This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

## RAINFALL;

## EVAPORATION AND PERCOLATION.

ar $x$
Dr. J. H. GILBERT, F.R.S., \&c.

By permission of the Council.
Excerpt Minutes of Proceedings of The Institution of Civil Engineers, Vol. xlv. Session 1875-76.-Part iii.

> LONDON : PRIN'IED BY WILLIAM CLOWES AND SONS, STAMFORD STREET and CHARING CROSS.
> 1876.


Digitized by COOQ

## RAINFALL;

## EVAPORATION AND PERCOLATION. ${ }^{1}$

Dr. Gilbert remarked that Mr. Lawes and himself had been for some time engaged in percolation experiments as well as in rain-gauge determinations. He had accordingly arranged a few facts connected with those experiments extending over a period of five years. He could not give the results of so many years as Mr. Greaves, nor were theirs obtained under exactly parallel conditions. They were undertaken with a different view, their object being an agricultural one, in relation to vegetation, and the characters of soils. Mr. Greaves's percolation gauge was filled with soil artificially; they, on the other hand, took the soil just as it was; they dug down and undermined it, putting iron plates which were drilled with holes underneath; they gradually got it underpinned in that way, and built it in with brick and cement, so that they had an isolated square of soil entirely undisturbed. The area of each gauge was one-thousandth of an acre. They had one such gauge with 20 inches, one with 40 inches, and one with 60 inches depth of soil; so that they were able to answer some of the questions with regard to capillary action to which reference had been made. Of previous determinations, $l$ Dr. Dalton's had indicated that 25 per cent. of the rain percolated; those of Mr. Dickinson showed up to a certain date $42 \cdot 5$ per cent.; those of M. Maurice, at Geneva, 39 per cent.; those of

[^0]M. Gasparin, in the South of France, 20 per cent.; those of M. Risler, near Geneva, 30 per cent.: or an average of 31.3 per cent. under different conditions in five different localities. Mr. Greaves gave 28 per cent. For a period of five years Mr. Lawes and himself found $36 \cdot 8$ per cent. of the rainfall percolating through 20 inches, 36 per cent. through 40 inches, and $28 \cdot 6$ per cent. through 60 inches. They had a natural soil, a subsoil with its natural consolidation; whereas Mr. Greaves's was an artificial soil, a much more open soil than the materials of which it was composed would form in their natural condition. (See Table I., post, p. 7.) The particulars of experiments on percolation by Ebermayer, in Bavaria, were given in Tables II. and III., post, pp. 8 and 9. To show how difficult it was to imitate soil in its natural condition, he might mention that, wishing to extend their experiments, they attempted to fill, by calculation, a number of tubes, 5 feet deep and 2 feet in diameter, with the soil of the immediately adjoining field in its exact natural condition. After putting in 3 feet of soil, pouring a great deal of water through, and applying a weight of more than 1 ton fur many months, the soil had not sunk down to the 3 feet by about 6 inches. It was almost impossible by artificial means to get a soil like the natural one. Another difference in the mode of estimation was that they took the harvest year, from the 1st of September to the end of August. The rainfall in the first year was $27 \frac{1}{2}$ inches; in the succeeding years 29 inches, $30 \frac{1}{2}$ inches, $21 \frac{3}{4}$ inches, and $30 \frac{3}{4}$ inches, or an average of nearly 28 inches. Of those 28 inches about $10 \frac{1}{4}$ inches percolated through 20 inches, 10 inches through 40 inches, and only 8 inches through 60 inches of soil; so that it was clear that capillary action had had its effect far below the depth Mr. Greaves supposed. In fact it was obvious that it had been operative below 40 inches, as was illustrated in the more detailed figures. Beginning in September, that was after warm and comparatively dry weather, there was less water going through 40 inches than through 20 inches, and less through 60 inches than through 40 inches depth of soil; and so it went on until the winter rains accumulated, when the reverse happened, and there was sometimes more through the 60 inches than through the 20 inches. (See Tables IV. and V., post, pp. 10 and 11.) Capillary action therefore certainly had its influence on percolation, or rather on evaporation-the complement to it-far below the depth that had been mentioned. Mr. Greaves's observations indicated an average of about 7 inches of percolation. This determination rested upon experiments made on soil covered with vegetation, and of course the surface of the country was mostly
so covered; but the amount of vegetation much determined the amount of percolation. (See Tables VI. and VII., post, p. 12.)

