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JL 25. Plasmodium ( Cancer Pagwrus).
j,. 26 Corpuscles of Asteracanthion vulgare, freshly drawn.
I F  27—28. Union of a group of corpuscles of Asteracanthion vulgare.
1 ?  29. Portion of a plasmodium produced by the union of the finely granular 
■ f  ' corpuscles of Echinus sphcera, showing distinct endoplasm containing 

the coarsely granular and the coloured corpuscles, and ectoplasm sending 
out filamentous pseudopodia, which unite with those of free corpuscles.

Fi"s- 30_88. Phonergates vorax, from “ Zeitsch. f. Wiss. Zool.” Bd. XXX. 1878.
Taf. II, figs. 54 -57 .
All the figures drawn with Yericl, Oc. 2, Ohj. 7.
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IV. “ On the Analytical Expressions which give the History of 
a Fluid Planet of Small Viscosity, attended by a Single 
Satellite/’ By G. H. D arwin, F.R.S. Received March 6, 
1880.

In a series of papers read from time to time during the past two 
years before the Royal Society, I have investigated the theory of the 
tides raised in a rotating viscous Spheroid, or planet, by an attendant 
satellite, and have also considered the secular changes in the rotation 
of the planet, and in the revolution of the satellite. Those investi
gations were intended to be especially applicable to the case of the 
earth and moon, but the friction of the solar tides was found to be a 
factor of importance, so that in a large part of those papers it became 
necessary to conceive the planet as attended by two satellites.

The differential equations which gave the secular changes in the 
system were rendered very complex by the introduction of solar 
disturbance, and I  was unable to integrate them analytically; the 
equations were accordingly treated by a method of numerical quadra
tures, in which all the data were taken from the earth, moon, and 
mm, This numerical treatment did not permit an insight into all the 
various effects which might result from frictional tides, and an analy
tical solution, applicable to any planet and satellite, is desirable.

In the present paper such an analytical solution is found, and is 
interpreted graphically. But the problem is considered from a point 
of view which is at once more special and more general than that of 

I the previous papers.
The point of view is more general in that the planet may here be 

conceived to have any density and mass whatever, and to be rotating 
with any angular velocity, provided that the ellipticity of figure is not 
large, and that the satellite may have any mass, and may be revolving 
about its planet, either consentaneously with or adversely to the plane
tary rotation. On the other hand, the problem here considered is 
more special in that the planet is supposed to be a spheroid of fluid of 
small viscosity; that the obliquity of the planet’s equator, the inclina-
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tion and the eccentricity of satellite’s orbit to the plane of reference are 
treated as being small, and, lastly, it is supposed that the planet is 
only attended by a single satellite.

The satellite itself is treated as an attractive particle, and the planet 
is supposed to be homogeneous.

Ihe notation adopted is made to agree as far as possible with that of 
a previous paper, in which the subject was treated from a similarly 
general point of view, but where it was supposed that the equator and 
orbit were co-planar, and the orbit necessarily circular.*

The motion of the system is referred to the invariable plane, that is, 
to the plane of maximum moment of momentum.

The following is the notation adopted :—
For the planet:—
21 =  mass ; a =  mean radius ; g =  mean pure gravity; C =  moment 

of inertia (neglecting ellipticity of figure); n =  angular velocity of 
rotation; i — obliquity of equator to invariable plane, considered as 
small; g =  £ g/a.

For the satellite :—
m — mass; c =  mean distance ; Q =  mean motion ; e =  eccentricity 

of orbit, considered as small; j  — inclination of orbit, considered as 
small; t =  |m/c3, where in is measured in the astronomical unit.

For both together: —
v = M/m, the ratio of the masses; s =  f[(«'r/(/)2(l + r)]i; h =  the

resultant moment of momentum of the whole system ; E =  the whole 
energy, both kinetic and potential, of the system.

By a proper choice of the units of length, mass, and time, the nota
tion may be considerably simplified.

Let the unit of length be such that -fm, when measured in the 
astronomical unit, may be equal to unity.

Let the unit of time be such that s or i[ar/^)3(l + r ) ] i  may be 
unity.

Let the unit of mass be such that C, the planet's moment of 
inertia, may be unity.

Then we have
Q2c3= i f - f m = l ............................. ( 1).

Now, if we put for g its value and for v  its value 21/m, we
have

„_2 /  fail la~~]2M -j-m \i 2 a3 . , ,  . . .,
o m 21 J to J 5 to J

and since s is unity, to =  |-a2, when to is estimated in the astronomical 
unit.

* “ Determination of the Secular Effects of Tidal Friction by a Graphical Me
thod,” “ Proc. Roy. Soc.,” No. 197, 1879.



Again, since C =  \M<&, and since C is unity, therefore = |/'a 2, where
if ig estimated in the mass unit. .

Therefore is unity, when M  and m are estimated m
the mass unit, with the proposed units of length, time, and mass.

According to the theory of elliptic motion, the moment of momentum 
of the orbital motion of the planet and satellite about their common
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centre of inertia is
factor involving M  is unity, and by (1) Qc3=Q -*=c*.

Hence, if we neglect the square of the eccentricity e, the m. of m. ox
orbital motion is numerically equal to Q * or c*.

Now it has been shown that the

In this paper x, the moment of momentum of orbital motion, will 
be taken as the independent variable. In interpreting the figures 
given below it will be useful to remember that it is also equal to the 
square root of the mean distance.

