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In a well-known investigation Sir WirLiam TaoMsON has discussed the problem of
the bodily tides of a homogeneous elastic sphere, and has drawn therefrom very
important conclusions as to the great rigidity of the earth.*

Now it appears improbable that the earth should be perfectly elastic; for the con-
tortions of geological strata show that the matter constituting the earth is somewhat
plastic, at least near the surface. We know also that even the most refractory metals
can be made to flow under the action of sufficiently great forces.

Although Sir W. THOMSONS investigation has gone far to overthrow the old idea of
a semi-fluid interior to the earth, yet geologists are so strongly impressed by the fact
that enormous masses of rock are being, and have been, poured out of volcanic vents in
the earth’s surface, that the belief is not yet extinct that we live on a thin shell over
a sea of molten lava. Under these circumstances it appears to be of interest to inves-
tigate the consequences which would arise from the supposition that the matter
constituting the earth is of a viscous or imperfectly elastic nature ; for if the interior
ts constituted in this way, then the solid crust, unless very thick, cannot possess
rigidity enough to repress the tidal surgings, and these hypotheses must give results
fairly conformable to the reality. The hypothesis of imperfect elasticity will be prin-

* Sir WILLIAM states that M. Lawit had treated the subject at an earlier date, but in an entirely
different manner. I am not aware, however, that M. Lamt had fully discussed the subject in its physical

aspect.
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2 MR. DARWIN ON THE BODILY TIDES OF VISCOUS AND SEMI-ELASTIC

cipally interesting as showing how far Sir W. THoMsON’s results are modified by the
supposition that the elasticity breaks down under continued stress.

In this paper, then, I follow out these hypotheses, and it will be seen that the
results are fully as hostile to the idea of any great mobility of the interior of the
earth as 1s that of Sir W. TroMsoN.

The only terrestrial evidence of the existence of a bodily tide in the earth would be
that the ocean tides would be less in height than is indicated by theory. The subject
of this paper is therefore intimately connected with the theory of the ocean tides.

In the first part the equilibrium tide-theory is applied to estimate the reduction
and alteration of phase of ocean tides as due to bodily tides, but that theory is
acknowledged on all hands to be quite fallacious in its explanation of tides of short
period.

In the second part of this paper, therefore, I have considered the dynamical theory
of tides in an equatorial canal 1unning round a tidally-distorted nucleus, and the
results are almost the same as those given by the equilibrium theory.

The first two sections of the paper are occupied with the adaptation of Sir W
TaomsonN’s work® to the present hypotheses ; as, of course, it was impossible to repro-
duce the whole of his argument, I fear that the investigation will only be intelligible
to those who are either already acquainted with that work, or who are willing to
accept my quotations therefrom as established.

As some readers may like to know the results of this inquiry without going into
the mathematics by which they are established, I have given in Part III. a summary
of the whole, and have as far as possible relegated to that part of the paper the
comments and conclusions to be drawn. I have tried, however, to give so much
explanation in the body of the paper as will make it clear whither the argument is
tending.

The case of pure viscosity is considered first, because the analysis is somewhat
simpler, and because the results will afterwards admit of an easy extension to the case
of elastico-viscosity.

THE BODILY TIDES OF VISCOUS AND ELASTICO-VISCOUS SPHEROIDS.

1. Analogy between the flow of a wviscous body and the strain of an elastic one.

The general equations of flow of a viscous fluid, when the effects of inertia are
neglected, are

* His paper will be found in Phil. Trans., 1863, p. 573, and §§ 733-737 and 834-846 of Tuomsoy and
Tam’s ¢ Natural Philosophy,’ edit. of 1867.
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where x, 9, z are the rectangular coordinates of a point of the fluid; «, B, v are the
component velocities parallel to the axes; p is the mean of the three pressures across
planes perpendicular to the three axes respectively ; X, Y, Z are the component forces
acting on the fluid, estimated per unit volume ; v is the coefficient of viscosity ; and

a4 d?
v?is the Laplacian operation ¥ ot
( g d
Besides these we have the equation of contmmty ila+ d§ d";

Also if P, Q, R, S, T, U are the normal and tangential stresses estimated in the
usual way across three planes perpendicular of the axes

p=—p+zv%, Q=—p+2v5’l§—, R=—p+2v ﬂ|

_[aB | dy __[dy , da _ B\ |
S—v<dz+dy>’ T_v<clx+dz> U= <d7+clx>_)

Now in an elastic solid, if a, B, v be the displacemont%, m—31n be the coefficient of

czi

dilatation, and n that of rigidity, and if 3—- —l-—CB +(Z ; the equations of equilibrium

are
dd 9 P
m +ny a+X=0
(8 2B4+Y=0 )
ondy—l—?zvnl—P N €))
77%@+71V9'y+Z=0
dz Dy

Also

P:(m—n)S-&-Qn%, Q:(m——-n)S-I—Qang, R= (m-—n)B—l—zn ----- .o (49

and S, T, U have the same forms as in (2), with n written instead of v.

Therefore if we put —p =:1;)(P—I—Q+ R), we have p= —-(m—q—b)S, so that (3) may be
written

* TomsoN and Tarr’s ¢ Nat. Phil.;” § 698, eq. (7) and (8).
2B
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Also
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Now if we suppose the elastic solid to be incompressible, so that m is infinitely
large compared to n, then it is clear that the equations of equilibrium of the incom-
pressible elastic solid assume exactly the same form as those of flow of the viscous
fluid, n merely taking the place of v.

Thus every problem in the equilibrium of an incompressible elastic solid has its
counterpart in a problem touching the state of flow of an incompressible viscous fluid,
when the effects of inertia are neglected ; and the solution of the one may be made
applicable to the other by merely reading for “displacements”
the coefficient of “rigidity ” that of ¢ viscosity.”

velocities,” and for

2. A sphere under mﬂuehoe of bodily force.

Sir W. TromsoN has solved the following problem :—

To find the displacement of every point of the substance of an elastic sphere exposed
to no surface traction, but deformed infinitesimally by an equilibrating system of forces
acting bodily through the interior.

If for «displacement” we read velocity, and for “elastic” viscous, we have the
corresponding problem with respect to a viscous fluid, and mutatis mutandis the
solution is the same.

But we cannot find the tides of a viscous sphere by merely making the equilibrating
system of forces equal to the tide-generating influence of the sun or moon, because the
substance of the sphere must be supposed to have the power of gravitation.

For suppose that at any time the equation to the free surface of the earth (as the

) o
viscous sphere may be called for brevity) is 7=a -0, where o; is a surface harmonic.
2

Then the matter, positive or negative, filling the space represented by Zo; exercises
an attraction on every point of the interior ; and this attraction, together with that of
a homogeneous sphere of radius a, must be added to the tide-generating influence to
form the whole force in the interior of the sphere. Also it is a spheroid, and no
longer a true sphere with which we have to deal. If, however, we cut a true sphere
of radius @ out of the spheroid (leaving out So;), then by a proper choice of surface
actions, the tidal problem may be reduced to finding the state of flow in a true sphere
under the action of (i) an external tide-generating influence, (ii) the attraction of the



SPHEROIDS, AND ON THE OCEAN TIDES UPON A YIELDING NUCLEUS. 5

true sphere, and of the positive and negative matter filling the space Sa;, but (iii)
subject to certain surface forces.

- Since (i) and (ii) together constitute a bodily force, the problem only differs from
that of Sir W. THoMsoN in the fact that there are forces acting on the surface of the
sphere.

Now as we are only going to consider small deviations from sphericity, these surface
actions will be of small amount, and an approximation will be permissible.

It is clear that rigorously there is tangential action® between the layer of matter
So; and the true sphere, but by far the larger part of the action is normal, and is
simply the weight (either positive or negative) of the matter which lies above or
below any point on the surface of the true sphere.

Thus, in order to reduce the earth to sphericity, the appropriate surface action is
a normal traction equal to —gw3o;, where ¢ is gravity at the surface, and w is the
mass per unit volume of the matter constituting the earth.

In order to show what alteration this normal surface traction will make in
Sir W. TaoMmsoN’s solution, I must now give a short account of his method of
attacking the problem.
~ He first shows that, where there is a potential function, the solution of the problem
may be subdivided, and that the complete values of a, B, y consist of the sums of two
parts which are to be found in different ways. The first part consists of any values of
a, B, y, which satisty the equations throughout the sphere, without reference to surface
conditions. As far as regards the second part, the bodily force is deemed to be non-
existent and is replaced by certain surface actions, so calculated as to counteract the
surface actions which correspond to the values of «, 8, y found in the first part of the
solution. Thus the first part satisfies the condition that there is a bodily force, and
the second adds the condition that the surface forces are zero. The first part of the
solution is easily found, and for the second part Sir W. THoMsoN discusses the case of
an elastic sphere under the action of any surface tractions, but without any bodily
force acting on it. The component surface tractions parallel to the three axes, in this
problem, are supposed to be expanded in a series of surface harmonics; and the
harmonic terms of any order are shown to have an effect on the displacements inde-
pendent of those of .every other order. Thus it is only necessary to consider the
typical component surface tractions A;, B;, C; of the order 7.

