase which he is observing, he will get the time of ticalar star under discussion, he must remember that it remains at its maximam (appearing as a second magnitude) for, as nearly as may be, 61 hours. It then begins to diminish, and in sboat 4 hoars is reduced to a star of the fourth magnitude. It remains at its minimam for sbout 20 minutes, and in another four hours returns to ite maximam again. This is not a rery easy sequence of phenomens to tabalate in admit.
"Qnercus" (query 12711, p. 600) may obtain the height of his inaccessible monntain by the aid of a sextant and a comzon table of cataral sines, \&c., withfollows: In the annexed figure

Let AD represent the monntain whose altitude we wish to ascertain. Then we will imagine the observer standing at C, a spot at an onknown diatance from it, ard on mesauring the anglo ACD, finding it to be, Bay, 55 E4'. Nuw, let him travel backwarda in a perfectly straight line, exactly $1,000 f t$, to B , and then, measaring
the angle ABD we will snppose him to find it to be $38^{\circ} 20^{\circ}$: what is the height of AD ? BD is orldently $=\triangle D$ cot. $83^{\circ} 20^{\circ}$, and CD is $=\triangle D$ cot. $55^{\circ} 54^{\prime} . \mathrm{BC}(=$ $1,000 f t$. $)=\mathrm{AD}\left(00 t .83^{\circ} 20^{\prime}-\cot 65^{\circ} 54^{\circ}\right) \therefore \mathrm{AD}=$
$1,000 \mathrm{ft}$.
 natural co-tangent of $33^{\circ} 20^{\prime}$, and to divide $1,000 \mathrm{ft}$. by the result, to get the length of $A D$, or height of our supposed moantain. Let us do this.
sines, \&c., we find-

Cot. $33^{\circ} 20^{\circ}=1.5204261$
Cot. $55^{\circ} 54^{\circ}=0.6770509$
Cot. $55^{\circ} 54^{\prime}=0.6770509$
$0.8438752) 1000 \cdot 0000000$ \&c. (1185.7
And performing the division we get as a tinal result, 1185.7 feet as the height of the mountain.

Unsble, myself, to answer the question (12795) of "Mho," on p. 600, I shall be equally glad with him to be farnished with a formale for compating the inflaence of varsing a'mospheric pressure on the rate of a
clock; inasmuch as I tind the effect of change of tem. clock; inusmuch as I ind the effect of change of tem-
peratore to becomparatively subordinate as a distarbing peratare to be comparatively subordinate asa distarbing
influence, to that of any considerable barometric tlactnation.
" Balcairn" in his query-il it be a query-(12737, p. 600$)$ is really a tritle too much for mo. Imprimis, be
coufases revolution and rotation. In tho next place, he coufuses revolution and rotation. In the next place, be
secms to fancy that the earth's axial rotution canses the seasons, which it dues not. And thirdly, there is a pervaling absence of prononns, whioh obscures even
his obscarity. The sentence "It folluws that the his obscarity. The eentence "It folluws that the
globe traveld $8,7 i, 0,000$ miles arear" contains some grea t mystery. Wiy, the globe travels something like $574,810,000$ of miles in her snnasl orbit alonu (negleoting
the motion which she possesses in common with the
san and the whole of the solar aystem in space). A for "Balcairn's" concluding eentence, it seems to me to be only paralleled by that famous one oommencing "Hhat, no soap tho he died, and she, very impra
dently, married the barber," \&c. Edipus left lour children, Polynices, Eteocles, Ismene, and Antigone but I cannot trace my own descent from any of them nor am I acquainted with any one who is able to do so tion, or string of (questions 12753, p. 601) pats a ques thon, or string of question, with relerence to one o the most abstrase and recondite sabjects which can occapy the attention of astronomery-the motions o
the moon. These may be-in your correspondent the moon. These may be-in your correspondent' own words-" very easy to understand to those Fho know all sbont it, bat it may be as woll to bay in the might be conuted apon his fingers without the smallest mifht be connted apon his angers without the smallost
diticalty. It will easily be imagined, fhen, that it is alnost a hopeless task to attompt to do more than popalarise the leading Reature is meats ; and an 1 can Mr. Brown feels a dificalty. To begin, thon, with the changes in the moon's declination. It mast be remem bered that the plane of her orbit is inclined to that of the ecliptic aboat $5^{\circ} 9^{\prime}$, by which qnantits ahe will be sometimes to the north and sometimes to the sonth of it. Hore, then, is a fertile canse of varsing declination. And it mast farther be borne in mind that the moon's path varies from month to month both in form and position, changing even ite encentricity withi which denitecribe. major axis of the ellips 41° every sear ; in faot, goes right round it in some thing short of nine years ; ;o that in leas than 44 year the perigee arrives at the former position the apogee. Eren this motion is irregular, being direct, o in the order of the aigns, when the moon is in conjune tion or opposition, and retrograde when she is in quad ralongly vioasly exceed the tatter. Again, the orbit cuts the ecliptic, or, as it is called, the mine of nodes retrogrades at the rate of aboat 19' per annum ; so that the nodes make a mean tropical revo lation in aboat 18 years and 224 dass. This, as in the preceding case, is an irregular movement. Without then, going any farther it will be seen that the moon's pain listrict return into itself, bat is a carve of th most Latricate kind, and one in a condition of perpetas rigoronaly monld involve tromendore amont of al calation. Pro hac vice then, it mast anffico to osp tha at tho end of 038 lanation (or a 10 deya orer 18 yeat at ho man ill retarn very nealy tut not outs yeara) position which the ocenpied at the beginning of cycle- , ill be in the the same position in her own orbit and in the ing position poith reand to the ocliptic. This period is the no-called "Saros" by the aid of which the Chaldmeans calculated oolipses. It is, howover, quite apparent that as this namber of lanations by no meana correspond occur on the same days the lonar phenomena will no a cycle mich shall falal this latter condition, \quad eb mas go to that of Meton, which is one of 285 synodical revolutions of the moon. These differ only from 19 years of 365 days by something more than an hoar Moon, de., will recar on the eame deya of the year. Ye another eycle known from its inventor, as the Calippic is obtained by maltiplying the Metonic one by foar inasmach as 76 solar years (minus 1 day) contain 940 lanar months almost exactly. It is, perhaps, worth while to mention, too exith reference perhaps, wort of which wo bare spoken aboro, that we mey obtain cycle of increased eccarecy by maltiplsing it by since 669 lonations correapond very closely inded with 54 ammanal I think it will have demed apon Mr. Brown that the compatation of the exact interval wich mast elaps before the moon vill retarn to precisely the same pois tion in her orbit as respects her nodes and sazspies and have eractly the same right ascension and declination at the seme ingtunt of the asme day of the reot and month is one which is not "very easy" even to those who do " know all aboat it," and that it involves an amonnt of more numerical people would care to andertake, save with some very people wonld care to
specific object indeed.
The quotation made by "Lines" (et. 4798, p. 614) from li. Prochor arnele in the Michanics' Magazin only ehows how largely idiosyncrasy, or "personal eqnacion, efifert ese the i in 57 M . of the ring in 57 M . Lyrsa, with a $4 \&$ Dallmeyer object Glass, perceptibly lighter than the surrounding sky:
whereas we find him, with an instrament whoes light. grasping power exceeds mine in the proportion of grabpigg power erceeds mine in the proportion
$22: 17$ describing this same nebula as "au oval ring with the interior as dark as the sky ontside the ring.' Fith the interior as dark as the sky ontside the ring. in these columns, trying to deprecate an attempt on my part to lay down a hard and fast line with reference to the visilitity or non-visibility of stars of a curtain mngnitode in a telescope of given apertare, and I ceranfur think that the metace now undor diseussion aifurds a fair ilinstration of the general vonndness of
the views which he then adranced. Albeit, I mnet adhere to my opinion that the $5: \mathrm{h}$ atar in 91 Orionis in nut risible in one of the mach be-paffed "light 6-pounders.'
I may answer " Zata " (query 12762, p. 626) by tell ink hian that the mirror of a rellocting telescops is a segment of a paraboloid of revolation; and that
thungh in geara gone by thes were ligared (bs a ten.
tative process) by hand, they are now invariably ground and polishod by machinery, several forms of which he
will find described and illastrated in back volumes of will find described and i

I would by all means ad rise "Zealons" (query 12777, p. 636) to parchase "a 2 fin. object-glass of the best quality" for the purpose he requires. A man lite which would be as, practically, eflective as the larger whiass, and I fancy be quite within his means.

> glass, and I fancy be quite within his means.
the the secrelarith acieties are th be benented by the for some 0 I lor some years to come, as implied by J. G.." in query 127. p . I append a lisi of dates or her opposilian ap
December, 1875. She will, then, be full in 1872 at 3 h .86 m . p.m. on October 16 ; at 5 h .8 m . mm . on November 15 ; and at 9 h .44 m. p.m. on Ducember 14 Daring 1873 the will be fall at 4 h .23 m . p.m. on January 18; at 11 h .39 m . am. on February 12; a h. 44m. a.m. on March 14; at 9h. blm. p.m on
 on 0 ; 10 m . 9 m . 5 h 8 m ; O . $\mathrm{p} . \mathrm{m}$. 8 h 48 m p ; a Norember 4; and at 4h 20me s.m. on Decomber 4 In 1874 fall moon will occur at 7 h .8 m . p.m. on Janusry 2; at 11h. 96m. am. on February 1; a April 1; at 4h. $9 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. on May 1 ; again at 6 h . 46 m a.m. on May 81 ; at 6 h .48 m . p.m on June 29 ; a Angnst 27 ; at 10 h .6 m . p.m. on September 25 ; 7h. 21 m . a.m. ou October 25; at 5h. 3 mm . p.m. on November 23 ; and at 4 h .56 m . am. on December 28 Daring 1875 there will be fall moon at 5 h .41 m . p.m on January 21; at 8h. 1m. a.m. on February 20; at 1 h . 62m. p.m. on March 21 ; at 4 h .30 m . p.m. on April 20 ; at 8 h . 50 m . a.m. on May 20 ; ut 11 h .56 m
p.m. on Jane 18 ; at 1 h . 27 m . p.m. on Jaly 18 ; a p.m. on Jane 18; at 1h. 17 m . a.m. on Angant 17 at 0 h .42 m . p.m. on September 15 ; at 11 h .14 m. p.m. on October 14; at 7 h .45 m . p.m. on Decomber 12
a Fellow of tie Royal astronomical Society.

THE SOLAR CORONA

[4824.]-MI opinion that the phenemena of the solar corona are in great part due to the existence of meteorio and oometic syisems near the am, war main tained after the discovery that the inght of tike oorona is in part due to glowing gan. This discovery was no made by Mr. Lockyer, or in December 1871, as supposed by Mr. Gore (let. 4798, p. 614), bat by Professor Young and Harkness during the American eclipse o Augut, 1869. It was somewhat pertinacionaly opposec by Mr. Lockyer, even after Professor Yoang had ronewed his obborrations in an unmistahable way, in December, 1870 ; bat this circumstance scarcely bring the credit of the discovery home to Mr. Lockyer. Soon after the last-named eclipse, Professor Young deviae a very ingenions mothod for yet farther toeting the matter, and that method was applied by Mr. Lockyer in December, 1871, ansuccessfally so far as the corons was conoerned. The method oonsistod in riewing the eclipsod sun through a train of priama, withoat any slit; and no doubt is capable of showing monochro matic images of the corona. Indeed, a method depend ing on the same general principles Was applied auccesa ially by Professor Respighi, who saw three monochro
matic images of the corona about 8^{\prime} high. MIr. Lockse matic images of the corona aboat $8^{\prime \prime}$ high. Mr. Lockyer
sam images only about 2^{\prime} high, and therefore not saw images only about 2 high, and therefore no ranging above the height of mediam-sized prominonces, an observation which coas in prove noer, 1871 (a suc great spectroscopio sacceas in December, 1871 (a bac cess only sarpassed in ralue by that which tho photh graphers achieved), Wes obtained by Jansen, who oorges and moreover several larl lines in the continnot spectram (belonging also to the corona). These sesalt are of
There can be no question, I think, that Mr. Lookje Would have obtained interesting reaplts if he had given his whole attention to spectroscopic work. His skil as an observer would have stood him in good stead, as
well as his familiarity with the practical details of Well as his familiarity with the practical details of spectroscopy. (This is not a cace where a knowledge
of the theory of the sabject was in any sense important.) of the theory of the sabject was in any senseimportanto
Bat anfortunately Mr. Lookyer attempted to do to Bat anfortanately Mr. Lockjer attempted to do to many things. Stationed at the very worst part of track of central totality (so far as daration was con-
cerned), we find that (1) he looked for the reversal of cerned), we and that (t) to loored the Frannhofer lines at the beginning of totality (ain ing, says Dr. De la Rae, in his adaress ment of his instrament); (2) he tried to record tho naked-eye aspect of the corons (with the result tha it was "rigid," and "like a decoration"); (9 and 4) he made polsriscopic observations in two different way
(getting directly contradictory resulta); (5) he examined the coun throngh the telescope (mith the resalt that it was "like Orion"): (6 and 7) be looked for the spectram in the asnal way, and he applied Young' method (rosalte negativo); (8) ho adjustod the twin and 9 he looked, I sappose, for the reversal of the and (9) he looked, it sappose, or the ine It it is no dis. paragement to his nnmistakable akill as an observer to sas that no good onald possibly resall from observa
 Belsal only lasted two minates.) Thore was something
eingularly generous in the attempt to do ovorything in
this way ; but success was an impossibility. Moreover, all the best instruments being with Mr. Locker at Beknal, the other members of the Expedition were rather ill-provided.
I need hardly say that I do not regard the discoveries made by Young and Harkness in 1869 and 1870 , or those made by Respighi and Janssen (severally) in 1871, as in any sense opposed to the meteoric theory of the corona. This theory was never meant to account for every feature of the corona, but only (1) for a portion of its light and (2) for some of the most remarkable of its pecaliarities. Janssen's recognition of the dark lines in the coronal continuous-spectrum confirms (what however, needed no confirmation) the theory that a portion of the coronal light is due to reflection from meteors travelling (at the moment) close to the san The existence of these meteors in millions of millions is as nearly a scientific certainty as the existence of a zone of asteroids.
But other features of the corona seem only explicable by recognising the extension of gaseous matter to a great distance from the sun. And again, there are several features whioh appear due to the action of an energetic repulsive force exerted by the sun on certain forms of matter in his immediate neighbourhood. We have also evidence of eruptional action intense enough to affect the condition of the corona to its very outermost extension.
On all these points-as well with respect to what we lmow as to the matters which yet remain undetermined -my views now are those which are expressed in the chapters on the prominences and corona in th
edition of my book on the Sun (pp. 242-424).

Richard A. Progtor.

THE AUGUST METEORS.

[4825.] -Iv the neighbourhood of Salisbary, on the night of the 28th, the Angust shower was partially renewed, and though the meteors were not of such brilliancy as on the 8th, still their numbers made them worthy of notice. They were observed from 8 to 10 p.m., the clonding up of the sky at the latter hour preventing further observation. I was unable, on account of the darkness, to register the exact time of each appearance, and the following list contains all the data I am able to furnish :-

\begin{tabular}{|c|c|c|c|c|}
\hline No. \& Time. \& Direction. \& Magnitude as compared with stars. \& Apparent starting point.

\hline 1 \& ${ }_{8}^{\text {h. }}$ m. \& W. \& 4 white. \&

\hline 2 \& \& \& $2{ }^{2}$ \&

\hline 3
4
4 \& $\}^{8} 20$ \& W.W.W. \& 3 " \& d, \% Cassiopœix.

\hline 5 \& 845 \& towards a \& 1 gree \& \approx Pega

\hline \& 910 \& \& 3 \& ¢ Cassiopæiæ.

\hline \& 30 \{ \& towards β \& \&

\hline \& \& Oameli. \& 3 red . \& Andro

\hline \& $\} 950\{$ \& towards
Ur. Maj.

O \& 3 wh. \& \& Ursw Majoris.

\hline 11 \& $10 \quad 0$ \& N.W. \& $2 \mathrm{wh} . \mathrm{gr}$. \& δ Cassiopwere.

\hline
\end{tabular}

The one marked with an asterisk appeared and disappeared suddenly, leaving a small train. There were several seen to start from the neighbourhood of Pegasus, Lacerta, and Andromedæ, which could not be noted as regards position. In most cases the course was short, and in that of 5,8 it was extremely coin sparks.

COMPARING ELECTRO-MOTIVE FORCES.

[4826.]-I REGRET that I must still insist on the incorrectness of the equations stated by "O." The law enunciated by him in letter 4697 (p. 543) is true, not generally for all closed circuits, but only for those in which all the electro-motive forces act homogeneously, which is not the case in " 0 .'s" experiment. For, assuming the law to be universally true, we shall have, as "O." states-

$$
\begin{aligned}
& i_{1}(x+\mathrm{R})+i_{3} g=\mathrm{E}_{1}, \\
& i_{2}(y+r)+i 3 g=\mathrm{E}_{2},
\end{aligned}
$$

From which we get-

$$
i_{1}(x+\mathrm{R})-i_{2}(y+r)=\mathrm{E}_{1}-\mathrm{E}_{2}
$$

But the circuit $x \mathrm{R} r y$ is a closed circuit ;

$$
i_{1}(x+\mathrm{R})+i_{2}(y+r)=\mathrm{E}_{1}+\mathrm{E}_{2}
$$

Hence from equations (1) and (2)-

$$
\begin{aligned}
i_{1}(x+\mathbf{R}) & =\mathbf{E}_{1}, \\
\therefore i_{3} g & =o
\end{aligned}
$$

-i.e., either $g=o$, which reduces the case to two independent circuits having no portion in common, or $i_{3}=o$; so that these two are the only cases in which the law, as applied to this experiment, holds good, or "O.'s" equations are true, as stated in my former letter. (Because "O." can obtain, as he has done, a correct expression for i_{3} from his equations is no more proof of their accaracy than that the combination of the equations $x=a, x=b$, giving $x^{2}=a b$, shows
that a and b are the roots of that equation.) The true mathematical demonstration is that indicated by "O." in his last letter. In answer to "S. T. P." (let. 4739, p. 566), I beg to say that "Sigma," in his letters on electricity, described Fitzgerald's method of measuring internal resistance, a year or more ago, and I gave hance's method a few months back. If he looks back
Pr can easily find them.

WALL TRANSIT INSTRUMENT

[4827.]-In the hope that it may be of service to some of the readers of the English Mechanic, I herewith forward a photograph and description of a simple transit instrament, which was contrived by me in 1888. A more complete instrument I described in that year in the London Mechanics Magazine, Vol. XXX. The transit is fixed to the face of a wall or side of a window as near as may be in the meridian by three screws passing through the lower plate. This plate has a stem terminating is a ball screwed into its centre. The upper plate has a corresponding hollow turned in it to receive the ball. It has also on its under surface a projecting tlange or rim which has a screw cut upon it. Upon this a stont brass ring is screwed, the inside of which fits the lower part of the ball, forming, in fact, the well-known ball and socket. The stem proceeding from the upper part of Plate 2 has its interior tarned out slightly conical to receive an axis to which the telescope clip is fixed. At the top of this axis are a screw and washer by which it can be tightened. The lower part of the clip passes through a loose ring, which can be clamped to the clip by the small thamb-screw shown in the photograph. The axis and ring will then revolve together. This ring has a piece of wire pro-

1 Mare Serenitatis, near Messel near Pliny 8 Boscovich (Schrö̈ter) 4 Boscovich (Lohrmann) W. 5 part …........................ 6 part between Boscovic (S) and Julius Oesar. 7 Julius Cæsar, N. part
jection at the back, and three screws with natiot front. This projection can be driven into the jointed a wall, and the telescope, \&c., attached by the the
screws to the plate. In Fig. 2 a simple substite screws to the plate. In Fig. 2 a simple substitoten the ball and socket is shown. The piece of bray b Which the rings are fixed screws into the bottom of the stem of the levelling plate and presses againgte lower end or the conical telescope axis, shom by
dotted lines, which can then be tightened withet terfering with the telescope itself. The clip is attest to the axis by a flat headed screw and stad. In clusion, I would remark that the above, as is eriter is merely the ordinary level modified so as to anome the parpose of a rough transit, whied any clockopiz can construct.
N. S. Hedriess

LUNAR METEOROLOGY.

[4828.]-THE success attendant upon the derain of the observations of the floor of the lunar cit
Plato, in the determination of a darkening of the Plato, in the determination of a darkening of the is as the sun increases in altitude (see Escrat observations during the Angust lanation, whide continued, may lead to some very important restle The objects observed ferm a group of darkspotas 888 of the Mare Serenitatis, the principal being Jifin Casar (No. 7 in table), and the spot named Boconid by Lohrmann (Nos. 4 and 5). This spot is divided byi mountain range into two portions, east and rest In Western portion appears to be differentily aflectady
the sun's rays as compared with the eastern, the sun's rays as compared with the eastern, erhilitity a steady tint, with altitudes varying from 80° t] 15^{\prime}, while the eastern appears to become lighter ander bis higher sun. The spot originally named Boscoridh Schroter is the largest between Manilins snd Meatm The observations are given in parts of unity-slight
tint $=0.38$, medium $=0.50$, and dark $=0.65$, sis 641 tint $=0.38$, mediam $=0.50$, and dark $=0.66$, uin th Plato observations. All the objects were rery castrith
compared inter se on each occasion, the interndid compared inter se on each occasion, the interndide tints being expressed by intermediate quantities sin the table. For finding the objects, "Schröter' Thes ments" (Table LXII.) and "Lohrmann'8 Secoss observations you will oblige.

	Objects.		August, 1872				
		16	17	18	19	9	1
	Mare Serenitatis, near Bessel \qquad		50	0.50	0		
	Mare Serenitatis, border near Pliny		0.60				
	Boscovich (Schröter)		0.5	0.55	08		
	Boscovich (Lohrmann) W. part						
	Boscovich (Lohrmann) E. part \qquad						
	Spot between Boscovich (S) and Julius Oæsar Julias Cæsar, N. part		0.66	060			
	Plato			$0 \cdot 6$	01		

A GIANT PLANET, AC.

[4829.]-The English Mechanic for Lley 1 reached me when I was on a journey, and "Lizad me. I fear I cannot find leigare for the search "Lios proposes. Daring my time in the Rosal Adronvelid proposes. Daring my time in the Royal astrousial Japiter's satellites in transit have been for and tr between. I shall endearone, howerer to secur it answer to " Lines's" query from another somes answer to ${ }^{\text {an }}$, query from another soar Mechare is a misprint in the passage quotad him Mechanics Magazine, so that I appear to man studied to studied to advantage with the $4 / 10 i n$. telescope vingith to the Astronomical Society," \&c. ; the semicolon and the nebols with the instrnment in night yet with the instrument in question an a night yet, but only when there was a resian interior. Doabtiess the instrament wim shor twe interior light when the conditions are more farount employ some eyepieces by Browning, whid, fry employ some eyepieces by Browning, than the eyepieces belonging to the instrant than the elde I am glad to hear hinean has found myplan ian alt-azimath conveniont. I remember I ased to axd Work very handily for ceeping a star in lat inin Instord of a with quadrank working wind and a cord taken wily and ased as readily and mack more cheapiy. Inatsd my attempts to be of use. RICHARD \triangle. Proctul

SUN SPOTS.

[4850.] -Mr. Proctor's letter on san spota (471) it which he describes certain dark spots as umbræ," leads me to ventare to bring forward my the (4453) again. When a sudden jet of faming hydrojen β J springs up, it must produce cyclones that dender of the san's surface. If the surface of the son iss molten state, it may cool in those places suficiss harden, like the lava in Hawaii (see let. remain hardened for a time; and the larger the andys. so acted on, the longer it would continne as a cual
remored from tho influence of the san's fiery "eavelope." Then it might break ap and sink, or tloat away in pieces for nome distanco before inking. The penambra might be canaed by cracka being formed in the oater -the last-iormed, and tharelore thinner-parts of the crust, and letting the light from the motten matter below shine through (see again lot. 4898). Sach apots Would prevent inflammable rapour from arining from Where they were, and thus would preserve themsel).
A. (not of Liverpool).
[4881.]-Mr. Proctor (let. 4712, p. 562) speaks of ceeing the granules. Does he mean on tho body of the
 sun, or on or near the spots ? Aleo, ir these were well
zeen, were not the nuclei in the ambree perceptible ? Having myself generally noticed them in moderatesized spote with a much emaller toloscope, their absence in those Mr. Proctor drew is rather noticeable.
T. H. B.

ORNAMENTAL TURNING.-XIV.
[4882.]-In my last lettor I described a boring collar. As this article is very naefal, and can scaroely be dispensed with by the general tarner, I propose to mavic-stool and its complete manufactare. Procare a piece of wood, say walnat wood, 12in. in length, 3 tin. piece of wood, say ralnat wood, $12 \mathrm{in}$. in length, 31, in squere; ax in the tarn a pin, and tap it with the sorem-box (describeda few numbers back); next tarn a collor bin. in diameter, collar on the bottom of collar on the bottom of the pillar; next cat ont four olawn in shape of them by meane and ix them by means of screw Eo the collar B previoas to axing, and after the pil lare are turned fis it in the boring coliar, and bore a taper hole; the judged if the iron ecarey judged if the iron screw or the top is parchaeo be found with thet will We foand with the serew When parchased, this socket mast at into the pillar at D, after Thich ax on the brass cap on the rabbet of the pillar which went into the bor-ing-collar. The cap preing. Next the peat or to ing. Next the seat or top of the pillar has to be made, the eketch 8 is the \#nder part of the top of are made. It consists of tre pieces of beech mortised and glued toGether, with piece of 4 gloed ue shape of Fig 4 gloed uponit, then fixed Arat the rong turned Arat the rongh or top side Ehen he ander part whon consids of a phamb moniding; bat as the top is rather difficult for 8 . tometoar to make, as solia top will anawer, merely eircle linin. in diameter 1/in. thick, tarned with ras the parpose of stuffing
To Btuff and Poliah. bruah the manio- Btool over with brown hard varnioh, let the stool stan with loor, of evon more, them paper, and rab down whole of the rarniah mant not bo papered off, only the roagh part. Next polish with French polinh, aning a rubber of wadding oovered with old linen rag, mointen the rabber with polish, cover with rag, one drop of linseed oil or olive oil, and gently rab all the parte scoesaible. Give it two or three conte, bat it must dry between each application; when quito dry, Anish oft with methylated spirits on tho aame rabber, only clean rag, ute a littde oil at Arat, Anish of with a light and quick stroke. If any diffocity in foand from the apirit not bringing up a glose, a makeohift can bo usod, namels, apirit glaze, it will look mell, but not lat hall as long. To stafl the top (the trade ase a seaweed called alva; it is very pliable and apringy), nail a piece of stoat cloth on the top, pat a layor of hay, flock, or alva to the required thicknent, oover with a piece of nacking, pressing at the anme time at much staffing as oan be got in ; but the ohape mast be retained, nail the edges with stont ahort tacks. Trim the edges, and cover with Amerioan cloth the desired coloar, trim off the same, oover the edges where tacked with braid a deoper coloar than the cloth; if the top is a solid one nine holes should be bored underneath for tho following parpose (in the rogular top, holen will not be requirod):-Procare a ataming-noedlo with a point at ench end, aloo some battona and some stoat twine. Take the needle when threaded with doable twine, pasa
through the exaot contre of the Amorican cloth at the top to a hole nnderneath, pasn it back again to the anmo place. Haring canght ap a pioco of he cloth in the aercent, draw the trine tight, and insien ofil under nealh with rither not be larger than lin. If these directions are carried out a handsome masio-stool can be made at a small sost
15, Dise-atreet, London,
Samezl Suither.

THE CHEAP OBSERVATORY CLOCK

[4888.]-THE homo-made mean and aidereal time clock (0 gared and described at p. 680, Vol. XIV. of the Englise mecennic) hat now beon in action for more than aix months, and the atoadiness of its rate and aro hat been very remarkablo, notwithatandirg the
wide range of temporature to which it has been subjectod.
I vish now to desoribe an addition latoly mede to this clock, which greatly adde to its convenionce for observatory une; althongh the obrious simplicity of doubt whether it can be so original se I supposed when it occurred to me.
All practioal astronomers know the value of some andible aignal, marking the expiration of each minute of time, and an observatory clock or chronometor is

cometimes made to atcike a bell for the purpone; but this is objectionable, as it involves the friction and inertia of raising the boll hammer by means of asm or cimilar contrivanoe, and a "journegman clock" is very generally need as a anbetatuto.
I have attained the aame objeot, at the cost of a few hillinge, by means of a very eimple apparatus, which was added to the Al clock without oren stopping it, and whose actioninvolves no appreciable amount of friotion. The following decoription will be intalligible without a diagram if the reader will refer to the drawing of the $\Delta 1$ clock above referred to: Resting apon the crosebar which eupports the front pirot of the pallet arbor there is a mmall alip of ebonite, in which two ingulated wire conneoted with a small gaivanic battery are soparately conveyed to e point just above tho seconds dial. One ol theee wirea terminates in s short horizontal wire of platinum, on Which a litile alip of platinum foil (bent at a right angle like the letter F) hange at the bend or hin . O other wire torminates in s aman strip o bore aid elastic platinom fol, Which is placed jant of the letter F. The seconde' hend of the clock, when taking its leap formards at the sixtioth seoond of erery minate, just grazes the bottom of the letter F , canaing the upper arm to rise and press againat the olantio alip of platinum foll, and thas 00mpletes the circait, sending the ourrent through the coil of a miniatare alectromagnet, whose armatare is attached to the hammer of a cmall electic bell, which is that made to atrike one with the atmoet precinion.

By touching a wire beneath the oleck, the slip of obonite carrying the wire can be raised wo as to die connect the apparatus and suspend its acticn until again lowered by pulling down the wire. Bat the friction involved in making contaot in so exceedingly small that I have allowed mine to remain constantly in action, apd the bell hat never ceased to nnnounce the complotion of each minate of time during the tro months hat it has been connected with the clock. The force equired is indeed eo very small that when the cover is omove in ant silp of plo contact with the battery, and to ring the bell.
ingle regards the cost, I at Arat used for a battery a fingle plate of zinc and carbon in s small preserve jer poter with an acidulated solation of bichromste of potah, and this was amply suffioient for the parpose ; tained tained samal manganese battery, requiring only abont poand weight of salt io evolve a sumcient currabt for period or air ront or moro without larther troable or abloation. The eleotrio bell I lra aned was one ince made one thocele of house ube, bul I have bevibility conting the marial lona power and of the price charged for the one previonaly purchased of the price charged for the one proviounly purchasod. loot bnt the peenliar form of the 1 bloct toak, to accoplioh it mithont dulam.
Joik F. Stanistreet.
Abercromby-Equare, Livarpool, Ang. 29.
THE PARALTELOGRAM OF FOBGES.
[4834.]-As the arbject of the parallologram of orces seoms to have been dropped, I may be permitted to try to convince "Marine Engineer" that it is in perieot harmony with the law of quadraple force the the cent the force in ponnde, 1 , this F Pat M for the cight for in po inertis, t for the time, onse velocity, and g the rate of inertia, socoleration produced by gravity - vix., 89tt per scoond, then-

$$
\frac{2 M s}{F g}=B \text { (1) and } \frac{2 F_{O}}{M}=0^{2} \text { (2). }
$$

Now, by mere inspection of the Inrit equation we percoive that as the angle diminishes (let. 4649), and the resultant AD appromohes to 2 s-the forco also spproach ing to 2 E-bown nameralor and denominahor inarease in the asme ratio, and thereforo tis inaltored, because doable the force produces double volocity in the eame m. Bat if wo doable both I wad s in the secon equation, the numerator becomes quadrupled, and becomes quadrapled-hat h, o becomes doabled in consequence of a doable loros harkg actod throcg double space apen the sur in But in projecules and dues iot aler thaterially 8 a, miare to charge and loes not alter malerially, therelore to prodace 4 or r, the force F mus be quadrapied. For axamplo, let 9ft 12tt., representing $121 b$. That is, ${ }^{8}=6$, and $9=12$,
also $F=6$, and $F_{1}=12$. Let $M^{2}=8 \mathrm{lb}$., then, if "A Marize Engineor" will insert these values in equation (2), he will tind $v=\sqrt{96}=9 \cdot 76 f t$., and $v^{1}=\mathcal{1} 384$ $=19 \cdot 6$ its. per second, and by uling equation (1), t in both cases is $=\sqrt{ } 1 \cdot 5=1 \cdot 092^{\prime \prime}$. By inserting $s=6$, and $F_{1}=24$, he will obtain $v_{1}=191$ as before, bat $t 1$ will $F_{1}=24$, he will obtain vl $=19$, sa before, bat ti will
be $=\lambda^{\prime} 875={ }^{\circ} 546^{\prime \prime}$, or hall the former. This is the same as if the body was a projectile
Crawford Eouse, Rochdale.
Wy. MoNavart.

ENGLISH MECHANIC TUBNERS' SOCIETY.

[4885.]-Has "Faber" any practical suggeations to offor on the formation of the above society? if 80 , I lor one ahall be glad to co-operate With him. Bereral weok 80 I proposed what I deomod berh, but met With no reaponse. One thing I will state, if six gentio mon will atart the ailair, I wil give the maid aix gen lomen grafnitous ineight into my own business-riz. genera band and cironiar sawing; at preaent I have oo ahher at wat portion of room 100 ud aparo in my mill lor chat par pose ; allor whioh, if the soeichy whe alvortsod in the Nowsa hecinio weouy, i would ix up a general warkiop on cortan horme, and inclado insuructin he lollowng braches:-Oramonk taraing, irek cill h, aawigg, ambinol-maing, and carving. Baing to ry beat ability I 1 to my best ability. I hope to hear from some of our ald aaberibera
15, Disa-stroet, London, E. Surugl Sxitige.

ADJUSTING MAINSPRINGS.

[4896.] I Axafraid meny will be mialed on one point in " Seconds' Praction Watohmaker's," article upon adjusting mainapring, p. 529, Arat colamn : "If the rod passes over equally except the last tarn, hesitate Whether any farther alteration should bo mada," and so on, and he states it can be safoly left so, as no watch is supposed to be let down. Now, many watohes are allowed to go down, oustomers forgetting to wind them up at nignt. Mainsprings frequently lose their power, and the spring not being set ap to take the last turn over the samo as at firat many evils occur. The watch loses time, the chain gets out of poaition on barrel, and I haro had watches brought in with the ohain quite loose on the barrel for the want of the adjuating rod passing over the last tarn tho anme at at first.

SPINNING TOPS AND GYROSCOPES.

 [4837.]-I THINK it should be obvious to any onewhose attention has been attracted to this subject for whose attention has been attracted to this subject for
the first time by reading some of the most recent the first time by reading some of the most recent
letters apon it in the Englige Mecranic, that these letters apon it in the Englisa Mecranic, that these
letters are bat the continastion of a disassion, and I think that such a one should read and stady the whole of the discussion before ventaring to tako part in it
bimself. If "J. K. P." (let. 4718, p. Ef3) had done bimself. If "J. K. P." (let. 4718, p. 6ess) had done
this I believe ho wonld not have commenced his letter in the manner he has done. Even if be had carefully eonsidered the very letter of mine to which he refers,
I fancy he wonld hare beaitated before referring to I fancy he wonld hare besitated before referring to
the fact of a spinning-top commonly rising from an in. the fact of a spinning-top commonly rising from an in-
clived to a vertical position onder ordinary cirenmclined to a vertical position onder ordinary circnm-
atances as contradictiog my atatement, for that atate meyt did not refer to ordinary circumstances, bat to
the case sorposed by "Gy," in which friction and the case sarposed by "Gy," in which friction and
resistance of the air were assnmed to be absent. The problem of explaining whr a top not only does not fall
but rifes (ander certain crdinary circumstances)is a very interesting one, bnt cannot be grappled with notil the Explanation of the top's not falling is thoronghly nnder-
atood. It mar seem paradorical, bnt it is nevertheless atood. It may seem paradusical, bnt it is nevertheless
the fact, that the rising is dne to the frictional action the fact, that the rising is dne to the frictional action
of the top's peg on the horizontal sapporting surface. And this action is a compound one, ar is shown by an
interesting experiment to which I bave already interesting experiment to which I bave already
referred (Jannary 7,1870). Thke a common gyroscope referred (January 7, 1870). Take a common gyroscope
with its one ring, nid fix a short peg to the ring almost is the continantion of the axis of the wheel; the grroscope can then be sapported on this peg in the position
of a common spinning-top. If the peg were exactly in of a common epinning-top. If the peg were exactly in
the continastion of the axis the ring would very soon acquire the relocity of the wheel and make the con-
ditions the anme as those of a common top, bat when ditions the anme as those of a commnn top, bat when
the peg is the least thing to one side it prevents the ring from acqniring the epinuing motion from the
friction of the journals or pivats. The spinniug. friction of the jourbals or pivots. The apinniug.
motion is thus, as it were, separated from the gyratory motion, the ring and peg haring only the lattter. Well, when this apparatus is set (with the wheel spinning, of conrse) on a hard anrface like glass with the sxis in an
inclined position, the inclination of the axis from the vertical increases; but if the per is set on a surface like that of rabber or leather, the inclination decreases. As the ring does not spin it can be taken hold of
whilst the wheel is spinning, and daring one ordinary apin of the wheel, the apparatus may be repeatedly transferred from the hard to the soft support and back
again, and so be made to rise and fall several timea again, and so be made to rise and fall several times by the gradually-diminishing velocity of the apinning
motion. I have already said that those attempting to motion. I have already said that those attempting to
explain the action of a gyroscope or top have to deal with several phenomena besides the ordinary one; this rising or falling, according to the nature of the
enpport, will, I imagine, be found rather a pazzler to somo of them.
Nomo of for another phase of the subject, in reply to
"Gy") (letter 4720, p. 564). Imagine friction and "Gy" (letter the $20, \mathbf{p} .564$). Imagine friction and top's peg supported on a fixed point, with perfect
freedom for the top to epin, and with perfect freedom for it to asanme any inclination, even an inverted position, but not able to leave the fixed point of sapport. First, suppose the top is not spinning, but swing for ever like a pendulam continually rising to the height from which it falls alternately on diametrically opposite sides of the point of support. Next, suppose the top to have a very slight spinning motion before-it will always rise again to the same height, bat the position into which it rises will not be diametrically opposite to that from which it falls. If the changg o
position is measured by a horizontal angle of 180° in the first case, it will be measured by a smaller angle in the second case. Then, as the spinniug velocity zontal angle will be less; and as this angle is leas so will the angle of descent be less. If the top has any spinning motion at all it does not pass through were. Supposing the flrst swing of the top measures 40 horizontally the next swing does not take place backwards throagh the aame angle to the starting point but onwards, so that at the end of the second swiug it
will be 80° from the starting point. Whether the top will swing to the right or the left of the starting point depends simply on the direction of the top's spinning motion. If the spinning velocity of the top is very sive swing will become very small, so that the centr of gravity of the top will move round almost horiround quite horizontally a certain horizontal force or impulse mast be added to the other conditions, as was fir t pointed oat by Poinsot, and the slower the top's
spinning velocity is the greater must this horizontal element be to produce the common gyratory pheno menon. In a top, or gyroscope, nuder common con plied through friction, resistance of the air, and other wise in a very curious manner. As tho epinning motion of a top decreases its gyratory motion in
creases, and for a time the horizontal elemont increases also, but erentually this clement is not sufficiently increased, and the swinging motions begin to appear in what is Enown as the wobbling of the to jost prior to its coming to rest
small spinning motion in a top to gyrate with a very When epinuing rapidly he mast contrive means to sapply the necessary horizontal impalse and to main

It must not be sapposed that in the faregoing I have proposed to explain any gyroacope phenomens : I have
merely stated what would be the phenomena ex hibitod nerely statad what wonla be the phenomena ex leading onder certain conditions, with an to consider some of the leag known parts of the snlject, and therebr, perinapa. arrive at a better comprehension of the interesting phenomena of rotary Glasgow.
E. H.

PROPERTIES OF THE GYROSCOPE.

[4838.]-Teis false-ex planation mania seems hydrahended: The gyroscopo does not act "according to
Hoyle,"at any rate, not according to the William Hoyle Hoyle," at any rate, not according to the William Hoyle
at p . 582 , August 23 . His explanation is not anlite Mr Proctor's at p. 446, 21 st Jnnnary. 1870, and it is equall lanlty. He does not correctly apply the proposition he refers to as Frisi's, paragraph 15. According to that
proposition, and under the conditions stated, the body proposition, and ander the conditions stated, the body
will "revolve on another" axis; therefore, nat on the will " revolve on another" axis; therefore, nat on the Δ gain, the new axis will be "in the same plane," which in the case considered, is the horizontal plane. There fore the end of the spindle mnst be outside of the new axis, and it (the end of the spindle) mast, in taking part in the rotation of the body aboat the new axis, plete application of the proposition woald show tha the spindle should begin to move downwards. The proper anplication of the proposition is a step towards the explanation of the ordinary prroscope phenomenon bat it is obvionsly not the whole explanstion, for we downwards. I submit that Mr. Hoyle's sisth paragrapt is not an explanation, bat a mere gness at what is supposed to take place, and that nnless the assumption in that paragraph is granted his whole attempted reasoning fails. Clanse 1 under paragraph 16, is incorreol and inconsistent with 2 . The orbital motion or kyrawere maintained an accelerated if the spinatiog motion arises from the gradaal dimination of the spinning motion.
Really, Mr. Editor, I think it would bave valuable space, Fhen correspondents send you new attempts at explaining the grosoope, it before printing their
papers you would first aseartain whether they have read and studied the many letters you have already pablished on the sabject, and particalarly whether they are prebut also the other phenomens referred to in those letters.
In reply to J. M. Taylor (let. 4719, p. 564) the whole weight of a tree bor let us bay of a noin-spinning top), When in the act of falling, is not exerted at the base or gyroscope pport, and it ia a part of the explanatigh is exerted at the point of aupport when the top is spinning. Bat when a top sping in an inclined position the peg point is affected by something besides the
downward preasure of the weight ; for supposing the downward preasure of the weight; for supposing the peg point were apon a perfeotly frictionless horizonta scribe to gravity of the top vertically over the contre of that circle. If a common gyroscope, instoed of being set on the usanal pointed supporting pillar, be set on a pointed sapport capable of horizontal motion this of the of or the grroscope to keep the centre oigravity may be made to produce a variety of very carions movements. I have tried it with the horizonial motion of the supporting point limited to a circle by faxing that point on the outer end of a long bulanced lever inertia of the lever and the limitation of the motion combine to affect the results, whilst thase may be varied by starting the gyroscope from different positions. One half gyration of the gyroncope tends to grration lever in one direction half gyration map be got to simply neatralise the momentam derived from the preceding one withont moves prodacing reverse movement, etion, bat inter mittently.

Glaggow.
E. H.

DEATH OF THE CRANK.
[4839.]-"G. J. H." (let. 4703, p. 561) calls attention Sabstitate for the Crank" Tho rery seme Murton' several others, for changing an alternate rectilineal into a continnous circular motion I proposed to several engineers in 1862, but coald not prevail apon them to take it in hand. Mr. Morton, however, is wrong, if he ofserts hearly one-half the power in the crank, for, theoretically speaking, as is well known by all engineera, there is no loss of power; it is trae that the connecting rod only exerts the greatest force at half centre which then gradually diminishes to zero as the dead point is reached, bat what is lost in power is gained in twice its diameter, and in this masiacr the diruction of the force is changed mithont loss.
In my endearours to get the invention introdnced, 1 could ouly urge, as generally made, that cranks and their conuections were subjected to great strains, which
mast canse a loss of power, and this view seems to be correct, seeing that there is an occasional smash.

Cinangal.

BEE MANAGEMENT.-FEEDING.

[4840.] - In a former letter I adrised all those who

 had weak stocks to commenco feeding their beess forth-with, and, lost it might have seemed wimica with, and, lost it might have seemod whimrical, I repest the advice, notwithatanding all that may hare
been written about October feeding, and daliberateig been written aboot October feeding, and deliberateiy
say that now, when the honercrop is failing, and the queens are relaxing in their oripositing, is the time to supplement the one, and stimpalate the other, $\begin{aligned} & \text { if the } \\ & \text { said weak atockg are worth any attention at all }\end{aligned}$ Leng stroth's " Old Foger" will say, "Who ever heard of
on such a thing? Feeding bees in the midAle of Anguat ; in such beantifal weather, tool Absard," and so on.
Well, sir, "Old Fogey" has had "his day," and a protty long one it has been; he has stack to his taxt diciciples with his antiquated ideag, until it is aimoat wicked and against nature to saggest any alteration or improvement, and, as a consequence, the qnestion of ever. Beefore feeding at all, the canse of weakness should be correctly ascertained, for there ara some canses which feeding will not remove; for instance, the disease called foul brood, which is alvays progreswith pollen cannot be strangthened in bees by fectiong bat may be increased in weight. bat after giring several empty combs for those filled with pollen, the breeding of young bees may be promoted by gentle
feeding, and this should be done now, for as no young bees will be hatched out for at least three weeks, sod the stock will be dwindling all that time, the importance of immodiate action cannot be over estimated.
Queenlessness after swarming is a very common canse of weakness, but this, of conrse, cannot be cared brovis smoant of leediag alone. in necesss ry to provide the stock with a queen, or give them the means
of raiaing one for themselves, but as the latter leare a ohance that the young queen may fail in hor gearch or a drone, and as at least sixteen or beventeen days would elapse before oriposition commenced, and three weeks more before the numbers of bees would in reace, the cost of is queen is an insuperahle difficalty, it vill be necessary to extract one from a fall hive (by driving, as described last week), and give it to the weak one loaving the strong stock to raise a new one for themselves, and then by feeding to stimulate the queen to increased exertion in her new home, and this it
almost unnecessary to eay thould be dene now. almost unnecessa.
the hiving of late swarms withoat giving them help it first, and in their case what can possibly be gained by delay? Simply nothing, bat on the coatrary mace
valuable time and opportanity lost, for by feeding gently and continnously now, the queen will be stime. atear to larged an fil the hire and even is drone comb should be built than might be reqnired far the ensuing year it will be essier to excise that for nee in sopers, then it would have been to keep the tock through the winter by any other means.
Δ Gfth canse is the presence of an antiqusted queen. against which boo-keepers cannot be too strungls cantioned, for as physically she becomes anable to
deposit bufficient eggs to meep up the namerica trength of a hive, egos to keep ap the namerica overcharged with pollen, and althongh aiter hes nataral antumn repose she may in spring be ensbled o lead of a swarm it will be necessarily a smail one and later on many of her progeny will be attenuated and physically unable to laboar, and handreds of them will be killed by their stronger brethren, aud cant oal as useless. Thees attenuated bees are little fellow with small pointed tails, which are, if Italians, invariably jet black, bat on the abdomen near the Inorax there is nanally one bright broad yellow band. he cam case a дew qneen should be substifure, case, and the best time to do that is now. A sirth canse of weakness may be the presence of too mach drone comb in the hive, and the consequent preponderance of non-workers, which are large consumers; this may arise from the stapid practioe of cutting out honey-comb from stock hives, and leaving the boes to fll the space agsin, in which, as I have betore The remedy in this case is to feed so as to stimulate the breeding propensity to the atmost now the drames have departed, and in early spring to remore all the rones, and later on, as the strength of the stoct in. creases, and the more breeding space is reynired, the bees will build a large proportion of new worber comb. The indiscriminate cutting ont of honey-oomb from can bek hilt is abont the stnpistst and is almost sare ruin of the stock. In large hives with morable combe it is sometimes good policy to cut out the drone comb from the stock hive, and fill up the apaces thas made ers worker comb if it can haring exchange combs lron of transmitiong disease, beside which it is seldom that the combi of different hives will exactly fit each other, not withstanding their "interchangeability," as it is called
Let me again advise that all feeding be dose forthfrom the hires before the cold Weather prepentd their sealing it over.
Dgsentery is a disesse which is seldom diacoverad late to repair the mischich Fualaesi at the entranoe of the hive is no pusiture index. an at
after their aleansing fight, whioh in porfectly natural and healthy. Bat "hen the bees are physically nanable
to tako that flight, and perforoe, exade the filth inside to take that flight, and perforoe, exade the fith inside
the bive, nod so poison the whole atmosphere, and the hive, nod ao poison the whole atmosphere, and further ritiate the already vitiated honey, and bees
die and rit in between the combs, then it is that the die and rit in between the combs, hen it is that the parent, and draentery is rampant.
It is a physiol xical fact that be
It is a physiol sical fact that bees in a healthy con-
dition almars evacaate their feces on the dition almars eracaate their feces on the wing, and never in the hive nnless diseased; indeed, bees that
are the snhjecta of dysentery in cold weather, ofton are the minjecta of dysentery in cold weather, often
actually linrst, thrngh the formentation of their fond actually hinst, throngh the formentation of their fond
within them, and smear their combs and their fellows Within them, and smear their combs and their fellows
with the filth, cansing increased disease and death, and with the filt, cansing increased disease and death, and
antil the cold spell is broken, the beo.seeper geta no sign, and when the discovery is made it is often too
Hanmell, Augnst 20.
C. N. Abbott.

BEES AND BEEHIVES.

[4841.]-Tre perasal of Mr. Abbott's prescription to "W. T. L." "("ee reply 10392, No. 383) of a coorse of means I, too, might be parged of some misconceptions, and might find it a naefal tonic, not only for next spring, but for this antnmn and winter. Accordingly,
the "Hive and Hones Bee," pnblished by Lippincott, the " Hive and Hones Bee," pablished by Lippincott,
Philadelphin, was procrred and has been read with gome carc. Notwithatanding its cost-and it is as dear
in proportion as a Woodbury hive - I thank Mr. in proportion as a Woodbary hive I I thank Mr.
Abbott for the adrice, and would urge many of your Abbott for the adrice, and would arge many of your
other correspondents to do as I have done, in the hope that, as Langstroth rays, wo may become bee-
masters as well as bee-keepers. Space permitting, I masters as well as bee-keepers. Space permiting, I
shonld like to transeribe tome of Mr. Lippinc 1 .t's should like to transcribe some of Mr. Lippincott's
paragraphs. such as some of his "Requisites of a paragraphs. such as some of his "Requisites of a
Complete Hive," and "The Beelseeper's Axioms," but I will only ask room to print Oetll's
"Keep nolden rale-
not strong colonies."
Doing so, in "Keep none bat strong colonies." Doing so, in
twenty years "there has not occarred a season in which the bees did not procare adequate snpplies for themselves and a anrplna besides ;"" neglecting this rule, "the more money you invest in bees the heavier will be your losses."
Best thanks also to Mr. Abbott for his letter (4764 in
No. 387), on transferring our "industrions subjecta" No. 387), on transferring our "industrions subjects"
from straw skips to hives with movable frames. He from straw ships to hives with movable frames. He
mast, however, forgive me for ading that this letter only increacas, nur regret that his ppeothontion of the
hive he now nges is still deferred. If he cannot give it hive he now nges is still deferred. If he cannot give it
us at once, I hope he will answer the following queries : ns at once, I hope he will answor the following queries:
-(1) Shonld we do wrong-I mean, run the risk of having to begin again, because our frames are of wrong dimessions, or for zome other reason-in following the
mode of envetruction explained in letter 3162, No. mode of enistruction explained in letter 3162 , No.
350 , providprit we make the interior dimensions 20 in $\times 17 \mathrm{in} . \times 21 \mathrm{lin} .$, and introdnce the other improvements
described in snbsequent letters ? (2) Should bottom boards be fixed? Mr. Langatroth seems to prefer them, bat for cleaning, for artificial warming, se., the mov-
able boards give greater facility. (3) If the hives are able boards give greater facility. (3) If the hives are
to be in a windy locality, would Mr. Abbots add a porch ? For economy, it need not extend laterally much beyond the entrance, esy 10in. wide inside; we might then nse the triangnlar entrance-regalators, as
well as a large alighting cloth. (4) Wonld it be prefitable to procure a Ligurian queen at this time o
year, or would it be safer to wait for the epring?
E. T. Grays.

TUNING KEYED INSTRUMENTS.

[4842.]-I PREL personally obliged to "Vertamnus " for the attention he has given to my idea. Fiddles and fidders aro not thonght moch of at any time, and now that the best of fiddlea, or rather violins, are on
show at the Sonth Kensiagton Maseum, not more than show at the Sonth Kensiagton Maseam, not more than
a dozen persons assisted daring the three hours I had a dozen persons assisted during the three hours I had *c. I noticed that one of these instraments had the wires (for tone reflection, hardly repetition, eh 1) with-
out tuning-pogs, for they were meíely atretched through out tuning-pogs, for they wore meriely atretched through
holes in the bridge, and attached at either end of the breast by pins. This I call trusting to chance, for how could one tell if the wires woald sonnd in anison with
the gut strings anless tuned to correspond? Another the gat strings anless taned to correspond? Another and wires; so far so good, but I fully expected to see an improvement on thin, by allowing the stopping to take place ou ntring and wire together, thus insnring
the pecnliar whirr of sound in all the tones. I have the pecnliar whirr of sonnd in all the tones. I have
no donbt many will regret not seeing this collection when it is too late.
With reancet to my idea, I don't baok it ap as being frat-clasa, but I think there is more in it than "Ver-
tumnus" sees as yet. First, I have a great objection to the finger-bard being altered in the slizhtest degree. No, let there be a key for every finger, in the same way as you have a finger for every note while
plaging on the violin. Excuse my putting this so plasing on the violin. Excase my patting this so
carioasiy, bat in violin playing the fingers form themselves the action of the keye, and it is this I want to introduce in part in piaso, organ, or harmoniam plas.
ing. By using two kejs to the same string, or pipe, ing. By using two kejs to the same string, or pipe,
we bring the tone and its expression more ander our command. Mark the difference between a flato solo and the seme toolled by an organ, yet give the organiat a direct command over the pipes and there would be
greater effeet, besides better tuning. "Vortamana" sas s, "A more serions olijection is that the difference thing as the rarying by songth with whioh uncertain a

Whole affair. All solo instruments are conatructed so as to be under the control of the player. The most perfect in this reapect is the violin. Tho certainty is
in the will of the performer, if he can play at all. of in the will of the performer, if he can play at all.
conrae we must have an instrument constracted to prodnce certain soandf, and where there is a keyboard varions arplinnces are ased (ander the control of the
player). All I want to see is more variets allowed, and player). All want to see is more variety allowed, and
not for a lever to come down on a sting always in the same style and place; and as our okjoct is to insnro perfect harmony by beter taning, I cannot conceive
anything better than that each atring, pipe, sc., shonlid be under the performer's will. I beg to state that the hammer, or the wind, wonld have nothing to do with changing the tone, any more than the bow of a fidde
does now. The same wind and the same hammer would do, but another action mast be given to thouther key to produce another tone when it is pressed down naing the same hammer as the first koy. So hall the unnimera and half the strings are dismissed,
the nipes and half the aize of the organ, se.
the pipes and half the size of the organ, sc.
With respect to the third objection, I sm to blame for making an obvioas mistake, for if the lever presse日 on the string as the finger does, a highor tone is the consequence. I smpposed the key note to be C, and reckoned down to B , wherens 1 abonld hare
C sharp; and this makes all the difference, as I have no doab Certamnas "will see, for here we are out ol the way of the major sevonth, and continning the pro-
cess with every liey, yet having the complete keyboard we can play with facility all the chords and discords that happen, nine hundred and ninety-nine times oat of a thousand, in any species of composition. I have played on a keyboard constructed ou this plan, and it answered better than the present one, for it gave more power to the performer orer the tone. Inacknowledifi. cult kers, bat so very seldom that I think that part of the question may be waived, or perhaps remedied by a harmoninma-an ides that I do not like "st all, at all." Perhaps some other artist will help with an idea.

Fiddler.
ON THE DISREGARD OF THEORY FREQUEATLY SHOLV IN THE CONSTRUCTION OF THE OPERA OR FIELD.GLASS
[4818.]-Turs kind of telescope has the rays of light passing throagh the object-glass in such a mnaner that except in the centre of the Geld of view only a portion of them falls on the eye-glass, that portion be-
coming emaller towards the edge of the fleld. Thas, coming rmaller towards the edge of the held. Thas, let $P Q$ be the object. $p q$ its virtnal image-that is,
the image which would be fonnd only for the ege-glasa

C D. It will be seen from the diagram that only the rays falling on the apper part of the object-glass from
P reach the ere-glass; bence, if the olject-glass were Preach the eje-glass;
not larger than the papil of the eye in a greater ratio than the magnifying power of the glass bears to naity, we should hare deficient illamination, and 1 think a
small tield of view, owing to the excentrical refraction small tield of view, owing to the excentrical refraction
throngh the olject-glass. Low powers only are snitable throngh the olject-glass. Low powers only are saitable
for these glasses.
Priunatiropist.

RADIUS OF SURFACE OF OBJECT-GLASS.
[4844.]-IN reply to Mr. Cash (let. 4693, p. 543), a he will spare no tromble in correcting his ol.ject-glass, ome timo tho give. The resnits of Mr. Cash's last experiments have verified my belief, because the refractive indes corresponds rery nearly to my own (for Chanco's dense
flint, speoific gravity $\mathbf{3 . 6 4 5}$; and orown, specific lint, speoife gravity 9.645 ; and crown, specific
gravity $2 \cdot 563$, and when thedr sheets of flint and orown class have one apecitic gravity ap to the lourth place, the refractive index is the same. As Mr. Cabh has tried or tested the fint and crown for veine, which his oljoet-glass is composed of, he may grind them to the following radi -riz., with fint lens, specific gravits, 3.6452 ; with
efractivo index, 1.6375 . Flint lens, Arst sarface refractivo ivdex, $1 \cdot 6375$. Flint lens, first surface,
convex, $156.0-26.0$, radii $=63.40, R R=195,26.8$ convex, $156 \cdot 0-26 \cdot 0$, radii $=63 \cdot 40, R R=1 \cdot 95,36 \cdot 8$
$\times 40 \cdot 0, R=32 \cdot 0$ Crown lens, white, speciAc gravity, ${ }^{2} 5529$; refractivo index. 1.529 . Focas for parallel rars, 72in. As ragards Mr. Cash's doobts about the strength of the flint and crown lenses composing his object-glass, he can rest contented about that. There
is no particular fault in a tlint or crown lens having is no particular fault in a flint or crown lens having
plenty of strength ; the greatest fanlt is when tho plenty of strength; the greatest fanlt is when tho
lenses are thin, which in many cases canses them to spring in the working, and when that is the case they are of no ase. It is in microccope schromatic object-glanses that the strength has to be taken into acconnt so minatoly. Before commencing to grind
his fint and crown lenses to the carves abore, Mr. his fint and crown lenses to the carves above, Mr.
Cash mast curve a piece of common plate glans, of the ame size at the tint and crown leng, to the same ourre ns the othor or opposite side to which he is aboat to grind, and most lay on it a piece of thin oloth dipped in malted pitch. On this the lens mast be
fastened, and every anrifuos he grinds he mast fix a
from epringing in the Forking of it. A cork or bang,
aboat 2 ing. or 3 tiu. in dianoter, dressed
 to the slass holder, and aned as a boller in the working. Great care minst be taken in making the them trne before the lens is worked on than. The tools manst be worked in pairs, to trae each othor and in working the lonses care mast be takon tist
the leag is turned riand in the hand rogalurly abont every ton strokes taken with the lens. Io griuning and polishing six sizes of emary are generally
nsed in tiniug the leas after it has been around ap on the trie toul. A cement for polishing of ofect-glagses is made by nixing lamptlack with soft pitel antil it besomes hard, whon it is softened to the proper state acenring to the work or which it is requirea, oy the Shotield, and will ailpertise his addross, I will sond him a piece of cement which will be suitable for a room of trouble. I woald have given the recipe for it, but it would be harilly fair, bucanase it has cost my late rather and myself a nice lortane, what have dine ingredients of which are given above, is a good one, nud has polished good ulject-- lasses ap to 10 iu . dameter bough I have not seen it for several yeare. As regards yepiecen, I send the proportions for three or fonr power
A eyepiene: First lens, 70in. focns, diameter five tenths of an inch, plano convex; second lens, 1.0 hin . Yoens, diameter of atop tis. on an inch, phans of an inch, distance frota lens to lens (inside measare) $1 \cdot 10 \mathrm{in}$., exact power 70 times.
B esepiece: First lens, 0.50 in . focas, diameter threetenths of an inch, plano convex; second or feld leas, $1 \cdot 25 i n$. locis, diameter sir-tenths of an iuch, plano convex, diameter of atop forr-tenths of an inch, distance from lens to lens 0.85 jin ; power aboat 110 times.
C esepiece : First lens, 0.30in. focus, diameter two tenths of an inch, diameter of stop two-tenths of an inch; second or feld lens, 0.70 in . focas, diameter five tenths of an inch, distance from lens to lens (exact inside measare) five-teathas of an inoh; power 160 times.
Deyepiece : First ling, $0 \cdot 20 \mathrm{in}$. fecas, diamoter 0.15 in . ocas; diametor 04 in ., distance from lens to lens $35-100$ ths of an inch, power 250 times.
If Mr. Cash will follow these instractions exactly, be will have a different and a bettor instrument than he would have had if Mr. Vivian or I had sent him the princi to best. I have no doubt but Mr. Vivian-il he has had mach practice in the constraction of large astronomical telescopes-knows that object-glasses groand with the inside sarfaces to fit, or as he recommended (the
inder insume slightly deeper in radias on the inside sarface), never make a first-class tolescope ; I do not consider one worth its mountings. The greatest fanlt with $\mathbf{M r}$. one worth iss monatings. The greatest fant with Mr.
Cash's object-glass at the present time is the buthersCash's object-giass arfae present time is the buthera-
tion of the inside surfaces fitting ; or in the working very probnbly the crown has worked slightly deeper, very probnity the crown has worked slightly deeper, lens to tip, and produces the effects Mr. Cash speaks of. Before I close this letter I wish to remind him to be very very carofal in the re centreing of his object-
glass after he has worlsed it to the curves I have sent, which will, I have no doabt, make him a good telescope.
Shetfield.
WimliaM Oldfield.