The moment of momentum of the planet’s rotation is equal to Ow; 
and since C is unity, n will be either the m. of m. of the planet’s rotation, 
or the angular velocity of rotation itself. ' <

With the proposed units T==|m/c3= |-a3ar6, since m=%a ; and
g=-|gf/a=-|M'/a3=-|>n. M/ma3= ^ / » .  _

Also t2/^ (a quantity which occurs below) is equal to f a 5/*'35 .
Now let t be the time, and let 2 be the phase-retardation of the 

tide which I have elsewhere called the sidereal semi-diurnal tide of 
speed 2n, which tide is known in the British Association Report on
Tides as the faster of the two K  tides. , 

Then if the planet be a fluid of small viscosity, the following are 
the differential equations which give the secular changes in the
elements of the system:

^ = - ^ s i n 4 / f l - —V ...................... ..... • (2>*
dt S -V n '

* ! =  1— sin 4 / ( l ——V .  . . . . . .  (3).
dt 2 S V * /

i ^ Bi n 4 / ( i ± A ( l - - ) .................W .
dt 4 S V nA

^ L = - i ^ . s i n 4 / l i ± i l ......................................(5)-
dt 4 g - t o

i ^ s m 4 / . l ( l l - ^  . . . . .  (6).
e dt g x \

The first three of these equations are in effect established in my 
paper on the “ Precession of a Viscous Spheroid,”* § 17, p. 497, eq. (80).

* “ Phil. T rans.P art II, 1879. f. m j .
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The suffix m2 to the symbols i and N  there indieates that the e„„a 
hons (80) only refer to the action of the moon, and as here we olh 
have a single satellite, they are the complete equations. N  is eoual t 
v/n0, so that n0 disappears from the first and second of (80V al ° 

fi-l/snQCl0i,and thus n0 disappears from the third equation.
and’ S11*ce we are treating i the obliquity as small p = i ’ 

l — t ; also X-Q /n; the e of that paper is identical with the of the
present one; lastly f  is equal to Q0iQ-*, and since with our presen 
units s = l ,  therefore pdg/dt=dQ -i/n

With regard to the transformation of the first of (80) into (4) 0f 
the present paper, I remark that treating as small ApQ_l 
= ^ ( 1- 20/w) and introducing this transformation into the first of 
(80), equation (4) is obtained, except that i occurs in place of (i+j) 
Jntow m the paper on the “ Precession of a Viscous Spheroid ” the in 
clmation of the orbit of the satellite to the plane of reference was 
treated as zero, and hence jwas zero ; but I have proved in a paper 

On the Secular Changes in the Elements of the Orbit of a Satellite 
revolving about a tidally distorted Planet” (read before the Royal 
Society on December 18th, 1879, but as yet unpublished) that when 
we take into account the inclination of the orbit of the satellite, the P 
and Qon the right-hand sides of eq. (80) of “ Precession ” must be 
taken as the cosine and sine of i+ j  instead of Equations (5) and 
(6) are proved in § 10, Part II, and § 25, Part V of the unpublished 
paper, and the reader is requested to take them as established.

The integrals of this system of equations will give the secular 
changes in the motion of the system under the influence of the 
frictional tides. The object of the present paper is to find an analy
tical expression for the solution, and to interpret that solution geome
trically.

From equations (2) and (4) we have

[Mar. 18

. dn di t -— -+- n—:
dt dt sin 4 / | -[ _ (i+ i) +  2,■ ( ! - £ ) ] .

But from (3) and (5) xdjjdt-^j dxfdt is equal to the same expres
sion; hence

• dn di %- +n—= dt dt -.x^L+d—.dt ' dt
The integral of this equation is

or - ■ = - ........................................ (7). j
Equation (7) may also be obtained by the principle of conservation 

of moment of momentum. The motion is referred to the invariable 
plane of the system, and however the planet and satellite may interact 
on one another, the resultant m. of m. must remain constant in
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direction and magnitude. Hence if  we draw a parallelogram of 
Which the diagonal is h/th e  resultant m. of m. of the system), and of 
Which the sides are n and x, inclined respectively to the diagonal at 
jfche angles i  and j ,  we see at once that

sin i_x
sin j n

If i and j  be treated as small this reduces to (7).
Again the consideration of this parallelogram shows that

h?=w2 +  as2 +  2rwj cos (i + j ) ,

which expresses the constancy of moment of momentum. If the 
squares and higher powers of i + j  be neglected, this becomes

h=n-\-x  . . .  . ........................... ($)•

IjjgO ] History o f Planet and Single Satellite.

Equation (8) may also be obtained by observing that dnldt +  dx/dt—O, 
and therefore on integration n +  xis constant. It is obvious from the 
principle of m. of m. that the planet’s equator and the plane of the 
satellite’s orbit have a common node on the invariable plane of the

H w e divide equations (4) and (6) by (3), we have the following 
results:—

1 § L = 1  Y i  i A * - 2 0 ........................... (9).
i dx 2 n\i) n -—Q

Ide_1 l l n —180 ...................... . . (10 ).
e dx 2x n —Q

But from (7) and (8)
1 + 2= 1 + ? = *

% X X
also Q=a;~3, and n —h—x.