Ebermayer quoted Professor Woldrich as having determined the amount of percolation ( 2 feet deep) through turf, and through bare ground, at Salzburg and in the neighbourhood of Vienna. At Salzburg the percolation was -

| In May $25 \cdot 2$ | per cent. less through turf. |  |
| :--- | :--- | :--- |
| "June $53 \cdot 1$ | " | $"$ |
| "July $23 \cdot 4$ | $"$ | $"$ |
| "Aug. $29 \cdot 2$ | " | $"$ |
| "Sept. $12 \cdot 7$ | " | $"$ |

The difference was the least in January. In May, both at Salzburg and at Vienna, more than twice as much percolated through bare earth as through turf. From June 16-30 there percolated at Salzburg -

$$
\begin{aligned}
& 2 \cdot 12 \text { inches (Eng.) through bare earth. } \\
& 0 \cdot 02 " \# " \# \text { turf. }
\end{aligned}
$$

The maximum difference was in June and July, and less in autumn and winter. Ebermayer concluded that in the summer half-year forest soil was the moistest; bare, open ground less moist; turf the driest.

From the results of an extended series of experiments on the amount of water given off by plants during their growth, it might be roughly estimated that, for every ton of really dry substance grown, a depth of 3 inches of rain would be evaporated through the vegetation. For every ton of hay, in its natural condition, about $2 \frac{1}{2}$ inches of rain would pass through the plant. It was obvious that, where there was vegetation, percolation would be diminished, and especially where the growth extended through nearly the whole of the year, as in the case of grass land. The water would not be safe until it reached a lower depth than if the land were not covered, as in the case of the percolation experiments to which he had referred. (See also Tables VI. and VII., post, p. 12.) He thought that the larger amounts of percolation obtained in their own experiments than in those of Mr. Greaves were the resultant of two opposite agencies: they had no vegetation to pump the water out, but, on the other hand, Mr. Greaves's soil had no doubt been more pervious than theirs.
M. Marie-Davy, Director of the Meteorological Observatory, at Montsouris, Paris, had also made numerous experiments on the amount of water evaporated by different plants during growth,
and also on the amount evaporated from soils of different kinds, or covered with different descriptions of vegetation; but the results were too numerous and varied to be conveniently summarised in a tabular form.

With reference to some observations by Mr. Symons, he might be permitted to refer to the effects of manures in fouling water. When that gentleman visited them some time ago, he pointed out two plots of wheat, one of which had been manured in the autumn, and the other in the spring. There had been a wet winter, and under those conditions the crop manured in the spring was much better than that manured in the autumn. In dry winters it was just the contrary. At such times the crop manured in the autumn picked up more of the active manures, and less got into the drains, so that there was a better root-distribution, and eventually a better crop. Those experiments on the growth of wheat had been carried on for more than thirty years. The drain of each plot was opened, and the drainage-water occasionally collected for analysis. Dr. Voelcker and Dr. Frankland had analysed many of those waters. 'The results showed, on an average, that where no nitrogenous manure had been used for many years, the amount of nitrogen (as nitrates, \&c.) in the drainage-water was 0.43 part per 100,000 ; when 41 lbs . of nitrogen per acre per annum were put on in the furm of ammonia salts, the amount was 0.82 part; with 82 lbs ., 1.44 part; with $123 \mathrm{lbs} ., 1.81$ part; almost progressing in the ratio of the amount of nitrogen put upon the soil. Two analyses by Dr. Voelcker and four by Dr. Frankland gave 1.26 part of nitrogen per 100,000 parts of drainage-water from land manured every year with farmyard manure. (See 'Table VIII., post, p. 13.) Some of the plots were manured far more heavily than was usual in agriculture, so that there need be no fear of anything like the fouling of water referred to from ordinary agricultural operations. Of course it would be more in light soils than in heavy lands. The results described had been obtained in somewhat heavy soil. The importance of watching the matter was very great. He did not, however, think that when the matters had passed through a considerable depth of soil there was so much danger from ordinary agriculture as was sometimes supposed, although it was true the drainage-water might not indicate a very good previous history.

The following tables embodied summaries of the results to which he had referred (see pp. 7-13).


