This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

$$
\begin{aligned}
& Q C \\
& 61 \\
& . E 931 \\
& 1679
\end{aligned}
$$

Digitized by aOOg C

UNITS AND
PHYSICAL CONSTANTS.

anmonoboogle

UNITS, AND

PHYSICAL CONSTANTS.

BY
J. D. EVERETT, M.A., D.C.L., F.R.S., F.R.S.E., PROFESSOR OF NATURAL PHILOSOPHY IN QUEENS COLLEGE, BELFAST.

Condor: MACMILLAN AND CO. 1879.

GLASGOW: PRINTED AT THE UNIVERBITY PRESS BY ROBERT MACLEHOSE.
oomeats Googile

PREFACE TO FIRST EDITION.

The quantitative study of physics, and especially of the relations between different branches of piysics, is every day receiving more attention.

To facilitate this study, by exemplifying the use of a system of units fitted for placing such relations in the clearest light, is the main object of the present treatise.

A complete account is given of the theory of units $a b$ initio. The Centimetre-Gramme-Second (or C.G.S.) system is then explained; and the remainder of the work is occupied with illustrations of its application to various branches of physics. As a means to this end, the most important experimental data relating to each subject are concisely presented on one uniform scale-a luxury hitherto unknown to the scientific calculator.

I am indebted to several friends for assistance in special departments-but especially to Professor Clerk Maxwell and Professor G. C. Foster, who revised the entire manuscript of the work in its original form.

Great pains have been taken to make the work correct as a book of reference. Readers who may discover any errors will greatly oblige me by pointing them out.

Digitizod by Google

PREFACE TO SECOND EDITION.

This Book is substantially a new edition of my "Illustrations of the C.G.S. System of Units" published in 1875 by the Physical Society of London, supplemented by an extensive collection of physical data. The title has been changed with the view of rendering it more generally intelligible.

Additional explanations have been given upon some points of theory, especially in connection with Stress and Strain, and with Coefficients of Diffusion. Under the former head, I have ventured to introduce the terms "resilience" and "coefficient of resilience," in order to avoid the multiplicity of meanings which have become attached to the word "elasticity."
A still greater innovation has been introduced in an extended use of the symbols and processes of multiplication and division, in connection with equations which express not numerical but physical equality. The advantages of this mode of procedure are illustrated by its application to the solution of the most difficult problems on units that I have been able to collect from standard text-books (chiefly from Wormell's 'Dynamics').
A correction has been made in the definition of the Weber (p. 139).

I am indebted to several friends for contributions of experimental data.

A Dutch translation of the first edition of this work has been made by Dr. C. J. Matthes, Secretary of the Royal Academy of Sciences of Amsterdam, and was published in that city in 1877 .

Though the publication is no longer officially connected with the Physical Society, the present enlarged edition is issued with the Society's full consent and approval.

J. D. EVERETT.

Belfast, fune, 1879.

CONTENTS.

pages
Tables for reducing other measures to C. G. S. measures, xiii-xvi
CHAPTER I.
General Theory of Units, I-15
Units and derived Units, $\S \S$ r-5. Dimensions, $\S \S 6-9$.Meaning of "per," § io. Extended sense of "Multipli-cation" and "Division," §§ ix-12. Examples, § 13.Dimensions of mechanical and geometrical quantities, § 14.

CHAPTER II.

Choice of Three Fundamental Units, 16-20Three independent units, § 15. Their selection, § 16.Standards of mass, § 17. Standards of length, § 18.Standard of time, § 19. Necessity for one common scale,§ 20. The C.G.S. system, § 21. Powers of to as factors, § 22.

CHAPTER III.

Mechanical Units, $21-29$
Acceleration; value of g; seconds' pendulum, $\S 23$. Force ; the dyne; gravitation measure of force, $\S \S 24-26$. The poundal, § 27 . Work and energy ; the erg, § 28. Kinetic energy, § 29. Gravitation-measure of work, § 30 . Rate of working ; horse-power, \S 3r. Examples in dynamics, p. 25. Centrifugal force, $\S 32$. Examples on centrifugal force, p. 27.

CHAPTER IV.

Abstract

Hydrostatics, 30-43 Relative density of water at various temperatures, § 33. Absolute density of water, § 34. Formulæ for expansion of water, $\S 35$. Table of densities of solids and liquids, $\S 36$. Volume by weighing in water, $\S 37$. Examples in hydrostatics, p. 33. Barometric pressure; C.G.S. unit of pressure ; standard atmosphere adopted in this volume, $\S 38$. Examples on barometric pressure, p. 35. Density of dry air, with example, \S 39. Absolute densities of gases, $\S 40$. Pressure-height at a point in the air (height of homogeneous atmosphere) \S § 4 , 42. Examples on pressure-height, p. 39. Variation of density with height in the atmosphere, $\S 43$. Examples on height at which density is halved, p. 41. Pressure of aqueous vapour, $\S 44$. Pressures of various vapours, $\S 45$. Superficial tensions of liquids, $\S 46$. Correction of barometer for capillarity, $\S 46 \mathrm{~A}$.

rAGES

CHAPTER V.

Strain, Stress, and Resilience, . . . 44-56
Strain, $\S \S 47-49$. Stress, $\S \S 50,5$ r. Coefficients of resilience, $\S 52$. Resilience of volume ; Young's modulus; simple rigidity, $\S 53$. Shear, $\S 554-58$. Shearing stress, §§ 59-60. Resistance to shearing, §61. Resilience of volume of liquids, $\S \Im 62,63$. Resilience of solids, $\S \S$ 64-69.

CHAPTER VI.

AStronomy, 57-6I
Size and figure of the earth ; lengths of day and year, § 70. Attraction ; sun, earth, and moon, §71. Attraction of a given number of grammes at a given distance, $\S 72$. The three fundamental units reducible to two, SS 73-75. System of units based on a given spectrum-line, $\S 76$.

CHAPTER VII.

Velocity of Sound, | pages |
| :---: |
| $62-66$ |

General formula, $\S 77$. Gases, $\S 78$. Liquids, $\S 79$. Solids, $\S \S 80-82$. Musical strings, with example, $\S 83$. Faintest audible sound, $\S 84$.

CHAPTER VIII.

Light, $67-77$
Velocity, § 85. Wave-lengths, § 86. Index of refraction of air, $\S 87$. Vibrations per second, $\S 88$. Indices of refraction; glass, $\S 89$. Liquids, $\S \S 90$, 9 m . Indices of double refraction, $\S 92$. Indices of refraction of miscellaneous substances, § 93. Gases, § 94. Dispersion in gases, SS 95, 96.

CHAPTER IX.

Heat, 78-II9
Unit of heat, §§ 97-99. Capacity and specific heat, ss 98-102. Table of specific heats and atomic weights of elements, \& 103. Variation of specific heat with temperature, § 104. Specific heats in solid and liquid form, § ro5. Specific heats of gases, §§ 106, 107. Of vapours, § 108. Melting points, δ rog. Change of volume from liquid to vapour, § iro. Latent heats of fluidity, and melting points, \& III. Latent heats of vaporization, § ir2. Latent and total heat of steam, $\S 113$. Effect of temperature on gases, § Ir4. Boiling points of water, § 115 . Departures from Boyle's law, § r16. Specific heats of the same substances in different states, § 117 . Boiling points of various liquids, § ir8. Change of volume in melting, § irg. Dry-bulb, wet-bulb, and dew-point, § 120.

Conductivity; definition, § 121. Dimensions, § 122. Thermometric conductivity, $\frac{k}{c}$, $\S 123$. Analogous to coefficient of diffusion, $\$ \mathbf{8} \mathbf{1 2 4}, 125$. Coefficients of diffusion
of certain gases, \& 126 . Conductivity of air, 8 I 27 . Results of experiments on conductivity of solids, $\$ 8128-135 \cdot$
J. D. Forbes, \& $128 . N$ Neumann, 8 129. Results from underground thermometers, § 130 . Angström, § 13 r . G. Forbes, § 132 . A. S. Herschel and Lebour, § 133 . Péclet 88 134, 135.

Emission and surface-conduction, M'Farlane, § 136. Tait, § 137.

Mechanical equivalent of heat, $\delta \mathrm{s}_{1} 138,139$.
Heat and energy of combination, § 140.
Two specific heats of a gas, $\$ \mathbf{1 4 1}$. Change of freezingpoint with pressure, § $\mathbf{1 4 2}$. Change of temperature produced by adiabatic compression, \& 143. Resilience as affected by heat of compression, with examples, § 144. Tables of expansions, § 145 .

CHAPTER X.

MAGNETISM, I20-127
Magnetic units and their dimensions, §s 146-150. Examples, pp. 122-125. Gauss's pound magnet, p. 122. Maximum of permanent magnetism, p. 123. Maximum magnetization of iron, nickel, and cobalt, p. 123. Moment and magnetization of earth, p. 124. Different units employed by Gauss, p. 125. Distribution of magnetic potential and force over surface of earth, \& 15 r . Magnetic elements at Greenwich, $\S \S 152,152^{*}$. Magneto-optic rotations, 8_{153}.

CHAPTER XI.

Electricity, $128-\mathbf{1 6 I}$
Electrostatic units and their dimensions, $\S \begin{aligned} & \text { s } \\ & \text { 54-1 } \\ & 59\end{aligned}$ Electromagnetic units and their dimensions, $\$ 8$ 160-164. Table of dimensions in both systems, \& 165 . Heat gencrated by current, § 166 . Ratios of the two sets of electric units expressed in terms of a velocity, $\$ \S 167$, 68 . Determinations of this velocity, and comparison with velocity of
PAGESlight, \& 169. Dimensions in terms of density, length, andtime, 8170.
Specific inductive capacity, \& 171. Of gases, $\delta 172$. Ohm, theoretical and practical, \& 173 . Volt, Weber, and Farad, \& 174 . Earth-quadrant per second, \& 175.
Length of spark for various differences of potential, 88 176, 177.
Resistance, and specific resistance, \& 178 . 'Tables of specific resistance, $\delta \delta 179,180$. Resistance of insulators, $\S 18 \mathrm{r}$. Resistance of water and ice at various temperatures, \& 182.
Electro-motive forces of various cells, \& 183. Electromotive forces of contact, \& 184. Thermoelectric force, with examples, \& 185, 186. Electro-chemical equivalents, \& 187. Computation of electromotive force from heat of combination, 8188 . Examples on electricity, \& 189, pp. $155-15^{8}$. Capacity of earth, p. 156. Electromotive force due to revolving coil, p. 158. Problem on selection of fundamental units, § 190.
Electrodynamics. Ampère's formula, with example, \& 191.
Appendix, 163-169
Reports of Units Committee of British Association.
INDEX, I7I-I75

'ГABLES FOR REDUCING OTHER MEASURES TO C.G.S. MEASURES.

The abbreviation cm . is used for centimetre or centimetres, gm. ", gramme or grammes, sec. ", second or seconds, sq. " square, cub. ", cubic.

> Length.

More exactly, according to Captain Clarke's comparisons of standards of length (printed in 1866), the metre is equal to 1.0936231 yard, or 3.2808693 feet, or 39.370432 inches, the standard metre being taken as correct at $0^{\circ} \mathrm{C}$., and the standard yard as correct at $16 \frac{2}{3}^{\circ}$ C. Hence the inch is 2.5399772 centimetres.

> Area.

Mass.

More exactly, according to the comparison made by Professor W. H. Miller in 1844 of the "kilogramme des Archives," the standard of French weights, with two English pounds of platinum, and additional weights, also of platinum, the kilogramme is 15432.34874 grains, of which the new standard pound contains 7000 . Hence the kilogramme is 2.2046212 pounds, and the pound is 453.59265 grammes.

Velocity.

I foot per second, - - $=30.4797 \mathrm{~cm}$. per sec.
I statute mile per hour, - $=44^{\circ} 704$,,
I nautical mile per hour, - $=51.453$,"
I kilometre per hour, - - $=27: 777$,

Density.

I pound per cubic foot, $\quad=\quad$ or6019

Force (assuming $g=98 \mathrm{I}$).
Weight of I grain, $\quad-\quad-=63.57$ dynes, nearly,

Work (assuming $g=98 \mathrm{r}$).
I foot-pound, - $\quad-\quad=1.356 \times 10^{7}$ ergs, nearly.
I foot-grain, - - $=1.937 \times 10^{3} \quad$,
1 foot-ton, - - $=3.04 \times 10^{10}$,
I milligram-millimetre, $\quad-=9.81 \times 10^{-2} \quad$, ,
1 gramme-centimetre, - $=9.8 \mathrm{I} \times 10^{2} \quad$, ,
1 kilogrammetre, - $\quad=9.81 \times 10^{7} \quad$,
I tonne-metre, - - $=9.8 \mathrm{I} \times \mathrm{I}^{10} \quad$, ,
$\left.\begin{array}{c}\text { Work in a second by one } \\ \text { theoretical "horse". }\end{array}\right\}=7.46 \times 10^{9} \quad$,"
Pressure (assuming $g=98 \mathrm{I}$).
${ }^{\text {I }}$ pound per square foot, $\quad=479$ dynes per sq. cm., nearly.
I pound per square inch, $\quad=6.9 \times 10^{4}$
39
I $\begin{gathered}\text { kilogramme } \\ \text { metre, }\end{gathered}$ per square $\quad\{=98 \cdot$ I
metre, - - -$\}=98.1$,
I $\left.\begin{array}{c}\text { kilogramme per } \\ \text { decimetre, }-\end{array} \quad \begin{array}{l}\text { square }\end{array}\right\}=9.8 \mathrm{I} \times 10^{8} \quad,, \quad$,
decimetre, $-\quad-\left\{\begin{array}{lll}=9.81 & \times 10^{8} & "\end{array}\right.$
I kilogramme per square $\left.\begin{array}{cc}\text { centimetre, } & -\quad .\end{array}\right\}=9.81 \times 10^{5} \quad,, \quad$,
I $\left.\begin{array}{c}\text { kilogramme per square } \\ \text { millimetre, }\end{array}\right\}=9.8 \mathrm{I} \times 10^{7} \quad, \quad$,
Pressure of 760 millimetres
of mercury at $0^{\circ} \mathrm{C}$., $\}=1.014 \times 10^{6} \quad, \quad$,
Pressure of 30 inches of
mercury at $0^{\circ} \mathrm{C}$., -$\}=1.0163 \times 10^{6}$
Pressure of I inch of mercury
at 0° C., - - .
Heat.

CHAPTER I.

GENERAL THEORY OF UNITS.

Units and Derived Units.

I. The numerical value of a concrete quantity is its ratio to a selected magnitude of the same kind, called the unit.
Thus, if L denote a definite length, and l the unit length, $\frac{\mathrm{L}}{l}$ is a ratio in the strict Euclidian sense, and is called the numerical value of L.
The numerical value of a concrete quantity varies directly as the concrete quantity itself, and inversely as the unit in terms of which it is expressed.
2. A unit of one kind of quantity is sometimes defined by reference to a unit of another kind of quantity. For example, the unit of area is commonly defined to be the area of the square described upon the unit of length; and the unit of volume is commonly defined as the volume of the cube constructed on the unit of length. The units of area and volume thus defined are called derived units, and are more convenient for calculation than independent units would be. For example, when the above definition of the unit of area is employed, we can assert 1
that [the numerical value of] the area of any rectangle is equal to the product of [the numerical values of] its length and breadth; whereas, if any other unit of area were employed, we should have to introduce a third factor which would be constant for all rectangles.
3. Still more frequently, a unit of one kind of quantity is defined by reference to two or more units of other kinds. For example, the unit of velocity is commonly defined to be that velocity with which the unit length would be described in the unit time. When we specify a velocity as so many miles per hour, or so many feet per second, we in effect employ as the unit of velocity a mile per hour in the former case, and a foot per second in the latter. These are derived units of velocity.

Again, the unit acceleration is commonly defined to be that acceleration with which a unit of velocity would be gained in a unit of time. The unit of acceleration is thus derived directly from the units of velocity and time, and therefore indirectly from the units of length and time.
4. In these and all other cases, the practical advantage of employing derived units is, that we thus avoid the introduction of additional factors, which would involve needless labour in calculating and difficulty in remembering.*

[^0]5. The correlative term to derived is fundamental. Thus, when the units of area, volume, velocity, and acceleration are defined as above, the units of length and time are called the fundamental units.

Dimensions.

6. Let us now examine the laws according to which derived units vary when the fundamental units are changed.

Let V denote a concrete velocity such that a concrete length L is described in a concrete time T ; and let v, l, t denote respectively the unit velocity, the unit length, and the unit time.

The numerical value of V is to be equal to the numerical value of L divided by the numerical value of T. But these numerical values are $\frac{V}{v}, \frac{\mathrm{~L}}{\iota}, \frac{\mathrm{~T}}{t}$; hence we must have

$$
\begin{equation*}
\frac{\mathrm{V}}{v}=\frac{\mathrm{L}}{\mathrm{l}} \stackrel{t}{\mathrm{~T}} \tag{I}
\end{equation*}
$$

This equation shows that, when the units are changed (a change which does not affect V, L, and T), v must vary directly as l and inversely as t; that is to say, the unit of velocity varies directly as the unit of length, and inversely as the unit of time.

Equation (I) also shows that the numerical value $\frac{\mathrm{V}}{v}$ of a given velocity varies inversely as the unit of length, and directly as the unit of time.
7. Again, let A denote a concrete acceleration such that the velocity V is gained in the time T^{\prime}, and let a denote the unit of acceleration. Then, since the
numerical value of the acceleration A is the numerical value of the velocity V divided by the numerical value of the time ' T ', we have

$$
\frac{\mathrm{A}}{a}=\frac{\mathrm{V}}{v} \frac{t}{\mathrm{~T}} .
$$

But by equation (1) we may write $\frac{\mathrm{L}}{l} \frac{t}{\mathrm{~T}}$ for $\frac{\mathrm{V}}{v^{\prime}}$. We thus obtain

$$
\begin{equation*}
\frac{\mathrm{A}}{a}=\frac{\mathrm{L}}{\bar{l}} \underset{\mathrm{~T}}{t} \frac{t}{\mathrm{~T}^{\prime \prime}} \tag{2}
\end{equation*}
$$

This equation shows that when the units a, l, t are changed (a change which will not affect A, L, T or T'), a must vary directly as l, and inversely in the duplicate ratio of t; and the numerical value $\frac{\mathrm{A}}{a}$ will vary inversely as l, and directly in the duplicate ratio of t. In other words, the unit of acceleration varies directly as the unit of length, and inversely as the square of the unit of time; and the numerical value of a given acceleration varies inversely as the unit of length, and directly as the square of the unit of time.

It will be observed that these have been deduced as direct consequences from the fact that [the numerical value of] an acceleration is equal to [the numerical value of] a length, divided by [the numerical value of] a time, and then again by [the numerical value of] a time.

The relations here pointed out are usually expressed by saying that the dimensions of acceleration* are $\frac{\text { length }}{(\text { (time })^{2}}$, or that the dimensions of the unit of acceleration* are

[^1]$$
\frac{\text { unit of length }}{\text { (unit of time) }^{2}}
$$
8. We have treated these two cases very fully, by way of laying a firm foundation for much that is to follow. We shall hereafter use an abridged form of reasoning, such as the following :-
\[

$$
\begin{gathered}
\text { velocity }=\frac{\text { length }}{\text { time }} \\
\text { acceleration }=\frac{\text { velocity }}{\text { time }}=\frac{\text { length }}{(\text { (ime })^{2}} .
\end{gathered}
$$
\]

Such equations as these may be called dimensional equations. Their full interpretation is obvious from what precedes. In all such equations, constant numerical factors can be discarded, as not affecting dimensions.
9. As an example of the application of equation (2) we shall compare the unit acceleration based on the foot and second with the unit acceleration based on the yard and minute.

Let l denote a foot, L a yard, t a second, T a minute, T a minute. Then a will denote the unit acceleration based on the foot and second, and A will denote the unit acceleration based on the yard and minute. Equation (2) becomes

$$
\begin{equation*}
\frac{\mathrm{A}}{a}=\frac{3}{1} \times\left(\frac{1}{60}\right)^{2}=\frac{1}{1200} \tag{3}
\end{equation*}
$$

that is to say, an acceleration in which a yard per minute
"Change-ratio of unit of acceleration $=\frac{\text { change-ratio of unit of length }}{(\text { change-ratio of unit of time })^{2}}$." This is very clear and satisfactory as a full statement of the meaning intended ; but it is necessary to tolerate some abridgment of it for practical working.
of velocity is gained per minute, is $\frac{1}{1200}$ of an acceleration in which a foot per second is gained per second.
Meaning of "per."

1o. The word per, which we have several times employed in the present chapter, denotes division of the quantity named before it by the quantity named after it. Thus, to compute velocity in feet per second, we must divide a number of feet by a number of seconds.*

If velocity is continuously varying, let x be the number of feet described since a given epoch, and t the number of seconds elapsed, then $\frac{d x}{d t}$ is what is meant by the number of feet per second. The word should never be employed in the specification of quantities, except when the quantity named before it varies directly as the quantity named after it, at least for small variations-as, in the above instance, the distance described is ultimately proportional to the time of describing it.

Extended Sense of the terms "Multiplication" and " Division."

Ir. In ordinary multiplication the multiplier is always a mere numerical quantity, and the product is of the same nature as the multiplicand. Hence in ordinary division either the divisor is a mere numerical quantity and the quotient a quantity of the same nature as the dividend;

[^2]or else the divisor is of the same nature as the dividend, and the quotient a mere numerical quantity.

But in discussing problems relating to units, it is convenient to extend the meanings of the terms " multiplication" and "division." A distance divided by a time will denote a velocity-the velocity with which the given distance would be described in the given time. The distance can be expressed as a unit distance multiplied by a numerical quantity, and varies jointly as these two factors ; the time can be expressed as a unit time multiplied by a numerical quantity, and is jointly proportional to these two factors. Also, the velocity remains unchanged when the time and distance are both changed in the same ratio.
12. The three quotients

$$
\frac{1 \text { mile }}{\text { I hour }}, \frac{5280 \mathrm{ft}}{3600 \mathrm{sec} .}, \frac{22 \mathrm{ft}}{15 \mathrm{sec}}
$$

all denote the same velocity, and are therefore to be regarded as equal. In passing from the first to the second, we have changed the units in the inverse ratio to their numerical multipliers, and have thus left both the distance and the time unchanged. In passing from the second to the third, we have divided the two numerical factors by a common measure, and have thus changed the distance and the time in the same ratio. A change in either factor of the numerator will be compensated by a proportional change in either factor of the denominator.

Further, since the velocity $\frac{22 \mathrm{ft}}{15 \mathrm{sec} .}$ is $\frac{22}{15}$ of the velocity $\frac{\mathrm{Ift}}{\mathrm{I} \mathrm{sec} .}$, we are entitled to write $\frac{22 \mathrm{ft} .}{15 \mathrm{sec}}=\frac{22}{15} \cdot \frac{\mathrm{ft}}{\mathrm{sec} .}$,
thus separating the numerical part of the expression from the units part.

In like manner we may express the result of Art. 9 by writing

$$
\frac{\text { yard }}{(\text { minute })^{2}}=\frac{1}{1200} \cdot \frac{\text { foot }}{(\text { second })^{2}}
$$

Such equations as these may be called "physical equations," inasmuch as they express the equality of physical quantities, whereas ordinary equations express the equality of mere numerical values. The use of physical equations in problems relating to units is to be strongly recommended, as affording a natural and easy clue to the necessary calculations, and especially as obviating the doubt by which the student is often embarrassed as to whether he ought to multiply or divide.
13. In the following examples, which illustrate the use of physical equations, we shall employ l to denote the unit length, m the unit mass, and t the unit time.

Ex. I. If the yard be the unit of length, and the acceleration of gravity (in which a velocity of 32.2 ft . per sec. is gained per sec.) be represented by 2415 , find the unit of time.

We have $l=$ yard, and

$$
\begin{array}{r}
32 \cdot 2 \frac{\mathrm{ft} .}{(\mathrm{sec} .)^{2}}=2415 \frac{l}{t^{2}}=2415 \frac{3 \mathrm{ft}}{t^{2}} \\
\therefore t^{2}=\frac{2415 \times 3}{32.2} \mathrm{sec} .^{2}=225 \mathrm{sec} \cdot 2, t=15 \mathrm{sec} .
\end{array}
$$

Ex. 2. If the unit time be the second, the unit density 162 lbs . per cub. ft., and the unit force* the weight of an

[^3]ounce at a place where g (in foot-second units) is 3^{2}, what is the unit length ?

We have $\quad t=\mathrm{sec} ., \quad \frac{m}{i^{3}}=162 \frac{\mathrm{lb} .}{(\mathrm{ft} .)^{3}}$,
and $\frac{m l}{\mathrm{sec}^{2}}=32 \cdot \frac{\mathrm{oz} . \mathrm{ft}}{\mathrm{sec} \cdot{ }^{2}}$, or $m l=32 \mathrm{oz} . \mathrm{ft} .=2 \mathrm{lb} . \mathrm{ft}$.
Hence by division

$$
l^{4}=\frac{\mathrm{I}}{8 \mathrm{r}}(\mathrm{ft})^{4}, l=\frac{1}{3} \mathrm{ft}=4 \mathrm{in} .
$$

Ex. 3. If the area of a field of 10 acres be represented by 100 , and the acceleration of gravity (taken as 32 foot-second units) be $58 \frac{2}{3}$, find the unit of time.

We have $48400(\mathrm{yd} .)^{2}=100 l^{2}$, whence $l=22 \mathrm{yd}$; and

$$
3^{2} \frac{\mathrm{ft}}{(\mathrm{sec})^{2}}=58_{\mathrm{s}}^{2} \frac{l}{t^{2}}=\frac{176}{3} \frac{66 \mathrm{ft}}{t^{2}}
$$

whence $t^{2}=\frac{176 \times 22}{3^{2}} \mathrm{sec}^{2}=12 \mathrm{I} \mathrm{sec}{ }^{2}, t=1 \mathrm{I} \mathrm{sec}$.
Ex. 4. If 8 ft . per sec. be the unit velocity, and the acceleration of gravity (32 foot-second units) the unit acceleration, find the units of length and time.

We have the two equations

$$
\frac{l}{t}=8 \frac{\mathrm{ft}}{\mathrm{sec}}, \quad \frac{l}{t^{2}}=32 \frac{\mathrm{ft}}{\mathrm{sec.}^{2}}
$$

whence by division $t=\frac{1}{4} \mathrm{sec}$., and substituting this value of t in the first equation, we have $4 l=8 \mathrm{ft}$., $l=2 \mathrm{ft}$.

Ex. 5. If the unit force be 100 lbs . weight, the unit length 2 ft ., and the unit time $\frac{1}{4} \mathrm{sec}$., find the unit mass, the acceleration of gravity being taken as 32 foot-second units.

We have $l=2 \mathrm{ft} ., t=\frac{1}{4} \mathrm{sec}$.,

$$
\text { 100 lb. } 3^{2} \frac{\mathrm{ft} .}{\mathrm{sec} .^{2}}=\frac{m l}{t^{2}}=\frac{m 2 \mathrm{ft} .}{\mathrm{T}_{6}^{1} \mathrm{sec} .2^{2}}
$$

that is $100 \times 32 \mathrm{lb} .=32 \mathrm{~m}, m=100 \mathrm{lb}$.

Ex. 6. The number of seconds in the unit of time is equal to the number of feet in the unit of length, the unit of force is 750 lbs weight [g being 32], and a cubic foot of the standard substance [substance of unit density] contains 13500 oz . Find the unit of time.

Let $t=x \mathrm{sec}$., then $l=x \mathrm{ft}$; also let $m=y \mathrm{lb}$. Then we have

$$
\frac{m l}{t^{2}}=\frac{y \mathrm{lb} . x \mathrm{ft} .}{x^{2} \mathrm{sec} .^{2}}=\frac{y}{x} \frac{\mathrm{lb} . \mathrm{ft}}{\mathrm{sec}^{2}}=750 \times 32 \frac{\mathrm{lb} . \mathrm{ft} .}{\mathrm{sec}^{2}}
$$

or

$$
\begin{aligned}
& \begin{array}{l}
y \\
x
\end{array}=750 \times 32 . \\
& \frac{m}{l^{3}}=\frac{v}{x^{5}} \frac{\mathrm{lb} .}{\mathrm{ft.}^{3}}=13500 \frac{\mathrm{oz}}{\mathrm{ft.}^{3}} ; \\
& \frac{y}{x^{3}}=13500 \times \frac{1}{16} .
\end{aligned}
$$

Also
whence
Hence by division

$$
x^{2}=\frac{750 \times 32 \times 16}{\mathrm{r} 3500}=\frac{16^{2}}{3^{2}}, x=\frac{16}{3}, t=\frac{\mathrm{I} 6}{3} \mathrm{sec} .
$$

Ex. 7. When an inch is the unit of length and t the unit of time, the measure of a certain acceleration is a; when 5 ft . and I min. are the units of length and time respectively, the measure of the same acceleration is ro a. Find t.

Equating the two expressions for the acceleration, we have

$$
a \frac{\text { inch }}{t^{2}}=10 a \frac{5 \mathrm{ft}}{(\min .)^{2}},
$$

whence $\quad t^{2}=(\min .)^{2} \frac{\text { inch }}{50 \mathrm{ft}}=\frac{(\min .)^{2}}{600}=6(\mathrm{sec})^{9}$

$$
t=\sqrt{6} \mathrm{sec}
$$

Ex. 8. The numerical value of a certain force is 5^{6} when the pound is the unit of mass, the foot the unit of length, and the second the unit of time; what will be the
numerical value of the same force when the hundredweight is the unit of mass, the yard the unit of length, and the minute the unit of time ?

Denoting the required value by x we have

$$
\begin{gathered}
56 \frac{\mathrm{lb} . \mathrm{ft} .}{\mathrm{sec}^{2}}=x \frac{\mathrm{cwt.} \text { yard }}{\min .^{2}} ; \\
x=56 \frac{\mathrm{lb} .}{\mathrm{cwt}} . \frac{\mathrm{ft} .}{\mathrm{yd} .}\left(\frac{\min .}{\mathrm{sec} .}\right)^{2} \\
=56 \times \frac{\mathrm{I}}{\mathrm{r12}} \times \frac{\mathrm{I}}{3} \times 60^{2}=600 .
\end{gathered}
$$

Dimensions of Mechanical and Geometrical Quantities.

14. In the following list of dimensions, we employ the letters L, M, T as abbreviations for the words Length, Mass, Time. The symbol of equality is used to denote sameness of dimensions.

$$
\text { Area }=L^{2}, \quad \text { Volume }=L^{3}, \quad \text { Velocity }=\frac{\mathrm{L}}{\mathrm{I}^{\prime}},
$$

$$
\text { Acceleration }=\frac{L}{T^{2}}, \quad \text { Momentum }=\frac{M L}{T}
$$

Density $=\frac{\mathrm{M}}{\mathrm{L}^{3}}$, density being defined as mass per unit volume.

Force $=\frac{M L}{T^{2}}$, since a force is measured by the momentum which it generates per unit of time, and is therefore the quotient of momentum by time-or since a force is measured by the product of a mass by the acceleration generated in this mass.

Work $=\frac{\mathrm{ML}^{2}}{\mathrm{~T}^{2}}$, being the product of force and distance.

Kinetic energy $=\frac{M L^{2}}{\mathrm{~T}^{2}}$, being half the product of mass by square of velocity. The constant factor $\frac{1}{2}$ can be omitted, as not affecting dimensions.

Moment of couple $=\frac{\mathrm{MI}^{2}}{\mathrm{~T}^{2}}$, being the product of a force by a length.

The dimensions of angle ${ }^{*}$, when measured by $\frac{\text { arc }}{\text { radius }}$, are zero. The same angle will be denoted by the same number, whatever be the unit of length employed. In fact we have $\frac{\operatorname{arc}}{\text { radius }}=\frac{L}{L}=L^{0}$.

The work done by a couple in turning a body through any angle, is the product of the couple by the angle. The identity of dimensions between work and couple is thus verified :-

$$
\begin{aligned}
& \text { Angular velocity }=\frac{\mathbf{I}}{\mathrm{T}} \\
& \text { Angular acceleration }=\frac{\mathbf{r}}{\mathrm{T}^{2}} \\
& \text { Moment of inertia }=\mathrm{ML}^{2} .
\end{aligned}
$$

Angular momentum $=$ moment of momentum $=\frac{\mathrm{ML}^{2}}{\mathrm{~T}}$, being the product of moment of inertia by angular velocity, or the product of momentum by length.

Intensity of pressure, or intensity of stress generally,

[^4]being force per unit of area, is of dimensions force $\frac{\text { forea }}{\text { area }}$ is, M
$\overline{\mathrm{L}} \overline{\mathrm{T}}{ }^{\mathbf{2}}$
Intensity of force.of attraction at a point, often called simply force at a point, being force per unit of attracted mass, is of dimensions $\frac{\text { force }}{\text { mass }}$ or $\frac{\mathrm{L}}{\mathrm{I}^{-2}}$. It is numerically equal to the acceleration which it generates, and has accordingly the dimensions of acceleration.

The absolute force of a centre of attraction, better called the strength of a centre, may be defined as the intensity of force at unit distance. If the law of attraction be that of inverse squares, the strength will be the product of the intensity of force at any distance by the square of this distance, and its dimensions will be $\frac{L^{3}}{\mathrm{~T}^{2}}$.

Curvature (of a curve) $=\frac{1}{L}$, being the angle turned by the tangent per unit distance travelled along the curve.

Tortuosity $=\frac{\mathrm{I}}{\mathrm{L}}$, being the angle turned by the osculating plane per unit distance travelled along the curve.

The solid angle or aperture of a conical surface of any form is measured by the area cut off by the cone from a sphere whose centre is at the vertex of the cone, divided by the square of the radius of the sphere. Its dimensions are therefore zero; or a solid angle is a numerical quantity independent of the fundamental units.

The specific curvature of a surface at a given point (Gauss's measure of curvature) is the solid angle described by a line drawn from a fixed point parallel to the

I4 UNITS AND PHYSICAL CONSTANTS.
normal at a point which travels on the surface round the given point, and close to it, divided by the very small area thus enclosed. Its dimensions are therefore $\frac{\mathrm{I}}{\mathrm{L}^{2}}$.

The mean curvature of a surface at a given point, in the theory of Capillarity, is the arithmetical mean of the curvatures of any two normal sections normal to each other. Its dimensions are therefore $\frac{\mathrm{I}}{\mathrm{I}}$.

CHAPTER II.

CHOICE OF THREE FUNDAMENTAL UNITS.

15. Nearly all the quantities with which physical science deals can be expressed in terms of three fundamental units; and the quantities commonly selected to serve as the fundamental units are

> a definite length,
> a definite mass, a definite interval of time.

This particular selection is a matter of convenience rather than of necessity ; for any three independent units are theoretically sufficient. For example, we might employ as the fundamental units

> a definite mass,
> a definite amount of energy,
> a definite density.
16. The following are the most important considerations which ought to guide the selection of fundamental units :-
(1) They should be quantities admitting of very accurate comparison with other quantities of the same kind.
(2) Such comparison should be possible at all times. Hence the standards must be permanent-that is, not liable to alter their magnitude with lapse of time.
(3) Such comparison should be possible at all places. Hence the standards must not be of such a nature as to change their magnitude when carried from place to place.
(4) The comparison should be easy and direct.

Besides these experimental requirements, it is also desirable that the fundamental units be so chosen that the definition of the various derived units shall be easy, and their dimensions simple.
17. There is probably no kind of magnitude which so completely fulfils the four conditions above stated as a standard of mass, consisting of a piece of gold, platinum, or some other substance not liable to be affected by atmospheric influences. The comparison of such a standard with other bodies of approximately equal mass is effected by weighing, which is, of all the operations of the laboratory, the most exact. Very accurate copies of the standard can thus be secured ; and these can be carried from place to place with little risk of injury.

The third of the requirements above specified forbids the selection of a force as one of the fundamental units. Forces at the same place can be very accurately measured by comparison with weights ; but as gravity varies from place to place, the force of gravity upon a piece of metal, or other standard weight, changes its magnitude in travelling from one place to another. A spring-balance, it is true, gives a direct measure of

ii.] CHOICE OF THREE FUNDAMENTAL UNITS.

force; but its indications are too rough for purposes of accuracy.
18. Length is an element which can be very accurately measured and copied. But every measuring instrument is liable to change its length with temperature. It is therefore necessary, in defining a length by reference to a concrete material standard, such as a bar of metal, to state the temperature at which the standard is correct. The temperature now usually selected for this purpose is that of a mixture of ice and water ($0^{\circ} \mathrm{C}$.), observation having shown that the temperature of such a mixture is constant.
The length of the standard should not exceed the length of a convenient measuring-instrument; for, in comparing the standard with a copy, the shifting of the measuring-instrument used in the comparison introduces additional risk of error.

In end-standards, the standard length is that of the bar as a whole, and the ends are touched by the instrument every time that a comparison is made. This process is liable to wear away the ends and make the standard false. In line-standurds, the standard length is the distance between two scratches, and the comparison is made by optical means. The scratches are usually at the bottom of holes sunk halfway through the bar.
19. Time is also an element which can be measured with extreme precision. The direct instruments of measurement are clocks and chronometers; but these are checked by astronomical observations, and especially by transits of stars. The time between two successive transits of a star is (very approximately) the time of the earth's rotation on its axis ; and it is upon the uniformity
of this rotation that the preservation of our standards of time depends.

Necessity for a Common Scale.

20. The existence of quantitative correlations between the various forms of energy, imposes upon men of science the duty of bringing all kinds of physical quantity to one common scale of comparison. Several such measures (called absolute measures) have been published in recent years; and a comparison of them brings very prominently into notice the great diversity at present existing in the selection of particular units of length, mass, and time.

Sometimes the units employed have been the foot, the grain, and the second ; sometimes the millimetre, milligramme, and second ; sometimes the centimetre, gramme, and second; sometimes the centimetre, gramme, and minute; sometimes the metre, tonne, and second; sometimes the metre, gramme, and second ; while sometimes a mixture of units has been employed; the area of a plate, for example, being expressed in square metres, and its thickness in millimetres.

A diversity of scales may be tolerable, though undesirable, in the specification of such simple matters as length. area, volume, and mass when occurring singly; for the reduction of these from one scale to another is generally understood. But when the quantities specified involve a reference to more than one of the fundamental units, and especially when their dimensions in terms of these units are not obvious, but require careful working out, there is great increase of difficulty and of liability to mistake.

II.] CHOICE OF THREE FUNDAMENTAL UNITS.

A general agreement as to the particular units of length, mass, and time which shall be employed-if not in all scientific work, at least in all work involving complicated references to units-is urgently needed; and almost any one of the selections above instanced would be better than the present option.
21. We shall adopt the recommendation of the Units Committee of the British Association (see Appendix), that all specifications be referred to the Centimetre, the Gramme, and the Second. The system of units derived from these as the fundamental units is called the C.G.S. system; and the units of the system are called the C.G.S. units.

The reason for selecting the centimetre and gramme, rather than the metre and gramme, is that, since a gramme of water has a volume of approximately 1 cubic centimetre, the former selection makes the density of water unity; whereas the latter selection would make it a million, and the density of a substance would be a million times its specific gravity, instead of being identical with its specific gravity as in the C.G.S. system.

Even those who may have a preference for some other units will nevertheless admit the advantage of having a variety of results, from various branches of physics, reduced from their original multiplicity and presented in one common scale.
22. The adoption of one common scale for all quantities involves the frequent use of very large and very small numbers. Such numbers are most conveniently written by expressing them as the product of two factors,
one of which is a power of ro; and it is usually advantageous to effect the resolution in such a way that the exponent of the power of 10 shall be the characteristic of the logarithm of the number. Thus 3240000000 will be written 3.24×10^{9}, and 00000324 will be written 3.24×10^{-6}.

CHAPTER III.

MECHANICAL UNITS.

Value of g .

23. Acceleration is defined as the rate of increase of velocity per unit of time. The C.G.S. unit of acceleration is the acceleration of a body whose velocity increases in every second by the C.G.S. unit of velocity-namely, by a centimetre per second. The apparent acceleration of a body falling freely under the action of gravity in vacuo is denoted by g. The value of g in C.G.S. units at any part of the earth's surface is approximately given by the following formula,

$$
g=980 \cdot 6056-2 \cdot 5028 \cos 2 \lambda-\cdot 000003 h,
$$

λ denoting the latitude, and h the height of the station (in centimetres) above sea-level.
The constants in this formula have been deduced from numerous pendulum experiments in different localities, the length l of the seconds' pendulum being connected with the value of g by the formula $g=\pi^{2} l$.
Dividing the above equation by π^{2} we have, for the length of the seconds' pendulum, in centimetres,

$$
l=99 \cdot 3562-\cdot 2536 \cos 2 \lambda-\cdot 0000003 h .
$$

At sea-level these formulæ give the following values for the places specified :-

	Latitude.	Value of g.	Value of 2.
Equator,	○ ó	978•10	99•103
Latitude 45°, . .	45 o	980:61	99.356
Munich,	489	$980 \cdot 88$	99.384
Paris, .	4850	$980 \cdot 94$	99.390
Greenwich,	5129	$981 \cdot 17$	99.413
Göttingen,	5132	981-17	99.414
Berlin, .	5230	981.25	99.422
Dublin, .	53 21	981.32	99.429
Manchester,	5329	981.34	99.430
Belfast,	5436	98143	99.440
Edinburgh,	5557	981.54	99.451
Aberdeen,	579	$981 \cdot 64$	99.461
Pole,	90 0	$983 \cdot 11$	99.610
Aluni.ter	$4:$	9	99.3274

The difference between the greatest and least values (in the case of both g and l) is about $\frac{1}{196}$ of the mean
value.