Hence (9) and (10) may be written

d, ._  h 1 x?(h—x )—2 \
dx og%— -  . x{Ti—x)’ 1 y

d , _1 lla;3(A— —18
dx °^ 6 2x Xs(h— — 1 j -

| w a;)—2 > _  ,h  s 2 __
2x(h— x){x̂(h—x )—1} x(h—*) 2 a;4 |-1

Therefore d  v . 1 , 1 , ha?2 . . . . .  (12 ).
dx x h —x 2 x 4‘—h x * + l

lla:3(A— x)—18 _ 9 _  7 a?a(a>—A)
2x\x*(Jh—x )—l ) . x 2 ' x* 1Also
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Therefore log e = - —Z . _ x~(,r<
dx x 2 x*—hxs+ L (13)

These two equations are integrate as they stand, except as regard 
the last term in each of them.

It was shown in a previous paper that the whole energy of th 
system, both kinetic and potential, was equal to 1

Then integrating (12) and (13), and writing doAvn (7) and (8 
again, and the expression for the energy, we have the following equa 
tions, which give the variations of the elements of the system in terms 
of the square root of the satellite’s distance, and independently of the 
time.

log t = l o g -J!L- + J +  const. 1

log e=log x9 — |  j\  — ~   ̂+ const.
Jx4—hx8 +  l

. . .  (14).

n= h—x.

2 E = ( h - x y - —.
X2 J

When the integration of these equations is completed, we shall 
have the means of tracing the history of a fluid planet of small 
viscosity, attended by a single satellite, when the system is started 
with any given moment of momentum A, and with any mean distance 
and (small) inclination and (small) eccentricity of the satellite’s 
orbit, and (small) obliquity of the planet’s equator. It may be re
marked that h is to be taken as essentially positive, because the sign 
of h merely depends on the convention which we choose to adopt as 
to positive and negative rotations.

These equations do not involve the time, but it will be shown later 
how the time may be also found as a function of x. I t is not, how
ever, necessary to find the expression for the time in order to know 
the sequence of events in the history of the system.

Since the fluid which forms the planet is subject to friction, there
fore the system is non-conservative of energy, and therefore x must- 
change in such a way that E  may diminish.

If the expression for E  be illustrated by a curve in which E  is the 
vertical ordinate and x the horizontal abscissa, then any point on this 
u curve of energy ” may be taken to represent one configuration of 
the system, as far as regards the mean distance of the satellite.

* “ The Secular Effects of Tidal Friction/’ &c., “ Proc. Roy. Soc./’ No. 197, 
1879, eq. (4).
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Then such a point must always slide down a slope of energy, and we 
shall see which way a? must vary for any given configuration. This 

Iconsideration will enable us to determine the sequence of events, 
iwhen we come to consider the expressions for i, e, j ,  n  in terms of x.

We have now to consider the further steps towards the complete 
S solution of the problem.

The only difficulty remaining is the integration of the two expressions 
in the first and second of (14). From the forms of the expressions 
to be integrated, it is clear that they must be split up into partial 
fractions. The forms which these fractions will assume will of course 
depend on the nature of the roots of the equation a?4—for3+  1= 0.

Some of the properties of this biquadratic were discussed in a 
I previous paper, but it will now be necessary to consider the subject 
in more detail.

It will be found by Ferrari’s method that

. 7 o i  f  2 i o ^ — h . X i  — h \  f  a « X t +  . X t +  1

where Xs—4X—A3= 0 .
By osing the property (Xf—Ji) (X£ +  /i)=4X, this expression may be 

written in the form

[{®+4(X£—^)}3 +  {4(Xt—K) L̂-\-2hX~s}8] X
({a?—^ ( X t + A ) + { ^ ( X £ - j - & ) —2h\  5} ]̂»

Which is of course equivalent to finding all the roots of the bi
quadratic in terms of h and X.

Now let a curve be drawn of which Ifi is the ordinate (negative

F ig. 1.

1880.] History of Planet and Single Satellite.

The ordinates are drawn to one-third of the scale to which the abscissae are drawn.
VOL. XXX. T
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values of h2 being admissible) and X the abscissa ; it is shown in fio-. 1 
Its equation is 7*2:=X(X2 —4).

It is obvious that O A =O A '=2.
The maximum and minimum values of 2 (viz., Bb, B'6') are o-iven 

by 3A2= 4  or X=r +2/3 .
Then Bb=B'b'=  — 23/3 i+ 4 . 2/34=  (4/3a)2.
Since in the cubic, on which the solution of the biquadratic depends, 

h2 is necessarily positive, it follows that if Ti be greater than 4/3* the 
cubic has one real positive root greater than OM, and if h be less than 
4/3 , it has two real negative roots lying between 0  and OA', and 
one real positive root lying between OA and OM.

To find OM we observe that since 3 is equal to (4/3*)3, and since 
the root of X3—4 \—7t2= 0  which is equal to —2/3* is repeated twice, 
therefore, if e be the third root (or OM) we must have

(x + | jy (V - 6) =  X*—4X-(X-)",

whence (2/3*)3e= (4/3*)2, and e or OM=4/3*.
Now O A =2 ; hence, if h be less than 4/3% the cubic has a positive 

root between 2 and 4/3*, and if hbe greater than 4/3% the cubic has a 
positive root between 4/3* and infinity.

It will only be necessary to consider the positive root of the cubic.
Now suppose h to be greater than 4/3*.
Then it has just been shown that X is greater than 4/3*, and hence 

(X being positive) 3X8 is greater than 16\, or 4(X3—4X) greater than 
X3, or 4 h2greater than X3, or 2 h\~§greater than unity.