ECONOMY IN USING COAL-STOVES.

[4845.] -" Perlo." in his interesting letter (4723). reters to the escape np the chimney of a large proportion of heat dorived from the fael; it is a fact, and one whioh was observed and commented apon, both in England and abroad, more than thirty rears ago, one writor fixiug the waste at seren-eigitit, another at ifteen-sixteenths of the whole, bat a better plan, hough diligently songht after, has not yet been found except in theory). Practical experience shows it to be no of the least of the orils attendsnt apon the production of artidcial heal, while its ase as a means of ventilation to an apartment in which persons live is a set-off against its extravagance. Perhaps the point which deserves more attention in stoves is the oxact angular form which is calcalated to radiate the hoat to the grentest estent-the one familiarly known as the "Register" is the nearest approach to the perfect Orm. To aroid this waste of heat with open stoves, Dr. Arnott invented a close one, more than thirty years ago, which it was thonght would enpersede alt others; it has not done so, nor, on the olher hand, has it been saperseded by any other of the like prinoiple. One of Dr. Arnott's stoves was itted np in the Castomy Honse, where a number of elerks were omployed, and in as far as it thoronghly heated the large apartment, at a very triting cost, it was a succoss, and effected a great saving of fael, but in a short time it had to 30 removed, being very injurions to health, for like all close stores, which necessarily wara the air by condaction, instead of radiation, it destroyed the hnmidity of the atmosplere, so I think wo shall have to Waive the objection to open chimneys for the present. Again, British prejadice is in favoar of the present plan. our people are very sentimental regarding
cheerfal looking fire, which can acarcely be enjoyel open chimney. Of oourso, these remarks do not spply to oooking stores of any kind. Tintub.

SCREW CUTMING.

[4846.]-Perhaps a few tipa from "Jack" would not be amisa, and enlighten some of onr junior hands. First, we will start with the tools requisite for the job. These, though not absolutely necessary, will facilitate the operation. These fow sketches, will illustrate what is wanting. First get a piece of saw plate abont an inch (see Fig. 1), with a small prick punch put a centre in one angle Δ, take a pair of dividers and atrike a quadrant $B C$, true the edge op $A B$ to the centre,
and the other edge, $A C$, truly square or st right angles. Divide the quadrant C B into nine eqnal parts, take Ei parts, as ahown at D, and draw a line through the centres, D A. File ap traly to the lines, and thas you are furnished with the angle, 55, the angle of Whitworth's threads in goneral use, in the shape of a cone and of Which B D is the base. Keep this as a standard gavge. Now take a piece of the same stuff-raw. phe adges, and parallel, sbout fiv. or jin. wide, and from 1tin. to 2in. long (see Fig. 4 F), take your

square, and place the stock against the planed edge of your lathe-bed, the blede resting npon the bed. Apply one edge to the atock and the angle piece, with the
base B D at 2, keeping them both together. Mark the angle off upon Fig. 4, A B, which is 27, and half file this off trae, then reverse the order of things, and, ap plying the square blade apon the other side, apply your angle to the square blade, $Z 2$, the bare B D being to the blade, and mark off the angle W 3 in F 4 , and drilling a fine hole, fle it carefully out. This, squared ofl at T, constitates the screw cutting gange.
Figure 5 is an adjusting stop to regulate the feed of cat and dispense with the ohalking operation. It is made to fix upon the slides, either a tool stock alide or transverse alide, and can be made of a piece of in. or fin. square iron. G is the fixing or clamp sorew. In H a sorew is pat-a screw for the regulating of the cut, with a milled head, snd acts against the end of slide. If mede in the first instance with the dotted addition, it vill suit most lathes. I (Fig. 8) is a gibb hich, if fitted in J, gives it a longer bearing. Fig. 6 shows front and top of a scrow tool, which, with some there is so much bother about to have twisted the same angle as thread, which is not needed, the rake of thread will give you clearance upon one side, therefore yon can leave it wall-sided, as shown in the dotted line 7 P N, eupposed to be the piece upon which s serev is to be cut, L L 9 is the shape of tools for a bracket thresd 10 a tool for a thread for a metal sarev for rood, 11 position of V tool at work, 12 for square thresd, the diagram of which I shall heve to rofer to agsin, 18 how the work is to be performed by stops, and $G 14$ the practical and best rate of comb or oheser, thereby reeping the proper angle and depth of thread, not lite 15. Straight tip No. 1. Jack of Are Trades.
[4847.]-" Apprentice TURNER" (let. 4760, p. 589) is quite right in saying that shopmates are sfraid of another knowing the "tips." I will give him one of my "tips," as ho terms them. Sappose he wants to per inch: Maltiply the wheel opon the lathe spindle bs per inch: Maltiply the wheel apon the lathe spindle by multiply by small theel on the intermediate again divide by the large wheel on the seme spindle, spindle resnit fill be the result will be the wheel required on the leading ecrew. required for the lathe-screw; this is oompound or doable gear. Now, anppose I am going to cut (bay) eleven threads per inch, which is gas thread, and also odd pitch, I just find the wheels chuck-plate with chalk aleo a mark on the face or chuck-piate with chalk, also a mark on the lathe
spindlo opporite, a small piece of wood or chock against the loose headstook; this is to allow the saddle to come
against it when the tool is beyond tho work required to be cat. This piece of wood is instead of the mark on the lathe-bed, which I think would take too much he got it pagg the saddle exactly up to the mark. If sixteenth part of an inch either way), he would still be able to get the nut into gear, and also have o cros thread for his trouble. Whereas if he uses the wood it would be an impossibility for him to get the saddle to far back.

AURORAE BOREALES AND GALES
[4848.]-In the Weston Mercury, a short time ago I read a letter signed 0 . S. Round, having reference to the supposed connection between anrores boreales and the occurrence of gales. The writer made the remark that subsequently to the display of surora on the evening of Aagas 3rd last, wivin 48 hoars we shoala havo a gale," and so it turned ont, as August 5th tostified, reading this I reading this I determined to teat, if possible, the accu racy of the statement. An occasion boon occarred, for on the evening of Angust 8th I witnessed from thi town (Weston-snper-Mare), a somewhat bright oxhibi tion of the aurora borealis. I observed the streamer for some time, and noticed with what rapidity they changed both in their positions and in their intensity, On Angust 10th (i.e., within 48 hours aiter the occn rence of the aurors, a tremendons gale blew, and it was fcarcely posfible to make anv headway against the extreme force of the wind. This fact supports Mr. Round's statement, and it would be interesting to reier to former meteorological registers and endeavour to find if there is any corroborative evidence forthooming. No doubt many of your scientific readers have anm cient data in their possession to enable them to accomplish this withont mach diffculty, and I think it
would afford matter of interest if they wonld send you would afford
Aggast 81.
Williay F. Dekining.
GREENHOUSE HEATING.
[4849.] - Wrre yonr permission I will give an outline of an spparatus used in connection with atmo spheric barner described on p. 502. The sketch will fally explain it. Over the barner A is placed a cone of sheet iron B, or, more correctly, the head of burner is inserted some distance into cone, which concentratea the intensely-heated current, and directs it into $3 i n$. bend and short 8in. pipe in connection therewith. As the cone would quickly become white hot, a second cone C C is placed over and surrounding the first, learing an air space of sin. all round. As a consequence of this arrangement (which is common in annlights, a rapid ourrent of air rashes up between the cones, treeps B from overheating and deatruotion, and, what is more to the parpose, sends almost all the hest into the greenhouse. The outaide cone is fiatted in against the inner one at three points at the bottom, and riveted to it. Pipes bin. inaide diameter are laid through the house as required, and saitably connected with the first

3in. pipe. A chimney at the farthest end completes the apparatus. The joints are made with frealay made into atiff paste and rammed in tight. About 30 feet of 5in. downspout piping wiA absorb the heat generated by gas from two No. 3 burners. The piper require a rise or about half an inch per lineal toot. In the first fow feet shaprbed most of the heat and barned the air: Sin pipes obriate this, of the dranght barned perfect. If the first portion shonld overhest it thonld be surronnded rith sand. If of interest I can give a tretoh of a rery effectire fre. Is of and arran burning which I built for a friend.

Atmospherio Bubner.
[Please send.-ED].

THE WASHINGTON SPHEBICAL REST.
[4850.]-Yesterday and to-dey, before breakfact, I fitted the T reat of my 4 in . centre lathe with a bress slotted tool post, aud bored it with two holes for an axis secured in s shifting block between the mays of the lathe bed, so as to at it for spherical turning. The spherical rests described in the books, bo far as I have seon them, are complex snd costly. This arrangemeni is cheap, and a low hoarb will makes all ko additions to the latho needod. It wil tarn, having two holes for the axis, balls from 6in. to th. damelar. Possibly it may be interesting to some of your mecinanical amateurs, who, with a good spherical reat, conld quickly turn their own croquet and billiard balls. This plan dispenses with overything not necessary. but contains everything really needed. The tootpost can bo revolved right and leit, so as to preaent the tool at a most convenient angle. It ehifts, also, to regalate height of tool.

It can be dismonnted in a moment, and the ordinary T replaced. In nse a alight tap with a hammer sets the tool into cut, a handredth of an inch for the Anishing cut. A gouge resting on the tool cuts a way the noperfinous wood before it, learing only the light inclosed.
Reprerences.-a, brass or hard wood block betreem fhrough of lathe bed; b, acrew passing throagh a, lock nate, j washer, i nat, c cylindric tool post of metal fitted to foot of T rest, T being removed, d tool held in slot of tool-post by screw g, k a second hole for the aris of motion, i.e., the screw, b, to be used in turning smaller spheres; l pinching ecrew to hold tool-pont and to adjust height and direotion of tool d. The bed of the lathe and the ander garface of the Trest foot must be smooth and even. This rest can es perfoot in its action as those ten times as costly.
Washington, U.S.
Gnes.

CALCULATING WAGES.

[4851.]-Tris little table (let, 4788) would also be euitable for cases where odd half-hours ware worked, if Tronght, and the wages for a full weok's work to be 25. 6d., how much is to be paid? Adding, considering the 6d. as a half, we get 67. Opposite this in the table is ... 20is. 914. Subtracting, we got 16. Opposite this is.................................. 1 g

1971
The difference of these two sums gives the weges 10 be paid. The table would be useful for calculating o verifying ready reckoners.

Philanteropigt.

MARINE AQUARIUM.

[4852.] - Wrilk acknowledging "Cnpram's" kindness (let. 4761) in commanicating the result of his experience to the readers of the Enalise Mecransce. I would point out that his plan is somewhat complicated, and to dwellers at a diatance from the sea rather impracticable, and in regard to the expense is very littie cheaper, unless made by the owner. A glass aquariam, fias sides, to hold ton gellons, can be parchased for 10 s .6 d . A less tronblesome plan is to employ artificial sea water, which from the accurate know. ledge which chemical analysis sapplies us oun be mede O answer every parpose from the following formula :To every 100 parts of the solid ingredients, oommon salt 81 parts. Eptom salts 7 parts, chloride al mar.
nesiam 10 parts, chloride of potassium 2 parta; add water ${ }^{\text {prapo }}$ parts. of conrse any quantity in these allowed to stand a fer days for the imparities to should be pit into it except weeds and plants for a should be prt into it except weeds and plants for a
few weeks, tho water will thus become oxygenated; few weeks, the water witl thas become oxygenated; will retain its pristine parity for a length of time. The will retain its pristine parity for a length of time. Tor lee above formala costs in preparation aboat 10fl. por 1 lb .,
and where sea water direct from the sea is nnattainable (where probably the majority of our fellow-readers live) is jast the thing.

Tinteb.

BOMLER INCROSTATION.

[4853.]-Having noticed in the Mbcaanic for some time back articles on the sabject of the formation and deposit, and the indaration of the material, on the calty of remoring the same, whether the said material wae lime, magnesia, or iron, or, which frequently happens, a conabination of all the shree bodies. We for years had great difticulty in removing the acale, in fact, we conld only remove it by absolate chipping, and thet pery slowles, gas tar, both acids and slanalies in aband. the plates, gas tar, both acids and alkalies in abond. would try an experiment with pigeon dang, and knowing Tould try an experiment with pigen dang, and knowing it contained when fresh a considerable quantity of
ammonia as well as other bonies we threw n quantity, ammonia as well as other bonies we threw n quantity,
about half a bahhel of fresh pigeon dang, into the boiler-the first time about a year age, and have done the rame each time it has been ompty ever since, and have not had since then one particle of scalle adhering to the plates since. The matter is thrown down, and then the boiler is let off is mere slatch at the bottom, Which during the night dries into a powder, such as you find inclosed in this note. Δ Constant Reader.

OUR MATHEMATICAL COLUMN.

[4854.]-I AM glad to see in our "answers to correapondents "that one of our contributors has invited our attention to the question of a mathematioal column. tarday a young friend of mine, who has read my MicBAMIC for a twelvemonth or more, confessed to me his diffoculty in understanding the figures ased in the "cientific papers. "To illastrate my meaning," said he, apecific heat 0.250 ; atomic weight 16 ; atomic heat 4.' ${ }^{\prime \prime}$ Now. my impression is that there are scores of readers of the EnGlish Mbcaanic in alike predicament. Half the information it is capable of affording is lost, becanse every one does not learn decimals at sohool, nor is shoald conclade to act apon Mr. Biggs's anggeation, I have no donbt you will see the advisability of beginning at the beginning, so as to lead the minds of tyros ap to the mathematical problems, and not to take it for granted that all readers of the Enalisi Mecmanic are perfoot, or even amatour, mathematicians.
H. G. W.

COAL IN IRELAND.
[4855.]-Prarmit me to correct "Philanthropist's" Leinster coal formation : the coal of countios Carlow, Queen's, and Kilkenny, being all the anthracite or stene coal, nor do I recollect that any of the bitaminons sort is found in that prorince. When I was a lad, 40 years ago, very little other coal was ased in my native room aros. Of later times I cannot speak positively, many of the old pits haring been worked out or saanaoned, and I do not know if new ones have been on a certain day in the week, hoasekeopora ased to go to the conlmarket and parchase a load of coals just as they would hay or any conntry prodace, but alan! like past. It would be alessing to that land if the present excessive price of coals ronsed the people to utilise the bounties of natare lying just at their feet.
a Carlow Man.

The Pathology of the Chignon.-M. Lindeman oontinnes (anys the Britiok Mrdical Jourmal) his investigation of the parasitic bodies (Gregarinide) found on ladies. They are to be foand at the extremity of the hairy, and form there little nodosities, visible, on careful examination, to the naked eye. Eash of these perms. Each psorosperm is spherical ; bat. by the reciprocal pressare of ite neighbonrs, it is fattened. and becomes diacoid. Under the inflaence of heat and
moistare, it Ewells; its granalar contents are transmormad into little ppheres, and then into pseudo-navicelle-little lasiform corpascles, with a persistent These preado-navicellia become free, float in the air penetrato into the interior of the humav organism, ing to this author, varions ans, and produce, accord tions, especially valrular affections, Bright's disease palmonary affections." M. Lindeman calculates that, in a ball. room containing tifty ladies, forty.flive millions
of navicella are set free; snd he concludes that it is necescary to abolish falso hair, which often proceeds
from xncloan persons.

REPLIES TO QUERIES.

*- In their answers, Correspondents are respectand number of the query asked.
[12311.]-Eydraulic.-I have a rainwater tank collecting the water from the roof of my house. It is pump bs ; the water entora the sachin pipe of the pump bs a trbe bin. long at right angles to the pipe, lection of soot is found on oleaning the tank once a year, sometimes forming a layer of dirty water 4 in . year, sometimes forming a siser of
deep, hnt not a drop of this sooty water is pumped ap. -Wilse Brown.
[12348.]-Spanish Pronanciation.-I wish Mr. Wray would not insist on dubbing me our learned friend." I know nothing of the Oriental alphabets and cannot in the least say whether the heth (also spel cheth formerly, and now commonly transititerated by
h, h) ih and Spanish j. I have seen a stateroent. in some grammar, that only one English word, alcohol, has the h made nsually eqnivalent to the latter. The Sanscrit letters represented by $k h$, and gh, are said (as well as all those expressed by a consonant and h, as $l h$, dh, sce.)
to be really doable sounds, that, in a "perfect lanto be really doable sonads, that, in a "perfect langnage," would only have needed a single character for h inserted betwe 3 the mate and the following vowol It is an interesting question what was the sound of the old English letter (always uned till printing began) that has become y in a few of our words, as yout and yct,
while in the great majority it has become a silent $g h$ while in the great majority it has become a silent $g h$ (might, thoulh, do.) After throwing away the letter to mate foreign type availa
soand utterly.-E. IL G.
[12359.]-Sulphurous Smell after Thunderstorms (\mathbf{O}.Q). - Does not this arise from the conversion of the orykonity is airg doraped and the room passes through the air, this emell is very sensible.-s. Brovghton.
[12394.]-Fret Saw (U.Q.).-In what way is your fret asw moanted? if in a bow, your bow mast be very weak, or you mast have some back lach somewhere that wants taking up.-Jack or AlL Trades.
[12403.]-Grease on Leather Bands (U.Q.). I know of no process that will make them look new, but a great quantity of grease may be got oat by soaking in hot water and ncraping, and the stains may be re and water when damp. The above is a deadly poison. - Jace of ALl Trades.
[13405.]-Boller for Model Eteamboat (U.Q.) -The worst of these thinge is not being able to get heat enongh, becanse you oannot got them fred well or a draught up the aue a bover of the locomotive
type took and be beat, and as large as you could conveniently get it in proportion for these thinga, could conveniently get it in proportion for these thinge, coull not do with less than a 2 in . barrel, chim ney ond 1 in. Are box 24 in, and aboat 3 in. doep, and about six
[12408.]-Brasg Koulding (U. Q.).-I know of no process bat mixing the lead and zinc, then adding to the copper. -Jace or All Trades.
[12410.]-Chemical ($\mathbb{O} . Q_{\text {. }}$)- This is a thing not come at as yot ; copper, zinc, and Muntz metal do not do it, although they clean themedves to a certain extent by the chemical action of the salt wator by ex foliation, but do not keop a
means.-JACK or ALL Tradza
[12418.]-Resistance of Steel Plates to Air Pressure (U.Q.).-This will depend npon the size of chamber. If I recolleot right this was tried apon the Epsom line by some foreigners in $1846-7$ after the
atmospheric tnbes were tried and foand wanting.atmospheric tnbes were tried and foand wanting.-
[12422.]-Steam Power (U.Q).-Work your steam more expansively; a counter ahaft with a pair of palleys may assiat yon, making a slight difference of onethird or two to oue.-JACE of ALL Trades.
[12425.]-Piano (U.Q.).-I shoald advise you to have a fresh board put in.-Jace of all Tbades.
[13428.] - Unsound Planoforte.-I "A Subscriber'a "piano hat beoome a "rattletrap," which in consequence of its soundboard being what many of us are. to-wit "a we bit crackit," this oril may be remedied tro ways-First, by boring a small hole a little
beyond each end of the crack, and widening the latter by running a common key-hole saw down it, thus proventing its sides from rattling against each other: secondiy, by doing what mp friend "Fiddler"-in oommon with many other fiddlo fanciera-has, in all pro bability, often done-riz., introducing rather thin and $v \in r y$ bot glue into the crack, and thereby making a sound joint. Which, by the way, is not a very oasy thing you thrust the edges asander by a wodge while you introduce the glue, and warm it afterwarda, for which purpose a hot smoothing iron serves vory well, if not crack mast be brought tonether and retained until the glae is dry. A_{8} an open alot in a coundboard is said to widening the orack with a saw, and youmathing them with a thin ale-glue in a alip of wood. The tiddie's
helly-I mean the piano's-then beonmos, for all prac.
tical priposes, at least as god, if not-like the an iant tical prrposes, at least as gon, it not-like the andinnt
coat offered for sale br the Israsite, not without gile, who at once "anlid. . than new. Shnoli the suad the downward pressure of the strings, the only remedies I know are first to reduoe the downbearings by istro-
ducing some packing hetween the strings and the string ducing some packing hetween the strings and the string
plate-or the illet of the bent side-when they rest on it. If, however, the downbearing be not excessivo, say not more than from 1 to 2 per cent. of the tensile force in the bass, from 2 to 8 per cent. from tonor C to pitcb C. and from 3 to 5 or 6 per cent. in the higher trobles ripid. one thing needral is to make the sonndboard moro up the sonndboard until sofficiently arched, and, having " shot " the backs of the sofficiently arched, and, having shot the backs of the belly. bars, to glue on more "ood so as to make them doeper. Also, if needfal, to belly, and glue them on securely, inserting a few screws belly, and glue thom on securely, inserting a fer screw "Bellying," printed in No. 877.-The HARMONIOUS Blacksmitt.
[12444.]-Day and Night Teleacope.-The only speciality" (know of in the construction of day and night teleacopes is that an eyepiece of low power is-or should be-provided for use when bat little light is available for them. Much amplification cannot be allowed with amall apertares say $1 \frac{1}{2} \mathrm{in}$. to 2 in . A 4 in . astronomical (achromatic) serves excoedingly well for night-glass with a power of aboat 12 to 30, according to a nonount of light, bat not 80 very mach better than little achromatic glass, becanse at night there is but -I don'tor to be corrected. I once mado a night-glas cap-out mean glass of grog employed for a night piece of al a bin. plano-convex leus gronnd out of was on piate glass. The focus was about 1001 n . Thi 3 in . thick with a cell formed ont of a piece of wool $58 / 10 \mathrm{in}$. diametor) , recens 7 in . diameter (and a hola terial in the lathe - ormod in it being employed to retain the object-alase in ita place The tabe whas formed of four pieces of fin. seasoned American pine wood, and the tabe carrying the eye pieces fitted into a hole about $1 \geq i \mathrm{in}$. diamoter formed on a similar roctangular blook. With this instramentwhich, I fear, "F.R.A.S." wonld designate a "rough -I could see "far into the night," sometimes tos far for my peace of mind, for with it I have seen thing whioh strongly impressed me with the notion that all my fellow Chriatiana-notwithstanding. I was then "young"
myself-were hardy so modeat ae-Taz Habmonious myself-were
Blasorsuita.
[12457.]-Geometry.-"Bobo" will not ind any triangle in which my procedure does not prodace an eqaal.sided rhombas; bat perhaps the problem is t inscribe a rhombas wheroof no angle shall be at an angle of the triangle, bat one at a given point on it base, as S in the figure (p. 546). The proposer did no say a given point, bat simply a point of the base bhem is posaible, however, with any point, as S, though blem is possible, however, with any point, as 8, though how to make a rhomboid, bat the engraver has made a trap tozium.-E. L. G.
[12483.]-Rewiring Old Plano.-From the, now. very unusaally short oompass of "H. W.'s" pianoonly five ootares-I presame it is even older than myself, for few pianos were, I believe, made with a compass of less than five and a hall octaves after the year of grace A.D. 1799. I have had some little oxperience in rewiring old pianos, and experience has qnito con behool, Punch's good adrice to persons about to commi another aot of folly, "don't" ase thicker stringh, anless you are willing to incur the trouble and expense of making your ancient-keyed dulcimer stronger. Mos ancient square pianos haro bat one pin in their bellybridges for each string to press sidoways against, con sequentlytheir bridges-and soandboards-are pasbed total side prossures of all the win iorce equal tham The common effect of this is to raice the sonadboard in front and depress it behind the bridgo ; bat this very great defeot may be remedied by doable pinning the bridge and moring the atrings (at their ende, which are on the hitch-ping) to others which are in a continuons pine with these parte of the atrings between the bridges. Probably, a few additional hitob-pins will be required in re bass. thope the wreat-pina of H . on the back block, is la Broadwood. If "H. W." detorminos to "rowire," I shoald strongly recommend rite, and so greatly facilitates patting on the atrings that Messrs. Kirkman had it done to some harpsichords thay restored, in which wire as small as from No. 1 to sboat 16 is ased. Unless the frame of "H. W.'s" piano be strengthened, it would be very imprudent to ase wire more than one or two sizes larger for all the bichord notes which usaally ortend throaghout the compass of old squares. I have, however, seen a foreign one (made daring the last centaryl which had three strings down was eflicted an irrisintibly insane desire to improve it, I should do the same to it as I once did to a 5d octave square by Tomkisson formerly in my posseaion, to mit, make the instrament nnichord for the ing:-Haring doable-pinned the bell r-bridge, and also the wreat-plank bridge for aboat two octaves in the trehle (where the side bearing is asaally insuffleient to keep the gtrings steady enough for anything approxi-
mating to pure tone), using bridge-pins about four
eizes larger than the old oves, and aboat $1 / 11$ ini. diameter on the wrest- plank, I proceeded to strengthen the frame
by introdncing an iron bar above the highest treble by introdncing an iron bar sbove the highest treble
etrings, and annther helow the lowest F in the hass, strings, and annther helow the lowest F in the hass,
noteling the name board to allow space oor it. The trebles from C down to G were then strung with No. 13
instead of No. 9, after which Nos. 13, 14, and 15 nire, instead of No. 9, after which Nos. 19, 14, and 15 nire, fiddle G being strnng with No. 15 wire, very lightly londed by thin covering wire wound on it innn ofen spiral
The same size was employed down to tenor \mathbf{C}, which The same size was employed down to tenor C, which
was the frat string with its covering wire coiled olosely was the frat string with its covering wire coiled olosels
on it. The B string was covered on No. 16, which size on it. The B string was covered on No. 16, which size
extended down to the lowest F. I forgot to montion, I blocked up the sonndboard at the top, and down to pitch C , and strengthened it by glueing on a bellf-bar
lin. x sin. within tin. of the bridge at the top C, and abont bin. distart from it at pitch C ; it being tapored of to aboat three-sixteenths thick at each end, one of Which rested on the fillet of the sanadboard, and the other was abont Gin. distant from the pitch C strings.
This enabled me to give the strings more downearing This ennbled me to pive the strings more dowubenring in the treble to thn great amelioration of its tone, which
was afterwards yet further impruved by substituting a was aterwards set further impruved pridge on the wrest-plarik for abont an octave and a balf. What all this cont, I am ashamed to say, but it is some exenge that I wasthen "yoang" as well as "green," which, no doabt, I vet am (more or less). The
next thing to do was to improve the action; I deepened the toach, originally only fin., to fall five-sixteenths of an inch, and made all the hammers aboat doable the lower bass; they were then re-covered, the high treble hammers being made more pointed, and the base more powerfal than it originally was, but also of mach more powerfal than it originaly was, bat also of mach
finer quality; in short, the experiment was very
in "satisfactory," (except pecuniarily), especially atter A keys produced sounds in anison with C of oar philharmonic pitch; but then, alas, transposition by shift-
ing its leys being qnite bevond its capabilities, the ing its keys being qnite beyond its capabilities, the
singing men and women complained it was a trife too singing men and women complained it was a trife too
sharp for their vocal organs. By the way, I fond not many of them conld play masic written in C on the keys of the scale of A, so atter greaty improring the old family piano, I had to re- Write all the songs a minor hand work, but was comforted by the reflection, "it might have been worse, practical man prophesied the piano woald be apoiled. Let me cantion "H. W." against the ase of brase wire, which is a delnsion and a
snare. The tone is, doabtless, very fine, bat it won't stared in tane with steel strings. There is no difficulty in naing covered steel wire in lieu of brash for old squarc pianos, and other instraments which have bat one
belly-bridge, in proof of which I may mention I once had some strings of only No. 10 steel wire covered (open) with No. 00 copper for the lower notes of the octave-stop of a harpsichord. "What man has done, man can and date of his venerable piano, I might possibly nive him further information, some of which he might possibly obtain by reading my rather long paper on the possible improvement of old pianos, pnblished in Old Pianos into New Ones." I have often thoaght if I had posssseed snfficient "gumption" to have spent the time and money which was expended on the old framily square on such an instrnment as the Stodart grand therein mentioned, which sold for only
masical resalte might have been something more valamale ; however, "H. W." may take "heart of grace," as those by Steen at Potsdam, nor even Mozart's sqnare piano which, is yot extant ; perhaps not so old ns the Kirkman, which is, I believe, one of the most ancient Kirkman, which is, I believe, one of the most ancient pianoforteb extant mad
monious Blacksmith.
[12503.]-Nevill's Bread.-No special formnla for the mannfacture, I believe. It is merely bated in hot-water ovens.-E. M.
[13504.]-Sketching from Nature.-The great requirement for correct sketching is an accurate and well trained ese. All mere meohanical contrivances have a tondency to weaken the self-relying powers of the eye, just as the constant use of a note-book weakens the memory. All thatany one who has an eye sufficiently trained to be competent to commence sketching from nature shonld require, is to get his principal objects
properly placed. This may always be done by the properly placed. This may always be done by the practice to become quito easy. As Boon as he has ascertained, by holding his paper at a proper distance, the space his drawing is to taire in, let him take the paper in one hand and apencil in the other, then
bolding the former so as to cover the view exactiy, let him lower it gradually, and as oach principal object in tarn cats the top of the paper, lot him raake a dot on the edge. The same may be done at each side of
the paper in tarn, and thas, by drawing rour pencil the paper in tarn, and thas, by drawing your pencil
down and across (without marking lines on the paper), down and across (withoat marking lines on the paper), you get the exact place of each principal object on
precisely the same principle as that ancgeated by Webb precisely the same principle as that anggested by Webb
and others, while you dispense with the mechanical contrivance and gain training for your oye, which is, after all, the most important of all qualifeations.
When you have got the principal ohjects succesafolly When you hare got the principal ohjects successfally
placed, the minor ones are easily dilled in. I have placed, the minor ones are easily flled in. I have
adopted the above method for many years, and while
I will sield to no one in acearacy of ontline nadertake to have my drawing all placed by the time apparatas.-G. NAse.

Q2510.]-Camera Obscura.-The dimensions are length of the lens. The gronad glase is placed "Hac," and a picce of tracing. anper on it if you want the leng, as directed on p. 494, Vol. XIII., and make the bos accordingly with a littlo play eithar way. The only essentials are placiug the mirror at
45^{5}, and in the focas of the lens.-Tages.
[12523.]-Lacruer.-You oan bay a blae lacquer Or the prrposes meutioned. T
ing it are given with it.-E. M.
[12524.]-Holtz Electrical Machine.-It would be yuite pose ible to sabstitate a rarnished tin plate for
the suall glasy dize; bnt cai bono? I think the glasa would give the beit resalts.-TAciEs.
[12598.]-Hay Asthma.-This complaint is canced b the pollen of thowers of any sort. I have seen a dads nuable to benr a glass fall of garden Howers in a bom. In 1850, a friend, habie to the disorder, came to The gronse on ms moor in Teesiale on Augnst 12 the pollen the moment he set foot on the moor.
[12532.]-Republican Months.-The correpondent rho answered this query on p. 571 omitted to ive the complementary days, of which there are five in ordinary years and six in leap year. They comnence Sipt. 17.-DeEsidr.
[12537.]-Compressing Air.-By all means let "Mechanical Equiralent" pablish the reat of his experimenta. There
[12599.]-House-fy.-There are two sorts of honse fiea, which so nearly resemble each other that few people erer think of distingniahing them. They are,
howtver, really qnite distinct species. One, the common honse-ty, does not bite, having no apparatus for the honse-ty, does not bite, having no apparatns for the
purpose; the other, which may be distingnished by the wings being wider apart at the tips, and by its having tho biting prong protrnding from the front of its bead, does bite, and when it does, makes itself felt pretty harply. It does not often bite, however, in this conutry but in Australia, where both species are also fonud, ranning down the lecs of horses from the pertinaciong ranning down the leps of horses from the pertinacions to distingaish them from the common fy. The real mosquito is aloo common enough in this conntry, bat it, too, seldom bites, except in particular localities, gonerally near the sea-coast, where there are drains or arsh, as in Lincolnahire, for instance.-G. NABE
[12539.]-House.fy.-A little black pepper, a little brown sugar, mixed with water in
deadly poison to Hios.-WILse Browr.
[12550.]-Beaweeds.-I have repeatedly arranged apecimens on a plate with a little water in it. The plate begin the trimming and flatting oot at one side, using a long pin, or wire, a hairpin does admirably; overlapping sprays must be nipped ofr with a thumb-nail or finger-nail; by gradually raising the plate, the water to be laid aside for a day or two to dry. To remore, loosen it gently with a pin or blant knife. The very delicate species are better laid in the same manner on pieces of paper, and afterwards pressed between fine
[13555.] - Packfong, or Chinese White Copper.-Several recipes having been given for thi metal, I leg to send a formala I came neross recently. It varies from the others which have been given, bat they are all different. It consists of copper, $10 \cdot 4$;
nickel, $31 \cdot 6 ;$ iron, $2 \cdot 6$. As to the mixing, I $k n o w n o-~ n o ~$ thing, bat I imagine the nickel nad iron shonld be firat melted, and the copper added afterwards.-Saul Ryaea.
[12566.]-Bees.- The rale is for the owner of a hive to follow a swarm whioh leaves his premises. If he can keep it in sight-sometimes no easy matter-he can hive them, and take them home from his neighboari in their gardens. It serves as a trap to a swarm, for bees are always in scarch of some habitat at swarm the roof of a hoase, and will certainly fly to an empty hive.-WILse Brown.
[12598.]-Age of Trees.-This is a strangely neg. lected question, on which something really onght to be
ascertainable without reined science, if oolonists oould ascortainable withont reined science, ir ool opod to remember it, whon opportaities ocenr ; and if the writer of the first and very ridiculon reply on p. 598 can succeed in apreading his notion
that we have hore a compendious and easy way of smashing up parsons, "theological myth." or anything of that sort, there will be a chance of eliciting some what of "risible fact in a matter where all secmes as
yet the vaguest oonjectare. His "reply," together with that of "M. A. B." woald convey the impression that some Californian tree has been fore rings (one or each year since "Abraham was a boy ", and las other trees, a baobab and a deciduons cypress (it is not said where) have been 5,150 and 6,000 . it would be extreme conted 5,150 and 6,000 . Now, it rould be extremgly in teresting to hear of any piece of wood wherein me thinc
and were ever counted, and still more, if any misenm could exbibit a bar of wood, say 3in. or 2 in . wide and deep, ent radially from the face of a stamp, extending from the bark to an inch berond the axis, and display.
ing any namber above 1,000 lajers. How eacily might
those who fell any remarkable tree (asy the Califorcian winding stair, in the barnt wing of the Sydenhen Crystal Palace, how rastly more easily and cheapily this little " viaible fact" in the compass of a maderate breechloader case; and which would hare beed sale. in all probability, from any sach conflagration: Mose ardinary longevity of trees," bat not to correspondeats who mocording to thil. diaciple of Sir Richard Phillips's notion of "facts." By all means let us have sime racts irst, and thea add wifher." The test distingaishing "ono fact "from a million myths woald seem to whether the thing happened to get copied into this thrilts booksellers's note-bock, who, by the way, benides being
knighted for happening to be alderman at gome pageant, was the "Hampden" of his day 1 The
Plillippian smash up Newton and gravitation all to shivern. Is our calculationa referred to the bsobab of Cape Vicide the decidaone Teneriffe, are still each a " risible fact," stayding and loarishing? Who are the clairvoyantes poor Sir dichard got to conit tha has in is course, thongh all very old rees are boll...
 ar, bat whether 3, 00 or 5,150 or, 00 , Da Canand recopied) in his latest work ("Gengraphic Boteniqne," pp. 1063-5) inds no evidence for ealcu-
lating, oven to a millennary. Between 8,000 sod
 if a single tree; bat as its diameter is fally thrioc
that of any other known specimen, he think it nore ively to bo four or Are, "sondices "lite the ranks of the famons hollow chesnat tree of Etpe We must farther observe that in this and most tropical rrees, to prove 6,00 years age requires 12,000 rings counted, as they are semi-annaal, one formed at each rainy season, in nearly all the few tropical trees they are indistingaishable as in mahogany; and scarcely one in 100 of tropical species have probably like the Jamaica cotton-tree), such an annaal interraption of functions as to mark single anrual layers
lise our timber. The basbab abore mentioned ike our timber. The basbab above mentinned (1 arme somim), is a close relatire of this erichirnirn, and like
it, certainly fast-growing and short-lived, though both at a conple of centaries old, are the monarchs of thei respective woods. I have assisted at the felling of an eriodendron Whose girth was gelt. at 30tt. from the
ground ; the rings were about go, and negroes present remembered it a sapling.-E. L. G.
[12598.] - Age of Trees. - Why cannot "A (answer to query 12503) speak of the ascertained age or certais trees withont indulging in a, grataitoas it to do with the trees I cannot well see; they may have been growing for millions of years instead of thousands for all that theology says to the contrary, provided it is not at the same time asserted that thes are younger than Adam. The reason why nataralists' statomente have not almaya received implicit credence is due to no such absurd prejadice, bat to the difficalty of ohtaining an exact eqtimate of the number of zones in the wan causes may operate on a tree, particalarly when roung, to make it grow faster or blower, or more or less irregularly, that we cannot speak with anything ine certainty as to the age outil it is felled and tae ings carefully connted. Heasarement and calcula. discresions give an approsimation. Ab thin joarnal correspondents shona be carefal to avoid siviug provo cation by making statements and allasions whish othern are not allowed to auswer, and abore all they shoald not, as in this case, sneer at the rieers of their opponents, without being quite sare
what those views are.-VERTUNNUs.
[12608.]-Bookbinder's Press.-" Dablin Sabnot "Jack of Al Trades" this last namber.-Z Zria No. 1 .
[12618.] - Excessive Perspiration. - In the Brompton Hospital for Consumption thes gire tinctare of zinc three times a day. Any chemist on roference penny worth, and find hor many drops in water to take, if expenso is an object. Wear fiannel, bat not in bed.-Zeta No. 1.
[12631.] - Fixing the Bloom of Soariet Runners.-The falling off of the bloom of searlet ranners is very general this jear. Some assign the causo drop their petal. Giro iter frely: lignid also drop their petais. Giro water freely; inqua
manure if possible, and the later bloome of searlet manare if possible, and the later bloous of
runners will pay for the trouble.-ZETA No. 1.
[12638.]-Fleas in Dogs.-"Conntryman" will ind common eweet oil, poared down the middle of the brck of dog, a safer remedy than sulpharous acid. and of all the dog soaps adrertised, the beat is the Japan soap, prepared by Rackham, of Norwich. An owner of apwards of eighty dogs, of rarioas bretse zeta No. 1.
[12699.]-Worms in Pony.-Get an areca nat or give it twice a day, in any kind of food, or made ap at
a pill. For a pony about as muoh as will cover a ahilling, for a dog one third that quautity. The cost of
nots are 2d. each, large bize, and have proved very sure on all cases I have tried and elsewhere.-Zeti . 1.
[120.42.]-Tce Cream.-Pat into a bncket 1lb. of ice broken ratber amall, throw two hand fuls of common ealt npon it, and leave it in a cool place. Pat the cream into a pewter ice-pot, or an ordinary pint or quart milk cou, witu a tibht-Ne ice roand the pots to the commence spinning the as tonch erery part, by means of the handle on the lid. End the bockinates take a spoon and stir the ream so that it may freeze equally-stirring quickly nercases the cold. As the ice in the backet thaws, Presh shonld lie addod, and the water thrown awas. The oroam for icciug is thas made:-Nuw milk one quart, yelks of six egga, fine sngar 4oz., mix, strain, beat rently, and then cool. To thrs may be adied any
[12G48.]-Dictionary of Scientific Terms.There is a small one br Dr. Nnttall, pablished bs There is also a more comprelionsive one br Dr. Stormonth, published by Blackwood.-N. S. Heineken.
[12649.]-Kites. -I send the description of a birdrite which can be very easily made. The only materials are some stout glazed calico, a lath, a couplo of good sonnd canes, some wire and atring. Cat the calico to the ehape of a hawk with outapread wings; omithing all minor details, and aiming only at the genern onthne. ar. in. Yrom head to thl, and 4t. 5in acress the wings, is a vory good size. The canes,
which ohonld taper at the ends, shonld be 2 tt. 10 in each, aud are inserted in the hem of the apper edge of the wings. At \sin. from the ond of each cuno a hole must bo drillet, through which a stoat wire pin, bent a hole made at 9 in . from the top of the lath. It wonld be safer to tie a piece of tape to the pin, with which to wrap ronnd the place of joining. A tlat piece of wood lin. long, and nearly lin. wide, run throngh a broad hem, at the bottom of the kite, will serve to keep the hoops, to which are attached conical opps, in the hoops, to which are attached conical caps, in the quite sufficient. If these directions are not intelligible enongh, I shall be glad to answer any questions. N. W
[13658.]-Poultry Keeping.-A young woman. danghter of an innkecper near Liverpool, was left alone one evening. She heard a noise in the poultryfard, took a pistol loaded with small shot, went to the lence connd the yard, and sam two men catching the birds in the dark. A acream from one of the men
followed the report of the pistol, and both dropped iollowed the report of the pistol, and
their game and bolted.-Wilse Brown.
[12657.]-Cutting Cylindrical Glase.-Heat a tont iron wire or thin rod to reduese. Heat the neck of the bottle in a gas thame, and toach the hot part nith a dryp of water, which will produce one or more cracks. Then guide the crack in the dosired direction the plass can thas be out in any manner.-Alfred H. Alles.
[12669.]-Sunrise.-The "Ephemeris," pablished by the Artronomer Royal at Greenwich, will give al
[12664.]-To Stereotype Brass Blocks.-When I get a new block ont, bome costomers want thei printing done in black and some in metal leaf, so that conld have three or four working at once. They would cost but little, wherens if I must get throe or foar
more brass blockn it wonld come very expensivo. If I more brass blocks it woald come very expensivo. If I coald cast them in brass it woald be mach better.-
J. B. Susriegr.
[12665.]-Sea Sickness can be prevented by the voyazer getting all striuga, atraps, and battons loosened, and berth-keor prt on whilst the vessel is still ; keep the head on a low pillow, "screwed down," as a friend of and dolominably " the whole tive the steamer is in motion. "Wha man has dunc man may do," and I have tried and been succesaful.-H. O'B.
[12G65.]-Sea Sickneas.-Ropeated small doses (10 grains) of chloral bydrate are said to have a marked elueot in preventing sea sicknoss. I have mysell aitting between the paidle-whecls (or as near the centre of the pessel as possible, not only from end to end bat side to side), and carefully avoiding a view of the waves by reading an interesting book. Δ game of chese has answered the
Alpred H. Allen.
[12665.]-Sea Sickness.-Do not eat for two or three hours before going on board. Sirathe the abdomen lightly with a broad bardage from ribs to hipe; take 10 drapa of chloroform on sagar or pappermint water as
you go on board; lie down at fall len ith as near centre you vo on board; ine down at in head in as near centre bat not cluse to engiues, as the oily smell and hoa
[13if65] - Sea Sickness.-Moderate doses of "hydrate of olloral" taken immediately on gning abioard with au assumption of the recumbent position
efictually presersed a part from sickness when cross enctaaly preserved a party from sickness when crossrmall. Ruscently, I presoribed doses of 15 grains in
orange flower-water to a friend going to Quebec, and be writes that he was the only passenger free from sickness
in the ocean steamer. Tine chewist prepared the doses in the ocean steamer. The chemist propared the doses
in a graduated bottle, and my correspondent felt no disconfurt whatever.-P. F.
[12605.]-Sea Sickness.-Eat a hearty meal of good plain food befure starting, that the atomach ma not be empty. When on board, aroid a hot rich dinuer in the salon, but have bread and cheese and ale on deck. Take brandy with yon, bat only use it as a las resonree, and thon driuk a little, as nearly neat as yon eaten bear it. Hare some dry bircaita with yon, to be During the vorace, it the vorsel pitches or rolls. do your best to stand; face the breeze and wateh the
 overcome all fuar with respuct to them. Ahuve all as I beliere some peoplo do, thinking abont sear neas, expecting to be sicls, woaderiug whether it roagh enough, and when you oaytht reazonably to be expected to begin. Go with the full contidsoce that you will not be sick and don't mean to be, bat $t, \in_{0 j}$, y precauntige instoad; and then I think that with the poar day comf have named you onght to got thronsh

[12c65.]-Sea Sickness.-A light bandage press. ing genty acruss the stomach I have proved to be a great comfort in heavy weather. If sickuess shonla irritated enough alreadg. A little ico or iced water i good. Aod to bring the st mach round, nothing cau do masticate a small plain hard water bizenit, takinz alat a small cup of strong tua withoat snarar or cream (sip this gently). If you can las this fondation, anpplement journering have convinced wentr-cight years of sen will tend more to prevent sickness than the 101 nostrums vended.-Joe.
[12471.]-Dressing Jack Line.-"J. D." had beler not use any waterproot composition for his angler I have come to this conclasion:-I have tried numbera of recipes-varnishes, plaia boiled oil, and the resalt invariably was the speeds decay of the line on the one hand, and increased weight on the other, so that the light cast, when the tail- H y should frst toach the water, is not easily attainable. For a different reason I object to the staining of almon or tront gat. The angler forgets, that althongh the plain gat appears very white to him when he louks down on it in the water, if he oonld look npwards through the water he wonld fail to see the gat-line, except by ite disturbance of the water, the gat when wet being nearly transparent; but if he wishes to stain it, hid best plan is simply to steep the gat-line a fer minates in lukewarm tea-water that rewaius in the pot. The reel-line I ased was a thin one of plaited green silk. tillad it in constant ase for bo fair pull. 0 course, it was only used in fresh water; many a salmon I beld with it, and the onls precaution I adopted Wan to reel off the entire line immediately on my return won!d require a powertal rod for pike, and I recom mend him to adopt the one-splice rod; the beat made either of pitch-pine or well-seasoned ash, from a tree that has grown in poor soil ; and the top of lance Thoos. My rods were made thas, of 18tt. and 1oft grice with a 151 l . salmon. The best colours for salmon Hies in Aagnst are a rich deep blue, and a claret nearly black; for Soptember, the latter coloar and plain gray bodies, each with flery brown hackle at shoulder,
later in the month a blue juy's hackle.-E. J. D.
[12671.]-Dresaing Jack Line.-"J. D." had If he had not robbed it with wax I would hare recom mended steeping io a solution of catechn; solations o ghellac are good, bat make the lime too stif, increasing the liubility to "Eink."-Suerre Linc.
[12674.]-Plant Bozes.-I have seen Datoh tiles mako a very pretty borderiur for windown; the tiles are aboat bin. sqnare and tin. thick. It is merely a the front is made like a picture frame, the depth of the tiles and levgth of the window it is intended to go in it is placed on the window ledge before the flower-pots, and bottom were pat to it it would answer instead of and bottom were p.
pots.-F. S. Mr. W.
[12676.]-Book.Keeping.-The money invested in rarnitnre, machinery, de., mast be considered as
 be posted to the latter, such as rent, wages, pacting materiala, \&c. All expenditure on work iucreasing the value of the plant, do., is, or shonld be, capable of being realised agsin as cash or capital, and, therefore,
shoald be considered as sach; subject to a yearly deduction for depreciation in value which latter item ouly shoald be carriod to protit and loss.-Loaca.
[12676.]-Book.Keeping.-I sappose that " Bo skkeeping" charges his outhay for machinery to farnibuchinerg osrried gnarterly or harge expenditure lit acconnt, no wonder that his capital will appear to bo diminishing. I woald snggost that a "machinery woald be quito legitimeto not only to dobit ontlay for machinery proper bat repairs-历ritiug of a certain
per centage yearly for " wear and toar." Tho balauce
of this accoant wonld then he an asset, and very pro perly so. This is the plan aloptel by a Noinui g Cn
(Liwited), whoso books I audit, at Christmas. SEvecto.
[19630.]-Darkening Graduations on Soales. -First woll clean yoar beales with tarpsutine or apirits of wine, and a piece of ctton walding, then take a sancer and hold over a lamp or cand!e fime, dron coct the carbon npon the same. nost get a fow and of copal rarnigh aud mix it u_{p} with Yunr fager with tho palm of yor hand, pat br to dry for a day, hen yoa may olean your fa:e thoronghly with a piecs of cloth and elbow groase.-Jack of all Trades.
[12681.] - Is the Interior of the Globe Vacuum P-From exparimeuts made on the attrao pendalnm at the top of a mouat in or the bottom of a mine, it ins been ascertained tant the earth's specifio gravity is aboat six, roaghly, therefore itd iuterior which constitates its sarface. A pendulam vibratas more slowly at the top of a monatian thas at the sarface of the earth, becaase the attraction is leas, the distance to the earth's centre beiug greater; it also viiurates more slowly at the bottom of a mine, as the dulaction of the portion of the oarth abovo the pea dalum opposes to some extent the atrathon of the rest core, it possible to exist, won'd be 6,900 miles in diameter, not 5,600 .)-Philantiropist.
[12631.] - Is the Interior of the Globe - Phrsical Geography, for following from Ansted' -It has been calcolated by Prufusior W. Thomson Glasgow, and Mr. W. Hopting, Cambridgo, that the crust of the earth must cousist on the whole, and to an enormons depth, of some kind or condition of solid matorial more rigid than stoel. If it were not bo the bight of the tides and the amo. mentally to be. . . . It seems that at least half the distasce from the sarlace to the centre must be solid and rigid, to enable our planet to preserve its figare and allow the tides of the ocean and the moveagare and the earth to remain unchanged." The numerous volcanos and gejeers snfliciently angwer "Balcairn's" question about the heated interior. -
[12681.]-Is the Interior of the Globe Vacuum P-Mathematicians, as a role, I believe, are uclined to favour the theory that the globe is solid.號 o say apon this sabject. 1 t thiak was are pabhase no made this briosophical Transactions. would prefer to hear the opinions of "F.R.A.S.", Mr. Proctor, "E. L. G."" or J. H. Smith, npon the subject. At any rate, I fancy, that at the end of a discassion apon the question some of us would hold one opinion, and some the opposite. I doabt, too, whether it can be brought formard in a popular manuer-i.e., without the aid of highor mathematice. A largo question, there is plenty of room for the monting of theories, bet will the altimate good be safficient to compensate for the space occapied ?-C. H. W. B.
[12682.]-Evaporation of Water.-"Tintab" gives insafficient data. I think the question involves cecmperatare, motion of atmosphere, \&c.-C. H. W. B.
[12692.]-Evaporation of Water.-The rate of oraporation of water depends apon (1) the teniperature of the water; (2) the temperature of the air ; (8) the barometric pressare; (4) the more or less rapid removal of the air aatarated with moistare. Br rais. ing the temporature of the water, or that of the air passing over it, the evaporation is increased. As evaporation depends apon the removal of the batarated air, the more rapid the change, the greater the amonnt by increasing the surface exposed to the air. Lastly,
evaporation is increased. by lessening the barometric pressare.-Analybi.
[12683.]-Ornamental Turning.-In reply to ball ont in an easier plan. Thas Fig. A representa holes for the logs and sapporto line olack the ball in the cup chack with the grain of the wood across the chack, with the corner of the chisel

mark a circle at C, then at D, and at E (of coarse the lathe mast be in motion); nest with a pair of conpasses murk taree duts with point of tho compasses at equal dibtance apart; chucta the ball in the cap ghall revolve true as a centre-that is to bay, the dot shail represent the centre ; then bore the hole with the thruagh the lall, before, the holua stivald bo qnite Wuen done, if care be taken, the sis holes will be equal
distanos apart on each line ; if the legs are required to atand wide apart, make the circle \mathbf{C} and E nearer the centre of the ball ; if to atand closer, farther from the centre. Anv farther information I will send if required. -Samurl 8mither.
[12692.]-Deliquescents. - Salphate of lead and nitrate of ammona, mariate of lime and nitrato of (in crystals) and carbonato sulphato of zinc, citric acid (in crystals) and carbonate of potash, carbonate of ammonia (3 parta) and salphate of copper (2 parta).
Powdered and rubbed together in a mortar.-T. P. H.
[12696.]-Atmospheric Pressures.-The Board of Trade's "Barometer Manual," price 18., contains tables applicable to amall heights, up to 500 ft . from the sea level, and the formalm for txtending similar cal culation to all beights. The rate of decrease upward varies greally with temperature. The warmer the atmosphere, the higher mast yna asoend to reach a given
dimination of pressure.-E. L. G. dimination of pressure.-E. L. G.
[12696.]-Atmospheric Pressures.-The follow ing table is copied from Brooke's "Nataral Philo-sophy":-
Height above Sea Level.
0 feet
5000
10000
10000
15000
$\begin{array}{cl}8 & \text { miles } \\ 6 & \\ 9 & " \prime \\ 15 & " \prime\end{array}$
Height of Barometer. 80.0
24.797
24.97
19.000
16.941
15.00
7.50
8.75
1.00
-Alpbed H. Allen.
[12696.]-Atmonpheric Pressures.-I know of no book giving such a soale as J. M. Taylor requires. it is not difficalt to ascortain the pressare at any given point, and I have no doubt that if Mr. Taylor mentions any particular place some of your correspondents moald give him the preseare. Why not make a table himsely 2-C. H. W. B
[12698.] - Vermin.-Let " Sleepleas" get aix (not a glates stoppor), and wrap the bottle in his nightbirt when he gets ap. I think he will not be plagued with tieas after the first night. Proved-J. R., Jun.
[12699.] - Onions. -"Giant rocca" or any other "winter onion" requires no frame. Nuw is the time to now in well-manured groand ; if in a warm aitaation, so muoh the bettor; dig deep, and tread the top frm. I nown this time last year.- Soctin Livc.
[12700.] - Been.-Removing Supers.-I have tried a number of ways for the last twenty years with varied succeas. My greatest difficulty often arose from having to leave the supers or glasses beforo I conld get the bees out. An apiarian friend, Mr. Richard Aston, has invented a bee trap attached to a board. I simply place the saper or glass on the board, and loave them. Δ bright day from nine in the morning to three in the afternoon is the best time for removal. You may place your bees thus removed to almost any part of your garden, covering glasses to make them as dark as poseible, the eptrance of the trap facing the light. Your bees will quickly pass through the trap, but cannot retnrn, join. ing the parent hive as if nothing had happened. By this means I bave removed about 20 supers and giasses this season, and only onoe had trouble with the queen; on Which occacion I got the queen into any empty glass, placed a piece of zino over the glass, inverted the gleas, and placed it on the top of the hive, carefolly with.
drawig the zinc. We have 25 stocks at present in our drawing the zinc. We have 25 atocks at present in our apiary and garden, and I fond it a great reliof to be
able to leave $m y$ glanses as long as I like, and attend to other pursaits.-ApIARINN.
[12700.]-Bees.-Removing Supers.-Choose shortly before sunset, and with a thin bladed knife remove the propolis by which the saper is fastened to hive. Pash a piece of shoet zino under the saper, remove to a short distance, plico on its side apon the ground, and if the saper is of glass cover with a oloth. fier minntes so to thove the zinc, and the bees will in mow minntes go to the hivo. Watoh for this, and roto the main atock. -JANMIFRED.
[12708.] - Fruchsias.-There are several things that will caune this : sadden removal to a colder atmosphere ; letting them suffer from drought; their beiag
in too small pots, and becoming pot bound, so that the rootlets come in contact with the pot, and anfer from the heat of the sun when exposed to its raya; watering with too cold water, more eapecially if watered when the sun is broiling them, and sometimes from the pot being badly drained. Jacr or All Trades.
[12704.] - Maple Vencerts. - Get a perfectly smooth bench or board on ditto, and plane them with fine set amoothing plane or tooth plane, a little each vide till you get the ridges off. If you are going to veneer moaldings, you muat get it nearly as thin as and plane from, not to your fixing.-W.
[12704,] - Maple Veneers.-"Old Hatter's" veneers mast not bo ap to mach, or they woald not show the saw cats. I cannot see any better mode than glue, and lay them immediately. If the veneers are very gine, and lay them immediately. If the veneers are very
stout, tack them down, and use a plane carefally on them, or a scraper ; when dry, finish of with a mouldthem, or a seraper; when dry, inish off with a monld-
ing plane or a steel seraper; be careful not to knock out the bird's ejes; although, I doubt if they will se any worse than before, if you do so.-SAMOEL
[12706.]-Laboratory Purification. - Nover open the door of your laboratory. If you want a current of air, open the window at the top, and also at the bottom-the nearar the coiling and floor the xit of are the better. If you the following is an arcollent plan. You have, doubtless, seen those circular ventilators in the tops of windows whinh revolve very rapidly when the heatod air in the interior paseces out. Ther are made similar to marine sorem-propeller. Fix a cord over a bobbin attached to the contre of the ventilator, paes the cord ronnd a large The vend iaston ap; you can then tarn the wheel. uaks the forl air out of the rocm in a twintling.Join Hoprins.
[12706.]-Laboratory Purification.-The beat ventilator you can have is an Arnott'e valve placed (an near the ceiling as possible) in the ohimney breast-but noxions gases should as far as possible only be iberated in a gas-oloset, which is amply a aloset axod beside tho wall with openinge top and botcom into the oxternal air, and a glace rroat with aiding aoorn to therein. - William Pagirer
[12706.]-Laboratory Purification.-Let some dir-briaks in to the wall at foot, and ventilate into some chimney. Mach may be done by a box of quicklime and a tank of watar ; a steam jot up a shaft or chimney would asaist you. Juct or All Trades.
[12706.]-Laboratory Purification-The best thing your correspondent "Alactor" can do will be to have a rapour capboard atted ap in his laboratory (or the room in which he worke), in direct commanication with the chimnoy, so that any obnoxious gases may not enter the room at all. If he does not do mach work, I shoold say that a cupboard 24in. long, 8 in. rom back to front, and about 24io. to 80in. high, slazed, or if all his parposes. Threo sites should to admit an maoh light as posaible. The outlet for the rapours should be as noar the top as posciblo, and he should arrange to have a gas-pipe near so as to be able to have a Bancen's barner, or other heating apparatus in the capboard when necessary for evaporations, ignitions, de.-Alpred Thomas Jenends.
[12707.]-Geometrical Query.-LLet ELM be a
 coan, CD a circalar seo be projected into a parabole E the position of the eye DS a section of the cone made by plane parallel to EL. this secparan is a parabila sec h be any point on the circle, join Eh and prodace it to $h^{\prime} ; h^{\prime}$ is its projectioz, and 8o,
for any other point,
the cone should be the cone should be produced indefnitely in Lhe direction towards [12710.]-Ginger Beer.-See indices, for ginger wine. Take a conple of tabs, or three, and work them
in rotation with syrap. You need not be alraid of in rotation with syrap. You need not be afraid of
making too muoh, as it will kcep for years.-JACK or all Trades.
[12711.]-Height of Mountain.-There are at least three simple ways of caloulating the height of monntain, if the mountain be not inaccossible itsolf1st, by means of barometer ; 2nd, by boiling water ; When mountain is not acoessible. Fall directions will be fonnd in any elementary treatise on trigonometryeg., Todhontar's "Smaller Trigonometry," or Hamblin 'Smith's, to., de.-C. H. W. B.
[12711.]-Height of Mountain.-Observe the olevation at. two points, A and B, in line with the sum. mit of the moantain, and moasure the distance AB,
Let the observed angios be a and β respectively. Angle