Force.

24. The C.G.S. unit of force is called the dyne. It is the force which, acting upon a gramme for a second, generates a velocity of a centimetre per second.

It may otherwise be defined as the force which, acting upon a gramme, produces the C.G.S. unit of acceleration, or as the force which, acting upon any mass for I second, produces the C.G.S. unit of momentum.

To show the equivalence of these three definitions, let m denote mass in grammes, v velocity in centimetres per second, t time in seconds, F force in dynes.

Then, by the second law of motion, we have

$$
\text { acceleration }=\frac{\text { force }}{\text { mass }}
$$

that is, if a denote acceleration in C.G.S. units, $\alpha=\frac{\mathrm{F}}{\mathrm{m}}$; hence, when α and m are each unity, F will be unity.

Again, by the nature of uniform acceleration, we have $v=a t, v$ denoting the velocity due to the acceleration α, continuing for time t.

Hence we have $\mathrm{F}=m a=\frac{m v}{t}$. Therefore, if $m v=1$ and $t=\mathrm{I}$, we have $\mathrm{F}=\mathrm{I}$.

As a particular case, if $m=\mathrm{I}, v=\mathrm{I}, t=\mathrm{I}$, we have $F=1$.
25. The force represented by the weight of a gramme varies from place to place. It is the force required to sustain a gramme in vacuo, and would be nil at the earth's centre, where gravity is nil. To compute its amount in dynes at any place where g is known, observe that a mass of 1 gramme falls in vacuo with acceleration g. The force producing this acceleration (namely, the weight of the gramme) must be equal to the product of the mass and acceleration, that is, to g.

The weight (when weight means force) of 1 gramme is therefore g dynes; and the weight of m grammes is $m g$ dynes.
26. Force is said to be expressed in gravitation-measure when it is expressed as equal to the weight of a given mass. Such specification is inexact unless the value of g is also given. For purposes of accuracy it must always be remembered that the pound, the gramme, \&c., are, strictly speaking, units of mass. Such an expression as "a force of 100 tons" must be understood as an abbrevia-
tion for "a force equal to the weight [at the locality in question] of 100 tons."
27. The name poundal has recently been given to the unit force based on the pound, foot, and second; that is, the force which, acting on a pound for a second, generates a velocity of a foot per second. It is $\frac{1}{g}$ of the weight of a pound, g denoting the acceleration due to gravity expressed in foot-second units, which is about $3^{2} 2$ in Great Britain.

To compare the poundal with the dyne, let x denote the number of dynes in a poundal ; then we have

$$
\begin{gathered}
x \frac{\mathrm{gm} \cdot \mathrm{~cm} .}{\mathrm{sec}^{2}}=\frac{\mathrm{lb} . \mathrm{ft.}}{\mathrm{sec}^{2}} \\
x=\frac{\mathrm{lb} .}{\mathrm{gm} .} \cdot \frac{\mathrm{ft} .}{\mathrm{cm} .}=453.59 \times 30.4797=\mathrm{r} 3825
\end{gathered}
$$

Work and Energy.

28. The C.G.S. unit of work is called the erg. It is the amount of work done by a dyne working through a distance of a centimetre.

The C.G.S. unit of energy is also the erg, energy being measured by the amount of work which it represents.
29. To establish a rule for computing the kinetic energy (or energy due to the motion) of a given mass moving with a given velocity, it is sufficient to consider the case of a body falling in vacuo.

When a body of m grammes falls through a height of h centimetres, the working force is the weight of the body -that is, $g m$ dynes, which, multiplied by the distance worked through, gives $g m h$ ergs as the work done. But
the velocity acquired is such that $v^{2}=2 g h$. Hence we have $g m h=\frac{1}{2} m v^{2}$.
The kinetic energy of a mass of m grammes moving with a velocity of v centimetres per second is therefore $\frac{1}{2} m v^{2}$ ergs; that is to say, this is the amount of work which would be required to generate the motion of the body, or is the amount of work which the body would do against opposing forces before it would come to rest.
30. Work, like force, is often expressed in gravitationmeasure. Gravitation units of work, such as the footpound and kilogramme-metre, vary with locality, being proportional to the value of g.

One gramme-centimetre is equal to g ergs.
One kilogramme-metre is equal to $100,000 \mathrm{~g}$ ergs.
One foot-poundal is $453.59 \times(30.4797)^{2}=421390 \mathrm{ergs}$.
One foot-pound is $13,825 g$ ergs, which, if g be taken as 98 I , is $\mathrm{r} .356 \times 10^{7}$ ergs.
31. The unit rate of working is I erg per second. Watt's " horse-power" is defined as 550 foot-pounds per second. This is 7.46×10^{9} ergs per second. The "force de cheval" is defined as 75 kilogrammetres per second. This is 7.36×10^{9} ergs per second. We here assume $g=98 \mathrm{r}$.

Examples.

I. If a spring balance is graduated so as to show the masses of bodies in pounds or grammes when used at the equator, what will be its error when used at the poles, neglecting effects of temperature?

Ans. Its indications will be too high by about $\frac{1}{196}$ of the total weight.
2. A cannon-ball, of 10,000 grammes, is discharged with a velocity of 45,000 centims. per sec. Find its kinetic energy.

Ans. $\frac{1}{2} \times 10000 \times(45000)^{2}=1 \cdot 0125 \times 10^{13} \mathrm{ergs}$.
3. In last question find the mean force exerted upon the ball by the powder, the length of the barrel being 200 centims.

Ans. 5.0625×10^{10} dynes.
4. Given that 42 million ergs are equivalent to I gramme-degree of heat, and that a gramme of lead at $10^{\circ} \mathrm{C}$. requires 15.6 gramme-degrees of heat to melt it ; find the velocity with which a leaden bullet must strike a target that it may just be melted by the collision, supposing all the mechanical energy of the motion to be converted into heat and to be taken up by the bullet.

We have $\frac{1}{2} v^{2}=15^{.6} \times \mathrm{J}$, where $\mathrm{J}=42 \times 10^{6}$. Hence $v^{2}=1310$ millions; $v=36.2$ thousand centims. per second.
5. With what velocity must a stone be thrown vertically upwards at a place where g is 981 that it may rise to a height of 3000 centims.? and to what height would it ascend if projected vertically with this velocity at the surface of the moon, where g is 150 ?

Ans. 2426 centims. per second ; 19620 centims.

Centrifugal Force.

32. A body moving in a curve must be regarded as continually falling away from a tangent. The acceleration with which it falls away is $\frac{v^{2}}{r}, v$ denoting its velocity
and r the radius of curvature. The acceleration of a body in any direction is always due to force urging it in that direction, this force being equal to the product of mass and acceleration. Hence the normal force on a body of m grammes moving in a curve of radius r centimetres, with velocity v centimetres per second, is $\frac{m v^{2}}{r}$ dynes. This force is directed towards the centre of curvature. The equal and opposite force with which the body reacts is called centrifugal force.

If the body moves uniformly in a circle, the time of revolution being T seconds, we have $v=\frac{2 \pi r}{T}$; hence $\frac{z^{2}}{r}=\left(\frac{2 \pi}{T}\right)^{2} r$, and the force acting on the body is $m r\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2}$ dynes.

If n revolutions are made per minute, the value of T is $\frac{60}{n}$, and the force is $m r\left(\frac{n \pi}{30}\right)^{2}$ dynes.

Examples.

I. A body of m grammes moves uniformly in a circle of radius 80 centims., the time of revolution being $\frac{1}{4}$ of a second. Find the centrifugal force, and compare it with the weight of the body.

Ans. The centrifugal force is $m \times\left(\frac{2 \pi}{\frac{1}{4}}\right)^{2} \times 80=m \times 64 \pi^{2}$ $\times 80=50532 m$ dynes.
The weight of the body (at a place where g is 98 r) is 98 Im dynes. Hence the centrifugal force is about $52 \frac{1}{2}$ times the weight of the body.
2. At a bend in a river, the velocity in a certain part of the surface is 170 centims. per second, and the radius of curvature of the lines of flow is 9100 centims. Find the slope of the surface in a section transverse to the lines of flow.

Ans. Here the centrifugal force for a gramme of the water is $\frac{(170)^{2}}{9100}=3 \cdot 176$ dynes. If g be 98 I the slope will be $\frac{3 \cdot 176}{98 \mathrm{I}}=\frac{\mathrm{I}}{309}$; that is, the surface will slope upwards from the concave side at a gradient of x in 309 . The general rule applicable to questions of this kind is that the resultant of centrifugal force and gravity must be normal to the surface.
3. An open vessel of liquid is made to rotate rapidly round a vertical axis. Find the number of revolutions that must be made per minute in order to obtain a slope of 30° at a part of the surface distant io centims. from the axis, the value of g being 98 r .

Ans. We must have $\tan 30^{\circ}=\frac{f}{g}$, where f denotes the intensity of centrifugal force-that is, the centrifugal force per unit mass. We have therefore

$$
\begin{aligned}
& 98 \mathrm{I} \tan 30^{\circ}=10\left(\frac{n \pi}{30}\right)^{2}, n \text { denoting the number of } \\
& \text { revolutions per minute, }
\end{aligned}
$$

Hence $n=7 I^{\circ} 9$.
4. For the intensity of centrifugal force at the equator due to the earth's rotation, we have $r=$ earth's radius $=6.38 \times 10^{8}, T=86164$, being the number of seconds in a sidereal day.

$$
\therefore f=r\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2}=3.39
$$

This is about $\frac{1}{289}$ of the value of g.
If the earth were at rest, the value of g at the equator would be greater than at present by this amount. If the earth were revolving about 17 times as fast as at present, the value of g at the equator would be nil.

CHAPTER IV.

HYDROSTATICS.

33. The following table of the relative density of water at various temperatures (under atmospheric pressure), the density at $4^{\circ} \mathrm{C}$. being taken as unity, is from Rossetti's results deduced from all the best experiments (Ann. Ch. Phys. x. 46 I ; xvii. 370 , 1869) :-

Temp. Cent.	Relative Density.	Temp. Cent.	Relative Density.	Temp. Cent.	Relative Density.
\bigcirc	-999871	13	-999430	35	-99418
1	-999928	14	-999299	40	-99235
2	-999969	15	-999160	45	-99037
3	-999991	16	-999002	50	'98820
4	I 000000	17	-998841	55	${ }^{\circ} 98582$
5	-999990	18	-998654	60	'98338
6	-999970	19	-998460	65	'98074
7	-999933	20	'998259	70	${ }^{\circ} 97794$
8	-999886	22	-997826	75	-97498
9	-999824	24	-997367	80	'97194
10	-999747	26	'996866	85	'96879
11	-999655	28	-996331	90	'96556
12	-999549	30	-995765	100	${ }^{\circ} 95865$

34. According to Kupffer's observations, as reduced by Professor W. H. Miller, the absolute density (in grammes per cubic centimetre) at 4° is not I , but
r.000013. Multiplying the above numbers by this factor, we obtain the following table of absolute densities :

Temp.	Density.	Temp.	Density.	Temp.	Density.
\bigcirc	-999884	${ }_{1}{ }^{1}$	-999443	35	-99469
1	-999941	14	-999312	40	-99236
2	-999982	15	-999173	45	-99038
3	1000004	16	-999015	50	-98821
4	1.000013	17	-998854	55	-98583
5	1.000003	18	-998667	60	- 98339
6	-999983	19	$\bigcirc 998473$	65	- 98075
8	-999946	20	- 9988272	70	- 97795
8	-999899	22	-997839	75	-97499
9	-999837	24	-997380	80	-97195
10	-999760	26	-996879	85	-96880
11	-999668	28	-996344	90	-96557
12	-999562	30	-995778	100	$\cdot 95866$

35. The volume, at temperature t°, of the water which occupies unit volume at 4°, is approximately

$$
\mathrm{I}+\mathrm{A}(t-4)^{2}-\mathrm{B}(t-4)^{2 \cdot 6}+\mathrm{C}(t-4)^{3}
$$

where

$$
\begin{aligned}
& \mathrm{A}=8.38 \times 10^{-6} \\
& \mathrm{~B}=3.79 \times 10^{-7} \\
& \mathrm{C}=2.24 \times 10^{-8}
\end{aligned}
$$

and the relative density at temperature t° is given by the same formula with the signs of A, B, and C reversed. The rate of expansion at temperature t° is

$$
2 \mathrm{~A}(t-4)-2 \cdot 6 \mathrm{~B}(t-4)^{1 \cdot 6}+3 \mathrm{C}(t-4)^{2} .
$$

In determining the signs of the terms with the fractional exponents 2.6 and 1.6 , these exponents are to be regarded as odd.
36. Table of Densities (chiefly taken from Rankine's " Rules and Tables," pp. 149 and 150) :-

Solids.

Brass, ca	7.8 to 8.4	Basalt	$3 \cdot 0$
wire	$8 \cdot 54$	Brick.	2 to $2 \cdot 1$
Bronze.	8.4	Brickwork	1.8
Copper, cast	8.6	Chalk	1.8 to $2 \cdot$
" sheet..	$8 \cdot 8$	Clay	1.92
, hammered..	8.9	Glass, crown	2.5
Gold	19 to 19.6		3.0
Iron, cast ... ,, wrought	$\begin{array}{r} 6.95 \text { to } 7.3 \\ 7.6 \text { to } 7.8 \end{array}$	Quartz (rock-crystal)	$2 \cdot 6$
Lead	II^{4}	Sand (dry)	1.42
Platinum	21 to 22	Fir, spruce	48 to 7
Silver	$10 \cdot 5$	Oak, European ...	- 69 to 99
Steel	7.8 to 7.9	Lignum vitæ	$\cdot 65$ to I•3
Tin	$7 \cdot 3$ to $7 \cdot 5$	Sulphur, octahedral	
Zinc	$6 \cdot 8$ to $7 \cdot 2$	prismatic.	I 98
c	-92		

Liquids at $\circ^{\circ} \mathrm{C}$.

Sea-	1.026	Naphtha	848
Alcohol, pure	791	Oil, linseed	
proof spirit	916	oliv	91
	716	whale	. 02
Mer	13.596	of turpe	87

37. If a body weighs m grammes in vacuo and m^{\prime} grammes in water of density unity, the volume of the body is $m-m^{\prime}$ cubic centims.; for the mass of the water displaced is $m-m^{\prime}$ grammes, and each gramme of this water occupies a cubic centimetre.

Examples.

I. A glass cylinder, l centims. long, weighs m grammes in vacuo and m^{\prime} grammes in water of unit density. Find its radius.

Solution. Its section is πr^{2}, and is also $\frac{m-m^{\prime}}{l}$; hence

$$
r^{2}=\frac{m-m^{\prime}}{\pi l}
$$

2. Find the capacity at $0^{\circ} \mathrm{C}$. of a bulb which holds m grammes of mercury at that temperature.

Solution. The specific gravity of mercury at 0° being 13.596 as compared with water at the temperature of maximum density, it follows that the mass of 1 cubic centim. of mercury is $13.596 \times 1.000013=13.59618$, say 13.596. Hence the required capacity is $\frac{m}{13.596}$ cubic centims.
3. Find the total pressure on a surface whose area is A square centims. when its centre of gravity is immersed to a depth of h centims. in water of unit density, atmospheric pressure being neglected.

Ans. Ah grammes weight ; that is $g \mathrm{~A} h$ dynes.
4. If mercury of specific gravity 13.596 is substituted for water in the preceding question, find the pressurc.

Ans. $13.596 \mathrm{~A} h$ grammes weight ; that is, $13.596 \mathrm{gA} h$ dynes.
5. If h be 76, and A be unity in example 4, the answer becomes 1033.3 grammes weight, or 1033.3 g dynes.

For Paris, where g is 980.94 , this is 1.0136×10^{6} dynes.

Barometric Pressure.

38. The C.G.S. unit of pressure intensity (that is, of pressure per unit area) is the pressure of a dyne per square centim.

At the depth of h centims. in a uniform liquid whose density is d [grammes per cubic centim.], the pressure due to the weight of the liquid is $g h d$ dynes per square centim.

The pressure-intensity due to the weight of a column of mercury at $0^{\circ} \mathrm{C}$., 76 centims. high, is found by putting $h=76, d=13.596$, and is $1033.3 g$. It is therefore different at different localities. At Paris, where g is 98094 , it is $\mathrm{r} \circ \mathrm{O}_{3} 36 \times 10^{\circ}$; that is, rather more than a megadyne* per square centim. To exert a pressure of exactly one megadyne per square centim., the height of the column at Paris must be 74.98 centims.

At Greenwich, where g is $98 I^{\cdot 17}$, the pressure due to 76 centims. of mercury at $0^{\circ} \mathrm{C}$. is 1.0138×10^{6}; and the height which would give a pressure of 10^{6} is 74.964 centims., or 29.514 inches.

Convenience of calculation would be promoted by adopting the pressure of a megadyne per square centim., or 10^{6} C.G.S. units of pressure-intensity, as the standard atmosphere.

The standard now commonly adopted (whether 76 centims. or 30 inches) denotes different pressures at different places, the pressure denoted by it being proproportional to the value of g.

We shall adopt the megadyne per square centim. as our standard atmosphere in the present work.

Examples.

1. What must be the height of a column of water of

[^5]unit density to exert a pressure of a megadyne per square centim. at a place where g is 98 I ?
Ans. $\frac{1000000}{9^{81}}=1019^{\circ} 4$ centims. This is $33^{\circ} 445$ feet.
2. What is the pressure due to an inch of mercury at $0^{\circ} \mathrm{C}$. at a place where g is 98 I . (An inch is 2.54 centims.)
Ans. $981 \times 2.54 \times 13.596=33878$ dynes per square centim.
3. What is the pressure due to a centim. of mercury at $0^{\circ} \mathrm{C}$. at the same locality?
Ans. $98 \mathrm{x} \times 13.596=1333^{8}$.
4. What is the pressure due to a kilometre of sea-water of density $1 \cdot 027, g$ being 981 ?
Ans. $98 \mathrm{I} \times 10^{5} \times 1.027=1.0075 \times 10^{8}$ dynes per square centim., or $\mathrm{r} \cdot 0075 \times 10^{2}$ megadynes per square centim.; that is, about 100 atmospheres.
5. What is the pressure due to a mile of the same water?

Ans. 1.6214×10^{8} C.G.S. units, or 162.14 atmospheres [of a megadyne per square centim.].

Density of Air.

39. Regnault found that at Paris, under the pressure of a column of mercury at 0°, of the height of 76 centims., the density of perfectly dry air was $\cdot 0012932$ gramme per cubic centim. The pressure corresponding to this height of the barometer at Paris is $1{ }^{\circ} 0136 \times 10^{6}$ dynes per square centim. Hence, by Boyle's law, we can compute the density of dry air at $\circ^{\circ} \mathrm{C}$. at any given pressure.

At a pressure of a megadyne (10^{6} dynes) per square centime. the density will be $\frac{.0012932}{1.013^{-}}=\cdot 0012759$.

The density of dry air at $0^{\circ} \mathrm{C}$. at any pressure p (dynes per square centime.) is

$$
\begin{equation*}
p \times 1.2759 \times 10^{-9} . \tag{4}
\end{equation*}
$$

Example.

Find the density of dry air at $0^{\circ} \mathrm{C}$., at Edinburgh, under the pressure of a column of mercury at $0^{\circ} \mathrm{C}$., of the height of 76 centimes.

Here we have $p=98 \mathrm{r} \cdot 54 \times 76 \times 13.596=1.0142 \times 10^{6}$.
Ans. Required density $=\mathbf{1} \mathbf{2 9 4 0} \times 10^{-3}={ }^{-0012940}$ gramme per cubic centime.
40. Absolute Densities of Gases, in grammes per cubic centime., at $\circ^{\circ} \mathrm{C}$., and a pressure of 10^{6} dynes per square centime.

The numbers in the second column are the reciprocals of those in the first.
The numbers in the first column are identical with the specific gravities referred to water as unity.
Assuming that the densities of gases at constant pressure and temperature are directly as their atomic weights, we have for any gas at zero

$$
p q^{\prime} \mu=1 \cdot 1316 \times 10^{10} m ;
$$

v denoting its volume in cubic centims., m its mass in grammes, p its pressure in dynes per square centim., and μ its atomic weight referred to that of hydrogen as unity.

Height of Homogeneous Atmosphere.

41. We have seen that the intensity of pressure at depth h, in a fluid of uniform density d, is $g h d$ when the pressure at the upper surface of the fluid is zero.
The atmosphere is not a fluid of uniform density; but it is often convenient to have a name to denote a height H such that $p=g \mathrm{HD}$, where \dot{p} denotes the pressure and D the density of the air at a given point.
It may be defined as the height of a column of uniform fluid having the same density as the air at the point which would exert a pressure equal to that existing at the point.
If the pressure be equal to that exerted by a column of mercury of density 13.596 and height h, we have

$$
\begin{gathered}
p=g h \times 13.596 ; \\
\therefore \mathrm{HD}=h \times 13.596, \mathrm{H}=\frac{h \times 13.596}{\mathrm{D}} .
\end{gathered}
$$

If it were possible for the whole body of air above the point to be reduced by vertical compression to the
density which the air has at the point, the height from the point up to the summit of this compressed atmosphere would be equal to H , subject to a small correction for the variation of gravity with height.

H is called the height of the homogeneous atmosphere at the point considered. Pressure-height would be a better name.

The general formula for it is

$$
\begin{equation*}
\mathrm{H}=\frac{p}{g \mathrm{D}} ; \tag{5}
\end{equation*}
$$

and this formula will be applicable to any other gas as well as dry air, if we make D denote the density of the gas (in grammes per cubic centim.) at pressure p.

If, instead of p being given directly in dynes per square centim., we have given the height h of a column of liquid of density d which would exert an equal pressure, the formula reduces to

$$
\begin{equation*}
\mathrm{H}=\frac{h d}{\mathrm{D}} \tag{6}
\end{equation*}
$$

42. The value of $\frac{p}{\mathrm{D}}$ in formula (5) depends only on the nature of the gas and on the temperature; hence, for a given gas at a given temperature, H varies inversely as g.

For dry air at zero we have, by formula (4),

$$
\begin{aligned}
& \frac{\bar{D}}{\mathrm{D}}=\frac{10^{9}}{1.2759}=7.8376 \times 10^{8} ; \\
\therefore \mathrm{H} & =\frac{7.8376 \times 10^{8}}{g}
\end{aligned}
$$

At Paris, where g is 980.94 , we find

$$
\mathrm{H}=7.990 \times 10^{5} .
$$

At Greenwich, where g is $98 \mathrm{r} \cdot 17$,

$$
\mathrm{H}=7.988 \times 10^{5} .
$$

Examples.

1. Find the height of the homogeneous atmosphere at Paris for dry air at $10^{\circ} \mathrm{C}$., and also at $100^{\circ} \mathrm{C}$.

Ans. For given density, p varies as $1+00366 t, t$ denoting the temperature on the Centigrade scale. Hence we have, at $10^{\circ} \mathrm{C}$.,

$$
\mathrm{H}=1.0366 \times 7.99 \times 10^{5}=8.2825 \times 10^{5} ;
$$

and at $100^{\circ} \mathrm{C}$.,

$$
\mathrm{H}=1.366 \times 7.99 \times 10^{5}=1.0914 \times 10^{6} .
$$

2. Find the height of the homogeneous atmosphere for hydrogen at \circ°, at a place where g is 98 I .

Here we have

$$
\mathrm{H}=\frac{p}{g d}=\frac{10^{6}}{98 \mathrm{I} \times 8.837 \times 10^{-5}}=1.1535 \times 10^{7} .
$$

Diminution of Density with increase of Height in the

 Atmosphere.43. Neglecting the variation of gravity with height, the variation of H as we ascend in the atmosphere would depend only on variation of temperature. In an atmosphere of uniform temperature H will be the same at all heights. In such an atmosphere, an ascent of i centim. will involve a diminution of the pressure (and therefore of the density) by $\frac{\mathrm{I}}{\mathrm{H}}$ of itself, since the layer of air which has been traversed is $\frac{\mathrm{I}}{\mathrm{H}}$ of the whole mass of superincumbent air. The density therefore diminishes
by the same fraction of itself for every centim. that we ascend ; in other words, the density and pressure diminish in geometrical progression as the height increases in arithmetical progression.

Denote height above a fixed level by x, and pressure by p. Then, in the notation of the differential calculus,
we have

$$
\frac{d x}{\mathrm{H}}=-\frac{d p}{p},
$$

and if p_{1}, p_{2} are the pressures at the heights x_{1}, x_{2}, we deduce

$$
\begin{equation*}
x_{2}-x_{1}=\mathrm{H} \log _{6} \frac{p_{1}}{p_{2}}=\mathrm{H} \times 2.3026 \log _{10} \frac{p_{1}}{p_{3}} \ldots . \tag{7}
\end{equation*}
$$

In the barometric determination of heights it is usual to compute H by assuming a temperature which is the arithmetical mean of the temperatures at the two heights.

For the latitude of Greenwich formula (7) becomes

$$
\begin{align*}
x_{2}- & x_{1}=(\mathrm{I}+00366 t) 7988 \times 10^{5} \times 2 \cdot 3026 \log \frac{p_{1}}{p_{2}} \\
& =(\mathrm{I}+00366 t) \mathrm{I}, 839,300 \log \frac{p_{1}}{p_{2}} \cdot . .(8) \tag{8}
\end{align*}
$$

t denoting the mean temperature, and the logarithms being common logarithms.
To find the height at which the density would be halved, variations of temperature being neglected, we must put 2 for $\frac{p_{1}}{p_{2}}$ in these formulæ. The required height will be $\mathrm{H} \log$ 。2, or, in the latitude of Greenwich, for temperature $\circ^{\circ} \mathrm{C}$., will be

$$
1.8393 \times 10^{6} \times 30103=553700
$$

The value of $\log _{\text {e }} 2$, or $2.3026 \log _{10} 2$, is

$$
2 \cdot 3026 \times \cdot 30103=\cdot 69315
$$

Hence for an atmosphere of any gas at uniform temperature, the height at which the density would be halved is the height of the homogeneous atmosphere for that gas, multiplied by 69315 . The gas is assumed to obey Boyle's law.

Examples.

1. Show that if the pressure of the gas at the lower station and the value of g be given, the height at which the density will be halved varies inversely as the density.
2. At what height, in an atmosphere of hydrogen at 0° C., would the density be halved, g being 981 ?

Ans. 7 © 9954×10^{6}.
44. Pressure of Aqueous Vapour at various temperatures, in dynes per square centim.

-20		1236	50		1.226×10^{5}
-15	1866	60		1 985 ,"
- 10		2790	80		4.729 ,
- 5	4150	100		1014×10^{6}
0	6133	120		1988 ,
5	8710	140		3.626 ",
10	12220	160		6.210 ,",
15	..	16930	180		1.006×10^{7}
20		23190	200		I. 560
25	..	31400			
30		42050			
40	73200			

The density of saturated steam, at any temperature t, is approximately

$$
\frac{622 \times \cdot 0012759}{1+00366 t} \times \frac{p}{10^{6}},
$$

p denoting the pressure as given in the above table.
45. Pressure of Vapour of various Liquids, in dynes per square centim.

	Alcohol.	Ether.	Sulphide of Carbon.	Chloroform.
- 20	4455	9.19×10^{4}	6.31×10^{4}	
10	8630	1.53×10^{5}	10058×10^{5}	
-	16940	2.46 ",	1.706 ",	
10	32310	3.826 "	2.648 ",	
20	59310	5.772 ,	3.975	2.141×10^{5}
30	1.048×10^{5}	$8.468{ }^{\prime \prime}{ }^{10}$	5.799 "	3.301
40	1.783 "	1.210×10^{6}	8.240 " ${ }^{1}$	4.927 ",
50	2.932 "	1.687 "	$1 \cdot 144 \times 10^{6}$	${ }_{7}^{7.14} 1007 \times 1{ }^{6}$
80	4.671 1.084×10	2.301 4031	1.554	1.007×10^{6} 1.878 3
100	2.265 ,	6.608	4435 ",	3.24
120	431	$10029 \times 1{ }^{7}$	6.87 ",	5.24 ",

46. The phenomena of capillarity, soap-bubbles, \&c., can be reduced to quantitative expression by assuming a tendency in the surface of every liquid to contract. The following table exhibits the intensity of this contractile force for various liquids at the temperature of $20^{\circ} \mathrm{C}$. The contractile force diminishes as the temperature increases.
Superficial Tensions at $20^{\circ} \mathrm{C}$., in dynes per linear centim., deduced from Quincke's results.

	Density.	Tension of surface separating the liquid from		
		Air.	Water.	Mercury.
Water,	$0 \cdot 9982$	81	\bigcirc	418
Mercury,	13.5432	540	418	0
Bisulphide of carbon,	I 2688	32.1	$41 \cdot 75$	$372 \cdot 5$
Chloroform,	1.4878	$30 \cdot 6$	29.5	399
Alcohol,	7906	25.5		399
Olive-oil,	-9136	36.9	20.56	335
Turpentine,	-8867	29.7	11.55	$250 \cdot 5$
Petroleum,	7977	317	27.8	284
Hydrochloric acid,	$1 \cdot 1$	$70 \cdot 1$	377
$\left.\begin{array}{c}\text { Solution of hyposulphite } \\ \text { of soda, }\end{array}\right\}$	1•1248	77×5	$442 \cdot 5$

[IV.
46 A. Depression of the barometrical column due to capillarity, according to Pouillet:-

Internal diameter of tube.	Depression.	Internal miameter of tube.	m.m.	Depression.	Internal m.m.
Diameter					
of tube.					

CHAPTER V.

STRESS, STRAIN, AND RESILIENCE.

47. In the nomenclature introduced by Rankine and adopted by Thomson and Tait, any change in the shape or size of a body is called a strain, and an action of force tending to produce a strain is called a stress. We shall always suppose strains to be small; that is, we shall suppose the ratio of the initial to the final length of every line in the strained body to be nearly a ratio of equality.
48. A strain changes every small spherical portion of the body into an ellipsoid; and the strain is said to be homogeneous when equal spherical portions in all parts of the body are changed into equal ellipsoids with their corresponding axes parallel. When the strain consists in change of volume, unaccompanied by change of shape, the ellipsoids are spheres.

When strain is not homogeneous, but varies continuously from point to point, the strain at any point is defined by attending to the change which takes place in a very small sphere or cube having the point at its centre, so small that the strain throughout it may be regarded as homogeneous. In what follows we shall suppose strain to be homogeneous, unless the contrary is expressed.
49. The axes of a strain are the three directions at right angles to each other, which coincide with the directions of the axes of the ellipsoids. Lines drawn in the body in these three directions will remain at right angles to each other when the body is restored to its unstrained condition.

A cube with its edges parallel to the axes will be altered by the strain into a rectangular parallelepiped. Any other cube will be changed into a parallelepiped not in general rectangular.

When the axes have the same directions in space after as before the strain, the strain is said to be unaccompanied by rotation. When such parallelism does not exist, the strain is accompanied by rotation, namely, by the rotation which is necessary for bringing the axes from their initial to their final position.

The numbers which specify a strain are mere ratios, and are therefore independent of units.
50. When a body is under the action of forces which strain it, or tend to strain it ; if we consider any plane section of the body, the portions of the body which it separates are pushing each other, pulling each other, or exerting some kind of force upon each other, across the section, and the mutual forces so exerted are equal and opposite. The specification of a stress must include a specification of these forces for all sections, and a body is said to be homogeneously stressed when these forces are the same in direction and intensity, for all parallel sections. We shall suppose stress to be homogeneous, in what follows, unless the contrary is expressed.
51. When the force-action across a section consists of a simple pull or push normal to the section, the direction
of this simple pull or push (in other words, the normal to the section) is called an axis of the stress. A stress (like a strain) has always three axes, which are at right angles to one another. The mutual forces across a section not perpendicular to one of the three axes are in general partly normal and partly tangential-one side of the section is tending to slide past the other.

The force per unit area which acts across any section is called the intensity of the stress on this section, or simply the stress on this section. The dimensions of "force per unit area," or force $\frac{\mathrm{M}}{\text { area }} \frac{\mathrm{LT}}{\mathrm{LT}}$, which we shall therefore call the dimensions of stress.
52. The relation between the stress acting upon a body and the strain produced depends upon the resilience of the body, which requires in general 21 numbers for its complete specification. When the body has exactly the same properties in all directions, 2 numbers are sufficient. These specifying numbers are usually called coefficients of elasticity; but the word elasticity is used in so many senses that we prefer to call them coefficients of resilience. A coefficient of resilience expresses the quotient of a stress (of a given kind) by the strain (of a given kind) which it produces. A highly resilient body is a body which has large coefficients of resilience. Steel is an example of a body with large, and cork of a body with small, coefficients of resilience.

In all cases (for solid bodies) equal and opposite strains (supposed small) require for their production equal and opposite stresses.
53. The coefficients of resilience most frequently referred to are the three following :-
(I) Resilience of volume, or resistance to hydrostatic compression. If V be the original and $\mathrm{V}-v$ the strained volume, $\frac{v}{\overline{\mathrm{~V}}}$ is called the compression, and when the body is subjected to uniform normal pressure P per unit area over its whole surface, the quotient of P by the compression is the resilience of volume. This is the only kind of resilience possessed by liquids and gases.
(2) Young's modulus, or the longitudinal resilience of a body which is perfectly free to expand or contract laterally. In general, longitudinal extension produces lateral contraction, and longitudinal compression produces lateral extension. Let the unstrained length be L and the strained length $\mathrm{L} \pm l$, then $\frac{l}{\mathrm{~L}}$ is taken as the measure of the longitudinal extension or compression. The stress on a cross section (that is, on a section to which the stress is normal) is called the longitudinal stress, and Young's modulus is the quotient of the longitudinal stress by the longitudinal extension or compression. If a wire of cross section A sq. cm . is stretched with a force of F dynes, and its length is thus altered from L to $\mathrm{L} \div l$, the value of Young's modulus for the wire is $\frac{\mathrm{F}}{\mathrm{A}} \cdot \frac{\mathrm{L}}{\boldsymbol{l}}$.
(3) "Simple rigidity" or resistance to shearing. This requires a more detailed explanation.
54. A shear may be defined as a strain by which a sphere of radius unity is converted into an ellipsoid of semiaxes $\mathrm{I}, \mathrm{I}+e, \mathrm{I}-e$; in other words, it consists of an extension in one direction combined with an equal compression in a perpendicular direction.
55. A unit square (Fig. r) whose diagonals coincide
with these directions is altered by the strain into a rhombus whose diagonals are $(1+e) \sqrt{ } 2$ and $(1-e) \sqrt{ } 2$, and whose area, being half the product of the diagonals, is $1-e^{2}$, or, to the first order of small quantities, is 1 , the same as the area of the original square. The length of a side of the rhombus, being the square root of the

Fig. 1.

Fig. 2
sum of the squares of the semi-diagonals, is found to be $\sqrt{\mathrm{I}+e^{2}}$ or $\mathrm{I}+\frac{1}{2} e^{2}$, and is therefore, to the first order of small quantities, equal to a side of the original square.
56. To find the magnitude of the small angle which a side of the rhombus makes with the corresponding side of the square, we may proceed as follows :-Let $a c b$ (Fig. 2) be an enlarged representation of one of the small triangles in Fig. 1. Then we have $a b=\frac{1}{2}, c b=\frac{1}{2} e \sqrt{ } 2=\frac{e}{\sqrt{ } 2}$ angle $c b a=\frac{\pi}{4}$. Hence the length of the perpendicular $c d$ is $c b \sin \frac{\pi}{4}=\frac{e}{\sqrt{ } 2} \frac{1}{\sqrt{ } 2}=\frac{e}{2}$; and since ad is ultimately equal to $a b$, we have, to the first order of small quantities,

$$
\text { angle } c a b=\frac{c d}{a d}=\frac{\frac{1}{2} e}{\frac{1}{2}}=e
$$

The semi-angles of the rhombus are therefore $\frac{\pi}{4} \pm e$, and the angles of the rhombus are $\frac{\pi}{2} \pm 2 e$; in other words, each angle of the square has been altered by the amount $2 e$. This quantity $2 e$ is adopted as the measure of the shear.
57. To find the perpendicular distance between opposite sides of the rhombus, we have to multiply a side by the cosine of $2 e$, which, to the first order of small quantities, is $\mathbf{1}$. Hence the perpendicular distance between opposite sides of the square is not altered by the shear, and the relative movement of these sides is represented

Fig 3.

Fig. 4
by supposing one of them to remain fixed, while the other slides in the direction of its own length through a distance of $2 e$, as shown in Fig. 3 or Fig. 4. Fig. 3, in fact, represents a shear combined with right-handed rotation, and Fig. 4 a shear combined with left-handed rotation, as appears by comparing these figures with Fig. I, which represents shear without rotation.
58. The square and rhombus in these three figures may be regarded as sections of a prism whose edges are perpendicular to the plane of the paper, and figures 3 and 4 show that (neglecting rotation) a shear consists in the
relative sliding of parallel planes without change of distance, the amount of this sliding being proportional to the distance, and being in fact equal to the product of the distance by the numerical measure of the shear. A good illustration of a shear is obtained by taking a book, and making its leaves slide one upon another.

It may be well to remark, by way of caution, that the selection of the planes is not arbitrary as far as direction is concerned. The only planes which are affected in the manner here described are the two sets of planes which make angles of 45° with the axes of the shear (these axes being identical with the diagonals in Fig. 1).
59. Having thus defined and explained the term "shear," which it will be observed denotes a particular species of strain, we now proceed to define a shearing stress.

A shearing stress may be defined as the combination of two longitudinal stresses at right angles to each other, these stresses being opposite in sign and equal in magnitude ; in other words, it consists of a pull in one direction

Fig 5. combined with an equal thrust in a perpendicular direction.
60. Let P denote the intensity of each of these longitudinal stresses ; we shall proceed to calculate the stress upon a plane inclined at 45° to the planes of these stresses. Consider a unit cube so taken that the pull is perpendicular to two of its faces, A B and D C (Fig. 5), and the thrust is perpendicular to two other faces, AD, BC. The forces which hold the half-cube ABC in equilibrium are-
(I) An outward force P, uniformly distributed over the face $A B$, and having for its resultant a single force P acting outward applied at the middle point of AB.
(2) An inward force P, having for its resultant a single force P acting inwards at the middle point of $B C$.
(3) A force applied to the face A C.

To determine this third force, observe that the other two forces meet in a point, namely the middle point of $A C$, that their components perpendicular to A C destroy one another, and that their components along A C, or rather along $C A$, have each the magnitude $\frac{P}{\sqrt{2}}$; hence their resultant is a force $P \sqrt{ } 2$, tending from C towards A. The force (3) must be equal and opposite to this. Hence each of the two half-cubes A B C, A D C exerts upon the other a force $P \sqrt{ } 2$, which is tangential to their plane of separation. The stress upon the diagonal plane AC is therefore a purely tangential stress. To compute its intensity, we must divide its amount $P \sqrt{ } 2$ by the area of the plane, which is $\sqrt{ } 2$, and we obtain the quotient P. Similar reasoning applies to the other diagonal plane B D. P is taken as the measure of the shearing stress. The above discussion shows that it may be defined as the intensity of the stress either on the planes of purely normal stress, or on the planes of purely tangential stress.
61. A shearing stress, if applied to a body which has the same properties in all directions (an isotropic body), produces a simple shear with the same axes as the stress; for the extension in the direction of the pull will be equal to the compression in the direction of the thrust ; and in the third direction, which is perpendicular to both of these, there is neither extension nor contraction, since
the transverse contraction due to the pull is equal to the transverse extension due to the thrust.

A shearing stress applied to a body which has not the same properties in all directions, produces in general a shear with the same axes as the stress, combined with some other distortion.

In both cases, the quotient of the shearing stress by the shear produced is called the resistance to shearing. In the case of an isotropic body, it is also called the simple rigidity.
62. The following values of the resilience of liquids under compression are reduced from those given in Jamin, ' Cours de Physique,' 2nd edition, tom. i. pp. 168 and 169 :-

	Temp.	Coefficient of Resilience.	Compression for one Atmosphere (megadyne per square centim.)
Mercury,	$\circ \circ \circ$	$3.436 \times 1{ }^{1011}$	2.91×10^{-6}
Water,	$0 \cdot 0$	2.02×10^{10}	4.96×10^{-6}
, ,	$1 \cdot 5$	r97 "	5.08 "
"	4.1	2.03 "	4.92 "
"	$10 \cdot 8$	$2 \cdot 11$	473
"	13.4	$2 \cdot 13$	4.70
,	18°	2.20	4.55
"	25°	2.22	4.50
,	34.5	2.24	4.47 "
,	43°	2.29	4.36
,	$\left\{\begin{array}{c}53 \% \\ 0.0 \\ 0\end{array}\right.$	$\begin{aligned} & 2.30 \\ & 9.2 \times 10^{9} \end{aligned}$	$\begin{aligned} & 4.35 \\ & 1.09 \times 10^{-4} \end{aligned}$
Ether,	$\left\{\begin{array}{c}0.0 \\ 0.0\end{array}\right.$	78 "	1.29 ",
	\{1400		1.38 ",
Alcohol,	$\left\{\begin{array}{r}7.3 \\ 13.1\end{array}\right\}$	$\begin{array}{ll}1.22 \\ 1.12 & \times 10 \\ \\ 2\end{array}$	${ }^{8.17} 8.91 \times 10$
Sea-wat	17.5	2.33	4.30 "

63. The following are reduced from the results obtained by Amaury and Descamps, 'Comptes Rendus,' tom. lxviii. p. 1564 (1869), and are probably more accurate than the foregoing, especially in the case of mercury :-

		Coefficient of Resilience.	Compression for one megadyne per square centim.
Distilled water,........	15	2.22×10^{10}	4.51×10^{-5}
Alcohol,	0	1.21	8.24
	15	111×0	8.99 - ${ }^{\text {- }}$
Ether,	0	9.30×10^{0}	1.08×10^{-1}
Bisulphide of carbon,..	14		${ }_{1}^{1.26} \times 1.26{ }^{10} 0^{-8}$
Mercury,	15	5.42×10^{11}	1.84×10^{-6}

64. The following values of the coefficients of resilience for solids are reduced from those given in my own papers to the Royal Society (see 'Phil. Trans.,' Dec. 5th, 1867, p. 369), by employing the value of g at the place of observation, namely 981.4.