Table II.-Expmbinents on Percolation, by Ebermayer, in Bavaria. Gauge.-A zinc cylinder, with an area of 1 square foot, and 1, 2, or 4 feet ( $\mathbf{F r}$.) deep, filled with adjacent soil and exposed to air and rain for some time to acquire normal physical characters.

|  | Percolation through Soil. Inches (English). |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \text { foot } \\ & \text { deep. } 1 \end{aligned}$ | $\begin{aligned} & 2 \text { feet } \\ & \text { deep. } \end{aligned}$ | $\begin{aligned} & 4 \text { feet } \\ & \text { deep. }{ }^{2} \end{aligned}$ | Average Rainfall. |

12 Months, March 1868-Feb. 1869 ; Mean of 4 Stations.

| Open ground, bare . | . | . | . | . | . | $20 \cdot 01$ | $18 \cdot 08$ | $19 \cdot 41$ | $36 \cdot 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forest, without litter | . | . | . | . | . | . | $18 \cdot 56$ | .. | .. |
| " with litter . | . | . | . | . | . | $20 \cdot 63$ | $21 \cdot 48$ | $16 \cdot 54$ | $27 \cdot 5$ |

Spring. March, April, May 1868.

| Open ground, bare . | 5•22 | 5•35 | 5•86 |
| :---: | :---: | :---: | :---: |
| Forest, without litter . | $4 \cdot 99$ | .. | . |
| with litter | $5 \cdot 69$ | 5.75 | 6.00 |
| with litter + or - open ground | 0.47 | 0.40 | -0.14 |

Summer. June, July, August 1868.


Autumn. Sept., Oct., Nov. 1868.


Winter. Dec., Jan., Feb. 1868-9.
 Growing Period. April-September, inclusive, 1868.
$\left.\begin{array}{lll|r|c|c|}\text { Open ground, bare . } & . & . & . & . & . \\ \text { Forest, withont litter } & . & . & . & . & . \\ \hline\end{array}\right)$

Table III.-Exprememets on Pergolation, by Ebermayer, in Bavaria.
Gauge.-A zinc cylinder, with an area of 1 square foot, and 1, 2, or 4 feet (Fr.) deep, filled with adjacent soil and exposed to air and rain for some time to acquire normal physical characters.

Percentage of Percolation to Rainfall.


## Comparison of Winter and Summer Half-years.

| $\text { Open ground, bare . . }\left\{\begin{array}{l} \text { Oct.-March } \\ \text { April-Nov. . } \end{array}\right.$ | 72 23 | 67 24 | 76 24 |
| :---: | :---: | :---: | :---: |
| Summer less than winter | 49 | 43 | 52 |
| Forest, without litter . . $\left\{\begin{array}{l}\text { Oct.-March } \\ \text { April-Nov. }\end{array}\right.$ | $\begin{aligned} & 80 \\ & 57 \end{aligned}$ | $\ddot{\square}$ | .. |
| Summer less than winter | 23 | -• | . |
| Forest, with litter . . . $\left\{\begin{array}{l}\text { Oct.-March } \\ \text { April-Nov. }\end{array}\right.$ | $\begin{aligned} & 86 \\ & 75 \end{aligned}$ | 87 76 | $\begin{aligned} & 73 \\ & 62 \end{aligned}$ |
| Summer less than winter | 11 | 11 |  |

July only.

| Open ground, bare <br> Forest, with litter . | $\cdot$ | 11 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^1]
## Table IV.-Ran and Prroolation at Rothambtrd, Herts.

September 1, 1870, to August 31, 1875.