Therefore {|(Xf +h)v̂ l— 27A~S}2 =  — {|(X! + / % ) \ / l } 2.

Thus the biquadratic has two real roots, which we may call a and b. 

then a—j(Xf +  /&) [1 + ? — 1),

b= |(X l+ 7 i)[l— a/  27iX_f—1],

It will now be proved that a is greater and b less than ////,.

Now a>  or < |

as (X? + 7i) [1 + y/ — 1 ] > or < 3
(Xf +  h) --------- ------------

as A—-j—- \/2h—Xt > or < 2 fc-Xf,

as XI + h> or < X* v72A^XJ, 
as X3 + 27;X* + h2 > or <27iX!—X3, 

as 2X3 + h2 > or < 0.
Since the left hand side is essentially positive, a is greater than %h.
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b >  or <f/%

-26?

as (xf +  h)[1 — v '2AX“*— 1 ] > or < 37i,

as — ̂  ~  \ / 2fe—At > or < 2ft—\ i

Since the left-hand side is negative and the right positive, the left is 
less than the right, and therefore b is less than f  

If, therefore, h be greater than 4/3% we may write
xi -hx*+  1 =  0 —a) (as—b)[(«—*)2 +  /33],

where a - f  fc, f  &-*> are positive, and where a is negative.
We now turn to the other case and suppose less than 4/3*. A1 

the roots of the biquadratic are now imaginary, and we may put
a>4 _  jufi+ 1 =  [ (x -  *) 2 +  /32] [ (»■- 7)2+ g3l •

If « be taken as — £(Xf—A)» then r/ is K xf+  ̂ )- 
Then it only remains to prove that 7 is greater than f  It.

Now 7 > or <f/%
as At > or < 2/i,

asX3> or < 4/&2=4(A° —4X),
as 16 > or < 3X3,

as 4/3* > or < X,
but it has been already shown that in this case, X is less than 4/3% 
wherefore 7 is greater than fh.

We may now proceed to the required integrations.
First case where h is greater than 4/34.

Let %4— hx3 + 1 = (as—a) — b) [ (a— «)2 +  /33] >

so that the roots are a, b, a+/J«.
Also let a be the root which is greater than -§7% b that which is less, 

and let
a=a^-)-j/i, b=/|7i bj, x—-̂ h *i-

r̂yl
To find the expression for i we have to integrate

Let f(x)  =  (x —a)^-(a:), and let a»3//(a j)= A /(a j-a )+ 0 (* )M * )-  
Then x2 (as—a )= Af(x) +  — a )2</> ( ).
Hence A = a2//'(a).
If, therefore, /(,:«) — a;1— hx3 -f-1, A =  l/(4 a —3 /i)= l/4 a 1.
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Thus the partial fractions corresponding to the roots a and b are

1 1  1 1
4a1a?—a 4bxa;—b (15).

If the pair of fractions corresponding to the roots be formed
and added together, we find

- (a;—a) +
2(1 * +  /*) [(a5-*)2+ ^ 3]

X2

(16).

The sum of (16) and (16) is equal to xl— ha;3+ 1’and

x2dx

X —  a•----- --------arc tan
2fo * + > )  5 (17).

Substituting in the first of (14) we have

— r(i»cx>a)8»1 exp. I . hB x —i ------—----- arc tan —
U & ?+JP) P *]

h—x hoLj_ (18).
(jXCCb)8bx [(a? — a)  ̂+  /3^8(tt1a-H8!1)

where A  is a constant to be determined by the value of i, which 
corresponds with a particular value of x.

From the third of (14) we see that by omitting the factor- 
xl(h—a?) from the above, we obtain the expression for

To find the expression for e we have to integrate 4 ^  8+ I *

Now
and therefore

x2(x—/(■) =  4 (4a;3—3 — ̂ hx2,

[ f ( X- }p dJ L = l\0 g ( # - ^ 3 + l ) _ ^ f  X[dX— .
J a;4— â;3 +  l  Ja;4— 1

The integral remaining on the right hand has been already deter
mined in (17). Then substituting in the second of (14), we have

Bx9
"(a;4—fe3+l)S

(*c° a ) i - exp- V 3
- ftctj

(a;cob)8bi [(a;—<*)3-)-/J3] 8tai3+0a)
(19).

where Bis a constant to be determined by the value of e, correspond
ing to some particular value of x.
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From this equation we get the curious relationship

_ B  ft9
6 A i (x4—hx

(20).

This last result will obviously be equally true even if all the roots 
.of **-&»£+1=0  are imaginary.

In the present case the complete solution of the problem is com- 
prised in the following equations

hr Tip , a?—*]'
co a)sai exp. | 4(^2 +  ig2) arctan /j j  

j — - i i  "  ^  ”  ho>\
(ascob)ir.[(

h—x
B

J-

a1.9
A* (x‘i—hxi + 1)

zh—x.

-J1'

(21).

2E = (h—x)2—-^.

It is obvious that the system can never degrade in such a way 
that * should pass through one of the roots of the

+ 1=0: Hence the solution is divided into three fields, viz.,
(i) x =  +oo to as=a; here we must write a, b for tie
.a;cob in the above solution; (ii) as=a to as=b; here we mus wn e 
a-as, 05—b (this is the part which has most interest m application t 
actual planets and satellites); (m) ®=b to * = -c o  , eie we 
write a—®, b —as. When as is negative the physical meaning is 
the revolution of the satellite is adverse to the planet’s rotation.