He proves that (for an incompressible elastic solid for which m is infinite) this one
surface traction A;, B;, C; produces a displacement throughout the sphere given by

1 at—r* d¥;_, 1 |— 1+2 ot ) 1 do; )
— . y - Rt (\r, 7/."122*'1 —_— 41 ot ;
* 7mi‘1{2(2¢2+1) da +7,—1L(2'02+ D2+ 1)7 (lw< =l )+27,(27,+ 1) dz A | ()
# T shall consider some of the effects of this tangential action in a future paper, viz.: * Problems con-
nected with the Tides of a Viscous Spheroid,” read before the Royal Saciety on December 19th, 1878,
+ TromsoN and Tarr’s ¢ Nat. Phil.,” 1867, § 737, equation (52).
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with symmetrical expressions for 8 and y; where ¥ and ® are auxiliary functions
defined by
1

: Lonon s @omooy @ s
o= A+ B ()

l { d K} : (6)
=00 L (A=) (B )4 G (Co~) ||

In the case considered by Sir W. TromsoN of an elastic sphere deformed by bodily
stress and subject to no surface action, we have ta substitute in (5) and (6) only those
surface actions which are equal and opposite to the surface forces corresponding to the
first part of the solution ;* but in the case which we now wish to consider, we must
add to these latter the components of the normal traction —gw=ey, and besides must
include in the bodily force both the external disturbing force, and the attraction of
the matter of the spheroid on itself, .

Now from the forms of (5) and (6) it is obvious that the tractions which correspond
to the first part of the solution, and the traction —gwo; prodlice quite independent
effects, and therefore we need only add to the complete solution of Sir W. THOMSON’S
problem of the elastic sphere, the terms which arise from the normal traction —gw=o.
Finally we must pass from the elastic problem to the viscous one, by reading v for =,
and velocities for displacements. ‘

I proceed then to find the state of internal flow in the viscous sphere, which results
from a normal traction at every point of the surface of the sphere, given by the
surface harmonic S;. ‘

In order to use the formule (5) and (6), it is first necessary to express the

Y 2 .
78, - S, as surface harmonics,

. @
component tractions p S;, p

Now if V; be a solid harmonic,

d . . . A
=21\ ) —- ( 2= (2 +3). R —Q+1) L2
d%(o V)= —(2¢e41) x V47 -
So that
V.— 1 { ALY 21V
LU A V)
Therefore

v 1 i site o —iag
8= e = s |

The quantities within the brackets [ ] being independent of r, and being
surface harmonics of orders t—1 and ¢+ 1 respectively, we have gSi expressed as the

sum of two surface harmonics A;_;, A;,,, where

* Where the solid is incompressible, this surface traction is normal to the sphere at every point,
provided that the potential of the bodily force is expressible in a serieg of solid harmonies.
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Ay= g g S), A= I8

2i+1 2iri
Slmdal]y SZ, S; may be expressed as ]ESZ._1—|-132+1 and C,_;+C;,,, where the B’s

and C’s only dlffer from the A’s in having y, z written for x.

We have now to form the auxiliary functions ¥;.;, ®; corresponding to A;_;, Bi_j,
Ci_; and ¥;, ®;,, corresponding to A;y;, Biyy, Ciyp )

Then by the formulee (6)

. d? dar . d? ;
RAR ] Y g ar | _uzi=1) ;
P2+l q)l""dxl:r dx() Sl) +dy ) +Ez - P2+l S

-.(zz'+1)xyi=d%[ ) |+ ’i[ ]+gz[ J:—a(i+1)(2i+3)r{b‘,-

2i+1 . A
“‘W‘I’HQ:(@‘!‘@‘F@)T =18=0
Thus
_ i(2i—1) . (+1)(2+3)
Vi =0, &;=— 9t 1 Sz: *I’z——”?;‘l““" rSi, ®iyg=0

Then by (5) we form a corresponding to A;;, Bi;, C.}, and also to A, By,
Ciy1, and add them together. The final result is that a normal traction S; gives,

1 (14 2) 0 (i+1)(2(+3) d, .
* —vaf'[{2(1}-—11)[2(%'-#-1)2—{-1]6L2-2(2i+1)[2(i+ 1)2+1]’”g};g;(7" S:)

? 2%+3. %Y. 1, —i—
~ErEE TS @

and symmetrical expressions for 8" and .

a’, B, ¥ are here written for a, B,y to show that this is only a partial solution,
and v is written for # to show that it corresponds to the viscous problem. If we
now put S;=-—gwo;, we get the state of flow of the fluid due to the transmitted
pressure of the deficiencies and excesses of matter below and above the true spherical
surface. This constitutes the solution as far as it depends on (iii).

There remain the parts dependent on (i) and (ii), which may for the present be
classified together ; and for this part Sir W. THoMsON’s solution is directly applicable.
The state of internal strain of an elastic sphere, subject to no surface action, but
under the influence of a bodily force of which the potential is W, may be at once
adapted to give the state of flow of a viscous sphere under like condltlons The
solution is—
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w1 (14 2) o (+1)2i+3) AL
* "UH2<5_1)[2(¢+1)2+1]“ z(2¢+1)[2(¢+1)2+1]72}

T+ D26 +1)7+1]

oira g 3%
72’*3(21—3(7* % IWg)}. I €5))

with symmetrical expressions for 87 and y”.

I will first consider (ii) ; ¢.e., the matter of the earth is now supposed to possess the
power of gravitation.

The gravitation potential of the spheroid r=a-o; (taking only a typical term
of o) at a point in the interior, estimated per unit volume, is

I g0 poy g 390 [TV
243 )50 +1<>Cr

according to the usual formula in the theory of the potential.
Now the first term, being symmetrical round the centre of the sphere, can clearly
cause no flow in the incompressible viscous sphere. We are therefore left with

3gw (7\i
%+1\a) 7"

Now if -

Sgw
+1

< >o‘, be substituted for W, in (8), and if the resulting expression be

compared with (7) when —gwo; is written for S; it will be seen that —a”= 3 ‘.

| 2i+1%
Thus

o +a'= a”(l —21;— 1>+= ——g(i-—- 1)a”.

\é
20+1 <g> Tis

g +°‘"="’117H G I Gam VL) 212 B-1v.)

And if V,__

2—D)[2G+ 1P+ 11" 2@+ D20+ 1)+ 1] 3
v 20+ d —1—2 ] '
— G TR ‘°’dm<” 12(2——1)V>J R ()

with symmetrical expressions for 8’48 and y'+".
Equation (9) then embodies the solution as far as it depends on (i) and (iii). And

since (9) is the same as (8) when— g(z—l)Vz- is written for W,, we may include all

the effects of mutual gravitation in producing a state of flow in the viscous sphere, by
adopting THOMSON’s solution (8), and taking instead of the true potential of the layer

% ¢Nat. Phil.’, § 834, equation (8) when m is infinite compared with », and ¢—1 written for 4, and v
replaces n.
+ The case of § 815 in TuonsoN and Tarr’s  Nat. Phil.” is a special case of this.
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of matter o, —g(z —1) times that potential, and by adding to it the external disturbing
potential. v

We have now learnt how to include the surface action in the potential; and if W;
be the potential of the external disturbing influence, the effective potential per unit
volume at a point within the sphere, now free of surface action and of mutual
%(ﬁ)zaiza"iTi suppose.

The complete solution of our problem is then found by writing +T; in place of W;
in THOMSON’S solution (8).*

In order however to apply the solution to the case of the earth, it will be convenient
to use polar coordinates. For this purpose, write wr’S; for W, and let » be the radius
vector ; 0 the colatitude ; ¢ the longitude. Let p,w, v be the velocities radially, and
along and perpendicular to the meridian respectively. Then the expressions for p, =, »

gravitation, is W;—

. . . ' d d
will be precisely the same as those for «, B, y in (8), save that for - e must put o
d d d d
fOI‘ (_)l_:'l/’ m 5 and for —z* T
Then after some reductions we have

_ P+ 9a—i@ =1 )
P= oG- D2G+ 1P +1
i+ —(G—1)(i+3)y* , | dT;
T oG—DRG+ 1)+ 1y | df
i+ 2)a*—G—1)(5+3)® 11 dT,
= 2(—D[2(i4+1)+1]v sinOdd |

~—

(10)t

1 o
where Ti=w<S,~-—Qg;@.+1 3)

These equations for p, =, v give us the state of internal flow corresponding to the

external disturbing potential #%S;, including the effects of the mutual gravitation of
the matter constituting the spheroid.