$\mathrm{ACB}=\beta-a$; whenco, by the rale of sines, $\mathrm{BC}=\mathrm{AB}$ $\frac{\sin . a}{(\sin . \beta-a)} ;$ bat $F G=B C \times \sin . \beta ; \therefore F G=$ $\mathrm{AB} \times \frac{\sin , a \times \sin . \beta}{\sin (\beta-a)}$; and aimilarly $\mathrm{FB}=\mathrm{AB}$ $\frac{\sin . a \times \text { cos. } \beta}{\sin .(\beta-a)}$. PC, added to height of observer's eye, gives the height, and FB gives the distance of the mountain.-W. AIREY.
[12711.]-Height of Mountain. - Yoar best plan would be to ascertain arst the distance of the monatain by means of a base line and quadrant ; the height can then be calculated in the usani manner.-ALABTOR.
[12712.]-Linseed Oil-Take spirita of tarpen-tino.-JACE OP ALI TRADES.
[18714.]-ECho of sound on Water. - The valocity of eound in water is abont 4,7081t, per second, or more than four times the velocity in air. Tharemiles a listoner on the banks of Lake bimoos, hea the sound the discharge of the gung, wourds the more tardy air convejed by the waler, aln impreserion. Is "Gillem" was stationed at the end of a long iron pipe, while I atruck the other end with a hammer, te would first hear a loud rap tranamitted by the inon, and after a time a cecond faint rap tranamitted by the afr. -Jons Hopixns.
[12714.]-Eaho of Sound on Water.-In the absence of data sa to the elevation of the gang when fired, the atato of the atmosphere, proximity of moartains, and the surronadinge of the town and lake, it is almost imposeible to answor the query gatinfactorily. The sound woald moarcoly be carribd by the wher. althongh the intior is an excollont condactor, for achnd shoy are of nearly equal denalice.-Ahastor.
[12716.]-Watch Drille.-Get somo ailver atoel wires and Ale them near the size required. Hoat them in a candle and plange them in the tallow; it is a rare thing to over heat them that way ; grind them either on A stone or glazer, and point tham on a
Tarkey or Arkanaen atone for ane; theee I nee writhoed tempering.-JAOX or ALLL TRADES.
[12719.]-Medical Coil-Yoe, Danioll oolle do Arst rate for ase with coile, and will do rery woll to first rate for ase with coila, and will do rery wol to
work a clook, bat are exponaive to koop going. Parkiz
[12719.]-Medical Ooil.-It will not be proferable to abandon the Daniell colli for a quart bichromata battery. I have ased Daniell cells to work a medical coil, and would profor three-pint Danioll colle to one quart biohromate any time. You mast only consider vour colls three-pint Daniell, not four-pint celle Leclandehe's celle are proferable for clocks on mocount of their constanoy.-Jorn Hopmes.
[12720.]-Medical Coil.-"No. 170 " is mistahere concerning soreving down the contect breater to get a oontinnous current, he wonld simply get no carrent at all by thene means oxoept a momantary one. He doabtless means a current in one direction only. In moat coils, the current is one way and then the other on each break of contect. If his coil is one of these be mast be satisfed with one kind of carrent, and if not he mast parahace anothor coil which gives carrenta in one direction, or baokwards and forward scoordiag to arrangement.-JoHn Hopixis.
[12721.]-Hgdravilic Machine for Blowing an Organ.-A is a cylinder similar to a stoam-ongiac. B a ralre moved by tappete on an adjasted rod C ; the
water main D is connected by a rod E to the recorvoir

of wind F at such a position that when the reservois descends by the exhsusting of the eir, the coak D in opened by the weight G, and the engine is not in motion. Cannot say what woold be the cost of one.
There is one of these machines at the Temple Charch. There is one of these machines at the Temple Chareh, Fleet-street, London.-J. B. CLAY.
[12722.]-Coal Getting.-We have now tro stylee one after that of a man hewing, and another after that of an elliptical sam, saming or scraping the coal oat I have reason for
EqUIVALENT.
[12722.]-Ooal Getting. -There are some rery good decoriptions of conl-cntting machinery, with
illuatrations, in Vol. I of Evalish Mecramic, Non. 4 and 10, showing how compreased air is conveyed to the workings, and other valaable information.-W. Baker.
[18728.]-Compreseed Air.-I hopo some of our frionds will enlighten us apon this subjeot, as I have ceen a patent apparates wikh the six pampe worked by hours to got a prevere of from ilb. to $6,0001 \mathrm{~b}$. per equare inch, but failed; the tremendors heat generatod provents the pumpa from gotting a fall feed; būt it is my bolief that betwoen 70 and 80 per cont. of that is pump barrel, and not by the compreacion of the atmophere. I hope some one will toll us a little about this, ace I believe it will be a bettor way of ventilating the mines, as well as malding a diflerence in price of coal in moore than one way-viz., by cheaper working, worked by any other meane-Jıce or ALL Trides.
[12728.]-Compressed Air.-The beat air-compreasing machine is an ordinary utham oylinder and pion to alide-valie of the atoam-ongine by whioh it is driven. The air is then taten into the cylinder by the riven. through what would be the supply steam pipe into the roncol prepared to recoive it. Varions other method have been tried with ongines without fiy-wheels, brt they de not appeart to do so well, not being so nteady. Collitg.
[12728.]-Compreased Air.-I mend diagram of an engine, or rather compound engine, for compressing ir, whin is at prenent working as a commercual suo cess (No. 2 engine). a are the air compressing cylinders, c the stoam oylinders, and b the piston-rods, ho air escape ralves are weighted to 451b. per equare inch, consequentiy the sir in being compreaned to four tmospheres, the arfective working prosiare being three atmospheres. The dotted curred ine in the air com presser shows the ratio or compression as the piston rarerses the oylinder. It will be seen that the termina pressure is not reached till the piston hae aocomplished hreo-quarters of its journey. Consequently, is the cylinders of the engine qutilising this compressed ar aro of equal capacity, and worked non-ex pansively, the engine comprossing the air vill have to make four strokes, while the engine atiliaing it makes bat one atroke, or otherwico, we must have reserroirs of compressed air, so that Thile ompressor can work continuously. I here take no notice of the loss of power by the generator of heat in the compressing oylinder when this heat is aftorwarde

lost. One fact, however, is very important to noticoviz., the comparatively little opposing pressure of the air being oomprusyed duiring the earlior part of the
atroke. The maximam retistive force being the stroke. The maximam resistive foroc being the
terminal pressure daring the last quartor of the stroke, this necossitates the ane of doable engines when by the altornate action of the engines, and the momentam of the moving parts, zocamniatod daring the earlier part of oach stroke, the power thus socumnlated is in practice fonnd sufficient to urge forward the piston
forward throagh the lattor part of the same stroke, and forward throagh the lattor part of the same stroke, and
even to compress the air to a tonsion greator than that eren to compress the air to a tongion greator than that
of the ateam. With aingle encines this is imposible, of the ateam. With aingle engines this is imposaible,
beonase the maximam powar in required at the latter beanase the maximam powar in required at the lattor part of each stroke, oanaing a jerking motion to the
ongine, of an injarions nature. By a different arrangeongine, of an injurions naturo. By a difforent arrangement this may to seme oxtent be aroided oren with a eingle engine, by having the aranks not at an angle of
60° instead of 90°, the general plan of whioh is 60° instead of 90°, the general plan of whioh is
apparent by an inspeotion of No. 1 ongine. Oar oditor has a plethora of commanications, so I had better conclade. If "Inquisitive" desires more information, I will either send it or commanioato privatoly. -Mbchanical Equivalint.
[12725.]-Frused Ohloride of 812ver.-From the description given, 1 fancy "Argentine" has in some way got the chloride converted into metal. The heat required for the facion is very moderato-balow redness-and the operation mast not be parformed in a metal vessel. Did "Argentine" use an iron pot or ladio ?-Alpagd H. ALiEN.
[12726.]-Motion of a Bailing Boat.-When a boht is sailing, no mattor whether close to wind or not, mont; bat it mast likewise bo takion into wocount the a sailing bont in so conatructed as to more emrily theed or attorn, but with difficulty bromadide wayk. When a bont nailifgolose to the wind's eyo there is more precoure
on the aft than the fore part of the sail, therefore she goen ahead. As a proof of what I any, run her ap to the wind, and three or four pointe more, and keep her so, and then she will mail atern, becaune the moil pressure is then on the lore part of the mili. Δ alate sinks zig-zag in water, bocause, although the attrac tion of gravits is equal the reairtance is unequal, it being onder to nink edgoways than broadside frat. A perfoct globe of motal will wink straight.-Davio Caristre.
[12728.]-Motion of a Saling Boat.-Let the woompanying agure reprocent the boat, the direotion of the wind boing indicated by the arrow, the direotion of one of the mails is A B (tho maineail, to.). Lret O B

tade, it oan be rosolved by the parailologram of forcea into the two forces O A and A B reppec-
tiraly perpendioular and parallol to the cail; the lattor hase no sure on the sall. It may bo C D and D A reppeotivaly perpondicerlar and parallel to the produces lee ; in tro of the veasel adapts hor to go forward mach more eakily propels her. As to a slate, too, sinking in an obique manner or zig-zag in wator, the centro of gravity does not coincide exactly with the oentre of premare.-Phmantirgopist.
[19728.]-Wave Pattern.-A body moving under the influence of a aniform scoolerating force, such as gravity, doscribee apacos varying as the equares of the imes taken to describe them. Let Δ rpm be a portion of the water line of one side of a vencel, Δ being the bow, and $A \sin B$ a line pasaing throagh the ${ }_{n} \mathrm{~F}$ ade of the ressel at the wator line; $\Delta \mathrm{r}_{\mathrm{m}} \mathrm{m}$ and tangent at m. Now, if we take equal distances $\Delta s, s q$,

$q n$, along $\triangle B$ and draw the perpendicularn $s r, q p$ $n m$, these vary as the aquares of the diatances $\Delta s, \Delta q$, A n, and thas the water is eoparated es it would be by aniform force. An is one quartor of the vessel's length at the water line if m be the point where the two parabolea have a common tangent. Δ vessel constructed in this mannor raises hardly any wave at any place. Boarne, in hia work on the sorew propellor, a rather dear book, describes this matter fally. More explanation if desired.-Philanteropist.
[12729.]-Breech.Inoaders.-If "Faber" coul3 get the Proceedings of the Mochanical Engineers han sixty-nine drawings of breech-loaders, detaila, \&c. Unfortunately, these Proceedinge cannot be bought, but may' be borrowed, if "Faber" has friend belonging to the association. I have often epoken of this exclasiveness of societios, and would again strongly arge attention to it. They proless a desire to disseminate information, jet refase o let the public bay their reporta. You mast join ne or go without, is the cry. Personally, I am greatly intarested in this Journal of the Meahsnical Mnginears. I want to see all the numbers I can, jet hitherto have been unable to obtain a sight of more than the one above mentioned. Is any mechanical engineer willing to assiat me in this matter? If thonght desirable, I will make tracings of these drawings, so that, at any rate, readers of the Engusi Meoranio may matoh this information from the hands of the few.-C.H.W.B.
[12780.] - Weir'e Bewing Machine cannot got out of order. Probably the mishaps of which "H. E.' complains are becanse he has not the proper teasion.
"H. E." should alter the tonsion nate only a quarter or hall a turn at a time-T. P. H.
[12730.]-Weir's Sowing Machine.-Hes this been taken to pieces? If so, the wheols have been mis placed, and want readjusting. The needle must descend and return to form a loop before the hook or retaine oan enter it. There may be one of the small wheels shifted upon the shaft from the sot-sorew getting loose, or from dragging the work. The needio may have damaged the needlo-plate, and made it rough. The looper underzeath may beoome choked with shoddy, if under part is hampered. This is cansed sometimes by ander part is hamperer. This is cansed sometimes by the needie acting like a pair of shoars by its ooming in contact with the needle-plate and shearing the staff; more especiany if the needie has come in conterot with the needle-plate, blunted the needie, and roughened the plato, it will every now and then shear the cotion off es well. Jack of Ale Trades.
[18781.]-Finnd Pad.-The handle muat be hollow, and a brass head itted to it, in which are 5 wo 10 sorewe, preasing not on the tool, but on an intervening pioce of metal.
rataly.-Branos.
[12786.]-Ooment on Postage 8tamps-It is dextrine, or Britiah gam, made by ex osing ataroh to or dinatase for some tione, and then baking. It is inor dions.-Wr. Paligr.
[19786,]-Cement on Poatage 8tmmps.-An article once appeared in "Honsehold Words" on the above, headed The Great British Gam Becret." The following is the substance of it:-A little westward of Dublin, on the banks of the Liffey, stood the village of Chapalizod. In 1821 it contained a large sterah mana. isotory. The use of potatoes in this manufactory cansed great diccontent among the people, and one aight it whes ont fire. Great eriorta wore made to save the bailding, but wish littio suocees. The atarch mired with the water nsed in quenching the fire, covered the streets and ran into the Liffey. 4 journey man block-printar had acaistod in patting out the ire, but boing rather the worte for liquor had coveral times allen among the ligudd staroh; and, next morning. on araling, lound his clothes complotely gammed ogether. This led to a consulitation with some of his chopmates, who had been in a aimilar condition, and the reanlt wha a nisit to the rains of the manuitwiory. They took come of the solt gummy substanco that etill lay in the streeta, teitod if in their trado, roand it to answer, bought ataroh, barnt it brown in a irying-pan, dded water, wa as good as gam arabic and many times oheaper. The blooz-printars did not keep their searet long. They old it to a gentioman in Lancashire, from whom it passed to anothor English gentleman. This gentleman aflered a great amount of persecution, and was the object of a large number of spien. His secret at last oozed out. When the penny postage systom came into ase Britioh gum was adoptod for the labels. Some time after a rumour became provalent that the cement on postage stamps wa a hurtfal substanco. The beoret was then spread far and wide. "The pablic was extonsivaly informed that the poatago-label poison was made simply of-potatoes."-TvB.
[12737.]-Size of Globe and Speed Rate of Sotation.-The motion of the earth roand the san is much faster than its motion of rotation on its axis. The arth goes more than $1 \frac{1}{2}$ millions of miles in the day in to motion round the sun. The query is not very clear. -Pemanthropist.
[12789.]-Geometrical Theorem.-In the socompanying igure the angle BFC equals the angle BAD (as shown in the demonatration to Prop. XLV IL., Enolid, Book 1). Also the angle ACF is equal to the angle BAD. But BAD and IAC maire np BAD. But BAD and IAC make op a right angle. angle. But all the angles of a triangle together a right angle. Bat all the angles of a triangle together \bar{I} two right angles, therefore the remaining angle at I is a in the same manner, be slso shown to be at right

anglea. Now, on reference to Erolid, Book 3, Prop. XXII., I find as adeduction to that proporition (eqnal two opposite anglea of any trapeziam be about it." Jois angles, 4 and the line of janc tion being bisected gives the centre of the circum scribing cirale.-C. P. E.
[12740.] - Lever Escapement. - By all mears put eew escapement. Look on the back of pillar plate, and yon will see the sire of the movement either 16,18 , or 20 ; sead to a good tool shop, or to an escape ment maker, for the size stamped on the plate. Your aacape pinion (if not worn) will do again, and very pro bably the collet also; if your pallet-atari is true, and polished pivote, they will do again most likely. Pivot in your balance stall, have roller right height and frm, fit pallets and lever on its staff, pitch oross depth, bank and sot pallets in angle, drill pallete and lever, finish off, poise balance, spring, and time. If the wateh reeps the same time lying as hanging, pass it, bot if not, do not pat your belance oat of poise.-ConverON
[12741.] - Leather Tachine.-Try a spokeshave. nch as saddlers use.-Torvo.
[18741.]-Leether Machine.-This is a very dimind job, as the leather difiors so much in tortaresome places are so tight, others so looce; cat your loather in trtrips, and pass it through a apozeshave. I have seen a good job made of it,
practice.-J JCE or ALL Trades.
[18743.] - Reveence of Wood 8moke. Il "Anxions One" wants to know how to emoke his hams and bacon, ho cannot do better than follow the instruc. tions laid down some time back in these columns. Bat this I know, the men in the east of London amoke haddocks, tippars, becon, and other goods, in a smokehole bailt on a certain plan, and uso oak, mahogany, and other eawdisto Batchers prefor mahogany turninga

Cor that porpose, but the fieh smokers prefer onk aswdost. I formerly sold my turnings for that parpoee, and at the present time can get high price for oak savdast.-SAMUEL SMither.
[18748.]-Essence of Wood Smoke.-Prrolig. neous acid, I suppose you want. It can be purcheged neous acid, I suppose you want. It can be purcheser
very oheaply. Unless you have chemical plant that you can work ont all your producta, and that upona large beale, it will not pay.-JdCe or ala Trades.
[12743.]-Essence of Wood Smoke.-A very dilate solation of carbolic or phenic acid in water and put the ham into a bath of it, will give the bam a smoked
Parker.
[12743.]-Essence of Wood Smoke.-This is amply the crude or empyreamatic acetic acid of the woodacid or pyroligneous acid Forks. It is obtained as one in close chambers or retorts. It has a brown colour, and a very strong amoky amell and flavour, but in other points resembles ordinary acetic acid of the same strength. The article commonly sold in bottles, at high prices, nnder the names of "Essence of Smoke," Smoking Flnid," do., is commonly thickened and darkened by dissolving abont two or three ounces of pirit-colouring (caramel) in each pint of the crude acid; but this adds nothing to its antiseptic and smuke Havour qualities, although it improves the colour of things prepared with it. The cheapest way of procuring the above is to bay it, of any wholesale or large druggist, nnder the name of "Crade (Smoky) Pyroligneons Acid. Prioo, (I think my last hogshesd cost 2 s . 4d. per gallon.) It is ueed either by bruehing little over the meat or fish, or by mixing a little with the brine. Some persons steep two or three drachms of the best wood-tar in each pint of the crade acid, with brisk agitation and slight warmth for one or two hours, and then, after repose, decant the clear portion or use. This is, however, quite annecessary, as the modifies the fisvour and is in s manner relished by some persons. I cannot agree with "An Anxious One" chimneys or smoling-housee is "unsatisfactory." In no way can such an excellent and refreshing flavour and odour of the kind be given to meat, fish, sce, as by direct and lengthened exposure to the attenaated moke or fumes of a slow wood or turf fire. Bome persons attempt to impart amoky flavour to hams and becon by the addition to the brine of a little creosote (previously dissolved in strong rinegar); bat this is expensive, and the food then gets e crade whisky flavoar, moky certainly, but devoid of the characteristic brown colonr, rich flavour, and fragrance, of a prime smoked ham or fitch.-Arotes.

C. [12744.] W.

[12744.]-Martini Rife.-The extractor in the Martini-Henry rifle is shaped something like the letter L, moving on a pivot af the bend. The vertical arm of this bell-crank is formed like a fork, one of the
prongs being at each side and exactly fitting the prongs being st each side and exactly fitting the
rear of the cartridge when "home." When the breech block is depressed, it catches the horizontal arm of the extractor, forces it down, and consequently brings the vertical arm away from its place against the barrel, thas throwing out the cartrige case. There is no apring about it to the with this rifle, owing to cartridge has which it lon The cartridge has to manner in Which it is loaded. The cartridge has to pass along the ordinary cylindrical lorm of cartridge would not the ordinary cylindrical 1
do.-Artilleny Captais.
[12746.]-Screws for Woodwork.-This requires some spaee to illnstrate as well as to engrave plant, for they are cat with dies.-Jack of All Trades.
[12747.]-Roasting Jacks.-Take a sheet of steel the thickness required, and cut strips the width required in the length, as that would be the way of the
grain. Punch a hole in both ends and lap ap on a grain. Panch a hole in both ends and lap ap on a
mandril, harden, and blaze of with tallow. Pat the mandril, harden, and blaze off with tallow. Pat the
spring inside a dram, and drive ofl the drum.-Jack of All Trades.
[12749.] - Punching Eoles in Sheet Brass.This depends upon the thickness and size, if light snd small, a lever press, the same as the endorsing preasea,
might do.-JACE or ALL Trades might do.-Jack of All Trades.
[12749.]-Punching Holes in Sheet Brass. Look at a punching machine and apply the aame principle-that is, with a panch and die to fit each is the best method of panching.-Mutual Tom.
[12752.]-Nervona Ercitement.- Your correailment. I know of nothing better than that adrised by Dr. Johnson, namely, the hydropathic treatment. In my last on constipation, I omitted to mention another proof given by Dr. Johzson that excitement arrests the secretions, and that cooling the body re stores them. Let ns take the oase of one addicted to strong stimnlants. In the morning he wates with al his secretions arrested, mouth and throst dry his nose dry, skin dry, his bowels costive-that is, dry also. Now let him get np, take a cold bath and go out into the cold air. The saliva returns to bis moath, moisture to throat and nose and skin and bis month, moisture bowels (il he be not habitoally conatipated) will be re-
lieved. Bat if instead he remains in bed, the secretions may be many honrs before they return. With those whose daily occapations render it impossible to take the hydropathic treatment, the doctor advises which is seld known to fail to relieve the bowels daily, and slso to nse daily cold ablntions.-P.S.-Every narse knows that one of the first and best signs of the sabsidence of the excitement of fever is the retnrn of the natural secretion to the nose and skin.-T. L. V.
[12755.]-To "Jack of All Trades."-How you manage to make rosin and shellac adhere to curd soap is something more than I can understand. You may soap and finely-powdered French chalk, and prepare some nuglazed paper for the purpose, like whitowashing it. Use when dry.-Jack of All Trades.
[12766.]-Fiddles and Fiddling.-The bow mast well cleansed with soap and water, then rosined till hite as snow, taking care not to ase the refined specimess of rosin sold at musio shops, but get a good piece f ordinary rosin from yonr chemist, and always use before you play. Do not play too near the bridge, nless your porition is a birh ono on the angor boar. Do not attempt anything diftionlt antil you can make lear tones. Place your bridge exactly in the centre, botween the f holes, and try, try again.-FIDDLEE.
[12771.] - Colorado, U.S. - 1. Allan line vid Baltimore. 2. Meals on cars are very expensive. Bay a basket at Baltimore, and fill with foar days sapply of bread and corned beef. Coffee is to be had at all stations
any time. 8. As near to Denver City as practicable. 4. As good as the best. 5. Yea; can be had of Messrs. Reid and Keim, 36, Finsbnry Circus. 6. Take no cools, bat good warm and strong clothing, thick boots, pair of blankete, and indiarabber sheet. 7. With the qualities named, "first rate " and "independence."-[12784.]-Libraries.-If "A Librarian" will get set of brass flgures with handles (say one of each up to 10) he will be able to print all the books in gold at print 700 or 800 books, and the gold at 1 s . 3d. What print 700 or 800 books, and the numbers will last as 6d. each. Make the figares hot in gas (not too hot), rab the face on a piece of cloth with a few drops of oil on, apply a little powdered rosin where you are going to print, then piok np the gold leal with the figares and hold it on about two or three eeconde and holdit on about two or three seconda Ater this pentine on, and it will give a beantifal bright gloss. If you want any more information I will give it with pleasure.-J. B. Sharpley.
[12779.]-Lightning and Thunder.-1. "Sheet igbtning" is merely the glare of a flash, reflected from clond, sky, or other objects. However near a flech be, oar back is tarned to it we can only see " bheet ighlf ere self are forked or unforked. The lafter, by far the It is more like a chain than the ribands (or strokes of uniform width) drawn by painters. It is commonly far less crooked in the genersl course, but with innumerable short arooks and dot-ike raggedness. 2. The ound starts simaltaneously from every point of the in the centre of curvature, you could hear bat a single gan-like explosion. But if you are a mile farther from one part of the chain than another, the peal must last 5 seconds; if 2 miles, 10 seconds; and so on. I do not believe in echoes from clouds, or any echoes contributing to the thander, except those from monntains and precipices, which give it quite a distinct chararter from what it has over flat conntries or sea. 8. What blasts a tree is simply its own sap suddenly made steam ; and the instantaneons vaporisation of confined moisture, or of soot, will equally explain the deınolition of the chimney witnessed by M. Paris, p. 620. Without having seen a large tree the day after its mendous force exbibited. I had such a view of a beech tree that was probably one of the largest in England, tree that was probably one of the largest in England,
and may be remembered as atanding before the elder chall-pit west of Caversham, Oxon. The trank, about bft. in diameter, and perfectly sound to the heart, fallen with the limbs in all directions, with most of its wood in minuter separated Abres like over-stewed meat, and seeming fit to go into a paper-mill, and with ery little more ponnding form pnlp. The fibres were the lightning's track - parts that had been out of the lightaing's track.-E. L. G.

TNANSWERED QUERIES.

The numbers and titioe of quories whiok romain wn. answered for flve woeks are inserted in this list. We trust our readers will look over the list, and wend what infor-
mation they oan for the bonefit of their fallow contri. butors.

Since our Last S. Bronghton has answered 12359 ; 12418, 12422, 12425
12493 Grove's Grs Battery, p. 496
2497 Hurizontal Escrpement, 496
Green shade, 490
Eloby, p. 497
Value of Locomotives, 497
Length of Pendnlum, 497
Speculam Grinding, 497

QUERIES

[19801.]-Eygrometer.-Will some correapodizizi sindly fhow me hom to find the dow. point nand dearre ormidity by Glaigher's tables, adnpted to 19 ton
ygrometer, when the dry and wet trinthe indicate raction of the same degree - e. a., $38 \cdot 6^{\circ}$ and is 1 . Other indi
[12802.]- Length of Pendulum Springs.-Winl "Seconds' Practical Watchmaker" kindly ilve ine b: opinion as regards the le
beat timekeeping ? -D .
[12308] - Mainsprings Breaking. - Woul. Secouds' Practical Watchmaker" explain the canse of
mainsprings brenking when the spring is the rizh mainsprings brenking when the apring is the riabt
height and strength, and the arbor the right oifs One will last a week and the other for years; botb best springs and fitted to the same watch by the rain
man, and kept in the same temperatare.-D.
[12804.]-Fixing Photographic Prints.-Can any one tell me the canso of my prints (rfter toning and when in the fining bath losing all their tone,
becoming a leathery brown colour ;-OnI IM A FIx.
[12805.]-Photography.- Can any reader cizes process for sensitising paper, so that it mus be kepr
without injury for two or three days? I believe such a without injury for two or
process is in ase.-C. B.
[12s06.]-Boat Building.-I wish to haild a gmsp pleasure boat, say from 14ft. to 15 ft ., by $2 f t$. 6 in th 3 f: beam, yacht shape, principally for sailing, but also of a
light build to row. Would any kind reader farnar mo with some practical Information, or name a book frow which I conld get all practical information nad dira=n. sions ? I have been trying to obtain a suitnble bojs
through booksellerg' agoncy, but without success. through booksellers
ANOTREB PADDLER.
[12807.]-Darkening Pale Mahogany. - Will ans subscriber kindly inform me the easiest wry to dart e the coloar of pale makognn
of a darker colour ?-A. D.
[12508.]-Enlargements on Zinc Plates.-NiU any of your nnmerous correspondents kindly farni:h
ine with a methisd of taking enlargements on ziac plates direct or by transfer $9-\mathrm{S}_{\mathrm{as}} \mathrm{W}_{\mathrm{ELLE}}$
[12809.]-Foonomy in Fuel.-I want to know i there is any liquid that will bind ashes together, 60 ra to burn them over Rgain. I have wotted them with water and made it like clay, bat when dry is orambl=z
I should like to make it lumpy to burn like coke. I hare put a lot of wet ashes in an American kitcheqer: it The liquid mast'not be expenalve, otherwise the eoopumy The liquid mastinot be lost-Duplex.
[18810.] - Flectro-Magnet. - I should be giad to learn how to construct sach an electro-magnet as wonl. be advantageonsly excited by 10 cells of Daniell's (qux-:
size). Also what weight such a magnet wonld protahi; sustain. I find it mach easior to coll the wire ungn tix brass tabes then to coil it directly apon the arms of th iron core. Will the earrents induced in the tabes : the primary carrent appreclably diminiah the magnetie intensity of the core ?-BETA.
[12811.]-Lamps.- I have a quantity of good lamprs shopworn." I should feel obliged by any one inform ing me how to get them up again like new. W. B. \mathbf{C}.
[12812.]-Water for Aquarium.-Will sny of your correspondents kindly inform me which water is best for squariams-whether rain- rater from off tilo
roofs or that supplied by water companies?-Nonwzr. [12813.]-Circular Baw Bench.-Can any of "oar" subscribers tell me what size circniar saw a 4 burich power engine will drive, and what cize pulleg to fix at
the same? Fly-wheol of engine, tit. 101 l . Also what kind of toeth are beit for ontting ash tant Subscriber.
[12814.]-Contracted Muscles. - Would anme one kindly advise what conld be done for a lad-twedre muscle in the neck, dircotly under left ear, which hils the bead on one side. Can the mascle be developers:-[12815.]-Fusing Brass.-Will one of your readers kindly describe to me the method of fusiug brasa bellows?-Branca.
[12818]-Sepia.-Sepia ougbt to be made from the inside of the cuttle fish
really made?-G.S. E. [12917.]-To Chemists.-If sulphate of quinine is
dissulved in sulphuric acid, and a faw dr ps are rised
with water, it turns the water a blne coloar. Will asy Fith water, it turns the water a blne colour. Will agy
of "our" chemical readers state the cause of this and of "our" chemical reader
oblige-Wileiam \mathbf{H}. $\mathbf{B x y}$.
[12s18.]-Postman's Daties.-Will snme brothes reador kindly tell me the distance a walking pustmang may walk out of the highway 9 I lire about to yards
out of the highway and he asys I ahall luse to pay extra out of the highway and he
for every letter.-H. W. F.
[12819.]-Stains in Wood.-Can any eorreerandent tell me of a substnace which will tako stains ar ised bs
nitrate of silver oat of wood, and its price ? T. V. B.
[12820.]-Churning.-I the separation inf better in charning cansed by nny chemical in additiou to this whole chemical action that takes place? An answer from "Sigma" wonld obligo-M.F.
[12821.]-Soluble Glass.- Referriog to intter oo
 soluble glass as a coating for brick or stone perfeids sojable giass as a coating for brick
trangparent and oolourlese?-Ajax.
[12822.]-Fxtracting Opium, \&zo. from Popplas. is the red colonring matter ordinary b.ipuins? illw is the red colonring matter extractid? anything else obtained from poryines? If
name
so, what are thair names and bow are they ulutined:so, what are thair names and bow are they ulbivied:-
G. S. E.
[19p23.]-Cochineal Blue.-I made a decootion of insects. I ponred some of this into a clean tumbler, aril added scme acetate of lead in water, when, to my
ngtonishment, it produced a light blue precipitate which reanained suspended for some time in the water. What
was tho cance? Could not wool be dyed thas?-G. B. E.
[19894]-Magnesium.-How is magneajum obtained
ma ite salts and mado into wire?-G. S. B.
[19825.]-Insects in Leather Trunk-I have a Iarge bex covered with leather, With partitions and
trass insi e, and fited with straps outside after the manner of a portmantean, which has been nuused for fix months or more. On looking at it a fow days ago, Flutcly riddled by what looked like snall worm holes-
doubtlegs the work of some insect. The wood, on being cuched, crumbled into dust in many places. It is an orsy matter to replace the damaged rib, bat I find that
tlie box is eaten into in about two dozen places on the gides where it is covered with leather and on the bottom beyond the ribs The holes are of the thickness of a
knitting needle or thereabonts. If any reader of the
FNGLiar Mectanic wiil inform me how I can arrost Fngliah Maceanic will inform me how I can arrost
the progress of the destroyer, he will confer a farour the progress of the destroyer, he w.
[12326.]-Panning and Non-Panning Tea.-
come planters adopt the bystem of pannigg (frying) Some planters adopt the system of panning (frying) with it as being extra labour involved to no parpose Could any readerinform me what actually takes place, or what chemical action takes place (if any) in the leaf
whilst being panned, and which is dispensed with by being non-panned, and what effect it would have on the manufactured ten, whether making atronger, Weaker,
brisker, more pangent, \&o. ?-MELvaLu Pikx, Mohambrisker, mo
pore, E. I.
[12927.]-Blight to which the Tea-plant is Subjected.-I send yon a dried shoot of a ten-plant on principally and more severely after excessive and continaal rain, and increases when rain falle more like a
mist than rain proper. It is to be seen on plants in all positions, open or confined, barren or rinh soll, and at makes its appearance perceptible, the plants, I have onserved, show a roluctance to shoot, and when they do causing a stoppage of growth, together with the throe or four new leaves which compose the fush; bome old
lesves are slso affected. In some cases, if the stalk or shoot be nipped off, a black spot will be seen in the
centre (where the pith is in troes) of the shoot to varycentre (where the pith is in troes) of the shoot to varyI have seen portions of gardens looking as if a fire-blast expected, unless the shoots are plucked off below the black dot in the centre of the ahoot, and then it is their views on the subject, so as to enlighton me a bit?
I wish to know what causes it, and why, and whether it I wish to know what causes it, and why, and whether it cannot be prevented, and if not, if it can be oured by ing of the shoots, te.)? This complains is very prescarcely known in Assam, North Cachar, Darjeeling, \&c.,
the other tea districte. Menvikis Pixe, Mohumpore, [12828]-Apothem in Tea.- What is it composed way to extract it ; and what is the test for it certain fille Piex, Mohampore, E. I.
[12829.]-Theine in Tea.- What is it oomposed of, to extract it; and what is the teat for it 3-MELVILLE Pries, Muhumpore, E. I.
This is a component part of the $\Delta \mathrm{seam}$ tea soil Boil.- What important part does if perform in relation to the growth [12831.]-Oharcoal for the Desiocation of Tea. It is asserted by the home (tea) trade, as also by tea planters, that the fumes of charcoal alone, from its
peculiar properties, are only adapted for the drying of drying of tea in pans, dac, but bavo arrived at very unsatisfactory results, sach as the leaf not being good in the leaf, and, althongh not burnt, it had a peculiar favoar, classed by the trade "fiat and odd." Woald
some ind reader inform me whether the fumes of some kind reader inform me whether the fumes of
charcoal have any chemical effect on the tea, if so, That effoct, and how does it ect ? Cannot some sabis not as good as ten dried over charcoal fires. -MEL-

12092]-Manufactare of
kind reader inform methe of Oharcoal. - Would any r not, bo as not to lose a grain, so thy clese grained the denigned end? I hare been making about 65
tons yearly, snd wood is becoming difficult to obtain The method must be one nuderstood by to obtain native labourer, wheroby abont half a ton can be made
[12833.]-White Ants and Wood.-Some time Eng ishman) regarding the in the Indian papers (the inscets on green wood, which a Mr. P. Bananders confuted to destroy it, but that they may, and do, clitnb up and Wo alnug it in gearch of dead wood or injured wood.
Woald any kind correspondents (Indian or otherwise)
giva give their (rperience relative to these insects oating
and deatrorisg green wood ? As this subjeot is of in
tirest to many planters (tas terert to many planters (tea, coffoo, de.) in remote
districts mand nirond. I would bo glad to see it discussed
ned well re:atilated in the Enolise Mechaxic.-Mel. vils Yikl., Mohompore, E. I.
(1gei.)-Queensland.- What are some of the best
recent worhs wi (queusland 7-A. B. M. Thestil - Unequal Timekeepers. - Would a case of one watch keeping much better timo than
other-both Genevs watches, asme size, and same maker; both have the fame action, hath have plai bslances and same number of beats per minute?-Con
[12836.]-Light and Glass.-How is it that sho ghats, scen through the glass of an omnibus, produce an appearan
A. B. M.
[12537.]-Tobacco and Electricity.-I was shown the other day, bome tobacco in a very mouldy state, and said to have been thas changed in one night throngh
electricity in the atmosphere. Is this a known effict? Shonld any one wish to examine the tobaceo micro scopically, I can send hitma little.-A. B. M.
[13838]-Testing Milk.-Will some one kindly give me inll directions
milk?-J. G. W. R
[12899.]-Prismatic Compass.- Will some reade indly give a short description of this?-Deeside
[12840.]- Watch Jobbing, \&c.-Does nny reador repair jewellery and watches and alocks, and the art of gilding? -W. W. Bacarrocah.
[12841.]-Oanal Steamboats.-Having been inbetween London and Derby, I should be greatly obliked If some intelligent subscriber would inform mo, through your columns, whether such is the case. If so, plense are worked on the high-pressure principle, or whether canal water, or whether they oarry filtered water with thom? \&. What wei.pht of coal they ngnslly carry, and whether the conis do not sink one end of the boat deoper than the other? 4. What is the nsaal diameter of the
boilers? 5 . What is the saving effected compared Fith horse-power i In addition, I should be very much obliged if I could see a drawing of a boat and engines, or any information rela
tions.J. P., Walsall.
[12812]- Fineries.-Would "Sanl Rymes" or any other reader give a few hints regniding the construction of vineries, and the most prodtable vines to grow ?
[123s3.]-Blue Pipe-Clay.- Wionld "Jack of All
Trades" or any maker inforin mo hisw to make blae Trades or any maker inforiu mo hum to make blat pipe-clay, and say the quantity of blue coloar and vitriol blue colour ?-CLAr.
[18844.]-Cleaning Bones-Will some correapon-
dent kindly inform me of the best way to clean dent kindy inform me of the best way to clean out injaring them in any respect ?-VoIx.
[12945.]-Fossils -I wish to know how to extract fossils from hard and boft rocks withont injuring them. A few hints as to collecting, cleaning, and preserving (sas) twenty be very acoeptable. Alist of places within (say) twenty miles of London saltable for geologioal
excursions would, Ithink, be asefal to many besides mysell.-Vorx.
[12848.]-Rowing.- What lever (1st, 2nd, or 8rd order) does the motion of an osr, in rowing, constitate
-
[12347.]-Cleaning Steol \&o.-What is a good preporx.
[12848.]-Tog-House. -Will nny one kindly give a
sketch, with some particulars, of a fonr-roomed Iny
house, sach as is asually erected by settlors on grants
of land in the Western States of America on 160 acre
of land 9 1. Cost where timber is ensily got. 2. Whether
two or one atory. 3. Height, length, breadth, slant of
roof, doors, windows, and general ont-honses. 4. How is a handy man to go about building his own shanty for self, wife, and ohild ?-Eicigrant
[13849.]-8eparating Lenses-Will one of the clever contributors to "ours " kindly tell me how to separate the compound lenses forming object-glass of
field-glass, as some liquid has partially penetrated be-field-glass, as some liquid has partially penetrated be-
tweon, and of course interferes with its clearness ? Also, If after separation I can safely re-cement them together. I am desiroas of doing it myself if I can manage it withont damaglag the glass-R. Howse.
[12850]-Joining Manganese Colls-I inserted turned that the aarbon must be soatzed in paraftin, and the wire soldered in the carbon. The cells are now charged, covered with way on the top, and the pores of
the garbon are eaturated with gal ammoniac. Mnst first pick off the wax I have tried, uncharge the cells, and soak the AmCl out with water, joln the copper wire and then, solder into the holo What, orefta do 1 rs paraffin oil or solid paraffin 9 and if the latter, how is it out freoing from the AmCl?-T. H. Somesville.
[12851.]-Policeman's Lamp.-Will any of "ours" low saggestions to wards improving the to be desired are small size, great retlective power, to pieces and cleaned. The present forms are large, cumbersome, heary, and imposaihle to take to piecos to
clenn. I think an improved form might be mado with a fist wick instead of round, as at present, and when down at the same time, thus crusing a great saving of oll, heat, and smell, which is anythiog but pleasant for
man to have under his nose the whole night long. Perhaps "Jack of All Trades" will kindly render as,istance forces of Great Britain. This question was asked by "Phconix" in last rol
ever carne.-W. H. H.
[2852]-slide-valve Rod.- Will some one kindly inform tue of the best way to counect the nhide-valve
rod to the ecoentric rod, the steam-chest being on top of cylluder? Diagrains will oblige.-J. W.
[12ws.]-Eyepiece. - F. R. A. S." in his "Astrons-[1248.]-Eyepiece.-"F. R. A. S." in his "Astrono.
mical Nutes " for this month, "peats of an eyeplece in.
vonted by the Astronomer Ruyal, for rendering objecta
free from priamatic colourt when at a low altitude.
Will Mr. Oldfield or some other reader tindly deacribe this er
[12s54.]-Dressing Corn.-Will you or any brother way of the siechanic inform me which is the best grinding at one tirm? - A DU8TY MuLLer
$[19855]-.T a b l e ~ C l a w s .-8 e v e r a l ~ r e a d e r s ~ a s ~ w e l l ~ a s ~$ mysclf, Wish Mr. Smither would, in his next lotier, send
a design for cla ws to match the table log, inserted in
Nu. 386 , H. Coos.
"[12856.]-Carbonic Acid Engine--Oonld any of our correspondents kindly give me some information about the construction of a chrbonic acid onkine? Are
chalk or whiting nad hydrochloric acid the best subass res it cscapes from the cylinder into tank containing lime hydrate, so ns to form carbonate of lime? Would a sufficient quantity be formed to be glad if I conld get some hints as to the constraction of an engine of this kind, and what saccess experimenta
[12857.] - Rust. - Liring amidst ehemical manu.
factures tho gas from them rusta all ateel and iron. A factures the gas from them rusta all
proventalive wautedn-MorUal Tom
[128:8]-Caustic Soda.-Will some correspondent afford me an explanation of the gradual deepening of upon the evaporation of solution of canstic equent upon th
\mathbf{K}.
[12859.]-Sand Wheel.-I shall feel obliged if one绪 alue should bo thiuly brashod on, and the best was of
getting the sand to stick on.-C. E.
[12860.]-Dr. Carpenter and Geometry.-In Dr. Oarpenter's address before the British Association at this passage occurs which pazzles me:-" The whole ahric of Reometry rensts apon axioms, which are incapable of dernonstratinn." girrely it is possible to show
that "the whole is greater than its part":" Perhaps one that "the whole is greater than its part "" Perlaps one
of "our" mathernatical correspondents would be kind enough to throw some light on this point-Trao.
[12861.]-Bricke from Sand, Eo.-Is there any cost) for making bricks for builling from fine send or fue sandy river mud? Will conorote bailding answer for walls and bods of farnaoes as well as brick, and what character of concrete is preferable? Is it an osay
method to make a fair cement from ine river mud and ther materials, and what are the materials and cost ? -
[12862]-Finvelope Mraking.-Can any reader say each size (envelopes) Will a sheet cut? If the sheets are different dizes, please
will oblige-D.
[12869.]-Schroter's Telescope.- In let. 4789, p. as being loft. long, mend only tin. aporture. Will "R C." oblige by making known the constraction of the above, as to the steadying of such a whipstiok of a tubo on a
stand, also as to the glasses made we of ?-Youna stand, als
GLaboow.
[12864.]-Bour Ginger Wine.-I have some homemade kinger wine which has become sonr or tart. Is there any wny of ramoving th! s sourness and rendering
tho wine wholesome and agreeable again $\mathbf{7}-\mathrm{W}$. M.
[12865.]-Sympathetic Clocks-Among the appll cations for letters patent daring last month is one for improvements in sympathetic clocks. Can any felliow
subscriber enlighten me as to the nature and applica tion of this ingenious piece of mochaniam known as a smpathetic clock.-Crox.
[12868]-Quality of Oloth.-Can any one give There mast be a mode of distinguishing good from bad material, but though at the time of selection I carefally unravel numerore patterns and study the relative longth and atrength of the tibre, I have signally failed to discover the secret of stability. The most durable choths within my experienoe were desoribed of me choosing ss Venetian eloth and dnable corded Sootch tweed respectively. Is there any way of reoognining these materiais and with jour tailor ?-Crox.
[12897.]- Iightning Conduotore-I am thinking me if it is n chimney, of which the house has four, three in gable ends of the house, and one near the centre? The disance between 19, greatest 23 ft . nearest, 11 ft . Has it ever been ascertained what distance a oonductor
will protect (say If it projects 3it. above the chimey). Fill protect (say if it projects sit. above the chimaev). [1286x]-Gryo Pigeon-How is this made and [12868.]-Gyro Pigeon.-
propelled ?-PHilanthaopist.
[12869.]-Water Power. - Will some of yoar numopower a wheel of Aft. diameter, supplied with water with an ensy how through a circular opening of bin. Fill have, applied upon the overshot principlo ? and if the turbine with 41 tt . fin. of fall will be equal to the wheel?-AYUA. [12870.]-Stringed Instrument Maker. -Can oblige me with any information as to the status of one
John Pitts, 8. Paula Charchyard, lGyt? I have a very old viol de Gamba be
[19sil.]-Burning Wood Palp.-Will some of our palp that when it burns it will barn its own ash with Oxf at \triangle Standitill.
[12Ni2]-Electro-Gilding.-In electrc-pilding some

OHESS.

All communicationg intended for this department to be addressed to J. W. Absott, 88, Loaghboroughroad, Brixton, B.W.

We have received the Anguat number of the Dabuque Chess Juurnat, now recognised to be the leading organ of American chess players. The number is embenshod selections of his games, a large number of problems by American composers, and the adranced sheets of the late Congress at Cincinnati. We ohall take an early opportanity of placing a few extracts from the Chess Journal before our readers.
enigma III.-By A. W. Cooprr.
K on Q 3; WR on KR2; W Kts on K Kt 4 and
 Black.
 Whito to play, and mato in three mover.

Probley XIV.-By P. T. Deffy.
Black.

White
White to play and mate in three moves.

Boldtion to Problex Xif.

White. 1. Q to Kt sq.	Black.
3. Mates, ecc.	

Solution to Emigen I.
White.

1. Q to Q R 8

Black.
Anything.
D. M. (Norwood).-Problem XI. is quite correct, and admits of no other solation bat that given by the athor. If, as you ruggest,
(l) $\frac{P \operatorname{tn} Q K t 8 \text { (n } Q \text {) (ch.) })}{K \text { (2) } \frac{Q \text { to } Q R 8}{\text { Kt (interposes) }},}$ how can you mate next move? 2. The rule you quote ia $\begin{aligned} & \text { still } \\ & \text { name. }\end{aligned}$
S. H. Thomas (Plymoath)-Your problem is hardly aimicult enoagh for pablidity. Send ns a few more specimens of your composition. We agree with the remarks con
of problems.
Argo (Yarmoath).-The problem is still faulty-c.g.,

$$
\text { (1) } \frac{Q \operatorname{tn} \mathrm{~K} \text { K } 2}{\text { anthing }} \text { (2) } Q \text { to } K t 8 \text {, }
$$

and play as Black may, mate follows in two more mo
G. C. Hrxwood.-We ahall communicate with you on the OrD
F. Owdrx (Horton). - Stady the compositions of Healey, Duffy, a Campbell for uix months, at the end of thai period you may be able to produce something of your own.
D. A. (Maldon)-A forced move is when a player has but oze legal move at command.
R. H. (Bristol) and A. B. C.- Look at the problem again,

Corrgcr solutions to Problem XII. and Enigma 1 have been received from G. C. Herwood (Graat Torring ton); J. Bray (Langport); R. Lines (Cinderford); H J. C.S.; A. R. Moleson (Swansoa) ; W. F. ((Leinchester)
 Fritz (Braydord); G. T. F. (Croyon) A. W. Cooper ;
Argo(Yarmouth); C. L. (Portsmouth); S. H. Thomas (Plymouth) ; and Alchemlat. All others are wrong.

Heated Bearings.-Dr. Mayer suggesta the employment of a lager of iodide of mercary to test whether jonrnals or other parts of machinery become heated by Sriction. A thin layer of the red-coloured salt is sufth
cient, and it becomes black when the temperature cient, and it becomes bl
reaches 70° C. (151° Fahr.)

AIISWERS TO CORRESPONDENTS.

- 10 communieations should be addrossed to the EDTroz of the EmaLish Mschanio, 81, Tavistock-stroet, Oovent Gardon, W.O.

HINTS TO CORRESPONDENTS

1. Write on one side of the papar only, and put draw. inge for illastration on separato piecos of papor. 2 Pat nues to querios, and when answoring queries pal the coplies refor. 8 . No nuerien, or replien. 4. Oommercial letters, or queries, or eplios oducational or colontific information is answored through the post. \& Letters sent to correspondents, ander corer to the Editor are not formarded and the names of correrpondents are not given to inquirers.

The following are the initiala, acc, of lettera to hand ap to Tuesday morning, August 27, and ancoknowledged
H. Waters-C. Bullook-E. Tatte.-E. S.-G. C. Price

 D. G. W.-EE. L. G.-Allred H. Ailen. E. Stanhord. Stanistreet. Lo de Fontainemorean.-A. Felton. Barnes Richards.-J. J. Reddell-James Verity.-
 A., Liverpool-J. M. N.-S. E. C.-J. T. R. Gorett.-Abbott-E G.-H. Highton-W R Bir Gill-C Mntoh.-Panl Greggor.-G. A. O-CCledonia.-N.G.N. -Smoked Out.-Horosapan.-F. E. -Ignoramas.-Cervas.-Hypo.-J. Stoward. - R. A. Huntley.-Tanta-
lug.-J. S. Sharpe.-R A. Prootor.-J. Froat.-The lug.-J. S. Sharpe-R A. Proctor.-J. Frost. -The
Harmonions Blacksmith. - Ed ward Hant.-A Bene-
 Dix R. .-S. W. Burnham. John White.- Rev. A. B. Kering. - B. Solomon.-Cambria. -A. Deane.-J. M.
Liveng. $\underset{\text { \& Sons.-G. S. Hinton.-Geo. Townsend.-C.Clapham. }}{\text { - }}$ - Henry Clarke.-F. Bradihaw.-A. B. M.-G. F. M. Lancashire Beekeeper.-Joseph Gadsby. - Equator. F. S. M. W.-A Turner.-T. Stowart. J. H. Crillin.Cumaro Bach, Xenophon.-Eligh.-A Conatant Reeder. - John Watson.-Brym.-Experimenter.-Leander.Apprentice. - B. C.-R. W. P. - Percival Norton.C. M. B.-Aroma.-U. S. A.-J. H. Whistle.-Callico.J. T. C.-W. M. Parker.- Young Beginier. A Young Jobber.-Matual Tom-James Treise.-J. M. B.-Sigma-Jack of All Traden-Plymoathian.-James Odgen.-W. R . Batler.-A Plumber. - S. B. H.-An
Expert. - R.
W. P. Jun.-B. F. James Gaze.-E. W. T. -R.A. - Kat.Tat.-H.M. M. -R. R. W.-Saxmundham Dr. Hall.-Eyopicea. - James Ramsdon-O. P. Q.-
u. A. B.-Your "sheshee" is nothing more than crystals of magenta, and as you bought it in Indla is probably that propared from indigo.
Bri Dexoril.-Wo oannot help you.
Hy. Clase (Derby).-Tho not
Hy. Clask (Derby).-The "note" you have sent is not a copy of yoar rejected letter. You write as is we were ander an obligation to insert all the letters sent to ns, Whether they are good, bad, or indifierent. You tainly, however, not good, and it was consequenty re jected
F. D. asks our readers to suggest something that will destroy those "horrible pests, beetlea." He surely
cannot be a reader himself, or he would know that cannot be a reador himsolf, or he would know that
"pugrestions" were given so recently as last May pp. 209, 285, to., of the present volume. If he will
aliso refer to Vol. XIII., he will find eeveral replios on aliso refer to Vol.
the same question.
c. 8 wame-The "usefal hints on French polishing" Thioh You require, will be found in both Vol XIII. and XIV., see indices. Look at p. 468, Voll. XIII. Anyform of a dennite question, will bo will pat it in the cannot repeat information recently given.
T. Hartox.-spitting of phlogm is a caso for a medical man If he rays your longs are zound, there is air exerciese, and throw the paregorio "to the doge" Hoga Parr. - Consult a medical man.
J. H. Suthreland (Kingaton, Jamaica). - You gay, you have "discovered the quadrature of the cirolo," and you want to know whother there is any particular
Bociety or department in Great Britain to which you Bociety or department in Great Britain to which you oan make your discovery known. We know of no such "society" or "" department.", Are you sure your
discovery is not a maru's nest F. P. - Advertise for Newt ${ }^{\prime}$ " Prino
.P.-Advertise for Newton's "Primcipia."
 matter.
Wabxing Griznhocars (4774).-"Atmospheric Burner's" plan of a barner appears good. Why does he not make and advertise them in the MECHANIC, that amateurs might experimentalite on their power? Chelteninai.
8. Hul E T, Edinboro', Duplex, Limbo, J. K., J. A. T. Engineer, E. S. $^{\text {E. Sca }}$. B. Harris, Definition, E. C. G. C. H., are referred to indices to linck volunues.

James Stabex.-See let. 4761, p. ©is, for information on marine aquarium.

- HaMPDEN.-Yona oatrageons letter is forwarded to Mr. A. R. Wallace, to he disposed of as he may deem adis merce. Probably jou may once more calculate on
h. \mathbf{B}. medicul men. Hariand, and Calico Frinter.-Consal K. L. Correspondente
A. B. C. (Lanark)- Nothing now in your method of Comfortable Hoases," p. 577 .
G. T. KaEMLETT. - For a practical treatise on harmoons.
 Bociety of Arts.
. Coor.-They were reprinted by Trubner and Co. Gaternoater-row. no room at present for attemple to trisect angles.

3. A. Z.-Private communication with contributors cen only be made by means of adverlisemonk
H. T. B.-Don't trouble yoursell about the matter.

Nir.-Can you not ask your question without an ep
graving? Benzoline lampe cient hest for a vinery 83 by 15 arlecs glow exer cient heal in a vinery, is by 15, anless they Frere employed in a very inconvenient if not injurionas namber. perly trimmed, so that your pipes wonld be a nend pess expense. Better keep to the hot-water pipes yoz have.
EDWARD GARDNER.-The technologioal examinationa of the Sooiety of Arts to whioh we recently referred are not actualiy in work, bat there is little doubt the The plan of the soheme and the nature of the subjects in which candidates will be examinod were sumeienty indicated in our articlo, which we ohall suppiemear by farther and completo information when the detans are doinitively settied. In the mean time you are others can stady the subjects mentioned, for oven t the schemo falls throagh, which is ecarcoly probabie you will obtain ample reward. The proposed erarma paper and cotton mennfactares, for aither of wiet you can "go in.
Jas. Gray.-Yes; price according to longth, from a let ponce upwards.
C. CARTER.-The only " book" on carpentry and joiners Which descends to guch rudiments an the methods 4 "holding the tools," is the ExGLise MECRANIC (oee and IX) For the rest get "Tredeold's Corpent and 1X.). For the rest, got "Tredgolds Carpeatry: just published.
Chymicus. L A "good, cheap, and simple gelvai battery" depends npon what you want it lor. At ang rate you will find how
W. W. Bacargovar-Artioles on wateh repairing are in course of pablication in our colamns. Informadi on repairing jewellery and guang wid be toand the whole of these anbjects. Query insarted J. C. You will find the whole art of gilding i 66, 145 of Vol. X. Your query is too indoanice. 5 . would involve two or three columns ior a reply whic might be given in a few liner You should at lean sey what kind of frames you wish to gild.
J. Ryodrs. - There are many brick matring machisce made on different principlos.
J. E. AUsTm.-Consult Bradshaw's " Railway Gaide-PBiLANTHROPIBT.-Copy of your reply on "Cheiag hy been mialaid: the drawing is ongraved.

 Bhnol Dekka ; Notes on the Cheraterialic Treatmont of Macter

H,
Cl

\section*{D} | Ba |
| :--- |
| ba |
| ba |

2

Chute
W.c.
W.

THE INVENTOR.

APPLCATIONS FOR LETTERS PATEXT DURING TEE 2104 A. M. Clark, Chancery lane, for improtemonta in ive

 in and connected with tramway cartiagos to be propalles by anc: or drawn by horces.
2408 J . Horton
of ecoling the toole for tarning new or improved mode and meen 2100 J . Pinches, Oxendoang and planing roetaly. Midicaex. for n yressoe for emboasing, atamplog, perforating, or improverens an improved die and counterpart for emboning
git
G. W. WF

${ }_{2011}$ U. Areen, Casaland-road, South Hackaey, for tagose 2413 U
ments in
minaralia

 2115 W . B. Chapin, Southimpton baildings, for improveso 2116 8. Chandler, sen., 3 . Chandler, Jon, and J. Crans

J. J. Btackham, Bifmligham, for tmprovementa ta

The CFrglish getch hanit

WORLD OF SCIENCE AND ART.

ERIDAY, SEPTEMBER 13, 1872.

ARTIOLES.

THE POTATO DISEASE.

REPORTS from all parts of the kingdom represent the potato arop as being only about half the average yield; and there is only too much resson to fear that the reports, allowing for the usual amount of exaggeration, are true. To ascertain the magnitade of this loss, and estimate its effects on our food resources, a few figures may be serviceable. It is stated, then, that about $1,630,000$ acres were this year planted with potatoes, and supposing each acre to produce $4 \frac{1}{1}$ tons (many produce more than double) we have 7,335,000 tons, representing at usual prices no less a sum than $£ 30,000,000$; so that if half the crop is diseased, there is a loss of $£ 15,000,000$. It must be soknowledged that under these circumstances it is not to be wondered at that the Times has opened its columns to the truly-vered question of the potato disease and the means of preventing it, for no one talks of curing it, or doabts that the canse is involved in obscurity.
But, as a mattar of course, we have had the usual flood of opinions-some from persons who probably never grew a potato or examined the ominous spots on its leaves; others from those who have some pet variety of the S. tuberosum, or some special method of planting and oultivating it, to whioh they attribute the immonity from disease hitherto obease hitherto obselvee in its cultivation. It may interest many of our readers if we make a short digest of the letters which have appeared in the Times, steering clear of that peculiar disesse which at this season of the year exhibits itself in leading ertiales-viz., newspaper soience. The letter of Dr. Hooker, suggesting the atilisation of the starch, which we reprinted on p. 621, opened the diccucaion, and, of course, came in for oriticism-one witer considering that the act of grating potatoes into a tub of water was of "rather too scientific a nature" for the agrioultural mind! As a matter of fact, however, this plan is sucoessfally carried out in places where the diseased tubers are not nased for feeding pigs, and Dr. Hooker has done well in making it more widely known. Bat to return to the disease itself: there seems a general concurrence of opinion that it is connected in some way with the "eleotrical state of the atmosphere," and the fact that the disease is more prevalent when thanderstorms are most frequent is well established. But the potato blight does make its appearance oven in seasons peculiarly free from electrical distarbance, so that the "post hoc, ergo propter hos" style of argument does not fit in well with any of the theories yet broached. All that can be fairly asserted is that the blight is more wide-spread and more rapid in its action in a direct ratio with the number and severity of thunderstorms. So firm 8 hold on the agricultural mind has this idea obtained that varions remedies have been proposed having fir their objoot the arreating or tanning
aside of the electric "fluid" by planting some taller.growing specimen of the vegetable kingdom between the rows of potatoes. One gentleman, who olaims the theory as his, recommends the planting of broad beans, the stalks of which "aot as natural conductors and carry off the superabundant electricity." It is possibly not worth while inquiring who first started the "electrical" theory, but it is well to mention that the veteran Mr. Glenny years ago saw that lightaing had something to do with the disease, and promulgated the only palliative that has ever been found worth practiaing-riz., outting off the haulm directly the spots are seen, on the economio principle that it is better to have small and sound than full-grown diseased tabers. The bean-stalk notion has been tried and found wanting over and over again. The various nostrums recommended from time to time-the sulphar and iron, the soot and lime, night-soil, blood manure, bone dust, rape dust, and the numerons special compounds-have all failed in their tarn ; and planting wide or close, deep or shallow, earthing or not earthing, have yielded equally negative remalts. In short, scientific men, as well as the practical oultivators, have fonnd themselves completely baffled by the insidious nature of this terrible blight; that is, as far as proventing its ravages is concerned, for the life-history of the oharacteristic fungus which is generally accepted as its canse amongst students of soience is tolerably well known.
find among them one diseased tuber. This is all the more remarkable since, as I use it as a dividing line between all the other varieties-it being so strong a grower and no distinot in colour of taber-each root, tested in every part, was grow. ing side by side with the roots of the others showing so muoh disease." If aimilar resulta are obtained with this variety in other parts of the country it will speak volumes in its favour, and at the same time dispose of the idea of contagion, or the spreading of the blight from one tuber to another while in the ground. It is satisfactory to turn from an acoonnt which shows an average loss of more than 50 per cent. to one furnished by the rector of a Devonshire parish, who says that Mr. Randle of Ringmore, in the South Hams of Devon, reports that "never in his life have his potatoes tarned out so well as this jear," the yield, moreover, being so abundant that the money value wonld purchase the land on which they grew. This letter is especially valuable in connection with the "electrical" theory, for the rector informs us that there have been less than six thunderstorms during a period of more than 12 jears, and that during the present year there has been far less electric disturbance than in other parts. Among the more sensible of the preventatives proposed by the writers to the Times is one from Mr. Hallett, of Brighton, who desoribes his own plot as yielding three heaped bushals per rod and "no sign of disease." He thinks that disease is as hereditary in plants as in man, and that so long as unhealthy seed is planted so lang will the potato be liable to disease. Acting on this view he has carefully selected his soed potatoes for years, rejecting the whole root when only one tuber was tainted, or even suspected of being tainted, and the result has been an almost complete immunity from disease.