	Young's Modulus.	Simple Rigidity.	Resilience of Volume.	Density
Glass flint,	$6.03 \times 1{ }^{11}$	2.40×10^{11}	4.15×10^{11}	2.942
Another specimen	5.74 ,	2.35	3.47	2.935
${ }_{\text {Brass, }}$ drawn,	1075×10^{12}	$3 \cdot 66$		$8 \cdot 47 \mathrm{I}$
Steel,	2•139 "	$8 \cdot 19$	1.841×10^{12}	7849
Iron, wrought, ...	1.963	7.69	1456 "	$7 \cdot 677$
Comper ${ }^{\text {cast, }}$	I 343	5.32	9.64×10^{11}	7.235
Copper,	I 234	447	$\mathrm{I} \cdot 684 \times 10^{12}$	8.843

65. The resilience of volume was not directly observed, but was calculated from the values of "Young's
modulus" and "simple rigidity," by a formula which is strictly true for bodies which have the same properties in all directions. The contraction of diameter in lateral directions for a body which is stretched by purely longitudinal stress was also calculated by a formula to which the same remark applies. The ratio of this lateral contraction to the longitudinal extension is called "Poisson's ratio," and the following were its values as thus calculated for the six bodies experimented on:-

Glass, flint,	$\cdot 258$	Iron, wrought, ... 275
Another specimen,	-229	cast, 267
Brass, drawn,	469 (?)	Copper, 378
Steel,	310	

Kirchhoff has found for steel the value $\cdot 294$, and Clerk Maxwell has found for iron $\mathbf{} 267^{2}$. Cornu ('Comptes Rendus,' Aug. 2, 1869) has found for different specimens of glass the values $\cdot 225, \cdot 226, .224, \cdot 257$, $\cdot 236, \cdot 243, \cdot 250$, giving a mean of $\cdot 237$, and maintains (with many other continental savants) that for all isotropic solids (that is, solids having the same properties in all directions) the true value is $\frac{1}{4}$.
66. The following are reduced from Sir W. Thomson's results ('Proc. Roy. Soc.,' May, 1865), the value of g being 9814:-

Simple Rigidity.
$\left.\begin{array}{lllll}\text { Brass, three specimens, } & \cdots & 4.03 & 3.48 & 3.44 \\ \text { Copper, two specimens, } & \cdots & 4.40 & 4.40\end{array}\right\} \times 10^{11}$
Other specimens of copper in abnormal states gave results ranging from 3.86×10^{11} to 4.64×10^{11}.
67. The following are reduced from Wertheim's results ('Ann. de Chim.,' ser. 3. tom. xxiii), g being taken as 981:-
v.] STRESS, STRAIN, AND RESILIENCE. 55

Different Specimens of Glass (crystal).

Young's modulus,	3.41 to 4.34 , mean 3.96	
Simple rigidity,	1.26 to 1.66, ,, $1 \cdot 48$	$\times 10^{11}$
Volume resilience,	3.50 to 4.39, ,, 3.89	

Different Specimens of Brass.

Young's modulus, .. 9.48 to $10 \% 44$, mean 9.86
Simple rigidity, 3.53 to $3.90, \quad, 3.67\} \times 10^{11}$ Volume resilience, 10.02 to $10.85, \quad, 10.43$
68. Savart's experiments on the torsion of brass wire
 simple rigidity.

Kupffer's values of Young's modulus for nine different specimens of brass, range from $7.96 \times \mathrm{ro}^{11}$ to $114 \times$ 1^{11}, the value generally increasing with the density.

For a specimen, of density 8.4465 , the value was 10.58 $\times 10^{11}$.
For a specimen, of density 8.4930 , the value was $11 \cdot 2$ $\times{ }^{1011}$.
The values of Young's modulus found by the same experimenter for steel, range from 20.2×10^{11} to $21^{\circ} 4$ $\times{ }^{1011}$.
69. The following are reduced from Rankine's ' Rules and Tables,' pp. 195 and 196, the mean value being adopted where different values are given :-

The tenacity of a substance may be defined as the greatest longitudinal stress that it can bear without tearing asunder. The quotient of the tenacity by Young's modulus will therefore be the greatest longitudinal extension that the substance can bear.

CHAPTER VI.

ASTRONOMY.

70. Size and Figure of the Earth.

According to the latest determination, as published by Capt. Clarke in the 'Philosophical Magazine' for August, 1878, the semiaxes of the ellipsoid which most nearly agrees with the actual earth are, in feet,

$$
a=20926629, b=20925105, c=20854477
$$

which, reduced to centimetres, are

$$
\dot{a}=6.37839 \times 10^{8}, b=6.37792 \times 10^{8}, c=6.35639 \times 10^{8},
$$

giving a mean radius of 6.3709×10^{8}, and a volume of 1.0832×10^{27} cubic centims.
The ellipticities of the two principal meridians are

$$
\frac{\mathrm{t}}{289.5} \text { and } \frac{\mathrm{I}}{295 \cdot 8}
$$

The longitude of the greatest axis is $8^{\circ} 15^{\prime} \mathrm{W}$. The mean length of a quadrant of the meridian is 1.00074×10^{9}.
The length of a minute of latitude is approximately $185200-940$ cos. 2 lat. of middle of arc.
The mass of the earth, assuming Baily's value 5.67 for the mean density, is $6.14 \times{ }^{0}{ }^{27}$ grammes.

Day and Year.

Attraction in Astronomy.

71. The mass of the moon is the product of the earth's mass by ${ }^{\circ} \mathrm{OI}_{1364}$, and is therefore to be taken as 6.98×10^{25} grammes, the doubtful element being the earth's mean density, which we take as 5.67 .

The mean distance of the centres of gravity of the earth and moon is 60.2734 equatorial radii of the earth -that is, 3.8439×10^{10} centims.

The mean distance of the sun from the earth is about 1.487×10^{18} centims., or 92.39 million miles, corresponding to a parallax of $8^{\prime \prime} \cdot 848$.*

The intensity of centrifugal force due to the earth's motion in its orbit (regarded as circular) is $\left(\frac{2 \pi}{T}\right)^{2} r, r$ denoting the mean distance, and T the length of the sidereal year, expressed in seconds. This is equal to the acceleration due to the sun's attraction at this distance. Putting for r and T their values, 1.487×10^{13} and $3^{.1558} \times 10^{7}$, we have

$$
\left(\frac{2 \pi}{T}\right)^{2} r=\cdot 5894 .
$$

* This is the value of the mean solar parallax determined by Professor Newcomb, and is adopted in the 'Nautical Almanac' for 1882.

This is about $\frac{1}{1660}$ of the value of g at the earth's surface.

The intensity of the earth's attraction at the mean distance of the moon is about

$$
\frac{981}{(60 \cdot 27)^{2}} \text { or } \cdot 2701
$$

This is less than the intensity of the sun's attraction upon the earth and moon, which is ${ }^{5894}$ as just found. Hence the moon's path is always concave towards the sun.
72. The mutual attractive force F between two masses m and m^{\prime}, at distance l, is

$$
\mathrm{F}=\mathrm{C} \frac{m m^{\prime}}{l^{2}}
$$

where C is a constant. To determine its value, consider the case of a gramme at the earth's surface, attracted by the earth. Then we have

$$
\mathrm{F}=98 \mathrm{r}, m=\mathrm{r}, m^{\prime}=6.14 \times 10^{27}, l=6.37 \times 10^{8} ;
$$

whence we find

$$
C=\frac{6.48}{10^{8}}=\frac{1}{1.543 \times 10^{i}}
$$

To find the mass m which, at the distance of 1 centim. from an equal mass, would attract it with a force of I dyne, we have

$$
\mathrm{I}=\mathrm{C} m^{2}
$$

whence $\quad m=\sqrt{\frac{\mathrm{I}}{\mathrm{C}}}=3928$ grammes.
73. To find the acceleration α produced at the distance of l centims. by the attraction of a mass of m grammes, we have

$$
a=\frac{\mathrm{F}}{m}=\mathrm{C}_{\overline{l^{2}}}^{m},
$$

where C has the value 6.48×10^{-8} as above.

To find the dimensions of C we have $\mathrm{C}=\frac{l^{2} a}{m}$, where the dimensions of α are LT^{-2}.

The dimensions of C are therefore $\mathrm{L}^{2} \mathrm{M}^{-1} \mathrm{LT}^{-2}$; that is, $\mathrm{L}^{8} \mathrm{M}^{-1} \mathrm{~T}^{-2}$.
74. The equation $a=C \frac{m}{l^{2}}$ shows that when $a=1$ and $l=\mathrm{r}, m$ must equal $\frac{\mathrm{r}}{\mathrm{C}}$; that is to say, the mass which produces unit acceleration at the distance of I centimetre is 1.543×10^{7} grammes. If this were taken as the unit of mass, the centimetre and second being retained as the units of length and time, the acceleration produced by the attraction of any mass at any distance would be simply the quotient of the mass by the square of the distance.

It is thus theoretically possible to base a general system of units upon two fundamental units alone; one of the three fundamental units which we have hitherto employed being eliminated by means of the equation

$$
\text { mass }=\text { acceleration } \times(\text { distance })^{2}
$$

which gives for the dimensions of M the expression $\mathrm{L}^{3} \mathrm{~T}^{-2}$.

Such a system would be eminently convenient in astronomy, but could not be applied with accuracy to ordinary terrestrial purposes, because we can only roughly compare the earth's mass with the masses which we weigh in our balances.
75. The mass of the earth on this system is the product of the acceleration due to gravity at the earth's surface, and the square of the earth's radius. This product is

$$
981 \times\left(6.37 \times 10^{8}\right)^{2}=3.98 \times 10^{20},
$$

and is independent of determinations of the earth's density.

The new unit of force will be the force which, acting upon the new unit of mass, produces unit acceleration. It will therefore be equal to $1{ }^{-} 543 \times 10^{7}$ dynes; and its dimensions will be

$$
\begin{aligned}
\text { mass } \times \text { acceleration } & =(\text { acceleration })^{2} \times(\text { distance })^{2} \\
& =\mathrm{L}^{4} \mathrm{~T}^{-4} .
\end{aligned}
$$

76. If we adopt a new unit of. length equal to l centims., and a new unit of time equal to t seconds, while we define the unit mass as that which produces unit accelefation at unit distance, the unit mass will be

$$
l^{3} t^{-2} \times 1.543 \times 10^{7} \text { grammes } .
$$

If we make l the wave-length of the line F in vacuo, say,

$$
4.86 \times 10^{-5},
$$

and t the period of vibration of the same ray, so that $\frac{l}{t}$ is the velocity of light in vacuo, say,

$$
3 \times 10^{10},
$$

the value of $l^{3} t^{-2}$ or $l\left(\frac{l}{t}\right)^{2}$ is

$$
4.374 \times 1016,
$$

and the unit mass will be the product of this quantity into 1.543×10^{7} grammes. This product is 6.75×10^{23} grammes.

The mass of the earth in terms of this unit is

$$
3.98 \times 10^{20} \div\left(4.374 \times 10^{16}\right)=9100,
$$

and is independent of determinations of the earth's density.

CHAPTER VII.

VELOCITY OF SOUND.

77. The propagation of sound through any medium is due to the elasticity or resilience of the medium ; and the general formula for the velocity of propagation s is

$$
s=\sqrt{\frac{\mathrm{E}}{\overline{\mathrm{D}}}},
$$

where D denotes the density of the medium, and E the coefficient of resilience.
78. For air, or any gas, we are to understand by E the quotient

$$
\frac{\text { increment of pressure }}{\text { corresponding compression }}
$$

that is to say, if $\mathrm{P}, \mathrm{P}+p$ be the initial and final pressures, and $\mathrm{V}, \mathrm{V}-v$ the initial and final volumes, p and v being small in comparison with P and V , we have

$$
\mathrm{E}=\frac{p}{\frac{v}{\mathrm{~V}}}=\frac{p^{\mathrm{V}}}{v} .
$$

If the compression took place at constant temperature, we should have

$$
\frac{p}{\mathrm{P}}=\frac{v}{\mathrm{~V}} \text { and } \mathrm{E}=\mathrm{P} .
$$

But in the propagation of sound, the compression is effected so rapidly that there is not time for any sensible part of the heat of compression to escape, and we have

$$
\stackrel{p}{\mathrm{P}}=\gamma_{\overline{\mathrm{V}}}^{v},-\mathrm{E}=\gamma \mathrm{P}, \quad s=\sqrt{\gamma} \underset{\mathrm{D}}{\mathrm{P}},
$$

where $\gamma=1$ 4I for dry air, oxygen, nitrogen, or hydrogen.
The value of $\frac{\mathrm{P}}{\overline{\mathrm{D}}}$ for dry air at t° Cent. (see p. 3^{8}) is

$$
(\mathrm{I}+\cdot 00366 t) \times 7 \cdot 838+10^{8} .
$$

Hence the velocity of sound through dry air is

$$
\begin{aligned}
s & =10^{4} \sqrt{\mathrm{I} 4 \mathrm{I} \times(\mathrm{I}+\cdot 00366 t) \times 7 \cdot 838} \\
& =33240 \sqrt{\mathrm{I}+00366 t} ;
\end{aligned}
$$

or approximately, for atmospheric temperatures,

$$
s=33240+60 t .
$$

79. In the case of any liquid, E denotes the resilience of volume.*
For water at $8^{\circ} \cdot \mathbf{I}$ C. (the temperature of the Lake of Geneva in Colladon's experiment) we have

$$
\begin{gathered}
\mathrm{E}=2.08 \times 10^{10}, \mathrm{D}=\mathrm{I} \text { sensibly; } \\
\therefore \sqrt{ } / \frac{\mathrm{E}}{\mathrm{D}}=\sqrt{ } \mathrm{E}=144000,
\end{gathered}
$$

the velocity as determined by Colladon was 143500 .
80. For the propagation of sound along a solid, in the form of a thin rod, wire, or pipe, which is free to expand or contract laterally, E must be taken as denoting Young's modulus of elasticity.* The values of E and D will be

[^6]different for different specimens of the same material Employing the values given in the Table (§64), we have

	Values of E.	Values of D.	Values of $\sqrt{\frac{E}{D}}$, or velocity.
Glass, first specimen,.....	6.03×10^{11}	2.942	4.53×10^{5}
," second specimen,..	5.74	2.935	4.42 "
Brass,	1-075 $\times 1$ I 12	8.471	$3 \cdot 56$ "
Steel,	2.139 "	7.849	5.22 "
Iron, wrought,	1.963 ,"	7677	5.06- ",
,, cast,	1.349 "	7.235 8.8	4.32 ,
Copper,	$1 \cdot 234$,	$8 \cdot 843$	3.74 ,

81. If the density of a specimen of red pine be $\cdot 5$, and its modulus of longitudinal elasticity be 1.6×10^{6} pounds per square inch at a place where g is 981 , compute the velocity of sound in the longitudinal direction.

By the table at the commencement of the present volume, a pound per square inch (g being 98 r) is $6 \cdot 9$ $\times 10^{4}$ dynes per square centim. Hence we have for the required velocity

$$
\sqrt{\frac{E}{D}}=\sqrt{\frac{1 \cdot 6 \times 10^{6} \times 6.9 \times 10^{4}}{\cdot 5}}=4.7 \times 10^{5}
$$

centims. per second.
82. The following numbers, multiplied by 10^{5}, are the velocities of sound through the principal metals, as determined by Wertheim :-
diminished by conduction. This remark applies to both $\$ \$ 79$ and 80. For the amount of these changes of temperature, see a later section under Heat.

	At $20^{\circ} \mathrm{C}$.	At $100^{\circ} \mathrm{C}$.	At $200^{\circ} \mathrm{C}$.
Lead,	$1 \cdot 23$	1.20	\ldots
Gold,	$1 \cdot 74$	$1 \cdot 72$	$1 \cdot 73$
Silver,	2.61	$2 \cdot 64$	2.48
Copper,..................	3.56	3.29	2.95
Platinum,	$2 \cdot 69$	$2 \cdot 57$	2.46
Iron,	$5 \cdot 13$	$5 \cdot 30$	$4 \cdot 72$
Iron wire (ordinary), ...	4.92	$5 \cdot 10$	\cdots
Cast steel,	4.99	4.92	479
Steel wire (English), ..	4.71 4.88	5.24	$5^{\circ} 0$
"	$4 \cdot 88$	$5 \% 1$...

The following velocities in wood are from the observations of Wertheim and Chevandier, 'Comptes Rendus,' 1846 , pp. 667 and 668 :-

	Along Fibres.		RadialDirection.		Tangential Direction.	
Pine,	3.32×10^{5}		2.83×10^{5}		1.59×10^{5}	
Beech,	$3 \cdot 34$	"	$3 \cdot 67$	"	$2 \cdot 83$	
Witch-elm,	3.92	"	3.41	"	$2 \cdot 39$	"
Birch,	4.42	"	$2 \cdot 14$	",	3.03	
Fir,	4.64	"	$2 \cdot 67$		1.57	"
Acacia,						
Aspen,	5 \%8					

83. Musical Strings.

Let M denote the mass of a string per unit length,
F " stretching force,
L " length of the vibrating portion ;
then the velocity with which pulses travel along the string is

$$
v=\sqrt{\frac{\mathrm{F}}{\mathrm{M}}},
$$

and the number of vibrations made per second is

$$
n=\frac{v}{2 \mathrm{~L}} .
$$

Example:

For the 4 strings of a violin the values of M in grammes per centimetre of length are

$$
\cdot 00416, \quad \cdot 00669, \quad 0106, \quad 0266 .
$$

The values of n are

$$
660,440,293 \frac{1}{3}, \quad 195 \frac{5}{9} \text {; }
$$

and the common value of L is 33 centims. Hence the values of v or $2 \mathrm{~L} n$ are

$$
43560,29040,19360,12910
$$

centims. per second; and the values of F or $\mathrm{M} v^{2}$, in dynes, are

$$
7.89 \times 10^{6}, \quad 5.64 \times 10^{6}, \quad 3.97 \times 10^{6}, \quad 4.43 \times 10^{6}
$$

84. Faintest Audible Sound.

Lord Rayleigh (' Proc. R.S.'' 1877 , vol. xxvi. p. 248), from observing the greatest distance at which a whistle giving about 2730 vibrations per second, and blown by water-power, was audible without effort in the middle of a fine still winter's day, calculates that the maximum velocity of the vibrating particles of air at this distance from the source was 0014 centims. per second, and that the amplitude was 8.1×10^{-8} centims., the calculation being made on the supposition that the sound spreads uniformly in hemispherical waves, and no deduction being made for dissipation, ner for waste energy in blowing.

CHAPTER VIII.

LIGHT.

85 . All kinds of light have the same velocity in vacuo. According to the most recent experiments by Cornu (see 'Nature,' February 4, 1875) this velocity is 3.004×10^{10} centims. per second. Foucault's determination was 2.98×10^{10}.
The velocity of light of given refrangibility in any medium is the quotient of the velocity in vacuo by the absolute index of refraction for light of the given refrangibility in that medium. If then μ denote this index, the velocity will be

$$
3.004 \times 10^{10} \frac{\mu}{\mu}
$$

Light of given refrangibility is light of given wavefrequency. Its wave-length in any medium is the quotient of the velocity in that medium by the wave-frequency. If n denote the wave-frequency (that is to say, the number of waves which traverse a given point in one second), the wave-length will be

$$
\frac{3.004 \times 1^{10}}{n \mu}
$$

86. The following are the wave-lengths adopted by Angström for the principal Fraunhofer lines in air at 760 . millims. pressure (at Upsal) and $16^{\circ} \mathrm{C}$: :-

These numbers will be approximately converted into the corresponding wave-lengths in vacuo by multiplying them by $\mathrm{r} \cdot 00029$.
87. The formula established by the experiments of Biot and Arago for the index of refraction of air was

$$
\mu-\mathrm{I}=\frac{\cdot 0002943}{\mathrm{I}+a t} \cdot \frac{h}{760} ;
$$

t denoting the temperature Centigrade, a the coefficient of expansion 00366 , and h the pressure in millims. of mercury at zero. As the pressure of 760 millims. of such mercury at Paris is $\mathrm{r}{ }^{\circ} \mathrm{OI}_{3} 6 \times 10^{6}$ dynes per square centim., the general formula applicable to all localities alike will be

$$
\mu-\mathrm{I}=\frac{.0002943}{\mathrm{I}+.00366 t} \cdot \frac{\mathrm{P}}{\mathrm{I} \cdot 013^{6 \times 10^{6}}},
$$

where P denotes the pressure in C.G.S. units. This can be reduced to the form

$$
\begin{equation*}
\mu-\mathrm{I}=\frac{.0002903}{\mathrm{I}+\cdot 00366 t} \cdot \frac{\mathrm{P}}{10^{6}} . \tag{9}
\end{equation*}
$$

88. Adopting $\frac{3^{.004} \times 10^{10}}{1.00029}$, that is 3.0033×10^{10}, as the velocity of light in air, and neglecting the difference of velocity between the more and less refrangible rays, we
obtain the following quotients of velocity in air by wavelength :-

> Vibrations per second.

A	$3.950 \times 1{ }^{14}$	
B	4.373	,
C	$4 \cdot 577$,
D	5.097	"
E	5 700	"
F	$6 \cdot 179$	"
G		6.973	,
H^{1}		7.569	"
H^{2}	$7 \cdot 636$	"

INDICES OF REFRACTION.
89. Dr. Hopkinson ('Proc. R. S.,' June 14, 1877,) has determined the indices of refraction of the principal varieties of optical glass made by Messrs. Chance, for the fixed lines $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, b, \mathrm{~F},(\mathrm{G}), \mathrm{G}, h, \mathrm{H}_{1} . \quad \mathrm{By} \mathrm{D}$ is to be understood the more refrangible of the pair of sodium lines ; by b the most refrangible of the group of magnesium lines ; by (G) the hydrogen line near G.

In connection with the results of observation, he employs the empirical formula

$$
\mu-\mathrm{I}=a\{\mathrm{I}+b x(\mathrm{I}+c x)\}
$$

where x is a numerical name for the definite ray of which μ is the refractive index. In assigning the value of x, four glasses-hard crown, soft crown, light flint, and dense flint-were selected on account of the good accord of their results; and the mean of their indices for any given ray being denoted by $\bar{\mu}$, the value assigned to x for this ray is $\bar{\mu}-\bar{\mu}_{F}$ where $\bar{\mu}_{F}$ denotes the value of $\bar{\mu}$ for the line F.

The value of $\bar{\mu}$ as a function of λ, the wave-length in 10^{-4} centimetres, was found to be approximately

$$
\begin{aligned}
\mu=1.538414 & +0.0067669 \frac{\mathrm{I}}{\lambda^{2}}-0.0001734 \frac{\mathrm{I}}{\lambda^{4}} \\
& +0.000023 \frac{\mathrm{I}}{\lambda^{6}} .
\end{aligned}
$$

The following were the results obtained for the different specimens of glass examined :-

Hard Crown, ist specimen, density 2.48575 .

$$
a=0.523145, b=1.3077, \quad c=-2.33 .
$$

Means of observed values of μ.

Extra Light Flint Glass, density 2.86636 .

$$
\begin{aligned}
a= & 0.549123, b=1.7064, c=-0 \cdot 198 . \\
& \text { Means of observed values of } \mu .
\end{aligned}
$$

A 1-534067;	B 1-536450;	C 1-537682;
D 1.541022;	E 1545295;	b 1 546169;
F 1.549125;	(G) $1 \cdot 555870$;	G 1 1556375 ;
h 1-559992;	$\mathrm{H}_{1} \mathrm{I} 562760$.	

Light Flint Glass, density 3.20609.

$$
a=0.583887, b=1.9605, c=0.53 .
$$ Means of observed values of μ.

В 1×568558;	C 1-570007;	D 1.574013;
E 1-579227;	b 1-580273;	F I 588888 I ;
(G) 1-592184;	G 1.592825;	h 1-597332;
$\mathrm{H}_{1} \mathrm{I} \cdot 600717$.		

Dense Flint, density 3.65865 .
$a=0.634744, b=2.2694, c=1.48$.
Means of observed values of μ.

B 1.615704;	C 1617477;	D 162241
E 1-628882;	b 1.630208;	F i 634748 ;
(G) I 1645268 ;	G 1-646071;	h 1 651830 ;
$\mathrm{H}_{1} \mathrm{I} 656229$.		

Extra Dense Flint, density 3.88947.
$a=0.664226, b=2.4446, c=1.87$.
Means of observed values of μ.

A 1639143 ;	B 1-642894;	C 1.644871;
D I.650374;	E 1.657631;	b 1.659108;
F I 664246 ;	(G) 1×676090;	G 1.677020;
h 1 683575 ;	$\mathrm{H}_{1} 1.688590$.	

Double Extra Dense Flint, density 442162.

$$
a=0.727237, b=2.7690, c=2.70 .
$$

Means of observed values of μ.

A 1.696531;	B 1 -701080;	C 1.703485 ;
D 1.710224;	E 1719081;	b 1.720908;
F 1.727257;	(G) 1×742058;	G 17743210;
h 17751485.		

INDICES OF REFRACTION FOR LIQUIDS.
90. The following values of indices of refraction for liquids are condensed from Fraunhofer's determinations, as given by Sir John Herschel ('Enc. Met. Art.', Lis ${ }^{\circ} h t$, p. 415) :-

Water, density 1 © 000.

B 1 3309 ;	C 1.3317;	D 1-3336;
E 1 3358 ;	F 1-3378;	G 1 3413 ;
H 13442 .		

Oil of Turpentine, density 0.885 .

B 14705 ;	C 14715;	D 1 4744;	E
F 14817 ;	G 14882;	H 1.4939.	

91. The following determinations of the refractive indices of liquids are from Gladstone and Dale's results, as given in Watts' ' Dictionary of Chemistry,' iii., pp. 629-63I:-

Sulphide of Carbon, at temperature 11°.
A 1.6142;
B 1-6207;
C 1 -6240;
D 1.6333;
E 1•6465;
F 1•6584;
G 1-6836;
H 1 -7090.

Benzene, at temperature 10.5°.
A 1.4879 ;
B 14913;
C 1.4931 ;
D 14975 ;
E 1.5036;
F 1 -5089;
G 1•5202;
H 15305.

Chloroform, at temperature 10°.
A 14438 ;
B 14457 ;
C 1.4466 ;
D 1.4490;
E 1.4526;
F 14555 ;
G 1.4614;
H 1466 I .
Alcohol, at temperature 15°.

A 1-3600;	B 1-3612;	C 1-3621;	D 1.3638;
E 13661;	F 1-3683;	G 1 3720 ;	H 1 - 3751.

Ether, at temperature 15°.

A 1-3529;	B 1-3545;	C 1-3554;	D 1.3566;
E 1-3590;	F 1.3606;	G 1-3646;	H 1 - 3683 .
	Water, at te	erature 15°.	

A 1 3284 ;	B 1-3300;	C 1-3307;	D 1.3324;
E 1-3347;	F 1.3366;	G 1 3402;	H 1343 I .

DOUBLE REFRACTION.
92. The following indices of doubly refracting crystals are from the table at the end of Lloyd's 'Light and Vision':-

arbonate of lead (least refraction),	$\begin{aligned} & 1.813 \\ & 2.084 \end{aligned}$
Brazilian topaz (ordinary index),	1.632
(extraordinary index),-	1.640
Quartz (ordinary index),	$1 \cdot 548$
", (extraordinary index),	$1 \cdot 558$
Arragonite (extraordinary index),	$1 \cdot 535$
, (ordinary ,),	1.693
Sulphate of copper (least refraction),	1.531
,, (greatest ,,),	1×55
Iceland spar (least refraction),	15
(greatest ,),	1.665
Nitre (least refraction),	1.335
", (greatest ,),	151

93. The two following tables are from Watts' 'Dictionary of Chemistry,' vol. iii., p. 615. The indices given are for the yellow rays, except Wollaston's, which are for the extreme red :-

Indices of Refraction of Solids.

Index.
Chromate of lead, - 2.50 to 2.97
Diamond, - - 2.47 to 2.75
Phosphorus,
Glass of antimony, - 2.216
Sulphur (native), - 2.115
Zircon, - - - 195
Nitrate of lead, - - 1.866
Carbonate of lead, - I.8I to 2.08
Ruby, - - - 1779
Felspar, - . - 1764
Tourmalin, - - . $\quad 1668$
Topaz, colourless, - 1×610
Beryl, - - - 1×598
Tortoise-shell, - . 1×591
Emerald, - - - I 585
Flint glass, - - $\quad 1 \times 57$ to 1×58 Brewster; Wollaston.

Brewster.
Brewster ; Rochon.
Brewster.
99
,
Wollaston.
Herschel.
Brewster.
"
"
"
Biot.
Brewster.
""

Index. Observer.
$\begin{array}{llll}\text { Oil of almonds, - } & - & 1469 & \text { Wollaston. } \\ \text { Oil of lavender, } & \text { - } & \quad 1457 & \text { Brewster. }\end{array}$
Sulphuric acid (sp. gr. 177), $\quad 1429$ Newton.
Nitric acid (sp. gr. 1448), - 1.410 Young; Wollaston.
Solution of potash (sp. gr. 1410), 1405 Fraunhofer.
Hydrochloric acid (concentrated), 1410 Biot.
Sea-salt (saturated),
I. 575 ,

Alcohol (rectified), . - $1 \cdot 372$ Herschel.
Ether, - - - 1358 Wollaston.
Alum (saturated), - $\quad 1356$ Herschel.
Human blood, - - 1354 Young.
White of egg, - - 1351 Enler, jun.
Vinegar (distilled), - - I•372 Herschel.
Saliva, - - - I 339 Young.
Water, - - . . 1.336 Wollaston; Brewster.

INDICES FOR GASES.

94. The following indices of refraction of gases are from the determinations of Dulong. They are for the temperature $0^{\circ} \mathrm{C}$., and the pressure of $76 \mathrm{c} . \mathrm{m}$. of mercury at Paris:-

DISPERSION IN GASES.

95. Croullebois ('Ann. de. Chim.', 1870, vol. xx., p. 185) has made the following determinations of the indices of refraction of gases for the rays corresponding to the fixed lines C, E, and G:-

Indices.
$\overbrace{\mathrm{C}}^{\mathrm{E}} \mathrm{C}_{\mathrm{G}}$ Dispersion.

$$
G-C
$$

Air, - - - - I'0002578 I.0003051 I 0003147 0000569
Nitrogen, - - - 1.000258 1.000302 I'000321 '000063
Oxygen, - - - I.000255 1.000294 1'000315 0000060
Hydrogen, - - - I.000129 I'000140 1'000153 *000024
Carbonic acid, - - I•000395 I'000456 I•000496 '000101
Chlorine, - - - I'000699 1.000792 1'000840 '000141

Cyanogen, - - 1×000804 I 000834 I 000895 •000091
Sulphuretted hydrogen, I'000599 I•000647 1'000691 '000092
Ammonia, - - - I'000374 I'000399 I'000444 '000070
Carbonic oxide, - - I'000301 I'000350 I'000391 ${ }^{\circ} 000090$
Olefiant gas, - - I'000652 I'000694 I'000722 0000070
Marsh gas, - - . 1.000412 1'000471 1'000502 000000
The "dispersive powers," as computed by the formula $\frac{\mathrm{G}-\mathrm{C}}{\mathrm{E}-\mathrm{I}}$, are shown in the following table. The indices of refraction for white light (as determined by M. Croullebois) are appended.

			Dispersive Power.	Index for White Light.
Air, -	-	-	-	$\cdot 1864$
Nitrogen,	-	-	-	$\cdot 20002943$
Oxygen,	-	-	-	-
$\cdot 0003019$				

Sulphuretted hydrogen,			Dispersive Power.	Index for White Light.
			-1421	1000639
Ammonia, -	- -		-1754	1.000390
Carbonic oxide,	- -		-2571	11000344
Olefiant gas,	- -		-1008	1.000669
Marsh gas, -	- -		-1910	I 000449

96. The following very different determinations of the indices of refraction of air for the principal fixed lines were obtained by Ketteler (' Pogg. Ann.,' vol. cxxiv., p. 390 ; 'Phil. Mag.' 1866 , vol. xxxii., p. 336) :-

A	1.00029286	E	1.00029584
B	1.00029350	F	1.00029685
C	1.00029383	G	1.00029873
D	100029470	H	1.00030026

CHAPTER IX.

HEAT.

97. The unit of heat is usually defined as the quantity of heat required to raise, by one degree, the temperature of unit mass of water, initially at a certain standard temperature. The standard temperature usually employed is $0^{\circ} \mathrm{C}$.; but this is liable to the objection that ice may be present in water at this temperature. Hence $4^{\circ} \mathrm{C}$. has been proposed as the standard temperature ; and another proposition is to employ as the unit of heat one hundredth part of the heat required to raise the unit mass of water from 0° to $100^{\circ} \mathrm{C}$.
98. According to Regnault (' Mém. Acad. Sciences,' xxi. p. $7{ }^{29}$) the quantity of heat required to raise a given mass of water from 0° to $t^{\circ} \mathrm{C}$. is proportional to

$$
\begin{equation*}
t+.00002 t^{2}+.0000003 t^{3} \tag{I}
\end{equation*}
$$

The mean thermal capacity of a body between two stated temperatures is the quantity of heat required to raise it from the lower of these temperatures to the higher, divided by the difference of the temperatures. The mean thermal capacity of a given mass of water between $0^{\circ} \mathrm{C}$. and t° is therefore proportional to

$$
\begin{equation*}
1+.00002 t+.0000003 t^{2} \tag{2}
\end{equation*}
$$

The thermal capacity of a body at a stated temperature is the limiting value of the mean thermal capacity as the range is indefinitely diminished. Hence the thermal capacity of a given mass of water at t° is proportional to the differential coefficient of (1), that is to

$$
\begin{equation*}
\mathbf{1}+.00004 t+.0000009 t^{2} \tag{3}
\end{equation*}
$$

Hence the thermal capacities at 0° and 4° are as I to 1.000174 nearly; and the thermal capacity at 0° is to the mean thermal capacity between 0° and 100° as I to I-005.
99. If we agree to adopt the capacity of unit mass of water at a stated temperature as the unit of capacity; the unit of heat must be defined as n times the quantity of heat required to raise unit mass of water from this initial temperature through $\frac{1}{n}$ of a degree when n is indefinitely great.

Supposing the standard temperature and the length of the degree of temperature to be fixed, the units both of heat and of thermal capacity vary directly as the unit of mass.

In what follows, we adopt as the unit of heat (except where the contrary is stated) the heat required to raise a gramme of pure water through $\mathrm{I}^{\circ} \mathrm{C}$. at a temperature intermediate between 0° and 4°. This specification is sufficiently precise for the statement of any thermal measurements hitherto made.
100. The thermal capacity of unit mass of a substance at any temperature is called the specific heat of the substance at that temperature.

The following determinations of specific heat by Dulong
and Petit agree very well with later determinations by Regnault and other experimenters, except in the case of platinum :-

			Mean Specific Heat between 0° and 100°.			Mean Specific Heat between 0° and 300°.
Iron,	-	-	- 1098	-		18
Copper,	-	-	-0949	-		$\cdot 1013$
Zinc,	-	-	- '0927	-		'1015
Silver,		-	- '0557	-		. 0611
Antimony,			- 0507			-0549
Platinum,	-		- 0355			-0355
Glass,	-	-	- 1770	-		-1990

According to Pouillet's experiments, the mean specific heat of platinum between

1о1. Specific heat is of zero dimensions in length, mass, and time. It is in fact the ratio

increment of heat in the substance

 increment of heat in waterfor a given increment of temperature, the comparison being between equal masses of the substance at the actual temperature and of water at the standard temperature. The numerical value of a given concrete specific heat merely depends upon the standard temperature at which the specific heat of water is called unity.
102. The thermal capacity of unit volume of a substance
is another important element : we shall denote it by c. Let s denote the specific heat, and d the density of the substance; then c is the thermal capacity of d units of mass, and therefore $c=s d$. The dimensions of c in length, mass, and time are the same as those of d, namely $\frac{\mathrm{M}}{\mathrm{L}^{3}}$. Its numerical value will not be altered by any change in the units of length, mass, and time which leaves the value of the density of water unchanged.

In the C.G.S. system, since the density of water between 0° and 4° is very approximately unity, the thermal capacity of unit volume of a substance is the value of the ratio

increment of heat in the substance increment of heat in water

for a given increment of temperature, when the comparison is between equal volumes.
103. The following table (from Miller's 'Chemical Physics,' p. 313, fourth edition) exhibits the specific heats of most of the elementary bodies, also their atomic weights, and the product of the two :-

			Specific Heat.	Atomic Weight.	Product.	
Diamond,	-	-	-	$\cdot 1468$	48	$6 \cdot 0464$
Graphite,	-	-	-	$\cdot 2018$	33	$6 \cdot 6594$
Wood Charcoal,	-	-	-	$\cdot 2415$	\ldots	\ldots
Silicon, fused,	-	-	-	$\cdot 1750$	35	$6 \cdot 125$
\quad, crystallized,	-	-	$\cdot 1767$	\ldots	\ldots	
Boron, crystallized,	-	-	-	$\cdot 250$	\ldots	\ldots
Sulphur, native,	-	-	-	$\cdot 17760$	32	$5 \cdot 6832$
Selenium,	-	-	-	$\cdot 08370$	79.5	$6 \cdot 6541$
Tellurium,	-	-	-	$\cdot 04737$	129	$6 \cdot 1107$
Magnesium,	-	-	-	$\cdot 2499$	24	$5 \cdot 9976$

					Specific Heat.	Atomic Weight.	
Zinc,	-	-	-	-	- 09555	65	6.2108
Cadmium,	-	-	-	-	-05669	112	$6 \cdot 3482$
Aluminium,	-	-	-	-	- 2143	27.5	$5 \cdot 8730$
Iron,	-		-	-	-11379	56	6.3722
Nickel,	-		-	-	-10863	59	6.4090
Cobalt,	-		-	-	$\cdot 10696$	59	6.3106
Manganese,	-		-	-	-1217	55	6.6934
Tin,	-		-	-	$\cdot 05623$	118	6.6356
Tungsten,	-		-	-	-03342	184	6.1492
Molybdenum,	-	-	-	-	-07218	96	$6 \cdot 931$
Copper, -	-		-	-	'09515	63.5	$6 \cdot 0419$
Lead,	-		-	-	.03140	207	6.4999
Mercury, solid			-	-	-03192	200	6.3840
,, liqui			-	-	-03332	200	6.6640
Platinum,	-		-	-	-03243	197.2	$6 \cdot 3952$
Palladium,	-	-	-	-	. 05927	106.4	6.3072
Rhodium,	-	-	-	-	-05803	104.4	$6 \cdot 0582$
Osmium,	-		-	-	.03063	198.8	$6 \cdot 0892$
Iridium, -	-		-	-	. 03259	197.2	6.4266
Iodine,	-	-	-	-	.05412	127	$6 \cdot 8732$
Bromine, solid			-	-	. 08430	80	6.7440
,, liquid		-	-	-	-10600	80	$8 \cdot 4800$
Potassium,	-	-	-	-	-16956	39	6.6128
Sodium, -	-	-	-	-	-29340	23	6.7480
Lithium,	-	-	-	-	'9408	7	6.5856
Phosphorus,	-	-	-	-	-18870	31	5.8497
Arsenic, -	-		-	-	.08140	75	6.1050
Antimony,	-	-	-	-	$\cdot 05077$	122	6•1939
Bismuth,	-	-	-	-	-03084	210	6.4764
Thallium,	-	-	-	-	-03255	204	6.6402
Silver,	-		-	-	.05701	108	6.1570
Gold,	-	-	-	-	.03244	196.6	$6 \cdot 3777$

104. Variation of Specific Heat with Temperature.

Bède's results (‘ Mém. couronnés de l'Acad. de Bruxelles,' xxvii. i) have been summed up in the following
formulæ by Prof. G. C. Foster, who has communicated them to the editor of this work :

Specific Heats at t°.

According to Violle, the specific heat of platinum at t° is ${ }^{\circ} 0317+\cdot 00012 t$, its latent heat of fusion $\mathbf{2 7}^{2} \mathbf{2}$, its melting point $\mathbf{1 7 7 5} 5^{\circ} 5$, and the melting point of silver 954°.