* The introduction of the effects of gravitation may be also carried out synthetically, as is done by Sir
W. Tromson (§ 840, ¢ Nat. Phil’) ; but the effects of the lagging of the tide-wave render this method
somewhat artificial, and I prefer to exhibit the proof in the manner here given. Conversely, the elastic
problem may be solved as in the text.

t There seems to be a misprint as to the signs of the @’s in the second and third of equations (138) of
§ 834 of the ‘Nat. Phil.’ (1867). When this is corrected x and » admit of reduction to tolerably simple
forms. It appears to me also that the differentiation of p in (15) is incorrect; and this falsifies the
argument in three following lines. The correction is not, however, in any way important.

MDCCCLXXIX, C
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8. The form of the free surface at any time.

If p” be the surface value of p, then

. @i+ e
P=3G—D2G+1p+1]v

Hence after a short interval of time 8¢, the equation to the bounding surface of

the spheroid becomes r=a-o;+pdt; but during this same interval, o; has become

do’,-
7 ot, whence

doi _ ,__ i(20+1) waitl i guwa
@t~ PTG+ 1+ 1] v T 2G+1 4+ v 7
or
do; __m_gwc_t _ 7}(2¢+1) %i-i-l
+2(z+1)2+1 va-z_2(7,'-—1>[2(7;+1)2+1] v S L L. (11)

This differential equation gives the manner in which the surface changes, under the
influence of the external potential S,
If S, be not a function of the time, and if s; be the value of o; when =0,

_ 2+1 diS; _—guait N, o —guait
71 [1 exp([% +1)+1] >]+SZ “r <[2(i+1)2+1]u>‘ - (1)

‘When ¢ is infinite

_ 241 CLiSi

and there is no further state of flow, for the fluid has assumed the form which it
would have done if it had not been viscous. This result is of course in accordance
with the equilibrium theory of tides.

If S; be zero, the equation shows how the inequalities on the surface of a viscous
globe would gradually subside under the influence of simple gravity. We see how
much more slowly the change takes place if ¢ be large ; that is to say, inequalities of
small extent die out much more slowly than wide-spread inequalities. Is it not
possible that this solution may throw some light on the laws of geological subsidence
and upheaval ?

4. Digression on the adjustments of the earth to a jform of equilibrium.

In a former paper I had occasion to refer to some points touching the precession of
a viscous spheroid, and to consider its rate of adjustment to a new form of equilibrium,

* I write “ exp.” for ““e to the power of.”
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when its axis of rotation had come to depart from its axis of symmetry.* I propose
then to discuss the subject shortly, and to establish the law which was there assumed.

Suppose that the earth is rotating with an angular velocity o about the axis of z,
but that at the instant at which we commence our consideration the axis of symmetry
is inclined to the axis of z at an angle a in the plane of xy, and that at that instant
the equation to the free surface is

r=a {1—{—%@—[005 a cos 04-sin a sin 6 cos </>]2>}

where m is the ratio of centrifugal force at the equator to pure gravity, and therefore
o’ '
equal to E
Then putting ¢=2 in (12), and dropping the suffixes of S, s, o, 9=M<——[ ]2>

4
We may conceive the earth to be at rest, if we apply a potential

1 1
2 — T2 2 — 2
w1 S_2w wr <3—cos 0>

so that

S= %aﬁ@ —cog? 0)

By (12) we have

5aoS j 2w _gf_ 0t ) 2wgat
S
Then, substituting for 8 and s, and putting K=2;(Z;gj
Sma (/1 : 1 1 1
o="2" <g——c0s2 g>[1 _emp(.._,(t)]+<§—[cos a cos 0--sin a sin @ cos ¢ * |exp(—«t)

Now
[1—exp(—«t)] cos® 04 exp(—«t)(cos a cos O-4sin a sin O cos ¢)?

=cos? § [1—sin? a exp(—«t) |4sin? a sin® 0 cos? b ewp(—xt)
42 sin a cos a sin @ cos 0 cos ¢ exp(—«t).
Therefore the Cartesian equation to the spheroid at the time ¢ is,
w2+y2+22_ 2 57)7,{42(

1+‘i”—Z

—sin? a exp(—«kt))+a* sin? a exp(— «t) + 22z sin a cos aexp(—xt)}

or

% «On the Influence of Ceological Changes on the Harth’s Axis of Rotation,” Phil. Trans., Vol, 167,
Part 1., sec. 5.
¢ 2
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0'157”'2 ; 22157701 . ;
x { +, sin aexp(fx )}—l—y +2 { +5-(1—sin aemp(-—-x))}
. 5m
+ 5m sin a cos a xz exp(— «t) =a2<1 + ~6->

Let o be the inclination of the principal axis at this time to the axis of 2, then

sin 2a exp(—«t)
1—2sin? @ exp(—wxt)

tan 2a’=

If o be small, as it was in the case I considered in my former paper, then
da’ ,

5 = Ka
Therefore the velocity of approach of the principal axis to the axis of rotation varies

-as the angle between them, which is the law assumed.

a=a exp(—— Kt) and

Also K:g{g—gg , so that « (the » of my former paper) varies inversely as the coeflicient
v

of viscosity,—as was also assumed.

5. Bodily tides in a viscous earth.*

The only case of interest in which 8; of equation (11) is a function of the time, is
where it is a surface harmonic of the second order, and is periodic in time ; for this
will give the solution of the tidal problem. Since, moreover, we are only interested
in the case where the motion has attained a permanently periodic character, the
exponential terms in the solution of (11) may be set aside.

. . , . 2
Let S,=S cos (vt+n), and in accordance with THOMSON’S notation,T let —5—‘(% =q, and

19 Qawa
—_Uo=l’; and therefore M:—g,
dwa? 190 ¢

Then putting =2 in (11), and omitting the suffix of o for brevity, we have

do

g _¢
dt—l—xa_rScos(vt—l—n), e (1)

1t is evident that o must be of the form A cos (vt+B), and therefore

A{—wr sin (vt+B)4q cos (vt+B);=aS cos (vi+7)

% In certain cases the forces do not form a rigorously equilibrating system, but there is a very small
couple tending to turn the earth. The effects of this unbalanced couple, which varies as the square
of 9 an, will be considered in a succeeding paper on the ¢ Precession of a Viscous Spheroid.” (Read

before the Royal Society, December 19th, 1878.)
1 ¢Nat. Phil’, § 840, eq. (27).
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. t
or if we put tan e :%’
Aq sec e cos (vt+B4-€)=aS cos (vt-+7).
Hence AzgS cos €, and B=n—e,

Therefore the solution of (14) is,

a:%QCosecos(vt—Fn—-e) R O X))

v 19w

Where tan e-——i =

2gaw

But if the globe were a perfect fluid, and if the equilibrium theory of tides were
true, we should have by (13),

5a Sa
=§g~- aS cos (vt+1)= r cos (vt-+7).

Thus we see that the tides of the viscous sphere are to the equilibrium tides of a
fluid sphere as cos e : 1, and that there is a retardation in time of %

A parallel investigation‘ will be applicable to the general case where the disturbing
potential is wri S; cos (vt+17) ; and the same solution will be found to hold save that
20+17+1 w0 26—1)g

we now have tan e= @i+

and that in place of @ we have 7

6. Diminution of ocean tides on equilibrium theory.

Suppose now that there is a shallow ocean on the viscous nucleus, and let us find
the effects on the ocean tides of the motion of the nucleus according to the equilibrium
theory, neglecting the gravitation of the water.

The potential at a point outside the nucleus is

a?
9 +5g< > o418 cos (vt-7),

and if this be put equal to a constant, we get the form which the ocean must assume.
Let =a--u be the equation to the surface of the ocean. Then substituting for » in

the potential, and neglecting w in the small terms, and equating the whole to a
constant, we find,

— gu+§ga-+ a*S cos (vt+n)=

or

3
u=ro+ —g—S cos (vt-+7).
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But the rise and fall of the tide relative to the nucleus is given by u—o, and

2

a?S
U—0=

2
=5 a—s—[cos (vt+n)— cos € cos (vt4+n—¢)]

:—%%Ssmesm(vt—l—n—e). N ¢ ¥4

Now if the nucleus had been rigid, the rise and fall would have been given by

% g_;§ cos (vt+n)=H cos (vt-+n) suppose.
Therefore
y—o=—Hsinesin (vt4+n—e) . . . . . . . . (18)

Hence -the apparent tides on the yielding nucleus are equal to the tides on a
rigid nucleus reduced in the proportion sine:1; and since — sin (vi4n—¢)

= cos (Wt+77+7§r_€) they are retarded by %(e—-—g—> As € is necessarily less than z

this is equivalent to an acceleration of the time of high water equal to %(g—e>

It is, however, worthy of notice that this is only an acceleration of phase relatively
3sinecose

to the nucleus, and there is an absolute retardation of phase equal to arc-tan B c0sc

7. Semadiurnal and fortnightly tides.

Let the axis of z be the earth’s axis of rotation, and let the plane of wz be fixed
in the earth ; let ¢ be the moon’s distance, and m its mass. _

Suppose the moon to move in the equator with an angular velocity  relatively to
the earth, and’ let the moon’s terrestrial longitude, measured from the plane of az, at
the time ¢ be wt.