But the experience of Dr. Wallace, of Colohester, who has been a cultivator of the potato for some years, and whose letter is mores valuable than any whioh have yet appeared, is directly opposed to this, for he says that he has had most excollent arops from seed saved from infectod plots. Dr. Wallace con.

Potato-growing seems gradually becoming a lottery -a mere game of chance. Sorts that turn ont healthy and good croppers in one district are often the most seriously affeoted in others; and although much has been done, solely by the enterprise of our large seedsmen, in improving the stock, imparting vigour and early maturity, there is ample room for mach greater improvement in a direction now generally soknowledged to be the most likely to lead to the stamping-out of the disease.
It is doubly unfortunate, too, that the blight shonld have appeared in suoh force this year, for if the reports are to be relied apon, there is no doubt the potato crop of 1872 would have been the most abundant knownfor many years. But although the damage is in many cases over-stated, there is, as we said before, too much reason to fear that a hoany and irretrievable loss will be the result when the accounts are made up. A Cambridgeshire farmer, writing to the Times, says:-"The resalts of my examination this day of many varieties of potatoes grown on my driest and best soils, which are noted for being, as a rule, freer from dissace than any in this district, show an average of disease of from 30 to 80 per cent. It is worthy of remark that the most prollio varieties seem to be most liable to disease. There is, however, one most striking exception to this rule, and that is Satton's red-skinned flour-ball. This is the most abundant cropper I ever grew, and yet I did not
siders there are only three theories of the potato disease which are worthy of oredencefirst, that which attribates it to the operations of an inseot (e.g., Smeo's Aphis vastator); second, the fungus origin; third, the stmorpheric. In these three causes, taken conjointty, Dr. Wallace is convinoed the true origin of the disense is to be found. He considers that the error of formgr observers lies in their having found but one link of the chain ; bat there are three linke, any one of which being absent the disesse toos not appear. The following is a brief gummary of his theory :-
Towards the end of June or in Jaly, if any one appromeh growing potatoes and strite the haulm gently with a atiok, he will see numerous small green flies, or midges, dart away. These are named Eupteryx picta, E. viridis, and other varieties, and are common in our gardens. If he proceed to examine the hanlm and leares, he will find numerous white apecks, end, looking closely, will find amall green insects without wingg-the larvis of the Eupteryx. There are also two or three other species, one a bug, and other aphides, which prey similarly on the potato. These white apeak are made by the larro, which have consumed the ohlorophyl on the ander surface of the leaf; the haulm, also, to some extent, is similarly affected. These speoks increase in aize and coalesce, and as the weather gets warm become discoloured, and form a brown blutch, chiefly at the tip of the leal; any injury
to the cuticl-as a bruise-will create a similar blotoh. This is the first link in the chain, the primary or predisposing canse of the disease. The haulm and leaf are punctured in meny places, and their jnices withdrawn by insects. An effort is required from the plant to heal the wounds; an exadation arises. All this weakens the constitution of the plant. Should fine weather continute, the blotohes merely dry up, the haulm in due season dies dow, the tubers ripen, and are turned up free from discasse. And this is a good season. But should rainy weather (the second link in the chain and exciting onnse of the disease) supervene in July and Augast, just when the wounded stems and loaves are healing up (the oritioal time), when the potatoes are nearly at their fall size or just about to ripen, and more especally shoald olectrical discharges, with heary rainfall, supervene, saturate the ground, and induce for several days a maggy condition of atmosphere, then a fungus (the third link in the ohain), Botrytis infestans-the true potato disease-is developed with marvellons rapidity. A white film of mould appears on the under surface of the brown blotch -not, indeed, on the dry portion, but where the eradation has been poured out at the edge of the green portion of the leaf-a rapid development of mycelia and spores ensues, and in another 48 hours, if the atmospheric conditions be favourable, the mycelia will spread with marvellous rapidity, attacking the hanlm and leaf at numerons points, descending through the stem to the roots and tubers (those at the top are generally the first affected), and thus the three links of the chain are completed.

The first appearance of disease in the tubers is a brown discoloration, generally commencing at the eye attached to the haulm, and the only remedy with which the doctor is acquainted is that mentioned above-pulling out or catting off the handm. It seems that this theory is due to the late Dr. Maclean, of Colchester, who explained it some years ago to Dr. Wallace, and gave him an socount of the experiments which confirmed him in his opinion. These experiments were made by planting potatoes in pots, and covering the hanlm with ganze supported on sticks. From one series all inseots were excluded, bat the Eupteryz was purposely introduced to the other; the result being that in the first case every tuber was sound, in the latter every taber was diseased.
The more generally socepted theory of the disease is that which originated, we believe, with Dr. Jolins Kuhn, who statod that the "cause" of the blight is a parasitical fungus called Peronospora infestans (Fig. 1)," the spawn or myoelia of which penetrates the tubers, and commanicates the disease from one to the other. This theory is held by the Rev. M. J. Berkeley, the highest English authority on myoology, who gays that the flrst appearance of the blight is indicated by the presence of brown spots on the upper surface of The leaves. If the reverse of these spots be cramined, it will be fonnd that the brown colour has been produced by the action of a parasitic mould, which gradually extends in the circumfarence of the apots, destroying the tissnes as it proceeds, and altimately gaining extensive possession of other portions of the plant. The genus Peronospars oonsists of some forty species, all of speoies known as infestans was not observed previons to 1844. The mould bears sbundance of epores on the tips of the branches (Fig. 1, a); the mycelium burrows amongat the cellular tiseue of the leal (b), and oanses rapid dooomposition, while the vertioal threads, oarrying the spores, find their way through the stomates, or leaf-pores. The spores, falling on different parts of the plant, germinate and penetrate the tiasues, producing a brown tint in the parts infected. Some of these spores undergo a pecaliar process, and are divided into a number of cells that altimately produce a maltitnde of zoospores, which are exceedingly sotive so long as there is suffioient moistare to enable them to change their position by means of the thread-like processes shown in Fig. 3, a; these also germinate and penetrate the tissues in the same way as the simple spores b c. Scientific inquirers are not quite certain that the potato Peronospora possesses the perfect form of fructification, called resting spores-that is to say, they are not certain it has been observed, for there ean be little doubt that the fungus has some means of surviving the winter and propagating its species under suitable conditions. Dr. Montague figured a genus discovered in spent tabers by Dr. Payen, *The Illustration is cop ed from the Egares by Mr.
Borkeley tu the Gardencro' Chrunicle.
to which he gave the name of Artotrogus, which there is reason to believe is the resting spore of Peronospora infestans.

Von Schaltzenstein, however, is of a different opinion; he considers the canse of the blight to be a withering or dying of the cellalar tissue and the vessels, and states that it is only along with the ohemical decomposition of the decayed parts at a later stage that the fungus makes its appearance. It is, too, asserted that fungus growths rarely if ever appear on healthy organisms; but this notion has been often refated, and can scarcely be held as true. A curions fact has, however, been recently mentioned, which shows that after all there may be something in Von Schultzenstein's theory. A number of potatoes were left on the ground exposed to the sun, as it was thought they were all diseased. On examining them a few days afterwards abont half were found to have been acted on by sunlight in the usual manner, being turned a dark green, while the remainder, sabmitted to exactly the same influence, retained their pale and sickly hue. This would seem to show that some great change had been effected in the constitation of the tubers; and on examination those which had greened were found sound, but the others were all diseased

The different results obtained in similar experiments in potato culture, the diverse and conflicting opinions of those who have stadied the matter, together with the atter inability to point out a a remedy of those who have the best right to our attention, have involved the whole subject in obscurity. Few of us can believe that if the disense and its canse were really anderstood we should fail so lamentably in grappling with it. There is good work in this direction for the Royal Agricultaral or the Royal Hortionltural Societies. Cannot they try experiments in raiging new sorts, by crossing S. tuberosum with another mamber of the Solanacese, and so mayhap impart some property which will make the potato prool against the attaoks of the lungas ? There is hope that something may be accomplished by this means towards stamping out the disease, for the instance of the red-skin flour-ball mentioned above, and the new American sorts, which have hitherto been but little affected, give an earnest that if as muoh skill, care, and enterprise are brought to bear on the potato as have been lavished on florists dowers, we may eventually obtain a tuber as greatly improved in hardiness and healthiness as the flowers are in bearty.

Desoription of Illestrations.

Fig. 1.- \dot{a}, Peronospora infestans; b, the same burrowing amongst the tissues of the leaves, and making its way through the stomates.
Fig. 2.- a, Spores germinating; b, the same, sown artiflcially, and penetrating the tissues after 18 hours ; c, spore with contents differentiated.
Fig. 3.-a, Zoospores; b, zoospores germinat ing; c, zoospores sown artificially in the stem, and, after 24 hours, penetrating the tissues and entering the intercellular spaces.
Fig. 4.-a, Young Artotrogus still in mother cell; b, young Artotrogas free.

RAILWAYS OR NO RAILWAYS-THE BATTLE OF THE GAUGES CONTINUED.
NARROW gange railways and the Fairlie loco-
motive are facts too well established in different parts of the world to have needed the triamphant "apology" for their introduction issued by Mr. Fairlie. Engineers of the $4 \mathrm{ft} .8 \frac{1}{\mathrm{t}} \mathrm{in}$. standard soem to be as much chagrined at the successful and economical working of a narrower gauge as Brunel may be supposed to have been when he discovered that his magnificent innovation found few imitators; and the Fairlie type of locomotive has met with opposition of a character and to an amount which could soarcely have been expected by its inventor. Mr. Fairlie has, however, told his tale well in the little book whose title we give below, end has mot the arguments of his opponents at every turn. If he has failed to oanvince them of their mistakes, they have at all events not sucoeeded in oarrying his position. The question of narrow gange does not, of course, affect this country to any extent, where all the main lines \dagger are of the standard gange ordered by Act of Parliament and only a few local and special lines are of a different width; though there is ample room in this latter direction for
*Railwars or no Ruilsaga
London: Emagham Wilson.
The Great Western is, we believe, in coarse of altera tion throughoat its waile length.
the introduction of cheap narrow gange lines for maburban trafio around large oentres of indastry, and for special parposes in different localities. But in many of the more sparsely popalated countries of the globe-in those, in fact, where railways are especially necessary to their development -the difforence between the so-called broad and narrow gauge is in reelity the difference between a " railway and no railway." On this point of the question there can, we should think, be little disoussion, whatever there may be on the broader ground on which Mr. Fairlie has taken his atand when he contends that a brosd gange means costliness with extravagance when compared to the economy with efficiency of the narrow gange. In a country like India, requiring long lines of permanent way, embankments, bridges, cuttings. and engincering achievements of a more or less costly character, the question of expense is of the first importance, and a saving of even $£ 100$ per mile a consideration not to be lightly thrown aside. The argnment that has been used with regard to the Indian railways-that they should be constracted with a view to Imperial purposes. such as the speedy conveyance of troops in emer gencias-should not be allowed to waigh in the balance, unless a complete network of lines is to be at once constructed ; for it is obvious that, even taking this argument into considerstion, three narrow gange lines would probebly be more advantageous than two broad ones. Mr. Hawksley spoke at his inanguration as President of the Institntion of Civil Engineers of the new gange of absurd dimensions which had been introduced into Indis at the instance of some anknown crotchetty person, which would inflict all the evils of break of gange, and all the inconveniences of ineffcient accommodation, in a country in which a magnif cent system was being constructed. Bat, as M: Fairlie points out, the Indian railways are too magnificent, and the fow miles (comparatively speaking) jet built, have cost an enormous sum, and earn but a small income. In Australic, too the broad-gangers are straining every nerve to burden with costly constructions a country which wants cheap railways.
But it is in the United States that the problem of the efficiency and economy of narrow gages when tried in aotual wort on a large scale, will first be solved, and it is mainly in reply to the $\mathbf{B o n}$. Silas Seymour's review of the report of Gen Buell, the enginoer of the Texas Peoific Road, that Mr. Fairlie has written this book. The arbject seems to have been treated in a muok bettes manner in that country than it has hero, for the opponents of the narrow gauge do not appear to have sought out all the minute and apparent defects, but hare argued earnestly and ably against it, pointing out what they considered its disadrantages. The adrantages claimed by Gen. Buell in reoommending a gange of 3ft. 6in. for a railway of 1,500 miles, were a saving of 30 per cent. of the cost of the narrow gange rosd-bed, \&co., 45 per cent. of the cost of the super-atrecture, and 50 per cent. of the cost of rolling stock; while the proportion of dead weight to load would be 47 , as compered to - 75 on the broad gange, and a speed of thirty-ive to forty five miles an hour might be attained with safety These estimates were reviewed by Mr. Beymour, Who objocted that the differance in cost of the road-bed world only be the value of a longitadinal slice $1 \mathrm{ft} .2 \frac{1}{2} \mathrm{in}$. Wide, taken out of the centre of the ordinary track (single line) ; this, of courge is absurd, for the wide gange is necessarily con structed to withstand the heary weights passing over it, and in estimating the cost of the road bed for the narrow gauge, it should be remem bered that the "trae practice permite a clocer adaptation of grade to the natural euriases than is attained on the broad gage," requiring lowes banks and shallower cuttings, less formstion width, because the ruuning weights are lees sharper carves are also permissible, thas avoid ing tannelling as a rale, and executing that de boription of work more cheaply whare necowery As a matter of fact, this guestion had been already settled in Norway, where the first rail. Ways cost $£ 11,000$ per milo, an outlay which
M. Carl Pihl has bronght down to an aversge oi $£ 4,347$ for three lines of narrow gange railway. one of which at least was carried across vory difficult country. Mr. Fairlie oan also point t the narrow gauge lines of Rassia, Canada, New Zealand, and other parts, where the sotas! cost is well known to be cunsiderably less than fou the broader gaage. With Mr. Siymonr's otbes objections, which were of a similar natnre, bs deals in an equally oonclusive manaer, and yootar the tables prepared by Mr. Fowler to show the
difference in cost of a "light" 5 ft . 6in., and a 3ft. 6in. gange for India-viz., $£ 5,397$ as compared with $£ 4,543$, or a difference of 16 per cent. Now, allowing the heary charge of $3 \frac{1}{2} d$. per ton for shifting merchandise, this is but a small item when we remember the asping in first cost, and the emaller amount of dead weight to be banaled, with the consequent saving in haulingpower. The adrocates of broad gaages will here tind the case against them fairly stated; we shall be curious to gee if they as publicly and conclusively answer it. As might be expected in a work on narrow gange railways, several pages are devoted to combating the adverse oriticisms of the now well-known Fairlie locomotive. Our own pages have contained statements of epinions on the advantages and disadrantages of this type of engine, but it must be aoknowledged that ite opponents have failed to make out a case. But it is principally in reply to a report against the principle of the Fairlie engine by Mr. Ramebottom, the well-known able engineer of the London and North-Western, that the author brings what we consider conclusive arguments to bear. Mr. Ramsbottom reported apon three engines sent ont to Queensland to work apon the 3ft. Gin. gange, whioh were condemned as uselese and reshipped to this country. It is unfortanate that the examination of these engines should have been made the fonndation for an attack upon the principle underlying the peculiarities of the Fairlie design ; for it appears that Mr. Fairlio never gaw these engines till they reappeared in England, when he found that they " were not construoted in any meajure" apon his designs. Independently of this fact, the engines had not a fair trisl, for only one was pat together and worked in Australia. Mr. Ramsbottom alleges that a serious defeot of the Fairlie engine is to be found in the bogie frames, which are not free o move vertically as well as horizontally; but Mr. Fairlie disposes of this objection by stating a simple faot that in the Fairlie engine proper the bogie frame is free to move in both directions. With the view of teating this part of the arrangement in the returned Queensland locomotives, Mr. Ramsbottom had a portion of a temporary road raised so as to form an apex with two opposite inclines of 1 in 100, and he asserts that the result of passing the engines over the summit of the gradient was to reduce the weight on the leading wheels so materially as to show that the ongine was unsafe for travelling over such a road. This is his chief objection to the Fairlie engine, and Mr. Fairlie demolishes the whole argument by a fow diagrams. Assuming, he says, for argament's sake, the two bogies of the engines in question to be held perfectly rigid vertically, like a girder-a thing utterly impossible-yet under such conditions the alleged effect when the engine was standing on the orown or apex of a reverse gradient of 1 in 100 could not be prodnced. Mr. Fairlie takes, by way of argument, two reverse inolines of 1 in 50 , and shows that even then, when the engine is crossing the apex there is the weight of the leading wheels, axles, and boxes on the rails, assisted by the down pressare of the springs. But it is inpossible to explain this question thoroughly without the diagrams, which are drawn to scale, and with the description clearly show the fallacy of Mr. Ramsbottom's argament. Bat it was not to be supposed that Mr. Fairlie would submit to this sort of treatment of his engine without putting his opponent's to the same test, and he olearly shows the absurdity of the argument by illustrating the position and action of an ordinary six-wheeled goods engine in passing over the "apex" of the inclines of 1 in 50 , when the weight would at one time be supported entirely on the centre wheels with the leading and trailng wheels lin. from the rail-a geesaw, in fact. Beeides this, he does not fail to point out the advantage of his own arrangement in securing a stratam of water over the fire-box in ascending and dencending inclines of any possible gradient ; while in ordinary engines, with the fire-box at one end, in descending inclines the water naturally flows to the lower end, leaving the fire-box ancovered, or partially so. Mr. Fairlie, after meeting and demolishing the arguments of his opponents, appends the following note:-"Such a thing as an apex being permitted to occur on any line is unknown to my experience; what I mean by an apex is that rails are never so laid on a grade up and down as to form a distinct angle, but its introduction in Megsrs. Ramsbottom and Marshall's report only shows how far the opponents to the principle of the donble boyie engine will permit themselves to be carried in order to find nome excuse to damage it." With the other ob-
jections urged againat the Fairlie engine its de signer deals in an equally satisfactory manner The steam-joints are found stean-tight in prac tice; the repairs are not excessive; and the engine is not too powerful for properly maneged traftic. To the absurd argument that it is too powerful for the coupling chains of ordinary wagon stock, and that, consequently full advantage could not be taken of their capacity, Mr. Fairlie replies, that one of the principal causes of coupling chains breaking is want of power in the engine; "becanse these engines can only start their trains when the wagons are conpled up loose"-i.c., with from 6in. to 12 in. between the bufters, so that the locomotive is in motion before the whole weight of the train is brought apon it. These jerks and snatches frequently part the chains, while the tendency of the hinder wagons to overrun the front ones when speed is suddenly slackened or the road is uneven often canses the link to be lifted off the hook. Now, the Fairlie engine being so powerful enables the wagons to be coupled up tight, preventing jerks, broken chains, and consequently accidente. The book contains some heliotypic illustrations of Fairlie engines and stock constructed for different lines, with much interesting matter for the careful consideration of directors and shareholders; and some facts, figures, and arguments, not easily overthrown or dispated by the advocates of the broad gange and the prejndiced opponents of the double bogie locomotive.

NOTES OF COMMUNICATIONS TO THE ACADEMY OF SCIENCES, PARIS.*
PHYSICS.-On the Currents of Induction Developed in the Lnbtricient of M Gramikr.

1. M. Gramme employed a long bar of soft iron in his instrument desoribed to the Aoademy in July, 1871. On the bar was coiled an insulated conduoting wire, presenting a straight permanent magnet to this, and moring the magnet parallel to itself, maintaining a constant distance from the bar; magnetism is developed in the bar and helix as long as the permanent magnet is in motion the polarisation in the bar ohanging with the motion of the magnet. M. Gaugain, when analysing these inductive actions, placed pasteboard between the bar of soft iron and the coil to enable one to slide freely on the other, and with this arrangement met with the results detailed below.
2. Placing the bar and the magnet at right angles, the latter towards the middle of the former, on sliding the helix in the direction of its axis, without moving the bar, an induction current is obtained which oannot be set down to the coonnt of a change in the magnetic atate of the bar, but depends exclusively on the dieplacement of the helix, by rapport with the magnetic pole developed in the soft iron by the magnet.
3. If the helix be stationary, and the bar moved in the direction of its axis, the relative positions being maintained as in No. 2, a similar result is preduced by the alternate magnotisation and demagnetisation of the latter.
4. From the two following facts it results that when the bar and helix are moved together the resulting induced corrent arises from different causes ; the one is the movement of the helix in presence of the pole developed in the bar; the other from the successive ohanges the magnetic state of the bar undergoes. This applies to M . Gramme's experience (No. 1) with the inverse movement of the magnet in presence of the immovable bar and helix.
5. I proceed to point out the results of the experiences yielued by the first of these two causes. Taking a bar of steel regularly mag. netised, placing on the midule of it a helix formed of several spiral turns, and patting the helix in commanication with a galvanometer, on making the belix slide rapidly towards one or other of the poles of the bar, an indnced current is obtained, the direction of it remaining the same whichever pole the helix may be pushed towards. An inverse current is obtained when the helix is brought again from either extremity of the bar towards the centre. This fact, known long since, accords with the theory of Ampire and the law of Lenz, and we will now see if we can hero connect the theory with the experience of M. Gramme.
6. Placing together in succession two bars of magnetised steal, as identical as possible, opposing them with like poles, a donble bar is obtained.
Mranolated and abstractod tor the E: aLnat
Maczanic.

Passing from one extremity to the other there is first a simple pole; sappose it to be N_{s}; then follows a neatral region; then a double S. pole; then a second nentral region; finally, a second N. pole, placing apon this double bar a helix formed of some spiral turns, and connecting it with the galvanomoter, on sliding it from one extremity to the other of the bar we obtain at first, in passing from the first N. pole to the first nentral region, a current moving inversely to the molecular current which, on the theory of Amperre, constitutes the magnetism of the first bar; let ns consider this current negative. It will change its direction and become positive on passing the helix from the first neutral region to the double pole, and remain so whilst passing to the second nentral region becoming again negative on the helix being moved to the second N. pole. Thas, when the helix is moved constantly in the same direction, the in ductive actions developed in the space between the two neutral regions are opposed to the sctions which develop themselves in the spaces situated out of these nentral regions, and, as the sam of the first is equal to the sum of the second, it results that the sum total of the forces developed in the whole extent of the bar is nil. The author has verified by direct experiment these consequences of the theory
7. Now sappose a bar of soft iron be placed in presence of a magnet in the position indicated in No. 2, this bar will assume, under the influence of the magnet, a magnetic state analogons to that of the doable ber of No. 6; only that each of the neutral regions in the doable bar finds itself at an equal distance from the doable pole and the adjoining single pole, whilat in the bar of iron magnetised by infuence the neutral regions approash nearer to the double pole than to the single. On placing a smell helix on the iron bar, and moving it from one extremity to the other,
the current will yield the same changes as in the 00
No. 6.
8. If in place of a helix of eight or ten tarns one is employed embraaing the whole space between the two neutral regions, and enoroaching a little beyond, it is very clear that the induced carrents reanlting from the displacement of the helix will be all of the game kind, so long as the extremities of this helix be not sensibly removed rom the neutral regions.
9. If, on the contrary, a helix be employed covering the whole length of the bar, the sum of the inductive actions will be nil, after No. 6; for it is olear that if this helix be displaced to the extent of one turn of the spiral there will be the same result as if we operated with a single turn of wire and that this were moved from one end of the bar to the other.
10. This last case is precisely that of M. Gramme in No. 1, and, consequently, the induced currents which manifest themselves in that experiment ought to be attributed to the necond of the canses mentioned in No. 4, since the actions arising from the first carse in No. 4 naturally nentralise themselves.
11. This conclusion does not apply to the instrument of M. Gramme, in which a ring of soft iron, surrounded by an endless helix, turns between the two poles of a permanent horseshoe magnet. The disposition of this machine is such that one gathers exclusively the currents developed in the intervals which separate the two neutral regions; the apparatus finds itself in the conditions examined in No. 8; then, as we bave seen, all the conducting aotions resulting from the displacement of the helix by rapport with the doabledeveloped pole in the soft iron act in the same way, and, in consequence, this displacement of the helix contributes to the production of the carrent obtained. The anthor is even of opinion that it contribates to it for the greatest part.- M. J. M. Gatgarn.

Terrestrial Physics. - Of the Magetic Currents and Solie Explosions titat Accom panied tee Aurora of the 7th July.-1. Magnetic Phenomena.-Very prononnced magnetic pertarbations showed themselves upon the tele graphic-wires of Brest suddenly at 5.2 p.m., by energetio positive emissions, and a strong adhe rence of the armatures in all the apparatus. As in all other analogous cases, the intensity of these carrents was greatest on the longest lines, and those directed from W. to E. were most affected. The following are deriations of the galvanometer (of 12 tarns) at this irst characteristio period:-

$$
\begin{array}{lll}
\text { h. } \mathrm{m}_{0} & \text { h. m. } & \text { h. } \mathrm{m} . \\
5 & 2+18^{\circ} & 515+40^{\circ} \\
5 & 523+28^{\circ} \\
5 & 5+25^{\circ} & 520+30^{\circ} \\
510+40^{\circ} & 522+25+25^{\circ} & 520+80^{\circ}
\end{array}
$$

The following are subsequent deviations out of sixty-five observations:-

Maxima Negative Deviations.	Return to Zaro.	Minima Negative Deviations
h. m.	h. m.	h.
$532-12^{\circ}$	583	5 $48+80^{\circ}$
$540-20^{\circ}$	541	
$655-20{ }^{\circ}$ 702 c	706	$657+27^{\circ}$ 720
	747	$750+18^{\circ}$
$808-29^{\circ}$	755	+ +18
$855-15^{\circ}$		
1000-200	1045	$1050+10^{\circ}$
$1100-20^{\circ}$	1145	...

From 5.41 to 6.10 there were several negative waves; from 6.10 to 7.1 several positive. The most remarkable wave of this period was from 6.57 to 7.2 , which passed zero at 7.1. From 11.0 to 11.72 the needle remained immovable at -20°, the most prolonged period of contact. There was very prominent maximum in the terrestrial carrents when the aurora was at its height. From
11.12 to 11.24 the intensity diminished gradually from $+20^{\circ}$ to $+10^{\circ}$. At 11.45 the luminous and magnetic phenomena ceased at the same time. On the 8th July there were magnetic perturbations all day, until 8.50 p.m. Sky overcast.
2. Solar Phenomena.-M. Le Verrier is of opinion that this magnetism is of the same nature as ordinary magnetism. The theory which I had the honour to offer to the Academy on 15th Feb-
ruary last, placing the origin of it in the explosions or areat commotions that occur at the sur face of the sun, acquires a charscter of probsbility from the observations of Father Seochi. On the 7th July, independently of the solar spots observed for several days even with the naked
eye (one of them $2^{\prime} 24^{\prime \prime}$ diameter), he witnessed at $3.30 \mathrm{p} . \mathrm{m}$. a violent solar explosion. At 2.40 there had been at the same locality only a small laminous jet. The interior movements of the incandescent vapours, amongst which he recognised hydrogen and the nnknown matter which has yet only been seen in the sun, were so intense that the luminous clouds changed form to the eyes, and at 1.15 their height was ten times greater than the terrestrial diameter. This spectacle remaine pearance had become the same as at the beginning. On the 8th another eraption was seen by the same observer near the locality of that of the evening of the previous day. An anrora was perceived at Madrid the same day. Violent magnetic disturbances were noticed on the 7th and 8th at Rome, and in other observatories.-M. H. Tarry.
Paleontology.-On tee Fossil Crocodile of Amboulinsatre (Madagascar). - Amongst the animal fossils of Ambonlinsatre are found bones of the hippotamas, epiornis, and a reptile of the crocodile family. The two former have ceased to exist in Madagascar, bat crocodiles still live there. The following is a comparison of the extinct with the living species. The former is only known by disjointed but well-preserved bones, a certain number of which are from parts of the skeleton important enongh to admit of a snfficiently complete knowledge of the animal. This animal was of great length, and stoat ; the bones are thick, with prominences well-accentanted ; the teeth and alveoli are enormons. Withont doubt it should be classed with the genus Crocodilus. The teeth, to the namber of nineteen of the upper jaw and fifteen of the lower, show well the customary form in this genas. The snout would be short. A first very strong caudal vertebra is fifty-six millimetres long. The examination of the whole remains shows sufficiently that this crocodile
is absolutely different from the only species still existing in Madagascar, Crocodilus Madagascariensis, Grand., which approaches C. vulgaris, Oav., above all to the variety Suchus, remarisable for its gracefulness snd elongation of its snout. Thus this fossil crocodile has disappeared like the animals it accompanies. As to crocodiles in other parts of the globe, it can only approsch C. bonbbifrons, Gray, of India, or C. Niger, Latr., of Senegal, bat with the former the first inferior teeth penctrate the intermaxillaries, and in the latter, the five last teeth, socording to 0 wen, are in a simple groove without separation by transverse partitions of bone, oharacters which fail in the crocodile under consideration. The anthors propose to name this C. robustus, adding that it appears to have affinities with the Senegal species. -MM. A. Grandidier and L. Vaillant.

Chemistry.-On tee Instantaneous Oxida-
example of the direct conversion of aloohol into acetic acid and aldehyde without the mediam of any other agent than oxygen modified by electricity. If into a demi-litre flask fllled with concentrated and moist ozone be inserted about ten cabic centimetres of absolute or hydrated alcohol it is sufficient to agitate the flask strongly for some seconds, when the neatralised, and, so to speak, inodorous, alcohol manifests to turnsel paper a strong acid reaction due to the vinegar formed, ${ }^{*}$ and develops an odour of aldehyde, the presence of whioh is shown by the reductive influence the liquor exercises apon an ammoniscal salt of silver. But the most ourious fuct of the experiment is the simultaneous formation of quantities, relatively considerable, of oxygenated water. Some oubic centimetres of the alcoholio liquor strongly
colours blue the mixture of ohromic acid and colours blue the mixture of ohromic acid and
other. In operating with ordinary oxygen-that is, with oxygen from the same nource before the gas has undergone obscure electrisation-nothing like this is observed. Even after twenty-four hours' contact the slcohol is left neutral, in odorons, and withont action on the salt of silver, ss upon the ohromic acid. Ether andergoes from concentrated ozone under the same conditions an analogous and yet more rapid oxidation with production of oxygenised water. On comparing these effects of oxidation with like effects that alcohol exhibits in oxidising bodies, as chromic acid, the mirture of sulpharic acid and bichromate of potash, \&c., one cannot misunderstand the deep analogy that seems to exist between free ozone and oxygen in combination. It is, indeed, that analogy whioh, for a long time, made the anthor suppose that ozone can only be the primitive state of oxygen. t Whatever it may be, it is shown by these experiments that concentrated ozone, which can now be easily produced by his ozonising tubes, is an oxidising agent, at once simple and energetic the use of which may be useful in researches in or ganic chemistry. It is necessary to use ozone with great cantion, as even a small quantity will canse rapid inflammation of the mucous membranes that will give rise to a spitting of blood.-M. A
Hovzenu.

THE TEMPERATURE AND PHYSICAL CON

 DITIONS OF INLAND SEAS.I^{N}the paper by Dr. Carpenter, on the "Tempera. ture and other Physical Couditions of Inland Seas, considered in Reference to Geology, read a that the carlier experiments with thermometers in ascertaining the temperature of deep soundings conld not be depended upon, on account of the pressure having interfered with them. Recent sonndings, recently taken under the equator with protected thermometers, at tro thousand fathoms degrees. He thought that, if they went deep enough in sounding equatorial seas. they would invariably fise the temperature to be placial, which must exer cise great influence in dwarfing animal forns. This cold conld not be understood except by sapposing
the cold water from the poles to creep along the the cold water from the poles to creep along the
sea-bottom. Dr. Carpenter then pointed out the ridge which arose from the Mediteranean floor, an so shat it off from the Atlantic, making it an inland sea. In consequence of this the cold water flowing at great deptbs along the bottom of the Atlantic could not get into the Mediterranean, and soundings at ine greatest depths of the latter showen could only be nnderstood on the theory of a general polar circulation in open seas like the Atlantic. The fact that no circulation coald take place in the Mediterranean had an important bearing on its animal life. They expected, when souuding, to come on an abandant fauna, instead of which the
dredge broaght no nothing but mud. The blue colour of the water in the Mediterranean, and also in the Lake of Gpneva, was due to the minnte diffu sion of fine particles of mad. This fine mad hat borne on the distribution of marine life in the former waters, as it choked them, so to speak, and thas prevented their maltiplication. The organic matter at the bottom of this sea used up most of the oxygen poured decomposing. This organic matter was ing his antention next to the physical ronditions o the Red Sea, Dr. Carpenter showed that its upper waters had a very high temparature. Even at a great depth there was a general temperature, even in winter, of over 70°. There was no large amonnt

[^20]thought that an abundant fauna would be foun 1 along the Red Sea floor, simply becanse there was n's docomposition of oxygen by organic matter. This as these by the abandance oopt in prar water He thonght that the reason why reof-building corals could not live at a greator depth than 25 fathoms was ontirely ius to the temparature. Wherever the Was ontirely due to the tomparctaro. Wherever the colder sea carreats these , wese wribles tribation of coral-reefs. If this was true, then they ought to find reef-bailding corals at greater depths in the Red Sea, where the deep temperature wha so much higher, and he ventured to prognostioato such would be found to be the cass. In the sen, shat ont by islands, \&c., the temperature was the same as that of the neighbouring ocean, but it had not a lower temperature than 51°. He thought the fissurea in the barrier rock allowed water of that temperature to flow in. In oonclusion, he showed how different wonld be the animals entombed in the deposita of these different seas, and the large bearings the quertion had on geological deductions.
Prof. Phillips then referred to the movements of the atmosphere as illastrating the circalation of water in the ocean. He thought Dr. Carpenter' heory about the vertical distribation of ree-making corals being due to temperature would throw great
light on geology, and enable geologists better to ascertain the physical conditions of ancient seas. He thought nothing had been read for many years before the section which would prove so suggestire to geologists.
In reply to Mr. Balls, Dr. Carpenter remarted mat ail rivers contained a large amount of orranic Sea the specifo dilute protopla according to what was poured into it by rivers, and the conditions of life were the reverse of those of the Mediterramean. The doctor stated, in conclasion, that he did not binself lay any claim to being the anthor of the theory of general oceanic circulation.

FRAGRANT BISULPHIDE OF CARBON.

I^{T}T will be a matter of interest to some of our know that the usually offensive liquid, bisclphide of carbon. can be obtained free from unpleasent smell, and this as an article of commerce. The
value of the liquid as a solvent for resin and other value of the liquid as a solvent for resin and other purposes is very well hana, but ity limited its ase, notwithstanding the fact that it is very maib cheaper than ether, and can be employed for many of the p
We do not know by what process the commercially paritied bisnlphide is prepared; bat, on a small scale, the following plan succeeds very well :-Shate sublimate with the liquid bisulphide, and allow the two bodies to stand for several days with repeated agitation. Some salphur componads appear to bu removed in great part or decomposed by this treatment, for the mercary salt is rendered nearly blaci. owing to the formation of salphide of mercars,
This treatment so far reduces the unpleasant smel This treatment so far reduces the unpleasant sme:1
that, in distillation, a comparatively sweet-smellin: that, in distillation, a comparatively sweet-smellin: liquid is obtained; bat a mack better prodact is prepared if the bisulphide, after the treatment with the corrosive sublimate, be mixed with one-third of mixtrre of and forse the bisulphide ouly distils over. since the oil is no volatile, bat the former is now sound to possess a rather agreeable ethereal odour. It is probable thas the oil acts in somewhat the same way that fat or oil does is retaining the perfumes of flowers. In the sonth of France this power is taken adrantage o principles of some flowers; bat we employ the oil. in the case of the bisulphide, to remove a very uupleasant smell. The treatment is in both cases effective, whaterar its rationale may be, and we car convert bisulphide of carbon into a liquid of agree able ethercal odour. Now that the parification has been efficted on a large scale, wo hope to see the bisulphide employed for many photographic parposes
for which its use has boen hitherto greatly limited.

New Microscopio Slide.-At a late meeting the Biological Misicroscopical Section of the Americis Acadymy Mrdical Times. Dr. Hopt coltud the raci ingenions slide invented by Mr. D. 8 . Holmen to a hibiting infonoris, especislly ander the gase microen or These slides are mede by grinding o deop deperape in a thick glide and then mating a all ronnd the deeper central carity, if the chancie depression be flled with the orgentention in Which it is desired to stady, and covered with a chia glass, in a short time the shallow circle all roand the margores or other objects in the lise-histions, of the
zoospor object is the deeper cell. The pressure of lhe etmo aphere retains the oorer in position.

THE WATCH, AND HOW TO REPAIR IT By " Seconds' Practical Watchmarer."

(Continued from page 581.)

THE former remarks in connection with the horizontal escapement are intended as a popalar description of that particular arrangement. Proceeding further to consider it, we refer to Fig. 9, which represents the horizontal escapewheel tooth in action with the oylinder C, both lookings and impalses being shown, the lockings at MN , the impalse at $0 \mathrm{OHL} \mathrm{L}^{\prime}$; the wedge tooth L is represented as just having fallen from the outgide impalse F on to the inside locking M, the point of the tooth there resting during the motion of the oylinder, in common with the belance in the direction P; so far, then, a dead or repose of the train of wheel-work antil the retarn vibration of the balance, which would permit the point of the tooth L to esoape from the looking M, and continue to press onward the section of the oylinder $M N$, till it assumed the relative position as at IH; the wedge having gradually pressed onward the oylinder C until L^{\prime} had slipped from the corved face of the cylinder CN, and would have advanced so far, and fallen from the oylinder at H, and thus have that portion of the outside of oglinder presented to the succeeding tooth of escape-wheel, in order that when that tooth had fallen it would rest upon that part of the cylinder marked I; therefore the angle of eacape is shown by the dotted portion of the diagram marked 00 , for daring the advance and pressure of the wedge tooth on the edge of the cylinder, it gradually advances and presses forward the cylinder till it escapes from it, and when the point of the tooth falls either on the outside or the inside, the fall of such tooth causes the "tick" which is recognised when heard. The "tick" is caused by the escape-wheel teeth falling alternately upon the ontside and inside of the cylinder
minds are attracted toward it in such a way as to obtain for it the best result, for when all its parts are thoroughly worn out, and the escapement is in its worst possible condition, the verge watob will continne to tick, and that state of things occasionally satisfies; but if the best result is required, a deal of thought may be bestowed upon it, and it will be found that the verge escapement requires as much thought and care as any which has followed.
It is very important that the angle of the verge should be attended to, also that the balancewheel should be hang so that its teeth are equal on each pallet, and that the drop of the teeth on the verge pellets should be as nearly equal an possible. We will first notice the angle of the pallets, which will, perhaps, be better understood by the diagram 10, and must be considered as the most important part of the escapement. By the term "angle" is meant the relative positions of the apper and lower pallets one to the other as regards their angular opening. For instance, holding the balance (with its verge secured thereto) in the left hand, and the lower pivot apward, look down from it toward the apper pallet, and observe whether the face of the lower pallet and that of the upper one form nearly a right-angle triangle, i.e., about a quarter of a circle. By this term "quarter of a circle" I intend to direct the mind's-eye in a popalar manner to the sabject and thus follow more in detail. Fig. 10 will assist in further describing the verge escapement. The circle represents 360°, divided into quadrants by dotted lines of 90° each; therefore, by laying down upon the circle the faces of the two pallets, it will be observed that the opening of the pallets in the diagram represents rather more than a quarter of a circle, and thus it shonld be in practice. Their angalar opening is about. 95°. If the opening of the pallets were only 90°, and the escapement otherwise good, the backs of the pallets would

Therefore it is important that the distance that the teeth fall upon the oylinder should be equal ; there is, therefore, a rule by which examiners jadge the quantity of "drop" (as it is termed) necessary. When the watch is held firmly, and the balance fixed by a-thin wedge of cork, and the escape-wheel tooth inside the oylinder as represented at $L M$; when the wheel is pressed by a nicely-ou\& peg the tooth should have appreciable shake as freedom; and also when the cylinder is brought into the relative position as represented at I L H, the escape-wheel ahould have exactly the same amount of shate or freedom as in the former instance. If all the teeth are tested in this manner, and the point of the escape teeth pass over the centre of the cylinder lower pivot hole, the oylinder and its depth may be considered correot. The angles of the teeth, as shown in Fig. 9, are somewhat in excess of those usually adopted in the early watohes by Graham and others of that period, which produced soarcely half a turn of motion of the balance, bat since the time of Professor Robison the angle of the teeth has been greatly increased, until our foreign neighbours have produced the present form of escapewheel teeth, which in practice is found to be all that could be desired to produce the great end in view - namely, steady and good timekeeping of the watches to which such escapements are applied. But we are compelled to remark that there are many Bwiss watches, even at the present day, with escape-wheels having teeth of various angles, some even similar to Graham's, but they are rather to be catalogned as ironmongery than as watches. Haring thus far followed the escapement of the horizontal watch, we have to be equally familiar with the "verge" escapement, because, although an old-fashioned piece of mechanism, it is to be found in every part of the world, and it is sapposed '(and not withont oanse), that very few
strike the banking-pins, if banked inside, and whether banked inside or otherwise, when they were made free the verge would hang on its bank inge, and no remody conld be devised to alter it such a defect, it is well known, would cause very irregalar going of the watch. See, therefore, when looking down at the verge "angle" that the pallets stand similar to 95°, as marked in the diagram. If so place the escapement together leaving only just freedom of balanoe-wheel as regards end shake. If holes are good size, and the verge not worn, proceed to try the "drop" of balance-wheel teeth on the verge pallets. Thereore hold the upper-plate in the left hand, keep ing the balance steady by means of the cut peg finger, then with the point of a nicely out peg impel the wheel forward. If the teeth drop the same quantity upon each pallet, that part of the escapement may be left without further alteration; but then, before deciding whether the "drop" is in excess, the hanging of the wheel apon the verge body should be seen to ; that is to say, the teeth of the balance-wheel should be the same distance from the body of the verge at the upper-pallet as they are at the lower one, which may be seen when the verge is turned roand, so that the pallets are from the toeth of the wheel, in whicin case the wheel can be turned round and easily determined. The next procedure will be to see that the balanceWheel teeth are not too close nor too far from the body of the verge. The general rule will be to have the teeth of balance-wheel jast free of the verge, in which state it is termed "'scaped" foll close ; that is, it oannot be 'scaped closor ; at the same time the balance-wheel must have no end shake. Then follows the trial as to the quantity of drop of wheel on the pallets, and this leads to ascertaining the breadth of the pallets, for if the
pallets be narrower than they should be, the balance-wheel teeth will fall sooner than they would were the pallets broader, and consequently the teeth will have greater drop on to the other pallet. It is, therefore, necessary to keep the verge pallets, as broad as possible for the sake of gaining advantages of leverage, and also to reduce to the smallest limit the drop of the balancewheel teeth on the pallets. To test the breadth of pallets allow the tooth of wheel to drop from the lower pallet to the upper one, keep the balance perfectly stoady at that precise instant, then tarn the belance the least bit possible back, so that the edge of the lower pallet is presented to the back part of the balance-wheel teeth, and then try if the wheel has percoptible shake or freedom; if so, it would be right; if not, narrow a trifle, bat be mindfal to keep the edge rounded from the back of pallet, becanse that shape permits free motion between the backs of the balsnce-wheel teeth and verge pallets. If the wheel has exoessive shake or freedom on the pallet's edge that pallet is too narrow, and no remedy is at hand bat another verge, if the wheel is the proper depth on the body. In trying the drop of wheel on the pallets the angle of the verge has to be kept in view; for instance, should the pallets be vers open, the drop would be greater than when the angle is correct, so that although the wheel may be 'scaped quite close, yot with open angle of verge the wheel will have excessive drop which oannot be avoided unless the pallets are olosed. By a little practice the verge angle may be altered, either opened or closed, in the following manner. Some verges are very highly tempered; but if so, in most instances, ths pallets may be closed without breakage. Having fixed in the vioe brass atake, and holding the balance firmly in the left hand, place the lower part of the verge on it with the edge of the pallet somewhat raised from the stake, then with a hammer, such as might be used for ordinary work, strike the edge of pallet downward with little force at the first trial; should it not yield, then make another trial with a little more force, and in this way the angle may be formed at pleasure; be sure that the verge lie fairly level on the stake, olee there is danger of it breaking. Thus far we have before us a few of the leading principles connected with the verge escapement, bat although there are meny other points to be considered relative to it, they more specially belong to the jobbing department. Having left the excapement as complete, it is necessary to try its correctness ; and, therefore when the watch has been cleaned, pat together and ready for the balance to be pinned in, it will be found of great service to have the watoh going without the pendulam spring; therefore mark where end of the spring lies, then remove and clean it. Screw in the verge and bslance; having seen that the verge holes are of the proper size, wind the watch a little, and observe the amount of vibration of the balance (half a turn is considered fair motion) when acting on the lower pivot ; then, when it is acting on the apper one, and probably the two actions will be similar. Next hold the watch so that the follower is downward, the frame being held vertical; observe the balance motion in that position, for this is a test whether the upper pallet will catch or hang on the balance-wheel teeth, and is a very general fault with verge watches after repairs. Trying thus without the peudulum-spring uaves a desl of tronble, beoanse the tension of the pendulam-epring assists the pallet to pass the teeth of wheel, provided a slight catch only existed, and hence this kind of alight defect causes many watches to be complained of as either frequently losing a great deal, or at times stopping. This part of the trial being disposed of, reverse the frame, and hold it so that the follower is apward, and the motion of the balance when in that position will test whether the lower pallet is perfectly free. When such conditions are obtained from a verge watch, and the balancewheel teeth have very little drop on the pallets, there need be no fear as to the watch going fairly well. Our next article will introdace to us the patent detached lever watoh.

Oxghydric Light. -" The entire town of Baffalo, C.S.A., is now lighted by hydrogen gas, extracted from bydrate of lime, carburetted, and barnt with the oxygen extracted from the atmosphere. The cost of the hydragen is about a penny per cribic metre; that of the oxygun varies with the price of coal, and is estimated at the valne of six kilogrammes (181b.) of coal, vay 2d. to 3d. The oxygen is nearly pare, containing wuly about 3 per oeut. of azote." So saja an old estabisted " magazine." Will any of our American correspondents kindly inform at how mach (if any) of the bore atatement is trae.

LESSONS ON CHEMISTRY.*

By Selimo R. Bottone.

(Late of the Istituto Bellino, Novara, Italy.) (Continued from page 579.)
21.). WE have seen that sulphur oan be two different proportions-viz., to form sulphar dioride SO_{3}, and sulphar trioxide SO_{3} (163). Placed in contact with water, both these sulphar oxides form sulphur acids, and it is of course essential to be able to distinguish them by the name. The mode in which the distinction is made is as follows:-The acid formed by the nuion of an element with the smallest number of atoms of oxygen takes the termination ous; thas, salpharous acid. The acid containing the larger number of atoms of oxygen is known by the ending ic; as sulphuric acid. It sometimes happens that after two acids of a self-same olement have been discovered and named, others are discovered ; in such cases prefixes are used to denote whether the new acids contain more or less oxygen than the old ones. The acids formed by chlorine will be found to exemplify this matter very clearly. In this series we have:-

Chlorous acid.

Chlorio acid.
Hypochlorous acid (from hypo, under or less).
Perchloric acid (from per, over or more).
216. -With regard to the names of the salts formed by the unlon of acids with bases, it is only needfal to note that those roids, the names of which terminate in ous, form salts, with names ending in ite; thas potassium united to chlorous acid, or to hypochlorous acid, will form a potassinm ohlorite, or hypochlorite. Acids, the names of which terminate in ic, give rise to salts, with a name ending in ate; as potassiam sulphate, potassiam chlorate, and potassiam perchlorate, for compornds in which potassiam is in combination with salphuric, chloric, and perchloric acids, respectively.
217.-Perhaps the most vexed question of modern ohemical nomenclature is the one concerning the correot application of the word acid. While some chemists msintain that no real acids can exist without the presence of the elements of water, others uphold that these hydrated bodies, usually called acids, are in faot only the hydrogen salts of the true acid; and regard as the real acid, the body which is usually known as the anhydride.
In order that the reader may be in a position to judge somewhat of the merits of these rival opinions, it is necessary to throw a glanoe at the progressive steps made in our knowledge of the constitution snd properties of acids.
Until the time of the discovery of oxygen, little or nothing was known for certain of the constitution of acids; and no attempt had beer made to theorise on the reason of their acidity. Lavoisicr, basing his ideas on the limited number of acids then known, came to the conclusion that the scidityt of the bodies in question was derived from the oxygen they contained, and in accordance to this view gave the name oxygon, from orys, "acid," and gennao, "generate," to the newly-discovered element. But it was not long before it became known that many acids existed which did not contain oxygen as a constituent. Hence it was evident that oxygen was not the acidifying prinolple. Chemists then divided acids into two groups-riz., (1) such as contained oxygen, and (2) such as contained no oxygen. The latter were known as hydracids; the former as oxyacids. As it was found that those oxidised bodies which played the part of acids when oombined with the elements of water had no action on litmus, and did not combine with bases, unless water were present, it became necessary to inoluds these elements of water in giving the composition of the true acid; while the body which formed the acid on admisture with water was designated by the term "anhydrous acid," or more recently "anhydride." The following table of a few of the oxyacids and hydracids will serve to illustrate the two groups into which these bodies were divided:-

Hydracids.

Hydrochloric acid, HCl .
Hydrobromic acid, HBr .
Hydriodic acid, HI.
Hydroduoric acid, HF.
Hydrosulphuric acid, HS.

[^21]
Oxyacids.

Nitric acid, $\mathrm{HO}, \mathrm{NO}_{6}$.
Sulpharic acid, $\mathrm{HO}, \mathrm{SO}_{3}$.
Carbonic acid, $\mathrm{HO}, \mathrm{CO}_{2}$.
Chloric acid, $\mathrm{HO}, \mathrm{ClO}_{5}$. Perchloric acid, $\mathrm{HO}, \mathrm{ClO}_{7}$. ${ }^{\text {. }}$
A cursory glance at this table at once shows that no point of resemblance exists in the constitution of these two groups when expressed in the above manner. Yet in their physical properties, in their behaviour towards bases, and in their general chemical reactions, the greatest similarity was found to prevail. When the so-called hydracids aoted on metallis oxides (bases), water, and a salt of the acid employed, was formed. The same was found to take place when an oxyacid soted on a base; and, notwithstanding the exact correspondence of the reaction in both cases, it was customary to express these changes in two different ways, as the following equations will show :-

For hydracids.-The action of hydrochloric acid, \&c., on potassium oxide, \&c. :-

$$
\mathrm{KO}+\mathrm{HCl}=\mathrm{HO}+\mathrm{ECl} .
$$

For oxyacids.-The action of nitric acid, \&c., on potassinm oxide, \&ic.:-

$$
\mathrm{KO}+\mathrm{HO}, \mathrm{NO}_{5}=\mathrm{HO}+\mathrm{KO}, \mathrm{NO}_{5}
$$

The incongraity of this view soon led to a more rational method of viewing the coustitution of acids, and it was soon shown that all these bodies might be rauged under one head-viz., that of hydracids.

The following formulm and equations, illastrative of the composition of the acids and their action on potassium oxide, will prove how mach this view simplified the comprehension of the subjeat : \dagger
(1) Hydrochloric acid, HCl .

Hydrobromic acid, HBr .
Hydriodic acid, HI.
Hydrofluoric acid, HF.
Hydrosulphuric acid, HS.
Nitric acid, HNO_{6}.
Salpharic acid, HSO_{4}
Carbonio acid, HCO_{3}.
Chloric acid, HClO_{8}.
Perchloric acid, HClO_{8}.
(2) Action of hydrochloric acid, sc., on potassium oxide, \&c.:-

$$
\mathrm{KO}+\mathrm{HCl}=\mathrm{HO}+\mathrm{KCl} .
$$

And in the case of salphuric acid and potassiam oxide, \&c.:-

$$
\mathrm{KO}+\mathrm{HSO}_{4}=\mathrm{HO}+\mathrm{KSO}_{4} .
$$

This view, with the addition of the changes in quantity, which the new atomic weights have necessitated, is the one which now meets with the general approbation of chemists. Hence we may define an acid to be "the hydrogen compound of a radical, in which the hydrogen can be replaced by a metal." The radioal may be an element, as in hydrochloric acid; or it may be a compound, as in sulphuric acid. The only difference in the formula of the above and other acids will be that necessitated by the view that the relative atomic weights of hydrogen and oxygen, \&c., are as 1 to 16. The annexed is a tabular view of the oonstitution of the ahove bodies, as expressed in the modern notation :-

Hydrochloric acid, HCl .
Hydrobromic acid, HBr.
Hydriodic acid, HI.
Hydrofnoric acid, HF
Nitric acid, HNO.
Hydrosulphuric acid, $\mathrm{H}_{2} \mathrm{~S}$.
Carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$.
Chloric acid, HClO_{3}.
Sulphnric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Perchluric acid, HClO_{4}, \&o.
218. -This is the view which we have ourselves followed in the course of the lessons. It by no means follows that the above formale represent the exact position of the various atoms in the molecule. It does not appear probable at presen that we shall ever know the mode in which the atoms are nged. But we do know that in some instauces a compound splits up in one way, and in others in a mode qnite dissimilar; and i is always well to hear in mind the varions groupings to which these various modes of decompusition point. As examples, we may quote the different results of

* These formule are all acenrding to the old notation, taling the atomic weight of uxybeu ag 8 .
+ For the facility of co mparison these furmale are also given with the old notstion.
the decomposition of sulpharic acid, according to the mathod employed. When sulphuric scil is distilled along with phosphoric anhydride, this latter body seizes on the oxygen and hydroged contained in the acid in the proportions to forn water, leaving salpharic anhydride, thas:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{P}_{2} \mathrm{O}_{3}=\mathrm{H}_{2} \mathrm{PO}_{8}+\mathrm{SO}_{3}
$$

From this reaction it is evident that we may consider sulpharic acid as being constituted of one molecule of sulpharic anhydride nuited to one molecale of water,

$$
\mathrm{H}_{2} \mathrm{O} . \mathrm{SO}_{3} \text {. (See 165.) }
$$

By the aid of heat alone sulphuric acid splits up into sulphurous anhydride, water, and oxygen,
$\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{SO}_{\mathbf{2}}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$.
In this latter case we may suppose the constitution of this acid to be:

$$
\mathrm{SO}_{2}:{ }_{2}^{\mathrm{HO}} \mathrm{HO}
$$

219.-Those who give the name acids to the bodies which we have hitherto termed anhydrids: do so from an idea that these bodies are the radicals of the salts formed on anion of the acid with a bese ; but a moment's consideration will show how fallacious this application is. It is admitted on all hands that in the bodies nanally termed acids, the hydrogen contained in them plays the part and holds the place of any metal with which the acid can combine; thus, in sulpharic acid $\mathrm{H}_{2} \mathrm{SO}_{4}$, the hydrogen holds exactly the place of potassium in potassiam sulphate. $\mathrm{K}_{2} \mathrm{SO}_{4}$. But it must be remembered that the majority of these acids, or hydrogen salts, as they are sometimes called, are sour, corrosive, redden litmus paper, sic., and that these acid properties disappear in exact proportion to the amount of hydrogen replaced by a metal. Hence it is evident that the name acid = sour is more appropriate and more applicable to these bodies, as a ciass, than to the anhydrides, which do not exhibit any of these distinctive properties, nuless placed in contact with the elements of water. But the anhydrides (generally speaking) are not the radicals existing in the salts, any more than the metallic oxides are the bases; for instance. in the presence of potassium oxide, sulphario anhydride is changed as follows:-

$$
\mathrm{K}_{2} \mathrm{O}+\mathrm{SO}_{8}=\mathrm{K}_{2} \mathrm{SO}_{4}
$$

Now, if it be really desirable to limit the term acid to the radicals of the salt, it is evident that the real acid in the bodies $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$ must be the compound SO_{4}, and not BO_{5}. \&ec. The fact is, the terms acid and base are in the highest degree unscientific and unsatiafsetory; and it is much better to use the tarms chlorous and basylous for the negative and positive radicals of a compound than to continue the employment of the words acid and basio in any other than an adjective gense.

NEW SAFETY LAMP FOR MINERS.

A^{T}
T the recent meeting of the Iron and Steel to the notice of the members a now safety la unp based on the now well-known phenomenon of the singing flame. He stated that whena mixture of ang intlammable gas or vapour with air in explosire proportions passed throagh, and was ignited on the surface of, a disc of wire gavze of suoh meah as to prevent the passage of thame, and a saitable tabe or chimney was placed above, and surroanded at its lower end, the disc preventing the admission of atmospheric air to the chimney except through the wire ganze, a musical sonnd was produced, varying in pitch, \&'., with the size of flame and dimensions of the chimney. In this, as in other flames singing in tabes, the soand was cansed by the vibration of the thame determined or intensified by the carrent up the chimnoy, and comurunicated to the calamn of air or gaseous fluid within the ahimney, Whose length commanded and timed the rapidity of the vibrations, so as to prodace a given note, just as the flatter of the air originating at the embouchare of an organ pipe was commanded by the leugth of the pipe. The conditions ander which this tame was produced differed considerably, however, from those of other singing flames. The hydrogen jet, for instance, was burned in an open tabe, to which air was freely admitted at the lower end, and it was necessary that the tabe inclosing the jet shoald be lowered more or less till the singing point was foumd In Dr. Irvine's singing Hame, the tube was not open at the bottom, and no admission twok plece except throngh the wire gauze, and the note was produced when the flamo was at the lower extreanty of the tube or chimney. These were the condilion which gave to this tiame its applicaisity to the pur poses for which he (Dr. Irvine) employed it. The
fact of the combustion of an explosive gaseons Mixture on the sarface of a matorial impervious to
flame (viz., wire gauze, originally employed by Sir Hamphry Davy in the construction of safety amps), snggested the possibility of employing this 13 me for the parpose of giving warning by sound of the presence of an explosive atmosphere, or elsewhere, by means of a lamp saitably constructed. Accordingly, he lind had lamps made for giving ight, which, while the atmosphere was not contaminated by fire-damp or other inflammable gas, burned in the usual way, but which, as soon as such gas mixed with air in explosive proportions arell is to tere the ar a luad musical sonnd, as well as to the eyo by its effects on the appearance." In one form of the lamp, which was more particun one form of the laisp, which was more particalarly adapted for the use of the viewer or wasteman
of the mine, the gir entered ncar the top of the lamp, obviating the necessity of turning the instrament on its side, as it was freqnently necessary with the "Dary," when but a thin layer of fire-
damp was floating at the ceiling of the mine. In damp was floating at the ceiling of the mine. In
another form the lamp was adapted to the ase of the working miner, and a superior light was obtained by the use of paraffin oil. In a third form, warning apparatus as well as a stationary light, the cound was given forth when an atmosphere of ans and air under the explosive point entered it. Dr. rvine had thought of a variety of applications of bronght only one more to the notice of the meeting bronght only one more to the notice of the meeting
-viz., its use as a fog horn, which on account of its -viz.i its use as a place of a costly appratus, and would behighly saitable for railway junctions, or other situations of danger.
The merits of the new lamp have been freely discussed at the various meetings of those interested in
collieries which take place at this season, and a great diversity of opinion has been expressed. At the meeting of the South Midland Institute of Engineers, Mr. Bromley said he thought the invention was one of considerable merit as an alarm there to indicate when danger existed. In that shape it would be a tell-tale more likely to prove effective than were the instruments now in use. As a lamp the thvention was of great value, because when the the mvention was of great value, because when the
 an invention in the North Staffordshire pits would appear when he stated that at that hour there were many mine rs at work, in that division of Staffordshire,
with the gas burning npon their lamps all day long. with the gas barning npon their lamps all day long.