According to H. F. Weber, the true specific heat of diamond at t° is

$$
\cdot 0947+\cdot 000994 t-00000036 t^{2} .
$$

105. The following table (from Miller's 'Chemical Physics,' p. 307) exhibits the specific heats of certain substances in the solid form, as determined by Regnault, along with the specific heats of the same substançes in the liquid form, as determined by Person :-

Ice,	Solid.			Liquad.		
	Sp. heat.	Temperature between.		Sp. heat.	Temperature between.	
	. 5050	-30° and	0°	$1 \cdot 0000$		and 20°
Sodic nitrate,	$\cdot 2782$	0	100	-4130	320	430
Potassic nitrate,	$\cdot 2387$	0 ,	100	-3318	350	435
Sulphur, -	-2026	0	100	-2340	120	150
Phosphorus,	-1788	-14 ,	7	-2045	50	100
Bromine, -	$\cdot 0843$	-78 ,	-20	-1060	- 12	48
Tin,	-0562	- "	100	-0637	250	, 350
Iodine,	-0541	0 ,	100	$\cdot 1082$		stated.
Lead,	-0314	0	100	$\cdot 0402$	350	and 450
Bismuth,	-0308	- ,"	100	-0363	280	380
Mercury, -	-0319	...	\ldots	-0333	0	,, 100

106. The following table (from Miller's 'Chemical Physics,' p. 308) contains the results of Regnault's experiments on the specific heat of gases. The column headed "equal weights" contains the specific heats in the sense in which we have defined that term. The column headed "equal volumes" gives the relative thermal capacities of equal volumes at the same pressure and temperature :-

Thermal Capacities of Gases and Vapours.

Gas or Vapour.	Equal.		Gas or Vapour.	Equal.	
	Vols.	Weights.		Vols.	Weigh
Air,	$\cdot 2375$	$\cdot 2375$	Hydrochloric		
Oxygen,	-2405	-2175	acid.	2352	1842
Nitrogen,	2368	- 2438	Sulphuretted	-2857	$\cdot 2432$
Hydrogen,	- 2359	3.4090	hydrogen,	-2889	- 4832
Chlorine,	-2964	-1210	Water, - ${ }^{\text {Alcohol, }}$	-2989	4805
Nitrous oxide,	- 3447	-2262	Wood spirit, -	. 5063	4580
Nitric oxide,	- 2406	-2317	Ether, -	1.2266	4796
Carbonic	-2370	-2450	Ethyl chloride,	-6096	-2738
oxide, Carbonic	. 3307	$\cdot 2163$	", ${ }^{\text {b bromide, }}$ disul-	I 2466	$\cdot 4008$
anhydride, Carbonic di-	3307	-2163	phide, $\}$	I 2466	4008
$\left.\begin{array}{l} \text { Carbonic di- } \\ \text { sulphide, } \end{array}\right\}$	4122	-1569	Ethyl cyanide, Chloroform,	$\begin{array}{r} 8293 \\ -646 \mathbf{1} \end{array}$	$\begin{array}{r} \cdot 4261 \\ \cdot 1566 \end{array}$
Ammonia, -	-2996	-5084	Dutch liquid,	7911	-2293
Marsh gas,	3277	-5929	Acetic ether,	1.2184	4008
Olefiant gas,	4106	4040	Benzol, -	1.0114	3754
Arsenious chloride	7013	- 1122	Acetone, ${ }^{\text {Oil of }}$ -	-8341	4125
chiloride,	7778		Oil of turpentine,	$2 \cdot 3776$	5061
Titanic ,	. 8564	-1290	Phosphorus	$\cdot 6386$	
Stannic ",	-8639	-0939	chloride,	6386	1347
$\left.\begin{array}{c} \text { Sulphurous" } \\ \text { anhydride, } \end{array}\right\}$	-341	'154			

107. E. Wiedemann (' Pogg. Ann.' 1876 , No. 1, p. 39) has made the following determinations of the specific heats of gases :-

Specific Heat.

$$
\text { At } 0^{\circ} . \quad \text { At } 100^{\circ} . \quad \text { At } 200^{\circ} . \quad \begin{aligned}
& \text { Relative } \\
& \text { Density } .
\end{aligned}
$$

Air, -	-	0.2389	\ldots	\ldots	1
Hydrogen, -	-	3.410	\ldots	\ldots	0.0692
Carbonic oxide,	-	0.2426	\ldots	\ldots	0.967
Carbonic acid,	-	0.1952	0.2169	0.2387	1.529
Ethyl, - -	-	0.3364	0.4189	0.5015	0.9677
Nitric oxide, -	-	0.1983	0.2212	0.2442	1.5241
Ammonia, -	-	0.5009	0.5317	0.5629	0.5894

Multiplying the specific heat by the relative density, he obtains the following values of

Thermal Capacity of Equal Volumes.

			At 0°.	At 100°.	At 200°.
Air, -	-	-	0.2389	\ldots	\ldots
Hydrogen,	-	-	$\ldots .2359$	\ldots	\ldots
Carbonic oxide,	-	-	0.2346	\ldots	\ldots
Carbonic acid,	-	-	0.2985	0.3316	0.3650
Ethyl, -	-	-	0.3254	0.4052	0.4851
Nitric oxide,	-	-	0.3014	0.3362	0.3712
Ammonia, -	-	-	0.2952	0.3134	0.3318

108. The same author (' Pogg. Ann.' 1877 , New Series, vol. ii., p. 195) has made the following determinations of specific heats of vapours at temperature t° :-

| Vapour. | Range of Temp.
 in Experiments. | Specific Heat. |
| :--- | :---: | :---: | :---: |

Regnault's determinations for the same vapours were as follows :-

Vapour.	Kange of Temperature	Mean Specific Heat for this Range.	
		According to Regnault.	According t Wiedemann.
Chloroform,	117° to 228	${ }^{1} 1567$	'1573
Bromic ethyl,	77.7 to $196 \cdot 5$	-1896	$\cdot 1841$
Benzine,	116 to 218	-3754	$\cdot 3946$
Acetone, -	129 to 233	-4125	-3946
Acetic ether,	115 to 219	$\cdot 4008$	$\cdot 4190$
Ether,	70 to 220	4797	4943

Regnault's determinations for the specific heats of the liquids corresponding to some of these vapours are as follows :-

Chloroform, - - $23235+{ }^{\circ} 000101432 t$
Acetone, - - . . . - $5064+{ }^{\circ} 000793 t$
Acetic ether, - - . . . ${ }^{52741}+{ }^{\circ} 0010464 t$
Regnault has also determined the mean specific heat of bisulphide of carbon vapour between 80° and 147° to be ${ }^{\circ} 1534$, and between 80° and 229° to be ${ }^{\circ} 1613$, and has found for the specific heat of liquid bisulphide of carbon the expression

$$
\cdot 23523+\cdot 00016303 t .
$$

Schuller has found the specific heat of liquid benzine to be

$$
37980+\cdots 144 t .
$$

All these results are quoted by E. Wiedemann in the paper above referred to.
rog. The following approximate table of melting points is based on that given in the second supplement to Watts' ' Dictionary of Chemistry,' pp. 242, 243 .

Platinum, -			2000°	Tin,			230°
Palladium,	-	-	1950	Selenium,	-		217
Gold,		-	1200	Cane sugar,			160
Cast iron, -	-	-	1200	Sulphur,	-		111
Glass,	-	-	1100	Sodium,			90
Copper,	-	-	1090	Wax, -	-	-	68
Silver,	-	-	1000	Potassium,	-		58
Borax, -	-	-	1000	Paraffin,	-		54
Antimony,	-	-	432	Spermaceti,	-		44
Zinc,	-	-	360	Phosphorus,	-		43
Lead, -	-	-	330	Water,	-	-	0
Cadmium, -	-	-	320	Bromine,			-2I
Bismuth,	-	4	265	Mercury,	-	-	-40

tro. The following table (from Miller's 'Chemical Physics,' p. 344) exhibits the change of volume of certain substances in passing from the liquid to the vaporous condition under the pressure of one atmosphere :-

I volume of	f water yields	1696 volumes of vapour.		
,	alcohol	528	,	"
",	ether	298	,"	,
,"	oil of turpentine		"	,

1II. The following table (from Watts' 'Dictionary of Chemistry,' vol. iii., p. 77) exhibits the latent heats of fluidity of certain substances, together with their melting points:-

The latent heat of fluidity of water was found by Regnault, and by Provostaye and Desains, to be 79°. Bunsen, by means of his ice-calorimeter (' Pogg. Ann.,' vol. cxli., p. 30) has obtained the value 80.025 . He finds the specific gravity of ice to be 9167.
112. The following table of latent heats of vaporization
at atmospheric pressure is from Miller's 'Chemical Physics,' p. 342 :-

	Latent Heat for		
	Unit Mass.	$\begin{aligned} & \text { Equal Volu } \\ & \text { Steam }=\mathbf{0} \end{aligned}$	
Water,	- $536 \cdot 67$	1000	Regnault.
,	- 53590		Andrews.
Wood spirit,	- 263.70	$872 \cdot 9$	"
Alcohol,	- 202.40	963.I	"
Fousel oil,	- 121.37	11047	Favre \& Silbermann.
Formic acid,	- 120'72	574.4	"
Methyl formiate,	- 117.10	$726 \cdot 6$	Andrews.
Butyric acid,	- 114.67	$1043 \cdot 8$	F. \& S.
Methyl acetate, -	$110 \cdot 20$	843.5	Andrews.
Formic ether,	- 10530	806.0	"
Valeric acid,	- $103 \cdot 52$	1092.0	F. \& S.
Acetic acid,	- 10191	$632 \cdot 3$	"
Acetic ether,	- 105.80	963.0	"
"	- $92 \cdot 68$	843.5	Andrews.
Ether,	90*45	$692 \cdot 3$	' ${ }^{\prime}$
"	91.11	695.4	F. \& S.
Methyl butyrate,	- 87.33	921.5	"
Carbonic disulphide,	- $86 \cdot 67$	681.4	Andrews.
Oil of lemons,	$70 \cdot 02$	$986 \cdot 1$	F. \& S.
"	- 80.00	1125.6	Brix.
Oil of turpentine,	74.00	$1040 \cdot 5$	
"	- 68.73	$966 \cdot 9$	F. \& S.
Terebene,	- 67.21	$945{ }^{\circ}$	"
Oxalic ether,	72.72	1097.5	Andrews.
Amylic ether,	- 69.40	$1134{ }^{\circ}$	F. \& S.
Ethal, -	- 58.44	1452 O	"
Phosphorus chloride,	51.42	752.9	Andrews.
Ethyl iodide,	- 46.87	756 -8	"
Methyl iodide,	- $46 \cdot 07$	671.8	,
Bromine, -	- 45.60	754.1	"
Stannic chloride,	- $30 \cdot 53$	$820{ }^{\circ}$,
Iodine, -	- 23.95	627.9	F. \& S.

113. Regnault's approximate formula for what he calls " the total heat of steam at t°," that is, for the heat required to raise unit mass of water from 0° to t° in the liquid state and then convert it into steam at t°, is

$$
606 \cdot 5+305 t
$$

If the specific heat of water were the same at all temperatures, this would give

$$
606 \cdot 5-695 t
$$

as the heat of evaporation at t°. But since, according to Regnault, the heat required to raise the water from 0° to t° is

$$
t+\cdot 00002 t^{2}+\cdot 0000003 t^{3}
$$

the heat of evaporation will be the difference between this and the " total heat," that is, will be

$$
606 \cdot 5-\cdot 695 t-\cdot 00002 t^{2}-\cdot 0000003 t^{3}
$$

which is accordingly the value adopted by Regnault as the heat of evaporation of water at t°.
114. According to Regnault, the increase of pressure at constant volume, and increase of volume at ${ }_{2}$ constant pressure, when the temperature increases from 0° to 100°, have the following values for the gases named :-

Gas.	At Constant Volume.	At Constant Pressure.
Hydrogen, -	-	3667

Jolly has obtained the following values for the coefficient of increase of pressure at constant volume :-

Air, \quad.	.00366957	
Oxygen, -	-	.00367430
Hydrogen,	-	.00365620
Nitrogen,	-	.0036677
Carbonic acid, -	.0037060	
Nitrous oxide, -	.0037067	

Mendelejeff and Kaiander have determined the coefficient of expansion of air at constant pressure to be -0036843.
115. The following table, showing the pressure of aqueous vapour near the ordinary boiling point, is based on Regnault's determinations, as revised by Moritz (Guyot's tables, second edition, collection D , table xxv.) :-

Temperature.	Centims. of Mercury at Paris.	Dynes per sq. cm.	
99°	73.319	9.779	$\times 10^{5}$
99^{1}	73.584	9.814	,
99°	73.849	9.849	,
993	$74 \cdot 115$	9.885	"
99.4	$74 \cdot 382$	9.920	"
99.5	$74 \cdot 650$	9×956	"
99.6	74.918	9.992	,
$99^{\circ} 7$	$75 \cdot 187$	$1.0028 \times$	$\times 10^{6}$
99.8	$75 \cdot 457$	1.0064	"
99.9	$75 \cdot 728$	1.0100	
$100 \cdot 0$	$76 \cdot 000$	1 O136	"
$100 \cdot 1$	$76 \cdot 273$	$1 \cdot 0173$	"
$100 \cdot 2$	$76 \cdot 546$	1.0209	
$100 \cdot 3$	76.820	10245	",
$100 \cdot 4$	77×095	10282	,
$100 \cdot 5$	$77 \cdot 371$	1.0319	,
$100 \cdot 6$	$77 \cdot 647$	1 0356	"

Temperature. 0
$100 \cdot 7$
$100 \cdot 8$
$100 \cdot 9$
1010

Centims. of
Mercury at Paris.
$77 \cdot 925$
$78 \cdot 203$
$78 \cdot 482$
$78 \cdot 762$

Dynes per sq. cm .

$1.0393 \times$	10^{6}
1.0430	$"$,
1.0467	$"$
1.0505	$"$,

116. Regnault's results as to the departures from Boyle's law are given in the form-

$$
\frac{\mathrm{V}_{1} \mathrm{P}_{1}}{\mathrm{~V}_{0} \mathrm{P}_{0}}=1 \pm \mathrm{A}(m-1) \pm \mathrm{B}(m-1)^{2}
$$

V_{1} denoting the volume at the pressure $\mathrm{P}_{1}, \mathrm{~V}_{0}$ the volume at atmospheric pressure P_{0}, and m the ratio $\frac{V_{0}}{V_{1}}$.

For air, the negative sign is prefixed to A and the positive sign to B, and we have

$$
\begin{aligned}
& \log A=3.0435120, \\
& \log B=5 \cdot 2873751 .
\end{aligned}
$$

For nitrogen, the signs are the same as for air, and we have

$$
\begin{aligned}
& \log A=-4 \cdot 8399375 \\
& \log B=6 \cdot 8476020 .
\end{aligned}
$$

For carbonic acid, the negative sign is to be prefixed both to A and B, and we have

$$
\begin{aligned}
& \log A=3.9310399 \\
& \log B=6.8624721 .
\end{aligned}
$$

For hydrogen, the positive sign is to be prefixed both to A and B , and we have

$$
\begin{aligned}
& \log A=4.73^{81} 1736, \\
& \log B=\overline{6} \cdot 9250787 .
\end{aligned}
$$

117. The following determinations of the specific heat of the same substance in different states are from Regnault's experiments (' Mém. Acad. Sciences,' xxvi., pp. 327-332) :

Ice, mean sp. heat from -78° to 0°, - 0.474
" " \quad, 20° to 0°, - 0.504

Water, at temperatures below 100°, - $\mathbf{I}^{\text {. }}$
Steam, mean sp. heat between 128° and $220^{\circ}, \quad 0 \cdot 4805$
Bromine, solid, mean sp. heat from $-77^{\circ} 8$

$$
\text { to }-25^{\circ}, \quad-\quad . \quad-\quad-0.0833
$$

liquid, mean from $-7^{\circ} \cdot 3$ to 10°, - $0 \cdot 1060$
gaseous, mean from 83° to 228°, - 0.0555
Alcohol, liquid, at $\mathbf{2 0}{ }^{\circ}$, - - - - 5053
" \quad, ${ }^{\circ}$, - - - - 5475
$" \quad " \quad+20^{\circ}, \quad-\quad . \quad . \quad . \quad .5951$
" " 40°, - - - - 6479
",$\quad 60^{\circ}$, - - - - 7060
" $, \quad 80^{\circ}, \quad-\quad$ - \quad - 7694
gaseous, mean from 105° to 220°, - 4534
Ether, liquid, at 30°, - - - .5113
" \quad. ${ }^{\circ}$, - - - . 5290
",$\quad+30^{\circ}$, - - - 5467
, gaseous, mean from 70° to 220°, - 4797
Sulphide of carbon, liquid, at -30°, - $\cdot 2303$

$"$,	$"$,	0°,	-	-	2352
$"$,	$"$,	$+30^{\circ}$,	-	-	-2401
$"$,	$"$	45°,	-	-	2426

" gaseous, mean from 73° to
192, - - - - 1570
Benzene, liquid, mean from 20° to 71°, - 4360
, gaseous, ", 116° to 218°, - 3754
Oil of turpentine, liquid, at 0°, - - 4106

Boiling Points.

118. The following table gives the temperatures (by air thermometer) at which according to Regnault's experiments ('Mém. Acad. Sciences,' xxvi., 658,) the vapours of the liquids named exert a pressure equal to that of $76 \mathrm{c} . \mathrm{m}$. of mercury at Paris :-

Nitrous oxide, . - $-87.90 \mid$ Sulphide of Carbon, - 46.20
Carbonic anhydride, - $-78 \cdot 2$ Chloroform, - . . $60 \cdot 16$
Sulphydric acid, - - 61.8 Alcohol, - - - 78.26 Ammonia, - . - 38.5 Benzene, - - - 80.36 Chlorine, - - - 33.6 Oil of turpentine, . 159.15 Sulphurous anhydride, - Io.08 Mercury, - . - 357.25 Ether, - - - - 34.97
rig. Change of volume in melting, from Kopp's experiments (Watt's ' Dict.,' art. Heat, p. 78):-

Phosphorus. Calling the volume at 0° unity, the volume at the melting point (44°) is 1.017 in the solid, and 1.052 in the liquid, state.
Sulphur. Volume at 0° being $\mathbf{1}$, volume at the melting point (115°) is 1.096 in the solid, and $1 \cdot 150$ in the liquid, state.
Wax. Volume at 0° being I , volume at melting point $\left(64^{\circ}\right)$ is $\mathrm{I} \cdot 16 \mathrm{I}$ in solid, and $1 \cdot 166$ in liquid, state.
Stearic acid. Volume at 0° being 1 , volume at melting point (70°) is 1.079 in solid, and $1 \cdot 198$ in liquid, state.
Rose's fusible metal (2 parts bismuth, I tin, I lead). Volume at 0° being I , volume at 59° is a maximum, and is $\mathrm{I} \cdot 0027$. Volume at melting point (between 95° and 98°) is greater in liquid than in solid state by 1.55 per cent.
120. Temperature of evaporation and dew-point (Glaisher's Tables, second edition, page iv). The following are the factors by which it is necessary to multiply the excess of the reading of the dry thermometer
over that of the wet, to give the excess of the temperature of the air above that of the dew-point :-

Reading of Dry Bulb Therm.	Factor.	Reading of Dry Bulb Therm.	Factor.
$-10^{\circ} \mathrm{C}=14 \stackrel{\circ}{\mathrm{~F}}$	8•76	$\stackrel{\circ}{5} \mathrm{C} .=\stackrel{\circ}{59 \mathrm{~F} .}$	1.89
523	$7 \cdot 28$	2068	$1 \cdot 79$
- 32	$3 \cdot 32$	$25 \quad 77$	170
+ 5 41	$2 \cdot 26$	3086	I.65
$+1050$	2.06	3595	I 60

Conductivity.
121. By the thermal conductivity of a substance at a given temperature is meant the value of k in the expression

$$
\begin{equation*}
\mathrm{Q}=k \mathrm{~A} \frac{v_{2}-v_{1}}{x} t, \tag{I}
\end{equation*}
$$

where Q denotes the quantity of heat that flows, in time t, through a plate of the substance of thickness x, the area of each of the two opposite faces of the plate being A, and the temperatures of these faces being respectively v_{1} and v_{2}, each differing but little from the given temperature. The lines of flow of heat are supposed to be normal to the faces, or, in other words, the isothermal surfaces within the plate are supposed to be parallel to the faces; and the flow of heat is supposed to be steady, in other words, no part of the plate is to be gaining or losing heat on the whole.

Briefly, and subject to these understandings, conductivity may be defined as the quantity of heat that passes in unit time, through unit area of a plate whose thickness is unity, when its opposite faces differ in temperature by one degree.
122. Dimensions of Conductivity. From equation (1) we have

$$
\begin{equation*}
k=\frac{\mathrm{Q}}{v_{2}-v_{1}} \cdot \frac{x}{\mathrm{~A} \dot{t}} \tag{2}
\end{equation*}
$$

The dimensions of the factor $\frac{\mathrm{Q}}{v_{2}-v_{1}}$ are simply M , since the unit of heat varies jointly as the unit of mass and the length of the degree. The dimensions of the factor $\frac{x}{\mathrm{~A} t}$ are $\frac{\mathrm{I}}{\mathrm{LT}}$; hence the dimensions of k are $\frac{\mathrm{M}}{\mathrm{LT}}$. This is on the supposition that the unit of heat is the heat required to raise unit mass of water one degree. In calculations relating to conductivity it is perhaps more usual to adopt as the unit of heat the heat required to raise unit volume of water one degree. The dimensions of $\frac{\mathrm{Q}}{v_{2}-v}$ will then be L^{3}, and the dimensions of k will be $\frac{\mathrm{L}^{2}}{\mathrm{~T}}$.
These conclusions may be otherwise expressed by saying that the dimensions of conductivity are $\frac{\mathrm{M}}{\mathrm{LT}}$ when the thermal capacity of unit mass of water is taken as unity, and are $\frac{\mathrm{L}^{2}}{\mathrm{~T}}$ when the capacity of unit volume of water is taken as unity. In the C.G.S. system the capacities of unit mass and unit volume of water are practically identical.
123. Let c denote the thermal capacity of unit volume of a substance through which heat is being conducted. Then $\frac{k}{c}$ denotes a quantity whose value it is often necessary to discuss in investigations relating to the transmission of heat. We have, from equation (2),

$$
\frac{k}{c}=\frac{\mathrm{Q}^{\prime}}{v_{2}-v_{1}} \cdot \frac{x}{\mathrm{~A} t},
$$

where Q^{\prime} denotes $\frac{\mathrm{Q}}{c}$. Hence $\frac{k}{c}$ would be the numerical value of the conductivity of the substance, if the unit of heat employed were the heat required to raise unit volume of the substance one degree. Professor Clerk Maxwell proposes to call $\frac{k}{c}$ the thermometric conductivity, as distinguished from k, which is the thermal or calorimetric conductivity.

Coefficient of Diffusion.

124. There is a close analogy between conduction and diffusion. Let x denote the distance between two parallel plane sections A and B to which the diffusion is perpendicular, and let these sections be maintained in constant states. Then, if we suppose one substance to be at rest, and another substance to be diffusing through it, the coefficient of diffusion K is defined by the equation

$$
\begin{equation*}
y=\mathrm{K}_{x}^{t} \tag{I}
\end{equation*}
$$

where y denotes the thickness of a stratum of the mixture as it exists at B , which would be reduced to the state existing at A by the addition to it of the quantity which diffuses from A to B in the line t.

When the thing diffused is heat, the states at A and B are the temperatures v_{1} and v_{2}, and y denotes the thickness of a stratum at the lower temperature which would be raised to the higher by the addition of as much heat as passes in the time t. This quantity of heat, for unit area, will be

$$
\frac{k t}{x}\left(v_{2}-v_{1}\right),
$$

which must therefore be equal to

$$
y c\left(v_{2}^{\prime}-v_{1}\right),
$$

whence we have

$$
y=\frac{k}{c} \quad \underset{x}{t}
$$

The "thermometric conductivity" $\frac{k}{c}$ may therefore be regarded as the coefficient of diffusion of heat.
125. When we are dealing with the mutual interdiffusion of two liquids, or of two gases contained in a closed vessel, subject in both cases to the law that the volume of a mixture of the two substances is the sum of the volumes of its components at the same pressure, the quantity of one of the substances which passes any section in one direction must be equal (in volume) to the quantity of the other which passes it in the opposite direction, since the total volume on either side of the section remains unaltered ; and a similar equality must hold for the quantities which pass across the interval between two sections, provided that the absorption in the interval itself is negligible. Let x as before denote the distance between two parallel plane sections A and B to which the diffusion is perpendicular. Let the mixture at A consist of m parts by volume of the first substance to $\mathrm{I}-m$ of the second, and the mixture at B consist of n parts of the second to $\mathrm{I}-n$ of the first, m being greater than $\mathrm{I}-n$, and therefore n greater than $\mathrm{x}-m$. The first substance will then diffuse from A to B, and the second in equal quantity from B to A . Let each of these quantities be such as would form a stratum of thickness z (the vessel being supposed prismatic or cyiindrical, and the sections
considered being normal sections), then z will be proportional to

$$
\frac{m-(\mathrm{I}-n)}{x} t, \text { that is, to } \frac{m+n-\mathrm{I}}{x} t
$$

and the coefficient of interdiffusion K is defined by the equation

$$
\begin{equation*}
z=\mathrm{K} \frac{m+n-\mathrm{I}}{x} t . \tag{2}
\end{equation*}
$$

The numerical quantity $m+n-1$ may be regarded as measuring the difference of states of the two sections A and B .

If y now denote the thickness of a stratum in the condition of B which would be reduced to the state existing at A by the abstraction of a thickness z of the second substance, and the addition of the same thickness of the first, we have $(1-n) y+z$ as the expression for the quantity of the first substance in the stratum after the operation. This is to be equal to $m y$. Hence we have

$$
\begin{equation*}
y=\frac{z}{m+n-1} \tag{3}
\end{equation*}
$$

and substituting for z its value in (2) we have finally

$$
\begin{equation*}
y=\mathrm{K} \frac{t}{x} \tag{4}
\end{equation*}
$$

which is of the same form as equation (1), y now denoting the thickness of a stratum of the mixture as it exists at B, which would be reduced to the state existing at A by the addition to it of the quantity of one substance which diffuses from A to B in the time t, and the removal from it of the quantity of the other substance which diffuses from B to A in the same time.
126. The following values of K in terms of the centimetre and second are given in Professor Clerk Maxwell's
'Theory of Heat,' 4th edition, p. 332, on the authority of Professor Loschmidt of Vienna.

Coefficients of Interdiffusion of Gases.

127. These may be compared with the value of $\frac{k}{c}$ for air, which, according to Professor J. Stefan of Vienna, is '256.
The value of k for air, according to the same authority, is 5.58×10^{-5}, and is independent of the pressure. Professor Maxwell, by a different method, calculates its value at 54×10^{-5}.

Results of Experiments on Conductivity of Solids.

128. Principal Forbes' results for the conductivity of iron (Stewart on Heat, p. 26r, second edition) are expressed in terms of the foot and minute, the cubic foot of water being the unit of thermal capacity. Hence the value of Forbes' unit of conductivity, when referred to C.G.S., is $\frac{\left(30^{\circ} 48\right)^{2}}{60}$, or 15.48 ; and his results must be multiplied by 15.48 to reduce them to the C.G.S. scale. His observations were made on two square bars; the side of the one being $1 \frac{13}{4} \mathrm{inch}$, and of the other an
inch. The results when reduced to C.G.S. units are as follows :-

Temp. Cent.		1 1 -inch bar.				1-inch bar.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	-	-	-207	-	-	- 1536
25	-	-	-1912	-	-	-1460
50	-	-	-1771	-	-	-1399
75	-	-	-1656	-	-	-1339
100	-	-	-1567	-	-	-1293
125	-	-	-1496	-	-	-1259
150	-	-	-1446	-	-	-1231
175	-	-	-1399	-	-	-1206
200	-	-	-1356	-	-	$\cdot{ }^{1} 183$
225	-	-	-1317	-	-	-1160
250	-	-	-1279	-	-	-1140
275	-	-	-1240	-	-	-112I

129. Neumann's results ('Ann. de. Chim.' vol. lxvi., p. 185) must be multiplied by 000848 to reduce them to our scale. They then become as follows :-

				Conductivity.
Copper,	-	-	-	-
Brass,	-	108		
Zinc,	-	-	-	-
Iron,	-	-	-	-
German silver,	-	-	-	$\cdot 1607$
Ice,	-	-	-	$\cdot 109$
I	-	-	-	$\cdot 0057$

In the same paper he gives for the following substances the values of $\frac{k}{s d}$ or $\frac{k}{c}$; that is, the quotient of conductivity by the thermal capacity of unit volume. These require the same reducing factor as the values of k, and when reduced to our scale are as follows :-

130. Sir W. Thomson's results, deduced from observations of underground thermometers at three stations at Edinburgh ('Trans. R. S. E.,' 1860 , p. 426), are given in terms of the foot and second, the thermal capacity of a cubic foot of water being unity, and must be multiplied by $(30.48)^{2}$ or 929 to reduce them to our scale. The following are the reduced results :-

Trap-rock of Calton Hill, - - . 00415 - $\cdot 00786$
Sand of experimental garden, . . .00262 - .00872
Sandstone of Craigleith Quarry, - - 01068 - 02311
My own result for the value of $\frac{k}{c}$ from the Greenwich underground thermometers ('Greenwich Observations,' 1860) is in terms of the French foot and the year. As a French foot is 32.5 centims., and a year is 31557000 seconds, the reducing factor is $(32 \cdot 5)^{2} \div 31557000$; that is, 3.347×10^{-5}. The result is

Gravel of Greenwich Observatory Hill, - OI 249
Professors Ayrton and Perry ('Phil. Mag.,' April, 1878) determined the conductivity of a Japanese building stone (porphyritic trachyte) to be 0059 .
131. Ångström, in ' Pogg. Ann.,' vols. cxiv. (1861) and cxviii. (1863), employs as units the centimetre and the minute ; hence his results must be divided by 60 . These results, as given at p. 429 of his second paper, will then stand as follows :-

He adopts for c the values
-84476 for copper ; -88620 for iron,
and thus deduces the following values of k :-
Conductivity.

Copper, first specimen,	-	-	$1027(\mathrm{I}-002 \mathrm{I} 4 t)$
,",	second specimen,	-	-
Iron,	-	-	-

132. In Professor George Forbes's paper ón conductivity ('Proc. R. S. E.,' February, 1873) the units are the centim. and the minute; hence his results must be divided by 60. Thus reduced, they are :-

Ice, alon	-0223
Ice, perpendicular to axis,	'002
Black marble,	- 01
White marble,	. 00115
Slate,	-00
Snow,	-000
Cork,	-000717
Glass,	-
Pasteboard,	.000453
Carbon,	'000405
Roofing-felt,	'000335
Fir, parallel to fibre,	
Fir, across fibre and along radius, -	-000088
Boiler-cement,	62
Paraffin, -	.00014
Sand, very fine, -	-000131
Sawdust,	'000123

Kamptulikon, Vulcanized indiarubber, -	$\} \cdot 000089$
Horn, -	${ }^{0} 000087$
Beeswax, -	.000087
Felt,	-000087
Vulcanite,	-0000833
Haircloth,	-0000402
Cotton-wool, divided,	-0000433
," presse	. 00000335
Flannel,	.0000355
Coarse linen,	-0000298
Quartz, along axis,	$\cdot 000922$
,	01
,	00057
uartz, perpendicular to axis, -	$\} \cdot 0040$

Professor Forbes quotes a paper by M. Lucien De la Rive ('Soc. de Ph. et d'Hist. Nat. de Genève,' 1864) in which the following result is obtained for ice,

$$
\text { Ice, - . . . } 00230 .
$$

M. De La Rive's experiments are described in ' Annales de Chimie,' sér. 4, tom. i., pp. 504-6.
133. A Committee, consisting of Professors Herschel and Lebour, and Mr. J. F. Dunn, appointed by the British Association to determine the thermal conductivities of certain rocks, have obtained results, of which the following (communicated to me in May, 1877, by Professor Herschel) with some additions, within brackets, of later determinations, are deemed the most reliable :-

> Substance.

Iron pyrites, more than
Rock salt, rough crystal, - - oII3
Fluorspar, rough crystal, - - 00963 •OI 56
Quartz, opaque crystal [and
quartzites], - - - - ${ }^{\circ} 0080$ to ${ }^{\circ} 0092$. 0175 to ${ }^{\circ} 0190$
[Siliceous sandstones (slightly wet), ${ }^{\circ} 00641$ to ${ }^{\circ} 00854$] ${ }^{\circ} \mathrm{OI} 30$ to ${ }^{\circ} 0230$
Galena, rough crystal, [inter-
spersed with quartz,] - - 00705 .0171
Sandstone and hard grit, dry, - 00545 to $00565{ }^{\circ} \mathrm{OI} 20$.
Sandstone and hard grit, thor-
oughly wet, - - . . . 00590 to $00610{ }^{\circ} 0100$
[Micaceous flagstone, along the
cleavage, - - - - 00632 .0116
[Micaceous flagstone, across cleav-
age, - . - . .00441] .0087
Slate, along cleavage, - - 00550 to ${ }^{\circ} 00650{ }^{\circ} 0102$
Do., across cleavage, - - 00315 to ${ }^{\circ} 00360{ }^{\circ} 0057$
Granite [various specimens, about ${ }^{\circ} 00510$ to ${ }^{\circ} 00550{ }^{\circ} 0100$ to 0120
Marbles, limestone, calcite, and
compact dolomite, - . . 00470 to $00560 \cdot 0085$ to 0005

Substance,	Conductivity in C.G.S. Units.	$\left[\frac{k}{c}\right.$
Red serpentine (Cornwall),	- 0044 I	. 0065
[Caen stone (building limestone),	, -00433]	$\cdot 0089$
Whinstore, trap rock [and mica schist], -	$\cdot \mathrm{CO2} 8 \mathrm{o}$ to ${ }^{\circ} 00480$	'0055 to '0095
Clay slate (Devonshire),	- 00272	$\cdot 0053$
[Tough clay (sun-dried),	- 00223	-0048
Do., soft (with one-fourth of its weight of water,	- .00310]	-0035
Chalk, - -	- 000200 to ${ }^{\circ} 00330$	$\cdot 0046$ to 0059
[Calcareous sandstone (firestone),	, 0021 I	'0049
Plate-glass [German and] English	, ['00198 to] 00234	. 00395 to ?
[German glass toughened, -	- $\cdot \infty 185]$	-00395
Heavy spar, opaque rough crystal,	, 00177	...
Fire-brick, -	- 00174	-0053
Fine red brick, -	- 00147	-0044
Fine plaster of Paris, dry plate, -	- 00120	$\cdot 0060 \text {, about }$
Do., thoroughly wet,	, 00160	$0025\}^{\text {about }}$
[White sand, dry, - -	- 00093	$\cdot 0032$
Do., saturated with		
water, about - - -	- 00700$]$	- 0120 about
House coal and cannel coal,	. 00057 to $\cdot 0113$	${ }^{\circ} \mathrm{OO12} 2$ to ${ }^{\circ} \mathrm{O} 27$]
Pumice stone, - - -	- 00055	...

134. Péclet in "Annales de Chimie,' sér. 4, tom. ii., p. II4 [184I], employs as the unit of conductivity the transmission, in one second, through a plate a metre square and a millimetre thick, of as much heat as will raise a cubic decimetre (strictly a kilogramme) of water one degree. Formula (2) shows that the value of this conductivity, in the C.G.S. system, is

$$
\frac{1000}{1} \frac{\frac{1}{10}}{10000} \text {; that is, } \frac{1}{100} \text {. }
$$

His results must accordingly be divided by 100 ; and they then become :-

Gold,	Conductivity. $\cdot 2128$	Marble,	Conductivity. . 0048
Platinum, -	-2095	Baked earth,	$\cdot{ }^{-023}$
Silver,	-2071		
Copper,	-1911		
Iron,	-0795		
Zinc,	0774		

The value given for lead was from direct experiment. The values given for the other metals were not from direct experiment, but were inferred from the value for lead taken in conjunction with Despretz's results for the relative conductivity of metals.
135. The same author published in 1853 a greatly extended series of observations, in a work entitled ' Nouveaux documents relatifs aux chauffage et à la ventilation.' In this series, the conductivity which is adopted as unity is the transmission, in one hour, through a plate a metre square and a metre thick, of as much heat as will raise a kilogramme of water one degree. This conductivity, in C.G.S. units, is

$$
\frac{1000}{1} \cdot \frac{100}{10000} \cdot \frac{1}{3600} \text {; that is, } \frac{1}{360} .
$$

The results must therefore be divided by 360 ; and they then become as follows :-

Copper,		Density.	Conductivity.
Iron,	- -	...	-081
Zinc,	- -	- ...	078
Lead,	- -		-039
Carbon	gas-retorts,	1.61	-138

Marble, fine-grained grey, ,, sugar-white, coarse-grained,	Conductivity
	0097
	-0077
Limestone, fine-grained, - 233	-0058
2.27	-0047
$2 \cdot 17$	-0035
Lias building-stone, coarse-grained	-0037
2.22	. 0335
Plaster of Paris, ordinary, made up,	-00092
very fine, ", $\quad 1 \times 25$	00144
$\begin{aligned} & \text { for casts, } \left.\begin{array}{l} \text { very fine, } \\ \text { made up, } \end{array}\right\} \mathbf{I} \cdot 25 \end{aligned}$	-00122
Alum paste (marble cement), ,, - 173	00175
Terra-cotta, - - - 1.98	-0192
- 1.85	-00142
Fir, across fibres, . - . 48	0026
along fibres, - - - 48	00047
Walnut, across fibres,	-00029
along fibres	-00048
Oak, across fibres	-00059
Cork, - - - - 22	0029
Caoutchouc,	00041
Gutta percha,	-00048
Starch paste, - - - I\%or 7	-00118
Glass, - - - - 244	.0021
$2 \cdot 55$	0024
Sand, quartz, - - - 147	00075
Brick, pounded, coarse-grained, - Io	00039
, passed through $\}$ I.76	-00046
$\left.\begin{array}{l} \text { Fine brickdust, obtained by decan- } \\ \text { tation, } \end{array}\right\} \text { I } 55$.00039
Chalk, powdered, slightly damp, - 92	00030
, washed and dried,	00024
	-00029
Potato-starch, - - - 71	7
Wood-ashes, - - - - 45	00
Mahogany sawdust, - - - 31	'00

Density. Conductivity.
Wood charcoal, ordinary, powdered, 49 •00022
$\left.\begin{array}{c}\text { Bakers' breeze, in powder, passed } \\ \text { through silk sieve, - }\end{array}\right\} \cdot 25 \quad$ •00019
$\left.\begin{array}{c}\text { Ordinary wood charcoal, in powder, } \\ \text { passed through silk sieve, },\end{array}\right\} \quad 41 \quad \cdot$ coo225
Coke, powdered, - - - 77 •00044

Iron filings, - - - 2.05 .00044
Binoxide of manganese, - 1.46 •00045

Woolly Substances.

Cotton Wool of all densities, -				-OOOIII
Cotton swansdown (molleton de coton), of all densities,			\cdots	'OOOI I I
Calico, new, of all densities, -		-		-000139
Wool, carded, of all densities,		-		-000122
Woollen swansdown (molleton de laine), of all densities,				$\cdot 000067$
Eider-down,	- -	-	\ldots	$\cdot 000108$
Hempen cloth, new	- -	-		$\cdot 000144$
," old	-	-		-000119
Writing-paper, white	-	-		-000119
Grey paper, unsized	- -	-		$\cdot 000094$

Emission and Surface Conduction.

136. Mr. D. M‘Farlane has published (' Proc. Roy. Soc.' 1872, p. 93) the results of experiments on the loss of heat from blackened and polished copper in air at atmospheric pressure. They need no reduction, the units employed being the centimetre, gramme, and second. The general result is expressed by the formulæ

$$
x=.000238+3.06 \times 10^{-6} t-2.6 \times 10^{-8} t^{2}
$$

for a blackened surface, and

$$
x=.000168+1.98 \times 10^{-6} t-1.7 \times 10^{-8} t^{2}
$$

for polished copper, x denoting the quantity of heat lost
per second per square centim. of surface of the copper, per degree of difference between its temperature and that of the walls of the enclosure. These latter were blackened internally, and were kept at a nearly constant temperature of $14^{\circ} \mathrm{C}$. The air within the enclosure was kept moist by a saucer of water. The greatest difference of temperature employed in the experiments (in other words, the highest value of t) was 50° or $60^{\circ} \mathrm{C}$.

The following Table contains the values of x calculated from the above formulæ, for every fifth degree, within the limits of the experiments.

Difference of Temperature.	Value of \boldsymbol{x}.		Ratio.
	Polished Surface.	Blackened Surface.	
\bigcirc			
5	.000178	. 000252	707
10	-000186	-000266	. 699
15	-000193	-000279	-692
20	-000201	-000289	-695
25	-000207	-000298	-694
30	.000212	-000306	-693
35	-000217	-000313	-693
40	-000220	-000319	-693
45	-000223	-000323	-690
50	-000225	-000326	-690
55	-000226	-000328	-690
60	'000226	-000328	-690

137. Professor Tait has published (' Proc. R. S. E.' 1869-70, p. 207) observations by Mr. J. P. Nichol on the loss of heat from blackened and polished copper, in air, at three different pressures, the enclosure being blackened internally and surrounded by water at a temperature of
approximately 8° C.* Professor Tait's units are the graindegree for heat, the square inch for area, and the hour for time. The rate of loss per unit of area is

heat emitted
 area \times time

The grain-degree is 0648 gramme-degree.
The square inch is 6.4514 square centims.
The hour is 3600 seconds.
Hence Professor Tait's unit rate of emission is

$$
\frac{.064^{8}}{6.4514 \times 3600}=2.79 \times 10^{-6}
$$

of our units. Employing this reducing factor, Professor Tait's Table of Results will stand as follows :-

Pressure $\mathrm{I}{ }^{\circ} \mathrm{OI} 4 \times 10^{6}$ [760 millims. of mercury].
Blackened.