| - | Rainfall. | Percolation through Soil. |  |  | Difference reckoned as Evaporation. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 20 iuches | 40 inches deep. | 60 inches deep. | 20 inches | 40 inches deep. | 60 inches deep. |
|  | Inches. |
| Sept. 1870-Aug. 1871 | $27 \cdot 55$ | 9•64 | 9-42 | $5 \cdot 81$ | $17 \cdot 91$ | $18 \cdot 13$ | 21.74 |
| " 1871 " 1872 | 29.02 | 9•69 | 9•40 | $8 \cdot 24$ | 19•33 | $19 \cdot 62$ | 20.78 |
| " 1872 " 1873 | 30.66 | $14 \cdot 35$ | 13.67 | 12.03 | $16 \cdot 31$ | 1699 | 18.63 |
| " 1873 " 1874 | $21 \cdot 69$ | $5 \cdot 47$ | 5•11 | $3 \cdot 61$ | 16.22 | $16 \cdot 58$ | 18.08 |
| , 1874 " 1875 | 30.74 | 12.25 | $12 \cdot 72$ | 10•30 | $18 \cdot 49$ | $18 \cdot 02$ | $20 \cdot 44$ |
| Average per annum . | $27 \cdot 93$ | $10 \cdot 28$ | 10.06 | $8 \cdot 00$ | $17 \cdot 65$ | $17 \cdot 87$ | $19 \cdot 93$ |
| September | $2 \cdot 88$ | $0 \cdot 68$ | 0.43 | $0 \cdot 30$ | $2 \cdot 20$ | $2 \cdot 45$ | $2 \cdot 58$ |
| October | $3 \cdot 19$ | $1 \cdot 37$ | 1.09 | $0 \cdot 76$ | 1.82 | $2 \cdot 10$ | $2 \cdot 43$ |
| November | $2 \cdot 08$ | $1 \cdot 41$ | $1 \cdot 30$ | 1.01 | 0.67 | $0 \cdot 78$ | 1.07 |
| December | $2 \cdot 15$ | 1.52 | 1.51 | $1 \cdot 14$ | $0 \cdot 63$ | $0 \cdot 64$ | $1 \cdot 01$ |
| January . | $3 \cdot 11$ | $2 \cdot 15$ | $2 \cdot 43$ | $2 \cdot 08$ | $0 \cdot 96$ | $0 \cdot 68$ | 1.03 |
| February | $1 \cdot 47$ | $0 \cdot 69$ | $0 \cdot 75$ | 0.59 | $0 \cdot 78$ | 0.72 | 0.88 |
| March | $1 \cdot 43$ | $0 \cdot 53$ | 0.57 | $0 \cdot 47$ | $0 \cdot 90$ | $0 \cdot 86$ | 0.96 |
| April | $1 \cdot 76$ | $0 \cdot 26$ | $0 \cdot 28$ | $0 \cdot 22$ | $1 \cdot 50$ | $1 \cdot 48$ | $1 \cdot 54$ |
| May . . . . . . | 1.91 | $0 \cdot 21$ | $0 \cdot 23$ | 0•19 | 1.70 | $1 \cdot 68$ | $1 \cdot 72$ |
| June . | 2.77 | $0 \cdot 48$ | $0 \cdot 43$ | $0 \cdot 36$ | $2 \cdot 29$ | $2 \cdot 34$ | $2 \cdot 41$ |
| July . . . . . . | $3 \cdot 47$ | 0.97 | 1.03 | 0.87 | $2 \cdot 50$ | $2 \cdot 44$ | $2 \cdot 60$ ) |
| August . | $1 \cdot 71$ | 0.01 | 0.01 | 0.01 | 1.70 | $1 \cdot 70$ | $1 \cdot 70$ |
| Total | $27 \cdot 93$ | $10 \cdot 28$ | 10.06 | 8.00 | $17 \cdot 65$ | $17 \cdot 87$ | $19 \cdot 93$ |
| Average per month . | $2 \cdot 33$ | 0.86 | 0.84 | $0 \cdot 67$ | $1 \cdot 47$ | $1 \cdot 49$ | $1 \cdot 66$ |