- Mr. Glennie thought that as the lamp did not begin to sing until the gas and air had arrived at as stage at which the mixtare became highly explosive, the fact of its ceasing to give light to the workmen
would be an adrantage. If he mistook not, the would be an advantage. If he mistoor not, the
Government Inspectors and other otlicial personages regarded the existence of gas in such a degree as mines were carried on in a loose way, and perhaps considerable risk; bat what would bo the position of a mine manager in the event of a fatal explosion occurring at a pit worked under the circumstances mentioned by irr. Bromleyt He thought that although the lamp might not be of so maoh practical
atility as to supplani other lamps at present in use, yet that it was an invention of great value, to which the attention of the Institate might well be given with great deliberation.-The Secretary said that Dr. making some business arrangements with a lamp. making firm, for the bringing of the lamp into the market as an article of commerce. So soon as two lamps were ready the Dr. had promised to send them to the Institute; and he (the secratary) woald take care that they should be in a position to experiment
with them. He explained that the lamp, which was fed by paraffin at the bottom, and did not require replenished of the top in order that it might be burning, was one from which much practical good misht be looked for. After the adoption of such a lamp, miners woald have no excase who exposed the naked flame of their lamps for any parpose. miners smoking in the pits; and an expression of a favourable opinion as to the lamps that the Institate had seen in use in North Staffordshire, which could be locked and unlocked only by a
powerful magnet. The Chairman concurred in the powerful magnet. -The Chairman concurred in the
testimony borne to this lock lamp by the other members, but observed that Mr. Heath had himself remarked that if miners were determined to smoke in pits, it was next to impossible to prevent them. or any other colliery proprietor from doing their atmost to impose oustacles in the way of a practice so greatly to be deprecated.
At the meeting of the same Institute held at which the sound was piven forth before the proportion of gas was so great as to make an explosive mixtared The use of such a lamp, which is not
presence of a small quantity of gas, the approach of danger, and the necessity for looking to the ventilation. in worniag of the principle was also
shown its application to a fog horn. Dr. Irvine shown in its application to a sog horn. Dr. Prvine
further exhibited a paraftin eafoty lamp which gave forth a brilliant light, and the flame of which, on the entrance of an explosive mixture, "sings" like his ordinary oil lamp. The paraffin lamp is so constrncted that the workmen can take ont the reservoir and refill it withont interfering with the flame, which continues to burn with undiminished brightness, notwithstanding the temporary removal miner reservoir. Mr. We and the paraffin lamp of very great value, becanse it removed from the miner the temptation to tuke off the top of his lamp in order to get more light. Mr. Udall and other gentlemen recognised the ingenaity of the invention, but opinions
theless divided as to its practical value.

VIENNA UNIVERSAL EXHIBITION.

HER Majesty's Commissioners for the Vienna diversal Exhibition have obtained answers a series of questions of importance to exhibitors. the requirements of the exhibition may he supplied by exhibitors, as, for instance:- Boilers for the pro duction of steam for engines. Steam-engines for driving the main shafting. Gas and water-power driving the main shafting. Gas and water-power
engines, for driving single machines and groups of engines. for driving single machines and groups of
machines. Large and small pumps for waterworks and fountains. Travelling cranes, with normal ganges of 1.5 metre (4 ft . 1lin.) Overhead travelling cranes, with winch and moving gear, with a gauge
of 10.5 metres from rail to rail. Hydraulic lifts for raising persons. Portable engines for service out side the Machinery Hall. Exhibitors sapplying such machines and apparatus, intended for special service daring the exhibition, will enjoy special privileges, If British makers lend cranes, hoists, boilers, engines, \&C., for use of British exhibitors, no fees wil be levied by the Imperial Austrian Commissica if Britise of the same by British exhibitors. But use of foreign exbors lend such machincry bo made by the Austrian Director-General to indemnity British Exhibitors for the use of their machinery.

The power required to set machinery and main shafting for driving machinery in motion will be sapplied by the Austrian Commission, and exhibitors will in no case be charged for motive power supplied by the main driving shafts. The moviug force will be transmitted by two horizontal ahafts of a diameter of about 439 in , and at 120 revolations per minnte. Exhibitors supply the palleys for the main shafts, as well as any other gear and driving bands, at their own cost. The preservation, cleaning, and oiling of the main shafts will be attended to by the Anstrian manager, but exhibitors will have to attead to the preservation and oiling of the gear supplied by them, as also to the security of their straps.
Brickwork foundations in the Machinery Hall mast be built at the cost of the exhibitors, and be finished and ready for receiving the machinery by the 15 th of March, 1873 ; bat the brick foundations and the stonework for engines and steam boilers, sc., employed for sotting in motion the machines exhibited, will be constracted by the Anstrian Com mission, according to the plans of the exbibitors The main lines of pipe for water, steam, and gas will also be laid by the Austrian Commission, and
the exhibitor has only to sapply the counectingpipes with his machines.

Coals from the best Anstrian and Prassian coal mines, and feeding water for boilers, sio., will be supplied by the Austrian Commission free of expense. Stokers will also be provided for the steam boilers lent for service in the exhibition, or, if the exhibitor should prefer to employ his own people, the wages of the latter will be paid by the

The whole exhibition ground will be drained by a system of drainage-pipes, carrying water and liquids to the Danube, and every measure has been taken to have a sufficient supply of Water in all parts of the exhibition. Water will be furnished at 120 ft . at high pressure. Gas will be furnished by the Imperial Continental Gas Company at the asual pressnre.

Steam pressure generally at five atmospheres, but in foreign boilers is not limited, although they will be snbject to the Austrian laws and regalations.
Single boiler-houses are erected at the rear of the Single boiler-houses are erected at the rear of the
Machinery Hall, about 40 ft. distant, but a special Machinery Hell, about 40ft. distant, but a special
boiler-house for British boilers will be built by the boiler-house for British
Anstrian Conmission.

Traction engines, locomotive steam carriages for ordinary ronds, steam omnibnses, and similar kinds of self-propelling vehicles, will be allowed to run abont during the exhibition, in some parts of
the purk and the exhibition cronnds. In fact, traction engines, road rollers, self-propelling steam carriages, steam omnibuses, and steam pleasurecarriages, will be very welcome. There will be some work of importance to be done by steam road-
rollers, and, in case of anj work performed for the
installation by traction engines or road-rollers, ill expenses will be paid by the Austrian Commission.
In case of railway locomotive engines and carrin jes being sent to the exhibition, the rails for tiem to stand upon must be provided ity the exhibitors, and it is very mach desired that rails
from England should be sent to Vienna as exhibifrom England
tion articles.
There will be competitive trials with steam fireengines, and the jary and exhibitors are invited to seud special engines for this parpose. Such engines will be considered as objects of exhibition, and, if the Imperial Austrian Commission.
There will likewise be apecial trials held with agricultural machines and implements in felds in the neighbonrhood of Vienne, or in such places as can be easily reached by the Exhibition Railway. agricultural machines will be exhibited in a pavilion speciully bnilt for that parpose. All machines, sc., Machinery the exhibition will be himitted to the Machinery Hall from the 1st of Febrnary till the by the 25th of April. Machines and apparatus arriving in pieces, and consisting of heavy and bulty parts, must be set ap by the lith of April.
Slate is particalarly desired to be sent to Vieung to the exhibition; the slate will stand a chance of being sold at a good price at the close of the exhibition, the Aastrian slate being only Sit for rooting. fittin is also desired by the Director-General that wiuduw-glass, cases, cloth for the covering be sent from Eneland to Viunns ; these would be considered as exhibition olijects, and could be sold at the close of the exhibition.
The Director-General has also made special arrangements for storing "empties," which he offers gratis to the forcign commissions.

INSECT METAMORPHOSIS.

THE following lecture was delivered by Professor P. Martin Duncan, F.R.S., at the meeting learnod British Association :-Everybody, whe on. dergo changes in their shapes and habits. Great numbers of popular works on natural history have made the description of these changes or metamorphoses familiar to the pablio, and others have informed the scientific world upon the anatomical and minute changes of structure whion accompany in method of life. The array of facts is and and yet with al ithis vast ams has been mado knowledge very little progress has been made metamorphesis in biology-in the science of life. The facts and details of the subject havo been accumulating, but the nature of its philosophy has been studied by very few naturalists, and it is ouly of late years that Labbock and Fritz Millier, nnd a few others, have been stimaiated by the ligit of the that the sabject is increasing in interest, and that its consideration bears apon some of the most important theories respecting life, it is proposed to dindse this lecture to a description of the to consideration of the biological meaning of the phenomena. Let me recall to your recollection two instances of what may becalled perfect and complete metamorphoses.

Butterfiea and Caterpillars.

When the tenderest cabbages are growing in the early summer, a number of very small caterpillars or larye may be seen upon the leaves, devouring
them in a regular and systematic manner. Avoiding them in a regular and systematic manner. Avoiding
the leaf-veins as indigestible, they nibble the juicy leaf, and consume daily more than their own weib These pests of the gardener have small heads uud ends, and the body is greenish, and striped with yellow bands, being at the same time hairy. At first vory small in size, the caterpillars do not attract much attention, and especially, as after and loor ahrivalled and itl. After short tima the caterpillar in retreat bends its baok violently, and splite the ekin of one of the ringe or segments of the part nearest the head, then a vigorvas struggle enables the legs and the head io noticed to have attained a new skin within the old one. It crawls on to its favourito plant and makes up for lost time, grows rapidly, and really may be said to live to eat. It cares not for its fellows, nor for any other leaves, it is content with its own cabbage, to move away. During no desire to quarrel or mastication and of digestion increase, but they are checked several times by the larva having to pass a period ol quietude whilst a new skin is inished ander the old, and whilst this is cast off. These skin sheddings have a definite relation to the increasing size of the becanse the they are not simple too tight for its rapidly growing possessor. They accompany certain rapidat growing possessor. the incoot, and not onls
is the ontside skin shed, bat the mucous membrane of the digestive organs and of the air tabes which enabl, the cresture to breathe, suffers also. They are really important elements in the metamorphosis, which term includes the sum of the changes has been attained, the caterpillar cravls off his cabbage and wanders restlessly abont, even to considerable distances, in search of a dry sheltered siderable distances, in search of a dry sheltered spot. After having discovered such a locality, it fills
up the space between its hind legs with silk, and up the space between its hind legs with sile, and as the case may be. The larva then hangs head downwards, and forthwith begins to bend its head backwards, upwards, and then from side to side, until, after a little practice, it is enabled to tonch the solid substance to which it is hanging on either side of its body. Then some silk is secreted, and by applying the mouth to the spots touched one fter the other, a fine sling of silk thread binds the nsect down and prevents it from being swayed to and fro by the wind. This is the last act of the larva which shows any evidence of will. Then it begins to look shrivelled, shorter than before, and broader behind the head, and after a time the akin aplits, and is shed with greater or less wriggling. sticky, varnish-looking moisture covers the very ifferent looking thing which now presents itself, and dries rapidly, and forms a case over the skin of the papa beneath. The alterations within and without the insect at this time, that is to say, during three or four days after leaving the cabbuge, are carried out with great rapidity, and the future batterfly is well foreshadowed at this period in the structure of the chrysalis or papa. Hanging as a chrysalis or papa in a perfectly immobile condition, either seeing, hearing, nor tasting, and losing very the weight from the exhaistion of its moisture, he insect lives on for many months, and until spring has nearly ended. Then the dark case eplits, and a tender white butterfly crawls forth, and under the influence of warmth, and the sun, becomes dry, stretches, and unfolds its crumpled-up long legs, trails s short body, moves a curious flexible trunk in front of its ead, the result of the modification of its former jaws, and takes to flight. The common white wandering, and whose flight in company is 80 tamaltous, ascending, and vibrating, lives for love. It has a soul above cabbages, and rarely condescends even to sip or suck the daintiest nectar from lowers. After 8 lomgex or shorter existence, it begins to lay eggs, and places them in the immediate neighbourhood of the favourite food of the larven, which are to come from them.

The Life Cycle of a False Wasp.
Another familiar exsmple of perfect metamorphosis may be studied in the instance of one of the alse wasps Odynerus parietum. This small waspise insect may be seen on the other side of the hannel in great companies on lacerne and olover When in full flower. It is a solitary kind, and the male and female care nothing for their companions, who rush and tumble over, in, and about the flowers, sucking their sweetness, and squabbling and flying for the
freshest oorollas. Day after day this bozzing, busy crowd may be seen leading a life of happy enjoyment, foeding, playing, and flirting, but after a while an unusual excitement is noticed amongst large number of the insects. These extend their flight beyond the favourite field, and seek the neighbourhood of sandy, clayey banks close by. They may be observed digging their heads into the sand with great assiduity, and pulling out sand grains, and woon as the hole is large enough to admit the wasp's body, the legs emove, by a process of brushing, the particles he wasp ill be found to heve made a tone, and the contant out-pour of sand and clay indicstes that ex-
cavation is still proceeding ont of sight. Soon the cavation is still proceeding ont of sight. Soon the Odynerns perfects two or the bank and opening into the tunnel. She (for it is the female who does the work) carefully pounds the insides of the carities and removes all roughess from thom, and leaves them as commodions hollows, water-tight, and not likely to fall in. This is not all. On coming back into the light the wasp seizes cylindrical pieces of earth and moulds them, more or less, into shape with her jaws, and places hem in front of each other, and side by side, 80 es 0 form hallow tnbe mioh aticiss 0 t from the bank, and opens into the tunnel. The free end of his ante-chamber is left open, and the pieces of hich the whole is formed are gammed together and pressed. The tube is extremely fragile, and he pieces of it are not in contact everywhere. Nevertheless, the Odynerus passes along it readily enough, but no other insect of its size can do so All this work is carried on whilst the wasp appears to be in an intanse state of excitement, and when it completed the insect fies off to the flowers gain ; but not to return to its former habits. On the contrary, the purposeless sumbling about of lowers, and the occasional sip of nectar, are forgotten, and the flighty little vegetarian becomes a
small larve of a species of weevil which abound about the plants, and seizing one, digs her sting into it BO ystem of the rictim The larve is paralysed at once but not killed; on the contrary, it remains motionless but lives. She then flies off with her prey to he bank, enters the tubalar antechamber, traverses the tunnel, and reaches one of the chmmbers. Here she deposits her insensible victim, and lays one egg close to it. Returning again to the fleld, she seizes another larva, stings it, and carries it off to deposit it close to the first. This procedure is repented as many as thirty times, and the chamber becomes full insensible weevil larva and one Odynerus egg The other chambers are flled in the same manner, and an egg is laid in each. Then the wasp comes out of the tunnel for the last time, breaks down the tubular antechamber, so as to hide the entrance to , for which she, a vegetarian as provided auimal food in abandance. The egg is soon hatched in each chamber, and a small, egless, and extremely delicate larva crawls forth, and fixes upon the miserable victim close to it. So ender is the larva that the least roughness of the aides of the chamber wonld destroy it, and the least struggle on the part of the poisoned weevil grubs the little thing eats into its living prey, and when one is finished it attacks another, until all are esten p. This is the life of the larva; it is incapable of walking any distance, and simply leadsa life of zormandising on the flesh and joices of weevil grabs. It never emerges from the chamber, and when it has o more to eat spins a cocoon of silk around itself, and sleeps therein during the late autumn, the winter, and until the spring. Then a change in orm ensues, and a pupa, which greatly resembles the perfect insect, appears under the skin which is shed. In the course of a few weeks the perfect false wasp escapes from the pupa skin, digs its way into the world, and emerges to enjoy the desting already described. Manj other false wasps which belong to the same group of insects as this Odynerus have a corresponding life cycle, and choose many curious kinds of prey, but the formation of the safeguard of the tubalar ante-chamber places this kind in advance of all others. It is, then, an oxample of very perfeot metamorphosis with high nstinct, and like all other instances of what is cermed perfeot metamorphosis, there is an intermediste stage of a quiescent papa between that of he larva and imago, both of which are able to lead independent and distinct sorts of lives, and to take food.
(To be ooncluded next week.)

MECEANISM.*

(Continued from p. 633.)

M^{2}OTIONS produced by links," which is the expressive of the leading branch of it only. Mechanicians may have a very clear idea of the meaning intended by it, but to others very varied may be the ideas which the title conveys. Practical mechanics, by the word "links," may have entered the room with an impression that they were about to listen to a discourse upon the elemental pieces of which chains are made. Social science enthusiasta which chains are made. diccial science enthasiasta may be anticipating a discussion apon friendship,
and even marriage and upon the proclivities of indiand even marriage and upon the proclinities of indi.
viduals to walk "linking." Antiquarians' thonghts will probably turn to those ornamental extinguishers high above the railings at the doors of aristocratic conses, by means of which, during the last centary,
boys extinguished their torches. Land "link" boys extinguished their torches. Land owners may be thinking of estates, from the fact of A Scotchg generally so many "links in an acre country's rivers, and the grounds called "links" ling along its windings ; and Americans, if there be any present, may not unreasonably be expecting some description of London sausages, for sausages are called "links" in America. All these expectations must be disappointed. "Link," in an antiquarian's view, is from a Greek word which signifies lamp; but we have nothing to do with that. In he other sense it is from a German word which signifies "a joint," and it is in the simple sense o a piece joining two pieces, and by which the motion of one may be conveyed to the other, that the word is generally used by engineers. Such a link is either rigid, as in the case of wood or metal, or flexible, as in the case of rope or wire; and it is a means by which the motion of one moving piece is transerred to another. Thus employed, it truly comes ander the ordin
A link, therefore, is now to be regarded simply as the connecting piece of two movable pieces ; the form and the material are not in any way concerned Contacts in rolling and sliding cease when we dea with links-flexibility, as in cords, is neither an essential nor a hindrance. It may be well, there fore, to take a preliminary example of a link, for those who have not given the subject attention may
be informed that the complexities of link movements

By the Rev. Abthur Rioc, M.A., being the
far surpass the complexities of cam movements. On the board are a conple of pieces of wood joined by a ink, quite sufficient to illustrate the general idea. reso pleoss are oapable or mokion about hese two, is the link. If now this third piece be connected with the two movable arms at varying distances from the centres of motion, the paths o the driver and follower will be very different, the variations depending entirely apon the relative lengths of the arms. Sometimes an oscillatory motion of the driver will commanicate a circular one the follower. Sometimes these relations will be eversed. Under other circumstances a continuous communication of motion is impossible, in con sequence of a locking of one or other of the arms owing to the rigidity and length of the connecting link.
The first question to be solved by those who deal with link movements is, what is the law which governs the motious of the two arms when they are imer the infinence of a liuk? The law is a very imple one ; simple in expression, bat comp result. It is one of those simple laws that pro the inclination of the link to the line joining the centres of motion of the arms
Let A P and B Q or B q (Fig. 29) be the arms movable in the same plane about A and B, PQor $P q$ be the link, then the link will cut the line $A B$. either in T or (produced if necessary) in t. Where
 ever it cuts, whether bet wean
or beyond the motion A B this centres of ood th B, this law holds food that the velocity ratio one arm is to the velocity atio of tho nthar arm in orich this line of centres is divided by T or t. Or take it in anothar form (one mare convenient probably in eore respects), the velocity of P espeols), the rocity of P line drawn from A square line drarn from A square
upon the link is toa linefrom pon the link is to a line from B rawn square apon the same link. Observe for a momen the nature of these motions.
Assume the shorter arm to be the driver, that driver there ore conveys a very mal motion to the driven and longer arm, in certain positions it ceases to convey any motion. For ex ample, in this position, viz., B Q and Q P in one straight line, it cannot convey motion. Patting is in other positions will show the relations more plainly. Observe how slight the motion is upon one arm, and now that the perpendicular from B apon the link is passing from one side to the other the directional relation of motion also is changed. This is a serious question with links; there is a This is a serious question with lints; there is a continual change of the direction and volocity ratio.
Through a small motion of either arm there may be Through a smaal motion of aikeer arm there may what is, for all practical parposes, a commumication of nniform motinn. This is the case when the direction of the links boing produced and meeting
as in K, the line joining K and T is at right englee to the link
On the table are a number of examples of linhs; let us follow the action in this one. A and B are the centres of two equal wheels, P and Q pins near the circumferances, $P Q$ the link. If slow motion be communicated to A, then through the intervemiag long as by the hand or other wise, P Q moves paralled o A B, then clearly whatever be the motion of \triangle it will be repeated in B. This is the principle on
 parallel raler is
made. For, in thi
case of paraile case of parallolism, the line of centres the ratio of the and $B Q$ will be
 constant and equal that the motion is apparently . com great regularity In trath it is no so, for the link can not bo lats to itred The hand by whioh
the link $\mathbf{P} \mathbf{Q}$ has been hitherto salp
ported and guided is now withdrawn and you will notice a failure of motion takes place when the pin, P, is in the same line with $A B$. In may take ; it has the choice either of asconding or descending, and it will probably take sometimes one course and sometimes the other. The nature of the motion is thus changed, sometimes there will be a complete revolation communicated to B Q and a other times an oscillating motion only. Conse-
quently, to place a link quon two arms and leave it froely to act, is a matter that is quite hopeless it continned syetematic action is required. The socond and ihird parts of Fiig. 30 illastrate, by the position of the link and directions of the arrows, what takes place. There maut, therefore, be some
plan by which this link ahall not have a choice of plan b
paths.
There are three modes of doing this. In the one case, if we place a third equal crank, and connect it to the others by links, observe the way in whioh it acta. AC, BD (Fig. cranks, EF (or $e f$) is canksird crank. The link, C, F, D, cannot now leave the pro-
scribed course. scribed or fourse.
fourth or fith
arank fourth or fith crank
may be added, in fact we may tale any num-
ber. and we obtain bor. and wo obtain
system of bars capable

of a very regular motion one with the other; they move parallel to each other. On the table there
are bars so arranged. The link connecting those are bars so arranged. The link connecting those
arms is not free to move, being bound by another arms is not free to move, being bound by another
arm, and the links are parallel in all positions of the arm, an

There is another mode of preventing an nncertainty in the path, by putting an alditional pair of cranks and a second lik. Observe, there is now no longer any reed mocond arm to reain link is compalled by this seoond arm to retain a pro nniform motion in these arms. This is the most simple mode of overcoming the difficulty of varisimple mode of overooming the dimiculty of vari-
ableness in the direction of the link, and it is the plan adopted in all looomotives. You see a link generally on each side of a locomotive, the object being to prevent the accident that has been do-
seribed, which is sure to happen when there is only one link.
There is still a third plan, vis., to multiply the links. Here (Fig. 32) are two shafts parallel to each other, but the ends are not vertically one over
the other. If sou look at this jellow bar [the three sloping bars in Fig. 32 were painted three different colours in the model] Jou will see it is in reality acting as a link. If there was only one bar it might assume a cross position. Owing to the other bars being congtrained to 1ollow the path that has been allotted for them, the yellow bar cannot take a
cross position. Hence this croes position. Hence this by links from one shaft to another as froely and uni-
 ormly as though they were straps. The motion is not very old, heving been invented in 1834, when the Society of Arts awarded盟 silver medal for it. It is mentioned in the illvar medal was presented to M. Victor Banm, member of the Royal Chapel of Manich, for a method of commanicating rotary motion, model of which has been placed in the Society's repository.'

With these three contrivances, links can be safely carried over what are called their contres. These contres are peculiar, and the laws of them are impartant. You have seen that when a link is in Both of those paths cannot be followed. Owing to Both of those paths cannot be followed. Owing to
there being, as it were, no decision on the part of there being, as, it were, no deoision on the part of
the driver, and, in faot, at that perticular point, no motion commnnicated by the driver, it has been called a "dead centre." simply because there is no living motion in it. Mechanics have tried in various ways to orercome a dieliculty which, under the in finence of a fly-wheel, is more theoretical than practical. On the table is one plan. Here is a section of the rertical cylinder of ateam-engine. t cannot move the crank, bat when it has risen short distance it is capsble of acting upon the crank. donhle very short adaitional oylinder cances the operate in this very manall seeond oylinder, at the instant that the crank reaches a dead centre it is thrown over, and thus the crank of the engine is placed in position for the continued sotion of its placod in po
own piston.
On the table are some peouliarition of Hink motion Multiplicity of links leade to multiplicity of arrangements and results. [The lectarer here referred to models, which consisted of cranks or arms, acting under the influence of connected links. They were prodaced to show how rapidly motions could be
multiplied by means of links. In one contrivance multiplied by means of links. In one contrivance there were three links and four arms. These caused eight movements in one pointar, consequent upon one rotation of the first crank. In another grouping of links and arms one revolution of the crank proalternate rest and osciliatory movement.]

LETTERS TO THE EDITOR.
[We do not hold ourselves respondibto for the opinione of our correspondents. The Editor respeotfully requeste poasible.]
All communicatione should be addressed to the Edttor of the Englise Mbotanio, 81, Tavistook-street Oovent arden, W.O.
All Oheques and Post Opllec Orders to be made payable to J. Pasgmons Edwards.
"I would heve overy one write whet ho known, and ao mpoh as he knows, but no more; and that not in thla only, bat in all other subjects: For suoh a pormon may have some particular knowledge and experfonce of the
nature of suck a permon or such a fountaln, that as to nature of such a perion or sach a fountaln, that as to
othor thinga knows no more than what overybody does, and yot to koep a clatter with this littlo pittenoe of his Fice from Whonce great Inconvenioncen derive their
** In order to facilltate reforence, Correspondents when apoabiag of any Letter previously inserted, will oblige by on which it appcars.

THE FLOOR OF PLATO.

[4856.]-The darkening of the floor of Plato, as the son rises higher above ite lovel, is a phenomenon of so much interest and importance (if fully established) that Mr. Birt will probably not be nnwilling to explain cor cain points in connection with it.
I wish particularly to know whether he has by any test proved the darzoning to be absolute. The determination of the comparative brightness of different regions is so uncertain that one can searcely foll what reliance to place on observations going no farther. Plato is as mach larger than any reaion of similar extent in the neighbourhood that I ind it dificoul to inderstand how the relation in question has been demonatrated.
Another difficulty which presents itself on a pernsal of one of Mr. Birt's papers is conneoted with the carres by which he indicates the sun's altitude and the luminosity of Plato. Having drawn a curve to indicato the ann's altitude in laner latitude 50° at the equinoxee, and having asammed a very light tint of Plato (0.80 of his scale) to correapond with solar altitade 0°, and a very dark tint (0.70 of his scale) to correapond with solar altitude 40° (this corresponding clonely with ery remon), he rays of is resthe obromatic curve lien almost wholly within that of altitude, from which it may be inferred that the fall eflect of the man's infoence is ecarcely attained, too." But 40 far an I can jodge from Mr. Birt'e paper, the nelection of the relation between the two scales-that of altitude, and that of tint, is altogether arbitrary. Why should not a medium tint, 0.60 , for example, hare been associated With the solar altitude most nearly corresponding ? This, with tint 0.80 for altitade 0°, would have altered the scale. Again, why shorld not the curre of altitades be replaced by the ourve of sines of altituden, unce the sual inuminatiog power on a eurface varies as the sine of his altitude above the euriace ?
I meroly submit theee points so that I may have Mr. Birt's explanation. I have deabtless miaapprehended him in some way or other.
I must confeas I cennot acoept es deciaive Mr. Birt's remsoning (Monthly Notices, Vol. XXXI., p. 81) that the want of agreement among the curves of viaibility for diflerent apota is at once concluaive that all the variation in viaibility are not dependent on extrancons circumstances, anch as solar illamination, alteration of position on the moon's disc by librations, to. Mroh wonld depend on the nature of the aurface. Take half a dozen or more epots on the moon, each a few miles with angrel third covered ithorer covered hille, a fourth covered with sancer-sheped hollow, s fifth with rolatively minute walled crafors, a airth with hemiaphericel depressionn, and so on ; then these spots would be rery borenty arrocted by rariations in the sun's altitude rith their mean level. As wo see these spote, oven is the bent inatraments and nuder tho bost cond shree and ahould see a terrestrial suriace two or thre handred mile away, it is not easy to toil what the oot for are actually covered as above. But, on the other hand, it seemif unasfo to sappose that they are all alike a to the general confirmation of their surface.)

Richazd A. Proctor.

THE MOON.

[4857.]-I FENTURE to point out a elight error in the rommks of "F.R.A.S." (let. 4823, p. 689) on this direct hen the moon is in conjunction, and retrograde when ahe is in opposition. There is, howerer, no necemary conneotion between the moon's age and the motion of the perigee. The motion is direet (on the whole, during the lunation) when the periget is in or near conjanction or opposition, and rotrograde when the perigee is in or near quadrature. Bat daring the progrens of any lanstion the motion is sometimes direct and sometimen rotrograde, ite oharacter when the moon hat any given age dopending on the poaition of the perigee with respect to the sun.

Haring thought it desirable to go through the calculations respecting the moon on whioh the numbers givan in my anawer to W. I. Brown (let. 4790, p. 614) were based, I dotectod a slight error. The mean advance of the perigee from the node is $4 \cdot 8^{\prime \prime}$ as atated in that lettor) per annum, or almost as -8 as atated in that letter) per annum, or almost as
much over 60° as the former estimate was ander. The mistake arone from my writing in one place $\mathbf{8 4 6} 667$ mistake arone from my writing in one place 846.667
instesd of 346.607 for the mean interval between succeasive oonjunctions of the mun and the meon's riaing node. The ralue now given if the final value, as it is to bo entered in my book on the moon.
It followa that the mean intorval between successive conjunctions of rising node and perigee is 2190-848 daya, or about $1^{1} / 9$ day leas than six years.
hould have writton 18 yoari 11 days for 110 days, I should have written 18 yoars 11 days for the length of the laros. I probsbly wrote 110 dayi (whioh, be it noted, is not oxacky the same thing an 11 days). I having had eccanion to examine the valaee given in our ooks for the moon's mean and maximam librations in latitude and longitudo, I And alight errors. The computers seem, so far tes I oan judge from thoir realta, to have overlooked the oonsideration that the inmum value at the time of maximnm libration in latimam value at the time of maximam libration in lakimaximnm value at the time of maximam libration in maximnm value at the time of maximum libration in
longitnde. The difference is allght, however. Thus I cot $7^{\circ} 45^{\prime}$ ingtead of $7^{\circ} 55^{\prime}$ for the maximum libration in longitude, and $6^{\circ} 44^{\circ}$ instead of $6^{\circ} 47^{\prime}$ for the maxilongitude, and $6^{\circ} 44^{\prime}$ instemd 0 ing 6° for the maxi-
mam libration in latitude, giving $10^{\circ} 16^{\prime}$ ingtead of $10^{\circ} 24^{\prime}$ an the absolate meximum libration. But a more mportant error has boen into ein oxcont of the moon' sure bry rem or a evonth, very inawiy a tith of tho iarthor hemisphere is acconnt the diarnal ibration, which raiser the proporlon to aboat $/ 40$ tha. in Koin's "Das sonnemsilam ae inviaible part of the moon hot at ousb of the Whole arriace. This is mroh better than Arago's (which Kioin adopts) should have been 0.4188 , without taking diurnal libration into mocount.

Bichard A. Proctor.

THE MOON'S LIBRATION.

[8858.]-Thanes to Mr. Prootor for pointing out the mistake in my paper (Eralise Mecmaric, No. 830, July 21, 1871, p. 424), which most probably aroee from my not notioing, at the time of writing, the difierent mirections of the apaidal and nodal revolutions. Although it does not alter the general reaconing, it
necesaitatee correction of the pasage in which it cocurs, which should read thas: "As the moon moves from the point of mean distance to that of her greatest diatance (apogee), the point of interseotion of her equator and trst meridian approaches the centre of the apparent dieo, and as the period of her motion with reupect to the line of apaides is not coincident with that between her pacsages of the asconding and deecending epoch of apogee is south of a line at right angles to the Hrat moridian, which oroeses the apparent dive from north to sonth. When the moon is in apogee under at periges, nothing in longitade, bat a meacurable quantity in latitude ; in other words, the line of libration no longer outs the centre of the apparent dice at the point of interseotion of the equator and frat meridian, but at a point having north latitude, or north of the moon's equator; 80 that when the moon arrived at her descending node the first meridian was still casticard of the centre of the apparent dise [Note.-T T
words indicato the corrections to be made.]

May I be permitted to orier a remark on that part of Mr. Prontor's lettor ((4790) in whioh he atatee " that the interval between succesaive conjunctions of the perigee and riaing node is alightly greater than aix years"? From this I apprehend the reader might infer that the three-yoarly inforval between mean libration occurs altornatuly with asconding and descending noden at perigee, so that at the end of every dix years from any giren epoch of mean libration the return wonld be in the same order. Beer and Midler give the following formula for Anding the intorval. Hall the revolation of the line of aprides $=4.42$ jeara; half the $4.42 \times 9.81=2.997$ years, which is alightly leas than three jears. In 1865, as atated in my papor, mean libration occurred on October 4, moon in perigee, nad desconding node. Six years after, epoch of mean libration Ootober 4, moon in apogee and ascending the deceending node, not the rining. In 1868 mean Ibration occurred on Ootober 12, moon in perigee, just past the ascending node; in 1874 it will cocur on Ootober 11, juat pant the descending nodo. The alternationg are, tharefore, as follows:-1865 Periges :
Deseending node. 1868 Perigee: Ascending node. 1871 Apogeo: Ascending node. 1871 Apogeo: Descending node. Longittudes of ascending node:1865, Ootober 8, $201^{\circ} 127^{\prime}$. 1868, October 7, $143^{\circ} 18.6^{\prime}$. 1871, October 8, $85^{\circ} 11 \cdot 4^{\circ} .1871$, Ootober $8,27^{\circ}: 9 \cdot 1^{\circ}$. Time-8,287 days, being lees then hall a revolation of the line of nodea, and greater than one revolation of the line of apaides. Mean libration on or near Ootober 4 , perigee : Deecending node and apoges : acoending code. Interval, six years, nearly. Mean libration on or near October 11, perigeo : Aecending node and
apogee: dencending node. Interval, six jearn, nearly.

From the above is appears that the conjunctions of the perigee and rising node alladed to by Mr. Proctor, attended with a state of mean libration, take place at
intervals of twelve years (nearly). Mean libration at interrals of twelre years (nearly). Mean libration at
the intermediate six yearly interval ocourring, with the the intermediate six yearly interval ocourring, with the
apogee and descending node.
W. B. Birt.

LCNAR ATMOSPHERE.

[4859.]-The following extracts from Mr. De la Ruo's address to the Mathematical and Physical Section of the British Association are of interest in connection with the question of the moon'a stmosphere :-
"The raporisation of eron solid bodies at low tempe. ratares suggeste that a mass of matter in space will
nltimately surround itself with its own rapour, the nitimately garround itself with its own rapour, the tension of which will depend upon the mass of the body (that is, npon its gravitating evergy) and the temperature. If the mass of the body is so small that
its attractive force is insufficient to give to the envelapits attractive force is insufficient to give to the envelap-
ing vapour ita maximam tension for the existing temperatare, the evolution of vapour will be continuous until the whole mass is convertod into it. It is proved by analysis that sach a mass of kas or vapour in empty and unlimited space is in a condition of unetable eqnilibriam, and must become dissipated by continual expansion and conseqnent decrease of density. It
follows that celestial rpaces, at least within the limits of the stellar nniverse, mast be filled with matter in the form of gas."
"Professor Zorllner Ands, by calcalation, that the mast be $\frac{1}{10^{33 y 2}}$ of that of the air of the earth's surface."

The different tinta indicqtive of the different refleotive powers of the materials composing the moon's surface are conclusive as to the variety of sach materiala,
and from this it follows that the moon's atmosphere and from this it ill owe that the mon'l atmosphere connot be strictly homogeneons, bat mast contain
vapours given off from each material. The question rapours given of from each material. The question
now for solution is the possibility of the condensation of auch rapours in the imenediate noighbourhood of the
moon's surface.
W. B. Birt.

LUNAR OBJECTS FOR OBSERVATION, OOTOBER, 1872.

[488C.]-Ocrobre 5.-Picard A and B of Beer and Midler with other craters in the interior of the Mare
Crisinm (a). Oetober 6.-Fabricius (b), Metius, Steinheil.
 stady if coming into sunlight. Octoher 8.-Ariadmns,
Silborschlag, Hyginus. October 9.-Cassini, Snlpicias Silborschlag, Hysinus. October 9.-Cassini, Salpicins
Gallus, Menelaus, Manilinas. October 10.-Craters snd Gallan, Menelaus, Manilins. October 10.- Craters snd
mountains between Archimedes and Plato. Ootober 11. The Alps and wedgo-shaped valley, the interior of which may be examined for craterlets. October 12.- Plato ; the Hartwell ledge on the S.W. border is viaible as a
fine streak of light fringing the shadow of the mounfine streat of light fringing the shadow of the moon-
tains on the $\mathrm{S} . \mathrm{W}$. of Plato for 48 hours only; if tains on the S.W. of Plato for 48 hours only; if
not detected on the 12th, look for it on the 19th. October 13.-Horrebow, its interior wall dividing the crater. October 14.-Hippalns, its difided interior, diverse floors, and inclnded craters. October 15.-
Wargentin, Schiller.-October 16.-Fnll moon, aspect Wargentin, Schiller--October 16.-Fall moon, aspect
of the interiors of craters, particularly of Maginas and Geminus.
(a) A dectded instance of change has taken place in the Mare Crisium. Formerly, aboat 10 or 11 yearg ago, I coust antly observed under a high illnmination a large
white clondy patch vest of Picard; it wan larger than mhite clondy patch west of Picard; it was larger than
the crater, and on its side under a low illamination, I detected a small pit-like marking, very distingaishable
from the rest of the surfsce by its whiteneso from the rest of the surface by its whitaness. Snbse-
quently, two emall craters were disooverod by Mr. Knott quently, two small craters were discovered by Mr. Knott patch has been mach reduced in size. 1879, Augast 18, about the time of fall moon, when the light spots on the surface are very perceptible, 1 observed the locality,
and made the following record: "The large clondy spot west of Picard is not present; its locality is niarked by a rery faint light spot." The phonomena
lately ascertained as characterising Plato render this lately ascertained as chracterising Plato ronder this
instance more interesting than it would othervise be instance more interesting than it would otherwise be.
(b) On the south of Fabricias is a large depregsion with an elongated central eleration which stretches from the sonth border of Fabricias. It is proposed to name it Janssen.
Attention is especially directed to the region BS.E. of the Mare Seronitatis, containing eeveral dark spote,
among which are Jalins Cæsar, the Boscovioh of among which are Jalins Cessar, the Bo
Schrinter, and the Boacorich of Lohrmann.
W. B. Birt.

THE AUGUST METEORS, 1872.

[4861.]-I READ with mach interest the communication from Mr. W. Davenport, which appeared in yonr last number, having reference to these phenomena, and hope that some farther observations may
be supplied hy any of your subscribers in whose locali. be supplied by any of your sabseribers in whose locali.
ties the weather was sufficiently favorrable. The nky was almost ontirely orercast at Bristol on the nights of Augast 9,10 , and 11, and at Weston-saper.Mare, observation. On the 8th, howerer, several meteore were witnessed, bat they were vory insignificant objects, bright one was seen on the 12 th at thot. 15 mm . It passed down the western sky and left a trail of light, which equalling, or even exceeding in magnitude, any of the brighter stars, came nnder my observation on the 19 th
at 8 h . 50 m . It was risible in the E.N.E. part of the
sky, and was very star-like in appearance. It did not leare any train of light marking the path it had tra-
versed, and it was of a blue colour. On the 20th I saw versed, and it was of a blue colour. On the 20 th I saw
another at 9 h .40 m . It was rather bright, bat its duration was very brief. It passed throngh Ursa Major.
The Rev. S. J. Johnson, F.B.A.S., of Crediton, Deron, says, in a letter to me, "I only asw three meteors on the 8 th ap to 11 h . 30 m . though with clear sky. 9th, a densely-clonded night. 10th, windy. Partly clear at intervals. Watched from 10 h .45 m . to 12 h . The firat meteor glanced through a break in the cloads
at 11 h . Between 11h. and 12 h . I observed trolve at 11 h . Between 11 h . and 12 h . I observed twolve.
11th, watching from 10 h . 80 m . to 11 h . 30 m ., with a 11 th, watching from 10 h . 30 m . to 11 h . 30 m ., with a
clear sky, I saw eleven metoors only. One on the 10 th and one on the 11th equalled 1st mag. atars."
Roferring again to the letter of Mr. Davenport, it will be sees that he found the radiant point of the meteors which came ander his observation was some-
where near 22 Andromedm. The majority of those where near 22 Andromedw. The majority of those
meteors which I observed in Angast last year appeared meteors which I ohserved in Angast last year appeared closo proximity to that star. I noticed several meteors distant only two or three degrees from the place I have indicated, and from their paths it was ovident that a radiant point existed at B Camelopardi. Each of these metoors had very ahort paths, and were faint objects, endaring bat the fraction of a eecond. Several other radiant points of the Augnst meteors have been determined. Prof. A. 8. Herschel writes:-"The chiel radiant point of the Angust meteors, as observed last year, was certainly northwards from x Persei (aboat 3 or 4° towards ، Cassiopeix), and it will be interesting to watch if it remains in this position, or retarns to more soatherly place, near η or γ Persei, or to B Camelopardi. The position of the radiant point in Pegasus was most imperfectly indicated by the many meteor tracks from the soathern constellations, which were recorded among the anconformable meteors noted in last rear's shower ; bat its position seemed at last to be quite distinctly fired aboat 3° north of a Pegasi
(at R.A. 346°, N.D. 17°) wita two other contegno (at R.A. 316^{3}, N.D. 17°) witi two other contemporaneoun radiant points, one at least of them prodacing as many meteors as the radiant point in Pegnasa, and
very defnitely marked at R.A. 342°, S.D. 32° (closo to mat remarkably with a radiant poin at R.A. 338, S8.D. 28, observed on the 28th of Jaly, 1865. The agreement of the positions is complete (al. thoogh quite independent) from the observations of both datee, and it will be interesting to trace the roturn of this radiant point if it shonld occar again among the anconformable meteors noted in this year's Angast
shower." Unfortunstely, however, there have been but few . niortunately, however, quence of the seen daring state of the atmosphere At some station, perhaps, the weather may have been more favourable; and if so, the observations made might tond to an angmentation to our knowledge o the radiant pointa, do., of the meteor shorer of August. There is no reason to sappose that daring the last fer jears the August meteors have become lesa numerons than formerly; on the contrary, it seema
probable from the number seen last sear that they have increased.
In regard to the solar observation made by Mr. J. H. Whietue (let. 4792, p. 614), it is not nntrequently aponse that the ambra of a solar mactila is encroached apon by a laminous vein or spot (facula). Previonsil bright light may be observed encroaching apon the penambra and ambra. This was particalarly the case in regard to the immense apot of September, 1870, as pearance on p. 25, Vol. XIII. of the Evails Meceasic. It is not, however, very often the case that an isolated bright apot is detected in the centre of the spondent had net and it is probable that if your corre would have probably seen that the laminous appear. ance which came under his observation was connected with the edge of the spot by a thin vein or streak of light. Still, observers have noticed occasionally brigh spota within the penambro of macalm, and quite posthe immediate neighbourhood of all large solar apot or groups of spots, the facalze almass exist in abnn dance, and it is not sarprising that they shonld some times be observod apon the ambre or penumbro of the darker apots whan we consider the distarbed condition of the solar surface in which they are situated.
On observing the an to-day with a 4 in . metallic mirror reflector, I saw several conspicaons spots, bat none were of great dimensions. They were situsted on the eastern portion of the diso. There bave occarred lately several exhibitions of the Aurors Borealis. On Augist 8 and 8 I witnessed the phenomenon. Neither several well-marted exceptionally brilliant, thong onveloping the stari in Ursa Major and Anriza. strong suroral glow wis also strikingly manifest on both ovenings of observation.
Bristol, September 2.
Whlhay F. Denning.

INTERIOR OF THE EARTH.

[4862.]-"Philanthropist" (answer to q7. 12681, he elower vibration of a pendalum at the bottom of mine. (In the Hartloy Colliery experiment the pendulam vibrated more quickly at the bottom of the mine ; but that is a detail.) The portion of the earth above the pendulam (that is, all the matter farther away from the earth's centre) cannot under any circomstances oppose the attraction of the rest, bat mus always (in the case of a mine) tend to increase that aftrection. Whether the increase is suflicient to mate
up for, or more than make ap for, the reduotion in tbe actual mass lying nearer to the centre than the pendalum does (ar compared with the mass ao situated on the shape and extent of the mine.

Riohard A. Proctor.

PROCTOR'S SMALLER BTAR ATLAS.

[4963.]-Referbing to Mr. Proctor's letter 4699 , p. 560), will he please to say if this contains as many objects as the larger atlas? He speaks of each being a companinn to a different work. Smyth's "Cscle
is in the hands of very few amatears. Webb's Wort is posseas by overy one, bat it containg many objects not in the " Cycle."
T. T.

GOLF. STREAM AND MAP PROJECTIONS.
[4864.]-To speak of "a map" as "solely intended to give true areas" (let. 4755, p. 588), and having " no occasion whatever to illastrate forms " (par. 2), would strike most peoplo, I think, as mere paradox. The
proper meana of doing this would surely be a lable of mere numbers and namea, as Mr. Bottone's chemical one on P. 578; and I regard the grotesque figare
that Mr. Prootor conceived to illastrate his excellent "Gull Stream" criticism rathor as an awkward table Gull Stroam" criticism rathor as an awkward table
than a map, good or bad. The essay could hardly be said to need any graphic or tabular illustration at all, beyond sach a mental one as most people who havo atliases or globes, or have been to school, woald earry in their eye. The present delage of misapplied Mercator charta, however, infects us all with monstroasly
false ideas of the relative areas of the arctic and tropion regions, Whether lands or saas, nod was donbtless main cange of lands or beas, and was donbtiest a expose. By the way, he surely does not suppone there way anything newer in his views on the canse of the Stream than in my remarke on different map projeotious. In What book, or how I first heard of the "Gale wat at some lecture ; bat wherever learnt, I certainly. at a first Atlantic vojage at the age of 30 , had precisely the same riew of the airculation, its rationale, and its independence of all wind action, $2 s$ now. Congtant eraporation from the hot latitades, only very partially or indp by rain and river retarns in the mame climatis ice, waters from the cald latitndes to the serm. On a globe without land, this would be the nuiversal surface motion; bot its rotation mast make any such ourrents oastorly ones, because oach particlo, going from a lesber to a larger circle of latitude, carrios the slower notion due to the former iato a quictrer moving zons, which it is constanty left beaind by he ground oonstantly moring (relutively to the ground) westward, like the trade winds. Within the range of those wiods, then, the surface of sea, and lowest layer of air, have cach, independently of the other, a set in the same direction. Wore the sea frozen, the winds monld, for aught that appears, be the same; and wore there no air, the sarface water would equally have this set-Damaly, outside the tropics nearly due weatward, bnt within them turning more and more meridionally, as the westrot their maximam. If tha carrents either of air or water. from the two tropics, continued sensible to thair rery meeting, at the warmest parallol (Which shit 5° S.), thoir ancounter woald be direct, one due N. and the othes due 8 ., when meeting at the equator, and equally they oannot ever be traced to within come dogrees of this line of theoretic meeting. Betwoen them is the zone of "doldrams," at the borders of which, bo coming imperceptible, their last traces are atill, in the case of the winds, NE. and SE.; and if we eappose any genoral momentam impressed oy either thase or the direction magt mestward. I am not a mare of any suah predominant set being observed either in the equatoria air or water; and shonld rathar, in a map of carrenta. leave the "doldram" zone blank, as a kind of rast backwater, whose evaporation is the main exciter o iciparrents in both hemispheres without itcol par to great diatances, I never heard of anything earried from the sonthern hemisphere into the northera, or rice verac ; and therefore shoale not, like Mr. Proctor, carry the current lines acrose the equator, bat regar. contained aystom, that would probably be not coneibly different were it made a real lake, by a barrier (instoed of gtill water) closing it sonthward botweem Strait or Parnambuoo, and a cioaing also of Bohring lands joining Scotland to Greenland. Ir any anch greet lake, extending acrons our north tomperate zone, it is easily seen there would be a neceseary circulation in the direction of the hands of a clock; and if it ware in the soothern hemisphere, in the contrary direction The locality of the origin or exciting cause could only enchit in either case, to be tho whe the whole trend of the European and African coasta, tromi Norway to Cape Verde, being soath-westward, like the carrent the gan would excite were there no hand, this tonds to confane mat regularise the motion, and to shrow tho matyy on the Brazilian and Graygas eozato, the groat contral Americman recose ; whoy const-lthe for

Gutate, is no formod as to gather and intenaify the Whole motion into a current constantly more confnea and more rapid, np to its marimum at the ercape
between Oaba and Florida. The islands soath of Porto Rico are too sparse and separated by deep water to
present any obstacle; and Hayti and Caba, meeting
che weitward set of surface-water sbout where its the weitward set of surface-water aboot where it westing (to judge by that of the wind) is strongest,
repeat in their coast-1ines the very trend of the Bra zilian coast, in a latitade where the mainland has coased to do so, and thas contribate in condacting the trap formed by the Mexican currents into the detaining, heating, and concentrating them. Mr. Proctor is cortainly wrong In carrying the lines northward past this Strait, for narigatora have many talos of the two contrary car rents almays ocenpying it, the westward one along the
Caban coast, and the stronger "Florida Stream proper, confined to the northern half of the channel In fact, as We have no drop of blood that has not, Woald seem to be no water in the North Atlantic that expelled past Florida, this gulf acting the part of boiler to the whole self-contained system. Withoat the long detoar, under a hot sun, that the pecaliar form of the and its surroanding lands, especially north-eastward,
woold certainly be colder; and, in fact, we and ScandiWoald certainly be colder; and, in fact, we and Scandi-
navia have the warmeat climates, for our latitude, in navia have
For a map to illastrate any of this (or, indeed, any. thing else), its main concerp is surely with forms. In
regard to areas, all it needs is not to exaggerate neeregard to areas, all it noede is not to exaggerate nse-
loesly the polar regione. Now, Mr. Proctor's wonderful garicataro does, to all intents, more than doable them He has to explain that it includes the whole polar cirole, but as this is oonvertod into a soctor, less ween the whole trao circle makea it equairizalent of that whereot the meotor is a park For no roalising that the seotor menns a whole circle, and two unes nearly as widely reparated as possibio are "ond and the amme moridian," when, if joined, they woald any app to part of a globe. Continuity of sar face is before any correctness of either forms or arean I will renture to asay that, whatever way Mr. Proctor may deane "the purposes he had in vierin in construot ing the map," the very first plate of Phillips' "Library far better. There are three pairs of hemispher maps, eaoh differently divided, and onch also on diffe rent projections, bat none with other than circular carven. The large pair, divided by maridian (as made by dividing ench of the four radii equally and the aircumference also equally, and making every moridian or paraliel an arc through three of the pointe thand de Cormined. It may be called a compromise betwoen the oqual-surinced nad equal-angled (or storeorraphic methods, and inforior for any one parpose, I thiak, to
cither. A amaller pair are divided by the equator, and either. 1 amaller pair are divided by tho equator, and another, of the same size, by the horizon of London and these exhibit the two rational methoda in their parity, the former that of trat areac, the lattor of trae angles and therefore forms, its linear scale at the ox trome margin being jnst double, and therofore scale o
area quadraple, of that at the centre (not double, as area quadraple, of that at the centre (not doublo, as
inadvertently called it, p. 566). Even this variation ol soale I do not call "monstrons," but rathor trifing compared to what is now everywhere thrust npon as by the lazy yercator mapperi, and s oare wo pariz all in parallas (not the morlaians) to aingle degrees, oither would quiter obriato any false improseion, by thrasting Woald quite obriate any falso improasion, by thrasting
prominently on the dullost ove the fact, and procise prominently on the dallost ore the fither, and procise projections would have given Mr. Proctor the whole contents he has indicated, in less space than on p.
c99. From the frrt of them, the equat-sarfice map, with poie in the centre, all that is north of the equato might be directly traced;
atereographio with Lrom the othor, the
in the centre, the meridian andeographio with London in tho centre, the meridian 40° eastrard; for it happens, oddly onough, that th latitade of London is exactly the middle parallel he requirod. Ho goen houtionara 10 beyond tue equator cey $6: 30$ trom this parallol, and northward 287° besond the pole, giving also $38 j^{\circ}+{ }^{23 j^{\circ}}=62^{\circ}$. Only tro ex-
treme points are beyond 60° from the centre, and at freme points are beyond 60° from the contre, and at
this distance the stereographio incrense of scalo is bat this distance the steroographio incrense of scalo is but
an $\sqrt{8}$ to 2 lineally, or 8 to 4 in arou; few maps that in. olade more than one country having to little variation With degree parallele marked as abore sajd, I shoula call it perfectly "immaterial," or incapable of mis-
leading, even if involving the making $9,000,000$ square miles in one part equivalent to $1,000,000$ in another Which " monatrons" differenoe, however, to which Mr. Prootor leaps, conld by no moans exint; for it in only in two extremities that, perbaps, thirty sqnare miles al
the atmost afe swelled to the area of forty at the very centre. From the other map of Phillips, however, he had only to trace one rigoroanly equal-surfaced, if that Whas his crotchet.
If this or any of the mapi to which I have seen his name are fair specimexn of the "thousand "alluded
to, p. 588 , I ventare to say that he thinks quite erroto, p. 838 , I ventare to say that he thinks quite erro
neonsly he has "a mnch wider practical experience o all modes of projoction than ' E . L. G.' "' Not that mean to imply his experience may not have extended
to some reasonably well-planned maps, but that it into some reasonably well-planned maps, but that it in-
cludes far too many bad ones. There is one set of his cludes far too many bad ones. There is one get of his
star map! which, though bad in style of figaring and
almont every matter of detail, are in reality the best projection for their parpose, the twolve gnomonic dirclee muoh better 12 pentagons; the name 1 had bat wa sesured there n another dozen, howerar his planispheres for each ocond hour, on the horizon of London, the constraction is as ill-ohosen as poseible. The steroographic (in this case the easiest by far) was the only right one, not only because alone giving each oonstolintion ite true form, Whether high or low, but having a pecaliarl/ happy adaptation to this parpose, by its eniarging their scale owards the horizon oractiy as our common error on jadgment makes them seem largor, as noted in the recent lottora on Perapective (Mr. Prootor'p, 4700 p. 560, to.). As we grow older, this fancied differance of scale between the same object when isolated high in the Bky, and when adjacent to terreastial objects, diminishes; bat I woll remember, as a boy, estimating the lineal soale of the constellation Lyra, when at zenith or the north horizon, to difler as 1 to 2 . Now this is the precise difference that a atereographio projection of the whole risible sky (the only one preserv ing the form identical in both positions) actually gives There is no kind of map, terrestrial or celestia, velloresly little donbt, as this wherein the "wide prao tical experionco " wandered so hagely antray
E. L. G.
[4865.]-Is "Ooeanic Ciroulation" (p. E00, ante) hare is a quotation from Manary oontaining statiatio tation to that edaced by Mr. Prootor, who followa Cap tain Marry's line of ronsoning in the particular sentonce referred to. Writing of examinations of log books, Maury sayl: "- The reanita show that within these latitades -and on the average-the whan from the north-east is in excess of the wind from the soath west only 111 daya out of the 366 . Now, can the north-eall tradee, by blowing for less than ono-third o the time, cinse the Gulf Stroam to run all the time and without rarying ita ralocity either in force or prevalonoe." If the wind bjew from the north-east onl for 111 daye in the year, the deduction would bologica that it bler from that point for it stands, but mais is not how the quotation reads. daring 255 dayi equaly from north-eact and from nonth-wosh-that is to nay, hals that thme from each point; and that, benides this, it eloo blomia for 111 day that the rind from the north-enst is in excons of that rom the south-meat for 111 days 9 so that it may blow bat 127 Cys from the south-west, 127 from the tho north-edist, or 2381 from the latter point, and not 111, or "lest than one-third," as Many ressons, unios he atates what he does not mean. As an approxi currents is so important in any inquiry into the ortgin and maintaining canane of the Galf stream, no always so competent to do.

E. IL G_{2}

[4866.] - IT has bees to me a source of wondermen hat no notice appears to have boen taken of that ox
raordinary commanication of our "roaring lion" (let raordinary oommanication of our roaring lion (let.
4030, p. 511). Obviousily it is tho interost of any body (heavenly or earthly) to avoid colliding with a 00 me Whose vapours are protty certain to condense, upon ond adjoctives, but, notmithat onding and nerertheleas, in the interesta of social and moral progrose, I desire in the interesto of social and moral progrest, 1 desire
 andor roview, whaout mahing 4
Δ gentleman of tbe order of mind of "E. L. G." should hardly need reminding that the bare announce ment of mental deductions, deciacaly in marnace of the time, on any suajoo apon which the world jutarge almost aniversally holds oppboite Nown in juat time
lost, and the labour expended in hammering in repug nant othics into onprepared minds is, like trying to drive a wedge mrong end arat, a simple wato of energy
comothing like attempting to teach a echoolboy the principlos of geometry by beginning at the tenth book principlos of geometry by beginning af ke ronth book any new theory, more enpecially when it comes recom mended by such language as "pollating debasement of soal ; such damaing aud onaiterable traths a now anderatood." What can the uninitiated make o
 seqnence of argament to convince their sceptical minds ${ }^{\text {Langrage admittedly loses weight and force }}$ from a anpertiaity of big words, and ospecially when
thandering maledictions are harled broadcast at what people hare, in their ignorance, como to regard as jast and proper things, howevor mach such hiag may cated up to the requisite point to see the fitness of the denanciations, the only effect of such atrong langrage enthasiast or a fanatic by the ordinary reader. Toach the pablic scientifically-by which, I mean begin a "equitable commerce" as "Sigma" teaches of eloctricity, do., or as S. R. Bottono teaches chemistry-by glognding the learner in first principles, and present
ing to his mind a coloreut and intelligible esstum and then some one may give attention to the sabject
bat, unil then, it will just bo the old complaint-" We
have mourned unto you and ye have not lemented." I believe one mind out of at thoucand onanot toll That E. L. G. ha ariving at, and the mercantive mind on whom the fre is directed-is quite capable of taking ap the dofensivo attitude againat such aweoping print iples, coming as they do, recommended by avorments ede batcher, baker co., by establiahing ahops and hopkeepers of their own, had better for mankind not have been born." And they sedly noed onlightenment to the meaning of competikion in righteousness, instond of dark poif tilching. Is the above meant to a away with private entorprise for all fatare time, and m I 4 rogas and owinder bocause I don't entertain he pablio with a schedule of my pronte, every item ol which would be, of coarse, unquentionably trae ? This s how the majority of readere underitand the argament and reason apon it. There aro also men in the religious world anflecently captions to considor as an attack on Christianity - and not withoat apparent reason-suoh indoctrination as that combination gainst the trade almas, and tor the restraint of 'trade' as now doined [how if the the omy raligious act possiblo on as English of these daya, the only worship of the Almighty." This is one way of setting about the edacation of the masses of us poor ignorant readers into sounder commercial and Ohristian princtplen. Bat, if may venture to generalise, the chances are a thousand to one that those anxious to do What it right are detorred by uach a parage as last quoted from giring the assertione which appear in the ameme company a second or serious thought; they will conalade, probably, that mach learning hath made him med, and perhaps this is the correct explanation of the fact hat no one seomi to have taken the trouble to notico them. At any rato
 smart sentoncos an instanced, is nothing short of inja. rious to the canase the anthor has in riew-whatover that may be-and, ar a had waste of the precions space of "our " journal, is, I think, to be deprecated.