Pressure $1 \cdot 36 \times 10^{5}$ [102 millims. of mercury].

$62 \cdot 5$	-	-	-	01298	$67 \cdot 8$	-	-	-	00492
575	-	-	-	01158	$6 \mathrm{I} \cdot \mathbf{1}$	-	-	-	00433
53.2	-	-	-	01548	55	-	-	-	00383
47.5	-	-	-	00898	$49 \cdot 7$	-	-	-	00340
43.	-	-	-00791	44.9	-	-	-	00302	
28.5	-	-	-	00490	40.8	-	-	-	00268

[^7]Pressure $\mathrm{I}^{1} 33 \times 10^{+}$[10 millims. of mercury].
Blackened.

	Loss per sq. cm.		righ
Temp. Cent.	Loss per sq. cm. per second.	Temp. Cent.	poss
$6{ }^{\circ} \cdot 5$	- 01182	${ }^{\circ} 5$	- 00388
57.5	- 01074	60	- $\cdot 00355$
54.2	- 01003	50	- 00286
41.7	- 00726	40	- .00219
37.5	- 00639	30	- 00157
$34!$ -	- 000569	23.5	- ${ }^{\circ} \mathrm{OOI} 24$
24.2	- 0039 I		

Mechanical Equivalent of Heat.

138. The value originally deduced by Joule from his experiments on the stirring of water was 772 foot-pounds of work (at Manchester) for as much heat as raises a pound of water through I° Fahr. This is 1389.6 footpounds for a pound of water raised $r^{\circ} \mathrm{C}$., or 1389.6 footgrammes for a gramme oî water raised $I^{\circ} \mathrm{C}$. As a foot is 30.48 centims., and the value of g at Manchester is $98 \mathrm{I} \cdot 3$, this is $1389.6 \times 30.48 \times 98 \mathrm{r} \cdot 3$ ergs per grammedegree; that is, 4.156×10^{7} ergs per gramme-degree.

A later determination by Joule (' Brit. Assoc. Report,' 1867, pt. i., p. 522, or 'Reprint of Reports on Electrical Standards,' p. 186) is 25187 foot-grain-second units of work per grain-degree Fahr. This is 45337 of the same units per grain-degree Centigrade, or 45337 foot-grammesecond units of work per gramme-degree Centigrade; that is to say,

$$
45337 \times\left(30^{\circ} 48\right)^{2}=4.212 \times 10^{7}
$$

ergs per gramme-degree Centigrade.
At the meeting of the Royal Society, January, 1878 ('Proceedings,' vol. xxvii., p. 38), an account was given by Joule of experiments recently made by him with a view
to increase the accuracy of the results given in his former paper. (' Phil. Trans., 1850.') The result he has now arrived at from the thermal effects of the friction of water, is, that taking the unit of heat as that which can raise a pound of water, weighed in vacuo, from 60° to 61° of the mercurial Fahrenheit thermometer ; its mechanical equivalent, reduced to the sea-level at the latitude of Greenwich, is 772.55 foot-pounds.

To reduce this to water at $0^{\circ} \mathrm{C}$. we have to multiply by $1 \cdot 00089$,* giving $773^{.24} \mathrm{ft}$. lbs., and to reduce to ergs per gramme-degree Centigrade we have to multiply by

$$
98 I^{\cdot} 17 \times 30^{\circ} 48 \times \frac{9}{5}
$$

The product is 4.1624×10^{7}.
139. Some of the best determinations by various experimenters are given (in gravitation measure) in the following list, extracted from Watt's 'Dictionary of Chemistry,' Supplement 1872 , p. 687. The value 4293 in this list corresponds to 4.214×10^{7} ergs :-

We shall adopt 4.2×10^{7} ergs as the equivalent of

[^8]I gramme-degree ; that is, employing J as usual to denote Joule's equivalent, we have

$$
\mathrm{J}=4.2 \times 10^{7}=42 \text { millions }
$$

140. Heat and Energy of Combination with Oxygen.

${ }^{\prime}$ gramme of	Compound formed.	$\begin{aligned} & \text { Gramme- } \\ & \text { degrees of heat } \\ & \text { produced. } \end{aligned}$	Equivalent Energy, in ergs.
Hydrogen, -	$\mathrm{H}^{2} \mathrm{O}$	34000 A F	$1{ }^{1} 43 \times 1{ }^{12}$
Carbon,	CO^{2}	8000 A F	3.36×10^{11}
Sulphur,	SO^{2}	2300 A F	$9.66 \times 1{ }^{10}$
Phosphorus,	$\mathrm{P}^{2} \mathrm{O}^{5}$	5747 A	$2.41 \times 1{ }^{11}$
Zinc, -	ZnO	1301 A	$5.46 \times 1{ }^{10}$
Iron, -	$\mathrm{Fe}^{3} \mathrm{O}^{4}$	1576 A	6.62×10^{10}
Tin, -	SnO^{2}	1233 A	5'18 ,
Copper, -	CuO^{2}	602 A	2.53 , ${ }^{11}$
Carbonic oxide, -	CO^{2}	2420 A	102×10^{11}
Marsh-gas, -	CO^{2} and $\mathrm{H}^{2} \mathrm{O}$	13100 A F	5.50
Olefiant gas,	"	11900 A F	$5 \cdot 0$
Alcohol, -	"	6900 A F	2.90 ,"

Combustion in Chlorine.

Hydrogen, -	HCl	23000 F T	$9.66 \times 1{ }^{11}$
Potassium, -	KCl	2655 A	$1 \cdot 12$
Zinc, -	ZnCl^{2}	1529 A	6.42×10^{10}
Iron, -	$\mathrm{Fe}^{2} \mathrm{Cl}^{6}$	1745 A	$7 \cdot 33$
Tin, -	SnCl^{4}	1079 A	4.53
Copper,	CuCl^{2}	961 A	404

The numbers in the last column are the products of the numbers in the preceding column by 42 millions.

The authorities for these determinations are indicated by the initial letters A (Andrews), F (Favre and Silbermann), T (Thomsen). Where two initial letters are given, the number adopted is intermediate between those obtained by the two experimenters.
141. Difference between the two specific heats of a gas.

Let s_{1} denote the specific heat of a given gas at constant pressure,
s_{2} the specific heat at.constant volume,
α the coefficient of expansion per degree,
v the volume of I gramme of the gas in cubic centim. at pressure p dynes per square centim.
When a gramme of the gas is raised from 0° to I° at the constant pressure p, the heat taken in is s_{1}, the increase of volume is $a v$, and the work done against external resistance is avp (ergs). This work is the equivalent of the difference between s_{1} and s_{2}; that is, we have

$$
s_{1}-s_{2}=\frac{a v p}{\mathrm{~J}} \text {, where } \mathrm{J}=4.2 \times 10^{\top} \text {. }
$$

For dry air at 0° the value of $v p$ is 7.838×10^{8}, and a is $\cdot 003665$. Hence we find $s_{1}-s_{2}=\cdot 0684$. The value of s_{1}, according to Regnault, is $\mathbf{2}_{\mathbf{2}} \mathbf{3 7 5}$. Hence the value of s_{2} is $\cdot 691$.

The value of $\frac{s_{1}-s_{2}}{v}$, or $\frac{a p}{\mathrm{~J}}$, for dry air at \circ° and a megadyne per square centim. is

$$
\frac{s_{1}-s_{2}}{v}=\frac{.0684}{783^{.8}}=8.726 \times 10^{-5} ;
$$

and this is also the value of $\frac{s_{1}-s_{2}}{v}$ for any other gas (at the same temperature and pressure) which has the same coefficient of expansion.
142. Change of freezing point due to change of pressure.

Let the volume of the substance in the liquid state be to its volume in the solid state as I to $\mathrm{I}+e$.

When unit volume in the liquid state solidifies under pressure $\mathrm{P}+p$, the work done by the substance is the product of $\mathrm{P}+p$ by the increase of volume e, and is therefore $\mathrm{Pe}+p$.

If it afterwards liquefies under pressure P, the work done against the resistance of the substance is Pe ; and if the pressure be now increased to $\mathrm{P}+p$, the substance will be in the same state as at first.

Let T be the freezing temperature at pressure P , $\mathrm{T}+t$ the freezing temperature at pressure $\mathrm{P}+p$, l the latent heat of liquefaction, d the density of the liquid.

Then d is the mass of the substance, and $l d$ is the heat taken in at the temperature of melting T. Hence, by thermodynamic principles, the heat converted into mechanical effect in the cycle of operations is

$$
\frac{-t}{\mathrm{~T}+273} \cdot l d .
$$

But the mechanical effect is p e. Hence we have

$$
\begin{align*}
\frac{-t}{\mathrm{~T}+273} l d & =\frac{p e}{\overline{\mathrm{~J}}} \\
-\frac{t}{p} & =\frac{e(\mathrm{~T}+273)}{\mathrm{J} l d}: \tag{3}
\end{align*}
$$

$-\frac{t}{p}$ is the lowering of the freezing-point for an additional pressure of a dyne per square centim.; and $-\frac{t}{p} \times 10^{6}$. will be the lowering of the freezing-point for each additional atmosphere of 10^{6} dynes per square centim.

For water we have

$$
\begin{array}{r}
e=\cdot 087, l=79^{.25}, \mathrm{~T}=0, d=1 \\
-\frac{t}{p} \times 10^{6}=\frac{.087 \times 273}{.4^{2} \times 79^{.25}}=\cdot 00714
\end{array}
$$

Formula (3) shows that $\frac{t}{p}$ is opposite in sign to e. Hence the freezing point will be raised by pressure if the substance contracts in solidifying.
143. Change of temperature produced by adiabatic compression of a fluid; that is, by compression under such circumstances that no heat enters or leaves the fluid.

Let a cubic centim. of fluid at the initial temperature $t^{\circ} \mathrm{C}$. and pressure p dynes per square centim. be subjected to the following cycle of four operations :-

1. Increase of pressure, adiabatically, from p to $p+\pi$, π being small.
2. Addition of heat, at constant pressure $p+\pi$, till the temperature rises by the amount $d t$.
3. Diminution of pressure, adiabatically, from $p+\pi$ to p.
4. Subtraction of heat, at constant pressure p, till the temperature falls to t.

Let τ denote the increase of temperature and v the diminution of volume in (1) ; and let e denote the expansion per degree at constant pressure.

Then, neglecting small quantities of the second order, the changes of pressure, temperature, and volume are as shown in the following tabular statement :-

Operation.	Pressure.	Temperature.	Change of volume.
$\mathbf{1}$	p to $p+\pi$	t to $t+\tau$ 2	$p+\pi$
3	$p+\pi$ to p	$t+\tau$ to $t+\tau+d t$ $t+\tau+d t$ to $t+d t$ $t+d t$ to t	v 4
p	v	$e d t$	

The work done by the fluid in the operations (1) and (3), taken together, is zero.

The work done by the fluid in the operations (2) and (4), taken together, is $\pi e d t$.

The heat taken in by the fluid in (2) is, as far as small quantities of the first order are concerned, equal to that given out in (4), and is Cdt, C denoting the thermal capacity of a cubic centim. of the substance at constant pressure.

If T denote the absolute temperature, or $273+t$, the heat converted into mechanical effects is $\frac{\tau}{\mathrm{T}} \mathrm{C} d t$; and this must be equal to $\frac{\pi e d t}{\mathrm{~J}}$. We have, therefore, $\frac{\tau}{\mathrm{T}} \mathrm{C}=\frac{\pi \ell}{\mathrm{J}}$, or $\tau=\frac{\mathrm{T} \pi e}{\mathrm{JC}}$, where τ denotes the increase of temperature produced by the increase π of pressure.
144. Resilience as affected by heat of compression.

The expansion due to the increase of temperature τ, above calculated, is τe; that is, $\frac{\mathrm{T} \pi e^{2}}{\mathrm{JC}}$; and the ratio of this expansion to the contraction $\frac{\pi}{\mathrm{E}}$, which would be produced at constant temperature (E denoting the resilience
of volume at constant temperature), is $\frac{\mathrm{ET} e^{2}}{\mathrm{JC}}:$ r. Putting m for $\frac{\mathrm{ET} e^{2}}{\mathrm{JC}}$, the resilience for adiabatic compression will be $\frac{\mathrm{E}}{\mathrm{I}-m}$; or, if m is small, $\mathrm{E}(\mathrm{r}+m)$; and this value is to be used instead of E in calculating the change of volume due to sudden compression.

The same formula expresses the value of Young's modulus of resilience for sudden extension or compression of a solid in one direction, E now denoting the value of the modulus at constant temperature.

Examples.

For compression of water between 10° and $1 I^{\circ}$ we have

$$
\mathrm{E}=2 \cdot \mathrm{I} \times 10^{10}, \mathrm{~T}=283, e=\cdot 000092, \mathrm{C}=\mathrm{I} ;
$$

hence

$$
\frac{\mathrm{ET} e^{2}}{\mathrm{JC}}=\cdot 0012
$$

For longitudinal extension of iron at 10° we have
$\mathrm{E}=\mathrm{I} \cdot 96 \times 1 \mathrm{o}^{12}, \mathrm{~T}=283, e=\cdot 0000122, \mathrm{C}=\cdot 109 \times 7.7$;
hence

$$
\frac{E T e^{2}}{J C}=\cdot 00234
$$

Thus the heat of compression increases the volumeresilience of water at this temperature by about $\frac{1}{8}$ per cent., and the longitudinal resilience of iron by about $\frac{1}{4}$ per cent.

For dry air at \circ° and a megadyne per square centim., we have

$$
\begin{gathered}
\mathrm{E}=10^{6}, \mathrm{~T}=273, e-\frac{\mathrm{t}}{273}, \mathrm{C}=\cdot 2375 \times .001276, \\
m=\frac{\mathrm{ET} e^{2}}{\mathrm{JC}}=\cdot 288, \frac{\mathrm{I}}{1-m}=1.404 .
\end{gathered}
$$

145. Expansions of Volumes per degree Cent. (abridged from Watts's ' Dictionary of Chemistry,' Article Heat, pp. $67,68,71$).

These results are partly from direct observation, and partly calculated from observed linear expansion.

Expansion of Mercury, according to Regnault (Watts's
'Dictionary,' p. 56).

The temperatures are by air-thermometer.

Expansion of Alcohol and Ether, according to Kopp (Watts's 'Dictionary,' p. 62).

			Volume.			
Temp.			Alcohol.			Ether.
$\dot{0}$	-	-	I'0000	-	-	10000
10	-	-	1 'oros	-	-	$1{ }^{\circ} \mathrm{OI} 52$
20	-	-	1.0213	-		$1{ }^{\circ} \mathrm{O}{ }^{12}$
30	-	-	1.0324	-	-	$1{ }^{\circ} \mathrm{O} 483$
40	-	-	I 0440	-	-	I ${ }^{\circ} 0667$

CHAPTER X.

MAGNETISM.

146. The unit magnetic pole, or the pole of unit strength, is that which repels an equal pole at unit distance with unit force. In the C.G.S. system it is the pole which repels an equal pole, at the distance of I centinetre, with a force of I dyne.

If P denote the strength of a pole, it will repel an equal pole at the distance L with the force $\frac{P^{2}}{L^{2}}$. Hence we have the dimensional equations

$$
\mathrm{P}^{2} \mathrm{~L}^{-2}=\text { force }=\mathrm{MLT}^{-2}, \mathrm{P}^{2}=\mathrm{ML}^{3} \mathrm{~T}^{-2}, \mathrm{P}=\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-1} ;
$$ that is, the dimensions of a pole (or the dimensions of strength of pole) are $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-1}$.

147. The intensity of a magnetic feld is the force which a unit pole will experience when placed in it. Denoting this intensity by I , the force on a pole P will be IP. Hence
$\mathrm{IP}=$ force $=\mathrm{MLT}^{-2}, \mathrm{I}=\mathrm{MLT}^{-2} \cdot \mathrm{M}^{-\frac{1}{2}} \mathrm{~L}^{-\frac{3}{2}} \mathrm{~T}=\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1}$; that is, the dimensions of feld-intensity are $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1}$.
148. The moment of a magnet is the product of the
strength of either of its poles by the distance between them. Its dimensions are therefore LP; that is, $M^{\frac{1}{2}} L^{\frac{5}{2}} \mathrm{~T}^{-1}=4$

Or, more rigorously, the moment of a magnet is a quantity which, when multiplied by the intensity of a uniform field, gives the couple which the magnet experiences when held with its axis perpendicular to the lines of force in this field. It is therefore the quotient of a couple $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ by a field-intensity $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1}$; that is, it is $M^{\frac{1}{2}} L^{\frac{5}{2}} T^{-1}$ as before.
149. If different portions be cut from a uniformly magnetized substance, their moments will be simply as their volumes. Hence the intensity of magnetization of a uniformly magnetized body is defined as the quotient of its moment by its volume. But we have

$$
\frac{\text { moment }}{\text { volume }}=M^{\frac{1}{2}} L^{\frac{5}{2}} T^{-1} \cdot L^{-3}=M^{\frac{1}{2}} L^{-\frac{1}{2}} \mathrm{~T}^{-1} .
$$

Hence intensity of magnetization has the same dimensions as intensity of field. When a magnetic substance (whether paramagnetic or diamagnetic) is placed in a magnetic field, it is magretized by induction; and each substance has its own specific coefficient of magnetic induction (constant, or nearly so, when the field is not excessively intense), which expresses the ratio of the intensity of the induced magnetization to the intensity of the field. For paramagnetic substances (such as iron) this coefficient is positive ; for diamagnetic substances (such as bismuth) it is negative ; that is to say, the induced polarity is reversed end for end as compared with that of a paramagnetic substance placed in the same field.
150. The work required to move a pole P from one point to another is the product of P by the difference of the magnetic potentials of the two points. Hence the dimensions of magnetic potential are

$$
\frac{\text { work }}{P}=M L^{y} \mathrm{~T}^{-2} \cdot \mathrm{M}^{-\frac{1}{2}} L^{-\frac{3}{2}} T=\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} .
$$

Examples.

r. To find the multiplier for reducing magnetic intensities from the foot-grain-second system to the C.G.S. system.

The dimensions of the unit of intensity are $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1}$. In the present case we have $\mathrm{M}=\cdot 0648, \mathrm{~L}=30 \cdot 48, \mathrm{~T}=\mathrm{I}$, since a grain is $\cdot 0648$ gramme, and a foot is 30.48 centim. Hence $M^{\frac{1}{3}} L^{-\frac{1}{2}} \mathrm{~T}^{-1}=\sqrt{\frac{.0648}{30.48}}=\cdot 046 \mathrm{II}$; that is, the foot-grain-second unit of intensity is denoted by the number -046II in the C.G.S. system. This number is accordingly the required multiplier.
2. To find the multiplier for reducing intensities from the millimetre-milligramme-second system to the C.G.S. system, we have
$\mathrm{M}=\frac{\mathrm{I}}{1000}, \mathrm{~L}=\frac{\mathrm{I}}{\mathrm{IO}}, \mathrm{T}=\mathrm{I}, \mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1}=\sqrt{\frac{10}{1000}}=\frac{\mathrm{I}}{10}$.
Hence $\frac{1}{10}$ is the required multiplier.
3. Gauss states (Taylor's 'Scientific Memoirs,' vol. ii., p. 225) that the magnetic moment of a steel bar-magnet, of one pound weight, was found by him to be 100877000 millimetre-milligramme-second units. Find its moment in C.G.S. units.

Here the value of the unit moment employed is, in terms of C.G.S. units, $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{5}{2}} \mathrm{~T}^{-1}$, where M is IO^{-3}, L is 10^{-1}, and T is I ; that is, its value is $10^{-\frac{8}{2}} \cdot 10^{-\frac{5}{2}}=10^{-4}$. Hence the moment of the bar is $10087^{\circ} 7$ C.G.S. units.
4. Find the mean intensity of magnetization of the bar, assuming its specific gravity to be 7.85 , and assuming that the pound mentioned in the question is the pound avoirdupois of 453.6 grammes.

Its mass in grammes, divided by its density, will be its volume in cubic centimetres ; hence we have

$$
\frac{453 \cdot 6}{7 \cdot 85}=57 \cdot 78=\text { volume of bar. }
$$

Intensity of magnetization $=\frac{\text { moment }}{\text { volume }}=\frac{10088}{57.78}=174.6$.
5. Kohlrausch states ('Physical Measurements,' p. 195, English edition) that the maximum of permanent magnetism which very thin rods can retain is about 1000 millimetre-milligramme-second units of moment for each milligramme of steel. Find the corresponding moment per gramme in C.G.S. units, and the corresponding intensity of magnetization.

For the moment of a milligramme we have 1000 $\times 10^{-4}=10^{-1}$.
For the volume of a milligramme we have $(7.85)^{-1}$ $\times 10^{-3}$, taking 7.85 as the density of steel.
Hence the moment per gramme is $10^{-1} \times 10^{3}=100$, and the intensity of magnetization is $100 \times 7.85=785$.
6. The maximum intensity of magnetization for specimens of iron, steel, nickel, and cobalt has been determined by Professor Rowland ('Phil. Mag.,' 1873, vol. xlvi., p. 157, and November, 1874)-that is to say, the
limit to which their intensities of magnetization would approach, if they were employed as the cores of electromagnets, and the strength of current and number of convolutions of the coil were indefinitely increased. Professor Rowland's fundamental units are the metre, gramme, and second ; hence his unit of intensity is $\frac{1}{10}$ of the C.G.S. unit. His values, reduced to C.G.S. units, are

At $12^{\circ} \mathrm{C}$.	At $220^{\circ} \mathrm{C}$.
1390	1360
494	380
800 (?)	

7. Gauss states (loc. cit.) that the magnetic moment of the earth, in millimetre-milligramme-second measure, is

$$
3 \cdot 3092 \mathrm{R}^{3},
$$

R denoting the earth's radius in millimetres. Reduce this value to C.G.S.

Since R^{3} is of the dimensions of volume, the other factor, 3.3092 , must be of the dimensions of intensity. Hence, employing the reducing factor 10^{-1} above found, we have 33092 as the corresponding factor for C.G.S. measure ; and the moment of the earth will be

$$
33092 \mathrm{R}^{3}
$$

R denoting the earth's radius in centimetres-that is 6.37×10^{8}.

We have

$$
33092 \times\left(6.37 \times 10^{8}\right)^{3}=8.55 \times 10^{25}
$$

for the eartl's magnetic moment in C.G.S. units.
8. From the above result, deduce the intensity of magnetization of the earth regarded as a uniformly magnetized body.

We have

$$
\text { intensity }=\frac{\text { moment }}{\text { volume }}=\frac{8.55 \times \frac{10^{05}}{1.083} \times 10^{107}}{=.0790 .}
$$

This is about $\frac{\mathrm{I}}{2200}$ of the intensity of magnetization of
Gauss's pound magnet; so that 2.2 cubic decimetres of earth would be equivalent to 1 cubic centim. of strongly magnetized steel, if the observed effects of terrestrial magnetism were due to uniform magnetization of the earth's substance.
9. Gauss, in his papers on terrestrial magnetism, employs two different units of intensity, and makes mention of a third as "the unit in common use." The relation between them is pointed out in the passage above referred to. The total intensity at Göttingen, for the rgth of July, 1834 , was 4.7414 when expressed in terms of one of these units-the millimetre-milligramme-second unit; was 1357 when expressed in terms of the other unit employed by Gauss, and r 357 in terms of the "unit in common use." In C.G.S. measure it would be 47414 .
151. A first approximation to the distribution of magnetic force over the earth's surface is obtained by assuming the earth to be uniformly magnetized, or, what is mathematically equivalent to this, by assuming the observed effects to be due to a small magnet at the earth's centre. The moment of the earth on the former supposition, or the moment of the small magnet on the latter, must be

$$
33092 \mathrm{R}^{3},
$$

K denoting the earth's radius in centims. The magnetic poles, on these suppositions, must be placed at
and at $77^{\circ} 50^{\prime}$ south lat., $116^{\circ} 29^{\prime}$ east long.

The intensity of the horizontal component of terrestrial magnetism, at a place distant A° from either of these poles, will be

$$
33092 \sin \mathrm{~A}^{\circ}
$$

the intensity of the vertical component will be

$$
\cdot 66184 \cos A^{\circ} ;
$$

and the tangent of the dip will be
$2 \operatorname{cotan} \mathrm{~A}^{\circ}$.
The magnetic potential, on the same suppositions, will be

$$
33092 \mathrm{R} \cos \mathrm{~A}^{\circ} ;
$$

see Maxwell, ' Electricity and Magnetism,' vol. ii., p. 8. Gauss's approximate expression for the potential and intensity at an arbitrary point on the earth's surface consists of four successive approximations, of which this is the first.
152. The mean value of the intensity of horizontal magnetic force at Greenwich was

$$
\begin{aligned}
& { }^{1} 7 \mathrm{I} 6 \text { in the year } 1848, \\
& \cdot \mathrm{I} 776 \quad, \quad 1867 ;
\end{aligned}
$$

and its rate of increase in successive years is sensibly uniform.

The place of greatest horizontal intensity is in lat. 0°, long. $259^{\circ} \mathrm{E}$., where the value is 3733 .

In 1843 the dip at Greenwich was about $69^{\circ} \mathrm{I}^{\prime}$; it has diminished, with a rate continually accelerating, till in 1868 it was $67^{\circ} 56^{\prime}$. The total intensity, as computed from the dip and horizontal intensity, was

$$
\begin{aligned}
& 479 \mathrm{x} \text { in the year } 1848, \\
& 4740 \quad, \quad 1866 .
\end{aligned}
$$

The place of greatest total intensity is in South Victoria, about $70^{\circ} \mathrm{S}$., $160^{\circ} \mathrm{E}$., where its value is 7898 .

The place of least total intensity is near St. Helena, in lat. 16° S., long. 355° E., where its value is $\cdot \mathbf{2 8 2 8}$.

We have extracted these data from 'Airy on Magnetism,' pp. 74, 93, 94, 97, and 98 .

152*. The following mean values of the magnetic elements at Greenwich have been kindly furnished by the Astronomer Royal :-

Each of these formulae gives the mean of the entire year t.

Magneto-Optic Rotation.

153. According to J. E. H. Gordon (' Phil. Trans.,' 1877), the rotation of the plane of polarization between points, one centimetre apart, whose magnetic potentials (in C.G.S. measure) differ by unity, is (in circular measure) $\quad 3.04763 \times 10^{-5}$
in bisulphide of carbon, for the principal green thallium ray, and is 4.496×10^{-6} in distilled water, for white light.
Mr. Gordon infers from Becquerel's experiments ('Comp. Rend.' March 31, 1879) that it is about

$$
6 \times 10^{-9}
$$

for coal gas.

CHAPTER XI.

ELECTRICITY.

Electrostatics.

154. If q denote the numerical value of a quantity of electricity in electrostatic measure, the mutual force between two equal quantities q at the mutual distance l will be $\frac{q^{2}}{l^{2}}$. In the C.G.S. system the electrostatic unit of electricity is accordingly that quantity which would repel an equal quantity at the distance of I centim. with a force of I dyne.

Since the dimensions of force are $\frac{m l}{t^{2}}$, we have, as regards dimensions,

$$
\frac{q^{2}}{l^{2}}=\frac{m l}{t^{2}}, \text { whence } q^{2}=\frac{m l^{3}}{t^{3}}, q=m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1}
$$

155. The work done in raising a quantity of electricity q through a difference of potential v is $q v$.

Hence we have

$$
\tau=\frac{\text { work }}{q}=m l^{2} t^{-2} \cdot m^{-\frac{1}{2}} l^{-\frac{3}{2}} t=m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} . \quad=-
$$

In the C.G.S. system the unit difference of potential is that difference through which a unit of electricity must be raised that the work done may be 1 erg.

Or, we may define potential as the quotient of quantity of electricity by distance. This gives

$$
v=m^{\frac{1}{1} l^{\frac{3}{2}} t^{-1}} \cdot l^{-1}=m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1}, \text { as before } .
$$

156. In the C.G.S. system the unit of potential is the potential due to unit quantity at the distance of I centim.

The capacity of a conductor is the quotient of the quantity of electricity with which it is charged by the potential which this charge produces in it. Hence we have

$$
\text { capacity }=\frac{q}{v}=m^{\frac{1}{2} l^{\frac{3}{2}} t^{-1}} \cdot m m^{-\frac{1}{2}} l^{-\frac{1}{2}} t=l \text {. }
$$

The same conclusion might have been deduced from the fact that the capacity of an isolated spherical conductor is equal (in numerical value) to its radius. The C.G.S. unit of capacity is the capacity of an isolated sphere of I centim. radius.
157. The numerical value of a current (or the strength of a current) is the quantity of electricity that passes in unit time.

Hence the dimensions of current are $\frac{q}{t}$; that is, $m^{\frac{1}{2}} l^{\frac{2}{2}} t^{-2}$.
The C.G.S. unit of current is that current which conveys the above defined unit of quantity in I second.
158. The dimensions of resistance can be deduced from Ohm's law, which asserts that the resistance of a wire is the quotient of the difference of potential of its two ends, by the current which passes through it. Hence we have

Or, the resistance of a conductor is equal to the time required for the passage of a unit of electricity through it,
when unit difference of potential is maintained between its ends. Hence
resistance $=\frac{\text { time } \times \text { potential }}{\text { quantity }}=t \cdot m^{\frac{1}{2} l^{\frac{2}{2}} t^{-1}} \cdot m^{-\frac{1}{2} l^{-\frac{3}{2}} t=l^{-1} t .}$
159. As the force upon a quantity q of electricity, in a field of electrical force of intensity i, is $i q$, we have

$$
i=\frac{\text { force }}{q}=m l t^{-2} m^{-\frac{1}{2}} l_{1}^{-\frac{3}{2}} t=m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1}
$$

The quantity here denoted by i is commonly called the " electrical force at a point."

Electromagnetics.

160. A current C (or a current of strength C) flowing along a circular arc, produces at the centre of the circle an intensity of magnetic field equal to C multiplied by length of arc divided by square of radius. Hence C divided by a length is equal to a field-intensity, or

$$
\mathrm{C}=\text { length } \times \text { intensity }=\mathrm{L} \cdot \mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1}=\mathrm{L}^{\frac{1}{2}} \mathrm{M}^{\frac{1}{2}} \mathrm{~T}^{-1} .
$$

161. The quantity of electricity Q conveyed by a current is the product of the current by the time that it lasts. The dimensions of Q are therefore $\mathrm{L}^{\frac{1}{2}} \mathrm{M}^{\frac{1}{2}}$.
162. The work done in urging a quantity Q through a circuit, by an electromotive force E , is EQ ; and the work done in urging a quantity Q through a conductor, by means of a difference of potential \mathbf{E} between its ends, is EQ . Hence the dimensions of electromotive force, and also the dimensions of potential, are $\mathrm{ML}^{2} \mathrm{~T}^{-2} . \mathrm{L}^{-\frac{1}{2}} \mathrm{M}^{-\frac{1}{2}}$, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-2}$.
163. The capacity of a conductor is the quotient of quantity of electricity by potential. Its dimensions are therefore

$$
\mathrm{M}^{\frac{1}{2}} L^{\frac{1}{2}} . \mathrm{M}^{-\frac{1}{2}} L^{-\frac{3}{2}} \mathrm{~T}^{2} \text {; that is, } \mathrm{L}^{-1} \mathrm{~T}^{2} .
$$

164. Resistance is $\frac{\mathrm{E}}{\mathrm{C}}$; its dimensions are therefore

$$
\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-2} \cdot \mathrm{M}^{-\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T} \text {; that is, } \mathrm{LT}^{-1}
$$

165. The following table exhibits the dimensions of each electrical element in the two systems, together with their ratios :-

	Dimensions in electrostatic system.	Dimensions in electromagnetic system.	Dimensions in E.S. Dimensionsin E.M.
Quantity, - -	$\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{3}} \mathrm{~T}^{-1}$	$M^{\frac{1}{2}} L^{\frac{1}{2}}$	LT-1
Current, -	$M^{\frac{1}{2}} L^{\frac{3}{2}} \mathrm{~T}^{-2}$	$M^{\frac{1}{2}} L^{\frac{1}{2}} \mathrm{~T}^{-1}$	LT-1
Capacity, -	L	$\mathrm{L}^{-1} \mathrm{~T}^{2}$	$\mathrm{L}^{2} \mathrm{~T}^{-2}$
$\left.\begin{array}{c}\text { Potential and } \\ \text { electromo- } \\ \text { tive force, }\end{array}\right\}$	$M^{\frac{1}{2}} L^{\frac{1}{2}} \mathrm{~T}^{-1}$	$\lambda^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-2}$	$\mathrm{L}^{-1} \mathrm{~T}$
Resistance -	$\mathrm{L}^{-1} \mathrm{~T}$	LT-1	$\mathrm{L}-2 \mathrm{~T}^{2}$

166. The heat generated in time T by the passage of a current C through a wire of resistance R (when no other work is done by the current in the wire) is $\frac{C^{2} R T}{J}$ gramme degrees, J denoting $4.2 \times 1 \mathrm{C}^{7}$; and this is true whether C and R are expressed in electromagnetic or in electrostatic units.

Ratios of the two sets of Electric Units.
167. Let us consider any general system of units based on
a unit of length equal to L centims.,
a unit of mass equal to M grammes,
a unit of time equal to T seconds.
Then we shall have the electrostatic unit of quantity equal to
$M^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-1}$ C.G.S. electrostatic units of quantity, and the electromagnetic unit of quantity equal to $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{C}$.G.S. electromagnetic units of quantity.
It is possible so to select L and T that the electrostatic unit of quantity shall be equal to the electromagnetic unit. We shall then have (dividing out by $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}}$)

LT $^{-1}$ C.G.S. electrostatic units
$=1$ C.G.S. electromagnetic unit;
or the ratio of the C.G.S. electromagnetic unit to the C.G.S. electrostatic unit is $\frac{\mathrm{L}}{\mathrm{T}}$.

Now $\frac{\mathrm{L}}{\mathrm{T}}$ is clearly the value in centims. per second of that velocity which would be denoted by unity in the new system. This is a definite concrete velocity; and its numerical value will always be equal to the ratio of the electromagnetic to the electrostatic unit of quantity, whatever units of length, mass, and time are employed.
168. It will be observed that the ratio of the two units of quantity is the inverse ratio of their dimensions; and the same can be proved in the same way of the other
four electrical elements. The last column of the above table shows that M does not enter into any of the ratios, and that L and T enter with equal and opposite indices, showing that all the ratios depend only on the velocity L
'
Thus, if the concrete velocity $\underset{\mathrm{T}}{\mathrm{L}}$ be a velocity of v centims. per second, the following relations will subsist between the C.G.S. units :-
r electromagnetic unit of quantity $=v$ electrostatic units.

I	$"$	$\#$	current $=v$	$"$
I	$"$	$"$	capacity $=v^{2}$	$"$

v electromagnetic units of potential $=\mathbf{x}$ electrostatic unit. v^{2}
" \quad resistance $=\mathbf{I}$
"
169. Weber and Kohlrausch, by an experimental comparison of the two units of quantity, determined the value of v to be

$$
3.1074 \times 10^{10} \text { centims. per second. }
$$

Sir W. Thomson, by an experimental comparison of the two units of potential, determined the value of v to be

$$
2.825 \times 10^{10}
$$

Professor Clerk Maxwell, by an experiment in which an electrostatic attraction was balanced by an electrodynamic repulsion, determined the value of v to be

$$
2.88 \times 10^{10} .
$$

Professors Ayrton and Perry, by measuring the capacity of an air-condenser both electromagnetically and statically ('Nature,' Aug. 29, 1878, p. 470), obtained the value 2.98×10^{10}.

All these determinations differ but little from the velocity of light in vacuo, which, according to Foucault's determination, is

$$
2.98 \times 10^{10},
$$

and according to the recent experiments of Cornu (see ' Nature,' February 4, 1875, p. 274) is

$$
3.004 \times 10^{10} .
$$

We shall adopt the round number

$$
3 \times 10^{10}
$$

as the value of v.
170. The dimensions of the electric units are rather simpler when expressed in terms of length, density, and time.

Putting D for density, we have $\mathrm{M}=\mathrm{L}^{3} \mathrm{D}$. Making this substitution for M , in the expressions above obtained (\$ 165), we have the following results:-

It will be noted that the exponents of L and T in these expressions are free from fractions.

Specific Inductive Capacity.

171. The specific inductive capacity of an insulating substance is the ratio of the capacity of a condenser in which this substance is the dielectric to that of a condenser in other respects equal and similar in which air is
the dielectric. It is of zero dimensions, and its value exceeds unity for all solid and liquid insulators.

Messrs. Gibson and Barclay, by experiments performed in Sir W. Thomson's laboratory ('Phil. Trans.,' 871 , p. 573), determined the specific inductive capacity of solid paraffin to be 1977 .

Dr. J. Hopkinson (' Phil. Trans.', 1877, p. 23) gives the following results of his experiments on different kinds of tlint glass :-

Kind of Flint Glass.	Density.	Specific Inductive Capacity.	$\begin{gathered} \text { Quotient } \\ \text { bensity. } \end{gathered}$	Index of Refraction for D line.
Very light,	$2 \cdot 87$	$6 \cdot 57$	2.29	1-541
Light,	3.2	$6 \cdot 85$	$2 \cdot 14$	$1 \cdot 574$
Dense,	$3 \cdot 66$	7.4	2.02	1.622
$\left.\begin{array}{c} \text { Double extra } \\ \text { dense, } . \end{array}\right\}$	4.5	10 I	2.25	1'710

Wüllner ('Sitzungsber. königl. bayer. Akad.,' March 1877) finds the following values of specific inductive capacity :

Paraffin,	-	$\mathbf{1} 96$	Shellac,	-	2.95 to 3.73
Ebonite,	-	2.56	Sulphur,	-	2.88 to 3.2 I
Plate glass,	-	6.10			

Boltzmann ('Carl's Repertorium,' x., 92-165) finds the following values :

Paraffin,	-	2.32	Colophonium,	-
Ebonite,	-	355		
.15	Sulphur,	-	3.84	

Schiller ('Pogg. Ann.,' clii., 535, 1874) finds :
Paraffin, - 185 to 2.47 Caoutchouc, - - 2.12 to 2.34
Ebonite, - 2.21 to 2.76 Do., vulcanized, 2.69 to 2.94
Plate glass, 5.83 to 6.34

Silow ('Pogg. Ann.,' clvi. and clviii.) finds the following values for liquids :

Oil of turpentine,	-	-	-	-
2.155 to 2.221				
Benzene,	-	-	-	-
Petroleum,	-	-	-	-

Boltzmann ('Wien. Akad. Ber.' (2), lxx., 342, 1874) finds for sulphur in directions parallel to the three principal axes, the values

$$
4.773, \quad 3.970, \quad 3.8 \mathrm{II}
$$

J. E. H. Gordon ('Proc. Roy. Soc.,' $1878-79$), by a method in which the electrification is reversed some 12,000 times per second, finds the following values :-

According to Professor Clerk Maxwell's electro-magnetic theory of light, the square root of the specific inductive capacity is equal to the index of refraction.

The following comparison is given in Mr. Gordon's paper :-

	Square root of specific inductive capacity.	Nearest value of index of refraction.	Ray to which this value belongs.
Glass, double extra dense flint,	1 77783	1.7460	Band in extreme violet
Glass, extra dense flint,	1.7474	1.6757	in magne-
,, light flint, -	1 7343	1.5113	sium spark
", hard crown,	1.7629	$1 \cdot 5920$	spectrum.
", plate,	18009	1.543	
Paraffin,	1.4119	$1.422\{$	Rays of infinite wave length.
Sulphur, - -	I.6060	$2 \cdot 115$	
Bisulphide of Carbon,	1.3456	16114	

172. Professors Ayrton and Perry have found the following values of the specific inductive capacities of gases, air being taken as the standard :-

Air, . . - . 10000	Hydrogen,
Vacuum, - - 0.9985	Coal gas,
Carbonic acid, - I 0008	Sulphurous acid,

Ohm, Volt, Eoc.
173. The unit of resistance employed by practical electricians is the Ohm, which is defined by certain standard coils, each of which is to be taken at a stated temperature. The resistance of each of these coils at its proper temperature is intended to be
${ }^{10}{ }^{9}$ C.G.S. electromagnetic units of resistance.
We shall therefore speak of 10^{9} C.G.S. units as the theoretical ohm. The practical ohm was constructed under the direction of a Committee of the British Association, its construction being based upon experiments in which the resistance of a certain coil of wire was determined in electromagnetic measure.
F. Kohlrausch has since conducted experiments (see 'Phil. Mag.,' 1874, vol. xlvii.) from which he infers that the practical ohm (as defined by the standard coils) is

$$
1.0196 \times 10^{9} \text { C.G.S. units. }
$$

Still more recently Lorenz (' Pogg. Ann.,' 1873, vol. cxlix., p. 25I) has made a determination of the absolute value of Siemens' unit (the resistance at $\circ^{\circ} \mathrm{C}$. of a column of pure mercury, a metre long and a square millimetre in section), and has found it to be 9337×10^{9} C.G.S. units. Assuming with Kohlrausch that the practical ohm is equal to r.0493 Siemens, it would follow from Lorenz's determination that the practical ohm is

$$
9797 \times 10^{9} \text { C.G.S. units. }
$$

H. F. Weber ('Phil. Mag.,' March, 1878) finds for Siemens' unit the following absolute values :
$9545 \times 10^{9}\left\{\begin{array}{c}\text { From } 18 \text { series of experiments in which the } \\ \text { variable currents generated by magneto- } \\ \text { induction were employed. }\end{array}\right.$
$9554 \times 10^{9}\left\{\begin{array}{c}\text { From } 24 \text { series of experiments in which the } \\ \text { variable currents }\end{array}\right.$ variable currents called forth by sudden voltaic induction were employed.
$9550 \times 10^{9}\left\{\begin{array}{l}\text { From } 5 \text { series of experiments in which the } \\ \text { heat-production of stationary galvanic } \\ \text { currents was used. }\end{array}\right.$
Employing the general mean 9550×10^{9}, and taking the practical ohm as 1.0493 Siemens, we have for the value of the practical ohm

$$
\text { r.0493 } \times 9550 \times 10^{9}=1.002 \times 10^{9} \text { C.G.S. units. }
$$

174. The practical unit of electromotive force is the Volt. Its theoretical value is

$$
1 \text { Volt }=10^{8} \text { C.G.S. units of potential. }
$$

The practical unit of quantity of electricity is the quantity conveyed in one second by a current due to an electromotive force of I volt working through a resistance of I ohm. It is called the Weber. Its theoretical value is

$$
\text { I weber }=\frac{I}{10} \text { of C.G.S. unit of quantity. }
$$

The practical unit of current is the current due to an electromotive force of I volt working through a resistance of 1 ohm. It is called a current of 1 weber per second. Its theoretical value is

I weber per second $=\frac{1}{10}$ of C.G.S. unit of current.
In the "Testing Instructions" of the Indian Telegraph Department it is called the CErstedt.