## Table V.-Rain and Percolation at Rothamsted, Herts. <br> September 1, 1870, to August 31, 1875.

|  | Rainfall. | Percentage of Percolation to Rainfall. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Percolation through Soil. |  |  | Difference reckoned as Evaporation. |  |  |
|  |  | 20 inches deep. | 40 inches deep. | 60 inches deep. | 20 inches deep. | 40 inches deep. | 60 inches deep. |
| Sept. 1870 - Aug. 1871 | Inches. $27 \cdot 55$ | $34 \cdot 9$ | 34.2 | $21 \cdot 1$ | $65 \cdot 1$ | 65•8 | $78 \cdot 9$ |
| " 1871 " 1872 | $29 \cdot 02$ | $33 \cdot 4$ | $32 \cdot 4$ | 28.4 | $66 \cdot 6$ | $67 \cdot 6$ | $71 \cdot 6$ |
| " 1872 " 1873 | 30•66 | $46 \cdot 8$ | $44 \cdot 6$ | $39 \cdot 2$ | $53 \cdot 2$ | $55 \cdot 4$ | 60•8 |
| " 1873 " 1874 | 21.69 | $25 \cdot 2$ | 23.5 | $16 \cdot 6$ | $74 \cdot 8$ | $76 \cdot 5$ | $83 \cdot 4$ |
| " 1874 " 1875 | 30•74 | $39 \cdot 9$ | $41 \cdot 4$ | $33 \cdot 5$ | $60 \cdot 1$ | $58 \cdot 6$ | $66 \cdot 5$ |
| Average | 27.93 | $36 \cdot 8$ | $36 \cdot 0$ | $28 \cdot 6$ | $63 \cdot 2$ | 64.0 | $71 \cdot 4$ |
| September | 2•88 | $23 \cdot 6$ | $14 \cdot 9$ | $10 \cdot 4$ | $76 \cdot 4$ | $85 \cdot 1$ | $89 \cdot 6$ |
| October | $3 \cdot 19$ | $42 \cdot 9$ | $34 \cdot 2$ | $23 \cdot 8$ | $57 \cdot 1$ | $65 \cdot 8$ | 76.2 |
| November | $2 \cdot 08$ | $67 \cdot 8$ | $62 \cdot 5$ | $48 \cdot 6$ | $32 \cdot 2$ | 37.5 | $51 \cdot 4$ |
| December | $2 \cdot 15$ | $70 \cdot 7$ | 70•2 | $53 \cdot 0$ | $29 \cdot 3$ | $29 \cdot 8$ | $47 \cdot 0$ |
| January . | $3 \cdot 11$ | $69 \cdot 1$ | $78 \cdot 1$ | 66.9 | $30 \cdot 9$ | 21.9 | $33 \cdot 1$ |
| February | $1 \cdot 47$ | $47 \cdot 0$ | $51 \cdot 0$ | $40 \cdot 2$ | 53.0 | 49.0 | $59 \cdot 8$ |
| March | $1 \cdot 43$ | 37.0 | $39 \cdot 9$ | $32 \cdot 9$ | $63 \cdot 0$ | $60 \cdot 1$ | $67 \cdot 1$ |
| April. | $1 \cdot 76$ | 14.8 | 16.0 | $12 \cdot 5$ | $85 \cdot 2$ | $84 \cdot 0$ | $87 \cdot 5$ |
| May . | $1 \cdot 91$ | 11.0 | 12.0 | $9 \cdot 9$ | $89 \cdot 0$ | 88.0 | 90.1 |
| June. | $2 \cdot 77$ | $17 \cdot 3$ | $15 \cdot 5$ | $13 \cdot 0$ | 82.7 | 84.5 | $87 \cdot 0$ |
| 'July . | $3 \cdot 47$ | 28.0 | $29 \cdot 7$ | $25 \cdot 1$ | $72 \cdot 0$ | 70.3 | $74 \cdot 9$ |
| August | 1.71 | $0 \cdot 6$ | $0 \cdot 6$ | $0 \cdot 6$ | $99 \cdot 4$ | $99 \cdot 4$ | $99 \cdot{ }^{\prime}$ |
| Total . | $27 \cdot 93$ |  |  |  |  |  |  |
| Average . | $2 \cdot 33$ | $36 \cdot 8$ | 36.0 | $28 \cdot 6$ | $63 \cdot 2$ | $64 \cdot 0$ | $71 \cdot 4$ |

Table VI.-Experimpnts at Rothamsted, Herts, illestrating the Influence of Vegetation on Etaporation. Results belating to permanent Grass Land.

|  | Plot 3. Without Manure. | $\begin{array}{\|c} \text { Plot 9. } \\ \text { Mineral } \\ \text { Manure and } \\ \text { Ammonia- } \\ \text { salts. } \end{array}$ |  |
| :---: | :---: | :---: | :---: |
|  | Cwt. | Cwt. | Cwt. |
| Produce of Hay per acre. |  |  |  |
| Average 15 (or 13 years, 1856-1870 | $22{ }^{3}$ | $52{ }^{3}$ | 57 |
| Year of drought, 1870 | 53 | 291 | $56 \frac{1}{4}$ |
| Defficiency in 1870 | 17 | 22 | 13 |
| Manured more than unmanured in 1870 |  | 233 | $50 \frac{1}{2}$ |
| Moisture in the Soils (dried at $100^{\circ}$ C.) at different depths. |  |  |  |
| (First 9 inches | Per cent. $10 \cdot 83$ | Per cent. $13 \cdot 00$ | $\begin{aligned} & \text { Per cent. } \\ & \text { 12.16. } \end{aligned}$ |
| Samples Second," " | $13 \cdot 34$ | $10 \cdot 18$ | 11.80 |
| Samples Third" | $19 \cdot 23$ | $16 \cdot 46$ | $15 \cdot 65$ |
|  | $22 \cdot 71$ | $18 \cdot 96$ | $16 \cdot 30$ |
| July 25-6, 1870. Fifth ", " | $24 \cdot 28$ | $20 \cdot 54$ | $17 \cdot 18$ |
| Sixth " ., | $25 \cdot 07$ | $21 \cdot 34$ | $18 \cdot 06$ |
| Mean . | 19•24 | 16.75 | $15 \cdot 19$ |
| Estimated quantities of Water per acre. ${ }^{1}$ |  |  |  |
| Total to the depth of $\mathbf{5} 4$ inches | Tons. 1.546 | $\begin{aligned} & \text { 'Tons. } \\ & 1,346 \end{aligned}$ | Tons. 1,221 |
| Manured less than unmanured land | .. | 200 | 325 |