OHANGES OF LEVEL IN LAND AND SEA. [4867.]-Tras "Antiquity of Man," quoted by "San] Rymea (let. 4819), is the only one of Ljells books th firat appearance, haring till then been in as com. plete fog as Mr . Taylor and others complain they now are on this intareeting queotion; for how long, before the great revolution of Aity centuricu ago, can traces of man be carriod back? Cuvier, while irrefutably proving the dato, dimultancity, and racineas of that event, was iquorant as to wholher man oxisted before it, and even Mantall and Buckland seem to have been without posiplaced beyond donbe by antedilarien homen traces, both in Farope and Americes bat whethor going back one or ten thoneand reart carlier I was quite in the dark. Now Lyell' book, though puroly negative, seemed to settio the absence hitherto of any evidence for mon above a fow oenturios beioro that catartrophe; ecauce nothing can be plainer than his great desire to make ont an extreme antiquity, unless his complete bsok. If " Gani Rymen" oco boyond th or boot through he woald find, I think, the most etriking and novel leatare to be the vain attempt I noticed, to maze a geo-ohronometer of what in the moet utterly anoertain and andt of all known motions for such a purpose, the insensible rise or fall of land; on the aesumption of for moment almays areraging the prosent mean rise ond, and elightly initing at the other !). Raised beaches rather tostify a long former resting at a certain level than a raising by jorka. But at all oventa, let books, and Lyell's particularly, be oxamined for facts and not for opinions, or with any anch superstition a that "there must be" eomething "epabling geologists to arrive at an opinion," this or that; which is the assence of Medianal grovelling and obscuration On
E. L. G.

MONOLITHIC BUILDTNG.

[4868.]-I Rave been much interested in the lettere that have appeared in "oura" on thil sabjoct, and hints or details of working, cost, te., will not fail o small ronidence for myself in the reighbourhood of Birmingham, and would like to have some idea of what Birmingham, and would lize to have some idea a wiperabundance of " siller," I Want as mach good, substantial work as I can get, is these high-priced times, for my money. The sort of house I fancy is one with two iving rooms, each about 16 ft. by 18ft., kitchen about 2 ft . square, four decent sized bedrooms, and all necessary offices. The rooms about 10ft. high, walls of onorete, floors and ceilings of rolled light iron girder with ooncren archer als bjat it. aparg, ject of aping com, a pror in the kitchen, ranning a 410 . pipe round the rooms with a coil in some convanient place in the room. Vontilation by means of a pipe carried from the ceiling I each room into a shalt kept warm by boing placed ontignons to the kitchen fine. The rool I should have ast, or with only a very geatle slope for drainage, and araraparbour wherein to enjoy the fragrant weed, and tike a lonk aronud. Any remarks, scis iestions, dic. mang others besides grady received, itare Brix.

GYROSCOPIC MYSTERIES.
[4869.]-I bIG to offer the cases of a wheel or hoop trandied along a level surface far the consideration of those who are perplexed with the subjeot of rotary motion, at afording instanoes under dirorent con ditions to those given by tho spinning-top; with rapid motion such bodies aro stable, and thay fall at the valocity of rotation diminitheo. No dobt clagr me chanical Ldeas are requineAn or comprenending gyromooptod my a courco of "popalar" reading, and it is in partod by a courre of "popular" reading, and it it in it in imposaible to give a popular explanation of gyroit is impoasible to give a popalar explanation of gyrocoopio motion, subtlotios of mathematical analyaia, including "polhode," "hespolhode," "couple of impulse," "allipsioid of hodet "onp "reciprocal eurface of the momental allip gyration," to reccount for individual cases. This I ahould shid," is practicable in the same way that Airy has in popalar language explained the runar hovory and more than a "popular" knowledge of geometry and memore than a "popaiar knowleage or geomekry anime chanice. Gyroncopic motion should think, be oonsidered subject, but need not, I shouid hink, be oonsiacred beyond the paie of principlas al figice furtheat from the blow of a bat, that doos not sting the hand, withont a mathematical demonstradion respecting moments of inertia or or I may be wrong, but I apprehended that for indiar I may bo trang, ridual canes there are aloarer (or I ahould say aimpler) methods of explanation than tho process of intior
goneral mathomadical ence, for I hare read noither Polnsot's or Roath's treatise on the anbject, and it is traly caid that one thing becomes very clear to the unprojudiced inquirar after trath-riz., the amount of his own ignorance. This romark may apply in my from Routh. I do not hnow to whom the italicrure due. - In the game of cup and ball any motion canced by a wrong pull of the itring or by gravity will not, if the

DR. CARPENTER AND GEOMETRY.
[4871.]-Tre axiom that " the whole is greater than a part" reforrod to by "Tyro," q7. 12860, p. bst, cannot be demonatrated, beczase we canno pxporiment on every whole and every part. It can only be illuatrated by oxamplo. Nothing ean make in more obvioas than it is in iteolf. Nor can we prove In any way that two straight lines cannot inolone apaco. Our concoptions of
the axiom obrious to an.
By the way, Professor Cliflora, following several By tho way, Proiessor Clinord, following roveral in the pogaiblan and Engliah malhomaticiann, hold in una poriblo non-aniraraalis of the urath of cartain of Exourer Mecrumio Thalr bipothenis ramber conceptions relating to. 1 or of hyphosis is that a concoptions ral dimentions so our common idene rapmo dimensions, so our common ideas relating to apace of three dimensions may not be true with respect to
possible space of four dimenaions or more.

Riobird A. Proctor.

THE PLANET JUPITER

[4872.]-Now that thic planet is recoding from the run, and will soon be favourably cilualod for tolescopio oxamination in the morning hours, the two followin dretches of his appearance (mado in the oarly part o he present year), may o conalered hilerening, and dra dravinge of the planet that will be mede during the Fig. 1 repreenta the
Fig. repreanat the planot as observed January 5 , 1872, at 15 h. , by Mr. E. B. Knobol, who emplojed an min. silvered glase refector, power 212 Fis. 2 was mays :- - I should call attention to the orions suobel akys:- I should call athonion to the curious nlanting siatent. I obsorved it frgt wn han been mott por aistont. I obsorved it inge on Javary b, 185, and April 11, 16, and 28 . This alanting etry, Febraary 2, Mr. Birmingham's iketch in the Atrong streak is ehown in
bat have falled to 200 how it supports the fallowing monesrous amsortion, made, not excoptionaliy, in a mainknown work on perapective: "Parspective in asid to bo objeot of represenang an objoct, or comarinacen as thoy would appear to the apectator looking throagh a sheet of glass or window interponed betweon himeds and the objects to be delineated. This sheet of glan or window is a most important feature in parapective drawing, and though vowe are more frequently takem in the open air than from a room, an intervening ebeet of glase, or transparent plane, is alvays supposed to oxiat botween the apectator and the original objecte, and this sapposed intermoainto plane is called the plane of dolineation." Now, I think I have proved that thin shoet of glase will show convargence in the tower, and therefore we cannot use it an above adriced as a guide to pictorial representation. In feet, the glaes woald delineate what we see, while our paper or canvis mand from one point of view exhibit what we do not cee, in order that wo may by means of thil opaque plane of dolineation produce the required eflect. I have not maintained that the tower mast be made to converge on the canval, but that, considering the way a picture is genorally viewod, the artint may, if ho thinks ith make it do so. The quention is an artist's and not a mathematician's.
M. Pame
P.S.-I do not profess to be a mathematician, but I rentare to doabt the ascertion that two planes mant interseot if one plane be parallel to a given line in the other, bocause the $5 w 0$ planos may be themsedroe
 and hat egrogioualy failoa. Kin lotior is qaite in tho atyle of Bazfaz to that hiapia witneex, Waller. If wo had lived in dome-nhaped houcoa wo ghould nover have heard of a plane of projection or dolineation. It is a purely tochnical mattor, and adoptod to meat the adrgencier of fiat mura decoration. In this queation didere are three thinga to bo takom reparabily into coradoration, the tower, the toechar's ghoet of glees, and the olzotaher's paper or canava. The hines paeing through the glees, if fixed, woald not eoincide itis
those drawn by an artiet on an opeque plano, zecmine

ball is spinning round a vertioal axis, prodace so great ma havo domo if the bll had been initially at real": By geinning the ball the verticality of the apike hole in no donbt secured against the disturbing eflect of a side pall, or if the spike-hole be alightly inolined, it is steadied by rotation of the ball from the eflect of any upward vartical pall, but I ball from the oflect of any upward vertical pall, but I cannot see how the action of gravity is moditied by the is tatien into conaideration, whiah would affeot the homogenaity of the ball, and to a rery alight extent in comogenaity of the ball, and to a rery alight extent in certain positions its motion marrected by gravity, tong the verticality of the ball's axis, so that there only ppears to remain for concideration the parabolio motion of the ball, which is independent of fars rotary motion and mininizenced by it

THE BRITIBE ABSOCIATION, $\triangle N D$ TEE MECEANICAT EQUIVALENT OF HEAT
[4870.]-THE British Asecciation appointed a committee to invertigate the anbjoot of the mechanical equivalent of heat. That committee has been sppointed now three jears, and has drawn money for its expenses but has not made public a single word by way o report, or given any reason Why it has not done so. sent in a paper on the subject so the Mochanical Section, but they anid that as a committee had been appointed to investigate the matter, they thought i better to send on the paper to them. In the Chomica Section I took an opportanity of denouncing that part of the theory which makes - $278^{\circ} \mathrm{C}$. to be the absence o all heat, or abeolate zero, and I could not find a single member the dend the point. On the contrary, one of took the same view of the took the same view of the subject as myself. From an article in the London Quarterly Revicu, it would appear that Joule himself has in some way modifed or given ap his theory, but the writer, though anthorised by Joulo himsolf to say what he esya, spoaks rather ambiguoualy.
Putney, Sept, 2
H. Hreaton.
or Februery, and is also mentioned in the March number as having been observed by Mr. Gledhill on Fobruary 2, but I can find no notice of it by any observer prior to January 6. In my sketoh of Jupiter usde on Janaary 5 , the slanting atreak is not shown so oxtensive as on the following evening, and it would be
inferesting to know whether my drawing of Jannery 5 is correct, or whether the streak was obeerved, prior to that date, as fally developed as in my akotoh of Jannary 6, or Mr. Birmingham's in the Aetronomical Register."
In Fig. 1 a well-defined, cireular, dark spot is delineatod near the E. limb and just 8. of the equatorial belt. This object was the shadow of satollite 8 , Which ontered npon the sarface of the planet at 14 h to mention that the belts. Knd dart apaces in the eqne to mention that the belts and dark apacea in tho equa. corial zone of Jopiter
Bristol, Septomber 8.
Williny F. Denaing.

PERSPECTIVE.

[4873.]-Mr. Proctor (letter 4802, p. 617) consider hat farther reaconing would be thrown away apon mo becanse I spoke of "plamb-lines converging in the zonith," but Mr. Proctor himself, in letter 4621, p. 509. staten that the "ranishing point of any plamb-lines in the zenith," so that I fail exactly to see wherein I have so grievously erred. I take it that if two plamb-linee were placed a few feet apart the convexity of the earth would not provent their appearing to vanish in the zonith In another letter Mr. Proctor intimates that I am mak ing two parallel straight lines inclose a spece optically; that is quite possible, just as it is posaible for two parallel straight lines to meet in a vanishing point. I grieve to state that it is many years since I limped over the "Pons Asinorum," and therefore I may forge my Eaclid. I cannot remember any proposition in which thore was a plane parallel to a given line, and I am sorry Mr. Proctor has not favoured us with a diagram showing this case of parahelism. I have, how.
ever, carefully looked through all the portion of Enclid he recommend $t 0$ torchingly to his youthfal protegés,
perfection of work and the porition being the eame; therefore, even if Mr. Proctor's rider held good for the paper or canvas, it would not for the gleas, to that all writers on perspeotive, as far as I have studied theen are simply misleading the stadent. I oannot see that solid geometry is involred in this matter; we are dealing with a superticien, i, e., the thee of the tower.
M. Paers.
[4874.]-Mr. Prootor (let 4802, p. 617) misquoted me, and places his misquotation in inverted oommer. by not asy that a rertical line should be represensed be representod vertical bertioal line shoul line mont, to appear restical, be in the exeot pocition to which the axis of the cone of vision is pointed. Let this vertion line be A, let there be two other naturally vartionl hime BC at equal digtances on cach side of A, let all three lines be produced to the raaishing point in the zenith, then A , though it must be repretented by a vertion line, will in nature appear to bend over the ipectatior in a curve; tho lines \mathbf{B} and C will also in live manner bend over to the zenith, and being both convergent to A, they must appear to reach the zenith in curree in the mame plane as $\mathbf{\Delta}$.
As to Mr. Prootor's ancer about "that singalar ourve," it is qaite beside the mark. I meant the word singular in the colloquial rense of ourious or romertable, not as solitary or unique.

Boso.
[4875.]-THERE have been lataly sevarel lattare upon this sabject, and plans to enable s person to draw correctly. Thos are all troublesone, mare or leas. I onable a a description of a small arair I maco to so. It consista of two pieces of thin to atech to do long and chista of two pieces of thin wood, sbout 81. us andin. wide, jointed about 2 in . from one ena, so pendicuen and shnt. To nee it you tr upom one per papicular line, or any straight conveniont jine, and apply the inner edge of one long leg so tes to bo parallal to some other pert of the object, then: lar the
nstrament down upon the paper and mark the two ineu, and so yougo on. I hare now before me a drawng very nicely done by a young lady for whom I made ng ve, and who could not sketch at all, bat who at once noceeeded when uaing my instrument. The pioture is rocceeded when uaing my inatromenk. The pioture is saintaining trees, animals, houses, church, and so on, o that there wae a good deal of work in it, and show 20w easy the ingtrament is to use.
E.T.S.

ORNAMENTAL SLIDE-REST.
[1876.]-I sEND the drawiogs and description of the long promiecd alao-rent:rade of alde-reat, drawn isometrically to avoid three news of one rectanguar object, and will be under itood at onco. Fig. 2 shows the whole of the principal sarts of she side-reat taken in section throagh the niddle of Fig. 8, Which showe the shape of either end 3f the slide; the apper piece is cast open the wiath of rection forming the conneotion with the stom B B. $\mathbf{A} A$ is the sooket in which the atem is oarofally itted; the lower part at right angles is grooved on the under ide in the usual way of a T rest, to carry the head of holding down bolt; the breadth of this piece is shown in Fig. 1, Where the bolt is shown in position. I shall
retarn to theee two pieces later on. Fig. 5 is side view of the alide which trarele on the face of Fig. 2 ; Fig. 6 is plan view, and Fig. 7 end view of the rame; Fig. 6 is plan view, and Fig. 8 is the tool-holder slide, Fig. 10 nide niow (adjusting serewh remored), and Fig. 9 end
riow in seotion through $A B$ Fig. 10, this alide, of
a (Fig. 12) is tapped to oarry the sorew, retained in poaition by a small plate bearing againet a ahoulder on the serew, and fastoned to the stom by three small crew (not seen); the end of oylinder is shaped like a ∇, and the atem of the rest has two similarly shaped gronves cut along the whole length at right angles to Now if the titenis is liccted, end the oylinder is in tho position shown in the dreving the cylinder is mo posion its centre in any direction bot if it is righed to set the rest to either of its right but il ing wositions it is readily done by moring it ronnd angled poricie (by estimation) and then by troning quarter circle cylinder mill force ite wey into the groore, and et the cytem fast in the required position, the and of the mall sarem ceen bedded in the thickness of the atom works in the little groove on the upper side of the oylinder (Fig 12) end teeps it in proper position The lomer erd ower on 0 , of ohich the and aplindricel part is accuratoly fitted to a hole bored up in B . on the ith holes drilled ronnd the cironmference for tnrning the sare fith a lerer. For the parpose of canaing the crev to dre the slide down as roll as posh it np, recens is turaed avay mear the top to the depth of the dark sheding, and to it is ftted a toel ring ont in halves, and tept from revolving by the points of two plit-headed pres hioh beer in a hallo hole drilled in eson helf ring Thers is nothing in the conetraction of the npper alide calling for eny parti. calar explenation, berond that the shaded piece Aseen

SOUND OR UNSOUND THEORY.-To "F.R.A.B." [4877.]-I TRUET if I again trouble you on the above subjeot you will attributo my doing 80 to my earnest desire for that knowledge of which I foel myself rery deficient, and not a
mination to have the last word.
It is on the fact that " confned mase of air may be made to vibrate rhythmically "wo build all our organ pipes and similar contrivances, but to enable this faot 0 augment the mere lo aness of the sounds proacoed by vibrating boaies (be they lamburi, bars or plates of wood, glast, or metsi, or even soundboards moved by (ritions that the gaid mapposen it was an escential oondition that the said massel of air chould be of such imenaions that their vibrations muat aither be tion to, those of the vibrating body thich cancen their motion or communicates its motion to them.
When a taning-fork or bell is employed to perform When at perform the tanction of the reed of an organ pipe-ic., to put the air in a tube into sonorous vibrations-it is pouring waterinto it, antil ite apper portion becomes pouring water into it, until ite upper portion becomes auch that it vibrates in nnison with, or harmonic is is tion to, the fork. Under these conditions the phenomenon termed resonence is porerflly dereloped bet menon termed resonance is powerfally developed, bat ve do muoh the eame thing by reverse means when and alter the length (and consegrantly its rate of ribration) of an orgen reed antil ita jurations beoome nearl) if not gnite-it anold be quite-aynchronons arly, if mot quite-it should be quite-nynchronous with
those of the air in the pipe.

course, ate into Fig. 6 and 7. Fig. $8 a$ is an end view 0 ? one of the piecen into which the edjusting screwn aro tapped. This rest 3iffers in two essential points from those in general ase ; one is, the means farniched for for setting the reat parallol, or at right anglas with the lor setting the rest parallal, or at right anglos with the tarn to No. 1, this picce is cast solid, and atted betyeen the beareris of lathe by ita mid rib, if the heads of the lathe it internally; or, by the onter turipa, if outaide bttinga, in which cace the end otrip is separate and attingh, in which oace the ond otrip is separate and by the sadjanting scrown, of which the cornors aro jant oeen in the drawing. To this the parallel tail piece of the in the drawing. To thin the parallel tail piece of and bandle 14. The alip is dircalar, and hat a alot of the diameter of the bolt cat out from circamference to centro, to admit of its being olippod on or oll the colt, which enablee the wholo apparatus to bo lifted ofl the lathe bed vithort dieconvecting the aradle. The long alide has its cerem and nut as nacal, but the ende of , ecrew are carried through the rest, and the cranked onacte are carriod throagh the rest, and the cranked
handle Ata both onde t the right-hand end of serem ats handlo Ata both ends ; the right-hand end of scrow ats circumference into fifty divinions, which read againat a scratch on the apper face of slide, which is divided tromaten to the appor ind in inches and tenthe, so that the cooth of an inch is easily read ofr. The nocket $\Delta \Delta$ hat two airoular projeetions at right angles to each other, one carrying the tigbtening scrow as seen to the left, the other $d d$, shown in section $d d$ Fig. 11, and sapposed to bo broken ofll to thow ite construction, whioh is meraly bat of a miniatare oylinder poppot head ; the cylinder
in the moath of the pent house (as we call the toolholder in Fig. 9) is a loose piece planed to at the width and height to contre of the orasmental tarning tools asaally sold in sets; the two pillara standing up in Fig. 6 and 7 are the atopa for the adjuating ecrews of tirely the holes and oblong slot in which a forked lever works when the alide is disconnected from its drawing sorev. A friend who made a rest of this pattorn, and Who had tin. more to spare in the height oi his centre, improved on the apper part by putting an additional slide orer the one shown (supposing the pent hoase cat away) pivotod in front, and cocured at the rear ond by a milled headed screw working through a quadrant: this enabled him to set the apper slide to an angle withoat moving the stem of reat. The description of this tool has reached a very anoxpectod length, and will appear tedious to some of your readers, bnt it mast be borne in mind that I am writing for the information of such an may be inolined to try thair hands at malding the tool, and who may not have any opportanity of inapecting one, far leas of palling it to piocen. In congalanion, the pent houso topl-holder, as will be ween, can only take a drilling or catting instrument of rectangular form which can alide through it from one or other end, therefore, if it is proposed to nes the ellipeo or rose euttiog framen, which have tangent whoelis on the ond, another form of tool-holder, called the roceptacle holder, mast be sabstitated; in this the tool is dropped in from the upper side, and hald in pooition by a pindhing screv pasting through a rectangalar piese aliding in a receses planed ort in the apper part of the holder. WAEEncue.

Wagenan.

In the instancos of the harp and violin little or nothing of this kind is effected; traly, some very rough app proximation is aftemptod in the former by makiak ite "box" larger at the base end than at the troble. Evan this most primitive attempt at correct proportion is as it may ont in the ordinary violin, excopug enbio capacity of a viola greater than that of the violin, that of the "collo" yet larger, and that of the contra-bace of of the collo" jet largor, and that of the "antra-biant" varying dimenaions antil it bocomes "the giant"
No. 204 of the catalogae of anciont murical instraNo. 204 of the catalogae of anciont manical
ments at Sonth Konaington Masoum. It woald puzzle menta at south Konaington Masoum. It woald pazzo Apollo, sithough the god of manic, ane the bargain, to make one organ pipe which nine into the bargain, to make one organ pipe whioh shonld produce sounds whone pitchas vary from fidalo
G to E (not to any the F abore in altiseimo) without ito length andergolng any altaration. Now, thir is jast ite length andergoing any altoration. Now, this is jast and belly of a tadde (whoce volume is unvariable) mast do if it really be reconant to all the coande of differont pitchee lhich the raried lengthe (and concequent varied rates of vibration) of its atrings compal its roundboard to produco.
It will be andarstood the above obserrations apply only to loadness. That the included air may-probably does-modify the soundboard's vibrations, 30 that the timbre or quality of the sounde we hear difers conaiderably from that of the sounds we shonld hear, were the soundboard "naked, and not achamed," as it woald bo, if both its sides were exposed. Perhaps the "mo-lioration"-as the old karpsichord makers were acthat alighly anesvoary "man and brother," the nigger's

Very primitive banjo may partly be cansed by itm not
baing＂backed np＂as the late，chitarrone，theorbo baing beazed ap was the very different proportions of and mandoline are；bat the very different proportions of of its sonndboard，seem to me qnite sufflient to soconnt for the superior quality of the tones of the gaitar to those of ita＂black brother，＂withoat any aid from that＂bsoking ap＂long since disused in the pianoforte．
As regards making my fiddle．I mast quote the As regards making my fidde．I must quote the
wise Frenchman，who said ol let us wait awhile，so that Wise Fronohman，who said＂let us wait awhile， 80 that prool of the padding is in the eating，＂and no one conld proos of the padaing is in the eating，and no one conld experiment，even if unsuccessfal，becanse liko the announcement＂Dangerous＂on thin ioe，it saves or should save others from being lost．It is my fall in－
tention to have this＂padding＂made，but before doing tontion to have this＂padding made，bat before doing so I should like s．trifie more
especially from Mr．P．Devidson．

The Habmonious Blacesmith．
the primitive condition of man．
［4878．］－Sir John Lubbock，in a paper read before the British Associstion in 1867，attempted to show that barbsrism，＂and in order to prove it ondeavoured to barbarism，＂and in order to prove it endeavoured to
establish the following propositions：－1．That there establish the following propositions：－1．That there
are signs and traces of＂stone age＂in most conntries， are signs and traces of astone age＂in most conntries， Which prove the barbarism of are aigns of progress among sarages； 3 ．That there are traces of early barbarism
asong civilised nations．Let ne briefly examine each among oivilised nations．Let
The phrase，a＂gtone age，＂is，of course，ambignous， ince it may mean either＂polished stone age＇＂or
＂rough atone age．＂Now，no one for a moment would ＂rough atone age．＂Now，no one for a moment wonld hold that polighed weapons indicated＂ntter bar－ barism，＂for they were used by ancient civilised and it needs but a glance at the beantiful polished stone axes，figured in the recent wort of Mr．Erans on
＂The Ancient Stone Implements of Great Britain，＂to see that their makers muat have been very far indeed from a condition of＂nutter barbarism．＂It mast be， from a condition of atter barbarism．It mast be，
then，to the＂rough mitone or Palaolithio age that
Sir John Labboek refert，but here again the question Sir John Linbbock refort，but hore again the question
arises whether＇it is the poriod of the bome－ceres or thises whe ther it is the pravels which is alladed to．If the former is meant，then the statement that these ohow that the primitive condition of Man was one of＂ntter
barbarism＂is aimply contrary to fact，for pottery has barbarism＂is simply contrary to fact，for pottery has
been found in some of the oldest caves，and the oldeat skall frome the caverns（the Engis）might have con－ tained the brains of a philoophor，while Dupont has
shown thatit the time of the boncecaree an extensire trade was earied on between France and Belginm． know what earied on between brace many thought to be of know that the bone－caver are by many thoughe to age as the river grarels，but Mr．Flower has the same age as the river grarela，but Mr．Flow har has
lately shown（Anthropological Journal，1872）that the idea is refated by palmontological and geological evi－
dence．It mnat follow，therefore，that the＂stone dence．It must follow，therefore，that the＂gtone gge＂meant by Bir John Labbooz is that of the drift－
 remain of them exoept their weapoas，and thene alone
are utterly insafmaient to toll ns how ctrilined or bar－ are atterly insamaient to toll us how cheilined or bas－
basous their makers were，for very rude stone wea－ pomery exist among semi－civilised triben．Thas the nativa of Nev Caledonia have the roagheat stono－ pointion jeveling and yet Captnin Cook bays their piane than one story with carved door－ponts，and they made pottery，which is is iteoll sasign of considerable pro－ gress in civilisathout If tane rough weapons alone re－
mained of the Now Oaledonang，how very fallacions mained of the Now Caledonians，how very fallacions drift implements，that of themselves they＂afford bat drift implements，that of themselver they＂afford bat insufficient means of judging＂of the civilination of
their imakers（see＂Ancient Stone Implements＂p．573）， their makers（see＂Ancient Stone Implements＂p．573）， so that we may dismiss the frat of the
tions with the verdict of＂not proven．＂

The second is－＂There are signs of progress among savages，＂but here it is plain to all that nnless tnese from inaided efforts of savages，and not from foreign from unaided efforts of savages，and not from foreign
influences，they are atterly negeless；when，therefore，wo infuonces，they are atterly useless；when，therefore，wo und this proot not attempted we may safely reject the
so－called＂ign of progress＂as worthless．We are so－daleat the Wajiji，of East Africa have just learnt
told thast
to＇make brass，but，as Barton says they learnt this from the Arabs，the fact of it is of no svail for the from the Arabs，the fact of it is of no avail for the
theory．Then comes the statement that the Ands－ theory．Then comes the statement that the Anda－
manara have＂recently＂introduced outriggers，bat in manera hare＂recently＂introduced outriggers，bat in
order to make this good，it most be shown that thes order to mate this good，it most be shown that they
nover before had them，and that they did not borrow never belore had them，and that they did not borrow
the invention from others；neither of these is proved， and it is very curlous that Sir John Labbock says such a case as the above probably arises，not from in－ vention of a new art，but from an oversight of early
travellers；his words are＂Suppose an early traveller travellers；his words are＂Suppose an early traveller
mentioned the absence of some art or mowledge mentioned the absence of some art or mowledge
among a race visited by him，and that later ones found the natives in possession of it．Most people would hesitate to receive this as a clear evidence of progress， and be disposed to saspect that later travellers with better opportunities had seen what their predecessors
had oyerlooked，＂and he shows in this way that the had oyerlooked，＂and he shows in this way that the
Ladrone islanders were not ignorant of fire，as was first Ladrone islanders were not ignorant of fire，as Was first
enpposed，bat in the same way the Andamaners might have made outriggers，bnt early travellers might not
have seeu them．The Bachapins hare recently com－ menced to work iron；bat here again it cannot be menced to work iron；bat here again it cannot be
proved that they did not learn this from others，as the

Wajiji learnt to make brass from the Arabs．Iantiy， lians boomerang is said to be an invention of the Austra－ fact，for Denhamined to them，but this is contrary the Bishareen Arabs use it to this day，while a convincing proof of the antiquity of the weapon is that it is fonnd Nine Egyptian monumonts，and in the sculptares at Nineveh．Thus each＂sign of progress＂cannot be
proved to be an original invontion，and ss all the ＂signs＂might thus be shown to bo wanting in this point，the argament from them completely breaks down．Concerning the non－progressive character of the Africans，Denham says＂Every approach which the Central African has made towards civilisation is attribatable to the intrepid Arab 日pirit，which has alone penetrated to any extent into the conntry of these before nnenlightened eavages＂（＂Travels in Central africa，＂p．331），and Captain Barton，in his＂Misaion to Dahome＂is equally emphatic，for he says，＂The so－ called civilisation of the negro is from withont；he cannot find it within．As an adalt he is the victim of imitation，the sarest sign of deferenco；he freely accepts foreign customs and manners however incongrnons．＂
Farther，if the weapons and arts of savages were al independently invented，then we ought never to ind that the civilised tribes were ignorant of an invention possessed by their barbarons neighbours，bat we do and this occarring frequently，and it is an awkward That for the upholders of the＂savage theory＂to face． the barbarnus Pelew islanders and other western tribes had；the Tahitians had bad canoes，while the more savare Maories had good ones（althongh，strange to say； Sir J．Labbock says bad ones－＂Pre－historic Times，＂ p． 475 －contradicting his own previous statements）；the men and Fueriens possessed thom ；lestty the wretched matives of Esenter Island culthrabed yans，plantains， and ergaceanen，while among the more divilised Hottentote eqrioaltare wae nnknown．Now，if the loweet sarages had indopendently discovered agricultare pottery，bowe and arrows，and the making of good had not found ones it that their more they hav had opportanity to do so，and the inventions wonld heve been of inestimable advantage to them．Well may Sir John Lnbbock say there are＂mont remarksble＂facts for so they are，and they are so very＂remarksble＂ that they gos long way towards overturning his theory． We now come to the third point－＂There are signs of primitive barbarism among civilised nationa．＂Tho allecy here has been pointed out by the Dake of found it is at once agenmed to hare bean primersa whereas the onstom mas hare origingted in later times． and this glaring sasnmption is again and again brought foctard Ramptonstoms may show again brotions once paesed throagh a savage state，but as the Dake of Argyll sags，＂They aford no presumptios Whatever that barbacism wes the primeval condition of man，any more than the traces of feudalism in the lawi of reodary warope prove that fendal principles 189．）As we know that savages have been oorripted by acquaintance with other communitien，and gs Sir John Labbook seems to admit the annatural odstoms were not primeval，we may，I think，reject the third point．

Bat if it onnnot be proved that＂civilised nadions show traces of primitive barbsrism＂the counter－pro－ position is undeaiable，viz．－and civilisation．＂Camalia has shown that among the Bechnanas he foumd in their langaage prools that they were once move or－ lightened than at present．Among the Makololo； Livingstone found the agricultural implements wonder－ fally to resemble those of the Egyptians，and the same fally to resemble those of the Egyptians，and the Bame
was found to be the oase with the spinning and wear－ Was found to be the oase with the spinning and weav－
ing of the natives of Angola；and in another place he ing of the natives of Angola；and in another place he men were all so exactly alike that they mast have come from a common source（＂Zambesi and its Tribataries，＂ irom a common source（＂Zambesi and its Tribataries，＂
p．507）．Dr．Krapt speaks of the ancient civilisation p．507）．Dr．Krapi speaks of the ancient civilisation
of Senjero in East Africa，while in Easter Island，and of Senjero in East Africa，whine in Easter Isiand，and
in the groups north of New Gainea，hage buildings and in the groups north of New Gainea，hage buildings and
statues have been found which show that the early in． hatitants were skilful and ingenious．
In the present condition of science it is our duty carefully to examine those theories which are so con－ fidently and dogmatically brought forward；the time has long gone by when mere asserkons were received
without question，and it is useless for the maintainers Without question，and it is nseless for the maintainers
of the＂savage theory＂to attempt to force their ideas on the pablic by reiterated assertions，mingled with sneere at their opponents．I trust your readers will fairly examine both sides of the questiou，and I feel ground of its being supported by insufficient evidence， groand of its being supported by insafinent eridence，
and opposed by insolable objections．
D．G．W．

WARMING RAILWAY CARRIAGES

［4879．］－Ir answer to let．4816，p．620，I beg to inform＂Philo＂that the warming of railway carriagea described by me is quite new，and the coal is a parely
chemical－prepared one．The only substances besides chemical－prepared one．The only substances besides charcoal are only chemical，which give the time of
barning and the dedree of heat they shall develop． barning and the dearee of heat they shall devolop． Both heat and time cau be regalated by the mannfac－
turer．No clay is ased whatsoever．The invention is tarer．No clay is ased whatsoever．The invention is
sach a simple and convenient one that the Prussian Ministeriam has recommended that all．S：a！o railvays shall be warmed in that way，and several otluor railways warming

ENGLISE BLACK v．LIGURIAB BERE ［4880．］－THERE seems a very atrong deaire is it minds of many of our bee－keopers to eet in the farean ranks a stranger from Italy，and pat aside our ald en
long．tried friend the English blaok bee．Mr．F．Chesten long．tried friend the English bleot bee．Mr．P．Chestry
（lot． 4629, p．511）wonld have us believe that he obtsics a full titie or claim to the larrels of the first nede Now，as no one else has taken the troable to defed the character of an old friend，I have hambly unde： taken the task，as I have a swarm of the black bes that have no cause to blash When placed by the $-\leq$ 28，1872；I suppose they had swarmed at least one of ten days before he received them，and they had pliceni days betore ho received them，and they had place
packed in his different rooms something like 11 alt． honey and comb；now this certainly looks somethin like being very sweet．Now．I will just compsere thive
 bee－keeper，a week of very bed weather，but in atse three weeks they had filled their stook hire，vin－ contains abont 60 lb ．of honey．I placed on a collater containg sbout 601 b ．Of honey．I placed on 381 b ．I the
or side box，into which they $800 n$ placed 38 ． or side box，in to which into which they literally crammed 8 it these two boxes I took for myself，amorntion to and left them the 601b．for their winter suppiy，nac a total of 185lb．I，like my joyous friend，gove azis ne for it．Another of my stocks，an old one，svarse on the 23 rd of Mey and cest tive days latar．and ets that flled mo a glaes，contrining（with the glang） 91. of honey．

A InNCOLKREIRE BEEREREA

POTATO DISEABE．

［4881．］－IT may beneft some of my fellow reado tolearn the plan very successfolly used here by mysu and many brothor mechanics for sereral years past is simply to pall up all the hentratin our phe as soon as any brown apots are sees on the hates． and to pat back and cover up any potatoes that en pulled，and thereleare them to be taken np as requira Aberavon．

Percivale NoEtor．
THE PROPER 蒠AXIPULATION OF CONOREIE
［4882．］－I READ with muoh interest the eocontt as con 388 of the EvGLer MuOEANIC，D．617，and am grm fied at finding so effectual a step in the right dirsotix Bat I may，perhaps，be permitted to potit oe the matarials indicated by the oloeing pangranisin wit it is remarked that ：－＂Neverth bridge is shown by the fact of
 have always found that concret greater degrees of cohesion fat roof Gin．thick，one hal
 and although exposed to the vi
sandmet＇it her nover onoc leaked．I inetoee sotas this 日ystem，which I trust may merit your atteation．

Philip Becisxos．
＂E．L．G．＂AND CO．OPERATION
［4883．］－Really，I wonder such a lectior as that I signod to your waste－paper basket，for the exprextic：
 traders＂चith pennies，＂pertilent hoards for furthes ing all iniquity，＂Satans，Armageddon，and all the rsc of it，as well as the temper in which it is written，seve hardly consistent with the character of a seiectix：
journal．Argament there is nona．＂E．L．Q．＂zirand： journa．Argament shere none．E．L．G．＂ziram： lays down the law，atas that such and such a mes
was mado by the Creator，auch another by the Prise of Darkness，that coin is a badge of congcest ist of Divery，which ahould be at once maperseded by a eus slavery，which ahould be at once anparneded by a eva
plicated system of what hg cally＂labour notes．＂axi all who differ from him are corrupting the metion $a=$－ raoe，spreading moral pest，and doing all manaer co－operative religion，is the destined delirerer S is this is more snitable to the destiaed adrererp Sarer Icunoclast，or Reynolds＇s I－ecspaper，than for thos the Englise Mechanic
His grand mistake in reforence to the Earreder that for a mediam of exchange like coin，Whose rix is absolate and certain，or at any rate whose esandi－： is only arbject to slow and almost imperceptibla in preciation，he would substitate a system of payme：； in labour one of the most inconstant and var：aiv things that can well be picked ont．Wo all know to
value of a sovereign，and What it will bay，but $k=0$ value of a sovereign，and What it will buy，but $\mathrm{E}=0$
many can as accurately estimate the resnlt of su herin labour？One sovereign is a sample of all，but is ss labour alrape of tho iguorant L．G．＂mean to that of sn honest painstaking and indostrionsen Can he，for instance，gire the exact proportion a lazy man＇s hour at carpenter＇s work and a तilis man＇a hour at writing？In fact，for a simpiesi have，not one，but a thonsand standards，Farriv： relative worth from day to day as the dispoestionis ic
ilities of those by whom the notes would have to be
leemed. leemed. One of the notes quoted by "E. I. G." is apparently honse rent, which, sherefore, we may conclade he
inkis egaitablo and jast. Bat at tho same time that Ows it to be right for a man to let his honse on he growa in a farions passion at the idea of his
g the same thing with his money. It is right, fore, for me to spend a thonsand ponnds in build-
house nnd then to lend it to somebody for fifty P a hoase nad then to lend it to somobody for fity
nnds a year, bnt wrong in the highest degree to lend o thonsand pounds for the bailding of the hoase, and
rcceive lifty poands a year for the ase of the moriey. ceeive afty ponnds a year for the ase of the money.
does not seem to see that rent and interest are neertible terms, entirely identical in principle, so
at tho fnndholder is no more "lower animal" an is the landlord.

Vertionnus.

CO.OPERATIVE AND OTHER CRUDITIES.

[1894.]-REailx " E. L. G." seems to find some of
y remarks apon the frightfol eraditios he trios to rce upon us to stict in his throat like a Geh-bone; leagt, I suppose so, from the way in which he keeps
woking over them. Bnt I mnat really correct him as his observations in let. $4803, p$. 617 . I never obd to any space occapied by any ellorts of his to etingaish plainly points he was, as be says, quite ore that (or, at all events, the mode in which it wae sult. The object of "E. L. G." was to prove that he eing so many colamns Wastod over mere gaesses, any ridiculons, some amusing, and a fow ingenions, at nll mere gua
It is exactly the same with the present sabject of -operatiou; it is an important one, worth wise disana-
on, and it is one on which I coald very well say mething; the place, however, is occaried by ight amuce himself in a fireworks' store, and it is, erefore, nsele
It is really sad to see a person who has the ability guide others, so ntterly waste his own and other ecplos' powers as does "E.L. G." apon the rarious
oints npon which he is afficted with temporary ininity (it is not monomania, becanse there are so many (them). Can he not see that when he begins raving, - renders argament impossible, and that he takes ap
position to assail which irouy and ridicale are the position to assail whe What on earth can one say to
nly possible weapons? man who assertd that when a poor honest man, who as saved a few pounds, bets np therewith a green.
rocer's shop, and gets his wife to look after it while he at work, he is doing "something to blast the
retched trader's soal, increase all degradation, and sile up pestilent fonds "" (say the sarings for a trip to
largate), "for fartiering all iniquity"? There is largate), "for fartiering au iniquity"? There it
nls one possible answer to such high-falatin' twaddleiz, to langb, and say-Bosk.
What argoment is possible with a man who can
saert that money, that is, a cortified value which ordiarr people cannot otherwise estimate, is no more neessary than certitied weights of cheese or soap which ny one cau valne, and which, farthermore, are com-
aonly made np in just such certifed values, or packets, s the salesman 9 If "E. L. G." Wishes to oonvince thers, or to meet with any response except amased anghter or a pitying smile, he mast really learn not
nly to talk aense, bat to talk it in a sensible manner. hen neither I nor any one will complain of any space - may take ap.

Sigra

HATRSPRINGS.

[4985.]- Harrsg dabbled in watoh repairs as well as ther thinge. I will morely state my reason for coming
0 that conclanion; having purchased several reels of o that conclasion; having parchased several reels of
rire for the parpose of making my own pendalath prings, I had a job come in-viz., to pat an spring in
detached lever watch, the spring of which was very detached lever watch, the spring of which was very
elicate. Upon tarning over the stock, knowing I lad some, I found it damaged (i.e., rasty), and therefore 18eless. I forwarded the number of reel and had the
ionterpart sent me and did the job, do. These reels vere nambered. Now if not ganged, why numbered ? never ban a gmage.

Jaci or all Trades.
GRAPHITE BATTERIES.
[4886.] -IN reply to " H. H. G." (lot. 4780, p. 593), the size and arrangement he proposes will answer Yin. or 2 in. scross, and to come alear through the
corering dise, having as separate cover of its own. The ize of zinc is immaterial, fin. rod is perhaps the best If cast ; he graphite may, be tin. square, bnt a plate is
Uetter, as pieces may be pecked botween it and the may
cells, and thas more pointe of contact secured. It is not advisable to make holes in the porons coll, as the the graphite porons coll. I have used and much profor an oater containing cell of graphite material into Which the carbon and mangainese are packed; this
serves instead of the condecting-rod and givos large contact ; the only objection to this is the cost. As to the solation, ohloride of ammoniam gives the rreatest force; with sulphate an extra cell or ${ }^{\text {two }}$.
mipht be regnired, bat I am inclined to think that it would be more enduring and stondy for bell purposes, as it would not, I belitro, form orystals over the zino
and porous cell, which in a groat muisance and lons with the chloride. I should aree a nolation only three
parts saturated, and of course no cryatale. "H. H. G." mast not omit the pipe for supplying fresh liquid, and muat alwara take care to lenve a small hole or pipe (ree to pere pinhole is enoagh) to allow the ammonia se rabber over the moath of a tube and slit it across, this forms an excellent valvo ; I rather think that this is really the one thing patentable in the Leclanché specifcation, and that one thing I do not remember to have seen ever used in a Leclanché cell.
The propored connection with the graphite is not reliable, and there woald be an action on the lead rehich would probably split the carbon, thoakh rery
perfect aturation with porfect saturation with paraffin might prevent this
it is better to cast a solid cap over the carbon, better still to electrotype on a copper cap, and perfectly saturate afterwards.
satin

Sigasa.
distant signals on the midland
RAILWAY.-To A. G. Boyd (p. 621).
[4887.]-Trere is not much advantage whether the distant signals are arms or dises, bat I find that shown on p. 541 . Drivers tell me that at largo janotions and sidings, where there are many signals, that where the distant signals are arm signalg, they look just the same as starting signals, and that often drivers kave been deceived, and tnken the distant signal for a starting signal, and thonght that it applied to the eidings, when really it was a main line distant signal
and frenuently collisions occur throngh this arror where the disiant signals are discs as shown p. 541 , no matter how many starting signals or janctions, a driver on the main line oan always distingaish the distant signal, and since the alteration shown in my drawing p. 341, there is now no fear of a driver taking the on the Midland Railway is giring great satisfaction There is also another adrantage in distant signals being discs, as the semaphore arm signals at all places on the Midiand are absolute "stop" signals, and every train mast stop clear of them, not so the distant signals, which are only to protect a stopping train, and trains do not stop at them, bat ran cantiongly by np to the placo of obstrnction (see Vol. XIV., p. 42, Railmay Accidents, 96 lines from the top) where the ise of istant signals is described. As the ase of the distan tink it is very impartant that there shorld be oo mach difference between them that a driver shall know signals do, an it is impossible to mistake them.

OBJECT-GLASSES.

[4888.]-Ma. W. Oldfield (let. 4844, p. 648) is in error in rapposing that I have ever recommended one form of object. glass over another, at leazt in the pages my letter he will seo that I simply gave what Mr. Cash wanted, the proper curres fir an object.glass on Hersohal's principle, and that without saying one it is not the best form of object-glass, I also know why it is not the best form, and I have no doabt, too, that I coald tind out the very best possible form for any particular case if I wished, bat the calcolation would courage to attempt it. It seems to me, too, that Mr. Oldfeld has misanderstood Mr. Cash. I fancied myself that Mr. Cash was in doubt whether the thickness of his flint lens had not something to do with spherical aberration, haring in his mind no doabt the quantity
called the thickneas in some of the formula for aplecrical aberration. I may tell Mr. Cash that the splerical aberration. I may toll Arr. Cash that the the least. I myself make nse of a method I have dis. covered, I suppose I may say, by which the surfaces of
an object-las may be found withoat employing any an object-glass may be found withoat emploging siny that conloundedly tronblesome quantity. The whole of the compntations may be performed in an hoar or two, and with all necessary accuracy in the resalts. As it about the best thing over done, and as the provisions for patente won't apply, intend to keep it a profonnd some learved gentleman, I might perhaps, by way of giving him an ides of the enormous research and ingenaity requitite, allow him to haro a peep at (gay) half a sheet of the compatation. Why does not Mr. Old-
feld write a little more carofnlly? Who on earth is to understand that part of his letter which commences with-" viz.," and onds " 72 in ."

Hemby T. Viviax.
ON intonation.-To "Fiddler."
[4899.]-In your letter 1740, p. 567, you say " imperfoct intonation has become-query, always wasno great a nuisance that jou are sarprised nothing
has been done to remedy it. I beg to inform you and my other follow readori that a great deal has been done with more or losn success for the parpose of remedying thil admitted ovil in most masioal inatraments with fixed sounds. The thing has been done over and orer again, bat probably becanse wo are considered one anoentora who less than a cas required pitch to serve for FF and FFs, it is one of those things which don't pay, at least in the pecaniary senso, and that is for all practical parposes the only sense.
ance, some of them having foar or oven six ranko of
keyp-havo been constracted in Italy, and many patent
obtained dnring the last centary in England for improving intonation by varioas meang, searito means being to vary the lengths of stringe after the fuahion of the pednl harp. par ceremple, tho teleoohordon of Dr. Clagget, that being one of the earliest. Organs have been bailt which were also designed for the same parpose with many additional pipes, and others in pipe conld pitch of the soand prodaced by a singl shades to orzan pipes, notably the so-called enharmonic organ of the late Colonel Perronet Thompson. The same "awfally clevar party" also constructed an ento see ailded to the pornameter, all of which 1 hope Kensington, a collection all ahoudd belp to render yet more complete.
If I am not greatly mistaken, all the contrivances you montion have long been qued. Dr. Clagget, A.D.
1788 , in his teleochordon, claims dividing the into 39 interrals by means of alditional bridges (also applied to harpsicliorde and pianos) which were mado to shorten the vibrating portions of their strings by pedal actiong. D. Loeschman, A.D. 1809 , divided tho octave
into 24 which was the namber of ters in nto 24 which was the namber of Keys in a spinet
belonging to Dr. Pepasch, which my late friend J J. J. Hawkins saw at Rome abont 1832. I think, Thomp3on, A.D. 1862 carries this mach farther, dividing the just intonation, every major or minor scale in a series progressing apwards by fifths from C flat throagh C nataral to C_{m} or from 7 date through C nataral to 7 warps to ad,pt the signatares generally nsed in masic, those scales, or rather the latter one, may mean. Col Thompann says the Greeks employed the torm onhar monic simply to signify what we mean by the expression "being in tane."
Organ pipes with holes in their sides à la fate or bassoon, are very far indeed from being novelties. The pipe for 11 semitones, so of course one organ pipe may be made to prodace two sounds differing so little as the major seventh does from the octave of its key note withont altering its month, which is more than 1 can be made to doin the inatance of its producing The practical oconomy of making one pipe serve oonoorning which our "Adept," if yet alive, conld afford "Fiddler" some valaable information. No donbt the extraordinary laxary of sonnding B and C Ward would have called an anmitigated "noosance" -is not often indulgod in by "ordinary" composers who know it is "contrary to rale," which ouly "extraordianry" composers, alian "lnnaticks"-with mach method in their madness-such as Beethovon. can
afford to disregard. To the writer the effect of sonnding simaltaneously the sharp eseventh and octave of the key note is aimply vile, "playing oat of tane" with a rougeance.
Tour proposal to make six atrings in the piano do the organ eerre for two sounds. It woald one pipe of the for more melody. Your experience as a "addler" mast render yon familiar with the fact that one long string might be made to prodace all the different rival, if not surpass Paganiui ; bat, cui bono. We want pianos capable of both harmony and modalation; neither can be facilitated by atringing them a la harp. oven if the Erard donble action be applied to them. In the harp, many atringe are in the way of the fingers -the complex Welsh harp, to wit ; bat we can manage trolve (if not treatr-foar) manual keys to ench octave in the piano, sce.; probably becanse we are aceustomed oxecute rand not used to twents-foar. It is far eaniar to any harp. Irish, Welsh, or French, even if provided vith " doable action."
That the costly piano, with all its atrings oblique in nother wion, you lately saw, was less powerfal than might have been expected byeariy uprigat hajast what the elementary trath, that the soundboard is, for all practical parposes, the sound generator. Any instruall nearly mast have its strings orowded together on its belly. bridge. As a mere matter of course, the surface of its soand board (between the gtringe of each note) must be amaller than in horizontal grand and ordinary apright pianos. I may, however, remark, en pasaant, that the by their of strings need not nocessarily be accompanied radiated, or spread oat, on the sonnaboard bridge over quite doable the space parallel strings occupy, which is equal to that oconpied by their hoys and hammers. Soe $m y ~ d e s i g n ~ f o r ~ g r a n d ~ a p r i g h t ~ 8-o c t a r e s ~ c o t t a g e ~ p i a n o ~ i o ~$
No. 235 , and snother which I will send shortly for very powerfal piano only 40in. high.

Tee Harmoniods Blacebittie.

NEW SOUNDBOARDS.

[4890.]-Ir I have understood the recent papers on soundboards rightly, it is a sine quis non that opposito
kinds of wood shoold be nsed close together. I have eever riolin whose breast was made of hard and coft rood glaed in two halres, and should very much like to know how it would sound. I do not see how it conld be wrong, for is not the broz made of hard wood, and by the soundpost connected with the breast, making
a continuous soundbeard with the sidea, in faot, all
round the violin? If it is a continuous soundboard, then Mr. Schucht is right, bnt why have a noundpost? would not the sides do by themselves? Yes, if the string is bowed on the side instead of on the top, bat When bowed in the usual way a sonndpost is necessary. We might anderstand this better if we could see in
what direction the waves of sound move. Mr. Schucht What direction the waves of sound move. Mr. Schucht In his diagram makes the vibrations wave along the
surface of the breant from end to end, and continue surface of the breast from end to end, and continue
round the back, and then I prennme along the breast round the back, and then I preanme along the breast again; bat is this the right direction ? \quad ?ave or vibration affect the air in jost the opposite Wave or vibration sinect the air in jost
way, from side to side, and round the back, as though I twirled a hoop perpendicalarly ronnd the violin held borizotally. Now, I think, tbat il I pall the string by the action of the bow on the top, as is usual, I canse the wave to move in the asme direction as the bow is drawn, and as the ware has to right itaele by risiug higher, so at to form a circlo roand the violin, the conndpost may have a tondency to direct the wave of connd in this position, not to remain there, but form almost inatantaneous rills of sound as far as it is heard. Bat if I begin the soand by drawing the bow on the side of the atring (dear the top of tbe finger board), the wave commences in the proper direction, that is upwarda, and then round the violin, and not requiripg a soundpost to direct it into a proper position. If this theory is wrong, please say why a sonudpost is not requirod when the bow is ased on the side of the string, but is an obstraction to the sonnd, as any one may percaive if they will inquire ? Again, if the vibrations flow from end to end, why have a wide sonndboard? The same quandity of wood made into a long narrow soundboard would do better, either with or without a back; the four atrings of the violin, or even a fifth, could be placed on the same sized bridge as the present, and the coundboard continued below the bridge, so thet the instrament could be played as a violoncello is held, in front of the performer in the Tarkish style. It may be asked. Bat how conld the different sorts of wood be made to go in such a narrow soundboard? This wonld depend on the thicknese of the sonndboard; if thick. then in lajers ; is thin, then side by side. It in donbtfai even if the waves ran alorg the breast that the soand would be improved, beosase there woald be so little for the tone to sound or be formed in. I think, then, a series of soundboarde could be placed nnder the narrow breast, all of them being attached by their edges to the upper soandboard or breant, and banging down, as it were, like inverted taning.ferks. It is certain that if these inverted soundboards were glaed their whole length to the apper coundboard or breast, the whole affair would be too rigid or stiff; bat this could be obviated by cutting one odge of each in a balf oircle, or, perhape, in a wave line, so as to be attached by three or four pointa instead of their whole length, thua allowing faller play to the breast. Or these extra tuning-boards might be fixed on the extreme end of the narrow breast in the same way that the motal projecta from the bass vibrators of a manical-box. I think we have all heard of the genius who introduced iron into pianos, under the idea that the wires would sound louder if a number of tabes could be made to soand sympathetically or aynchronounly; the roacon why ho failed wae because the wiro could only vibrate a sonndboard, and had not saficient atrongth to move the air in the tnbe so as to make the decired increase of tono. I am afraid the same canse will operate against all oor
fomny addles and soundboarde, unless we can bring funny addlee and coundboarde, unless we can bring
them all into intimate cunnection with the vibrating atring, and find a way of moving the soundboard more than is done at present. Wo want a atronger string (not wire) yet mifficiently elastic to be playod on with a boot. May I beg a fow raggentions from our nameroan thiniera, for as the tone of the piano has boen im. proved by imposing hearior steol wires, so I want to the soundboard more, and a larger soundboard than is ueod at pretent?

CUTTER-BAR.

[4891.]-I sEND you a aketch of a cuttor-bar, which I ind saven a great doal of time, and I consider it very convenient for the inishing of boles of varions
diameters. \triangle is the bar; B and C are the cattera D is

the pinching sorev; E is the slot through end of bar into which the cutters are insertod, and after boing set D is tightened up to hold them in position; when they
get so much reduced in aize that the rymer has too mnoh to do, unloose the screw E and take out the catter a little; they will serve for anishing holes of varions sizee. Of course, when one pair of cattere comen to be too small for the holes to be bored, yon have only to insert a pair of larger ones, avoiding the necessity of going to the smithy to have your drills hammered oat, which, after being done, if not carefally groand, may have to be taken back again to the
smithy. I do not know if these are in use anywhere ; smithy I do not know if these are in nese nnpwhere
if so, please say.
Jorn Kıby.

SPOTS ON THE SUN.

[4892.]-In the montha of April, May, Jane, and July, I was able to observo the same claster of apota during four revolations of the sun. The teloscope I nsed wan of only 23 in . aperture, with a power of 140 . In Fig. $1, a$ is the copy (inverted) of a szetch 1 made of a cluster on April 24 at 5 p.m. On April 25 , at 4.45 p.m., I made another azetch of the tame clanter, Thioh had changed considerably (Fig. 1, b). Its posic represents its position on April 28 at $6 \mathrm{p} . \mathrm{m}$., when it c represents its position on Apric 28 at p.m., when it
was passing ofl the disc. On May 14 saw the claster war passing oll the disc. On May 141 saw the claster agnin, bat only identified it by the position it occupied
on the sun's disc. In Fig. 2, a represents the claster an seen on May 16 at 7 p.m. and b on May 20 and at seen on May 16 at 7 p.m.i, and b on May 20 at
5.30 p.m ; c and d represent the largest apot in the s. 30 p.m ; cand 21 represent the largest apot in the
cluster on May 21 at 6.80 p.m. and May 22 at 5.20 p.m claster on Diay 21 at 6.80 p.m. and May 22 at 5.20 p.m respectively. The diferent positions of the largost June I sam the spots again performing another revo-

lation, bat had no opportunity for sketching them. On Jaly 10, at 6.30 p.m., I obserred them again on their loarth appearance, considerably within the disc (a, Fig. 8) ; it was too hazy for delineation. Fig. 8 (b) representa their appearance and position on July 12 at 6.15 p.m. The apots have since disappeared.

Bordyke Houe, Tonbridge. R. W. Barber.
[4898.]-Tre theory of "A." (let. 4453 and 4830, p. 640) accords well with one or two phenomena of the solar spots, bat is negatived by many othors. I fhoald explain that in speaking of "broken nmbra," I did not mean to describe an appearance as thoagh a dark
region were broken across, but to deacribe that apparant "breaking in " of the boundary of certain spots at one vide which in so familiar to the telescopist. A anot shall have its penambra well deaned for soren-eighth of its circumference, bat on the remaining eighth it of its circumference, bat on the remaining eighth it shan have no penambra at all, bui either appear as
though the photosphere had here broken through to the umbra, or (wore commonly) as though the ambra had broken through to the photosphere.
"T. H. B." (let. 4831) does not soem to have read my letter very carofally, einoe I explained in it why I did not drav the granalations. To havedrawn all I conld see during momenta of favourable defnition, in the spot-region actually pictured, would havo required foar good hoars, and I had barely half an hoar. Moreorer, the great intereat of the region 24 in. Dollond with which I drew the picture forming tue frontispiece of my "San" would hare ghown all the foatures actually included in my sketch. I may
notice that in the frontispiece to Sehollen's Germas veraion of Seechi's "Le Soleil," aphotograph of tte san shows the same great spots as my pictare, z: irom a caretal comparison of the auccessive enlarget
photos. of this spot on tbe 23 rd , 24 th , and $2 \cdot . \mathrm{bb} \alpha$ September, 1870, all the detaill of my drawing ar justifed.
I do not know what "T. H. B." means by a "med smaller telescope "than the $47 /$ inin. instrament I ama The latter shows the granules all over the san, as \quad ed instrum neighboarhood or spole. Bat a march emake instrument cannot posaibly do this, no matter biv the atmospheric conditions. It is calculable that vinh an aperture below 3 Inin. or 3 gin., diflraction mast cese an aporture below 3inin. or 3sin., dillract
the images of the granules to ooalecce.

the images of the granulea to ooalesco.

This onse is quite different from that to thid "F.R.A.S." rofers (let. 4828, p. 639, 2nd colama). I: can sonrcely be doubted that santeness of vision is a essontial circumstance in the recognition of mina pointe of light, faint illamination, and so on; so the While thoroughly agreeing with "F.R.A. B." that the fift rtar in $\theta 1$ Orionis cannot possibly be viaible in the $?$. teloscope, I wished to remorve a micepprohemeninn Fher might here sugseated ithaif to some who read his hern on the subjoot. To say the trath, some of the lesta a Dawes and Goldschmidt would have to be regardet impossible, if a hard and fast line were drawn as 4 suoh observational tests as these.
Sinoe I wrote my last I have tried 57 M . anis favourable conditions. The faint light in the interi-
can readily be meen with three-fourths of the ligt gathering power of the $47 / 10^{\mathrm{i} n}$. telencope.

Richard A. Pedoctal

THE RARP.