Then at the time ¢, the gravitation potential of the tide generating force, estimated
per unit volume of the earth’s mass is

3m .
~5 % wr? {§_ sin? 0 cos® (p— wt) }
which is equal to

1 3 . . . .
iﬁiwvﬁ@— cos? 0)—]—1 %w%z{smz 0 cos 2¢ cos 2wt —+ sin? 6 sin 2¢ sin 2wt },

The first term of this expression is independent of the time, and therefore produces

an effect on the viscous earth, which will have died out when the motion has become

steady ; its only effect is slightly to increase the ellipticity of the earth’s surface.
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The two latter terms give rise to two tides, in one of which (according to previous

notation)

3 .
S cos (vt—i—n):;% sin® @ cos 2¢ cos 2wt,

and in the second of which

4

Now ¢, which depends on the frequency of the tide generating potential, will clearly
be the same for both these tides ; and therefore they will each be equal to the corres-
ponding tides of a fluid spheroid, reduced by the same amount and subject to the
same retardation. They may therefore be recompounded into a single tide; and
since v will here be equal to 2w, it follows that the retardation of the bodily semi-
diurnal tide is -, where tan e=-2=12"*  Also the height of the tide is less than the

20 'y gaw
corresponding equilibrium tide of a fluid spheroid in the proportion of cos e to unity.
Similarly by section (6) the height of the ocean tide on the yielding nucleus is given

by the corresponding tide on a rigid nucleus multiplied by sin ¢, and there is an accelera-

S cos (vt+n)= _3 Z—g sin® 0 sin 2¢ cos<2wt +g>

€

. . . mw
tion of relative high water equal to FPE

The case of the fortnightly tide is somewhat simpler.

If @ be the moon’s orbital angular velocity, and I the inclination of the plane of the
orbit to the earth’s equator, then the part of the tide generating potential, on which
the fortnightly tide depends, is—

C)m»

8“0—‘ wr® sin® I (4 — cos? 0) cos 20¢

. 19 v
and we see at once by sections (5) and (6) that tan e = gc:u .

The bodily tide is the

tide of a fluid spheroid multiplied by cos €; the reduction of ocean tide is given by sin €
m €

and there is a time-acceleration of relative high water of 0" 9g & 5 — —:T of a
week.

In order to make the meaning of the previous analytical results clearer, I have
formed the following numerical tables, to show the effects of this hypothesis on the

semidiurnal and fortnightly tides. The coefficient of viscosity is usually expressed in

. . 19
gravitation units of force so that the formula for € becomes, tan e= w:w In the

tables v is expressed in the centimetre-gramme-second system, and in gravitation units
of force ; a is taken as 637 X 108, and w as 5°5, and the angular velocity w of the moon
relatively to the earth as 00007025 radians per second.

With these data I find v=10"X 2625 tan e. As a standard of comparison with
the coefficients of viscosity given in the tables, I may mention that, according to some
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rough experiments of my own, the viscosity of British pitch at near the freezing
temperature (34° Fahr.), when it is hard and brittle, is about 108 X 1'3 when measured

in the same units.

Lunar Semidiurnal Tide.

) ) Height of Height of High tide
Coefficient Retardation | podily tide is | ocean tide is | relatively to
of viscosity of bodily tide tide of tide on viseous nucleus

x 107 (£ fluid spheroid | rigid nuclens | 2ccelerated by

(w107 (20,) multiplied by | multiplied by | (z ~5)
(cos €). (sin €. o 4 2

Hrs. min. . Hrs. min.
Fluid 0 0 0 1000 000 3 6
46 0 21 985 174 2 46
96 0 41 940 342 2 25
152 1 2 866 500 2 4
220 1 23 766 643 1 44
313 1 44 643 766 1 23
455 2 4 500 866 1 2
721 2 25 342 940 0 41
1,438 2 46 174 985 0 21
Rigid o 3 6 000 1-:000 0 0

Fortnightly Tide.

Days. hrs, Days. hrs.
Fluid 0 0 0 1:000 000 3 10
1,200 0 9 985 174 3 1
2,500 0 18 940 342 2 16
4,000 1 3 866 500 2 6
5,800 1 12 766 643 1 21
8,300 1 21 643 766 1 12
12,000 2 6 500 ‘866 1 3
19,000 2 16 342 ‘940 0 18
39,300 3 1 174 985 0 9
Rigid w 3 10 000 1-000 0 0

T now pass on to a case which is intermediate between the hypothesis of Sir W.
TromsoN and that just treated.

8. The tides of an elastico-viscous spheroid.

The term elastico-viscous is used to denote that the stresses requisite to maintain
the body in a given strained configuration decrease the longer the body is thus con-
strained, and this is undoubtedly the case with many solids. In the particular case
which is here treated, it is assumed that the stresses diminish in geometrical progres-
sion, as the time increases in arithmetical progression. If, for example, a cubical

block of the substance be strained to a given amount by a shearing stress T, and

maintained in that position, ihen after a time ¢, the shearing stress, is T exp(—-;).
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The time t measures the rate at which the stress falls off, and is called (I believe by
Professor MaxweLL) “the modulus of the time of relaxation of rigidity ;” it is the
time in which the initial stress has been reduced to e or 3679 of its initial value. I
do not suppose, however, that any solid conforms exactly to this law ; but I conceive
that it is often useful in physical problems to discuss mathematically an ideal case,
which presents a sufficiently marked likeness to the reality, where we are unable to
determine exactly what that reality may be.

Mr. J. G. BurcuHER has found the equations of motion of such an ideal sub-
stance from the consideration that the elasticity of groups of molecules is continually
breaking down, and that the groups rearrange themselves afterwards.* These con-
siderations lead him to the following results for the stresses across rectangular planes
at any point in the interior, viz. (with the notation of § 1):—

el ) sl (24

and similar expressions for Q, R, T, U ; where m—g is the coefficient of dilatation, n

that of rigidity, o the dilatation, and a, B, 7, the comjponents of flow.
These expressions are clearly in accordance with the above definition of elastico-
ooty for 45 (98, 1

viscosity, for dt+ t-n( dz+ dy>'
If the expressions for P, S, &c., be substituted in the equations of equilibrium

of the elementary parallelopiped, it is found by aid of the equation of continuity
dé__da , dB | dy

o= + 77 that when inertia is neglected

(427 { o)+ e } 4 X0

and two similar equations.

IZ , and the equations become
3N

< 0z>~1{|: miqdlnjjdp —n\V% }+X 0.

Then supposing the substance to be incompressible, so that m is infinitely large com-
pared to n, and therefore m-+-m—4%n is unity, the equations become

2y i+ 0%)- TVt X=0

By the same reasoning as in § 1, we may put, 6= —

and two similar equations.

* Proc. Lond. Math. Soc., Dec. 14, 1876, p. 107-9. Tt seems to me that the hypothesis ought to repre-
sent the elastico-viscosity of ice very closely.

MDCCCLXXIX. D
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Now these equations have exactly the same form as those for the motion of a viscous
-1

fluid, save that the coeflicient of viscosity v is replaced by n <1—|— c%‘) . We may there-

fore at once pass to the differential equation (1 1) which gives the form of the surface

of the spheroid at any time.

Substituting, therefore, in (11) for %, 1 <—+ dt) we get
14— e gwo da-l ) guwa W20+1) waitt (1 d S,
2+1°+1 n 26+17°+1 nt oi= 20=1)[2(+1)*+1] » t+dt “

This equation admits of solution just in the same way that equation (11) was solved ;
but I shall confine myself to the case of the tidal problem, where =2 and
S;=S cos (vt+n). In this special case the equation becomes

2gwa\d 2qwa 5
(l—l— an) el e e 1!]9nt 1@30;[ cos (vt-+n)—wvsin (vt+77)]

And if we put & —I—l——l, tan Y=ut, and g—-

This may be wrltten

do  k
._+__

o ‘PS cos (vt+n-4).