Table VII.-Ditto ditto. Results relating to the Growth of Barley.

|  | Barley Land. | Adjoining <br> Fallow. <br> Land. | Fallow Land <br> more than <br> Barley Land. |
| :--- | :--- | :--- | :--- | :--- |
|  | Per cent. | Per cent. | Per cent. |



[^2]'Table VIII-Composition of Drainage Water from Plots differently Manubed; Broadbalk Field, Rothambted. Wheat every Year, commencing 1844. Nitrogen as Nitrates and Nitrites, per 100,000 parts of Water.

Dr. Voelcker's and Professor Frankland's Results.
Samples collected at different periods of the year in 1866, 1867, 1868, 1872, and 1873.

| Plots. | - | Nitrogen as Nitrates and Nitrites, per $\mathbf{1 0 0 , 0 0 0}$ parts of Drainage Water. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Dr. Voelcker's Results. |  | Ur. Frankland's Results. |  | Mean. |  |
|  |  | Experiments. |  | Experiments. |  | Experiments. |  |
| 2 | $\left\{\begin{array}{c}14 \text { tons farmyard manure, every } \\ \text { year . . . . . . }\end{array}\right\}$ | 2 | $1 \cdot 606$ | 4 | 0.922 | 6 | 1-264 |
|  | Without manure, every year . | 5 | $0 \cdot 390$ | 6 | 0.316 | 11 | $0 \cdot 353$ |
| 5 | Mineral manure alone . . . | 5 | $0 \cdot 506$ | 6 | $0 \cdot 349$ | 11 | 0.428 |
| 6 |  | 5 | $0 \cdot 853$ | 6 | $0 \cdot 793$ | 11 | $0 \cdot 823$ |
| , | $\left\{\begin{array}{c}\text { Mineral manure and ammonia- } \\ \text { salts (82 lbs. nitrogen). }\end{array}\right\}$ | 5 | $1 \cdot 400$ | 6 | $1 \cdot 477$ | 11 | 1-439 |
|  | $\left\{\begin{array}{l}\text { Mineral manure and ammonia- } \\ \text { salts (123 lbs. nitrogen) }\end{array}\right\}$ | 5 | $1 \cdot 679$ | 6 | 1.951 | 11 | 1.815 |
| 9 | $\left\{\begin{array}{c} \text { Mineral manure atd nitrate } \\ \text { soda ( } 82 \text { lbs. nitrogen) } . \end{array}\right\}$ | 5 | $1 \cdot 835$ | 5 | 1.039 | 10 | 1.437 |

## LONDON :

PRINTED BY WILLIAM CLONES AND SONS,
STAMFORD STREET AND CHARON CROSS.
$\therefore$ Google


[^0]:    ${ }^{1}$ These remarks were made, at the Institution of Civil Engine.rs, on the 29th of February, 1876, in the course of the discussion upon the Papers by Mr. Symons "On Floods in England and Wales in 1875," and by Mr. Greaves " On Rainfall and on Peıcolation."

[^1]:    1 French feet.

[^2]:    ${ }^{1}$ The estimates given above of the "quantities of Water per acre" must of course be taken as approximate and illustrative only.
    ${ }^{2}$ About $0 \cdot 65$ inch of rain had fallen ten days previous to the collection of the soils, and 0.10 inch three days before; and for several days since the beavier rainfall some soil had been thrown on the uncropped land, probably retarding evaporation. Hence doubtless part of the excess in the uncropped land.