The capacity of a condenser which holds 1 weber when charged to a potential of 1 volt is called a farad. Its theoretical value is

$$
\mathrm{I} \text { farad }=\frac{10^{-1}}{10^{8}}=10^{-9} \text { C.G.S. units of capacity. }
$$

As the farad is much too large for practical convenience, its millionth part, called the microfarad, is practically employed ; and standard condensers are in use which are guaranteed to be of this capacity. Their theoretical value is

$$
1 \text { microfarad }=10^{-15} \text { C.G.S. unit of capacity. }
$$

175. By way of assisting the memory, it is useful to remark that the numerical value of the ohm is the same as the numerical value of a velocity of one earth-quadrant per second, since the length of a quadrant of the meridian is 10^{9} centims. This equality will subsist whatever funda-
mental units are employed, since the dimensions of resistance are the same as the dimensions of velocity.

No special names have as yet been assigned to any electrostatic units.

Electric Spark.

i76. Sir W. Thomson has observed the length of spark between two parallel conducting surfaces maintained at known differences of potential, and has computed the corresponding intensities of electric force by dividing (in each case) the difference of potential by the distance, since the variation of potential per unit distance measured in any direction is always equal to the intensity of the force in that direction. His results, as given on page 258 of "Papers on Electrostatics and Magnetism," form the first two columns of the following table.

Distance between surfaces.	Intensity of force in electrostatic units.	Difference of potential between surfaces.	
		In electrostatic units.	In electromagnetic units.
-0086	267 I	$2 \cdot 30$	6.90×10^{10}
-0127	2570	3.26	9.78 ,
-0127	262.2	3.33	9.99 ,
-0190	224.2	4.26	12.78 ,
-0281	$200 \cdot 6$	$5 \cdot 64$	16.92 ,,
$\bigcirc 0408$	151.5	$6 \cdot 18$	18.54
O563	144.1	8.11	24.33
-0584	139.6	$8 \cdot 15$	24.45 ,",
-0688	$140 \cdot 8$	9.69	$29^{\circ} 07$,
-0904	134.9	12.20	36.60 ",
-1056	$132 \cdot 1$	13.95	41.85 "
'1325	$131{ }^{\circ}$	$17 \cdot 36$	52.08 ,"

The numbers in the third column are the products of those in the first and second. The numbers in the fourth column are the products of those in the third by 3×10^{10}.
177. Dr. Warren De La Rue, and Dr. Hugo W. Müller ('Phil. Trans.,' ${ }^{8777}$) have measured the striking distance between the terminals of a battery of chloride of silver cells, the number of cells being sometimes as great as 11000 , and the electromotive force of each being 1.03 volt. Terminals of various forms were employed; and the results obtained with parallel planes as terminals have been specially revised by Dr. De La Rue for the present work. These revised results (which were obtained by graphical projection of the actual observations on a larger scale than that employed for the Paper in the Philosophical Transactions) are given below, together with the data from which they were deduced:

DATA.

No. of Cells.	Striking Distance.	
	In Inches.	In Centims.
1200	0.012	0.0305
2400	'02I	-0533
3600	-033	-0838
4800	-049	-1245
5880	-058	-1473
6960	-073	-1854
8040	-088	- 2236
9540	-110	$\cdot 2794$
11000	-133	-3378

DEDUCTIONS.

Volts per Centim.	Intensity of Force In C.G.S. units.	
	Electromagnetic.	Electrostatic.
4S770	$4 . \mathrm{SS} \times 10^{12}$	163
46500	4.65 ,	155
45450	4.55 ",	152
43770	4.38 ",	146
42510	4.25 ",	142
40740	4.07 ,"	136
38890	3.89 ,'	130
37280	3.73 ,	124
36070	3.61 ,"	120
34920	3.49 ,"	116
33900	3.39 ",	113
33460	3.35 ,	112

178. The resistance of a wire (or more generally of a prism or cylinder) of given material varies directly as its length, and inversely as its cross section. It is therefore equal to

$$
\mathrm{R} \frac{\text { length }}{\text { section }},
$$

where R is a coefficient depending only on the material. R is called the spccific resistance of the material. Its reciprocal $\frac{\mathrm{x}}{\mathrm{R}}$ is called the specific conductivity of the material.

R is obviously the resistance between two opposite faces of a unit cube of the substance. Hence in the C.G.S. system it is the resistance between two opposite faces of a cubic centim. (supposed to have the form of a cube).

The dimensions of specific resistance are resistance \times length ; that is, in electromagnetic measure, velocity \times length ; that is, $\mathrm{L}^{\mu} \mathrm{T}^{-1}$.

Resistance.

179. Table of Specific Resistances, in Electromagnetic Measure (at $0^{\circ} C$. unless otherwise stated).
$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{c}\text { Specific resist- } \\ \text { ance. }\end{array} & \begin{array}{c}\text { Percentage } \\ \text { variation per } \\ \text { degree } \\ \text { 20 }\end{array} & \begin{array}{c}\text { Specific }\end{array} \\ \text { gravity. }\end{array}\right]$

For the authorities for the above numbers see

144 UNITS AND PHYSICAL CONSTANTS. [Chap.
Maxwell, 'Electricity and Magnetism,' vol. i., last chapter.
180. The following table of specific resistances of metals at $0^{\circ} \mathrm{C}$. is reduced from Table IX. in Jenkin's Cantor Lectures. It is based on Matthiessen's experiments.

	Specific resistance.	Percentage of variation for a degree at $20^{\circ} \mathrm{C}$.
Silver, annealed,	1521	-377
hard-drawn,	1652	
Copper, annealed,	1615	$\cdot 388$
hard-drawn,	1652	
Gold, annealed,	2081	$\cdot 365$
, hard-drawn,	2118	
Aluminium, annealed, -	2946	
Zinc, pressed,	5690	-365
Platinum, annealed,	9158	
Iron, annealed, -	9827	
Nickel, annealed,	12600	
Tin, pressed,	13360	$\cdot 365$
Lead, pressed	19850	$\cdot 387$
Antimony, pressed,	35900	$\cdot 389$
Bismuth, pressed,	132650	-354
Mercury, liquid, -	96190	-072
Alloy, 2 parts platinum, 1 part silver, by weight, hard or annealed,	2466	${ }^{\circ} \mathrm{O} 1$
German silver, hard orannealed,	21170	-044
Alloy, 2 parts gold, 1 silver, 	10990	-065

Resistances of Conductots of Telegraphic Cables per nautical mile, at $24^{\circ} \mathrm{C}$., in electromagnetic measure.

Red Sea, - -	7.94×10^{9}
Malta-Alexandria, mean, -	3.49 ",
Persian Gulf, mean,	$6.284 \prime \prime$
Second Atlantic, mean, -	4.272,

181. 'The following approximate values of the specific resistance of insulators after several minutes' electrification are given (with their authorities) in a paper by Professors Ayrton and Perry (' Proc. Royal Society, March 21, 1878') ' On the Viscosity of Dielectrics' :-

	Specific Resistance.	Temperature, Centigrade.	Authority.
Mica,	8.4×10^{22}	20	Ayrton and Perry.
Gutta-percha,	4.5×10^{23}	24	$\left\{\begin{array}{c}\text { Standard adopted by } \\ \text { Latimer Clark. }\end{array}\right.$
Shellac,	$9^{\circ} 0 \times 10^{24}$	28	Ayrton and Perry.
Hooper's material,	1.5×10^{25}	24	Recent cable tests.
Ebonite,	2.8×10^{25}	46	Ayrton and Perry.
Paraffin, -	3.4×10^{25}	46	Do.
Glass,	Not yet than a	easured wi of the abo	accuracy, but greater

Air, - - Practically infinite.
182. The following approximate determinations of the resistance of water and ice at different temperatures are contained in a paper by Professors Ayrton and Perry, dated March, 1877 ('Proc. Phys. Soc., London,' vol. ii., p. 178).

The values in the original are given in megohms, and we have assumed the megohm $=10^{15}$ C.G.S. units.

Electromotive Force.

183. The electromotive force of a Daniell's cell was found by Sir W. Thomson (p. 245 of Papers on Electricity and Magnetism) to be
-00374 electrostatic unit,
from observation of the attraction between two parallel discs connected with the opposite poles of a Daniell's battery.

As I electrostatic unit is $3 \times{ }_{10}{ }^{10}$ electromagnetic units, this is ${ }^{0} 00374 \times 3 \times 10^{10}=1 \cdot 12 \times 10^{8}$ electromagnetic units, or $1 \cdot 12$ volt.

According to Latimer Clark's experimental determinations ('Journ. Soc. Tel. Eng.,' January, 1873), the electromotive force of a Daniell's cell is $1 \cdot 11 \times 10^{8}$, and the electromotive force of a Grove's cell is 1.97×10^{8}.

According to the determination of F. Kohlrausch (' Pogg. Ann.)' vol. cxli. [r870], and Ergänz., vol. vi. [1874] p. 35), the electromotive force of a Daniell's cell is $1 \times 138 \times 10^{8}$, and that of a Grove's cell $\mathrm{r} \cdot 942 \times 10^{8}$.
The electromotive force of Latimer Clark's standard cell (' Phil. Mag.,' June, 1872, and 'Phil. Trans.'' 1873) is $\mathrm{I}^{4} 457 \times 10^{8}$.

For theoretical determinations see § 188 .
184. Professors Ayrton and Perry have made determinations of the electromotive forces called out by the contacts, two and two, of a great number of substances measured inductively. The method of experimenting is described in the Proceedings of the Royal Society for March 21, 1878. The following abstract of their latest results was specially prepared for this work by Professor Ayrton in January, 1879.

	¢ \％ 気	管	亏	ذ゙心	鸸	$\stackrel{3}{\#}$
Carbon	\bigcirc	$\cdot 370$	＊485＊	$\cdot 858$	＇113	＇795
Copper	－ 370	0	－146	－542	$-{ }^{2} 38$	－456
Iron	$-{ }^{-485}{ }^{*}$	－${ }^{146}$	0	＊401＊	-369	－313＊
Lead	－ 838	－ 542	$-40{ }^{*}$	o	$-{ }^{-771}$	－－0¢9
Platinum	－${ }^{11} 3^{*}$	$\cdot 238$	－369	${ }^{7} 71$	0	$\cdot 690$
Tin	－ $795 *$	－ 456	$-3^{1} 3^{\prime \prime}$	＇099	－ 690	0
Zinc	－1\％096	－ 750	－ $600 *$	－ 210	－ 988	-281
$\underset{\text { zinc }}{\text { Amalgamated }}\}$	－ $1 \times 208^{*}$	－－894	－ $744 *$	-357^{*}	－1 125^{*}	-463
Brass	－414	－． 087	．064	$\stackrel{472}{ }$	$-{ }^{287}$	$\bullet 372$

[^9]

The average temperature at the time of experimenting was about $16^{\circ} \mathrm{C}$.
All the liquids and salts employed were chemically pure ; the solids, however. were only commercially pure.

Solids with Liquids and Liquids with Liquids in Air．

品		浆	它	岕						苞
$\begin{gathered} -{ }^{*} \text { to } \\ \text { to } \\ +{ }^{*}{ }^{2} 56 \end{gathered}$	${ }^{100}$	${ }^{2} 231$	\cdots	．	\cdots	－＇043	．\cdot	${ }^{1} 64$		
－． 536	．	－＇or4								
．	\cdots	\cdots	\cdots	\cdots	\cdots	－	－090			
\cdots	．	\cdots	\cdots	－${ }^{\circ}$－ 43	\cdots	．	．	－095	$\cdot 102$	
$-\cdot 565$	\cdots	－． 435								
$-\cdot 637$	\cdots	-348								
$-{ }^{-23}$										
$-{ }^{-} 430$	－ 284	－•	\cdots	－ 200	．	－＊095				
－ 444	\cdots	\cdots	\cdots	\cdots	\cdots	－ 102				
-344										
\cdots	-35^{8}									
\cdots	． 429									
\cdots	\cdots	＇016							，	
．	$\cdot 848$	\cdots	\cdots	I＇298	I． 456	1．267	\cdots	1． 699		
\cdots	\cdots	\cdots	＇475							
－ 24 I	－	－	\cdots	$\cdot 078$						

Example of the above table：－Lead is positive to distilled water，and the contact difference of potentials is $0^{\circ} 171$ volts．

The authors point out that in all these experiments the unknown electromotive forces of certain air contacts are included.

From these tables we find we can build up the electromotive forces of some well-known cells. For example, in a Daniell's cell there are four contact differences of potential to consider, and in a Grove's cell five, viz. :-

Daniell's Ce'll.							lolts
Copper and saturated copper sulphate, Saturated copper sulphate and saturated zinc sulphate,						+	0.070
						-	0.095
Saturated zinc sulphate and zinc,		-	-		-	$+$	0.430
Zinc and copper,	- -	-	-		-	$+$	0.750
							1 1 155
	Grozes Celi.						
Copper and platinum,		-	-		-	$+$	0.238
Platinum and strong nitric acid,		-	-		-	$+$	0.672
Strong nitric acid and very weak sulphuric acid,					-	$+$	0.078
Very weak sulphuric acid and zinc		-	-		-	$+$	0.241
Zinc and copper,		-	-		-	$+$	0.750
							1979

185. The electromotive force of a thermoelectric circuit is called Thermoelectric force.

The following table, showing the thermoelectric force of a couple of which lead is one element, is from Jenkin's 'Electricity and Magnetism,' p. 176 , except that we have employed the multiplier 100 to reduce fron: microvolts to C.G.S. electromagnetic units. It was compiled from Matthiessen's experiments ; and the mean temperature for which it is true may be taken at from 19° to $20^{\circ} \mathrm{C}$.

Table of Thermoelectric Forces, in electromagnetic units, for I° C. of difference of temperature of junctions, lead being one element.
$\left.\begin{array}{l}\text { Bismuth, pressed com- } \\ \text { mercial wire, }\end{array}\right\}+9700$
$\left.\begin{array}{l}\text { Bismuth, pure pressed } \\ \text { wire, }\end{array}\right\}+8900$
Bismuth, crystal, axial, +6500
Cobait, equatorial, -+4500
German silver
Quicksilver, - - + 41.8
Lead, - - - o
Tin, - - - 10
Copper of commerce, - 10
Platinum, - - 90
Gold, - - - - 120
Antimony, pressed)
wire, - - - -280

Silver, pure hard, - - 300
Zinc, pure pressed, - - 370
Copper, galvano-)
plastically precipi- -380
tated, - - -
Antimony, pressed
commercial wire, . $\{$ -- 600
Arsenic, - . - 1356
Iron, pianoforte wire, $\quad 1750$
Antimony, axial, - 2260
equatorial, - 2640
Phosphorus, red, - - 2970
Tellurium, - - - 50200
Selenium, - - - 80700
186. The following table is based upon Professor Tait's thermoelectric diagram ('Trans. Roy. Soc., Edin.,' vol. xxvii. [Dec., 1873]), joined with the assumption that a Grove's cell has electromotive force 1.97×10^{8} :-

Table of Thermoelectric Values referred to lead as zero.
Thermoelectric value in electromagnetic units (t denoting temperature Centigrade).
Iron, - - . . . - $1734+4.87 t$
Steel, - - . . . - $1139+3.28 t$
Alloy, believed to be platinum iridium, - 839 at all temperatures.
Alloy, platinum 95; iridium 5--622+ $55 t$
,. \quad, 90 ; 10 - $595+1.34 t$
,., , 85 ; ,, 15 - $\quad 709+63 t$
,, , 85 ; ,, 15 - 577 at all temperatures.
Soft platinum, - - - $+6 \mathbf{I}+\mathbf{I} \cdot \mathbf{1 0} t$
Alloy, platinum and nickel, - - $\quad 544+1 \cdot 10$ t
Hard Platinum, - - - - 260+ 75 t

			Thermoelectric value in electro magnetic units (t denoting temperature Centigrade).		
Magnesium,		-		- 224+	-95 t
German silver,		-	$+$	+1207+	$5 \cdot 12 t$
Cadmium,		-	-	- 266 -	$4.29 t$
Zinc,		-		- 234 -	2.40 t
Silver,	-	-	- -	- 214-	$1.50 t$
Gold,	-		- -	- 283-	$1.02 t$
Copper,	-	-	-	- 136 -	'95t
Lead,	-	-		0	
Tin,	-	-	+	$+43-$	- 55 t
Aluminium,	-	-	+	+ 77-	$\cdot 39 t$
Palladium,			- +	+ $625+$	$3.59 t$
Nickel to $175^{\circ} \mathrm{C}$.,	-		+	+2204+	$5 \cdot 12 t$
, 250° to $310^{\circ} \mathrm{C}$.	-		- +	+8449-	$24 \cdot 1 t$
from $340^{\circ} \mathrm{C}$.,	:			+ 307+	$5 \cdot 12 t$

The lower limit of temperature for the Table is $-18^{\circ} \mathrm{C}$. for all the metals in the list. The upper limit is $416^{\circ} \mathrm{C}$., with the following exceptions :-Cadmium, $258^{\circ} \mathrm{C}$. ; zinc, $373^{\circ} \mathrm{C}$. ; German silver, $175^{\circ} \mathrm{C}$.

The difference of the "thermoelectric values" of two metals for a given temperature t, is the electromotive force per degree of difference between the temperatures of the junctions in a couple formed of these metals, when the mean of the temperatures of the junctions is t. The current through the hot junction is from the metal of higher to that of lower " thermoelectric value."

Example 1.

Required the electromotive force of a copper-iron couple, the temperatures of the junctions being $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.

$$
\begin{array}{cc}
\text { We have, for copper, } & -\mathrm{I} 36-.95 t \\
& " \text { iron, } \\
" \text { copper }- \text { iron, } & =1534+4.87 t \\
& =598-82 t .
\end{array}
$$

The electromotive force per degree is $1598-5.82 \times 50$
$=1307$ electromagnetic units, and the electromotive force of the couple is $1307(100-0)=130700$.

By the neutral point of two metals is meant the temperature at which their thermoelectric values are equal.

Example 2.

To find the neutral point of copper and iron we have

$$
\text { copper }- \text { iron }=1598-5.82 t=0, t=275 ;
$$

that is, the neutral point is $275^{\circ} \mathrm{C}$. When the mean of the temperatures of the junctions is below this point, the current through the warmer junction is from copper to iron. The current ceases as the mean temperature attains the neutral point, and is reversed in passing it.

Example 3.

F. Kohlrausch (' Pogg. Ann. Ergänz.' vol. vi., p. 35 [1874]) states that, according to his determination, the electromotive force of a couple of iron and German silver is 24×10^{5} millimetre-milligramme-second units for I° of difference of temperatures of the junctions at moderate temperatures. Compare this result with the above Table at mean temperature 100°.

The dimensions of electromotive force are $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-2}$; hence the C.G.S. value of Kohlrausch's unit is $10^{-\frac{3}{2}} 10^{-\frac{3}{2}}=10^{-3}$, giving 2400 as the electromotive force per degree of difference.

From the above table we have

$$
\text { German silver }- \text { iron }=2941+\cdot 25 t
$$

which, for $t=100$, gives 2966 as the electromotive force per degree of difference.

Electrochemical Equivalents.

187. The following are examples of electrolytic decompositions which require the same quantity of electricity to effect them :-

Substance decomposed.

Mass decomposed.

Water,	18	-	2	hydrogen,	16 oxygen.	
Hydrochloric acid,	73	-	2	, ,,		lorine.
Potassium chloride,	149	-	78	potassium,	71	,,
Sodium	117	-	46	sodium,	71	,
Silver	287	-	216	silver,	71	
Potassium iodide	332	-	78	potassium,	254	dine.
,, bromide,	238	-	78	"		mine.
Calcium chloride,	111	-	40	calcium,		lorine.
Zinc	136	-	65	zinc,	71	,
Ferrous	127	-	56	iron,	71	-
Ferric	1081	-	371	"	71	,
Cuprous	198	-	127	copper,	71	,
Cupric	$134 \frac{1}{2}$	-	$63 \frac{1}{2}$,,	71	,
Mercuric	271	-	200	mercury,	71	,
Potassium sulphate	174	-	78	potassium.		
Zinc ,	163	-	65	zinc.		
Lead nitrate,	331	-	207	lead.		
Silver ,	340	-	216	silver.		
Stannous chloride,	189	-	118	tin,		lorine
Stannic ,	130	-	59	"	71	,

According to the experiments of F. Kohlrausch ('Pogg. Ann.' vol. cxlix [1873]), the quantity of silver deposited
by the C.G.S. unit (electromagnetic) of electricity is ${ }^{\circ}{ }^{\circ} 11363$ gramme. Hence $\frac{216}{011363}$ or 19010° is , the quantity of electricity required to produce the above effects if the numbers are taken as denoting grammes.
188. Let W ergs be the chemical work done in a cell of a battery for 65 grammes of zinc consumed (being the heat of chemical combination multiplied by Joule's equivalent); then $\frac{\mathrm{W}}{19010}$ will be the electromotive force of the cell, on the supposition that there is no wasteful action.
. According to a calculation made by Professor G. C. Foster, for the first edition of this work, based on Julius Thomsen's determinations of the heat of combination, 65 grammes of zinc consumed correspond to

40105 gramme-degrees in Smee's cell.
52347 " Daniell's cell.
90162 , Grove's cell.
Multiplying by $\frac{4^{.2} \times 10^{7}}{19010^{7}}$ we obtain
8.86×10^{7} as the electromotive force of Smee's cell.
$1.156 \times 10^{8} \quad, \quad, \quad$ Daniell's cell.
$1.99 \times 10^{8} \quad, \quad, \quad$ Grove's cell.
These results are slightly in excess of the values obtained by direct observation (see § 184).

189. Examples in Electricity.

I. Two conducting spheres, each of i centim. radius, are placed at a distance of r centims. from centre to centre, r being a large number; and each of them is
charged with an electrostatic unit of positive electricity. With what force will they repel each other ?

Since r is large, the charge may be assumed to be uniformly distributed over their surfaces, and the force will be the same as if the charge of each were collected at its centre. The force will therefore be $\frac{1}{r^{2}}$ of a dyne.
2. Two conducting spheres, each of I centim. radius, placed as in the preceding question, are connected one with each pole of a Daniell's battery (the middle of the battery being to earth) by means of two very fine wires whose capacity may be neglected, so that the capacity of each sphere when thus connected is sensibly equal to unity. Of how many cells must the battery consist that the spheres may attract each other with a force of $\frac{1}{r^{-2}}$ of a dyne, r being the distance between their centres in centims.?

One sphere must be charged to potential 1 and the other to potential - r. The number of cells required is

$$
\frac{2}{00374}=535
$$

3. How many Daniell's cells would be required to produce a spark between two parallel conducting surfaces at a distance of 019 of a centim., and how many at a distance of 0086 of a centim. (See $\S \S 178$, 184.)

$$
\text { Ans. } \frac{4 \cdot 26}{\cdot 00374}=1139 ; \frac{2.30}{\cdot 00374}=615 .
$$

4. Compare the capacity denoted by 1 farad with the capacity of the earth.

The capacity of the earth in static measure is equal to
its radius, namely 6.37×10^{8}. Dividing by v^{2} to reduce to magnetic measure, we have 71×10^{-12}, which is 1 farad multiplied by 71×10^{-3}, or is 900071 of a farad. A farad is therefore 1400 times the capacity of the earth.
5. Calculate the resistance of a cell consisting of a plate of zinc, A square centims. in area, and a plate of copper of the same dimensions, separated by an acid solution of specific resistance 10^{9}, the distance between the plates being 1 centim.

Ans. $\frac{10^{9}}{\mathrm{~A}}$, or $\frac{1}{\mathrm{~A}}$ of an ohm.
6. Find the heat developed in 10 minutes by the passage of a current from 10 Daniell's cells in series through a , wire of resistance 10^{10} (that is, 10 ohms), assuming the electromotive force of each cell to be $1 \cdot 1 \times 10^{8}$, and the resistance of each cell to be 10^{9}.

Here we have
Total electromotive force $=\mathbf{I} \times \times{ }^{9}$.
Resistance in battery $=10^{10}$.
Resistance in wire $=10^{10}$.
Current $=\frac{1 \cdot 1 \times 10^{9}}{2 \times 10^{10}}=\cdot 55 \times 10^{-1}=\cdot 055$.
$\left.\begin{array}{r}\text { Heat developed in } \\ \text { wire per second }\end{array}\right\} \quad=\frac{\left(\cdot 055^{2}\right) \times 10^{10}}{4.2 \times 10^{7}}=7.2024$.
Hence the heat developed in ro minutes is 432.14 gramme-degrees.
7. Find the electromotive force between the wheels on opposite sides of a railway carriage travelling at the rate of 30 miles an hour on a narrow-gauge line [4 feet $8 \frac{1}{2}$ inches] due to cutting the lines of force of terrestrial magnetism, the vertical intensity being 438 .

The electromotive force will be the product of the velocity of travelling, the distance between the rails, and the vertical intensity, that is,

$$
\begin{gathered}
(44.7 \times 30)(2.54 \times 56.5)(438)=84300 \\
\text { electromagnetic units. }
\end{gathered}
$$

This is about ${ }^{\mathrm{I}}$ of a volt. 1200
8. Find the electromotive force at the instant of passing the magnetic meridian, in a circular coil consisting of 300 turns of wire, revolving at the rate of ro revolutions per second about a vertical diameter; the diameter of the coil being 30 centims., and the horizontal intensity of terrestrial magnetism being 1794 , no other magnetic influence being supposed present.

The numerical value of the lines of force which go through the coil when inclined at an angle θ to the meridian, is the horizontal intensity multiplied by the area of the coil and by $\sin \theta$; say $n \mathrm{H} \pi a^{2} \sin \theta$, where $\mathrm{H}={ }^{1}$ 1794, $a=15$, and $n=300$. The electromotive force at any instant is the rate at which this quantity increases or diminishes ; that is, $n \mathrm{H} \pi a^{2} \cos \theta . \omega$, if ω denote the angular velocity. At the instant of passing the meridian $\cos \theta$ is 1 , and the electromotive force is $n \mathrm{H} \pi a^{2} \omega$. With 10 revolutions per second the value of ω is $2 \pi \times 10$.

Hence the electromotive force is

$$
1794 \times(3 \cdot 142)^{2} \times 225 \times 20 \times 300=2.39 \times 10^{6} .
$$

This is about $\frac{1}{42}$ of a volt.
190. To investigate the magnitudes of units of length,
mass, and time which will fulfil the three following conditions:-
r. The acceleration due to the attraction of unit mass at unit distance shall be unity.
2. The electrostatic units shall be equal to the electromagnetic units.
3. The density of water at $4^{\circ} \mathrm{C}$. shall be unity.

Let the 3 units required be equal respectively to L centims., M grammes, and T seconds.

We have in C.G.S. measure, for the acceleration due to attraction (\$72),

$$
\text { acceleration }=\mathrm{C} \underset{(\text { distance })^{2}}{\text { mass }} \text {, where } \mathrm{C}=6.48 \times 10^{-8} ;
$$

and in the new system we are to have

$$
\text { acceleration }=\frac{\text { mass }}{(\text { distance })^{2}} .
$$

Hence, by division,

$$
\frac{\text { acceleration in C.G.S. units }}{\text { acceleration in new units }}
$$

$=\mathrm{C} \frac{\text { mass in C.G.S. units }}{\text { mass in new units }} \cdot \frac{\left(\text { distance in new units) }{ }^{2}\right.}{\text { (distance in C.G.S. units) }}$,
that is, $\frac{\mathrm{L}}{\mathrm{T}^{2}}=\mathrm{C} \frac{\mathrm{M}}{\mathrm{L}^{2}}$
This equation expresses the first of the three conditions.
The equation $\frac{\mathrm{L}}{\mathrm{T}}=v$ expresses the second, v denoting 3×10^{10} :

The equation $\mathrm{M}=\mathrm{L}^{\mathbf{3}}$ expresses the third.

Substituting I^{3} for M in the first equation, we find $T=\sqrt{\frac{1}{C}}$. Hence, from the second equation,

$$
\mathrm{L}=v \sqrt{\frac{1}{\mathrm{C}}} ;
$$

and from the third,

$$
\mathrm{M}=\left(v \sqrt{\frac{\mathrm{I}}{\mathrm{C}}}\right)^{3}
$$

Introducing the actual values of C and v, we have approximately

$$
\mathrm{T}=3928, \mathrm{~L}=\mathrm{I} \cdot 178 \times 10^{14}, \mathrm{M}=1.63 \times 10^{42}
$$

that is to say,
The new unit of time will be about $\mathrm{I}^{\mathrm{h}} 5 \frac{\frac{1}{2}^{\mathrm{m}}}{}$;
The new unit of length will be about in 8 thousand earth quadrants ;
The new unit of mass will be about 2.66×10^{14} times the earth's mass.

Electrodynamics.

191. Ampère's formula for the repulsion between two elements of currents, when expressed in electromagnetic units, is

$$
\frac{c c^{\prime} d s \cdot d s^{\prime}}{r^{2}}\left(2 \sin a \sin a^{\prime} \cos \theta-\cos a \cos \alpha^{\prime}\right)
$$

where c, i denote the strengths of the two currents ;
$d s, d s^{\prime}$ the lengths of the two elements;
α, a^{\prime} the angles which the elements make with the line joining them;
r the length of this joining line;
θ the angle between the plane of $r, d s$, and the plane of $r, d s^{\prime}$.
For two parallel currents, one of which is of infinite
length, and the other of length l, the formula gives by integration an attraction or repulsion,

$$
\mathrm{D}^{2 l}{ }^{\circ c^{\prime}}
$$

where D denotes the perpendicular distance between the currents.

> Example.

Find the attraction between two parallel wires a metre long and a centim. apart when a current of ${ }_{\text {IO }}^{\text {I }}$ is passing through each.

Here the attraction will be sensibly the same as it one of the wires were indefinitely increased in length, and will be

$$
\frac{200}{I}\left(\frac{1}{10}\right)^{2}=2
$$

that is, each wire will be attracted or repelled with a force of 2 dynes, according as the directions of the currents are the same or opposite.

Digitized by mOO O

APPENDIX.

First Report of the Committee for the Selection and Nomenclature of Dynamical and Electrical Units, the Committee consisting of SIR W. Thomson, F.R.S., Professor G. C. Foster, F.R.S., Professor J. C. Maxwell, F.R.S., Mr. G. J. Stoney, F.R.S.,* Professor Fleeming Jenkin, F.R.S., Dr. Siemens, F.R.S., Mr. F. J. Bramwell, F.R.S., and Professor Everett (Reporter).

We consider that the most urgent portion of the task intrusted to us is that which concerns the selection and nomenclature of units of force and energy; and under this head we are prepared to offer a definite recommendation.

A more extensive and difficult part of our duty is the selection and nomenclature of electrical and magnetic units. Under this head we are prepared with a definite recommendation as regards selection, but with only an interim recommendation as regards nomenclature.

Up to the present time it has been necessary for every person who wishes to specify a magnitude in what is

* Mr. Stoney objected to the selection of the centimetre as the unit of length.
called "absolute" measure, to mention the three fundamental units of mass, length, and time which he has chosen as the basis of his system. This necessity will be obviated if one definite selection of three fundamental units be made once for all, and accepted by the general consent of scientific men. We are strongly of opinion that such a selection ought at once to be made, and to be so made that there will be no subsequent necessity for amending it.

We think that, in the selection of each kind of derived unit, all arbitrary multiplications and divisions by powers of ten, or other factors, must be rigorously avoided, and the whole system of fundamental units of force, work, electrostatic, and electromagnetic elements must be fixed at one common level-that level, namely, which is determined by direct derivation from the three fundamental units once for all selected.

The carrying out of this resolution involves the adoption of some units which are excessively large or excessively small in comparison with the magnitudes which occur in practice ; but a remedy for this inconvenience is provided by a method of denoting decimal multiples and submultiples, which has already been extensively adopted, and which we desire to recommend for general use.

On the initial question of the particular units of mass, length, and time to be recommended as the basis of the whole system, a protracted discussion has been carried on, the principal point discussed being the claims of the gramme, the metre, and the second, as against the gramme, the centimetre, and the second,-the former combination having an advantage as regards the simplicity of the name metre, while the latter combination has the advantage of
making the unit of mass practically identical with the mass of unit-volume of water-in other words, of making the value of the density of water practically equal to unity. We are now all but unanimous in regarding this latter element of simplicity as the more important of the two ; and in support of this view we desire to quote the authority of Sir W. Thomson, who has for a long time insisted very strongly upon the necessity of employing units which conform to this condition.

We accordingly recommend the general adoption of the Centimetre, the Gramme, and the Second as the three fundamental units; and until such time as special names shall be appropriated to the units of electrical and magnetic magnitude hence derived, we recommend that they be distinguished from "absolute" units otherwise derived, by the letters "C.G.S." prefixed, these being the initial letters of the names of the three fundamental units.

Special names, if short and suitable, would, in the opinion of a majority of us, be better than the provisional designations "C.G.S. unit of" Several lists of names have already been suggested; and attentive consideration will be given to any further suggestions which we may receive from persons interested in electrical nomenclature.

The "ohm," as represented by the original standard coil, is approximately 10^{9} C.G.S. units of resistance ; the 'volt" is approximately 10^{8} C.G.S. units of electromotive force ; and the "farad" is approximately $\frac{1}{10^{9}}$ of the C.G.S. unit of capacity.
For the expression of high decimal multiples and submultiples, we recommend the system introduced by Mr.

Stoney, a system which has already been extensively employed for electrical purposes. It consists in denoting the exponent of the power of 10 , which serves as multiplier, by an appended cardinal number, if the exponent be positive, and by a prefixed ordinal number if the exponent be negative.

Thus 10^{9} grammes constitute a gramıme-nine; $\frac{1}{10^{9}}$ of a gramme constitutes a ninth-gramme; the approximate length of a quadrant of one of the earth's meridians is a metre-seven, or a centimetre-nine.

For multiplication or division by a million, the prefixes mega* and micro may conveniently be employed, according to the present custom of electricians. Thus the megohm is a million ohms, and the microfarad is the millionth part of a farad. The prefix mega is equivalent to the affix six. The prefix micro is equivalent to the prefix sixth.

The prefixes kilo, hecto, deca, deci, centi, milli can also be employed in their usual senses before all new names of units.

As regards the name to be given to the C.G.S. unit of furce, we recommend that it. be a derivative of the Greek סv́vapıs. The form dynamy appears to be the most satisfactory to etymologists. Dynam is equally intelligible, but awkward in sound to English ears. * The shorter form, dyne, though not fashioned according to strict rules of etymology, will probably be generally preferred in this country. Bearing in mind that it is desirable to construct a system with a view to its becoming international, we think that the termination of the word should for the

[^10]present be left an open question. But we would earnestly request that, whichever form of the word be employed, its meaning be strictly limited to the unit of force of the C.G.S. system-that is to say, the force wihich, acting upon a granıme of matter for a second, generates a velocity of a centimetre per second.

The C.G.S. unit of work is the work done by this force zeorking through a centimetre; and we propose to denote it by some derivative of the Greek ${ }^{\epsilon} \rho \gamma o v$. The forms ergon, ergal, and erg have been suggested; but the second of these has been used in a different sense by Clausius. In this case also we propose, for the present, to leave the termination unsettled; and we request that the word ergon, or erg, be strictly limited to the C.G.S. unit of work, or what is, for purposes of measurement, equivalent to this, the C.G.S. unit of energy, energy being measured by the amount of work which it represents.

The C.G.S. unit of power is the power of doing work at the rate of one erg per second; and the power of an engine, under given conditions of working, can be specified in ergs per second.

For rough comparison with the vulgar (and variable) units based on terrestrial gravitation, the following statement will be useful :-

The weight of a gramme, at any part of the earth's surface, is about 980 dynes, or rather less than a kilodyne.

The weight of a kilogramme is rather less than a megadyne, being about 980,000 dynes.

Conversely, the dyne is about r .02 times the weight of a milligramme at any part of the earth's surface; and the megadyne is about $\mathrm{r} \circ 22$ times the reeight of a kilogramme.

The kilogrammetre is rather less than the ergon-eight, being about 98 million ergs.

The gramme-centimetre is rather less than the kilerg, being about 980 ergs .

For exact comparison, the value of g (the acceleration of a body falling in vacuo) at the station considered must of course be known. In the above comparison it is taken as 980 C.G.S. units of acceleration.

One horse-power is about three quarters of an erg-ten per second. More nearly, it is 7.46 erg -nines per second, and one force-de-cheval is 7.36 erg-nines per second.

The mechanical equivalent of one gramme-degree (Centigrade) of heat is $4 r^{.6}$ megalergs, or $4 \mathrm{r}, 600,000$ ergs.

Second Report of the Committce for the Selection and Nomenclature of Dynamical and Electrical Units, the Committee consisting of Professor Sir W. Thomson, F.R.S., Professor G. C. Foster, F.R.S., Professor J. Clerk Maxwell, F.R.S., G. J. Stoney, F.R.S., Professor Fleeming Jenkin, F.R.S., Dr. C. W. Siemens, F.R.S., F. J. Bramwell, F.R.S., Professor W. G. Adams, F.R.S., Professor Balfour Stewart, F.R.S., and Professor Everett (Secretary):

The Committee on the Nomenclature of Dynamical and Electrical Units have circulated numerous copies of their last year's Report among scientific men both at home and abroad.

They believe, however, that, in order to render their
recommendations fully available for science teaching and scientific work, a full and popular exposition of the whole subject of physical units is necessary, together with a collection of examples (tabular and otherwise) illustrating the application of systematic units to a variety of physical measurements. Students usually find peculiar difficulty in questions relating to units; and even the experienced scientific calculator is glad to have before him concrete examples with which to compare his own results, as a security against misapprehension or mistake.

Some members of the Committee have been preparing a small volume of illustrations of the C.G.S. system [Centimetre-Gramme-Second system] intended to meet this want.
[The first edition of the present work is the volume of illustrations here referred to]./
-

Digitized by mOO

I N DEX.

The numerals refer to the pages.

Acceleration, 21.
Acoustics, 62-66.
Adiabatic compression, 115-118.
Air, density of, 35.
—, expansion of, 89.90 .
——, specific heat of, $84-85,113$.
-, thermal conductivity of, 99.
Ampère's formula, 160.
Aqueous vapour, pressure of,
41, 90. , density of, 41.
Astronomy, 57-61.
Atmosphere, standard, 34.
-, its density upwards, 39.
Atomic weights, $8 \mathrm{I}-82$.
Attraction, constant of, 59-60.

- at a point, 13.

Angle, 12.
$—$, solid, 13 .
Barometer, correction of, for
capillarity, 43 .
Barometric measurement of heights, 39.
pressure, 33.
Batteries, 146, $150,155$.
Boiling points, 93 .

- of water near $100^{\circ}, 90$.

Boyle's law, departures from, 9 I.
Bullet, melted by impact, 26.
Capacity, electrical, 129, 13 I.

Capacity, specific inductive, $134-$ 137.

- , thermal, 78-86.

Capillarity in barometer, 43.
Cells, 146, $150,155$.
Centimetre, reason for selecting, 19, 164.
Centre of attraction, strength of, 13.

Centrifugal force, 26.

- at equator, 28.
C. G.S. system, 19, 165.

Change of volume in evaporation, 87.

- in melting, 93.

Change-ratio, 5 .
Chemical action, heat of, 112.

- equivalents in electrolysis, 154.

Clark's standard cell, 146.
Cobalt, magnetization of, 124.
Coil, revolving, 158.
Combination, heat of, 112.
Combustion, heat of, 112.
Common scale, necessity for, 18.

Compressibility of liquids, 52-53. - of solids, 53-55.

Compression, adiabatic, 115-118. Conductivity (thermal) defined, 94.
—, thermometric, 96.

Conductivity of air, 99.
-_ of various substances, 99107.

Contact electricity, 146-150.
Cooling, see Emission.
Current, heat generated by, 131 .
Curvature, dimensions of, 13 .
Daniell's cell, 146, 150, 155.
Day, sidereal, 58.
Decimal multiples, 20, 165.
Declination, magnetic, at Greenwich, 127.
Densities, table of, 32.