In the solution appropriate to the tidal problem, we may omit the exponential term,

and assume o=A cos (vt+B). Then if we put tan X=%t~

do &k

Aw
= ;a:gﬁ—x cos (vi+B+x).

Whe~ it follows that B=ny +\p¥—x, and

(,‘L sin X __ OLOOS

g siny g cos Y’

so that

S
= Zzzch cos (vt +n+P—x).

Hence the bodily tide of the elastico—viscous spheroid is equal to the equilibrium tide

of a fluid spheroid multiplied by , and high tide is retarded by y—s-+w.

«1»

The formula for tan xy may be expressed in a somewhat more convenient form ; we
19nwt

2gwa

have tan y=v*, and therefore tan y=tan i+
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But nt is the coefficient of viscosity, and in treating the tides of the purely viscous

. 19 . . . .
spheroid we put tan e= é;z;;%bx coeflicient of viscosity ; therefore adopting the same

notation here, we have tan y=tan y+tan e.

If the modulus of relaxation t be zero, whilst the coefficient of rigidity n becomes
infinite, but nt finite, the substance is purely viscous, and we have y=0 and x=¢, so
that the solution reduces to the case already considered. If t be infinite, the sub-

cosy _psiny

cosr  sina

stance is purely elastic, and we have c,l:=72—r, X=72I and since , therefore

o-=a—£S cos (vi-+m).

. 19n Y a
. ) : * —_— —_— 1 1
But accord;ng to THOMSON’S notation Sgua— T so that o-—H_gS cos (vt-+m), which is

the solution of THOMSON’S problem of the purely elastic spheroid.
The present solution embraces, therefore, both the case considered by him, and that
of the viscous spheroid.

9. Ocean tides on an elastico-viscous nucleus.

If =a-+4u be the equation to the ocean spheroid, we have, as in sec. (6), that the
height of tide relatively to the nucleus is given by

2 2
u—a:?—S cos (vt+n) — o,

and substituting the present value of o,

cos y
e €08 (Y=

sin (vi4n—x).

u—-—a:%ﬁ S | cos (vt+47) —

— gﬂ‘sﬂﬁﬁx:_@
T cos

If the nucleus had been rigid the rise and fall would have been given by H cos (vt-+1),
where Hzg 0—; S; therefore on the yielding nucleus it is given by
u—o= —H g%gsc—;ﬂ sin (vt4+n—x)
= —H cos x (tan x—tan ¢) sin (vi4n—y)
= —H cos x tan e sin (vt+n—yx).

# ¢ Nat. Phil.’, § 840.
D 2
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Hence the apparent tides on the yielding nucleus are equal to the corresponding tides
on a rigid nucleus reduced in the proportion of cos x tan e to unity, and there is an

. . . 1 /7 .
acceleration of the time of high water equal to v—(ﬁ —x).

As these analytical results present no clear meaning to the mind, I have compiled
the following tables. I take the two cases considered by Sir W. THOMSON, where
the spheroid has the rigidity of glass, and that of iron, and I work out the results for
various times of relaxation of rigidity, for the semidiurnal and fortnightly tides. The
last line in each division of each table is THOMSON’S result.

I may remind the reader that the modulus of relaxation of rigidity is the time
in which the stress requisite to retain the body in its strained configuration falls
to 368 of its initial value.

SeaEROID With Rigidity of Glass (244 x 108).

Lunar Semidiurnal Tide.
. High tide
Modulus of . , Ocean tide latively t
rel;x;t{]oiloof Ons?si((:(l):it;; of |is tl!(lisc(l):u?g id r‘:\:cll:flsyiso
rigidity (nt x 10-). | multiplied by | “C-cierated }’y
(cos y tan ¢). (é— - x) >
Hrs, Hrs. min,
Fluid 0 0 000 3 6
1 88 256 1 44
2 176 342 1 3
3 264 870 0 45
4 351 *382 0 84
5 439 -388 0 28
Elastic o ® 398 0 0
Fortnightly Tide.
Days. hrs. Days. hrs.
Fluid 0 0 0 000 3 10
0 6 500 ‘099 2 21
0 12 1,100 181 2 9
1 0 2,100 285 1 16
2 0 4,200 857 1 0
3 0 6,300 379 0 16
Elastic o ® 398 0 0
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SeHEROID with Rigidity of Iron (7:8 X 108).

Lunar Semidiurnal Tide.
Modulus Reduction Acceleration
of Viscosity. of of

relaxation. ocean tide. high water.
Hrs. min. Hrs. min.

Fluid 0 0 0 *000 3 6

0 30 140 420 1 47

1 0 280 573 1 7

2 0 560 647 0 36

3 0 840 ‘665 0 25

Elastic o [ 679 0 0

Fortnightly Tide,

Days. hrs, Days. hrs,

Fluid 0 0 0 *000 3 10

0 6 1,700 294 2 11

0 12 3.400 470 1 18

1 0 6,700 602 1 1

2 0 18,500 ‘657 0 13

3 0 20,200 669 0 9

Elastic o o 679 0 0

10. The enfluence qf ertia,

In establishing these results inertia has been neglected, and I will now show that
this neglect is not such as to materially vitiate my results.*

Suppose that the spheroid is constrained to execute such a vibration as it would do
if it were a perfect fluid, and if the equilibrium theory of tides were true. Then
the effective forces which are, according to D’ALEMBERT’S principle, the equivalent of
inertia, are found by multiplying the acceleration of each particle by its mass.

Inertia may then be safely neglected if the effective force on that particle which has
the greatest amplitude of vibration is small compared with the tide-generating force
on it. In the case of a viscous spheroid, the inertia will have considerably less effect
than it would have in the supposed constrained oscillation. '

. Now suppose we have a tide-generating potential wr®S cos (vt+7), then, according
to the equilibrium theory of tides, the form of the surface is given by

5a?
=y, S cos (vt+7) ;

* In a future paper (read on December 19th, 1878) I shall give an approximate solution of the problem,
inclusive of the effects of inertia.
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and this function gives the proposed constrained oscillation. It is clear that it is the
particles at the surface which have the widest amplitude of oscillation. The effective
force on a unit element at the surface is

d*c__ ba®
—W = 5, WY S cos (vt+7).

But the normal disturbing force at the surface is 2wa S cos (vt+n). Therefore inertia,
? . . .p O . .
may be neglected if 5213 wv? is small compared with 2wa, or if 4?; v? is a small fraction,

The tide of the shortest period with which we have to deal is that in which v=2w, so that

. . . 5 2 .

we must consider the magnitude of the fraction 4 X % If w were the earth’s true
4 2

angular velocity, instead of its angular velocity relatively to the moon, then %(;— would

be the ellipticity of its surface if it were homogeneous. This ellipticity is, as is well
known, 555 Hence the fraction, which is the criterion of the negligeability of inertia,
is about . :

If, then, it be considered that this way of looking at the subject certainly exag-
gerates the influence of inertia, it is clear that the neglect of inertia is not such as to
materially vitiate the results given above.

1L

A TIDAL YIELDING OF THE EARTH'S MASS, AND THE CANAL-THEORY
OF TIDES.

- In the first part of this paper the equilibrium theory has been used for the determi-
nation of the reduction of the height of tide, and the alteration of phase, due to bodily
tides in the earth. v

Sir W. ToomsoN remarks, with reference to a supposed elastic yielding of the
earth’s body : ‘“Imperfect as the comparisons between theory and observation as to
the actual height of the tides has been hitherto, it is scarcely possible to believe that
the height is in reality only two-fifths of what it would be if, as has been universally
assumed in tidal theories, the earth were perfectly rigid. It seems, therefore, nearly
certain, with no other evidence than is afforded by the tides, that the tidal effective
rigidity of the earth must be greater than that of glass.”*

The equilibrium theory is quite fallacious in its explanation of the semidiurnal tide,
but Sir W. TroMsoxN is of opinion that it must give approximately correct results
for tides of considerable period. It is therefore on the observed amount of the
fortnightly tide that he places reliance in drawing the above conclusion, Under these

* ¢ Nat. Phil.’, § 843.
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circumstances, a dynamical investigation of the effects of a tidal yielding of the earth
on a tide of short period, according to the canal theory, is likely to be interesting.

The following investigation will be applicable either to the case of the earth’s
mass yielding through elasticity, plasticity, or viscosity; it thus embraces Sir W.
TromsoN’s hypothesis of elasticity, as well as mine of viscosity and elastico-viscosity.