[4894.]-I herewith inaloee the photegraph ef 1 wire harp, to which I trust you will kindty vield in tion. The original is of pleasing tone, and, altboag only capable of being played in one major koy, or the of G with F, la calcalated to roalise rery pleasia reanits. No one, I think, who should hear played apca
it, as I have often heard played apon it, our old Irist it, as I havo olten heard played apon it, orar old rint
Bootish, and English airs, could listen quite unmere: It is not so perfect ans is the doable or even the single action harp, but it is perfect as far on it goes, aivi action harp, but it is porfect as far ata goec,
rastly lena costly in construotion and mainienance the the more elaborato podal harp. My idea was, and ts, thr the cheap wire harp might be turned to socout rate instrument could not be afforded. Hals a load is bottor than no bread. If a doublo-action harp canse be had, is the more humble and yet arreoty satinita Wiro harp to bo alcoardea patornoster-rew a iew days aince as in one of the side passages a pedal harp, with finte socompanimenf, pr duced music that might havo graced many a draving room. For a amall piece of silver, the performen
played for me two or three of Vordi's divine airs
 than paseably well. As I listened to the poor fellow: it cet me s-thinking, and I mked mywelt whether:
might not be possible to combine the fut ead ris might not be postible to combine the gut and ois
harp, and so arrange the gut-atringe as by means of simple pedal aotion to prodice the half tones, the F asi C regarded, and secure at pleacure the dedirable moders tion. This the wire atring does not permit. We migt thus, it strikes me, at least in a measrive, cbeaply 005 bine the excellencies of both instraments, for caen pres With emoiency is, I submit, the great cesicuratum L the harp of the futare, and the talent of the exe tributors to the ExGLISE MECEAEIC is Euch that I Em disposed to think that overything reasonably practicak is at their command. The Wash harpers have sanitipi stringe to secure the whased-sor rosults. $\mathrm{F}^{\circ} \mathrm{s}$ and $\mathrm{C}^{\circ} \mathrm{h}$, might be be sure, at loast as regards the F"s and C'a, might by introduced into the Irith or wire harp, but is roal. considerably angment the number of the strings, asd.
after all, the resource would be a limited one I Fint after all, the resource wonld int and sent my harps to the International, where tion could have been coen. As it is, there are harp-maters

Fire Harp.
in London whose sddreas oan be had at the menic sizoo There is, or was, one somowhere, I thint, ceic Hafernack, and who, I truet, is etill extent, Harps es
to be seon is the ahop windowi of masio-sellers isen
large town, and if inquirers and intending constractors would take the troable of looking in whon it woald not inferfere with the basinoess of the day, fow would bo found so charlish as to refase inspection. I only wish I coald offer saggestions yet more arailable than the foregoing-saggestions oaloalated to bring, or tend to bring, within the reach of erery one the reflining solace, the almoat unlimited gratif cation, which the masio of
the harp, when well plajed apon, is calculated to yield.

Ixion.

THE HARP.-To "Fiddler."

[4895.]-You say, let. 5497, "Wires would do for the treble, but be too twangy for the bass." Practically, تires will and hare done for both (better or worse). They have "done" for the Irish harp, and would-in comer sense-son "do ior any harp with a moderale
long seale, if as thick as those speciled by "I Ition " for his favonrite "green" inatrament, for no ordinarilyconstructed harp could bear a tenaion of (eay) nearly
2001b. per atring. "Cat-hys-gat" being mach lass 2001b. per string. "Cat-hys-gat" being much less heary, and perbaps quite as elaatic as ateal wire, makes bettor harp, gaitar, and fiddle atrings, than ateel, without any danger of " making both ends meet," Which the enormous tensile force required for steel wire might possibly do in a very uneconomical sense, not to mention that a thick and tight ateol wire would be rather difmoult to defect down to the finger-board, and to stop in inne. Steel wire is far more suitable for strings Whose vibrating longtha are not variod-liko those of
irginals, apinetts, harpaiohords, and pianoe-than for Addles, Intes, or gaitars
For the lowent baess stringe of the harp stoel wire. loaded by covering it with whitoned braes wire, is now very generally emplojed, and the tone is both powerfnl and good in quality. There is no novelty in employing Dealin win for the bass of the harp. As eariy as 1823 Deakin nsed ine-hardened and apring-tempered steel
wire for harps and pianoforten. Even then it was not new, for the ateel strings of the monater unichord grand

piano (grand, in this oace, certainly cignifying great), mantructed for Earl Stanhope, by Loeschman, had firebardened and tempered strings, some of Which Were
about 8ft. long between their bridgen, and one-sixth inch diameter-by the way, I should be very mnch obliged by being informed what has become of this monster." similar stringe wore alterwards nsed by
M. Pape, and some one alloged anch strings never went oat of tone, which I take the liberty of dosbting, whoever the "allegator" may be ; no doabt, they woald atand in tune exceedingly well, junt as Horafall's patent corry to aay, in now nnpurchacable. I have sometimes thought cataut gtringa, if thick onough, and sufficiently loaded, would produce finer the bass of the harp. They would more nearly resemble the sounds of the double base whare ita open strings are palled by the inger, which I oonsider the ne plus witra of baes string tone. Some harpa do produce base counds approximately to these. The olever harpist of the Christy Minstrols (who "never perform ont of doable baes striag was being placked, so fine and powerfal were the sounds his Erard harp produced. Very thiok-bbout No. 80 to 86 -steol wire (aay 8 ft. botween bridger, and heavily loaded, so that its tension modern pedal harpsichord, if its plectra be covered-on thoir moting surfacem-by thick doentin loather: about a 101b. touch is required for two stringe.

The Hapmoniods Bhacegyith.

ATOMIC PROPORTIONED ALLOYB.

 [4896.]-Ir "E. L. G.'s" lotior (No. 4766, p. 690), ohemioal contribators are requented to montion any excemen the writer exprecalog an opinfon that the oppo dite rale-the loss fauble metel to provail in quantity -hap the ferce of a law in usefal alloys. The compo-aitions of following overyday alloys are in direct oppoaition to "E. L. G.'a" supposed "lan" : -

1. Britannia metal is an alloy of 10 or 12 parts of the more fasible metal, tin, to 1 of antimony, with sometimes a little copper.
2. Powter is composed of 4 parts of tin and 1 of load, the latter being the less fasible metal.
3. Type metal, when of saperior quality, contains 1 part of the lesi facible antimony to 1 of tin and 2 of lead.
4. German silver contains at least 80 per cont of the more funible metals, copper and zinc, to 20 or less of the highly refractory nickel.
5. Silver coinage contains $92 \cdot 5$ per cent. of the more asible motal, ailver.
Alas: for the theory of "E. L. G."
Alfred H. Allik.

THE ORGAN BUILT.-XI.

[4897.]-Before going on with the key movement, I mast point out an error in Fig. 2 in my last letter. The trackers from the rollers to the pedals are all shown at equal diatances from each other, bat they ought to be arranged to correspond with the pedalariz., learing a apace between the afth and sixth, twalfth The teenth, do
The next part to got out will be the backialls for the great organ. Get a board as long as the windeheat, and as wide as from the pollwires to exactly the back of the great organ keys; along one side of the board make a mark corresponding with the palls, and on the tey. No drave lines acrosa from the arst pall (CC) to keg. Now draw lines acrose from the first pall (CC) to the corresponding koy, and go on, romembering that the second pall belongs to the third key DD, and the third pall to E , as six of the bass pipes are on the treble side of the soundboard. Nor continue the mark out the six bass notes, as if there were six more
other movements boing made to correapond. The great orgen stickors are now to be got ont; they are
thin round rods of pine, fin. in diameter, the length thin round rods of pine, fin. in diameter, the length of them is the distance between the keys and the bsok-
fallis. The eaviest plan to get them oit is to nse sin falla. The easiest plan to get them out is to ase a gin. beading plane, but thoy may be got ont square ani roanded with a amoothing plane. 18 tiokers on suitable
length go from the keys to the roller arme, and at the longth go from the keys to the roller arms, and at the
other end from the roller arms to the backfalls. other end from the rollor armi to the backfalls.
The connection betwoen the awell backiall and the The connection betwoen the awell backralle and the palis of the windehent in by trackern, made at described in my latt letter, a hooz being used at the ond near the windchest, and a scrow wire at the other in this case the rollora are atteched by trackers to the The windtranks are now to be made; they are fat The windranks are now to bo made; thoy are iat lubes to convey the wind from the bollowe to the wind ahocts. The internal diameter of those to the great and awell shonld be gin. by 2fia., those to the peda organ 8in. by 8in., bat e valre in to be pleced in haes two for the draw stop to move. A plan is shown Fig. 8, where A is the entranoe irom the bellows, B the entrance to the windchest, C the vaire which is pushed open by the sticier D_{1} this sticier being moved by the places br. All his places by aange plates, wbich aro armly giaed and to the trunk band of the ballows or the windchest. to the trunk band of the bellows or the windchest These plates are generally made of inn. mahogany, of ach a gize that they can have a hole cat of the bile of the hole they aro to cover, ana leave a margin ol fin at the top and botho, and aino project an inch on anh side of the wina rak. Aco s, which show a fango piato on a ruak. A is thersin apertare the wind goes through, C the fango plate.
J. D.

INFLUENCE OF LIGHT ON ANIMAL LIFE.
[4898.]-Iv a paper on this sabjeot in the Revue des Deux Mondes, extracts from which wero furnished by a correapondent, it is stated (p . 606) that "the phenomena of sunstroke ariee from the aotion of light, not from olevation of comperataro." In a recent number of the Exglise Mscranso the opinion of competent medical authorities is quoted, whilh contradicts this explanation. Many yeare ago I notod cases of "sun stroke" without sun occarring frequently among stokera in the tropics, and I think I am correct in atating that the opinion of medioal men in thil country is decidedly in favour of the cause of heat-apoplexy being an in. crease of the temperatare of the blood.
In the aame abrege it is atated that the Hindus of the Himalayas are nearly blind; this mant, aurely, be a misprint. Again, light cannot be the sole cauce of the black shin of the negro, unloes wo are to bolieve an hereditary proalivity to blacmone, originaly due to solar light, exists. For, is so, the negro child born reddiah, and alothed and living ir tomporate olimates woald not blacken as it grow up. Far more iizoly does it appear that blacknoes was given to the akin of
 It is mell bo It woil known that respona will are melanotic or mmoty-tinted.
M. PARIs.

OUR MATHEMATLCAL COLUMN.

[4899.]-For a long time I have entertained the ides that a column devoted to the connideration and solvtion of mathematical probloma would be of vary great nervice to a large number of readora. Evary now and then problem, and continually the list of queries in the problem, and continualy the list of queries in the EyGLIBH
solntion.

Now, to a great oxtent, problema, like words, may be divided into alascos, and if the stadont can interpret thie or that reaconing, he is able to solve a alace of questions. Whilst problems are given indis. criminatoly amongat other querioe, this disoifeation cannot be carried out, and space is consequently occapied by the solation of similar (i.e., belonging to the same olacs) problema. My ides is to assist stadents gonerally, the amatour as woll as the professor. The explanation of a fraction or a deoimal wili be of as mach ralue to one clans of renders as the discassion of the simpleat manner of "taking oat atrains" will be to a seond class, or the diecuacion of chemionl formalse to a third.
No branch of trade can be carried on withoal some knomiedge of mathemation, and, unfortanately. the major portion of the commanity is not before it requirements. It woald, therofore, benoal many to have their diffoulties solved quickly, ceally, and choaply The aim of this column will be to corve the maks, and not those calcot fow whoce atady is in the van of soience and ecientine thought. If, then, a number of problems are given, and solved weokis, and is to those be added short notices of new mathomatical books, or papers read at the meotings of the varione scientide nociotien the wante of readers, we imagine, will be satiened.
Perronally, I should have proferred to have seen Mr. Prootor, or some equally oompetent hand, conduct thi portion of oar cormopolitan joarnal; bat, I ccar, owing ohat me can from him in other reve I tnow What we can got from Mim in other waye. I know he will be only too piocmal to all mathomation readers to oan, and I would appeal to all mathomatcal roadera to an posaible.

REPLIES TO QUERIES.

** In their answers, Correspondents are respeotfully requested to mention, in each
and number of the query asked.
[11313.]-Setting Lathe.-In looking over some back numbers I noticod this query, and also "J. K. P. 's" answer to it on $p .48$, as also his additional anawer on p. 15t, but neither give the desired information. It last March, but I hopenot too late to prevent F. Hame from spoiling his lathe by adnpling any fixtare or wedge derice for sotting his lathe headstock. The screw bo mentions as fitting between the sides of his
lathe bed is a very proper and nocessary adjunct to any rood lathe, particularly a slide lathe, which I opine F. good lathe, particnarly a slide lathe, which opine F. by means of this screw, is this:--Firat screw the large face plate on to the spindle nose- eaid plate mast run face plate-then, premising that said face plate allows, as it ought to do, the centre to be placed in the spindle nose, which centre sboald also ran dead true, get 2 piece of stoat iron wire and bend one eud into a ring Thich will jam tight on to the end of a mandril, the centres of which are good. The wire mast then be bent at right aggles to its longth, and to the plane of the ring at its end at abont an inch less than the radius of the race plate from the centre of said ring, and cat ofl abnat 2in. from the angle, and the estremity of the above-described contrivance mint he then filed to a
point. It must then be jammed on to the end of the point. It must then be jammed on to the end of the
mandril, and the two together set in betweon the centres manari, and the two together set in betwen the centres of at a very little distance from-in fact, nearly tonchbe at a very little distance from-in fact, nearly tonch-ing-the sarface of the face plate, apon being handed round to different points on the face plate, will slow by ont of adjastment, as, if perfectly true, the point wonld ont of adjastment, as, is per round. So if the point of the wire is forthest from the plate at the front side of the lathe, the head wants
setting back, and if at tho back, then it wants to oome forward. Perhaps the sketch I send, if worth the

trouble of cutting, will give an idea of what is required. The dotted line A B represents the true line of paral. lelism of the lathe. The dotted line C D, at right angles to $\Delta \mathrm{B}$, the (conseqnently tra) position of the
 dril (eapposed) F B. The full lines represent in an
exaggeratod form the positions of the several parts exaggerated form the positions of
when out of trath.-HoNe Ko Io.
[12438.]-Pie Heater (U,Q.).-There are various ways of doing this : some are pana supplied with steam from the boiler used for general cooking parposes, whilst others are pans perforated, and heated by gas jet; a pipe convesed from one corner of the tin is passed ont either at one corner or out at the top of window; in
some cases down in tho cellar.-JACK or ALL Trades.
[12457.]-Geometry.-"Bobo" has himself fallen into two mistakes in finding tanlt with "E. L. G.'a" answor. "P. W. H. J.'s" method does produce a shomboid, which "Bobo" would have seen had he read
the answer. Also, "E. L. G." produoes a rhombas, though not the rhombus required, he having overlooked the condition that one corner mast coincide with a given point. I would like very much to see the true answer to thin problem.-Xenopion.
[12460.]-Four-Valved Cornet (U.Q.).-I don't know, but should imagine the "four-valived oornet" wouphoninm, or "HP." may frat learn the scale as though the instru-
in ment had but throe. The fourth fs extra; it is equal

(treble cleff) with the first and third or fourth (the latter is generally preferred); the sumo notes flattod, thus D Hat and G that, may be made with second and fourth, instead of first, second, and third, thas aroiding
the ase of one valre. Again, it is usefal in shakiog on the ase of one valre. Again, it is usefal in shaking on
C (on first ledger line below), uaing tue fonth ingtead C (on first ledger line below), using tue fonrth instead
of first and third for D , the note above the ehake. In of first and third for D, the note above the ahake. In instruction books they give the fingering of the scale
chromationlly down to \mathbf{C}, making the compass of the chromatioally down to C, making the compass of the
instrament three octares, but every note below G is too instrument thr
sharp.-L. C.
[12468.]-Exhibited Inventions (U.Q.).-I have seen the same in priat, bat know not where. Apply to the officials.-Jack of all Trades.
[12471.]-Wheels.-The face spokes of wooden wheels are those nearest the nose of stock or front side of wheel, so face arms would be those nearest front side of a metal wheel.-Zax.
[12472.]-Electrical.-1. If the wire of the galvanometer is short and thick, it will not be deflected, because the quantity of electricity transmitted by the induced direct and inverse ourreuts is the same; but it the wire of the galvanometar coil is long and fine, there will be a dettection, becanse althongh the direct and inverse carrests are equal in quantity, they are nnequal in intensity, the direct carrent having Lighest tension 2. Hedredur's is the best coil for medical parposes, bnt the urdinary so-called "shocking coil" fors relior passing the indaced carrents throagh the bods in dispensing with all the tronble of batters are asefal in dispensing with all the tronble of batters, ac., and
the currents can be obtained from them in similar the carrethe can be obtained from them in similar
forms to those of ordinary induction coils. 3. Daniell's forms to those of ordinary indaction coils. 3. Daniell's
is a good constant battery, but expensive. Smee's is a very naefal battery when made with lifting gear (so a very nefal battery when made with lirting gear (so
that it may be dropped into the solntion when reqnired, and raised out again as foon as done with), is moderate in price, simple, and I think would enit your pripose well. The anlphate of mercury battery will keep in order from six months to a year, is also mode-
rate in price, bat not very powerfal.-ZAx.
[12504.]-Sketching from Nature.-I regret that I ahould have tronbled any of your readera, ospecially a lady, to make farther inquiries by my not being safticiently explicit. I tender my apologiea, and ank the fair "Jalia's" pardon. I presume that the student having traced the outline on the glass proceeds to copy it on paper, and from time to time lays the glass over the same (the siretch) to gee how he geta on.
Next the gummed side of No. 1 , on which the drawing is traced, is laid gummed side down on whito paper. Orer this glass No. 2 gammed side opwards is laid. and a charcoal tracing is made thereon; on this plate, and a charcoal tracing is made thereon ; on this pinte,
No. 2 , the drawing is laid, aud rubbed on the back. Then it is removed, and the outline traced with lead pencil. I hope this is sufficiently clear. I wonld add, that it wonid be well to have several holes in a line towards the glara, made for the apright a to who practises this method for a short time will soon be able to lay it aside and sketch freely withoat any mechanical assistance.-OLD Boors.
[12528.]-Hay Asthma.-"Alfred S." (p. 622), is "sorry that I recammend the inhalation of creosote; " as "in suy shape or form it will inevitably cause nervons twitching, and even paralysis! How benighted, then, mast have been the General Medical Conncil, composed of the foremost mon of the United
Kingdom, who, in 1867 , issued the "British Pharma. Kingdom, who, in 1867, issued the "British Pharmacopceia" with formule for "Creosote Inhalation," mixtare and ointment-creosote in these varions "shapes and forms," and yot not one word of caation as to "twitches and paralysis "! I hare no objection, is
"Kate" has not, to "Allred S .'s"Epsom Salts. Ear de Cologne is as aseless as it is expensive.-LAMBDA.
[12529.]-Improved Machine for Making A erated Drinks.-I believe the gas for all airrated or mineral waters is produced from dilated sulphuric seen. I do not see any improvement in the machine "H. B. E." recomnended, as I tried that principle years ago, and it was quite a failure.-L. W. D.
[12529.]-Improved Machine for Making Aerated Drinks.-I seo you have many inquiries on this suhject. I am one of the earliest makers of them in England, bat gave up the manafacture many years ago. No one can make them properly withont a machine. One made on the best principle may now be had at from £ 30 to $£ 80$, according to size. The principle on which all aeirated waters are made is simply this :-A leaden retort in filled half full with
whiting and water. Into this mixtare a very little sulpharic acid is poared at once, which instantly liberates a quantity of carbonic acid gae. When that acid is spent, a little more is introduced, and more gas liberated. The gas thas liberated passes throngh metal cylinder containing water, or soda und water, \&c., and very powerfnlly compressed, being well mixed by means of as agitator, or, as we ased to call it, an
"O'Connelliser," very rapidy revolved. When the liquor has absorbed sufficient gas, it is convered by pipes to the bottling machine, bottled, corked, and tied over. It is then quite ready for ase. If requested, I
shail be happy to send drawinga and a detailed expla. nation.-Krlby.
[12537.]-Compressing Air.-At p. 628 there is given the resalt of some experiments on the compres-
sion of air and resalting temperature. The theory of a perfect gas, appposed to consist of freo and perfectly olaotic molocules in a state of motion, the mean equare

Inte temperature, reckoning it from - $\mathbf{4 6 1}$ Fahr.-the zero of gaseons tension-gives the mintaal ratio of change of pressare, density, and temperatnre when 2 he gas is saddenly compressed or dilated. The rale fox compating may_be inferred from the following propos sition: $-t \times \sqrt[4]{ }{ }^{2} \times \sqrt[3]{ } \sqrt{d}$, in which 7 is the absolnte tempe rature, p the pressure, and d the density. As as example of the compatation, take the experiment tha lasted two hours, in which the valve was lomided wial 45 lb . to the square inch, making the while pressare on tension of the comprcssed air to be $45+15=$ einte Before compression we have $t=461$
$p=15$, and $l=1$. After comprossion, $p=60$, d is less than 4, becanse of the rise of temperatare $256-43=214$, the absolate termperatnre beine
$461+256=717^{2}$, ot the density has to be rejoced iv the ratio of 503 to 717 (Daitou and Gay Lu qac'a Lary or $\frac{503}{717}$
of the absolato temperature, t, the following is the proportion :- $\sqrt[3]{1}: 3 \sqrt{2} \cdot 806:: 503^{\circ}: 709^{3}$, which is thus 8 " leas than the rearlt of exporiment. Thia mar, perhaps, be acconnted for by the heating of tar
cylindor, and oonsequently of the entrant air before it cylindor, and oonsequently of the entrant air before is compressed. In another experiment, with low
581 l . on square inch 5sib. on syuare inch-which was also coutinued
apwards of an hour-the same compatation sives 2 . upwards of an hour-the same compatation gives
Fabr., instead of 296°, or 19° less. From Dewspayer acconnte, it appears that the Δ merioane aro applyine compressed air to locomotion on tramenars. It is to hoped they will be successtal, on horser. In the economic application of eoch powar. is obvions that artiAcial cooling is required daring to compressing or storing, and artincin heating ann the expansion or delivery of the power.-N. S. N.
[12551.] - Picture Framing. - Eerati.-For springs," read spring bit.-A., Liverpool.
[12557.]-Nickel Bliver.-May I request the attention of " E. L. G." to the extract from Muntaignes Essays which heads the correspondence in "Oara." The advice there given woald be very berricesbla to him in particalar, and possibly some other of our friends who are sufferers from that distressing ellec tion "caooethen scribendi." In answer (No. 12557, p nickel explained the oomposition of German aisd with other metals wns never employed, while on page 623 "E. L. G." takes the trouble to contradict thas atatement and say that pare nickel is employed tas coinage, mentioning the Belgian soas as the nearek example to hand. Now, as a matter of fact, the coin menioned is not pare nickel, nor is there eny coin Belgian "sons" (or 5 consime piece) was formaris made of German silver, but in now composed of ac alloy of nickel and copper, with sometimes a little iron. Thave not analysed a pieco quantitatively, bat bent. of the ooin. As "E. L. G." is eridently not a chemist, I may inform him that he cas readily detect the presence of abandance of copper in the coins be erroneoasly took for pare nickel. by pouring on the piece a fer drops of nitric acid (the coin is not delaced), allowing it to act for a minate or two rinsing off with a little wator, and dropping an sme pe will find a deposit of motallic copper will be specius prodnced. Before "E. L. G." again contradicts a pars prodinced. Before "e. L. G. 1 again contrecticte statement, he wa do woll to remempe: that it has a very bad appearance, and may indace bis numerons admirers to panse moro frequently befire they swallow his many fancifal theories, from comettry delages downwards.-Alfred A. Allen.
[12031.]-Black Dye for Leather.-If " Kandel Saddler" would give his recipe for dyeing leather olset on a la
[12642.] - Tce Cream. - A oheap and effectice mode for the above is to irat make a composition ., the following:-Beat three eggs with halp a poand of lonf sugar, till well mixed, then add a pint and a half. milk, and bring to boil on a quick fre, keaping it rell stirred. Add halt a pint more mill and pat it in a
cool place, stirring it occasionally. To freers the cool place, stirring it occasionally. To frocre the
same pour the composition into the freezing-pot, whit isme ponr the composition into the fretzing-pot, Whici being much the cheapest, with a lid having a handle over across the top, and watertight ; place the pot io pail, and pack a mixturo of rongh ico and coaree al round the pot in the pail so as to bed it in, pat a tha sprinkling of salt on top, then cover the ice rove with an old flannel, and work the pot containing tha composition backwards and forwarde for a minate or
two. Take the lid ofl, and scrapo what adhores to the side, and again work the pot ronnd and scrspe with wooden aponn, as before, oontinaing this process till it becomes the proper consistency, which shoald bo the as butter; a ittie vanilia adad greatls adds replacing with fresh, which will then keep it stif fic replacing with fresh, which wing than keep ils. of ooarse salt. On no account let any of tho ico mixtare get in the composition in the froering-pot or it 5 ill never freeze.-Lovir.
[12650.]-Government School-Candidates for ongineer stadentships mast be betreen 15 and 16 reers of ago. They are oxamined every Juno and Decomber Portemoath, Chatham, and Sheornass. The exam tion is open and competitivo: on this scoonant it is compoted for by large numbera of clever yonthes wimb

tion to the offle of the Admiral Saperintendent at either ni the a bove-montioned yards(sarely "W. M."mast havo
tnown that Woolwich yard was closed), obtain nomitnown that Woolwich yard was closed), obtain nomi-
nation papers and also papers containing all requisite nation papors and al
information. - E. 8 .
[12653.]-Poultry Keeping.-I kept twenty fowls in an ordinary ponltry hoose, and one night saw thieves at the door. I went npstairs and firod at them a re-
volver out of the window, thes quickly disappeared, and bave not come again since, but my poaltry being valuahie, and not wishing to trust to the chance a new ponltry honse of corrugated galvanised
Thich is perfectly thief proof. It is 4 ft. wide anc Iong on the ground plan, and 6ift. high at the back and flit. in front. The honse oonsists of five pieces,
lacir, front, two ends, and root, they are pat together back, front. two ends, and root, they are pat together
by bolts and nats, the nats being inside the hoase. Part of the front is the iron door; it is secured by a stont the door and a hole in the end of the hoase. At the other end a hole is made jast big enough for the fowls to go in and ont. To prevent the house being too
warm in summer and too cold in winter it is lined with fin. boards.-J. L. H.
[19667.]-Organ -" W. Z." has not carefally read my letters on "The Oraman Built," or, I think, he would not hare asked snch a question. Refer to lottera three
and four in "our"" of January 26 and Febraary 9 of this
 goide pins are given. I think they are, but if "W. Z." still remains in a 0 I 1 will try to enlighten him. N
covering board is placed ovar the paper on the bars. J.
[12681.] - Is the Interior of the Globe Ansted's " Physical Geography,". which indoraes the views of Prof. Sir W. Thomson and Mr. W. Hopkins,
Cambridge. M. Delannay, the lamented direotor of the Observatory in Paris, has come to a diferent conolasion. According to that emineut mathematician and astronomer, in order that the reasoning of Profescor homson might bo ontertatnod, we mast admit in for all lignids are more or less riscoas. When abst, sudden rotation is communicated to a solid, whicb envelops a liquid on all sides, the solid alone tarne, the liquid remains behind, which it is easy to ancortain by observing sawduat Which has been pat in that
liquid. Bat it is no longer so, when we tarn the balloon slowly, in that case inertia makes the liquid adhere to the inside of the vessel, which carries it in its motion. The hypothesis of the central Aro is not to M. Delannay, who pretends that the action of the sun and the moon is oxertod on the whole mase of the globe, and that thas the phenomenon colled precession is not an objection to
of the globe.-F. T .
[12684.] - Canoe.-In reply to "Aquarias," I have mach pleasure in giving him the dimensions of a canoe Which onght, I think, to sait his parpose. Leagth,
12tt. beam amidships, 80 in.; depth from rabbet of teel to ganmales. 10 in .; depth of keel, $1 t$ in. ; sheer of ganwales, 5 in . The well to be 82 in . long by 20 in . Wide, the back of the well to be 21 lin. abaft the centre of the canoe. The deck to be of cedar or mahogany (the ships; the stem and atern posto of oak. or ash ; the beel of same timber or American olm ; the planking o oak if for trarelling and tnooking sboat mucb, otherwise of yellow pine, or apruoe, or cedar, and the ribs 3 tt . 10 in . from bow, and rig with ${ }^{2}$ etanding lageail of 7it. also, abaft the well, of a jib shape, 3ft. 6in. leach and loot. I do not know anything of sheeting a oanse with informaiion required by "Aquarias" I will be happy to give, if in my power.-CAxorist.
[12096.]-Atmospherio Pressures.-The Board of Trade's "Baromater Manaul," Stanford, Charing.
Croes, price ls.-E. Cross, price 1s.-E. L. G.
[12708.]-Fuchsias.-Fuchnias are very sueceptible of change of pluce. I have known some affected to the falling of of leaves and flowers by being shifted from
ono room to another, nay, from one side of a room to another. It is but reasonsble, then, that they will go to the bad when broaght from a greenhoase or nurserg, where they have been forced, perbaps, into premature where thes have aeen yorced, perbaps, into premoseras
bloom, and an atmosphere many degrees lower. I have spoiled a magnificent plant this summer by patting it outside the windom one day and inside it in the gronnd to save it. It is now in fall and luxnit in the gronnd to asve it. It is now in fall and luxn-
riant foliage, but it has not shown a bloom this year. Also too moch wator, or too little, will canse bads and lenves to fall off. In fature all, my fachaias will go axning (as is or ahonld the apring, to be shaded by an rains and strong sunshine. I have some very fine rience, but no greenhonse, and in that case my experience has convinced me the
Letter in the beds.-H. G. W.
[12705.]-Extracting Vegetable Colouring Matter.-The green colouring matter of leaves, known
as chlorophy, can be extracted by chopping ap green leares or grass with a kuife, and digestiug with stroug alcohol. A deep green solution is produced, which is
stronkly finorcecent. If this solution be evaporated strongly fluorcseent. If this solution be evaporated
gontly to dryness, aspleudid red colour often appearn
on the edges of the residue, while oomparatively pare chlorophyll is deposited in the oentre. This red coloar,
found principally in antamn, and oallod erythrophyll is and principally in antamn, and called erythrophyll is si oxidation prodact, and may be extracted from the
residue by treatment with water. On redissolviug the residied by reatment with water. Carbren disulphide, the
parifed residue in aloohol or cal green oolouring matier may be obtained almost pare Analogoas prooesses may be emplosed for mont other veretable colouring matiers, comparsively low boing solable in walor. בany jelow and orkge coloars may be separal by a great measare diasolved in the hearier liquid which settles to the bottom.-ALFARD H. ALLes.
[12700.]-Laboratory Puriflcation.-Processes producing disagreeable fumes or gases are asnally conopening into case soparate flue. When the action is imperfect, may be inoreased by lighting a gas jst placed ander an iron tabe which passes through the apertare large ine. This tabe may, with sdrantage, be made near enoagh to all the hole, bat as the latter mast be naarly at the top of the case, the gas-burner mast be out of a large box or packing.case, fitted with anfl cieu glass to allow of the operations being watched. Prom
without. Il anlpharetted hydrogen is the principal without. It sulpharetted hydrogen is the principa annoyance, it may be got rid of by always treating the excess of gas oan be passed into a tabe or bottle filled with noetate of lead, sulphate of copper, or a mixtnre of ferrous sulphate and slaked lime, either of which will absorb it pretty completely. The lagt is the tarned ont and freely exposed to the air.-ALIFBED H . allex.
[12708.]-Laboratory Parffication-Make an Thening into a chimney, of courte olone to oeling window ; make the opening in this recess and carry on all offensive operations theroin, closiag the cate at mach as possible. In this way, and by asiag rofrigerating tabes of my own device to condense the fames, I sometimes keep acids boiling for hoare at a time without making the laboratory itsoll anpleasant, while no fames reach the rest of the hoase at all.-Sioma.
[12707.]-Geometrical Query.-The projection a diralo is proved to be an ellipae at p. 326 of Tod hanter's "Conic Soctions." I will and the prool is
quir
[12707.]-Geometrioal Quory.-The sols condition for having a circlo projected porspectively an a parabola is, that the ray from one point of its oiroum.
ference (and from only one) to your eys shall be porence (and from only one) to your eve shall be paraliel to the plane of the pictare. There is an
ongraved interior view of S . Paul's, taken from under one of the diagonal arohes of the central oetagon, and as the circniar oornices aboat the base
of the dome have one point vertically over the of the dome have one point vertically over the apectator the pictare plane being also a vertical one as asaa) aul their hines beorme nearly parabolas. This ver (anlass as a cosmorama or peep-show) does not to M. Paris. Viemi within the Panthoon at Rome imilarly taken from the exact line of wall base, wonld make all the circuase lines of the ral diametor para the centre, they, and all of more than 100 ft . diameter, ould become hyperbola3; one elone (that one in the dome whose radins is 50) being a parabola. Bat as riews of this building, so far as il know, are always rom the baok of some recese, they project all the ines as ellip ot 4 , pringing or the capola, woula make eve ha above ariol crisht indeñitely oxtended, woald enable you to show the whole of it; and a atraight line, hyperbola or parabola, whenever it conld not embrace the whole.-E. L. G.
[12710.] - Aerated Ginger Beer. - Perhaps Sodamator uses too mach ebsonce of gingor $;$ aboui on snit the palate is a firstrate fiavour, and it will not make the water scarcoly at all clondy, bat ail ensences nufir too mach is ased. Porhaps the gas is not rill say how the gas or not properiy generate. in whe class machine, I could better say, and give him a more deAnite answer.-L. W. D.
[12711.]-Eeight of Mountain.-At A, take the top's angular altitade and angular distance from B; at B the bame two relations to A; and measare the ance from either) and also their difference of levelE. L. G.
12718.] - Potato 8tains.-If " Δ nti-Acid" will go to any oil warehouse, and parchase a piece of pand ce-stone, and arst rab a hittle soap on his ingers,
and then rab with the stone, it will soon remove the stains withoat injary to the akin. Proved.-J. W. Pearbon.
[12720.]-Medical Coil.-These cannot give a oontinaons enrrent ander any circam. tances. Tuey can and ought to be made to give one in one directiou
only, and tho way to do this is to connect the begiuning only, and tho way to do this is to connect the begiuning
of the becoudary to the ond of the priuary wire. A of the secoudary to the ond of ths prisuary wire. A
bichromate cell will be foand more conveuieut than bichromate cell will be foand more conveuieut than
the Daniell. The latter will alyo work to much leso adrantage than the Leclanchi for a cllyok, or for any
ase requiring carrents of small quantit,. Sioxa.
[12725.]-Fased Ohloride of gllver.-"Argoutnm" has probably not dried his chloride before fasing. saso over a Bansen gas-burner or epirit lamp, aud may be cast into rods or plates; the battery as made, howerer, is a vary expenaive toy.-Siama.
[12726.]-Motion of a Salling Boat.-Everrwind banderatand how a boat oan sail botore the way against the wind is far more diticalts in fact persons nnaccustomed to it often donbt the poosibibility of doing so. In explaining this we will consider the sails as quite flat, for the nearer they can be bronght to lataoss the better. Sapposing the sails, then, to be last, and the wind to strike them, part of the foros is part of it pressea againat the flat sarlace of the sail and perpendicalarly to it, this, then, tends partly to drive the boat ahead, partly to drive the boat bodily to leemard, and if the boat were a bor or a tab, she would go in a direction between the two, bat as boats are constructed sharp at the fore end, the sarface opposed in that direction is not more than one-seventh of the surface which the nearly fiat side opposes. Thas o leemard. Ir canuot attempt to erplain the latter par of the query without disregarding the adrice oontained in Montaigno's Essay.-Cambril.
[18736.] - Cement on Postage Stamps. British gam, made, I beliove, by heating itarch until
[1273G.]-Cement on Postage Stamps.-It is dextrine, or British gam, made from atarch by expo sare to hoat. It may also be prepared by the action of acids and diastase (a sujstance formed in malt), and by a limited fermentation.-Sigasa.
[12789.]-Geometry.-Let P be the interrection of Δ B and F C. Bince the angle B A D equala B F C, and \triangle PC equals FPB (i. 15), therefore A (1) P equala Δ (1), equale a right angle. Therefore the angle angle A (3)(2) equals a rignt angle. Therefore a circle ann be described round $\Delta(1)(2)(3)$.-XEVOPBON.
[12756.]-Etahing on Stone.-Very ano lines can be etohed on stone. Instaad of a grained stone it with pumice-stone, cake coloars being nsed the asme as water oolours, and drawn with lithographio pon I have done the same mysolf for gold and colour printing. Josspir Willias Fanneli
[12757.]-Hand Railing.-Templets being made lor every pattern of bend or carro, plaues most saitable for the aame with paring ohisel, goages and rasps faish the asme. See "Hand Railing," in Build.
ing Neces, which will farnish evary particular, Josspa Whe Neles, which will
Whink Fennzis.
[12767.]-Hand Ralling.-Aftor the wroath hae boen traly squared there is nothing botter than the wo-handed draw-Enife lor redacing it nearly to khe but her ing ase roatere of the spoke-share plot the planes, ased for moalding the straight lengths of rail. Yuar ingenaity should derise the roith No two men parsue exactly the bame method.-Old Plougrixan.
[12758.] - Sooket Handles.- By making a patr of hollow clams, to wort by a serow or lover, the same as vice jairs. you coold do them almost as fact as oounting lay them between the jaws, and she mandril npon the top, and plach ap with either a acrem or lever. Jick of ALL Trades.
[12759.]-Leaking Inaiarabber Bottle.-Got some indiarabber solation, and pat a patoh on the inside ; it will require some considorable time to get dry.-Jack of all Trades.
[12759.]-Lealing Indiarabber Bottle.-Stiak it togother with indiarabber coment, and, if necescary,
[13760.] - Bringing Slate ta Surface of Quarry.- Use a wire rope and horizontal drum, asing tro tramwaya and two trucks, the one going down whilst the other is coming ap. - Jack or ALL Trades.
[12780.] - Bringing Slate to Surface of Quarry.-It is quite practicable to wind ap the stone inclading the weight of the waggon and friction, be 1 ton, the incline 1 in 6 , and the height 60 lt ., it will require 4 horse-power to land each losd in one minate, Which rould be a speed or aboat 6 it. por second, or
about 4 miles per hour. These are sil approximate abont 4 miles per hour. These are shil approximate
numbers. It woald be a question depending on farther nambers. It woald be a question deperding ontarther not be preferable to an incline. It woald coat less.c.s.
[127c0.]-Bringing slate to Surface of Quarry.- "A Poor Irishmau" may bring slates to
the surface of quarry with his present engine by fiting up a barrel for wire rope and laying down tramway; the barrel would require to bo 3it. diameter and 4tt. long, and make about filteen revolations per minate;
it will require a slidiag conpling on driviag shaft for disconnecting from engine, and a brake on ond of barrel for ranning down empty waggon, wire rope pin. diameter; it will reqnire small rollers or palloys
pluced but meen rails 9IL apart to provent rope from pluced bet ween rails 9 It. apart to provent rope frum
rabling on the groand; it will bring ap a ton at a time. If the burral cannot be placed in a live with trammar the rope can be gaided to it with palleys; it will wot more atisgactory than 2 sluain winch, and
cheapur.-P. C. E.
[12762.]-Curve of Mirror.-The surface of the concave speculam of a reflecting telescope mast be
worted to a parabolic curve. Various machines have worked to a parabolic curve. Various machines have been derised for producing this figure with certainty.
Valuable information on this sabject may be foand in Valuable information on this sabject may be foand in
the columns of the Evalise MECEAMC, where the the columns of the ENGLish MECHANEC, Where the sabject is fally trasted by "Arctaras," W. Parkiss, de.
I ehould recommend " Zeta" to read carefally
" "Herschel on the Telescope, "and the back numbers of the Englisi Mrichanic. 1 am asing a mirror 5 ping.
diameter and 51 in. focal length, which I made by diameter and 51 in. focal length, which I mude by
hand only, without any machine whatever, and which hand only, withont any machine whaterer, and whid is of excellent quaity. It will divide 36 Andromedm, x Aquile, and s Arietis with a pow.
-A. Woolsey Blacklock, M.D.
 mirror of a reflecting telescope is a parabola. The very dolicate one.-Alfred H. Aleze.
[12763.]-Preparation of Carbon. - Carbon may be prepared from sugar: 1. By the action of superheated steam;
Nordhnusen andphario acid ${ }^{2} \mathrm{H}_{2} \mathrm{SO}_{4}$, or English acid $2 \mathrm{H}_{2} \mathrm{OSO}_{3}$, or by the oxidising effect of nitric acid. -c. B.
[12763.]-Preparation of Carbon.-Heat the sugar to a red heat, without access of air.-ZAx
[12765.]-Sun Dials.-A horizontal dial for 40° N. latitude can easily be constructed. The gnomon mast point to the pole, its angle is thas equal to the ratelydy known. The XII. o clock hour-line shoald be axed in the antronomical rather than the magnetic med in the atronomical rather than the magnetic mequal ohadows of a blant rod, or by observations of equal having the same right ascension. The angles Fhich the various bour-lines make with the line are readily found. For $40^{\circ} \mathrm{N}$. latitude they are
as follows, being equal for hours equi-distant from the meridian:-

improvemente in implements for boring the earth for water," but the first modern well of great depth (which drew pablic attontion to well-boring) was that monced Mnlot for the city of Paris at Grenelle, com monced in the year 1832, and water rose arter itcessan depth of 1,798 foet. The well at Passy was commenced by Kind, in 1856, and water was strack on the 2ith Sy Kind, in 1850 , and water was atruck on the 2 th
September, 1861 , at a cost of more than $£ 0,000$, the Sield of water being 17,000 metres of water per yield of water being 17,000 metres of water per
day. There is a long account of it jast pablished in the Engineer. I wish that I conld give our valuable and valued friend, "The Harmonious Blacksmith," and valued friend, "The Harmonious Blacksmith, more information on this sabjuct, bat perhaps some
talented orrespondent will entighten us beth on this matter-Zax
[12771.]-Colorado, U.S.-By National Line to Now York, experse about 218 to Denver City, by steamer and rail; the cost of living I do not know. My information ia derived from a friend who went to -"The conntry is completely overdone by emigrants there are thousands living at the various ranches throughout the state, working for the farmers, and receiving their board and lodging only as pay. The noil summer if you succeed in growing anything the grasshoppers eat it. The climate, which is deacribod as being the finest in the world, is tremendoasly hot in summer, and althongh the papers desoribe the winters as being so mild that cattio can be left to take care of the ground is covered with snow 8ft. deep, and has been for six weeks; the thermometer is below zero Canes of frostbite are frequent, and if I could got away, even at a loss, I shonld be glad." In fact (from my rriend's atatements), the conntry is written ap dispese of to credalons investors. It you want to emi[12771.] - Colorado, U.S. - "Emigrant" and others woald do well to write to U.S. Conanl at Liver pool to send them a copy of "Information for Emigranta," an official work, by Edward Yoang, Chief of
U.S. Barean of Statistics, and reliable information to bo obtained abont that country, and presented on a ner plan by which one part in question. This will be sent to sny one wo will forward stampe to pay the postage. Δs to the best
way of getting to Colorado $\begin{aligned} & \text { would recommend New }\end{aligned}$ way of geting to Colorado wos woss then by any other city. As I have never been in tho western part of the United States I onnnot inform him as to climate and expenses. I woald heartily recommend him to go to are by far by the Wite Star line well as the cheapes and whether "Emigrant" be a scientifio man or an epicnre, he will find abandant means of enjoying him self on this line, as I can testify. In case the consu at Liverpool cannot farnish him with the book, if he will pablish his address, I will pat him in the way of obtalning one.-U. S. A, Washington.
[12772.] - Bee Keeping.-Mr. Walton does not tell me the sizes of his hives, frames, or centre apartment inclosed by the movable partitions, ciseqneotly I am unable to give him other than general infurmation. It his contre apartment contains sumicient for winter use I should oertainly remove all the sealed combs from the oollateral sides, leaviag them quite empty; farthor I should overhana the combs in the oentre apartment, cut oat all the sealed drone comb, and fill ap the spaces with sealed worter oomb cat from the collaterais, or from supers, althongh the formor generally yield suffcient. The erapty ends form comparatively dead air ipaces, and may be made the means of drying, warm ing, or feeding daring wintor or spring. A hot dry brick or botlue of hot water will give a good deal o bive, and a comb billed with syrup will form a ready means of epring feeding. I presume the hive is so made as to enable Mr. Walton to get at the collateral onds in wintor without distarbing the bees, and if so they will form a capital means of ventilation; or the back of the hive may be raised, and the back of the cover or honey board raised also, or if the said oover shoald be aet aboat one-sixteenth of an inch upart, after the bees have finighed propolising, and a light sack or thin carpeting laid over it. I gave direotions for transferring combs list week, and can give nothing more special on Mr. Walton's behalf, as he does not say anything of the relative sizes of his frames, to or from Which he wishes to transfer the combs: The great Yoatare to remember in transferring is not to randerwith comb, and fastened in by the bees, before attempt ing to fill op the lower part, then the lower part having firm bearing on the bottom bar cannot fall, and will
require littie attention except from the bees. -C . N . require
Аввотт.
[12773.]-Boot and Shoemaking.-If "Harry" intends to go in for rivet work repuirs the tools that he will require are a pair of lasts, a size or two sizes
smaller ithan his boots, bottom iron plated, an irou smaller than his boots, bottom iron plated, an iron
foot, a shoemaker's hammer, ditto pincers, bradamls and sewing amis, and a closing awl and stabbing awl, a shoe rasp aboat gin., knife, sole tacks, and hack knife. The thin edge of the woru leather is lifted by the hack knife after the nails are cat ont, and the piece for
repairs is thinned down to correspond and placed repairs ind thinned down to correspond and placed
under, and all bradded down together.-JACK or ALL under, an
Trades.
[12774.] - Harmonium Keys. - "E. W. P. might purchase old piano koys for a mere trife: Chese might be converted
[12776.]-Gas.-In our town (Meoclesfiela) we have formed a Gas Consamers' Association (memberibip froe), and have held coveral public meeting to cocr-
plain of the gradual inorease of the gas billa dering plain of the gradaal inoreace of the gas billa daring the inst two years, sinco the introduction of colectibg the bills quarterly, Which now average doable for
quarter what they were for the hall. - jear, and to prows against the injastico of supplying poor gas for the high price fixed by our Act, 4s., Which ordors 18-cande gas. The increase in the billa is causod by the cont being exhanated too much, thereby mating mory vapoar of a less illaminating piwer, leaving sality as to veed a larger consamption to got a light at ali in this way an immense amount of extra monej 4 squeezed out of the consumers. The meters in most casos register perfectly correct, bat wo complain ol being foreed to burn more and to pay the eame price per thousand for poor gan, when we need not conamen so much if what wo obtained was of good quality, whist would be secared by taking the coal out of the rowart sooner. It is a carious problem that some towns charge so little, and other towns are allowed by Governmeas: to charge so much-far in oxcose of the differenco of the carriage or any rise in the cost of coaln, and it is strange how fow towns have a pablic photemetor to show the quality of the gat supplied. Brighton is the only one I know of that has an official inspeotor avd pnblic photomolor. Birmingham has a pabic pboto lector's offce. Birmingham chargee 3s. 9d. per 1.060, and allows 5 per cont. disoount for cash Loek charges 4s. 2d., with 8d. disconat for cash. Wolverhamplom 2s. 2d., Warrington 3s. 6d., Derby 3s. 5d., Mancbester
 5a. 10d. ; Congloton lighis its streeta free. The above onstern conntios to wina look very mach like 8 combins assoot gas companies, and mach difoce what informatios they can gather. From the information to have so mach be given, and wherever the ges works are corporat property every aloment of diseatisfection appeara to be denign of extorting extre mon6y from the consamers for town improvementa, de, by aupplying \& prorar gls the to test the rabbish sapplied. We desire to potilion Parliament to appoint a pablic anditor of gas aceanats qualited to toat the gee at irregular times, and to allow the maker a certain margia (cay 20 -andie gy) and then give him a month's imprisonment whenever it is below 18 -candle. The edmission of the newspaper reporters to the weokly moetinge of the gso hare tid worke belong to the ratepayers who aro ablo to ratel every other committee excepting this one, where there is the most danger of dishonesty and mismanarecoent vious iespondent made some capital remarks in a dif. forent qualities of gas, bat wo ought to naite to es tain a really good quality, and thon no one will object to pay a fair price.-R. A. Hextley, Hon. Seo. Maco Gas Cons. Absoc., Maceleatield.
[12776.]-Gas.-The illaminating pover of gas is commonly ascertained by Bansen. photomoter, the sample of gas is asid to be " 16 onndie gas," it mesas that when barning from an Argand barner of ps:ticalar gize, aurmosatod by a glass chimnoy of defnite height, the rate of issue of the gas beiag ilve arbic tees produced by 16 given by the gas is equal to the rate of 120 grains ment, "H.J. W." woald require a sman derk room and some expensive apparatas. It is erident chat: not poss the rate at which the gas barns is known, is is idea posible to got comparative resalta. 4 very roest obtained by illaminating power of the ges may be pencil aboat a foot from a ahoot of whito papor playd againat the wall; on adjuating the gea fame and : sperm or paramin candle at such distances that tis: equally intense, the squares of the distances of the lights from the peper screen indicate the comparatir. intensities of the lights. Thas, if a gas-1ame at it
$\frac{1 \times 1}{1 \times 1}=16$; the number of times the light of the former is greator than the lattor. There is maes prodace bad gas and good dividends ; bat the tras ference of the concernis to Corporatione or Boards Health is usually attonded with difficulty, and clear: common price for grineas a minato being on Committec. The apapgostions that the illamiague power of the gas should be a factor in es inmatipe th value is a good one, but many poople aro gailty
wilfal waste of gas and money by using bad or wifl burners. By paring attention to this sad or ven consumers may groathy improve their lighta, and are reduce their gas bills.-ALFRED H. ALEEY.
[12778.]-Printing Metal Leat on givk as: Cotton.-Let J. B. Sharploy try a varnieh made an.
pint good methylated spirit and 1oz shellac, about the same quantity of silver sand that has been wached clean and dried. Well shake it occaaionally, and stand by to settle; Whon olear poar of the clear and add loz. of aither gam sandarach or pale reain; when clear, it yor
nee, apply with a camelta-hair brash, and apply your metal leaf and heater. The cont will not exceed 1 a . I prefer naphtha for the job.-Jacr or All. Tendes.
[18779.]-IIghtning and Thunder.-Qaestion No. 1 is not clearly wordod. Lightning is not neconsarily forked beosane not sheot. We have zik- zag, somo-
times noearly atraight or ourrod, forked and sheet, also times nearly atraight or ourrod, forked and sheel, als
that very myatorious form called globalar lightning. All
met theoe, even the laat, I believe have been imitated by the
eleotrician. Real ahoet lightaing in, if it ever ocours, very rare; still it is posaile. 2. The proper sound of of glaget than anthing oler, me mudiee; the rolling is the efleot of echo; however, the direetion of the fiash
many prolong or modify the arach-still, as on lotty may prolong or modiy ther farourable positions, the rolling cound is separated the true sound. 3. Violent ribration of atoms or molecules, which is
ing we know nothing aboat it.-M. PARIs.
[19780.] - Turning Spokes of Carriage Wheels.-I believe that it is impossible to tarn a single spoke at onoe in a common lathe, bat two may be tarned at once, over hall the circumert of metal each, by exing them sine oach end, holding them armly and having centres on the ontaides, to be carried by point chnok and point of back centre in lathe; when both turned on the exposed aides take them out and reverse them in
ehe fixings, and completo by turning the then exposed aiden.-Zax.
[12780.] - Turning Spokes of Carriage Whaeds. inis thing has been treated upon and illasBee that this thing has been tras.
trated. Jace or ALE Trades.
[12782]-Full Moon.-The following are the dates of the full moons up to the end of next year:
1872. September 16 September
October 16
November November 14
1873.

Fanuary 18
March 18

April
May 11
June

June 9
Augnat 8
Septomber 6
Ooteber 5 .
December 8
$\begin{array}{rrr}\mathrm{h} & \mathrm{m} . \\ 17 & 5 \\ 8 & 35 \\ 17 & 8 \\ 9 & 44 \\ 4 & 23 \\ 23 & 33 \\ 17 & 44 \\ 9 & 51 \\ 23 & 18 \\ 10 & 1 \\ 18 & 88 \\ 1 & 52 \\ 9 & 9 \\ 17 & 31 \\ 8 & 48 \\ 16 & 20\end{array}$
-Whmiak F. Dessinc
[12783.]-Sash Planes.-Those aro not exactly elike, and therein conaists their value. The No. 1 must be used Arst, and shoold be set a little more "rank" than the other. When that has beon worked qaite down, take No. 2, whioh will take off abont four fine
shaving, and the monlding is Anished. "Science and shavingg, and the moulding is Anished. "Science and Art " might learn more about work and tools by work-
ing a few months in a shop than twenty jears reading. ing a fow months in a
-OLD PLovaryan.
[12788.]-Samh Planea,-II "Science and Art" planes down as far al he can with the No. 1 plane set rather coarse, he will find No. 2 will then take a shave-
ing or two ofr, il set nice and ane; so No. 2 plane acts as a emoothing plane for No. 1, and leaves the work nice and cleas.-PEacock.
[12788.]-Sash Planes. - The reason why they are nambered 1 and 2 is becanse No. 1 is nsed frst, and takes off the greatest part of the wood to the shape ro-
quired. No. 2 is then ased, and is made to take two or quired. No. 2 is then ased, and is made to take two or three shavings more or that it will keep sharp longer, and work iner. -Jorin Waiton.
[" B. H." has also answered this query.]
[12784.]-Libraries, - I notice that some libraries have their names impressed on their books, do., by a of the letters, in the same way that bnnkers cancel their cheques with the date, \&c., and Government is going to mark ballot papers, \&c.-Zax.
[12786.]-Photography.-1. Pack sensitised papor very tightly in an envelope that will ozalade air as well as light. 2. A small quantity of carbonate of soda. 3. Place them face to face with a pioce of millboard on each aide of the pack, and wind a string tightly roand. 1. Explained in replios to query 12856. 5. Use an ordinary copying camern.-J. W. N
[12788.]-Deaign for Marble Inlaid Tablefor a inlaid table let him only look on the numeroan ner eliurch windows, and he will And all he requires. -Menz.
[12788.]-Design for Yarble Inlaid TableMarble and Stonemason "has not said What sort of table, round or square, or probably
donign. Josspa WhLuy Fensme.
[12789.]-Staining Fanlight.-The common or groen gilas is what is cermod fushed glase, that is, the
colour fashed on one nide of alear glase ; if you eat colouria inshed on one nide of olear glase ; if you eat
the colour ons by mold you will have the clear centre,
or That part you please to operate on for your pictare you can paint or draft. Ample r
in beck numbers.-METUAL Tox.
[12789.]-Staining Fanlight.-Perhaps "Ken dal Sadduer" means the glass done as follows:-A sheet of coloured glase is laid on a sheot of white glans, and meited together in a furnaco. Then the suriace on smoked smoke orer the glass and eaten in right through the
through the coloured giases by flaorio aoid, which leavos the dealgn on white glas.-C. B.
[12789.] -Staining Fanlight.-What "Saddler" apeaks of are etched npon plated glass for the purpose by the action of hydrofinoric acid. The glass is to be
[12789.]-Staining Fanlight.-The glass alladed to in not stained (excapt the yollow), bat is manuiac tared as coated glass, the chief part of its thickness colourless, but with a uniform coat on one side, of either the atrongent red (miscalled "raby") or the ntrongest blue. I have never seen it coated with green, or any colour bat these two, nor with these in less than their fallest intennity, kor with both sides coated. though any such varieties woald be more available. A third kind, however (yellow), is plain giase aniformly dyed over one side with the silver hiain. Taining an of these, and covering its coloared side with branswick black, when this has dried you scrape it from the lines or forms that yon desire to be white, and a "glase embosser" will then pour fluoric acid on it, wrich etches a way the coloured onat whers thus exposed. It a printed page or impression of a woodat bo applied with its face to the clean glags, and then the acia (either in gas or a Teak solation), eron the printing ink will protect what is ander it, while the paper will not, thui reproducing a fac simile with the colour for black. Gaseons acid leaves a perfectly derd ourfsce, bat the liquid a
blind. E . G .
[12792.]-Tempering Needle.-They are best as hard as they will go at each end, and oan with car
be easilly soldered without softening.-JACE or ALI Trades.
[12792.]-Tempering Needle.-I think this extract from Browiter's aiagaetiam will answer the question:-"With regard to the best mode of harden ing and temperibg asedles, laplaid Kaltronghont it when a needle is considerably narisod. He found that capaciny or mag siceptible of the greateat diroctive power hen it ras first hardened nniformly at a red powet, and then softened from the middle to within an inch of ita extremities, by using a dogree of heat which is just capable of mating the blue colour, which is thus prodiced, to disappear." I shonld try coaguline as the meane of attaching a weight to the needle, and not heat of any kind, which I think could not be applied with salety to a fnished needle.-E. T. E.
[12793.]-Tempering Needle.-The harder stee is left for magnets the better it retaing its magnetism therefore leave your needle as hard as the circam stances will allow. The hot solder will, of course
draw the temper of the part it is applied to.- Zax.
[12793.]-OLl of Peppermint.-Take your herb fresh gathered, when the bloom is jast aboat to open and place in a still with a quantity of water. Draw over one hal?, separate the oil from the water, and return the water to the atill; take the old herb out. and replenish with more; pat the still head on, and distil as before. You will need from five to six ponnds of herb to get one ounce of oil.-JAce op Ale Trades.
[19794.]-Ammoniacal Liquor. - Traddle's degrees of gravity are equal to 5 degrees on a hydrometor, in which water is 1,000 . Thas, 1° T. $=1,005$, vert " Twadde's " results into degrees of real gravity vert Traddie's results into degrees of real grater $=1,000$), maltiplr by 5 , and add 1,000 . If we (with water =1,00), mallip, by $\begin{aligned} & \text { divide the real gravity by } 100 \text {, we obtain the weight in }\end{aligned}$ ponds of one gallon measure of the liqnid. Thns, ponnds of one gallon measure of the $100=10 \cdots 51 \mathrm{l}$. for the Feight of a gallon.
$1035 \div, 100$ "J. W." has now only a simple proportion sum beiore him. As in 1 ton of the liquor at 5° "Twaddle."gallons in 1 ton of
ALPRED H. ALLEN.
[12796.]-The Spanish Language.-There is a Spanish "Ollendorf" pnblished. I do not quite agreo with "E. L. G." (reply 12348, p. 545) about the vala of the four auxiliaries, and the Spanigrds have well
dropped the use of tent. The Portaguese, who, like dropped the use of terir. anxiliary. The correot nse of ser and testar is a great naisance to foreigners, and it appesrs to me very sin gular that estur, derived from the Latin sto, shonld be ased to express a temporary oondition. I langage than
lieve there is any better way to learn a by grammar and dictionary, with a newspaper. Transby grammar and dictionary, wione day, and back into late a part of next. bixperto crede.-M. Pams.
[12796.] - The Spanish Language. - I am tind the best to be Dol Mar's, which I have saccessfally recommended to many.-PEDRO.
[12709.]-Air Fessel on Suction Pipe.-The pump barrel being so now tho speed of the prmp.backe the well in order thoft. abore the water level the presauro of the atmosphere which forces the watar ap into the racanm
redaced to about one-third of its normal pressare, or to sboat 51b, per sqaare inch. It the speed of the backet be considerable this pressare may not be sufflient to onase the water to follow the backet fast onough, and When is had arrived at the top of its stroke a void moald be left undernoash it, and before this could be fllled by the rieing water the bnoket would have begun to descond again. This would both reduee the quantity of water whole ate each stroze and would canse abld come suddenly down and meot the water; bat with an air reasel below the barrol the compressed air, expanaing, seciets to make the watar follow the backet more clonaly, and perhaps perfectly; the degree depends apon the reCations which oxiat betreen the size of the suction pipo, the speed of the bocket, and the capacity of the air vessel. For theee reasona it is best to place the working barrol of a pamp as low down as possible; then the iall or neariy all fores of the atmospheric pressure canses the water so follow the backet closely. Bat under some ciroumtances it may be well to place the working barrel, as in this case, considerably above the water level; but in that oace an air vessal would be required to offect What I have pointed out. This is the way in which, it neems to me, the
sccounted for.-C. 8 .
[12798.]-Air Vessel on Suotion Pipe.-With colamn of wator of 801t. by 6 in. thero would be a violent concassion consequent upon patting into monld probably burst the pipe bat for this air vessel. A. Liverpool.
[12799.]-Speculum.-The glass disc from which
worked my specalam was a pleoe of ordinary thick roagh plate glass. After being smoothed it is now 1 inin. thiok, so I suppose at frrst it was 1 ifin. It was
chip chipped into a ronghly cironlar form by the makers,
and 1 finished the edge on a grindstone by hand. - a. and I finished the odge on a
Woolsey Blacklock, M.D.
[12804.] - Fixing Photographic Prints. "One in a Fix" either has his tixing bath too strong or keeps his prints in too long and not long enongh in the toning bath. The strength of fixing bath oaght to be-hyposalphito of soda, loz. ; Mistiled was
Norurb.
[12804.]-Fixing Photographic Prints.-All prints toned by chloride of gold ehsage ther the hyposulphite bath, bat those which are sufficiently printed and toned in the Hrat instanoe recover their proper hae betreen the flxing and washing operations. An anif between the fixing and washing operate will prodace
condition of the toning bath, however, winn condition of the pictarestons.
[12812.]-Water for Aquarlum.-The water mast on no account be drawn from a well or pamp,
and, indeed, any kind of water that is ased for drink:and, indeed, any kind of water that is ased for drink ing is nnft for the aquariam. which is dramn from a river or poud. Ordinsry rainwater will, however, answer all parposos, provided tha it be clear, and that the batt from which it is kakei ha been proviued wis is fltered from nearly all anims and insect lifo, which oonstitutes the natural food of the little may be added as evaporation takes place, bu none mast be taken away. Any farther inlormation none mast be taired will be given with pleasare.-JAMEs Diok.
[12817.]-To Ohemists.-The blue colour is no dae to any imparity, but is a pecaliar action of the solation apon the light. If a quantity of quinine solu tion be viewed by the light which has already passed throagh a glass ressel tilled with a similar liquid, no coloration is observod in the second quantity. The "Hlaorescence" is also destrored by addition of a acid not containing oxygen-such as hydrochloric acid - while any oxygenised aoid restores the blae colora quinin (lite previee phio irory petrolenm, sc.), has the power of changing the relrangibility of the altra violet rays of light, that is, lowering the namber o vibrations per second, and so bringing thene rays within the limits of our range of vision. The effect is made more visible by using light which has been deprived of the less refrangiblo rays by pal
parplo-blue glass.-ALERED H. ALLES.
[12817.]-To Ohemists.-The solation of salphate of quinine is yollowish white by transmitted, and sil very blue by refleoted, light. We can give rose atigfacory reason for this than we can lor a ros. planation of the blue rellection from the suriace of a solation of quinine sulphate, is the following:-"The highly raifrangible actinio rays (asaally invisible) become degraded into laminoas rays of less refrangibility on striking the surfaoe of such a liquid." Henco these rays, then, become risible.; This pecaliar property is termed "finorescence," and is possessed by several liqnids, among which the following nre conspi-cuous:-Petroleam, aqueous infasion of horre coniam nut bark (æscaline), tincture or Datll, and tinctare of tarmeric. Urauiam glass is aleo highly tinoresceat.S. Botrone.
[13919.]-Stains in Wood.-Cyanide of potassinm ; very efficacioas, but very
abont le por poand.-S. Borros
[12932.]-Extrasting Opium, \&3, 8com Popples.-Opiam is obtained trom the white pJppg: Papmerr sonnuiertimb, by makiag iasivions, whiols is carefally colloctod as goon as if ac.f ticas satio:iost osa.
sistency to admit of its being sersped off. Poppy oil is also largely prepared from the seed of the above by the ordinary mode, vir., grinding, and preasing the meal thus produced between hot-plates in a hydraulic or other press. No use, that I am aware of, is made of the red colouring matter from the ordinary poppy,
P. Rhoeas. It may be extracted by aloohol.-S. Bottone.
[12823.]-Coohineal Blud.-It is a property possessed by colouring matters generally to form insoluble compoands with lead oxide ; such componnds are technistudied by Preisser so long ago as 1851.-8. Bottone.
[13824.]- Tagneainm.-Chloride of magnenim is propared by dissolving magneain or magnesiam carbonato in hydrochloric acid, mixing the liquid with chloride of ammonium, evaporating to drynea, and gniting. Mix 900 grains of this product with 150 grains of fluor-pere, 150 grains fused common sait, and 150 grains of sodiam cutinto slices. The mixture is thrown nto a red hot earthen or iron crucible, which is then covered and again heated. When the action has terminated, the fused mass is stirred with an iron rod to promote the inion of the globules of magneeinm. It broken poured apon an iron the globnles of magnesiam separated rom the alag; they may be collected into one globale y throwing them into a melted mirture of chlorides o? magnesinm and eodinm with finor spar. Do not heat too strongly.-ALPRED H. ALLEN.
[12848.]-Rowing.-Second kind of lever: the blade of the oar being the falcrum, the power being exerted at the handle, and the boat being the weight - Leting at
[12849.]-Beparating Lensen.-Soak them for an hour or two in apirits of turpentine. Lenses are ensily oemented togother by pouring a fow drops of the best Canade baleam into the concarity and gradually lowering the convez-lons into it, in anoh a manner as to aroid the formation of air bubbles. The lonses N difficulty attends this operation.-B. Botrone.