By referring to (4) and (6), we see that % must be a maximumor 
minimum when n= 2Q, and e a maximum oi minimum w e V
Hence the corresponding values of as are the roots of the equati 
45*-fta53 +  2= 0, and ®*-fca^ +  -H= 0  respectively.

Since •
as2 _  1 1 _  1 1 . 1 - * i ( s —«)+£?.'

4a  ̂as—a 4b^as—h 2(«12+/32) [(as—*)- + /*-]

Therefore

^ 2= J _ ( a s - b )  [ (a s -* )2 +  £ 3] -  — (a. a) [ (as a)2 +  /32]
4a  ̂ 4bi

+  1 + ^ 2](as—a) (as—b).
. 2  W + P )
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Hence the coefficient of *3 on the right-hand side must be zero, and
therefore - j—— —L_-— — -*1 — 0.

4ax 41q 2(a12 + /3")

. -> //   lb . 1 I OCy
8ii-j 81)| 4-(a.y'

Now when x=  + oo, arc tan —~ a= i 7r, an(l whenoo, it is
equal to — ̂ r.

Hence when * = + 00, j= A exp . [ +  7rfyS/8(*13+j82)], i= _ y .  the 
upper sign being taken for + 00 and the lower for — 00.

Then since /.[tends to become constant when +  00, and since 
9—x— y , therefore when xis very large e tends to vary as*“ .

If x be very small jhas a finite value, and i varies as x, and e varies 
as a9.

j, i ,and e all become infinite when = b, and also becomes infinite 
when x—li.

This analyti cal solution is so complex that it is not easy to under
stand its physicallmeaning; a geometrical illustration will, however, 
make it intelligible.

The method adopted for this end is to draw a series of curves, the 
points on which have * as abscissa and j, e, as ordinates. The 
figure would hardly be intelligible if all the curves were drawn at once, 
and therefore a separate figure is drawn for i, /  and e ; but in each 
figure the straight line which represents is drawn, and the energy 
curve is also introduced in order to determine which way the figure is 
to be read. The zero of energy is of course arbitrary, and therefore 
the origin of the energy curve is in each case shifted along the vertical 
axis, in such a way that the energy curve may clash as little as 
possible with the others.

It is not very easy to select a value of h which shall be suitable for 
drawing these curves within a moderate compass, but after some con
sideration I chose h—2'6, and figs. 2, 3, and 4 are drawn to illustrate 
this value of h. If the cubic Xs—4 \ — (2'6)3=0, be solved by Cardan’s 
method, it will be found that X=2'5741, and using this value in the 
formula for the roots of the biquadratic we have

a?4—2*6 +1 =  ( x - 2-539) (as -  ■-826) [ (x + -382)3 + (-575)3].

Hence a =  2-539, b=-826, «=  — -382, /3==*575, 
4a1= 2 ,356, 4b1=4-496, ^=2-332, ^ 2+  £3=5-771.

Then we have

|7i=l-95, and
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(2-539 cv3*)'552 exp. [ ‘062 arc tan (l740a?+-665)] v 
j= A-------- ( ^ 8 2 6 V 289 (a52 +  ‘705iB+’477)'1814

2-fi—a>

B  *"

^ = 2#6—

2 7̂=  (2-6-a;)2- ^ 2-

267

(22).

imum and minimum values of e are given by the roots of the equation 
yA _2*6aj + = 0, viz., a = 2 ’495 and ®=1*0095. The horizontal asymp
totes for ilAand j/A  are at distances from the axis of x equal to 
exp. (-062 X £*■) and exp. ( - ‘062 x ^ ) ,  which are equal to 1T02 and

Fig. 2 shows the curve illustrating the changes of the obliquity of
the equator to the invariable plane. .

The asymptotes are indicated by broken lines ; that at A is given 
bv * = ’826, and is the ordinate of maximum energy; that at B is given 
by x=2-6, and gives the configuration of the system for which the 
planet has no rotation. The point 0 is given by a?=2'539, and lies on 
the ordinate of minimum energy. Geometrically the curve is divide 
into three parts by the vertical asymptotes, but it is further divided
physically. 1 ,

The curve of energy has four slopes, and since the eiiei g) ulus

degrade, there are four methods in which the system may change, 
according to the way in which it was started. The arrows marked on 
the curve of obliquity show the direction in which the curve must be

Since none of these four methods can ever pass into another, this 
figure really contains four figures, and the following parts of the figure 
are quite independent of one another, viz.: (i) from — oo to O ; (n) 
from A to O ; (iii) from A to C ; (iv) from +  oo to C. The figures 
3 and 4 are similarly in reality four figures combined. For each of 
these parts the constant A must be chosen with appropiiate si0n 5 u 
in order to permit the curves in fig.. 2 to be geometrically continuous
the obliquity is allowed to change sign.

The actual numerical interpretation of this figure depends on the 
value of A .Thus if for any value of a) in any of the four fields the 
obliquity has an assigned value, then the ordinate coiresponding to 
that value of * will give a scale of obliquity from which all the other 
ordinates within that field may be estimated.
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F ig. 2.

Diagram for Obliquity of Planet’s Equator.—First case.

As a special example of this we see that, if the obliquity be zero at 
any point, a consideration of the curve will determine whether zero 
obliquity be dynamically stable or no t; for if the arrows on the curve 
of obliquity be approaching the axis of x, zero obliquity is dynamically 
stable, and if receding from the axis of x, dynamically unstable.