11. Semideurnal tide in an equatorial canal on a yielding nucleus.

I shall only consider the simple case of the moon moving uniformly in the equator,
and raising tide waves in a narrow shallow equatorial canal of depth 7.
The potential of the tide-generating force, as far as concerns the present inquiry, is,

-\ 2 2
with the old notation, <:;>~; sin? 6 cos 2(¢p— wt), where T=§' ”—z? . This force will raise

a bodily tide in the earth, whether it be elastic, plastic, or viscous. Suppose, then,
that the greatest range of the bodily tide at the equator is 2K, and that it is retarded

after the passage of the moon over the meridian by an angle <. Then the equation to

the bounding surface of the solid earth, at the time 7, is r=a4-E sin® 0 cos [ 2(¢—wt) +€];
or with former notation o-=E sin? f cos[2(¢p—wt)+€],

The whole potential V, at a point outside the nucleus, is the sum of the potential
of the earth’s attraction, and of the potential of the tide-generating force. Therefore

V=g%2+5g< > E sin? 0 cos [ 2(p—wt)+€]+ §<g>z sin? 6 cos 2(¢p— wt)
=g + {F cos [2(p—at)+<)+Crsin [2(p—at)+]} @2 sin®

where F=§gE+'—; COS €, G=% sin e.

Sir GEORGE AIRY shows, in his article on “Tides and Waves” in the ¢ Encyclopeedia
Metropolitana,” that the motion of the tide-wave in a‘canal running round the earth is
the same as though the canal were straight, and the earth at rest, whilst the disturb-
ing body rotates round it. This simplification will be applicable here also.

As before stated, the canal is supposed to be equatorial, and of depth A.

After the canal has been developed, take the origin of rectangular coordinates in
the undisturbed surface of the water, and measure « along the canal in the direction
of the moon’s motion, and ¥ vertically downwards.

We have now to transform the potential V, and the equation to the surface of
the solid earth, so as to make them applicable to the supposed development. If v be
the velocity of the tide-wave, then wa=wv; also the wave length is half the circum-

2
ference of the earth’s equator, or ma ; and let m=-. Then we have the following

transformations :—
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m ma
0._ ‘2‘, ¢—_2‘, 17 —(L+h—y.

Also in the small terms we may put »=a. Thus the potential becomes

V=const.+gy~+F cos[m(x—vt)+ €]+ G sin [ m(x—vt) 4-€].

Again, to find the equation to the bottom of the canal, we have to transform the
equation

r=a-+E sin® 0 cos[ 2(p— wt)+€].

If 4 be the ordinate of the bottom of the canal, corresponding to the abscissa w,
this equation becomes after development

y'=h—E cos[m(x—uvt)+e€]

‘We now have to find the forced waves in a horizontal shallow canal, under the
action of a potential V, whilst the bottom executes a simple harmonic motion. As
the canal is shallow, the motion may be treated in the same way as Professor SToKES
has treated the long waves in a shallow canal, of which the bottom is stationary. In
this method it appears that the particles of water, which are at any time in a vertical
column, remain so throughout the whole motion.

Suppose, then, that -+ &=a" is the abscissa of a vertical line of particles PQ,
which, when undisturbed, had an abscissa «.

Let 5 be the ordinate of the surface corresponding to the abscissa «'.

Let pg be a neighbouring line of particles, which when undisturbed were distant
from PQ a small length %.

Conceive a slice of water cut off by planes through PQ, pg perpendicular to the
length of the canal, of which the breadth is . Then the volume of this slice
is bXPQX Nn. ‘

Now PQ=h—E cos [m(z'—vt)+€]—n,

and Nn::lc<1 +§f>

Hence treating E and  as small compared with 4, the volume of the slice is~—
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bhk { +—~-—~coe [m(x’ —vt)+ e]—— }

But this same slice, in its undisturbed condition, had a volume bik. Therefore the

equation of continuity is

n:h%—-E cos [m(ax’—vt)+e€].

Now the hydrodynamical equation of motion is approximately

dp __ av d2.§
de' ™ dr ~ de®

The difference of the pressures on the two sides of the slice PQgp at any depth is

N’nx g and this only depends on the difference of the depressions of the wave-

surface below the axis of @ on the two sides of the slice, viz. at P and p. Thus
d]cz dn
de’ ™ Y dx’
2
Substituting then for 5 from the equation of continuity, and observing that dci di, 1s

a? . .
very nearly the same as — = f, we have as the equation of wave motion,

—-—-g+mg E sin [m(w —vt)+e]= "(ﬁ _l_%
But
ig: —m F sin [m (@' —ut)+e]+m G cos [m(x' —vt) +e].
So that

Cfaf qh & +/m,{(} cos [ m(x' —vt)+ e]— (F—Eg) sin [m(gc’_-m) +€]3.

In obtaining the integral of this equatio,n, we may omit the terms which are
independent of G, F, E, because they only indicate free waves, which may be

supposed not to exist.
The approximation will also be sufficiently close, if # be written for 2" on the right

hand side.
Assume, then, that

é=A cos[m(x—vt)+e]+Bsin[m(z—ovt)+c].
By substitution in the equation of motion we find
—m(v*—gh){ A cos+Bsin}=m{G cos—(F—Eyg) sin}.

And as this must hold for all times and places,

MDCCCLXXIX. B
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_ G —jarsine
T m—gh)” 2(cPe®—gh)

F—Egy  a(;cose—3gE)
T m(®—gh) 2(dPe®—gh)
In the case of such seas as exist in the earth, the tide-wave travels faster than the

free-wave, so that a’»® is greater than g4 ; and the denominators of A and B are
positive.
We have then—

=% (T cose—2gE ) sin—"si
__2(&%09__9}&) 20 S € 59 BIH—ZSIHECOS

But the present object is to find the motion of the wave-surface relatively to the
bottom of the canal, for this will give the tide relatively to the dry land. Now the
height of the wave relatively to the bottom is

PQ=h—E cos[m(x—vt)+4€]—y

_ 1€
=h— hdx

dE 1 T 2 ..
&i”aﬁmg——gh {(2 cos 5—59E> cos -+ 5 Sin € sin }

Hence reverting to the sphere, and putting a for a4k, we get as the equation to
the relative spheroid of which the wave-surface in the equatorial canal forms part—

And

hsin?@ (T 2
r= afl—t:;ﬂ _gh{icos ‘2((;’)—-wt)—5gE cos [2 (qb—wt)—{—e]}
But according to the equilibrium theory, if V has the same form as above, viz.—
a3 [\ . T(r\? .,
9 +5g<&> E sin® 0 cos [2(gb—-wt)+e]+§<[;> sin® 0 cos 2(p—wt)

and if r=a-+w be the equation to the tidal spheroid, we have, as in Part I,

in?
u:SH; 6 {% cos 2(¢—wt)+§gE cos [2(p—ot)+€]
and the equation to the relative tidal spheroid is
r=a+u—o
sin?@ {7 2
=a-+ i {5 cos 2(<;S—wt)—5-gE cos [2(p—wt) + e:[}
Now in either the case of the dynamical theory or of the equilibrium theory, if E be

put equal to zero, we get the equations to the tidal spheroid on a rigid nucleus. A

comparison, then, of the above equations shows at once that both the reduction of tide
and the acceleration of phase are the same in one theory as in the other. But where the
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one gives high water, the other gives low water. The result is applicable to any kind
of supposed yielding of the earth’s mass; and in the special case of viscosity, the table
of results for the fortnightly tide at the end of Part I. is applicable.

III.
SUMMARY AND CONCLUSIONS.

In § 1 an analogy is shown between problems about the state of strain of in-
compressible elastic solids, and the flow of incompressible viscous fluids, when inertia is
neglected ; so that the solutions of the one class of problems may be made applicable to
the other. Sir W. THoMsON’S problem of the bodily tides of an elastic sphere is then
adapted so as to give the bodily tides of a viscous spheroid. The adaptation is ren-
dered somewhat complex by the necessity of introducing the effects of the mutual
gravitation of the parts of the spheroid.

The solution is only applicable where the disturbing potential is capable of expansion
as a series of solid harmonics, and it appears that each harmonic term in the potential
then acts as though all the others did not exist; in consequence of this it is only
necessary to consider a typical term in the potential.

In § 3 an equation is found which gives the form of the free surface of the spheroid
at any time, under the action of any disturbing potential, which satisfies the condition
of expansibility. By putting the disturbing potential equal to zero, the law is found
which governs the subsidence of inequalities on the surface of the spheroid, under the
influence of mutual gravitation alone. If the form of the surface be expressed as a
series of surface harmonics, it appears that any harmonic diminishes in geometrical
progression as the time increases in arithmetical progression, and harmonics of higher
orders subside much more slowly than those of lower orders. Common sense, indeed,
would tell us that wide-spread inequalities must subside much more quickly than
wrinkles, but only analysis could give the law connecting the rapidity of the sub-
sidence with the magnitude of the inequality.*

* On this Lord RAYLBIGH remarks, that if we consider the problem in two dimensions, and imagine a
number of parallel ridges, the distance between which is A, then inertia being neglected, the elements on
which the time of subsidence depends are gw (force per unit mass due to weight), v the coefficient of
viscosity, and X. Thus the time T must have the form

T={(gw)* vy N\
The dimensions of gw, v, A are respectively ML—*T—?, ML'T-, L; hence

z+y=0
—28—y+2=0
—2p—y=1,
And 2= —1, y=1, 2= —1, so that T varies as -

gw}».
If we take the case on the sphere, then when <, the order of harmonics, is great, M compares with -‘f—” ;
7

. vi
so that T varies as ——-
qwa
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I hope at some future time to try whether it will not be possible to throw some
light on the formation of parallel mountain chains and the direction of faults, by
means of this equation. Probably the best way of doing this will be to transform the
surface harmonics, which occur here, into BESSEL’S functions.