- of gases, 36.
- of water, 30-3r.

Density as a fundamental unit, 134.

Derived units, $\mathbf{I - 2}$.
Dew-point from wet and dry bulb, 94.
Diamagnetic substances, 12 I .
Diamond, specific heat of, 83 .
Diffusion, coefficient of, 96-99.
Dimensional equations, 5 .
Dimensions, 3-5.
Dip at Greenwich, 126-127.
Dispersive powers of gases, 76-77.

- - of glass and liquids, 70-72.
Diversity of scales, 18.
"Division," extended sense of, 6.
Double refraction, 72-73.
Dynamics, if-I3.
Dyne, 22, 166.
Earth, as a magnet, 124-126.
-, size, figure, and mass of, 57 .
Elasticity, 46-56.
- as affected by heat of compression, 116.
Electric units, tables of their dimensions, 131, 134.
Electricity, 128-161.
Electrochemical equivalents, 154 .
Electrodynamics, 160-161.
Electromagnetic units, I30.

Electro-motive force, 146-155.
Electrostatic units, 128.
Emission of heat, 107-110.
Energy, 24.
-, dimensions of, 12.
Equations, dimensional, 5 .
-, physical, 8.
Equivalent, mechanical, of heat, IIO-II2.
Equivalents, electrochemical, 154
Erg, 24, 167.
Evaporation, change of volume in, 87 .
Examples in electricity, 155-160.

- in general theory of units, 8-1I.
- in magnetism, 122-125.

Expansion of gases, 89-90.

- of various substances, in8. 119.

Extended sense of "multiplication" and "division," 6.

Farad, 139.

- compared with capacity of earth, 157.
Field, intensity of, 121.
Films, tension in superficial, 42.
Foot-pound and foot-poundal, 25 .
Force, 22.
——, dimensions of, 1 I.
- at a point, 13 .
-, various units of, xv.
Freezing-point, change of, with pressure, 113-115.
Frequencies of luminous vibrntions, 69.
Fundamental units, 3.
- - choice of, 15.
- - reduced to two, 60.

Gases, densities of, 36 .
—, expansion of, 89-90.
--, indices of refraction of, 75-77.

- , inductive capacities of, 137 .
——, two specific heats of, 1 I 3 .

Gauss's expression for magnetic potential, 126.

- pound-magnet, 122.
- units of intensity, 125.
(ieometrical quantities, dimensions of, II.
Göttingen, total intensity at, 125.
(iramme-degree (unit of heat), 79.

Gravitation in astronomy, 58.
Gravitation measure of force, 23.

- - of work, 25.

Gravity, terrestrial, 21-22.
Greenwich, magnetic elements at, 126-127.
Grove's cell, 146, 1 50, 155.
Heat, 78-119.

- generated by current, 131 . -, mechanical equivalent of, 110-112.
——of combination, 112.
-- of compression, 115-118.
——, unit of, 78-79.
-, various units of, xvi.
Height, measured by barometer, 39.

Homogeneous atmosphere, height of, 37-39.
Horse-power, 25.
Hydrostatics, 30.
Hypsometric table of boiling points, 90.

Ice, specific gravity of, 87 .

- electrical resistance of, 145.

Indices of refraction, 69-77.

- - related to inductive capacities, $136-137$.
Inductive capacity, $134-137$.
Induction, magnetic, coefficient of, 121.
Insulators, resistance of, 143, 145.
Interdiffusion, 97-99.
Joule's equivalent, 110-112.

Kilogramme and pound, xv.
Kinetic energy, 25.
Kupffer's determination of density of water, 30.

Large numbers, mode of expressing, 20, 165.
Latent heats, 87.89 .
Latimer Clark's standard cell, 146.

Light, 67-77.
—, velocity and wave-length of, 67-69.

Magnetic elements at Greenwich, 126-127.
Magnetic units, 120-122.
Magnetism, 120-127.
—, terrestrial, 124-127.
Magneto-optic rotation, $\mathbf{1 2 7}$.
Magnetization, intensity of, 121, 123, 125.
Mass, standards of, 16.
Mechanical equivalent of heat, 110-112.
——quantities, dimensions of, ir.

- units, 2 I .

Mega, as prefix, 34, 166.
Melting points, 87.
Metre and yard, xiv.
Micro, as a prefix, 166.
Microfarad, 139.
Moment of couple, 12.
——of inertia, 12.

- of magnet, 120.
- of momentum, 12.

Momentum, 1 I.
Moon, mass and distance of, 58.
"Multiplication," extended sense of, 6.

Neutral point (thermoelectric), 153.

Nickel, magnetization of, 124.
Numerical value, I.
Oerstedt, 139.

Ohm (unit of resistance), 137-138.

- earth quadrant per second, 139.

Optics, 67-77.
Paramagnetic substances, 121 .
Pendulum, seconds', 21-22.
" Per," meaning of, 6.
Platinum, specific heat of, 80, 83 .
Poisson's ratio, 54.
Potential, electric, 128, 130.
—, magnetic, I22, 126.
Poundal, 24.
Powers of ten as factors, 20.
Pressure, dimensions of, 12.

- of liquid columns, 34 .
-, various units of, xvi.
Pressure-height, 38.
Quantity of electricity, 128, 130.
Radian, 12.
Radiation, 107-1 10.
Ratios of two sets of electric
units, 132-134.
Refraction, indices of, 69-77.
Reports of Units' Committee, 163-169.
Resilience, 46-56.
- as affected by heat of compression, 116.
Resistance, electrical, 142-145.
- of a cell, 157.

Rigidity, simple, 52.
Rotating coil, 158 .
Shear, 47-50.
Shearing stress, 50-52.
Siemens' unit, 138.
Sound, faintest audible, 66.
—, velocity of, 62-65.
Spark, length of, 140-142.
Specific gravities, 32.
Specific heat, 79-86.

- - in different states, 92 ,
- _two, of gases, 113 .
-_ inductive capacity, $134-137$.

Spring balance, 25.
Standards, comparison of Frencl and English, xiv. xv.
-_ of length, 17 .

- of mass, 16.
- of time, 17.

Steam, pressure and density of, 41.
-, total and latent heat of, 89.

Stoney's nomenclature for multiples, 165.
Strain, 44-45, 47-50.
-, dimensions of, 45.
Stress, 44, 46, 50-5I.
-, dimensions of, 46, $^{\circ}$
Strings, musical, 65-66.
Sun's distance and parallax, 58.
Surface-conduction, 107-1 10.
Surface-tensions of liquids, 42.
Telegraphic cables, resistance of, 144.

Tenacities, table of, 55-56.
Tensions, superficial, of liquids, 42.

Thermodynamics, IIO-118.
Thermoelectricity, 150 -154.
Time, standard of, 17.
Tortuosity, 13.
Two fundamental units sufficient, 60.

Unit, I.
Units, derived, i-2.

- , dimensions of, 3-4.
-, special problems on, 61, 159.

Vapours, pressure of, 41, 42.
Velocity, 2-5.
——of light, 67.

- of sound, 62-65.
-

Vibrations per second of light, 69.

Volt and Weber, 138.

Volume measured by weighing in water, 32.

- of a gramme of gas, 36 . unit of, I .
Volume resilience, 47, 52-55. -, various units of, xiv.

Water, compressibility of, 52-53.
—, density of, $30-3 \mathrm{I}$.
-, expansion of, 31.
-, specific heat of, 78-79.
-, weighing in, 32 .
Weber, 139.

Weight, force, and mass, 23. standards of, 16.
Weights and measures reduced to C.G.S., xiv.-xvi.
Work, 24-25.
--, dimensions of, 1 I.

- done by a current, 130.
-, various units of, xvi.
Working, unit rate of, 25.
Year, sidereal and tropical, 58.
Young's modulus, 47, 53-56.

> Bedford Street, Covent Garden, London, March 1879.

Macmillan o Co.'s Catalogue of Works in Mathematics and Physical Science; including Pure and A pplied Mathematics; Physics, Astronomy, Geology, Chemistry, Zoology, Botany; and of Works in Mental and Moral Philosophy and Allied Subjects.

MATHEMATICS.

Airy.-Works by Sir G. B. Arry, K.C.B., Astronomer Royal :-
ELEMENTARY TREATISE ON PARTIAL DIFFERENTIAL EQUATIONS. Designed for the Use of Students in the Universities. With Diagrams. New Edition. Crown 8vo. 5s. 6d.
ON THE ALGEBRAICAL AND NUMERICAL THEORY OF ERRORS OF OBSERVATIONS AND THE COMBINA. TION OF OBSERVATIONS. Second Edition. Crown 8vo. 6s. 6d.
UNDULATORY THEORY OF OPTICS. Designed for the Use of Students in the University. New Edition. Crown 8vo. 6s. 6d. ON SOUND AND ATMOSPHERIC VIBRATIONS. With

- the Mathematical Elements of Music. Designed for the Use of Students of the University. Second Edition, revised and enlarged. Crown 8vo. gs.
A TREATISE ON MAGNETISM. Designed for the Use of Students in the University. Crown 8vo. 9s. $6 d$.

Ball (R. S., A.M.)-Experimental mechanics. A Course of Lectures delivered at the Royal College of Science for Ireland. By Robert Stawell Ball, A.M., Professot of Applied Mathematics and Mechanics in the Royal College of Science for Ireland (Science and Art Department). Royal 8vo. I6s.
"We have not met with any book of the sort in English. It elucidates instructively the methods of a teacher of the very highest rank. We most cordially recommend it to all our readers."Mechanics' Magazine.

Bayma.-THE ELEMENTS OF MOLECULAR MECHANICS. By Joseph Bayma, S.J., Professor of Philosophy, Stonyhurst College. Demy 8vo. cloth. 10s. $6 d$.

Boole.-Works by G. Boole, D.C.L, F.R.S., Professor of Mathematics in the Queen's University, Ireland :-
A TREATISE ON DIFFERENTIAL EQUATIONS. Third Edition. Edited by I. Todhunter. Crown 8vo. cloth. 145. " A treatise incomparably superior to any other elementary book on the subject with which we are acquainted."-Philosophical Magazine.
A TREATISE ON DIFFERENTIAL EQUATIONS. Supplementary Volume. Edited by I. Todhunter. Crown 8vo. cloth. 8s. $6 d$.
THE CALCULUS OF FINITE DIFFERENCES. Crown 8vo. cloth. Ios. 6d. New Edition revised.

Cheyne. - AN ELEMENTARY TREATISE ON THE PLANETARY THEORY. With a Collection of Problems. By C. H. H. Cheyne, M.A., F.R.A.S. Second Edition. Crown 8vo. cloth. 6s. $6 d$.

Clifford.-THE ELEMENTS OF DYNAMIC. An Introduction to the study of Motion and Rest in Solid and Fluid Bodies. By W. K. Clifford, F.R.S., Professor of Applied Mathematics and Mechanics at University College, London. Part I.-Kinematic. Crown 8vo. 7s. 6d.

Cumming.-AN INTRODUCTION TO THE THEORY OF ELECTRICITY. With numerous Examples. By Linneus Cumming, M. A., Assistant Master at Rugby School. Crown 8vo. 8s. $6 d$.

Cuthbertson.--EUCLIDIAN GEOMETRY. By F. Cuthbertson, M.A., Head Mathematical Master of the City of London School. Extra fcap. 8vo. 4s. 6d.

Ferrers.-Works by the Rev. N.M. Ferrers, M.A.,F.R.S.,Fellow and Tutor of Gonville and Caius College, Cambridge:-
AN ELEMENTARY TREATISE ON TRILINEAR CO-ORDINATES, the Method of Reciprocal Polars, and the Theory of Projectors. Third ${ }_{2}$ Edition, revised. Crown 8vo. 6s. 6d.
SPHERICAL HARMONICS AND SUBJECTS CONNECTED WITII THEM. Crown 8vo. 7s. 6d.

Frost.-Works by Percival Frost, M.A., late Fellow of St. John's College, Mathematical Lecturer of King's Coll. Cambridge:-
THE FIRST THREE SECTIONS OF NEWTON'S PRINCIPIA. With Notes and Illustrations. Also a Collection of Problems, principally intended as Examples of Newton's Methods. Third Edition. 8vo. cloth. 12 s .
AN ELEMENTARY TREATISE ON CURVE TRACING. 8vo. I2s.
SOLID GEOMETRY. Being a New Edition, revised and enlarged, of the Treatise by Frost and Wolstenholme. Vol. I. 8vo. $16 s$.

Godfray.-Works by Hugh Godfray, M.A., Mathematical Lecturer at Pembroke College, Cambridge :-
A TREATISE ON ASTRONOMY, for the Use of Colleges and Schools. 8vo. cloth. 12 s .6 d .
"It is a working book," says the Guardian, "taking Astronomy in its proper place in the Mathematical Sciences. . . . It is a book which is not likely to be got up unintelligently."
AN ELEMENTARY TREATISE ON THE LUNAR THEORY, with a Brief Sketch of the Problem up to the time of Newton. Second Edition, revised. Crown 8vo. cloth. 5s. 6d.
"As an elementary treatise and introduction to the subject, we think it may justly claint to supersede all former ones."-London, Edinburgh, and Dublin Phil. Magazine.

Green (George).-MATHEMATICAL PAPERS OF THE LATE GEORGE GREEN, Fellow of Gonville and Caius College, Cambridge. Edited by N. M. Ferrers, M.A., Fellow and Tutor of Gonville and Caius College. 8vo. 15s.
"It has been for some time recognized that Green's writings are amongst the most valuable matinematical productions we possess."Athenæum.

Hemming.-AN ELEMENTARY TREATISE ON THE DIFFERENTIAL AND INTEGRAL CALCUIUS. For the Use of Colleges and Schools. By G. W. Hemming, M.A., Fellow of St. John's College, Cambridge. Second Edition, with Corrections and Additions. 8vo. cloth. 9s.

Jackson.-GEOMETRICAL CONIC SECTIONS. An Elementary Treatise in which the Conic Sections are defined as the Plane Sections of a Cone, and treated by the Method of Projections. By J. Stuart Jackson, M.A., late Fellow of Gonville and Caius College. Crown 8vo. 4s. 6d.

Kelland and Tait.-an introduction to quater. NIONS. With numerous Examples. By P. Kelland, M.A., F.R.S., and P. G. Tait, M.A., Professors in the department of Mathematics in the University of Edinburgh. Crown 8vo. 7s. 6 d .
Kempe.-HOW to DRAW A Straight line. A Lecture on Linkages. By A.B. Kempe, B.A. Illustrated. Crown 8vo. is.6d.
Merriman.-ELEMENTS OF THE METHOD OF LEAST SQUARES. By Mansfield Merriman, Professor of Civil and Mechanical Engineering, Lehigh University, Bethlehem, Penn., U.S.A. Crown 8 vo . 7 s. 6 d.

Morgan.-A Collection of problems and exam. ples in mathematics. With Answers. By h. A. Morgan, M.A., Sadlerian and Mathematical Lecturer of Jesus College, Cambridge. Crown 8vo. cloth. 6s. 6 d .
Newton's Principia.-4to. cloth. 31s. 6 d .
It is a sufficient guarantce of the reliability of this complete edition of Newton's Principia that it has been printed for and under the care of Professor Sir Willian Thomson and Professor Blacklurn, of Glasscev University.
Parkinson.-A Treatise on optics. By S. Parkinson, D.D., F.R.S., Fellow and Tutor of St. John's College, Cambridge. Third Edition, revised and enlarged. Crown 8vo. cloth. Ios. 6 d.
Phear.-ELEmENTARY HYDROSTATICS. With Numerous Examples. By J. B. Phear, M.A., Fellow and late Assistant Tutor of Clare Coll. Cambridge. Fourth Edition. Cr. 8vo. cloth. 5s. 6 d .
Pirrie.-LESSONS ON RIGID DYNAMICS. By the Rev. G. Pirrie, M.A., Fellow and Tutor of Queen's College, Cambridge. Crown 8vo. 6 s.
Puckle.-an elementary treatise on conic sections and algebraic geometry. With numerous Examples and Hints for their Solution. By G. Hale Puckle, M.A. Fouth Edition, enlarged. Crown 8vo. $7 \mathrm{~s} .6 d$.

Rayleigh.-THE THEORY OF SOUND. By Lord Rayiegge, F.R.S., formerly Fellow of Trinity College, Cambridge. 8 vo . Vol. 1. 12 s .6 d ; ; Vol. II. 12 s . 6 d . [Vol. III. in preparation.
Reuleaux.-THE KINEMATICS OF MACHINERY. Outlines of a Theory of Machines. By Professor F. Reuleaux. Translated and edited by A. B. W. Kennedy, C.E., Professor of
$\therefore \quad$ Civil and Mechanical Engineering, University College, London. With 450 Illustrations. Royal 8vo. 20S.

Routh.-Works by Edward John Routh, M.A., F.R.S., late Fellow and Assistant Tutor of St. Peter's College, Cambridge; Examiner in the University of London:-
AN ELEMENTARY TREATISE ON THE DYNAMICS OF THE SYSTEM OF RIGID BODIES. With numerous Examples. Third Edition, enlarged. 8vo. 21s.
STABILITY OF A GIVEN STATE OF MOTION, PARTICULARLY STEADY MOTION. The Adams' Prize Essay for 1877. 8vo. 8s. $6 d$.

Tait and Steele.-DYNAMICS OF A PARTICLE. With numerous Examples. By Professor Tait and Mr. Steele. Fourth Edition, revised. Crown 8vo. i2s.

Thomson.-papers on ELECTROSTATICS AND MAGNETISM. By Professor Sir William Thomson, F.R.S. 8 vo . 18 s.

Todhunter.-Works by I. Todhunter, M.A., F.R.S., of St. John's College, Cambridge :-
"Mr. Todhunter is chiefly known to students of mathematics as the author of a series of admirable mathematical text-books, which possess the rare qualities of being clear in style and absolutely free from mistakes, typographical or other."-Saturday Review.
A TREATISE ON SPHERICAL TRIGONOMETRY. New Edition, enlarged. Crown 8vo. cloth. 4s. 6d.
PLANE CO-ORDINATE GEOMETRY, as applied to the Straight Line and the Conic Sections. With numerous Examples. New Edition. Crown 8vo. 7s. 6d.
A TREATISE ON THE DIFFERENTIAL CALCULUS. With numerous Examples. New Edition. Crówn 8vo. ios. $6 d$.
A TREATISE ON THE INTEGRAL CALCULUS AND ITS APPLICATIONS. With numerous Examples. New Edition, revised and enlarged. Crown 8vo. cloth. Ios. $6 d$.
EXAMPLES OF ANALYTICAL GEOMETRY OF THREE DIMENSIONS. New Edition, revised. Crown 8vo. cloth. 45.
A TREATISE ON ANALYTICAL STATICS. With numerous Examples. New Edition, revised and enlarged. Crown 8vo. cloth. IOs. 6 d .
A HISTORY OF THE MATHEMATICAL THEORY OF PROBABILITY, from the Time of Pascal to that of Laplace. 8 vo . 18 s .
RESEARCHES IN THE CALCULUS OF VARIATIONS, Principally on the Theory of Discontinuous Solutions: An Essay to which the Adams' Prize was awarded in the University of Cambridge in 1871. 8vo. 6s.

Todhunter-continued.

A HISTORY OF THE MATHEMATICAL THEORIES OF ATTRACTION, and the Figure of the Earth, from the time of Newton to that of Laplace. Two vols. 8vo. 24s.
"Probably no man in England is so qualified to do justice to the theme as Mr. Todhunter. To all mathematicians these volumes will be decply interesting, and to all succeeding investigators, of the highest practical utility."-Athenæum.
AN ELEMENTARY TREATISE ON LAPLACE'S, LAME'S, AND BESSEL'S FUNCTIONS. Crown 8vo. Ios. $6 d$.

Wilson (W. P.)-A treatise on dynamics. By W. P. Wilson, M. A., Fellow of St. John's College, Cambridge, and Professor of Mathematics in Queen's College, Belfast. 8vo. gs. $6 d$.
Wolstenholme.-MATHEMATICAL PROBLEMS, on Subjects included in the First and Second Divisions of the Schedule of Subjects for the Cambridge Mathematical Tripos Examination. Devised and arranged by Joseph Wolstenholme, late Fellow of Christ's College, sometime Fellow of St. John's College, and Professor of Mathematics in the Royal Indian Engineering College. New Edition, greatly enlarged. 8vo. 18s.
Young.-SIMPLE PRACTICAL METHODS OF CALCU. Lating strains on girders, arches, and TRUSSES. With a Supplementary Essay on Economy in suspension Bridges. By E. W. Young, Associate of King's College, London, and Member of the Institution of Civil Engineers. 8vo. 7s. 6 d.

PHYSICAL SCIENCE.

Airy (G. B.)—POPULAR ASTRONOMY. With Illustrations. By Sir G. B. Airy, K.C.B., Astronomer Royal. New Edition. I8mo. cloth. 4 s .6 d .
Bastian.-Works by H. Charliton Bastian, M.D., F.R.S., Professor of Pathological Anatomy in University College, London, \&c.:-
THE BEGINNINGS OF LIFE : Being some Account of the Nature, Modes of Origin, and Transformations of Lower Organisms. In Two Volumes. With upwards of 100 Illustrations. Crown 8vo. 28.s. "It is a book that cannot be ignored, and must inevitably lead to renewed discussions and repeated observations, and through these to the establishment of truth."-A. R. Wallace in Nature.
EVOLUTION AND THE ORIGIN OF LIFE. Crown 8vo. 6s. $6 d$.
"Abounds in information of interest to the student of biological science.". -Daily News.
Blake.-ASTRONOMICAL MYTHS. Based on Flammarion's "The Heavens." By John F. Blake. With numerous Illustrations. Crown 8vo. 9s.
Blanford (H. F.)-RUDIMENTS OF Physical GEO. GRAPHY FOR THE USE OF INDIAN SCHOOLS. By H. F. Blanford, F.G.S. With numerous Illustrations and Glossary of Technical Terms employed. New Edition. Globe 8vo. 2s. 6 d .
Blanford (W. T.)-GEOLOGY AND ZOOLOGY OF ABYSSINIA. By W. T. Blanford. 8vo. 2Is.
Bosanquet.-AN ELEMENTARY TREATISE ON MUSICAL INTERVALS AND TEMPERAMENT. With an Account of an Enharmonic Harmonium exhibited in the Loan Collection of Scientific Instruments, South Kensington, 1876 ; also of an Enharmonic Organ exhibited to the Musical Association of London, May, 1875. By R. H. Bosanquet, Fellow of St. John's College, Oxford. 8vo. 6s.

Coal : ITS HISTORY AND ITS USES. By Professors Green, Miall, ,Thorpe, Rücker, and Marshall, of the Yorkshire College, Leeds. With Illustrations. 8vo. I2s. $6 d$. "It furnishes a very comprehensive treatise on the whole subject of Coal from the geological, chemical, mechdnical, and industrial points of view, concluding with a chapter on the important topic known as the 'Coal Question.'"-Daily News.

Cooke (Josiah P., Jun.)-FIRST PRINCIPLES OF

 CHEMICAL PHILOSOPHY. By Josiah P. Cooke, Jun., Ervine Professor of Chemistry and Mineralogy in Harvard College. Third Edition, revised and corrected. Crown 8vo. $12 s$.Cooke (M. C.)-handbook of british fungi, with full descriptions of all the Species, and Illustrations of the Genera. By M. С. Cooke, M.A. Two vols. crown 8vo. 245. " Will maintain its place as the standard English book, on the subject of which it treats, for many years to come."-Standard.
Dawkins,-CAVE-HUNTING: Researches on the Evidence of Caves respecting the Early Inhabitants of Europe. By W. Boyd Dawkins, F.R.S., \&c., Professor of Geologyat Owens College, Manchester. With Coloured Plate and Woodcuts. 8vo. 21 s .
"The mass of information he has brought together, with the judicious use he has made of his materials, will be found to invest his book with much of new and singular value."-Saturday Review.
Dawson (J. W.)-ACADIAN GEOLOGY. The Geologic Structure, Organic Remains, and Mineral Resources of Nova Scotia, New Brunswick, and Prince Edward Island. By John William Dawson, M.A., LL.D., F.R.S., F.G.S., Principal and Vice-Chancellor of M'Gill College and University, Montreal, \&c. With a Geological Map and numerous Illustrations. Third Edition, with Supplement. 8vo. 2Is. Supplement, separately, 2s. $6 d$. "The book zuill doubtless find a place in the library, not only of the scientifi geologist, but also of all who are desirous of the industrial progress and commercial prosperity of the Acadian pro-vinces."-Mining Journal.
Fleischer.-A SYSTEM OF VOLUMETRIC ANALYSIS. By Dr. E. Fleischer. Translated from the Second German Edition by M. M. Pattison Muir, with Notes and Additions. Illustrated. Crown 8vo. 7s. 6 d.

Forbes.-The transit of venus. By George Forbes, B. A., Professor of Natural Philosophy in the Andersonian University of Glasgow. With numerous Illustrations. Crown 8vo. 3 s .6 d .

Foster and Balfour.-ELEMENTS of embryology By Michael Foster, M.D., F.R.S., and F. M. Balfour, M.A., Fellow of Trinity College, Cambridge. With numerous Illustrations. Part I. Crown 8vo. 7s. $6 d$.
Gal ton.-Works by Francis Galion, F.R.S. :-
METEOROGRAPHICA, or Methods of Mapping the Weather. Illustrated byupwardsof 600 Printed Lithographic Diagrams. 4 to.9s.

Galton-continued.
-
HEREDITARY GENIUS : An Inquiry into its Laws and Consequences. Demy 8vo. i2s. The Times calls it "a most able and most interesting book."
ENGLISH MEN OF SCIENCE; THEIR NÅTURE AND NURTURE. 8vo. 8s. 6 d .
" The book is certainly one of very grcat interest."-Nature.
Geikie.-Works by Archibald Geikie, LL.D., F.R.S., Murchison Professor of Geology and Mineralogy at Edinburgh :ELEMENTARY LESSONS IN PHYSICAL GEOGRAPHY. With numerous Illustrations. iFcap. 8vo، 4s. 6d. Questions, Is. 6d. FIELD GEOLOGY. With Illustrations. Crown 8vo. [Shortly'. PRIMER OF GEOLOGY. Illustrated. 18 mo . Is.
PRIMER OF PHYSICAL GEOGRAPHY. Illustrated. 18 mo . Is.
Gordon.-AN ELEMENTARY BOOK ON HEAT. By J. E. H. Gordon, B.A., Gonville and Caius College, Cambridge. Crown 8vo. $2 s$.

Guillemin.-THE FORCES OF NATURE : A Popular Introduction to the Study of Physical Phenomena. By Amedee Guillemin. Translated from the French by Mrs. Norman Lockyer ; and Edited, with Additions and Notes, by J. Norman Lockyer, F.R.S. Illustrated by Coloured Plates, and 455 Woodcuts. Third and cheaper Edition. Royal 8vo. 2 Is.
"Translator and Editor have done justice to their trust. The text has all the force and flow of original writing, combining faithfulness to the author's meaning with purity and independence in regard to idiom; while the historical precision and accuracy pervading the work throughout, speak of the watchful editorial supervision which has been given to every scientific detail. Nothing can well exceed the clearness and delicacy of the illustrative woodcuts. Altogether, the work may be said to have no parallel, either in point of fulness or attraction, as a popular manual of physical science."-Saturday Review.
THE APPLICATIONS OF PHYSICAL FORCES. By A. Guillemin. Translated from the French by Mrs. Lockyer, and Edited with Notes and Additions by J. N. Lockyer, F.R.S. With Coloured Plates and numerous Illustrations. Cheaper Edition. Imperial 8vo. cloth, extra gilt. $36 s$.
Also in Eighteen Monthly Parts, price Is. each. Part I. in November, 1878.
" A book which we can heartily recommend, both on account of the width and soundness of its contents, and also because of the excellence of its print, its illustrations, and external appearance."Westminster Review.

Hanbury.-SCIENCE PAPERS : chiefly Pharmacological and Botanical. By Daniel Hanbury, F.R.S. Edited, with Memoir, by J. Ince, F.L.S., and Portrait engraved by C. H. Jeens. 8vo. I4s.
Henslow.-THE THEORY OF EVOLUTION OF LIVING TIIINGS, and Application of the Principles of Evolution to Religion considered as Illustrative of the Wisdom and Beneficence of the Almighty. By the Rev. George Henslow, M.A., F.L.S. Crown 8vo. $6 s$.

Hooker.-Works by Sir J. D. Hooker, K.C.S.I., C.B., F.R.S., M.D., D.C.L.:-

THE STUDENT'S FLORA OF THE BRITISH ISLANDS. Second Edition, revised and improved. Globe 8vo. 10s. 6d.
The object of this work is to supply students and field-botanists with a fuller account of the Plants of the British Islands than the manuals hitherto in use aim at giving. "Certainly the fullest and most accurate manual of the kind that has yet appeared. Dr. Hooker has shown his characteristic industry and ability in the care and skill which he has thrown into the characters of the plants. These are to a great extent original, and are really admirable for their combination of clearness, brevity, and completeness."-Pall Mall Gazette.
PRIMER OF BOTANY. With Illustrations. 18mo. is. New Edition, revised and corrected.
Hooker and Ball.-JOURNAL of a tour in marocco and the Great atlas. By Sir J. D. Hooker, K.C.S.I., C.B., F.R.S., \&c., and John Ball, F.R.S. With Appendices, including a Sketch of the Geology of Marocco. By G. MAw, F.L.S., F.G.S. With Map and Illustrations. 8vo. 2Is.

Huxley and Martin.-A COURSE OF PRACTICAL IN. STRUCTION IN ELEMENTARY BIOLOGY. By T. H. Huxley, LL.D., Sec. R.S., assisted by H. N. Mar'rin, B.A., M.B., D.Sc., Fellow of Christ's College, Cambridge. Crown 8vo. $6 s$.
"This is the most thoroughly valuable book to teachers and students of biology which has ever appeared in the English tongue." London Quarterly Review.
Huxley (Professor).-LAY SERMONS, ADDRESSES, and reviews. By T. H. Huxley, LL.D., F.R.S. New and Cheaper Edition. Crown 8vo. 7s. $6 d$.
Fourteen Discourses on the following subjects:-(1) On the Advisableness of Improving Natural Knowledge:-(2) EmancipationBlack and White:-(3) A Liberal Education, and where to find it:-(4) ScientificEducation:-(5) On the Educational Value of

Huxley (Professor)-continued.
the Natural History Sciences:-(6) On the Study of Zoology:(7) On the Physical Basis of Life:-(8) The Scientific Aspects of Positivism:-(9) On a Piece of Chalk:-(10) Geological Contemporaneity and Persistent Types of Life:-(11) Geological Reform:(12) The Origin of Species:-(13) Criticisms on the "Origin of Species:" (14) On Descartes" "Discourse touching the Method of using One's Reason rightly and of seeking Scientific Truth."
ESSAYS SELECTED FROM "LAY SERMONS, AD. DRESSES, AND REVIEWS." Second Edition. Crown 8vo. is. CRITIQUES AND ADDRESSES. 8vo. ios. $6 d$.

Contents:-1. Administrative Nihilism. 2. The School Boards: what they can do, and what they may do. 3. On Medical Education. 4. Yeast. 5. On the Formation of Coal. 6. On Coral and Coral Reefs. 7. On the Methods and Results of Ethnology. 8. On some Fixed Points in British Ethnology. 9. Palaontology and the Doctrine of Evolution. 10. Biogenesis and Abiogenesis. 11. Mr. Darwin's Critics. 12. The Genealogy of Animals. 13. Bishop Berkeley on the Metaphysics of Sensation.

LESSONS IN ELEMENTARY PHYSIOLOGY. With numerous Illustrations. New Edition. Fcap. 8vo. 4s. 6d.
"Pure gold throughout."-Guardian. "Unquestionably the clearest and most complete elementary treatise on this subject that we possess in any language."-Westminster Review.

AMERICAN ADDRESSES : with a Lecture on the Study of Biology. 8vo. 6s. 6d.
PHYSJOGRAPHY : An Introduction to the Study of Nature. With Coloured Plates and numerous Woodcuts. New Edition. Crown 8vo. 7s. 6 d.
Jellet (John H., B.D.) - A treatise on the THEORY OF FRICTION. By John H. Jellet, B.D., Senior Fellow of Trinity College, Dublin ; President of the Royal Irish Academy. 8vo. 8s. $6 d$.
Jones.-THE OWENS COLLEGE JUNIOR COURSE OF PRACTICAL CHEMISTRY. By Francis Jones, Chemical Master in the Grammar School, Manchester. With Preface by Professor Roscoe. New Edition. 18mo. with Illustrations. 2s. $6 d$.

Kingsley.-GLAUCUS : OR, THE WONDERS OF THE SHORE. By Charles Kingsley, Canon of Westminster. New Edition, with numerous Coloured Plates. Crown 8vo. 6 s.
Langdon.-THE APPLICATION OF ELECTRICITY TO railway working. By W. E. Langdon, Member of the Society of Telegraph Engineers. With numerous Illustrations. Extra fcap. 8vo. 4s. 6d.

Lockyer (J. N.) -Works by J. Norman Lockyer, F.R.S.ELEMENTARY LESSONS IN ASTRONOMY. With numerous Illustrations. New Edition. 18mo. 5s. 6d.
" The book is full, clear, sound, and worthy of attention, not only as a popular exposition, but as a scientific 'Index.' "- Athenæum. "The most fascinating of elementary books on the Sciences."Nonconformist.
THE SPECTROSCOPE AND ITS APPLICATIONS. By J. Norman Lockyer, F.R.S. With Coloured Plate and numerous Illustrations. Second Edition. Crown 8vo. 3s. 6d.
CONTRIBUTIONS TO SOLAR PHYSICS. By J. Norman Lockyer, F.R.S. I. A Popular Account of Inquiries into the Physical Constitution of the Sun, with especial reference to Recent Spectroscopic Researches. II. Comrnunications to the Royal Society of London and the French Academy of Sciences, with Notes. Illustrated by 7 Coloured Lithographic Plates and 175 Woodcuts. Royal 8vo. cloth, extra gilt, price 3is. 6 d .
"The book may be taken as an authentic exposition of the present state of science in connection with the important subject of spectroscopic analysis. . . . Even the unscientific public may derive much information from it."-Daily News.
PRIMER OF ASTRONOMY. With Illustrations. I8mo. is.
Lockyer and Seabroke.-STAR-GAZING: PAST AND PRESENT. An Introduction to Instrumental Astronomy. By J. N. Lockyer, F.R.S. Expanded from Shorthand Notes of a Course of Royal Institution Lectures with the assistance of G. M. Seabroke, F.R.A.S. With numerous Illustrations. Royal 8vo. 2 Is. " A book of great interest and utility to the astronomical student." -Athenæum.
Lubbock.-Works by Sir John Lubbock, M.P.,F.R.S., D.C.L.: THE ORIGIN AND METAMORPHOSES OF INSECTS. With Numerous Illustrations. Second Edition. Crown 8vo. 3s. 6d. "As a summary of the phenomena of insect metamorphoses his little book is of great value, and will be read with interest and profit by all students of natural history. The whole chapter on the origin of insects is most interesting and valuable. The illustrations are numerous and good."-Westminster Review.
ON BRITISH WILD FLOWERS CONSIDERED IN RELA. TION TO INSECTS. With Numerous Illustrations. Second Edition. Crown 8vo. 4s. 6d.
Macmillan (Rev. Hugh). -For other Works by the same Author, see Theological Catalogue.
HOLIDAYS ON HIGH LANDS ; or, Rambles and Incidents in search of Alpine Plants. Globe 8vo. cloth. 6 s. "One of the most charming books of its kind ever written."Literary Churchman. "Mr. Macmillan's glowing pictures of Scandinavian scenery."-Saturday Review.

Macmillan (Rev. Hugh)-continued.

FIRST FORMS OF VEGETATION. Second Edition, corrected and enlarged, with Coloured Frontispiece and numerous Illustrations. Globe 8 vo . 6 s .
The first edition of this book was published under the name of
"Footnotes from the Pase of Nature; or, First Forms of Vegetation. Probably tice best popular guide to the study of mosses, lichens, and fungi cver written. Its practical value as a help to the student and collector cannot be exaggcrated."-Manchester Examiner.
Mansfield (C. B.)-Works by the late C. B. Mansfield :-
A THEORY OF SALTS. A Treatise on the Constitution of Bipolar (two-membered) Chemical Compounds. Crown 8vo. 14s.
A ̈̈RIAL NAVIGATION. The Problem, with Hints for its Solution. Edited by R. B. Mansfield. With a Preface by J. M. Ludlow. With Illustrations. Crown 8vo. Ios. $6 d$.

Mayer:-SOUND : a Series of Simple, Entertaining, and Inexpensive Experiments in the Phenomena of Sound, for the Use of Students of every age. By A. M. Mayer, Professor of Physics in the Stevens Institute of Technology, \&c. With numerous Illustrations. Crown Svo. 3s. $6 d$.
Mayer and Barnard.-LIGHT. A Series of Simple, Entertaining, and Useful Experiments in the Phenomena of Light, for the use of Students of every age. By A. M. Mayer and C. Barnard. With Illustrations. Crown 8vo. 2s. $6 d$.

Miall.-STUDIES IN COMPARATIVE ANATOMY. No. i, The Skull of the Crocodile. A Manual for Students. By L. C. Miall, Professor of Biology in Yorkshire College. 8vo. $2 s .6 d$. No. 2, The Anatomy of the Indian Elephant. By L. C. Miall and F. Greenwood. With Plates. 5s.
Miller.-The romance of astronomy. By R. Kalley Mileer, M.A., Fellow and Assistant Tutor of St. Peter's College, Cambridge. Second Edition, revised and enlarged. Crown 8 vo .4 s .6 d .
Mivart (St. Geoře).-Works by St. George Mivart, F.R.S. \&c., Lecturer in Comparative Anatomy at St. Mary's Hospital:ON THE GENESIS OF SPECIES. Crown 8vo. Second Edition, to which notes have been added in reference and reply to Darwin's "Descent of Man." With numerous Illustrations. pp. xv. 296. $9 s$.
"In no work in the Englist language has this great controversy been treated at once with the same broad and vigorous grasp of fucts, and thi same liberal and candid temper."-Saturday Review.

Mivart (St. George)-continued.
THE COMMON FROG. With Numerous Illustrations. Crown 8vo. 3s. 6d. (Nature Series.)
"It is an able monogram of the Frog, and something more. It throws valuable crosslights over wide portions of animated nature. Would that such works were more plentiful."-Quarterly Journal of Science.
Moseley.-NOTES By a naturalist on the "ChaLLENGER," being an account of various observations made during the voyage of H.M.S. "Challenger" round the world in the years 1872-76. By H. N. Moseley, M.A.. F.R.S., Member of the Scientific Staff of the "Challenger." With. Map, Coloured Plates, and Woodcuts. 8vo. 2Is.
Muir.-PRACTICAL CHEMISTRY FOR MEDICAL STUDENTS. Specially arranged for the first M. B. Course. By M. M. Pattison Muir, F.R.S.E. Fcap. 8vo. is. 6d.

Murphy.- HABIT AND INTELLIGENCE: a Series of Essays on the Laws of Life and Mind. By Joserf John Murphy. Second Edition, thoroughly revised and mostly rewritten. With Illustrations. 8vo. i6s.
Nature.-A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE. Published every Thursday. Price 6d. Monthly Parts, $2 s$. and $2 s .6 d$. ; Half-yearly Volumes, $15 s$. Cases for binding Vols. Is. $6 d$.
"This able and well-ediled Fournal, which posts up the science of the day promptly, and promises to be of signal service to students and savants. Scarcely any expressions that we can employ would exaggerate our sense of the moral and theological value of the work." ${ }^{\prime \prime}$-British Quarterly Review.
Newcomb.-POPULAR ASTRONOMY. By Simon Newсомb, LL.D., Professor U.S. Naval Observatory. With 112 Engravings and Five Maps of the Stars. 8vo. I8s. "As affording a thoroughly reliable foundation for more advanced reading, Professor Necucomb's 'Popular Astronomy' is deserving of strong recommendation."-Nature.
Oliver.-Works by Daniel Oliver, F.R.S., F.L.S., Professor of Botany in University College, London, and Keeper of the Herbarium and Library of the Royal Gardens, Kew :-
LESSONS IN ELEMENTARY BOTANY. With nearly Two Hundred Illustrations. New Edition. Fcap. 8vo. 4s. 6d. This book is designed to teach the elements of Botany on Professor Henslow's plan of selected Types and by the use of Schedules. The earlier chapters, embracing the elements of Structural and Physiolorical Rotany, introduce us to the methodical study of the Ordinal Types. The concluding chapters are entitled," How to Dry

Oliver-continued.
Plants" and "How to Describe Plants." A valuable Glossary is appended to the volume. In the preparation of this work free use has been made of the manuscripl materials of the late Prafessor Henslow.
FIRST BOOK OF INDIAN BOTANY. With numerous Illustrations. Extra fcap. 8vo. 6s. 6d.
"It contains a well-digested summary of all essential knowled ${ }^{2} r e$ pertaining to Indian Botany, wrought out in accordance with the best principles of scientific arrangement."-Allen's Indian Mail.
Pennington.- NOTES on the barrows and bone CAVES OF DERBYSHIRE. With an account of a Descent into Elden Hole. By Rooke Pennington, B.A., Ll.B., F.G.S. 8vo. 6s.