Hence from x— 4- oo to B, zero obliquity is dynamically unstable, 
from oo to O and A to O dynamically stable, and from A to B, first 
stable, then unstable, and finally stable.

Ihe infinite value of the obliquity at the point B has a peculiar 
significance, for at B the planet has no rotation, and being thus free 
from what feir William Thomson calls “ gyroscopic domination,” the 
obliquity changes with infinite ease. In fact at B the term equator 
loses its meaning. The infinite value at A has a different meaning. 
The configuration A is one of maximum energy and of dynamical 
equilibrium, but is unstable as regards mean distance and planetary 
rotation; at this point the system changes infinitely slowly as regards
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;me and therefore the infinite value of the obliquity does not indicate 
n infinite rate of change of obliquity. In fact if we put n=Q  in (1)
,,e see that dijidt—— K^/g) sin ¥ • However, to consider this case 
dequately we should have to take into account the obliquity in the 
quations for dnfdtand dx\dt, because the principal semi-diurnal tide
anishes when w=Q. . 1
Similarly at the minimum of energy the system changes infinitely 

lowly, and thus the obliquity would take an infinite time to vanish.
We may now state the physical meaning of fig. 2, and this interpre- 

ation may be compared with a similar interpretation in the paper on 
‘ The secular effects of tidal friction,” above referred to.

A fluid planet of small viscosity is attended by a single satellite, and 
he system is started with an amount of positive moment of momentum 
which is greater than 4/33, with our present units of length, mass and 
time.

The part of the figure on the negative side of the origin indicates a 
negative revolution of the satellite and a positive rotation of the 
nlanet, but the m. of m. of planetary rotation is greater (by an amount

h)than the m. of m. of orbital motion. Then the satellite approaches 
the planet and ultimately falls into it, and the obliquity always 
diminishes slowly. The part from O to A indicates positive rotation 
of both parts of the system, but the satellite is very close to the planet 
and revolves round the planet quicker than the planet rotates, as in 
the case of the inner satellite of Mars. Here again the satellite 
approaches and ultimately falls in, and the obliquity always diminishes.

The part from A to C indicates positive rotation of both parts, but 
the satellite revolves slower than the planet rotates. This is the case 
which has most interest for application to the solar system. The 
satellite recedes from the planet, and the system ceases its changes 
when the satellite and planet revolve slowly as parts of a rigid body - 
that is to say, when the energy is a minimum. The obliquity first 
decreases, then increases to a maximum, and ultimately decreases to 
zero.*

The part from infinity to C indicates a positive revolution of the 
satellite, and from infinity to B a negative rotation of the planet, but 
from B t o C a  positive rotation of the planet, which is slower than the 
revolution of the satellite. In either of these cases the satellite 
approaches the planet, but the changes cease when the satellite and 
planet move slowly round as parts of a rigid body—that is to say, when 
the energy is a minimum. If the rotation of the planet be positive, 
the obliquity diminishes, if negative it increases. If the lotation of 
the planet be nil,the term obliquity ceases to have any meaning, sinct- 
there is no longer an equator.

* According to the present theory, the moon, considered as being attended by the 
•$artli as a satellite, lias gone through these changes.

j History o f Planet and Single Satellite.



270 Mr. G. H. Darwin. [Mar. 1>

Fig. 3 illustrates the changes of inclination of the satellite’s orbi; 
and may be interpreted in the same way as fig. 2. It appears from tl 
part of the figure for which x is negative, that if the revolution of tl 
satellite be negative, and the rotation of the planet positive, but tl

F igk 3.

Diagram for Inclination of Satellite’s Orbit.-—First case.

m. of m. of planetary rotation greater than that of orbital motion, 
then, as the satellite approaches the planet, the inclination of the orbit 
increases, or zero inclination is dynamically unstable. In every other 
case the inclination will decrease, or zero inclination is dynamically 
stable.

This result undergoes an important modification when a second 
satellite is introduced, as will appear in the unpublished paper.

Fig. 4 shows a similar curve for the eccentricity of the orbit. The 
variations of the eccentricity are very much larger than than those of j 
the obliquity and inclination, so that it was here necessary to draw the
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rdinates on a much reduced scale. I t was not possible to extend the 
Lure far in either direction, because for large values of as,e varies as 
hieh power of * (viz., V)- The curTe Presents a resemblance to that 

j. 0bliquity, for in the field comprised between the two roots of the 
biquadratic ’(viz., between A and C) the eccentricity diminishes to a 
minimum, increases to a maximum, and ultimately vanishes at Ch

jygO ] History o f Planet and Single Satellite.

F ig . 4.

Diagram for Eccentricity of Satellite's Orbit.—First case.

This field represents a positive rotation both of the planet and satel
lite, but the satellite revolves slower than the planet rotates. This part 
represents the degradation of the system from the configuration of 
maximum energy to that of minimum energy, and the satellite recedes 
from the planet, until the two move found slowly like the parts of a 
rigid body.

In every other case the eccentricity degrades rapidly, whilst the 
satellite approaches the planet.