In § 4 the rate is considered at which a spheroid would adjust itself to a new form of
equilibrium, when its axis of rotation had separated from that of figure ; and the law is
established which was assumed in a previous paper.® :

In §5 I pass to the case where the disturbing potential is a solid harmonic of the
second degree, multiplied by a simple time harmonic. This is the case to be considered
for the problem of a tidally distorted spheroid. A remarkably simple law is found
connecting the viscosity, the height of tide, and the amount of lagging of tide; it is
shown that if v be the speed of the tide, and if tan e varies jointly as the coeffi-
cient of viscosity and v, then the height of bodily tide is equal to that of the equi-
librium tide of a perfectly fluid spheroid multiplied by cose, and the tide lags by

a time equal to %

It is then shown (§ 6) that in the equilibrium theory the ocean tides on the yielding
nucleus will be equal in height to the ocean tides on a rigid nucleus multiplied? by

sin e, and that there will be an acceleration of the time of high water equal to g;—-—%

The tables in § 7 give the results of the application of the preceding theories to the
lunar semidiurnal and fortnightly tides for various degrees of viscosity. A comparison
of the numbers in the first columns with the viscosity of pitch at near the freezing
temperature (viz., about 1-3 X 108 as found by me), when it is hard, apparently solid
and brittle, shows how enormously stiff’ the earth must be to resist the tidally deform-
ing influence of the moon. For unless the viscosity were very much larger than that
of piteh, the viscous sphere would comport itself sensibly like a perfect fluid, and the
ocean tides would be quite insignificant. It follows, therefore, that no very consider-
able portion of the interior of the earth can even distantly approach the fluid state.

This does not, however, seem to be conclusive against the existence of bodily tides in
the earth of the kind here considered; for although (as remarked by Sir W. THoMs0N)
a very great hydrostatic pressure probably has a tendency to impart rigidity to a
substance, yet the very high temperature which must exist in the earth at a small
depth would tend to induce a sort of viscosity—at least if we judge by the behaviour
of materials at the earth’s surface.

In § 8 the theory of the tides of an imperfectly elastic spheroid is developed. The
kind of imperfection of elasticity considered is where the forces requisite to maintain
the body in any strained configuration diminish in geometrical progression as the time
increases in arithmetical progression. There can be no doubt that all bodies do
possess an imperfection in their elasticity of this general nature, but the exact law

* Phil. Trans., Vol. 167, Part I, sec. 5 of my paper.
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here assumed has not, as far as I am aware, any experimental justification; its
adoption was rather due to mathematical necessities than to any other reason.

It would, of course, have been much more interesting if it had been possible to
represent more exactly the mechanical properties of solid matter. One of the most
important of these is that form of resistance to relative displacement, to which the
term ““ plasticity ” has been specially appropriated. This form of resistance is such that
there is a change in the law of resistance to the relative motion of the parts, when the
forces tending to cause flow have reached a certain definite intensity. This idea was
founded, I believe, by MM. TrEsca and St. VENANT on a long course of experiments
on the punching and squeezing of metals ;* and they speak of a solid being reduced to
the state of fluidity by stresses of a given magnitude. This theory introduces a
discontinuity, since it has to be determined what parts of the body are reduced to the
state of fluidity and what are not. But apart from this difficulty, there is another
one which is almost insuperable, in the fact that the differential equations of flow are
non-linear.

The hope of introducing this form of resistance must be abandoned, and the investi-
gation must be confined to the inclusion of those two other continuous laws of resistance
to relative displacement—elasticity and viscosity.

As above stated, the law of elastico-viscosity assumed in this paper has not got an
experimental foundation. Indeed, KoHLRAUSCH'S experiments on glasst show that
the elasticity degrades rapidly at first, and that it tends to attain a final condition,
from which it does not seem to vary for an almost indefinite time. But glass is one
of the most perfectly elastic substances known, and, by the light of TrEscA’s experi-
ments, it seems probable that experiments with lead would have brought out very
different results. It seems, moreover, hardly reasonable to suppose that the materials
of the earth possess much mechanical similarity with glass. Notwithstanding all
these objections, I think, for my part, that the results of this investigation of the tides
of an ideal elastico-viscous sphere are worthy of attention.

There are two constants which determine the nature of this ideal solid : first, the
coefficient of rigidity, at the instant immediately after the body has been placed in its
strained configuration; and secondly, “the modulus of the time of relaxation ot
rigidity,” which is the time in which the force requisite to retain the body in its
strained configuration has fallen away to 368 of its initial value.

In this section it is shown that the equations of flow of this incompressible elastico-
viscous body have the same mathematical form as those for a purely viscous body ; so
that the solutions already attained are easily adapted to the new hypothesis.

The only case where the problem is completely worked out, is when the disturbing

# « Sur Découlement des Corps Solides,” Mém. des Savants Etrangers, tom. xviii. and tom. xx., p. 75
and p. 137. See also ¢ Comptes Rendus,” tom. 66, 68, and Liouville’s Journ., 2™ série, xiii., p. 379, and
xvi., p. 308, for papers on this subject.

1 PoGeENDORFF Ann., vol. 119, p. 337.
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potential has the form appropriate to the tidal problem. The laws of reduction of
bodily tide, of its lagging, of the reduction of ocean tide, and of its acceleration, are
somewhat more complex than in the case of pure viscosity ; and the reader is referred
to § 8 for the statement of those laws. It is also shown that by appropriate choice of
the values of the two constants, the solutions may be either made to give the results
of the problem for a purely viscous sphere, or for a purely elastic one.

The tables give the results, for the semidiurnal and fortnightly tides, of this theory
for spheroids which have the rigidity of glass or of iron—the two cases considered by
Sir W. TromsoN. As it is only possible to judge of the amount of bodily tide by the
reduction of the ocean tide, I have not given the heights and retardations of the
bodily tide.

It appears that if the time of relaxation of rigidity is about one quarter of the tidal
period, then the reduction of ocean tide does not differ much from what it would be if
the spheroid were perfectly elastic. The amount of tidal acceleration still, however,
remains considerable. A like observation may be made with respect to the accelera-
tion of tide in the case of pure viscosity approaching rigidity: and this leads me to
think that one of the most promising ways of detecting such tides in the earth would
be by the determination of the periods of maximum and minimum in a tide of long
period, such as the fortnightly in a high latitude.

In § 10 it is shown that the effects of inertia, which had been neglected in finding
the laws of the tidal movements, cannot be such as to materially affect the accuracy of
the results.

[* The hypothesis of a viscous or imperfectly elastic nature for the matter of the
earth would be rendered extremely improbable, if the ellipticity of an equatorial
section of the earth were not very small. An ellipsoidal figure with three unequal
axes, even if theoretically one of equilibrium, could not continue to subsist very long,
because it is a form of greater potential energy than the oblate spheroidal form, which
is also a figure of equilibrium.

Now, according to the results of geodesy, which until very recently have been
generally accepted as the most accurate—namely, those of Colonel A. R. CLARKE t—
there is a difference of 6,378 feet between the major and minor equatorial radii, and
the meridian of the major axis is 15° 34" L. of Greenwich.

The heterogeneity of the earth would have to be very great to permit so large a
deviation from the oblate spheroidal shape to be either permanent, or to subside with
extreme slowness. But since this paper was read, Colonel CLARKE has published a
revision of his results, founded on new data;} and he now finds the difference between
the equatorial radii to be only 1,524 feet, whilst the meridian of the greatest axis is
8° 15 west. This exhibits a change of meridian of 24° and a reduction of equatorial

* The part within brackets [ ] was added in November, 1878, in consequence of a conversation with

Sir W. TrOMSON.
t Quoted in Tmomsox and Tarr, Nat. Phil., sec. 797. 1 Phil. Mag., August, 1878.
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ellipticity to about one quarter of the formerly-received value. Moreover, the new
value of the polar axis is about 1,000 feet larger than the old one.