Penrose (F. C.)-on a method of predicting by GRAPHICAL CONSTRUCTION, OCCULTATIONS OF STARS BY THE MOON, AND SOLAR ECLIPSES FOR ANY GIVEN PLACE. T'ogether with more rigorous methods for the Accurate Calculation of Longitude. By F. C. Penrose, F.R.A.S. With Charts, Tables, \&c. 4to. $12 s$.

Perry.-an elementary treatise on steam. By John Perry, B.E., Professor of Engineering, Imperial College of Engineering, Yedo. With numerous Woodcuts, Numerical Examples, and Exercises. 18mo. 4s. 6d.
"Mr. Perry has in this compact little volume brought together an immense amount of information, new told, regarding stean and its application, not the least of its merits being that it is suited to the capacities alike of the tyro in engineering science or the better grade of artisan."-Iron.
Pickering.-ELEMENTS OF PHYSICAL MANIPULATION. By E. C. Pickering, Thayer Professor of Physics in the Massachusetts Institute of Technology. Part I., medium 8vo. Ios. $6 d$. Part II., 10s. $6 d$.
" When finished 'Physical Manipulation' will no doubt be considered the best and most complete text-book on the subject of which it treats."-Nature.
Prestwich.-THE Past and future of geology. An Inaugural Lecture, by J. Prestwich, M.A., F.R.S., \&c., Professor of Geology, Oxford. 8vo. 2s.
Radcliffe.-PROTEUS : OR UNITY IN NATURE. By. C. B. Radcliffe, M.D., Author of "Vital Motion as a mode of Physical Motion. Second Edition. Svo. 7s. 6d.

Rendu.-THE THEORY OF THE GLACIERS OF SAVOY. By M. le Chanoine Rendu. Translated by A. Wells, Q.C., late President of the Alpine Club. To which are added, the Original Memoir and Supplementary Articles by Professors Tait and Ruskin. Edited with Introductory remarks by George Forbes, B.A., Professor of Natural Philosophy in the Andersonian University; Glasgow. 8vo. 7s. 6d.
Roscoe.-Works by Henky E. Roscoe, F.R.S., Professor of Chemistry in Owens College, Manchester :-
LESSONS IN ELEMENTARY CHEMISTRY, INORGANIC AND ORGANIC. With numerous Illustrations and Chromolitho of the Solar Spectrum, and of the Alkalis and Alkaline Earths. New Edition. Fcap. 8vo. 4s. 6d.
CHEMICAL PROBLEMS, adapted to the above by Professor Thorpe. Fifth Edition, with Key. $2 s$.
"We unhesitatingly pronounce it the best of all our elementary treatises on Chemistry."-Medical Times.
PRIMER OF CHEMISTRY. Illustrated. I8mo. is.
Roscoe and Schorlemmer.-A TREATISE ON CHEmistry. By Professors Roscoe and Schorlemmer.
Vol. I., The Non-metallic Elements. With numerous Illustrations and Portrait of Dalton. Medium 8vo. 2Is.
Vol. II., Metals. Part I. With Illustrations. 8vo. 18s.
"Regarded as a treatise on the Non-metallic Elements, there can be no doubt that this volume is incomparablv the most satisfactorv one of which we are in possession."-Spectator.
"It would be difficult to praise the work too highly. All the merits which we noticed in the first volume are conspicuous in the second. The arrangenent is clear and scientific; the facts gained by modern rescarch are fairly represented and judiciously selected; and the style throughout is singularly lucid."-Lancet.
[Metals, Part II. in the Press.
Rumford (Count).-THE LIFE AND COMPLETE WORKS OF BENJAMIN THOMPSON, COUNT RUMFORD. With Notices of his Daughter. By George Ellis. With Portrait. Five Vols. 8vo. 4l. 14s. 6d.
Schorlemmer.-A MANUAL OF THE CHEMISTRY OF THECARBON COMPOUNDS OR ORGANICCHEMISTRY. By C. Schorlemmer, F.R.S., Lecturer in Organic Chemistry in Owens College, Manchester. 8vo. 145. "It appears to us to be as complete a manual of the metamorphoses of carbon as could oe at present produced, and it must prove eminently useful to the chemical student."-Athenæum.

Shann.-AN ELEMENTARY TREATISE ON HEAT, IN RELATION TO STEAM AND THE STEAM ENGINE. By G. Shann, M.A. With Illustrations. Crown 8vo. 4s. $6 d$.
Smith.-HISTORIA FILICUM : An Exposition of the Nature, Number, and Organography of Ferns, and Review of the Principles upon which Genera are founded, and the Systems of Classification of the principal Authors, with a new General Arrangement, \&c. By J. Smith. A.L.S., ex-Curator of the Royal Botanic Garden, Kew. With Thirty Lithographic Plates by W. H. Fitcir, F.L.S. Crown 8io. i2s. 6 d .
"No one anxious to work up a thorough knowledge of ferns can afford to do without it."-Gardener's Chronicle.
South Kensington Science Lectures.-Vol. I.-Containing Lectures by Captain Abney, F.RS., Professor Stokes, Professor Kennedy, F. J. Bramwell, F.R.S., Professor G. Forbes, H. C. Sorby, F.R.S., J. T. Bottomley, F.R.S.E., S. H. Vines, B.Sc., and Professor Carey Foster. Crown 8vo. $6 s$.
[Vol. II. nearly readj.
Spottiswoode.-POLARIZATION OF LIGHT. By W. Spottiswoode, President of the Royal Society. With numerous Illustrations. Second Edition. Cr. 8vo. 3s. 6d. (Nature Series.) " The illustrations are exceedingly well adapted to assist in making' the text comprehensible."-Athenæum. " A clear, trustworthy manual."-Standard.

Stewart (B.)-Works by Balfour Stewart, F.R.S., Professor of Natural Philosophy in Owens College, Manchester :-
LESSONS IN ELEMENTARY PHYSICS. With numerous Illustrations and Chromolithos of the Spectra of the Sun, Stars, and Nebulæ. New Edition. Fcap. 8vo. 4s. 6d.
The Educational Times calls this the beau-idéal of a scientific textbook, clear, accurate, and thorough."
PRIMER OF PHYSICS. With Illustrations. New Edition, with Questions. 18 mo . Is.
Stewart and Tait.-THE UNSEEN UNIVERSE: or, Physical Speculations on a Future State. By Balfour Stewart, F.R.S., and P. G. Tait, M.A. Sixth Edition. Crown 8vo. 6s. " The book is one which well deserves the attention of thoughtful ana religious readers. . . . It is a perfectly sober inquiry, on scientific grounds, into the possibilities of a future existence."-Guardian.
Tait.-LECTURES ON SOME RECENT ADVANCES IN PHYSICAL SCIENCE. By P. G. Tait, M.A., Professor of Philosophy in the University of Edinburgh. Second edition, revised and enlarged, with the Lecture on Force delivered before the British Association. Crown 8vo. 9s.

Tanner.-FIRST PRINCIPLES OF AGRICULTURE. By Henry Tanner, F.C.S., Professor of Agricultural Science, University College, Aberystwith, Examiner in the Principles of Agriculture under the Government Department of Science 18mo. Is.
Taylor.-SOUND AND MUSIC: A Non-Mathematical Trea tise on the Physical Constitution of Musical Sounds and Harmony including the Chief Acoustical Discoveries of Professor Helm holtz. By Sedley Taylor, M.A., late Fellow of Trinity Col ledge, Cambridge. Large crown 8vo. 8s. 6d.
"In no previous scientific treatise do we remember so exhaustive and so richiy illustrated a description of forms of vibration and on wave-motion in fuids."-Musical Standard.

Thomson.-Works by Sir Wyville Thomson, K.C.B., F.R.S. THE DEPTHS OF THE SEA: An Account of the General Results of the Dredging Cruises of H.M.SS. "Porcupine" and "Lightning" during the Summers of 1868.69 and 70, under the scientific direction of Dr. Carpenter, F.R.S., J. Gwyn Jeffreys, F.R.S., and Sir Wyville Thomson, F.R.S. With nearly 100 Illustrations and 8 coloured Maps and Plans. Second Edition. Royal 8vo..cloth, gilt. 3Is. 6 d .
The Athenæum says: "The book is full of interesting matter, and is zoritten by a master of the art of popular exposition. It is excellently illustrated, both coloured maps and zooodcuts possessing high merit. Those who have already bccome interested in dredging operations will of course make a point of reading this work; those who wish to be pleasantly introduced to the subject, and rightly to appreciate the news which arrives from time to time from the 'Challenger,' should not fail to seck instruction from it."
THE VOYAGE OF THE "CHALLENGER."-THE ATLANTIC. A Preliminary account of the Exploring Voyages of H.M.S. "Challenger," during the year 1873 and the early part of 1876. With numerous Illustrations, Coloured Maps \& Charts, \& Portrait of the Author, engraved'byC. H. Jeens. 2 Vols. Medium 8vo. 42 s. The Times says:-"It is right that the public should have some authoritative account of the general results of the expedition, and that as many of the ascertained data as may be accepted with confidence should speedily find their place in the general body of scientific knowledge. No one can be more competent than the accomplished scientific chief of the expedition to satisfy the public in this respect. . . . The paper, printing, and especially the numerous illustrations, are of the highest quality. . . . We have rarely, if ever, seen more beautiful specimens of wood engraving than abound in this work. . . . Sir Wyville Thomson's style is particularly attractive; he is easy and graceful, but vigorous and exceedingly

Thomson-continued.

happy in the choice of language, and throughout the work there are touches which showe that science has not banished sentiment from his bosom."

Thudichum and Dupré.-A TREATISE ON THE ORIGIN, NATURE, AND VARIETIES OF WINE. Being a Complete Manual of Viticulture and Enology. By J. L. W. Thudichum, M.D., and August Dupré, Ph.D., Lecturer on Chemistry at Westminster Hospital. Medium 8vo. cloth gilt. 25s.
" A treatise almost unique for its usefulness either to the wine-grower, the vendor, or the consumer of wine. The analyses of wine are the most complete we have yet seen, exhibiting at a glance the constituent principles of nearly all the wines known in this country." -Wine Trade Review.

Wallace (A. R.) -Works by Alfred Russel Wallace. CONTRIBUTIONS TO THE THEORY OF NATURAL SELECTION. A Series of Essays. New Edition, with Corrections and Additions. Crown 8vo. 8s. 6 d .
Dr. Hooker, in his address to the Britis/h Association, spoke thus of the author: "Of Mr. Wallace and his many contributions to philosophical biology it is not easy to speak without enthusiasm; for, putting aside their great merits, he, throughout his writings, with a modesty as rare as I believe it to be unconscious, forgets his own unquestioned claim to the honour of having originated independently of Mr. Darwin, the theories which he so ably defends." The Saturday Review says: "He has combined an abundance of fresh and original facts with a liveliness and sagacity of reasoning zuhich are not often displayed so effectively on so small a scale."

THE GEOGRAPHICAL DISTRIBUTION OF ANIMALS,

 with a study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface. 2 vols. 8vo. with Maps, and numerous Illustrations by Zwecker, 42 s .The Times says: "Altogether it is a wonderful and fascinating story, whatever objections may be taken to theories founded upon it. Mr. Wallace has not attempted to add to its interest by any adornments of style; he has given a simple and clear statentent of intrinsically interesting facts, and what he considers to be legitimate inductions from them. Naturalists ought to be grateful to him for having undertaken so toilsome a task. The work, indeed, is a credit to all concerned-the author, the publishers, the artistunfortunately now no more-of the attractive illustrations-last but by no means least, Mr. Stanford's map-designer."

Wallace (A. R.)-continued.

TROPICAL NATURE : with other Essays. 8vo. 12s.
" Nowhere amid the many descriptions of the tropics that have been given is to be found a summary of the past history and actual phenomena of the tropics which gives that which is distinctive of the phases of nature in them more clearly, shortly, and impres-sively."-Saturday Review.

Warington.-THE WEEK OF CREATION; OR, THE COSMOGONY OF GENESIS CONSIDERED IN ITS RELATION TO MODERN SCIENCE. By George Warington, Author of " The Historic Character of the Pentateuch Vindicated." Crown 8vo. 4s. $6 d$.

Wilson.-RELIGIO CHEMICI. By the late George Wilson, M.D., F.R.S.E., Regius Professor of Technology in the University of Edinburgh. With a Vignette beautifully engraved after a design by Sir Noel Paton. Crown 8vo. 8s. 6d.
"A more fascinating volume," the Spectator says, " has seldom fallen into our hands."

Wilson (Daniel.)—CALIBAN : a Critique on Shakespeare's "Tempest" and "Midsummer Night's Dream." By Daniel Wilson, LL.D., Professor of History and English Literature in University College, Toronto. 8 vo , IOs. 6 d .
"The whole volume is most rich in the eloguence of thought and imagination as well as of words. It is a choice contribution at once to science, theology, religion, and literature."-British Quarterly Review.

Wright.-METALS AND THEIR CHIEF INDUSTRIAL Applications. By C. Alder Wright, D.Sc., \&c., Lecturer on Chemistry in St. Mary's Hospital School. Extra fcap. 8 vo . $3^{s .} 6 d$.

Wurtz. - A HISTORY OF CHEMICAL THEORY, from the Age of Lavoisier down to the present time. By Ad. Wurtz. Translated by Henry Watts, F.R.S. Crown 8vo. 6s.
"The discourse, as a résumé of chemical theory and research, unites singular luminousness and grasp. A few judicious notes are added by the translator."-Pall Mall Gazette. "The treatment of the subject is admirable, and the translator has evidently done his duty most eficiently." Westminster Review.

WORKS ON MENTAL AND MORAL PHILOSOPHY, AND ALLIED SUBJECTS.

Aristotle.-AN INTRODUCTION TO ARISTOTLE'S RHETORIC. With Analysis, Notes, and Appendices. By E. M. Cope, Trinity College, Cambridge. 8 vo . I 4 s .

ARISTOTLE ON FALLACIES; OR, THE SOPHISTICI ELENCHI. With a Translation and Notes by Edward Poste, M.A., Fellow of Oriel College, Oxford. 8vo. 8s. $6 d$.

Birks.-Works by the Rev. T. R. Birks, Professor of Moral Philo. sophy, Cambridge :-
FIRST PRINČIPLES OF MORAL SCIENCE; or, a Firs Course of Lectures delivered in the University of Cambridge. Crown 8vo. 8s. 6d.
This work treats of thrce topics all preliminary to the direct exposition of Moral Philosophy. These are the Certainty and Dignity of Moral Science, its Spiritual Geography, or relation to other main subjects of human thought, and its Formative Principles, or some elementary truths on which its whole development must depend.
MODERN UTILITARIANISM ; or, The Systems of Paley, Bentham, and Mill, Examined and Compared. Crown 8vo. 6s. $6 d$. MODERN PHYSICAL FATALISM, AND THE DOCTRINE OF EVOLUTION ; including an Examination of Herbert Spencer's First Principles. Crown 8vo. 6 s.
Boole. - an investigation of the laws of THOUGHT, ON WHICH ARE FOUNDED THE MATHEMATICAL THEORIES OF LOGIC AND PRObabilities. By George Boole, Ll.D., Professor of Mathematics in the Queen's University, Ireland, \&c. 8vo. 145.
Butler.-LECTURES ON THE HISTORY OF ANCIENT PHILOSOPHY. By W. Archer Butler, late Professor of Moral Philosophy in the University of Dublin. Edited from the Author's MSS., with Notes, by William Hepworth Thompson, M.A., Master of Trinity College, and Regius Professor of Greek in the University of Cambridge. New and Cheaper Edition, revised by the Editor. 8vo. I2s.
Caird,-A CRitical account of the philosophy OF KANT. With an Historical Introduction. By E. Caird, M.A., Professor of Moral Philosophy in the University of Glasgow. 8 vo . 18 s.

Calderwood.-Works by the Rev. Henry Calderwood, M.A., LL.D., Professor of Moral Philosophy in the University of Edinburgh :-
PHILOSOPHY OF THE INFINITE: A Treatise on Man's Knowledge of the Infinite Being, in answer to Sir W. Hamilton and Dr. Mansel. Cheaper Edition. 8vo. 7s. 6d.
"A book of great ability written in a clear style, and may be easily understood by even those who are not versed in such discussions."-British Quarterly Review.
A HANDBOOK OF MORAL PHILOSOPHY. New Edition. Crown 8vo. 6 s.
"It is, wefeel convinced, the best handbook on the subject, intellectually and morally, and does infinite credit to its author."-Standard. "A compact and useful work, going over a great deal of ground in a manner adapted to suggest and facilitate further study. . . . His book will be an assistance to many students outside his own University of Edinturgh. -Guardian.
THE RELATIONS OF MIND AND BRAIN. [Nearly ready.
Fiske.-OUTLINES OF COSMIC PHILOSOPHY, BASED ON THE DOCTRINE OF EVOLUTION, WITH CRITICISMS ON THE POSITIVE PHILOSOPHY. By John Fiske, M.A., LL.B., formerly Lecturer on Philosophy at Harvard University. 2 vols. 8vo. 25 s.
" The work constitutes a very efective encyclopadia of the coolutionary philosophy, and is well worth the study of all who wish to see at once the entire scope and purport of the scientific dogmatism of the dav."-Saturday Review.
Herbert.-THE REALISTIC ASSUMPTIONS OF MODERN SCIENCE EXAMINED. By T. M. Herbert, M.A., late Professor of Philosophy, \&c., in the Lancashire Independent College, Manchester. 8vo. I4s.
Jardine.-THE ELEMENTS OF THE PSYCHOLOGY OF COGNITION. By Robert Jardine, B.D., D.Sc., Principal of the General Assembly's College, Calcutta, and Fellow of the University of Calcutta. Crown 8vo. 6s. $6 \mathbf{d}$.

Jevons.-Works by W. Stanley Jevons, LL.D., M.A., F.R.S., Professor of Political Economy, University College, London.
THE PRINCIPLES OF SCIENCE. A Treatise on Logic and Scientific Method. New and Cheaper Edition, revised. Crown 8 vo . 12 s .6 d .
"No one in future can be said to have any true" knowledge of what has been done in the way of logical and scientific method in England without!having carefully studied!Professor fevons' book."-Spectator.

Jevons-continued.

THE SUBSTITUTION OF SIMILARS, the True Principle of Keasoning. Derived from a Modification of Aristotle's Dictum. Fcap. 8vo. 2s. 6d.
ELEMENTARY LESSONS IN LOGIC, DEDUCTIVE AND INDUCTIVE. With Questions, Examples, and Vccabulary of Logical Terms. ` New Edition. Fcap. 8vo. 3s. 6d.
PRIMER OF LOGIC. New Edition. 18mo. is.
Maccoll.-THE GREEK SCEPTICS, from Pyrrho to Sextus. An Essay which obtained the Hare Prize in the year 1868. By Norman Maccoll, B.A., Scholar of Downing College, Cambridge. Crown 8vo. 3s. 6d.
M‘Cosh.-Works by James M‘Cosh, LL.D., President of Princeton College, New Jersey, U.S.
"He certainly shows himself skilful in that application of logic to psychology, in that inductive science of the human mind which is the fine side of English philosophy. His philosophy as a whole is worthy of attention."-Revue de Deux Mondes.
THE METHOD OF THE DIVINE GOVERNMENT, Physical and Moral. Tenth Edition. 8vo. IOs. 6d.
"This work is distinguished from other similar ones by its being based upon a thorough study of physical science, and an accurate knowledge of its present condition, and by its entering in a deeper and more unfettered manner than its predecessors upon the discussion of the appropriate psychological, ethical, and theological questions. Theauthor keeps aloof at once from the à priori idealism and dreaminess of German speculation since Schelling, and from the onesidedness and narrowness of the empiricism and positivism which have so prevailed in England."-Dr. Ulrici, in "Zeitschrift fuir Philosophie."
THE INTUITIONS OF THE MIND. A New Edition. 8vo. cloth. IOS. 6 d .
"The undertaking to adjust the claims of the sensational and intuitional philosophies, and of the à posteriori and à priori methods, is accomplished in this work with a great amount of success."Westminster Review. "I value it for its large acquaintance with English Philosophy, which has not led him to neglect the great German works. I admire the moderation and clcarness, as well as comprehensiveness, of the author's views."-Dr. Dörner, of Berlin.
AN EXAMINATION OF MR. J. S. MILL'S PHILOSOPHY: Being a Defence of Fundamental Truth. Second edition, with additions. Ios. $6 d$.
"Such a work greatly needed to be done, and the author was the mant to do it. This volume is important, not merely in reference to th

M'Cosh-continuel.

views of Mr. Mill, but of the whole school of writers, past and present, British and Continental, he so ably represents."-Princeton Review.

THE LAWS OF DISCURSIVE THOUGHT: Being a Textbook of Formal Logic. Crown 8vo. 5s.
"The amount of summarised information which it contains is very great; and it is the only work on the very important subject with which it deals. Never was such a work so much needed as in the present day."-London Quarterly Review.
CHRISTIANITY AND POSITIVISM : A Series of Lectures to the Times on Natural Theology and Apologetics. Crown 8vo. 7s. 6 d.
THE SCOTTISH PHILOSOPHY FROM HUTCHESON TO HAMILTON, Biographical, Critical, Expository. Royal 8vo. 16s.

Masson.-RECENT BRITISH PHILOSOPHY: A Review with Criticisms ; including some Comments on Mr. Mill's Answer to Sir William Hamilton. By David Masson, M.A., Professor of Rhetoric and English Literature in the University of Edinburgh. Third Edition, with an Additional Chapter. Crown 8vo. 6s.
"We can nowhere point to a work which gives so clear an exposition of the course of philosophical speculation in Britain during the past century, or which indicates so instructively the mutual influences of philosophic and scientific thought."-Fortnightly Review.

Maudsley.-Works by H. Maudsley, M.D., Professor of Medical Jurisprudence in University College, London.
THE PHYSIOLOGY OF MIND; being the First Part of a Third Edition, Revised, Enlarged, and in great part Rewritten, of "The Physiology and Pathology of Mind." Crown 8vo. 10s. $6 d$.
THE PATHOLOGY OF MIND. [In the Press.
BODY AND MIND : an Inquiry into their Connexion and Mutual Influence, specially with reference to Mental Disorders. An Enlarged and Kevised edition. To which are added, Psychological Essays. Crown 8vo. 6s. 6d.

Maurice.-Works by the Rev. Frederick Denison Maurice, M.A., Professor of Moral Philosophy in the University of Cambridge. (For other Works by the same Author, see Theological Catalogue.)
SOCIAL MORALITY. Twenty-one Lectures delivered in the University of Cambridge. New and Cheaper Edition. Crown 8vo. 10s. $6 d$.

Maurice-continued.

"Whilst reading it we are charmed by the freedom from exclusiveness and prejudice, the large charity, the loftiness of thought, the eagerness to recognize and appreciate whatever there is of real worth extant in the world, which animates it from one end to the other. We gain new thoughts and new ways of viewing things, even more, perhaps, from being brought for a time under the influence of so noble and spiritual a mind."-Athenæum.
THE CONSCIENCE : Lectures on Casuistry, delivered in the University of Cambridge. New and Cheaper Edition. Crown 8vo. 5 s.
The Saturday Review says: "We rise from them with detestation of all that is selfish and mean, and with, a living impression that there is such a thing as goodness after all."
MORAL AND METAPHYSICAL PHILOSOPHY. Vol. I. Ancient Philosophy from the First to the Thirteenth Centuries; Vol. II. the Fourteenth Century and the French Revolution, with a glimpse into the Nineteenth Century. New Edition and Preface. 2 Vols. 8vo. 25 s.

Morgan.-ANCIENT SOCIETY : or Researches in the Lines of Human Progress, from Savagery, through Barbarism to Civilisation. By Lewis H. Morgan, Member of the National Academy of Sciences. 8vo. $16 s$.

Murphy.-THE SCIENTIFIC BASES OF FAITH. By Joseph John Murphy, Author of "Habit and Intelligence." 8 vo . 14 s.
"The book is not without substantial value; the writer continues the work of the best apologists of the last century, it may be with less force and clearness, but still with commendable persuasiveness and tact; and with an intelligent feeling for the changed condilions of the problem."-Academy.

Paradoxical Philosophy.-A Sequel to "The Unseen Universe." Crown 8vo. 7s. 6d.

Picton.-THE MYSTERY OF MATTER AND OTHER ESSAYS. By J. Allanson Picton, Author of "New Theories and the Old Faith." Cheaper issue with New Preface. Crown 8 vo . 6 s.
Contents :- The Mystery of Matter-The Philosophy of Igno-ranct-The Antilhesis of Faith and Sight-The Essential Nature of Relision-Christian Pantheism.

Sidgwick.-THE METHODS OF ETHICS. By Henry Sidgwick, M.A., Præelector in Moral and Political Philosophy in Trinity College, Cambridge. Second Edition, revised throughout with important additions. 8vo. 14 s .
A SUPPLEMENT to the First Edition, containing all the important additions and alterations in the Second. 8vo. $2 s$.
"This excellent and very welcome volume. Leaving to metaphysicians any further discusson that may be needed respecting the already over-discussed problem of the origin of the moral faculty, he takes it for granted as readily as the geometrician takes space for granted, or the physicist the existence of matter. But he takes little else for granted, and defining ethics as 'the science of conduct,' be carefully examines,' not the various ethical systems that have been propounded by Aristotle and Aristotle's followers downwards, but the principles upon which, so far as they confine themselves to the strict province of ethics, they are based."-A thenæum.
Thornton.-OLD-FASHIONED ETHICS, AND COMMONSENSE METAPHYSICS, with some of their Applications. By William Thomas Thornton, Author of "A Treatise on Labour." 8vo. 1os. $6 d$.
The present volume aeals with problems which are asitating the minds of all thoughttul men. The following are the Contents:I. Ante-Utilitarianism. II. History's Scientific Pretensions. III. David Hume as a Metaphysician. IV. Huxleyism. V. Recent Phase of Scientific Atheism. VI. Limits of Demonstrable Theism.
Thring (E., M.A.)-THOUGHTS ON LIFE-SCIENCE. By Edward Thring, M.A. (Benjamin Place), Head Master of Uppingham School. . New Edition, enlarged and revised. Crown 8vo. 7s. 6 d .
Venn.--THE LOGIC OF CHANCE: An Essay on the Foundations and Province of the Theory of Probability, with especial reterence to its logical bearings, and its application to Moral and Social Science. By John Venn, M.A., Fellow and Lecturer of Gonville and Caius College, Cambridge. Second Edition, rewritten and greatly enlarged. Crown 8vo. Ios. $6 d$.
"One of the most thoughtful and philosophical treatises on any subject connected wuth logic and evidence which has been produced in this or any other country for many years."-Mill's Logic, vol. ii. p. 77. Seventh Edition.

SCIENCE PRIMERS FOR ELEMENTARY SCHOOLS.

Under the joint Editorship of Professors Huxley, Ropsoe, and Balfour Stewart.

Chemistry.-By H. E. Roscoe, F.R.S., Professor of Chemistry in Owens College, Manchester. With numerous Illustrations. 18mo. Is. New Edition. With Questions.
Physics.- By Balfour Stewart, F.R.S., Professor of Natural Philosophy in Owens College, Manchester. With numerous Illustrations. 18mo. Is. New Edition. With Questions.
Physical Geography. - By Archibald Geikie, F.R.S., Murchison Professor of Geology and Mineralogy at Edinburgh. With numerous Illustrations. New Edition with Questions. 18 mo . 1 s .
Geology.-By Professor Geikie, F.R.S. With numerous Illustrations. New Edition. 18mo. cloth. Is.
Physiology.-By Michael Foster, M.D., F.R.S. With numerous Illustrations. New Edition. 18mo. is.
Astronomy.-By J. Norman Lockyer, F.R.S. With numerous Illustrations. New Edition. I8mo. Is.
Botany.-By Sir J. D. Hooker, K.C.S.I., C.B., F.R.S. With numerous Illustrations. New Edition. I8mo. is.
Logic.-By Professor Stanley: Jevons, F.R.S. New Edition. 18mo. Is.
Political Economy,-By Professor Stanley Jevons, F.R.S. 18mo. is.

In preparation:-

INTRODUCTORY. By Professor Huxley. \&c. \&c.

ELEMENTARY SCIENCE CLASS-BOOKS.

Astronomy.-By the Astronomer Royal. popular aSTRONOMY. With Illustrations. By Sir G. B. Airy, K.C.B., Astronomer Royal. New Edition. 18mo. 4s. $6 d$.
Astronomy.-ELEMENTARY LESSONS IN ASTRONOMY. With Coloured Diagram of the Spectra of the Sun, Stars, and Nebulæ, and numerous Illustrations. By J. Norman Lockyer, F.R.S. New Edition. Fcap. 8vo. 5s. 6d.

Elementary Science Class-books-continued.

QUESTIONS ON LOCKYER'S ELEMENTARY LESSONS IN ASTRONOMY. For the Use of Schools. By John Forbes Robertson. 18mo, cloth limp. is. $6 d$.
Physiology.-LESSONS IN ELEMENTARY PHYSIOLOGYY. With numerous Illustrations. By T. H. Huxley, F.R.S., Professor of Natural History in the Royal School of Mines. New Edition. Fcap. 8vo. 4s. 6d.
QUESTIONS ON HUXLEY'S PHYSIOLOGY FOR SCHOOLS. By T. Alcock, M.D. 18 mo . Is. $6 d$.
Botany.-LESSONS IN ELEMENTARY BOTANY. By D. Oliver, F.R.S., F.L.S., Professor of Botany in University College, London. With nearly Two Hundred Illustrations. New Edition. Fcap. 8vo. 4s. 6d.
Chemistry.-LESsONs in ELEMENTARY CHEMISTRY, inorganic and organic. By Henry E. Roscoe, F.R.S., Professor of Chemistry in Owens College, Manchester. With numerous Illustrations and Chromo-Litho of the Solar Spectrum, and of the Alkalies and Alkaline Earths. New Editior. Fcap. 8vo. 4s. 6d.
A SERIES OF CHEMICAL PROBLEMS, prepared with Special Reference to the above, by T. E. Thorpe, Ph.D., Professor of Chemistry in the Yorkshire College of Science, Leeds. Adapted for the preparation of Students for the Government, Science, and Society of Arts Examinations. With a Preface by Professor Roscoe. Fifth Edition, with Key. 18mo. 2s.
Political Economy.-POLITICAL ECONOMY FOR BEGINNERS. By Millicent G. Fawcett. New Edition. 18mo. 2s. $6 d$.
Logic.-ELEMENTARY LESSONS IN LOGIC; Deductive and Inductive, with copious Questions and Examples, and a Vocabulary of Logical Terms. By W. Stanley Jevons, M.A., Professor of Political Economy in University College, London. New Edition. Fcap. 8vo. 3s. 6 d .
Physics.-LESSONS IN ELEMENTARY PHYSICS. By Balfour Stewart, F.R.S., Professor of Natural Philosophy in Owens College, Manchester. With numerous Illustrations and Chromo-Litho of the Spectra of the Sun, Stars,'and Nebulæ. New Edition. Fcap. 8vo. 4s. 6d.
Practical Chemistry.-THE OWENS COLLEGE JUNIOR COURSE OF PRACTICAL CHEMISTRY. By Francis Iones, Chemical Master in the Grammar School, Manchéster. With Preface by Professor Roscoe, and Illustrations. New Edition. 18mo. 2s. $6 d$.

Elementary Science Class-books-continued.

Anatomy.-LESSONS IN ELEMENTARY ANATOMy. By 'St. George Mivart, F.R.S., Lecturer in Comparative Anatomy at St. Mary's Hospital. With upwards of 400 Illustrations. Fcap. 8 vo . 6 s. $6 d$.
Mechanics.-AN Elementary treatise. By A. B. W. Kennedy, C.E., Professor of Applied Mechanics in University College, London. With Illustrations.
[In preparation.
Steam.-An elementary treatise, By john Perry, Professor of Engineering, Imperial College of Engineering, Yedo. With numerous Woodcuts and Numerical Examples and Exercises. 18mo. 4s. 6 d .
Physical Geography. - Elementary Lessons in PHYSICAL GEOGRAPHy. By A. Geikie, F.R.S., Murchison Professor of Geology, \&c., Edinburgh. With numerous Illustrations. Fcap. 8vo. 4s. $6 d$.
QUESTIONS ON THE SAME. is. $6 d$.
Geography.-Class-book of geography. By C. b. Clarke, M.A.. F.R.G.S. Fcap. 8vo. 2s. 6 d .
Natural Philosophy.-NATURAL PHILOSOPHY FOR beginners. By I. Todhunter, M.A., F.R.S. Part I. The Properties of Solid and Fluid Bodies. 18mo. 3s. 6 d . Part II. Sound, Light, and Heat. 18mo. 3s. $6 d$.

Sound.-an elementary treatise. By w. h. Stone, M.D., F.R.S. With Illustrations. 18mo.
[In the Press.
Others in Preparation.

MANUALS FOR STUDENTS.

Crown 8vo.
Dyer and Vines.-The structure of plants. By Professor Thiselton Dyer, F.R.S., assisted by Sydney Vines, B.Sc., Fellow and Lecturer of Christ's College, Cambridge. With numerous Illustrations,
[in preparation.
Fawcett.-A MANUAL OF pOLITICAL ECONOMY. By Professor Fawcett, M.P. New Edition, revised and enlarged. Crown 8vo. 125. 6id
Fleischer.-A system of volumetric analysis. Translated, with Notes and Additions, from the second German Edition, by M. M. Pattison Muir, F.R.S.E. With Illustrations. Crown 8vo. 7s. $6 d$.

Manuals for Students-continued.
Flower (W. H.)-AN INTRODUCTION TO THE OSTEOLOGY OF THE MAMMALIA. Being the Substance of the Course of Lectures delivered at the Royal College of Surgeons of England in 1870. By Professor W. H. Flower, F.R.S., F.K.C.S. With numerous Illustrations. New Edition, enlarged. Crown 8vo. 10s. 6 d.
Foster and Balfour.-THE ELEMENTS OF EMBRY. OLOGY. By Michael ; Foster, M.D., F.R.S., and F. M. Balfour, M.A. Part I. crown 8vo. 7s. 6d .
Foster and Langley.-A COURSE OF ELEMENTARY PRACTICAL PHYSIOLOGY. By Michael Foster, M.D., F.R.S., and J. N. Langley, B.A. New Edition. Crown 8vo. $6 s$ s.

Hooker (Dr.)-THE STUDENT'S FLORA OF THE BRITISH ISLANDS. By Sir J. D. Hooker, K.C.S.I., C.B., F.R.S., M.D., D.C.L. New Edition, revised, Globe 8vo. IOS. $6 d$.

Huxley.-PHYSIOGRAPHY. An Introduction to the Study of Nature. By Professor HUXLEY, F.R.S. With numerous Illustrations, and Coloured Plates. New Edition. Crown 8vo. 7 s. 6d.
Huxley and Martin.-A COURSE OF PRACTICAL INSTRUCTION IN ELEMENTARY BIOLOGY. By Professor Huxley, F.R.S., assisted by H. N. Martin, M.B., D.Sc. New Edition, revised. Crown 8vo. 6s.
Huxley and Parker.-ELEmentary biology. Part II. By Professor Huxley, F.R.S., assisted by - Parker. With Illustrations.
[In preparation.
Jevons.-THE PRINCIPLES OF SCIENCE. A Treatise on Logic and Scientific Method. By Professor W. Stanley Jevons, LL.D., F.R.S., New and Revised Edition. Crown 8vo. I2s. 6d.
Oliver (Professor).-FIRST BOOK OF INDIAN BOTANY. By Professor Daniel Oliver, F.R.S., F.L.S., Keeper of the Herbarium and Library of the Royal Gardens, Kew: With numerous Illustrations. Extra fcap. 8vo. 6s. 6 d .
Parker and Bettany.-THE MORPHOLOGY OF THE SKULL. By Professor Parker and G. T. Bettany. Illustrated. Crown 8vo. Ios. $6 d$.
Tait-an Elementary treatise on heat. By Professor Tait, F.R.S.E. Illustrated. [In the Press.
Thomson.- zOOLOGY. By Sir C. Wyville Thomson, F.R.S. Illustrated.
[In preparation.
Tylor and Lankester.-ANTHROPOLOGY. By E. B. Tylor, M.a., F.R.S., and Professor E. Ray Lankester, M. A., F.R.S. Illustrated.
[In preparation. Other volumes of these Manuals will follow.

N ATURE SERIES.

THE SPECTROSCOPE AND ITS APPLICATIONS. By J. N. LOCKYER, F.R.S. With Illustrations. Second Edition. Crown 8vo.. 3s. $6 d$.

THE ORIGIN AND METAMORPHOSES OF INSECTS. By Sir JOHN LUBBOCK, M.P., F.R.S. With Illustrations. Crown 8vo. 3s. 6d. Second Edition.

THE TRANSIT OF VENUS. By G. Forbes, B.A., Professor of Natural Philosophy in the Andersonian University, Glasgow. With numerous Illustrations. Crown 8 vo . 3 s . 6 d .

THE COMMON FROG. By St. George Mivart, F.R.S. Illustrated. Crown 8vo. 3s. $6 d$.

POLARISATION OF LIGHT. By W. Spottiswoode, LL.D., President of the Royal Society. Illustrated. Second Edition. Crown 8vo. 3s. $6 d$.
ON BRITISH WILD FLOWERS CONSIDERED IN RELATION TO INSECTS. By Sir JOHN LUBBOCK, M.P., F.R.S. Illustrated. Second Edition. Crown 8vo. 4s. 6d.
THE SCIENCE OF WEIGHING AND MEȦSURING. By H. W. CHISHOLM, Warden of the Standards. Illustrated. Crown 8vo. 4s. $6 d$.

HOW TO DRAW A STRAIGHT LINE: A Lecture on Linkages. By A. B. KEMPE, B.A. Illustrated. Crown 8vo. is. $6 d$.

LIGHT : A Series of Simple, Entertaining and Useful Experiments in the Phenomena of Light for the Use of Students of every Age. By ALFRED M. MAYER and CHARLES BARNARD. With Illustrations. Crown 8vo. 2s. 6d.

SOUND: A Series of Simple, Entertaining and Inexpensive Experiments in the Phenomena of Sound, for the Use of Students of every Age. By A. M. MAYER, Professor of Physics in the Stevens Institute of Technology, \&c. With numerous Illustrations. Crown 8vo. 3 s .6 d .
(Others to follow.)

Publishei every Thursday, trice 6d.; Monthly Parts 2s. and 2s. 6त., Half-Yearly Volumes, 15 s.

NATURE:

an illustrated tournal of science.

Nature expounds in a popular and yet authentic manner, the Grand Results of Scientific Research, discussing the most recent scientific discoveries, and pointing out the bearing of Science upon civilisation and progress, and its claims to a more general recognition, as well as to a higher place in the educational system of the country.

It contains original articles on all subjects within the domain of Science; Reviews setting forth the nature and value of recent Scientific Works; Correspondence Columns, forming a medium of Scientific discussion and of intercommunication among the most distinguished men of Science; Serial Columns, giving the gist of the most important papers appearing in Scientific Journals, both Home and Foreign ; Transactions of the principal Scientific Societies and Academies of the World, Notes, \&c.

In Schools where Science is included in the regular course of studies, this paper will be most acceptable, as it tells what is doing in Science all over the world, is popular without lowering the standard of Science, and by it a vast amount of information is brought within a small compass, and students are directed to the best sources for what they need. The various questions connected with Science teaching in schools are also fully discussed, and the best methods of teaching are indicated.
opyurest, Google
-

Digitized by COOQ

[^0]: * An example of such needless factors may be found in the rules commonly given in English books for finding the mass of a body when its volume and material are given. "Multiply the volume in cubic feet by the specific gravity and by 62.4 , and the product will be the mass in pounds ;" or " multiply the volume in cubic inches by the specific gravity and by 253 , and the product will be the mass in grains." The factors 62.4 and 253 here employed would be avoided -that is, would be replaced by unity, if the unit volume of water were made the unit of mass.

[^1]: * Professor James Thomson ('Brit. Assoc. Report,' 1878, p. 452) objects to these expressions, and proposes to substitute the following :-

[^2]: * It is not correct to speak of interest at the rate of Five Pounds per cent. It should be simply Five per cent. A rate of five pounds in every hundred pounds is not different from a rate of five shillings in every hundred shillings.

[^3]: * For the dimensions of density and force, see Art. 14.

[^4]: * It is proposed to give the name radian to the angle whose arc is equal to radius. Thus, instead of "an angle whose value in circular measure is θ," we shall be able to say "an angle of θ radiens."

[^5]: * The prefix mega denotes multiplication by a million. A megadyne is a force of a million dynes.

[^6]: *Strictly speaking, E should be taken as denoting the resilience for sudden applications of stress-so sudden that there is not time for changes of temperature produced by the stress to be sensibly

[^7]: * This temperature is not stated in the "Proceedings," but has been communicated to me by Professor Tait.

[^8]: * This factor is found by giving t the value 15.8 (since the temperature 60.5 Fahr. is 15.8 Cent.) in formula (3) of art. 98.

[^9]: The numbers without an asterisk were obtained directly by experiment，those with an asterisk by calculation， using the well－known assumption that in a compound circuit of metals all at the same temperature，there is no electromotive force．

 The numbers in a vertical column below the name of a substance are the differences of potential，in volts，between
 that substance and the substance in the same horizontal row as the number，the two substances being in contact． Thus，lead is positive to copper，the electromotive force of contact being 0.542 volts． The metals were those of commerce，and therefore only commercially pure．

[^10]: * Before a vowel, either meg or megal, as euphony may suggest, may be employed instead of mega.