The very rapid rate of variation of the eccentricity, compared with 
that of the obliquity would lead one to expect that the eccentricity of 
the orbit of a satellite should become very large in the course of its
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evolution, whilst the obliquity should not increase to any very larg* 
extent. But it must be remembered that we are here only treating a 
planet of small viscosity, and it will appear, in the unpublished papei 
above referred to, that the rate of increase or diminution of the eccen- 
tricity is very much less rapid (per unit increase of x) if the viscosity 
be not small, whilst the rate of increase or diminution of obliquity 
(per unit increase of x) is slightly increased with increase of viscosity 
Thus the observed eccentricities of the orbits of satellites and of 
obliquities of their planets cannot be said to agree in amount with the 
theory that the planets were primitively fluids of small viscosity, 
though I believe they do agree with the theory that the planets were 
fluids or quasi-solids of large viscosity.

We now come to the second case, where h is less than 4/3’. The 
biquadratic having no real roots, we may put

X 4 - h x *  +  1 =  [ (x-a ) 3 - f  £ 3] [ 7 ) 3 +  .

I t has already been shown that a is negative, and 7 greater than §
Let a = f  h — alt7 =  71-f-|^.
Then by inspection of the integral in the first case we see that

*Yi
. [ (x—7 )2-t-<$2"]8(yl3+S“)

y = A - ----------z—  te l  x
\_(x — /32]8(ai2+02)

exp- [ i ^ ^ ) arcten^ + 4 ( ^ ) arotan5T 1]-
The rest of equations (21), which express the other elements in 

terms of j  and x,remain the same as before.
By comparison with the first case, we see that

a?3 _ 1 —»i (x—« ) + / 33 . 1 71(a?—7 ) +
x4 — A®3 +1  ~~2 f  yS3) " (a—a)2+/32_ +  2(7l2 +  ̂ ) G - 7)2-H2''

On multiplying both sides of this identity by 53 +  l, and equating
the coefficients of xs,we find

0= __ - * i --  + ___yj— .
2(*13 +  y82) ^ 2(713 +  a2)

Therefore ---- - f l ----= ---- --------.
8(«12+/33) 8(7l3 +  a3)

Thus when x is equal to +00

j —Aexp r ± ____ - 1-13-____±_____ y 7— 1
J P ‘ L 8 ( a i3+ /32) 8 (7 12 +  ^ ) J ’
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he upper sign being taken for +oo, and the lower for - o o . This 
xnression gives the horizontal asymptotes for j  and .
In order to illustrate this solution, I chose h—1, and found by tri

gonometrical solution of the cubic \ 3 - 4 \ - l = 0 ,  \=2T149, and
hence

, (*3—2-Q38* + l'401Y077 r.081 arc tan (1-500* + -778)
3 \  cc2 +  1-038* + '714 /

+  *346 arc tan (T659*—T691)].

b ____ ____ a.
A'i (*4 —*3 +  l)»

n— 1—*.

2B=(1 - * ) 3- i .X6

>(23).

/
When * =  +  oo, j lA = l’9and
when *=  — oo, *512= — ijA.

F ig . 5.

Diagram for Obliquity of Planet’s Equator.—Second case.

These solutions are illustrated as in the previous case by the three
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figures 5, 6, 7. There are here only two slopes of energy, and hene 
these figures each of them only contain two separate figures.

Fig. 5 illustrates the changes of i, the obliquity of the equator t 
the invariable plane.

In this figure there is only one vertical asymptote, viz., that com* 
sponding to x—1.For this value of x the planet has no rotation, i 
free from “ gyroscopic domination,” and the term equator loses it 
meaning.

The figure shows that if the rotation of the planet be negative, bu> 
the m. of m. of planetary rotation less than that of orbital motion 
then the obliquity increases, whilst the satellite approaches the planet

This increase of obliquity only continues so long as the rotation oi 
the planet is negative. The rotation becomes positive after a time, and 
the obliquity then diminishes, whilst the satellite falls into the planet. 
In the corresponding part of fig. 2 the satellite did not fall into the 
planet, but the two finally moved slowly round together as the parts of 
a rigid body.

If the revolution of the satellite be negative, and the rotation of 
the planet positive, but the m. of m. of rotation greater than that of 
revolution, the obliquity always diminishes as the satellite falls in to 
the planet.

F ig .

Diagram for Inclination of Satellite’s Orbit.—Second ease.
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Figs. 2 and 5 only differ in the fact that in the one there is a true 
oaximum and a true minimum of obliquity and energy, and in the 
Ifcher there is not so. In fact, if we annihilate the part between the 
eitical asymptotes of fig. 2 we get fig. 5.

; pig, 6 illustrates the changes of inclination of the orbit. It does 
Lt possess very much interest, since it simply shows that however the 
system be started with positive revolution of the satellite, whether the 
station of the planet be positive or not, the inclination of the orbit 
Sliohtly diminishes as the satellite falls in.
| aBcI however the system be started with negative revolution of the 
Satellite, and therefore necessarily positive rotation of the planet, the 
nclination of the orbit slightly increases. Fig. 6 again corresponds 
o fig. 3, if in the latter the part lying between the maximum and 
ninimum of energy be annihilated.

] History o f Planet and Single Satellite.

F ig . 7.

Diagram for Eccentricity of Satellite’s Orbit.—Second case.

Fig. 7 illustrates the changes of eccentricity, and shows that it 
always diminishes rapidly however the system is started, as the satellite 
falls into the planet. This figure again corresponds with fig. 4, if in
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the latter the parts between the maximum and minimum of enertty J 
annihilated.

These three figures may be interpreted as giving the various stability 
and instabilities of the system, just as was done in the first case.