UTANSWERED QUERIES.

The nembers and titles of queriss whioh remain enanewered for fire urceks are inserted in this list. Wo truet our readers will look over the list, and cend what inforbutors.

8ince our last "Jack of All Traden" has answered 12562 Tar Pavement 521
$\begin{array}{ll}12563 & \text { Tar Pavement, p. } 521 \\ 12567 & \text { Brick and Tile Glazing, } 529 \\ 12569 & \text { Consumption of Alcohol, } 528\end{array}$
12575 Angles of Incidence and Reffeotion, 522
12580 Photo.-Lithngraphy, 522
12583 Electro-plating and Coppering, 522
12585 Thermo-Electric Pile, 522

QUERIES.
[12878]-Orershot Water-wheel.-An overshot wheal, 30ft. diameter and llit. Wide, is now running gained, if any, by lifting this whoel entirely free from [1984] watert-Pancrvaz Noaron.
[12874]-Decaying Wood.-Will any fellow reader sindly advise what is best for the seats of a church (restored only fire jears ago) which are aotually rotting? arge patches of fungus appenr indiscriminately on is almost confined to north side of ohurab, where there is least sun.-Chorchwarder.
[12875.]-Sulphate of Tanganese.-Will some biging reader give detnils of the manniscture of thi tonate quantities of acid and oxide to be nsed, time ccopied and beat employed? Also qua from one ton bleck oxide of manganese ?-TYRO
[12876.]-Electro-Plate.-Could any of your nab. scribers inform me what is the composition of plate
powder, and how does it act on the silver ?-Meranic. [13877.]-Photography.-Would some friend kindly tell me why the front portrait lenses are cemented together-mine having come apart? What cement could I put them together with ? Are they cemented only round the edges of the glasses or all over, and does
[12878.]- Fhectric Bellm.-I am anxions to fit an
electric bell in my bed-room to give notice if a window electrio bell in my bed-romm to give notice if a window should be opened at night. Will any of "ours" learned in eloctricity, state what battery I Bhould make, its
st-ength, and how the bell is made? The diatance between bed-room and window is about 10 yards.-H. Mackintose.
[12879.]-Curione Occurrence,-A dey or two agn. an ordinary tambler that had contained water in which time I apeak of citrate of magnesia (but whly cracked with quite a sharp sonnd, and on my attempting to take it up, came in two. Could any one kindly give an ex planation 9-Caradoc.
Bag.-Would some fellow reader kindly five mean Bag.- Would some fellow reader kindly five mean
opinion as to the feasibility of the following idea to d away with gas-haga or gag-holders for the lime-light about the size of a mercary bottle (1ft. long, 8 in . dia-
gellor), into which (bo a dentist has just told me) 100 gallons of Ras in compressed by hydraulic or steam his way the gas could be used directly from the retort and the pressure might, I imagine, be regulated by the lour honrs. The difficulty with ene nimeient for nearly steam power and diffranilics) is mowe (in the absence o ame be done in this way? Get a mercury bottle fitted with stop-cock, put in sufficient oxrgen mixtare to generate (gay) 30 gallons of gas, turn off the cock so that no gas could escape, place over fro, leaving the hent to prodnce generation, and generation compressinn; the esiduum of the mixture aiter generation oocupies but very small space. Would the expariment be a dan gerous one ; if so, how would
againat such danger ? - J. M.
[12881.] - Condensing Engrines. - Would snme is the called "air pamp"? Is the neme justifed by the small portion" of air (as engineers term it) mired s exnemater, which, when meeting wish the hot than would be required for withdrawing simply the injection water and condensed steam? 8. What is the quantity of air in water. is it about a 2,000 th part ? 8. In ordinary condensors, what would be about the average increase steam? 4. Would the boiler, with steam np to the pressure be liable to burst, seeing there is 151 b . of air on outside; or is the steam indicated in excess of the going into algebra, dc., would oblige an-Evarise MECRANIC.
[12sk2.]-Vision.- When I place a card between the accompanying figures, they do not at first nite so se to
give a perspective view, but seem to move towards each

other till the proper effect is produced. What is the cange of the apparent mo
[13888.]-Foul Air.-Has an instrument, thermo meter, indicator, or register of some sort ever been made to find ont the state or quality of gases con-
taminating the atmoaphere of a room I mean gases taminating the atmosphere of a roo
besides the atmosphoric air. -E . C .
[12884.]-Fvening Classes at Univerrity and King's Colleges.- Will some brother reader inform ovening classes at King's College or those at University College are likely most to suit the parpose of an undercraduate reading for the degree of B. Sc. at the London University, with his reasons for such selection? Wonld the ovening classes at ei:her college be suffiaient for this purpose, if supplemented by private study?
I should also be glad to know what would be the advantage of entering as a matriculated, rather than as an ccesional student-Ceryce.
[13885.]-Seaside Telescope.-I live by the seaside, objennt a telescope for the hand. p to what size ol object-glass might I go, and should there be more than elescope the leas perfect the instrument acts? Nosilloc.
[12886.] - Bmoky Boiler Furnace. - I have a nd grest difficulty in teeping steam ap; the fire barns dead, apparently without draught, and fllls the room with smoke. A 6 in. ellow connects the boiler with chimney (which seems to have a good dranght) but one dsy's use clogs boiler tubes nenrly up with soot. Is it pering with produce botier dranght without fiterappliance ? SMOERD OUT
[12887.]-Drum for Wire Rope.-Will some one kindly tell me of a simple and accurate way to find the ength of wire ropes arum will hold, bingle coll ; a drum meter 7-Tastalus.
[12888] - Screw Cutting. - Would "Apprentice Tarner" (let. 4762, D. 589) or any other reader kindly screw cutting-i.e., to cut threads with ovar two wheels with leading sorews from it pitch to $2,4,6$, and $6 \frac{1}{2}$ threads per inch ? I have Elliott and Greenwood's works, bus I desire a more abridged method.-Hion.
[12889.]-Tempering Drills.-I am a lead miner, and bave hitherto sharpened my own tools with success. of $52 \frac{1}{2}$ per cent. of carbonate of lime, 41 per cent. o silica (or fint), $4 \frac{1}{2}$ per cont. of oxide of iron, and the
remainder andphate of iron and magnesia. We nae the remainder solphate of iron and magnesia. We nas the will stand this atone. Can any reader help me out o
this difficulty? Will any chemical sidded to the water effect my object, and what ?-LEAD MiNER.
[12990.]-Faulty Negative Bath.-Will some of nepative bath (shont a pint) which will not give enough intensity in the whites? I have just been copy. ing a critc-de-visite portrait, and when I print from it 1 and fle face is not dense enough, although the plate is
fully intensified in other parts,-Hypo.
[12891.]-Wheels for Lathe-Will some kind patheru-maker give instructions for marking and cut. turned tho patterns in the lathe.-A Tranen.
All Tradca" or scme other correspondent "Jank of $\begin{aligned} & \text { give a description of tho best form of olutch for expe- } \\ & \text { ditiously throwing dram barrel in and out of gear with- }\end{aligned}$
out stopping engine. Any information on
aulject would greatly oulige.-Crma Bach
[12833.]-Charcoal as a Fertiliser-1 bara beard it said that dreasings of cluncomare rery vaid boroughly understands the nature of oharccal ten mo what kiod of vegetableg it is suitable for, and Fhat inds of fowers, as well as fraits, are beneflled y
and how it ought to be ased, end what quantisy:and how it ough
Wasts to KNow.
[12894.]-Beas.-Can any correspondent inform meis Zealand and Australis?-Jour Walron.
[13895.]-British Museum -Can any nne give the imenslons of the great rending-rown of the maseara, irders, sc. Jonn Walton.
[12896.]-Electro-Metallurgy.-Mr. Spraguestases No. 381, p. 42:3), writing abnat a singla acid batery,
the silver is platinised after the coll is completed Fill be kindly explain how ? and if it will not alter the action by patting in the platinising solation ? - K $8 . \mathcal{P}$. [12a97]-Cleaning StoneCarving.- I bere estove carved) vase made of rather soft stone, which has kity it, es I cannot get into the recances vary wall Fich 2 rush P-R. W. P.
[12898]-Light Wheels-I nm abnut making * pair of light wheels, and would like to know how to ges ge bevel of the shonluers of the spokes whers chey g I have never seen wheelwrights plano ttem. I honld also like description of the aimplest form of huck nsed for furning the spokes of wheck. Is there ny kind of wooden chack easy to make that woald the parpose ?-A Novice.
[18899.]-Keeping Flowers in the Winter.Will sume of your gardening corr enough to tell me how to kecp geraniums, Incbsiss; I have no frames or conservatory. Would it be saffaiast to hang them in a dry room ?-C. N. W.
[12900.]-A Ame 8]cates.- I have heard such differbe glad if some one who has had experience in shem would tell me what they think. Are they liable to tear
off the heel of the boots, as I hare heard they do ; ged are they good to learn figare-akating apon !-0. N. W.
[12901.]-Split in Thumb Nail-Can any at the readers of the English Meceanic recommend a cure
for a short eplit in the thumb nail. I hare tried a permanent plaister; bat this seemed to dry the nail, and ing.-M. A.
[12902]-Whitworth Bcholarahips, Ec.-Can any reader give wie the number of marks obtained by ships and Royal Exhibitions, 1871 and $1872-8$ W. HAYES.
[12903.]-Dulcimer.-Will some one tell me how to make a duloimer?-C. M. B.
[12904.]-Fixing Needle in Telegraph Coilnetic netic-neode in a telegraph coil so re that it wo
oscillate after current being stopped ?-C. M. B.
[12905.]-Coil. - I have made a coil according to the instructions given by "Glaphas" on p. 92 of VoL XMI. bat I fuil to get the Blightest current whatorer. I madi it as fellows :-First, I made reel or bobbin bin. orerall I disc ; and recondly, I wound on for the primary hree layers of No. 16 cotton-covered wire; ibird. in econdary I wound on halfa ponnd of 32 colton-corezed note paper. I soldered all the terminals with commer older and sino dissolved in spirits of salts. I naed a mall Smes's cell, and tried a quart Bunsen cell bat to ouse. I soldered one part of contact broaker to on and of primary and other end to handio of battery. soldered one end of secondary to other part of contec ssistance I shall feel very mach obliged to him. D

Stra
129

[12906.]-American Fermilion-Whet are the details of the process for manafacturing American ror-milion-a pigrnent whose name sumclently describes it Prm exnmination I belug it to be adiohromeso lead; but it must, from the low price at which it is bold, and the circumstance that grinding woald destroy the colonr, be prepared otherwise than by projectias
 ield an orange yellow, perhaps through some fanalt in menipulation Cusadiax.
[12907.]-Painters' Colours.-What is the best Has the promised volume of kicharisoe sid fYatis "Technology Relative to Pigments" jet appeared, ase f so, is it procurable separately. CAMADIAs,
atherines, Ontario.
[1293s.]-Brass Moulding.-Wil "Taok of au rade or sorne nier practical reader, toll mo how to of travel ?-Mousder.
[12909.]-Economy of Coal.-I shorid be oblizes wight of water suparated queries. 1. The greateg Wtight of water evaporated by burning one pound of emplosed. 2. If when coal is barned in a faraece into which it is carried by a ourrent of air in the form of rdinary mechauical feeding or by a competeat atoker 3. What is tho smallest reoorded consumption of cas per hour for indicated horse-power? State kind of can boiler; ditto wrining pressure at commencement of stroke, smonnt of expansion, and racuum. I latedy saw a statement in the Times that a tug-buat workias at 8001 l . pressure consumed rather less than 21b. Pe:
horse-power per hour. In Government stearmars if: arerage oonsumption was stated to be more than donili hut Sir Spencer Robinson says the Aichillet ou one ocis

The ascerted equally oconomioal resalts to those in the Thg were obtalned at a pressure not oxcoodi
[lis910]-Welding Angle Iron.-Could any of me a fow hints as to the beat way to weld angle iron

[72911.] - Variegated Maple. - Win some regder obiligo by informing mo Whother this shrub is grafted or
brided, and on what desoription of stock, together with Brided, and on what dessipition of stock, together with
the time of year when the grafting or budding should be the time of yea
[28918]-Tooth Paste.-Thare is one paste whioh passes under several names, one of which is cherry footh-patite; the colonr is red and the lavour that of
(12918)-Cooking for Beohelors.- Should I be

 ahange. and ior whom the coovery books do not oon
deacand to give reeipes. Thene books are writton for . Sumilion, and not for thoee in a state of single blessed

Tarled. Will some one ndd to the number - - BLosincoz.
[19914.] - Emminent Barbers. - Will some kind cor respondent give me some names of eminent
were barbers in their oarlier days?-Razon.

Wing som-Grinding Edges of Watch-Glasses. Win some friend kindly tell me the best met
Exinding down the 0 ege of watch-glasses? - F. E.
[12917.]-Coloured Tiles.-Will any reader kindly
faform me though your columns how red clay tiles are blacked in imitation ot staffordshire tiles, and, if by a [12918]-Water Power.- What is the most eoono-
mioal working apparatus jor atileing a emall streani of

[12019]-Pianoforto Hammers. - I have lately old folt being ontirely worn throngh) but I find the tone eroosesively wenk fince it was done. How is this? The
rath was good and hard, and I oompressed it as muoh as yourdiblo in patting it on. I found in atrippling off the Na folt, that just where the hammer atrikes the atring
Whe felt oamo oII easiar, and of course 1 looked for the cuase, and I found (or fancied soo that there war no hacmaer. Wan I right or not, and has this anything to
lo with the weaknoas of tone? Oan our praotical stiend "The Harmonions Blacksmith" fthrow a few

 ture? Length of tribe carrying eyepiece, 4in.-J.
[12921.]- Fnormous Shell.-I have been informed - That there if a monster sholl at the International Rxhi bition, weighing are tons. If thare be suah an enormons
misagio, I should feel obliged for dimenolons and welght misgile, I ohoald feel oblig
of aheli and gan.-Logan.
[18922.]-Sall for Cannoe.- Thave a canoe for whioh 1 want to male a sprit sail. Will some brothor subcarry ? The cano ofs 10 ft 61 lo . long, beam g7in., welght between 401b. and 501b.-ROB Ror.
[19e28]-Arithmotional.-Cmn any one suggent any for solving the following problow ? What number beling dill rided by 1,747
will lilided leave a pemander of 474 will leave a remainder of 47 , beling divided by 474 will leave a remaindor of 47
divided by 47 will lenva a remainder 4 ? H . H .
[19034]-Buying a Teloscope.-Will some one adrise a novice how to Apend ive or olx pounds in buybeat? If I oould makse the trube mycolf, and apend the woold there be anything galined warth the trouble.Onisi
[T9095.]-An Esxperiment.-OAIron. A compart pended from the top of this compartment thore hang
 equare and 1in. In thiokness. The point of suapenalon
being in connection with wires to carry of the hoat of the combination of HO_{2} in the form of oleotricity. The compartment to bo gliled with the Rasen HO, to the
proesare of the atmoephere (151b.) How long would it presaro of the atmosphere (151b.) How long wonld it
[ngesa]-Weather Glass-Will any of your the ragitering of have heter the moroury wid aifec and if it is ponifibe to make correct deductions from it ? -Drmosthenea
[12997.]-Comets.-Has the comet that so much has where? Is it possible for somet to appear and disad pear in two days; if so, how? Replies will oblige.
[n2038.]-Test for Phomphorue. - Would some of phosphorua ?-Q. Q.
[12929.]-Analysis. - Would any of our chemioal rionds please state tho modue operandi of deteoting the presence of china clay, and aloo tho quantitative nalysis of the same in onliouen p-OALico
[12930]- Wheat Analyaing- Can any of your readers give a simple plan of anglysing, or asocertalning by other moans, the peroentage of otarch oontained in
any given soobtained ? Ploseo be an plein as posilible, ce I am no adept at ahomintry.-J. T. \mathbf{O}^{2}.
[29psi.]-Brewing.-Oan any of your readers givo a barrel by mistake, and also how to more filly extrac alohol from malt'? I oannnot got tho beer strong enough from mero malt and hopa.- Yovia Brormyer.
[12982]-8trength of Hairspring. - Wull "Woat Oornwall" kindly inform me how the strength of a the balence 9 Alen ho to requisite per hour? ${ }^{\text {-4 }}$ Youra Jobsen.
[12998] Skewbacks of Oamber Arohes. pleses to oxplnin in your valuable paper the ralo by Fhich the akowbscks of camber arches are obtained.

bo ioclined at an angio of 600 . If this is right it is not sollowed out in praotioe hore, as I And that the incllina-
toon of the skewbacks of an areh ovor a grt. oponing, it tion of the skembacks of an aroh ovor a 8 nt. oponing, is
not the smme as over a 7 fr . opening. I have also seen
 Is it right? If not, how should it bep-As Arxioce Bricriatiz.
[1298B.]-Organ. - In planning a noundboard as tain number of the base pipes to be placed at the treble ond of the soundboard, and he dirocte separate alldes or tho stopped diapason-one for the bass and one 105
 d the bass or treble being shat of at plearara. In the open diapason bat one allde is used theregore thit row
Of pipae mast be oither wholly open or ehat Now, the performer may wish to nase the bans of this etop Would it bo posalble to divide the draw allde into throe parts, the two ende working the base, and conneoted by tracker over the etook board to as to sot in anison, and the middie portion ai a dietinot treble etop, to be
worked by a raller let down through the atookboard, having a manal toothed bracs pinion on Its base, wortathg in ang toothed raok attached to the Blide, the arm of the rolier outalde the stockboard being atteohed by \& atiaker or treoker to a square bt the ond of the board and continued on to the stop ?-E.J. D.
[19986.]-Wator Powrer.-I have a gpring of water after a course of nocirg 200 yards, it hat fallen vertionily 125ft. Can any of your readors inform me what hoight is lont from friotion in pipe, and what power cound be
got by turblne from this? A asefal pond or head oould got by turblne fr
bo mado.-JoHs.
[12938]-Hastings' Trioycle-In the Exelise MxCEAMC for July 22, 1870, was doscribed a trioyolo by . Hactings, posseasing, in my judgment, considerable vili he kindly eay whethor he is still of the same Wili he kindy say whothor he is still of the same a reahale oasily drivon. and eathatiotory in respeot of woar and tear? $-\mathrm{J} . \mathrm{C}$. H .
[19987.]-Dumb-Bell Freroisos.-A bottor know. litle undertanding of the mascles of the human bods, would, I think, add groatiy to the zeat of those Who devote afteen or twenty minntes of their mornings
at home to the nut of them. Atter a time they tire of at home to the nee of them. After a time they tire of
the fow too-erident exeroises, occupying a briel page in the fow too-erident exercises, occupying a brief pago in
the handboo to gymanatics, and fong for some more gubatantial rariations to briog out thoir other mascles. If some correspondont who has had experience would devote a parapraph-or the subject may be consldered
worthy of a ohapter-treating of dumb-bell exercieos, With a hivt or two as to the masoles brought into play I renture to say the sabjoot would and interest with
not a few, and probably beneit a great many. Let me not a fow, and probably benoat a great many. Let me
caution hilm, however, that the olnss of which 1 apeak is not composed of those crack aymnants who deupise the dumb-bells altogether, except when, may be, nome ohowy and elegant, but nsoless, exercise questions thei simple exercises calculated to bring oat the difierent muncles of the ohest and arms, to be regulated for the
wolght of the dumb-bells and the etreagth of the

Is arrived at, Then a coemation ought to be made nutil the foelling of fotigue disporses iteoil. At leate, this is oxtended experience of otheri to present iteell in the extonded experience of otheri to present itee
ehape of an anewer to this query.-Ixcmioose
[12988]-Dimengions of Kail Boata.-To bropist " for the informetion on the enbiea Po the thropist "or the iniormation on the gubjeot of the
Irish mall boate, and ahould be very gind to have the "further information" Which he oftiors (0 . 828 , reply 12599). It the length, broedth, and dopth of the reesel do the pradleside mearuroment Alo, how many icot ber of float-boarde, and thetr dise on the whoolh, and the consumption of ocal per mile P-C.E. B.
[18999.]-Beos and thoir Hebitu-Will uome of our oxperioncod boo-macters say is we are right in leting our boes ontor the botrom of the hive? What are thair objections to the entrance being near the top. As thasm, hot eir, wi, has a vondonoy to rite to the top oi it that damp which is fatal to beess and aleo save the bees mich libour ia fanning the hot air down from the
 work ap or down in their wild state ? I have stadled our sorost beea, and And when they take poseassion of treo, is thore is the same room above as below the on-
tranoe, they in all cases go down. An answor to the above will mach oblige.- Hiccrasioni Bee-Kiepr
[12940]- Conoentratod Mrilk or Kiacence of
Milik-Would any of your readers kindly inform me Milk-Would any of your reader
[18941.]-Pounoing Pattern on Printing Blocke-Man answortng my duerg (12842). As I work the blook while
darap the whting ruba off. Will kind in Jaok toll me of some powder that will alightly stain a dark colour, and resist the damp on the block.-New Subsoribze.
[1292.]-Iightning.-To "sioyu""-I should Uke standing ander trees being atruck by ughtning. It is sell known that eloctrioity will not loave \& oonduotor to ignite gunpowder, even when the latter is close by;
hovr then, does it leave the tree to utrike the person hovr, then, does it leave the stree to strize the person
standing near its trunk? Sarely, even exppoaling the
 the human body, the far greater sactional aroa of tho than make up the difference in conductivity.-LL C. I.
[18948.]-British Yusoum ILibrary.-I ahonld be reader'a tioket for the library of the British Museam, on what days and hours it can be ased, and what privi: legos it will confer. Any further information on this subject will greatly oblige-CERVES.
[12944.] - Now Watoh-Worke-A lady's gold watoh has for soome time gone bady, and frequently ntopa,
8he showa it to a watohmaker" in a oountry town, who reports that "the holes in the encapement are worn." Ho rocommends her to parchace an English-mado watoh from him for sixtoen gulneas, or a Gongra one for
eleron guineas, he agrooing to acoept her old watoh for 28 in part payment It may, perhape be intereating to 28 in part payment It mayi porhapa, bo intereating to
many roaders of this journalit
come inatruoted corromany roaders or this oarna is some inatruoted corre-
apondent will may in this in the best resoarce. Would it not be better coonomy to sond the watoh io a London manafacturar of repatation to have the old oscapement (and Whatever olse of the interior requiren) raplaced by
new? Buroly, the caee, the gold dill-plato and hands, now surely, the oase, the gold dial.plate and hands,
and the fowes being alven, a watoh can bo comploted and the jowels being given, a watioh can be completed.
for leas than thirteen guineak, of arst-rato workmanship.
[12045.]-Speotroscope Eyepiece for Milaro-soope-A gentleman in Germany writos to me for inormation, having boen informed that this is the lateont thing oat, that it will allow the minntost atrise of the and ipvicible rays both t the red and volot onde, and that by letting the lattor pass through uranium Elass they become Fifible. I ahall bo greatly indebted to any
 ploce een bo so used kindly ndding spy othor usefal Information on the subjeot Which may suggest itself.KILBy.
[12938]-Original Gravities of Bearn, Eo.Can any of "our" chemical correspondenta give me the I believo I mand the original graviliss of beor, not belog able to got Fithin 1lb. gravity at any time. I try it by the distaliation and also evraporation procoases, whiah ought to prove each other, but they do
[12947.]-Starch and New Collar.-Why eannot our old oollars be get up as now ones? What is used to obtain that am
Mutull Tou.
r18948.]-Colours of Birds. -Can the oolour of a bird bo heightened through ite stomach For instance if it if fed, during the moalt, on safron and marigold flowers 2-TA1-E00NO-800.
[12949]-Cleaning Cricketing Boots. - Could anther on my orichot bonts, as I have tried many plans loather on my oricicot bonts, as 1 have tried man.
thif summer and have falled p \rightarrow MIDDLE STCMP.
[12950.]- Microsocpe.-I have hatoly purchased a mloroseope, and oan see nothing but trangparencies through ft. If I pat a plece of paper or linen or any solid object under 1 , it shows all dark, instesd of ahow
ing the mo apon the sublect, and how to soe the surface of any solld object that it not transparent?-A Caxpextre
[18951.]-Dividing Wheel of Erocentric Chack. give mo a arotoh or ox planation an to how the dividing pheis of the axcontrio ohuok is attached to he aing the polley and allding.cone in the ornamental drilling instrument are le: on square, or with a feather on tho ond of the spladle ?-E. T. E.
[18953.]-Preserving Salmon in Tins.-Can any whore any information cen te ottaiue as rese? ds tho process:-Samio.
[12968.]-Ohemistry of Tea and Conoentrated Tea Fertiliser.-1 notice in the Englishman (an Indian newspaper) of the $18 t h$ July. 1872, an article by Dr. by Dr. Oampbell Brown, an orr, proparod on a formula foonded on a carefol fore eminent knghish chemist parts of the tea plant. It further states that an chemist (Dr. Brown) has for some yoars been worling st the chemistry of Indian toa. Wonld any kind correapondent render me information regarding the ohemistry of Indian tea, and the component parts of thie tea fortiliser by Dr. C. Brown, as aloo analyais of all parts of the tea plant, or if Dr. Brown hase pablished any subjects ? -Mex

[[88954] - Burner. - Wul "THntab" kindly stato to (let. 4749 p. 507) could bo mplled If has sketohed boil a ketile over it, zhall we not be annoyed attempt to fames? Does "Tintub" mean us to apply is gasy heating of bed-ahamberg, mo.? And can he (q) to the ides of the consumption of gas in this manner as com. pared with the ordinary manner ? - H. $0^{\prime} \mathrm{B}$.
[12955.] - Expansion Falve. - Will some kind reader give us a description of a elmple expanaion valve for the ateam-engine, to cut off at various parts of the stroke, worked by hand, or under the control of the governor ?-SMalexr.

OHESS

All commanications intended for this department to be addressed to J. W. Absott, 8B, Loughboroughroma, Brixton, S. W.

The match between Steinitz and Zackertort has terminated in favour of the former, who won seren games,
loaing one only, four being drawn. loaing one only, four being drawn.

ENIGMA IV.-By E. H. Courtrany, from the
Dabuque Chess Journal.
White.
K on $Q R \mathrm{sq}_{;} \mathrm{Rs}$ on $Q \mathrm{~B}$ eq
 Black.
K on Q 7; Bs on QB7and K8; Ps on K7; Q Kt 6
White to play, and mate in two moves.
Problem XY.-By G. C. Heywood.
Black:

White to play and mate. in three moves.

Solution to Probley XiIf.	
White. to K R	lack
3. B to Q R 6.	2. P takes ${ }^{\text {a }}$
tal	8. Angthing.

Solution to Eisioma II. White.

Black.

1. Kt takes P
2. Anything.
3. H. Thomas.- Kindly re-examine the problem in three moves, as it is wrong in the variation. The position in two moves is seemingly correct, and it halphanortly
sppear. The Dundee Advertiser publishes a draught sppemr. The Dund
cotume every week.
A. I.-Blank diagrams can be obtalned through W. Morgan, Barbican. The other portion of your letter J. Prabce - Your

miscarried.

W. S. (Glasgov)
W. B. (Glasgow).-The mate is somewhat too obvious if you have copied the position correctly, ss it oan be The following hase aed covering check, da THE following have sent correct solations to Problem XUIL-H. Cherry; S. H. Thomas (Plymouth); W. Airey (Manchester); J. Beresfort (Vaxhati); A. L. L. W. (Dal. (Wioh); R.J. Pearce ; Argo (Yarmonth). All others are
wrong. Corpro
 Cherry; J. C. U. (Leicester); R. Lines (Portsmonth); H. W. F. (Manchenter); A. W. Coopar ; W. Airegt ${ }^{\text {W. }}$ W.

USEFUL AND SOIENTIFIO NOTES.

The Nrumber of Eges from a Hen.-A Ger hen can posiibly answars the question how many egge a contains about six honded he first year not more than twenty are matured, the nocond year produces one hundred and trent ; the third, one handred and thirty-ive ; the fourth; the hundred and fourteen; and in the following forr yone the number decreases by twenty yearly. In the yours year only ten egge can be axpected, and thas it ninah that after the frat four years hene cease to bo proatable as layera.
Growth of Corals.-The Honolulu Gazette is responaible for the following:- $\Delta \mathrm{n}$ intereeting fact has Somel Oomewhat less tban two years ago Captain MoGregor, of mo Bay. Hast week he was ordered to hoist the anchor thith The latter which is a hoary two-inch cable, wan found covered win corals and oyster shells, some of which are se large as a man's hand. The larger corals measure 4 fin in length, which represents their growth dariug the period of two years that the anchor and cable had been submerged. The specimen which we have seen shows the natnre of its formation by the little coral insects more distinctly than any wo have before excrabs on it A query out of the water, it had amall on the coral insects arises whether these crabs live branches of the or whotber they simply sook the apposition is that corals are of extremely slo prowth Here we have a formation equal to over 17ft. in a

Boring and Cutting Indiarubber.-To ant bore indiarabber corks, says a correspondent of the Chemical Neves, dip the tuife, or cork-borer, in solation of caustic potash or sode. The strength is of very little consequenco, but it chould not be weaker generally recommended, reagent solution. Alcohol is porates, which is or bored throigh, and more hg belore the cork is cut sota jeet es woll es alocho has to be appliod; water however, a tolerably sharp and laske longer. When, sode-lyo it goes through ip enifo is moistence with through common corts and thruber quito as eanily as cork-borer of fich holes in herger iizo. I have irequently bored amoth and cilindre caoatchouc atoppers, perfectly anish the oynitical, by this method. In order to metar, the stopper shat unaal oontraction of its dia surface of common oork till the borar passen into the latter.

Odour of Flowers.-The delicate odoar of pinks and other fowers may be obtained by a process devised by my mon. He nses a glass fannel, with the narrow ond drawn to a point. In this funnel he places lumpa of ice, with salt, by which a very low temparatare it prodaced. The fannel is aupported on an ordinary retort stand, and pleced near the forering planta When water and the ethereal odour of the blopem is depoaited on the exterior of the glans fannel and rrickles down to the point from which it dropel and tervals into a glass vessel belom. The arops at insained is very perfect and intereating, but is apt to become sour in a fow days unless some pure alcohol is added. By this proceas many odoura may bo procured for comparison and stady. To obtain the odoar in "perfection the blossom mast be in ita prime.-Simec's Mry Garden."
Another Disabled Gun.-Whilat H.M.s. Agincourt was training her orew at target practioe at soa, one on har onf lay-ton gans had its stoel tabe aplit This gan had disoharged mazen to a length of 94in. elovations, and with naffeient intervels of at low keep the chamber cool, and prevent the too rapide to anmption of the powder charges. broke up. The supposition is Ahe None of the shells over-rode their grooven at the point what the front atads apiral brings them into bearing near the moinareasing apprion wringe them into bearing near the mazzle. This walle of the shell dae to the by the comprousion of the Wver the lands. This the wedging of the rear studs abled within the last mix monthe anth heary gun disreturned to the Royal Arenal tor and obliged to be are : two 12 .ton gans on board the Repair. The others 18-ton gan on co gans on board the Bellerophon, one at Bhoebarynesa. at Shoebarynean

Amount proviouct

ANSWERS TO CORRESPOLDEATE?

 EDITOZ of the RhaL
Oovont Garden, W.O.

HINTS TO CORREBPONDESTR

1. Write on one side of the papor onty and pedtinted

 tilles for inastration on eoparato ploces or paper. 2 Pa numbers as wall an the thilee of the quorties to par replies rofer. 8. No oharge is made for insorting letten quarios, or ropiron. 4. Commerofal letiora, or querina repirio, are not inserted. 5 No quention asktag if nnder cover to the Editor are not correaponde. names of correapondents are not given to ingnifect.

The following aro the initinis, ec, of iettere to up to Tuesdar morning, September 10, and machan W. A
W. Newman.-M. C. Henlog.-Riohard Thout - C. B.-J. K. P.-Hadrinn Harril- W. R. A. W. B.-J. K. P.-Hadrinn Harris-W. F
Roberis-W.- J. Kharl Clare-Jahn Roberta-W. - S. Hollingaworth. John
Livins.-J. F. H.-J. H. Crellen.-F. S. B
W. O'H. H. H. Crallen.-H. B. M. W.-J. E

Memion and - Enstbournionsis. - W. H. Hi C-
Wallace. - Barnes Riohards. B. Brand. - Alfred \mathbf{Z}
J. C. Bnoll.-T. H. Bartloti-J. W. J. H.entherto ${ }^{\text {S }}$ -
dowell.-John Razor.-Samuel D. J. E.-Wm. -A Constant Subseriber.-Sinbat-R. J. P.One who hag Proved It.-W. K. Uach. J. P.-Y. A Johan.- Robert Ackland.-Folix Notro.-Candidate An Old Sufferer.-Seabird.-dnother Constant Beede - Samuel Neil.-Thos. Moody.-J. W. Worser.-D. -M.-A. H.-W. W.-An Amateur.- H. Moran-C. I Barner.-B, - Thos. Fairharst-Indian Rabber.R. N. Coles.-Safe and Sare-A. S. Clara,-E. C. G.--Balcairn.-Turn Cutter.-France,-Erceigiotanas Welins Varley.-H. O. P.-A. R Watson-Organide Willam.-R. G. A. - Sting. G.-W. G. B.-J. B. E/ W. R Birt. - W. \mathbf{H} Hov.-8igma. A. N. Islingtong Jack of All Trades.-L. B. A.-H. R -Dafrer, Ber Blacksmith. - Philenthropiat.J. W. Fennell - Pan - R. Symington.-Gamma.-H. W. Fennell.-Pay Equivalent.-One in s Difincolty. - R A. 8.-Mechented migrant-Brancoa-A Puddior- - T. Go-S G a Doveroll.- R. A. Proctor. -S. Botione-P. B. J-R Dixon.-P. C. E. W. Bright.-Mechanic- Ferivan Eyowinker. - J. H. Oolley.-E. R. B. Wrown- - Pe Stanleg.-Rev. H. Kogers.-Enilic.-Btargexer-E. Equatorial.-Dr. Halley.-Jame; Treaidder-J. PeD James Mackintosh. - Zig Zag. - Mre. Paine.-J. II Hioks -G. 8 E W plog Zag. - Mre Paine. Jahow Time-Keeper.-J. H.-W. H. H. Q.
M. A.- What you say about the time coneurent the receipt and the appearanoe of letters is grite correct, and will coon bo rectified, or partian en, 4 all events.
 tisement woald be 80 s .
J. H.-Work ont the sum for yourself, or get thi. telligent schoolboy to do it for yor.
Paxl (Birmingham), -Your advertisement is giv. Correspondente, ${ }^{\text {n }}$ is. 575 .
Pracook.-You had better consult the indicenefition lished volumes, and seek out the information yin require on the organ.
LEWis.-Put your query in more intensible let. "Steam on the Road."
"Ald of the letter or letters an T. T. B.-The 9 swered, and may be allowed to dron has baea swered, and may be allowed to drop.
post-asid, and if we did e know nothing hz R. Drxon.- It is quite poestble of notionward in R Drxox.- It is quite possible, of conres, for a piv, if possessed of sufficiont abilit medical exammation, o bessossed of sumeient abilits. As to the sabject schools where examinations are held
David Grusidy.-Do you want a book
whealwrighting? We know of none an enge subject.

A Poor Bor.-No book specially devoted to the Why not ask how to do what jou want throent and columne.
J. Btrwart. - If the height of the riphon fromentin tis has drawing water from behind will not act. high, or the depth of fall at delivers more th the principle? The atmosphere will anly, to do tity olumn of liquid equal to its orn wiolity balapors sit. or 34ft. of water, but praclically s eiphon ane ar he places bat slighly elersted sbore gald act and op of the Himighly lelevated mbove sea-level
ruov.-Tes; there are professors who would, it they thought yon a it and proper person, give you in-
struction in meemerism on the umal tormg. Wo do struction in mesmerigm on the ugal tormg. Wo do
Dot know the titles of books cleading to A practioal sequaintunce with this interesting soience. Apply
Mr. Barne, of Soalhampton-row, W.C., or Mr. Truelore, of High Holborn, for catalogues.
C. E. S.- Please furninh the profiered Information on "Blosk syatem or Rainaby,
pressed as mach as possible.
C. II. Firmer.-If you are too young to hold property in own name, au a patent is property.
Thinker, A. T. B., J. D. H., C. Buddett and Co., and A Welghman, are informed that wo do not answer "Hints to Correspondenta."
. J. Recordon. -Too speculative for ue. N. B., And Jas. MoGrati.-Consult medioal men. M. J. W.-It is merely the name given it.
J. D. H.-They are two distinct journale. Your meoond query is an advortisement.
C. F. H. H. - Your qnery is an advertisement. You can
obtain hacklea at most tackle makera. obtain hackios at moat tacllo marb.
G. S. W.-Why not anawer "Emigrant," re sundials, through our oolumns?
J. W. Pxarson.-Don't alarm yourself, bat consalt a medical man. The symptoms you mention are not those of benrt direase. You could not
Jonr Lefe.-Write to the pablishers, Mossre. Charchill, New Barlington-street.
Apprrndre.-Where do you find the question? Your solution is oorrect; the rem
bably a typographical error.
Apflicted Sobscribre.-See pp. 693, 610,619, VoL XIv. Zets.-Your communication arrived toe lata
 P. 605, $\boldsymbol{\tau}^{1}$ And τ^{3} Aquaril.
 which I have oven now scarcely recovered are my only excases for the orrora into which I bave fallen
in attempting to correct ' 0.0 , to whoun I beg to apolncise. His equations are perfectly accurate; ${ }^{\text {a }}$
mistake in a sign in my lagt letter vitiates the whole mistake in a sign a maposent."
0.-See note from "P1" above.
 information by post. Please, therefore, ast
admissible question through out columns.
H. S. A.E. W. H., A Paper Maker, Rip Van, and W. J. Bichards-Yoar queries
W. H. H. C., Memnon, and Friends-What you say with regard to the mathematical colamn will be borne in mind.
H. T. T.-We believe there is no auch office. Sobaquzous Railway for Camala.-Impractioable.

THE INVENTOR.

applicatione for letteres pateint to the week

 EMTDME AUCUBT 30, 1675.

 Dikhars for loome for weaving, Yor for a now or improved prosess

 3136 W. Chaline Portrash, Irolend, for improvemento in zeddle

 In knitiog mactinery. in knitiog mactinery.
Σ Roteron watertoot

24pa W. Bronkes. Chancers-Inne, for Improvements in menna for

 ${ }^{43} 810$ w. Vincent, for improvements in apparatus for manufacturing gian. Carwood, Queen nercreet. Finabary, for improvementa in prenses for letter-prees printing.
2518 W. H. Harfield. Minn lon Honse-baildingw, Clty. frimprove-
ments in ments in appurntus for mititiolving powar, appllicablo io windlasses,
cranes, hointa, and nther marhiues. 2318, R. Warry, Devonport, for improvements in the conatraction
of vortabie corking storen.
ns16 I. Alder, Edinbargh. for Improvementa in the conatraction G. indall, Armler, I Leeds, for an improved meang or
and apparatis for clarifying impure or warte watter
 fings and othor places, and in
cadilts, for improvementin in machines

 nendile and perfumery hoxes or cases, and other uafal or fancy
 2nd sluitcen.
25:1 0 . Bartholomem, Doneastor, for improvemeata in machinery
 marhines. Finid. Oldbary, Worcestorshire, for improvemente in
nelid and a arden hose and other like implementa. $252 d \mathrm{k}$. IUusking, Blrmingham, for a new mode of conetrneting
and adapting the frames of bedsteada for the reception of tonsional or Other sprink maturespen, an sloo in the meana of ayplying sach
 employed tor the anma.
N26 R. Radilif. Cheshire, for an improvement in the

 or gat for illuminatiog and heatiog. Bish 9529 H .

 apparatai for cooktng and for making cotfee and other infutions.
2ss6 J. O. Tongue, Southamplon baildiuks, for improvement

 of wago, and in the preparation of manares therafrom.
2ssas G. F. Newton, Norksmpton. Ior an improved mechise for Durnishing, rolling, nnd netting lonther.
9540 A. Henry, Edinburgh, for tmprovementa in breech-londing

 2543 J . 8tone, Drayton, somercet, for a now or improved ap.
paratas for warming bed and other rooma, also applicable for paratas for whating churches. conservatoriea, greenhoused, or
warmigg or heating
other baildiogs or roms requiring warming or heating. ${ }^{20 a 45}{ }^{250} \mathrm{C}$. Mornt, Bonthampton ballainga, ing improvementa in vate
 A commanication.
2517 F. Hiphton, M.A. Putney, for improvemonts in abbmarine
 info in punchlog and drilling toachinee, en

 pag suids.

PATENTS ABALED.

 crost tion. R. Lake, for improvemento in rallway aloepen of eross ijos. Hongh, for improvementa in apparatua for coupling or
connecting and disconnectiok railway warkona. 1 1sl6 A. McGrogor, for improvements in the constraction of
horsecrakes
Ris W. B. Barrow and J. S. Burrow, for an improved "bla" or
 mays ory. Thowun, fur improvementa in furnacea fur zenerating

 mecns or ap paratus emploged to the manalectare of the parto of such " bealah" or "hoddioo.

tratino. R. Morgan. for improvementa in backeta apocinlly applic-
 scotch bonnett, und in the machanary or apparatue amployod
therefor.

 815 P. Johnson and W. Fatchman, for an Improvemont in the

 ${ }^{\text {purpasey }}$ ions W. H. Man, for the conatraction of doatiag utations or

R. Btone. for an tmproved eytom of canting or moultiop

 soed 1837 c. Moneiey, for a now mothod and moans for condenstor

 the nypuratuas puploy tod thereilu.

 and applying munneto-inectic carronte end apparatuan thorefor.

 metinn of ganes for tho production of ueht and hoot and for othor
unotra parposet, and in the mechinery and apparatan io bo omployod
therein. . W. Wulton, for improvemente in win Mow kash gectonera,
and
and

 ${ }^{0}{ }^{059}$ mex. T. Huehs

 ${ }_{0}$ other varponed. Poch, for a now chomleal compoand for blasting
 able tor borigg gircalar or otbor fangeon in apparatac for elloping
 water. W. J. Lockyce, for improvementa in the proparation of

 acouring J. Wile rabricien J. Karihan, for an improved mode of ana

 $1: 156 \mathrm{~B}$ H. Tarner, for improvementa in tho application of wire to
 potaticot: Lambert and x J. Whilfo, for improvements in sell

C51 L. Barnatt, for improvemeata in roverible and ceamices

 sess W. H. Cartion and J. V. Toone. far an tmproved foed roller for chafrentitus machinger.
 for tresting cowage for agricoltural purposes.
678 W. Exall, for improvemento in tabe oxpandors.
718 C. W. . Lencanter, for tmprovemente in stot, aboll, and othor
801 Y. W. Gerrhard and J. Light, jan., for improvements in the
produotion of iron and atcol.
Huami A. M. Clark for toprovemonte in the manutcetare of
enginee. J. W. Jobnson, for temprovements in rotatory stenm
1855 J. H. Johnoton, for improvements in earding ondines. 1204 R. Portor nad Y. Purter, for improvements in detillitig and
 ment fin troetung animan matters in order to doodertac and docom
pone the meme and to matro A manaure therefrom. forming packiakos oo tho asmo, chlony deadgada for ane on rallwaya and stonmboati.
 2021 W. MeLaren,
cuttiog wood. 2021 . Yelaren, for fmprovementa in maohinory for mavidg or

Terms of Sabscription, PAYABLE IN ADVANCE.

Ce. 6d. for Bix Monthe and 11s. for Twolve Months, Post Free to any part of the United Kingdon.
Volumes VI., VII., VIIL, IX., XII., XIII., and XIV. bound in aloth, 7s. each.

VOL. XV. READY IN A FEW DAYs.
Indexen for each half-yearly volumo, up to Vol X.

*** Subeoribers are requested to order Cases and Vols through their booksollera, and not to sand direot. The miasion through the Post.
To American and Belgian Subscribers. when Amerfioan and Belgian Subscoribers, eepecially whon renowitig their ouboertiptiono, are partioularly of the Poat-omioe Ordor, and the exaot amount for which it is made payable.
Sabscribers in the United Btatos and Belgium can be appliod with the RNGLI8H MECHANIC post freo from 155r. 000.) por annem, payabbl in adrance.
The remittance phould be made by International Poet-office Order. Back numbers onnnot be sont by the the rate of sd. emoh to 00 ver extra postage.

Notice to Subscribers.
Subscribers reoedving their copies airect from the the term for which their subecription is paid, will bo Yorwarded to them in a coloured wrapper, an an intima-
tion that a freah remittanco is neceseary, if it be deasired tion that a frenh remittence is
to cominine the Subsoription.

Charges for Advertising.

ALI ADVERTISEMENTS (exoept in the Fixchange Colamp), per line of Eight Words...
(No advertinement incerted for less than 1a.) Larger Adverticoments Contracted for. ADVERTIBERENTS In EXCHANGE COLUMN Ior Sixteen Worde..
For every succeoding Eight Words 0 Front Page Adverticementa 9d. per Inne.
The addrese is thaludod as part of the advertisement and abarged ior.
Adreaticomente munt roech the ofice by midd-day 0 Trusday to ensure insertion in the follo wing Friday' amber.

THE LONDON AND GENERAL PER-
 Thertiss.
 Chatruax of Diascions. Thoman Hughoe, Keq., Q.., M. P.
 W. R. SELWAY. Managing Drector EATH or INJURY from ACCIDENT,

OUR EXOHANGE OOLDMAS.

Exchaxan diverdicemonte are phargod at the rate of Sixpence for the Mrat 8iatoon
cvery succeeding Bight Worde.

Imprifil Gazettige and Athai of Emgiamd amd

Splendid Emarar, 8iłin. etroke, bollor copper conted ange (cost 416). aleo hand mome Liver Retifuver Dos (18 month broke ; offern--J. 4 . Collingham. Nownky, Botte.
As apright Acrioniatid Mrozon00pE: for a good Gan Model Marine Engice, or anything naffol.-C. K Luma, 1h, Market

Hime and Stafford's "History or Emetham" (new)
 wearmouth, funderiand
Five Vols. "Engrisi Mrohanid ;" for a Dyer or Bato Dentist.-Photographica two Cameras (\ddagger and $\frac{1}{\text { plate }}$) TA YLOz, 2Q, Garrachor s-atroet, Manchenter.
tin. Latele, iron frame (value 26); ofters, anything 4in. Conpotind Slide-meat, and 4in. Ornamental ditto oral offers.-As cbove.
Grover \& Baker SEwrict Machime; for Lever Watch.
"REMAREABLE FFRY REMAREABLE INDEED" aro th offoots of L M MPLOOGE'S PTRETIO $8 A L M E$ in Proveating And nd invigorating during hof weathor. Bold by all Chomita, end

WANTED.

EITUATIONS

VTANTED, GOOD HANDS for Repairing

A GENTS WANTED IN EVERY TOWN

W ANTEI , TEACHER for Second Grade
 Woolwich, 8.E.
TO HOUSESMITHS\& BELLHANGERS.

$\mathcal{L}^{1} 1000$ (PARTNER With) for Engineer-

A YOUNG MAN aged 21, having had A

WTANTED, a small SCREW-CUTIING

WTANTED, an ORNAMENTAL 5 inch Oxyhydrogon), or Pair Alphabetioal Tolegraph Viatrumention

HUGON'S GAS ENGINE WANTED Working immediatoly, not under oas horsepower, and in Eood

J. W., at JAMES LYNCH'S, 156, Balt-

ADDPRESEES.

WOULD "SECONDS" PRACTICAI WATDHEAKER M inform mo the ADREES Oo M MOS, and of GLOVRR, apoken of by him Vol. VI, No. 184, March 6, 1868,
p. 587 . J. T. Poot-office. Ashford. Kent.
TF "PHLLO" will send his ADDRESS I
 Actiengesel sechntt.

D HEEL, RACK, \& SCREW CUTIING

 any alze or pitch. WILIEIN SON, Engineer, BE. George'a Ro
BOILER EXPLOSIONS PREVENTED

A MATEURORGAN BUILDERS supplied

DUBBIN'S PATENT SELE-RAISING

WIALEB BUDIMENTARY BERIES.

 vemon oloth Ump, with 88 woodonto, prico 2n. (posinge GASWORKS (A Treatise on) and

 ngempent By R. Alurgrome. With additione

 London: LOCKWOOD \& CO. 7, stationers Hall-court 1 :

NEW PRACTICAL SCIENTIFIC BOOE

THE PRACTICAL CARPENTER AN
Joiner (llegtatil CARPENTER AS
 Loodon: R. A. SPRIGG A Co, 200 Grat Rumoll-etrot Be BAILEY'S ILLUSTRATED UBEFCI

NEXT OF KIN (1871 odition,

Now romy, poni irw ortappa, an illantretod a deacriptivo trontio
THE MICROSCOPES Manufactured t 1 by J. E Wlinspenf, Derringhom Wertar Hanl, with J. R WINSPEAR, Derringham Worki, Hall. UIDE for WARMING by HOT-WATF OT PIPR8, 19 ntampse poot troo. Tho Oen Fittari. Coista:

10 AMATEUR MECHANICS and othe: Thie Invontor and Patenteo of an Improved TELEgCr Wrackical modele whith the following bo pont to the In for tho bofare Baturday, the 21 st Boptember, 1873 :-

Bed Iriko, Al. - For the beot waltiag stick (withoat Lans)

Also Prizes for tho boott Puoticoll componitions on the edvedar-

Ponannce, Aufuct, 1872.
FOR BAIE (Continued on p. VI.)

TELEGRAPH and GALVANOMETE

HNDORSING AND EMBOSSING M1

HRET SAWING MACHINE, Ports!

FOR SALE or HIRE.-EXCELSIO
A MATEUR FRETSAWING MACHISI

()N SALE.-Smith and Beck's UN:

IATHES.-Several First-Class Foot. Wit Toule, mand without beok pear and olldo-reat. Lot of Chorz:
$T O$ IRONMONGERS, \&c.-For SAL

THE ENGINELR'S AND MA HINISi

Digitized by GOOgle
-

Digitized by

[^0]: Acourn provicaly achnowiodsed
 The Wolvasiey Daval Drigade, ien don. $\begin{array}{ll}218 \\ 0 & 18\end{array}$ T. H. A.,

[^1]: - Chloric acld. Barfi, 1871.
 © Hydric chlorate. 1871.
 6 Mother liquor, a term usod to denote a solation vhich has furnifiod aryotele.

[^2]: 7 Perchlorio actd. 1871.
 ${ }^{8}$ Hydrio perchlorate. 1871.
 0 Litmus, a vegetable blae, prepared from a lichen, ommonly called orchil
 10 Roscoe doubts the trath of this beipg a definite
 componad.

[^3]:

[^4]: 1 Gmelin.
 2 Idem.
 ${ }^{3}$ Hypubromons acid.
 4 Hydric bypobrumite. 5 Bromice acid.
 6 Hydric bromate.

[^5]: Read bofore the Civil and Mechandoal Ragineart

[^6]: ${ }^{8}$ Hydrio sulphlte.
 to be anyratris a body containing water. A body fe esid
 free from water.
 to Sedpharic acta.

[^7]: [11711.]-Time at our Antipodes.-Can there be at the same moment the commencement of theo civil
 dava at the meridian of 180° east or west? The earth daya st the meridian of 180° east or wost? The earth
 rotates on its axis from weat to east, i. e., considering rotates on its axis from west to east, i. e., considering the sun to be stationary in the heavens, overy portion of her surface passes him in this direction. Before noon (88y) Taesday, London, is west of the "tpper solar meridian, or the line on the earths suriace at whe same meridian. In the first case our antipotes are anst of the touecr solar moridian, drawing towards
 midnight of Taesday in the mecond they are

[^8]: F.C.s. Atr and Rain. By R London : Longmang.

[^9]: * Candles placed in a un box over water. lerexwa wero fonnd to burn till the oxygen was reduced ton 5.5 per cent.; but in the lead chamber the er-s oxtinguished by the tallow refasing to melt. asyn ininers incline their oandles so that

[^10]: - Bome chemists, while admitting that the sbove lormula represents correctly the number of atoms of each element contained in the molecule of this compound, suppose the arrangement of theso atoms to b
 diferent, and prefer giving the formula as being :-

[^11]: Worlds," and this arrangemont here as in "Other Worlds," and abowhere, as it gives a convonient scent for the arrows, and an eatily reanembered reiotioa bettreen the length of a degree on the sphere and tho
 unit of measurgeme unit of measarement for these arrows. A star whek
 would move over one degree of arc in 86,000 yeari would would move over one degroe of arc in 86,000 yeari woek
 move ovor one scoond of aro a ten yearg, or tanth mecond per annum.

[^12]: ** Ulle-sommenneatiens should bo addroused so: the Epitor of the Exglisiz Magianio, 81, Tavidoow-sweet, Owehenerden, W.a.
 aisonhore : Ton

 G. W. K. L.-Thanks Request as to "Saal Rymea" compli.
 I. Resve, G. W. H., J. M. Martin, and
 See Na 8 " Hints to Corraspondepts."
 T. Pariminsom apd Co., X. M. B., and a Notto Inquiver
 A. P. W., Decimal, Brgshot, and Weatherhesd.-Conanilt last index.
 P. Wooprousm, Communicator, and R. A. R.-Really too

[^13]: The right of tramalation and reproduction is reserved
 1 Dithionous acid, hyposalphuroas acid.
 ${ }^{2}$ Hydrngen dithionite, hydrogen hyposulphite, hydric dithionite.

[^14]: 5 Trithionic acld.
 6 Hydrogen trithionate.
 7 Tetrathionic acid.
 8 Hydrogon tetrathlozate.
 0 Pentathionic acid.
 10 Hydrogen pentathionate, hydric pentathionate.
 11 This is the process usnallv fillowed, but the rera is oertainily contaminated with troe oblorine.

[^15]: ${ }^{-}$By the Rev. Artinor Rigo M.A., being the Cantor Lecturbe delliverte before the gocioty of Arts.

[^16]: was iucapable of suying aught that could be coandsered bitter or unpleasant), but
 humorous suggestiveness

 I present the reneral nature of Xtr. Ozall's reasma ing, without following him in detalle.

[^17]: - It is, of course, understood that the following, and
 indoed, pretty much of what I Write here, is a more or
 less free abstract ess iree abatract us Mr. Orb's article.

[^18]: In a recont trial in America, a Dr. Doremag atated hat gonaine mustard oontained starch, and that the iodino resction failed, owing to the presence of the of a very small quantitr of starch in genuine mastard la readily dotected br the blue colour prodaced on gradual addition of the indine solution in sufticient quantitr, thongh the first few drops prodace no effect. The starch in mustard would also be dis. cerned by the microncope, if really prosent. A faro acatiteied granalos are alone vialbio it the genalise nab-

[^19]:

[^20]: * After the action of the ozone the alcohol, betiog saturated with limewater sand evaporated to dryness, lenvees er residnnm which disengeges acotic aoid on con-
 taot with dlluted sulphuric acid.
 \dagger There is more in it than this. See the translator's paper on the snbject. Polytech. Rer. and Mag. Vol. II., 1845, par
 200, and article "Ozone" in Supplemen. Pen. Crciop.

[^21]: - The right of trarslation and reproduction is reserved.
 \dagger Acidity, sourness, crpacity for comblaing with