Colonel CrLArRKE himself obviously regards the ellipsoidal form of the equator as
doubtful. Thus there is at all events no proved result of geodesy opposed to the
present hypothesis concerning the constitution of the earth. Sir W. TrHoMsoN
remarks in a letter to me that “we may look to further geodetic observations and
revisals of such calculations as those of Colonel CrLARKE for verification or disproof of
your viscous theory.”]

In the first part of the paper the equilibrium theory is used in discussing the
question of ocean tides; in the second part I consider what would be the tides in a
shallow equatorial canal running round the equator, if the nucleus yielded tidally at
the same time. The reasons for undertaking this investigation are given at the
beginning of that part. In § 11 it is shown that the height of tide relatively to
the nucleus bears the same proportion to the height of tide on a rigid nucleus as in
the equilibrium theory, and the alteration of phase is also the same; but where the
one theory gives high water the other gives low water.

The chief practical result of this paper may be summed up by saying that it is
strongly confirmatory of the view that the earth has a very great effective rigidity.
But its chief value is that it forms a necessary first chapter to the investigation of the
precession of imperfectly elastic spheroids, which will be considered in a future paper.*
I shall there, as I believe, be able to show, by an entirely different argument, that the
bodily tides in the earth are probably exceedingly small at the present time.

AppPENDIX,
November 7, 1878.

On the observed height and phase of the fortnightly oceanic tide.

In the following note I attempt to carry out the suggestion concerning the fo;t-
nightly tide made in the preceding paper.

The reports of the Tidal Committee of the British Association for 1872 and 1876
contain the reductions of the tidal observations at a number of stations, into a series
of harmonic tides, corresponding to the theoretical harmonic constituents of the tide-
generating forces of the moon and sun. The tide with which we are here concerned
is the fortnightly declinational tide.

The heights of the tides at various times are all expressed in the form R cos (nt—e¢),
where R is half the range of the tide in English feet, n the “speed ” of the tide, and
e the retardation of phase, so that e+n is the “lag” of the tide.

* Read before the Royal Society on December 19th, 1878,
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With the notation of the present paper n=20 for the fortmghtly tide, and O is
the “mean moon’s” longitude from her node.
The following are the results, giving the place of observation, its N. latitude, and

the years of observations.

from centimétres, so as to be made comparable with the other results :—

With respect to Brest and Toulon, R is reduced to feet

Ramsgale, Liverpool, Hartlepool,
about 51° 217 53° 40/, 54° 41/,
1864, 1857-58. 1858-59. 1859-60. 1866-67. 1858 -59, 1859-60. 1860-61.
R 0331 ‘093 ‘037 1024 1036 ‘052 ‘053 ‘073
e 268°29 1707 148°-8 72°9 340°-6 190°-34 222°34 158°-62
Cat Island
Brest, Toulon, Kurrachee, 1 i
48° 23 4377 24° 53", Gulf of Mexico,
1875. 1853. 1868-69. 1869-70. 1870 71. —
R ‘099 ‘051 038 ‘064 035 043
€ 8065 139°-50 335°40 333°-91 283°-22 136°-69

In their present form the observations do not appear to present any semblance
of law, but when they are rearranged we shall be able to form some idea as to whether
they are really quite valueless or not for the point under consideration.

The theoretical expression for the fortnightly tide of an ocean covering the whole
earth, according to the equilibrium theory, is

Where T—— —

9265

,g— .

o

T

sin® ¢(3—cos® 0) cos 204,

a= earth’s radius, ¢ the average obliquity of the earth’s axis to

the normal to the plane of the lunar orbit during the fortnight in question, 6 the

colatitude of the place of observation,
If we take 1=23° 28" the obliquity of the ecliptic, «=209 million feet, we find

a

2T sin?4="207 foot.

108

So that the fortnightly tide should be expressible by

207 (3—sin? (lat.)) cos 20,

Tn TuoMSON'S corrected equilibrium theory the second factor should be

+e sin
3 {2 2

? (lat.)
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where @ is a certain definite integral, depending on the distribution of land and
water, but which has not yet been evaluated.

The latitude of evanescent fortnightly tide is 86° 15" if @ is zero; and if we bear
in mind that @ may be negative, it is clear that the observations av Cat Island
(lat. 30° 23") are made too near the critical latitude to be trustworthy for determining
the true fortnightly tide. It is also hardly possible to believe that the observations at
Toulon should show a true tide of this denomination, because the Mediterranean must
be regarded as a virtually closed sea. The observations at Cat Island, and at Toulon,
will therefore be set aside.

The first process to be applied to the above observations is obviously to divide each
value of R by § - sin®(lat.) ; the following are the factors for reducing the values
of R:—

[2—sin?(lat.) ]

Ramsgate. 362
Liverpool. 317
Hartlepool. 301
Brest. 3:07
Kurrachee. 6-40

These factors will be applied to the values of R in the table first given.

The next point to comsider is the phase of the tide. The formula we have given
shows that the fortnightly tide consists in an alternate deformation of the ocean level
into an oblate and prolate spheroid of revolution, when the tide is deemed to be
superposed on a true sphere, instead of on an oblate nucleus.

w
20
it may be called low-tide. It follows, therefore, that N. of lat. 36° 15" high-tide is
low-water, and vice-versd; but S. of this latitude the tide and water agree. But the
formulse in the tidal reductions always refer to high-water, hence to find the retarda-
tion of the tide we must subtract 180° from all the €'s for places N. of 36° 15"—that is
to say (Cat Island being rejected) for all except Kurrachee. :

For Kurrachee, we may observe that any retardation e may be regarded as a retarda-
tion e— 2w, which, if negative, is an acceleration of tide. If 27—e be less than 180°,
this appears to be the more correct light in which to look at it.

Now if we reduce all the observations in the way indicated, so that the fortnightly
tide is given by R'(3—cos? 0) cos (20¢—1), we find the following results :—

When ¢ is zero the spheroid is oblate, and this may be called high-tide; when t=

MDCCCLXXTX. I
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Ramsgate. Liverpool. Hartlepool.
R’ 120 295 117 076 ‘114 ‘157 160 220
7 +88%29 —9°3 —31°2 —107*1 | +160>6 +10%34 | 4234 | —21°:38
Brest. II Kurrachee,
R 304 243 | 410 224
7 —99°35 —24°-60 ' —26°09 | —76°78

We will consider R’ first.

From these twelve values we find R'=203, with a probable error -+ -068.

The value of R’is almost exactly that indicated by theory (viz., '207), but the very
large probable error renders the result so uncertain, that it can only be asserted that
the results do not disprove a diminution of fortnightly tide.

With regard to phase, it will be observed that there are eight cases of accelerated
tide to four of retarded. Two of the retarded tides refer to Hartlepool, and concerning
this station Sir W. TrHoMsON says in the report: “There is scarcely sufficient agree-
ment between the results deduced from the long-period tides to be satisfactory,
although the quantities of some are within reasonable limits.”

It may be remarked, in passing, that Cat Island gives a retarded tide, and Toulon an
accelerated one.

If we treat these alterations of phase in the same way as R’ was treated, we find a
mean acceleration of phase of 7°:85, but with a p.e. several times larger than the
result itself. But, in fact, with so few and such irregular observations the method
of least squares is useless.

The cases of retarded phase certainly show considerably more irregularity than
those of accelerated phase. If we take the mean of the cases with accelerated phase,
we shall find an acceleration of 48° which corresponds in time to an acceleration
of 1 day 20 hours.

Now three out of four years of observations show an accelerated tide at Liverpool ;
all three years show an acceleration at Kurrachee; the Hartlepool observations are
not of very much value ; while the single year of acceleration at Brest may be set off
against the single year of retardation at Ramsgate. If then weask ourselves whether
acceleration or retardation is the more probable, I think it must be answered in favour
of acceleration ; and if so there seem to be some indications of a viscous yielding of
the earth’s mass. It must be admitted, however, that the evidence is exceedingly
uncertain.

It does not seem to be noticed in the tidal reports, that amongst the “ Helmholtz
compound shallow-water tides” there will be found several which have the same
period, or very nearly the same period, as the true fortnightly declinational tide. If
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we write (as in the report) v, o for earth’s rotaton and moon’s mean motion, then we
shall find the following speeds will combine so as to give shallow-water tides indis-
tinguishable from the true fortnightly tide, namely, 2(y—o) and 2y, also y—20 and v ;
and besides there are four combinations of the elliptic tides which give the samg
period of compound tide, if we neglect the motion of the moon’s perigee. It therefore
seems quite possible that in certain stations the true fortnightly tide may be masked,
or have its phase largely affected by these compound tides, and this is, perhaps, the
explanation of the great irregularity in the phases.

A series of observations in some oceanic island near the Equator, or better still far
north or south, would be of immense value to decide this point.