The solution of the problem, which has been given and discusse 
above, gives merely the sequence of events, and does not show the rat 
at which the changes in the system take place. It will now be showi 
how the time may be found as a function of

Consider the equation

/  is here the angle of lag of the sidereal semi-diurnal tide of speed 2 
then by the theory of the tides of a viscous spheroid, tan2/ = 2w/pj 
where p is a certain function of the radius of the planet and its density! 
and which varies inversely as the coefficient of viscosity of the 
spheroid.*

Since by hypothesis the viscosity is sm all,/is  a small angle, so that 
sin 4 fmay be taken as equal to 2 tan 2 Thus, sin 4 is a constant, 
depending on the dimensions, density, and viscosity of the planet.

It has already been shown that t2 varies as a?-12, and g is a constant,, 
which depends only on the density of the planet. Hence, the above 
equation may be written

a ji2 ^ = K  (w -Q ),

where K is a certain constant, which it is immaterial at present to 
evaluate precisely.

Since n = h —x and Q=x~3, we have

K d t= — x15d 
X4 —hx3+  l ’

or K « = - f _ ^ L _ +a  const.
Jx4— hxJ-l

The determination of this integral presents no difficulty, but the 
analytical expression for the result is very long, and it does not at 
present seem worth while to give the result. The actual scale of time 
in years will depend on the value of K, and this is a subject of no 
interest at present.

It will, however, be possible to give an idea of the rate of change 
of the system without actually performing the integration. This may

* “ On the Bodily Tides of Yiscows and semi-elastic Spheroids,” &c. “ Phil. 
Trans.,” Part I, 1879, p. 13, § 5.
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ie done by drawing a curve in which the ordinates are proportional 
o dt/dx, and the abscissae are x. The equation to this curve is then •

—a?15
dx x4— 1

iphe maximum and minimum values (if any) of dt/dx are given by the 
|eal roots of the equation

11a?4—124a?3+  15= 0.

)ne of such roots will be found to be intermediate between a and b, 
aid the other greater than a.

j History o f Planet and Single Satellite.

F ig. 8.

Diagram illustrating the Rate of Change of the System.

J Fig. 8 shows the nature of the curve when drawn with the free 
hand. It was not found possible to draw this figure to scale, because 
when h— 2:6 it was found that the minimum M was equal to ‘85, and 
could not be made distinguishable from a point on the asymptote A, 
whilst the minimum m was equal to about 900,000, and could not be 
made distinguishable from a point on the asymptote C.

The area intercepted between this curve, the axis of x, and any pair 
of ordinates corresponding to two values of x, will be proportional to 
the time required to pass from the one configuration to the other.
' Where dl/dx is negative, that is to say, when the satellite is falling 
into the planet, the areas fall below the axis of x. This is clearly 
necessary in order to have geometrical continuity in the curve.

The figure shows that the rate of alteration in the system becomes 
I  VOL. XXX; U
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very slow when the satellite is far from the planet; this must indeei 
obviously be the case, because the tidal effects vary as the inverse sixtl 
power of the satellite’s mean distance.

V.. “ On the Modifications of the Spectrum of Potassium whici 
are Effected by the Presence of Phosphoric Acid, and or 
the Inorganic Bases and Salts which are found in combina
tion with Educts of the Brain.” By J . L. W. T hudichum, 
M.D., F.R.C.P.L. Communicated by J ohn  S imon, C.B. 
F.R.S., &c. Received March 10, 1880;

Among the results of a large investigation on which -I have for 
many years been engaged in regard of the chemistry of the brain, I! 
had been led to conclude that the so-called “ protagon” of Oscar 
Liebreich is not a definite chemical body, but is a variable mixture of 
several bodies. This conclusion of mine (which agrees with opinions 
expressed on the same subject by Strecker, Diaconow, and Hoppe- 
Seyler) was published by me in 1874,* and endeavours to controvert 
it have since then been made, on several occasions, by Dr. Arthur 
Gamgee.f Last summer, he brought before the Royal Society^ his 
contentions for the chemical individuality of “ protagon”; and it 
fortunately was in my power shortly afterwards to publish evidence, 
which, I believe, those who will take the trouble to follow it will 
find quite unanswerable, that Dr. Gamgee’s contentions were mis
taken^ Part of my evidence to that effect consisted in showing by 
quantitative analyses that Dr. Gamgee’s so-called “ protagon ” con
tains 0*7 per cent, of potassium; secondly, that in connexion with 
trifling differences in the extraction process, the proportion of potas
sium in different specimens of “ protagon ” can be made to range 
from a trace to 1*6 per cent.; thirdly, that with the variable quantities 
of potassium the quantities of phosphorus and other ingredients will 
also vary.

In the last published number, No. 200, p. I l l ,  of the “ Proceedings 
of the Royal Society,” I find that Dr. Gamgee has recently brought 
the question again under notice of the Society, and that, in doing so, 
he especially rests his case upon the following statement made by his 
colleague, Professor Roscoe, on the subject of some examinations,

* “ Reports o f  the Medical Officer o f  the Privy Council and Local G overnm ent 
Board.” New Series. No. III.

+ “ Zeitschrift fur- Physiol. Chemie,” vol. iii, p. 260 j “ Ber. Deutsch. Chem. 
G e s . 1879, &e.

X “ Proc. Roy. Soe.,” vol. xxix, p. 151.
§ “ Annals of Chemical Medicine.” Edited by J. L. W. Thudichum. Vol. i, 

p. 254.


